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Abstract 

Built-in Self-Test (BIST) is becoming a widely accepted means for testing VLSI circuits. 

BIST usually consists of two major functions known as on chip test pattern generation and 

test response evaluation. There are two major difficulties regarding test response evaluation. 

The first is reducing the error escape rate or aliasing while still maintaining reasonably 

small hardware requirements. The other is accurately assessing the impact of aliasing on 

the overall test quality of a BIST scheme. This dissertation addresses these two difficulties 

by developing a group of techniques known as multiple intermediate signature analysis. 

Compared to the conventional single signature analysis, multiple intermediate signature 

analysis has many advantages, e.g., smaller aliasing, easier exact fault coverage computation, 

shorter average test time, and increased fault diagnosability. 

Based on the investigation of an aliasing model, this dissertation develops a com­

prehensive fault coverage model for predicting the fault coverage performance with multiple 

intermediate signature analysis. In addition to the parameters used in the aliasing model, 

such as the number of intermediate signatures and the length of each signature, the proposed 

model also includes information on the scheduling of intermediate signatures. 

In addition to the studies on the conventional multiple intermediate signature anal­

ysis, referred to as CMS schemes, this dissertation also describes two novel multiple inter­

mediate signature analysis techniques. The first is a fuzzy multiple intermediate signature 

analysis, or simply called the FMS scheme. Unlike the CMS schemes, where each checked 

signature must correspond to a specific reference on a one-to-one basis for a circuit under 

test (CUT) to be declared good, the FMS scheme declares a CUT good if each checked sig­

nature maps to any element of the same set of references. In comparison, the FMS scheme 

is very simple and easy to implement. A complete theory for the aliasing performance and 
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hardware requirement prediction with the FMS scheme is derived. 

The second novel multiple intermediate signature analysis proposed in this disser­

tation is single reference multiple intermediate signature analysis, simply referred to as the 

SMS scheme. Conventionally, checking n signatures requires n references. With the SMS 

scheme, however, regardless of the number of checked signatures, only one single reference 

is needed. The SMS scheme requires minimal hardware for multiple intermediate signature 

analysis, i.e., essentially the same amount of hardware as for conventional single signature 

analysis. To efficiently implement the SMS scheme, a systematic approach is developed 

based on the discovery of some identical signature properties. This implementation ap­

proach of the SMS scheme does not require any circuit modification of the CUTs. The 

cost for implementing the SMS scheme is a non-recurring CPU time overhead in the de­

sign phase. In return, the SMS scheme yields significantly recurring silicon area savings 

as well as reduced aliasing. With the algorithms provided in this dissertation, The CPU 

time overhead for implementing the SMS scheme is very small. For example, if the SMS 

scheme is used to check two 16-bit signatures, which yields 65,536 times smaller aliasing at 

no extra hardware cost compared to conventional single signature schemes, the total CPU 

time overhead required for implementing the SMS scheme is less than 4 seconds on a Sun 

Sparc 2 workstation for a test length of 220, independently of the size of CUTs. 
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Claims of Originality 

The author claims originality for the following contributions of this dissertation. 

• In Chapter 4, the comprehensive fault coverage model is developed. This model is 

based on a fault detection probability density function of a circuit under test (CUT). 

In addition to the possible fault coverage loss due to aliasing, this model also takes 

into account the impact of the test vectors applied to the CUT. 

• In Chapter 5, an efficient implementation of conventional multiple intermediate sig­

nature analysis is presented. This scheme shares some hardware existing in a conven­

tional signature analysis BIST scheme. The detailed discussions on test control and 

test result observation are also not published previously. 

• In Chapter 6, the proposed concept of fuzzy multiple intermediate signature analy­

sis is novel. Unlike conventional multiple intermediate signature analysis, the fuzzy 

signature analysis does not contain the strict one-to-one signature-reference corre­

spondence. The complete theory for aliasing performance prediction with the fuzzy 

multiple intermediate signature analysis is given. Considerations for practical imple­

mentations of fuzzy signature analysis as well as analysis on the hardware requirements 

are presented. 

• In Chapter 7, a novel concept referred to as single reference multiple intermediate sig­

nature analysis is proposed. The proposed single reference signature analysis checks 

multiple signatures against a single reference, thus reducing the hardware require­

ments for implementation to a minimum. Therefore, this scheme is also referred to as 

minimal hardware multiple intermediate signature analysis. 
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• In Chapter 7, the discovery of the identical signature properties is a contribution 

to knowledge. Based on the identical signature properties, a systematic method for 

implementing single reference multiple intermediate signature analysis is developed. 

Two algorithms are given, one for the efficient generation of large number of fault-

free sequences and the other for the fast identification of the fault-free sequence that 

possesses the identical signature properties. 

• In Chapter 7, the classification of LFSRs according to their singularity (a useful prop­

erty for implementing single reference multiple intermediate signature scheme) is also 

a contribution to knowledge. 

xiu 



Chapter 1 

Introduction 

For Very Large Scale Integrated (VLSI) circuits, testing is a difficult and expensive process. 

With improving semiconductor technology and computer-aided design (CAD) techniques, 

circuits with a very large number of devices can now be fabricated on a single chip, e.g., 

the Intel Pentium microprcessor has 3.1 million transistors on a single chip [Barr93]. The 

increasing package density of VLSI chips not only makes the chips more powerful, but also 

causes dramatic reductions in chip production cost. On the other hand, the percentage of 

the chip production expenditure consumed by testing has greatly increased. The increasing 

package density of VLSI chips has made the problem of testing extremely difficult. 

1.1 Dissertation Objective and Outline 

When testing VLSI circuits, conventional test strategies have encountered a number of 

problems, such as the requirement for prohibitive CPU efforts for test pattern generation, 

low test quality due to limited accessibility to the internal circuit nodes, and the requirement 

of expensive Automatic Test Equipments (ATE). Built-in Self-Test (BIST) is one of the 

most promising solutions to these problems. BIST is the capability of a circuit to test 

itself without requiring external ATEs. In BIST, both the test pattern generation and 

test response evaluation are performed on the same chip as the circuit under test (CUT). 

However, when implementing a BIST, there exist several technical difficulties. Among these, 

two major difficulties are the so-called error escape or aliasing, and the inability to compute 

the exact fault coverage with reasonable CPU time efforts. The error escape problem is 

that some faults detected by the test patterns escape detection during the test response 
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Chapter 1. Introduction 2 

evaluation process, thus causing some faulty circuits to be mistakenly declared good. Due to 

aliasing, some BIST schemes may result in poor test quality [Saxena85][Zorian86][Argwal83]. 

This dissertation addresses these two problems by developing a group of techniques known 

as multiple intermediate signature analysis. 

The dissertation is organized as follows. The first three chapters are basically intro­

ductory chapters. Thus, readers familiar with VLSI testing may skip these chapters. The 

remainder of this chapter provides a general review of the art of VLSI testing. Chapter 

2 is an introduction to BIST which introduces typical BIST hardware models, important 

BIST components, and commonly used test pattern generation and response evaluation 

techniques. Since this dissertation concentrates on BIST test response evaluation, a more 

detailed discussion on this issue and its current status is provided in Chapter 3. 

The contribution to knowledge of this dissertation starts from Chapter 4. Chapters 

4 and 5 discuss the basis of multiple intermediate signature analysis. Chapter 4 studies 

the aliasing and fault coverage performance of multiple intermediate signature analysis. 

More specifically, several models for aliasing and fault coverage predictions are developed. 

In Chapter 5, other issues associated with multiple intermediate signature analysis are 

discussed. The chapter begins with a discussion of the possible implementations of multiple 

signature analysis, in which a new scheme that shares the hardware resources of conventional 

BIST schemes is developed. This is followed by the discussions of test control, test result 

observation, and the advantages and drawbacks of multiple intermediate signature analysis 

compared to other data compaction techniques. 

Chapter 6 is devoted to the development of a fuzzy multiple intermediate signature 

analysis technique for BIST. It discusses the basic concept of introducing fuzziness into 

signature analysis so as to simplify the conventional way of checking multiple intermediate 

signatures. It also discusses possible implementations, their hardware requirements, models 

for aliasing performance prediction, and comparisons with some other techniques. Exper­

imental results obtained while using the fuzzy multiple intermediate signature scheme are 
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also reported in Chapter 6. 

Chapter 7 presents a single reference multiple intermediate signature scheme that 

requires a minimal amount of hardware for multiple signature analysis. In addition to 

showing how the minimal hardware requirement is achieved, Chapter 7 also develops several 

techniques that help to efficiently implement the proposed scheme. Feasibility studies as 

well as experiments on benchmark circuits are reported. Finally, Chapter 8 summarizes 

this dissertation and discusses possible future work in these areas. 

1.2 Fault Models 

Being physical devices, VLSI circuits are subject to failures. A failure is defined to occur 

when the delivered service by a circuit deviates from its specified service [Abraham86]. The 

cause of a failure is an error, which is denned to be any discrepancy between the actual 

circuit output sequence and the specified or expected output sequence [Breuer76]. The 

cause of an error is said to be a fault [Abraham86]. 

The causes of a fault can be numerous. First, incorrect design or design specification 

of a circuit can lead to a fault in the final fabricated circuit. Secondly, a fault can occur due 

to manufacturing defects, such as open and poor interconnections, shorts between conduc­

tors, excess leakage current, etc. [Bardell87]. Thirdly, even if a circuit is "perfectly" man­

ufactured, it could subsequently wear out in the field due to electromigration, hot-electron 

injection, spreading charge loss, electrical overload, etc. [Abraham86]. Even during storage, 

faults may occur in a circuit due to factors such as temperature, humidity, leakage of sealed 

elements, and aging [Breuer76]. Lastly, even for a perfectly "good" circuit, a fault may 

occur temporarily in the field due to physical or environmental causes, such as lightening, 

radiation, stress, vibration, heat dissipation, etc. [Breuer76][Savaria86][Johnson89]. 

Regardless of the causes of a fault, in order for a fault's effect to be assessed, it must 

be modeled in a manner that is consistent with the representation of the circuit. In general, 
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a fault described at a lower level can more accurately represent failure mechanisms, but 

involves a much greater degree of complexity [Abraham86]. For example, a fault described 

at the transistor level may become intractable because of the extremely large number of 

transistors in a VLSI chip, though it can very accurately describe the physical phenomena 

causing the fault. On the other hand, a fault described at a higher level, such as the 

gate level or functional level, can significantly reduce the complexity of treatment but, due 

to the loss of information, may result in some lower level failures not being considered 

[Abraham86]. For different requirements, many fault models have been developed. Some 

of them are simple while others are sophisticated. Among them, the stuck-at fault model 

[Breuer76][Bardell87] is one of the simplest and most commonly-used. 

A stuck-at-0 (stuck-at-1) fault is defined to be any fault condition that causes a 

signal line to behave as if it were stuck at logical 0 (1). This model is a logical fault model, 

and is thus technology independent. Faults can occur singly or in multiples. A special class 

of these stuck-at faults is the single stuck-at fault model that assumes the existence of at 

most one such fault in a circuit. The single stuck-at fault model is the most commonly 

used model in practice. The popularity of this model is mainly due to its simplicity and 

ability to cover many common defects in ICs, e.g., bridging faults [Bardell87] and multiple 

stuck-at faults [Kubiak9l]. However, there exist some defects that the stuck-at fault cannot 

model very well, e.g., delay faults and CMOS stuck-open faults. Nevertheless, the single 

stuck-at fault model is still the most popularly used, and still the model against which all 

other more complex fault models are compared [Bardell87]. 

As many other researches in this field, this dissertation assumes the single stuck-

at fault model. But, as will be noted, the methodology and techniques developed in this 

dissertation are also applicable to other fault models. 
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1.3 Test Quality Measures 

Testing of digital circuits consists of applying a sequence of input vectors to a circuit, 

observing the output sequence, and comparing it with a precomputed or expected output 

sequence. The presence of a given fault is said to be detected when an appropriate input 

vector or vectors, applied to the CUT, causes an incorrect logic output at one or more of 

the CUT's output lines. The input vectors are called test patterns or test vectors. Although 

a test procedure can be generic, its quality measures are usually associated with a specific 

fault model. In VLSI testing, the quality is usually measured by the ratio of the detected 

faults to the total number of possible faults under the assumption of a specific fault model. 

This ratio is termed fault coverage. Due to its dependence on fault models, for a same CUT 

and a same set of test patterns applied in the same order, the fault coverages obtained for 

different fault models can be significantly different. 

The fault coverage that a given set of test vectors can achieve is usually computed 

by a process called fault simulation. Fault simulation consists of simulating the applica­

tion of every pattern in the test set to the fault-free as well as a set of faulty circuits 

(each corresponding to a circuit to which a fault is injected), and comparing the sim­

ulated test response of the fault-free circuit with that from each of the faulty circuits. 

Fault simulation is the only way to determine the exact fault coverage [Wagner87]. In 

the past few years, gate-level stuck-at fault simulation for combinational circuits has been 

made extremely fast [Blank84][Waicukauski85][Mamari90][Keller90][Lee91]. A report from 

industry even declares that further speed up may not be necessary [Atken90]. For other 

fault models, such as delay faults, fast fault simulation techniques have also be developed 

[Waicukauski87b][Schulz87][Fink90][Wu92a]. For fault coverage computation, an alternative 

to fault simulation is the use of analytical techniques for fault coverage estimation [Wag-

ner87][Savir84][Savir84b]. These techniques are based on the knowledge of the detectabilities 
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1 of the faults in the CUT. Two major difficulties for using these techniques are the obstacle 

of obtaining the detectability profile of the CUT, and the inadequate accuracy. 

1.4 Conventional Approach to IC Testing 

Testing a digital circuit requires three major steps, namely the generation of a set of test 

vectors, the application of these vectors to a CUT, and the analysis of the collected test 

response from the CUT. In conventional IC testing, an external tester is employed to apply 

test vectors and to collect and analyze the test response. 

When dealing with large circuits, the conventional approach encounters a number of 

difficulties. First, the computational time requirements for the test pattern generation may 

be prohibitive. Due to the fact that signals at internal circuit nodes are easier to control in 

combinational circuits than in sequential circuits, test pattern generation for combinational 

circuits is much easier. Many test pattern generation algorithms have been developed, e.g., 

[Goel81][Fujiwara83][Rajski87] [Schulz88]. To speed up the test pattern generation process, 

fault simulation is usually employed to determine whether a test pattern generated for one 

fault is also able to detect other faults. If so, these detected faults are dropped from further 

consideration. Unfortunately, even with the best algorithm, to generate a complete test 

set (the set of test vectors that covers all detectable faults in a CUT) is still prohibitively 

expensive for today's large circuits [Sedmak85]. Secondly, the generated test set usually 

cannot achieve adequate fault coverage. This is because the controllability and observability 

of the internal circuit nodes through I/O pins have been significantly reduced as a result 

of the increased complexity and density of VLSI circuits. The reduced accessibility to the 

internal nodes not only makes test pattern generation more difficult, but results in large 

number of undetectable faults, and hence poor test quality. Thirdly, external testers or 

so-called ATEs are not only expensive, but impose a limitation on the speed at which the 

'The detectability of a fault is defined to be the probability that the fault is detected by a randomly 
chosen test vector. 
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CUTs can be tested. Conventionally, IC chips are tested at low speed to verify their static 

state functionality. However, a CUT that passed the low speed test may not be able to work 

properly at its operational speed due to the existence of AC faults1 [Schulz87] [Maxwell91]. 

The speed at which a circuit can run at test is limited by the speed of the ATE. High 

speed ATEs are extremely expensive (easily millions of dollars). Moreover, all ATEs are 

made with existing IC technology. Thus, their speed is likely to be slower than the latest 

technology. Besides, the amount of test data is becoming too large to be handled efficiently 

by ATEs. To ease these problems, a group of new techniques known as design-for-testability 

have been proposed [William83][McCluskey85]. 

1.5 Design for Testability 

In general, design-for-testability (DFT) is any design technique that helps make a circuit 

more testable. For example, one can either enhance the controllability of internal circuit 

nodes, or enhance their observability, or both. Many DFT techniques are now available. 

Some are structured or generic design techniques. Some are ad hoc. A group of well-known 

structured DFT techniques is scan path design. 

As discussed earlier, testing a sequential circuit can be much more difficult than 

testing a combinational circuit. Scan design defines two operational modes of a circuit: 

normal mode and test mode. In the normal mode, the circuit performs its normal function 

as a sequential circuit. In the test mode, the circuit is reconfigured into a combinational 

circuit and a scan register. The problem of testing a sequential circuit is thus reduced to 

that of testing a combinational circuit and a scan register. The conversion is accomplished 

by connecting all the circuit's internal state memory elements into a shift register, and 

connecting one end of the register to an input pin while connecting the other to an output 

pin. With the scan register, any internal state memory element can be fully controlled by 

AC faults are the faults that cause timing failure of a system but may not affect the system's steady 
state functionality. 
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shifting a bit into that specific element from the shift register's input pin. The state of the 

memory element can easily be observed by shifting out its content to the shift register's 

output pin. In this way, the circuit nodes or lines that are connected to the internal memory 

elements can be treated as primary inputs and outputs in the test mode. 

Although scan design significantly simplifies the problem of IC testing, it has several 

drawbacks. A possible drawback is that some faults may not be detected since the testing is 

performed in the test mode instead of the circuit's normal mode. In addition, in exchange 

for the reduced complexity in testing, scan design implies extra hardware requirements. For 

example, as estimated in [Nagle89], full scan design usually entails 10% - 20% additional 

hardware requirements. Furthermore, scan register cells sometimes require a more complex 

clocking system. Take the Level Sensitive Scan Design (LSSD) [Eichelberger78] technique 

for instance, which is now a compulsory requirement for all IBM's designs, two clock signals 

are required. In addition to extra hardware requirements and possible performance degra­

dation, scan design also requires substantially longer test time because the test vectors 

must be serially shifted into the scan path bit by bit. However, experience has shown that 

the price paid by scan design is well compensated for by the significantly reduced effort in 

testing [McCluskey85]. 

It is worth mentioning another type of scan design for testing multichip assemblies 

even though this dissertation focuses on chip level testing. This type of scan design is 

known as boundary scan, which assigns a memory element to each I/O pin of a chip, and 

connects these elements into a shift register called the boundary scan register. When testing 

a multichip assembly, a long shift register is formed by connecting each chip's boundary 

scan register together. Through the long shift register, the I/O pins of each chip can be 

easily accessed. Boundary scan design successfully solves the problem of assembly intercon­

nection testing [Hassan88][Jarwala89] without requiring the use of bed-oj-nails equipments. 

Boundary scan design has now become an IEEE standard [IEEE90] 
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1.6 Built-in Self-Test 

DFT techniques such as scan design may ease the difficulty of test pattern generation and 

application. However, the core problems of limited internal circuit node accessibility and 

the requirements of expensive test pattern generation and ATEs still remain [Sedmak85]. 

Another DFT design approach which can well be coupled with scan design is built-in 

self-test (BIST) [Sedmak85][McCluskey85]. BIST is the capability of a product (wafer, chip, 

multichip assembly, system) to test itself without requiring external ATEs [Sedmak85]. This 

simple but very promising idea attacks not only the limited accessibility problem, but also 

the costly test pattern generation and ATE problems. A BIST must consist of a strategy 

for generating test vectors, a strategy for evaluating test response, and the implementation 

mechanisms [McCluskey85]. In chip level BISTs, both test pattern generation and test 

response evaluation are performed by some simple hardware in the same chip that is un­

der test [Gelsinger86][Katoozi92][Zorian91][Hagihara92][Kuban84]. The conventional test 

approach's expensive requirements for test pattern generation and ATEs are no longer nec­

essary with BIST. Furthermore, the on-chip test pattern generation and output evaluation 

significantly enhance the accessibility of internal circuit nodes, thus possibly yielding better 

test quality. Another strength of BIST is the ability to test circuits at their operational 

speed, which enables the detection of many AC defects in addition to the detection of static 

state failures. BIST can also be used for in-field test, and for multichip assembly fault 

diagnosis, which requires faulty chip localization. 

As pointed out in [McCluskey85], all BIST methods have some associated cost. Since 

BIST circuitry uses chip area, there is a decrease both in the yield1 and in the reliability 

[McCluskey85], and there is an increase in the power consumption [Levy91]. These costs 

are compensated for, however, by the significant savings in testing and especially system 

maintenance in the product life-cycle [Agrawal93]. The extra silicon area consumed by 

1 Yield is usually defined to be the ratio of the number of good chips over that of all the chips produced. 
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BIST used to be considered as an overhead. Recently, however, with increasing demands 

for higher test quality, more and more people in the VLSI community tend to consider BIST 

as a necessary function of a chip. Thus, the silicon area associated with BIST is considered 

as a natural requirement, and not as an overhead. Of course, it is still desirable to keep the 

hardware requirements of BIST as low as possible for the sake of cost, yield, reliability, and 

power- consumption. 

1.7 Test Quality Prob lems of BIST 

BIST is a simple and powerful idea to solve the problems of VLSI testing. However, it has 

a distinctive technical difficulty. In BIST, due to the on-chip test response evaluation, the 

bit-by-bit comparison technique that is usually adopted in the conventional approaches is 

not normally practical any more. To evaluate the test response efficiently while consuming 

reasonable amount of silicon area, the test response sequence is usually compacted into a 

small sequence of bits, called a signature. At the end of a test, the signature collected from 

the CUT is compared with an expected signature or reference to determine whether the 

CUT is fault-free. 

A major drawback of the compaction is the loss of information, which may result in 

some erroneous sequences being compacted into a same signature as the fault-free one, thus 

causing an incorrect diagnosis whereby a faulty circuit declares itself as good. This problem 

is well-known as aliasing or error masking [McCluskey85][Bardell87]. Due to the aliasing 

problem, the overall test quality of a BIST scheme depends not only on the quality of the 

test vectors generated, but also on the quality of the adopted data compaction technique. 

Many recent research efforts have been aimed at reducing the aliasing problem while still 

maintaining reasonably small hardware requirements, e.g., [Zorian86], [Agarwal87], [Li87], 

[Robinson87], [Robinson88], [Gupta90] and [Raina91j. But, as will be discussed in the 

subsequent chapters, most compaction techniques have the deficiency of either excessively 
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large aliasing or substantially high hardware requirements. 

Another difficulty associated with output data compaction is the assessment of the 

test quality of a BIST scheme. As discussed in Section 1.3, fault coverage is an accepted 

quality measure of VLSI testing. Fault coverage is usually computed by fault simulation. 

An important technique that makes fault simulation fast is dropping a fault from further 

consideration once it is detected by a test vector. This technique is known as fault dropping. 

In BIST, however, fault dropping is not usually possible. This is because, due to possible 

aliasing, once a fault is detected there is no guarantee that it will be detected at the end of 

the test. Without fault dropping, fault simulation is not generally computationally feasible 

for large circuits. Due to the inability to accurately quantify the test quality of a BIST 

scheme, the test quality issue of BIST has traditionally been split into two parts. The first 

part is to use fault coverage before compaction to measure the quality of the test vectors 

generated. The second part is to characterize the possible loss of the coverage due to aliasing. 

Unlike fault coverage measures, which are deterministic, measures for aliasing are usually 

probabilistic. Although many advanced probabilistic techniques have been developed, such 

techniques are difficult to use confidently when dealing with a specific CUT because of the 

statistical uncertainty. Evidence of the uncertainty can be found in experimental reports, 

e.g., [Aitken89], [Xavier92], [Rajski91b] and [Debany92]. 



Chap te r 2 

Built-in Self-Testing 

BIST is becoming a widely-used means for VLSI testing. Many commercial products 

[Kuban84][Daniels85][Gelsinger86][Gelsigner89][Hagihara92] illustrates how far the BIST 

concept has become a reality. Testing different types of circuits usually requires different 

types of BIST [Zorian91], e.g., BIST for random logic, BIST for RAMs, BIST for ROMs, 

etc. This dissertation focuses on the BIST schemes designed for testing random logic. How­

ever, the schemes developed in this dissertation still apply to the BIST for other types of 

circuits. As discussed in Chapter 1, the two major functions of BIST are the on-chip test 

pattern generation and output data evaluation. This chapter provides a general review of 

both these BIST functions. The subsequent chapter will provide a more detailed discussion 

on BIST output data evaluation since it is the major topic of this dissertation. 

2.1 Hardware Models of BIST 

BIST is the capability for a chip to test itself. In general, BIST consists of the generation and 

application of test vectors to the CUT, as well as the evaluation of the test response on the 

same chip as the CUT. In implementation, there are some commonly-required components, 

namely an input pattern generator, an output data compactor, a pre-calculated fault-free 

signature or reference, and a comparator. Fig. 2.1 shows a generic BIST scheme. After 

applying the test patterns to the CUT, the comparator compares the final content of the 

data compactor with the reference stored on-chip, and produces a pass/fail (or go/nogo) 

signal as a test result. Different structures are used in different instances. Depending on 

how the test patterns are applied and how the output data are collected, Figs. 2.2 - 2.5 

12 
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give four typical BIST structures. They are the parallel-parallel (Fig. 2.2) [Konemann79], 

parallel-serial (Fig. 2.3) [Pomeranz92][Li87], serial-parallel (Fig. 2.4), and serial-serial (Fig. 

2.5) [Lambidonis91b]. 

Output 
Response 
Compaction 

Reference 
Signature 

Figure 2.1: General BIST scheme. 

Fass/Fail 
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Figure 2.2: The parallel-parallel BIST model. 

In Figs. 2.2 - 2.5, the P-IPG is a parallel input pattern generator; the P-ODC is a 

parallel output data compactor; the SC is a space compactor that compacts a m-bit vector 

into a A:-bit vector, where m > k; the S-IPG is a serial input pattern generator; and the 

S-ODC is a serial output data compactor. The S-to-P and P-to-S blocks in the figures are 
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Figure 2.3: The parallel-serial BIST model. 

serial-to-parallel and parallel-to-serial converters, respectively. 

A P-IPG generates one multi-bit test vector for each clock cycle, and applies each 

vector to the CUT in parallel. A test vector generated by a S-IPG, however, consists of 

a series of bits applied to the CUT via a serial-to-parallel converter. The most commonly 

used test pattern generators are the Linear Feedback Shift Registers (LFSR) [Bardell87]. 

Cellular Automata (CA) [Hortensius89] can also be used as test pattern generators. 

A P-ODC collects multiple bits concurrently from the CUT. A S-ODC collects bits 

serially. S-ODCs are often used with P-to-S converters as shown in Figs. 2.3 and 2.5, unless 

the CUT has only a single output line. The most commonly used P-ODC is the Multiple 

Input Shift Register (MISR) [Bardell87], which is in fact a LFSR with multiple inputs. In 

general, for a iV-output CUT, one can use a TV-stage MISR for data compaction. However, 

the use of the A'-stage MISR can be very expensive in silicon area for large CUTs. In 

comparison, the use of a space compactor followed by a short MISR is more economical 

[Reddy88][WuM92][Zorian93]. The most commonly used S-ODCs are LFSRs [Bardell87]. 

Regarding the S-to-P and P-to-S converters, the scan path discussed in Chapter 

1 is the most popular. When a scan chain is used, after the application of a test vector, 
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Figure 2.4: The serial-parallel BIST model. 

the response at the CUT's output is shifted out of the scan chain for examination. For a 

scan chain P-to-S converter, each test vector usually yields multiple bits serially. Besides 

the scan chain, other components can also be used as the P-to-S, e.g., Multiple Input Non-

feedback Shift Registers (MINSR) [Agarwal87], XOR trees [Katoozi92][Li87], and MISRs 

[Gelsinger86j. 

2.2 An Important BIST Component — LFSR 

A LFSR is simply a shift register with linear feedback, i.e., feedback that is an exclusive 

OR (XOR) of the contents of the selected memory elements of the shift register. Fig. 2.6 

shows an example LFSR with feedback polynomial x5 -f x2 + 1. 

A LFSR can have two operational modes. When used as a test pattern generator, 

the LFSR usually works in its autonomous mode, where no external input is applied to 

it. When such a LFSR is initialized with a non-zero seed, with each state transition or 

shift, its content is different from its previous ones. Thus, each register state can serve 

as a test pattern. Each LFSR has its specific period. After the LFSR shifts a certain 

number of cycles, its state returns to its initial state (seed). It has been shown that, for a 
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Figure 2.5: The serial-serial BIST model. 
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Figure 2.6: An example LFSR. 

given number of stages, a LFSR reaches its maximum period if its feedback polynomial is 

primitive [Golomb82][Bardell87]. For a &-stage LFSR, this maximal period is 2h — 1. Thus, 

LFSRs with primitive feedback polynomials are also called maximum cycle length LFSRs. 

The primitive feedback polynomials for different LFSR sizes are provided in a number of 

publications, e.g., [Golomb82], [Lin83] and [Bardell87]. 

In addition to the maximum cycle length, the sequence generated from a LFSR with 

a primitive feedback polynomial also possesses another very useful property. In [Golomb82], 

it has been shown that any segment, out of the entire sequence of patterns generated, holds 

properties very similar to random patterns. But, unlike pure random patterns, the sequence 
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generated from a LFSR is predictable, thus repeatable, if its feedback polynomial and initial 

seed are known. Such patterns are termed pseudorandom patterns [Golomb82][Bardell87]. 

The property of pseudorandomness leads to the popular use of LFSR-generated test patterns 

in BIST [Bardell87][Wagner87]. 

Besides the autonomous mode, a LFSR can also work in an operational mode where 

an external input sequence is applied to it. If the input sequence is represented as a 

polynomial, e.g., representing the sequence 11011001 as x7+x6+x4+x3+l, the LFSR in this 

mode performs the operation of dividing the input polynomial by its feedback polynomial 

[Lin83][Bardell87]. The final content of the LFSR forms the remainder of the division, 

while the sequence generated from the last or right-most stage (see Fig. 2.6) of the LFSR 

represents the quotient. When used for output response compaction, LFSRs are used in 

this mode. In this case, the input sequence to the LFSR is the test response sequence from 

the CUT. After shifting the entire sequence into the LFSR, the final content of the LFSR 

forms the signature of the test response sequence, while the quotient bits of the division 

are usually discarded. Thus, given the test response sequence and the feedback polynomial, 

theoretically, the final signature of the sequence can be calculated by polynomial division. 

Ideally, different sequences produce different signatures. Then, by checking the final content 

of the LFSR alone, one can distinguish fault-free response sequences from faulty ones. 

Unfortunately, as will be discussed in later sections and chapters, it is not always the case. 

The LFSR shown in Fig. 2.6 has only one input. Sometimes, one may wish to use 

a LFSR as a parallel output data compactor, e.g., the P-ODC in Figs. 2.2 and 2.4. In this 

case, extra input lines can be added by connecting one input line to each LFSR memory 

element via an XOR gate. Fig. 2.7 shows such a multiple input LFSR, or simply called 

MISR, with the same feedback polynomial as the LFSR shown in Fig. 2.6. Obviously, a 

MISR requires more silicon area as compared to a LFSR of the same number of stages. 

Besides LFSRs, another form of pseudorandom number generator called Cellular 

Automation (CA) can also be used for test pattern generation and output data compaction 
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Input 1 Input 2 Input 3 Input 4 Input 5 

Figure 2.7: An example MISR. 

[Hortensius89][Serra90]. Studies have shown that, in many case, CAs yield better test 

quality than LFSRs [Miller9l][Zhang90]. In addition, another advantage of CAs is their 

regular structure, which is preferred by many VLSI CAD tools. However, concerns with 

using CAs are its higher hardware requirements, less understood mechanism and poorer 

documentation as compared to LFSRs. Thus, in practice, LFSRs remain the most popular 

BIST components for both test pattern generation and response compaction. 

2.3 Test Pattern Generation 

There are several ways to generate BIST test patterns, namely exhaustive, pseudorandom, 

weighted random, and embedded deterministic. 

2.3.1 Exhaustive and Pseudo-exhaustive Testing 

For an n-input combinational CUT, there are at most 2n possible test vectors. Exhaustive 

testing is testing the CUT with all the possible vectors. It has been shown that exhaustive 

testing would detect all non-redundant combinational faults x in a CUT [McCluskey81], thus 

eliminating the needs for combinational fault models and fault simulation [McCluskey85]. 

Furthermore, exhaustive testing is circuit-independent since it requires no information about 

'Combinational faults are the faults that do not introduce undefined internal states to a CUT, e.g., the 
stuck-at faults. 
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the CUT, except for the number of primary inputs. Any binary counter can serve to produce 

exhaustive test vectors. In practice, however, it is more efficient in silicon area to use a 

maximum cycle length LFSR slightly modified so that it cycles through all states, including 

the all-zero state [McCluskey81][Wang86][Bardell87][McLeod92]. Besides a lesser silicon 

area requirement compared to a binary counter of the same number of stages, a modified 

LFSR test pattern generator tends to detect more AC faults in addition to combinational 

faults due to the pseudorandomness of the vectors [Soden89]. For small n, exhaustive testing 

is a very good method [Gelsinger86]. However, when n is large, say n > 25 [Agrawal93], 

the long test time associated with this method may become prohibitive. 

To make exhaustive testing practical for large circuits, a group of techniques known 

as pseudo-exhaustive testing or verification testing have been proposed [McCluskey81] [Mc-

Cluskey84][Udell89][Uderi92]. Pseudo-exhaustive testing is based on the observation that, 

in a real circuit, a single circuit output rarely depends on all of the circuit's inputs. Instead, 

each output typically depends on only a subset of the inputs. Each such input subset and 

its corresponding output or outputs form a segment. By exhaustively testing each segment, 

one can exhaustively test the entire circuit [McCluskey85]. The resultant test set, i.e., the 

set that includes the exhaustive test set for each segment, can be much shorter than an 

exhaustive test for the entire circuit [Udell89]. Sometimes, by careful arrangement, exhaus­

tive tests for different segments can be carried out simultaneously, thus further reducing 

the total test time [McCluskey84]. A number of techniques have been developed for gener­

ating pseudo-exhaustive test patterns, e.g., [Barzilai83], [Wu90], [Wang86b], [Tang83], and 

[Akers85j. 

For some circuits, certain outputs may depend on a large number of inputs. In 

this case, techniques known as segmentation and partitioning [Udell89] may be required 

to divide the CUT into a number of subcircuits each with a limited number of inputs. 

The segmentation or partitioning of a CUT can be done by either hardware partitioning or 

sensitized partitioning. In hardware partitioning, multiplexers (MUX) are inserted into the 
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CUT for controlling access to the subcircuits [Udell89] [Bhatt86]. In sensitized partitioning 

[McCluskey81], however, no extra hardware is required since path sensitization is used for 

the control of the access to the subcircuits. A number of approaches have been developed 

to partition a CUT, e.g., [Bhatt86], [McCluskey81], [Shperling87] and [Roberts84]. 

Exhaustive and pseudo-exhaustive testing can achieve high fault coverage. Thus, 

they are the preferred methods whenever possible [Gelsinger86][Wu90]. However, for many 

CUTs, the resultant test lengths may still be too long to be feasible. Moreover, circuit par­

titioning usually introduces hardware and performance penalties. An alternative is pseudo­

random testing. 

2.3.2 Pseudorandom Testing 

Instead of using all possible input combinations as test patterns, pseudorandom testing uses 

only a fraction of all the possible vectors. Pseudorandom testing is based on the observation 

that, for most CUTs, an effective fault coverage can be obtained if a sufficient number of 

pseudorandom vectors are applied [Agrawal75][McCluskey85][Bardell87]. The maximum 

cycle length LFSRs are very good pseudorandom vector generators. 

An important problem associated with pseudorandom testing is the existence of the 

so-called random-pattern resistant faults, or simply random hard or hard faults, in some 

CUTs. Generally, most faults in a CUT are random-pattern easy faults, or simply random 

easy or easy faults. These faults can be detected with a relatively small number of random 

vectors. For the few random hard faults, however, a prohibitively large number of random 

vectors may be needed for their detection [Muradali89]. The difficulty in detecting such 

faults results from very poor controllability and/or observability of the circuit nodes where 

the faults reside. Thus, very few random patterns can both provoke these faults and sensitize 

their effects to the CUT's outputs. 

Techniques have been proposed to deal with random hard faults. A first technique is 

to generate deterministic test patterns for the few random-pattern resistant faults, and store 
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them in a ROM. In testing, a few patterns would be read from the ROM, and the remain­

ing patterns would be pseudorandomly generated [Agarwal81][Savir83]. The problem with 

this method is its high hardware requirements. In [Akers89][Vasudevan93][HelIebrand92], 

instead of storing these deterministic test patterns in a ROM, a counter or a LFSR is 

specially designed such that the vectors generated from the counter or LFSR cover these 

deterministic test patterns. Unfortunately, these methods may either result in a test length 

similar to that of exhaustive testing, or high silicon area requirements. A second approach 

to achieve high fault coverage is to modify the circuit so that none of its faults is random-

pattern resistant [Eichelberger83][Savir83][Pomeranz92b]. The circuit modification usually 

implies insertion of extra control and/or observation points into the positions where the 

random-pattern resistant faults reside. This approach usually adopts analytical testability 

measures [Savir83][Savir84][Agrawal82j to determine where circuit modifications are neces­

sary. Generally, this method is very effective in improving the circuit's testability. However, 

penalties of using this method includes possible hardware overhead and circuit performance 

degradation. Another method related to circuit modification is known as synthesis for 

testability. This method takes testability into account when synthesizing a circuit [De-

vadas88][Rajski90][Rajski92]. All faults in a CUT synthesized in this way are easy faults. A 

third method coping with random-pattern resistant faults is to modify the pseudorandom 

pattern generator to produce weighted random patterns. The success of weighted random 

testing relies on the fact that faults that resist detection with patterns having uniform dis­

tributions of ones and zeros will not be resistant to patterns with non-uniform distributions 

[McCluskey85]. Usually, to efficiently reduce test length, more than one set of weights are 

needed [Wunderlich88][Muradali89][Brglez90]. 

Another difficulty with pseudorandom testing is identifying the random hard faults, 

and estimating the required test length for a satisfactory fault coverage. A straightforward 

method to this problem is the use of fault simulation. For large CUTs, however, fault 

simulation can be expensive due to the prohibitively large number of random vectors that 
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may need to be simulated. Alternatively, a number of analytical techniques known as 

testability analysis have been proposed [Savir84][Seth85]. These techniques are based on 

the analysis of the CUT's structure to determine the probability that a given fault can be 

detected by a randomly selected test vector. For a fanout-free CUT, the analysis is easy 

and accurate. For CUTs with fanout, these techniques are not only expensive in terms of 

CPU time [McCluskey85][Wagner87], but also inaccurate [Agrawal82][Huisman88]. 

2.4 Test Response Evaluation 

To achieve satisfactory fault coverage with pseudorandom vectors, a large number of test 

patterns are usually required, in turn producing a large amount of output data to evaluate. 

To make the output evaluation economical, data compaction or compression is usually re­

quired [McCluskey85][Bardell87]. Data compaction and compression are techniques which 

reduce the amount of data to evaluate, thus rendering its storage and analysis more economi­

cal. The difference between compaction and compression is that compaction implies possible 

error information loss, but compression does not [McCluskey85][Ivanov92]. Therefore, data 

compression is desirable for BIST. Unfortunately, among the numerous techniques proposed 

for reducing the amount of BIST output data, there exist only very few schemes that can 

achieve zero error information loss, e.g. [Gupta90], [Diamantaras91] and [Chakrabarty93], 

but none of them is practical in terms of hardware requirements. This dissertation generally 

deals with compaction schemes, as these are more widely-accepted and used. 

In general, BIST response evaluation consists of two steps. The first is to compact 

the test response sequence into a small sequence of bits, called a signature. The second step 

is to compare this final signature with a pre-calculated fault-free signature or reference to 

determine whether the CUT is good. Theoretically, any finite state machine can be used as a 

compactor. However, considering the requirements of easy and economical implementation 

in BIST environments, the most commonly-used data compactors are LFSR-based, binary 
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counter-based, and CA-based. 

Regarding the calculation of the fault-free signature or reference, the most commonly-

used method is logic simulation. Logic simulation is a computer simulation process to cal­

culate the output values of a fault-free CUT given a description of the CUT's structure or 

functionality, and its input vectors. Logic simulation is very fast and of complexity linear 

in the size of the simulated circuit [Tan87][Keller91]. Having obtained the fault-free output 

sequence by logic simulation, fault-free signatures can be easily calculated by simulating 

the data compactor fed by the obtained sequence [Lambidonis91b][Saluja92j. Sometimes, if 

actual circuits that have been "proven" fault-free, i.e., "golden circuits" are available, one 

can run these circuits by applying test vectors, collect their output sequences and signa­

tures, and use the obtained signatures as the reference [LeBlanc84][Dervisoglu89]. Another 

method of signature calculation is an analytical technique, which represents a CUT with a 

Boolean function in the sum-of-products form, and calculates the sum of the contributions 

of each product term of this Boolean function to the final signature [Yarmolik92]. It is 

claimed that this later method would yield much less computational effort as compared to 

logic simulation. However, this has not been demonstrated. 

2.4.1 LFSR-based Da ta Compact ion 

LFSR-based data compaction schemes are characterized by the concept of polynomial di­

vision described in Section 2.2. These schemes are usually referred to as signature analysis 

[Frohwerk77][Bardell87]. During signature analysis, a /-bit test output sequence is fed to 

a &-stage LFSR. The final state of the LFSR, or the remainder of the division, forms the 

signature of the sequence. In this way, a /-bit sequence is compacted into a k-b'it signature, 

where / >> k. Due to the feedback of the LFSR, the final value of a k-h\t signature is 

an attribute of the entire output sequence. Though for production testing the ability to 

distinguish error sequences from the error-free one suffices, diagnosis is also possible with 

signature analysis [McAnney87][Karpovsky9l][Rajski91]. 



Chapter 2. Built-in Self-Testing 24 

To be effective, signatures generated from error sequences must be different from 

the fault-free one. In this case, by checking the final signature alone, one can guarantee 

the identification of the good CUTs. Unfortunately, erroneous sequences mapping to only 

erroneous signatures is not always the case due to the information loss during the compaction 

process. For example, it is apparent mathematically that all the polynomials that are 

multiples of the feedback polynomial will be evenly divided by the feedback polynomial. 

Thus, all the sequences whose polynomial representation correspond to multiples of the 

feedback polynomial will produce the same signature since signature analysis is based on 

polynomial division. More specifically, denote the fault-free sequence by s[l] = S\ s2 ••• 

si, and let the actual sequence generated from the CUT be s[/] = Sj s2 ... §/. Define the 

error sequence in the error domain to be e[l] = ej e2 ... e;, where e,- = 5,® §,• for i = 1...1. 

It has been proven that all the error sequences whose e[l] is a multiple of the feedback 

polynomial will yield the same signature as the fault-free one [Ivanov92]. Thus, by checking 

the signature alone, there exists a possibility that one may mistakenly declare a bad CUT 

good. Obviously, this possibility must be kept very small to maintain high test quality. 

An extreme case of the LFSRs is the parity checker, which corresponds to a 1-stage 

LFSR with feedback polynomial x + 1 as shown in Fig. 2.8. When initialized to zero, 

the final state of the parity checker is zero if the sequence fed to it has an even number 

of ones. Otherwise, it is one. Therefore, a parity checker guarantees the detection of any 

error sequence that contains an odd number of errors. However, all the sequences with 

even number of errors would escape detection. If all the (2l - 1) possible error sequences 

of length / are considered, about ~ error sequences would go undetected. Since / typically 

ranges from 103 - 107, in terms of test quality, parity checking may not be a very good 

scheme in general. However, under exhaustive testing, if a CUT is designed such that 

its fault-free output sequence has an odd parity, parity checking can often achieve very 

high stuck-at fault coverage [Carter82]. In terms of sihcon area, parity checking requires 

minimal hardware for data compaction [Park91][Wu92b]. It has been shown that LFSRs 
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with feedback polynomial (x + l)f(x), where f(x) is any polynomial, can also detect any 

sequence with an odd number of errors [Carter82]. 

Input e-
Figure 2.8: A parity checker. 

Another commonly used LFSR-based data compaction scheme is the multiple input 

shift register (MISR) discussed in Section 2.2. It is convenient to use a JV-stage MISR 

if the CUT has N output lines. When N is large, however, the use of a N-stage MISR 

is not economical [Reddy88][WuM92][Zorian93]. Alternatively, a P-to-S converter followed 

by a LFSR, or a space compactor followed by a short MISR would be a better choice. 

Another problem with a MISR is its slightly higher error information loss compared to 

a corresponding LFSR. This is due to an additional error information loss source known 

as error cancellation in MISRs [Bardell87]. However, error information loss due to error 

cancellation is usually negligibly small [Bardell87]. Thus, the aliasing performance of a 

MISR is very similar to that of its corresponding LFSR [Bardell87][Pradhan90][Kameda90]. 

2.4.2 Counter-based Da ta Compact ion 

Counter-based data compaction schemes relies on counting a certain event occurring in the 

output sequence with the final count forming the signature. There exist many countable 

events in a sequence [Fujiwara78]. Among these, the easier ones to detect include ones, 

transitions, and edges. All these events can be described by unified models presented in 

[Robinson87][Ivanov92b]. A general counter-based compaction scheme consists of an event 
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detector followed by a counter, as shown in Fig. 2.9. To detect different events, different 

detectors are needed. Fig. 2.10 shows the detectors for ones and transitions, 

Event Detector Counter 

Figure 2.9: General counter-based compaction process. 

Ones detector Transition detector 

*e—*• 

Figure 2.10: Example event detectors. 

In general, the counter-based schemes yield higher aliasing than the LFSR-based 

schemes [Robinson87][Saxena87][Aitken88][Yih91][Pilarski92]. However, by careful arrange­

ment of the test vectors such that the fault-free output sequence is in the form 0 0 ... 0 1 

1 ... 1, the transition counting can achieve very small aliasing [Bardell87][Diamantaras91]. 

Unfortunately, test pattern generators that can generate test vectors in such a order and 

that require a reasonable amount of hardware have not been found. 
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Aliasing and Aliasing Reduction Techniques 

As discussed in the previous chapters, output data compaction implies an information loss 

which translates into the possibility of a wrong diagnosis whereby a faulty circuit declares 

itself as good. Such incorrect diagnosis is known as aliasing or error masking [McCluskey85]. 

To assess the overall quality of a BIST scheme, one must take into account the quality 

of the test vectors as well as the compaction technique. As fault coverage measures are 

traditionally used to assess the quality of non-BIST schemes, the use of the same measures 

would be highly desirable in the context of BIST. Unfortunately, as discussed in Section 1.7, 

the calculation of fault coverage in BIST is generally not computationally feasible for large 

circuits. As a result, the overall quality of a BIST scheme is usually assessed in two steps. 

The first is determining the fault coverage before compaction. The second is characterizing 

the loss of the coverage due to aliasing. Characterizing the fault coverage loss requires 

aliasing measures [Smith80][Cox88]. This chapter first discusses aliasing measures. This is 

followed by a survey of the advanced compaction techniques intended to reduce aliasing. 

3.1 Aliasing Measures and Error Models 

3.1.1 Aliasing Measures 

Aliasing occurs when an error sequence applied to a data compactor yields the same signa­

ture as the fault-free one. To establish the quality of a compaction technique, let F be the 

set of all possible error sequences that a CUT can produce when a specific set of test vectors 

are applied to the CUT in a specific order. Let FQ be the subset of F which contains all 

27 
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the elements of F that map onto the fault-free signature. The cardinality of FQ is defined 

as the fault domain deception volume DVf, i.e., DVf — \FQ\ [COX88]. Obviously, DVf is a 

measure of information loss and hence a measure of aliasing caused by the compaction. In 

analogy to the definition of fault coverage, DVj/\F\ gives a true measure of the proportion 

of a CUT's possible error sequences that would alias since both F and DVf are specific to 

the CUT and its faults, as well as specific to the test set and the order in which the test 

vectors are applied. 

DVj and DV//\F\ are deterministic aliasing measures. They can be directly com­

bined with the fault coverage measures. For example, it is easy to show that the overall fault 

coverage of a BIST scheme is 1 - %VJf ̂ MUj^utnthlcOt • However, a major difficulty 

with these measures is the prohibitive computational effort required to find all the elements 

of F and DVf for large circuits. 

Besides the fault domain, aliasing can also be studied in the error domain [Cox88] 

[Ivanov92]. Let E be the set of all possible error sequences of length /, where / is the 

length of the output sequence. Obviously, the cardinality \E\ = 2' — 1 since, among the 

2' possible sequences of length /, there exists one that is error-free. Denote the set of 

all the error sequences that would escape detection due to compaction by EQ. The Error 

domain deception volume, DVe, is defined to be the cardinality of Eo, i.e., DVe = \Eo\ 

[Agarwal87][Cox88]. E0 is a subset of E. Similar to DVf in the fault domain, DVe provides 

an aliasing measure in the error domain. Unlike DVf, however, DVe is generally easy to find 

analytically for most compaction techniques [Williams87][Bardell87][Ivanov88][Ivanov91] 

[Ivanov92][Ivanov92b][Pilarski92]. For example, assuming the well-known equally-likely er­

ror model, i.e., assuming that all the 2! possible sequences are equally-likely to appear yields 

DVe = 2l~k — 1 for a &-stage LFSR signature analyzer since the compaction process of sig­

nature analysis is a linear process that maps all the incoming sequences evenly onto each 

of its 2k states [Bardell87]. For a ones counting compactor, DVe — ('w) — 1, where w is the 

weight or number of ones in the fault-free sequence [Bardell87]. 
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Similar to DVj/\F\, DVe/\E\ provides a measure of the proportion of all the error 

sequences that would alias. Unlike DVj/\F\, however, DVe/\E\ is a probabilistic measure. 

Usually \F\ « \E\ for a specific CUT. Both E and DVe are independent of the CUT, the 

test vectors, and the order in which the test vectors are applied. The measure DVe/\E\ is 

usually called the probability of aliasing, and denoted by Pai, i.e., Pa\ = n^f [BardellS?]1. 

Considering \E\ = 21 — 1, for the &-stage signature analyzer for instance, the aliasing 

probability Pai = 2 ; ~1. Generally since 2 >> 1, Pa\ as 2~k. This is a very well-known 

result for signature analysis. 

In practice, due to the prohibitive costs of obtaining F and hence DV/, Pai is 

traditionally used, although not always explicitly, for assessing the aliasing problem of 

data compaction. Pai is a probabilistic measure of aliasing. Thus, it cannot be directly 

combined to the classical fault coverage measures [Cox88]. Although an experimental report 

[Rajski91b] has shown that the overall fault coverage of a BIST scheme can be well estimated 

by (1 — Pai)FC in general, where FC is the fault coverage achieved before data compaction, 

the aliasing measure Pa\ is still difficult to use confidently when dealing with a specific CUT 

tested by a specific set of test vectors applied in a specific order because of the statistical 

uncertainty [Lambidonis91]. Evidence of this uncertainty can be found in any experimental 

reports on aliasing, e.g., [Aitken89], [Xavier92], [Rajski91b] and [Debaney92]. 

3.1.2 Er ro r Models 

Studying aliasing in the error domain requires an assumption or model of the distribution 

of the error sequences. A simple error model is the equally-likely model discussed Section 

3.1.1 [Bardell87]. It assumes that, in the presence of a fault, any of the 2l — 1 error sequences 

has precisely the same likelihood of occurrence. This model is easy to use. However, its 

use implies the denial of any circuit information. It leads to the simple result Pai sa 2~k, 

irrespectively of the specific CUT, the effects its faults may produce at its outputs, the 

'Note that there are other definitions of aliasing probability. See [Williams86] and [Ivanov92] for details. 
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number and order of the test vectors applied to it, and even the feedback polynomial of the 

LFSR itself. Obviously, a model of this kind is not realistic [Williams87][Ivanov88][Aitken89] 

[Ivanov92]. More sophisticated error models have been developed, e.g., 

• the stationary independent error model [Williams86], which assumes that, in the pres­

ence of a fault, each sequence bit has a same probability to be in error, i.e., Pr[et- = 

1] = p, where i = 1,..., / and 0 < p < 1. The probability that a bit is correct is 1 — ^?, 

i.e., Pr[e{ = 0] = 1 — p for i = 1,...,/. p is the detectability of the fault. This model 

is a generalization of the earlier equally-likely model in that the equally-likely model 

is a special case of the stationary independent model with p — 0.5. 

• the non-stationary independent error model [Ivanov88], which generalizes the station­

ary model in that the probability of error of the output bits may vary from bit to bit 

for example due to changes in the distribution of input test vectors. In this model, 

Pr[ei = 1] = Pi and Pr[e{ — 0] = 1 — pi, where 0 < p; < 1 and 0 < i < I. The above 

stationary model is a special case with p\ — pi — ... = p\. 

• the asymmetric error model [Aitken89], which associates the error probability of a bit 

with the fault-free value of the bit. The error bits are also assumed uncorrelated, 

however, characterized by two possibly different conditional probabilities, depending 

on the value of the fault-free bit. Specifically, the probability that a bit be in error 

when the fault-free value of the bit is 1 is p, i.e., Pr[e,- = l|s,- = 1] = p, while the 

probability that a bit be in error when the fault-free value of the bit is 0 is q, i.e., 

Pr[e{ = l\Si = 0] = q,0<p<l,0<q<l. 

Similar error models for MISRs have also been developed, e.g., [Pradhan90], [Kameda93], 

and [Karpovsky91]. Unlike the equally-likely error model, the models discussed above in­

corporate certain degrees of circuit dependencies. Thus, they are considered to be more 

realistic than the equally-likely model, although finding precise values of the bit error prob­

abilities, e.g., p, p^ and q, is in itself a difficult task. Methods for these "more" realistic 
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models have been proposed for the calculation of "exact" aliasing probabilities for arbitrary 

test lengths and LFSRs, MISRs and binary counters, e.g., [Williams86], [Ivanov88], [Dami-

ani89], [Pradhan90], [Karpovsky91], [Ivanov92b], and [Pilarski92j. Although these methods 

are generally of high computational complexity [Saxena92], they can accurately estimate 

aliasing probability Pa;, especially for short test lengths. 

Surprisingly, however, as long as the signature analyzer has an irreducible feedback 

polynomial, the aliasing probability obtained under all these "more realistic" models also 

converges to 2~k asymptotically when test length / —• oo, irrespectively of the circuit de­

pendencies [Williams89][Damiani89b][Pradhan90][Karpovski91][Damiani91][Ivanov92] [Pi-

larski92b]. The only difference due to the use of different signature analyzers is that those 

with primitive polynomials converge to 2~k faster than others [Williams86][Ivanov92]. For 

specific situations, however, no one is guaranteed to be superior over the others [Ahmad90]. 

Thus, it is suggested to use rather complex primitive feedback polynomials since it is be­

lieved that complex polynomials would prevent masking by anything but an equally complex 

error sequence [Bardell87][Dervisoglu89]. 

Due to the fact that all error models converge to the asymptotic result 2~k when 

feedback polynomials are irreducible, in practice, one can safely ussumc Jr.ni r& 2 k without 

sacrificing confidence since / is usually sufficiently long in reality. Regarding counter-based 

compaction techniques, recent researches showed that their aliasing probabilities also con­

verge to 2~k as / —> oo for combinational faults, where k is the length of the binary counter 

[Ivanov92b][Pilarski92j. However, the rate at which they converge to 2~k is much slower as 

compared to the LFSR-based techniques [Pilarski92]. Other studies also showed that the 

counter-based techniques generally yield poorer aliasing performance than the LFSR-based 

techniques [Robinson87][Saxena87][Aitken88][Yih91][Pilarski92]. 
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3.2 Advanced Compaction Techniques 

The aliasing performance of the adopted compaction technique has a significant impact on 

the final test quality. A &-stage LFSR signature analyzer can achieve an aliasing probability 

of 2~k. If k = 16, Pai « 2~16 = ggjgg = 0.000005. This number may seem very small, and is 

in fact typically accepted in practice [LeBlanc84][Kuban84][Gelsinger86]. However, for large 

VLSI circuits and high quality demands, it has been argued that Pa\ fa 2 - 1 6 is far from ade­

quate [Agarwal83][Zorian86]. By increasing k, one can easily reduce this number. However, 

the impact on hardware requirements is substantial. For BIST applications, the test cir­

cuitry's hardware requirement must be taken into account seriously since higher hardware 

requirement implies not only higher cost, but also lower yield [McCluskey85], lower reliabil­

ity [McCluskey85], and higher power consumptions [Levy91]. In the past decade, significant 

efforts have been made toward improving the aliasing performance of data compactors while 

maintaining reasonable hardware requirements, and many advanced data compaction tech­

niques have been proposed. Some of these are briefly surveyed next. 

3.2.1 Multiple Signature Analysis 

Multiple LFSRs Signature Analysis 

A straightforward way to check multiple signatures is to employ two or more LFSRs, each 

with a different feedback polynomial [Bhavsar84]. Fig. 3.11 shows a scheme employing two 

compactors with polynomials f\(x) and f2(x). Obviously, the error sequences aliased by 

the multiple LFSR compaction scheme are those that are aliased by both f\(x) and J2(x). 

The aliasing probability of this scheme Pa\ = P\?2 [Bhavsar84], where Pi and P2 are the 

aliasing probabilities of the two signature analyzers. It would be desirable to choose f\(x) 

and f2(x) such that the error sequences aliased by fi(x) and those aliased by /^(z) be 

disjoint. Unfortunately, such f\{x) and f2{x) do not exist [Bhavsar84]. Assuming that the 

lengths of fi(x) and f2(x) are k\ and &2, respectively, yields P\ fa 2~kl and P2 « 2~k2. 
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LFSR1 

LFSR2 

Figure 3.11: Multiple LFSRs signature analysis. 

Then, Pa! » 2-^2~k2 = 2~(kl+h\ Apparently, Pa[ for two LFSRs is equivalent to that 

of using a single (ki + A^-stage LFSR. In terms of aliasing performance against hardware 

requirements, this scheme does not achieve any improvement over simply increasing the 

LFSR length in the conventional single signature analysis scheme. 

Alternatively to using multiple LFSRs, different types of data compaction techniques 

can be combined [Robinson87]. In [Robinson87][Robinson88], a scheme that simultaneously 

uses a LFSR and a counter was proposed. Its Pa\ is equal to the product of the aliasing 

probabilities of the LFSR and the ones counter. As compared to using two LFSRs, it is 

less attractive. This is because it requires a similar amount of silicon area, but its aliasing 

probability is higher on average since the aliasing probability of a ones counter is in general 

higher than that of a LFSR. 

Multiple Test Sets Signature Analysis 

Another method to check multiple signatures is to employ several test sets [Bhavsar84] 

[Hassan84]. This scheme requires only a single LFSR. A signature collected by the LFSR 

is checked after each test set has been applied to the CUT. Assume that two test sets, T\ 

and T2, are applied. Let S\ and S2 be the fault-free signatures obtained under T\ and T2, 

respectively. In the occurrence of a fault, the probability that it would be aliased by this 

scheme is the probability that its signature under T\ matches Si, and its signature under 

T2 matches 5 2 . Assuming the length of the LFSR to be k yields Pal « 2 - ; : 2 - , t = 2~2k 
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[Bhavsar84]. 

Multiple test sets signature analysis uses a single LFSR. Its extra hardware require­

ment compared to single signature analysis is the silicon area for storing the additional 

reference signatures. An extra advantage of multiple test sets signature analysis is the 

possibly higher fault coverage, especially for unmodeled faults, due to the use of more test 

vectors. However, the use of multiple test sets not only significantly increases test time, but 

also implies a more complex test pattern generator. In [Hassan84], instead of using multi­

ple test sets, a single test set is used twice in different orders, thus making test generation 

easier. 

Multiple Intermediate Signature Analysis 

Multiple intermediate signature analysis is sometimes called split or segmented sequence 

testing [Bhavsar84][Bardell87j. The basis of this scheme is to sample intermediate signatures 

collected by a single LFSR in addition to checking the final one. For example, if we want to 

check a total of two signatures, we can check one intermediate signature after the first l\ bits 

of the sequence have been shifted into the signature analyzer, and check the second signature 

after the entire sequence of length / has been compacted. Assume the two corresponding 

good signatures to be S\ and 62• The aliasing probability in this case is equal to the 

probability that an error sequence produce S\ when the first signature is checked, and 52 

when the second one is checked. As will be shown in the next chapter, for this scheme 

Pal » 2~2k. 

Like the multiple test sets scheme, multiple intermediate signature analysis uses a 

single LFSR. Unlike the multiple test sets scheme, however, this scheme uses only one test 

set. Therefore, this scheme will not incur any test time increase. On the contrary, it can 

significantly reduce test time on average. This is because a test session can be terminated 

and the CUT declared faulty once an incorrect intermediate signature is found [Lee88]. 

In addition to reducing aliasing and test time, recent studies have demonstrated many 
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other advantages of this scheme, e.g., easier fault coverage computation [Lambidonis91], 

increased fault diagnosability [Waicukauski87], and possible zero aliasing for modeled faults 

[Pomeranz92]. Like all the multiple signature analysis techniques, the disadvantages of 

this scheme include the increased implementation and control complexities, and increased 

hardware requirements for storing the multiple reference signatures. 

3.2.2 Output Data Modification (ODM) 

ODM is a counter-based compaction scheme that takes advantage of counter-based tech­

niques' non-uniformity of aliasing. As shown earlier, a ones counter's deception volume 

is DVe = ({„), where / and w are the length and weight of a fault-free sequence. For a 

given /, DVe is a function of w, which is depicted in Fig. 3.12. If the sequence weight w is 

DVe 

w 
Figure 3.12: Non-uniform deception volume of counter-based schemes. 

either very low or very high, the DVe can be extremely small. The basic concept of ODM 

is to reduce the weight of the fault-free output sequence, and then use ones counting as 

a signature of the "modified" sequence. One method to do this is to generate a reference 

sequence such that the sequence obtained by bit-wise XOR of the reference sequence and 

the actual fault-free sequence yields a reduced weight [Agarwal83][Zorian86][Agarwal87]. 

This is illustrated in Fig. 3.13. Ideally, the reference sequence is identical to the fault-free 

sequence, thus making DVe = 0. Unfortunately, the generation of such an ideal sequence 
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may generally require too much silicon area. Therefore, in general, only a proper reference 

sequence can be generated for the purpose of ODM. In [Agarwal87], a systematic approach 

for generating such reference sequences was proposed. Although it claims to reduce a ones 

counter's aliasing by a factor of 2hundreds or even 2thousands, the corresponding hardware 

requirement is generally considerable. 

reference sequence 

£ 
o 

g 0> 
M 

M 

o 

Counter 

Figure 3.13: An ODM scheme. 

In [Li87], a different way of implementing ODM was proposed, where the output 

sequence modification is carried out in the process of space compaction. However, it does 

not provide any general method to reduce the aliasing to meet a given requirement. In 

[Zorian92], the concept of ODM is applied to ROM testing. Instead of generating the 

reference sequence on-chip, the reference sequence is pre-calculated and stored in an extra 

column of the ROM under test. 

3.2.3 Zero Aliasing Techniques 

Zero Aliasing by Monitoring the Quotient Sequence 

Signature analysis is based on the concept of polynomial division. Denote the feedback 

polynomial by f(x), the sequence to be compacted by Ri(x). Signature analysis can be 

represented as 

Rl(x) ~ q(x)f(x) + r(x), (3.1) 
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where q(x) is the quotient of the division, which is also the sequence shifted out from the last 

stage of the LFSR; and r(x) represents the remainder taken as a signature. Conventionally, 

the signature obtained above is compared with a predetermined fault-free signature given 

by 

Rj(x) = q'(x)f(x) + r*(x), (3.2) 

where R*(x) represents the good circuit response. 

Aliasing arises when r(x) = r*(x) but R{(x) ^ R*(x). Obviously, this problem is 

caused by the information loss due to the discarding of the quotient sequences. Thus, if 

q(x) and q*(x) are compared as well, i.e., r(x) and q{x) compared with r*(x) and q*(x), 

respectively, aliasing can be avoided. In general, directly storing the quotient sequences 

is not practical in BIST. In [Gupta90], instead of storing the quotient sequences, a new 

approach was proposed to select a specific f(x) for a given R*(x) such that q*(x) is periodic. 

By being periodic, it is easy to use a simple periodic sequence checker to determine whether 

the actual quotient sequence from the LFSR is error-free. For instance, in the example shown 

in Fig. 3.14 where the error-free quotient sequence is all 1, the periodic sequence checker is 

simply a 0-detector. In the case shown in Fig. 3.14, if the signature obtained is 010, and 

the quotient obtained is all 1, the sequence under compaction is fault-free. Otherwise, it is 

faulty. Here no aliasing can occur since both q(x) and r(x) are monitored. Unfortunately, 

this data compaction scheme generally requires too much hardware for practical use. For 

example, it was shown in [Gupta90] that the required LFSR that corresponds to the selected 

f(x) can have j-stages if the sequence to compact is of length /. Since / is usually at the order 

of hundreds of thousands or even millions, this makes this technique clearly not feasible. 

Zero Aliasing by Transition Counting 

Another zero aliasing technique was proposed in [Diamantaras91]. It is based on transition 

counting, whose deception volume DVe = {[) — 1, with / and t being the length and number 
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»Q) » _ > — • -

RI(x) = 101000111 r(x) = 010 q(x) =111111 

Figure 3.14: An example of zero aliasing compaction. 

of transitions of the fault-free sequence [Bardell87]. If all the test vectors that produce Os 

at the fault-free CUT's output are applied first, and the others are applied afterwards. This 

yields a fault-free output sequence in the form 00...0011...11. There is only a single transition 

in the sequence. Thus, the aliasing is very small, but still non-zero. In [Diamantaras91], 

a special 0-detector, as shown in Fig. 3.15, was proposed to monitor the output sequence. 

The switch shown in Fig. 3.15 is first set to the inverting terminal, and all the test vectors 

that would produce 0s at the CUT's output are applied. If a fault is detected by some of 

these vectors, the CUT would output some Is. In this case, the 0-detector will detect the 

possible errors. After applying the test patterns that produce 0s at the CUT's output, the 

switch is set to the non-inverting terminal, and all the vectors that have the CUT output 

Is in the absence of faults are applied. Similarly to the earlier case, any error, i.e., 0 in 

this case, in the output sequence will be caught by the 0-detector. This scheme requires 

little hardware on the data compaction side. However, a major problem exists with the test 

pattern ordering. Small hardware requirement test pattern generators that can produce 

test vectors in such an order have not yet been found yet. Another drawback of reducing 

transition count is that it also reduces the effectiveness of the test vectors for testing AC 

faults. This is because AC fault testing usually requires the generation of a large number 

of transitions at the fault-free circuits' output lines. 
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Zero detector 

Figure 3.15: Zero aliasing transition counting. 

Zero Aliasing for Modeled Faults 

During signature analysis, the first error in an error sequence will always be captured by 

the signature analyzer LFSR [Bardell87]. However, as the compaction process carries on, 

the error captured in the LFSR might be cancelled by some other errors afterwards, thus 

causing aliasing. One technique described in [Pomeranz92] proposes to check an inter­

mediate signature before a captured error is cancelled. Therefore, for each possible error 

sequence, if at least one of its errors can be detected by checking intermediate signatures, 

aliasing can be eliminated. To find the possible error sequences, fault simulation assuming 

a certain fault model must be used. Thus, unlike the zero aliasing techniques discussed ear­

lier, this technique is only valid for modeled faults. To reduce the hardware requirements, 

careful scheduling of the intermediate signatures is achieved using an algorithm developed 

in [Pomeranz92] that minimizes the total number of required signatures. In general, the 

signatures are not periodically scheduled. Thus, besides the silicon area required for storing 

the reference signatures, the control for the signature checkings may be complex [Wu92c]. 

Zero Aliasing by Sequence Identification 

Given a fault-free sequence, a nonlinear machine can be designed to identify the sequence. 

Thus, if such a machine is used for data compaction, no aliasing will occur. Such a technique 

was proposed in [Chakrabarty93]. However, a major problem of this method is that no 

upper bound on hardware requirements has been derived so far for long output sequences. 
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Therefore, in general, this method is not practical. 

3.2.4 Modified LFSR 

Recently, a modified LFSR (M-LFSR) was proposed to reduce aliasing [Raina91]. The M-

LFSR has two modes. One is the regular LFSR mode. The other is the modified LFSR 

mode which converts the LFSR into a non-linear machine. The basic idea of this approach 

is to use the normal LFSR to compact the first (/ — s) bits of the sequence, and then use the 

non-linear machine to recognize the remaining s bits. If s = 1, i.e., if the last one sequence 

bit can be identified, the M-LFSR can reduce a LFSR's aliasing by half. This is because half 

of the 2' possible sequences have a last bit with a opposite value to the fault-free one. By 

identifying the last bit alone, half of the 2l error sequences can be detected. Regarding the 

remaining 2 ' - 1 — 1 error sequences, they would be detected as in regular signature analysis. 

Thus, the deception volume of the M-LFSR scheme is DVe = 2l~k~l — 1. Compared to 

2l~k — 1, which is the deception volume of a k-h\i LFSR, the M-LFSR yields half the 

aliasing. In general, if the last s bits of the sequence can be identified, the M-LFSR scheme 

can reduce a LFSR's aliasing by a factor of 2s. According to [Raina91], for a r-input ft-stage 

LFSR, the M-LFSR can achieve the following aliasing: 

PM-LFSR = ^ ( 1 - p)", r < k, (3.3) 

where p is the probability for a bit to be in error given a CUT failure, independently of the 

other bit errors. For the equally likely error model, p = 0.5, which is also assumed in the 

experiments in [Raina91]. Assuming p — 0.5 yields: 

PM-LFSR = 2^k+rs\ r < k. (3.4) 

The worst case of the M-LFSR is when r = 1, which corresponds to a single input LFSR. 

In this case, PM-LFSR — 2~(k+s'. The best case occurs when r = k, which corresponds to 
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a &-input MISR. In the best case, PM-LFSR = 2~k(s+1K 

In terms of hardware requirements, the M-LFSR requires f | (8 + r + k)] 4-input 

NAND/NOR gates, which is equivalent to |\s(8 + r + k)] 2-input NAND/NOR gates since 

each 4-input gate requires the same hardware as three 2-input gates. In general, the hard­

ware requirement of this method is high. For example, to reduce the aliasing probability 

from 2 - 1 6 to 2 - 3 2 , the M-LFSR requires 400 to 600 2-input gates in addition to a 16-stage 

LFSR. 



Chapter 4 

Multiple Intermediate Signature Analysis — I 

As discussed in the preceding chapter, aliasing reduction is usually achieved at the cost 

of high hardware requirements. Furthermore, except for the zero aliasing schemes, the 

difficulty for test quality assessment associated with data compaction (see Section 1.7) still 

remains. Unfortunately, the zero aliasing schemes are not generally feasible in terms of 

silicon area. Among the non-zero aliasing schemes, multiple intermediate signature analysis 

seems to be superior over the others since recent work has shown that this scheme lends 

itself well to exact fault coverage computation [Lambidonis91] and is able to significantly 

reduce aliasing with little extra hardware cost [Wu93]. Furthermore, multiple intermediate 

signature analysis can also shorten average test time [Lee88] and increase fault diagnosability 

[Waicukauski87]. 

In this chapter, we will investigate the models for predicting the aliasing and fault 

coverage of multiple intermediate signature analysis. In the remainder of this dissertation, 

unless otherwise stated, multiple intermediate signature analysis is simply referred to as 

multiple signature analysis. 

If a total of two signatures are checked, the sequence is divided into two segments of 

length l\ and l-i = /—/i, and the signature analyzer is checked at the end of each segment, i.e., 

the first signature is checked after the first l\ bits of the sequence have been compacted and 

the second signature is checked after the entire sequence has been compacted. In general, 

assume that a total of n signatures, Si, £2, •••, Sn, are checked after the first / j , I2, •••, 

In On — 0 bits of the sequence have been shifted into the signature analyzer, respectively. 

In the remainder of this dissertation, the positions /,• where the signatures are checked are 

42 
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referred to as check points, while the subsequence between each pair of adjacent check points 

is referred to as a segment. 

4.1 An Aliasing Model 

In multiple signature analysis, the error sequences that escape detection are those that 

escape the detection at each intermediate and final signature checking. For example, assume 

an output sequence of length / is compacted by a Ar-stage LFSR. Let the sequence be divided 

into two segments of lengths /x and I2 — I — h, and let the LFSR be checked at the end 

of each segment, i.e., at the check points /1 and /. Assume the corresponding fault-free 

signatures of the two segments are S\ and ^2- Under the equally-likely error model, the 

number of possible sequences that produce Si at l\ is —^-, while the number of sequences that 

produce ^2 at / is 2
 fc* [Bhavsar84][Bardell87], where both l\ and / —/1 are greater than k. 

Therefore, the deception volume in this case, denoted by DVe(2), is [Bhavsar84][Bardell87j: 

oh y 9('- ' i ) 
^ ( 2 ) = 2-A^r- - 1 

= 2'-2k - 1. (4.5) 

Considering the existence of the 2l - 1 possible error sequences yields the aliasing probability 

Pal{2): 

2l~2k - 1 
Pa,(2) = - g r n - (4-6) 

Obviously, when 2l » 1, Po/(2) « 2~2k. 

In general, if n signatures are checked at the arbitrary positions l\, I2, ••-, ln, with the 

constraint /,• > lj and /,• —/j > k for i > j and /„ = /, it can be shown [Bhavsar84][Bardell87] 

that its deception volume is: 

DVe{n) = 2l~nk - 1. (4.7) 
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The corresponding aliasing probability is: 

nl—nk _ i 

Pal(n) = 2 l _ 1 • (4.8) 

Assuming 2l > > 1 yields: 

Pal{n) » 2-n*. (4.9) 

From Eqns. 4.7 - 4.9, the deception volume associated with multiple signature 

analysis, and the corresponding aliasing probability, are independent of the positions where 

the signatures are checked. 

4.2 Fault Coverage Models 

In reality, some error sequences are more likely to occur than others. For example, if two 

signatures are checked at the check points l\ and /, the error sequences in the form e[/] = 

OO...Oe/1+ie/,4.2...e/n would occur more often than those in the form e[l] — e1e2...e/100...0. 

This is because most faults that produce errors in the first segment are random-easy faults, 

and thus would also have good chance producing errors during the second segment, thus 

generating the error sequence in the form of e[l] = eie2---ei1ei1+i...ei. To more precisely 

predict the aliasing performance, this section discusses fault coverage models that take into 

account the detection probability profile of a CUT. 

4.2.1 Prel iminar ies 

This section introduces definitions and briefly reviews some results presented in [Seth90] 

and [Rajski91bj. 
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Basic Definitions 

Definition 4 . 1 : The detection probability of a fault is the probability of detecting the fault 

by applying a random vector to the CUT. 

Detection probabilities of faults in a CUT can be represented by a probability density 

function p(x) such that p(x)dx corresponds to the fraction of testable faults with detection 

probability between x and x + dx. Since x represents a probability: 

r i p(x)dx - 1. (4.10) 

Fault Coverage of Random Vectors without Compaction 

Since there are p(x)dx faults with detection probability x, the mean coverage among these 

faults by a random vector is xp(x)dx. Suppose we apply a sequence of random vectors to 

the circuit. The mean coverage by the first vector is: 

2/1 / xp(x)dx. (4-11) 
Jo 

The actual coverage by a random vector might be different from the mean by a random 

quantity. However, the variance will be small for almost all circuits [Seth90]. If all faults 

are assumed testable, after removing the faults detected by the first vector, the normalized 

number of the remaining undetected faults is: 

UDT = 1-1 xp(x)dx 
Jo 

= f (1 - x)p{x)dx. (4.12) 
Jo 

Thus, the distribution of the detection probabilities of the remaining undetected faults is 

(1 — x)p(x). Hence, the coverage of two random vectors is: 

— Vi + I 2:(1 - x)p(x)dx 
Jo 

= J x[l + (1 - x)]p(x)dx. (4.13) 
Jo 

J/2 
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Similarly, the coverage of/ vectors is [Seth90]: 

y,= f x[l + (1 - x) + (1 - xf + ... + (1 - X)'-I]p(x)dx 
Jo 

= 1 - / (1 - x)1p{x)dx 
Jo 

= 1 - / ( / ) , (4-14) 

where I(n) = JQ(1 - x)lp(x)dx. 

Eqn. 4.14 shows the fault coverage achieved with / random vectors without data 

compaction. Obviously, when / —• oo, yi —> 1. That is, one can detect all testable faults in 

a CUT if a sufficiently large number of vectors are applied1. 

Fault Coverage with Single Signature Analysis 

Now assume a k-bit signature is checked after applying / random vectors to a CUT. Denote 

the aliasing probability by p, i.e., p « 2~k. Denote the probability of no aliasing by /?, i.e., 

(3 = 1 — p. According to [Rajski91b], the fault coverage with the single signature analysis 

can be well estimated by f3 X FC = (1 — p)FC, where FC is the fault coverage before data 

compaction. Thus, from Eqn. 4.14, the fault coverage of single signature analysis can be 

represented as: 

Fd = / ? [ l - / (1 - x)lp(x)dx] 
Jo 

= / ? ( l - / ( / ) ) . (4.15) 

4.2.2 A Comprehensive Fault Coverage Model 

In the following, for better understanding the fault coverage model derivation, we first label 

the aliasing probability of the ith signature checked at check point /,- by /?,-, and hence the 

probability of no-aliasing by /?,-=!— /?,-, where i = 1,..., n and ln — I. Then, at the end of 

'Note that, for simplicity, Eqn. 4.14 considers only testable faults [Seth90]. 



Chapter 4. Multiple Intermediate Signature Analysis — I 47 

this section, we remove the subscript i by defining p = pi = 2 for i = 1, ...,n. Similar to 

the analysis in Sec. 4.2.1, the fault coverage after checking the first signature is: 

FCx =fii[l- ! (1 - x)Llp(x)dx) 
Jo 

= Pi[l-I(Li)). (4-16) 

The portion of the faults that remain undetected after checking the first signature is: 

UDTi = l-FCi 

= 1 - / ? ! ( ! - / (l-x)L>p(x)dx) 
Jo 

= j [1 - ft + /?x(l - z ) L i ] K z ) ^ . (4.17) 
Jo 

Therefore, the new distribution of the detection probabilities of the remaining faults is 

pi(x) = [1 — Pi + Pi(l — x)Ll]p(x). The fault coverage after checking the second signature 

at check point I2 is: 

FC2 = FCi + p2[UDTi - I (1 - x)L*pi{x)}dx 
Jo 

= FCi + P2{UDTi - / (1 - x)L*{l -Pi+ Pi(l - x)L>]p(x)dx} 
Jo 

= [P2 + /3i(l - P2)] - [Pi(l - p2)I{Li) + p2(l - Pi)I{L2)} - Pip2I(Lx + L2). (4.18) 

Similarly, we can find the distribution of the detection probabilities of the remaining faults, 

and the fault coverage after checking the nth signature: 

n n n n n-j+1 n n- j+2 r> n a j 

Fcn = E A l I « - I I « D E r E T- E ^ ( E W ] , (4-19) 
i=l j=i+l i=l j = l m, = l ^ m i m 2 = m i + l " m 2 mj=mj_i+l ^ m i g=l 

where m0 = 0, £ a = 0 and fJa = 1 i f a > b-
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As an example, the fault coverage expression for checking three signatures is given 

below: 

FC3 = [X> npj]- /w3[£^i(Lm i)+ j : ^ J: f ^CEW 
i = l j = i + l m i = l ^ m i m i = l ^ m i m 2 = m i + l Pm2 g = l 

+ E~ E -1 E ^ ' ( E W ] 
m i = l r " U 7712=77!!+! ^ " 2 m 3 = m 2 + l ^ m 3 5 = 1 

= [01P2P3 + P2P3 + Pz] ~ plP2P3{[—I(Lx) + ^I{L2) + ^I(L3)} 
Pi P2 P3 

+ [ ^ J(Za + L2) + M*I(Ll + I*) + ̂ I(L2 + L3)} + [M*b.J(Ll + L2 + L3))} 
P1P2 P1P3 P2P3 P1P2P3 

- WlP2P3 + P2P3 + P3] ~ {[PlP2P3l(Ll) + Plfi2P3l(L2) + plp2P3l(L3)} 

+WmHLi + L2) + /?i/>2/Wi + L3) + PifoP3l{L2 + L3)) 

+[A/?2/J3/(Xi + L2 + L3)]}. (4 

Assuming each signature to be of the same length, i.e., /?,- = 2~k, and hence /?,• = 

(1 — 2~k), for i — 1,..., n, yields: 

FCn = (1 - 2~k)Yj2-(n-i)k 

1 = 1 

n-l+l n-j+2 

-EK1-2"*)i2'(B'i)* E E - E r(£Lm,)]. (4.21) 
j = l 7711=1 7712=7711+1 m j = 7 n j _ l + l 3 = 1 

If 2~k « 1, we have: 

n n-j+1 n-j+2 n j 

Fcn«i - Y;i2~{n~J)k E E - E ' (£*«,)]• (4-22) 
j—l 7711=1 7712=7711+1 7 7 l j = 7 n j _ l + 1 p = l 

For example, when n = 3 and 2 - * << 1, the above equation yields: 

3 3-i+l 3-J+2 3 j 

Fc3*i-Ev-{3-j)k E E - E i(LLm.)] 
j=l 77ii = l 77i2=77ii+l m j = r r i j _ i + l 3 = 1 
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= i -2-2* J2 ' ( W - 2~k E E %», + Lm2) 
mi= l m i = l m 2 = m i + l 

1 2 3 

- E E E /(imi + xm2 + im3) 
m i = l m 2 = m i + l 7713=7712+1 

= l - 2 - ^ [ / ( i 1 ) + / ( i 2 ) + / ( i 3 ) ] 

- 2 - f c [ / ( i 1 + £2) + / ( I i + i 3 ) + J ( i 3 + is) ] - / ( i i + L2 + £3). (4-23) 

The comprehensive fault coverage model developed above is based on the density 

function of fault detection probabilities of a CUT. Like all the other aliasing analysis tech­

niques based on detection probability profile, a major difficulty of using this model is the 

prohibitive computational efforts required for obtaining a precise detection probability den­

sity function for large CUTs. 

4.2.3 A Simplified Fault Coverage Model 

As discussed in Section 4.2, most faults detected in a segment i are also likely to be detected 

in some of the later segments i + 1,2 + 2, ..., n. In [Zhang93][Zhang93b], a simplified fault 

coverage model was proposed which simply assumes that all faults that are detected in a 

segment i would also produce errors in later segments, i + 1, i + 2, ..., n. This simplified 

model is based on the aliasing probability, and the easily obtainable fault coverage curve 

before compaction. 

Assume the aliasing probabilities at check points / j , I2, ..., ln to be p\, p2, •••-, pn, 

respectively. Assume that, at the check points, the corresponding fault coverages before 

data compaction are known to be F-\, F2, ..., Fn. The portion of faults detected in segment 

i is thus F{ — i r,_i, for i — 1,..., n, defining Fo = 0. 

After checking the first signature at / j , F\pi of the faults detected in the first 

segment would escape detection. If all the aliased faults are assumed to be re-detected in 

later segments 2, 3, ..., n, after checking the second signature at Zg, the portion of faults 

aliased from the portion F\ due to aliasing would be Fipip?. Thus, the portion of faults 
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that would be aliased from F\ after checking n signatures is: 

n 

FCL1=F1]Jpj. (4.24) 
3 = 1 

Similarly, for the (F2 — Fi) faults first detected in the second segment, after checking 

the second signature at I2, (F2 — F\)p2 of them would be aliased. Again, assuming that 

these aliased faults will be re-detected in later segments 3, 4, ..., n yields the fault coverage 

loss from (F2 — F\) after checking n signatures: 

n 

FCL2 = {F2-Fl)Y[Pj. (4.25) 
3=2 

In general, for the (Fi — i^- i ) faults first detected during the ith segment, the portion 

of the faults aliased is: 

n 

FCLi = (F - F^)Y[Pj i = 1,...,n. (4.26) 
i=« 

Therefore, the total fault coverage loss with n signatures is: 

n 

FCL = J2 FCLi 
1 = 1 

= Y,(Fi-F,_l)f[pJ. (4.27) 
1=1 j=i 

Since the final fault coverage before data compaction is Fn, the fault coverage when checking 

n signatures is [Zhang93][Zhang93b]: 

FCn = Fn- FCL 

=:Fn-f2(F,-Fi^)flPj. (4.28) 
>=1 j=i 

Assuming pi = 2~k, for i = 1,..., n, yields: 

n 

FCn = Fn- J2(F< ~ Fi-i )2-(n-'+1>fc. (4.29) 

Eqns. 4.28 and 4.29 predict the fault coverage with multiple signature analysis. This 

model is solely based on the knowledge of the fault coverage before data compaction and 
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the aliasing probability of the signature analyzer. It is thus much easier to use than the one 

developed in Sec. 4.2.2. However, this simplified model is optimistic since the model assumes 

that all the faults detected in segment i are re-detected in all later segments, i + l,i + 2, 

..., n. In practice, this assumption may not be true. Some faults may be re-detected in 

some of the later segments, but not necessarily in all the segments. Some faults may not 

be re-detected at all. However, if Li < Z1+1 for i = 1,..., n as in [Lee88][Lambidonis91], the 

assumption can be well justified as shown in [Zhang93][Zhang93b]. 



Chapter 5 

Multiple Intermediate Signature Analysis — II 

The previous chapter studied the aliasing and fault coverage performance of multiple sig­

nature analysis. This chapter addresses other issues of multiple signature analysis, namely 

possible implementations, test control, test result observation, and applications. 

5.1 Possible Implementations 

5.1.1 Conceptual Understanding of Multiple Signature Analysis 

Although multiple signature analysis can be implemented in different ways, there are some 

functional blocks that are commonly required. Assume that the n signatures generated 

by the LFSR at the check points l\,h,---Jn are si,S2,--.,sn, respectively. Once the check 

points are fixed, by logic simulation, one can easily determine the n corresponding fault-

free signatures or references, ri,T2,..-,rn. Except for the fuzzy multiple signature (FMS) 

analysis [Wu92] and the single-reference multiple signature (SMS) analysis [Wu93], which 

we will introduce in the next two chapters, when testing a CUT, the ith signature S{ is 

compared with a specific reference r,- at the ith check point. Thus, in conventional multiple 

signature (CMS) analysis, the signatures and references must correspond on a one-to-one 

basis for a CUT to be declared good, i.e., signature s,- must match r,- for all i. Thus, 

in implementation, besides the hardware required for storing the n references, an index 

generator is also required to build the one-to-one correspondence between signatures and 

references. Fig. 5.16 conceptually illustrates the CMS scheme. In Fig. 5.16, a ring counter 

is used to provide the index. When the test reaches the ith check point, the ith bit of 

52 
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the ring counter is " 1 " , and the signature collected in the LFSR is compared with the tth 

reference r,-. If they match, the ring counter advances by shifting the " 1 " to the (i + l)th 

bit. Otherwise, the test can be terminated, and the CUT declared bad. If signature S{ 

matchs r,- for all i, the CUT is declared good. 

Pass / Fail 

Index (ring) 
counter 

Figure 5.16: Conceptual representation of the CMS scheme. 

5.1.2 Straightforward Implementations 

A straightforward implementation of the CMS scheme is shown in Fig. 5.17. As shown, in 

addition to the ROM for storing the references, extra circuitry is required to generate the 

index and compare the references with the signatures. In this implementation, the index 

is provided by the ROM address generator which consists of a /o^2(n)-stage binary counter 

and a log2(n) — to — n index decoder. The comparator can be composed of k 2-input XOR 

gates and a &-input NAND or NOR gate. Usually, the extra circuitry consumes more silicon 

area than that of the ROM itself. Furthermore, connections between these functional blocks 

can also take considerable silicon area. 

Alternatively, instead of storing the references in a ROM and using a seperate com­

parator to generate the Pass/Fail signal, as shown in Fig. 5.18, one can use a combinational 
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ROM 
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o TO 
CI. X 

o 
o 

Comparator (k - bits) 

a Pass / Fail 

LFSR 

Input squences 

Figure 5.17: A straightforward CMS implementation with ROM. 

logic (CL) for storing the references as well as for comparing them with the collected sig­

natures. Assume the ith output line of the index decoder to be 1 at the zth check point /,-. 

Then, at check point /,-, if the signature collected in the LFSR matches the ith reference, 

the CL generates a Pass signal. Otherwise, it generates a Fail. If the CL generates Pass 

signals at all check points, the CUT is declared good. Otherwise, the CUT is bad. 

Input squenc 

CL 

y < ' 1 
LFSR 

es 

• ^ 

^ • -

w 

K & 
o TO o. x 
TO 
" 1 

Pass / Fail 

O o 
§ 

Figure 5.18: A straightforward CMS implementation with CL. 
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5.1.3 An Implementation by Resource Sharing 

In [Wu91], a CMS implementation that shares some resources used for test pattern gen­

eration was described. Compared to the straightforward implementation discussed in the 

preceding section, the resource sharing CMS implementation requires less silicon area. Fig. 

5.19 shows the block diagram of the CMS implementation by resource sharing. 

• © - — 

MUX 

RG 

CUT 
in 
to 

PASS/FAIL 

Figure 5.19: A CMS implementation with resource sharing. 

In Fig. 5.19, the dotted box containing the CUT shows the standard BIST scheme, 

except that the pseudorandom input pattern generator (IPG) is split into two segments, 

IPG\ and IPG2, which are controlled by separate clock signals. The extra circuits required 

by the scheme is a reference generator (RG), and a k - to — 1 multiplexer (MUX), where k 

is the signature length. There is some local wiring overhead, but it is not significant. 

The scheme works as follows. Each time a signature is checked, the RG generates 

a k-b\t reference. Then, the MUX converts the generated reference into a k-h'it sequence. 

Meanwhile, the XOR gate compares the signature generated in the signature analyzer, bit 

by bit, with the reference sequence from the MUX, and gives a Pass/Fail signal. IPGi is 

a LFSR of length log2(k). Besides generating input vectors to the CUT, the IPGi also 

provides the /o^2(^) control signals to the MUX. If the test length applied to the CUT is 

/, then the number of input lines to the RG is log2{l). To check k-b'it signatures, the RG 
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has k output lines. The RG is basically a decoder which can easily be implemented with a 

PLA or other type of logic. 

Regarding the control of the scheme, if a centralized controller can provide two clock 

signals to IPG\ and IPG2, then no extra control circuitry is required. When applying test 

patterns to the CUT, the two clock signals are identical. When checking a signature, the 

clock to IPG2 is stopped, and k clock cycles are provided to the IPG\. If the central 

controller provides only one clock signal, some extra local control circuitry is required. Fig. 

5.20 shows a possible local controller required for the case k = 4. It works as follows. When 

a signature is checked, the RG outputs a logic 1 signal to the local controller, which resets 

the IPG\ to a known state and cuts off the clock signal to IPG2- After IPG\ is reset, 

Gate 1 outputs a logic 0 signal to cut off the reset signal (rs). Now, the clock feeds to only 

IPG\. After shifting IPG\ k clock cycles, Gate 2 outputs a signal to reopen the clock to 

IPG2. The overhead of the local controller is about the size of a 1-bit LFSR. 

[}^h 
to 
MUX 

> IPG 1 

RG 

C5^Ch>J 
> IPG 2 

clock 

Figure 5.20: An example local control circuit. 

A deficiency of this implementation is that its hardware requirement increases as 

the test length / increases since the size of the RG block is a function of log2(l). Thus, 

for large CUTs that require long test lengths, this implementation may impose substantial 

hardware requirements. 
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5.2 Test Result Observation 

In BIST, after a test session terminates, the test result must be accessible externally through 

an I/O pin or pins. A simple way to report the test result is to produce a single bit 

Pass/Fail signal when the test is complete. In the single signature analysis, after the entire 

test output sequence has been compacted into the signature analyzer, the content of the 

LFSR is compared with the reference. The result of the comparison forms the Pass/Fail 

signal. In multiple signature analysis, however, the final Pass/Fail signal must be based 

on "intermediate Pass/Fail" signals produced at each of the check points. For a CUT to 

generate a "Pass" signal, all of the "intermediate Pass/Fail" signals must be in the "Pass" 

state. Otherwise, a "Fail" signal is generated. The following considers two different cases 

for test result observation in multiple signature analysis. 

Assume that a logic "0" corresponds to an "intermediate Pass" signal, while a logic 

" 1 " corresponds to an "intermediate Fail" signal. In the first case, if there is a Pass/Fail pin 

available, a "zero" detector may be used, as shown in Fig. 5.21, to detect the "intermediate 

Pass/Fail" signals. Prior to testing a CUT, the "zero" detector is preset to " 1 " , thus setting 

the Pass/Fail pin to 0. When a signature is checked, the controller temporarily sets the chk 

signal to 1. This sensitizes the "zero" detector to the intermediate Pass/Fail signal. Once 

a intermediate Fail signal is detected, the detector outputs and keeps a Fail signal, " 1 " , at 

the Pass/Fail pin. The "zero" detector can be shared by all self-testable blocks on a chip. 

When shared, the detector outputs and keeps a Fail signal if any of the self-testable blocks 

is found faulty. This Fail signal can be used to terminate testing, thereby saving test time. 

In the second case, where a specific protocol for control and observation of BIST 

is available [Scholz88], the test result of each self-testable block may consist of a single-bit 

flag stored in a status register [Ravinder89][Zorian91]. Once a faulty signature from a self-

testable block is detected, the flag for that block is set. The status can be accessed through 

the IEEE 1149.1 Test Access Port [IEEE90][Zorian91]. In this case, the flag can be used as 
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Pass/Fail Pin 

-o 

chk 
Preset 

Figure 5.21: Test result observation for multiple signature analysis. 

the "zero" detector required in the previous case. 

5.3 Control of Multiple Signature Analysis 

For the control of the conventional single signature schemes, an on-chip log2(l)-bit binary 

counter, with / being the test length, is required to count the applied test vectors (see Fig. 

5.22 a) [Breuer88][Gelsinger86]. When the final count is reached, a simple decoder detects 

this final count and generates a signal to stop the test and perform signature evaluation. 

In multiple signature analysis, however, multiple control signals are required, one for each 

of the check points. Therefore, the hardware requirement in this case would be in general 

greater than that required in the single signature schemes. However, as will be shown next, 

if the check points are periodically scheduled, the hardware requirement for the control of 

multiple signature analysis can be made as small as that required in any single signature 

scheme. Three possible cases depending on the scheduling of the check points are considered. 

Case 1. The check points are arbitrarily scheduled, i.e., the test length between 

check points /,• and /1+1 is arbitrary. To control multiple signature analysis in this case, like 

in any single signature analysis scheme, an on-chip counter is required to count the applied 

test vectors. When a check point is reached, a decoder detects the corresponding count and 

outputs the chk signal to enable the evaluation of a signature. Unlike the single signature 
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scheme's controller, where the decoder detects only the final count, the decoder in this 

case must decode all the counts corresponding to the check points, and is thus considerably 

larger. Assuming the use of a single /o(72(/)-input NAND or NOR gate for decoding the final 

count in the single signature case, the decoder in the multiple signature case may require 

up to n such gates plus a n-input gate for checking n signatures in the worst case if no 

logic minimization can be performed. Among the three possible control implementations 

considered in this section, this is the worst in terms of hardware overhead. 

Case 2. The scheduling of the check points follows a periodic pattern, i.e., the test 

length between /,• and /1+i is constant for all i. A convenient constant is 2q, where q is an 

integer. To control multiple signature analysis in this case, one may simply split the binary 

counter required in the single signature scheme into two segments, say C\ and C2, as shown 

in Fig. 5.22b. C\, which is (/-bit long, counts the test length between two adjacent check 

points, i.e., 2q. C2 counts the number of signatures to be checked. Assume the final count 

to be 0 for both C\ and CV Each time C\ decrements to 0, a decoder decodes the 0 and 

generates the chk signal to enable the evaluation of a signature. If the signature is incorrect, 

testing can be terminated and the CUT declared faulty. Otherwise, C? is decremented by 

one, and testing continues. When both C\ and C2 reach 0, the test is complete. Obviously, 

the controller in this case requires the same amount of hardware as that for single signature 

analysis since the total length of C\ and Ci is the same as that of the counter used in 

single signature analysis. The total complexity of the two decoders required in the multiple 

signature case is also the same as that of the decoder in the single signature analysis. This 

is the best case in terms of hardware overhead. 

Case 3. The check points are selected such that the test length between two adjacent 

check points, /,• and /,-+i, is variable but constrained to values of 2?1, where qi is an integer. 

This case lies between the first two. In this case, one may still use C\ and C2 to count 

the applied test vectors. C\ must be of length q3, where qs = ming,-. Two decoders are 

required. One decodes the 0 state from C\, while the other decodes the counts of 2qi~q' 
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a . a controller for single 
signature analysis. 

b . a contoller for multiple 
signature analysis. 

Figure 5.22: Example controllers for signature analysis. 

from Co., i = 1, .., n-1. Every time C\ reaches 0, and Co. reaches 2q'~q', i € (l, . . . ,n— 1), 

a signature is checked. The hardware overhead in this case is between the first two cases, 

since the decoder for C\ detects only one count, but the decoder for Co. has to detect n 

counts corresponding to the check points. 

The above discussion assumes a counter for controlling the signature analysis. A 

LFSR in the autonomous mode can also be used to count the applied test vectors, e.g., 

as in the BIST controller of the Intel 80386 [Gelsinger86]. The control implementations 

discussed above applies equally well to the case where the conventional counter is replaced 

by a LFSR-type counter. The split of an LFSR into two smaller LFSR-based counters, 

C\ and Cii will not affect the randomness of the input pattern generator if concatenable 

polynomials are used [Bhavsar85]. 

5.4 Applications 

As shown in the previous chapter, by careful arrangement of the check points, checking mul­

tiple signatures can yield significantly smaller aliasing than conventional single signature 
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analysis. Moreover, recent research has shown many other advantages of multiple signa­

ture analysis. This section provides a brief review of the possible applications of multiple 

signature analysis. 

5.4.1 Exact BIST Fault Coverage Calculation 

The calculation of exact fault coverage implies fault simulating the CUT with a specific test 

pattern generator and output data compactor. Without the output data compaction, fault 

simulation can exploit fault dropping to accelerate the process. In this case, the correspond­

ing computational effort is proportional to the shaded area above the fault coverage curve 

(see Fig 5.23). However, to determine the fault coverage after compaction when only the fi­

nal signature is checked, no fault dropping is possible. This is because aliasing results in the 

possibility that a fault detected at some point still escape detection at the end of test. With­

out fault dropping, fault simulation implies simulating each fault for the entire test length. 

In this case, the computational effort is proportional to the total shaded area above and 

below the fault coverage curve (see Fig. 5.24). For large CUTs, the required CPU time for 

such a fault simulation may become prohibitive [Waicukauski87][Lambidonis91][Zhang93]. 

too 

> 
o 
o 

J—> 

"3 

Test length 
Figure 5.23: Fault simulation time to determine fault coverage before data compaction using 
fault dropping. 



Chapter 5. Multiple Intermediate Signature Analysis — II 62 

03 
s - , 

> 
O 
O 

• * - > 

Test length 
Figure 5.24: Fault simulation time to determine fault coverage after data compaction. 

However, if multiple signature analysis is used, some amount of fault dropping can 

be used to reduce the fault simulation time. After checking an intermediate signature, all 

the faults that are detected by this signature can be dropped from further consideration. 

If a total of two signatures are checked, the required fault simulation time is illustrated by 

the shaded area shown in Fig. 5.25. Clearly, compared to the case shown in Fig. 5.24, this 

simple example shows how drastic reductions in total simulation time can be obtained using 

multiple signature analysis. If more intermediate signatures are checked, the computational 

time reduction can be more significant. 

5.4.2 Test Time Reduction 

Short test time is desirable in VLSI testing since it implies higher productivity and hence 

lower production costs. Reducing test time is another possible application of multiple 

signature analysis. In single signature analysis, a bad signature cannot be identified until the 

entire test response sequence has been compacted. In comparison, with multiple signature 

analysis, a test session can be terminated and the CUT declared bad as soon as an incorrect 

intermediate signature is found. For good CUTs, testing with multiple signature analysis 
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A 

l i Test length l 

Figure 5.25: Fault simulation time with multiple signature analysis 
(assuming two signatures here). 

takes the same time as that with a single signature scheme. Thus, on average, the test time 

can be significantly reduced if yield is not too high. In general, the test time reduction 

is dependent on the yield. The lower the yield, the shorter the test time on average. 

Furthermore, the reduction also depends on the scheduling of the check points, and the 

shape of the fault coverage curve [Robinson85][Lee88]. An algorithm that computes the 

optimal check point scheduling to minimize average test time was developed in [Lee88]. In 

general, the algorithm tends to schedule the check points at early stages of the test session. 

But, it was shown that even with periodic check point scheduling, average test time can be 

significantly shorter than using single signature schemes [Lee88]. 

Traditionally, BIST with output data compaction has been mainly used for off-line 

testing, e.g., manufacturing testing and in-field testing [Gelsinger86][Gelsinger89]. For off­

line testing, test time affects only the production costs. Recently, researchers have also 

proposed to use BIST with signature analysis for concurrent testing or "on-line" testing 

[Saluja88][Katoozi92]. Unlike off-line testing, in concurrent testing, the time required to de­

tect a fault once it occurs is crucial to the dependability of the system, which may include the 

reliability, availability, safety, maintainability, performability, depending on the application 
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of the system [Johnson89]. Due to the shorter average test time, segmented testing, and 

hence multiple signature analysis in BIST, are highly recommended for concurrent testing 

[Robinson85]. 

5.4.3 BIST Failure Diagnosis 

Fault diagnosis is the process of locating the fault or faults in a faulty system. For systems at 

the level of circuit boards and multichip module packages, fault diagnosis is a necessary pro­

cess for repair. At the VLSI chip level, fault diagnosis is often used for the analysis of failure 

mechanisms for fault modeling and process improvement [Waicukauski87][Aitken89b][Rajski91]. 

In addition to distinguishing good CUTs from bad ones, signatures obtained from 

CUTs also provide much information for fault diagnosis [McAnney87][Waicukauski87] [Kar-

povsky91][Rajski91]. A straightforward diagnostic method is to built a fault dictionary that 

contains the correspondence between each possible faulty signature and the detectable faults 

that would produce this signature. Upon the completion of a test session, the faulty signa­

ture obtained is used as an index to look up the fault dictionary for the location of the fault. 

Diagnostic fault simulation is the only way to build the fault dictionary. Unlike ordinary 

fault simulation, no fault dropping is allowed in diagnostic fault simulation [Waicukauski87]. 

Thus, this method is usually impractical for large CUTs. 

In reality, however, only a few faults are ever actually used for diagnosing failures 

during the life of a product [Waicukauski87]. Thus, it is highly desirable to consider only 

these few faults so as to cut down the required computational efforts for fault diagnosis, and 

to increase the diagnosis resolution. Unfortunately, there is no way of knowing beforehand 

what these faults will be since the defects to be diagnosed are scattered throughout the 

design. Thus, diagnosis methods that are based on post-test fault simulation are proposed 

[Waicukauski87][Aitken89b]. These methods all collect some kind of intermediate "signa­

tures". After completing a test session, a set of intermediate signatures are obtained. If 

some of them are faulty the CUT is faulty. To locate the fault, all possible modeled faults 
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are simulated until the first check point. Then, all the faults whose signatures obtained in 

the simulation differ from the corresponding signature obtained in testing are removed from 

further consideration. The remaining faults, i.e., the faults whose signature matches the 

signature obtained at the first check point in testing, are further simulated until the second 

check point. A similar process carries on until the final check point, or until the fault is 

located. This methodology has been in use at IBM for some time [Waicukauski87]. 



Chapter 6 

Fuzzy Multiple Signature Analysis 

In the CMS scheme, checking n signatures requires n references. Each time a signature 

is checked, it is compared to a specific reference. For a CUT to be declared good, each 

of the signatures must correspond to a corresponding reference. This strict one-to-one 

correspondence between the checked signatures and references makes the implementation 

of the CMS scheme relatively complex and expensive in terms of silicon area. In this chapter, 

we develop a Fuzzy Multiple Signature (FMS) analysis scheme which does not require the 

aforementioned one-to-one correspondence. The FMS scheme is simple to implement and 

requires little hardware. 

6.1 Basis and Implementations 

As discussed in Chapter 4, the complexity of checking multiple signatures is mainly due to 

the requirement of the one-to-one correspondence between the references and signatures. 

By removing this strict requirement one can get a much simpler data compactor. This is 

the basic idea of the FMS scheme. The scheme is referred to as a fuzzy multiple signature 

scheme because it consists of checking multiple signatures but does not impose the one-to-

one correspondence between checked signatures and references. Thus a degree of fuzziness 

in the reference-signature relationship is introduced in the FMS scheme. 

6.1.1 Basis 

Like the CMS scheme, the FMS scheme checks n signatures at check points, li,h,---,ln-

However, unlike the CMS scheme where a signature S{ is compared with a specific reference 

66 
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r,- at check point /,-, in the FMS scheme, each signature s,- is compared with the whole 

set of references {?"i, r2, . . . , r n } . A signature s,- is considered good if it matches any of the 

references in the reference set. Therefore, with the FMS scheme, for a CUT to be declared 

good, it suffices that the signature obtained from the LFSR at each check point correspond 

to any of the references rj,r2, ...,rn. Fig. 6.26 conceptually illustrates the FMS scheme. 

The fuzziness introduced may result in a small increase of aliasing compared to the CMS 

scheme for given k and n. But, this can be easily compensated for by the reduced complexity 

of the FMS scheme compared to the CMS scheme. Otherwise, the FMS scheme possesses 

all the advantages that the CMS scheme has over the single signature schemes. 

Figure 6.26: Conceptual representation of the FMS scheme. 

6.1.2 Implementa t ion 

Since the one-to-one correspondence between references and signatures no longer exists, 

implementing the FMS scheme is very simple. As shown in Fig. 6.27, the FMS scheme 

consists of a Signature Observer (SO) and a LFSR. The LFSR collects signatures. The SO 

checks each signature and generates Pass/Fail signals. At each check point, if the signature 

generated by the LFSR matches any of the references, the SO outputs a Pass signal, say 
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logic 0. Otherwise, the SO outputs a Fail signal, say logic 1. The Fail signal can be fed to 

a test controller to terminate the testing and declare the CUT as faulty. If the SO outputs 

Pass signals at all the check points, the CUT is declared good. 

Signature Observer 

A / l A/v Pass / Fail 

LFSR 

Input squences 

Figure 6.27: The FMS Data Compactor. 

From the above discussion, the SO is a decoder with fc-input, 1-output combinational 

circuit which outputs a 0 when its input vector belongs to the reference set, and outputs a 

1 otherwise. 

Example 5.1: Assume n = k = 3, i.e., checking three 3-bit signatures. If the refer­

ences are r\ = 111, r% = 110, and r^ = 100, denoting the three bits of the refer­

ences by bi, 62, and 63, the function of the SO can be described as Pass /Fail = 

&1&2&3 + b\b2bz -f- b\b2 63 = b\b2 + fri&3 = bib2b%. Thus, the SO can be implemented 

with two 2-input NAND gates as shown in Fig. 6.28. • 

6.2 FMS Aliasing Performance Analysis 

Assume the compaction of an /-bit random sequence into a k-h\t signature, and r\ to be the 

only valid reference. The total number of sequences (including the fault-free one) that map 

onto T\ is 2l~k. If we assume that the distinct references T\ and r2 are both acceptable, 
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Input sequences 

Pass / Fail 

LFSR 

Figure 6.28: An Example of the FMS Scheme 
where the references are 111, 110 and 100. 

then the total number of sequences that map onto either rx or r<i is 2 X 2l~k since the 

sequences that map onto one will not map onto the other. Thus, if we assume that m 

distinct references, rj., r^-, • •-, rm are acceptable, the total number of /-bit sequences that 

map onto any one of the m references is m x 2l~k. Excluding the fault-free sequence, the 

deception volume [Agarwal87] for such a case is thus m X 2l~k — 1. Since there are 2l - 1 

possible error sequences, assuming all are equally likely, the aliasing probability when m 

distinct references are acceptable at a single check point is: 

m2'-k - 1 
Pal = 2 ' - l 

(6.30) 

Assuming 2' >> 1 yields Pa\ « m2~k. 

The FMS scheme checks n signatures at check points, /1 ; /2 , ...,/n, against a set of 

m references, with m < n in general (the reason that m < n will be given later). Using 

the arguments presented in Chapter 4 for the aliasing probability of CMS schemes, the 

following aliasing probability results for the FMS scheme: 
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/m2h~k - l . . m 2 ' » - * - 1. ,m2l"-k-ls , „„„ . 
PFMS = ( 2<1 _ , )( 2<a _ , )•••( 2,„ _ , )• (6-31) 

Assuming 2'' >> 1 yields: 

PFMS « [m2-*]n, (6.32) 

where m < n in general because there can be at most n distinct references if we check n sig­

natures. However, some references may happen to be, or be made identical [Wu92b][Wu93] 

[Wu93c], thus making m < n. Clearly, for fixed k and n, the best case aliasing occurs for 

m = 1, for which PFMS ~ 2~nk [Wu93]. m = 1 is also the best case in terms of hardware 

requirements for implementing the FMS scheme [Wu93]. When m = n, the worst case 

aliasing occurs, for which PFMS ~ [n2~k]n. 

The following analysis assumes the worst-case scenario (i.e., m = n). To study 

the aliasing performance of the FMS scheme, we define the FMS scheme equivalent length, 

Lg , as a figure of merit. For a given aliasing probability in the FMS scheme, we define 

iFMS (.Q bg a continuous variable whose value corresponds to the length of a LFSR that 

yields the same aliasing probability in a single signature (SS) scheme. Ideally, L^MS should 

be as large as possible to minimize aliasing. Since Pss ~ 2~k and PFMS ~ [n2~k]n, then 

2~L<MS = [n2~k]n. (6.33) 

Solving for L™s yields: 

LF
e
MS = n(k - log2(n)). (6.34) 

In comparison, the equivalent length of a CMS scheme for given n and k is: 
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I%Mb = nk; (6.35) 

while that of a SS scheme is: 

Ls
e
s = k. (6.36) 

Example 5.2: Assuming k = 16 and n = 4, Lfs = 16, i f M 5 = 64, and i f M S = 

64 - 4 x 2 = 56. Thus, PCMS = 2 - 6 4 , PFMS = 2~56, and P 5 5 = 2~16. Here, the 

aliasing probability of the FMS scheme is 2 orders of magnitude greater than that 

of the CMS scheme, but still 12 orders of magnitude smaller than that of the SS 

scheme. D 

With the CMS scheme, the equivalent length increases linearly with both k and n. 

With the FMS scheme, however, the equivalent length increases linearly with k but not with 

n. For fixed k, as n increases, L^MS peaks and then decreases. When n = 2k, L^MS — 0. 

Fig. 6.29 shows an example of the L^MS as a function of n for k = 8, k — 9, k = 12 and 

k = 16. 

6.3 F M S Hardware Requirement Analysis 

The SO of the FMS scheme is a £-input, 1-output combinational circuit, which can be 

implemented with different logic structures, e.g., a PLA, multilevel logic, or other non-

PLA-type logic structures described in [Mead80][Zorian91]. 

If a PLA is used to implement the SO, to check n k-hit signatures, a fc-input, 1-

output, /i-cube PLA is required, with h < n because there can be at most n references if n 

signatures are checked. But, as shown in Example 5.1, the SO's function can sometimes be 

logically minimized, thus making h < n. In addition, as shown in [Wu92b][Wu93], some of 
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Figure 6.29: Aliasing performance of the FMS scheme. 

the references may happen to be, or be made identical, which also results in h < n. In the 

worst case, i.e., h = n, the PLA has n cubes. 

If the SO is implemented with logic gates, instead of a PLA, the hardware require­

ments are as follows. If there is only a single reference of length k, a £-input NAND gate 

is required to decode this reference from the LFSR. This &-input gate can be composed of 

(k — 1) 2-input NAND gates in a tree-structured form. (Note that this is also the hardware 

requirement of a SS scheme). If there exist two distinct references, assuming that they are 

not logically minimizable, then two fc-input gates are needed to decode the two references. 

In addition, combining the outputs of the two gates to form the Pass/Fail signal of the SO 

requires an extra 2-input gate. Thus, a total of 2{k - 1) + 1 = 2k - 1 2-input NAND gates 

are required since each &-input gate consists of {k — 1) 2-input NAND gates. In general, 
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for m distinct references, at most mk — 1 2-input gates are needed. If m = n, as assumed 

in the worst case scenario in Section 2.1.3, the worst case hardare requirement of the SO is 

nk - 1 2-input NAND gates. 

6.4 Comparative Evaluation of the FMS Scheme 

This section compares the aliasing performance and hardware requirements of the FMS 

scheme with those of the SS scheme, the Modified LFSR (M-LFSR) [Raina91], and the 

CMS scheme. Here, only the worst case of the FMS scheme is considered, i.e., it is assumed 

that m = n and no logic minimization performed for the SO's function. 

6.4.1 F M S vs. SS 

To achieve an aliasing probability of 2~h, the SS scheme requires a k-bit LFSR. To achieve 

the same aliasing probability, the FMS scheme only requires a (k / n + log2(n))-bit LFSR if n 

signature are checked. For the following detailed area comparisons, a PLA implementation 

of the SO is assumed. Since each PLA-input variable corresponds to two lines in the 

AND plane of a PLA, and since the drivers in the PLA take an area of about 8 cubes 

[Gagne91], the normalized area of a &-input, s-output, n-cube PLA is (n + 8) X (k X 2 + s) 

units. The following area estimate comparisons is based on the actual layout of a PLA 

and a 16-bit LFSR, using the Cadence™ automatic place and route tool, and a 3 fim 

double-metal CMOS technology. The LFSR was built with static D flip-flops, and measured 

approxmately 1.38 X 106 um2. Actual layout revealed that a 12-input, 4-output, 64-cube 

PLA takes approxmately the same area as a 16-bit LFSR. According to the above analysis, 

this PLA requires an area of (64 + 8) X (12 x 2 + 4) = 2016 units. Therefore, we assume 

that a PLA of 2016 units corresponds to the area of a 16-bit LFSR. The comparison of the 

FMS and SS schemes is illustrated by the following examples. 
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Example 5.3: If k = 9 and n = 32, PFMS = [32 x 2 - 9 ] 3 2 = 2 - 1 2 8 . In this case, the required 

hardware is a 9-stage LFSR, and a 9-input, 1-output, 32-cube PLA to implement the 

SO. The PLA requires (32 + 8) X (9x2 + 1) = 760 units of area, which is approxmately 

37.7% of the size of a 16-bit LFSR, or about the size of a 6-bit LFSR. Thus, the total 

area overhead for the FMS scheme to achieve PFMS = 2 - 1 2 8 is approximately the area 

of a 6+9=15 bit LFSR. In comparison, a SS scheme would require a 128-bit LFSR to 

achieve PSS = 2 - 1 2 8 . • 

More examples are summarized in Fig. 6.30, where the area for achieving a given 

aliasing probability is given in terms of equivalent LFSR sizes. As shown in Fig. 6.30, 

with the FMS scheme, small aliasing can be obtained against very small hardware overhead 

compared to what is required by SS schemes. 

6.4.2 F M S vs. M-LFSR 

According to [Raina9l], for a r-input &-stage LFSR, and assuming the equally likely error 

model, the aliasing probability of the M-LFSR is: 

PM-LFSR &2~{h+rs\ with r <k and s < k. (6.37) 

Thus, the worst case of the M-LFSR is when r = 1, which corresponds to a single in­

put LFSR. In this case, PM-LFSR ~ 2~(k+s>. The best case occurs when r — k, which 

corresponds to a /c-input MISR. In the best case, PM-LFSR ~ 2~k(s+lh In terms of hard­

ware requirements, in addition to the LFSR, the M-LFSR requires [5(8 + r + k)] 2-input 

NAND/NOR gates. 

In comparison, for the FMS to achieve an aliasing probability of PFMS « 2~n^_/°52(")), 

the hardware requirement is (nk - 1) 2-input NAND/NOR gates in addition to the LFSR. 

Tables 6.1 and 6.2 show some examples of the M-LFSR and FMS comparisons. In Tables 
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Figure 6.30: The FMS scheme vs. the SS scheme. 

6.1 and 6.2, the entries in the row entitled Hardware Req. show the number of gates re­

quired by respective schemes in addition to the LFSR; the entries in the row entitled Pai 

indicate the aliasing probabilities. In Table 6.1, a single input 16-stage LFSR is assumed, 

while in Table 6.2, a 16-stage MISR is assumed. In the comparison, the s for the M-LFSR 

is assumed to be k — 1, which is the best case for reducing PM-LFSR- AS shown in Table 6.1 

and 6.2, the FMS scheme is obviously a better data compactor than the M-LFSR scheme 

since the FMS scheme achieves smaller aliasing with much less hardware requirement. 
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Configuration 

Pal 
Hardware Req. 

M-LFSR 
k=16,r=l,s=15 
2 - 3 1 

575 gates 

FMS 
n=2, k=16 
2 - 3 0 

31 gates 

n=3, k=16 
2 - 4 3 . 2 

47 gates 

Table 6.1: The FMS scheme vs. the M-LFSR scheme when a LFSR is used. 

Configuration 

Pal 

Hardware Req. 

M-LFSR 
k=16,r=16,s=15 
2-256 

600 gates 

FMS 
n=23, k=16 

2-263 

367 gates 

Table 6.2: The FMS scheme vs. the M-LFSR scheme when a MISR is used. 

6.4.3 F M S vs . CMS 

For given n and k, the aliasing of the FMS scheme is generally higher than that of the 

CMS scheme. This is due to the fuzziness introduced by removing the one-to-one reference-

signature correspondence. The aliasing probability of the FMS scheme is shown to be (see 

Eqn. 6.2): 

PFMS « (m2"*)n 

= mn2~nk 

= mnPCMS, m<n, (6.38) 

where m is the number of distinct references, n is the number of signatures, and PCMS
 1S 

the aliasing probability of the CMS scheme, which is 2~nk assuming n k-bit signatures. 

From Eqn. 6.38, it is obvious that smaller m implies smaller PFMS- When m — 1, 

the fuzziness disappears, thus PFMS = PCMS- Moreover, with m = 1, the hardware 

requirement for implementing the FMS scheme becomes minimal for multiple signatures 

analysis, i.e., becomes exactly the same as that for a single signature scheme [Wu93]. 

The parameter m can be used as a measure of fuzziness. When m increases, the 
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FMS scheme becomes fuzzier, thus higher aliasing. Generally, 1 < m < n since for checking 

n signatures there are at most n references. However, it is possible to make m greater than 

n [Ivanov93], achieved by including extra references. This can be attractive to ease the 

logic minimization of the SO, thus resulting in significantly less hardware requirement for 

implementing the FMS scheme. 

6.5 Experimental Results 

To study the fault coverage performance of the FMS scheme, exact fault simulation of the 

ISCAS'85 benchmark circuits [Brglez85] were performed with output data compaction. In 

the experiments, a multiple input nonfeedback shift register (MINSR) was used as a space 

compactor to convert the multiple bit output data from a CUT into a single bit data to 

the LFSR signature analyzer [Agarwal87]. In the experiments, single stuck-at faults were 

assumed, and the test length / = 1024. In the case of the SS scheme, an 8-bit primitive 

LFSR was used as the data compactor. For the FMS scheme, 8 signatures were checked 

periodically, and each was generated by the 8-bit LFSR, i.e., k = 8 and n = 8. In terms 

of fault simulation time reduction, the periodic check point scheduling is not the best. But 

the area requirement for controlling the FMS scheme with periodic check point scheduling 

is the same as that required for a SS scheme. The silicon area corresponding to the SO is 

about the size of a 2.16-bit LFSR. Thus, the total silicon area of the FMS scheme in the 

experiments, including the SO and an 8-stage LFSR, is approxmately equivalent to that of 

a 10.16-bit LFSR, as opposed to an 8-bit LFSR for the SS scheme. 

Table 6.3 shows the exact fault coverage before signature analysis (the column re­

ferred as "NC"), and the coverage with the SS and the FMS schemes. From Table 6.3, in 

all cases, the coverage of the FMS scheme is either the same or very close to that of the 

no-compaction case, and higher than that of the SS scheme. 

Table 6.4 shows the CPU time to perform the above fault simulations. From Table 
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Circuit 
Name 
C432 
C499 
C880 
C1355 
C1908 
C2670 
C3540 
C5315 
C7552 

No. 
Faults 
562 
732 
1171 
1820 
2015 
2781 
4035 
5982 
8408 

Fault Coverage (%) 
NC 
99.244 
98.907 
95.645 
98.640 
94.652 
82.659 
93.451 
96.230 
93.012 

FMS 
99.244 
98.907 
95.645 
98.640 
94.615 
82.659 
93.451 
96.230 
93.010 

SS 
99.110 
97.951 
95.389 
98.132 
93.697 
82.057 
93.333 
96.172 
n/a 

test length = 1,024 random vectors 

Table 6.3: Fault coverage enhancements 
(average of 4 trials). 

6.4, the CPU time required to perform the fault simulations with the FMS scheme is always 

close to that of the no-compaction case, which constitutes a lower bound [Lambidonis91]. 

In the case of the SS scheme, however, the fault simulation time is always one order of 

magnitude longer. In Table 5.4, the column Time Savings shows the CPU time saved 

from using the FMS scheme rather than the SS scheme. Here, the number of test vectors 

simulated is small. If longer test length, larger circuits, and optimal scheduling of the check 

points [Lambidonis91] were considered, the fault simulation time saved from using the FMS 

scheme rather than a SS scheme would be even more significant. 

6.6 Conclusions 

In conventional multiple signature (CMS) analysis, for a CUT to be declared good, the 

signatures and the references must correspond on a one-to-one basis. That is, at each check 

point, the signature obtained must match the specific reference for that check point. This 

requirement of the one-to-one signature - reference correspondence makes the CMS scheme 

complex and expensive to implement in terms of silicon area. In this chapter, the Fuzzy 

Multiple Signature (FMS) scheme was developed whereby the aforementioned requirement 
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Circuit 
Name 
C432 
C499 
C880 

C1355 
C1908 
C2670 
C3540 
C5315 
C7552 

No. 
Faults 
562 
732 
1171 
1820 
2015 
2781 
4035 
5982 
8408 

Fault Simulation Time (sec.) 
NC 
2.25 
3.70 
14.30 
29.39 
63.66 
202.56 
268.21 
419.86 
1265.37 

FMS 
6.96 
11.32 
34.26 
64.54 
108.00 
361.37 
420.38 
841.02 
1865.72 

SS 
48.90 
72.64 
191.37 
380.36 
465.29 
1244.56 
1823.64 
4992.12 
n/a 

Time 
Savings 
85.77% 
84.42% 
82.10% 
83.03% 
76.79% 
70.91% 
76.95% 
83.15% 
n/a 

test length = 1,024 random vectors 

Table 6.4: Fault simulation time reductions 
(average of 4 trials). 

of the reference-signature correspondence is removed. The FMS scheme is very simple, thus 

much easier and less expensive to implement in a BIST environment. A model for predicting 

the FMS scheme's aliasing was developed. Compared with other data compaction schemes, 

e.g., the single signature (SS) schemes and the M-LFSR scheme, the FMS scheme requires 

less silicon area to achieve a given aliasing probability. The experimental results on fault 

coverage enhancement, fault simulation time savings, and silicon area overhead have shown 

the advantage of the FMS scheme in reducing fault simulation time in addition to reducing 

aliasing. By carefully scheduling the signatures as in [Pomeranz92], the FMS scheme can 

achieve zero aliasing for modeled faults. In this chapter, a LFSR-based data compaction 

was assumed. However, the FMS scheme can be applied to MISRs, CAs, or count-based 

data compactors. 



Chapter 7 

Single Reference Multiple Signature Analysis 

Conventionally, checking n signatures requires n references. In the previous chapter, the 

FMS (fuzzy multiple signature) scheme was developed. Unlike conventional multiple signa­

ture (CMS) analysis, the FMS scheme may check n signatures against fewer references if 

some of the n corresponding fault-free signatures happen to be identical. The reduction of 

the number of references in the FMS scheme not only helps further reduce its complexity 

and hardware requirements for implementation, but also improves its aliasing performance 

since PFMS ~ mn2~nk, with m being the number of distinct references. It is desirable that 

m = 1, i.e., that all the references be identical. In practice, however, it is very unlikely 

that all the references turn out to be identical. In this chapter, we explore the possibility 

that m — 1, and develop a single-reference multiple signature (SMS) analysis scheme that 

deliberately makes m — 1 [Wu93][Wu93b]. Techniques for implementing the SMS scheme 

are also developed in this chapter. 

7.1 Basis 

If all the references required in the conventional case are identical, in effect, only one refer­

ence is necessary for checking n signatures. For implementation, the hardware requirement 

for checking multiple identical signatures is the same as that for checking only one, and 

independent of the number of checked signatures. However, checking multiple signatures 

provides more advantages than checking only one (see Chapter 4). Having one constant 

reference signature for all check points is the basis of the SMS scheme. 

There exist different ways to implement the SMS scheme. Next, we present a SMS 

80 
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scheme implementation approach that carefully selects (or designs) the seeds to both the 

input pattern generator (IPG) and the signature analyzer (SA) such that all the signatures 

at predetermined check points be identical if the CUT is fault-free and if the IPG and the 

SA are initialized with the selected seeds prior to testing. Obviously, this implementation 

approach requires no modification of CUTs. Compared to the CMS and SS (single signature) 

schemes, the cost of using this approach to implement the SMS scheme is a small non­

recurring CPU time expenditure in the design phase. In return, the SMS scheme yields 

significant recurring silicon area savings, and increases test quality due to reduced aliasing. 

In the following, for simplicity, we assume a LFSR signature analyzer for data 

compaction. However, as will be shown later in this chapter, the SMS scheme and the 

analysis can also be applied to other types of data compactors, e.g., MISRs and CAs. 

7.2 Preliminaries 

7.2.1 Signature Analysis 

Let {R}i denote a sequence R of length /, and [A]k denote a &-stage LFSR in the initial 

state A, or seed A. Denote the signature obtained after shifting /-bits of the sequence {R}i 

into the LFSR with seed A by SA(1)- The signature analysis process can be described as: 

SA(l) = {R}i»[A]k, (7.39) 

where >> denotes the shift operation. 

Definition 7.1 [Lambidonis91b]: The contribution of a seed A to the final signature is 

called the autonomous contribution, 5^uio(/): 

S?to(l)={0},»[A]k, (7.40) 

where {0}/ is /-bit all zero sequence. 
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Definition 7.2 [Lambidonis91b]: The contribution of an input sequence {R}i to the final 

signature is called the input contribution, SQUP(1): 

Sr(0 = {Rh » [0].. (7.41) 

Lemma 7.1 1 [Lambidonis91b]: Let [A]k and [B]k denote the a fc-stage LFSR with seeds 

A and B, respectively. Let {R}i represent a /-bit sequence and let {T}\ represent 

another /-bit sequence. Then, 

{{R}i » [A]k) © ({T}, » [B)k) = ({R}, © {T},) » ([A]k © \B]k), (7.42) 

where © is bit-wise exclusive-or. 

The following lemma is a simplified version of Theorem 1 in [Lambidonis91b]. 

Lemma 7.2 : 

SA(l) = S'0
np(l)®S?to(l), (7.43) 

where © is bit-wise exclusive-or. 

Proof : 

SA(1) = {R)i » [A}k 

= ({R},®{0}i)»([A]k®[0]k) 

according to Lemma 7.1, 

= ({R}i»[0]k)®({0}l»[A]k) 

= S'0
np(l) © Sa

A
uio(l). (7.44) 

Q.E.D. 

1 Lemma 7.1 is the property 1 — General Distribution Property in [Lambidonis91b]. 
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7.2.2 Non-singular LFSRs 

LFSRs are usually classified into primitive and non-primitive LFSRs (see Chapter 2). For 

primitive LFSRs, we also introduce a new classification: singular and non-singular LFSRs. 

Definition 7.3 : A primitive LFSR of degree k is said to be non-singular if for any given /,-

and lj, where |/,- - lj\mod(2k - 1) ^ 0, S%uto(li) © S%uto(lj) is unique for each non-zero 

seed A. Otherwise, the LFSR is singular. 

For example, if an LFSR is designed to implement the state transition diagram 

shown in Fig. 7.31a, the LFSR would be singular. This is because, when /,• = 0 and 

ljmod(2k - 1) = 2, S%uto(li) © Sa/to{lj) = 010 © 101 = 111 if A = 010, and S%uto(h) © 

SaAto{h) = HO ©001 = 111 if A = 110 (see Fig. 7.31). Hence, by definition, such an LFSR 

is singular. However, if the LFSR is designed to implement the state transition diagram 

shown in Fig. 7.31b, the LFSR is non-singular. 

Figure 7.31: Example state transition diagrams. 

Although the design of non-singular LFSRs is still an open problem, checking for 

the non-singularity of a given LFSR is fairly simple. In Appendix A, an algorithm for this 
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purpose is presented. Applying the algorithm given in Appendix A, all the primitive feed­

back polynomials of degree < 20 listed in [Bardell87] have been tested. All the polynomials 

of degree < 19 have been shown to be non-singular. The polynomial of degree 20 is singular. 

As will be shown later, non-singular LFSRs are helpful to the implementation of the SMS 

scheme. 

7.3 Identical Signature Properties 

Assume a set of random vectors is applied to a fault-free CUT such that a fault-free sequence 

of length / results. Assume the checking of n k-bit signatures at the predetermined check 

points / i , /2, ..., /„. 1. 

Definition 7.3 : The sequence {R}i is said to have the Constrained Identical Signature 

property CIS^n^, or CIS for simplicity, if SA(II) = SA(h) = ••• = SA(IU) = S and 

both A and S are fixed. 

Definition 7.4 : The sequence {R}i is said to have the Identical Signature property ISrnti-), 

or IS for simplicity, if SA(II) = SA{h) — ••• — SA(IH) = S and A is fixed but S is free 

to be any of the 2k possible values. 

Definition 7.5 : The sequence {R}i is said to have the Relaxed Identical Signature prop­

erty RIS(nj;), or simply RIS, if SA(II) = SA(1-2) = ••• — SA(ITI) — S and both A and 

S are free to be any of the 2* possible values. 

Theorem 7.1 : Given a sequence and a pair of check points /,• and lj, if \li—lj\mod(2k—l) ^ 

0, and if the LFSR is non-singular, there exists a seed A such that: 

SA(li) = SA(lj). (7.45) 

'Note that the scheduling of these check points is predetermined and can be arbitrary. However, differ­
ent scheduling of these check points would affect hardware requirements for controlling multiple signature 
analysis. It has been shown in Chapter 5 that periodical check point scheduling is optimal in regards to 
control. 
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Proof : Assume the signatures obtained at check points /,• and lj with seed [0]* to be So(h) 

and So(lj), respectively. Two cases exist. One is that So(U) — SQ{IJ). The second is 

that So(h) ^ So(lj). If So(U) = So(lj), the theorem is true with A = 0. So, we only 

need to prove SA(U) = SA(IJ) when 5o(/,) ^ So(lj). 

Denote the 2k — 1 non-zero states of the LFSR by Wi, W2, •••, w2k_1. Since 

SA(li) = S0(li)®Sa
A

uto(li), 

proving SA(U) = SA(lj) is equivalent to proving the existence of a seed A such that 

So(li) © So(lj) = S^t0(li) © SA
ut°(lj). Since S0(/,-) © S0(lj) ± 0, 50(/,-) © S0(lj) e 

{wi,W2, ...,w2k_1}, and thus we only need to prove that 5^u<0(/,-) © SA
uto(lj) gen­

erates the set {ioi,tU2> •••)u'2*-i} w n e n ^ = w\, w2,..., t«2*-i) i-e-> *° prove that 

^"^(Z.) © SA
ut0(lj) is distinct for each of the 2k - 1 possible non-zero values of A. 

Since |/,- — /j|mod(2* — 1 ) ^ 0 and the LFSR is non-singular, according to Definition 

7.3, S%ut°(li) © Sa
A

ut°(lj) is distinct for each non-zero seed A. 

Q.E.D. 

Corollary 7.1 : When checking two Ar-bit signatures (n=2), for any given output sequence 

and any predetermined check points l\ and l2, if the test length between the check 

points is not a multiple of 2k - 1, i.e., |/2 - l\\mod(2k - 1) ^ 0, and if the SA LFSR 

is non-singular, then there always exists a seed for the SA LFSR such that the two 

signatures obtained at check points l\ and li are identical. 

Proof : Follows directly from Theorem 7.1. 

Q.E.D. 

In the following, we assume that the feedback polynomial for the signature analyzer 

LFSR is primitive, and that the test lengths between adjacent check points are sufficiently 
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long for the asymptotic aliasing probability 2~k to hold (see Chapter 3). If each bit of 

{R}l is assumed to be statistically independent and equally-likely to be 0 or 1, we have the 

following lemmas. 

Lemma 7.3 : The probability that a sequence {R}i possesses the CIS property is 2~nk. 

Proof: Since each sequence bit is equally-likely to be 0 or 1, similarly to the analysis for 

aliasing calculation in Chapter 3, the probability for a signature SA(U) to be equal to 

a specific value, say 5"^(/,) = [0]k, is 2~k, where 1 < i < n. Therefore, the probability 

for the n signatures to be identical and equal to a specific value, i.e., the probability 

for the sequence to possesses the CIS property, is 2~nk. 

Q.E.D. 

Lemma 7.4 : The probability that a sequence {R}i possesses the IS property is 2~( n - 1 ) i . 

Proof: From Lemma 7.3, the probability for the sequence {R}i to yield n identical specific 

signatures is 2~nk. For a £-stage LFSR, a total of 2k possible signature values exist. 

Thus, if the n identical signatures can be equal to any of the 2k values, the probability 

that the sequence yields n identical signatures is 2k x 2~nk = 2~(n-1)fc. According to 

the Definition 7.4, Lemma 7.4 is true. 

Q.E.D. 

Lemma 7.5 : For a non-singular LFSR, the probability that a sequence {R}i possesses the 

RIS property is 2 -(n-2)A ' if the test length between at least one pair of check points is 

not a multiple of (2k — 1). Otherwise, the probability is 2~(n~1)k. 

Proof : 1). First, we prove the case where the test length between one pair of check points, 

say check points /; and lj, is not a multiple of 2k — 1. In this case, according to Theorem 

7.1, there exists a seed A such that SA{U) = SA(IJ)- Assume SA(U) — SA(IJ) = S. 
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According to Lemma 7.3, once A and S are fixed, the probability for the signature 

at any of the (n — 2) remaining check points, say check point lm, where m ^ i and 

m 7̂  j , to be identical to S is 2~k, independently of the test length between check 

point lm and the others. Therefore, the probability for all n signatures to be identical 

is 1 x 2-("-2)fc = 2-(n~2)fc as long as |/,- - lj\mod(2k - 1) + 0 and the LFSR is 

non-singular. 

2). We prove the case where the test length between each pair of check points is a 

multiple of 2k — 1. In this case, 

srto(ii) = srto(h) = ... = sa
A

uto(in). 

According to Lemma 7.2, 

SA(li) = Sa/t0(li) 9 S^ih) for i = 1, 2,..., n, 

where S'0
np(U) = 50(/,-)• 

Therefore, if 50(/i) = S0(l2) = ... = S0(ln), then SA(h) - SA(l2) = ... = SA(ln). 

Otherwise, the n signatures with seed A will not be identical. As a result, whether 

the n signatures are identical becomes independent of the value of A. According to 

Lemma 7.4, the probability for all n signatures to be identical is 2~(n~1)k. 

Q.E.D. 

For our purpose, a fault-free sequence that possesses the RIS property is adequate 

since the value of the reference signatures as well as the value of the seeds are not important 

provided that the reference signatures are identical1. For practical values of n and k, 

the probability that a sequence possesses the RIS property can be very high or very low, 

depending on the values of n, k, and whether the test length between check points is a 

lrThe actual values of the reference signatures and the designed seeds do not matter since the initialization 
to any value requires the same complexity (space or time) and similarly with the reading/comparison of the 
signatures. 
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n 

2 
3 
5 
9 
17 

k 

k 
8 
4 
2 
1 

Pal 

2-2* 

2 - 2 4 

2-20 

2 - 1 8 

2-17 

RIS probability 
2 - ( n - l J * 

2~* 
2-16 

2-16 

2 - 1 6 

2 - 1 6 

9-(n-2)fc 

1 
2 - 8 

2 - 1 2 

2-14 

n/a1 

Table 7.5: Example RIS probabilities. 

multiple of 2k - 1 [Wu93b]. For example, for a non-singular LFSR, according to Corollary 

7.1 and Lemma 7.5, if n = 2 and the test length between check points is not a multiple of 

2 — 1, the probability for a sequence to possess the RIS property is always 1, regardless 

of the value of k. However, when n is large or the test length between each pair of check 

points is evenly divisible by 2k — 1, the probability for a given sequence to possess the RIS 

property can be very small [Wu93]. Examples are given in Table 7.5. In Table 7.5, the 

columns 2_("_1)A and 2~^n~2^k respectively correspond to the RIS probabilities where the 

test length between check points is and is not evenly divisible by 2* —1. The column entitled 

Pal is the corresponding aliasing probabilities for given n and k. 

When the RIS probability is small, it is unlikely that the n signatures from a given 

sequence be identical. However, as shown in [Wu93], if there exists a large sample set of 

different fault-free sequences to choose from, then the probability that at least one of the 

sample sequences has the RIS property can be high. A choice of a large number of fault-free 

sequences can arise by assuming that the actual test set can be chosen from a large number 

of random test sets generated simply by changing the seed to the I P C 

Theorem 7.2 : Given a set of L distinct sample sequences, the probability C^ i n^ that at 

least one of the sequences possesses the RIS property is: 

1 When k = 1, the test length between check points is always a multiple of 2k — 1 = 1. Therefore, the RIS 
probability of 2~<-"~'2^k is not applicable to the case where k = 1. 
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CL,n,k = 1 - (1 - P)L, (7.46) 

where p is the probability that a single sequence possesses the RIS property. 

Proof : Assume that the probability for a sequence to possess the RIS property is p. 

Given a choice of two sample sequences, the probability that at least one possesses 

the RIS property is p+(l—p)p. In general, given L fault-free sequences, the probability 

Ch,n,k that at least one of the sequences possesses the RIS property follows a geometric 

distribution, i.e., 

CL,n,k = V + (1 - P)P + (1 - pfp + - + (1 - P)L~lP 

= E(i-p)wp 

= l-(l-p)L. (7.47) 

Q.E.D. 

The probability Ci,,n,k is a measure of confidence of success in finding at least one 

sequence with the RIS property from a set of L possible sample sequences. Obviously, 

CL,n,k —> 1 as L —* oo. Thus, to find one sequence with the RIS property can be highly 

probable if L can be made sufficiently large. 

However, generating a large number of sample sequences requires significantly more 

CPU time effort than generating only one such sequence since the fault-free sequence gener­

ation is usually achieved by logic simulation in the design phase. To successfully implement 

the SMS scheme, we have to develop efficient techniques for generating the large set of 

sample sequences as well as for testing these sequences for the RIS property. Techniques 

for these tasks are presented in the next section. 
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7.4 Fast Realization of the SMS Scheme 

In this section, we present an efficient approach for realizing the SMS scheme by designing 

specific seeds for both the IPG and the SA that result in a fault-free CUT to yield identical 

signatures at predetermined check points. The design or selection of the specific IPG and 

SA seeds is achieved by generating and testing the sample sequences for the RIS property. 

7.4.1 Efficient Sample Sequences Generation 

A simple way of generating L sample sequences is to apply L different sets of random 

vectors to a CUT and to choose a vector set that generates an output sequence with the RIS 

property as the test set for the CUT. To generate L sequences, one may try L IPG LFSRs 

with different feedback polynomials. Unfortunately, this method implies simulating the 

CUT for L x / test vectors. Thus, the corresponding time complexity is O(IL) (disregarding 

the dependency of the simulation on the CUT parameters). This may become unacceptable 

for large / and L. A more efficient technique is presented next. 

First, consider the case where every input pattern to the CUT results in a single 

bit output, i.e., / patterns yields / output bits. By logic simulation, one can obtain a /-bit 

fault-free output sequence by shifting the IPG LFSR / clock cycles to generate / test vectors 

to the CUT. Denote the output sequence by 6j, 62, ..., b;. Shifting the IPG LFSR for 

one additional clock cycle to generate an extra test vector for the CUT and simulating the 

CUT for the extra test vector yields the additional output bit 6/+1. From the (/ + l)-bit 

sequence, there exist two possible sequences of / consecutive bits. One is the sequence 61, 

62, ..., b\. The other is b2, b3, ..., 6/+1. The probability for the two sequences to be identical 

is extremely small (approximately 2~l, see Appendix B for proof). Clearly, by shifting the 

IPG LFSR for a total of / + L - 1 additional clock cycles, i.e., simulating the CUT with a 

total of / + L - 1 test vectors, yields / + L - 1 output bits, 61,62, ...,6/+£_i. Such a / + L — 1 

bit sequence yields the choice of L fault-free sequences of length /. The time complexity of 
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this sequence generation technique is only 0(1 + L), which is simply a linear increase in the 

necessary time to generate a single /-bit fault-free output sequence. 

The above method for generating sample sequences can also be applied to the cases 

where a scan chain is used. With a scan chain of length m, each input vector yields m 

output bits. In this case, the IPG LFSR requires only \(l + L — l)/rri\ shifts to generate 

L fault-free sequences. Thus, the sequence generation time complexity is only 0(1-^) if an 

m-stage scan chain is used. 

The generation of the sample sequences discussed above implies that the seed of the 

IPG could be chosen such that any of the L sequences of length / could result from the 

CUT. 

7.4.2 I P G and SA Seeds Selection 

With the technique developed above, L fault-free sample sequences can be generated effi­

ciently by logic simulation. It was shown that a fault-free sequence of length l + L — 1 yields 

a choice of L sequences of length /. Each of the latter sequences is actually a subsequence 

of the (I + L — l)-bit sequence. In this section, given a (/ + L - l)-bit fault-free sequence 

(implicitly L IPG seeds to choose from), an efficient algorithm is developed that finds the 

desired seeds for the IPG and the SA by testing the /-bit subsequences for the RIS property. 

The following example illustrates the basic idea of the algorithm. 

Example : Assume that to test a CUT requires twelve pseudorandom vectors, i.e., I = 12. 

Use the 2-stage LFSR shown in Fig. 7.32 to check three signatures at the check points 

h — 4, I2 = 8, and /3 = / = 12, i.e., we check a signature after every four bits have 

been shifted into the LFSR. Assume L = 4 and the (/ -f L — 1) = (12 + 4 — 1) = 15-6// 

fault-free sequence {.ft} 15 to be: 

b1 b2 .. bu bl5 = 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0. 
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Starting with different seeds in the SA, the four possible transient SA LFSR state 

sequences when shifting in the first 12-bits of {R}is, bi 62 ••• 1̂2> are shown below: 

9 10 11 12 

1. (00) 1(10) (01) (00) (00) (10) (11) (11) (11) ( o i ^ ^ ^ c o o ) 

2. (01) 1 (00) (10) (01) (10) (01) (10) (01) (00) (00) (00) (10) (01) 

3. '(To)' 1 ̂ ^ ^ ( 1 ^ o i j ^ ^ ^ o o T ( ^ ' ( n ) ^ o " 0 m. 

4. /{n)\^^^^mm^mmgo?giHn^giJ 

Clearly, for all four different seeds, the first 12-bits of the input sequence {R}i5 do 

not yield identical signatures at the predetermined check points l\ = A, I2 = 8, 3̂ = 12. 

Thus, we need to consider another 12-bit subsequence of {i?}is. To do so, we can 

simply shift the 13th bit, 613, into the SA LFSR. Then, we obtain another four LFSR 

transient state sequences of length 12 as shown under the big over-brace: 

10 11 12 13 

1. (oo) (10) I (01) (oo) (oo) (10) (11) (11) (11) (01) ( 1 O H O ^ O ^ ( ^ ) 

2. (01) (00) I (10) (01) (10) (01) (10) (01) (00) (00) (00) (10) (01) (10) 

3. mloi) 1 m'mw^mmmwm'm'mw 
4. jnTfnTl ' ^ ^ ' ^ ^ ^ ^ ^ ^ o ^ ^ ' ( ^ ( ^ ) ' 

Examination of the transient state sequences shows that the third transient state se­

quence enters the same LFSR state after every four shifts. Thus, in testing, if we 

initialize the SA LFSR to state (01) and apply the 12-bit fault-free sequence b^ 63 ... 

bw = 1 1 0 1 0 1 1 0 0 1 1 0 to the SA (this implies that the IPG seed must be such 

that the CUT yield the sequence 62 63 ... bis), we will obtain three identical signatures 

at the predetermined check points. The value of the expected signatures is (11). Q 

For the above example, all the transient LFSR state sequences were assumed to be 

pre-calculated and stored. In general, for large k and /, storing these state sequences may 
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Figure 7.32: LFSR for the example. 

require a large memory space. Next, we present an efficient IPG and SA seeds selection al­

gorithm based on the idea illustrated by the example, but which ehminates the requirement 

of storing these transient state sequences. Assume the (/ + L — l)-bit fault-free sequence is 

{-ff}(/+i_i) = b\, b2, . . . , 6 / + L - I , where b\ is the first bit to compact. Denote the signature 

obtained at the jth check point with the ith seed by sig^, where 0 < i < 2k — 1 and 

0 < j < n, and sig^ represents the corresponding seed used in testing. The pseudocode for 

the seeds selection algorithm follows: 

RISsearch.proccss({7J}( ( + i_i) , L, n, k, / i , 1?,..., /„) 

sigoo = 0; 

/o = 0; 

for(i=l to n) do 

j = i - i ; 

initialize the SA LFSR with sigoj; 

calculate the signature sigoi by shifting the sequence bits 

bij+i, fefj+2, ...,6I-+I,- into the SA LFSR; 

endoffor 

SigCalculation.procGSs();/*using Lemma 7.2 to compute signatures with other seeds.*/ 

i = flag = 1; 

while ((i < L) && (flag)) do 

for (m = 0 to (2k - 1)) do 

if(signature sigmj, sigm2, ..., sigmn are not identical) t hen 
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for(j=0 to n) do 

initialize the SA LFSR to the value of sigmj; 

calculate a new sigmj by shifting bit hi+i- into the SA LFSR; 

endoffor 

else 

flag = 0; 

break; 

endofif 

i = i + 1; 

endoffor 

endofwhile 

if(i > L) t h e n r e t u r n "No RIS sequence found "; 

else r e t u r n i (the position where the RIS sequence starts), sigmi (the identical signature 

value), and sigmo (the SA seed required in testing); 

endofRISsearch . 

SigCalcula t ion.processQ 

initialize the SA LFSR with sigio = 1; 

for(i=l to n) do 

calculate sign by shifting the SA LFSR /, clock cycles in its autonomous mode; 

endoffor 

for(i=0 to n) do 

for(j=2 to 2k - 1) do 

calculate sig3i by shifting the SA LFSR one clock cycle in its autonomous mode; 

endoffor 

endoffor 

for(i=l to n) do 

initialize the SA LFSR with sign; 

for( j=l to 2k - 1) do 

calculate the signature sigji = sig3i © sigo,; 

endoffor 

endoffor 

endofSigCalcula t ion 
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Upon obtaining the results from the RISsearch.process, sigmo (returned from 

RISsearch.process) is the proper seed to the SA. To find the required seed for the IPG, 

one may simply set the IPG LFSR to the same initial state as that used for generating 

the sequence {R}(I+L-I) and then simulate the IPG LFSR in its autonomous mode for i 

(another returned result from RISsearch.process) clock cycles. The resulting state of the 

IPG LFSR forms the proper IPG seed, say SeedIPG. When testing the CUT, the SMS 

scheme initializes the IPG and the SA respectively with the seeds SeedIPG and sigmo (the 

initialization is conducted only once prior to testing), and then runs the IPG for / clock 

cycles to apply test vectors to the CUT. If the CUT is fault-free, all the signatures obtained 

at predetermined check points will be identical and equal to sigm\ (yet another returned 

result from RISsearch.process) . 

For many practical values of n and k, the execution of the RISsearch.process is 

very fast although its time and space complexities are high, being 0(2knL) and 0(n2k), 

respectively. For example, when / = 220, the execution of RISsearch.process takes less 

than 10 seconds on a Sun Sparc 2 workstation for various n and k shown in Table 7.5 (L is 

a function of n and k. See next section). 

7.5 Cost and Performance 

This section addresses the issue of the magnitude of L, and hence the CPU time expenses 

required to ensure a certain confidence of finding proper IPG and SA seeds, or equivalently 

the confidence of finding a RIS sequence. Due to the fact that test lengths between check 

points that are multiples of 2 — 1 when k > 1 can easily be avoided, e.g., by changing n, 

k, and/or changing check point scheduling, in this section, unless otherwise emphasized, we 

discuss only the cases where the test length between at least one pair of check points is not 

a multiple of 2k — 1, i.e., the cases where p — 2~(n~2)'\ For the case where the test length 

between each pair of check points is a multiple of 2k - 1, i.e., where the RIS probability 



Chapter 7. Single Reference Multiple Signature Analysis 96 

p = 2 -(n-1)* !
) the feasibility and aliasing performance are the same as those discussed in 

[Wu93]. 

7.5.1 L vs. Aliasing Performance 

Given n, k, and a desired confidence C of success in finding a RIS sequence, the required L 

can be obtained by solving Eqn. 7.46 with Ch,n,k = C. Example values are shown in Figs. 

7.33 and 7.34. 

1 
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0.85 
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Figure 7.33: Confidence vs. (n-2)k. 

As shown in Fig. 7.33, when (n — 2)k is small, the confidence is high. For example, 

when n = 2, and hence (n - 2)k = 0, the confidence is always 100% for non-singular SA 

LFSRs. However, when (n - 2)k increases, i.e., when the RIS probability p decreases, the 

confidence decreases rapidly and saturates at a certain value, depending on the value of L. 

However, as shown in Fig. 7.34, for fixed p and hence fixed Pa[, the confidence goes up 

very quickly with increasing L. Table 7.6 shows example saturation levels (lower bounds) 

on confidence for given L. 

For the examples shown in Table 7.5, Table 7.7 shows the required L to ensure 

\ ~̂̂ ~̂—- ' : ' 
\ : ! i 
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Figure 7.34: Confidence vs. L. 

L 
2(n-2)Jc 

2(n-2)/fc+l 

2{n-2)k+2 

2{n-2)k+3 

C(%) 
63.21 
86.47 
98.17 
99.97 

Table 7.6: L vs. lower bounds on confidence, given Pai « 2 nk. 

various confidences (C). For example, to find a sequence that yields three identical 8-bit 

signatures, thus Pai & 2 - 2 4 , L = 29 is required to ensure a confidence of 86.47%, and 

L = 210 is required for a confidence of 98.17%. For the case where n = 2, the confidence is 

always 100% for non-singular SA LFSRs. 

7.5.2 C P U Time Overhead for Implement ing the SMS Scheme 

Using the proposed method to implement the SMS scheme entails some computational costs 

(CPU time) over that required for a single signature scheme. The CPU time costs include 

two parts. One is from the generation of the sample sequences; the other is from the effort 
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n 

2 
3 
5 
9 

k 

k 
8 
4 
2 

Pal 

2-2k 
2 - 2 4 

2 - 2 0 

2 - 1 8 

RIS probability 
p = 2-(n-2)k 

1 
2 - 8 

2 - 1 2 

2 - 1 4 

Required L 
C=86.47% 
n/a 
29 

213 

2 15 

C=98.17% 
n/a 
2 i o 

2 1 4 

2 1 6 

C=100% 
1 
oo 
oo 
oo 

Table 7.7: Examples of n, k, confidence and required L. 

in selecting the IPG and the SA seeds by testing the sample sequences for the RIS property. 

The effort for generating the sample sequences is in fact the CPU time required 

for simulating the fault-free CUT to get L — 1 extra output bits. For a given CUT, the 

required CPU time for obtaining L — 1 extra output bits by logic simulation is proportional 

to ( i — 1). Similarly, the CPU time for obtaining one /-bit sequence, which corresponds to 

the CPU time costs for implementing an SS scheme, is proportional to /. Denote the CPU 

time required for implementing an SS scheme by Tss- Denote the CPU time for generating 

the L — 1 extra output bits by TG, and the time for testing the sample sequences for the 

RIS property by TRJS- Then, the CPU time overhead for implementing the SMS scheme 

over the CPU time effort for implementing an SS scheme is: 

AT = TG TRIS 

rr\ rr\ ' rr\ 

J-SS J-ss J-ss 
L - 1 TRIS (7.48) 

/ 'Tss' 

where AT represents the extra CPU time required for implementing the SMS scheme com­

pared to that for implementing an SS scheme, -j^2- is usually very small for many practical 

values of n and k (see Section 7.4.2) and independent of CUT. Hence, in the following, for 

convenience, the CPU time overhead is given in terms of ^- (percentage) and absolute 

TRIS (seconds on a Sun Sparc 2 workstation). 

Assume an output sequence length / = 220, which is not too long in practice 

[Keller90][Gelsinger89][Hagihara92], especially when a scan chain is used. Corresponding 
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n 

2 
3 
5 
9 

k 

16 
8 
4 
2 

Pal 

2 - 3 2 

2 - 2 4 

2-20 

2-18 

C = 98.17% 
L 
n/a 
2 i o 

2 1 4 

2 1 6 

TG/TSS 

n/a 
0.10% 
1.56% 
6.25% 

7fl/s (sec.) 
n/a 
< 6 
< 6 
< 7 

C = 100% 
L 
1 
CO 

oo 
oo 

TG/TSS 

0 
oo 
oo 
oo 

TRIS (sec.) 
< 4 
oo 
oo 
CO 

Table 7.8: Example CPU time overheads for the SMS scheme. 

rn 

values of jf1- and TRIS
 a r e shown in Table 7.8. In Table 7.8, TR/S'S are obtained on a 

Sun Sparc 2 workstation from the experiments reported in Section 7.6, where / = 220. For 

example, when n = 2 and k = 16, i.e., to find the proper seeds that yield two identical 

16-bit signatures, no CPU time is required for generating extra output bits (follows from 

Corollary 7.1), and the time required for selecting the IPG and the SA seeds is less than 4 

seconds; when n = 3 and k = 8, the CPU time overhead required for generating the extra 

output bits relative to the time for implementing an SS scheme is only 0.10%, while the 

CPU time spent on the IPG and SA seed selection is less than 6 seconds. Evidence reveals 

that such percentages of CPU time overheads are acceptable in practice. For example, for 

a ~50k gate CUT, the 0.10% CPU time overhead required for generating the extra output 

bits represents only 4.72 minutes on a Sun-4/370 (25MHz) according to the logic simulation 

data reported in [Hagihara92], and only 0.012 sec. on an IBM mainframe according to the 

data reported in [Keller91]. Since implementing the SMS scheme requires only a fault-free 

output sequence, simulation techniques based on functional or behavioral level circuit de­

scriptions can be used, thus making the sample sequences generation process much faster. 

For example, according to [Hagihara92], functional simulation is more than five times faster 

than gate-level logic simulation. 

The CPU time overhead can be further reduced by combining the sample sequences 

generation with the RIS sequence testing, i.e., generating a fault-free sequence and con­

currently determining whether any of its /-bit subsequences possesses the RIS property. 
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n 

2 
3 
5 
9 

k 

16 
8 
4 
2 

Pa/ 

2-32 

2 - 2 4 

2-20 

2 - 1 8 

average # of extra 
simulation cycles 
(average L -1) 
0 
2 8 - l 
21* - 1 
2 1 4 - 1 

average 
TG/TS3 

0 
0.02% 
0.39% 
1.56% 

TRJS 

(sec.) 

< 4 
< 6 
< 6 
< 7 

Table 7.9: Example average CPU time overheads of the SMS scheme. 

Once such a subsequence is found, the process can be terminated. In this case, the average 

CPU time overhead can be significantly reduced since the expected number of extra output 

bits that must be generated is much smaller than (L — 1). Since the expected value of 

L is 2^n~2> , which is the mean value of a random variable characterized by a geometric 

distribution with parameter 2~(n~2)k [Larson82], the expected number of extra output bits 

that need to be generated is 2^n~2^k - 1. Table 7.9 shows example average CPU time over­

heads. For example, for checking three identical 8-bit signatures, the average CPU time 

requirement is only 0.02% of Tss in addition to 6 sec. for TRJS-

7.5.3 A Special Case: k = 1 

A special case of the SMS scheme arises for k = 1, which yields Pai « 2~n if n 1-bit 

signatures are checked. In this case, the hardware requirement of the SMS scheme is only 

a 1-stage LFSR. Moreover, the storage of the single reference required in the general case 

can be avoided if the state of the 1-stage LFSR at each check point is directly used as a 

pass/fail signal [Wu92b]. The case where k = 1 can be considered as a minimal hardware 

requirement for BIST data compaction [Park91][Wu92b]. 

When k = 1, the test length between check points is always a multiple of 2k -

1 = 1. In this case, p = 2~^n~^k. By solving Eqn. 7.46 for L with CL^k = C and 

p = 2-("-1) / :
; we can find the required L similarly to the analysis in Section 7.5.1 for the 
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L 
2(n-l)A;+l 

2 (n - l )*+2 

2(n-l)Ar+3 

C(%) 
86.47 
98.17 
99.97 

Table 7.10: L vs. lower bounds on confidence for p = 2 (n a)*. 

cases where p = 2~(n~2>k. Example lower bounds on the confidence for given L appear in 

Table 7.10. From Table 7.10, when k = 1 and Pal « 2~n is desired, L = 2n is required 

to ensure 86% confidence, or L = 2 n + 1 for a confidence of over 98%. Theoretically, with 

a 1-stage LFSR, the SMS scheme can achieve arbitrarily small aliasing if L is sufficiently 

large. Assuming k = 1 and / = 220, achieving the typical aliasing probability of 2 - 1 6 

[Kuban84][LeBlanc84][Gelsinger86][Dervisoglu89] requires only 6.25% CPU time overhead 

for 86% confidence, or 12.5% overhead for 98% confidence. On average, the CPU time 

overhead for achieving Pai « 2 - 1 6 with k = 1 is only 3.125% in this case. 

7.6 Exper imenta l Results 

To confirm the feasibility of the SMS scheme, nearly 500 experiments on the ISCAS'85 

benchmark circuits [Brglez85] were conducted. The check points were periodically sched­

uled, thus making the hardware requirement for the control of checking multiple signatures 

as small as that for the control of any single signature scheme (see Chapter 5). In the 

experiments, the polynomials were chosen from those listed in [Bardell87]. For each given 

set of n and k, we performed three trials with each of the circuits. Table 7.11 shows the 

experimental results for / = 216 obtained under the condition that the test length between 

check points is not a multiple of 2* — 1. 

From Table 7.11, two identical 16-bit signatures, thus Pai m 2 - 3 2 , can be found 

without generating any extra output bit. To find proper IPG and SA seeds that yield three 

identical 8-bit signatures, hence Pai x 2~24, requires the generation of 27-60 = 194 extra bits 
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Circuit 
Name 

C432 
C499 
C880 

C1355 
C1908 
C2670 
C3540 
C5315 
C6288 
C7552 

average 

Max. TRIS (sec.) 

# of extra output bits 
n=9,k=2 
213.80 

213.28 

214.50 

213.28 

213.75 

214.32 

211.21 

213.57 

212.57 

214.37 

2 1 3 . 4 7 

6.08 

n=5,k=4 
213.19 

210.82 

212.88 

210.82 

212.65 

210.82 

2 H . 0 9 

210.07 

29.32 

211.84 

2 1 1 . 3 5 

3.87 

n=3,k=8 
28.30 

2&M 

2e.7i 
2 8.68 

26.82 

2 8.41 

26.72 

26.61 

28.44 

26.57 

2 7 . 6 0 

2.25 

n=2,k=J6 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.95 

Table 7.11: Experimental results for / = 216 

(Each entry is an average of 3 trials). 

on average. If nine identical 2-bit signatures are sought, then an average of 213-47 « 11,346 

extra output bits must be generated. In comparison with the theoretical average number 

of extra output bits shown in Table 7.9, the row of the entry average in Table 7.11 gives 

the average number of the extra output bits obtained in the experiments. These results are 

very close to the theoretical expectation. The last row of Table 7.11 shows the worst case 

CPU time spent on selecting the IPG and the SA seeds, i.e., the maximum TRJS, obtained 

on a Sun Sparc 2 workstation. Table 7.12 reports more results obtained under the same 

experimental conditions but for test length / = 220. 

For the case where k = 1, we conducted 30 experiments on the benchmark circuits. 

In the experiments, n = 16, thus Pai « 2~16. The experimental results appear in Table 

7.13. 

To confirm the claim that the RIS probability p = 2 - ( n - 2 ) i is only for the cases where 

the test length between check points is not a multiple of 2k — 1, we performed another 200 

experiments for the cases where n = 2 and k = 2, and where n — 2 and k = 4. Theoretically, 
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Circuit 
Name 

C432 
C499 
C880 

C1355 
C1908 
C2670 
C3540 
C5315 
C6288 
C7552 

average 

Max. TR{S (sec.) 

# of extra output bits 
n=9,k=2 
212.35 

213.02 

214.33 

213.02 

213.18 

210.73 

214.55 

2 l 3 . 9 7 

214.30 

211.30 

2 1 3 . 0 8 

6.75 

n=5,k—4 
212.23 

29.52 

2n.oi 
29.52 

210.82 

211.92 

210.73 

211.41 

212.38 

2 l l . S 7 

2 1 1 . 1 1 

5.54 

n=3,k=8 
25.04 

2™ 
2 8.17 

27.04 

29\20 

26.62 

27.19 

95.76 

27.63 

28.33 

2 7 . 2 0 

5.30 

n=2,k=16 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

3.99 

Table 7.12: Experimental results for / = 220 

(Each entry is an average of 3 trials). 

Circuit 
Name 

C432 
C499 
C880 
C1355 
C1908 
C2670 
C3540 
C5315 
C6288 
C7552 

average 

#of 
extra output bits 
213.97 

212.22 

214.12 ' 

212.22 

216.33 

214.73 

215.87 

215.74 

214.86 

216.47 

2 1 4 . 1 0 

Table 7.13: Experimental results for n = 16 and k = 1 
(Each entry is an average of 3 trials). 
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in these cases, the proper IPG and SA seeds can be found without generating any extra 

output bit if the test length between check points is not a multiple of 2k — 1; otherwise, 

extra output bits must be generated to find the seeds. Experimental results confirmed the 

theoretical claims. 

To confirm the claim that the RIS probability p = 2~(n~2)fc is true only for non-

singular LFSRs, another experiment was conducted where the primitive LFSR of degree 20 

from [Bardell87] was used. This LFSR is singular (see Section 7.2.2). In the experiment, 

n = 2 and the test length between check points is not a multiple of 2k — 1. According to 

Corollary 7.1 and Lemma 7.5, in this case, extra output bits must be generated in order 

to find proper IPG and SA seeds that yield two identical signatures. Experimental result 

again supports the claim. 

7.7 Discussions 

In Lemma 7.5, it is shown that the RIS probability is 2~(n~1)k if the test length between 

each pair of check points is a multiple of 2 — 1. Here, we first prove a lemma useful to 

reduce the complexities of the RISsearch.process() for the cases where the test length 

between each pair of check points is evenly divisible by 2k — 1. 

Lemma 7.6: Given two seeds A and B, and that test length between each pair of check 

points is evenly divisible by 2k - 1, if SA(1\) = SA^IT) — ••• = SA(ITI) = S, then 

SB(1\) = Ss(h) = ••• — SB(ITI) — S', or vice versa, where A ^ B and S ^ S'. 

Proof: To prove the lemma, we only need to prove that if SA(U) = SA(IJ)
 = S then 

SB(U) — Ss{lj) — S', or vice versa, when the test length between check points /,• and 

lj is a multiple of 2* - 1. In this case, 

STt0(h) = sa
A

uto(h), 

SB
ut°{k) = SB

ut°(l3). 
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According to Lemma 7.2, we have, 

sA(iJ) = s0(ij)esTto(h), 

and 

SB(li) = So(li)®S%«to(li), 

SB(lj) = S0(lj)®SB
ut°(lj). 

Therefore, if S0(h) ? S0(lj), then SA(U) ± SA(lj) and SB(h) ^ SB(lj). If S0(h) = 

So(lj), then SA(l{) = SA(lj) = S and SB(U) = SB(lj) = S', where S = 50(/,-) © 

Sa/t0{U) and S' = S0(li) © 5^'°(/ ,) . IfA^B, then 5U(/;) ^ 5B(/,), thus S ^ S'. 

Q.E.D. 

According to Lemma 7.6, if one seed yields identical signatures at predetermined 

check points, all the other seeds will also yield identical signatures at the same check points, 

given that the test length between check points is a multiple of 2k — 1. The values of the 

signatures obtained with different seeds are different. Lemma 7.6 has two applications. 

The first is to reduce the time complexity of the RISsearch.process() when the test 

length between check points is evenly divisible by 2k — 1. To do so, we can simply set all 

k = 1 in the RISsearch.process() , thus reducing the RISsearch.process()'s time and 

space complexities to O(nL) and O(n), respectively (a detailed algorithm of the simplified 

RISsearch.process() is given in [Wu93]). However, we must point out that when the test 

length between all pairs of check points is evenly divisible by 2k — 1, the required L for 

ensuring a given confidence of success will be 2k times greater than that for the cases where 

the test length between at least one pair of check points is not evenly divisible by 2k — 1. 

The larger L may impose significantly more CPU time for logic simulation. Thus, whenever 

possible, one should avoid making the test length between all pairs of check points evenly 

divisible by 2k - 1. This can be easily done by changing either k, n, I, or the check points. 
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The second application of Lemma 7.6 is to make the identical signatures equal to a 

specific value when the test length between check points is evenly divisible by 2k — 1. To 

do so, one may simply use any seed to find the RIS sequence, and then use the algorithm 

provided in [McAnney86] to make the signatures equal to a given value. 

7.8 Extensions 

7.8.1 Applications to M I S R 

In the above, a single input LFSR was assumed for collecting signatures. An MISR may 

be used for signature analysis. In this case, if the length of the MISR is not too long, the 

SMS scheme can be easily applied. Otherwise, one may have difficulty to apply the SMS 

scheme in a straightforward way due to the following two reasons. First, when the length 

of a MISR, i.e., k, increases, L increases exponentially if n > 2, thus imposing a significant 

CPU time requirement for sample sequences generation. Secondly, when k increases, the 

amount of CPU time spent on the IPG and SA seed selection will also increase exponentially 

because of the complexity of the RISsearch.process() . 

To make the SMS scheme practical for long MISRs, we have to make k small. To 

do so, we have at least the following three choices. First, one can use a partial-length 

MISR [Pomeranz92] as shown in Fig. 7.35. Secondly, one can simply select a partial set of 

signature bits of a MISR such that this set of bits of each signature be identical at all check 

points. 

Thirdly, when a CUT has a large number of output lines, it is much more economical 

in silicon area to use a space compactor followed by a short MISR compared to using 

a long MISR which has the same number of stages as the number of CUT output lines 

[Reddy88][WuM92][Zorian93]. In fact, the SMS scheme has been successfully implemented 

in the BIST of a VLSI Viterbi decoder with a MISR [Bonek93], where four signatures 

collected by a 5-stage MISR following a space compactor were checked periodically. 
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Figure 7.35: Output compaction using a partial-length MISR. 

7.8.2 Extensions to t h e F M S 

As shown in Section 7.5, the CPU time overhead of the SMS scheme is proportional to 

2(n-2)k s j n c e £ ] s proportional to 2^n~^k. Thus, if extremely small aliasing is required, the 

SMS scheme may impose a substantial CPU time overhead. One can combine the SMS 

scheme with the FMS scheme to achieve the required aliasing but still keep low hardware 

requirements. The basic idea of combining these schemes is to make only some of the 

reference signatures, instead of all of them, identical, thus making m < n, and then to use 

the FMS scheme for implementation. 

The techniques developed in this chapter can also be applied to the FMS scheme to 

minimize its hardware requirements. Instead of searching for a sequence that yields identical 

signatures as in the SMS scheme, one can search for a sequence which yields signatures that 

are easily logic-minimizable when implementing the FMS scheme. Determining whether 

a set of signatures is optimal for logic minimization is an NP-complete problem. Thus, 

to successfully find a sequence that yields optimal logic-minimizable signatures, heuristic 

techniques should be developed for checking the "optimality". 
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7.8.3 Applications to Weighted Random Testing 

In the development of the SMS scheme, we assumed pseudorandom testing. This gives us 

the freedom to design or select the seed to the I P C For weighted random testing, however, 

the freedom no longer exists since the IPG seed in weighted random testing is usually pre­

defined. Thus, in general, the SMS scheme is not applicable to weighted random testing. 

However, there is a special case where the SMS scheme can be applied. This is the case 

where n = 2. This is because in this case where two signatures are checked, the two 

references can always be made identical by designing the SA seed alone (see Theorem 7.1). 

7.9 Conclusions 

Conventionally, checking n signatures requires n references. In this chapter, a scheme that 

checks n signatures against a single reference has been proposed. The scheme is referred 

to as the SMS (single-reference multiple signature) scheme. Its basic idea is to make all 

the n references identical. By all being identical, in effect, only one reference is necessary 

for checking n signatures. With the SMS scheme, the hardware required for checking n 

signatures is reduced to a minimum, i.e., reduced to the same as that for checking a single 

signature. An approach for implementing the SMS scheme was developed which selects (or 

designs) the seeds to both the IPG (input pattern generator) and SA (signature analyzer) 

such that the n signatures obtained at arbitrarily predetermined check points are identical 

if the CUT is fault-free. Since the approach is based on a simple manipulation of the 

fault-free output sequence, no circuit modification is required. To efficiently implement 

the SMS scheme, two techniques were also developed; one for the efficient generation of 

sample fault-free sequences, and the other for the fast selection of required IPG and SA 

seeds. With these techniques, the CPU time overhead for implementing the SMS scheme is 

small. For example, to check two identical 16-bit signatures, thus reducing the conventional 

single signature scheme's aliasing by a factor of 216, the total CPU time overhead for 
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implementation is less than 4 seconds on a Sun Sparc 2 workstation when the test length 

/ = 220, independently of the size of the CUT. For simplicity, this chapter assumed a LFSR 

for data compaction. However, the SMS scheme can also be applied to other types of data 

compactors, e.g., MISRs and CAs. E.g., the SMS scheme has been successfully implemented 

with a MISR in the BIST of a VLSI Viterbi decoder. 



Chapter 8 

Conclusions 

8.1 Summary 

BIST usually consists two major functions known as on-chip test pattern generation and 

test response evaluation. There are two major difficulties regarding test response evaluation. 

The first is the difficulty to reduce aliasing while still maintaining reasonably small hardware 

requirements. The second difficulty is accurately assessing the impact of aliasing on the 

overall test quality of a BIST scheme. Recent research has shown that multiple intermediate 

signature analysis is a promising solution to these difficulties. In Chapters 4 and 5 of this 

dissertation, we showed the significant impact of checking multiple intermediate signatures 

on the reduction of aliasing and the computational efforts for calculating exact fault coverage 

of BIST schemes. 

Based on the investigation of an aliasing model for multiple intermediate signature 

analysis, Chapter 4 addressed fault coverage models for predicting the fault coverage of 

multiple intermediate signature analysis. More specifically, a comprehensive fault coverage 

model based on a detection probability density function of faults in a CUT was developed 

in Chpater 4. Practical considerations for implementing multiple intermediate signature 

analysis, such as possible resource sharing, test result observation and test control, were 

presented in Chapter 5. 

Chapter 6 described a, fuzzy multiple intermediate signature analysis. Unlike conven­

tional multiple intermediate signature schemes, where each checked signature must corre­

spond to a specific reference on a one-to-one basis for a CUT to be declared good, the fuzzy 

110 
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signature analysis declares a CUT as good if each checked signature maps to any elements 

of the same set of references. The removal of the strict one-to-one signature-reference corre­

spondence makes the fuzzy signature scheme very simple and easy to implement. Compared 

to some other data compaction schemes, the fuzzy signature scheme requires less silicon area 

for implementation. The aliasing performance and hardware requirements of the fuzzy sig­

nature scheme was addressed. Experiments on the benchmark circuits demonstrated the 

strong ability of the fuzzy signature scheme to achieve very small aliasing as well as to 

reduce CPU time efforts for calculating exact fault coverage. 

Conventionally, checking n signatures requires n references. In Chapter 6, however, 

it was shown that the fuzzy signature scheme can in some cases check n signatures against 

fewer references. In fact, the fuzzy signature scheme benifits from fewer references since 

this not only improves the scheme's aliasing performance but also reduces its hardware 

requirements for implementation. It is desirable for the fuzzy signature scheme to check n 

signatures against a single reference. Chapter 7 explored this possibility. As a result, a novel 

signature analysis scheme known as single-reference multiple intermediate signature analysis 

was developed. The basic idea of the single reference scheme is to make all the references 

required in the conventional cases identical. By all being identical, in effect, only one is 

necessary for checking multiple signatures. Due to the use of a single reference for multiple 

signature analysis, in implementation, the single reference scheme is the same as any single 

signature scheme. (For this reason, it is also referred to as minimal hardware multiple 

signature analysis). However, compared to single signature schemes, the single reference 

scheme has the advantages of smaller aliasing, easier exact fault coverage computation, and 

shorter average test time. 

A systematic method for implementing the single reference scheme was also pre­

sented in Chapter 7. This method is based on an observation that some fault-free sequences 

naturally yield identical signatures at fixed check points. The method proposes to care­

fully design the seeds to both the input pattern generator as well as the signature analyzer 
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such that all the signatures obtained be identical if the CUT is fault-free and if the input 

pattern generator and the signature analyzer are initialized with the designed seeds prior 

to testing. More specifically, two efficient algorithms were developed, one for generating 

sample fault-free sequences and the other for designing the seeds for both the test pattern 

generator and the signature analyzer according to the relaxed identical signature property 

of these sample sequences. Although the implementation method requires no modification 

of the CUT, it entails an extra CPU time overhead in the design phase in addition to the 

efforts for designing a conventional single signature scheme. However, as shown by theo­

retical analysis and experimental results, the extra CPU time overhead is generally small. 

For example, to check two identical 16-bit signatures, thus reducing the conventional single 

signature schemes' aliasing by a factor of 65536, the total CPU time overhead is only 4 

seconds on a Sun Sparc 2 workstation for a test length of 220, independently of the size of 

CUTs. The single reference scheme has been successfully implemented in the BIST of a 

VLSI Viterbi decoder, where four signatures collected by a 5-stage MISR following a space 

compactor were checked periodically. 

8.2 Future Work 

In the development of the aliasing model in Chapter 4, we assumed the equal likelihood of 

occurrence of all the possible error sequences. As a result, the derived aliasing is independent 

of the scheduling of check points. In practice, however, this may not be true. The occurrence 

probability of each error sequence is generally a function of many factors, such as the 

structure of the CUT, the specific test vectors, and the specific order in which the test 

vectors are applied. Although it is generally impossible to consider all these factors, as a 

suggestion to future work, the method used in Chapter 4 for the derivation of the fault 

coverage models may be extended to study the aliasing of multiple intermediate signature 

analysis based on some other more realistic error models, e.g., those described in Chapter 
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3. In [Saxena92], the authors showed a simple bound on aliasing probability for the cases 

where the signatures were periodically scheduled and the test length between each pair of 

adjacent check points is smaller than 2* — 1. It would be interesting to obtain a simple 

bound for a more general case. 

As BIST becomes a widely accepted means for VLSI post manufacturing test, deter­

mining how to make use of existing BIST hardware for concurrent testing is an interesting 

and practical topic [Saluja88][Katoozi92]. In concurrent testing, the latency between the 

occurrence of a fault and the detection of that fault is crucial to the system dependability. 

Multiple intermediate signature analysis is known to have the ability to significantly reduce 

the test time of faulty CUTs. However, no effort on the application of multiple intermediate 

signature analysis for reducing the latency in concurrent testing has been reported. Thus, 

a formal investigation of this issue would be of practical importance. 

LFSRs are usually classified into primitive and non-primitive LFSRs. In Chapter 

7, the author proposes to further classify primitive LFSRs according to their singularity. 

It was shown in Chapter 7 that non-singular LFSRs are helpful to the implementation 

of the proposed Single Reference Multiple Intermediate Signature analysis. For a given 

LFSR, an algorithm that tests for its singularity was developed in Appendix B. Applying 

the algorithm presented in Appendix B, many of the commonly-used primitive polynomials 

have been shown to be non-singular. However, the design of non-singular LFSRs is still an 

open problem. Any future work on the design of non-singular LFSRs and/or on developing 

efficient algorithm for testing LFSRs for singularity will be useful. 
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Appendix A 

Algorithm for Testing for LFSR Singularity 

Singular! ty.process(a primitive LFSR of degree k) 

crea te an empty pool; 

for(d = 1 to 2k~1) do 

i = 1; 

sigA = sigB = 1; /*sigA and sigB are two signature variables. */ 

sigB = {0}d » [sigB]*; 

p u t (sigA © sigB) in the pool; 

whi le (++i < 2*) do 

sigA = {0}i > > [sigA]*; 

sigB = {0}! > > [sigB]*; 

if((sigA © sigB) is in the pool) break; 

else p u t (sigA © sigB) in the pool; 

endofwhile 

if(i ? 2k) 

pr in t "The LFSR is Singular !"; 

exit; 

endofif 

clear the pool; 

endoffbr 

p r in t "The LFSR is Non-singular !"; 

endofSingular i ty 

The computational complexity of this algorithm is 0(22k~1). As k increases, the 

required CPU time for testing an LFSR increases exponentially. However, testing for LFSR 

singularity is a one time cost. All the commonly-used LFSR feedback polynomials, e.g., some 

of the primitive polynomials listed in [Bardell87], can be tested and classified according to 
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singularity. A list of non-singular feedback polynomials is then provided to circuit designers 

for reference. For example, applying the above algorithm, all the primitive polynomials of 

degree < 20 listed in [Bardell87] have been tested. All the polynomials of degree < 19 have 

been shown to be non-singular while the polynomial of degree 20 has been shown to be 

singular. 



Appendix B 

The probability for two sample sequences to be identical 

Assume an / + L — 1 bit sequence of the form &i62...&;_i&; &j+iZ>/+2--fy+L-i- Next, 

we show that the probability for any two subsequences of length / to be identical is 2 - ' . 

Denote a first /-bit sequence b\b2--.bi-\bi by {-Si};, a second /-bit sequence &2&3-"&/-iM/-i-i 

by {#2}/, a third /-bit sequence Z>3...Z>;6;+i/>;+2 by {#3};, etc. Obviously, {Pi}; will be 

identical to {-82}/; i-e., b\ = 62, 62 = &3> •••, b; = 6;+1, only if: 

{Pi}, = 00...0 and b,+i = 0, 

or {-Si}/ = 11...1 and 6;+J — 1. 

Since 

Pr[{B1}, = 00...0) = 2-', 

Pr[{5 1 } / = 11...1] = 2- ' , 

Pr[6/+1 = 0] = 2- 1 , 

Pr[6 /+1 = 1] = 2 ~ \ 

Pr[{i?i}; = {JS2},] = 2- '2 - 1 + 2 - '2 - 1 

Consider the sequences {-Si}; and {#3}/. The two sequences will be identical, i.e., b\ = 63, 

b2 - 64, •••, bt = />,+2, only if: 

{Pi}; = 00...00 and 6/+16;+2 = 00, 

or {Pi}/ = 11...11 and 6/+16/+2 = 11, 
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or {.Bi}/= 01...01 and bt+1bi+2 = 01, 

or {5!} , = 10. ..10 and bi+1b,+2 = 10. 

The probability for {I?!}/ to be any of the above specific sequence is 2~l, and the probability 

for 6/+i&/+2 to be any of the above value is 2~2. Thus, 

Pr[{B1}, = {B3}l] = 222-,2-2 

= 2~l 

In general, consider the two sequences {B\}i and {-#,}/, 

Pr[{B1}l = {Bi}l] = 2i2~l2-i 

= 2~l / + 1 < * < / + £ - 1 . 

Similarly, we can show that Pr[{i?,'}/ = {Bj}{\ = 2 - ' , where i ^ j , i < (L — 1) and 

j < (L — 1). Therefore, the probability for any two sample sequences to be identical is 2~l. 


