
NoCSim: A Versatile Network on Chip Simulator

By

Michael Jones

B.ASc Queen's University, Kingston 2002

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

In

The Faculty of Graduate Studies

Electrical and Computer Engineering

The University of British Columbia

April 2005

© Michael Jones, 2005

NoCSim: A Versatile Network on Chip Simulator

A B S T R A C T

The new network on chip paradigm that has been proposed involves radical changes to

SoC design methodology. In this paradigm large numbers of heterogeneous IP blocks

will by integrated together using a standard template. Each IP block is capable of

sending and receiving data packets through an interconnect. The non-scalability of buses

as on-chip interconnects forces us to select a more scalable alternative for

communication.

Many different network-centric interconnects have been proposed for the large scale SoC

domain such as k-ary n-cubes, butterfly fat-trees, k-ary n-trees, and octagons. With this

network-on-chip (NoC) paradigm many new design challenges arise such as physical

switch design, and network topology selection. Without any other means of predicting

system performance, a network simulation tool is required to evaluate and compare

networks.

Several network simulation tools exist, but fail to contain all functionality desired for

NoC simulation (e.g. wormhole switching support). To fill this void we have developed

NoCSim, an iterative flit-level network on-chip simulator capable of simulating networks

under a wide variety of parameters and topologies. The tool was developed, tested, and

verified against an established network simulator.

ii

T A B L E OF CONTENTS

ABSTRACT ii
TABLE OF CONTENTS iii
TABLE OF FIGURES v
LIST OF TABLES vii
ACKNOWLEDGEMENTS viii

1.0 Introduction 1
2.0 Background and Related Work 6

2.1 Background Information 6
2.2 Related Work 11

2.2.1 FlexSim 11
2.2.2 IRFlexsim0.5 13
2.23 NS version 2.0 14
2.2.4 OPNET 15
2.2.5 Stuttgart Neural Network Simulator 16
2.2.6 The cnet Network Simulator (v2.0.9) 17
2.2.7 QualNet Version 3.8 17
2.2.8 REAL 5.0 Network Simulator 18
2.2.9 MaRS Maryland Routing Simulator 18
2.2.10 Boppana, Chalasani, and Siegel: Wormhole Network Simulator 19
2.2.11 Simured Multicomputer Network Simulator 19

3.0 NoCSim 20
3.1 Network Topologies 21
3.1.1 Shared-Medium Networks 22

3.1.1.1 Bus 23
3.1.2 Direct Networks 24

3.1.2.1 K-ary N-cubes 25
3.1.2.2 Octagon 29

3.1.3 Indirect Networks 31
3.1.3.1 K-ary n-trees 31
3.1.3.2 Butterfly Fat-Tree 34

3.2 Switching 35
3.3 Virtual Channels 37
3.4 Routing Options 37

3.4.1 K-ary N-cube Routing 37
3.4.2 Octagon Routing 39
3.4.3 K-ary N-tree Routing 40
3.4.4 Butterfly Fat Tree Routing 41

3.5 Deadlock, Livelock, and Starvation 41
3.6 Switch Model 47
3.7 Collision Handling 49

3.7.1 Port Ordered Collision Handling 50
3.7.2 Round Robin Collision Handling 50
3.7.3 Oldest Goes First Collision Handling 50

iii

3.7.4 Priority Based Collision Handling 51
3.8 Traffic Generation 51
3.9 Source Queue Length 55
3.10 Simulation Duration 56
3.11 Periodic Statistic Updates 56
3.12 Other Settings 57

4.0 Simulator Engine 60
4.1 The Simulation Cycle 60
4.2 Time Complexity Analysis 66
4.3 Limitations 69

5.0 Simulation Results 70
5.1 Throughput 70
5.2 Transport Latency 71
5.3 Energy Consumption 72
5.4 Validation 73
5.5 Sample Results 75
5.5.1 Throughput vs. Load 76
5.5.2 Throughput vs. Virtual Channels 78
5.5.3 Localization vs. Throughput 81
5.5.4 Latency vs. Load 85
5.5.5 Energy vs. Load 87
5.5.6 Latency Histograms 89

6.0 Conclusions and Future Work 93
6.1 Conclusions 93
6.2 Future Work 95

Appendix A: The NoCSim Source Code in C++ 97
Appendix B: NoCSim Data Structures 98

B.1 Ports Data Structure 98
B.2 Msgs Data Structure 101
B.3 IPs Data Structure 104
B.4 Headers Data Structure 106
B.5 Flit Transfer Arrays 106

References: 109

iv

T A B L E OF FIGURES

Figure 1: Example switch using two virtual channels 11
Figure 2: NoCSim Options Menu with Default Settings 21
Figure 3: Simple Bus Structure 24
Figure 4: A 8-ary 2-cube without wraparound links, also called a mesh topology 26
Figure 5: A 8-ary 2-cube with wraparound links, also called a torus topology 27
Figure 6: A 3-ary 3-cube 27
Figure 7: A conventional 8 IP, 8-ary 1-cube with wraparound link, also called a ring, or

torus 28
Figure 8: A 'folded' torus of 8 IPs. It is still an 8-ary 1-cube with wraparound link. Each

node keeps the same neighbouring nodes, but the node order is changed to remove
the long wraparound link 28

Figure 9: An 8 node octagon 29
Figure 10: A 2-dimensional 64 IP octagon topology 30
Figure 11: A 16 IP 4-ary 2-tree 33
Figure 12: A 64 IP 4-ary 3-tree 33
Figure 13: A 2 level, 16 IP Butterfly Fat Tree 35
Figure 14: A 3 level, 64 IP Butterfly Fat Tree 35
Figure 15: Dimension Ordered Routing in a 64 IP mesh 38
Figure 16: Shortest Path Routing in octagon 40
Figure 17: A possible path for a source/destination pair using turnaround routing in a 16

XP fat-tree topology 41
Figure 18: Deadlock in a 4 node ring 42
Figure 19: A 4 node unidirectional ring 44
Figure 20: Corresponding dependency graph 45
Figure 21: A 4 node ring with virtual channels 46
Figure 22: Corresponding dependency graph 46
Figure 23: Example Generalized Switch Block Diagram 48
Figure 24: A 64 IP 8-ary 2-cube with wraparound links. The highlighted IP's local group

of 4 is circled 53
Figure 25: A 64 IP 4-ary 3-Tree. The highlighted IP's local group of 4 is circled 53
Figure 26: A 64 IP 3 level BFT. The highlighted IP's local group of 4 is circled 54
Figure 27: A 2-dimensional 64 IP octagon. The highlighted IP's local group of 8 is

circled 54
Figure 28: Example NoCSim output screen 57
Figure 29: NoCSim Cycle Flowchart 61
Figure 30: Flit marked HA is consumed by IP 1 62
Figure 31: Flit TB moves from the switch output port, to IP 2's input port 63
Figure 32: Flit DA moves through the switch by following the path established by

message A's header 63
Figure 33: Header flit HC is routed to the switch's IP 0 output port. No collision is

detected, so the flit is advanced 64
Figure 34: IP 1 injects DC to its output port. A new message D is injected from IP 2... 65
Figure 35: 64 IP mesh FlexSiml.2 and NoCSim 74

Figure 36: 64 IP BFT throughput vs. load 76
Figure 37: 64 IP Fat-Tree throughput vs. Load 77
Figure 38: 64 IP BFT Throughput vs. Virtual Channels 79
Figure 39: 64 IP Fat-tree Throughput vs. Virtual Channels 80
Figure 40: 64 JP BFT Throughput vs. Localization 82
Figure 41: 64 IP Fat-tree Throughput vs. Localization 83
Figure 42: 64 IP BFT Latency vs. Load 85
Figure 43: 64 IP Fat-tree Latency vs. Load 86
Figure 44: 256 IP BFT Energy vs. Load 88
Figure 45: 256 IP Fat-tree Energy vs. Load 88
Figure 46: Port Ordered Collision Handling Latency Histogram 90
Figure 47: Oldest Goes First Collision Handling Latency Histogram 91

vi

LIST OF T A B L E S

Table 1: Simple shortest path octagon routing 39
Table 2: Time Analysis Parameters 68
Table 3: Validation Parameters 73
Table 4: Default Parameter Values 75
Table 5: Parameters for Figures 36-37 76
Table 6: Parameters for Figures 37-38 7 78
Table 7: Parameters for Figures 39-40 81
Table 8: Parameters for Figures 41-42 85
Table 9: Parameters for Figures 43-44 87
Table 10: Parameters for Figures 45-46 89
Table 11: Ports Data Structure 99
Table 12: Token Representations 100
Table 13: msgs Data Structure 102
Table 14: IPs Data Structure 104
Table 15: Headers Data Structure 106
Table 16: Flit Transfer Arrays 107

vii

ACKNOWLEDGEMENTS

First of all, Fd like to thank my academic advisor, Dr. Andre Ivanov for his advice,

motivation, and guidance throughput my time here at UBC. There were many times

where the direction of my work was in question and it was then that he helped me the

most.

I'd also like to thank Dr. Res Saleh for his feedback and support on technical matters as

well.

I need to send a huge thank you to fellow members of Dr. Ivanov's research group,

Partha Pande, and Cristian Grecu. Whenever I needed help they were there and willing

to drop whatever they were doing to help me. I can't say enough about the appreciation I

have for them, and without them this work would never have been done.

I'd also like to thank USC PhD student and member of the 5MA/?TInterconnects group,

Wai Hong Ho, for his continued support on technical issues.

viii

1.0 Introduction

The years to come will bring revolutionary changes to System on Chip (SoC) design

methodology [28]. Complex SoCs consisting of billions of transistors fabricated in

technologies characterized by 65 nm feature sizes and smaller will soon be a reality.

At this physical size the number of semiconductor intellectual property (SIP) blocks

could be in the hundreds. Each of these blocks is capable of performing its own unique

function and is free to operate at its own clock frequency. However, in such a large

system, integration of these heterogeneous blocks gives rise to new challenges. These

problems include non-scalable wire delays, failure to achieve global synchronization,

signal integrity issues and difficulties with non-scalable bus-based interconnects. It has

since been established that the key to success for these large scale SoCs is the

interconnection system [4].

The most frequently used on-chip interconnection architecture thus far is the shared

medium bus where all communicating devices share the same transmission medium.

While this topology has advantages for small networks, as the bus line increases in length

to accommodate additional IPs the performance drastically declines. Intrinsic parasitic

resistance and capacitance from the line and added IPs increase to extremely high levels

causing propagation delay to be unacceptably high. A bottleneck also occurs as the large

number of IPs must wait for their turn to use the only transmission medium [31].

1

It is for these reasons that several research groups have turned to the direction of a

network-centric approach to integrate IPs in large scale SoCs [2,4,14,20]. In this

approach the IPs are decoupled from the communication fabric removing the need for

global synchronization. Independent IPs can then run on their own local clock frequency

allowing IP specific clock trees to replace a system global tree.

Thus far, the suggested interconnects for large scale SoCs closely resemble interconnect

architectures of high-performance parallel computing systems. The possible interconnect

topologies come in many varieties, such as mesh or tree. There are also many

configurable physical interconnect parameters such as switch buffer depth and size.

Routing, collision handling, and deadlock are also issues that like the physical

parameters, can greatly impact the overall interconnection system's performance [21].

As large scale SoCs are pushed into development, hardware designers will need to face

the challenge of designing a complex interconnects. With so many interconnect options

and configurable parameter permutations available, designers require a means of

educating themselves of the impact the different interconnects have on overall system

metrics, performance, power consumption, and die area. The ability to weight different

networks against others on a unified platform is vital as only then will designers be able

to make informed decisions regarding NoC design [21].

2

The above problem could be solved through one of a number of solutions. One is to

create mathematical analytical models possible of describe all network options and

retrieving performance measurements [17]. If it were possible to create completely

accurate models of every interconnect topology and parameter configuration this would

be the ideal solution. Once established, models could be used with very little time or

effort to predict accurate system performance. Unfortunately mathematical models for

large scale complex topologies have not been successfully developed when wormhole

switching is the switching technique. Wormhole switching is the obvious choice for on

chip network switching since it allows switches to have buffer sizes that are fractions of

the size of packet switched buffers [31]. Thus, the added complications that wormhole

switching bring to the mathematical analysis problem make this solution unrealistic, and

unobtainable.

Another solution would be to gather the required performance statistics by measuring

fabricated large scale SoCs. This of course cannot be done since no SoC with the scale

discussed above has been developed. Even i f one were to be fabricated, that could

provide performance measurements for only one of many possible interconnect

configurations. Therefore, educating large scale SoC designers through hardware testing

is not an option.

The only remaining realistic solution is to emulate the behaviour of the on chip

interconnect to produce performance statistics using a network simulator. With standard

network performance defining statistics such as average message latency, and throughput,

3

designers can clearly weight interconnects against each other and make informed

decisions [22]. These statistics would be as accurate as the models used in the simulator

and the emulated traffic pattern used. A simulator tool would also be advantageous as it

could allow designers to evaluate a large number of parameter permutations in their aim

to design the optimal interconnect for a given NoC.

A simulation tool should be able to evaluate different NoCs in terms of different

parameters and conditions. Desirable features for an NoC simulator include:

The ability to simulate different topologies structures and sizes.

The ability to simulate under different traffic patterns and loads.

The ability to vary switch parameters such as buffer depth, and number of virtual

channels.

The ability to implement different routing and collision handling schemes.

The ability to implement wormhole switching

Several network simulators such as OPNET [36], Flexsiml.2 [27], and NS version 2.0

[25] have been developed both in academia and industry. While these tools are

functional in their own domain, none provide all the required features for evaluating on-

chip networks in a convenient and unified platform.

Without a simulator tool containing this compete feature set, the problem of uniformed

interconnect design remains unsolved. It is for that reason that we have developed a flit-

level network simulator called NoCSim to fill the void. NoCSim has all the above stated

4

features which are described in detail in Chapter 3.0. The development of NoCSim is the

main contribution, and topic of this thesis.

The main goal of the thesis is to educate about the need for the simulator in the NoC

domain, and then to describe the simulator's feature scope, describe its functionality and

to then validate it where possible with results.

The thesis is organized in chapters with this general introduction to the problem and

possible solutions being the first. Chapter two describes some of the background

information and related work. Chapter three describes the feature set of NoCSim, and

how those features can be used. The fourth chapter details the functional behaviour of

NoCSim and discusses simulator performance and limitations. In chapter five possible

simulator outputs will be discussed. Results validation will be done by comparing

NoCSim results to results of Flexsiml . 2 . Finally in chapter six conclusions will be drawn

and future work will be touched upon. The appendices contain the NoCSim source code

and some documentation regarding how the code is organized.

5

\

2.0 B a c k g r o u n d and Rela ted W o r k

2.1 Background Information

One of the most major problems that arise from the technology advancement is the non-

scalability of global wire delays. Global wires carry signals across a chip, but these wires

do not scale in length with the ITRS roadmap for technology scaling. While gate delays

scale down with technology, global wire delays typically increase or remain constant by

inserting repeaters. However, repeaters also have their inherent problems such as their

need for the use of an even number of inverters, he many via cuts, and, above all, the

additional silicon area and power consumed. It is estimated that non-repeated wires with

practical constraints result in delays of about 120-130 clock cycles across the chip in the

50 nm technology node [40]. In ultra deep-sub micron processes, 80% or more of the

delay of critical paths will be due to interconnect.

Another important problem associated with global wires is that such wires are typically

implemented in top-level metal layers, with routing performed automatically in later

stages of the design cycle. These wires end up having parametric capacitance and

inductance that is difficult to predict before hand.

The goal of global synchronization of all IPs is therefore left unrealized due to

impossibility in sending signals from one end of the chip to another within a single clock

cycle. Instead of aiming for that unobtainable goal, an attractive option is to allow self-

6

synchronous IPs to communicate with one another through a network-centric architecture

[40].

Existing on-chip interconnect architectures will give rise to other problems with scaling.

The most commonly used on-chip interconnect architecture is the shared medium

arbitrated bus. In such an interconnect, all communicating devices share the same

transmission medium, usually a group of wires. The achievable operating frequency of

the bus depends on the propagation delay in the interconnection wires. This propagation

delay depends on the number of IP cores connected to the wires. Each core attached to

the shared bus adds a parasitic capacitance, thus degrading performance with system

growth [39]. For SoCs consisting of hundreds of IP blocks, this bus-based interconnect

architectures will lead to propagation delays that exceed one clock cycle, therefore

making it impossible for IPs to reliably communicate with each other.

To overcome these stated problems, it has been proposed the use of a network-centric

approach to integrate IPs in complex SoCs [40]. Research groups have proposed

interconnect solutions that use mesh, torus, fat-tree, and octagon network topologies

[2,4,14,20,40]. In these models, IPs are connected to closely neighboured switches which

are connected to neighbouring switches. Global signals which would span significant

portions of a die in a more traditional bus-based architecture, now only have to span the

distance separating switches. In this scenario, global wires will only consist of top level

interconnects between switches. The specifics about such interconnect can be known at

7

early stages of the design process, enabling a better prediction of the electrical parameters

of the interconnect, and overall system performance [40].

Several on-chip network proposals for SoC integration can be found in literature. One is

Sortie's Silicon Backplane is a bus-bases architecture in which the IP blocks are

connected to a shared bus through specialized interfaces called agents [49]. Each core

communicates with an agent using the Open Core Protocol (OCP) [10]. Agents

communicate with each other using TDMA (Time Division-Multiplexed Access) bus

access schemes effectively decoupling the IP cores from the communication network.

The basic interconnect architecture is still bus based and will hence suffer from

performance degradation trends common for buses [40].

MIPS technologies has introduced an on-chip switch integrating IP blocks in a SoC[50].

The switch called SoC-it is intended to provide a high-performance link between a MIPS

processor and multiple third party IP cores.

Kumar [28] and Dally [30] have proposed mesh-based interconnect architectures. These

architectures consist of an m x n mesh of switches interconnecting IPs placed one at each

switches. Each switch is thereby connected to four neighbouring switches and one IP

block. The mesh topology is described in detail in Chapter 3.

8

In [2,3,4,39,40] the SoC group at U B C has described and interconnect architecture for a

networked SoC, as well as the associated design of required switches, addressing

mechanisms, and dealing with inter switch wire delay problems.

In SoC environment where die area is an issue, switches need to consume as little area as

possible. In wormhole switching the packets are divided into fixed length flow control

units (flits) and the input and output buffers need only to be able to store a few flits only.

This feature ensures the buffer space requirement in the switches will be small relative to

packet switching [31].

The performance of large scale SoCs will depend on the throughput of the network which

depends on the flow control mechanism [31]. Flow control determines the allocation of

channel and buffer resources to packets as it traverses its routed path. In switch based

interconnect architectures, buffers are associated with physical channels and messages

are buffered at the input and output of each physical channel and are commonly operated

as FIFO (First-In, First-Out) queues. Therefore once a message occupies a buffer for a

particular channel, no other message can access the physical channel, even i f the message

is blocked [9].

It is possible that the channel remains idle, while there are packets in the network waiting

for it. This problem is a unique problem associated with an interconnection network

using wormhole switching technique and impacts the SoCs overall performance

substantially [9].

9

To solve this throughput degradation problem it has been propose to use the concept of

virtual channels in the SoC environment [9,40].

The concept of virtual channels was introduced by Dally [9] and serves to decouple

buffer resources from link transmission resources. This decoupling allows unblocked

messages to pass blocked messages using transmission resources that would have

otherwise been left idle. It has been shown that this increased utilization opportunity can

lead to substantially higher throughput. The exact amount of performance increase

depends on topology and many other network parameters.

The decoupling of buffer and link resources involves adding extra buffers on the input

and output end of a link (see Figure 1). Flits stored in an output buffer do not own the

link as well; rather they must compete with other flits being stored in the other output

buffer of this link. This competition is done in the form of round robin so that each

virtual channel receives an equal share of the link bandwidth. Once a flit is granted

access to the link, it can traverse and must be stored in an available buffer at the input

end. If an input buffer is not available, the flit would not have been granted use of the

link.

10

INPUT PORTS

N U M B E R OF
VIRTUAL

C H A N N E L S = 2

SWITCH
C R O S S B A R

OUTPUT PORTS

B U F F E R
DEPTH - A

Figure 1: Example switch using two virtual channels

No message can occupy more than one virtual channel at a port's input or output port at a

given time. Once a free virtual channel is populated by a header flit, the virtual channel

is reserved for the use of only that message until the reservation is cleared by that

message's tail flit.

2.2 Related Work

Other network simulation tools have been developed, both commercially and

academically. As described below, their feature capabilities fall short of what is required

for NoC simulation and analysis.

2.2.1 FlexSim

FlexSiml.2 is a simulator for flit-level simulation k-ary n-cube networks developed by

the SMART Interconnects group at University of Southern California (USC) [27]. The

11

tool was developed with the purpose of studying the performance impact of various

routing algorithms.

FlexSim has the ability to vary a number of network parameters such as virtual channels,

traffic pattern, load, switch delays, message lengths, and buffer depths. A deadlock

detection module is included that builds a dependency graph and located cycles. It also

has the functionality to characterize the deadlocks in terms of frequency and size.

Various routing adaptive routing algorithms are available as well as standard dimension

ordered routing.

The tool collects statistics throughout on latency and throughput and produces standard

outputs (throughput, average message latency).

The main restriction of FlexSim is its inability to simulate networks other than the mesh

or torus. Another limitation is the size of each dimension along the cube is restricted to

be a power of two, preventing irregular sizes such as a 50 x 50 network. While FlexSim

can give users a good idea of the performance of adaptive routing algorithms in these two

topologies, there are many more topologies for NoC designers to consider. This

drawback is the main reason FlexSim by itself is not enough to give designers the

information they require to make a completely informed decision about on-chip network

interconnection.

1 2

2.2.2 IRFIexsim0.5

IRFlexSim0.5 is another flit-level simulator developed by the SM^ifT Interconnects

Groups at USC [26]. The tool is based on FlexSiml.2 and shares most of its

functionality. The main purpose of IRFlexSim0.5 is to study the performance of various

routing algorithms over networks with arbitrary topologies.

The parameters that could be varied with FlexSim (virtual channels, traffic pattern,

delays, etc.) are still there. Static and adaptive routing algorithms can be chosen and

routing tables can be input through external files. Deadlock detection is also present in

this version.

The ability to create a regular k-ary n-cube topology is lost in this version, as are the

topology specific routing algorithms. In its place, IRFlexSim0.5 has the ability to create

irregular topologies arbitrarily when given a specified number of switches and links.

Other guidelines like the minimum and maximum degree of each switch and whether or

not multiple links are allowed between links can also be set.

Topologies can also be taken from a user created input file. The input file contains the

number of nodes and links in the network followed by a list of links in the form

<node>-<node>. This manual process is limited to use only bi-directional links, but

with enough manual effort, any topology can be input into the simulator. The major

drawback of this functionality is that no matter what topology is manually input, the

network is still treated as an arbitrary graph of nodes. This means that if a

13

multidimensional octagon was manually input, it would not be routed as one, but rather

as an arbitrary group of nodes.

Another limitation of the topology creation is that the process is limited to direct

networks. Intermediate switches in topologies such as trees cannot be created as each

node in the network contains a traffic source and sink.

2.2.3 NS version 2.0

NS version 2.0 is an object-oriented discrete-event simulator for packet switched local

and wide area networks [25]. The Network Research Group at the Lawrence Berkeley

National Laboratory first developed NS version 1.0. Version 2 is now part of the Virtual

Inter Network Testbed (VINT) project at USC.

NS version 2.0 is suitable for small scale simulations of queuing algorithms, congestion

control protocols, and multicast analysis. It has the capabilities to implement network

protocols such as TCP and UDP, produce application based traffic source behaviour, and

use various queue management mechanisms and routing algorithms. It provides standard

outputs that the USC tools also provided such as throughput, and latency.

NS version 2.0 does not inherently support wormhole switching however. Although

some insight to NoC behaviour could be taken from using this tool's packet switching

functionality, it is not sufficient to simulate wormhole networks under packet switching

14

conditions. Many added complexities and dependencies arise when wormhole switching

is introduced, and to get accurate simulated results [32][33], a tool with wormhole

switching capabilities is required. NS version 2.0 would require a significant amount of

modification to support wormhole switching and so falls short of fulfilling all

requirements for a NoC simulator.

2.2.4 OPNET

OPNET (Optimized Network Simulation Tool) is a very powerful piece of commercially

developed simulation software [36]. It provides a development environment for

simulation and analysis of communication networks. The tool has capabilities for

creating topologies of static or dynamic nodes to include satellites and wireless devices.

Nodes are connected together by either packet streams of statistic wires to transfer

packets or numerical signals. Logic control and behaviour are modeled using process

models which are written in a language called Proto-C.

OPNET Modeler is an environment for network modelling and simulation. It provides

the ability to create hierarchies of network objects such as nodes and links. This feature

makes the engine scalable to large networks. Fully parallel discrete event simulation is

possible. Graphical environments model the simulated networks if specified by the user.

Standard output statistics are available, as are more specialized measurements.

15

Although OPNET is a very powerful and encompassing tool, its focus is on

communication networks at a higher level than on-chip. Wormhole switched simulations

may be possible after some degree of customization. Comparing network topologies

would involve creating each network from scratch as no automatic network creation is

provided. These drawbacks cause developers to be well versed in OPNET's modelling

language in order to evaluate newly proposed topologies.

A tool specialized for N o C simulation would be more beneficial for designers since the

ability to quickly and easily compare topologies of different regular types and sizes is

absent with OPNET.

2.2.5 Stuttgart Neural Network Simulator

SNNS (Stuttgart Neural Network Simulator) is a software simulator for neural networks

developed at The Institute for Parallel and Distributed High Performance Systems

(IPVR) at the University of Stuttgart [41]. The goal of the SNNS project is to create an

efficient and flexible simulation environment for research on and application of neural

nets.

Since network on-chip interconnects borrow ideals from large scale parallel processing

and neural networks are closely linked to parallel processing it is possible that a neural

network simulator can shed some light on a network on chip interconnect performance.

Neural networks do have the fundamental difference that wormhole switching is not

16

supported. It is for that reason that neural network simulators cannot be used for our

purpose.

2.2.6 The cnet Network Simulator (v2.0.9)

The cnet Network Simulator (v2.0.9) was developed at The University of Western

Australia [42]. cnet enables users to vary data-link later, network later, routing and

transport layer networking protocols in networks consisting of point-to-point links and

IEEE 802.3 Ethernet segments. This simulator is used mostly as an educational tool,

rather than a design aid. As its focus is centered on protocol use at higher than physical

layers of the network model, it fails to provide the requirements needed for an NoC

simulator.

2.2.7 QualNet Version 3.8

QualNet is a software tool used to design and test communication networks, including ad

hoc wireless networks as well as other wireless and wired networks [43]. It supports real

time simulation of a large number of nodes (10-10000). QualNet also has a feature that

enables users to view 3D graphical models of their networks. The tool is widely used in

industry and academia. While many different protocols and routing schemes are

available at many layers of the network model, the simulator fails to support wormhole

switching at the physical layer. Since the use wormhole switching surfaces many unique

communication problems, a tool that does not allow one to investigate wormhole

switching performance is less than satisfactory.

17

2.2.8 REAL 5.0 Network Simulator

REAL is a network simulator originally intended for studying the dynamic behaviour of

flow and congestion control schemes in packet-switched data networks [44]. The

simulator takes as input a description of network topology, protocols, workload, and

control parameters. It produces as output statistics such as the number of packets sent by

each source of data, the queuing delay at each queuing point, and the number of dropped

and retransmitted packets. Unfortunately, REAL 5.0 does not support wormhole

switching or physical switch parameters and so cannot be considered as a NoC design

tool.

2.2.9 MaRS Maryland Routing Simulator

MaRS (Maryland Routing Simulator) is a discrete event simulation test bed for evaluating

routing systems [45]. The physical network is somewhat limiting and it consists of link

components and node components. A node component models the "physical" aspects of a

store-and-forward entity and is characterized by parameters such as buffer space,

processing speed, packet queuing discipline, and failure and repair distributions. A link

component models a transmission channel between two nodes. A link component

connecting node A and node B represents two one-way channels. Each one-way channel

is modeled by a queue of packets. A link component is characterized by parameters such

as bandwidth, propagation delay, and failure and repair distributions. By connecting link

18

components and node components, the user can specify a network of arbitrary topology.

However communication is limited to packet switching and virtual channels are not

supported.

2.2.10 Boppana, Chalasani, and Siegel: Wormhole Network Simulator

R.V. Boppana, S. Chalasani, and J. Siegel developed a network simulator which supports

wormhole switching. The code is provided as is with no technical support [46]. The

simulator allows for the selection of physical network parameters such as virtual

channels, flit size and buffers per lane. Routing and traffic load can also be configured.

The main limitation of this software is its failure to support topologies other than mesh

and torus. This fact would prohibit designers from fully investigating all options and as a

result this software falls short of the requirements.

2.2.11 Simured Multicomputer Network Simulator

Simured is a multi-computer network simulator that was developed at the University of

Valencia [47]. This simulator supports only k-ary n-cube tori and meshes. Flow control

is limited to wormhole switching. It has several routing functions: deterministic, adaptive,

with dead-locks support. Simured also allows the user modify the number of virtual

channels of the network. Notably, Simured has been referenced in the text

"Interconnection Networks" of Jose Duato [31]. However, due to topology restrictions,

this simulator does not meet the requirements.

19

3.0 NoCSim

NoCSim is a flit-level network-on-chip simulator developed in C++. The main purpose

of the tool is to provide a common platform to study the performances of various network

topologies. The tool allows for the simulation of wormhole switched direct and indirect

networks of several NoC proposed topologies. A l l parameters that characterize a

network have default values, but can also be user-defined.

The simulator was developed using Microsoft Visual Studio, and coded in C++. C+ +

was chosen because the popularity of the language makes expanding or changing the

program easier for future developers. The code is modular so that new topologies and

routing or collision handling algorithms can be added without complications.

This chapter details the features and options available in NoCSim. A l l options are chosen

in the main menu shown in Figure 2. Topology characterization is discussed first below,

followed by switching and routing concepts. Descriptions of the parameters and options

available with NoCSim follow. Finally, output options and statistics are discussed.

Chapter 4 describes the simulation engine and Chapter 5 goes into more detail about

output, illustrating results obtained from running simulations.

20

fCURRENT NETWORK/TRAFFIC PARAMETERS
I p . - Butterfly Fat Tree

- Number of IPs: 256
- Buffer Depth <flits>: 1

| 4 - U i r t u a l Channels: 4
i!5 - Source Queue Length <messages>: 100
|6 - Simulation Duration <cycles>: 1000000
j ? - Reset stats at time: 2500
:8 - T r a f f i c Type: Uniform
| 9 - Load: 1
! a - Message Length <flits>: 16
| b - Packets dropped when source queue overloads
| c - Control f l i t s not used
I d — Message info not dumped
j e — Port info not dumped
| f - Adjacentcy l i s t not dumped
j g - Average Queue Length calculation i s ON
j h - Stat update i n t e r v a l : 2500
j i - Average Active Messages calculation i s OFF
j j - Header C o l l i s i o n s handled by: Port Order
j k - 1 interation per cycle
|1 - Not using trace f i l e
iDerived Parameters:
iSwitches: 120
jNodes: 376
j Levels: 4
I COMMANDS: Run - r Setup Sweep - s Quit - q
I Enter number to change parameter, or choose a command to run simulation:

Figure 2: NoCSim Options Menu with Default Settings

3.1 Network Topologies

Networks topologies have been previously classified as they have been widely studied in

parallel processing [31]. Since so many varieties of topology exist, these classifications

instantly give a better understanding of topology characteristics when considering a new

topology. NoCSim offers simulation of a wide variety of topologies; some of the

classifications of said topologies are described below:

Shared-Medium Networks

Direct Networks

Indirect Networks

21

Available topologies in NoCSim are k-ary n-trees (fat trees), k-ary n-cubes, butterfly fat

trees (BFT), and octagon. For k-ary n-cubes, the number of dimensions, and then

number of IPs along each dimension are accepted thus making it possible to simulate a 2

x 5 x 7 network i f so desired. Also, whether or not wraparound links are used is also to

be specified. For k-ary n-trees, k and n must be input creating a network of k*k switches

at n levels. Details and formal definitions of k-ary n-trees and k-ary n-cubes follow in

the subsections below.

A l l networks require the appropriate number of IPs to be set as well. This value can be

arbitrary as the simulator will create the smallest topology possible that will incorporate

this number of IPs. E.g., if a 100 IP BFT is selected, a 256 IP BFT will be created with

156 dormant IPs. Dormant IPs do not impact network statistics such as throughput.

3.1.1 Shared-Medium Networks

Shared-medium networks are the least complex interconnect structure. They are made up

of one transmission medium which is shared between all communicating devices [31]. A

major drawback of these networks is that only one device is permitted to use the medium

at any given time. As the number of devices sharing the medium increases, the medium

becomes a bottleneck as many collisions arise and devices are forced to wait for their turn

to use the medium. To handle these collisions, a hardware arbiter is required to deal with

requests.

22

An inherent benefit of shared-medium networks is their ability to support broadcasting.

Since all devices connected to the medium can monitor the network activities one device

can reach all other devices with one effect by simply including the addresses of all

destination devices in the message header, or using a broadcast flag.

3.1.1.1 Bus

Bus systems fall under this category and are the first suggested topology for SoC

environments. Buses are shared medium networks where the medium is one or more

wires that stretch across a series of communication devices. Examples of on-chip bus

networks are AMBA [5], CORECONNECT [6], and WISHBONE [7].

As stated above, buses have been used for smaller SoCs, but as we advance to the deep

sub-micron era, buses fail to provide adequate performance for any application. One of

the major drawbacks of bus systems is the transmission medium (bus line) becomes a

bottleneck as IPs requesting its use become backed-up with unsent packets. The problem

only gets worse when additional IPs are added.

Buses also have drawbacks in the form of propagation delay and parasitic capacitance.

Intrinsic parasitic resistance and capacitance from the line and added IPs increase to

extremely high levels causing propagation delay to be unacceptably high. High

23

propagation delays lead to longer clock cycles, higher latency, and lower throughput. A

theoretical example of a bus topology is shown in Figure 3.

Figure 3: Simple Bus Structure

3.1.2 Direct Networks

Direct networks topologies consist of a set of nodes which are connected to each other by

channels. Each node contains an independent functional unit, or IP in the NoC domain,

as well as a router component that is common amongst all nodes. Because of these

characteristics, direct networks are also called router based networks, or point-to-point

networks. The routers are connected to neighbouring routers via bi or unidirectional

links. Each router also has internal channels proving paths to connect a node's external

channels together. Direct networks have been generally described using graphs

containing nodes N, and channels C, G(N,C) [31].

An ideal direct network would have all nodes connected to all other nodes directly

without intermediate nodes in the way. A network like this is called fully connected

where each router must contain N external links where N is the number of nodes. For

any substantial N , the cost of such a network is prohibitive due to the overwhelming

wiring complexity. Therefore even though performance may suffer when less links are

24

used, such sacrifices are necessary to create a scalable and cost efficient network. Many

different topologies have been suggested that attempt to balance this trade-off of cost and

performance.

Direct networks have the inherent feature that they scale well to large number of IPs.

Each new IP added brings with it a new router component, thus the overall bandwidth of

the network increases with the number of IP blocks. This is a key advantage when

designing a network which is to contain a large number of IP blocks.

As messages traverse nodes to reach their destinations, the routing algorithm used by

each node determines the path it will take. Efficient routing is a critical factor of the

performance of the interconnection network. Routing schemes can be specific to

topologies but share the same fundamentals such as keeping travel paths short, and

deadlock avoidance. Routing and deadlock issues are discussed in depth in Sections 3.4

and 3.5, respectfully.

3.1.2.1 K-ary N-cubes

K-ary n-cube topologies fall under the direct network category. Each IP in the topology

contains a router component that connects it to neighbouring routers their IPs [20][28].

These networks contain K nodes along TV dimensions for a total of KN nodes. Below is

the formal definition of a k-ary n-cube:

25

A k-ary N-cube has k nodes along each dimension n. Each node X is identified by n

coordinates (x„.i, x„.2, ...,x/, XQ). T W O nodes Xand Fare neighbours i f and only if^, = x,

for all /, 0 <i <n-1 except one,y, where y j =(xj ± 1) mod k.

Rings fall under the k-ary n-cube definition with n=l. Other examples are shown in

Figures 4-6.

cf cf cf cf cf cf ffff
cf cf nf cf m" cf cf cf
cf cf cf nf cf CI a
if cf cf cf nf nf /

• cf
cf cf cf w{ d

/

d cf
rf a

/ • /
m wf nf cf nf

s y
y

•' a nf
cf cf cf wf wf

Figure 4: A 8-ary 2-cube without wraparound links, also called a mesh topology.

26

d r\
c f a

/

c r
/

c f Cf

/

E f
/

d
c >

E f
KI

E f
/

E f V c f • C f
/

a
r

C f
/

E l
/

c f
/

c f
/

ti •
/

E f
/

ti
c >

C f
/

E f
y

E f
/

E f
/ / /

C f
/

a
(>

L T
/

ET
/

E f
/

m c f

/

c f
s • ti

i >

E f
/

E f
/

• '
/

i f D
/

• ' c f

/

•
(>
/

I f
/

E f
/

g f G J
V

c f
[/

c f
/

c f
c >

E f
y

E f y
c

wT c T •'
Figure 5: A 8-ary 2-cube with wraparound links, also called a torus topology.

Figure 6: A 3-ary 3-cube.

A two dimensional cube as defined above is also referred to as a torus. A torus is a

conventional mesh with the addition of wraparound links for each dimension. The formal

27

definition of a mesh is the same as the k-ary n-cube with the simplification that two nodes

X and Fare neighbours i f and only if j / , = x, for all i,0<i <n-l, except one,/, where

y i = x j ± 1 . Leaving out the modulus k removes the wraparound links making the mesh

irregular and without symmetry.

The folded torus topology is graphically equivalent to a torus topology, the only

difference being the way in which the IPs are laid out [14]. IPs are 'folded' over and

interleaved on a row by row basis to dispose of a long and power inefficient wrap-around

link. As a result, short wire lengths increase, but the need for a long 'wrap-around' link

is alleviated reducing the overall energy consumption for flit transmissions. The

difference is illustrated below in Figures 7 and 8.

0 6

Figure 7: A conventional 8 IP, 8-ary 1-cube with wraparound link, also called a ring, or
torus.

0 -- 7 f r 1 "
—| - B - p ? --i - 5 - r - 3 4

Figure 8: A 'folded' torus of 8 IPs. It is still an 8-ary 1-cube with wraparound link.
Each node keeps the same neighbouring nodes, but the node order is changed to remove

the long wraparound link.

28

3.1.2.2 Octagon

Another direct network topology that has been proposed for NoC purposes is octagon

[19]. At the lowest level, the topology consists of 8 nodes and 12 bi-directional links

connecting each node. Each node is connected with the node directly across from it, its

clockwise neighbour, and its counter clockwise neighbour as shown in Figure 9.

Figure 9: An 8 node octagon.

For networks with greater than 8 IPs, the octagon scales by extending into

multidimensional space. A 64 IP example is shown in Figure 10. If each node is indexed

with the ordered pair (i, j e [0,7]. For each i - I e [0,7], an octagon is constructed

using nodes {(7,y'), y' e [0,7]} . These octagons are then connected together by linking

corresponding I nodes according to the octagon configuration. Thus, each node could be

thought to be in two different octagons. The first consisting of nodes e [0,7]},

and the second consisting of nodes {(i,J),i e [0,7]}. This pattern can be continued any

29

number of dimensions, giving a maximum number of IPs ofN = 8d, where d is the

number of dimensions.

Figure 10: A 2-dimensional 64 IP octagon topology

This strategy maintains a low worst case hop count between IPs, but comes at the cost of

high wiring complexity. At the lowest level, packets have to travel at most two hops to

reach their destination. That number only increases by two for each added dimension

keeping the connectivity close to full even as TV increases to thousands. This connectivity

is extremely costly as the wiring demands increase exponentially. For example, for a 512

IP three dimensional octagon, 2304 links are required, while for a 64 IP two-dimensional

octagon, only 192 are required.

30

3.1.3 Indirect Networks

Indirect networks are similar to direct networks but differ in that instead of IPs being

connected directly, they are connected though intermediate switches. These switches act

like the router components of direct networks. Each contains a number of ports which

contain input and output links. Because of this distinction, indirect networks have been

called switch-based networks, while direct networks are called router-based networks.

The topology of an indirect network is determined by how the switches are connected

together through links. Like direct networks, indirect network topologies can also be

modelled by a graph G(N, C) , where N is the set of switches and C is the set of links

between the switches [31].

In regular indirect networks, the switches are usually identical and are organized as a set

of stages. Each stage is only connected to the previous and next stage using regular

connection patterns. Input/output stages are connected to functional nodes as well as to

another stage in the network. These networks are referred to as multistage

interconnection networks (MIN) and have different properties depending on the number

of stages and how those stages are arranged.

3.1.3.1 K-ary n-trees

K-ary n-trees, or fat-trees have been proposed for on chip network architectures [15] [18].

Fat trees are in the indirect network category because they have IPs connected to

31

switches at the leaves of a tree. Those leaves are connected to other switches further up

the tree. The formal definition is shown below:

Definition 1: A fat-tree is a collection of vertices connected by edges and is defined

recursively as follows:

A single vertex by itself is a fat-tree. This vertex is also the root of the fat-tree.

If vi, V2, Vj are vertices and Tj, T2, ... 7} are fat-trees, with r/, r2,... r^ as roots (j

and k need not be equal), a new fat-tree is built by connecting with edges, in any

manner, the vertices v/, V2, v, to the roots ri,r2, The roots of the new fat-

tree are v\,V2,v,-.

The above definition is very general and covers regular trees, and fat-trees with variable

sized switches and multiple connections between vertices and irregular constructions.

K-ary n-trees are a specific class offat-trees where all switches are identical, and

construction is regular. The formal definition is shown below:

Definition 2: A k-ary n-lree is composed of two types of vertices: N = k" processing nodes

andnk"~x ,kxk communication switches. Each nodes is an n-tuple {0,1,...,k — 1}" , while

each switch is defined as an ordered pair (w,l), where w e {0,1,..., A: -1}""' and

7 6 {0,1,...,,7-1}.

32

Two Switches (WQ,Wwn_2,1) and (w'o,wj,...,w ' „_2 , /') are connected by an edge

if an only if I' = I + 1 and w, = w j for all i ^ I. The edge is labelled with w) on

the level I vertex and with w\ on the level I' vertex.

There is an edge between the switch (wo,wj, ...,wn_2,n-l) and the processing node

po,pi, ...,p„-i if and only ifwi=pifor all i E {0,1, ...,n-2J. This edge is labelled with

pn-i on the level n-1 switch.

Examples of k-ary n-trees are shown below in Figures 11 and 12.

Figure 11: A 16 I P 4-ary 2-tree

Figure 12: A 64 I P 4-ary 3-tree

33

3.1.3.2 Butterfly Fat-Tree

The butterfly fat-tree (BFT) is another indirect network topology that has been proposed

for NoC applications [3] [16] [17]. The BFT is a variation offat-tree where each switch is

imbalanced in that is has four child ports which send and accept traffic from further down

the tree, and two parent ports that send and accept traffic towards the root of the tree.

These ports are indexed as: partento,parenti, childo, child], child2, and child^. For

referencing, these switches are addressed S(l,a), where / is the level, and a is the index

along that level. The N IPs at the lowest level are connected to TV / 4 switches at the first

level such that processor P(0,a) is connected to childomod4 of switch S(\,[a/ 4_|). The

number of levels in a BFTis log 4 N , and each level contains N /2l+] switches. These

switches are connected according to the switch's address. Parento of S(l,a) is connected

to child, of S(l +1, _a 12/+l J- a mod 21 and parent j of S(l, a) is connected to child/ of

S(/ + l , [a /2 , + l J-2 ' + (a + 2 M) m o d 2 / , where i = [amod2l+] / 2 M J . The number of

switches per level is reduced by a factor of 2 as the level increases. From this the total

number of switches ST can be calculated as:

SR = N/4 + (\/2)N/4 + (\/2)2N/4 + ... + (\/2)LN/4

(1-(1/2) J

(1-1/2)
= N/4

(i - q / 2)̂
(1-1/2)

L

lim N / 4 = NI2

34

Examples of BFTs are shown below in Figures 13 and 14.

a ^ i m ricliSLg ^ a i t E] L t i amm

Figure 13: A 2 level, 16 IP Butterfly Fat Tree

Figure 14: A 3 level, 64 IP Butterfly Fat Tree

3.2 Switching

A switching mechanism determines how and when router input channels are connected to

output channels that have been selected by the routing algorithm. It determines how

network resources are allocated for message transmission. Popular switching

mechanisms are circuit switching, packet switching, and wormhole switching [31].

35

In circuit switching, all channels required by a message are requested and reserved prior

to the message being transmitted. Thus, a dedicated path is established and the

transmission encounters no contention once the path is established. The establishment of

the path can be delayed by other messages reserving resources beforehand.

In packet switching, also called store-and-forward switching, messages are divided into

packets before being sent though the network. Packets advance into resources as soon as

they become available. Buffer space at each switch is required for packet switching as

packets are held in a buffer until the next channel becomes available.

Wormhole switching also involves breaking a message into packets at the source like

packet switching [32][33]. The packets are then further divided into flow control units

called flits. The first flit, or header, contains routing and status information and advances

into free resources like packet switching. Flits trailing the header flit follow in a pipeline

fashion. If at anytime the header flit cannot advance because its desired input or output

channel is occupied, the header becomes blocked and the trailingyTite are forced to wait

as well until advancing is again possible. Buffer space at each switch, but each buffer

only needs to be large enough to hold one flit. Packets become spread out over many

switches, so the buffer demands at each switch are a fraction of what they are in packet

switching where each buffer must be large enough to hold an entire packet. Because of

this actuality, wormhole switching is popular in the SoC domain where there is an aim to

minimize switch hardware overhead.

36

Since only wormhole switched networks have been proposed for large scale on-chip

networks, NoCSim only supports wormhole switching.

3.3 Virtual Channels

The use of virtual channels is generally accepted to be beneficial for NoCs, so NoCSim

supports the use of virtual channels by allowing the user to select the number of virtual

channels per input/output channel. A l l channels must have the same number of virtual

channels.

3.4 Routing Options

How incoming packets are forwarded to outgoing channels depending on the active

routing algorithm. Since routing depending greatly on the network topology [31], routing

algorithms for each available topology are discussed in turn below.

3.4.1 K-ary N-cube Routing

NoCSim supports the most common simply routing algorithm used for k-ary n-cubes,

Dimension Ordered Routing (DOR). It is a distributed scheme meaning routing decisions

are made locally at each node by reading header tags. It is also a non-adaptive or

oblivious algorithm, meaning messages cannot be dynamically rerouted to avoid

congestion. Each source-destination pair will have the same path each time.

37

DOR first indexes the dimensions in the network so that a set order is established. When

a header arrives at router, it compares the destination address D (d„.i, d„.2, ...,di,do), with

the node's address (x„.j, x„_2, ...,XI,XQ), where n is number of dimensions and x, is the

coordinate in dimension /. If the coordinates in the first dimension, i = 0, do not match

the header is routed in the direction of the destination in that dimension. Once the

header's destination and current node address match in the first dimension, the routers

then compare the coordinates of the next dimension, i=l. This process is continued until

the destination node is reached. An illustration showing a possible source-destination

pair for a 64 IP mesh is shown in Figure 15.

38

Many adaptive routing algorithms have been suggested for k-ary n-cubes. These may

involve throttling, or avoiding congestion by changing dimensions additional times [35].

While these algorithms'have some performance improvement in sub-saturation

conditions, they also introduce added routing complexity and overhead due to added

logic. For this reason, only non-adaptive algorithms are currently supported by NoCSim,

however the modular nature of NoCSim allows for new routing algorithms, adaptive or

non-, with relative ease.

3 . 4 . 2 Octagon R o u t i n g

NoCSim supports a simple, oblivious routing scheme for the octagon. It is a simple

shortest-path algorithm where nodes determine the appropriate output port by checking

the relative address of the destination, see Figure 16. A break down of the possible cases

is shown below in Table 1:

Relative Address Destination Port

0 Route to local IP port

1 or 2 Route clockwise

6 or 7 Route counter-clockwise

3, 4, or 5 Route across

Table 1: Simple shortest path octagon routing

39

Figure 16: Shortest Path Routing in octagon

When dealing with multidimensional octagons, this routing scheme can be applied to

each dimension in order starting with the highest [19].

3.4.3 K-ary N-tree Routing

Routing in trees almost always comes in the form of turnaround routing. In this form of

routing, packets ascend the tree until they find their least common ancestor shared by the

source and destination nodes. Once reached, the package is 'turned around' and begins

its descent to the destination as shown in Figure 17. NoCSim supports turnaround

routing.

40

• d • 3 m • • • • • •
Figure 17: A possible path for a source/destination pair using turnaround routing in a 16

IP fat-tree topology.

When a header arrives at a switch child port that is not its least common ancestor, that

header is routed out through one of the k parent ports. The choice of port is arbitrary as

long as the port has an empty channel available; therefore redundancy exists during the

ascent of the tree. After the turnaround however, there is only one unique path the header

must be routed through to reach its destination, and the redundancy is no more [31].

3.4.4 Butterfly Fat Tree Routing

BFTs use the same turnaround routing scheme that is described above in the k-ary n-tree

section.

3.5 Deadlock, Livelock, and Starvation

Deadlock, livelock and starvation are critical issues that need to be addressed in any

network due to their catastrophic consequences [31].

41

A deadlock is a situation where all packets in the network cannot advance to their

destination because the resources requested by them are full. A l l packets involved in the

deadlock are blocked indefinitely. An example of a deadlock in a 4 node ring is shown in

Figure 18. The buffers of each node are completely full with flits waiting for resources at

the next node to become free.

Figure 18: Deadlock in a 4 node ring.

Livelock is a similar situation where packets can never reach there destinations, the

difference being packages may be moving around the network unblocked in a livelock

situation. It can only occur if packets are allowed to follow non-minimal paths however,

so since all networks in NoCSim are minimal path routed, livelock is not an issue [31]. If

adaptive routing schemes are implemented, livelock avoidance strategies must be

implemented as well.

42

Starvation occurs when a packet stops permanently when the resources it is requesting

are consistently being granted to other contending packets. It can be avoided by using a

fair contention resolution scheme when allocating resources. NoCSim allows the user to

choose between several fair contention resolution schemes that prevent starvation.

Contention resolution is described in detail in Section 3.7.

Methods of handling deadlock include deadlock avoidance, and deadlock detection /

recovery. The later technique is only effective when deadlocks are rare because they

carry the assumption that the networks can recovery from deadlocks faster than they

arise. These techniques also require added hardware and logic at the switches. DISHA

[13] is a recovery technique that requires each node to have a central "floating" buffer.

Since hardware at the switches is to be minimized and deadlocks may occur at rapid rate,

only deadlock avoidance schemes were implemented in NoCSim.

A necessary and sufficient condition for deadlock-free non-adaptive routing is the

absence of cycles in a resource dependency graph [12]. Therefore, topologies that do not

have cycles will never experience deadlock. Tree-based topologies like k-ary n-trees and

butterfly fat trees have no cycles when turnaround routing is used. The same is true for k-

ary n-cube topologies when wraparound links are not used (mesh) and DOR is used.

For topologies that do contain cycles, further effort is required to break the cycles to

avoid deadlock situations. The k-ary n-cube with wraparound links (torus) and octagon

topologies do contain cycles even when DOR is used.

43

Dally and Seitz [11] proposed a way to break the cycles in k-ary n-cube networks with

the use of virtual channels and restrictive routing. To remove the cycles, the virtual

channels are first split into two groups, upper and lower. When packets are injected into

the network, they restricted to upper virtual channels only. If at any time a packet

traverses a predetermined link in each cycle (e.g. the wraparound link) the packet's

restriction changes from upper to lower. Each time the packet changes dimension it must

be restricted to the upper virtual channels. This restriction changes the cycle nature of the

dependency graph into a more spiral-like shape.

To illustrate this process, consider a four node (N0-N3) ring example in which the nodes

are connected with unidirectional links. This simple topology and its resource

dependency graph are shown in Figures 19 and 20.

N1

CO

NO i / 'L

C1

C 3

N2

C 2

N3

Figure 19: A 4 node unidirectional ring.

44

i CO j

Figure 20: Corresponding dependency graph.

While the channels (C0-C3) remain undivided and routing is not restricted, the

dependency graph contains a cycle. This cycle can be the source of deadlocks. However,

if virtual channels are used to divide each channel into and upper channel (Ciu i=0..3)

and a lower channel (CU i=0..3) and routing is restricted as described above.

Specifically, packets injected are restricted to using upper channels. If packets reach NO

and are not at their destination however, they are then restricted to using lower channels.

The divided ring and its dependency graph are shown below in Figures 21 and 22.

45

N1

C1u

C1I
-i /

N2

COu ICOI
C2I C2u

NO / L

C3I

C3u

N3

Figure 2 1 : A 4 node ring with virtual channels.

C1u ,

C1I 'i r-1> I C2I X', \ \

(COu i
C2u

coi j (C3i) y

C3u

Figure 2 2 : Corresponding dependency graph.

This restrictive routing and virtual channel use can be implemented to remove cycles

from any network. It comes with the down side that the resources of the lower virtual

channels remain idle when the wraparound link is not used. It is for that reason that mesh

networks outperform torus networks under certain conditions such as highly localized

46

traffic loads [14]. Another notable characteristic of networks using this technique is

packets must now keep track of which virtual channel they have come from when being

routed. Without the restriction, packets are memoryless.

The cycles in the octagon could also be removed using this fashion. Since the octagon is

so connected however, simply restricting routing to prohibit the use of a predetermined

link in each level of octagon to physically remove the cycle gives the same effect without

a very noticeable drop in performance. By doing this, the performance degradation under

highly localized traffic is not an issue as virtual channels are not restricted.

3.6 Switch Model

The switch model used by NoCSim is shown below in block diagram form, Figure 23.

Several parameters are available to customize network switches.

47

INPUT PORTS OUTPUT PORTS

N U M B E R O F
V I R T U A L

A A
C H A N N E L S = 2 a r* V V

C O L L I S I O N
R O U T I N G H A N D L I N G

L O G I C L O G I C

B U F F E R
D E P T H = 4

Figure 23: Example Generalized Switch Block Diagram.

The number of input/output ports is predetermined by the topology, although different

topologies have different numbers of ports per switch.

For all topologies but torus, the number of virtual channels can be set to any positive

number. Torus has the additional restriction that it must have at least two virtual

channels because of the restrictive routing involved in preventing deadlock in that

topology. The number of virtual channels describes how many buffers are available per

link at both the input and output end. The number of buffers must be the same at both

ends.

48

The depth of each buffer can be specified as well. This value determines how many flits

can fit into each buffer.

The crossbar of each switch is assumed to be fully connected. In other words, every

combination of input port to output port is valid.

How flits pass through the crossbar to output ports is determined by the routing and

collision handling logic. Data and tail flits simply follow the path of their respective

headers, but header flits require routing. As previously mentioned, routing is topology

specific and determines the destination output port for each header. Once all headers

have been routed, collision handling logic detects and resolves and contention for output

ports. Finally, header movements are processed and the appropriate headers move to the

determined output buffers. Details of these processes are described below in Section 4.1.

3.7 Collision Handling

To deal with the collisions that arise between contending headers, a collision handling

scheme, or select function, is required to select the order of which resources will be

granted. NoCSim has several options in this respect and they are discussed in next

subsection:

49

3 . 7 . 1 Port Ordered Collision Handling

In this scheme, the indexes given to ports in the network creation process are used to

determine which header's requests are recognized first. In other words, the mechanism

will first check all headers in port 0, followed by port 1, 2, etc. This order does not

change throughout the simulation. This scheme is the easiest to implement, however it is

prone to starvation, since in saturated traffic a header at a higher numbered port could be

forced to wait indefinitely.

3 . 7 . 2 Round Robin Collision Handling

The round robin scheme is similar to the port order scheme in that a mechanism checks

headers in order of their port index. The difference is that from cycle to cycle, the

starting point of said mechanism changes to the next port. When the last port of a switch

is reached, the mechanism returns to port 0, thus providing wraparound.

3 . 7 . 3 Oldest Goes First Collision Handling

This scheme involves the collision handler checking the network injection times of

contending headers and resolving their requests in the order of oldest goes first. Doing

this ensures that starvation will not occur as headers will at some time become the oldest

at a particular switch. Generally, this scheme will reduce a network's worst-case latency

but to be physically realized would involve headers carrying injection time information.

50

3.7.4 Priority Based Collision Handling

NoCSim has the capabilities of implementing a priority based collision handling scheme.

In the supported scheme, four different levels of priority of message are possible (0-3).

Messages are given this priority upon injection and the ratio of a given priority level to

another can be specified as well (e.g. 10% priority 0, 50% priority 1, 20%priority 2,

20%priority 3). When collisions occur using this scheme, headers with higher priority

are given the first available resources, then the next highest, etc. Collisions of headers

with the same priority are handled according to round robin.

High priority messages blocked by lower level messages temporally transfer their priority

to the lower priority message to encourage it to get out of the way. This priority

inheritance was proposed by R. Rajkumar in [37] and is shown to further improve the

average latency values of high-priority messages.

3.8 Traffic Generation

NoCSim has many options for traffic generation, the default being Poisson distributed

uniform random traffic. In this class, messages arrive at sources according to Poisson

distribution are given randomly generated destinations that are all equally as likely. The

only restriction being the source and destination cannot be equal. Uniform traffic is a

long used benchmark for network analysis, but has been proven to be inaccurate when

modelling real life networks [31].

51

Destinations can also be selected by a bit-complement traffic pattern. In this pattern,

sources will only send messages to the destination IP whose address is the bit

complement of the sources address. This pattern is even less accurate than uniform, but

is used to evaluate networks as it provides insight to the worst-case of traffic since the

destinations are usually on the opposite side of the network.

Hotspot traffic is another commonly used traffic pattern that attempts to provide a more

accurate model [31]. In hotspot traffic, a number of hotspot IPs are selected by the user

with the fraction of the load that is direct to only the hotspots. This attempts to mimic a

network involving some popular IPs such as a memory block with data common, or a

busy processor.

Localized traffic is another traffic pattern that tries to provide a more accurate look at

network performance [40]. The user is asked to input the fraction of load that is destined

for IPs within a local group of IPs. How the local groups are defined depends on the

topology. For k-ary n-cubes, the local group is determined as the nodes immediately

neighbouring the source on each side (see Figure 24). Thus for a 2D, 64 IP mesh, a

central IP will have four IPs in its local group, and 59 in the non-local group. For k-ary

n-trees and butterfly fat trees, the local group is defined as the group of IPs that share the

same level 1 switch (see Figures 25 and 26). So for a BFT, the local group consists of

three other IPs. Octagon's local group is defined by the lowest level of octagon in the

hierarchy, meaning the seven other IPs in a sources bottom level octagon (see Figure 27).

52

i >

Ef'
/ /

cf ti
/

D ti
/

cf
(>

a' ti
/

cf ti
/

cr' cf a ti
{ >

ti
/

cf ti
/

' a
/

ti i

Cf ti (ti H ' •ri.
/ /

ti
/

i

ti
/

cf
/

cf
/

cf
/

ti
/

ti
>

Cf'
/

cf
/

ti
/

Ef Ef ti
/

ti
(

Ef
(

ti
J

/

b
Ef

/

i f
y

ti ' ti ti
/

J

ti

ti ti ti • Ef E f ti •'

Figure 24: A 64 IP 8-ary 2-cube with wraparound links. The highlighted IP's local
group of 4 is circled.

Local Group

Figure 25: A 64 IP 4-ary 3-Tree. The highlighted IP's local group of 4 is circled.

53

Local Group

Figure 26: A 64 IP 3 level BFT. The highlighted IP's local group of 4 is circled.

Figure 27: A 2-dimensional 64 IP octagon. The highlighted IP's local group of 8 is
circled.

It should be noted that these local group definitions vary slightly from topology to

topology, but these variations are inevitable as each topology's inherent structure are the

biggest determining factor. For that reason, it is fair to compare under these conditions.

54

In addition to these simulator generated traffic patterns, NoCSim has the functionality to

input traffic traces from an input file. The format of the file must have the number of

messages in the trace file followed by that many source-destination pairs separated by a

space. Each pair must end with a return character. This functionality gives the ability to

take actual network traffic traces and simulate them with different network topologies

and parameters.

The message length in flits can also be determined by the user. NoCSim has a limitation

that all injected messages must have the same length.

3.9 Source Queue Length

When new messages arrive, they are placed in the message queue at the source IP. It is

from this queue that messages are actually injected into the network. This queue is of

finite length, and if the network cannot yield a throughput that is equal to the arrival rate,

the queue will back-up and eventually overload. NoCSim lets the user determine the size

of this queue and whether or not the simulation will stop when a queue becomes

overloaded. If the later option is not chosen, packets arriving to a source with a full

queue will be dropped.

55

3.10 Simulation Duration

The duration of the simulation in cycles is also to be set by the user. To remove the

initial transient effects, a reset statistics time can also be set. It is recommended that

durations be long enough such that results are repeatable despite the random nature [23].

3.11 Periodic Statistic Updates

While simulations are running, temporary statistic updates are displayed periodically on­

screen. These stats include throughput, average latency, and intra and internode flit

movement counts for the previous interval of cycles. The length of these intervals can be

set in the main menu, with the default being 2500 cycles. Figure 28 shows an example

output screen.

56

T r e e S i m r u n = l
T o p o l o g y T y p e : 0
22 Nodes , 16 IPs
4 U i r t u a l C h a n n e l s , 1 B u f f e r Depth
Message l e n g t h : 16
Queue S i z e : 100
L o a d : 1
D u r a t i o n - r e s e t : 17500
maxMessage= 105
0 temp done: 0

temp header i n t r a : 0 temp d a t a i n t r a : 0 temp i n t e r n o d e : 0 a u g _ q : 0
2500 temp done: 1287 temp t p u t : 0 .5148 temp l a t : 535

temp h : 0.0008 temp d : 0.0076 temp i n t e r : 0.0132 a v g _ q : 0.02555
5000 temp done: 1281 temp t p u t : 0 .5124 temp l a t : 1694

temp h : 1.3524 temp d : 20 .2044 temp i n t e r : 29.7156 a v g _ q : 88.4341
7500 temp done: 1277 temp t p u t : 0 .5108 temp l a t : 2828

3464 temp i n t e r : 29.8996 a u g _ q : 98.2632
t p u t : 0 .5108 temp l a t : 3238
8732 temp i n t e r : 29 .3604 a u g _ q : 98.2626
t p u t : 0 .5244 temp l a t : 3172
5268 temp i n t e r : 30.2848 a u g _ q : 98.1986
t p u t : 0 .5424 temp l a t : 3088
8592 temp i n t e r : 30.926 a u g _ q : 98.0828
t p u t : 0 .5164 temp l a t : 3083
4164 temp i n t e r : 30.0812 a u g _ q : 98.1699

49

A u g . A c t i v e Messages / c y c l e : 0
fluerage Number o f I t e r a t i o n s p e r c y c l e : 1
I n t r a n o d e Header F l i t T o t a l : 23778
I n t r a n o d e D a t a F l i t T o t a l : 356475
I n t e r n o d e F l i t T o t a l : 525613
In tranode Header F l i t T o t a l / D U R : 1.35874
In tranode D a t a F l i t T o t a l / D U R : 2 0 . 3 7
In ternode F l i t T o t a l / D U R : 30.035
E l a p s e d Time <mins=sec> 0:6
P r e s s any key to c o n t i n u e ,

Figure 28: Example NoCSim output screen.

3.12 Other Settings

The use of control signals used to probe buffer states can be emulated in NoCSim. An

extra delay of one cycle can be added before header flits can enter a free buffer to

emulate the delay caused by request and acknowledge control signals. This setting is

found in the main menu.

For convenience NoCSim can string together a series of runs where all network

parameters are held constant while one is varied. To setup such a series, the user must

temp h : 1.3524 temp d : 20 .
10000 temp done: 127? temp

temp h : 1.3276 temp d : 1 9 .
12500 temp done: 1311 temp

temp h : 1.3696 temp d : 20 .
15000 temp done: 1356 temp

temp h : 1.3892 temp d : 20 .
17500 temp done: 1291 temp

temp h : 1.3604 temp d : 20 .

T e s t i n g D u r a t i o n : 17500
T o t a l Messages Done: 9089
T h r o u g h p u t : 0.519371
Hug . Message L a t e n c y : 2900.
A u g . Queue S i z e : 96 .810?

57

select 's' on the main menu. Upon that selection, a menu containing the parameters that

the sweep feature supports will be displayed. The supported parameters are:

- Number of Virtual Channels

- Message Length in flits

- Buffer Depth

- Source Queue Length

- Traffic Localization (localization traffic pattern only)

- Traffic Normalized Load

- Fraction of Traffic Destined for Hotspots (hotspot traffic pattern only)

In addition to the input options and parameters, NoCSim has some options that relate to

the output produced. These include network adjacency graph print outs, latency

histograms, average queue length calculations, and debugging features. A l l available

options can be selected in the main menu.

Traffic events can be traced to an output file for debugging. If selected, a message file

(messages.txt) will be produced containing the times a locations of new arrivals to source

queues, the times locations and destinations of messages entering the network from

source queues, and similar information about messages being completed.

Also useful for debugging is a port contents print-out option. If selected, a text file

(ports.txt) will be created containing the contents of every buffer, each cycle. Flits are

58

described by tokens which contain information about the flit's type, and message or

origin.

Data to produce latency histograms can also be stored and saved to a file

(latencyHistogram.txt) i f chosen in the main menu.

A l l output files are semi-colon delimited so that parsing is easy and they can be imported

into a spreadsheet tool such as Microsoft Excel to create graphs.

59

4.0 Simulator Engine

NoCSim is a/7/Y-level cycle based network simulator developed as a Win32 console

project in C++ using Microsoft Visual Studio 6.0. This developing environment was

chosen because of its power and debugging and organization strengths.

When the executable is run, default values are set and a menu then displays the

simulation parameters and options. Changes to parameters can be made by first entering

the menu item character, and then following the appropriate sub-menu that is displayed if

new values are to be input. If 'q' is entered in the main menu, the program will stop.

When the run command is entered, 'r', the menu exits and network initialization begins.

4.1 The Simulation Cycle

NoCSim is an iterative, cycle-based simulator. The state of the network is stored in data

structures described in Appendix B. Every cycle, the network state is updated by an

update network function that in turn calls a series of functions with specific tasks. The

basic break down of the simulation cycle is outlined below in Figure 29, followed by a

closer look at each task.

60

IV Reset variables
and .other overhead.

2.•Flit consumptions
at IPs,

3. Flit internode
movement.-

4. Data and tai \flit
intranode

move m en ts.

5. Intranode header
/frr routing, collision

detection, and
movement.

7 . Statistic
calculations.'

h. Message arrivals
and flit injections at

IPs.

Figure 29: NoCSim Cycle Flowchart

To help illustrate the flit movement, a simple example is shown along with the

explanation. In the diagrams (Figures 30-34), flit types are denoted by the first letter of

the token (H = header, D = data, T = tail), the message identifier is denoted by the

second letter (message A, B, C, ...).

61

file:///flit

1. The state of each message (e.g. header in input buffer) must be reset before the bulk of

each cycle. Other small overhead tasks are also done.

2. At each IP, the buffer at each incoming virtual channel from the router is checked for

flit tokens to process. If found a flit is found, the flit token is removed. If a data or

header flit is consumed, the IPs .consume count of the according virtual channel is

reduced, and a message specific reserve token is left in the buffer. If a tail flit is

consumed, the buffer is left blank, and consumption statistics are updated such as latency

averages and histograms. The message is also taken off of the active message list.

SWITCH

OA

TA

HC

IP 0

HA

IP 1 HA

T B

IP 2

Figure 30: Flit marked HA is consumed by IP 1.

3. Next, flits are given the opportunity to advance across internode links, from node

output buffers, to node input buffers. In turn, each virtual channel output buffer is

checked for flit tokens to advance. Only one flit is permitted to cross a link in a given

direction during each cycle. The virtual channels are polled in order, but the start of the

order rotates in a round robin fashion. This process fairly distributes the available link

bandwidth between messages that co-populate the link's buffer resources. When

62

processed, the flit token advances to the input port pointed to by the output port's .next

variable. Flit count statistics are updated to be later used for energy calculations.

SWITCH

DA HC

T A .

IP 0

T B

IP 1

T)
i — T B

IP 2
Figure 31: Flit TB moves from the switch output port, to IP 2's input port.

4. Data and tail flits then advance across nodes internally, from input ports to the

appropriate output buffers. Each input virtual channel buffer is checked for non-header

flit tokens in turn. Like with internode movements, the starting point for buffer polling

rotated in a round robin fashion. Routing is not required for these flits as they simply

follow the path of their header flit stored in their message object's path arrays.

Figure 32: Flit DA moves through the switch by following the path established by
message A's header.

63

5. Header flits are now processed for intranode movement. The active message list is

scanned for messages with headers in input ports waiting to be routed. These headers are

then routed according to the topology and selected routing algorithm. The requested

port's cycle-wise running total of headers requesting it is increased, and the port's

collision list is appended. Once all headers have been processed, the totals are scanned

for non-zero values. The chosen contention resolution function determines in which

output buffers are distributed (see Section 3.7).

If priority based contention resolution is used, blocked messages must be detected at this

stage so that priority inheritance can take place.

1
SWITCH

k. . .. __ _._ ._

i V

| TA
i

j H e '
' — t —

HC,

J,

DA

TB

IP 0 IP 1 • IP 2

Figure 33: Header flit HC is routed to the switch's IP 0 output port. No collision is
detected, so the flit is advanced.

6. Each IP is checked to see i f its next arrival time matches the current time. If so, a new

message is placed in the source queue. Each IP's injection channels are processed for

empty buffers and unfinished injections. If a virtual channel is free and the queue is not

empty, a new message injection must occur. When that happens, the message index is

increased, the active message list is appended, and the IP's inject state count is set to the

64

message length. The message destination is also determined at this time and all the

message state is initialized.

SWITCH

t i

| H c
1 i

D

i

A 1

TA 1 DC ...
H D I TB j

IP 0
I 1

IP1 i
I \
I 5

T
IP 2

Figure 34: IP 1 injects DC to its output port. A new message D is injected from IP 2.

7. Cycle-by-cycle calculations are done at the end of each cycle i f selected for output.

Examples include average queue length calculations, and concurrent message

calculations.

This collective process repeats until the cycle count equals the duration parameter set in

the main menu. When it does, network statistics are finalized, information is displayed

on-screen, and output files are appended. If a variable sweep was selected, re­

initialization of all state variables and data structures, statistics are reset, and simulation

begins again at cycle zero.

65

4.2 Time Complexity Analysis

The time required for NoCSim to complete a given simulation depends on the selected

parameters. Firstly, the impact of each of the modifiable parameters will be discussed.

Simulation Duration (cycles): Each cycle the simulator must perform a number of

different processes that includes polling each buffer resource for pending movements.

The processes are mostly consistent in their time although process times can grow with

congestion with saturated traffic loads. As a result, run times approximately vary

linearly with the number of simulation cycles.

Topology: The size and type of topology determines the total number of ports in the

network that require polling each cycle. For example, a 16 node mesh has 16 5-port

switches, (one in each direction and one towards the IP at each switch). The IPs must

also be polled for possible injections as well.

Buffer Depth: Each buffer can hold this many flits. Each cycle, the worst case is that

each space must be polled in every buffer for flits. When flits are found and moved, the

remaining flit places are not polled.

Virtual Channels: Each port contains a buffer capable of holding a number offlits equal

to the buffer depth. Thus increasing the number of virtual channels increases the total

number of buffer spaces proportionally. Once a flit has been selected from virtual

66

channel to traverse a link, no other virtual channels in that link and direction will be

polled. That is because only one physical link exists between nodes in both directions.

Source Queue Length: This stores the number of messages that can wait at an IP before

overloading. Each time a message is taken from an IPs source queue and injected into

the network the queue must be updated by shifting all contents of the queue one space

closer to the head. Thus in the worst case, the full queue length must be processed at

each queue. The queue length is typically small in size relative to the total number of

buffers that are polled each cycle however, so queue length only has a large impact on the

run time if both load and source queue length are very high.

Traffic Type: Traffic type only slightly alters the time take when destinations are

determined for injected messages. It has no significant impact on run time.

Load: The load impacts the number of waiting messages in source queues as well as the

likeliness that congestion control logic will be required.

Message Length (flits): The number offlits per message impacts the congestion control

required, but not the number of buffer resources. Therefore, it is insignificant in

comparison and does not alter the run time substantially.

67

To show the impact of each of these parameters, each parameter will be varied

independently and compared to a base case. The base case network simulation has the

following parameters:

- Topology: 4x4 mesh

- Buffer Depth: 2 flits

- Virtual Channels: 4

- Simulation Duration: 10000 cycles

- Load: Uniform 0.3 (note at this load, the network is not saturated)

- Message Length: 16 flits

- Source Queue Length: 10 messages

Parameter Small

Value

Time (s) Base

Value

Time (s) Big Value Time (s)

Topology 4x4

mesh

5 8x8

mesh

22 16x16

mesh

244

Buffer Depth 1 flit 21 2 flits 22 4 flits 31

Virtual

Channels

2 18 4 22 8 43

Simulation

Duration

10000

cycles

12 20000

cycles

22 40000

cycles

46

Uniform

Load

0.01 16 0.3 22 1.0 51

Message

Length

8 flits 22 16 flits 22 32 flits 24

Source

Queue

Length

5

messages

22 10

messages

22 20

messages

24

able 2: Time Analysis Parameters

68

From the above results shown in Table 2, it is clear that topology has the greatest impact

on run time.

The overall complexity can be best approximated as 0(number of buffer resources).

Breaking the number of buffer resources into its components gives more insight to the

formula. After expanding, the complexity becomes:

Ofnumber of switches * number ofports * number of virtual channels * buffer depth)

4.3 Limitations

NoCSim does not support adaptive routing algorithms. Adding this feature would require

giving the simulator knowledge of the deadlock state of the network.

NoCSim only supports the topologies named in Section 3 . Adding new topologies would

require adding a create network module to the program as well as adding any topology

specific routing modules required.

69

5.0 Simulation Results

NoCSim has a wide variety of output options for producing useful data. When selecting

an appropriate on-chip interconnection network, different parameters must be varied to

understand its impact on performance: When a simulation is run, several files containing

network statistics are produced.

As an example, some useful results are discussed next with a brief explanation of how

results are obtained, and what impact on performance is observed.

5.7 Throughput

The throughput of a communication infrastructure is highly dependent on the traffic

pattern. Measuring throughput under uniform random traffic conditions is a generally

accepted metric [21] for evaluating parallel systems. Throughput can be thought of as the

rate at which a network can consume messages, and is closely related to the peak data

rate sustainable to the system. Intuitively, this consumption rate cannot exceed the rate at

which messages are injected into the network. Under sub-saturation loads, networks

consume messages at the same rate as injected. Once saturated, a deterministic network

will consume messages at its maximum rate even i f that rate is less than the injection rate.

Similar to sand flowing through an hour glass, the rate of sand falling through is

independent of the amount of sand waiting to fall.

70

Throughput output from NoCSim is normalized with the following formula [31]:

_ (TotalMessagesCompleted)(MessageLength)

(NumberOfIPBlocks)(SimulationDuratiori)

Where message length is given in flits and simulation duration is given in cycles. The

resulting unit for throughput is flits/cycle/IP.

Thus, throughput is measured as the fraction of the maximum load that the network is

capable of physically handling. A normalized throughput of 1.0 corresponds to all end

nodes consuming one flit every cycle.

Throughput by default is always calculated by NoCSim.

5.2 Transport Latency

Transport latency is defined as the time (in cycles) that elapses from the arrival of a

message in a source IP queue, and the consumption of the tail flit at the message's

destination IP. At sub-saturation levels of traffic, source queues are usually empty or

short, so latency is made up mostly of the delays occurred when a message passes from

node to node through the network. Above saturation, source queues become full and

long. Messages wait for an amount of time that is dependent on the physical length of the

source queue before even entering the network. The source queue wait time is the by far

the most significant of the transport latency during times of saturation. As a result,

message latencies approach infinity as traffic loads approach saturation.

71

5.3 Energy Consumption

Energy consumption is an increasingly critical issue in on-chip network design [3].

NoCSim produces output that allows a user to calculate the average energy consumed per

cycle.

Flit movements are tallied during simulations to give the following output statistics:

Average internode flit movements / cycle

Average intranode header//// movements / cycle

Average intranode data and tail flit movements / cycle

These statistics can be used to calculate the total average energy consumed per cycle by

multiplying them by the appropriate network specific energy values. Required values

are:

Average energy consumed by a flit traversing an internode link

Average energy consumed by a header flit going through decoding, routing and

collision handling logic.

Average energy consumed by a flit moving across a node from input buffer to

output buffer.

These values depend on many variables such as topology type, switch size, link length

and bandwidth, virtual channel use, and flit size. Keeping the calculations of these values

external to the simulation tool provides flexibility for energy calculations.

72

This calculation only takes into account the energy consumed by flit movements. Static

energy consumption (e.g. leakage current energy) must be added after the fact to provide

more accurate approximation.

5.4 Validation

In order to validate the results generated by NoCSim, a comparison with Flexsiml.2 [27]

generated results is shown below. Since no tool exists that simulates octagon, or fat-tree

topologies with wormhole switching, this example comparison only looks at k-ary n-cube

topology.

The parameters for both simulations are as follows:

Topology 8 x 8 mesh

Buffer Depth 2 flits

Virtual Channels 4

Simulation Duration 20000 cycles

Load Uniform 1.0 (note at this load, the network

is saturated)

Message Length \ 6 flits

Source Queue Length 10 messages

Control Flits Used

Table 3: Validation Parameters

73

Throughput vs. Virtual Channels

0.5 i 1

jE 0.05

0 -I 1 1 1

0 5 10 15 20

Virutal C h a n n e l s

Figure 35: 64 IP mesh FlexSiml.2 and NoCSim

As seen in Figure 35, the results obtained from FlexSiml.2 and NoCSim are very similar.

The slight discrepancy can be accounted for by minor implementation differences in

collision handling logic and randomness. Mesh and torus topology results have been

matched between NoCSim and FlexSiml. 2 under many permutations of network

parameters.

74

5.5 Sample Results

This section serves to illustrate some of the functionality of NoCSim, and to show how

certain simulation output can give engineers insight to make better decisions regarding

on-chip interconnect.

For the examples shown in this document, the following default settings were assumed:

Buffer Depth 1 flit

Simulation Duration 20000 cycles

Message Length 16 flits

Source Queue Length 10 messages

Reset Statistics Time 2000 cycles

BFT, Fat-Tree Routing Turnaround routing

Mesh Deterministic dimension ordered routing

Torus Deterministic dimension ordered routing with virtual split.

Table 4: Default Parameter Values

75

5.5.1 Throughput vs. Load

Physical Network Parameters:

IPs 64

Virtual Channels 4

Traffic Parameters:

Type Poisson distributed uniform random traffic

Load Varied.

Table 5: Parameters for Figures 36-37

64 IP 4 VC Throughput vs. Load

0.9 -

0.8

CL 0.7 -

O

>. 0.6 -
o

0.6 -

In
0.5 -

3
Q. 0.4 -

SZ
0.4 -

U)
3
O 0.3
L -

0.3

I -
0.2

- B F T •

0.4 0.5

Load
0.6 0.7 0.8 0.9 1

Figure 36: 64 IP BFT throughput vs. load

76

64 IP 4 VC Throughput vs. Load

0 .8 — ~ | - K _ F A T }

0 0.1 0 .2 0 .3 0.4 0 . 5 0 .6 0 . 7 0 .8 0 .9 1

Load

Figure 37: 64 IP Fat-Tree throughput vs. Load

Figures 36 and 37 show injection load on the x-axis and throughput on the y-axis. They

illustrate the saturation that occurs as load increases past the network's peak rate. Both

topologies have equivalent throughput values under saturation. This is because under

saturation, there is no accumulating delay caused by messages backing up and messages

are consumed at roughly the same rate as they are injected. When deterministic routing

algorithms are used no decline is seen when load is increased beyond saturation.

Adaptive algorithms experience peaks in throughput as they throttle, or misroute packets

to avoid congested areas [35]. These techniques cause performance to fall below

deterministic saturation levels.

77

In this example, the fat-tree saturates at a much higher throughput than the butterfly fat-

tree. This is mostly due to the difference in connectivity between the two topologies.

NoCSim's sweep variable setting makes producing graphs like Graph 2 and 3 simple.

The GUI makes it easy to switch between topologies and compare output.

5.5.2 Throughput vs. Virtual Channels

Physical Network Parameters:

IPs 64

Virtual Channels Varied.

Traffic Parameters:

Type Poisson distributed uniform random traffic

Load 1.0

Table 6: Parameters for Figures 38-39

78

64 IP Throughput Vs. Virtual Channels

0.9

0.8

ST
— 0.7

u 0.6

C 0.5

o

3

Q- 0.4
JZ
u>
O 0.3

0.2

0.1

llllH
ilil̂ Pl§§i§ll§§iiBiiiiii<

IllBllfiiillBjM^

H f l H H I

6 8 10 12

Virtual Channels

16

Figure 38: 64 IP BFT Throughput vs. Virtual Channels

79

64 IP Throughput Vs. Virtual Channels

0 2 4 6 8 10 12 14 16 18

Virtual Channels

Figure 39: 64 IP Fat-tree Throughput vs. Virtual Channels

Figures 38 and 39 show how throughput generally saturates to a peak value with the

increase in number of virtual channels. This result is common across all topologies, but

saturation occurs at different paces. This graph is useful because even though 4 virtual

channels has been generally accepted [9], other network parameters such as topology

type and size greatly impact the throughput vs. virtual channel curve and thus could

change the optimal number of virtual channels. NoCSim makes it possible to create these

graphs and determine the optimal number for a given network.

The decision of number of virtual channels is a trade-off between performance

(throughput) and overhead (buffer space). Each added virtual channel brings an

additional buffer to each input and output channel. Since buffer space is the largest

80

contributor to overall interconnect area, efforts should be taken to not waste chip area by

selecting a number that is too large. Saturation occurs because eventually, extra virtual

channels do not make an impact because they are never populated by flits. The behaviour

is further explained by modelling virtual channel population as a Markov-Chain process

[9]. Throughput increases greatly when two or four virtual channels are used making the

trade-off well worth the extra area.

5.5.3 Localization vs. Throughput

Physical Network Parameters:

IPs 64

Virtual Channels 4

Traffic Parameters:

Type Poisson distributed localized random traffic

Localization Varied.

Load 1.0

Table 7: Parameters for Figures 40-41

81

64 IP 4VC Local vs. Throughput

Figure 40: 64 IP BFT Throughput vs. Localization

82

64 IP 4VC Local vs. Throughput

•IliSpwK IlliJilBl
x — * X

- * — x —

Figure 41: 64 IP Fat-tree Throughput vs. Localization

Uniform traffic provides a benchmark for analyzing different networks [31]. Real life on-

chip network traffic patterns do not mimic this uniformity however. Localization is a

proposed model for traffic that adds some amount of realism to the simulation. NoCSim

allows the user to select the traffic pattern from the main menu. If localization is chosen,

the fraction of traffic that is destined for IPs in the same local group (see Section 3.8 for

local group definitions) may also be specified.

83

This localization graph gives users a chance to study the effects of the change of

localization on throughput. From the example graph it appears that these different

topologies both experience a rise in throughput with localization, but this relationship is

not linear and varies greatly. Topologies with high connectivity seem to be relatively

independent of traffic localization, while lesser connected networks show a larger

dependence. In this example, the BFT shows the greatest dependence on localization,

while the fat-tree shows very little. Whatever the topologies, analyzing their behaviour

under localized traffic conditions is an important metric, and being able to implement

such a situation with little effort is a great feature.

The localization of a traffic pattern is greatly dependent on the application, but having a

graph like this gives designers an opportunity to get a throughput value for an

approximated fraction of localization.

84

5.5.4 Latency vs. Load

Physical Network Parameters:

IPs 64

Virtual Channels 4

Traffic Parameters:

Type Poisson distributed uniform random traffic

Load Varied.

Table 8: Parameters for Figures 42-43

64 IP Latency vs L o a d

0.4 0.5 0.6

Offered Traff ic

Figure 42: 64 IP B F T Latency vs. Load

85

64 IP Latency vs Load

160

140 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Offered Traffic

Figure 43: 64 IP Fat-tree Latency vs. Load

NoCSim can produce data for latency vs. load graphs to give designers a sense of

expected latencies under different loads. From Figures 42 and 43, it is clear that all

topologies experience infinite latency beyond their saturation points. This is because

source queues become backed up and overflow which effectively forces new messages to

wait indefinitely causing latency to approach infinity. The load at which each network

saturates is of great concern because of that fact. Communication-intensive applications

with expected loads of greater than 0.5 should only consider highly connected topologies.

These graphs were produced with a variable sweep of the load parameter. Average

latency is a default output of NoCSim, and provides a key piece of the overall network

performance picture.

86

5.5.5 Energy vs. Load

Physical Network Parameters:

IPs 256

Virtual Channels Varied.

Average energy per flit link

traversal (BFT)

113 pJ

Average energy per flit link

traversal (Fat-tree)

113 pJ

Average energy per header flit

routed (BFT)

47.79 pJ

Average energy per header flit

routed (Fat-tree)

63.71 pJ

Average energy per data or tail

flit routed (BFT)

40.32 pJ

Average energy per data or tail

flit routed (Fat-tree)

53.79 pJ

Traffic Parameters:

Type Poisson distributed uniform random traffic.

Load Varied.

Table 9: Parameters for Figures 44-45

87

256 IP Load vs Energy

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered Traffic

Figure 44: 256 IP BFT Energy vs. Load

256 IP Load vs Energy

250 -,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered Traffic

Figure 45: 256 IP Fat-tree Energy vs. Load

88

As the relative importance of energy consumption grows in the SoC domain, so does the

need to critically analyze the power requirements of chip interconnect. NoCSim gives

users the ability to create energy data from simulation outputs. As mentioned in Section

5.3, the simulator produces flit traversal counts for links and switches. Those counts can

be multiplied by specific per/flit energy calculations that are specific to the simulated

network to get average power results. Energy vs. load graphs show the effect of load

saturation on the energy consumed in the network.

5.5.6 Latency Histograms

Physical Network Parameters:

Topology BFT

IPs 64

Virtual Channels 4

Source Queue Length 1

Traffic Parameters:

Type Poisson distributed uniform random traffic.

Load 1.0

Table 1(: Parameters for Figures 46-47

89

Port Ordered Collision Handling Latency Histogram

Message Latency

Figure 46: Port Ordered Collision Handling Latency Histogram

90

Oldest Goes First Collision Handling Latency Histogram

1800

1600

1400

1200

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451

Message Latency

Figure 47: Oldest Goes First Collision Handling Latency Histogram

NoCSim also has the functionality to produce latency histogram data i f desired by the

user. Latency histograms provide a clear way to view the distribution of message

latencies and to predict quality of service (QoS). Many applications exist where a

specific QoS constraint must be met. QoS constraints may be specified in the form 1 *X %

of all messages must have latency lower than T \ To meet these requirements for a

network, different strategies could be implemented depending on the degree of QoS

required, and other network constraints like area, or energy. The distribution of message

latencies is dependent on the collision handling scheme. Fair schemes will have lumped

results, while greedy schemes will be more spread out with far worse 'bad' cases.

91

A latency histogram can serve to provide data for calculating i f QoS constraints are met,

and also to give an idea of how close or far the network is away from meeting its target

QoS. For instance, i f network latency was generally low, but a few base cases were

pushing the average up, efforts could be taken to remove those cases. Another case

would be where the most messages were arriving with latencies that were beyond the

QoS cut-off. A histogram would clearly show that the network was not capable of

meeting QoS goals and a different topology with a higher bandwidth might be required to

meet the constraints.

In the above graphs, the performance difference between port-ordered collision handling

and oldest goes first collision handling is clearly shown. The port-ordered graph is more

distributed, while the oldest goes first graph has a clear spike at the shortest path latency,

and a clear hump closer to the average latency. The average latency calculation for these

schemes may be quite similar, but when a histogram is created, the vast difference in

latency distribution is apparent.

92

6.0 Conclusions and Future Work

6.1 Conclusions

In this thesis we have described the need for a single network on chip simulation platform

that is capable of accurately modelling a network on chip interconnect. This need stems

from the paradigm shift that will happen in SoC design methodology where large

numbers of heterogeneous IP blocks will by integrated together using a standard

template. Each IP block is capable of sending and receiving data packets through the

interconnect. The non-scalability of buses as on-chip interconnects forces the research

community to select a more scalable alternative for communication.

Many different types of network interconnects have been proposed for the NoC domain

such as k-ary n-cubes, butterfly fat-trees, k-ary n-trees, and octagons. The design of

these interconnects was shown to have many new challenges such as physical switch

design and flow control. After surveying the available network analysis techniques, it

was determined that a network simulation tool was the best option for providing

designers with the required system performance.

Several network simulation tools exist, but fail to contain all functionality desired for

NoC simulation. To fill this void we have developed NoCSim, an iterative flit-level

93

network on chip simulator capable of simulating networks under a wide variety of

parameters and topologies.

NoCSim's feature set includes the ability to set physical network parameters. This

includes topology type, and number of IPs as well as switch parameters like buffer depth,

and virtual channels. Routing and collision handling options are also available.

Several network traffic patterns can be chosen such as uniform random traffic, hotspot,

and localized. Functionality is also in place to input trace driven traffic from external

sources.

Simulations can be run as a series or as a stand alone with settable duration, reset time,

and a number of output options including latency histograms, energy calculations,

throughput, and latency.

Overall, NoCSim gives designers the ability to make informed decisions about on-chip

network interconnection. It does not provide a clear answer to "which is the best

topology in every situation" because that answer does not exist. Since there are so many

variables that depend on each other so tightly, gathering a large amount of accurate

simulation data is the best and only way to provide insight to which network suits which

application best.

94

In conclusion, the large-scale SoC era will soon be a reality. Efforts need to be made

now to beginning solving the design issues that face SoC engineers in this new NoC

paradigm. NoCSim is capable of providing useful, accurate system performance

estimates that can be used as clear evidence for backing interconnect implementation

decisions.

6.2 Future Work

To better evaluate networks for NoC purposes, additional considerations need to be

made. For one, fault tolerance needs to be accounted for when analysing topologies.

Certain topologies are more resistant to faults due to inherent redundancy in their

connectivity graphs. Routing also plays a large role in the impact of fault tolerance. For

instance, an adaptive routing algorithm implemented on a 2D mesh makes it much more

tolerant than the same network using deterministic dimension ordered routing. This is

because if one link joining two nodes fails, the adaptive algorithm has the means to route

packets along a different route to reach their target. Under DOR however, source-

destination pairs must always follow the same path, so paths that go through the failed

link will never reach their destination. Faults could be easily simulated in NoCSim with

some extra logic i f desired.

The problem of coupling realistic traffic patterns to applications is a difficult one to

solve. While uniform traffic provides a benchmark, it fails to show what the network

behaviour will be under real application traffic. Categorizing application traffic would

95

give more insight, but this is difficult as traces from SoC traffic is application specific

and hard to come by. Benchmark traffic traces from a wide variety of applications is

needed to create clear results. NoCSim currently has the ability to run traffic traces, but

the functionality to vary message length from packet to packet needs to be added.

Multicasting functionality is another commonly studied problem that should be added to

the simulator to provide a more complete picture. Header flits could include multiple

destination addresses, or additional header flits could be appended to a packet to provide

the functionality. These options and more should be implemented to first determine if

multicasting is beneficial, and how to go about using it.

96

Appendix A: The NoCSim Source Code in C++

Source code from the NoC57m application can be found at the following link. Please see
readme.txt for details.

/ C M C / t m p / l i b r a r y / t h e s i s / m i c h a e l j

97

Appendix B: NoCSim Data Structures

Initialization of the several data structures involved in the simulation process is done in

the initialization routing. Together these data structures make up the state of the network

as they are produced according to the chosen network parameters and store all flit level

information. Some of the major data structures are described below.

B.1 Ports Data Structure

The ports data structure is an array of port objects. The size of this array is equal to the

size of the port object multiplied by the total number of ports in the network. The total

number of ports value is given by the number of nodes multiplied by the number of ports

per node. Each port contains an input and output portion since all links are assumed to be

bi-directional. The port object is made up of several variables:

98

Type Variable name Description

i n t * o b u f f output buffer contents

i n t * o b u f f input buffer contents

i n t n e x t port at other end of the link

i n t l a s t v i r t s e n t stores the last virtual channel serviced from

output channel

i n t l a s t v i r t s e n t i n t r a stores the last virtual channel serviced from

input channel

b o o l s e n t t h i s c y c l e if a flit has advance to the next port from this

output buffer

b o o l s e n t t h i s -

c y c l e i n t r a

if a flit has advance to the next port from this

input buffer

Table 11: Ports Data Structure

The o _ b u f f and i _ b u f f pointers point to the arrays which contain the contents of

each flit space in the port. Each array can hold (buffer depth * number of virtual

channels) integers. Integer tokens are stored in these spaces to represent flits of different

types, place holders, or empty spaces. The token representation system is as follows:

99

Token Value Representation

<0 Space is reserved for message with index equal to -1 *token.

0 Space is empty

(1,

maxMessage)

Space contains a data flit belonging to message with index equal to

token

(maxMessage,

2*maxMessage)

Space contains a tail flit belonging to message with index equal to

token mod maxMessage

>

2*maxMessage

Space contains a header flit belonging to message with index equal

to token mod maxMessage

Table 12: Token Representations

Each array must be indexed properly when being referenced. The indexing is ordered

such that all of a virtual channel's buffer spaces are given before moving to the next

virtual channel.

The variable n e x t holds the ports array index of the port at the other end of this port's

link. These values are set in the network creation function and effectively join the

topology together.

The l a s t _ v i r t _ s e n t and l a s t _ v i r t _ s e n t _ i n t r a integers are used to make

sure virtual channels are alternated in turn. I.e. to ensure virtual channel x is not always

serviced from a given port. S e n t _ t h i s _ c y c l e and s e n t _ t h i s _ c y c l e _ i n t r a

100

ensure multiple virtual channels of input or output ports are not sent during the same

cycle.

B .2 Msgs Data Structure

The m s g s array holds a number of m s g objects. The number of said objects is

determined by the m a x M e s s a g e variable and has a value greater than the total number

of active messages that could fit in the network at one time (number of nodes * number of

virtual channels).

As messages are injected into the network from source queues, a m s g object is initialized

at the current m s g l n d e x location of the m s g s array. The m s g l n d e x holds the next

available slot in the m s g s array that does not contain an active message. Active

messages are defined as messages that have been injected from a source queue, but have

not had their tail flit consumed at their destination IP. If the m s g l n d e x is increased

beyond the m a x M e s s a g e limit, it is restarted at one, reusing the memory allocated for

old messages which have since been completely consumed. This measure ensures that

memory requirements remain low throughput simulations of any duration.

Each m s g object holds the state of a particular message in the network.

101

Type Variable name Description

i n t * s o u r c e address array pointer

i n t * d e s t destination array pointer

i n t * p a t h store ports along path

i n t * v p a t h

i n t p a t h l e n g t h

i n t e n d t i m e

i n t u p p e r for torus deadlock free routing

i n t d i m holds dimension of travel for message

i n t n u m message number

i n t n e x t c o l l i d e used for collision detection linked list

i n t p r e v c o l l i d e used for collision detection linked list

i n t n e x t used for active message linked list

i n t p r e v used for active message linked list

i n t v i r t current virtual channel

i n t p r i o r i t y ; used in priority scheme collision handling

i n t t e m p p r i o r i t y ; inherited priority

i n t r e q p o r t the next port the header would like to enter

b o o l h e a d e r m o v e d ; i f the header has moved this cycle

b o o l h e a d e r d o n e i f the header has been consumed at the destination

b o o l h e a d e r i n ; true if the msg header is in an input buffer

b o o l i s b l o c k e d ; used for priority inheritance

Table 13: msgs Data Structure

102

The s o u r c e and d e s t pointers store the starting locations of address arrays. The size

of these addresses depends on the topology type and size. This form of address makes

routing simpler for topologies with multiple levels or dimensions.

The path of each message header is stored in port and virtual channel arrays which are the

size of the worst case path through the network. These arrays are used to allow data flits

follow the path set by the header flit through the network.

The start and end time of each message is stored in the m s g object also. This has

obvious latency calculation uses, but also provides a way to determine the state of the

message. When messages are injected, the e n d _ t i m e is set to -2, meaning active.

When consumed, e n d _ t i m e holds the cycle at which the consumption was completed.

As well as being in the m s g s array, to improve speed messages are linked together in

two separate linked lists. One being the active message list, used to determine the

locations of headers when routing and in collision detection. The other being a collision

linked list, used for collision handling. This second list contains all messages in

contention for the same resource. The short list enables different collision handling

routines compare message information quickly. More information regarding collision

handling is found in Section 3.7.

103

Message header state information is also stored in each m s g object. This includes if the

header had moved this cycle, if the header has been consumes, if the header is in an input

buffer, and if the header is blocked.

B.3 IPs Data Structure

To keep track of IP message injection and consumption, an array of i p objects is used.

Not surprisingly, the array contain n IPs, where n is the number of IPs in the network.

The variables of an i p object are shown below:

Type Variable

i n t * g e n e r a t e

i n t * g e n e r a t e m s g s

i n t * c o n s u m e

i n t * c o n s u m e m s g s

i n t c u r r e n t m s g

i n t * q u e u e

i n t q u e u e p o p

i n t n e x t a r r i v a l

Table 14: IPs Data Structure

104

The ^ g e n e r a t e pointer refers to an array of values with length n, where n is equal to

the number of virtual channels. The slots in the array represent the different injection

lanes at the particular IP since each IP is assumed to be able to inject up to n messages at

a time. The values in those slots represent the number of flits left in the generation of a

particular message. E.g. an n=3 IP with g e n e r a t e [0] =5, g e n e r a t e [1] =3, and

g e n e r a t e [2] =0 would have five flits left to generate in lane 0, 3 left in lane 1, and not

be injecting a message in its third lane.

The *generate_msgs pointer refers to a similar array which holds the msgs array

indexes of the messages being generated in each lane.

Likewise, the * consume, and *consume_msgs pointers refer to arrays that similarly

keep track of IP flit and message consumption. The value of consume [i] refers to the

number of flits left to completely consume message consume_msg [i] . IPs are also

assumed to be able to consume n messages at a time.

IPs are also responsible for keep track of the source queue information. The * queue

pointer refers to the source queue array which holds a number of integers equal to the

source queue length. When new messages arrive at the queue, their arrival time is stored

in the queue so accurate latencies can be calculated. Messages are not given indexes or

destinations until they are injected into the network.

105

The n e x t _ a r r i v a l integer stores the cycle time for the next arriving message at this

node. N e x t _ a r r i v a l is determined by adding an exponentially distributed variable

to the current cycle. Doing so gives Poisson distributed arrival times [22].

B.4 Headers Data Structure

The headers array holds x header objects, where x is equal to the total number of ports in

the network. Each header object holds information required when detecting collisions.

Type Var iab le

i n t n u m R e q u e s t e d

i n t f i r s t C o l l i s i o n

i n t c u r r e n t C o l l i s i o n

Table 15: Headers Data Structure

The n u m R e q u e s t e d integer holds the number of headers that have requested the

particular port specified by the index of the headers array. f i r s t C o l l i s i o n gives the

index of the first message that requested the port, and serves as a pointer to the beginning

of the header collision list for this port. c u r r e n t C o l l i s i o n serves as a place holder

for passing through said list.

B.5 Flit Transfer Arrays

Each cycle, flits are set for movement if there is buffer space available at their requested

channel. This information is stored in a series of integer array of size x, where x is the

106

total number of ports in the network. The array names are listed below followed by a

brief overview of their functions:

Array

t o _ i n t e r n o d e m o v e p o r t s

t o i n t e r n o d e m o v e o l d p o r t s

t o _ i n t e r n o d e m o v e v i r t s

t o i n t e r n o d e m o v e o l d v i r t s

t o _ i n t e r n o d e m o v e _ f l i t s

t o _ i n t r a n o d e m o v e p o r t s

t o i n t r a n o d e m o v e o l d p o r t s

t o _ i n t r a n o d e m o v e v i r t s

t o _ i n t r a n o d e m o v e o l d v i r t s

t o _ i n t r a n o d e m o v e _ f l i t s

Table 16: Flit Transfer Arrays

The i n t e r and i n t r a _ m o v e _ p o r t s arrays store the port indexes of ports that will

be receiving a new flit at the end of the cycle. The o l d p o r t s versions of those arrays

store the indexes of the ports that the flits will be removed from. Similarly, the v i r t s

arrays store the associative virtual channel indexes to accompany the port information.

The flits arrays store the actual flit tokens that are to be transferred.

Each of these arrays are coherent in index, meaning t o _ i n t e r n o d e _ m o v e _ p o r t [x]

and t o _ i n t e r n o d e _ m o v e _ o l d p o r t s [x] describe information about the same flit

107

transfer action. The intra, and inter node arrays are independent however. A l l of these

arrays are reinitialized to zero at the start of each cycle.

108

References:

[I] P. Guerrier, A . Greiner, " A Generic Architecture for On-Chip Packet-Switched

Interconnections", Proceedings of Design, Automation and Test in Europe Conference

and Exhibition 2000, pp. 250-256.

[2] W.J. Dally, B. Towles, "Route Packets, not Wires: On-Chip Interconnection

Networks", Proceeding ofDAC 2001, pp.684-689.

[3] P.P. Pande, C. Grecu, A . Ivanov, R. Saleh, "Design of a Switch for Network on Chip

Applications", Proceedings of ISC AS, pp. 217-220.

[4] P.P. Pande, C. Grecu, M . Jones, A. Ivanov, R. Saleh, "Architecture Evaluation for

Communication-Centric SoC Design", submitted to ISCAS 2004.

[5] A M B A Bus specification, http://www.arm.com.

[6] CoreConnect Specification, http://www-3.ibm.com/chips/products/coreconnect/.

[7] Wishbone Service Center, http://www.silicore.net/wishbone.htm.

[8] Design and Reuse website, http://www.us.design-reuse.com/sip.

[9] W.J. Dally, "Virtual-Channel Flow Control," IEEE Transactions on Parallel and

Distributed Systems, vol. 3, no. 2, March 1992, pp. 194-205.

[10] Open Core Protocol, www.ocpip.org

[II] W.J. Dally, C L . Seitz, "Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks", IEEE Transactions on Computers, vol. C-36, no. 5, May

1987,pp.547-553.

109

http://www.arm.com
http://www-3.ibm.com/chips/products/coreconnect/
http://www.silicore.net/wishbone.htm
http://www.us.design-reuse.com/sip
http://www.ocpip.org

[12] J. Duato, " A Necessary and Sufficient Condition for Deadlock-Free Adaptive

Routing in Wormhole Networks " IEEE Transactions on Parallel and Distributed

Systems, vol. 6, no. 6, October 1995, pp. 1055-1067

[13] K . V . Anjan, T .M. Pinkston, "DISHA: A Deadlock Recovery Scheme for Fully

Adaptive Routing", Proceedings of the 9th International Parallel Processing

Symposium, 1995, pp. 537-543.

[14] W.J. Dally, C L . Seitz, "The Torus Routing Chip", Journal of Distributed

Computing, vol.1, no. 3, 1986.

[15] C. Leiserson et al. "The network architecture of the connection machine CM-5",

Symposium on Parallel and Distributed Algorithms, June 1992, pp. 272-285.

[16] F. Petrini, W. Chun Feng, A. Hoisie, S. Coll, and E. Frachtenberg, "The Quadrics

Network: High-Performance Clustering Technology", IEEE Micro, 2002, vol. 22, no. 1,

pp 46- 57.

[17] R.I. Greenberg, L. Guan, "An Improved Analytical Model for Wormhole Routed

Networks with Application to Butterfly Fat-Trees", Proceedings of the 1997

International Conference on Parallel Processing, pp. 44-48.

[18] F. Petrini, M . Vanneschi, "k-ary n-trees: High Performance Networks for Massively

Parallel Architectures", Proceedings of the 11th International Parallel Processing

Symposium, IPPS'97, Geneva, Switzerland, April 1997, pp. 87-93.

[19] F. Karim, A. Nguyen, S. Dey, "An Interconnection Architecture for Networking

Systems on Chips", IEEE Transactions of Computing, September 2002, vol. 22, no.5, pp.

36-45.

110

[20] C. A . Zeferino, A . A . Susin, "SoCIN: A Parametric and Scalable Network-on-Chip",

Proceedings of the 16th Symposium on Integrated Circuits and Systems Design

(SBCCI'03).

[21] K. J. Liszka, J. K. Antonio, H. J. Siegel, "Problems with comparing interconnection

networks: Is an alligator better than an armadillo?", IEEE Concurrency, Vol . 5, No. 4,

Oct.-Dec. 1997, pp. 18-28.

[22] A . Leon-Garcia. "Probability and Random Processes for Electrical Engineering

Second Edition", Addison-Wesleypublishing Company, Inc., May 1994.

[23] R. Jain. "The Art of Computer Systems Performance Analysis, Techniques for

Experimental Design, Measurement, Simulation, and Modeling", John Wiley & Sons, Inc.

1991.

[24] Yi-Ran Sun, "Simulation and Performance Evaluation for Networks on Chip,

Master of Science Thesis", 2001.

[25] NS-2 Home Page: http://www.isi.edu/nsnam/ns/

[26] "IRFlexSim0.5 User Guide", SMART Interconnects Group, USC, 2002

[27] "FlexSiml.2 User Guide", SMART Interconnects Group, USC, 2002

[28] S. Kumar et al, " A Network on Chip Architecture and Design Methodology",

Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI'02),

2002.

[29] L. Benini, G. De Micheli, "Networks on Chips: A New SoC Paradigm", IEEE

Computer, vol. 35, no.l, Jan. 2002, pp. 70-80.

[30] W.J. Dally, B. Towles, "Route Packets, not Wires: On-Chip Interconnection

Networks", Proceedings ofDAC 2001, pp. 684-689.

I l l

http://www.isi.edu/nsnam/ns/

[31] J. Duato, S. Yalamanchili, L. Ni . , "Interconnection Networks: An Engineering

Approach", Morgan Kauffman, 2002.

[32] S. Felperin, P. Raghavan, E. Upfal, " A Theory of Wormhole Routing in Parallel

Computers ", Proceedings 33rd IEEE Symposium on Foundations of Computer Science,

1992, pp.563-572.

[33] R. I. Greenberg, H. Oh, "Universal Wormhole Routing", IEEE Transactions on

Parallel and Distributed Systems, vol. 8, no . 8, March 1997.

[34] W. J. Dally, H. Aoki, "Deadlock-Free Adaptive Routing in Multicomputer

Networks using Virtual Channels", IEEE Transactions on Parallel and Distributed

Systems, vol. 4, no. 4, April 1993, pp. 446-475.

[35] R. V . Boppana, S. Chalasani, " A Comparison of Adaptive Wormhole Routing

Algorithms". Proceedings of the 20th Annual International Symposium on Computer

Architecture, May 1993, 351-360.

[36] OPNET Modeller Website: http://www.opnet.com/products/modeler/home.html.

[37] R. Rajkumar, "Synchronization in Real-Time Systems: A Priority Inheritance

Approach", Boston, Kluwer Academic Publishers, 1991.

[38] A. Erramilli et. A l . , "Self-Similar Traffic and Network Dynamics", Proceedings of

the IEEE, vol. 90, no. 5, May 2002, pp. 800-819.

[39] P.P. Pande, C. Grecu, M . Jones, A. Ivanov, R. Saleh, "Evaluation of MP-SoC

Interconnect Architectures: a Case Study", IWSOC 2004.

[40] P.P. Pande, C. Grecu, M . Jones, A. Ivanov, R. Saleh, "Performance Evaluation

Design Trade-offs for Network on Chip Interconnect Architectures", accepted by IEEE

Transactions on Computers.

112

http://www.opnet.com/products/modeler/home.html

[41] SNNS Neural Network Simulator Website, http://www-ra. informatik. uni-

tuebingen. de/SNNS/.

[42], cnet network simulator (v2.0.9), http://www, esse, uwa. edu. au/cnet/. The University

of Western Australia.

[43] Scalable Network Technologies (SNT) Website, http://www.scalable-

networks, com/.

[44] Cornell University, R E A L 5.0 Network Simulator Website,

http://www. cs. Cornell, edu/skeshav/real/overview. html.

[45] Maryland Routing Simulator (MaRS) Version 2.0 Website,

http://www. cs. umd. edu/projects/netcalliper/software, html

[46] R.V. Boppana, S. ChalasanL and J. Siegel, Wormhole Network Simulator,

http://www. cs. utsa. edu/faculty/boppana/papers/.

[47] Simured Multicomputer Network Simulator Website,

http://tapec. uv. es/simured/indexen. html.

[48] ITSW 20001 Documents.

[49] D. Wingard, "MicroNetwork-Based Integration for SoCs", Proc. DAC 2001, pp.

673-677, Las Vegas, Nevada, USA. June 18-22, 2001.

[50] MIPS SoC-it Website, www.mips.com.

113

http://www-ra
http://www
http://www.scalable-
http://www
http://www
http://www
http://tapec
http://www.mips.com

