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Abstract

The objective of this project has been to design a reliable warning sound recognition
system for hard of hearing and deaf people. Commercially available auditory warning
devices use simple technologies, which are not able to produce the performance required.
The demand for a versatile WARNing Signal Identification System (WARNSIS) that
satisfies the needs of hard of hearing and deaf individuals has been well established.
This WARNSIS must be “teachable” in order to cope with the many different sounds,
and diverse noisy environments. Relevant sounds are telephone rings, sirens, and smoke
and fire alarms, and noise includes all other sounds including radio-music, conversation,
machinery, etc.

In the absence of published data, we studied extensively both timing and spectral
characteristics of warning sounds. We found that the average short-time absolute
amplitude of warning sounds is useful in providing timing information, and that the
short-time spectra yield characteristic patterns for signal classification.

The WARNSIS operates in real-time, and embodies two parts: the timing analyzer
and the spectral recognizer. The timing analyzer continuously monitors the variations
of environmental sounds, from which important timing features are derived. If a po-
tential warning sound is detected, the spectral recognizer is activated to analyze its
spectral patterns. When these patterns match one of the learned and pre-stored tem-
plates, a warning sound is identified with the known warning sound associated with
that template. An advanta.ge’of such a recognition scheme is that it avoids unnecessary

and computationally intensive spectral analysis work when only noise is present.
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Evaluation results show that the WARNSIS can reliably recognize warning sounds
in random noise with no false alarms. In loud music and conversation backgrounds
the WARNSIS can still achieve a high recognition rate, but more false alarms are
generated. In household environments where conditions are less demanding than our
evaluation criteria, our system is expected to produce very satisfactory results. Since
the WARNSIS can be taught to learn and recognize new warning sounds, it may be

used in other applications such as noisy industrial sites and traffic light control.

iii



Table of Contents

Abstract ii
List of Tables xii
List of Figures xvi
Acknowledgement xvii
1 Introduction ' 1
1.1 Background . .. .. . . .. . e 1

1.2 Auditory Warning Aids for Hearing Impaired Persons . . ... ... .. 2
1.2.1 Hard-wired Systems . . ... .. ... ... .. ... 3

1.2.2 Threshold Detector Systems . . . . . . . .. ... ... . ... 4

1.23 HearingEarDogs . . .. ... . ... . ... .. ... ... 5

1.3 Project Objectives . . . . . . . . . . . . .. ... 6

1.4 ThesisOutline . . ... ... ... ... ..., 7

2 Warning Sounds and Generating Devices 9
2.1 Types of Warning Signal Generating Devices . ... ... ... ... .. 9
2.2 Industrial Standards for Warning Devices . . . . .. ... ... ... .. 10
2.2.1 Sound Output Power. . . . . . . . ... .. ... ... 10

2.2.2 Frequency Specification . . ... . ... ... o 0oL 10

2.3 Literature on Warning Sound Characteristics . . . ... ... ... ... 11
2.3.1 Telephone Rings . . . . .. . . . . . i i i i, 11

iv



- 2.3.2 Smoke Detector Alarm Sounds . . . . ... ... ... ... ...
2.3.3 Warning and Alarm Sounds Generated by Vehicles and Traffic
Control Devices . . . . . . .. .. . i i e

2.4 The Emerging Scientific basis for Generating Warning Sounds . . . . . .

2.4.1 A Generic Warning Sound Generating Scheme ... ... .. ..

3 Measurement and Analysis of Timing & Spectral Characteristics

3.1 Timing Characteristics . . . . . ... e,
3.1.1 A PC-Based Data Acquisitién System . ... ...........
3.1.2 DataCollection. . . ... ... ... .. i

3.1.3 Timing Features of Different Warning Sounds . . . . . ... . ..

3.2 Spectral Characteristics . .. ... ... e e e e e e e e e e e '

3.2.1 Comparison of Parametric and Nonparametric Spectral Estima-
tion Methods . . . . .. .. .. ... .. . . ol

3.2.2 Welch’s Non-overlapping Spectral Estimation Method . . . . . .

3.2.3 Implementation of Welch’s Method . . . . . e e e e e e e e

3.24 DataCollection. . . . .. .. ... .. .... e e e e e e e :

3.2.5 Spectra of Warning Sounds Generated by various Warning De-

3.26 Summary . . ... .. e e e e e e

4 Solutions to the Recognition Problem

4.1 . Pattern-Recognition Model for Signal Identification. . . . . . . . .. ..
4.2 Review & Evaluation of Signal Recognition Techniques . . . . . . . . ..
4.2.1 Analyzing & Utilizing Timing Features. . . . . . . ... ... ..
4.2.2 Feature Extraction by FilterBanks . . . . . ... ... ... ...
423 TheLPC/ARModel . . .. ... ... ... ... ...



4.2.4 LPC-derived Cepstral Coefficients . . . ... ... .. ... ... 7

4.2.5 The Hidden Markov Model (HMM) Approach . . . . . .. .. .. 78
4.3 Overview of the Recognition Scheme for WARNSIS . . . . . ... . ... 79
4.4 Extracting & Classifying Timing Information . . . .. .. ... ... .. 82
4.4.1 A Scheme to Extract Timing Features . ... ... .. ... ... 83
4.'5 Extracting Spectral Information. . . . . ... ... ... ... ... ... 94
4.5.1 Feature Extraction . . .. ... ... ... ... ... .. 94
4.5.2 Dynamic Time Warping (DTW) . . ... . ... ... ...... 96
Design & Implementation ' 101
5.1 Timing Analyzer . . . . . . . . . . . i i e e e 101
5.1.1 Microphone . . . . . . . . . . i e e e 101
5.1.2 Analog Signal Conditioner . . . . . . .. ... .. ... ... .. 103
5.1.3 Control & Timing Processor (CTP) . ... ............ 104
5.2 Spectral Recognizer (SR) . ... ................ e e e 104
5.2.1 The Hybrid Analog Processor (MC4760) . . . .. ... ... ... 105
5.2.2 Feature Extraction and Pattern Matching Processor (uPD7761) 106
5.2.3 The Control Processor (uPD7762) . ... ... ... ....... 108
5.2.4 Pattern Memory ... ........ e e e e e e e e 109
5.3 Software Program .. ................. e e e e e 109
5.3.1 The Command Set of the Spectral Recognizer . . . . . .. .. .. 110
5.3.2 Initialization Stage . . . . . . .. .. ... . o o oo 111
5.3.3 Tralning Stage . . . . . . . & . i i i i e e e e e e 112
5.3.4 Recognition Stage . . . .. ... . ... e e 114
Evaluation 118
6.1 Average Recognition Accuracies. . . . .. ... .. .. D 120

vi



6.2 False-alarm Rates . . . . . . . . . . . . i i i i e e e e e e e e

6.3 DiSCUSSION . . . & & v vt e e e e e e e e e e e e e e e e e e e e e e

6.3.1 Average Recognition Accuracies . . ... .............

6.3.2 False-alarm Rates . . . . . . . . . .« o i i i v e e

Conclusions and Recommendations
7.1 Summary & Conclusions . . . . . e,

7.2 Recommendations for Future Directions of Research . . . ... ... ..

References

Appendices

A

B

Formulation of Relationship between SNR and SPL measurements
Format of the command set of the SR

Software Operating Manual of The WARNSIS

Cl Program Files . . . . .. . .. . ... . e e

C.2 InteractiveOperations . . . . . .. ... ... ...
C.2.1 Initialization Stage . . . . . . ... .. ... .. ... ... ...,

C.2.2 Training/Recognition Stage . . . ... ... ... .. .......

Evaluation Results

D.1 The Complete WARNSIS . ... ... ... .. ... ....... I
D.1.1 Recognition Results with Background Steady Noise . . . . . . . .
D.1.2 Recognition Results with Background of FM Broadcast plus Steady

Noise . ... ... .0 eeeen, e e e e e e e e e

vii

140

145

148
148
149
150
152



D.1.3 Recognition Results with Background of AM Broadcast plus Steady
Noise . . . . . . . . e e e e 163

D.1.4 Results of phone ring recognition with minimum burst duration

(MBD) set to 1.024 sec . . . . . . ... ..o 165

D.1.5 Results of the False-alarm Tests for the complete WARNSIS . . . 168

D.2 Timing Analyzer Part Alone. . . . . .. . ... ... ... ........ 170
D.2.1 Recognition Results with Background Steady Noise. . . . . . .. 170

D.2.2 Recognition Results with Background of FM Broadcast Plus Steady
Noise . . . . . . . . e 172
D.2.3 Recognition Results with Background of AM Broadcast Plus

Steady Noise . . . . . . .. ... . . . .. . . 174

D.3 False-alarm Results for. the Timing Analyzer Alone . . . . ... ... .. 176
D.4 Spectral Recognizer Part Alone . . . . . . . ... .. ........... 178
D.4.1 Recognition Results with Background Steady Noise. . . . . . .. 178

D.4.2 Récognition Results with Background of ¥M Broadcast plus Steady
Noise . . .. . . . . e e e 181

D.4.3 Recognition Results with Background of AM Broadcast plus Steady
Noise . . . . . @ e e 184

D.4.4 Results of false-alarm tests for the spectral recognizer part alone 187

E Specifications 188

viii



List of Tables

2.1 Spectral analysis results for different smoke detectors [13] . . .. .. .. 13
2.2 Summary of spectral analysis results for traffic alarm sounds [14] . . .. 14
3.3 Instantaneous and short-time signal amplitudes . . . . ... .. ... .. 20
5.4 Parameters used for the Timing Analyzer . .. ... ... ........ 111
6.5 A summary of recognition results with MBD set to 0.1024 sec . . . . . . 121
6.6 A summary of recognition results with MBD set to 1.024 sec . . . . . . 123
6.7 Results of the false-alarm test with MBD set to 0.1024 . . . . ... . .. 125
6.8 Results of false-alarm test with MBD set to 1.024sec. . . . . . .. ... 126
A.9 Tabulation of SPL reading difference and SNR . . ... ... ...... 144
B.10 Format of commandset of SR . . . . .. .. ... ... ... ....... 146
B.11 Legal Values for parameters of the commandset . ... ... ... ... 146
B.12 Interpretation of status output codes from uPD7762 . . . ... .. ... 147
D.13 “Numbers” assigned for different warningsounds . . ... ... ... .. 157
D.14 Confusion matrix for recognition results generated by the complete WARN-
SIS in the presence of steady noise . . . ... ... ... .. ....... 159
D.15 Recognition rates of burst-type sounds under steady noise condition . . 159
D.16 Recognition rates of steady sounds generated by the complete WARNSIS
under steady noise condition . . . ... .. ... ... . 0 0. 159

ix



D.17 Confusion matrix for phone ring recognition generated by the complete

WARNSIS under steady noise condition . . . ... ... ... . ... .. 160
D.18 Recognition rates of phone ring generated by the complete WARNSIS

under steady noise condition . . ... ... ... ... . 00000 160
D.19 Confusion matrix for recognition results generated by the complete WARN-

SIS in the presence of FM broadcast plus steady noise . . . . . .. ... 162
D.20 Recognition rates of burst-type sounds produced by the complete WARN-

SIS under FM broadcast plus steady noise condition . . ... ... ... 162
D.21 Recognition rates of steady sounds generated by the complete WARNSIS |

under FM broadcast plus steady noise condition .. ... .. ... ... 162
D.22 Confusion matrix for recognition results generated by the complete WARN—

SIS in AM broadcast plus steady noise background . . . . ... ... .. 164
D.23 Recognition rates of burst-type sounds generated by the complete WARN-

SIS in AM broadcast plus steady noise environment . . ... ... ... 164
D.24 Recognition rates of steady sounds generated by the complete WARNSIS

in AM broadcast plus steady noise background . .. ... ... ... .. 164
D.25 Confusion matrix for phone ring recognition generated by the complete

WARNSIS under the condition of FM broadcast and the steady noisé

with MBD set to 1.024sec . . . . . . . . . . . o i i it 166
D.26 Results of recognition rates of phohe rings generated by the complete

WARNSIS in FM broadcast plus the steady noise background . . . . . . 166
D.27 Confusion matrix for the results of phone ring recognition generated by

the complete WARNSIS in the presence of AM broadcast plus the steady

noise with MBD set to 1.024sec . . .. .. .. ... ... ... ... .. 167



D.28 Results of phone ring recognition rates generated by the complete WARN-

SIS in the presence of AM broadcast plus steady noise with MBD set to

1.024 seC . . . . . e e e e e e e e e e e e e e e e e e e e e e 167
D.29 Results of the false-alarm tests for the complete WARNSIS with MBD

set 0 0.1024 sec . . . . . ..o L e e e e e 168
D.30 Results of the false-alarm tests for the complete WARNSIS with MBD

set to1.024sec . . . . . . L. L e e e e e e e e e e e e e e e 169
D.31 Confusion matrix for warning sound recognition generated by the timing

analyzer alone in the presence of steady noise . . . . . ... .. ... .. 171
D.32 Recognition rates of the timing analyzer part alone in the presence of

steady noise . . . . . . .. L. e e e e e e e 171

D.33 Confusion matrix for warning sound recognition generated by the timing
analyzer part alone in the presence of FM broadcast plus steady noise . 173
D.34 Recognition rates of the timing analyzer part alone in the presence of
FM broadcast plus steady noise . . . . . . ... ... ... ........ 173
D.35 Confusion matrix for warning sound recognition generated by the timing
analyzer part alone in the presence of AM broadcast plus steady noise . 175

D.36 Recognition rates of the timing analyzer part alone in the presence of

AM broadcast plus steady noise . . . ... ... .. ... ... ..., 175
D.37 False-alarm test results of the timing analyzer part alone with MBD set

t00.1024sec . . . . . . L oo e e e e e e e e e e e e e e 176
D.38 False-alarm test results of the timing analyzer part alone with MBD set

101.0248eC . . . . . L. e e e e e e e e e e e e e e e 177
D.39 Confusion matrix for warning sound recognition generated by the spec-

tral recognizer part alone in the presence of steady noise . . . . . . ... 179

xi



D.40 Results of steady sound recognition rate generated by the spectral rec-
ognizer part alone in steady noise background . . . . . ... .. ... ..
D.41 Results of burst-type sound recognition rates produced by the spectral
recognizer part alone in steady noise background . . . ... .. ... ..
D.42 Results of phone ring recognition rate produced by the spectral recog-
nizer part alone in steady noise background . . . .. ... .. .. .. ..
D.43 Confusion matrix for the results of warning sound recognition generated
by the spectral recognizer part alone in FM broadcast and stéady noise
background . . . . . . ... L. e e e e e e e
D.44 Results of steady sound recognition rate produced by the spectral rec-
ognizer part alone in FM broadcast plus steady noise background . . . .
D.45 Results of burst-type sound recognition rates produced by the spectral
recognizer part alone in FM broadcast plus steady noise background . .
D.46 Results of phone ring recognition rates produced by the spectral recog-
nizer part alone under FM broadcast plus steady noise condition .
D.47 Confusion matrix for warning sound recognition generated by the spec-
tral recognizer part alone under AM broadcast plus steady noise condi-
D.48 Results of steady sound recognition rates produced by the spectral rec-
ognizer part alone under AM broadcast plus steady noise condition . .
D.49 Results of burst-type sound recognition rate produced by the spectral
recognizer part alone in the presence of AM broadcast plus steady noise
D.50 Results of phone ring recognition rate produced by the spectral recog-
nizer part alone in the presence of AM broadcast plus steady noise .

D.51 False-alarm tests for the spectral analyzer part alone . . . . ... .. ..

xii

182

183

183

185

185

186

186



2.1

3.2

3.3

3.4
3.5

3.6

3.7

3.8

3.9

3.10

List of Figures

Auditory Warning Sound Components {17,21,23] . ... ... ... ...

Signal acquisition and derivation of instantaneous absolute signal ampli-

tudes . .. . e e e e e e e e e e e e e e e e e e

Experimental set-up for data collection . . . . .. .. ... ... .....
Short-time average absolute amplitudes (STAAA) of siren sounds: a} J1
: Burglar alarm (JDS-100); b) J2 : MPI-11; ¢) J3 : JDS-100 I; and d)
J4: HIFLO . . . . e e e e e e e
Short-time average absolute amplitudes (STAAA) of siren sounds: a) J5
: High steady sound; b) J6 : Pulser; ¢) J7 : Steady horn; and d) J8 :
Electronic Synthesized Bellsound ... ... ... ... .........
Short-time average absolute amplitudes (STAAA) of telephone rings and
smoke alarm sound: a) Electro-mechanical Ringer; b) Electronic Ringer;
and c) Smoke alarmsound . ... ... ............. SIS
Short-time average absolute amplitudes (STAAA) of radio broadcasts a)
Pop music; b) Speech; and ¢) Rock music . . . ... ...........
Short-time average absolute amplitudes (STAAA) of siren sounds with
radio-broadcast as background: a) J1; b) J2;¢) J3;and d) J4 . . . . . .
Short-time average absolute amplitudes (STAAA) of different siren sounds

with same background noise: a) J5; b) J6;c) J7;and d) J8 . . .. ...

xiii

18

21
23
24

27

28

29

30

31



3.11

3.12
3.13
3.14
3.14

3.15
3.16
3.17
3.18
3.18
3.18
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26

4.27
4.28
4.29

Spectrogram of the minimum 4-sample Blackman-Harris window, where

PSD denotes power spectral density . . ... ... ... ......... 41
Flowchart of the spectral analysis program. . . ... .. ......... 42
Short-time spectra of an electromechanical ringer . . . . . . .. .. ... 47

(a) : Spectra of an electromechanical ringer with seven loudness settings 48

(b) : Spectra of another electromechanical ringer with seven loudness

settings . . . . . L L e e e e e e e e e e e e e e 49
Long-time averaged spectra of five electromechanical ringers . . . . . . . 50
Short-time averaged spectra of a multiple-line telephone . . . . . .. .. 51
Effects of steady fan noise on telephone ring spectra . .. .. ... ... 52

(a) Short-time spectra of electronic rings with pitch set at position one . 54
(b): Short-time spectra of electronic rings with pitch set at position two 55
(c) : Short-time spectra of electronic rings with pitch set at position three 56

(d) : Short-time spectra of electronic rings with pitch set at position four 57

Spectra of Rapid Yelpsound ... ... ... ............... 61
Spectra of Conventional Yelpsound . .. ... ... ... ........ 62
Spectra of Low-Hisweepsound . . . . ... ... ... .......... 63
Spectra. of European Hi-Lowsound . . . . ... ... ... ........ 64
Spectra of Hi-Frequency Steady sound . . . . ... ... .. ... .... 65
Spectra of Pulsating Hornsound . . .. ... ... ... ......... 66
Spectra of Steady Hornsound . . . . . . .. .. .. ... ... . ... 67
Spectra of Electronic Synthesized Bell sound . ... ... ........ 68
Classic Signal Recognition Scheme [37,38) . . ... .. ... ... .... 70
The ‘hybrid’ recognition scheme for WARNSIS . . ... ... ... ... 80
Block diagram of the Timing Feature Extractor . . . . . ... .. .... 82

Xiv



4.30

4.31

4.32

4.33

4.34

4.35
4.36
4.37

4.38

5.39
5.40
5.41
5.42

5.43

Relationships between the instantaneous energy and the insta.nta.heous
absolute amplitudes of a sequence, x(n). (a) : the plot of x(n); (b): the
plot of |[z(n)|; and (c): the plot of z*(n) . . . ... ... ... ......
(2): The STAAA contour of a steady sound; (b): The STAAA contour
of a burst-typesound . .. ... .. ... ... ... o o
Two typical examples of how the dynamic amplitude threshold adapts
to acoustic energy variations of the environment. (a): sudden decrease
in signal levels; (b): sudden increase in signal levels. . . . .. ... ...
(a) : Detection of a steady sound; (b): An illustration of how the scheme
rejects anon-steadysound . . . . . .. ... L L oL oL
A demonstration of the use of the MBD and MIAT to refine the basic
warning sound analysis scheme . . . . ... ... .. .. .. .......
Flowchart of the Timing Feature Extraction Scheme . . ... .. .. ..
Filter-bank analysis of Warningsounds. . . . .. ... ..........
An example of pattern matching between a referencé template and an
unknown pattern . . . . . .. .. ... . e

Local path constraints for DTW . . .. ... ... ... .........

The building blocks of WARNSIS . . . . .. ... ... ... .......
Block diagram of MC4760 . . . . . . . . . . . . . i i v it
Block diagram of the functional operation of uPD7761 . . . . ... ...
Timing relationships associated with the synchrdnization of the spectral
recognizer to burst-type warning signals, where STAAA is the short-time
average absolute amplitude of signal; RP is the repetition period; ASBW
is the average signal burst width, and SR is the spectral recognizer . . .

Flowchart of the training scheme for steady sounds . . . . . ... .. ..

XV



5.44 Flowchart of training procedures for burst-type warning sounds

5.45 Flowchart of the recognition procedure

6.46 An example of a phone ring sequence added with nonstationary back-

ground noise

.................................

xvi



Acknowledgement

I would like to thank my supervisor, Dr. C.A. Laszlo for his patience, encouragement,
and input during this project. I am greatly indebted to my colleagues, Darrell Wong
and Sammy Yick for their invaluable discussions and advice. Special thanks are due
to Angela Choi and Michael Slawnych for their comments and suggestions to improve
the presentation of this thesis. Finally, very deep gratitude is directed to my family for
their generous financial support.

This project was funded by Natural Sciences and Engineering Research Council of

Canada grant A67012.

xvii



Chapter 1

Introduction

1.1 Background

Auditory communication is vital to normal life. Such communication often focﬁses
on speech which is one of the most effective means of conveying ideas, opinions or
information among people. Auditory communication also plays an important role in
associating people with their environment. In particular, auditory warnings are of great
importance. Such warnings include baby cries, telephone rings, doorbells, door knocks,
fire or smoke alarm bells, burglar alarms, car horns, sirens, and electronic buzzers
commonly used in household appliances and office equipment.

Generally, auditory warnings are achieved by special sounds. Firstly, warning
sounds are usually loud, strident and insistent to effectively cut through speech and
background noises, and to command people’s attention. Secondly, different warning
sounds convey different “i’nessages” which demand responses of varying urgency. Some
warning sounds are used to “announce” a condition, or an event; for example, an in-
coming telephone call, or a visitor at a door. Other warning sounds alert people to .
potential life-threatening situations such as a fire, or intruders inside a house. Failure
to respond to these warning sounds may result in serious harm.

Unfortunately, hearing-disabled people have difficulty in hearing warning sounds
and in many cases cannot hear even very loud alarms. This problem extends to many

different situations of everyday life. For such individuals, many common household
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sounds go undetected (sounds produced by oven buzzers, bathroom fans, stove hood
fans, or running water) causing inconvenience and occasional danger in homes. In
noisy environments, hearing-disabled individuals cannot discriminate different types of
sounds. For example, they cannot hear the sounds that indicate automobile malfunc-
tions such as worn brakes, bad wheel bearings, or noisy mufflers.

In addition, hard of hearing individuals who wear hearing aids can only detect
warning signals if their hearing aids are operating and are sensitive enough. Specifically,
unless the hearing aid is worn during sleep, hard of hearing people usually cannot hear
the sound of burglar alarms, or fire and smoke alarm bells. Furthermore, in tornado-
prone states of the U.S. (Kansas, Texas and Arkansas), the general public is usually
alerted of approaching tornadoes by loud siren sounds. Missing such warning sounds
can be fatal! But hearing-disabled people often cannot hear such sounds, and their
utmost concern and their urgent need for special devices to warn of such impending
disasters have been forcefully stated [1]. -

Indeed, the invisible disability of deaf and hard of hearing people creates serious
inconveniences, frustrations, fears, and hazards in their daily life. In particular, the
vulnerability to missing auditory warnings contributes significantly to the lack of mobil-
ity, independence, and security of hearing-disabled persons. In response to the obvious
need to help hearing-disabled people to cope with this problem, a number of special

alert aids have been designed and marketed.

1.2 Auditory Warning Aids for Hearing Impaired Persons

A range of systems, signalling and wake-up devices are currently available to alert
hearing impaired individuals to telephone rings, doorbells, door knocks, fire or smoke

alarm bells, and general emergency signals in diverse environments [1,2,3,4]. Some
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systems are simple sound amplitude amplification devices, which increase the volume of
warning sounds to a level detectable by hearing aid wearers. Other, more sophisticated
systems, are capable of driving external visual modules and tactile actuators.

Three major types of auditory warning aids for the hearing-disabled are in use:

directly activated hard-wired systems, acoustic threshold detector systems, and hearing

ear dogs.

1.2.1 Hard-wired Systems

Such systems require direct electrical connection to sound generating sources. They
are reliably activated by the electric signal that drives the warning sound generator,
and alert the hearing-disabled by either flashing lights, or by vibratory actuators. To
increase the operational range, and to eliminate the need for long cables, an interme-
diate AM or FM transmitter can be integrated into such systems. Single or multiple
remote receivers distributed throughout the home or oﬁ'ice can pick up the transmitted
signal, aﬁd subsequently turn on actuators.

A characteristic example of such systems is the Sonic Alert, which will produce
light flashes to alert the hearing impaired to telephone calls. The device can be used
with any telephone, and is easily installed by plugging it into any modular telephone
jack and electrical outlet. Both the plug-in énd a remote radio-transmitter version
are available from the Special Neéds Department of the British Colurﬁbia Telephone
Company.

Some hard-wired devices are simple enough to be installed by users without exten-
sive electronic skills (e.g., Sonic Alert). Other, more sophisticated devices, are custom
designed, and require permanent installation by a technician at a considerable cost.
As reported, these custom designed devices often must be left behind when hearing-

disabled individuals move from house to house [1]. In addition, as the number of sound
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generating devices increases in homes or offices, the cost of hard-wired systems esca-
lates due to both the wiring required, and the increased complexity. Finally, before
any remote warning device is installed, hearing-disabled people have to check if there
are similar remote systems installed in neighboring houses. Due to “cross-talk”, such

systems in close proximity are very prone to generating false warnings.

1.2.2 Threshold Detector Systems

Since warning devices produce sounds that are louder than normal environmental sound
levels, threshold detector systems are designed to respond to changes in loudness. In-
stead of direct connection to sound generating sources, threshold devices employ a
microphone, or special electromagnetic field sensor for signal acquisitidn. With sensi-
tivity adjustment, a threshold device can be adapted to operate with various types of
alarms, for example horns, sirens, and telephones, under different acoustic conditions.
When the signal level from any source exceedé the preset threshold value of the sys-
tem, such a device will automatically activate the actuator to alert a hearing impaired
individual. _

Since these devices cannot selectively identify the sources of the loud sounds, in
acoustic systems the microphone is positioned in close proximity to the warning sound
generator for maximum system sensitivity and selectivity to the desired inputs. A
hearing impaired person can adjust the device sensitivity according to the acoustic
background noise level. Such a device is simple to operate, and is used to monitor
crying babies, ltelephones, doorbells, and burglar or smoke alarms.

While threshold devices are generally more flexible than hard-wired systems, proper
setting of the device sensitivity is frustfating to many users. Adjusted too high, the
device is likely to miss the occurrence of warning sounds. A low threshold setting makes

the device vulnerable to false triggering.
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Threshold detection systems using electromagnetic field sensing detect only warn-
ing sounds emitted by electromechanical actuators, for example telephones and doors
equipped with electromechanical bells. When an electromechanical bell is activated,
a strong time-varying electromagnetic field is produced to activate an internal elec-
tromechanical vibrating system. Consequently, this vibration generates a loud sound.
For the purpose of warning sound detection, the stray electromagnetic ﬁeld emitted
by many devices may be utilized. For example, with a suction cup electromagnetic
field pickup coils may be attached to the telephone or bell housing to intercept part of
the time-varying magnetic field. The output of the pickup coil is amplified and fed to
an appropriate threshold detection circuit. To alert hearing disabled individuals, such
systems provide outlets for lamps and external vibratory actuators.

Since some warning devicés are usually installed out of reach inside houses and
offices (for example, fire alarms), the installation of the field pickup coils may be diffi-
cult. Due to low signal levels, special care is needed in handling the wiring connection
" between the pick-up coil and the threshold detector circuit. In addition, many newer
appliancés use solid-state buzzers which do not generate any magnetic field. Neverthe-

less, electromagnetic field sensing is a reliable method if employed under the appropriate

circumstances.

1.2.3 Hearing Ear Dogs

While a Hearing Ear dog is not a technological device, it is included here to underscore
the seriousness of the problem, and the complex and expensive solutions that are being
offered. The Hearing Ear dog program was originally funded by the U.S. Government
to meet the special needs of hard of hearing and deaf people. An affiliated program was
established in Ontario, Canada and is named the Hearing Ear Dogs of Canada. Only

mature hearing-disabled individuals are qualified recipients of Hearing Ear dogs. In the
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U.S., the expenditure involved in dog selection, veterinary care, housing, training, and
placement are fully subsidized by the U.S. Government. Hearing Ear dogs are trained
to alert their owners to warning sounds commonly found in the living environment.

Dogs chosen from pet adoption offices are .extensively screened prior to the rigorous
four to five months of training. During this training, the Hearing Ear dog learns obe-
dience, and how to respond to sounds emitted by household appliances and warnings.
The Hearing Ear dogs can reliably recognize warning sounds they are trained for, and
will skillfully alert their owners. In addition, the Hearing Ear dog usually is an ideal
companion for elderly people.

The Hearing Ear dog approach to the problem also has some negative aspects. The
training and dog placement processes are lengthy and costly, and the program often
has a very long list of applicants wanting dogs. Moreover, since the training of Hearing
Ear dogs requires special skills, once a placement is made recipients cannot teach their
dogs to learn new warning sounds. The maintenance of the dogs is a costly proposition,
and their transportation also creates problems. Furthermore, the presence of animals

is not always tolerated in offices, hotels and other public places.

1.3 Project Objectives

- Existing auditory warning aids for hearing-disabled people suffer from various func-
tional deficiencies. Such deficiencies include lack of portability, lack of flexibility in
recognizing warning sounds, and the propensity for false-alarms. In a recent survey
[1], hearing-disabled people have expressed their desire for personal warning sound
recognition systems which are easy to operate, and which are able to distinguish differ-
ent household warning and emergency sounds. The demand for a versatile WARNing

Signal Identification System (WARNSIS) which satisfies such needs is well established.
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Motivated by this demand, by recent advances in speech recognition technology, and
by the availability of specialized VLSI processors, it has been our objective to develop

a real-time, adaptive WARNSIS which meets the following design criteria:

1. Tobe “teachable”, which means that the device must be able to learn new warning

sounds, and recognize them after a training procedure;

2. Have a recognition performance that is similar to that of normally hearing adults

in very noisy environments; and

3. To produce acceptable positive and negative false-alarm rates in use.
In order to achieve this goal, work was undertaken to :

1. Investigate the characteristics of the warning sounds commonly used in office and

living environments;

2. Utilize the results obtained in 1. to develop a recognition technique which has

high reliability under noisy conditions;

3. Implement a prototype WARNSIS embodying the recognition technique devel-

oped in 2; and

4. Evaluate its overall performance in different noisy environments.

1.4 Thesis Outline

In Chapter 2 the literature on the various warning devices is reviewed. Industrial stan-
dards for the output power and spectral characteristics of warning sound generators are
also discussed. Chapter 3 investigates the timing and specti‘al features of some common

auditory warning sounds. Chapter 4 reviews different speech recognition techniques,
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with detailed discussion of the filter-bank approach used in this work. The details of
our WARNSIS implementation are presented in Chapter 5, and the evaluation of the
system performance is contained in Chapter 6. Chapter 7 gives the conclusion and

recommendations for further improvement in system performance.



Chapter 2

Warning Sounds and Generating Devices

2.1 Types of Warning Signal Generating Devices

Devices which generate audible warning signals employ either electro-mechanical or
solid state transducers. Electro-mechanical warning devices generally include a metallic
gong, hammer and coil assembly. To activate such a device, its coil is electrically
energized, causing the hammer to vibrate and to strike the gong. The tonal quality
and loudness of these devices depend upon the various components in the electro-
mechanical assembly. Such are the shape and size of the gong(s), the force with which
the hammer strikes the gongs, and the mounting and housing enclosure. In addition, in
the manufacturing process, the mechanical components are assembled with fairly large
tolerances. Therefore, the characteriétics of the sound generated by such devices vary
significantly, even for different units of the same model.

In the devices which employ solid-state trans.ducers, warning sounds are elicited
by applying electric voltage waveforms to these components. The tonal quality and
loudness of such devices depend on the characteristics of these waveforms, and of the
frequency response of the transducers. The waveforms are produced by electronic
circuits, and therefore their characteristics can be easily manipulated. Since transducers
are manufactured to close tolerances, the characteristics of the sounds generated by
these electronic warning devices vary very little, even for different units of the same

model.
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2.2 Industrial Standards for Warning Devices

2.2.1 Sound Output Power

Conceptually, warning sounds should be sufficiently loud to be effective in generating
attention among people in the vicinity of the warning device. Based on this concept,

various standard organizations !

established recommendations for the sound output
power of smoke alarm detectors [5], household fire warning and burglar alarm systems
[6], vehicle alarm systems [7], telephone rings [8,9,10] and general audible signalling
devices used for life safety and property protection [11]. In general, it is recommended
that in non-industrial environments an auditory warning device operated at rated volt-
age, and mounted in its intended position, be capable of providing an output sound
pressure level (SPL) at least 85 dBA (with reference to 20 u Pa) measured at a distance
of 10 feet from the device [12].

More specifically, the minimum recommended SPL for warning devices depends on
the environment where these devices are installed. If the warning devices are used in
public places, a minimum of 15 dBA SPL above the average ambient sound level is

required. If the devices are intended to be used in private residences, these devices

should produce a minimum of 10 dBA SPL above the average ambient sound level [11].

2.2.2 Frequency Specification

Our survey of the publications of five major standard associations led us to conclude
that no specific guidelines on frequency content of general warning sounds has been
established. The only exception is the telephone, whose required acoustic output power

and frequency content are specified by the CSA, EIA, ANSI and Bell Laboratories.

!Canadian Standards Association (CSA), the Electronic Industries Association (EIA), the Under-
writers Laboratories Incorporated (UL), the American National Standards Institute (ANSI), and the
National Fire and Protection Association (NFPA) of the U.S.
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2.3 Literature on Warning Sound Characteristics

2.3.1 Telephone Rings

Telephone ringers are designed to produce easily recognizable alerting sounds. The
available standards are applicable to telephones with electromechanical, or bell-type,
alerting ringers, and with modern electronic tone ringers [8,9,10]. The important per-
formance characteristics specified by these standards are summarized for our purposes

as follows:

1. The alerting signal of a telephone with an electro-mechanical alerting device shall
contain two or more major frequency components (fl and f2) in the 500 — 6000
Hz range, with at least one having a mean power level of > 73 dB, relative to 1
pW. The second major component shall have a mean sound power level of > 68

dB, relative to 1 pW;

2. The total mean acoustic power level shall be > 80 dBA, relative to 1. pW. These

power levels apply with the volume control set for maximum volume;

3. At least one of the major component (f1) shall be below 2000 Hz. The nominal
frequency of the higher major frequency component (f2) shall be equal to or

greater than 5/4 of the lower major frequency component (f1), i.e., f2 > 5/4 f1;

4. The alerting signal of a telephone with an electronic alerting device that does
not produce an acoustic spectrum rich in overtones shall meet the criteria in 1),
with the exception that f1 and f2 shall each have a mean power level of > 73 dB,

relative to 1 pW;
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5. A telephone shall have a loudness adjustment accessible to the user that produces
at least of a 6 dBA total attenuation when operated from its high to low volume

position; and

6. With regard to ringing cycles, ringing current supplied by telephone company

central office shall belong to one of the following sequences :

¢ Repetitive bursts of 2 seconds out of every 6 seconds where an individual

burst may be as short as 0.8 second;

o Repetitive bursts of 1 second out of every 4 seconds where an individual

burst may be as short as 0.6 second; or

o Repetitive bursts of at least one ringing burst of a minimum 0.5 second

duration in any 4 second period.

2.3.2 Smoke Detector Alarm Sounds

Smoke alarms are used to alert people to the presence of smoke and to the potential of
fire. Generally, this warning sound is very strident and insistent. In a study of alarm
sound attenuation inside residential buildings Halliwell and Sultan [13] investigated
the spectral content of the sounds produced by a number of smoke detectors. Using
a 2-channel FFT analyzer connected to two microphones, they obtained the short-
time spectra, and for each sound 64 of these short-time spectra were averaged to give
the spectrum. The narrow-band spectrum was subsequently converted to a third-
octave spectrum by simply summing the energy within the third-octave bands. Their
results for various smoke detectors show two or more strong spectral components in all
computed spectra [Table 2.1]. Unfortunately, this work did not include the investigation

of the variation of the short-time spectra obtained from consecutive samples.
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Table 2.1: Spectral analysis results for different smoke detectors [13]
Detector 1/3 Octave Frequency Bands (kHz)

TypeT 05 063 0.8 1.0 125 1.6 2.0 2.5 3.15 4.0 5.0
A1 [38F 39 39 30 63 57 73 96 84 63 50
A2 37 38 38 38 44 56 70 98 92 67 56
B1 82 82 60 71 74 81 79 95 95 95 88
B2 79 81 66 72 76 81 77 93 94 96 92
C1 44 44 44 45 45 50 61 79 102 90 69
C2 44 44 44 45 45 50 62 79 102 91 70
D1 46 46 46 46 47 52 63 80 103 93 71

D2 44 44 44 45 45 50 62 80 102 88 68
El 84 70 69 85 76 92 88 98 92 Ol 80
E2 76 83 63 69 80 87 85 97 100 91 89
Fi 61 60 72 70 70 74 86 75 83 90 82
F2 58 61 69 70 72 77 90 81 82 89 82
G1 37 37 37 .38 39 50 63 88 95 69 55
G2 38 38 38 38 30 48 61 84 95 71 56

1 : Detectors with same letter denote identical model.
1: Maximum Sound Power Output in dB

13
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2.3.3 Warning and Alarm Sounds Generated by Vehicles and Traffic Con-

trol Devices

Miyazaki and Ishida [14] have studied the spectral characteristics of traffic alarm sounds
commonly used in Japan. Such include sounds produced by electric horns used in
passenger cars, small, middle size buses and trucks; air horns used in large buses,
heavy duty trucks, and trailers; sirens used in emergency vehicles; horns used in rail-
road crossing; and traffic noises.

Their observations have only limited value for us since they neither give description
of the techniques used nor do they specify the type (short-time or long-time aver-
age) of the spectra obtained. Table 2.2 summarizes their results. They conclude that

traffic-alarm-sounds have sharp line spectra, whereas ambient traffic noise is wide-band

random noise.

Table 2.2: Summary of spectral analysis results for traffic alarm sounds [14]

Traffic Alarm Installed Vehicles Major Frequency
Devices Features
Electric horn Passenger cars, basic resonant frequency
small, middle size busses at 300 Hz - 500 Hz,
trucks dominant harmonics at
2.0-4.0 kHz
Air horn large busses, heavy duty trucks, | dominant peaks at
trailers 300 - 500 Hz
Siren Emergency vehicles dominant peaks at
700 - 2000 Hz
Rail-road crossing 2 - 3 dominant peaks at
2.0 - 4.0 kHz
ambient traffic ‘broadband noise
noise ' below 300 Hz

In British Columbia, and typically in North America, three types of emergency ve-

hicle siren sounds are used: the “hi/lo” sound, the “yelp” sound, and the “wail” sound.
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The hi/lo sound is usually found on most ambulances. It consists of two alternating
tones, and with the pattern repeating about once per secbnd. Two commonly used
tone pairs are 690/920 Hz and 520/1520 Hz. The wail sound is a slow changing tone
between two preset tone frequencies. A typical example is the wail sound used by police
motorcycle sirens with preset tone frequencies at 500 Hz and 1460 Hz, and a repetition
rate of 10 cycles per minute [15]. The yelp sound is a fast changing tone between two
preset tone frequencies. A typical example is the electronic siren produced by Southern
Vehicle Products Inc., which provides a yelp sound with preset tone frequencies at 600
Hz and 1350 Hz, and a repetition rate of 3 to 5 cycles per second [16]. The yelp and

wail sounds are used by both fire-trucks and police cars.

2.4 The Emerging Scientific basis for Generating Warning Sounds

While warning sounds have been used for a long time, many of these are based on
subjective opinions as to what is “best”. Only recently was any scientific work done
to determine what sound characteristics will elicit optimal responses under varying
circumstances. Such work is particularly relevant for us, since in the future warning
devices may follow a more systematic approach to sound generation than it has been

the case until now.

2.4.1° A Generic Warning Sound Generating Scheme

According to the work of Patterson and his colleagues, a warning sound need not to
be excessively loud, but its amplitude must depend on the background noise level.
They have demonstrated, that in order to hear sounds reliably in noise, some spectral
components must be between 15 dB and 25 dB above the masked threshold [17,18].

Lower and Wheeler [19] has developed a desk-top computer program to estimate this
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background threshold. With the estimated background threshold, the spectral compo-
nent amplitude of the warning sound can be determined. This bapproach had been used
to study the intense background noise of military helicopters in the U.K. [20]. With
regard to the frequency content of the warning sound, Patterson [17] limits it to the
range between 0.5 kHz and 5.0 kHz.

Based on these spectral amplitude and freqﬁency lifnits of the warning sounds,
a pattern of pulsative sounds which is distinctive and resistant to undesirable noise
contamination, was constructed by Patterson [17,22,23]. As shown in Fig. 2.1, this
prototype warning sound basically consists of a sequence of bursts each of which is made
up of a sequence of pulses. Different degrees of perceived urgency can be manipulated
by simply varying the characteristics of the pulse sequences.

In Patterson’s work, the pulse design starts with measurement of the ambient noise
- spectrum. Then, the warning signal spectrum is determined by setting all its compo-
nents 15 — 25 dB above the corresponding ambient noise spectral values. In order to
avoid excessive peak factors in the signal waveform, sine or cosine phase is assigned
to the spectrum. Consequently, the pulses are generated by applying the Inverse Fast
Fourier Transform. These pulses vary in duration from 75 msec to 200 msec in accor-
dance with the guidelines set down by Patterson [17,23]. Also, the pulses are gated
with sinusoidal ramps at both ends in order to avoid uncontrollable transients. At
this stage, by varying the fundamental frequency, and the relative weight of high and
low frequencies of the pulses, any degree of perceived urgency can be designed. Usu-
ally, greater urgency is signalled by higher fundamentals, and by relatively more high
frequency energy.

A burst is produced by assembling three-to-nine copies of the basic pulse. By
changing the elapsed time between the start of one pulse, and the start of the next,

distinct pitch and temporal patterns may be created. By varying the amplitude of
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the pulses different loudness patterns may be obtained. The perceived urgency is
generated by changing the overall pitch, the speed and the loudness pattern of the
pulses. In general, a burst with a high pulse rate will convey greater urgency than a
burst with a low pulse rate. A rising pitch-contour can produce a more urgent burst
than a falling pitch-contour. Additionally, an urgent burst will remain at, or near, the
maximum loudness while a less urgent burst will decrease in loudness towards the end
of the burst.

Such bursts serve as templates from which warning sounds may be synthesized.
The amplitude variations and spacing of the bursts are determined experimentally.
The criterion is that the resulting warning sound should effectively convey the desired
specific warning message to personnel in the vicinity without activating their startling
reflex.

Patterson successfully implemented this scheme on warning systems of commercial
aircrafts and military helicopters [17]. A slight modification of this scheme was also

adopted for medical equipment used in intensive-care units and operating theatres of

_hospitals in the U.K. [22,23].
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Chapter 3

Measurement and Analysis of Timing & Spectral Characteristics

As we have seen it in Chapter 2, the literature on warning sounds yields little useful
information on their timing and short-time spectral characteristics. Since it is the
purpose of this work to apply timing and short-time spectral analysis techniques to
systematically extract the uniAque identifying characteristics of these warning sounds
in real-life environments, such information is essential for us. Specifically, the detailed
knowledge of warning sound characteristics provides the basis for the exploration of

different signal recognition schemes.

3.1 Timing Characteristics

The objective of this part of our work was to derive useful information on the timing
of warning sounds from measurements of signal waveforms. For this purpose we used
telephone rings, siren sounds, and smoke alarm sounds. Telephone rings were generated
by both electro-mechanical and electronic ringers; siren sounds were produced by an

electronic siren driver; and the smoke alarm sounds were obtained from a commercial
smoke alarm.
3.1.1 A PC-Based Data Acquisition System

To obtain quantitative data, a PC-based data acquisition system was designed and
constructed. This system accepts the instantaneous absolute amplitude waveform of

the signal, and transforms it into the short-time average absolute amplitude (STAAA)

19
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waveforms. Then, the transformed waveforms are stored for plotting. The instanta-
neous amplitude and the short-time average variations in absolute amplitudes of the
signal are given in Table 3.3, where z(n) represents the discrete instantaneous signal

amplitudes, and N denotes the number of samples accumulated.

Table 3.3: Instantaneous and short-time signal amplitudes

signal amplitudes | absolute signal amplitudes

instantaneous z(n) : |z(n)|
1 ¥ 1 X

short-time average N > z(n) N > |z(n)]
n=1 n=1

The instantaneous absolute signal amplitudes are generated by hardware, and the
derivation of the short-time average absolute signal amplitudes, and storage of these
derived samples is accomplished by software.

Fig. 3.2 shows the block diagram of the method used to generate the discrete
instantaneous absolute signal amplitudes. Basically, sounds are collected by a suitable
microphone, are pre-amplified by a low-noise voltage amplifier, and are low-pass filtered
prior to input to a full-wave rectifier. The output from the full-wave rectifier gives the
instantaneous amplitude of the waveform. Then, an 8-bit A/D converter samples this
waveform at 10 kHz. Consequently, the digitized sample is stored temporarily in an
output buffer until the 8-bit microprocessor (INTEL 8088) is ready to accept the data
via a bi-directional bus. In addition, a LED bar graph is used to display the variations

in the instantaneous absolute amplitudes of the signal waveforms.
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Figure 3.2: Signal acquisition and derivation of instantaneous absolute signal ampli-
tudes

In this implementation, the short-time average absolute signal amplitudes are de-
rived from 12.8 msec accumulation of the instantaneous absolute signal amplitude sam-
ples (A/D converted data). With these instantaneous signals sampled at 10 kHz, a
sample of the short-time average absolute signal amplitudes can be obtained by sum-
ming 128 of the instantaneous signal samples. In order to avoid the problem of overflow
during the accumulation process, a 16-bit register is used to accumulate this sum. Con-
sequently, a sample of the short-time average absolute signal amplitudes is obtained by
dividing the 16-bit register content by the total number of accumulated samples (i.e
128 in this case). The resulting quotient is then rounded to eight bits to provide the
short-time average absolute signal amplitude sample which is transferred to a desig-
nated file. This file stores 1000 bytes. These data manipulation and transfer procedures

are repeated until the data file is completely filled with 1000 samples (equivalent to
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12.8 sec of the signal waveform). The program to handle this data manipulation and
transfer in real-time was written in INTEL 8088/8086 assembly language. A flowchart

of these operations is shown in Fig. 3.3.

3.1.2 Data Collection

With this data acquisition system, we collected data on the absolute amplitudes of
warning sounds in the normal acoustic environment of our laborgtory. Fig. 3.4 shows
the experimental set-up. The siren horn produced siren sounds; and a radio cassette
player provided the pre-recorded telephone rings and smoke alarm sounds. A sound
pressure level (SPL) meter placed aside the microphone measured the SPL variations
of the environment throughout the data collection process.

The SPL meter was set to “C” weighting and “SLOW?” response, because the “C”
weighting network of the SPL meter has a flat frequency response similar to that of
the signal processing circuit of the data acquisition system; and the “SLOW” response
provides an average of 1.0 sec of the acoustic energy variations of the environment.

‘Based on the SPL measurements in the absence and during the presence of warning
sounds, the signal-to-noise ratio (SNR) could be deduced. SNR, in this work, is defined
as the ratio of peak signal power to peak noise power. Noises, in this thesis, are defined
as all sounds other than warning sounds. Such unwanted sounds may include steady and
transient random noises, radio broadcasts, or surrounding conversations. A detailed
derivation of the relationship between the SNR and SPL measurements is given in
Appendix A. |

Data on absolute amplitudes of Warning sounds were collected in two different back-
ground environments. The first set of data were collected in a steady random noise
background which originated from a ventilation fan of a PC-computer. Such noise is

typical for office environments. A value of 60-62 dBC was recorded throughout the data
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collection process. This set of data were referred to as “clean”, because the SNR was
maintained at least over 20 dB. To study the effect of more complex background noises
on warning sounds, the second set of idata were collected at a SNR of 10 dB. The back-
ground noise sources consisted of both steady random noise, radio music broadcast,
and speech. |

To establish the short-time average absolute amplitude profiles of the various noise
sounds (without warning sounds present), a third set of data was also collected. This
included all the noise sources used above, and the noise SPL was the same as that used

in the SNR measurements.

3.1.3 Timing Features of Different Warning Sounds

The plots of the first set of data are shown in Fig. 3.5, Fig. 3.6, Fig. 3'.7 and Fig.
3.8. Since the purpose of these measurements is to establish the time variations of the
short-time average absolute signal amplitudes, the actual value of these amplitudes is
of no particular interest. Therefore, the vertical axes show a relative scale without

units.

The following observations may be drawn from these figures:

1. Fig. 3.5, Fig. 3.6(b) & (d) (siren sounds), and Fig. 3.7(2) & (b) (telephone rings)
show on-off type repetitive patterns of warning signal bursts; Fig. 3.6(a) & (c)

(siren sounds), and Fig. 3.7(c) (smoke alarm sound) display the steady sounds;

2. Fig. 3.5 (a) and (b) show devices which produces sounds with very similar tem-

poral structures, but with different repetition rates;

3. Fig. 3.5 (d) is a two-tone siren sound, and its amplitude contour can be charac-

terized by i) a transition from background level amplitudes, and ii) a repetitive
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on-off pattern representing two tones of different intensities (for other siren sounds

or telephone rings, the off-patterns represent the background noise levels);
4. The width of the bursts of these waveforms varies from 102.4 msec to 3.24 sec;
5. The repetition period of on-off patterns ranges from 140 msec to 5.86 sec;

6. Steady sounds are characterized by signal level transition to higher steady am-

plitude level; and

7. Contours of the average of short-time absolute signal amplitude of radio broad-

casts (Fig. 3.8) consist of random, nonrepetitive sequences of signal bursts.

The plots of the second set of data are shown in Fig. 3.9 and Fig. 3.10. Comparative

examination of these plots yields the following observations:

1. For short-burst, such as (a), and (b) in Fig. 3.9, and (d) in Fig. 3.10, the
introduction of radio broadcast background alters the baseline levels, and smooths
out the weak peaks of the “clean” signals; however it produces no significant

change in relative timing between consecutive amplitude peaks of the waveforms;

2. For signals with long silence intervals( > 400 msec) such as (c), and (d) in Fig.
3.9, and (b) in Fig. 3.10, spurious small peaks appear randomly during these

intervals; and

3. The repetition rate of the on-off patterns of burst-type sounds is unchanged by

variations in background noise.

In summary, we can conclude from these measurements that the short-time average
absolute amplitude contours provide unique timing information on both steady and

burst-type sounds.
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Figure 3.5: Short-time average absolute amplitudes (STAAA) of siren sounds: a) J1:
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Figure 3.9: Short-time average absolute amplitudes (STAAA) of siren sounds with
radio-broadcast as background: a) J1; b) J2; c) J3; and d) J4
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Figure 3.10: Short-time average absolute amplitudes (STAAA) of different siren sounds
with same background noise: a) J5; b) J6; ¢) J7 ; and d) J8
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3.2 Spectral Characteristics

Based on the a,ssuﬁlption that the short data records deduced from the observed time
sequences are ergodic, and that their estimated spectra are slowly time-varying, spec-
tral estimation techniques provide an insight into the frequency contents carried by
the observed time sequences. Generally, spectral estimation methods use either the
parametric, or the nonparametric approach. A detailed exposition of many different
algorithms used for obtaining waveform spectra was given by Kay and Marple [24]

In general, parametric spectral analysis involves three steps. The first step is to se-
lect a time series model, with assumed model order, for the observed data record. Time
series models such as the autoregressive model(AR), the moving-average model(MA),
or the autoregressive-moving average model(ARMA), are the most common choices for
practical applications. For example, the linear prediction coding (LPC), or AR model
with model order of 10-16, has been proven to be a very suitable choice for speech
analysis and synthesis [25,26].

The second step is to estimate the model parameters using the available data sam-
ples [24]. Depending on the specific time series model selected, different algorithms may
be applied for such parameter extraction. Thg third step is to compute the estimated
spectra by substituting the specific parameter values derived in the second step into
the theoretical power spectral density function of the model used.

The nonparametric spectral estimation approach assumes that the observed data
record is produced from a set of sinusoidal components governed by the Fourier Series
model of signals. Two popular and conventional spectral estimation techniques are

“the Blackman-Tukey [27] and the Welch’s periodogram (28] methods. Both of these
techniques employ the computationally efficient Fast Fourier Transform (FFT). A new,

unified, FFT-based spectral estimation method, capable of producing more statistically
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stable spectra with better frequency resolution than the conventional methods, has been

proposed by Nuttall and Carter [29].

3.2.1 Comparison of Parametric and Nonparametric Spectral Estimation

Methods

With relatively short data sequences recorded under high signal-to-noise (SNR) condi-
tions, the parametric technique can produce smoother and finer frequency resolution
spectra. Unfortunately, the parametric spectral estimation approach is susceptible to
noise interference. Such degradation in performance of the AR model has been exten-
sively investigated by Lim [30] and Kay [31].

The nonparametric spectral estimation approach is implemented in practice by the
Discrete Fourier Transform (DFT). Since the DFT considers every data sequence to be
periodic, such periodic extensions of the original data sequence exhibit discontinuities
at the boundaries of the observed time interval. In the subsequent numerical analysis,
these boundary discontinuities result in spectral leakage over the entire frequency spec-
trum. Harris [32] discussed the application of using various windows with nonuniform
weighting to reduce this spectral leakage. This can be accomplished only at the ex-
pense of frequency resolution in the spectrum. Finally, to obtain a statistically stable
spectrum, spectrum averaging of short-time spectra is definitely required [28].

In general, the frequency resolution of spectra obtained by the nonparametric spec-
tral estimation approach is limited by the data duration, and is indepéndent of the
SNR of the signals. Theoretically, the frequency resolution of spectra is inversely pro-
portional to the duration of the original data sequence. Since zero-padding of the data
sequence before transformation effectively increases the signal duration, it has been a
misconception that such a zero-padding procedure will improve the frequency resolu-

tion of the resultant spectra. As demonstrated in [24], zero padding is useful only for
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1) smoothing the appearance of the resultant spectra via interpolation, 2) resolving
potential ambiguities of computed spectra, and 3) reducing the “quantization” error in
the accuracy of estimating the frequencies of spectral peaks. It is common procedure

to apply windowing prior to the zero-padding of the data sequence..

3.2.2 Welch’s Non-overlapping Spectral Estimation Method

For this work, we selected the conventional Welch’s non-overlapping spectral estimation
approach to investigate different warning sounds. The rationale behind this choice has
four aspects.

First, most warning sounds usually maintain a regular rhythm, and continﬁous,
long data records can be obtained. This allows spectral averaging, and results in the
statistical stability of the computed spectra. Secondly, by Welch’s spectral estimation
technique is robust with respect to noise corruption of the signals, because the fre-
quency resolution and the stability of the computed spectra are independent of the
SNR. Thirdly, no a priori knowledge of a signal model for various warning sounds
is needed. Finally, limitations inherent in Welch’s spectral estimation method have
been thoroughly studied, and techniques used to reduce discrepancies have been well
explored [32].

Welch’s non-overlapped spectral estimation technique may be described in four

steps:

1. Consider a data sequence, z(n) of length N, where n € [0, N — 1], and divide N
into K non-overlapped segments, each of which has an integral length of N/K,

say M, and is denoted as z,(m), where m € [0,M — 1], and k € [0, K — 1].
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2. Select an “DFT-even” window sequence !, w(m), with length identical to z)(m),

and multiply this window sequence onto zx(m), giving Zx(m) as follows,

(3.1)

3. Take the magnitude square of the windowed sequence to obtain the k** segment

discrete Fourier spectrum (often called modified periodogram) denoted as Si(!),

. 2
1 M-1 s 2aml

Se(l) = MU > zp(m)w(m)e ™M

m=0

(3.2)

MU | &,

L (3.3)

4. Compute Si(l) for k£ € [0, K — 1], and obtain the average spectrurﬁ, Savg(l),

Save(l) = % {Ig sk(z)} (3.4)

!DFT-even window is a conventional even window sequence with the right-end point missing. [32]
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Welch demonstrated that the variance of spectral estimates can be reduced by
dividing a long original data sequence into finer segments. However, he also cautioned
that the statistical bias generated by the estimation process increases linearly with
increasing number of segments [28]. Therefore, the trade-off between the size of data
segments and the amount of spectral variance reduction is to be determined by the

user.

3.2.3 Implementation of Welch’s Method

Since the DFT can accept complex input quantities, we may make use of this feature
to establish an efficient scheme for the computation of average spectrum from two real
data sequences. Such a scheme is implemented by the use of the FFT algorithm, and

involves only a single pass of the FFT computation. The three steps of calculations are
summarized as follows.

The first step is to substitute the real and imaginary parts of a complex input data
sequence by two non-overlapped real data segments. Then, we take the DFT of this
complex sequence, and after further calculations we can obtain the average spectra
of the two non-overlapped data segments. The detailed mathematical derivations are

given in [33], with the major steps summarized below:

1. Consider now g(m) being a complex input data sequence whose real and imagi-
nary parts are substituted by the two non-overlapped real data segments z(m)

and z;(m). Then, g(m) can be expressed by,

g(m) = z1(m) + jza2(m) (3.5)

where m € [0, M — 1].
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2. The DFT of g(m) which is denoted as G (k) is expressed by,

™ glm)uw(m) e (3.6)

m=0

G(k)

= Gg(k) + jG(k)

where Gp = real part of DFT of G(k)
G = imaginary part of DFT of G(k)
w(m) = “DFT-even” window sequence

ke ({0,M — 1]

3. Now we take into consideration that given two real data sequences, z;(m), and
z3(m), and a DFT-even window sequence, w(m), for m € [0, M — 1], the DFT of
these windowed data sequences denoted as X;(k), and X,(k), respectively, can

be represented by their real and imaginary parts given below:

Xl(k) = XlR(k)"}“].XlI(k) (37)

X3(k) = Xar(k) + 7 Xar(k) (3.8)

where X;g(k) = real part of the DFT of z;(m)
Xi1(k) = imaginary part of the DFT of z;(m)
X3r(k) = real part of the DFT of z3(m)
X21(k) = imaginary part of the DFT of ‘xg(m)

ke[o,M — 1]
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It can be shown that,

Xip(M —k) = Xg(k) (3.9)
Xor(M —k) = Xyp(k) (3.10)
Xiu(M—k) = — Xy(k) (3.11)
Xo(M—k) = — Xy(k) (3.12)

Using the expression 3.5 for g(m) in Eq. (3.6), we can express Gg(k) and G(k)

in terms of the real and imaginary parts of X;(k) and X,(k):

Gr(k) = Xir(k) — Xas(k) (3.13)

Gilk) = Xu(k) + Xor(k) (3.14)

If we substitute k by (M-k) into Eq.(3.13-3.14) and utilize the results obtained
from Eq. (3.9-3.12), we obtain,

Gr(M —k) = Xir(k) + Xar(k) (3.15)

Gi(M—k) = — Xur(k) + Xer(k) (3.16)

4. The average spectrum, P,, (k) for z1(n) and z,(n) is given by,

Pavg(k) = ﬁ% {1X2(6)[* + 1 X2 (k) "} (3.17)
- EJ\'IJ_U {le(k)‘z + | Xy (k)P + | Xor(K)|? + |X21(k)|2}
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where

0= 3:{ X wimiF} (3.15)

Therefore, by making use of the results obtained from Eq. (3.13-3.16) to solve
for XlR(k), X]_I(IC), XzR(k), and Xg](k) in terms of GR(]C), GR(M - k), G_{(k),
and G;(M — k), we can, subsequently, derive P,,,(k) from the real and

imaginary parts of G(k). Thus, we can show that,

Pouy(k) = 4—;4—(] [Gh(K) + GH(M — k) + G2(k) + GE(M —K)} . (3.19)

In this work, warning signals were sampled at a rate of 20 kHz with 12 bit resolution.
The non-overlapped data segment length was a multiple of 12.8 msec, or of 256 data
samples. With regard to the specific window used to reduce spectral lgakage, the
minimum 4-sample Blackman-Harris window (Fig. 3.11), with — 92 dB highest sidelobe
level, — 6 dB/octave sidelobe fall-off rate, and two frequency bins ? of the equivalent
noise bandwidth [32], was used to multiply onto each non-overlapped data segment.
The actual spectral calculations were performed on a VAX 750 general computer. The

flowchart of the program is given in Fig. 3.12.

3.2.4 Data Collection

In order to explore the variations of warning sound spectral characteristics, the sounds

emitted by 1.) electromechanical ringers of five rotary dial phones, 2.) a multiple-line

?A bin is a basis frequency for a spectrﬁm and is derived from the ratio of the signal sampling
frequency to the total number of data points used in the spectrum.
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Figure 3.11: Spectrogram of the minimum 4-sample Blackman-Harris window, where
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Read data in RX02 format
from magnetic tape

Unscramble data to
ASCII format

|

Multiply data sequence by
DFT-even window

Form:Z2=X+iY
X = sequence 1
Y = sequence 2
Z = complex sequence

|

Compute DFT of 2
by using FFT

Unscramble FFT output
to obtain averaged
spectrum using eqt.(12)

Figure 3.12: Flowchart of the spectral analysis program
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push-button telephone, 3.) an electronic ringer of a touch-tone telephone, and 4.) an
electronic siren driver (used in timing feature measurement) were used. These sounds
were recorded on a tape recorder in various ambient noisy environments in order to
investigate the effects of background noises on warning sound spectra.

The recorded warning sounds were fed to an A/D conversion system, and the digi-
tized samples were stored onto a magnetic tape for storage and for further processing.
To suppress the aliasing effect of the sampling process, a Kronhite electronic filter was
used to remove the spectral components of the analog signals beyond the 10 kHz fre-
quency bandwidth. Then, the filtered signal was fed to a 12-bit MINC/DECC AB-23
A/D converter with selectable data sampling frequency under the master control of a
PDP-11 computer. In our work, the sampling frequency was set to 20 kHz. Conse-
quently, each 6.5 seconds of the digitized sound record was transferred from a PDP-11

computer to a VAX-750 general computer for spectral analysis.

3.2.5 Spectra of Warning Sounds Generated by various Warning Devices

Unless otherwise stated, most of the short-time spectra were obtained by averaging
four consecutive 25.6 msec segments of the spectrum. We assume that within this
102.4 msec the signals are slowly-varying, and that the average spectrum provides a

statistically stable representation of the frequency content of the signals.

3.2.5.1 Spectra of Telephone Rings generated by Electro-mechanical

Ringers

Although frequency specification on telephone rings are provided by various standard
associations, the acceptable variations of the short-time spectra of telephone rings have

not been published. In addition, there is no information on the effect on spectral
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variations of the different loudness level adjustments that can be made on electro-
mechanical ringers equipped with loudness controls. Siinilarly, there is no mention
in the standards (or in the literature) of the effect of the pitch setting of electronic
ringers on the spectra of emitted sounds. The measurements reported here were made

to obtain this missing information. Five different aspects were examined:

Short-time averaged spectra of an electro-mechanical ringer

Fig. 3.13 gives a typical example of short-time spectra of telephone rings with the
loudness level set to one. (The loudness adjustment control is found at the bottom
panel of some rotary dial telephones.) These rings were recorded in an ordinary office
environment. Two regions of spectra are identified: the transient, and the steady-state
regions. During the beginning 600 msec of the ringing period (transient) these short-
time spectra are very similar, and are rich in harmonic content (dominated by three
to five major spectral peaks in the 10 kHz frequency bandwidth). Following this is the

steady-state of the ringing period with only two or three dominant peaks retained.

Long-time averaged spectra of an electro-mechanical ringer at seven different

loudness levels

The next two figures show how telephone ring spectra vary with respect to changes in
loudness level adjustments. The same telephone was used as in the previous measure-
ment. These spectra were obtained by averaging 256 25.6 msec long record segments
(6.55 sec). Fig. 3.14 (a) shows that two major peaks always occur in the spectra at each
of the seven loudness settings. However, for another rotary dial telephone, Fig. 3.14 (b)

shows the dramatic changes in spectral characteristics when the loudness adjustment is
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altered from leve] two to three. The disappearance of these dominant peaks is caused
by some change in the internal ringing mechanism. These figures clearly illustrate the

unpredictability of the effect of varying loudness settings on telephone ring spectral

characteristics.

Long-time averaged spectra of five electro-mechanical ringers

Spectra from five rotary dial phones of the same model were used in this measurement.
To provide a general view of their spectral variations, Fig. 3.15 gives an example
of long-time averaged spectra of five electromechanical ringers with a preset loudness
level. In Fig. 3.15, the dominant spectral peaks produced by phone samples 1, 2 and 3,
do not appear in the spectra generated by phone samples 4 and 5. This indicates that

phone rings generated from telephones of same model do not produce similar spectral

characteristics.

Short-time averaged spectra of a multiple-line telephone

Fig. 3.16 depicts another set of short-time spectra for a multiple-line push-button
telephone. Since this telephone is not equipped with a loudness adjustment control,
our study on the effect of varying loudness adjustment on short-time spectra was not
performed. Compared to other telephone ring spectra, Fig. 3.16 consists of spectral

peaks at different frequency locations: 1.6 kHz, 3.2 kHz, 5.9 kHz and 9.2 kHz.
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Short-time spectra of an electro-mechanical ringer in steady noise background

To demonstrate how steady fan noise affected the short-time spectra of telephone rings,
we used the same phone as in the first two measurements. These telephone rings
were recorded inside a computer room where an air-ventilation system was operating.
Compared to Fig. 3.13, in Fig. 3.17 the amplitudes of dominant peaks decreased, the
number of dominant peaks was reduced, and the transient regions of the spectra have
largely disappeared. This may be caused by the effect of spectral flattening of the
background noise. However, two of the dominant peaks of successive spectra are still

retained.

Conclusions

Spectra of telephone rings produced by electro-mechanical ringers consist of a) two
distinct regions (transient and steady) of short-time spectra, and b) spectral peaks are
always located in the 1.6 — 2.5 kHz and 4.7 — 6.2 kHz bands. Details of the spectral
characteristics vary with loudness, with the model, and with individual units of the

same model.

In general, it is difficult to predict the spectral distortion caused by background
noise because such distortion is highly dependent on the characteristics of the noise.
Such characteristics are both time and spatial variant. Since real environmental noise
situations are very variable, there is very little practical value in further study on the

effect of noise on the spectra.
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3.2.5.2 Spectra of telephone rings generated by an electronic ringer

Since solid state transducers are manufactured to close tolerance, and the control
circuits generate very consistent tone frequencies, electronic ringers of the same type
will produce sounds with very similar features. In addition, the diffe‘rent types all
conform to applicable standards. Therefore, only one electronic ringer unit was exam-
ined in detail. Since the telephone we examined was equipped with pitch adjustment
controls, the effects of different pitch settings on the spectra were also studied.

Each of the short-time spectra was obtained by averaging two consécutive 102.4
msec long spectra. The reason for selecting 102.4 msec segments was to provide a
frequency resolution of 19.6 Hz for the separation of the two dominant tones generated
by the electronic tone ringer. Fig. 3.18 (a), (b), (¢), and (d) show that the change of
pitch setting results in more high energy peaks appearing. Although it is difficult to
see in fhese plots, the pitch setting also results in the shifting of the dominant lowest
frequency peaks. The tabulated numbers indicate that for this particular electronic

ringer, one tone frequency varies from 468 Hz to 546 Hz, and the other varies from 546

Hz to 683 Hz.
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3.2.5.3 Spectra of Siren Sounds

Lastly, we studied the spectral characteristics of different warning siren sounds
produced by an electronic siren driver. Eight different siren sounds can be produced
with this device. In all of these spectra, note that the peaks located at 7.0 kHz are
produced by ambient noise monitored independently with the sound pressure level

meter.

Rapid-Yelp

The short-time spectra of this sound consist of a band of frequencies varying from

1400 Hz — 3000 Hz (Fig. 3.19).

Conventional Yelp

Fig. 3.20 shows the variation of short-time spectra of this sound which consists of a

varying band of frequencies ranged from 666 Hz — 1333 Hz.

Low-high Sweep

Fig. 3.21 shows a very interesting ‘chirp-signal’ type of short-time spectra. The

spectra consist of peaks varying from 820 Hz to 4.0 kHz.

European Hi-low

Fig. 3.22 shows spectra which consist of fundamental spectral component at 1093 Hz,

along with its harmonics at 1640 Hz and 3164 Hz.
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Hi-frequency Steady

Fig. 3.23 gives the spectra, which consist of a fundamental spectral component at 833

Hz, together with its harmonics at 1640 Hz and 3200 Hz.

Pulsating Siren

Fig. 3.24 gives the spectra of a ‘Pulsating Horn’ siren sound, which consists of a

poorly defined peak at 1600 Hz and a distinct peak at 2400 Hz.

Steady Horn

Fig. 3.25 shows spectra, which consist of two major bands of frequencies at 500 — 700

Hz and 1200 - 1400 Hz.

Electronic Synthesized Bell

Fig. 3.26 shows the spectra of a bell sound, which consists of four peaks at 700 Hz,
1406 Hz, 2070 Hz, and 2812 Hz.

3.2.6 Summary
Summing up the spectral analysis results, we reached the following conclusions [34]:

e dominant spectral features of warning signals generally appear within the fre-

quency range between 300 Hz to 5.0 kHz,

e warning signal spectra may consist of a single spectral peak, or regular clusters

of spectral peaks and valleys and,

e in general, the spectral features of warning signals are simpler than those of speech

signals with regards to:

b
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1. absence of nonstationary segment of short-time spectrum (while isolated
speech utterance may consist of nonstationary short-time spectra caused by

weak fricatives at the utterance boundaries) and,

2. repeatability of spectral features of warning sounds (while due to variable
utterance rate of a word, nonlinear time distortion in spectral features oc-

curs).
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Chapter 4

Solutions to the Recognition Problem

4.1 Pattern-Recognition Model for Signal Identification

The classic pattern-recognition scheme for signal identification is shown in Fig. 4.27.
This scheme consists of feature extraction, pattern matching (similarity tests), and
decision making blocks. It forms the basis of many applications, because it places no
restrictions on the use of different feature sets, similarity algorithms, and decision rules,
and it is possible to implement it in a wide range of circumstances [37].

The function of the feature extraction stage is to convert the signal into parameters
or feature sets. This results in the reduction, and sometimes elimination, of redun-
dancies that exist in the original signal. Such signal reduction procedures provide
a manageable number of signal features, making practical machine recognition feasi-
ble. Extractable signal features include timing information, short-time spectra, Linear
Prediction Coding (LPC) parameters, LPC-derived cepstral coefficients, or statistical
parameters derived from the Hidden Markov Model (HMM).

For pattern comparison, the signal features must be either known a priori, or the
system must “learn” them. Such learning may be accomplished by training the system
with the signal(s). This involves the extraction of features, and their consequent storage
in template memory. The signal feature sets are obtained from consecutive short-time
segments of the signals. To recognize a specific signal, the features of the unknown

signal are compared with the different sets of pre-stored reference signal features.

69
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Figure 4.27: Classic Signal Recognition Scheme [37,38]

The matching of the unknown signal features to the templates is generally compli-
cated by the non-linear time mis-alignment of the short-time feature segments of the
unknown signal and of the reference templates. To solve this matching problem, the
well-known dynamic time warping (DTW) algorithm is employed [39]. Based on this
algorithm, for each reference template an optimum match between the unknown signal
~ and the reference features is sought. In these pattern comparisons, distance calcula-
tions are performed on the short-time segments of signal feature sets in order to provide
a measure of similarity between the unknown signal and the reference templates. The
literature offers several distance measures [40,41,42].

One of two decision rules are used in most practical systems: the nearest neighbor
rule (NN rule), and the K-nearest neighbor rule (KNN rule). The NN rule is applied
when there is a unique reference template for each possible signal. In comparing an

unknown signal with the reference templates, the pre-stored template which is the
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smallest distance from the signal, is recognized to be the unknown signal. The KNN
rule is applied when multiple reference templates are learned from each possible sig-
nal, giving several template sets representing different signals. The unknown signal is

]
associated with the template set for which the minimum average distance is computed.

4.2 Review & Evaluation of Signal Recognition Techniques

In the following sections, an overview of previous research in signal recognition is pre-
sented. Emphasis is focused on speech signal (isolated utterance) recognition tech-
niques, because 1) these recognition schemes fit well to the pattern-recognition model,
2) recognition performance of each applicable techniqﬁe has been reported [35,36], and
3) warning sounds have acoustic features (i.e., pitch and formant) similar to speech
signals. Based on this survey, and on our signal analysis results, the most suitable

recognition method will be selected for the WARNSIS.

4.2.1 Analyzing & Utilizing Timing Features

Timing information may be extracted from signals using autocorrelation coefficients,
zero-crossing measurements, energy waveform analysis, and peak detection. Such in-

formation has been used in signal recognition in a variety of ways.
4.2.1.1 Auto-correlation coefficients

Purton [43] used speech signal autocorrelation coefficients in his speaker-dependent
recognition experiments. Specifically, these autocorrelation coefficients were derived
from the outputs of two bandpass filters used to capture the formants of speech signals.
He achieved an average of 90 % recognition accuracy for a vocabulary size of 10 words.

Sondhi [44] applied autocorrelation analysis to the speech signals which were pre-

processed by a center-clipping technique which removed the formant structure. The
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signal pitch was then extracted from the autocorrelation function. The combined for-
mant structure removal of signals and autocorrelation analysis provided a robust pitch
estimation method. The effects of different degrees of formant structure removal prior
to autocorrelation analysis on pitch estimation of speech signals was given by Rabiner
[45]. A real-time hardware implementation of a pitch estimation scheme based on a
combination of center-clipping and peak-clipping methods, followed by autocorrelation
analysis, was reported by Dubnowski [46].

To use the correlator-bank approach similar to that of Purton [43] in our work,
the number of correlators used and the nﬁmber of terms (autocorrelation function
coefficients) retained to formulate a signal feature need to be determined. This may
be achieved by spectral analysis, and for our signals a multiple-band correlator would
be needed. In addition, if the autocorrelation function coefficients generated with zero-
delay is used, this is equivalent to utilizing the short-time signal spectral information.
Hence, such correlator-based recognizer produces a large feature set, making difficult

and uneconomical to design and implement a real-time recognizer based on this concept.

4.2.1.2 Zero-crossing

Rabiner and Sambur [47] analyzed energy and zero-crossing measurements of pre-
recorded speech signals in determining the endpoint locations of isolated utterances.
First, the energy contour of an utterance was generated and studied to provide a crude
boundary. To refine this utterance boundary, zero-crossing measurements were used.
At an SNR of 30 dB or better, this endpoint detection algorithm worked very well over
all tested conditions.

To develop a low-cost, microprocessor-based speaker dependent recognizer, Whitaker
and Angus [48] employed zero-crossing measurements to track two formant variations of

speech sounds. The zero-crossing counts were obtained from the outputs of two filters
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(one of which was a low-pass filter with a cut-off frequency at 800 Hz, and another was
a high-pass filter with 3 dB corner frequency at 1000 Hz). In order to optimize storage,
they used the variable rate encoding technique to reduce redundancies in signal fea-
tures. With a vocabulary size of 10 - 20 words, they attained an averaged recognition
accuracy of 95 % - 99 %, depending upon the formant structure of the utterances.
The use of zero-crossing detectors for warning signal recognition is attractive. How-
ever, the accuracy of zero-crossing measurements depends on the relative amplitude
of the dominant frequency compared to other frequency components within each fre-
quency band, and also on the spectral spacing of the components [48]. In addition,
zero-crossing analysis is very prone to noise interference. Although zero-crossing detec-
tors can be implemented easily and economically, the inconsistency of their operational

performance in noisy environments makes this approach unsuitable for WARNSIS.
4.2.1.3 Energy Waveform

To counter the effect of nonstationary background noise added to the signal dur-
ing transmission over telephone lines, Lamel [49] et. al developed a hybrid endpoint
detection scheme for isolated utterances. This detector derives one or more endpoint
pair estimates from the energy contours of the utterances. In order to determine the
best endpoint pair, word recognition is performed using each possible set of endpoint
pairs. The selection of the best pair is based on the best match achieved by the recog-
nition process. The authors call this detector “hybrid” because 1) sets of possible
endpoint pairs are obtained, and 2) decision to select the best endpoint pair depends
on feedback from the recognition scores. Using the best endpoint pé,irs correspond-
ing to different utterances, the hybrid endpoint detector produces recognition results
close to that obtained from hand-edited endpoints. A real-time implementation of this

endpoint location scheme was given in {50].
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It should be noted that energy contours are easily derived in practice. Since the
energy contour “waveform” contains information on energy level changes occurring in

time, it is potentially useful in our application.
4.2.1.4 Peak Detection

Gold and Rabiner [51] analyzed the relative timing relationships between the peaks
of low-pass filtered speech signals, and reported a reliable pitch estimation method
for speech signals of pitch frequency less than 300 Hz, even in a high level of white-
noise background. An extension of this technique was developed to detect periodic and
nonperiodic signals [52].

This method is especially susceptible to transieﬁt noise, such as those commonly

occurring in the everyday acoustic environment. Therefore, this approach is not suitable

for us.

4.2.2 TFeature Extraction by Filter Banks

Conceptually, the simplest way to extract spectral information from a signal is to pass
it through a set of parallel bandpass filters tuned to different mid-frequencies. These
mid-frequencies, and the filter bandwidth, would be selected to cover the frequency
range of interest. The output of the filter is a measure of the average spectral intensity
within the filter band.

White and Neely [53] implemented their broadband speech signal recognizer using
a bank of 20 one-third octave bandpass filters. These overlapping filters spanned the
frequency range from 100 Hz to 10 kHz. Using a list of multisyllabic words from a
North American dictionary, they achieved a recognition accuracy of 99.6 % in their
experiments. Another filter-bank based speech recognizer was developed by Kwok, Tai

and Fung [54] for the identification of the monophonemic Cantonese digits zero to ten.
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With 12 eight-pole overlapping filters, this recognizer provided an average recognition
accuracy of 96.8 %.

In industry, NEC has developed its integrated filter-bank based isolated word recog-
nition LSI chip set [55]. The feature extraction processor of this chip set consists of eight
biquad digital bandpass filters spanning the frequency range from 100 Hz to 5.0 kHz.
This chip set employs a specific data compression algorithm to remove redundancy in
signal spectral features, and is “firm-wared” with dynamic programming algorithm for
dynamic time warping calculations for signal recognition. A recognition accuracy of
more than 98 % was reported.

Miyazaki and Ishida [14] developed a traffic alarm sound monitor for aurally hand-
icapped drivers. This traffic alarm sound monitor consists of seven bandpass filters
followed by seven line spectrum detectors. In order to reduce the false-alarm trigger-
ing due to the squeaking noises of brakes, tires, engine-noise at high revolutions, wind
noise at high-speed driving, human voice, and music, an error suppression circuit was
designed to detect the sudden rise of the SPL of the input signal. The successful detec-
tion of traffic alarm sounds depends on both the outputs from the seven line spectrum
detectors, and the error suppression circuit. During field tests of this monitor on mod-
erately crowded downtown roads in Tokyo, on the average one false-alarm per three
minutes was observed.

For our application the filter bank approach offers the advantages of robustness,
noise-resistance, and straightforward implementation at a low cost. These will be

discussed in more detail in Section 4.5.



Chapter 4. Solutions to the Recognition Problem 76

4.2.3 The LPC/AR Model

The LPC/AR model assumes that signals can Be parametrically modeled as the outputs
of a linear, time-varying system excited by either quasi-periodic pulse trains, or random
noisé. The LPC/AR signai analysis technique has been widely applied to seismic and
speech signal processing. To discriminate between earthquakes and underground nu-
clear explosions, Tjostheim [56] employed a third-order autoregressive model to analyze
short period seismic events. The extract»ed AR parameters produced two discernible .
clusters characterizing earthquakes and explosions, respectively.

So far LPC/AR parameters have been proven to give the most effective charac-
terization of speech signals. These LPC/ AR coefficients represent the combined in-
formation about the formant frequencies, their bandwidth, and the glottal waveforms
[57]. Therefore, during the past decade, considerable effort was directed at the study
of the performance of LPC/AR-based isolated word recognizers. Ackenhusen and Oh
[58] implemented an eighth-order LPC-based isolated word recognizer using an AT&T
DSP-20 processor. This recognizer has also been used in research for 1) statistically
clustered templates for speaker-independent word recognition, 2) recognition based vec-
tor quantization, and 3) recognition based hidden Markov Modeling (HMM) of speech
signals. Dautrich et al. [59] demonstrated that in high SNR environments and for
signals transmitted via telephone lines, LPC-based recognizers can perform several
percentages better than filter-bank based recognizers.

In considering an LPC/AR approach for WARNSIS, we must deal with two prob-
lems inherent to this technique. First, the order, ‘p’ , of the LPC/AR signal analysis
has to be estimated. Different criteria exist for estimating ‘p’ for the LPC/AR analy-
sis, but these criteria are signal dependent [24]. Second, the LPC/AR signal analysis

is very vulnerable to noise interference [60]. Since the LPC/AR model tends to fit
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spectral peaks more accurately than the valleys [26], it is logical to compensate those
spectral peaks caused by noise interference by increasing ‘p’ in noisy environments.
Unfortunately, for a practical recognizer, ‘p’ must always be fixed and independent
of the varying unknown signals received. Tierney [61] showed that noise reduction
should be applied prior to the analysis to ensure the best LPC/AR based recognition
system performance in noisy backgrounds. To compensate the LPC/AR parameter
variations due to different noise sources, the derived LPC-cepstral coefficients with
different weighting factors were adopted as signal features. Improvement in system
recognition performance was reported in [63,64].

To implement a real-time LPC/AR based recognizer with “intelligent” noise pre-
filtering for our application, a complex multiple-processor based system would be re-

quired. Such complexity makes this approach undesirable for WARNSIS.

4.2.4 LPC-derived Cepstral Coefficients

" Pioneer work of investigating the effectiveness of using different speech parameters for
speaker identification and verification was done by Atal [62] He concluded that LPC-
derived cepstrum coefficients provided better identification performance than either
LPC coefficients, or signal autocorrelation coefficients, or signal impulse response filter
coefficients of an all-pole filter derived from the estimated LPC/AR coefficients.
Recently, the use of LPC-derived coefficients for speech signal recognition has been -
reconsidered by Juang et al. [63] who applied bandpass liftering in speech recognition.
He showed that bandpass liftering of the LPC-derived cepstral coefficients (equivalent
to applying a smoothing window) tends to reduce undesirable spectral sensitivity by
smoothing the spectral peaks without distorting the fundamental formant structure.
Such undesirable spectral sensitivity may be caused by the presence of spectral notches

or zeros in the signal spectrum, introduced during signal transmission, by filtering,
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or by improper preemphasis. Smoothing transforms the original LPC-derived cepstral
coefficients into more reliable parameters. Juang’s recognition results showed that the
bandpass liftering process produced one percent less error than a process using standard
cepstral coefficients.

Hanson and Wakita [64] used “root-power sums” or weighted cepstral coefficients
as spectral distortion measures for speaker-dependent isolated word recognition in dif-
ferent noise environments. They showed that for white noise interference, a gain of
16 % in recognition accuracy may be achieved by using weighted rathef than standard
cepstral coefficients.

This method suffers from the same limitations of complexity and computational
requirements as the LPC/AR approach. Therefore, it is equally unsuitable for our

application.

4.2.5 The Hidden Markov Model (HMM) Approach

One application of HMM for signal recognition is speaker-independent isolated word
recognition. The left-to-right topology of HMM is generally adopted in practice. Such a
HMM model has N states and each state corresponds to a set of temporal events in the
speech signals. The HMM is characterized by a state transition matrix, and a statistical
characterization of the acoustic vectors within the state. A detailed exposition on the
application of HMM to speech recognition is given in [65]. Rabiner et al. [66] showed
that the HMM based recognizer requires ten times less storage, and about 17 times less
computation for recognizing a test utterance than does an equivalent recognizer using
LPC coding and DTW. This is at the expense of a slight increase in error rate, and
of extensive computation while training the model with a reasonable large ensemble
of utterance samples. The improvement of the HMM performance in different noisy

environments has received considerable attention in the last few years [67].
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Considering HMM for our application, we must concern ourselves with the topology
of the model. Based on such a topology, the Baum-Welch algorithm could be employed
to extract the statistical parameters of the model [65]. To evaluate these probabilistic
model parameters, scaling of temporary results must be performed with great care to
avoid underflow problems which occur even when mainframes are used [66]. Therefore,

HMM appears to be unattractive for hardware implementation using integer arithmetic

amenable to real-time operation.

4.3 Overview of the Recognition Scheme for WARNSIS

In the seleé¢tion of the recognition scheme for WARNSIS the following criteria must be

considered:

e

. reliability and robust recognition performance in different noise environments;

2. real-time operation;

w

. portability; and

IS

. reasonable cost.

Our preliminary experiments have shown that neither timing nor short-time spectral
information is sufficient on its own for reliable recognition performance (see Chapter
6 for performance results). Since both timing and spectral information contributes
unique identifiers, a “hybrid” recognition scheme, utilizing both timing and short-time
spectral information was designed for WARNGSIS (Fig. 4.28). In particular, our design
uses timing features as “tokens” to assign sounds to various groups (steadsr, on-off,
variable, etc). Spectral analysis is then used to correlate the spectra of the unknown

sound with the spectra of the warning sounds belonging to that group. We have



Chapter 4. Solutions to the Recognition Problem 80

PATTERN
MEMORY
TIMING
SIGNAL = ANALYZER
SPECTRALL__ [ PATTERN SEGSIon] RECOGNIZED
ANALYZER OMPARISON RULE SOUND
SOUD STATE
SWITCH
DYNAMIC
TIME

WARPING

Figure 4.28: The ‘hybrid’ recognition scheme for WARNSIS

designed a unique analyzer which produces timing information and obtains spectra

using the filter bank approach.

Operationally, the system works as follows. In the training stage, the warning
sounds of interest are analyzed, and relevant timing information is derived and stored
in the timing pattern memory. Consequently, short-time spectra of these sounds are
generated by the spectral analyzer. The short-time spectra of warning sounds are clas-
sified and stored in the spectral pattern memory according to the group classification
determined earlier by timing analysis.

In the recognition stage, two types of pattern comparisons are performed sequen-
tially, before a decision is reached to declare a successful recognition for a specific
warning sound. The first stage involves the timing pattern comparison between the
timing features of an unknown signal and the pre-stored timing patterns. If the match-

ing criteria are not satisfied for any of these patterns, no spectral analysis is performed
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on the incoming signal, and the timing analysis resumes for the next sample.

If a match is found with one of the timing patterns, the signal is assigned to the
corresponding “group”, and spectral extraction and pattern comparisons are performed
on it. Based on the minimum distance score computed for the pre-stored templates,
the unknown signal is recognized as the corresponding warning sound. The details of
the design are given in Sections 4.4 and 4.5.

Since pattern comparisons involve the most intensive computations in producing
a set of distance measures (similarity measures), any possible reduction in number of
comparisons between the unknown signal and the pre-stored templates enhances the
real-time p‘erformance of recognizers. In our recognition scheme this‘ is achieved by
making use of the timing features to group warning sounds. An additional use of

timing information is to prevent unnecessary spectral and pattern analysis work when

only noise is present.
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4.4 Extracting & Classifying Timing Information

One or two signal processing steps may be needed to extract timing features from
steady or burst-type warning sounds (Fig. 4.29). The first step classifies warning
sounds according to the features derived from signal waveforms. For steady sounds,
timing feature extraction terminates after this processing; for burst-type sounds, the

processing proceeds to the next step, which estimates the repetition period.

STEADY
SOUND
WARNING
SIGNAL SIGNAL
CLASSIFICATION
BURST-TYPE
SOUND

REPETITION PERIOD
CALCULATION

Figure 4.29: Block diagram of the Timing Feature Extractor

In real-life, warning sounds are modified acoustically by the environment, and the
addition of unwanted sounds. These background sounds may be either continuous,
or transient. In addition, what a microphone receives from a source depends on the
paths between the two, their orientation with respect to each other, and the sound

modification characteristics of the environment.
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Extracting timing features from distorted and noisy signals has not been addressed
by other workers in the literature. Compelled by the demands of real-life circumstances,
we developed the algorithm presented here to deal with this problem. This development

was inspired by the work of Gold and Rabiner [51], and Lamel [49].

4.4.1 A Scheme to Extract Timing Features

We have demonstrated in Chapter 3 that the contour chafacteristics of the short-time
average absolute amplitudes (STAAA) of warning sounds are distinctively defined for
steady and burst-type sounds. Working with the short-time average absolute ampli-
tude is more attractive for us than the average energy used in Lamel’s work because
the short-time average absolute amplitude: 1) is a simple measurement which preserves
the essential features of the corresponding energy contours, 2) requires no multiplica-
tion operations, and 3) has a smaller dynamic range which can be coded in 8 bits.
The relationships between the short-time average absolute amplitudes and the average

energy of a discrete sequence z(n) are shown in Fig. 4.30.

Since the short-time average absolute amplitude is obtained from an 8-bit A/D
conversion, and is coded in integer arithmetic, its dynamic variations are limited to
256 levels. The value of the short-time average absolute amplitudes is zero when the
environmental noise level falls below the threshold value of the A/D conversion sys-
tem. In order to compress the dynamic variations of the short-time average absolute
~ amplitudes for plotting purposes, we adopted a logarithmic measure to readjust these

short-time average absolute amplitude values. This logarithmic measure is:

STAAA = 10 log, (STAAA+1) (4.20)



Chapter 4. Solutions to the Recognition Problem

13.0

7.5

X(n) in volt
0.0
—

-7.3
n

-13.0

1 T 1
0.000 0.064 0.128  0.192
TIME ( in sec)

(a)

—
0.256

X(n)*X(n) in volt*volt

ABS(X(n)) in volt

3.7

84

13.00

i | )

11.23

7.50

T T
0.128 0.192

TIME ( in sec)
(b)

1350.0

A

1125

73.0
N

379

0.128 0192
TIME ( in sec)

(c)

Figure 4.30: Relationships between the instantaneous energy and the instantaneous
absolute amplitudes of a sequence, x(n). (a) : the plot of x(n); (b): the plot of |z(n)|;

and (c): the plot of z*(n)



Chapter 4. Solutions to the Recognition Problem 85

Note the value of the short-time average absolute amplitude is incremented by one
to prevent the argument of the logarithm to take on the value of zero. The error
introduced by this is not relevant since the essential features of the contour are not
affected.

From the STAAA contours of warning sounds, the break-points or transitions (ris-
ing and falling) in these waveforms are located. Timing features of warning sound are
thus derived from the timing relationship between these transitions similarly to the
method of Gold and Rabiner. Fig. 4.31 (a) gives the STAAA contour of a steady
sound, whereas Fig. 4.31 (b) shows the STAAA contour of a burst-type sound.

With reference to Fig. 4.31 (a), a steady sound is identified if a rising transition of
the waveform of short-time average absolute signal amplitude is detected, and a new
value of short-time average absolute signal amplitude is then maintained for at least
four seconds. For burst-type sounds two rising and falling transitions must be detected
(Ty,Ts, and Ty, Ty, respectively are shown in Fig. 4.31 (b)). The repetition period (RP)

and the average width of signal bursts (AWSB) can then be obtained according to the

following equations:

(Ts —Th) + (T4 — T3)

RP = . (4.21)
awsp = L= 1) ; (1~ T1) (4.22)

To detect these transitions, a signal amplitude threshold is derived from the short-
time average absolute amplitude of the acoustic background. This short-time average
absolute amplitude is dynamically updated every 12.8 msec to accommodate the acous-
tic energy variations of the environment. This dynamic amplitude threshold (DAT)
provides the baseline level of the.background, and is used for transition (rising and

falling) detection.
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When the detection scheme starts, the dynamic amplitude threshold is assigned
the maximum value. Then, the incoming short-time average absolute amplitude is
.compared to the dynamic amplitude threshold. If the incoming short-time average ab-
solute amplitude is less than the dynamic amplitude threshold, the dynamic amplitude
threshold is updated by averaging the short-time average absolute amplitude and the
dynamic amplitude threshold:

(4.23)

s
DAT (updated) — {D AT+ TAAA}

2

Updating ensures that the dynamic amplitude threshold follows the amplitude level
changes due to background noise. This method continuously adjusts the dynamic
amplitude threshold downwards until a rising transition is detected. Such a transition
may be either due to a warning signal, or due to a sudden increase in background noise.
If no rising transition is detected for a period of four seconds, the dynamic amplitude
threshold is reset to its initial value, and the search for a rising transition resumes.
Fig. 4.32 shows an example how the dynamic amplitude threshold adapts to acoustic
energy variations in the environment.

Since the dynamic amplitude threshold and short-time average absolute amplitudes
are expressed in integer arithmetic, the value of the minimum detectable difference
between them is one. To avoid the false detection of a rising transition due to random
noise disturbance, we set the value of the threshold for detecting this transition as two.
If the short-time average absolute amplitude is larger than the dynamic amplitude
threshold by this preset threshold, a rising transition is detected and a reference time
marker (T}) is set. A corresponding falling transition will be detected and marked (73)
as soon as an incoming short-time average absolute amplitude falls below the dynamic
amplitude threshold. However, if no falling transition is detected in a period of four

seconds (maximum allowable burst width), this sound may be a steady sound. To
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confirm this, the dynamic amplitude threshold is reset to its initial value, and if no
rising transition is detected in one second period following, the sound is declared to be
a steady sound, and the timing feature extraction process terminates.

If a rising transition is detected within one second, the search for its corresponding
falling transition continues, and the hypothesis of a steady sound is rejected. Assuming
a burst-type signal this detection process continues until a second transition pair set is
detected and marked with T3 and T for rising and falling transitions, respectively. Con-
sequently the RP and AWSB are computed and the timing feature extraction process
terminates.

A typical example of the detection of a siren sound is illustrated in Fig. 4.33 (a), and
Fig. 4.33 (b) demonstrates how the steady sound detection scheme rejects non-steady
sounds.

This scheme works well for warning sounds in backgrounds with steady noises. To
deal with nonstationary noises such as radio broadcasts, and transient sounds due to
door slamming or movement of chairs, additional parameters and conditional tests are
included in the scheme. These are: 1) the minimum burst duration (MBD), and 2) the
maximum inter-arrival time (MIAT) between two consecutive signal bursts. As shown
in Fig. 4.34, any signal with duration less than the MBD is declared as an unwanted
transient. Furthermore, if the signal shows pulsative variations that last longer than

MIAT, the hypothesis of a burst-type sound is rejected.

These conditional tests were incorporated into the basic scheme as follows. When
any signal burst is detected, its width is calculated and compared to the MBD. If
the computed width is less than the MBD, the detected. burst is treated as transient
noise, and the search continues. If the burst is longer than the MBD, the system waits

until a second transition is detected. The time difference between following transitions
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is computed, and compared to the MIAT. If this time is longer than the MIAT, the
hypothesis of a burst-type sound is rejected, dynamic amplitude threshold is reset, and
the timing feature extraction process is reset and restarted.

A flowchart of the complete scheme for timing feature extraction is shown in Fig.
4.35. The program was written in INTEL 8088/8086 assembly language for real-time
operation. The hardware developed in Chapter 3 for timing parameter measurement is

employed here to generate the instantaneous absolute amplitudes of warning sounds.
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4.5 Extracting Spectral Information

As shown in Fig. 4.28, timing analysis is followed by spectral analysis. The latter is
initiated only if the timing analysis indicates the possibility of the presence of one of
the recognizable warning sounds. Since timing analysis of warning sounds gives the
time markers for the rising and falling transition of sound bursts, it is equivalent to the
end-point detection of isolated utterances [49]. Thus, the timing analyzer conveniently

provides the on/off control for the spectral analyzer.

4.5.1 Feature Extraction

In our review of methods of obtaining spectral information from signals in real-time we
have already indicated our preference for the filter-bank approach. Firstly, the filter-
bank method works well for simple speech signals, and the warning signal spectra are
simpler than the spectra of speech. In particular, Dautrich et. al. [59] demonstrated
that for spoken digits the performance of a filter-bank recognizer was equal to the
performance of the more complicated LPC recognizer. Secondly, as shown by Lim
[60], in noisy environments filter-bank recognizers are less error prone than the LPC-
based recognizers. This a very important criterion for us, since our specific goal is to
recognize warning signals in low SNR situations. Thirdly, filter-bank recognizers are
fast, are relatively simple, and are commercially available at a reasonable cost.

Fig. 4.36 gives the block diagram of our spectral analyzer which uses a filter-bank.
Signals pass through a bank of eight bandpass filters covering frequency bands from
100 Hz to 5.0 kHz. The output of each bandpass filter is passed through a full-wave
rectifier, and low-pass filtered to give a value related to the energy of the incoming
warning sounds in each band. The outputs of bandpass filters are sampled (typical

rate 50 — 100 Hz) to give a segment of a feature set. At a time index k, a segment of
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Figure 4.36: Filter-bank analysis of Warning sounds
parallel outputs {z;(k),zs(k),...,zs(k)} defines a 8" order feature vector X(k) as,
X(k) = {zi(k),z2(k),...,zs(k)} (4.24)

A complete spectral pattern of a warning sound is given as,

R = {X(1),X(2),....,X(k),...,X(N)} (4.25)

In the recognition stage these reference patterns are compared to the spectral pat-
tern T, of an unknown signal. Dynamic time warping is employed to provide a quan-

titative similarity measure between reference and unknown patterns.
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4.5.2 Dynamic Time Warping (DTW)

The basic idea of DTW is to provide an optimum similarity measure between two
patterns of different time durations. DTW can compensate for the nonlinear time
misalignment of patterns which may be caused by noise giving rise to errors in the
detection of endpoint;. .

Conceptually, matching between these patterns involves the search for a time warp-
ing function for which the segment-to-segment comparison is optimal according to some
distance criteria. Fig. 4.37 gives an example of the optimum match between a reference

template and an unknown pattern whose feature sets consist of letter alphabets.

Mathematically, the problem can be stated in the following manner. Consider
R(n),T(m) Yn €[1,N], m € [1,M] where N # M (in general), and R(n),T(m)
are the reference and the test pattern at time indices n,m, respectively. DTW is to
find an optimum time warping function w(n) to minimize the accumulated distance,

(D) between these two patterns with D’ given by

D, = wmin Y d[R(n),T(w(n)] (426)
{w(n)y =1

where d [ R(n),T(w(n)) | is defined as the frame-by-frame (segment-by-segment) dis-
tance measure. Several possible distance measures can be used, depending on the form
of the feature sets [37]. In this discussion, the absolute magnitude difference is used as

a distance measure. Thus, d [ R(n),T(w(n) | is expressed by,

d [ R(n),T(w(n))] = kX_:l | X2 (k) — Xy (6)| (4.27)
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where

XE(k) = the k** bandpass filter output at time index n of a reference spectral .
pattern,

Xi‘(n) (k) = the k** bandpass filter output at time index w(n) of a test spectral
pattern, and

L = the total number of bandpass filters of the filter-bank used.

Since one would expect the optimum warping path to be close to a straight line,
most of the computations at the beginning and the end of this path can be reduced
by establishing boundary conditions for the search. In general, the optimum warping
path function can be obtained by Dynamic Programming [39,53,69].

Rewriting the original path searching equation, a recursive accumulated distance
function, denoted as D 4(n,m), is defined as

D4(n,m) = d[R(n),T(m)]+min[ Da(n—1,)] (4.28)
1<m

The above equation defines the minimum accumulated distance to grid point (n,m),
and consists of the local distance between feature set R(n) and T'(m), plus the minimum
accumulated distance to the grid point (n — 1,!) where ! are the possible values of m
constrained by a given set of local paths. As an example, Fig. 4.38 shows one of the
possible sets consisting of three paths leading to the grid point (n,m): (n — 1,m),
(n —1,m — 1), and (n — 1,m — 2). To ensure that the time warping function is
monotonically increasing, an additional path constraint is applied. Specifically, if the
best path to grid point (n — 1,m) came from grid point (n — 2,m), then no path can

lead from the grid point (n — 1,m).
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Formulating these path constraints mathematically, we obtain

w(n) —wn—-1) = 0,1,2 if w(n-1)#w(n-—2) ~ (4.29)

= 1,2, if wn-1)=w(n—-2)

Therefore, substituting the above constraint equations into Eq. 4.28, we have the DP

recursive solution to the DTW,

Da(n,m) = d[R(n),T(m)] + (4.30)
min {D4(n — 1,m) g(n — 1,m),

DA(TL — 1,m_ 1),-DA(n - 17m_ 2)) }

where

gln—1,m) = 1 if w(n—-1)#wh—2) (4.31)

= oo f wn—-1)=w(n-2)
with boundary conditions governed by,

w(l) = 1 (4.32)

w(N) = M (4.33)
and continuity criterion for w(n) expressed by,
w(n) > w(n—1) (4.34)

This iteration is carried out over all valid m, for each n sequentially from n = 1 to
N. The constraint of Eq.(4.33) means that the last segment of the template and test
signal must coincide and the distance function is D4(N, M). When the last segment is

reached, the warping path w(n) is completely defined.
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Figure 4.38: Local path constraints for DTW

The complexity involved in DTW implementation depends on the boundary condi-
tions, the local path constraints, and on the distance measure. Both Sakoe and Chiba
[39], and Myers [70] have investigated the effects of varying these factors on both speed
and performance of the DTW algorithm in speech-recognition systems. They have
shown that only small differences are found in performance for a fairly wide range of
variations of these parameters.

If the reference and test patterns are dissimilar, fhe distance measures will be con-
sistently large. Therefore an accumulative distance limit must be established to stop
unnecessary computation. Whenever an accumulated minimum distance is obtained,
it is compared to the distance limit. If it is larger than the limit value, the matching
process between this reference and the test pattern terminates, and another reference

pattern is used to compare to the test pattern.
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Design & Implementation

Utilizing the methodologies discussed in the previous Chapters, we designed and im-
plemented a WARNSIS prototype. Fig. 5.39 shows the four main hardware building
blocks of our device: the microphone, the signal conditioner, the control & timing

processor (CTP), and the spectral recognizer (SR).

5.1 Timing Analyzer

5.1.1 Microphone

A microphone is used as the transducer that receives environmental sounds and pro-
~duces the electrical input for the WARNSIS. The characteristics of the microphone
play a crucial role in determining the quality of the signal that is fed to the analog
signal conditioner. We selected a SONY model directional microphone which has a
frequency response of 100 — 15000 Hz, and a sensitivity of -70 4+ 3 dB (with reference
to 0 dB = 1V /ubar) at 1000 Hz. It is an electret-condenser microphone with two
selectable angles ( 90° and 120° ) of reception. A microphone with a narrower angle of
reception may provide better spatial separation between the signal and the background
noise when the sources are separated, and the microphone is oriented at the direction
of the signal source. On the other hand, when such a microphone is not oriented in

direction of the signal source, the signal quality may be degraded substantially.
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5.1.2 Analog Signal Conditioner

The function of the analog signal conditioner is to: 1) pre-process the microphone
output to generate an analog input for the spectral recognizer, and 2) to calculate the
instantaneous amplitudes of the signal for the use of this information by the control
& timing processor. Correspondingly, the signal conditioner consists of an audio pre-
amplifier, a low-pass filter, an automatic gain controller (AGC), two solid-state analog
switches, an SPDT manual switch, a full-wave rectifier, and a 1 kHz calibrating tone
generator.

The voltage produced by the directional microphone is fed to an audio-preamplifier.
Since the noise characteristics of an audio pre-amplifier system depend primarily on
the noise generated by its first stage, we used a low-noise audio operational amplifier
(with noise characteristic of 9 nV'Z/Hz). This pre-amplifier provides a voltage gaiﬁ of
58.3 dB at a 100 Hz - 8.0 kHz bandwidth.

To reduce the unwanted high frequency content of the signal, the pre-amplified
signal is fed to a 6®* order Chebyshev low-pass filter, with a cut-off frequency at 6.4
kHz. This 6 order filter was constructed from three cascaded second order filters. The
overall voltage gain of the filter chain is 11.2 dB. The filtered signal is consequently
branched into two signal processing modules: the full-wave rectifier and the AGC. We
used the same full-wave rectifier module as the one described in Chapter 3.

The AGC is employed to maintain the signal level at values that prevent signal clip-
ping. This AGC limits output signal amplitude variations to 3 dB when the incoming
signal varies by 60 dB.

The analog switch, SW;, provides a windowed segment of the signal from the AGC
output. This switch is controlled by the control & timing processor, and the gating

window duration is set to 470 msec. This gating duration can easily be altered by an
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external timing resistance. The control & timing processor will activate SW; according
to the timihg information extracted from the instantaneous amplitudes of the signal.
The output of the AGC module is then fed to an SPDT manual switch (SWs).

The 1 kHz calibrating tone has a peak-to-peak voltage of three volts. The tone
generator is connected to another analog switch (SW;) whose output is tied to the
second input of the SW3. The function of the 1.0 kHz tone is to calibrate the input
signal level of the hybrid analog processor of the spectral recognizer during the initial-
ization of the WARNSIS. In this prototype, the user has to manually flip the switch to
determine which one of the two signals (the processed signal from the microphone, or

the calibration 1 kHz tone) is fed to the hybrid analog processor.

5.1.3 Control & Timing Processor (CTP)

The control & timing processor consists of decoding circuits, a software programmable
port, and a microprocessor. The port (INTEL 8255, software programmable) allows
parallel communication between the microprocessor and the spectral recognizer to mon-
itor the step-by-step operation of the recognizer logic, and is the gateway for the control
signal that oper:jces the switch in the analog signal conditioner. The microprocessor is
an INTEL 8088, housed in a personal computer.

The first function of the control & timing processor is to perform ‘real-time’ timing

analysis as described in Chapter 4. Its second function is to initiate the spectral

recognition process.

5.2 Spectral Recognizer (SR)

The spectral recognizer hardware consists of an NEC LSI speech chip set. This set has

three processors as shown in Fig. 5.39: 1) the hybrid analog processor (MC4760),
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2) the feature extraction and pattern matching processor (uPD7761), and 3) the control
processor (uPD7762) [55]. We selected this speech recognition chip set since it has the

features required by our method:
¢ filter-bank based recognizer;
o signal frequency bandwidth of 100 Hz to 5.0 kHz;
o allowable windowed signal duration from 0.2 sec to 2.0 sec;
e supports a maxiinum storage of 512 signal templates;
e uses syntax number in grouping signal templates;
o pattern comparison using DTW via “ﬁrmwared” DP method;
o simple set of twelve macro commands to operate the chip set; and
e average recognition time of 0.5 sec.

This chip set, coupled with external memory for signal template storage, constitutes

‘the spectral recognizer of our WARNSIS.

5.2.1 The Hybrid Analog Processor (MC4760)

The hybrid analog processor performs signal equalization and digital sampling of input
signals. Fig. 5.40 gives a simplified block diagram of MC4760. Signal is accepted to
the equalization amplifier whose voltage gain can be altered by varying an external
resistance. Since sufficient voltage gain is provided from the signal conditioner, the
voltage gain of the equalization amplifier is set to the possible minimum gain (0.59
dB). The gain of the input signal can further be adjusted by a digital programmable

attenuator under the control of the control processor. For speech application, this
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Figure 5.40: Block diagram of MC4760

attenuator compensates for signal level variations due to microphone position. However,
in our application signal level equalization is performed by an external AGC circuit,
and thus, the attenuator gain is permanently set to unity.

The attenuated signal is then low-pass filtered by an anti-aliasing filter (5 kHz
bandwidth), and is input to a built-in 8-bit A/D converter. The converter samples the
signal at a rate of 10 kHz, and the sampled data are converted into inverted u-law PCM
codes. Subsequently, this output is serially transmitted to a dedicated serial input port

of the feature extraction processor at a 2 MHz clock rate.

5.2.2 Feature Extraction and Pattern Matching Processor (uPD7761)

The uPD7761 is an NMOS device optimized for single instruction cycle arithmetic
operation. It runs at a clock rate of 8 MHz, and operates in either of two modes
(analysis or pattern matching) as selected by the control processor (uPD7762). A

block diagram of the functional operation of the uPD 7761 is shown in Fig. 5.41.
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In the analysis mode, the uPD7761 accepts digitized data samples from the MC4760

via a dedicated built-in serial port. Data transfer timing is controlled by an input clock

at 2 MHz, which is the rate at which data is fed from the MC4760. These samples are

analyzed by a 8-channel biquad filter bank firmwared into the on-chip ROM memory.

This filter bank spans the frequency spectrum from 100 Hz to 5.0 kHz. Each output of

the bandpass filter is full-wave rectified. The rectified outputs are sampled at a frame

rate of 12 msec, and sent to the control processor via a 8-bit parallel port. This process

is repeated for successive frames until the entire windowed segment of the signal is

analyzed.

In the pattern matching mode, the uPD7761 compares the features of the unknown

signal with the pre-stored signal templates using the DTW approach. The algorithm
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is firmwared onto the chip to perform the computationally intensive distance calcula-
tions. Each comparison with a pre-stored template takes an average of 5 ms. Upon
completion, the recognition result is transferred to the control processor and subsequent

templates are compared, until all templates have been checked.

5.2.3 The Control Processor (uPD7762)

The control processor provides the only communication link between the control & tim-
ing processor and the spectral recognizer. In addition, it performs two important func-
tional operations. First, it serves as a system controller for the MC4760 and pPD7761
by providing the necessary control signals to synchronize all operations. Such control
signals include the communication protocols with the control & timing processor, the
memory selection, read and write signals, reset signal for the MC4760 and uPD7761,
and specific command code to initiate the feature extraction and pattern operations of
the uPD7761. Secondly, it functions as a spectral feature compressor, by retaining only
one of a set of vectors whose values are close to each other [55]. Pattérn compression
is important because it allows a significant amount of reference memory to be saved,
and it speeds up the calculations involved in pattern matching.

When a specific operation code is sent from the control &. timing processor to the
spectral recognizer, decoding is performed by the uPD7762, providing the necessary
control signals for execution. The uPD7762 also reports the result(s) obtained from
the execution of the code to the control & timing processor. For example, if a training

command code is received by the uPD7762, the following series of events occur:

e the uPD7762 decodes the command;

e it activates the uPD7761 to extract spectral conténts from the digitized input
signal samples fed from MC4760;
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e the spectral information is sent to the uPD7762 for feature compression;

o the compressed spectral features are stored into the external pattern memory;

and

e a successful training status flag is sent to the control & timing processor when
all training procedures are completed. Otherwise, an error status is reported to

the control & timing processor.

5.2.4 Pattern Memory

The chip set can maximally allow 64 kbyte of pattern memory, which stores 512 signal
templates. This pattern memory is divided into four banks, each of which consists of
16 kbyte of memory, and can be randomly selected by the spectral recognizer in the

training and recognition stages. In our prototype we used 32 kbyte of static RAM.

5.3 Software Program

The software program co-ordinates the functional operations of the timing analyzer
and the spectral recognizer. Basically, it consists of different program modules which
are responsible for various operational stages of the system. Such stages include the
initialization of the system (the timing analyzer and the spectral recognizer), the signal
timing analysis, and the signal training and recognition. The program module for the
timing analysis is a direct implementation of the algorithm developed in Chapter 4,
and the program module for the signal training and recognition \was developed by using
the specific set of commands provided by the chip-set manufacturer.

We start the detailed description of the software with a summary of the most

important commands of the spectral recognizer control language. Then we present the
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three major modules of the program. These modules correspond to the three modes of

operation of the system: initialization, training, and recognition.

5.3.1 The Command Set of the Spectral Recognizer

Twelve commands are provided to operate the spectral recogniier. These commands are
sent to the control & timing processor to initiate specific operations. Each command
consists of a command code (8-bits), the required parameter(s), and a termination
code marking the end of each command character string. Upon completion of the
execution of the command, the status of the operation is reported to the timing &
control processor from the uPD7762. A detailed description of the format of each
command is given in Appendix B.

One of the special features of the spectral recognizer is the use of syntax numbers
to group the reference signal templates. Such syntax numbers can be specified in the
training and recognition stages. A valid syntax number can range from 0 — 127 [55].
If none of the syntax numbers is specified, the default value of zero is assumed. When
the spectral recognizer learns the spectral features of a warning sound, this reference
template will be assigned to the group of templates which have the same syntax number.
Similarly, in the recognition stage, one or more syntax number(s) will be assigned to
the unknown signal. To minimize useless comparisons, the spectral recognizer will use
only the reference templates which have the sa;me syntax number(s) as the unknown
signal being examined.

In this work the syntax number is derived from the timing features of warning
signals. From the timing analyzer the repetition period of the burst-type signal is
obtained. Then, the syntax number of this warning signal is evaluated by dividing
its repetition period by eight, in order to assure that the computed syntax number is

bound within the allowable range. However, steady sounds have no repetition period.
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Therefore, the syntax number of 110 is assigned arbitrarily to this group of signal
templates. Furthermore, since telephone rings have by far the longest repetition period
of all warning signals considered, any sound with a repetition period of about six

seconds will be given the syntax number of the the telephone group (101).

5.3.2 Initialization Stage

In the initialization stage the parallel port (INTEL 8255) is reset and configured to
mode O operation (i.e. port A = bidirectional port, port B is set to output port for this
implementation, four pins of the port C are for handshaking signals and two other pins
are for output control signals). Then, the three processors of the spectral recognizer are
also reset, and the pattern memory is tested. If any I/O hardware interfacing problem
occurs during the memory testing process, a failure status from the uPD7762 will be
reported to the control & timing processor. Consequently, the 1 kHz tone is fed to
the MC4760 for signal level adjustmeﬂt. After level adjustment, the experimentally
determined distance threshold is set to constrain the distance calculations between an
unknown signal and the reference patterns. Then the user is prompted for any prestored
template(s) to be transferred from permanent storage to the active pattern memory.

Table 5.4 shows the parameters used in the timing analysis and their initial values.

Table 5.4: Parameters used for the Timing Analyzer

| Timing Analysis Parameter | Designated Values |
Minimum burst duration 102.4 msec
Maximum burst duration 4000.0 msec
Minimum detectable transition level 2
Starting DAT 255
Duration to average the 12.8 msec
absolute signal amplitudes
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5.3.3 Training Stage

In the training stage we employ the “training-by-recognition” strategy to learn the
characteristics of warning sounds. In brief, this strategy is achieved by three steps: 1)
learning the timing features of warning sounds, 2) extracting their spectral features,
and 3) verifying the learned spectral features. First, the timing information of warning
sounds is provided by the timing feature extraction program (cf. Section 4.4). With
this information, warning sounds are classified into two groups: steady and burst-type
sounds.

Following the timing analysis, the spectral recognizer will learn the spectral patterns
of these sounds. For steady sounds, the spectral recognizer immediately learns the
spectral features and subsequently stores them in the pattern memory under syntax
number 110.

For burst-type sounds, spectral extraction process must be synchronized with the
rising transition of the burst. As shown in Fig. 5.42, if the spectral recognizer idling
time is known, this synchronization can be accomplished by activating the spectral
recognizer prior to the expected beginning of the burst. With the learned timing
information (i.e., repetition period and average signal burst width) of a burst-type
warning sound, the idling time is obtained by subtracting the average signal burst
width from the repetition period. Consequently, the spectral patterns are stored in the
pattern memory under the syntax number derived from the detected repetition period.

To verify the learned spectral patterns of warning sounds, the process described
above is repeated. If the results of the two sets of recognition procedures are identical,
the training procedure is completed. Otherwise, the training procedure repeats until
the sound is “learned”. If the spectral recognizer cannot successfully learn the spectral

features of the signal, the user can interrupt the spectral recognizer, and restart the



Chapter 5. Design & Implementation 113

STAAA

TIME

Figure 5.42: Timing relationships associated with the synchronization of the spectral
recognizer to burst-type warning signals, where STAAA is the short-time average ab-
solute amplitude of signal; RP is the repetition period; ASBW is the average signal

burst width, and SR is the spectral recognizer
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training procedure. Fig. 5.43, and Fig. 5.44 show the flowcharts of the training

procedures for steady and, burst-type warning sounds, respectively.

Specific information relevant to each warning signal is stored for identification.
This information includes the syntax number, the pattern registration number which is
automatically generated for each warning sound, the signal type (steady or burst-type),

and an identifier (name) of the warning sound assigned by the user during training.

5.3.4 Recognition Stage

Signal recognition consists of two stages: 1) warning signal detection by the timing
analyzer, and 2) signal recognition by the spectral recognizer. The system continuously
monitors the variations of the short-time average absolute amplitude of sound in the
environments. If a steady sound is detected, the spectral recognizer identifies the sound
twice. If the two recognition results identify the presence of a known warning sound, the
unknown sound is declared to be that warning sound. If a potential burst-type sound is
detected, its repetition period, burst width, and syntax number are derived. Based on
these measurements, the spectral recognizer attempts to recognize the warning sound
at the rising transition of the signal burst. If any spectral reference template can be
matched to the unknown signal, the warning signal is identified with the known warning
sound associated with that template. A flowchart of this recognition scheme is given
in Fig. 5.45.

Upon completion of the recognition process, a summary of signal timing analysis
and recognition results is displayed on the screen. These results include the syntax
number, the signal type, the sound identifier, and the distance score from the matching
calculations.

A system operating manual has been written for users (Appendix C).
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Evaluation

Experiments were conducted to evaluate the performance of the WARNSIS under dif-
ferent noisy situations. Performance criteria were the average recognition rate and the
false-alarm rate. Three noise backgrounds were used: 1) steady fan noise, 2) fan noise
plus FM-radio broadcasts, and 3) fan noise plus AM-radio broadcasts. In view of the
variations of spectra with loudness and noise contamination (cf. Section 3.2.5), three
templates were prepared for the spectral recognizer at different SNRs (i.e. 10dB, 20
dB, and 30 dB) with the steady fan as a noise source.

Peterson demonstrated that in order to héa.r sounds reliably in the presence of noise,
their spectral componenfs have to be 15 dB to 25 dB above the background SPL level
{17,18]. Furthermore, current standards demand the audible warning devices used in
private residences must produce a minimum 10 dBA SPL above the average ambient
level [11]. Therefore, we took the stricter criteria which was to maintain the average
SPL of the noisy background at a minimum of 10 dBC below the SPL of the warning
sounds.

Throughout the experiments, a value of 62 dBC SPL was measured for steady
noise. When radio-broadcast was introduced into the steady noise background, the
variations in SPL of the environment was monitored for five minutes in order to provide
the average SPL estimate of the noisy background. This estimate was obtained by
averaging the SPL variations within the observed time interval. More specifically, this

value was maintained approximately at 65 dBC. Note that the three dBC SPL increase
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was caused by acoustically adding two signals of equal strength (i.e. steady noise and
radio-broadcast signal). Then, we activated an auditory warning device, and adjusted
the loudness of the emitted sound so that the SPL reading was on the average 10 dBC
above the noisy background.

The set-up for these experiments was similar to the one used for the measurement
of the average short-time absolute amplitude of warning sounds in Chapter 3. Siren
sounds were emitted from a siren horn; the pre-recorded telephone rings and smoke
alarm sounds were produced by a tape recorder; and the radio-broadcasts originated
from a radio-cassette player.

To explore the contribution of the timing and spectral recognizer parts to the per-
formance of the WANRSIS, we also evaluated the recognition rate and the false-alarm
rate using these subsystems separately. Specifically, for the timing analyzer part alone,
the repetition period was our prime feature for warning sound recognition. Since steady
sounds have no repetition period, their recognition accuracy rate cannot be found under
these circumstances. In the training stage, the timing analyzer learned the repetition
periods from the warning sounds. To recognize a warning sound, the repetition period
of an unknown sound was extracted and compared to the values of the pre-stored repe-
tition periods. If the absolute difference was less tha,n' 10 % of the pre-stored repetition
period used in the comparison, the unknown sound was assigned to the corresponding
reference warning sound.

For the spectral recognizer part alone, the environmental sounds were continuously
monitored. Under the steady noise background, the spectral recognizer learned the
signal templates using the ‘training-by-recognition’ scheme. For signal recognition,

only spectral features were used without utilization of any timing information.
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6.1 Average Recognition Accuracies

For each warning sound the recognition rate was derived by dividing the number of
times the correct sound was identified by the total number of times the sound was
present. The average accuracy for each of the three types of warning sounds is the
average of the recognition rates calculated for all sounds belonging to the type. The
detailed calculations may be found in Appendix D.

Table 6.5 shows the summary of recognition results for the complete WARNSIS, the
timing analyzer part alone, and the spectral recognizer part alone. The first column
gives the three types of noisy backgrounds in which the experiments were conducted;
the second column shows the types of warning sounds used: 1) ‘burst’, denoting burst-
type sounds, 2) ‘steady’, denoting steady sounds, and 3) ‘phone’, denoting telephone
rings; the third, fourth, and fifth columns give the average recognition accuracies (ARA)
achieved by the complete WARNSIS, the timing analyzer part alone, and the spectral
recognizer part alone, respectively. The recognition results for the spectral recognizer

part alone in a steady noise background were reported in [71].

In steady noise background, the complete WARNSIS produced 100 % average recog-
nition accuracy for all three types of warning sounds.l The timing analyzer part alone
yielded perfect recognition scores for burst-type sounds and pho.ne rings; and the spec-
tral recognizer part alone gave more than 95 % average recognition accuracy in all
cases. As mentioned previously, the timing analyzer can detect the presence of steady
sounds, but cannot distinguish any particular steady sound. Therefore, we cannot find
the average recognition accuracy for the steady sound in the column for the timing
analyzer part alone.

With the addition of FM broadcast to the steady noise, the complete WARNSIS

could still reliably identify burst-type, and steady sounds. As shown in Table 6.5,
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Table 6.5: A summary of recognition results with MBD set to 0.1024 sec
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Complete | Timing Analyzer | Spectral Recognizer

Background | Type of | WARNSIS Alone Alone
Noises | Warning | ARAT ARA ARA
Sound (%) (%) (%)

Burst 100.0 100.0 100.0

Steady Steady 100.0 N/A 97.6
Noise Phone 100.0 100.0 95.8
FM + Burst 98.0 97.7 65.6
Steady Steady 100.0 N/A 91.1
Noise Phone 0.0 0.0 70.0
AM + Burst 99.3 98.3 67.2
Steady Steady 100.0 N/A 91.1
Noise Phone 0.0 0.0 69.2

ARAT Average Recognition Accuracy in %
Minimum Burst Duration (MBD) : 0.1024 sec
N/A : Not Applicable
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the recognition accuracies were measured as 98.0 % for burst-type sounds, and 100
% for steady sounds. But, the complete WARNSIS failed to recognize the telephone
rings. Under the same noisy conditions the timing analyzer could recognize burst-type
sounds with a 97.7 % average recognition accuracy, but faﬁled to detect the presence of
telephone rings. For the spectral recognizer part alone the average accuracy dropped
from 100 % to 65.6 % for burst-type sounds, and was reduced from 95.8 % to 70 % for
phone rings. However, this subsystem could still achieve a 91.1 % average recognition
accuracy for steady sounds.

These results indicate that the compiete WARNSIS consistently obtains higher
recognition accuracy rates for burst-type and steady sounds than those of its subsys-
tems separately. In close examination the complete WARNSIS gives a 0.3 % recognition
accuracy better than that of the timing analyzer part for burst-type sounds with the
background of FM broadcast plus steady fan noise. In the same situations, the com-
plete WARNSIS outperforms the spectral recognizer by 24.4 % in identifying burst-type
sounds, and by 8.9 % in correctly recognizing different steady sounds.

Similar results were also obtained when AM-radio broadcast and steady noise was

used as background.

With the background of radio broadcast, both the complete WARNSIS and the
timing analyzer failed to detect the presence of phone rings. Analysis showed that this
is due to the value of the minimum burst duration (MBD) selected. It is possible to set
MBD to provide greatly improved phone ring recognition (1.024 sec). Table 6.6 gives
the recognition resuits with this MBD value.

Over 92 % recognition accuracy for phone rings is achieved by the complete WARN-
SIS, and the timing analyzer can always correctly identify the presence of phone rings in
radio-broadcast backgrounds. According to the timing analysis algorithm, the modifi-

cation of the minimum burst duration has no effect on the performance of the complete
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Table 6.6: A summary of recognition results with MBD set to 1.024 sec

Complete | Timing Analyzer | Spectral Recognizer

Background { Type of | WARNSIS Alone Alone
Noises | Warning [ ARAT ARA ARA
Sound (%) (%) (%)

Burst 0 0 100.0

Steady Steady 100.0 N/A 97.6
Noise Phone 100.0 100.0 95.8
FM 4+ Burst 0 0 65.6
Steady Steady 100.0 N/A 91.1
Noise Phone 92.5 100.0 70.0
AM + Burst 0 0 67.2
Steady Steady 100.0 - N/A 91.1
Noise Phone 94.2 100.0 - 69.2

ARAT . Average Recognition Accuracy in %
MBD : 1.024 sec
N/A : Not Applicable

WARNSIS in steady sound recognition, and of the spectral recognizer alone in all noise
situations. Therefore, we reproduced those average recognition accuracies from Table

6.5 in Table 6.6.

The effect of different MBD’s on the performance of the WARNSIS is discussed in
detail in Section 6.3.1.

6.2 False-alarm Rates

Since the occurrence of warning sounds in real-life environments is quite infrequent, it
is essential for the WARNSIS not only to achieve an acceptable recognition accuracy

for various sounds, but also to operate with a low false-alarm rate.
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With the same experimental set-up as used before, we recorded the number of false-
alarms over long period of time. The false-alarm rates for the complete WARNSIS, the
timing analyzer part alone, and the spectral recognizer part alone were determined.

Table 6.7 shows that in steady noise situations WARNSIS produces no false-alarms.
With radio-broadcast background the false alarm rate maybe as high as 2.33 per hour.
Interestingly, phone ring false alarms are never produced.

For the timing analyzer alone the ‘worst’ false-alarm rate is 144.59 mis-recognitions
per hour, 113 of which belongs to burst-type, 31 to steady, and 0.59 to phone ring
sounds, respectively. In the two radio-broadcast backgrounds, over 99 % of mis-
recognitions are classified into burst-type and steady sounds.

For the spectral recognizer alone, the ‘worst’ false-alarm rate is 1848 mis-recognitions
per hour, 21 of which belongs to burst-type, 200 to steady, and 1627 to phone ring
sounds, respectively. In two noisy conditions, over 80 % of mis-recognitions are classi-
fied into phone rings.

With the MBD set to 1.024 sec, the WARNSIS gave no false phone indications no
matter what the noise conditions were (Table 6.8). Since the different MBD’s "have
no effect on the performance of the specfral recognizer, the false-alarm rates for the
spectral recognizer in Table 6.7 are reproduced in Table 6.8.

Although it is very difficult to quantify, experience has shown that the false alarm

rate is highly dependent on the type of music played.

6.3 Discussion

6.3.1 Average Recognition Accuracies

Table 6.5 shows that the combined use of timing and spectral characteristics of warn-

ing sounds gives better recognition scheme for burst-type and steady sounds than any
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Table 6.7: Results of the false-alarm test with MBD set to 0.1024

Complete | Timing Analyzer | Spectral Recognizer
Background Mis- WARNSIS Alone Alone
Noises recognized FART FAR FAR
As (#/hour) (#/hour) (#/hour)
Burst 0 0 0
Steady Steady 0 0 0
Noise Phone 0 0 0
Total 0 0 0
FM + Burst 1.33 49 21
Steady Steady 1.0 35 200
Noise Phone 0 0.76 1627
Total 2.33 84.76 1848
AM + Burst 0.5 113 ' 153
Steady Steady 0.5 31 296
Noise Phone 0 0.59 1270
Total 1.0 144.59 1719

F ART : False-alarm Rate
MBD : 0.1024 sec
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Table 6.8: Results of false-alarm fest with MBD set to 1.024 sec
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Complete | Timing Analyzer | Spectral Recognizer
Background Mis- WARNSIS Alone Alone
Noises recognized FART FAR FAR
As (#/hour) (#/hour) (#/hour)
Burst 0 0 0
Steady Steady 0 0 0
Noise Phone 0 0 0
Total 0 0 0
FM + Burst 0 2.67 21
Steady Steady 1.0 36 200
Noise Phone 0] 4 1627
Total 1.0 42.67 1848
AM + Burst 0 4.67 153
Steady Steady 0.5 26 296
Noise Phone 0 9.33 1270
Total 0.5 40.0 1719

FAR'|L : False-alarm Rate

MBD : 1.024 sec
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scheme using only one of them. In particular, for these two types of warning sounds
in radio broadcast backgrounds, the complete WARNSIS gives at least 0.3 % better
average recognition accuracy than that of the timing analyzer alone, and provides min-
imally 8 % better average recogni;cion accuracy rate than that of the spectral recognizer
part alone.

The explanation for the failure of the complete WARNSIS and the timing analyzer
to recognize phone ring is as follows. Fig. 6.46 gives an example of a phone ring
sequence added with nonstationary background noise. The phone ring sequence is
comprised‘of two 2 seconds bursts (B;, and Bs), and of 4 seconds of silence. After
the first phone ring, the burst, By, is detected by the timing analyzer, and the time
markers for both rising and falling transitions are located. Without storing the detected
burst waveform, the timing analyzer continues to monitor the environmental sounds.
During the silence interval, B;, which may be caused by radio music/conversation, is
also detected by the timing analyzer. Unfortunately, the two criteria for a successful
detection of a potential repetitive burst sequence are sé,tisﬁed (i.e. Wy > MBD, and
the burst interarrival time > M1 AT). Therefore, the repetition period for these bursts
is calculated, and compared to the prestored template values. Mis-recg)gnition to one
of the warning sounds occurs, if this value matches to any one of the prestored values.
Otherwise, the timing analyzer considers this burst sequencé is caused by random noise,
and their time markers are cleared as it restarts to search for another potential burst
sequence.  Similarly, the timing analyzer decides cither mis-recognition or random noise
rejection for the following phone bursts (i.e. B; in Fig. 6.46).

As a result, the timing analyzer fails to detect the presence of phone rings. If the
timing analyzer cannot provide the timing information on phone ring sequence, the
WARNSIS cannot utilize this timing analysis result, and eventually, it also cannot

identify the presence of phone rings.
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Figure 6.46: An example of a phone ring sequence added with nonstationary back-
ground noise
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In Table 6.6 we find that the timing analyzer performs better than the complete
WARNSIS in phone ring recognition. An explanation for this observation is as follows.
For the timing analyzer part alone the repetition period is the only feature used to
to detect the presence of phone rings. Since the repetition periods of the phone ring
sequences used are approximately six seconds, the timing analyzer, therefore, cannot
identify the sounds emitted from a specific telephone ringer. However, based on the
timing information derived from a phone ring sequence, the complete WARNSIS then
examines the spectral content of a phone ring and compares it to the pre-stored spectral
patterns belonging to the group of telephone rings. Thus, the complete WARNSIS not
only identifies the sound as a phone ring, but also provides additional information on the
specific ringer. As deduced from Tabie D.25 and D.27 in Appendix D (a complete set of
evaluation results), the decreased recognition rate occurs even though it identifies the
correct ringer, as it chooses the incorrect loudness or pitch template. This is because
of the similar spectral characteristics between templates with adjacent settings (cf.
Section 3.2). In a practical system, however, this would not matter as long as the
“phone is ringing” event is detected.

The repetition period of burst-type sounds ranges from 140 msec to 3.2 sec. With
the value of the minimum burst duration changed from 0.1024 sec to 1.024 sec, the
timing analyzer is prevented from extracting timing features of those burst-type sounds
with repetition periods less than 1.024 sec. However, the modification has no effect on
the steady sound recognition performance of the complete WARNSIS because steady

sounds require a minimum burst duration of four seconds.

6.3.2 TFalse-alarm Rates

The results of the false-alarm rate indicate that the combined use of timing and spectral

features to characterize warning sounds provides an effective scheme to eliminate false
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recognitions triggered by environmental noise. For random noise there are no false
alarms. In the presence of FM broadcasts, the complete WARNSIS gives a false-alarm
rate of about 2.33 false recognitions per hour, which we conéider to be unacceptably
high for a practical recognition system operating in real-life environments. It should be
remembered, however, that the measurements presented here represent the ‘worst-case’
false-alarm recognition performance of the WARNSIS. Real life performance should be
better, since SNR’s are usually higher than the 10 dB used in our measurements.
Evaluation of performance in use will require field testing beyond the scope of this

work.

The specifications for the WARNSIS are given in Appendix E.
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Conclusions and Recommendations

7.1 Summary & Conclusions

This work was divided into two major parts: 1) the analysis of warning sounds, and
2) the design of a prototype recognition device based on (1). An extensive search
for existing warning sound characteristics yielded only a limited amount of timing
and spectral information. Therefore, we used various timing and spectral analysis
techniques to study the warning sounds emitted by telephones, smoke a]arrﬁs, and
electronic siren drivers.

First, the short-time average absolute amplitudes of warning sounds were analyzed
to provide timing features. Results show that warning sounds can be categorized into
either steady or burst-type sounds.

Secondly, Welch’s nonoverlapping spectral estimation method was used to analyze
the short-time spectra of warning sounds. Our findings indicate that the spectra of
telephone rings produced from electromechanical ringers 6f dial phones of the same
model may vary significantly. These spectral characteristics also depend on the setting
of the loudness adjustments provided. Typically, the short-time spectra of a two second
telephone ring éonsist of two discernible parts: the transient region and the steady-state
regions. Analyses were also performed on telephone rings emitted from an electronic

ringer. Results indicate that by varying the pitch setting, the two tones generated from
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the ringer change accordingly. For siren sounds, the short-time spectra can be divided
into two groups: 1) spectra with rich harmonics and, 2) spectra with frequency clusters.

Based on the timing and spectral analysis results, a ‘hybrid’ prototype recognition
device (WARNSIS) was developed and constructed using commercially available com-
ponents. This device utilizes a combination of timing and spectral features of warning
sounds as signal patterns. A ‘real-time’ algorithm is used to extract timing features in
noisy environments. According to the relative timing characteristics of these features,
warning sounds are classified. Then, the incoming signals are passed on for spectral
analysis.

A filter-bank approach is employed to analyse the short-time spectré of warning
sounds. To categorize these spectral patterns, the timing information of warning sounds
is used to group these patterns with sounds of similar timing features. This grouping
technique greatly reduces the amount of computation involved in the recognition stage.

The real-time program to extract timing features was written in assembler lan-
guage. The spectral recognizer was constructed with commercial electronic compo-
nents. A software operating system Was developed to co-ordinate the timing analyzer
and the spectral recognizer. Our device consists of 79 chips, and the software program
is comprised of 2490 lines of assembler source codes.

Experiments .were conducted to investigate the performance of the WARNSIS in
noisy environments. For burst-type and steady sounds, the WARNSIS provides average
recognition accuracies over 98 %. With regard to the false-alarm rates, the complete
WARNSIS gives much lower values than the false-alarm rates of its separate timing
and spectral subsystems.

In this work, we designed, constructed, and evaluated a warning sound recognition
system. The evaluation results indicate that the WARNSIS operates satisfactorily in

real environments, where it can be taught to learn new sounds and to recognize them.
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This system will reliably recognize warning sounds in random noise with no false alarms.
In very loud music and conversation the recognition is still good, although more false
alarms are created. Considering that our evaluation criteria have been very stringent,

the performance of the system in real-life situations is expected to be satisfactory.

7.2 Recommendations for Future Directions of Research

To improve the performance of the complete WARNSIS in noisy environments with

SNR of lower than 10 dB, future work should be directed towards the following:

1. The improvement of the transition or break-point detection scheme and imple-

mentation: In the present design none of the short-time average amplitudes are
stored for analysis. It is feasible to store these amplitude values, and then use a
fast CPU to analyze the stored signal amplitude samples. Faster CPU than the
one presently employed will permit more elaborate analysis of these amplitude
samples, so that the timing analyzer becomes more intelligent in rejecting un-
wanted transient noises. A possible extension of this work is to use the shape of

the amplitude contours of burst-type sounds to provide additional signal features.

2. Exploration of the adaptive noise cancellation (ANC) technique: Since noise in

this work consists of music, speech signals and transient noises, cancellation of
these noises in real-life environments 1eads us into unexplored territory. Then
we need to find a suitable ANC algorithm and explore its implementation for
optimum performance. For real-time operation, a compromise may exist between

the SNR improvement and the complexity of the algorithm.
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3. Use of microphone array to provide better spatial separation between warning

sound source and background noise: A microphone array can provide a much

sharper directional beam to obtain better quality warning sound than a single
directional microphone. Research in this area should involve the selection the
microphone array structure, its orientation, and a signal processing algorithm to

analyze the outputs from the microphone array to yield the desired output.

A possible extension is the combined use of adaptive noise cancellation and multi-
microphone array system for sound tracking capability and noise removal en-
hancement. Research in this area will require a multiple digital signal processing

(DSP) system to facilitate the real-time operation in nonstationary noise envi-

ronments.



1

2]
3]
4]

[5]
[6]
7]
8]
[9]
[10]

[11]

[12]

[13]

[14]

References

] J. E. Harkins and C. J. Jensema, Focus-group discussions with deaf and severely

hard of hearing people on needs for sensory devices, Gallaudet Research Institute,
Technology Assessment Program, Washington D. C., 1987.

J. Hurvitz and R. Carmen, Special Devices for Hard of Hearing, Deaf, and Deaf-
Blind Persons, Little, Brown and Company, Boston, 1981.

T. Hustak, Directory of Technical Aids Available to Hearing Impaired Persons,
Services for Hearing Impaired Persons, Inc., Regina, Sakatchewan 1984.

J. E. Harkin and C. J. Jensema and H. Ryland, “Toward Emergency Vehicle Detec-
tion: Systemic Considerations”, Proceedings of ICARRT at Montreal, pp.228-229,
1988.

Underwriters Laboratories Inc. Standard for Safety UL217 : “Single and Multiple
Station Smoke Detectors”, Oct., 1985.

Underwriters Laboratories Inc. Standard for Safety UL985 : “Household Fire
Warning System Units”, June, 1985.

Underwriters Laboratories Inc. Standard for Safety UL904 : “Vehicle Alarm Sys-
tems and Units”, July, 1982.

Canadian Standards Association, National Standard of Canada, CAN/CSA-T510-

M87, “Performance and Compatibility Requirements for Telephone Sets”, March,
1987.

Electronic Industries Association, EIA-470-A, “Telephone Instruments with Loop
Signalling for Voiceband Applications”, 1988.

Bell System Voice Communications Technical Reference, PUB 48005, “Functional
Product Class Criteria : Telephones”, Jan., 1980

National Fire Protection Association, NFPA 72G, “Guide for the Installation,
Maintenance and Use of Notification Appliances for Protective Signalling Sys-
tems”, 1985. :

National Fire Protection Association, NFPA 72A, “Standard for Installation,
Maintenance and Use of Local Protective Signalling Systems for Guards’s Tour,
Fire Alarm and Supervisory Service”, 1985.

R. E. Halliwell and M. A. Sultan, “Attenuation of Smoke Detector Alarm Signals in
Residental Buildings”, National Research Council Canada, Institute for Research
in Construction, NRCC 25897.

S. Miyaaki and A. Ishida, “Traffic-alarm Sound Monitor for Aurally Handicapped
Drivers”, J. of Medical & Computer, Vol.25, pp.68-74, Jan., 1987.

135



References : : 136

[15] Installation and Service Instructions for Model MCS-1 Motor Slgnal Federal Signal
Corporation.

[16] Installation Manual for Electronic Siren, Model SA 400-63, Southern Vehicle Prod-
ucts, Inc. ‘

[17] R. D. Patterson, CAA Paper 82017, Civil Aviation Authority, London, U.K., 1982.

[18] J. Edworthy and R. D. Patterson, “Ergonomic Factors in Auditory Warnings”,
Ergonomics International 85, edited by I. D. Brown, R. Goldsmith, K. Coombes
and M. A. Sinclair, pp.232-235, 1985.

[19] Lower and Wheeler, “Design of Auditory Warnings for Aircraft, Industry and

Hospitals”, Ergonomics International 85, edited by I. D. Brown, R. Goldsmith, K.
Coombes and M. A. Sinclair, pp.226-228, 1985.

[20] G. M. Rood, J. A. Chillery and J. B. Collister, “Requirements and Application of
Auditory Warnings to Military Helicopters”, Ergonomics International 85, edited
by I. D. Brown, R. Goldsmith, K. Coombes and M. A. Sinclair, pp.169-170, 1985.

[21] M. J. Shailer and R.D. Patterson, “Pulse generation for Auditory Warning Sys-
tems”, Ergonomics International 85, edited by I. D. Brown, R. Goldsmith, K.
Coombes and M. A. Sinclair, pp.229-231, 1985.

[22] J.H. Kerr, “Warning Devices”, Br. J. Anaesth., 57, pp.696-708, 1985.

[23] R. D. Patterson, J. Edworthy and M. J. Shailer, “Alarm sounds for Medical Equip-
ment in Intensive Care Areas and Operation Theatres”, Institute of Sound and
Vibration Research Paper AC598, 1986.

[24] S. M. Kay and S. L. Marple ,Jr., “Spectral Analysis: A Modern Perspective”,
Proceedings of IEEE, Vol.69, No.11, pp.1380-1419, Nov., 1981.

[25] B. S. Atal and M. R. Schroeder, “Linear Prediction Analysis of Speech based
on a Pole-zero Representation”, Journal of Acoust. Soc. of Amer., Vol.64, No.5,
pp.1310-1318, Nov., 1978.

[26] J. Makoul, “Linear Prediction: A tutorial Review”, Proceeding of IEEE, Vol.63,
pp.561-580, Apr., 1975.

[27] R. B. Blackman and J. W. Tukey, “The Measurement of Power Spectra from the
point of view of Communication Engineering”, New York, Dover, 1959.

[28] P. D. Welch, “The Use of fast Fourier transform for the estimation of Power
Spectra: A method based on Time Averaging over Short, Modified Periodograms”,
IEEE Trans. on Audio Electroacoust., Vol.AU-15, pp.70-73, June, 1967.

[29] G. C. Carter and A. H. Nuttall, “On the Weighted Overlapped Segment Aver-
aging Method for Power Spectral Estimation”, Proc. of the IEEE, Vol.68, No.10,
pp.1352-1353, Oct., 1980.



References 137

[30] J. S. Lim, “All Pole Modelling of Degraded Speech”, IEEE Trans. on ASSP,
Vol.ASSP-26, pp.197-209, June, 1978. ‘

[31] S. M. Kay, “The Effects of Noise on the Autoregressive Spectral Estimator”, IEEE
Trans. on ASSP, Vol.ASSP-27, pp.478-485, Oct., 1979.

[32] F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete
Fourier transform”, Proceedings of IEEE, Vol.66, No.1, pp.51-83, Jan., 1978.

[33] D. N. Romalo, “An Interference Monitor for a Radio Observatory”, M.A.Sc. The-

- sis, Dept. of Electrical Engineering, University of British Columbia, pp.42-44,
April, 1988.

[34] Simon Chau and Charles Laszlo, “Spectra of Telephone Rings and Annunciating

Signals used in an Aid for Hearing Impaired”, Proceedings of the 13** CMBEC,
pp-147-148, Halifax, June, 1987.

[35] B. S. Atal and L. R. Rabiner, “Speech Research Directions”, AT&T Technical
Journal, Vol.62, No.5, Sept/Oct., pp.75-88, 1986.

[36] S. E. Levinson, “Structural Methods in Automatic Speech Recognition”, Proceed-
ings of IEEE, Vol.73, No.11, Nov., pp.1625-1650, 1985.

[37] L. R. Rabiner and S. E. Levinson, “Isolated and Connected Word Recognition -
Theory and Selected Applications”, IEEE Trans. on Communications, Vol. COM-
29, No.5, pp.621-659, May, 1981.

[38] D. O’Shaughnessy, “Speech Recognition”, IEEE ASSP Magazine, pp.4-17, Oct.,
1986.

[39] H. Sakoe and S. Chiba, “Dynamic Programming Algorithm Optimization for Spo-
ken Word Recognition”, IEEE Trans. on ASSP, Vol. ASSP-26, No.1, pp.43-49, Feb.,
1978,

[40] A. H. Gray, Jr. and J. D. Markel, “Distance Measures for Speech Processing”,
IEEE Trans. on ASSP, Vol.ASSP-24, No.5, pp.380-391, Oct., 1976.

[41] N. Nocerino, F. K. Soony, L. R. Rabiner and D. H. Klatt, “Comparative study
of Several Distortion Measures for Speech Recognition”, Proc. ICASSP, pp.25-28,
1985.

[42] H. Matsumoto and H. Iami, “Comparative Study of Variable Spectrum Matching
Measures on Noise Robustness”, Proc. ICASSP, pp.769-772, 1986.

[43] R. F. Purton, “Speech Recognition Using Autocorrelation Analysis”, IEEE Trans.
on Audio and Electroacoustics, Vol.AU-16, No.2, pp.235-239, June, 1968.

[44] M. M. Sondhi, “New Methods for Pitch Detection”, IEEE Trans. on Audio-
Electro., Vol.AU-16, pp.262-266, June, 1968.

[45] L. R. Rabiner, “On the Use of Autocorrelation Analysis for Pitch Detection”,
IEEE Trans. on ASSP, Vol.ASSP-25, No.1, pp.24-33, Feb., 1977.


http://No.ll
http://Vol.COM-

References 138

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

(58]

[59]

[60]

J. J. Dubnowski, R. W. Schafer and L. R. Rabiner, “Real-time digital Hardware
pitch detector”, IEEE Trans on ASSP, Vol.ASSP-24, pp.2-8, Feb., 1976.

L. R. Rabiner and M. R. Sambur, “An Algorithm for determining the Endpoints
of Isolated Utterances”, The Bell System Technical Journal, Vol.54, Vol.2, pp.297-
315, Feb., 1975.

M. T. Whitaker and J. A. S. Angus, “A Low Cost Continuous Word Speech Recog-
nizer”, International Conf. on Speech Input/Output Techniques and Applications,
IEE Conf. Publication # 258, pp.119-123, March, 1986. ‘

L. F. Lamel, L. R. Rabiner, A. E. Rosenberg and J. G. Wilpon, “An Improved End-
point Detector for Isolated Word Recognition”, IEEE Trans. on ASSP, Vol.ASSP-
29, No.4, August, pp.777-785, 1981.

J. G. Ackenhusen and L. R. Rabmer, “Microprocessor implementation of an LPC-
based isolated word recognizer”, in Proc. 1980 BTL/WE Microprocessor Symp.,
Sept., pp.35-42, 1980.

B. Gold and L. R. Rabiner, “Parallel Processing Technique for Estimation Pitch
Periods of Speech in the Time Domain”, J. Acoust. Soc. Amer., Vol.46, pp.442-448,
Aug., 1969. :

B. Gold, “Note on buzz-hiss detection”, J. Acoust. Soc. Amer., Vol.36, pp.1659-
1661, 1964.

G. M. White and R. B. Neely, “Speech Recognition Experiments with Linear Pre-
diction, Bandpass Filtering and Dynamic Programrmng”, IEEE Trans. on ASSP,
Vol.ASSP-24, No.2, pp.183.188, April, 1076,

H. L. Kwok, L. C. Tai, and Y. M. Fung, “Machine Recognition of the Cantonese
Digits Using Bandpass Filters”, IEEE Trans. on ASSP, Vol.ASSP-31, No.1, pp.220-
222, Feb., 1983.

NEC Speech Recognition LSI Set Manual, June, 1985.

D. Tjostheim, “Recognition of Waveforms Using Autoregressive Feature Extrac-
tion”, IEEE Trans. on Computer, Vol.C-26, No.3, pp.268-270, March, 1977.

B. S. Atal and M. R. Schroeder, “Adaptive Predictive Coding of Speech Signals”,
Bell System Tech. Journal, Vol. 49 pp.1973-1986, 1971.

J. G. Ackenhusen and Y. H. Oh, “Single-chip Implementation of Feature Measure-
ment for LPC-based Speech Recognition”, AT&T Technical Journal, Vol.64, No.8,
pp.1787-1805, Oct., 1985.

B. A. Dautrich, L. R. Rabiner and T. B. Martin, “On the Effects of Varying
Filter Bank Parameters in Isolated Word Recognition”, IEEE Trans. on ASSP,
Vol.ASSP-31, No.4, pp.793-806, August, 1983.

J. S. Lim, “Estimation of LPC coefficients from speech waveforms degraded by
additive random noise”, Proc ICASSP 78, pp.599-601.



References _ 139

[61] J. Tierney, “A Study of LPC Analysis of Speech in Additive Noise”, IEEE Trans.
on ASSP, Vol.ASSP-28, No.4, pp.389-397, August, 1980.

[62] B. S. Atal, “Effectiveness of linear prediction characteristics of the speech wave
for automatic speaker identification and verification”, J. Acoust. Soc. Am., Vol.55,
No.6, pp.1304-1312, June, 1974.

[63] B. H. Juang, L. R. Rabiner and J. G. Wilpon, “On the use of Bandpass Liftering

in Speech Recognition”, IEEE Trans. on ASSP, Vol.ASSP-35, No.7, pp.947-953,
July, 1987.

[64] B. A. Hanson and H. Wakita, “Spectral Slope Distance Measures with Linear Pre-
diction Analysis for Word Recognition in Noise”, IEEE Trans. on ASSP, Vol.ASSP-
35, No.7, pp.968-973, July, 1987.

[65] S. E. Levinson, L. R. Rabinér,' and M. M. Sondhi, “An Introduction to the Appli-
cation of the Theory of Probabilistic Functions of a Markov Process to Automatic

Speech Recognition”, The Bell System Technical Journal, Vol.62, pp.1035-1074,
April, 1983.

[66]. L. R. Rabiner, S. E. Levinson, and M. M. Sondhi, “On the Application of Vector
Quantization and Hidden Markov Models to Speaker-Independent, Isolated Word

Recognition”, The Bell System Technical Journal, Vol.62, No.4, pp.1075-1105,
April, 1983.

[67] A. Varga, R. Moore, J. Bridle, K. Ponting, and M. Russell, “Noise Compensation
Algorithms for use with Hidden Markov Model based Speech Recognition”, Proc.
of IEEE Conf., pp.481-484, 1988.

[68] R. W. Schafer and L. R. Rabiner, “Digital Representation of Speech Signals”,
Proceedings of IEEE, Vol.63, No.4, pp.662-677, April,1975.

[69] L. R. Rabiner, A. E. Rosenberg and S. E. Levinson, “Considerations in Dynamic
Time Warping Algorithms for Discrete Word Recognition”, IEEE Trans. on ASSP,
Vol.ASSP-26, No.6, pp.575-582, Dec., 1978.

[70] C. Myers, L. R. Rabiner and A. E. Rosenberg, “Performance Tradeoffs in Dynamic

Time Warping Algorithms for Isolated Word Recognition”, IEEE Trans. on ASSP,
Vol.ASSP-28, No.6, pp.623-635, Dec., 1980.

[71] Simon Chau and Charles Laszlo, “A Warning Signal Identification System

(WARNSIS) for Hard of Hearing Individuals”, Proceedings of the 14* CMBEC,
pp.145-146, Montreal, June, 1988.



Appendix A

Formulation of Relationship between SNR and SPL measurements

In this work SNR is defined as the ratio of the peak power of the signal to peak power
of the background noise. To calculate the SNR directly, we need to obtain both signal
and noise power. From the SPL measurement of acoustic background (noise), the
noise power can be derived. We found, however, that the measurement of the SPL of
the warning sound alone in any real acoustic environment is impossible, since there
is always some background noise present. Here we will show the relationship of noise

SPL, and the warning sound plus noise SPL to the SNR.
The following notation will be used:

I..; = reference sound intensity

I, = peak acoustic intensity of background noise

I, = peak warning sound intensity

I,+; = peak acoustic intensity of a warning sound plus background noise
P, = peak SPL of background noise

P.+s = peak SPL of a warning sound plus background noise

SI, =1, in dB

SI, =1, in dB
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SIl,ys = I, expressed in dB
SPL, = SPL measurement of background noise
SPL,; = SPL measurement of a warning sound plus background noise

P,,; = the reference sound pressure level ( 20 p Pa)

From the definition of SNR,

sNR=1 (A.35)
I,
and
SNR(dB) = 10 logm{%;} (A.36)
Also,
SIy, = 10 1og10{§“+8} (A.37)
ref
SI, = 10 loglo{IIa} (A.38)
ref

But (SI,4+, — SI,) = difference in sound intensity level in dB, and

using equations (A.37) and (A.38), it gives

' a+ts Ia
Iref . Iref
= 10 log,, {I}“} (A.39)

Since Ioys = I, + I, (without resonance), we have

(SIa+a - SIa) = 10 log), {(I_a;'_IQ}
I,
= 10 logy, {1 + I—} (A.40)
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To find (S1,+, — SI,) by measurement, consider

I, = &P}
Iys = kPL, (A.41)

where kK = constant

Then we can express (SI,;, — SI,) in terms of P, and P,,, which can be measured

by a commercially available SPL meter.

' Kk P?
(81,4, —SI,) = 10 1 ats
(SI+s — S1,) 1 oglo{ P2 }

= 20 log, {%‘;*—3} (A.42)

Rewriting equation (A.42) using P,.s gives,

Iza s ) IZu
(SI4s —SI,) = 20 10810P+ —20 log,p —

ref ref
= SPL,.s—SPL, (A.43)
I,
= 10 log;o(1 + I—)

Equation A.43 indicates that the difference in sound intensity can be expressed in
terms of two measurable physical quantities — the difference in SPL measurements in

the absence and during the presence of a warning sound. Hence, we have

I,
(8PLare~ SPL) = 10 logio(l+ 7)

= 10 log;o(1 + SNR) (A.44)
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Hence
I,
S = —
NR T, |
SPLyws — SPL,
= {a,ntz' log,, (( PLay ))} -1 (A.45)
10
or
SNR(dB) =10 log,,(SNR) (A.46)

When the difference in SPL readings is more than 10 dB, SNR in dB is very close to

the SPL difference in dB (Table A.9).
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Table A.9: Tabulation of SPL reading difference and SNR

(SPLuys — SPL,)in(dB) | SNR (in dB) | SNR
0.5 -9.14 0.12
1.0 -5.9 0.26
1.5 -3.8 0.41
2.0 -2.43 0.59
2.5 -1.1 0.78
3.0 0.0 1.0
3.5 0.9 1.2
4.0 1.8 1.5
4.5 2.6 1.8
5.0 3.3 2.2
5.5 4.1 2.6
6.0 4.7 3.0
6.5 5.4 3.5
7.0 6.0 4.0
8.0 7.2 5.3
9.0 8.4 6.9
10.0 9.5 9.0
11.0 10.6 11.6
12.0 11.7 14.8
13.0 12.8 19.0
14.0 13.8 24.1
15.0 14.8 30.6
16.0 15.9 38.8
17.0 16.9 49.1
18.0 17.9 62.0
19.0 18.9 78.4
20.0 . 20.0 | 99.0
21.0 21.0 125
22.0 22.0 158
23.0 23.0 199




Appendix B

Format of the command set of the SR

The format of the twelve commands used to control the operation of the SR is given
in Table B.10.

Correspondingly, Table B.11 shows the legal values for the memory bank, the bank
rejected valpe, the signal rejected value, the syntax #, and the registration #.

In response to a specified command one or more of the following status output
codes is(are) reported from the uPD7762 to the control & timing processor. The

interpretations of these status output codes are given in Table B.12.
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Table B.10; Format of command set of SR

146

Command Code Format
1. Initialize (2 byte code) 00, H_, OFFH (termination code)
code hez

2. Level_adjust
(3 — 6 bytes)

01H, [memory bank],
[memory bank|, [memory bank],
[memory bank|, OFFH

3. Recognition
(2 — 32 bytes)

003H, [syntax # (S)],
[...,S...]), OFFH

4. Training
— 5 bytes)

002H, registration #, [syntax #],
[signal rejected value], OFFH

(

5. Second Decision (2 bytes) 004H, OFFH

6. Hot start (2 bytes) 005H, OFFH

7. Down load (3 bytes) 006H, # of patterns, OFFH
8. Up load (2 bytes) 007H, OFFH

9. Change memory reject value (3 bytes) 008H, bank reject value, OFFH
10. Memory test (2 bytes) 009H, OFFH

11. Select memory bank (3 bytes)

00AH, bank #, OFFH

12. Change signal reject value
(3 bytes)

00CH, registration #,

signal reject value, OFFH

Table B.11: Legal Values for parameters of the command set

Parameters Legal Value
1) Memory bank value (B) 0 < B < 03
2) Bank reject value (BRV) 0 < BRV < OFEH
3) signal reject value (SRV) 0 < SRV < 080H
4) pattern registration value (PRV) | 0 < PRV < 080H
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Table B.12: Interpretation of status output codes from uPD7762

Code

Interpretation

000H
001H
002H
003H
004H
005H
006H

008H
009H
00AH
00BH
00CH

007H

normal completion of a command
Input signal level too high
Input signal level too low
Input signal longer than 2.0 sec
Request signal level adjustment
Specified syntax # non-existing
Registered pattern does not exist
the distance value is greater than BRV
Specified memory bank does not exist
Command format error
The distance is greater than PRV, but less than BRV
Signal duration is less than 200 msec
Memory test error or hardware I/O error
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Software Operating Manual of The WARNSIS

C.1 Program Files

This manual provides a guidance for the user to follow the operation procedure de-
veloped for the signal recognition software. The software was designed to provide an
interactive dialogue between the user and the device. Messages will constantly display
on the monitor to enquire the user to input the requestéd parameter values, and to
indicate the status of the device. In this manual, such messages are shown in bold-face.

The software was saved on a PC-computer, and was located at the sub-directory

called \simon\nec\. To enter this sub-directory, the user needs to type the following

statements:

type : ¢d simon
displayed on the monitor: d:\simon
type : ¢d nec

displayed on the monitor : d:\simon\nec

Once the user has entered the sub-directory of \simon\nec\, he/she can find the pro-

grams necessary to run this software. These programs are :
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e nec.asm : the source program of the system operating software in assembly

language,
e nec.exe : the executable file of nec.asm,
e nec_dat.asm : the data file consisting of constants and variables for nec.exe and,

e enec.bat : the batch file used to automatically assemble nec.asm to produce
its object codes, to link its object code file (nec.obj) to yield the executable file
(nec.exe), and to delete the redundant object file to optimize memory storage on
the hard-disk. This batch file is activated only when modification(s) has been

made to the nec.asm. Execution of this batch job is accomplished by typing

ENEC.

A signal template file was stored at the directory of \simon\nec\temp\. This data
file is called as 50_warn.dat, and consists of 50 templates of various warning sounds.
Such warnings include siren sounds emitted from an electronic siren driver, telephone

rings and smoke alarm sounds.

C.2 Interactive Operations

To execute the system software, the user types NEC. By executing the nec.exe, the
user enters the interactive operation mode, and is prompted to answer a number of
questions. There are two stages in this mode of operation, namely, the initiatization

stage, and the training/recognition stage.


file:///simon/nec/temp/

Appendix C. Software Operating Manual of The WARNSIS 150

C.2.1 Initialization Stage
Once the program is executed, the following events occur. They are:

1. System Initialization in Progress

2. System Hardware Checking: if everything is OK, these statements are dis-

played on the monitor:

e MEMORY CHECK OK !!

e MEMORY CHECK OK !!
Otherwise, error statements are reported, and they are :

e Invalid Command, or

¢ MEMORY error or HARDWARE 1I/0 error !

Under such circumstances, the user must exit the program by pressing CTRL-C,
and shut off the power supply for 20 seconds, turn on the power supply, and

re-run the program.

3. the user is prompted to flip a manual switch before the system begins the process

of signal level adjustment.

e Please, flip the switch to LEVEL_ADJUST,

o If ready, Please press ENTER key.
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After the ENTER key is pressed, the system starts the signal level adjustment.
e Level adjustment in PROGRESS

Upon completion of the level adjustment, the system requests if the user wants to

transfer any pre-stored signal template(s) to the template memory of the device.
e Do you want to download signal templates from host CPU? (y/n)

If the answer is ‘y’, then the user needs to provide the template file name and the value

of the total # of the prestored templates.

Please, input the file name consisting of the templates — *.dat.
(d:\simon\nec\temp\*.dat) , and a file opening statement is shown on the

monitor.
¢ SUCCESSFUL open data file !!

e Please, input # of templates for downloading After this number is entered,
data transfer begins to take place. Upon completion of the data transfer, these

statements are shown on the monitor;
¢ Signal file HAS BEEN CLOSED !!

e SUCCESSFUL data downloading !!

¢ Do you want another downloading? (y/n) If ‘y’ is entered, the preceding

steps repeat. Otherwise, the user enters the second stage of this software.
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C.2.2 Training/Recognition Stage

Once the user stays in this stage, he/she has to flip the manual switch to train-

ing/recognition position.
e Please, flip the switch to signal TRAINING/RECOGNITION

Training Procedure

Then, the user is prompted if he/she wants the system to learn a new sound.
¢ Do you want to train the system to learn a new sound? (y/n)

If the answer is ‘n’, the user proceeds to the recognition stage. If the answer is ‘y’,
he/she needs to provide an identification for the new sound, and then presses the
ENTER key to start the training procedure. The interactive statements on the monitor

are :

Please, specify an identification for input signal —,

template # = whose value is automatically generated by the system software,

Please, input SIGNAL for Training,.

If ready, Please press ENTER key.

Signal template training in PROGRESS

For successful training, a summary of the template information is shown:
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SUCCESSFUL TRAINING

Burst signal !! (for burst signal), or Steady sound (for continuous , steady

sound)!!

SYNTAX # =

Template # =

Signal template identification =

Subsequently, the user is prompted if he/she wants the device to learn a new sound, or
to recognize another new sound. If the training mode is selected, the affore-mentioned

training steps repeat. If the recognition mode is selected, the user enters the recognition

stage.

Recognition Procedure

The statement displaying on the monitor is
¢ Do you want the system to recognize the signal ? (y/n)

If the answer is ‘n’, the statement to enquire the signal template uploading is displayed
on the monitor. But, if the user wants the device to recognize the signal, then the

monitor shows the following statements, and the signal recognition process starts.

e Start to recognize the input signal !
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e Signal recognition in PROGRESS

For a successful recognition, a summary of the recognition results appears on the mon-

itor:

SUCCESSFUL RECOGNITION

The closest distance measured =

Burst sound, or Steady sound

SYNTAX # =

Template # =

Signal template identification =

Consequently, the user is prompted for another signal recognition. If the response
is ‘y’, the preceding recognition steps repeat. If the response is ‘n’, he/she is enquired

if the user wants to perform a signal template uploading process.
¢ Do you want to save memory templates ?? (y/n)
If the response is not ‘y’, the user needs to select one of the following options.

¢ What do you want to do next? (please, select one of the following

choices)

e 1 : another signal recognition
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e d : another template file downloading
e t : another signal training
o e : exit the program

Otherwise, for the memory uploading, the user provides a template file name for
the identification of the stored signal templates. Then, the process of data transfer is

performed transparently. The interactive statements are:

# of template for uploading =

Please, enter the file name

Successful open file

Successful uploading

File closed

e Do you want another signal memory uploading? (y/n)

If the answer is ‘y’, the uploading steps repeat. Otherwise, the user has to select one

of the previously mentioned options (r; d; t; e).
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Evaluation Results

In this work, confusion matrices are used to present the recognition results produced
by the complete WARNSIS, the timing analyzer part alone, and the spectral recognizer
part alone. To simplify the notation for the confusion matrices given in the following
sections, different warning sounds are assigned a “number” as shown in Table D.13.
Each assigned number in the first horizontal row indicated the specific warning sound
which was identified by a recognition system; and each assigned number in the first
vertical column indicated the warning sound which was present in the environments.
Each element of the confusion matrix yielded the number of times that a warning sound
was identified as the emitted sound in the environments. Based on these results, the
recognition rates for each warning sound are derived.
Otherwise stated, the results presented here assumes that the MBD value is set to
0.1024 sec.
- TE(L1) represents telephone rings generated from electromechanical ringer with
loudness level set at one. ETE(P1) represents telephone rings produced by electronic

ringer with pitching adjustment preset at a specific position.
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Table D.13: “Numbers” assigned for different warning sounds

B: Burst-type Sound

S: Steady Sound
PH: Phone Ring

Type of Sound

Assigned Number

71 (B) 1

J2 (B) 2

J3 (B) 3

34 (B) 4

J5 (8S) 5

J6 (B) 6

J7 (S) 7

J8 (B) 8
smoke alarm (S) 9
TE(L1) (PH) 10
TE(L3) (PH) 11
TE(L5) (PH) 12
TE(L7) (PH) 13
ETE(P1) (PH) 14
ETE(P2) (PH) 15
ETE(P3) (PH) 16
ETE(P4) (PH) 17
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D.1 The Complete WARNSIS

D.1.1 Recognition Results with Background Steady Noise
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Table D.14: Confusion matrix for recognition results generated by the complete WARN-
SIS in the presence of steady noise

1 2 3 4 5 6 7 8 9
30

30 .
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30

WO 00 ~I O UL Wi
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Table D.15: Recognition rates of burst-type sounds under steady noise condition

[ Burst-type Sound | Assigned Value | Recognition Rate (%) |

J1 1 100
J2 2 100
J3 3 100
J4 4 100
J6 6 100
J8 8 100
Average - 100

Table D.16: Recognition rates of steady sounds generated by the complete WARNSIS
under steady noise condition

| Steady Sound | Assigned Value | Recognition Rate (%) |

J5 5 100

J7 7 100
smoke alarm 9 100
Average - 100
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Table D.17: Confusion matrix for phone ring recognition generated by the complete
WARNSIS under steady noise condition
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Table D.18: Recognition rates of phone ring generated by the complete WARNSIS
under steady noise condition

| Phone Ring | Assigned Value | Recognition Rate (%) |

TE(L1) 10 100
TE(L3) 11 100
TE(L5) 12 100
TE(L7) 13 100
ETE(P1) 14 100
ETE(P2) 15 100
ETE(P3) 16 100
ETE(P4) 17 100
Average - 100
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D.1.2 Recognition Results with Background of FM Broadcast plus Steady

Noise
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Table D.19: Confusion matrix for recognition results generated by the complete WARN-
SIS in the presence of FM broadcast plus steady noise
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Table D.20: Recognition rates of burst-type sounds produced by the complete WARN-
SIS under FM broadcast plus steady noise condition

| Burst-type Sound | Assigned Value | Recognition Rate (%) |

J1 1 100
J2 2 100
J4 4 96.7
Jé 6 93.3
J8 8 100
Average - 98.0

Table D.21: Recognition rates of steady sounds generated by the complete WARNSIS
under FM broadcast plus steady noise condition

| Steady Sound | Assigned Value | Recognition Rate (%) |

J5 5 100

J7 7 100
smoke alarm 9 100
Average - 100
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D.1.3 Recognition Results with Background of AM Broadcast plus Steady

Noise
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Table D.22: Confusion matrix for recognition results generated by the complete WARN-
SIS in AM broadcast plus steady noise background

1 2 4 5 6 7 8 9
1130 .
2 30 .
4 30 .
5 30 . .
6 29 . 1
7 30 .
8 30 .
9 30

Table D.23: Recognition rates of burst-type sounds generated by the complete WARN-
SIS in AM broadcast plus steady noise environment

| Burst-type Sound | Assigned Value | Recognition Rate (%) |

J1 1 100
J2 2 100
J4 4 96.7
J6 6 100
J8 8 100
Average - 99.3

Table D.24: Recognition rates of steady sounds generated by the complete WARNSIS
in AM broadcast plus steady noise background

| Steady Sound | Assigned Value | Recognition Rate (%) |

J5 5 100

J7 7 100
smoke alarm 9 100
Average - 100
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D.1.4 Results of phone ring recognition with minimum burst duration

(MBD) set to 1.024 sec
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Table D.25: Confusion matrix for phone ring recognition generated by the complete

WARNSIS under the condition of FM broadcast and the steady noise with MBD set
to 1.024 sec

10 11 12 13 14 15 16 17
10 |28 2
11 . 20 1
12 | . . 26 4
13 . . 1 29 . .
14 1. . . . 26 4
15 |. . . . 3 27
16 | . . . . . 1 29
171, . . . . . 2 28

Table D.26: Results of recognition rates of phone rings generated by the complete
WARNSIS in FM broadcast plus the steady noise background

| Phone Ring | Assigned Value | Recognition Rate (%) |

TE(L1) 10 93.3
TE(L3) 11 96.7
TE(L5) 12 86.7
TE(L7) 13 96.7
ETE(P1) 14 86.7
ETE(P2) 15 90.0
ETE(P3) 16 96.7
ETE(P4) 17 93.3
Average - 92.5
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Table D.27: Confusion matrix for the results of phone ring recognition generated by
the complete WARNSIS in the presence of AM broadcast plus the steady noise with

MBD set to 1.024 sec

10 11 12 13 14 15

16 17

10
11
12
13
14
15
16
17

29 1
2 28 . .
27 3
1 29 . .
27 3
2 28

29 1
1 29

Table D.28: Results of phone ring recognition rates generated by the complete WARN-
SIS in the presence of AM broadcast plus steady noise with MBD set to 1.024 sec

| Phone Ring | Assigned Value | Recognition Rate (%) |

TE(L1) 10 96.7
TE(L3) 11 93.3
TE(L5) 12 90.0
TE(LT) 13 96.7
ETE(P1) 14 90.0
ETE(P2) 15 93.3
ETE(P3) 16 96.7
ETE(P4) 17 96.7
Average - 94.2
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D.1.5 Results of the False-alarm Tests for the complete WARNSIS

Table D.29: Results of the false-alarm tests for the complete WARNSIS with MBD set
to 0.1024 sec

Mis-recognized FM AM

as Heavy | Pop Soft | Speech | Soft | Soft

Rock | Music | Music Music | Rock
J1 1 0 1 1 0 0
J2 0 0 1 0 0 0
J3 0 0 0 0 0 0
J4 0 0 0 0 0 0
J5 2 2 2 1 2 0
J6 0 0 0 0 0 0
J7 0 2 0 0 0 0
I8 2 0 1 0 1 1
Smoke Alarm 0 0 0 0 0 0
TE(L1) 0 0 0 0 0 0
TE(L3) 0 0 0 0 0 0
TE(L5) 0 0 0 0 0 0
TE(L7) 0 0 0 0 0 0
ETE(P1) 0 0 0 0 0 0
ETE(P2) 0 0 0 0 0 0
ETE(P3) 0 0 0 0 0 0
ETE(P4) 0 0 0 0 0 0

Total # of

recognitions 5 4 5 2 3 1
Duration (hours) 2 2 2 2 2 2
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Table D.30: Results of the false-alarm tests for the complete WARNSIS with MBD set
to 1.024 sec

Mis-recognized M AM

as Heavy | Pop Soft | Speech | Soft | Soft

Rock | Music | Music Music | Rock
J1 0 0 0 0 0 0
J2 0 0 0 0 0 0
J3 0 0 0 0 0 0
J4 0 0 0 0 0 0
J5 1 0 0 1 1 0
J6 0 0 0 0 0 0
J7 0 0 0 0 0 0
J8 0 0 0 0 0 0
Smoke Alarm 1 1 1 0 0 1
TE(L1) 0 0 0 0 0 0
TE(L3) 0 0 0 0 0 0
TE(L5) 0 0 0 0 0 0
TE(L7) 0 0 0 0 0 0
ETE (Pl) 0 0 0 0 0 0
ETE(P2) 0 0 0 0 0 0
ETE(P3) 0 0 0 0 0 0
ETE(P4) 0 0 0 0 0 0

Total # of

recognitions 2 1 1 1 1 1

Duration (hours) 2 1 1 0.5 0.5 0.5
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D.2 Timing Analyzer Part Alone

D.2.1 Recognition Results with Background Steady Noise
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Table D.31: Confusion matrix for warning sound recognition generated by the timing
analyzer alone in the presence of steady noise

| Type of Sound | J1 J2 J3 J4 J6 J8 Phone Ring |

J1 30 .

J2 . 30 .

J3 . . 30 .

J4 . . . 30 .

J6 . . . . 30 .

J8 . . . . . 30 .
Phone Ring . . . . . . 30

Table D.32: Recognition rates of the timing analyzer part alone in the presence of
steady noise

| Burst-type Sound [ Assigned Value | Recognition Rate (%) |

J1 1 100
J2 2 100
J3 3 100
J4 4 100
J6 6 100
J8 8 100
Average - 100

| Phone Ring | - 100
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D.2.2 Recognition Results with Background of FM Broadcast Plus Steady

Noise
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Table D.33: Confusion matrix for warning sound recognition generated by the timing
analyzer part alone in the presence of FM broadcast plus steady noise

| Type of Sound | J1 J2

J3 J4 J6 J8 PhoneRingl

J1
J2
J3
J4
J6
J8

30 .
30

26 .
30 .
30 .
30

N

Phone Ring

12 3

Table D.34: Recognition rates of the timing analyzer part alone in the presence of FM

broadcast plus steady noise

| Burst-type Sound [ Assigned Value | Recognition Rate (%) |

J1 1 100
J2 2 100
J3 3 86.6
J4 4 100
J6 6 100
J8 8 100
Average - 97.7
[ Phone Ring | - 0 ]
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D.2.3 Recognition Results with Background of AM Broadcast Plus Steady

Noise
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Table D.35: Confusion matrix for warning sound recognition generated by the timing
analyzer part alone in the presence of AM broadcast plus steady noise

[ Type of Sound [J1 J2 J3 J4 J6 J8 Phone Ring |

J1
J2
J3
J4
J6
J8

30

30

27

30

30

30

Phone Ring

12

~ Table D.36: Recognition rates of the timing analyzer part alone in the presence of AM

broadcast plus steady noise

| Burst-type Sound | Assigned Value | Recognition Rate (%) |

J1 1 100
J2 2 100
J3 3 90
J4 4 100
Jé 5 100
J8 8 100
Average - 98.3
| Phone | - 0
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D.3 False-alarm Results for the Timing Analyzer Alone

Table D.37: False-alarm test results of the timing analyzer part alone with MBD set
to 0.1024 sec

mis-recognized FM AM
as Pop | Rock | Classical | Speech + | Pop | Speech
Music | Music Music Music

J1 16 19 13 34 16 40

J2 16 13 10 18 26 25

J3 0 0 0 0 0 0

J4 0 2 1 0 2 1

J6 12 19 7 9 5 16

J8 0 1 0 0 0 0

Steady Sound 23 23 45 3 50 0

Phone 0 1 1 0 0 1

Total # of
Mis-recognitions 67 78 77 64 99 83
Duration (minutes) | 56 46 56 19 59 24
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Table D.38: False-alarm test results of the timing analyzer part alone with MBD set

to 1.024 sec
mis-recognized FM AM
as Pop | Rock | Classical | Speech + | Pop | Speech
Music | Music Music Music

J1 0 0 0 0 0 0

J2 0 0 0 0 0
J3 1 2 1 2 3 2
J4 0 0 0 0 0 0
J6 0 0 0 0 0 0
J8 0 0 0 0 0 0
Steady Sound 20 10 24 15 10 14
Phone 3 2 1 6 6 2

Total # of

Mis-recognitions 24 14 26 23 19 18
Duration (minutes) | 30 30 30 30 30 30
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D.4 Spectral Recognizer Part Alone

D.4.1 Recognition Results with Background Steady Noise



Appendix D. Evaluation Results 179

Table D.39: Confusion matrix for warning sound recognition generated by the spectral
recognizer part alone in the presence of steady noise

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 |30 .
2 30 .
3 30 .
4 30 .
5 30 .
6 30 .
7 30 .
8 30 . . .
9 281 1
10 2 27 1
11 1 1 28 .
12 2 28 .
13 30 .
14 30 .
15 30 .
16 1 29 .
17 1 1 28

Table D.40: Results of steady sound recognition rate generated by the spectral recog-
nizer part alone in steady noise background

| Steady Sound | Assigned Value | Recognition Rate (RR) in % |

J5 5 100

J7 7 100
smoke alarm 9 93.3
Average - 97.6
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Table D.41: Results of burst-type sound recognition rates produced by the spectral
recognizer part alone in steady noise background

| Burst-type Sound | Assigned Value | Recognition Rate in (%) |

J1 1 100
J2 2 100
J3 3 100
J4 4 100
J6 6 100
J8 8 100
Average - 100

Table D.42: Results of phone ring recognition rate produced by the spectral recognizer
part alone in steady noise background

| Phone Ring | Assigned Value | Recognition Rate (%) |

TE(L1) 10 90.0
TE(L3) 11 93.3
TE(L5) 12 93.3
TE(LT) 13 100
ETE(P1) 14 100
ETE(P2) 15 100
ETE(P3) 16 96.7
ETE(P4) 17 93.3
Average - 95.8
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D.4.2 Recognition Results with Background of FM Broadcasf plus Steady

Noise
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Table D.43: Confusion matrix for the results of warning sound recognition generated
by the spectral recognizer part alone in FM broadcast and steady noise background

1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17
1 129 . . 1
2 22 . . . 1 7 .
3 5 6 . 1 2 5 6 1 1 1 1 2
4 30 .
5 8 . 22 . . .
6 2 1 . 10 1 1
7 30 .
8 30
9 . . . .
10 1 . . 2 1 24 1 1
11 1 4 4 21 . . .
12 1 1 1 . . 22 1 1
13 1 3 2 2 20 1
14 2 3 3 . 2 191
15 1 5 . . . 22 2
16 2 2 1 4 21 .
17 1 1 3 5 20

Table D.44: Results of steady sound recognition rate produced by the spectral recog-
nizer part alone in FM broadcast plus steady noise background

| Steady Sound | Assigned Value | Recognition Rate (%) |

J5 5 73.3

J7 7 100
smoke alarm 9 100.0
Average - 91.1




Appendix D. Evaluation Results 183

Table D.45: Results of burst-type sound recognition rates produced by the spectral
recognizer part alone in FM broadcast plus steady noise background

| Burst-type Sound | Assigned Value | Recognition Rate(RR) (%) |

J1 1 96.7
J2 2 73.3
J3 3 20.0
J4 4 100
J6 6 3.3
J8 8 100
Average - 65.6

Table D.46: Results of phone ring recognition rates produced by the spectral recognizer
part alone under FM broadcast plus steady noise condition

| Phone Ring | Assigned Value | Recognition Rate (%) |

TE(L1) 10 80.0 ’
TE(L3) 11 70.0
TE(L5) 12 73.3
TE(LT) 13 66.7
ETE(P1) 14 63.3
ETE(P2) 15 73.3
ETE(P3) 16 70.0
ETE(P4) 17 63.3
Average - 70.0
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D.4.3 Recognition Results with Background of AM Broadcast plus Steady

Noise



’
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Table D.47: Confusion matrix for warning sound recognition generated by the spectral
recognizer part alone under AM broadcast plus steady noise condition

1 2 38 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 |29 . . . 1 . . . . .

2 23 . . . . . .8 1 ...

3 4 7. . .1 . . . . . 5 5 5 3

4 30 . . . . ...

5 24 . . . . . . 6

6 4 2 . . . 1 . 6 16 1 .

7 20 . . . . . . . 1

8 30 . |

9 30 . .

10 1 . 25 4

11 1 1 3 . 20 5 .

12 .1 3 3 . 2 19 3

13 2 4 3 4 17

14 1 1 4 . 22 .

15 2 3 1 3 21 .

16 3 1 3 20
17 2 1 1 1 1. 2 22

Table D.48: Results of steady sound recognition rates produced by the spectral recog-
nizer part alone under AM broadcast plus steady noise condition

| Steady Sound | Assigned Value | Recognition Rate (%) |

J5 5 80.0

J7 7 93.3
smoke alarm 9 100.0
Average - 91.1
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Table D.49: Results of burst-type sound recognition rate produced by the spectral
recognizer part alone in the presence of AM broadcast plus steady noise

| Burst-type Sound | Assigned Value | Recognition Rate (RR) (%) |

J1 1 96.7
J2 2 76.7
J3 3 23.3
J4 4 100
J6 6 6.7
J8 8 100
Average - 67.2

Table D.50: Results of phone ring recognition rate produced by the spectral recognizer
part alone in the presence of AM broadcast plus steady noise

| Phone Ring | Assigned Value | Recognition Rate (%) |

TE(L1) 10 83.3
TE(L3) 11 66.7
TE(L5) 12 63.3
TE(L7) 13 56.7
ETE(P1) 14 73.3
ETE(P2) 15 70.0
ETE(P3) 16 66.7
ETE(P4) 17 73.3
Average - 69.2
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D.4.4 Results of false-alarm tests for the spectral recognizer part alone

Table D.51: False-alarm tests for the spectra,l analyzer part alone

mis-recognized FM AM
as Heavy | Pop Soft | Speech | Soft | Soft:
Rock | Music | Music Music | Rock

J1 0 0 0 0 0 0

J2 0 0 0 0 0 0

J3 0 1 1 6 1 1

J4 0 0 0 0 0 0

J5 0 0 0 0 0 0

Jé 0 0 1 24 0 0

J7 1 30 4 0 17 4

J8 0 0 1 0 0 0
Smoke Alarm 0 0 4 31 10 0
TE(Ll) 28 10 30 2 3 7
TE(L3) 30 7 24 9 0 36
TE(LS) 9 29 9 48 79 23
TE(L7) 50 43 40 0 10 46
ETE(P1) 1 0 4 0 0 0
ETE(P2) 0 0 0 0 0 0
ETE(P3) 0 0 0 0 0 1
ETE(P4) 1 0 2 0 0 2

Total # of
Mis-recognitions 120 120 120 120 120 120
Duration (minutes) | 3.42 4 4.27 4.8 4.2 | 3.57
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Specifications

1. Power Supply :

e + 5V :700 mA
e + 12V :64.3 mA

e —12V:51.6 mA
2. Signal Features: Timing and short-time spectral patterns

3. The WARNSIS: a ‘hybrid’ system consisting of the parts of the timing analyzer

and the spectral analyzer
4. Timing Analyzer Part Alone:
o F unétion : the classification of warning sounds based on the absolute short-
time average signal amplitudes
e short-time duration : 12.8 msec

e Timing Features : the repetition period and the average signal burst width
for burst-type sounds; whereas a rising signal amplitude transition and a

new signal amplitude for steady sounds

188
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5. Spectral Recognizer Part Alone:

e Tunction : extraction of short-time spectral features from warning sounds
by the filter-bank approach,

e Short-time Duration : 12 msec

o # of filters : 8

e Type of Filter : digital biquad

e Frequency Span : 100 Hz to 5.0 kHz

e Implementation : software

e Pattern Matching : Dynamic Time Warping
6. Modes of Operations:

e burst-type and steady warning sound recognition

e phone ring recognition
7. Recognition Accuracy :

e 98 % for steady and burst-type warning sounds for a SNR of over 10 dB

e 93 % for phone rings for a SNR of over 10 dB or better

8. False-alarm Rate:

e one false recognition per 90 minutes (worst-case) for burst-type and steady

sounds
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¢ no false ring indications

9. Recognition Time : 0.5 sec to 10 sec depending on the type of warning sounds



