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Abstract

The voltage stability problem has become a growing concern in power system planning

and operation. Many large interconnected power systems have experienced voltage insta

bilities which involve fast transients and/or slow dynamics. Although load flow related

static approaches have been well developed to characterize the system maximum loading

limit as the voltage collapse point, the mechanism of how system operation approaches

its voltage collapse point and how this collapse point is affected by system dynamics are

still obscure.

This thesis provides the answers to these two basic questions through the investigation

of effects of loads and reactive power controls on system voltage stability by detailed time

domain system simulations. The importance of system dynamics in the determination of

the voltage stability limit is emphasized.

Firstly, a multimachine power system with steam and hydro electric generating units,

various types of loads, and system reactive power—related control devices is appropriately

modeled. Secondly, a comprehensive power system simulation program is developed

based on the implicit trapezoidal rule and an integration step size control algorithm.

A new variable elimination method for load flow, and a new forward—elimination and

backward—substitution procedure for solving the system Jacobian matrix equations are

devised. Different system disturbances are simulated, and the exact timing of system

changes is implemented. Finally, a 21 bus sample power system is chosen for the voltage

stability study. In the case studies, the effects of loads, control devices, and system

disturbances on system voltage stability are thoroughly examined.

The voltage instability of a power system is a very complicated phenomenon, which,
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depending on the location, the type, and the severity of a system disturbance, may

involve a fast transient voltage instability, or a slow voltage deterioration followed by a

sharp collapse. It is closely associated with system reactive power—related controls, and

is strongly affected by the load characteristics. The beneficial and detrimental effects

of loads and reactive power controls on voltage stability should be carefully analyzed so

that the information can be used in voltage stability control designs.
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Chapter 1

INTRODUCTION

1.1 Power System Voltage Stability Problems

1.1.1 Power System Angle Stability

Since the beginning of large power system interconnections, low frequency system oscil

lations and transient and dynamic stability problems have developed. The main concern

of these stability problems is to keep all synchronous generators in synchronous step by

providing them with adequate damping if they oscillate, reducing generation or adding

dynamic braking resistance if there is a power surplus, and shedding some loads if there

is a power shortage. These problems, which may be classified as the angle stability prob

lem, have been thoroughly studied and are well understood. Control means to stabilize

the system, such as dynamic resistance braking, force excitation, fast valving, HVDC

modulation, power system stabilizer (PSS), and generation tripping and load shedding,

have been very well developed.

1.1.2 Power System Voltage Stability

As large power system interconnections continued, the power demand kept on increas

ing. But the environmental restriction on the building of new transmission lines also

increased. There is a tendency in power system planning and operation to load the exist

ing generationand transmission equipments as much as possible. This practice, coupled

with insufficient and inadequate reactive power supplies for a power system, has caused
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many system voltage failures in the past, which may or may not also involve an angle

instability.

Voltage stability has gained a special attention recently [1]. To have a better under

standing of this problem, some major system voltage failure events are briefly reviewed

as follows.

EDF — December 19, 1978 [4]

It was a severe cold winter morning in France, and the temperature drop was much

greater than anticipated. A rapid rise of power demand caused the increase in several

power transfers. It was also marked with the increase in active power losses and espe

cially reactive power losses. Several 400 KV lines were overloaded, and system voltages

deteriorated very badly.

Some EHV/HV tap changers were blocked, and a 5% distribution voltage drop was

ordered in some area. The system was stabilized for a while. But due to the overload of

the persistent load demand and the loss of many reactive power supports, many major

transmission lines were successively lost resulting in island operation of the entire system.

EDF — January 12, 1987 [1]

It was again a severe cold weather day, and the system was overloaded. Generations

were tripped one after another. At one time, the power deficiency was around 9,000 MW

and the full installation capacity was 90 GW. The voltage deteriorated from 400 KV to

300 KV and below but did not collapse completely. The underfrequency relay control did

not act because there was no significant frequency deterioration warranting the action.

Finally, the voltage profile was restored by shedding 1500 MW of load and by tripping

some 400/225 KV transformers feeding a load area.

2



TEPCO — July 23, 1987 [6]

Japan has a 50 Hz system in the north and a 60 Hz system in the south, and the two

systems are connected by two 300 MW frequency converters at Sakuma and Shinshinano.

The Tokyo Electric Power Company, TEPCO, belongs to the 50 Hz system.

It was a very hot summer day, much warmer than anticipated. After a maximum

power demand of 39.1 GW in the morning, the demand dropped to 36.5 GW at 12:40

during the lunch hour. But the demand increased again rapidly at a rate of 400 MW per

minute from 13:00, much faster than estimated. It was attributed to the air conditioning

devices developed by then, which drew more current fast despite voltage deterioration.

The power demand at 13:10 was 39.3 GW.

Although all shunt capacitances were in service, the system voltage dropped from 500

KV to 460 KV at 13:15 and further to 370 KV in the western part of the system and to

350 KV in the central part of the system at 13:19. Three substations of 8.168 GW were

tripped, and 2.8 million customers were lost. The three substations were brought back

to service from 13:23 to 13:35, and about 60% of total load loss was recovered at 13:36,

80% at 14:30, 90% at 16:00 and completely recovered at 16:40.

To summarize, it is observed that a voltage instability does not necessarily involve an

angle instability, and that the voltage does not necessarily collapse completely. It is also

very important that, for a comprehensive voltage stability study, special types of loads,

like those in the TEPCO event, must be adequately modeled, and that the functions of

all reactive power—related generating, consuming and control components must also be

taken into consideration.
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1.2 Power System Voltage Stability Studies

Although some effort has been made to clarify the mechanism of voltage instability and

to devise some methods to prevent a system from voltage collapse, most researches have

been devoted to the determination of maximum loading limit (MLL) of a power system by

using the steady state formulation for a static voltage stability analysis. In these studies,

only small load variations are considered, and the system dynamics are not included.

1.2.1 Static Voltage Stability Studies

While a power—angle curve for equal—area study has a shape of an inverse V with a

maximum power point on top, the voltage—power curve for the MLL study has a V shape

with the point of maximum load power towards the right as shown in Figure 1.1.

Generator Power Voltage

Pm

Load Power

Figure 1.1: Power—Angle and Voltage—Power Curves

It is well known that the upper portion of the voltage—power curve represents a stable

operation whereas the lower portion represents the unstable [2] [3]. In—between exists a

point of critical voltage. Several methods have been developed to find this critical point,

and a variety of indicators have been defined for the proximity of the system stable

electric power

mechanical power

Rotor Angle
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operating state to the point of voltage collapse. All static methods are essentially related

to a Jacobian matrix analysis from the results of a system load flow. System voltage may

collapse at the point where the load flow Jacobian becomes singular.

1. Load Flow Analysis Venikov et al. [8] found in 1975 that there exists a direct

relation between the singularity of the load flow Jacobian and the singularity of

the system dynamic state Jacobian and the changes in sign of system eigenvalues.

Therefore, the stability of a dynamic system may be estimated by means of load

flow. This method was expanded for voltage stability studies by Tamura et al. [9].

2. Static Bifurcation Theory Bifurcation theory is concerned with the branching

of static solutions of a dynamic system with a slow change in system parameters.

With this technique, Kwatny et al. did a thorough analysis of loss of steady state

stability and voltage collapse [10] in 1986. With a slow change in system parameters,

the system stable operation determined by load flow will move to a new equilibrium

and remain stable until one of the parameters reaches a critical value at which

system state branches at a saddle point. This is the very point where the load flow

Jacobian matrix becomes singular. When multiple solutions of load flow exist, they

correspond to the multiple equilibria of the dynamic system in the neighborhood of

the bifurcation point. Therefore, bifurcation analysis can be used to characterize

these equilibria and to identify the critical parameters, which are the very important

information for system control design.

3. Sensitivity Method Sensitivity in voltage to system parameters near the crit

ical state provides very useful information to system operation. It can be used to

identify critical system buses and also effective means of controls [37] [58]. Based

on the analysis, a variety of indicators of proximity of the system state to the point
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of voltage collapse can also be defined [11] [14] [15]. Therefore, adequate control can

be exerted on the system to keep the system state away from voltage collapse.

1.2.2 Dynamic Voltage Stability Studies

Many power system voltage failures were triggered by large disturbances of the system.

Due to the dynamic interaction among system components and the nonlinear constraints,

the dynamics of a voltage instability process is rather complicated. It depends not only on

the stability of generators in the system, the type and location of system contingencies,

but also on the load characteristics and system controls. Since the system maximum

loading limit (MLL) based on load flow analysis may give an upper bound of the voltage

stability region, the system may have lost its voltage stability before that limit can be

reached due to system dynamics [16]. Therefore, the MLL can only indicate the loading

condition at which system voltage collapse may occur. It cannot answer the questions

of how the system voltage approaches the collapse point and how this collapse point is

affected by the system dynamics. For this sake, a comprehensive system simulation must

be resorted to so that the system dynamics can be adequately included in the voltage

stability studies.

1.3 Proposed Thesis Study

1.3.1 System Component Modeling

The major part of this thesis is to investigate the effects of load and system reactive

power components on voltage stability. For that, the system behavior will be simulated

comprehensively. All important loads and all system components that generate, consume

and control the reactive power of the system will be modeled in detail. Other functions,

such as the generator rotor field overheat protection, which may affect the reactive power
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of the system, will also be modeled. There are in general four major components to a

power system, the generating plants, the transmission network, the system loads, and

the system control devices. All of these components will be modeled.

1.3.2 Dynamic Simulation Techniques

A nine—machine pOwer system is chosen for the simulation study. It is felt that the

system is large enough to display the dynamic interactions among system components,

such as generators, loads, transmission network and system controls. The high order

system model with inherent system ilonlinearities requires development of an appropriate

simulation technique. The system equations are discretized based on the trapezoidal rule,

and Newton—Raphson’s iteration method is used to carry out the solution. To avoid direct

inversion of a large Jacobian matrix in each integration step, a new technique of solving

the Jacobian matrix equation is developed.

1.3.3 Dynamic Simulation of Voltage Stability

The main objective of this thesis is to investigate the gelleral effects of special types

of loads and major reactive power—related components on the dynamic behavior of the

voltage stability of a multimachine power system. Several types of loads, control devices,

and system disturbances of single or double contingencies will be considered.

Since the dynamics of induction motor loads [51], transformer tap changers [17],

generator field excitations [37], and reactive power supply deficit [59] play a important

role in a voltage collapse process, their effects must be examined on a large power system

with detailed system models so that the dynamic interactions among system components

can be included. In addition, the persistent PQ load characteristics [54] contributing to

the TEPCO voltage failure should also be investigated. For this reason, the case studies

are designed and carried out to clarify the effects on voltage stability of induction motor
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stalling, transformer tap changing, fixed capacitor and SVC compensations, persistent

and general static loads and generator overheat protections.

1.4 Thesis Structure

In Chapter 2, the power system component models are presented. System bus loads are

modeled by the combination of typical loads. Load dynamics are represented by induction

motor loads and constant power and reactive power (PQ) loads with delayed recovery.

Conventional static loads are modeled as voltage dependent loads. A generating plant is

modeled in detail, including synchronous generator, field excitation system, governor and

turbine system, and power system stabilizer. System controls, which have strong effects

on system voltage stability, such as on load tap changer of a transformer(OLTC), the

static VAR compensator(SVC), and generator rotor overheat protection(ROP) are also

modeled. Finally, the transmission network is represented by the system node voltage

equations.

Chapter 3 describes the nonlinear time domain simulation technique. The overall sys

tem equations can be obtained through a hybrid coordinate system for both generators

and the transmission system. Based on the trapezoidal rule, system differential equa

tions are discretized to obtain the corresponding difference equations. Newton—Raphson’s

method is then used to solve the system equations. A systematic method is developed

to solve the high dimension Jacobian matrix equation without involving a direct inver

sion of a large matrix. In order to capture both fast transients and slow dynamics of a

voltage instability, a variable step size mechanism is implemented. System disturbances

and sudden topological changes are considered and exactly timed.

In Chapter 4, a 21 bus power system is presented. Since the system has low frequency

oscillations for the given operating conditions, power system stabilizers are designed.

8



Next, the most voltage sensitive bus of the system is identified through system voltage

sensitivity allalysis. Typical system loads and control actions are considered for the most

voltage sensitive bus. Case studies are then conducted to clarify the effects of various

loads and controls on system voltage stability. Finally, the results of voltage stability

from load flow and simulation studies are compared to demonstrate the effect of system

dynamics on the system maximum loading limit.

Finally, conclusions are drawn and future research projects are suggested in Chapter

6.

9



Chapter 2

MODELING OF POWER SYSTEM COMPONENTS

For voltage stability studies, an appropriate power system model is required. Although

a static model, like load flow equations, is adequate for steady state analysis, a more

detailed model, including both load dynamics and reactive power generating and control

components, must be used in a voltage stability study of a system involving dynam

ics. This is because the voltage instability phenomenon of a power system may involve

both fast transients and slow dynamics [13]. Therefore, all system components involving

transients and dynamics should be included in the voltage stability study.

Typical power system load models are presented in section 2.1, generating plant in

section 2.2, system control devices in section 2.3, and, finally, transmission network equa

tions in section 2.4.

2.1 Typical Power System Load Models

2.1.1 A Composite Bus Load Model

Examinations of major voltage failures show that system loads have significant effects on

the voltage stability of a power system. But, a power system load is usually made up

of numerous individual loads with different characteristics, and the information about

some individual loads may not be available [18][19]. Therefore, it is almost impossible

to derive an exact model for a power system load. Instead, the power system loads

may be approximately represented by a few equivalents, e.g., industrial, commercial, and

10



residential loads [20] as shown in Figure 2.1.

load bus

industrial load

commercial load

residential load

Figure 2.1: Classification of a Composite Bus Load

It is suggested in [21], for example, that a composite system bus load may be modeled

by an equivalent induction motor in parallel with a static load as shown in Figure 2.2,

load bus

dynamic load

static load

Figure 2.2: Composite Bus Load Modeling

where the equivalent induction motor represents the dynamics associated with the major

industrial load, while the static load represents the voltage dependence of commercial

and residential loads. Therefore, the load effect on system performance may be found by

studying the following typical loads.

2.1.2 Induction Motor Load

Induction motors constitute the major part of an industrial load. They have a fast

response to system disturbances to maintain more or less a constant power and draw

more reactive power from the power supply. This feature of quick load pick—up and more

system bus

system bus
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reactive power absorption during a system disturbance is one of the major causes of a

dynamic voltage instability [22].

The basic equations of a three—phase induction motor may be derived from Park’s

equations for a synchronous generator. However, there is no field winding, and the d

and q axis windings are symmetrical for the motor. There is a slip of rotor windings

with respect to the stator rotating field of the motor. Neglecting the electromagnetic

transients (EMT’s) in the stator windings, the induction motor may be described by a

third order model as follows.

(a) Rotor motion equation:

2HTL—TE (2.1)

(b) Rotor winding voltage equations:

Tè1 = —e—(xo—x’)Iqs+bTse
(2.2)

T0 eq —eq + (x0 — x ) ‘ds — b T0 S ed

(c) Stator winding voltage equations:

Vd8 = e+rsIds—xIqs
(23)

= eq+xIds+rslqs

(d) Electromagnetic torque equation:

TE = edldS + eIqs (2.4)
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where

H : motor inertia constant

r : stator resistance

rotor open circuit reactance

blocked rotor reactance

T : rotor open circuit time constant

e, e : rotor internal voltages

Vcjs, Vqs : stator terminal voltages

‘ds,’qs : stator currents

s : motor slip

TL : mechanical load torque

TE : electromagnetic torque

wb : synchronous speed of the system

In steady state system condition, both mechanical and electrical transients of the mo

tor are not included. Hence, equations (2.1) and (2.2) are reduced to algebraic equations

to represent the steady state behavior of the motor. In that case, the motor torque,

power, and reactive power can be determined by

TE fE(s,p)V2

Fm = fp(s,p)V2
(25)

Qm = fQ(s,p)V2

V =

where fE, fp and f are functions of motor slip s and motor parameters p. The derivation

of equation (2.5) is given in Appendix A.
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2.1.3 Voltage Dependent PQ Load

Since a voltage instability does not necessarily involve system frequency deterioration,

the frequency dependence of commercial and residential loads may be neglected. The

power and reactive power drawn from a system bus may then be described as a function

of bus voltage. It has been a common practice that a bus load is divided into a constant

power, a constant current, and a collstant impedance load components. This concept

leads directly to a load model of quadratic form [23].

P = Po [pp + pi () + Pz
(2.6)

Q = Qo[qp+qi()+qz()]

where Po and Qo are power and reactive power at normal operating voltage Vo, pr,, p, and

Pz are the coefficients of power portion of constant power, constant current, and constant

impedance loads, and qp, qj and q are those of the reactive power portion of the load.

These coefficients must satisfy

Pp+Pi+Pz = 1

qp+qi+qz = 1

A more general static PQ load model [24] has exponential forms as follows.

F Po()VQ (2.7)
Q Qo()

Here, again, P0 and Qo are power and reactive power at normal operating voltage V0, and

a and characterize the voltage dependence of the load. Equation (2.7) also includes

three special cases, that is, the constant power load with a = = 0, the constant current

load with a = = 1, and the constant impedance load with a = = 2.

The appropriate selection of a combination of pr,, Pi, Pz, qp, qi, and q in equation

(2.6), and the exponents of a and 3 in equation (2.7) should be made by investigating

the actual system load.
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2.1.4 Constant PQ Load with a Recovery Time Constant

This type of load demands a constant power throllgh self control to maintain the required

power despite a system voltage decrease. A typical load power response to a step change

in voltage may be in the form as shown in Figure 2.3.

(a) voltage step change

Po

(b) load power response

Figure 2.3: Constant PQ with a Delayed Recovery

The sudden dip in voltage causes an instant decrease in load power demand followed

by a recovery to its normal value P0. The demand is persisting, but involving a time

delay. There is a such kind of load of modern air conditioning device as reported in

TEPCO power failure [6]. This type of constant power load, which may be referred to

as persistent PQ load, may be modeled by a changing load equivalent admittance with

a time delay. The time delay is associated with the time needed for the control devices

to respond, and may also involve a human factor [25].

Assuming an exponential recovery in both power and reactive power, this type of PQ
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load may be modeled as follows.

TGGL = Po—GLV2
(2.8)

TBBL = Qo—BLV2

where V is the load terminal voltage; GL and BL are the varying equivalent load con

ductance and susceptance; TG and TB are the corresponding time constants; and P0 and

Q are the load power and reactive power at normal operating condition with

D — i—I v-2
10 — UIL0V0

V (2.9)
— 0 i72
—

2.2 Component Models of a Generating Plant V

A generating plant consists of a synchronous generator, a field excitation system, a gov

ernor controlled turbine system, and probably a supplementary control, such as a power

system stabilizer. These components contribute the major dynamics of a power system,

which should be adequately modeled in a dynamic system study.

2.2.1 Synchronous Generator

Neglecting electromagnetic transients in armature windings, a synchronous generator

may be represented by a fifth order model as follows.

(a) Rotor motion equations:

M = TmTeDW
(2.10)

6 wb(w—1.0)
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(b) Rotor winding voltage equations:

T0E = —E—(xd—x)Id+EFD

TE’ = -E’
- (x-x)Id+E +TE (2.11)

TE E+(xq_x)Iq

(c) Armature winding voltage equations:

Vd = E—raId+xIq
(2.12)

Vr = E’—xId—raIq

(d) Electromagnetic torque equation:

Te EId + EIq + (x
— X)IdIq (2.13)

The voltages and currents are described in individual machine d—q coordinates.

In the foregoing equations,

M : inertia constant

D : mechanical damping coefficient

w : rotor speed

6 : rotor angle

Tm, Te : mechanical and electromagnetic torques

ra : armature resistance

cl—axis transient reactance

x, x : d— and q—axis sub—transient reactances

T0 : d—axis transient time constant

T,, T : d— and q—axis sub—transient time constant

17



q—axis transient voltage

d— q—axis sub—transient voltages

field voltage

d and q components of terminal voltage

d and q components of armature current

synchronous speed of the system

where S is in radian, M and time constants are in seconds, and all other variables are in

per unit.

2.2.2 Field Excitation System

A fast—response exciter and voltage regulator system shown in Figure 2.4 is chosen for

the study.

It may be described by the differential equation

TA EFD = —EFD + EFDO + KA (UE + VREF
— 4) (2.14)

where KA and TA are respectively the equivalent gain and time constant of the excitation

system. 4 and VREF are the generator terminal voltage and its reference, respectively.

E’, E’

EFD

Vd,

Id, ‘q

Vt EFDO

UE

EFD

Figure 2.4: A Fast Excitation System
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UE is the supplementary excitation control. EFDO is the initial value of excitation voltage

EFD.

The excitation voltage has physical limits, which may be called the first limit

Emini Eyjj Emai

It also has a lower operating limits (Emin2, Emax2), which may be called the second limit,

determined from the consideration of the generator rotor overheat protection. When a

generator has been excited continuously over the second limit for a prescribed period of

time, relay protection will cramp the excitation voltage to the second limit, or even trip

off the generator.

2.2.3 Governor and Turbine Systems

(a) Mechanical—Hydraulic Governor and Hydro Turbine System

The block diagram of a mechanical—hydraulic governor and turbine system for a

hydro—electric plant is shown in Figure 2.5.

Go

The corresponding differential equations are

TG1

TrG2

7gG3

0.5 T Tm

(0

0)REF

Gomax

Figure 2.5: Hydro Turbine and Governor System

= —uG1+UG+wREF—..’—G2

= G2+6TTrG1

= -G3+G1

= Tm+CgG3+G0TwG3

(2.15)
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subject to the governor speed and opening constraints by

Gamin 03 <Gmax

G0min (GgG3 + G0) G0max

where

1/o

T, Tr, Tg, T

G1,G2

G3:

WREF

UG:

overall gain of speed governor

transient regulation constant

time constants of actuator, dashpot, servomotor,

and water, respectively

outputs of servo actuator and dashpot, respectively

gate incremental opening

initial gate opening

speed reference

supplementary governor control

The corresponding differential equations are

TsmG = G+Kg(UG+WREFW)

TGHTm = Tm+C9G+G0

(b) Electrical-Hydraulic Governor and Steam Turbine System

The block diagram of an electrical—hydraulic governor and non—reheat steam turbine

for an steam electric plant is shown in Figure 2.6.

CO

Gomin

Figure 2.6: Non-Reheat Steam Turbine and Governor System

(2.16)
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subject to governor speed and opening constraints

Gamin C < Gmax

G0min <(cG+G0)<G0ma

where

Kg : overall gain of speed governor

Tsm : servo motor time constant

G : valve incremental opening

TCH : steam chest time constant

In a multi—machine power system, the power output of a generator is expressed on the

system base, while the governor output is usually expressed on the individual generator

base with a full load output as 1 per unit. As a result, an interfacing factor 0g must be

introduced as shown in the Figures.

2.2.4 Power System Stabilizer (PSS)

For a voltage stability study, the low frequency system oscillation phenomena must be

isolated by power system stabilizer applications. A power system stabilizer with two

compensation components and one reset block is shown in Figure 2.7.

(0

WF sT sifl 1÷sTi S2 1+sTi UE

1+sT [J 1+sT2s 1+ST2s

Figure 2.7: A Power System Stabilizer

21



The differential equations for the P55 are

T3S1 = —81—T8th

T28S2 = —S2+KS1+KT18S1 (2.17)

T23 LIE = — UE +82+ T18 S2

where K is the overall gain, T3 is the time constant of the reset block, and T18 and T28

are those of the compensation blocks.

2.3 System Voltage Control Devices

Obviously, system voltage controls have significant effects on system voltage behavior.

These control devices may include synchronous condensers, transformer tap changers,

and static VAR compensators. In addition, a generator rotor overheat protection may

limit the excitation voltage and hence the reactive power output of the generator, which

may result in a loss of system voltage control ability. Therefore, It may also be considered

as a voltage control device.

2.3.1 On Load Transformer Tap Changer

Distribution transformers are usually equipped with on—load tap changers (OLTC’s). An

OLTC controlled load bus is shown in Figure 2.8. The secondary voltage V is controlled

through the change of the transformer ratio a which has limits.

a = (V5)
(2.18)

amim a

Since a transformer has only limited number of taps, the ratio a must be changed in

steps. In addition, time is required for completion of each tap changing. Therefore, the

control function may be modeled in discrete way with time delay. That is, for voltage
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V

load

Figure 2.8: A Transformer with OLTC

controlled bus i with normal operating voltage °, a tap step of A.aj, and a prescribed

voltage tolerance , the tap changing function may be described by

a(k+1) (2.19)

where it is a sign function as follows.

1 ifV—°<—

0 if —V° <

—1 if—°>

2.3.2 Static VAR Compensator (SVC)

Static VAR compensators (SVC’s) have a significant influence on the system voltage

behavior. A thyristor—controlled reactor (TCR) compensator with fixed shunt capacitors

is shown in Figure 2.9 with a block diagram of SVC control circuit in Figure 2.10.

The differential equations for the SVC system are

TbB1 = —B1+Kb(VREF—4)

T2bB2 —B2 + T1bB1 + B1 (2.20)

BL = B2+BLO.
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system bus

with constraints

Figure 2.9: A TCR with Fixed Capacitor

Bs

Figure 2.10: Block Diagram of an SVC with Voltage Control

B2min < B < B2max

where K,, and Tb are the gail and time constant of voltage regulator. T and T2b are

time constants associated with the thyristor firing system.

2.3.3 Generator Rotor Overheat Protection

A generator rotor overheat protection may be approximately modeled by an excitation

reduction of the generator which has been excited continuously over its operating limit

or the second excitation limit Emax2 (see in Figure 2.4) for a certain period of time. The

input

VREF

B2

B2min Bc
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timing of excitation reduction depends on the accumulated heat and temperature rise

of a field winding dile to actual excitation at a level over Ema2 as in Figure 2.11. For

instance,

Em:1

Emax2

I Time
tx

Figllre 2.11: Overheat protection characteristic

if the excitation voltage EFD is higher than E continuously over a time period of t,

the overheat protection will cramp the excitation voltage immediately to its second limit

Emax2.

2.4 Modeling of Transmission Network

Neglecting the electromagnetic transients in the transmission system, the network equa

tion, which describes the relationship between bus voltage and current injection, may

be expressed algebraically with network admittance matrix YN in the following phasor

form,

[IBUS] = [YN] [VBUS] (2.21)

or alternatively in X—Y real number coordinates as

[I,y] = [YGBI [Vx,y] (2.22)
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In equation (2.22), [V.x,y] and [Ix,y] respectively denote the system bus voltages and

current injections in X and Y coordinates as

[Vx,y] [Vx1,Vy1,Vx2,Vy2,”,VxN,VyN]
T

[Ix,yj = [Ix1,Iy1,Ix2,Iy2,”,IxN,IyN]
T

and the corresponding matrix YGB has the form of

[Y11] [Y12} [Y1]

[Y21] [Y22] ... [Y2N]
[YGB] = . .

[YN1] [YN2] ... [YNN]

with

-B
[)1] =

B1

where N denotes the total system bus number, and B1 are respectively the real and

the imaginary components of Nj•

Hence, the network injection current at system bus i can be expressed as

‘Xi = Zi (GVx — BjVyj)
(2.23)

Ii = Z=1(BijVxj+GijVyj)

Power system component models are presented in this chapter. While synchronous

generators are described in individual machine’s d—q coordinates, other components are

expressed in a coordinate system which rotates at synchronous speed. Coordinate system

transformation and the overall system presentation are given in Chapter 3.
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Chapter 3

SIMULATION TECHNIQUE FOR VOLTAGE STABILITY STUDIES

The voltage instability phenomenon of a power system is far more complicated than that

of a conventional transient and dynamic angle instability of the system. They differ in

nature. Voltage stability depends not only on the stability of synchronous generators, but

also largely on the load characteristics and power and reactive power control dynamics

of the system. For different system operating conditions, voltage instability may involve

a fast voltage drop or a slow voltage decline followed by a voltage collapse. In other

words, a heavily loaded power system may experience either a slow or a fast system

voltage instability, which depends on the type, the location and the severity of system

disturbances, the load characteristics and inadequate system controls [13].

The stability of a power system can be best assessed by the time responses of system

state variables to different system disturbances. This requires the solutions of the system

equations which usually constitute a very complicated high order system with many

inherent nonlinearities. Therefore, computer simulation methods must be resorted. As

part of the thesis work, a comprehensive system simulation program is developed.

Following a discussion of coordinate transformation of machines and transmission

network, a complete set of system equations are presented in section 3.1. A simultaneous

implicit integration method based on trapezoidal rule is described in section 3.2. Finally,

a flowchart of the system simulation program with some detailed discussions are presented

in section 3.3.
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3.1 Complete System Equations

3.1.1 Machine and Transmission Coordinates

SiflSj COSk

COSSk Sill6k

In Chapter 2, synchronous machines are described in individual machine’s d and q coor

dinates, while transmission network was initially described in static coordinates but may

be deemed as synchronously rotating X—Y coordinates. To interface the machines with

the transmission network at machine terminals, coordinate transformations of terminal

currents and voltages are necessary. The relationship between the kth synchronous ma

chine coordinates dk—qk and the common network coordinates X—Y is shown as in Figure

3.1.

x

Y

/dk

Figure 3.1: Machine and Transmission Network Coordinates

Therefore, the voltage and current transformations of the kth generator and the ith

transmission bus may be written as follows.

Vdk vxi

vYi

(3.1)
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and

‘dk SinSk —COS6k ‘Xi
(3.2)

‘qk COS6k sin6k ‘Yi

where 6k is the rotor angle of the kth generator.

To save the computation of coordinate transformation, a hybrid coordinate system

is preferred [39], by which synchronous machine terminal voltages are transformed into

the common network coordinates, while machine currents remain in individual d and q

coordinates. As a result, for the kth synchronous generator connected to the ith system

bus, the generator armature winding voltage equation (2.12) and the network injection

current equation at the ith system bus (2.23) become

sink —cos6k VX = — rak 1qk -[dk
(3.3)

cos6k sin6k Vy Xdk rak ‘qk

and

sin5k cosSk ‘dk = Z_1(GijVxj—BijVyj)
(3.4)

CO56k ‘qk

Equation (3.4) shows that the network injection current at a generator bus has been

transformed into the corresponding machine coordinates.

3.1.2 Complete System Equations

The overall internal system behavior is the result of interactions among system com

ponents. For a power system with Ng generating plants, N1 system bus loads, and N

system control devices, a block diagram of component interaction of the power system

may be shown as in Figure 3.2.

With this block diagram and the coordinate system, equations (3.3) and (3.4), the

complete system equations can be derived by aggregating all system component equations
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bus load I
(i=1,2 . Ni)

Figure 3.2: Block Diagram of Component Interaction

described in Chapter 2, which can be organized into a set of differential and algebraic

equations as follows.

F(X,X,Y,D) = 0

G(X,Y,D) = 0

(3.5)

(3.6)

where X is the vector of system differeiltial variables and Y the vector of system alge

braic variables of system voltage and current and their related variables such as machine

electromagnetic torque. X and Y together constitute the system state variable vector,

which may be subjected to certain operating constraints. D is the parameter vector of

external system changes, such as the changes of system references, load variations, or

the system contingencies. F and G are vector functions which depend on the system

component models and parameters and subject to change due to the changes in system

topology and/or system operating conditions.

The state variables X and Y and their possible constraints of system equations ob

tained in Chapter 2 may be summarized as follows.

generating plant i
(i=1,2 Ng)

control device i
(i=1,2 Nc)
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1. Typical system loads:

(a) Induction motor load

x = [s e e]T

y [Vd Vis ‘ds Iqs TEIT

(b) Voltage dependent PQ load

y=[Vx Vy Ix Iy]T

(c) Persistent PQ load

x=[GL BL]T

2. Generating plant:

(a) Synchronous generator

x = [w 6 E E1’ E’]T

y = [Vd ‘d ‘q T8]T

(b) Field excitation system

x = [EFD]

Emini EFD Emaxi

(c) Mechanical—hydraulic governor and hydro turbine

X[G1G2G3Tm]T

Gamin G3 < Gmax

G0min (GGG3 + Go) <G0max
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(d) Electrical—hydraulic governor and steam turbine

X[GTm]T

Gamin G < Gmax

G0mn < (CGG + G0) <G0mar

(e) Power system stabilizer

x=[Si S2 UE]T

UEmjm < UE < UEmax

3. System control device

(a) On load transformer tap changer

y=[a]

amin a < amax

(b) Static VAR compensator

xi[B1 B2]T

B2mim < B2 < B2m

4. Transmission network

y={Vx Vy ‘Xi
11T i=1,2,••,N
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3.2 Simultaneous Implicit Integration of System Equations

3.2.1 Implicit Trapezoidal Rule

For accuracy and numerical stability, simultaneous implicit integration methods are of

ten used to solve the system differential and algebraic equations like (3.5) and (3.6). In

this method, both differential and algebraic equations are replaced by finite difference

equations through discretizations, and then solved simultaneously by Newton-Raphon’s

method. The simultaneous implicit integration method may be implemented with differ

ent algorithms depending on the accuracy of the difference equations used to approximate

the corresponding differential equations. In general, the higher the discretization order

is, the better the accuracy of the result will be, but a more complex algorithm will be

involved.

For power system stability studies, it has been suggested that low order integra

tion would be best in both efficiency and stability [40]. Implicit trapezoidal integration

method would then be the most suitable candidate for power system stability study.

Firstly, as a single step discretization method, the trapezoidal rule is easy to implement.

Secondly, and more importantly, the trapezoidal rule has an order of two and has an es

sential characteristic of symmetrical A—stability. The latter means that if the difference

equation is symmetrically A—stable, it demonstrates the same stability results as those

determined by the solution of the original differential equation [40].

The basic idea of implicit trapezoidal rule may be illustrated by Figure 3.3. To

integrate the differential equation

= f@,t) (3.7)

xQt) =

with known x, the solution of x at t,, the solution of x at tn+1 = t + or can
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f(x,t)

f(Xn+i tn÷i)

cr d

Atn -‘
tn tn+1

Figure 3.3: Illustration of Implicit Trapezoidal Rule

be obtained by integrating equation (3.7) from t to ti as follows.

rtn+1
Xn+l = Xn + J f(x, t) dt (3.8)

tn

As shown in Figure 3.3, the shaded area corresponds to the definite integral in equation

(3.8). If the At is small enough, the arc between points a and b may be replaced by

the dashed line ab, and the shaded area may then be approximated by the area of the

trapezoid abed, which results in

f(x,t)dt = [f(x,t) + f(x1,t1)]+ eLT (3.9)

where eLT is the local truncation error introduced in the integration interval (ta, t+1),

which can be estimated [42] as

eLT = (3.10)

for some E (t,t+1).
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Equation (3.8) then becomes

Itn
zn+i x + + f(n+i,tn±i)] + eLT (3.11)

The evaluation of eLT wilibe presented in section 3.3.3.

The trapezoidal integration algorithm for the differential equation (3.7) is obtained

by dropping the error term in equation (3.11).

x + ——[f(xn,tn) + f(n+i,tn+i)] (3.12)

With x and f(n, tn) known at t = t, a difference equation constant, z, can be defined

as

— X + f(n,tn) (3.13)

Equation (3.12) can then be written in the following standard form.

Xn+l = n + f(n+i,tn+i) (3.14)

This is the discretization algorithm of implicit trapezoidal integration.

3.2.2 Discretization of System Differential Equations

With the implicit trapezoidal integration rule of equation (3.14), all differential equations

of system components described in Chapter 2 can be discretized and summarized as

follows. For convenience, define h = At / 2.

1. Typical system loads:

(a) Induction motor load

2Hs (i+t) = Zm1t + h(TL —

Te(t+) = z + h(—e — (x0
—

x’)Iqs +WbTo8eqfiQ+t) (3.15)

Zm3t + h[—e + (x0
—

x’)Ids — wbTOsed](+t)
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with the difference equation constants

Zmlt = 2Ht+h(TL—TE)t

Zm2 = T et + h [—e — (x0 — x’) Iqs + Wb T e] t

Zm3t = + h[—e + (x0
— x’)Id —bTsefit

(b) Persistent PQ load

TGGL(t+t) = Zit + h(P0
—

(3.16)
TBBL(t+t) Zc2t + h(Q0

— BLV2)(+t)

with the difference equation constants

Zit = TGGLj+h(Po—GLV2)t

Zc2t = TBBLt+h(Qo—BLV2)t

2. Generating plant:

(a) Synchronous generator

= Zglt + h(Tm — Te — D) (t+t)

= z9 + hwb(w —

Zg3t + h[_E
— (xd — x)Id + EFDfi(t+t) (3.17)

I II

= Zg4t + h [_Eq
— (xd — Xd) ‘d +

Zg5t + h[_E + (xq
— X)Iq1(t+t)

Zg1t = MLt+h(TmTeDLL))t

zq2 =

Zg3t =T0Et+h[E(xdx)Id+EFD]t

Zg4ft = T(E’ E+h[E’ - (x-x)Id+E]It
II II II

Zg5t = TqoEdt + h[—E + (xq
— xq)IqHt

Mw(t+t)

T0E (t+t)

T(E’
-

TE (t+t)

with the difference equation constants
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(b) Field excitation system

TAEFD(t+t) ZeIt + h[EFD + EFDO + KA (UE + VREF
— )](t+t) (3.18)

with the difference equation constant

Zet = TAEFDt + h[EFD + EFD0 + KA(UE + VREF

(c) Mechanical—hydrailhic governor and hydro turbine

T Gl+t) = Zh1 + h [—u G1 + UG + REF — — G2](t+)

(TrG2 —6TTrGl)(t+Lt) = Zh2t —

(3.19)
T9G3(t+t) —

ZJ + h (—G3 + Gl)(t+t)

(O.5TwTm +TG3)(t+t) — Zh4t+h(Tm +CgG3+Go)(t+)

with the difference equation constants

Zh1t = TG1+ h[—aGi + UG +WREF —

Zh2 = (TrG2TTrGl)thG2t

Zh3t TgG3t+h(G3+Gi)t

Zh4t = (O.5TwTm + TG3)+ h(Tm + CgG3 + Go)

(d) Electrical—hydraulic governor and steam turbine

Tsm G(t+t) = Z81 + h [G + Kg(UG + REF —
w)fi(tt)

(3.20)
TCHTm(t+t) = Zs2t + h(Tm + CgG+ Go)(t+t)

with the difference equation constants

Zsit = TsmGt+h[G+Kg(UG+wREFLi.))fit

Zs2t = TcHTmt+h(Tm+GgG+Go)t
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(e) Power system stabilizer

T8(S1 +‘)(t+t) =
— hSl(t+t)

(T2832
— KTl3Sl)(t+t) Zp2t H- h(—S2 + KCSl)(t+t) (3.21)

(T28UE TlSS2)(t+t) = Zp3t+ h(UE+S2)(+t)

with the difference equation constants

z1 = T8(Si+w)t—hSit

z2 =

z3 = (T2UE—Tl8S2)+h(—UE+S2)t

3. Control devices

(a) Static VAR compensator

TbBl(t+t) = z1 + h[—B1 + Kb(VREF
—

(322)
(T2bB2 — TlbBl)(+) = z2 + h [—B2 + Blfi(t+t)

with the difference equation constants

z1 = TbBlt + h[—B1 + Kb(VREF
—

z2 = (T2bB2 — TlbBl)t + h[—B2 + Bifit

In the above difference equations, the difference equation constants, z’s, are known at

time t and the values of state variables (x, y) at time (t H- t) are to be solved.

Finally, with some manipulations of equations (3.15) — (3.22), the overall system

difference equations may be written in a compact form as

= Z + D) (3.23)

where /t is the integration step size and D is determined at time t and assumed not

to change during (t, t H- z\t). With X, Y, D and H(X,Y, D) known at time t, the

difference equation constant vector Z is defined as

Z X + D) (3.24)
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Therefore, for a system solution (Xt , Yt) at time t and a chosen integration step size

At, equation (3.23) together with discretized system algebraic equation (3.6) forms the

simultaneous implicit integration algorithm based on the trapezoidal rule for the system

equations (3.5) and (3.6)

— —
= 0 (3.25)

= 0 (3.26)

These are nonlinear algebraic equations and can be solved for Y+) by Newton—

Raphson’s method.

3.3 Power System Simulation Program

Based on the simultaneous implicit integration method described in the previous section,

a comprehensive power system simulation program is developed in this section for system

voltage stability studies. The program consists of the following major functions.

1. System data input and pre—processing

2. Load flow and initial system condition

3. Selection of system contingencies

4. System state monitoring, recording and control logics

5. Topology change and new initial system values

6. System equation integration and variable constraints

7. Step size control and exact timing

8. System data output

39



The program is very involved since it has to deal with various types of load and

reactive power component models, nonlinear constraints and logics, such as generator

rotor overheat protection, etc.. Some details of the simulation program are presented as

follows.

3.3.1 Load Flow Calculation

For the dynamic system simulation studies of a power system, a load flow is required

to determine the initial steady state values of the system. For that, the initial system

generation and loading conditions must be specified. With a load flow, all initial system

state values (X0Y0)can be determned.

In a load flow, generator buses are usually specified as PV buses, while load buses

as PQ buses. However, the power and reactiv power drawn by a dynamic load may be

a function of its terminal voltage and other state variables which can not be specified

a priori. For example, the power and reactive power drawn by an induction motor in

steady state are determined by equation (2.5), which are functions of not only motor

terminal voltage V but also the motor slip s. In order to determine load power and

reactive power, the steady state equations of the load must be included in load flow.

Since most loads are also nonlinear, their effects must be reflected in the following load

flow Jacobian equation.

P(e,v)
= [JLFI (3.27)

Q(ø,V)

where P and zQ are power and reactive power mismatch functions, e and V are

respectively the angle and magnitude of system bus voltage, and LF is the corresponding

load flow Jacobian matrix.

There are two different methods in dealing with the load flow equations with nonlinear

loads, the sequential method and the unified method [38]. By the former, the steady state
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equations of the load are solved separately in each iteration. The nonlinear effect of the

load is included only in the power mismatch equations, but not in the system Jacobian

matrix, which may reslut in possible convergence problems. By the united method, the

idea is to add the load variables, such as motor slip, into the solution vector. It amounts

to an extension of a very large load flow Jacobian matrix, which is obviously inconvenient.

In this thesis, a new method is devised to overcome these difficulties, all extra load

variables, such as motor slip, are eliminated from the load equations first, and then both

power and reactive power drawn by the load and their derivatives with respect to load

terminal voltage are computed, which may be done numerically if necessary. The load

nonlinearity can then be included in both power mismatch equations and in load flow

Jacobian matrix without variable extensions.

For a static load, the load power and reactive power may be directly expressed as

functions of the terminal voltage, such as equations (2.6) and (2.7). The calculations

of load power, reactive power and their derivatives with respect to terminal voltage are

straightforward.

For a dynamic load, variable elimination may be involved. For example, the steady

state operating condition of an induction motor load is determined by the equations (2.5)

which is rewritten as follows.

TL=TE = fE(s,p)V2 (3.28)

Fm = fp(s,p)V2 (3.29)

Qm = fQ(s,p)V2 (3.30)

With TL specified, the motor slip s can be eliminated by solving it from equation

(3.28) and substituting the result into equations (3.29) and (3.30). Thus, the power Fm

and reactive power Qm determined by the terminal voltage V can be included in the

power mismatch equations. The derivatives of power and reactive power with respect to
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voltage can be computed by

= dfp(:, p)
v2 + 2Vfp(s, p) (3.31)

dQm = dfQ(s,p)
v2 + 2VfQ(s,p) (3.32)

where can be obtained by differentiating equation (3.28) with respect to V as

= df(:,p)
V2 + 2VfE(s,p) (3.33)

or

=_2fE(s,p)/(d V) (3.34)

Therefore, with load flow Jacobian matrix modified by equations (3.31) and (3.32), the

nonlinearity of the load has beell fully included in the load flow.

3.3.2 Solution of System Jacobian Equations

The .major task of solving the nonlinear system equations (3.25) aild (3.26) by Newton

Raphson’s method is to solve the corresponding system Jacobian matrix equation

= (3.35)

where zSR is the function residue vector, S is the system state variable deviation vector

and J the system Jacobian matrix. R has the form of R [hF hIlT with hF for

the function residue vector of all system components but the system network equations,

and hI for those of system network equations. hS has the form of hS = [hX hV]T

with hX for the vector of all system non—terminal—voltage variable deviations and hV

for the system terminal—voltage deviations.

For a multi—machine power system with nonlinear load and control dynamics, the

order of Jacobian matrix equation (3.35) is usually very high. For instance, it has more
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than two hundred variables for a nine machine power system used in this thesis project.

Therefore, the direct formulation and solution of the Jacobian matrix equation are both

heavy memory demanding and very time consuming.

Although the order of the Jacobian matrix may be reduced by eliminating some

system variables from equation (3.25) using the existing relations, this amounts to have

a new model for the original system. It will be very complicated in dealing with original

component model changes during integration.

To save the computation in solving the Jacobian matrix equation (3.35) yet to keep

the original system component models, a new and systematic method is developed in

this thesis. It consists of two steps, a forward elimination and a backward substitution.

In the forward elimination step, all system non—terminal—voltage variable deviations are

eliminated and the result is used to modify the sub—Jacobian matrix corresponding to the

transmission network equations. All system terminal—voltage deviations are then solved.

In the backward substitution step, the terminal-voltage deviations are back substituted

and all non—terminal—voltage variable deviations are then obtained. Both forward elimi

nation and backward substitution are designed in such a way that the system components

are arranged in a definite order and processed systematically one after another.

In this method, the system buses are ordered in such a way that the N9 generator buses

come first, followed by N. induction motor buses, and then N3 SVC buses, followed by

N1 nonlinear load buses. Any other different types of components can be easily grouped

and added in similar way. As an illustration example, a power system with Ng 2

generator buses and Nm = 2 motor buses is considered. The system Jacobian matrix

equation may then have the form as in Figure 3.4.
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Mmi

Figure 3.4: An Example of System Jacobian Matrix Equation

where denotes the non—terminal—voltage variable deviation vector for the ith gener

ator, and L\Xmi that for the ith motor. AV and AV are the corresponding terminal—

voltage deviations vectors. While /F is the residue function vector of generator or motor

equations, /I is residue function vector of the network equations. Finally, A, B, C,

and J are corresponding sub—Jacobian matrices.

Forward Elimination

Referring to Figure 3.4, the residue function vector AF of the ith system component and

the residue current vector AI of the corresponding network equations may be written as

AZX + Bz\14 (3.36)

= C /X + Jc V (3.37)

where is the ith row sub—matrix of J and V is the vector of all system bus terminal

volt age deviations, including
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Next, the ith component of the non—terminal—voltage deviation vector, can be

eliminated by solving it from equation (3.36) and substituting the result into equation

(3.37) resulting in

zI = JiV — CA’BzXV (3.38)

where

= —

With equation (3.38), is then modified by subtracting G A’B from the ith element

of

Finally, when all system components have been processed one by one in the same way

as described above, the sub—Jacobian matrix J, is modified and all system bus voltage

deviations can then be solved through the following matrix equation, which finishes the

forward elimination process.

= JiV (3.39)

where zI’ is the vector with A1 as its elements, and J is the modified matrix of sub—

Jacobian matrix J.

Backward Substitution

Once the system bus voltage deviation V is obtained through forward elimination, the

non—terminal—voltage variable deviation of the ith system component /X can be solved

by substituting Ls4 back into the component equation (3.36), which gives

ZXX, = A’(zF - BJ’) (3.40)

When all system components have been processed one by one in the same substitution

procedure, the whole system Jacobian matrix equation (3.35) is finally solved.
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With this forward elimination and backward substitution procedure, the system Ja

cobian matrix equation can be solved systematically and efficiently. There are three ad

vantages. Firstly, since the form of all system component equations remains unchanged,

the tedious work involved in equation reductions is then avoided. As a result, it is very

straightforward in dealing with changes in component equations. In addition, since all

system components are handled in the same way, it is very easy to add or remove com

ponents to or from the system. Secondly, since system components are processed one at

a time, the highest order of the matrix involved in the forward elimination and backward

substitution is the highest order among J and A (i = 1, 2, , N) where N is the total

number of system components. To reduce the order of the sub-Jacobian matrix J, the

system buses with constant impedance loads and fixed capacitor ballks can be eliminated

by lumping the corresponding equivalent admittance of the components into the diago

nal elements of the respective submatrix of the system admittance matrix YN. Finally,

since matrices As and J are usually sparse, triangular factorization technique can be

used to save computation associated with forward elimination and backward substitution

procedures.

3.3.3 Integration Step Size Control and Exact Timing

Power system equations (3.5) and (3.6) may have wide—ranged values of time constants

associated with the system dynamics. For example, a generator sub—transient may involve

a time constant of a small fraction of a second, while a time constant associated with

load dynamics may be several minutes. Small time constants determine the fast system

transients while large time constants dominate the slow system dynamics. For system

problems like voltage instability phenomenon involving both fast transients and slow

system dynamics, a too large integration step size may result in poor accuracy for fast

transients, while a too small step size may result in excessive computation for the slow
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dynamics. Therefore, to take care of both small and large time constants of the system,

a step size control procedure is imperatively needed for the system integration.

In an implicit integration method, the solutions of differential equations are approx

imated by those of the corresponding difference equations of finite order. For example,

the original system differential equation (3.5) is approximated by the difference equation

(3.25). The approximation is made by truncating the higher order terms of the differ

ence equations. The error of the approximation introduced in a single integration step

is called the local truncation error eLT. It is shown in [43] that the relationship between

local truncation error and integration step size can be expressed as

d1x
eLT C

dt(1)
(3.41)

where p is the order of the numerical integration method, for example, p = 2 for integra

tion algorithm based on trapezoidal rule, At is the integration step size, C is a constant

which depends on the system equation and the integration method being used, and x is

the solution of the system equation.

The basic idea of step size control is to keep the local truncation error eLT within the

tolerance limit while maximizing the integration step size At.

Computation of eLT from equation (3.41) requires information regarding the order

of the method p, the constant C, and the (p + 1)th derivative of x. In this thesis,

instead of computing the (p + 1)th derivative of x by extrapolation with a polynomial

of degree p + 1, an alternative approach, the step doubling approach, described in [40] is

used to estimate the local truncation error. This method involves integrating the system

equations by taking two steps of step size At and reintegrating over the same interval

with a single step of length 2 At. With these solutions, the local truncation error eLT can

be estimated as follows.

Let x be the solution by taking two single steps, xd the solution by taking a double
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step, and xt the corresponding true solution which is unknown. We have the following

equations

xt+2eLT8 (3.42)

= Xt + eLTd (3.43)

where eLT3 and eLTd are local truncation errors of single step and double step integrations,

respectively, which, from the equation (3.41), are given by

x
eLT8 C

dt(P+l)

d1x
e — C 2Lt4LTd

— dt(P+l) ‘

Subtracting (3.42) from (3.43), we get

= eLTd—2eLT5

= c /tP+1(2P+1 —2) (3.44)

= (21
— 2)eLT5

which gives the local truncation error of single step integration

eLT = (xd —x5)/(21 — 2) (3.45)

From equation (3.45), we can see that computation of eLT by step doubling approach

avoids the computation of the derivatives and the knowledge of constant C. Only the

order of the integration method needs to be known. On the other hand, step doubling

method has an obvious disadvantage. It incurs much more computations because x3

and xd have to be computed in order to obtain eLT. However, as also indicated in [40],

in addition to easy implementation, this method usually gives more reliable and steady

result. This means that the changes in step size during integration are more consistent

which is also observed in the simulation studies in this thesis. These benefits are nearly

sufficient to compensate the extra computation cost.
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With the local truncation error eLT available, the integration step size At can be so

chosen that the eLT satisfies

emin eJff emax (3.46)

where emin and emax are prescribed lower and upper bounds of local truncation error eLT.

If the eLT is within its bounds, the current step size is acceptable and the integration

continues with the step size. Otherwise, if the eLT is less than emin or greater than emax,

then the step size is doubled or halved. In order to avoid too large or too small step size,

At is also bounded by its upper and lower limits

Atmin At <Atmax (3.47)

Therefore, whenever there is a system change which causes some system variables to

vary sharply, a small integration step size must be chosen for accuracy. After fast system

transients, the step size will be increased gradually while keeping the local truncation

error within the prescribed limits.

Due to the variation in step size during the integration, the simulation may overshoot

and miss the exact timing of faulting and clearing, tap changing and rotor overheat

protecting, etc.. In the simulation program, the exact timing t of an event, is pinpointed

by changing the last step size according to

At new = At0ld — t + tc (3.48)

and the new step size is then used to re—integrate the last step as shown in Figure 3.5.

3.3.4 System Contingencies

Most system instabilities are caused by system disturbances. Different disturbances oc

curring at different locations have different impacts on system stability. System distur

bances may include system load changes, system network changes, and system generation

changes. There may also be single or double contingencies.
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Figure 3.5: Step Size Change for Exact Timing

1. System load changes

(a) Step change in power and reactive power of a nonlinear PQ load.

(b) Step change in load torque of an induction motor.

(c) Gradual inrease in system load.

2. System network changes

(a) opening of a transmission line

(b) tripping of a transformer.

(c) Ground of a system bus.

3. System generation changes

(a) Tripping of a generator.

(b) Switching—in or —out of a capacitor.

Whenever there is an sudden change in system topology, system variables Y will

change instantly since the fast electromagnetic transients in transmission network are
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neglected. Although the differential variables X remain unchanged, system equation

(3.5) and (3.6) must be solved at that time instant in order to find new initial value of

Y for the next step integration.

3.3.5 Flowchart of System Simulation Program

The complete system simulation program may be recapitulated by an overall flowchart

as shown in Figure 3.6.
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Figure 3.6: Overall Flowchart of System Simulation Program

no

SOLUTION OF SYSTEM EQUATIONS (X Y)

I. EQUATION DISCRETIZ4TION
2. DIFFERENCE CONSTANT Z
3. JACOBIAN EQUATION

a. FORWARD EUMINATION
b. BACKWARD SUBSTITUIION

4. VARIABLE UPDATE
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Chapter 4

DYNAMIC VOLTAGE STABILITY STUDIES

Voltage stability studies have been concentrated on the determination of maximum load

ing limit (MLL) of a power system based on load flow related analysis. When the system

loading reaches its MLL determined by conventional load flow, the load flow Jacobian

will become singular, which indicates a possible voltage collapse. Such defined MLL may

be referred to as static voltage stability limit. Thus, the distance between current system

loading condition and the MLL can then be used as an index to measure the degree of

system voltage stability. However, when the MLL is determined through load flow analy

sis, system dynamics are not included. As a result, it may not lead to a realistic solution

due to the harmful or favorable system dynamics. Moreover, even if an exact MLL could

be found, it can only tell a system loading condition where a possible voltage collapse

may occur. It can not provide any information of how system voltage approaches the

collapse point and how this collapse point is affected by system dynamics.

Therefore, the evaluation of system MLL and clarification of voltage collapse mech

anism require a detailed system dynamic simulation which may take into account the

effects of all system dynamics on voltage stability. It is believed that the unfavored dy

namic interactions among system components play a key role in the process of voltage

deterioration and collapse. With system models described in Chapter 2 and time domain

simulation technique developed in Chapter 3, the effects of load and control dynamics

on voltage collapse process can be better investigated by dynamic simulation of a sample

power system.
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In this chapter, a 21 bus sample power system with basic system data is presented

in Section 4.1. Critical system load buses are defined and identified in Section 4.2 based

on bus voltage—reactive power sensitivity analysis. Following that, the effects of different

system loads on voltage stability are investigated in Section 4.3, and system control effects

in Section 4.4. Finally, the results of system maximum loading limit (MLL) from load

flow and those from dynamic simulation are compared and discussed in Section 4.5.

4.1 A Sample Power System for Voltage Stability Studies

4.1.1 A 21 Bus Sample Power System

A sample power system with 21 buses and 23 branches of transmission system is shown

in Figure 4.1. The system has 9 generating plants, two of them at buses 4 and 9 are

hydro—electric, and the others are steam—electric. There are 11 load buses with a VAR

compensation at bus 21. The system is connected to an infinite system through line

11 — 1.

Figure 4.1: A Sample Power System under Study
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4.1.2 Basic System Data

The basic system data for the transmission system, the generating plants and a specified

system generation and loading condition are given as follows. The data for typical system

loads and system control devices are given in the subsequent sections. All data are in

per unit unless otherwise specified.

A. Transmission System

Table 4.1: Data of Transmission System

Line Bus I Bus J Resistance(R) Reactance(X)

1 2 13 0.0000 0.0590

2 3 13 0.0000 0.0135

3 5 12 0.0000 0.2900

4 12 13 0.0068 0.0680

5 6 16 0.0000 0.0500

6 16 19 0.0300 0.3000

7 7 16 0.0000 0.1000

8 16 17 0.0015 0.0145

9 19 20 0.0106 0.1060

10 20 21 0.0240 0.2400

11 21 17 0.0161 0.1610

12 21 14 0.0025 0.0250

13 13 14 0.0120 0.1200

14 13 20 0.0048 0.0480

15 14 15 0.0070 0.0700

16 15 4 0.0200 0.2320

17 15 11 0.0070 0.0700

18 14 10 0.0120 0.1200

19 14 18 0.0102 0.1020

20 18 9 0.0000 0.2800

21 17 18 0.0057 0.0570

22 17 8 0.0320 0.3200

23 11 1 0.0000 0.0320

The impedances of transformers in the transmission system are combined with those

of transmission lines. All line capacitances are ignored.
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B. Given System Generation and Loading Condition

Table 4.2: Data of Generator PV and Load PQ

FV Bus FQ Bus

Bus Pgen Vgen Bus Pload Qload

2 3.000 1.040 11 2.500 0.200

3 3.500 1.035 12 1.500 0.100

4 2.000 1.030 13 2.400 0.200

5 1.000 1.035 14 4.500 0.500

6 2.500 1.040 16 3.500 0.200

7 2.500 1.040 17 2.000 0.200

8 2.000 1.010 18 2.000 0.000

9 2.000 1.015 19 1.500 0.100

10 3.500 1.060 21 3.500 —1.700

Slack Bus: V1=1.060 Bus 15, 20: No Load

For different system loading conditions, generator voltages may be adjusted for a

normal system voltage profile. The power balance is taken care by the infinite system.

C. Generating Plant

Synchronous Generators

Table 4.3: Data of Generator Parameters

Bus xd xq M D T0 T, T,,

2 0.700 0.700 0.120 0.098 0.098 25.000 0.050 7.000 0.091 0.455

3 0.600 0.600 0.100 0.084 0.084 30.000 0.050 7.000 0.091 0.455

4 0.500 0.400 0.150 0.070 0.070 20.000 0.050 8.000 0.104 0.520

5 1.600 1.600 0.230 0.224 0.224 12.800 0.050 7.000 0.091 0.455

6 0.950 0.950 0.150 0.133 0.133 19.800 0.050 7.000 0.091 0.455

7 0.950 0.950 0.150 0.133 0.133 19.800 0.050 7.000 0.091 0.455

8 1.000 1.000 0.170 0.140 0.140 18.000 0.050 7.000 0.091 0.455

9 1.000 1.000 0.170 0.140 0.140 18.000 0.050 7.000 0.091 0.455

10 0.390 0.320 0.060 0.055 0.055 32.000 0.050 6.000 0.078 0.390
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where M, T0, T, and T are in seconds.

Field Excitation Systems

The excitation systems for the sample power system may be divided into two groups.

Group A has smaller time constants and larger gains, while group B has larger time

constants and smaller gains as shown in Table 4.4. The excitation systems of generators

at buses 2, 3, 4, 5, 6, and 7 belong to group A, and those at buses 8, 9, and 10 belong to

group B.

Table 4.4: Data of Field Excitation System

Group TA Emni Emasi

A 100.00 0.050 —7.000 7.000

B 50.00 0.100 —7.000 7.000

where TA is in second.

Governor and Turbine Systems

(a) Mechanical—Hydraulic (M—H) Governor and Hydro Turbine System

Table 4.5: Data of M—H Governor and Hydro Turbine

T Tr T9 T

0.050 0.250 0.020 4.800 0.500 1.600

C9 Gsmin Gsmax Gomin Gomax

Pgen 0.100 0.100 0.000 Pmax

where T, Tr, T9 and T are in seconds.

(b) Electrical—Hydraulic (E—H) Governor and Steam Turbine System
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Table 4.6: Data of E—H Governor and Steam Tnrbine

Kg Tsm TCH C9

20.000 0.100 0.400

Gsmjn Gsmax Gomin Gomax

0.100 0.100 0.000 Pmax

where Tsm and TCH are in seconds.

In the governor and turbine system data, the interfacing factor a9 has a value of the

rated power output P96, of the generator. The maximum gate or valve opening Gomax

corresponds to the maximum power output which may be certain percent over the rated

power output, for example, Pmax may be 1.2 times of Pgen.

Power System Stabilizers

The power system for the given operating condition is originally unstable in term

of system low frequency oscillations. For voltage stability studies, this conventional

angle stability problem should be removed from the system. This can be done with

the applications of power system stabilizers (PSS’s). For the given system operating

condition, three power system stabilizers are furnished on the generators at buses 4, 8,

and 9 to provide a supplementary excitation control to quench the osillations [44]. The

corresponding PSS parameters are given below. For different system loading conditions,

these parameters may have to be adjusted so as to give the best damping performance.

Table 4.7: Data of PSS’s for Given Operating Condition

Generator Bus K0 2’

4 18.057 5.000 0.103 0.035

8 28.271 5.000 0.104 0.035

9 31.352 5.000 0.124 0.035
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whereT3,T1, and T2 are in seconds.

4.2 The Critical System Load Buses

4.2.1 Analysis of the System Operating Condition

For the given system operating condition, load flow studies show that the system is highly

power stressed. A large amount of power is transferred from some remote generating

plants, for instance, at buses 4, 5, 8, 9, and 10, and to some remote loads, such as loads

at buses 14, 19, and 21. The long distant power transmission results in a heavy reactive

power loss in the transmission lines and transformers. As a matter of fact, all the reactive

power supply from generators is consumed in the transmission system, as indicated in

Table 4.8. As a result, the large capacity reactive power compensation at bus 21 becomes

critical for the system to maintain a nearly normal voltage profile as shown in Table 4.9.

Table 4.8: System Power Generation and Consumption

Slack Bus Generators Compensations Loads Losses

Power (F) 1.875 22.000 0.000 23.4000 0.475

Reactive
0.969 7.104 1.700 1.500 8.273

Power

Table 4.9: Voltage Profile of the Given System Condition

V1 V2 V3 V4 V5 V6 V7

1.060 1.040 1.035 1.030 1.035 1.040 1.040

V8 V9 V10 V1 V12 V13 V14

1.010 1.015 1.060 1.032 1.008 1.021 0.981

V15 V16 V17 V18 V19 V20 V21

0.994 0.984 0.969 0.956 0.967 0.999 1.004
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As a result, the system operation becomes voltage vulnerable due to its critical de

pendence on the heavy reactive power compensation. This means that system voltage

may collapse due to system disturbances that reduce the compensation.

4.2.2 Critical System Load Buses

Critical load buses of the system are identified and used to investigate the effects of load

and control dynamics on system voltage stability. The critical system load bus is defined

as the bus that is most voltage sensitive among all system load buses. This suggests that

the load increase at a critical load bus will have a larger influence on the overall system

voltage profile than those at other load buses. More specifically, a load increase at the

critical load bus will cause large voltage drops at most system load buses. Therefore,

the system voltage profile is more sensitive to the load variations at the critical load bus

than those at other system load buses.

For a given system generation and loading condition, the steady state system opera

tion can be characterized by the following nonlinear load flow equations.

P (O,V) = 0 (4.1)

Q (ø,V) = 0 (4.2)

where P and Q refer to the power and reactive power mismatch equations, respectively.

0 and V represents the angles and magnitudes of system bus voltages, respectively.

The system perturbation equations can be obtained by linearizing the load flow equa

tions (4.1) and (4.2) around the system operating point, which gives

= Pe k0 + P v (4.3)

= e0 + Qv V (4.4)
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which may be written in a single matrix equation with the load flow Jacobian matrix as

JLF (e,V) =

QeQv

and V are respectively the angle and magilitude deviations of system bus voltages

due to the bus power and reactive power perturbations of iP and iQ. The Jacobian

matrix JLF (0, V) is essentially a sensitivity matrix, and the corresponding bus voltage

sensitivities can be used to identify the most critical system load bus.

Since there is relatively strong coupling between reactive power and voltage magnitude

in power system, the voltage—reactive power sensitivity [iV/iQ] is a reasonable index

to describe the effects of system loading perturbations on the voltage magnitude. Since

the effects of changes in the real power injections on the voltage magnitude is usually

very small, the relationship between bus reactive power perturbation iQ and the bus

voltage deviation iV can be obtained as follows.

Let iP = 0 in Equation (4.3) and solve for i0, which gives

= —P1PZkV (4.5)

Substituting i€ in Equation (4.5) into Equation (4.4) gives

= (Qv — Q P1 P) iV (4.6)

or

iv = SiQ (4.7)

where

S = [Qv — Qe P1 Pv1’ (4.8)

and S may be referred to as system voltage and reactive power sensitivity matrix.
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In Equation (4.7), the element S of matrix S has a value equal to the voltage

deviation at load bus i, due to one per unit change in reactive power L\Q 1 at

load bus j,, assuming no load changes at other load buses. From this point, a critical

system load bus is defined as the bus which, when having a load increase, will cause large

voltage drops at most system buses. On the other hand, a load bus which, when having

a load increase, will influence the voltages of only its own or/and a few adjacent buses,

is not critical to the overall system voltage profile.

For the given system operating condition of the sample power system, the system

voltage and reactive power sensitivity matrix S calculated from equation (4.8) is shown

in Table 4.10. The values in the jth column of the matrix are the voltage deviations at

all system load buses due to the per unit change in reactive power at load bus j. The

larger the value is, the larger is the influence of the bus j on the corresponding buses.

If 1 percent of voltage deviation due to 1 per unit reactive power change is taken as the

threshold of large influence, the number of buses whose voltages are largely affected by

the change of reactive power at bus j, (j = 11 ,21) are given in Table 4.11.

Table 4.10: System Voltage Sensitivity Matrix

Bus i --- ---- ---- ---- —- ---

4
Qii Ql2 Q13 Q1d ‘QlS Qi6 ‘Qii Qi8 Ql9 Q2O Q2l

11 —0.026 —0.001 —0.001 —0.005 —0.014 —0.001 —0.002 —0.003 —0.002 —0.002 —0.004

12 —0.001 —0.063 —0.008 —0.003 —0.002 —0.001 —0.002 —0.002 —0.005 —0.006 —0.004

13 —0.001 —0.008 —0.010 —0.004 —0.002 —0.001 —0.002 —0.003 —0.006 —0.007 —0.004

14 —0.005 —0.003 —0.004 —0.030 —0.016 —0.007 —0.010 —0.016 —0.011 —0.012 —0.022

15 —0.014 —0.002 —0.002 —0.016 —0.045 —0.004 —0.005 —0.008 —0.006 —0.006 —0.012

16 —0.001 —0.001 —0.001 —0.007 —0.004 —0.026 —0.023 —0.016 —0.011 —0.006 —0.008

17 —0.001 —0.002 —0.002 —0.009 —0.005 —0.022 —0.032 —0.023 —0.011 —0.007 —0.011

18 —0.002 —0.002 —0.002 —0.016 —0.008 —0.016 —0.023 —0.055 —0.011 —0.008 —0.014

19 —0.002 —0.005 —0.006 —0.011 —0.006 —0.012 —0.012 —0.011 —0.110 —0.031 —0.016

20 —0.002 —0.006 —0.007 —0.012 —0.006 —0.006 —0.007 —0.008 —0.031 —0.038 ‘—0.017

21 —0.004 —0.004 —0.005 —0.023 —0.012 —0.008 —0.011 —0.015 —0.016 —0.018 —0.035
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Table 4.11: Number of Buses Largely Affected by Bus j

11 12 13 14 15Bus j 16 17 18 19 20 21

No.ofBuses
2 1 1 6 4 4 6 6 7 4 7

Largely Affected

According to Table 4.11, the system load buses may be classified into three groups

in terms of voltage sensitivity, the strong bus group, buses 11, 12, and 13, which are less

system voltage sensitive, the weak bus group, buses 14, 17, 18, 19, and 21 with the most

critical buses 19 and 21, which have the largest effects on system voltage profile, and the

third group, buses 15, 16, and 20, which have the effects in between.

Since the load and control effects on the system voltage stability can be clearly demon

strated at the system critical buses, and the system voltage profile is largely dependent

on the reactive power compensation at bus 21, the load bus 21 is then chosen for subsé

quent voltage stability studies. Thus, the load at bus 21 will be substituted by a typical

load for each case study. The effect of reactive power controls will also be examined at

bus 21.

4.3 Effects of System Loads on Voltage Stability

The effects of the system bus loads described in Chapter 2 on the system voltage stability

are studied in this section. In the study, a system bus load is represented by a particular

type of load, a transformer with on load tap changer, and a distribution link connected to

the transmission system bus as in Figure 4.2. The distribution link impedance is included

in the transformer model. When the effect of a typical load itself is investigated, the tap

changing may not be considered, that is, t = 0. An induction motor load, an exponential

form static load and a persistent PQ load are included in this part of study.
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system bus

Figure 4.2: A System Bus with Typical Load

4.3.1 Effect of an Induction Motor Load

The basic data of an equivalent induction motor is as follows:

Table 4.12: Data of an Induction Motor Load

H T TL

6.700 0.010 4.209 0.142 1.600 2.4

where H and T are in seconds, and the motor load torque TL may subject to change in

different case studies.

With the induction motor load connected at bus 21, the system will have a low

voltage profile due to the large reactive power consumed by the motor. To have a system

operation with a fairly normal voltage profile, some of the generator voltage references

are raised to a higher level and the parameters of the PSS’s are adjusted to give the

best damping to the system unstable mechanical modes. The system adjustments are as

follows.
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Table 4.13: Adjusted System Voltage Profile

Vi V2 V3 V4 V5 V6 V7

1.060 1.040 1.035 1.050 1.035 1.050 1.050

V8 V9 V10 Vu V12 V13 V14

1.050 1.050 1.060 1.026 1.004 1.017 0.960

V15 V16 V17 V18 V19 V20 V21

0.984 0.988 0.972 0.960 0.956 0.982 0.966

Table 4.14: Adjusted PSS Parameters

Case Study 1: An Induction Motor Near Critical State

In this case study, the induction motor with a constant load torque TL = 2.4 is

considered. The motor is connected to bus 21. Other system loads are assumed to be

constant impedance loads. Transformer tap changing effect is not considered. The initial

system voltage profile is shown in the Table 4.13 and the motor related variables are

given in Table 4.15.

Table 4.15: Initial State of the Induction Motor

Terminal Voltage Motor Slip Power Reactive Power

0.965 0.024 2.480 1.404

Generator Bus It0 T T15 T28

4 37.573 5.000 0.080 0.035

8 34.056 5.000 0.128 0.035

9 26.251 5.000 0.121 0.035
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.

Figure 4.3: Motor Response to Step Change in Load Torque

A step load torque increase of 0.23 is then applied to the motor as a system distur

bance. System responses recorded in the figures show a voltage instability phenomenon

of slow system dynamics followed by a sudden voltage collapse.
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Figure 4.3 shows the dynaniic behavior of the induction motor. Following the step

increase in load torque at t = 5 second as in Figure 4.3a, there is a transient period of

about 10 seconds. Following the disturbance, the motor slip begins to increase according

to the rotor motion equation (2.1). Both motor power and reactive power drawn from

the system increase accordingly to pick up the load. As a result, the larger motor current

causes extra voltage drops in the transmission system, leading to a decrease of motor

terminal voltage and other system bus voltages as well, as shown in Figure 4.3d and

Figure 4.5. During this transient, generator bus voltages are maintained at the same

level as those in the pre—disturbance system condition by generator excitation controls

as shown in Figure 4.4.
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Figure 4.4: Some Generator Bus Voltages

After the transient, the motor slip càntinues to increase gradually, and the system

experiences a rather slow system dynamics, in which the system load bus voltages remain

fairly normal, and the system frequency is fixed at 60 Hz, as shown in Figure 4.5 and

Figure 4.7. During this slow dynamics, the electromagnetic torque developed by the
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motor is slightly less than the motor load torque. Motor slip begins to approach its

critical value over which the motor will start stalling. At around t = 105 second, the

motor slip reaches its critical value 8c 0.038 with a maximum motor torque TE 2.627,

which is still less than the load torque TL 2.63. After that, the motor slip continues to

increase while the motor developed torque begins to drop. The motor starts stalling. The

motor reactive power begins to increase. This causes the motor terminal voltage to dip

further, which in turn reduces the motor torque. This interacting dynamics continues

until a rapid change occurs at about t = 170 second. Due to the fast decreases in

motor developed torque shown in Figure 4.3a, the motor slip increase rapidly as shown

in Figure 4.3b. Although the motor power drops quickly, its reactive power goes up

rapidly as shown in Figure 4.3c. It is this rapid increase of the motor reactive power

demand that causes a sharp drop in motor terminal voltage as shown in Figure 4.3d.

Other system load buses have similar phenomena, and the results are shown in Figure

4.5, in which only voltages at load buses 13, 16, and 21 are shown for the sake of clarity.
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Figure 4.5: System Voltages at Some Load Buses
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At about t = 175 second, the motor reactive power begins to decrease but the motor

terminal voltage continues to drop. This means that the system operation has reached

the lower part of Q—V curve of motor terminal bus as shown in Figure 4.6. The system

loses voltage control at motor terminal bus after t = 175 second. Figure 4.6 also shows

that the maximum motor power limit occurs at t = 165 second, while that of reactive

power occurs at t = 175 second. This suggests that although the motor operates on the

lower part of the P—V curve after t = 165 second, the motor terminal voltage still can be

controlled if there is a sufficient reactive power compensation near the motor terminal

bus.
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Figure 4.6: Transient P—V and Q—V curves of Motor Terminal Bus

Since all system loads except the induction motor load are constant impedance loads,

the large system voltage drops after t = 175 second cause a large load reduction to the

entire system. This load reduction happens so fast that the governors and turbines are

not in time to respond so as to reduce the mechanical inputs to the generators. As a

result, all generators are speeded up and ultimately pulled out of synchronous operation
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successively, which causes a complete system collapse as shown in Figure 4.7 where the

rotor angles of generators at buses 2, 6, 8, and 10 are recorded. Other generators have

similar angular instabilities.
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Figure 4.7: Some Generator Rotor Angles

In summary, the results of this case study show that an induction motor load could

cause a slOw voltage deterioration followed by a sudden voltage collapse when the motor

operates near its critical condition. The stable operation of an induction motor depends

on its terminal voltage and its critical slip.

When a motor operates over its critical state, both motor developed torque and

power will drop, but it will draw more reactive power from the system, which will, in

turn, aggravate the motor terminal voltage deterioration. If this interacting process is

unchecked, a sharp voltage collapse will occur. In addition, from Figure 4.6, we can see

that although system operates at the unstable branch of P—V curve of motor terminal

bus, the system has not yet lost its voltage control until the maximum reactive power is

reached. If sufficient Var compensations were added at motor terminal bus before this
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reactive power limit is reached, the system voltage would have been controlled, and the

motor would move back to stable operation. Therefore, for the system with induction

motor loads, the system voltage stability can not be judged by P—V curve alone.

Case Study 2: Transient Stability with Induction Motor Load
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Figure 4.8: Transient Responses of Motor Variables
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In this case study, an induction motor load is connected at system bus 21 through a

distribution link. All other system loads are assumed to be constant impedance loads.

The initial system condition is the same as that in case study 1. But the system loses

a line between buses 14 and 21 at t = 0.5 second. The system responses shown in the

Figure 4.8 demonstrate a transient voltage instability of the system.

Figure 4.8 shows the motor responses to the system disturbance. At the instant of the

disturbance, the motor internal voltages (not shown) and motor slip remain unchanged.

The motor terminal voltage and current change instantly. The disturbance causes the

motor current to change in such a way that the motor developed torque, and hence the

motor power and reactive power dip suddenly. The motor terminal voltage goes up a

bit. Following that, motor slip begins to increase quickly until the critical slip is reached

at t = 1.2 second. The motor developed torque has reached the maximum which is,

however, still less than the load torque as shown in Figure 4.8b. After that, the motor

starts stalling. Both motor torque and power decrease quickly. The motor reactive power

demand increases rapidly causing motor terminal voltage collapse within 4 seconds. The

results of this case study show that a system with induction motor loads may involve

a transient voltage instability when the operation of the induction motor is upset by

system disturbances. More reactive power demand of an induction motor against voltage

decline adds an strict constraint on system voltage stability.

4.3.2 Effect of Exponential PQ Loads

The effect of a general static PQ load of the exponential form on system voltage stability

is examined, which includes three special cases: the constant impedance, the constant

current, and the constant power loads.
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Case Study 3: Constant Power, Current, or Impedance Load

The initial system condition is the same as that in case study 1. An induction

motor with an initial load torque of 2.4 is again connected to system bus 21 through a

distribution link. An step load torque increase of 0.23 is applied to the motor as a system

disturbance. All other system bus loads are assumed to be exponential PQ loads. The

effects of three different types of the loads, the constant impedance, the constant current,

and the constant power loads are examined and compared. Tap changing effects are not

considered in this study.
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Figure 4.9: Voltage Response at a Load Bus

Comparison of the results for the three special types of PQ loads reveals some in

teresting points. A constant impedance load (a = /3 2) is more voltage dependent

than a constant current load (a = /3 = 1), while a constant power load (a = /3 = 0) is

not dependent on its terminal voltage at all. Following the disturbance at t = 5 second,

the induction motor will draw more power and reactive power from the system rapidly,
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causing voltage drops at all system buses. In responding to the voltage drops, the con

stant impedance loads will draw less power and reactive from the system, thus having a

favorable effect to halt the further decline of system voltage. As a result, the motor can

maintain stable operation at a higher terminal voltage for more than 170 seconds. On the

other hand, the constant power load will draw the same power and reactive power from

the system despite the voltage decreases, which aggravates the system voltage decline.

The induction motor starts stalling at about t = 25 second, much earlier than that in

the case of constant impedance loads. The effect of a constant current load is between

the two with motor stalling at about t = 125 second, as shown in Figure 4.9.
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Figure 4.10: Reactive Power Drawn by the Motor

In all three cases, bus voltages collapse sharply when the induction motor starts

stalling, which is, however, largely affected by the load characteristics. The more the

dependence of a load on its terminal voltage, the better the damping effect it will have

on system voltage stability. This damping effect is more crucial to the voltage stability of

a power system where critical induction motor loads are supplied, as in this case study.
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The motor reactive power response is shown in Figure 4.10, and the voltage response of

a representative generator is shown in Figure 4.11.
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Figure 4.11: Voltage Response at a Generator Bus

It is also observed that with constant impedance loads, the system involves the gen

erator angle instability, while with constant current or constant power loads, the system

remains stable in term of system frequency although the stalling of the induction motor

causes a voltage collapse at load bus 21, which is clearly demonstrated in Figure 4.12.

In the case of constant impedance loads, large voltage drops due to system disturbance

reduce the system load, especially the real power load, causing generators to speed up

following the disturbance. System remains stable both in angle and in voltage during

the slow system dynamics. At about t = 105 second after the disturbance, the motor

begins to stall, resulting in a sharp voltage collapse as shown in Figure 4.9. Both motor

power and other system constant impedance loads drop rapidly. The process is so fast

that the governors can not respond in time. The imbalance of system real power drives

the generators eventually out of step of the synchronism. On the other hand, in the case

160 180
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of constant power loads, system load is not affected by the sharp voltage drop due to the

motor’s stalling. Only the real power of the induction motor load is lost. The generators

speed up in response to this load reduction but remain stable at a higher rotor angles

than those before the disturbance, as shown in Figure 4.12.
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Figure 4.12: Rotor Angle of a Generator

This case study demonstrates the effects of a static voltage dependent load on system

stability. Constant impedance loads draw less power and reactive power when voltage

decreases, which has a favored damping effect on system voltage stability. On the other

hand, the load reduction may tip over the real power balance of the system causing a

possible generator angle instability, especially in the cases where rapid voltage collapse

may involve. In contrast, constant power loads have an somewhat opposite effect on

system stability. Although the constant demand of power and reactive power may aggra

vate the system voltage decline, which may cause system voltage collapse, it may help

to maintain system real power balance when system voltage drops rapidly as in this case

study, thus enhancing the system transient stability. This conclusion is drawn from the

0 20 40 60 80 100 120 140 160
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consideration of load only. The conclusion may be opposite if the loss of system power

generations is also involved.

4.3.3 Effect of Persistent PQ Loads

As described in Chapter 2, a persistent PQ load demands constant power and reactive

power despite a voltage decline, but involving an inherent time delay constant. This kind

of load characteristics is very important to system voltage stability since the insisting

demand of constant power and reactive power may cause system collapse, especially when

the system loadability is reduced due to system disturbances.

Case Study 4: Effects of Persistent PQ loads on Voltage Stability

To study the effect of this kind of load on system voltage stability, all system loads

of the sample system are considered as persistent PQ loads, modeled as changing equiv

alent admittances and with same recovery time delay of 10 seconds. The same initial

system condition as in the previous case studies is obtained by replacing the correspond

ing induction motor load at bus 21 with a persistent PQ load having an initial loading

of 2.48 + jl.40. The steady state system operation is then disturbed by a loss of a line

between buses 14 and 21 at t = 5 second. It is anticipated that this system disturbance

would greatly reduce the loadability of system bus 21 because the load now must be sup

plied through the relatively remote buses 17 and 20. The simulation lasts 1000 seconds,

and system responses are as follows.

Figure 4.13 records the voltage response at system bus 21, which shows voltage in

stability. Upon the system disturbance, system voltages dip immediately, causing the

instant load power and reactive power load drops as seen in Figure 4.14.
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Figure 4.14: Load Power and Reactive Power vs. Load Admittance

After that, the system load admittance begins to increase according to equation (2.8).

The load power and reactive power recover gradually while system voltages continue to

decline. This process continues until about t = 139 second at which load power and
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Figure 4.13: Voltage Collapse at Bus 21
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reactive power at bus 21 have reached their corresponding maximum values as shown in

Figure 4.14. But, the maximum load power and reactive power at bus 21 are still less

than the pre—disturbance values. As a result, the load admittance continue increasing.

Over that point, the load power and reactive power begin to drop monotonically despite

the further increase of the load admittance. The bus voltage goes all the way down as

shown in Figure 4.13, which indicates that system has lost voltage control at bus 21.

Time (sec)

Figure 4.15: Some Other System Load Bus Voltages

Some other load and generator bus voltages of the system are shown in Figure 4.15

and Figure 4.16. The results indicate that the system survives the transient stability and

voltages at system load buses other than bus 21 remain a fairly high level. Although the

voltage collapses at bus 21, which causes loss of load at that bus, the other system bus

loads have recovered to their pre—disturbance levels, some of which are shown in Figure

4.17. The persistent loads demand constant power and reactive power, which exceed the

system loadability at bus 21, causing a voltage collapse at that bus, but maintains the

system real power balance, avoiding a system angle instability.
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4.4 Control Effects on System Voltage Stability

All reactive power related system components, such as controls, compensations, and con

straints, have large impacts on system voltage stability. These system components may

improve or deteriorate system voltage by supporting or restricting the system reactive

power supply. The effects of system reactive power components on system voltage sta

bility are examined in this section. Among them are the on load tap changing of a

distribution trallsformer, the reactive power compensation with fixed capacitor banks or

with SVC’s, and the rotor overheat protection of a generator.

4.4.1 Effect of transformer tap changing

System distribution transformers are equipped with on load tap changers (OLTC’s) to

maintain normal load side voltages by changing the taps. The dynamics of the OLTC

is usually slow comparing with those of other system components, such as generators

and motors. Therefore, the effect of an OLTC on system voltage stability may not be

considered for fast transient system conditions. But, it must be considered when a slow

system dynamics is involved, especially when a system is operating near its critical state.

To study the tap changing effect on system voltage stability, an induction motor load

is assumed at load bus 21, and all other system bus loads are assumed to be constant

impedance loads. All loads are connected to the system buses through transformer links,

and the transformers are equipped with on load tap changers. It is further assumed that

each tap of a transformer is 0.025, the time delay of each tap changing is 10 seconds,

and the voltage deviation tolerance is + 2 percent from the normal voltage. The system

disturbance is simulated by a step load torque increase to the motor with an initial load

torque of 2.4.
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Case Study 5: Tap Changing at Critical Motor Load Bus

In this particular study, the tap changing is only assumed at the transformer link of

the motor load bus. The effects of other transformer tap changings are not considered.

A step load torque increase of 0.23 is applied to the motor at t = 5second.

To demonstrate the transformer tap changing effect, the result of case study 1 is used

for comparison. As shown in Figure 4.18, if the transformer tap changing effect is not

considered (as in case study 1), the system voltage will collapse at about t = 170 second

due to the motor’s stalling. Otherwise, the system voltage remains stable if the tap

changing effect is considered.

2

Figure 4.18: Tap

Following the step change in motor load torque at 1 5 second, both motor power and

reactive power increase along with the increase of the motor slip, which causes the motor

terminal voltage to decline due to the extra voltage drops in the transmission system.

At I = 7.13 second, the motor terminal voltage drops below the specified lower limit and

the tap changing is initiated. The tap changing of moving up one tap is completed at
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t = 17.13 second. This tap changing raises the motor terminal voltage as shown in Figure

4.18. This voltage rise increases the motor developed torque, which becomes larger than

the load torque as shown in Figure 4.19.
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Figure 4.19:

At the instant of tap changing, the motor slip remains unchanged. Both motor power

and reactive power jump suddenly. After that, motor slip begins to decrease, which

results in a large motor reactive power decrease as shown in Figure 4.20. This reduction

of motor reactive power helps to halt the system voltage from declining, which stabilizes

the motor operation with a higher motor load torque of TL = 2.63.

The effect of the tap changing on the P—V curve of the motor terminal bus is shown

in Figure 4.21, where the loading limit (the nose of the P—V curve) of the motor terminal

bus is appreciably extended by the transformer tap changing.

This study shows that the transformer tap changing is helpful to voltage stability

for a load with negative reactive power—voltage characteristics, such as induction motor

load.
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Figure 4.21:

The load side voltage increase due to the tap changing will reduce the load reactive

power, which, in turn, enhences the system voltages. This effect of a transformer tap

changing is especially crucial when the system operates near its critical state.
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Case Study 6: Tap Changing at Other System Load Buses

In this case study, it is assumed that there are transformer tap changings for all

system load transformers except for that of the induction motor load. The initial system

condition is the same as that in case study 5. But a smaller motor load torque increase

of 0.22 is assumed at t = 5 second.
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Figure 4.22: Effect of Tap Changing at Other System Load Buses

Figure 4.22 shows that the system voltage will remain stable if no tap changing effects

are considered while the system loses voltage stability in the case where the tap changing

effects are considered for all load buses but the motor load bus.

Following the system disturbance, system voltage decreases as the motor picks up its

load. Since all system loads except the motor load are constant impedance loads, this

voltage drop will cause a system load reduction, which has a damping effect to voltage

deterioration. If no transformer tap changings are involved, the system will sustain a

transient condition, and remain stable at a fairly normal voltage as shown in Figure 4.22.
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In the case where the tap changings are considered oniy at load buses with constant

impedance loads, the voltage drops at buses 14, 19, 18, and 17 successively initiate and,

after 10 second time delay, activate the tap changers at the corresponding load buses.

These tap changings raise the load side bus voltages of transformers, which restores some

of the load power and reactive power. More current are then drawn from the transmission

system, causing a further voltage decline at system side buses of transformers. As a result,

the voltage drop at system bus 21 causes the induction motor to stall at about t = 55

second. Following that, a rapid increase in motor reactive power demand leads to a

sharp voltage collapse. Figure 4.23 shows the P—V curve of the motor load bus. The

dash—line curve shows the case where no tap changings are considered, and the motor

remains stable operation at a fairly normal voltage, while the solid—line curve shows the

tap changing effects which cause system bus voltage drops, upsetting the motor stable

operation. The effects of tap changings on motor power and reactive power is further

shown in Figure 4.24.
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Figure 4.24: Tap Chauging Effect ou Motor Power and Reactive Power

This case study shows that a transformer tap changing has a detrimental effect on

system voltage stability for the system loads with positive reactive power—voltage charac

teristics, such as an exponential form PQ load with positive exponents. The voltage rise

due to a transformer tap changing will increase the load power and reactive power. This,

in turn, aggravates the system bus voltage deterioration, which may cause a possible

voltage instability as shown in this case study. This effect of a transformer tap changing

will become salient when the system is operating near its critical state.

4.4.2 Effect of System VAR Compensation

For a heavily loaded power system, effective reactive power support is crucial to maintain

system voltage stability. To study the effects of reactive power control devices on system

voltage stability, a fixed capacitor compensation and an SVC are considered and com

pared fof different system operating conditions, which may involve fast system transients

and slow system dynamics. The fixed capacitor is modeled as a constant susceptance B.
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The parameters of the SVC’s control circuit are given in Table 4.16.

Table 4.16: Data of SVC Parameters

C

KB TB T1B T2B

100 0.15 1.0 10.0

Case Study 7: VAR Compensation and Fast System Transients

In this case study, the additinal VAR compensations are provided to bus 21. Both

fixed capacitor compensation and SVC’s with two different capacities are considered.

The fixed capacitor susceptance B is 0.5. SVC capacity may be represented by the limit

of B2 as shown in Figure 2.10. The SVC of larger capacity has a value of B2max 0.35,

while that of smaller capacity B2max 0.25. An induction motor with initial load torque

of 2.4 is connected to system bus 21 through a distribution link. Other system loads are

assumed to be constant impedance loads. The system disturbance is simulated by a line

opening between buses 14 and 21 at t = 0.5 second. No tap changings are considered.

1.05

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

Time (sec)

Figure 4.25: Effects of Different VAR Compensations
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Figure 4.25 shows voltage responses at load bus 21 with different VAR compensations.

After the system disturbance, the voltage at bus 21 drops quickly due to the large current

of motor in order to pick up the load, which now has to be supplied from relatively remote

system buses 17 and 20. If there is no additional reactive power support at bus 21, the

low voltage will cause the motor to stall, and the large reactive power drawn by the

stalling motor will result in a voltage collapse within 4 seconds, as shown by Curve 1.

The situations will be different if a fixed capacitor is available at bus 21, in which

Curve 2 shows the case where the capacitor is switched in the system at t = 1.5 second,

while Curve 3 that at t = 2.5 second. Although the capacitor is switched in very quickly, it

still can not halt the voltage deterioration and collapse in both cases. Curve 2 and Curve 3

also show that the sooner the capacitor is switched in, the better the compensation will

present. This is because the reactive power supplied by a capacitor depends on the voltage

level, as shown in Figure 4.26. Since the voltage drops quickly in transient conditions,

the fixed capacitor compensation is not effective due to the switch time delay.

0
-

c-)

CJD

0

Figure 4.26: VAR Compensation

2 2.5 3

Time (sec)

of Fixed C Switched in Different Time
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Curve 4 and Curve 5 in Figure 4.25 show the cases where the fixed capacitor at bus

21 is replaced by SVC’s. The results demonstrate that system voltage can be effectively

stabilized by an SVC of sufficient capacity (Curve 4), but not so for the system with an

SVC of limited capacity (Curve 5). In the latter case, the SVC cannot supply enough

reactive power compensation because it has reached its limit, and behaves like a fixed

capacitor thereafter. As shown by Curve 5, the bus voltage has been controlled at a fairly

high level for about 4 seconds, but ultimately collapses.

Figure 4.27 further shows the reactive power compensations of both SVC’s. It clearly

shows that an SVC can provide reactive power very quickly upon voltage drops, but an

SVC must have sufficient capacity in order to stabilize a system voltage.

0.35

0.3

Cl 0.25

0.2

?‘J)

0J

________

SVC with larger capacity

0.05 — — — — SVC with limited capacity

-0.05
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Figure 4.27: VAR Compensation of SVC’s with Different Capacities

Case Study 8: VAR Compensation and Slow System Dynamics

In case study 7, system VAR compensation in fast transient system condition is

investigated. This case study will show the effects of VAR compensations for a system
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condition in slow system dynamics. For this, all system loads are modeled as persistent

PQ loads with a time constant of 10 seconds. The induction motor load in case study 7

is replaced by a persistent PQ load with the same initial loading. VAR compensations

are considered again at bus 1. The system disturbance is simulated by a loss of line

between buses 14 and 21 at t = 5 second.

Time (sec)

Figure 4.28: Effects of VAR Compensation of

Figure 4.28 shows the voltage responses at, bus 21. Upon the system disturbance,

the voltage drops suddenly, and then declines monotonically as the load recovers. If

there is no additional VAR compensation available at bus 21, the voltage will ultimately

collapse as shown by Curve 1. Comparatively, Curve 2 shows the case where an effective

SVC is available at bus 21. The voltage recovers very quickly in about 10 seconds and

remains stable at its normal value. The other two dash—line curves, Curve 3 and Curve

4, show the situations where a fixed capacitor at bus 21 is switched in at 10 seconds

and 20 seconds respectively after the disturbance. The voltage is stably controlled for

both cases. However, there will be more than required reactive power compensation to
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C

0.88

0.86

0.84

0 10 20 30 40 50 60 70 80 90 100
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the system along with the voltage recovery. As a result, the voltage will have a value

higher than its pre—disturbance value, and some of capacitor compensations may have

to be switched out of the system. This can be very critical when a system has major

load with negative reactive power—voltage characteristics, that is, the load demands more

reactive power when its terminal voltage goes down. There is no such problem with SVC

compensation, since the reactive power supply is controlled according to the voltage

deviations. When voltage is higher than its specified value, VAR compensation of SVC

will decrease accordingly. The different VAR compensations are shown in Figure 4.29.

E

4

For a heavily loaded power system, an effective reactive power compensation is cru

cial to system voltage stability since system disturbances changes the power flow in the

transmission network, which may cause an extra reactive power loss and a lower system

voltage. Depending on the system controls and load characteristics, the system may

involve fast transients and/or slow dynamics. For system involving fast transients, the

system voltage may drop quickly. In such a case, fixed capacitor compensations are not
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effective and SVC’s with sufficient capacities should be used. For the system involving

slow dynamics, the fixed capacitor compensation can be used to sllpport system voltage,

but it may cause the voltage to overshoot its normal value because of its positive feed

back control characteristics. Therefore, only SVC’s with ample capacities can effectively

stabilize the voltage of a power system.

4.4.3 Effect of Generator Rotor Overheat Protection

Generators are equipped with rotor overheat protection to prevent the field willding from

overheating. The current in the field winding is determined by the winding resistance

and the excitation voltage which is controlled by the generator excitation system. When

system disturbances cause an extra system reactive power loss, the generator termi

nal voltages will decrease. To maintain normal terminal voltages, generator excitation

voltages must be automatically increased, which will result in larger currents in rotor

windings. When the accumulated heat is over the permissive limit, overheat protections

will reduce the excitation voltage to a lower level or even trip the generator off the system.

Since this protection limits the generator reactive power output or even trips off the gen

erator, it will have a significant impact on the voltage stability of the entire power system.

Case Study 9: Effect of Rotor Overheat Protection

In this case study, the effect of generator rotor overheat protection (ROP) on system

voltage stability is investigated. The ROP is usually realized by the generator excitation

reduction to its continuous operating limit or the second limit (see in Figure 2.4) when

the generator has been operated at a higher excitation level over a prescribed period of

time.

In case study 4, the effects of persistent loads on system voltage stability are discussed
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without considering the generator ROP. The attempt of persistent PQ loads to recover

loads to the pre—disturbance level by increasing their equivalent admittances pushes the

system over the post—disturbance loading limit of bus 21, which results in a voltage

collapse at that bus as shown in Figure 4.13.

In this case study, all system loads are again modeled as persistent PQ loads with

recovery time delay of 10 seconds, the same as in case study 4, but the effect of generator

ROP on system voltage stability is considered. The pre—disturbance loading at bus 21

in case study 4 is adjusted from 2.48 + jl.40 to 2.40 + jl.36. The system disturbance

remains unchanged, and is again simulated by a loss of line between buses IA and 21,

which occurs at t = 5 second.
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Figure 4.30: Some Generator Excitation Voltages (without Generator ROP’s)

Two different cases are examined. In the first case, no generator ROP’s are included.
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Generators could operate continuously at higher excitations, as shown in Figure 4.30

where excitation voltages of generators at buses 3, 6, 7, and 8 are recorded. This means

that the generators could have the ability to maintain their terminal voltages so that

large reactive power could be supplied to the system. As a result, the system load bus

voltages remain stable at a fairly higher values as shown in Figure 4.31.

1.2

I

__________________________________________________________________________

0.8

_ _

0.6 load bus #21

0
0 100 200 300 400 500 600 700 800 900 1000

Time (sec)

Figure 4.31: System Load Bus Voltages (without Generator ROP’s)

In the second case, the continuous operating limit, or the second limit, of excitation

voltage for each generator is assumed to be 10 percent over the corresponding pre—

disturbance level. If a generator has been operated continuously at a higher excitation

than its second limit over 100 seconds, the rotor overheat protection will cramp the

generator excitation to this limit.

Simulations show that after system transients, the excitation voltage of the generator

at bus 6 exceeds its second limit at t 142 second and is cramped at t = 242 second

since it has operated continuously at the higher excitation over 100 seconds.
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Figure 4.32: Generator Excitation and Terminal Voltages (with ROP’s)

As a result, this generator loses its voltage control ability and its terminal voltage

begins to decline as shown in Figure 4.32a. Immediately after the excitation reduction
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of the generator at bus 6, the reactive power burden is transferred to other generators.

As shown in Figure 4.32b and Figure 4.32c, generators at buses 3 and 7 increase their

excitation rapidly to pick up the system reactive power load.

Consequently, the excitation voltage of generator at bus 3 remains over its second

limit from t 457 second and then is reduced to the second limit after 100 seconds.

The loss of reactive power control of generator at bus 3 aggravates the system voltage

deterioration. This causes the generator at bus 7 to increase its excitation more quickly.

At t = 576 second, the excitation voltage exceeds its second limit and is cramped at

= 676 second. The loss of voltage controls of generator at bus 7 causes large voltage

drops at system load buses as shown in Figure 4.33. Although other generators attempt

to increase excitations to supply more reactive power, the rapid voltage collapse initiates

a system transient instability with generators tripped off consecutively due to their losses

of synchronism.
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This case study shows the important effect of generator rotor overheat protection on
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system voltage stability. Under heavy system loading conditions, generators are usually

operated at high excitation levels in order to maintain a normal system voltage profile.

When a system disturbance causes a further system reactive power loss due to the in

creased the electrical distance between generators and loads, some generators may be

operated with overexcitation, such as generator at bus 6 in this case study. Once the

excitation of the overexcited generator is reduced by its rotor overheat protection, some

of its reactive power supply must be transferred to other machines which may be again

successively protected, such as generators at buses 3 and 7. The successive losses of

voltage control at generator buses will then aggravate the system reactive power short

age. System voltage may therefore collapse if there are no other reactive power controls

available to the system. This study also suggests that for a heavily loaded system, local

load reactive power compensation should be effectively used for system voltage control

rather than heavily counting on the reactive power supply from remote generators.

4.5 Maximum Loading Limit by Load Flow and Simulation

In previous sections, various effects of loads and controls on voltage stability are exam

ined. Due to the system disturbances, the system operation may approach its critical

state dynamically, which is affected by load and control characteristics. Since the system

critical state is usually characterized by the system MLL which is crucial to voltage sta

bility analysis and control, methods based on the traditional load flow analysis and the

dynamic simulation as proposed in this thesis are compared in this section.

Case Study 10: System Loading Limit with Persistent PQ loads

In this case study, all system loads are modeled as constant PQ loads for load flow

study except that a variable admittance load with initial loading of P+jQ = 2.48 +jl.40
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is assumed for bus 21. Persistent PQ loads with the same time constant of 10 seconds

are used for the simulation study. The initial and final system loading conditions, and

load power factors are the same for both studies. A loss of the line between buses 14 and

21 is assumed as the system disturbance.

Load flow studies are made for both normal and post—disturbance system conditions

by increasing load admittance at bus 21. The system loading limits of bus 21 are observed

as P + jQ = 5.77 + j3.26 for the normal system condition, and P + jQ = 2.94 + jl.67

for the post—disturbance system condition. For the simulation study, the disturbance

is applied to the system at 1 5 second, and the simulation lasts 1000 seconds. P—V

curves of bus 21 of both load flow and simulation studies are shown in Figure 4.34.
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Figure 4.34: P—V Curves of Load Bus 21

Figure 4.34 shows the results of P—V curves of various studies: Curve 1 from load flow

for the normal system conditioll, Curve 2 also from load flow but for the post—disturbance

system condition, and Curve 3 from simulation for the system being disturbed. From

load flow studies, although the disturbance greatly reduces the loadability of load bus 21,
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the system loading still lies within its limit, which leads to a conclusion that the post—

disturbance system voltage remains stable. However, for the system being disturbed,

Curve 3 of Figure 4.34 shows that the system loading limit is less than the load demand,

and the system voltage at bus 21 collapses. This concludes that load flow study usually

gives the upper bound of a system maximum loading limit.

Case Study 11: System Loading Limit with An Induction Motor Load

The system loading conditions of this case study are the same as those of case study

10 except that the load at bus 21 is replaced by an induction motor load. The initial load

torque TL for both load flow and simulation studies is 2.0. Load flow study is carried out

to find the system loading limit by increasing the motor load torque until the load flow

solution disappears, and the result is shown as Curve 1 of Figures 4.36 and 4.37. The

results show that the system reaches its loading limit at a motor load torque TL 2.47

(Pm = 2.56) at which the load flow diverges.

I__
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Figure 4.35: Motor Load Torque Changes in Simulation Study
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For simulation study, it is further assumed that the motor load torque has a step

change of 0.23 at t = 5 second, and then a gradual increase of 0.02/sec until it reaches

TL = 2.6 at t 23 second as shown in Figure 4.35. The F—V and Q—V curves are shown
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in the Figure 4.36 and Figure 4.37, respectively, as Curves 2, 3, and 4.

The results show that the voltage control due to the transformer tap changing at

motor load bus can increase the system loading limit, but is also affected by the time

delay of the tap changing. The simulations show that the motor load torque of TL = 2.6 is

still within system loading limit if the time delay of tap changing is less than 10 seconds.

Due to the slow recovery of system persistent PQ load and the slow increase in motor

load torque after the step change, there is enough time for the transformer tap changer

to respond before the voltage collapses.

1.049

Curve 2 of Figure 4.36 and Figure 4.37 shows the case that the tap changing time delay

is 10 seconds. The tap changes at t = 15.77 second and t = 25.77 second raise the motor

terminal voltage, and extend the motor bus loading limit. After the second tap change,

the motor developed torque becomes larger than the load torque of TL = 2.6. The motor

slip begins to decrease, and hence the reactive power drops accordingly. Although the

final generator voltages shown in Figure 4.38 are below their normal levels, the motor

50 50
Time (sec) Time (sec)

Figure 4.38: Some Generator Bus Voltages
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0

remains stable at the normal voltage with the load torque of 2.6 and other bus loads

totally recovered as shown in Figure 4.39.
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Figure 4.39: Some System Bus Loads

Curve 3 of Figure 4.36 and Figure 4.37 shows the case that the time delay of tap

changing is set to 15 seconds. The tap changer responses at t 20.77, which increases

the system loading limit. But this limit is again exceeded at t 21 second due to system

load recovery. As a result, the motor power begins to decrease, while its reactive power

increases despite voltage drop. Finally, before the second tap change could occur at

I 35.77 second, the system has lost voltage stability at motor terminal bus at I = 30.7

second. After that, both motor power and reactive power drops along with the voltage

collapse. For comparison, the case where no tap changer is considered is also presented

by Curve 4 of Figure 4.36 and Figure 4.37.
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This case study demollstrates that although the system loading limit in steady state

can be determined from load flow related static methods, the loading limit for system

being disturbed must be evaluated by detailed system simulations. Moreover, the voltage

control effect of transformer tap changing, if fast enough, can effectively increase the MLL

of a system being disturbed to the extent even larger than the MLL of steady state from

load flow.
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Chapter 5

CONCLUSIONS AND REMARKS

5.1 Conclusions of the Thesis

This thesis project is mainly concentrated on the analysis of voltage stability of a power

system through time domain simulation techniques. Better understandings of system

voltage instability phenomenon are gained through close examinations of the effects of

load and control components on system voltage stability.

A 21 bus sample power system is chosen for the simulation studies. Steam and

hydro—electric generating units, various types of loads, and many reactive power control

devices are modeled with emphasis on the dynamic behaviors of system loads and reactive

power related components. System critical buses are defined and identified from voltage—

reactive power sensitivity analysis for the voltage stability study.

A comprehensive time domain simulation program is developed based on the implicit

Trapezoidal integration rule and the step doubling integration step size control algorithm.

A new variable elimination method is devised for some dynamic load to include the re

lated nonlinearities in load flow iterations so that the variable extension and convergence

problems can be avoided. A new two—step procedure is also developed for efficient and

systematic solution of high order system Jacobian matrix equations.

The effects of various types of loads and reactive power controls on the voltage stability

are thoroughly examined through designed case studies so that the dynamic voltage

behavior of a power system in various operating conditions can be clearly demonstrated
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and clarified.

From case stndies in this thesis, the conclusions are drawn as follows.

1. Voltage instability of a dynamic power system is a very complicated phenomenon.

It may involve a fast transient voltage instability and/or a slow voltage decline fol

lowed by a sudden collapse, depending on the system operating conditions, system

load and control dynamics, and types, locations, and seventies of system distur

bances.

2. Induction motor loads, which constitute the major part of industrial loads, may

have great influences on system voltage stability due to its more or less constant

power and negative Q—V characteristics which means that the motor will draw

•more reactive power when its terminal voltage decreases.

When a system voltage drops, which causes a reduction of motor developed

torque, the motor will pick up the load very quickly by increasing its slip. More

current will be drawn from the system, which causes further voltage decrease. De

pending on the magnitude of a disturbance, this interaction between the motor and

the supply system may experience either a slow system dynamics which drives the

motor towards its critical state for a long time before it starts stalling, or a fast

system transients which upsets the motor’s stable operation so quickly and causes

the motor stalling in a few seconds. During the motor stalling, the reactive power

demand increases very quickly, which causes the system voltage collapse.

Unlike system angle instability which is caused by the generator power imbal

ance, the voltage instability caused by the loss of motor stable operation can not

be judged by the power imbalance alone. It also involves the reactive power equi

librium of the system. This means that the loss of motor power due to the motor
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stalling does not necessarily result in a voltage instability since the motor terminal

voltage can be controlled before the motor Q—V characteristics becomes positive.

3. When a disturbance causes system voltage drop, a constant impedance load will

draw less power and reactive power from the supply system than that of a constant

power load, which has a favored damping effect to halt the further voltage decline.

This damping effect is crucial to system voltage stability when there are induction

motors operating near their critical state. Constant power load, which is not voltage

sensitive, is therefore a stiff system load. This load characteristics is harmful to

system voltage stability because it will draw the same power and reactive power

from the supply system despite voltage decline.

Although a voltage dependent load has a favored effect on system voltage sta

bility, it has different impacts on system angle stability. On the one hand, when

a disturbance causes a system power supply shortage, such as loss of a generator,

voltage sensitive loads will draw less power due to voltage decrease. This load

reduction is helpful to balance system power so as to stabilize the generator oper

ation. On the other hand, when a disturbance causes system voltage collapse due

to, for example, the loss of a motor stable operation, the rapid decrease of loads

due to voltage collapse may upset the system power balance causing a transient

system angle instability.

4. A persistent PQ load may demand constant power and reactive power but involv

ing a time delayed recovery. The attempt to maintain pre—disturbance load level

by increasing load equivalent admittance despite voltage decline may cause some

particular system load bus exceeding its post—disturbance loading limit, causing

voltage instability at that bus.

If the post—disturbance system operating condition is such that the voltage
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collapsed bus has a relatively short electrical distance with other system buses, the

loss of voltage control at that particular bus may spread out to the other parts of

the system causing a complete system voltage collapse. On the other hand, if the

voltage collapsed bus is far away electrically from the rest of the system, it may

has little impact on the other bus voltages, and then the rest part of the system

may have a chance to maintain both voltage and angle stability.

5. A transformer tap changing may have either beneficial or detrimental effect on

system voltage stability depending on its location and load characteristics. Its

effect is crucial when a system operates near its critical state.

The effect of tap changing at step—up transformer of a generator is always

beneficial to system voltage stability since it raises the transmission voltage, and

hence reduces the network current and the corresponding reactive power loss.

The tap changing of distribution transformer at a system load bus has different

effects on system voltage stability depending on load characteristics. For a load with

positive Q—V characteristics, such as an exponential form PQ load with positive

exponents, tap changing which raises the load side voltage, will result in more

reactive power drawn from the system causing system side voltage to decline further.

This may push the system over its loading limit causing a possible voltage collapse

if the system has operated near its critical state. On the other hand, for a load

with negative Q—V characteristics, such as an induction motor load, the voltage

increase by changing the transformer tap will reduce the reactive power drawn from

the system so as to stabilize the system side voltage.

6. Effective system VAR control and adequate compensation is very important to

maintain system voltage stability. The effectiveness of a VAR compensation de

pends on the types and locations of VAR devices, the system operating conditions,
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the VAR control speed, and the VAR capacities.

Since the VAR compensation with a fixed capacitor are directly proportional to

the square of the bus voltage regardless of load demands, it may not be effective

in most system situations involving fast voltage drop. This also suggests that a

heavy fixed capacitor compensated system may be vulnerable to voltage instability.

For a system operating condition involving slow voltage decline, fixed capacitors

compensation can be used to support system voltage, but some of the capacitors

should be switched out of the system to avoid over—compensation when system

voltage is back to normal. This is especially crucial when the bus load has a

negative Q—V characteristic.

The VAR compensation with an SVC of sufficient capacity is very effective to

stabilize the voltage of a power system. It is effective in both fast transient and

slow dynamic operating conditions due to the fast response of the negative feedback

control. However, there is a dynamic interaction between an SVC voltage control

and a generator excitation control, which may cause a system oscillation. This

observation suggests that the SVC voltage control must be coordinated with the

power system stabilizer(P S S) design.

7. In a heavily loaded system, a generator rotor overheat protection may limit its rotor

winding current by cramping the excitation voltage. As a result, it will reduce

the reactive power supply to the system, and that reactive power burden must

be transferred to other generators which could be also protected. The successive

losses of voltage controls at generator buses will aggravate system reactive power

shortage, which may cause a possible system voltage collapse. This also suggests

that an effective system wide VAR compensation should be effectively designed,

and a heavy dependence of reactive power supply from remote generators could

109



result in voltage instability due to the possible generator rotor overheat protection.

8. Case studies in this thesis demonstrate the importance of dynamic effects of sys

tem loads and control devices on system voltage stability. Although the MLL

determined by load flow for power system in steady state is generally larger than

the MLL determined by simulation for a system being disturbed, the voltage con

trol effect of transformer tap changing, if fast enough, can increase the MLL of an

induction motor load even larger than that determined from load flow.

5.2 Future Research Work

The following aspects are suggested for future research work.

1. Although the effects of individual system typical loads on system voltage stability

are closely examined with a sample power system, the real system bus load is far

more complicated. It may be a combination of these typical loads or more, which

requires further investigation. The study may involve more detailed modeling of bus

load, estimation of some other unknown loads, and identification of load parameters.

2. Since all reactive power components of a power system, generation, consumption,

control, and constraints, are important to voltage stability, the coordinations of the

functions of these components, both locally and system wide, are necessary for a

power system to maintain voltage stability. More research work shall be done in

this regard.

3. It is realized that the voltage stability of a power system can not be improved by

voltage oriented control alone without coordination of the angle stability control.

Therefore, both voltage stabilizer and angle stabilizer must be designed together.

This suggests another important research project in the future.

110



Bibliography

[1] IEEE Publication 90TH0358—2--PWR, “Voltage stability of power systems: con
cepts, analytical tools, and industry experience,” IEEE Service Center, New Jersey,
1990.

[2] B.M. Weedy and B.R. Cox, “Voltage stability of radial power links,” TEE Proceed
ings, Vol. 115, No. 4, pp.528—536, April, 1968.

[3] R.K. Gupta, Z.A. Alaywan, R.B. Stuart and T.A. Reece, “Steady state voltage ill-

stability operations perspective,” IEEE/PES Winter Meeting, 90 WM 037—2 PWRS,
Atlanta, February 4—8, 1990.

[4] A. Cheimanoff and C. Curroyer, “The power failure of December 19, 1978,” Revue
Generale de 1’ electricite, Vol.89, pp.280—320, April, 1980.

[5] F. Bourgin, G. Testud, B. Heilbronn and J. Verseille, “Present practices and trends
on the French power system to prevent voltage collapse,” IEEE/PES Summer Meet
ing, 92 SM 394—7 PWRS, Seatte, July 12—16, 1992.

[6] K. Takahashi and Y. Nomura, “The power failure on July 23, 1987 in Tokyo,” Report
to CIGRE Study Committee 37, Montreal, September 22—25, 1987.

[7] A.J. Calvaer and Van Geert, “Quasi steady state synchronous machine linearization
around an operating point and application,” IEEE Transactions on Power Apparatus
and System, Vol. PAS—103, No. 6, pp. 1466—1479, June, 1984.

[8] V.A. Venikov, V.A. Stroev, V.1. Idelchick and V.1. Tarasov, “Estimation of electric
power steady—state stability in load flow calculations,” IEEE Transactions on Power
System Apparatus and System, Vol. PAS—94, No. 3, May/June, 1975.

[9] Y. Tamura, H. Mon and S. Iwamoto, “Relationship between voltage instability and
multiple load flow solutions in electric power systems,” IEEE Transactions on Power
Apparatus and Systems, Vol. PAS—102, No. 5, May, 1983.

[10] H.G. Kwatny, A.K. Pasrija and L.Y. Bahar, “Static bifurcations in electric power
networks: loss of steady—state stability and voltage collapse,” IEEE Transactions on
Circuits and Systems, Vol. CAS—33, No. 10, October, 1986.

111



[11] N. Flatabo, O.B. Fosso, R. Ognedal, T. Carisen and K.R. Heggland, “A method
for calculation of margins to voltage instability applied on the Norwegian system
for maintaining required security level,” IEEE/PES Summer Meeting, 92 SM 395—5
PWRS, Seatte, July 12—16, 1992.

[12] T. Van Cutsem, “A method to compute reactive power margins with respect to volt
age collapse,” IEEE/PES Winter Meeting, 90 WM 097—6 PWRS, Atlanta, February
4—8, 1990.

[13] C.W. Taylor, “Voltage stability analysis with emphasis on load characteristics and
undervoltage load shedding,” Panel Session on Load Modeling Impact on System
Dynamic Performance, IEEE/PES Summer Meeting, Long Beach, July 10, 1988.

[14] M.M. Begovic and A.G. Phadke, “Control of voltage stability using sensitivity anal
ysis,” IEEE/PES Winder Meeting, 91 WM 231—1 PWRS, New York, February 3—7,
1991.

[15] R.A. Schlueter, I. Hu, M.W. Chang, J.C. Lo and A. Costi, “Methods for determining
proximity to voltage collapse,” IEEE/PES Winter Meeting, 90 WM 096—8 PWRS,
Atlanta, February 4—8, 1990.

[16] P.W. Sauer and M.A. Pai, “Power system steady—state stability and the load—flow
Jacobian,” IEEE Transections on Power Systems, Vol. 5, No. 4, November, 1990.

[17] S. Abe, Y. Fukunaga, A. Isono, and B. Knodo, “Power system voltage stability,”
IEEE Transactions on Power Apparatus and Systems, Vol. PAS—lOl, No. 10, pp.
3830—3840, October, 1982.

[18] C. Concordia and S. Ihara, “Load representation in power system stability studies,”
IEEE Transactions on Power Apparatus and Systems, Vol. PAS—lOl, No. 4, pp.
969—977, April, 1982.

[19] IEEE Task Force on Load Representation for Dynamic Performance, “Load repre
sentation for dynamic performance analysis,” IEEE/PES Winter Meeting, 92 WM
126—3 PWRD, New York, January 26—30, 1992W

[20] E. Vahedi, M.A. El-Kady, J.A. Libaque-Esaine and V.F. Carvalho, “Load models
for large—scale stability studies from end—user consumption,” IEEE Transactions on
Power Systems, Vol. PWRS—2, No. 4, pp. 864—872, November, 1987.

[21] E. Vaahedi,, H.M.Z. El-Din and W.W. Price, “Dynamic load modeling in large scale
stability studies,” IEEE Transactions on Power Systems, Vol. 3, No. 3, pp. 1039—
1045, August, 1988.

112



[22] A.E. Hammad and M.Z. El-Sadek, “Prevention of transient voltage instability due to
induction motor loads by static VAR compensations,” IEEE Transactions on Power
Systems, Vol. 4, No. 3, pp. 1182—1190, August, 1989.

[23] M.H. Ment, W.R. Schmus, F.A. McCrackin and L.M. Wheeler, “Dynamic modeling
of loads in stability studies,” IEEE Transactions on Power Apparatus and Systems,
Vol. PAS—88, No. 5, pp. 756—763, May, 1969.

[24] IEEE Computer Analysis of Power Systems Working Group, “System load dynam
ics simulation effects and determination of load constants,”, IEEE Transactions on
Power Apparatus and Systems, Vol. PAS—92, No. 2, pp. 600—609, March/April, 1973.

[25] D.J. Hill, “Nonlinear dynamic load models with recovery for voltage stability stud
ies,” IEEE/PES Winter Meeting, 92 WM 102-4 PWRS, New York, January 26—30,
1992.

[26] C.P. Arnold, K.S. Turner and J. Arrillaga, “Modeling rectifier loads for a multi—
machine transient—stability program,” IEEE Transactions on Power Apparatus and
Systems, Vol. PAS—99, No. 1, pp. 78—85, January/February, 1980.

[27] T. Smed, G. Andersson, G.B. Sheble and L.L. Grigsby, “A new approach to AC/DC
power flow,” IEEE/PES Summer Meeting, 90 SM 399-6 PWRS, Minneapolis, July
15-19, 1990.

[28] T.J. Hammons and D.J. Winning, “Comparisons of synchronous machine models
in the study of the transient behavior of electric power systems,” TEE Proceedings,
Vol. 118, No. 10, pp.1442—1458, October, 1971.

[29] IEEE Committee Report, “Computer representation of excitation Systems,” IEEE
Transactions on Power Apparatus and Systems, Vol. PAS—87, No. 6, pp. 1460—1468,
June, 1968.

[30] L.M. Hovey and L. A. Bateman, “Speed regulation tests on hydro station supplying
an isolated load,” IEEE Transactions on Power Apparatus and Systems, pp.36’1—37l,
October, 1962.

[31] IEEE Committee Report, “Dynamic models for steam and hydro turbines in power
system studies,” IEEE/PES Winter Meeting, T 73 089—0, New York, January 28—
February 2, 1973.

[32] Y.N. Yu, “Electric power system dynamics,” Academic Press, New York, 1983.

[33] C.C. Liu and F.F. Wu, “Steady state voltage stability region of power systems,”
Proceedings of the Conference on Decision and Control, pp. 488—493, December,
1984.

113



[34] J. Medanic, M. Ilic-Spong and J. Christensen, “Discrete Models of slow voltage dy
namics for under-load tap-changing transformer coordination,” IEEE Transactions
on Power Systems, pp. 873—882, November, 1987.

[35] Y.Y. Hsu and C.J. Wu, “Adaptive control of a synchronous machine using the auto—
searching method”, IEEE Transactions on Power System, Vol. 3, No. 4, pp.1434-
1439, November, 1988.

[36] IEEE Publication 87TH0187—5—PWR, “Application of static VAR systems for sys
tem dynamic performance,” IEEE Publishing Service, New York, 1987.

[37] G.K. Morison, B. Gao and P. Kundur, “Voltage stability analysis using static and
dynamic approaches,” IEEE/PES Summer Meeting, 92 SM 590—0 PWRS, Seatte,
July 12—16, 1992.

[38] J. Arillaga, C.P. Arnold and B.J. Harker, “Computer modeling of electrical power
systems,” John Wiley & Sons, 1983.

[39] Q.H. Li, “Stabilizer design of dynamic stability control of multimachine power sys
tems,” Ph.D Dissertation, Department of Electrical Engineering, The University of
British Columbia, December, 1991.

[40] Energy Technology Applications Division, “Power system dynamic analysis — phase
1,” EPRI EL—484, Research Project 670—1, July, 1977.

[41] L. Shampine and M. Gordon, “Computer solution of ordinary differential equations,”
W. H. Freeman and Co., San Francisco, 1975.

[42] K.E. Atkinson, “An introduction to numerical analysis,” John Wiley & Sons, New
York, 1978.

[43] C.W. Gear, “Numerical initial value problems in ordinary differential equations,”
Englewood Cliffs, N.J., Prentice—Hall, 1971.

[44] Y.N. YU and Q.H. Li, “Pole—placement power system stabilizer design of an unstable
nine—machine system,” IEEE Transactions on Power System, Vol. 5, No. 2, pp.353-
357, 1990.

[45] P.C. Krause, “Method of multiple reference frames applied to the analysis of symmet
rical induction machinery,” IEEE Transactions on Power Apparatus and Systems,
Vol. PAS—87, No. 1, pp.218-227,1968.

[46] J. Goossens, “Reactive power and system operation incipient risk of generator
constraints and voltage collapse,” 1989 IFAC Symposium on Power System and
Power Plant Control, pp.3-12, 1989.

114



[47] W.R. Lachs, “Dynamic study of an extreme system reactive power deficit,” IEEE
Transactions on Power Apparatus and System, Vol. PAS—104, No. 9, pp.2420-2426,
September, 1985.

[48] G.A. Jones, “The effects of system voltage reductions on various static load mod
els,” IEEE/PES Summer Meeting and Energy Resource Conference, C 74 349—7,
Anaheim, July 14—19, 1974.

[49] U.K. Clark, “Experience with load models in the simulation of dynamic phenom
ena,” Panel discussion: Load Modeling Impact on System Dynamic Performance,
IEEE/PES Summer Meeting, Long Beach, July 10, 1989.

[50] C. Rajagopalan, B. Lesieutre, P.W. Sauer and M.A. Pai, “Dynamic aspects of volt
age/power characteristics,” IEEE/PES Summer Meeting, 91 SM 419-2 PWRS, San
Diego, July 28 — August 1, 1991.

[51] Y. Sekine and H. Ohtsuki, “Cascaded voltage collapse,” IEEE/PES Summer Meet
ing, 89 SM 710-5 PWRS, Long Beach, July 9—14, 1989.

[52] Y.N. Yu and W.J. Zhang, “Nature of induction motor load and voltage stability,”
International Conference on Power System Technology, Vol. 1, pp.353-3S’l, 1990.

[53] Y.N. Yu and W.J. Zhang, “Computer simulation study of voltage stability of a power
system,” 1993 Canadian Conference on Electrical and Computer Engineering, Vol.
2, pp.927-932, 1993.

[54] M.K. Pal, “Voltage stability conditions considering load characteristics,” IEEE/PES
Summer Meeting, 91 SM 490-3 PWRS, San Diego, July 28 — August 1, 1991.

[55] C.W. Taylor, “Concepts of undervoltage load shedding for voltage stability,”
IEEE/PES Winter Meeting, 91 WM 162-8 PWRD, New York, February 3—7, 1991.

[56] A.R. Mahran, B.W. Hogg and M.L. El-Sayed, “Co-ordinated control of synchronous
generator excitation and static VAR compensator,” IEEE/PES Winter Meeting, 92
WM 019-0 EC, New York, January 26—30, 1992.

[57] l.A. Hiskens and C.B. Mclean, “SVC behavior under voltage collapse conditions,”
IEEE/PES Summer Meeting, 91 SM 489-5 PWRS, San diego, July 28 — August 1,
1991.

[58] B. Gao, G.K. Morison and P. Kundur, “Voltage stability evaluation using model
analysis,” IEEE/PES Summer Meeting, 91 SM 420-0 PWRS, San diego, July 28 —

August 1, 1991.

115



[59] J. Deuse and M. Stubbe, “Dynamic simulation of voltage stability,” IEEE/PES
Summer Meeting, 92 SM 396-2 PWRS, Seattle, July 12—16, 1992.

[60] C. Concordia, “Dynamic performance and security of interconnected systems,” IEEE
Power Engineering Review, pp.11-14, March, 1992.

[61] W.R. Lachs and D. Sutanto, “Voltage instability in interconnected power systems:
a simulation approach,” IEEE Transections on Power System, Vol. 7, No. 2, pp.’153-
761, May, 1992.

[62] N. Yorino, H. Sasaki, Y. Masuda, Y. Tamura, M. Kitagawa and A. Oshimo, “An
investigation of voltage instability problems,” IEEE/PES Winter Meeting, 91 WM
202-2 PWRS, New York, February 3—7, 1991.

[63] H.D. Chiang, I. Dobson, R.J. Thomas, J.S. Thorp and L. Fekih-ahmed, “On volt
age collapse in electric power systems,” IEEE 1989 PICA Conference, 89CH2747-4,
pp.34f2-349, Seattle, May 1—5, 1989.

[64] M.M. Begovic and A.G. Phadke, “Dynamic simulation of voltage collapse,” IEEE
1989 PICA Conference, 89CH2747-4, pp.336-341, Seattle, May 1—5, 1989.

[65] W.R. Lachs and D. Sutanto, “Differeilt types of voltage instability,” IEEE/PES
Summer Meeting, 93 SM 518-1 PWRS, Vancouver, July 18—22, 1993.

116



Appendix A

DERIVATION OF STEADY-STATE MOTOR EQUATIONS

In this appendix, the steady-state induction motor power equation (2.5) is derived from

motor equivalent circuit which can be obtained from a L’ model for the motor.

Similar to the Park’s equations for synchronous machines, the voltage equations of a

three phase symmetrical induction motor can be described in a d—q frame of reference

rotating at synchronous speed Wb as

(a) Stator winding voltage equations:

Vds = rsIds—qs+1qs (A.1)

rsIqsds+—ds (A.2)

(b) Rotor winding voltage equations:

Vdr = —(1 wr)qr + ±qr (A.3)

= rrIqr+(l—wr)dr+dr (A.4)

In the foregoing equations, r’s are winding resistances, wr is motor speed, Vd’s and

Va’s are winding voltage d—q components with V = Vqr 0 for the rotor, Id’s and Iq’S

are winding current d—q components, and L”s are corresponding winding flux linkages, in

Webers per second, which have the following relations.

ds = (X13 +Xm)Ids+Xmldr (A.5)

qs = (X18 + Xm) ‘qs + Xm Iqr (A.6)
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= (Xir + Xm) ‘dr + Xm I (A. 7)

qr = (Xir + Xm) Iqr + Xm Iqs (A.8)

where X1. and Xir are respectively the stator and rotor winding leakage reactances, and

Xm is the magnetizing reactance.

For steady state conditions, the winding transients are not included. The correspond

ing steady state voltage equations can then be obtained by dropping the derivative terms

from equations (A.1) — (A.4), which gives

(a) Stator winding voltage equations:

Vd5 r5 Icts
—

/‘qs (A.9)

TIq + ds (A.1O)

(b). Rotor winding voltage equations:

o rrIdr—(1—wr)qr (A.11)

o = rrIqr+(1—wr)bdr (A.12)

The steady state equations of an induction motor can also be expressed in phasors.

For this, substitute equations (A.5) — (A.8) into equations (A.9) — (A.12), and define

motor slip s = 1
— wr, terminal voltage V = Vds + j stator current I I +

and rotor current ‘r = ‘dr + ‘qr which, through some manipulations, gives

V = (rs+Xis)Is+jXm(Is+Ir) (A.13)

o = (+Xir)Ir+jXm(Is+Ir) (A.14)

Equations (A.13) and (A.14) lead to the well—known equivalent circuit of an induction

motor as shown in Figure A.1.

Defining Z = r5 + jX18, Zr rr + j Xir, Zm j Xm, Ra iEi r, and Za =

Zr + Ra = + j Xir, the impedance Z as seen from the motor terminal becomes
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Z=Zs+ZmHZa (A.15)

where the symbol “ “ means “parallel with.”

rs Xis rr Xir

A
Is

1-s
rr

S

Figure A.1: Equivalent Circuit of An Induction Motor

The voltages Vm across XM, and Va across as shown in Figure A.1 can be

expressed as

Vm = (ZmHZa) (A.16)

VaRa (A.17)

Substituting equation (A.16) into (A.17) gives

VamV (A.18)

The torque and power equation (2.5) can be derived as follows.

(a) Air gap power FE

FE = Re[Va1]

= Re[Va (Va/Ra)*]
(A 19)

= Re{Va2/Ra]

V 2/j
— a /1La
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(b) Motor developed torque TE

TE
=

(A.20)

(c) Power drawn by the motor Fm

Pm = Re[VI]

= Re[V (V/Z)*] (A.21)

= V2/Re[Z*]

(d) Reactive power drawn by the motor Qm

Qm = Im[VI]

= Im[V(V/Z)*] (A.22)

= V2/Im[Z*]

The above equations can be expanded and re—organized in such a way that the motor

torque and powers can be expressed explicitly in terms of motor slip .s, the terminal

voltage V, and the motor parameters p with p = {r8, rr, Xis, Xir, Xm}.

Let

a1 = rsrr

a2 = X15 X1,. + Xis Xm + Xir Xm

a3 = rr(Xis+Xm)

a4 = rs(Xir+Xm)

a5 = rrX

= rs(Xjr+Xm)2

= rrX2M

= r5r
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Cl = (Xir+Xm)ai

C2
— ra3

d1 = a+a

d2 = 2rsrrX2m

d3 = a+a

the motor torque and power can then be expressed as follows.

a5 s
TE = V2 = fE(s,p)V2 (A.23)
d1s2H-d2.s+d3

b1s2 + b2s + b3
V2 = fp(s,p)V2 (A.24)Fm

dis2+d2s+d3

Q
— c1s2 +c2 2

= fQ(s,p)V2 (A.25)
d1s2 + d2s + d3

Equations (A.24) and (A.25) show variable impedance characteristics of an induction

motor in steady state operating conditions. The power and reactive power of an induction

motor depend on both terminal voltage V and motor slip s.
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