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Abstract 

The double-revolving field model is used to determine theoretically efficiency-

optimal operating conditions for single-phase induction motors equipped with an 

auxiliary winding. The algorithm developed determines the optimal values of main 

winding current, auxiliary winding current and stator frequency for any desired 

combination of torque and rotor speed within the motor's ratings. Computer 

simulations are presented to validate theoretical results and relate optimal terminal 

voltages to computed winding currents. Experimental measurements made on a 

2 pole, 1 hp, 230V submersible motor are compared with computer simulations. 

These measurements reveal that while it is most important to control core losses 

by matching the V/Hz ratio to the load, it is possible to make further efficiency 

improvements by exciting the auxiliary winding. 
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1 Introduction 

Single-phase induction motors are commonly used in many applications. A 

typical home utilizes many fractional horsepower single-phase motors in appli

ances such as refrigerators, washers and dryers to name only a few. Small single-

phase motors are often less expensive to purchase and install than similarly sized 

three-phase motors and so are often used even where three-phase power is read

ily available. In rural areas where three-phase power is not usually available, 

single-phase motors of up to 10 horsepower are in common use. 

In general the efficiencies of small single-phase motors are quite low. In the 

past, motors have been connected directly to the utility line and so have been 

restricted to operation at fixed voltage and frequency. In the past two decades, 

considerable attention has been given to efficiency optimization of line operated 

single-phase induction motors with the most common solution being the placement 

of a capacitor in series with the auxiliary winding^5' An alternative arrange

ment, described by Huang^, is known as the Wanlass connection and places a 

capacitor in series with the main winding. Substantial efficiency improvements 

are reported for both connections and these improvements are primarily attributed 

to equalization of the current densities in the main and auxiliary windings'^. Both 

solutions are limited by the fact that the capacitance required for optimum effi

ciency is strongly load dependent^1. In addition, as will be shown, efficiency is 
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affected by both the magnitude and phase of the auxiliary winding current and 

so a simple capacitor can not provide the maximum possible efficiency dictated 

by motor parameters. 

As the cost of power electronics continues to decrease, variable voltage 

variable frequency drives are finding widespread application. As energy costs 

increase, at some point it may become economical to retrofit existing single-

phase motors with such power converters. Although the greatest increase in 

efficiency would result from applying this technology to both main and auxiliary 

windings, some improvement could be realized by leaving the main winding 

directly connected to the utility line and powering the auxiliary winding from a 

variable voltage power converter. Such a system would operate in much the same 

way as a capacitor run motor with the advantage that both the magnitude and the 

phase of the auxiliary winding current could be independently adjusted depending 

on the load. This approach has been used by Collins^ to effect a variable speed 

drive which is claimed to improve efficiency only indirectly. A variation of the 

approach is proposed by Lettenmaier^ and although reference is made to possible 

efficiency improvements, this author's objective is the minimization of pulsating 

torque. 

If variable frequency drives are ever to be applied to single-phase induction 

motors it will be important to know the optimal operating conditions for the 

motor. Although there are several papers which report efficiency improvements 
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by optimization of the run capacitor^3'5^ and operation at reduced V/Hz ratios^, 

the author was unable to find any analysis which optimizes efficiency over all 

degrees of freedom. The theory developed here assumes a linear model and is 

used to determine the optimal choice of frequency, main and auxiliary winding 

currents and auxiliary winding phase for any desired operating point. A secondary 

result is the optimization of starting torque which will be shown to be a special 

case of efficiency optimization. 

Variable frequency drives are in some instances already used in conjunction 

with single-phase induction motors in remote areas where utility power is not 

available. Here, one of the most common power sources is solar energy provided 

by photo-voltaic arrays. As the cost of these solar panels is typically $5 per 

peak Watt, considerable savings could be realized by optimizing the efficiency of 

the motors they power and so reducing the size of the array required. Starting 

performance is also a consideration in these applications and so a system which 

could also optimize starting torque could provide additional value. 

One example of such an installation is the aeration of remote northern lakes. 

During the winter when these lakes are frozen over they become low in oxygen 

and as a result some species of fish do not survive. To increase the oxygen 

levels it is necessary to provide continuous aeration. To this end, a number of 

installations utilize Air-O-Lator fan type impellers coupled to submersible single-

phase induction motors which are powered by photo-voltaic arrays. One motor 

3 



commonly used in these installations is a Franklin Electric model 2143084416 

which is rated for 1 HP at 3450 RPM. The same motor is used here for 

experimental work so that the results derived in the remainder of this work might 

have immediate practical value. 

What follows is a theoretical analysis of a single-phase induction motor. The 

results of this analysis determine operating conditions which theoretically yield 

the highest possible efficiency. The majority of this analysis is done in closed 

form but, due to the complexity of the problem, the final step of the optimization 

is done numerically. To complete the numerical optimization, a knowledge of 

equivalent circuit parameters is required and these are determined in Appendix A. 

Computer simulations are presented in chapter three to demonstrate that the 

results of the theoretical analysis are correct. Both the theoretical analysis and 

the corresponding computer simulations assume that the magnitude and phase of 

the winding currents can be independently and directly controlled. In practice a 

voltage source is the most cost effective way of supplying power to the windings. 

A second set of computer simulations is therefore presented to illustrate the effects 

of changing the magnitude and phase of the winding voltages. 
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In chapter four experimental results are compared with those predicted by 

theory and in general there is good agreement. Where there are differences, these 

can for the most part be attributed to inadequacies in the model used for the 

analysis. Despite these differences the higher efficiencies predicted by theory are 

shown to be practically realizable. 
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2 Theoretical Analysis0 

2.1 Equivalent Circuit 

Two of the most common models used for steady-state analysis of single-

phase induction motors are the Cross-Field^ 2 ' 1 ] model and the Revolving-

Field10, 1 3 , 9 ' 1 2 ' 1 4 ] model. The Cross-Field model is based on a D-Q axis 

representation of the machine while the Revolving-Field model assumes two 

sinusoidal flux waves rotating in opposite directions. Although both models can 

easily be extended to include an auxiliary winding, the Revolving-Field model 

is somewhat more popular and is therefore used as the basis for this work. A 

paper presented by W.J. Morrill [ 1 0 ] in 1929 is one of the earliest and most 

complete derivations of the theory. His analysis has since been followed by many 

authors^ 3 ' 9 ' 1 2 ' 1 4 1. 

The operation of all rotary induction motors depends on the presence of a 

rotating mmf in the air gap. If there is any differential in speed (slip) between 

the rotor and this flux wave, the rotor bars cut the lines of flux and emf s are 

induced in the rotor. The induced emf s generate currents which flow through 

the rotor impedance. Torque is produced when the flux due to these induced 

rotor currents interacts with the flux due to the stator windings. In multi-phase 

motors the necessary rotating mmf is produced by spatial displacement of the 

stator windings and temporal displacement of the stator currents. 



Figure 1: Revolving Field Equivalent Circuit^13! 

The mmf produced by the main winding of a single-phase induction motor 

is stationary and varies sinusoidally with time. Central to the Revolving-Field 

theory is the fact that such a stationary flux can be resolved into two constant 

amplitude counter-rotating fluxes, each with half the amplitude of the stationary 

flux. Provided the rotor is stationary, the currents induced in the rotor bars 

by these fluxes are equal and opposite and consequently no torque is produced. 

However, if the rotor turns in either direction, the induced emf s are of different 

frequencies. As a result the rotor impedances are different as are the amplitudes 

of the induced currents. 
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The model shown in figure 1 is derived by Cyril G. Veinott in his book 

Theory and Design of Small Induction Motors [ 1 3 ] and except for differences in 

nomenclature is the same as Morrill's model. This model describes a single-

phase induction motor with a main and auxiliary winding assumed to be in space 

quadrature. The parameters used in the model and throughout the rest of this work 

are defined in table 1. All rotor quantities shown are referred to the main winding. 

The apparent rotor impedances to forward and backward rotating mmf s, as 

listed in table 1, are defined by Veinott^13] as: 

R _ xm xm[r2/s] 
2 H / s ] 2 + [xm + Xlf 

x _ Xm fo/s}2 + X2[xm + Xi] 
2 h / s ] 2 + [xm + XXf 

xm xm h / ( 2 - s)] 
b 2 [ r 2 / ( 2 - , ) ] 2 + [ X m + X l } 2 

x _ xm[r2/(2- s)] -rx2[xm + x1] 
b ~ 2 [ r 2/( 2 - s)}2 + [xm + Xl}2 

The left half of the circuit of figure 1 represents the main winding and the 

right half represents the auxiliary winding. The blocks in the horizontal branches 

represent stator impedances including an optional run or start capacitor in series 

with the auxiliary winding. Blocks in the vertical branches model the rotor 

impedance to forward and backward mmf s. These rotor impedances are referred 

to the main winding and so terms which appear in the auxiliary winding branch 

are scaled by a2 to account for the turns ratio. 



a Auxiliary/Main Turns Ratio p.u. 

E j a = a 2 Z j I a 
Backward Auxiliary E M F V 

Backward Main E M F V 

E / a = a 2 Z / I a 
Forward Auxiliary E M F V 

E / m = Z / I m Forward Main E M F V 

I a 
Auxiliary Current A 

Main Current A 

ri Main Stator Resistance ft 

Ho Auxiliary Stator Resistance n 

^ 2 Rotor Resistance ft 

Rotor Slip Frequency p.u. 

v a 
Auxiliary Voltage V 

v Main Voltage V 

X ! Main Stator Leakage Reactance ft 

&la Auxiliary Stator Leakage Reactance ft 

^ 2 Rotor Leakage Reactance ft 

•Km Magnetizing Reactance ft 

Main Stator Impedance ft 

Auxiliary Rotor Impedance ft 

Z& = Rb+jXb Apparent Backward Rotor Impedance ft 

Zc = Rc + jXc Run/Start Capacitor Impedance ft 

Zf= Rf+jXf Apparent Forward Rotor Impedance ft 

<f>= L \ a - Z I m Auxiliary Relative Phase rad 

Rotor Speed rad/s 

Synchronous Frequency rad/s 

Table 1: Equivalent Circuit Symbols 

Voltage sources shown in the vertical branches model transformer action 



between the main and auxiliary windings. To understand the nature of this 

coupling it is important to remember that the main and auxiliary windings 

independently produce both forward and backward rotating mmf s all of which 

have a constant amplitude. To simplify the discussion, consider the forward 

rotating mmf produced by the main winding current. This mmf produces a back 

emf which appears in series with the main winding. Because this back emf is 

proportional to the main winding current it is most conveniently represented as 

an impedance Z / = E / m / I m . 

The same mmf also produces a back emf which appears in series with the 

auxiliary winding and is given by +jaEfm. As in the case of the main winding, 

peak voltages are induced when the rotating mmf is aligned with the axis of the 

winding. Because the auxiliary winding is in electrical space-quadrature with 

respect to the main winding, the peak voltages induced in the auxiliary winding 

precede those induced in the main winding by one quarter cycle. Consequently, 

this emf is modelled as a voltage source proportional to the back emf induced in 

the main winding but phase shifted by one quarter cycle. Because the auxiliary 

winding does not have the same number of turns as does the main winding, the 

magnitude of the emf induced in the auxiliary winding is scaled by the turns ratio. 
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2.2 Performance Calculations 

2.2.1 Impedance Matrix 

An impedance matrix is easily derived by applying Kirchoff's voltage law to 

the circuit of figure 1. The equations defining this model can be written as: 

V m = [Zl + Zf + Zh]lm ~ J ^ + J ^ 
J a a 

Va = [Zc-rZia + a2(Zf-rZb)]la+jaEfrn-jaEbT 

(2) 

The impedance matrix is obtained by substitution of the four back emf s 

defined in table 1 and is the same as derived by Matsch^. 

"V 'z1 + Z / + Z6. -ja(Zf-Zb) 
ja(Zf-Zb) Zc-rZia + a2(Zf + Zb) 

(3) 

2.2.2 Input Power 

The input power is calculated as Pe = $t{VmIm + V a I*}. After substitution 

of the terminal voltages from the impedance matrix this equation can be written as: 

Pe =5R{ [(za + Zf + Zb)lm - ja(Zf - Z f c ) l a ] J 4 ) + 

K{ [ja(Zf - Zb)lm+(ZC + z 1 B + a 2 ( Z f + Z 6 ) ) l „ ] i : } 

Recognizing that ImJm and IaIa are both real, this equation simplifies to: 

P e =[n +Rf + Rb]l2

m+ [Rc + rla-ra2(Rf + Rb)]l2 

+ K{ja{Zf-Zb)[Imra-Iarm}} 

(4) 

(5) 
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Since I m I* - I aI^=ImI* - (I m I*)*=-j27 m / a sin <f> and Rf and Rb are the real 

parts of Zf and Zj , equation 5 can be reduced to: 

Pe = [ri +Rf + Rb] I2

m + [Rc + rla + a2 (Rf + Rb)]l2

a 

(6) 

+ 2aImIa(Rf - Rb) sin</> 

where <f> is the phase of the auxiliary winding current measured with respect to 

the main winding current. 

2.2.3 Output Power and Torque 

The torque produced by the machine can be determined by examining the net 

power transferred across the air gap. The forward rotating mmf s contribute to a 

positive torque while the backward rotating mmf s contribute to a negative torque. 

The difference between the forward and backward emf s therefore determines the 

net power. Pgm and Pga are defined here as the air gap power produced by the 

main and auxiliary windings and can be written as: 

Pgm = m(Efm-jEfa/a) - (Ebm+jEba/a)]rm} 
(7) 

Pga = 9fc{ [ ( E / a - jaEfm) - (E 6 a +jaE 6 a)]i:} 

Substituting the back emf equations from table 1 yields: 

Pg = Pgm "T" Pga 
(8) 

= * { (Z / - Zb)(l2

m + a2ll) + ja(Zf+Zb)(Imra - IaTJ} 

After simplification the air gap power can be written as: 

Pg = (Rf - Rb) (l2

m + a212) + 2aImIa (Rf + Rb) sin <j> (9) 
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This equation is derived in slightly different ways by other authors^13' 9 ] . The air 

gap power is given in synchronous Watts^ and so must be multiplied by the 

per unit rotor speed to compute the total mechanical power. Mechanical output 

power is given by the difference between total mechanical power and friction and 

windage losses and can therefore be written as: 

Pm = (1 - s)Pg - Pfw (10) 

Average torque^13' 9 ] is computed by dividing the mechanical power by the 

rotor frequency of u>m = (1 — S)LOS. 

rp _ _ (1 ~ s)Pg — Pfw _ Pg ~ Pfw 
ojm (1 - s)u>s us 

2.3 Efficiency 

The efficiency, can be written as: 

Prn _ (1 ~ *)Pt ~ Pfu, ( n ) 

V ~ Pe ~ (l-s)Pg + Pd 

where Pj represents the electrical losses within the machine. 

By inspection of equation 12 it is obvious that efficiency is affected by friction 

and windage losses as well as electrical losses. Because friction and windage 

losses depend only upon the operating point, assuming constant slip the only 

term which affects efficiency at a given operating point is electrical losses. It is 

therefore of interest to segregate the electrical losses which are distributed between 
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the rotor and stator. These losses are given by the difference between electrical 

power and total mechanical power: 

Pd = P e - { l - s)Pg =Pe-Pg + sPg (13) 

After the appropriate substitutions are made this equation can be written as: 

Pd=[r1 + sRf + {2-s)Rb}lm 

+ [Rc + ru + a2 [sRf + (2 - s)Rb]} I2

a (14) 

+ 2a [sRf - (2 - s)Rb] ImIa sin (f> 

A more intuitive understanding can be obtained if the equation is rewritten as: 

Pd=rill + {Rc + ria)l2 
+ s[(Rf- Rb) (II + a212) + 2aImIa(Rf + Rb) sin<f>] (15) 

+ 2Rb [l2

m + a212 - 2aImIa sin <f>] 

In this form, the first term represents stator losses. The second term, which is the 

product of slip and air-gap power, represents slip dependant rotor losses which 

are inherent to induction machines. The third term represents additional rotor 

losses which are due entirely to the asymmetry of the rotating mmf in the air 

gap. This term can be shown to be zero if and only if Im — ala and <f> = TT/2 

in which case the air-gap mmf is symmetrical and the machine is said to be 

balanced. This condition also eliminates pulsating torque: a result derived by a 

number of authors^7'4^. 
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2.4 Optimization of Running Performance 

Steady-state efficiency is optimized under the assumption that a particular 

operating point is desired. The operating point is defined by specifying both torque 

and rotor speed. The controllable variables which affect efficiency are phase of 

the auxiliary winding current relative to the main winding, the magnitudes of 

main and auxiliary winding currents, and the stator frequency. Because many 

terms in equations 6 and 10 are complicated functions of slip, a direct solution 

seems intractable. To simplify the problem, optimization is done in two stages: an 

analytical solution which determines main and auxiliary winding currents and their 

relative phase at an arbitrary stator frequency, followed by a numerical solution 

which yields the optimum stator frequency. Because the rotor speed is specified 

by the operating point, if the analytical solution is done assuming constant stator 

frequency, the slip is constant since s — (LOs — u>m)/u>s. 

The problem described above is a constrained optimization and so is solved 

by means of Lagrange multipliers^. The objective is to minimize input power 

with a constraint of constant mechanical power. The solution which gives the 

optimal efficiency is therefore constrained to the surface defined by equation 10 

which must be solved simultaneously with: 

V P e (7 m , 7 ( <f>) = \(l-s)VPm{Im,Ia,<j>) 

(16) 
A ( l - s ) V [ P , ( W ( <l>) ~ Pfw] 
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Since Pfw is independent of all electrical quantities, and slip is assumed constant, 

the relationship can be reduced to: 

V P e ( / m , Ia,</>) = A V P 3 ( / m , Ia, <f>) (17) 

where A = A(l — s). In total there are four equations which must be solved 

simultaneously. The variables in the optimization constitute the first three degrees 

of freedom and the fourth is the Lagrange multiplier A. 

fr = ̂  (19) 

dlm dlm §r = # <20> 
dla dla 

(1 - s)Pg = Tum + Pfw (21) 

2.4.1 Auxiliary Winding Current Phase 

Equation 18, after substitution and simplification, can be written as: 

(7?/ - Rb)lmIa cos (j> - \(Rf + Rb)lmIa cos <f> (22) 

One solution to this equation is given by: 

A = frr (23) 

Two other solutions are possible when Im = 0 or Ia = 0. However, it is easily 

shown that if any of these three solutions are used, there are no valid solutions 

16 



for equations 19 and 20. The only valid solution for equation 22 is therefore 

given by cos <f> = 0. This equation has roots at (f> = ± T T / 2 and the condition 

which optimizes efficiency is given by <j> = ir/2. This is justified by careful 

examination of the air-gap power and power dissipation, as given by equations 

9 and 14 respectively. 

By inspection, the air-gap power is maximized with respect to <f> when 

<f> = 7r /2 . The same condition minimizes power dissipation and so optimizes 

efficiency. To prove minimum power dissipation, it is necessary to find the sign 

of sRf — (2 — s)i?j. This term pre-multiplies sin<f> in equation 14 and can be 

expanded to: 

cgn( 4fr/s] 2 (2 - s )^[r 2 / (2 - s)] 1 (24) 
I fo/sf+ixm+Xi]2 [r2/(2 - s)]2 + [a;m+a;i]2 J 

For 0 < s < 1, all quantities in the above equation are positive and the expression 

is easily reduced to: 

sgn{sRf - (2 - s)Rb}= sgnjs 2 - (2 - s) 2 }= -1 (25) 

Consequently, sin<f> must be positive to achieve minimum power dissipation and 

so efficiency is optimized with respect to phase when: 

<f> = 7T/2 

17 
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2.4.2 Auxiliary Winding Current Magnitude 

To find the simultaneous solution of equations 19 and 20 it is necessary to 

eliminate the Lagrange multiplier, A. These equations are easily manipulated to 

yield: 

dPe ,dP 
I- (27) 

dlm' dlm dla' dla 

The optimal auxiliary winding current can now be determined as a ratio of 

the required main winding current. Defining this ratio as k = Ia/Im and letting 

<f> = 7r/2, the above equation becomes: 

(n + Rf + Rb) + a(Rf - Rh)k 

(28) 
(Rf - Rb) + a(Rf + Rb)k 

[Rc + r l a + a2(Rf + Rb)]k + a(Rf-Rb) 

a2(Rf - Rb)k + a(Rf + Rb) 

After cross-multiplication and simplification this equation can be written in 

quadratic form: 

4a3_RfRb_ + a , R ^ + r ^ 

+ 

Rf -f- Rb 

Rf — Rb 
Rf + Rb 

(Rc + na - a n ) 

k2 

k (29) 

RfRb 4a „ „ + ari = 0 
Rf + Rb 

If stator losses are assumed to be zero, this equation reduces to a2k2 — 1 which 

implies that Im — ala and, as noted previously, the machine is balanced. When 

stator losses can not be neglected the optimal value for k is given by: 

-B ± VB2 - AAC 
k 

2A 
(30) 
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where: 

A = i^Jj3L. + a(Rc + rla) 
Kf + Kb 

B=Srl̂ +ri«-aVi) (31) 

Because is defined as the ratio of the magnitude of two vector quantities, only 

positive values are allowed. By inspection, for 0 < s < 1, A is positive and C 

is negative so —AAC > 0 and y/B2 — AAC > \B\. The optimal choice for fc 

is therefore given by 

k = - f l + v / T O T ( 3 2 ) 

2.4.3 Main Winding Current Magnitude 

It now remains to satisfy the constraint given by equation 21. With <j> = TT/2, 

this relationship can be written as: 

(Rf - Rb) (I2

m + a 2 / 2 ) + 2a(Rf + R b ) l m I a = Tu™ + *f (33) 

After substitution of the previously computed value for fc the solution is: 

T = I T U M + P > " > n 4 N 
m ^'(l-s)[(l + a2k2)(Rf-Rb)+2ak(Rf + Rb)} K } 

2.4.4 Stator Frequency 

The final step in the optimization is to determine the optimal stator frequency. 

Equations 26, 32, and 34 define the optimal main and auxiliary winding currents 
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assuming fixed output power and a constant stator frequency. Because the 

above relationships are strongly dependent on slip, an analytical solution for 

the optimal stator frequency is intractable and a numerical solution is the only 

remaining option. Such an optimization requires knowledge of the equivalent 

circuit parameters and an experimental determination of these parameters, is 

presented in Appendix A. These parameters are used throughout the remainder 

of this work. 

2.5 Optimization of Starting Performance 

Starting performance is optimized by assuming that a known value of starting 

torque is required. The objective is therefore to minimize the input power required 

to achieve this value of torque. The analysis given in the preceding section 

optimizes efficiency by minimizing losses with a constraint of constant mechanical 

power. Because slip is assumed constant throughout the analysis this constraint 

is equivalent to one of constant air-gap power. Torque and air-gap power are 

related by equation 11 and so the optimal starting conditions are only a special 

case of the solution to equations 18 through 21. 

The optimal phase angle between main and auxiliary winding currents is 

therefore as before: 

<j> = TT /2 
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At standstill 5 = 1 and the forward and backward rotor resistances of equation 

1 reduce to: 

Rf = Rb = 
x m r 2 

2 r\ + (xm + xiY 
(36) 

The optimal ratio of magnitudes between main and auxiliary winding currents, as 

defined by equation 32, can therefore be reduced to: 

k = 
x m r 2 + n r\ + (xm + xif 

a 2 x m r 2 + (Rc + ru) r\ + (xm + x i ) 2 

The required main winding current is given by: 

(37) 

\ 
r\ + (xm + xiY 

2akxmr2 

Tu>. 
(38) 
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3 Simulation Results 

Computer simulations are provided to validate theoretical results as well as to 

predict optimal operating conditions for specified load conditions. The equations 

describing the model were implemented in Matlab® using the parameters derived 

in Appendix A. It is assumed throughout these simulations that the motor is 

supplied by a variable frequency drive and that there is no limitation on stator 

frequency. 

3.1 Validation of Theoretical Results 

Theory predicts that, given any load condition, efficiency can be maximized 

by proper choice of auxiliary winding current (both magnitude and phase) and 

stator frequency. These results are verified by computing the optimal operating 

conditions at rated speed and for several values of torque. Efficiency is plotted 

as each of these three parameters are varied about their optimal values. 

The first result predicted by theory is that efficiency is maximized when the 

auxiliary winding current leads the main winding current by 90°. Figure 2 shows a 

plot of efficiency vs. auxiliary winding phase and it is apparent that, as predicted, 

efficiency is maximized when the auxiliary and main winding currents are in 

quadrature. 
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Figure 2: Efficiency vs. Auxiliary Current Phase Angle 

Peak efficiency is predicted when the magnitude of the auxiliary winding 

current is in fixed proportion to that of the main winding. This constant of 

proportionality can be computed from equation 32 and at rated speed the optimal 

value is k = 0.38. Figure 3 plots efficiency against the auxiliary winding current 

in per unit of main winding current illustrating that peak efficiency is obtained 

at the predicted value. 

The final variable in the optimization is slip. Because the rotor speed is 

fixed the optimal value of slip determines the optimum stator frequency. Because 

of the complicated relationship between slip and efficiency, an analytic solution 

could not be obtained and so there is no numerical value to be compared with the 
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results shown in figure 4. A numerical optimization indicates that peak efficiency 

is obtained when s = 0.024. Computer simulations reveal that the optimal slip 

depends only on rotor speed and is independent of torque. The same is true 

of auxiliary winding current magnitude and this can be seen by examination of 

equation 32. 
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3.2 Optimal Winding Currents 

As noted in the previous section, when properly normalized, optimal operating 

conditions depend only on rotor speed and are independent of torque. The 

following figures plot these optimal conditions against rotor speed. It should be 

noted that because slip is one of the variables in the optimization, stator frequency 

is not constant and is determined by the rotor speed and the optimum slip. 

Figure 5 plots the optimum auxiliary winding current as a fraction of the main 

winding current. Note that this ratio is relatively constant for practical values of 
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rotor speed and that at rated speed k = 0.38. This value is consistent with that 

shown in figure 3. 

The slip which provides the highest efficiency, as determined by numerical 

optimization, is plotted against rotor speed in figure 6. At rated speed the optimal 

slip is s = 0.024 as is also shown in figure 4. Stator frequency can be computed 

from the optimum slip and is plotted against rotor speed in figure 7. Very litde 

error is introduced by linearizing this relationship and the least-squares fit is 

given by u>s m um + 0.026. 
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Figure 8: Maximum Efficiency vs. Rotor Speed 

Although the optimal operating conditions are independent of torque, the 

maximum efficiency is related to torque. Under no-load conditions, the total 

torque produced by the motor is exactly equal to friction and windage torque. 

Conversely, when the motor is heavily loaded, friction and windage torque is 

only a small fraction of the total torque produced. Consequently, efficiency 

increases with load torque until electrical losses become dominant. The maximum 

efficiencies for selected values of load torque are plotted against rotor speed in 

figure 8. 
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3.3 Optimal Winding Voltages 

Terminal voltages can be determined by applying the impedance matrix of 

equation 3 to the results derived in the preceding section. Main winding voltage 

is plotted against mechanical speed in figure 9. 
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Figure 9: Optimal Main Voltage Magnitude vs. Rotor Speed 

The V/Hz ratio can be computed from the main winding voltage and the 

optimal stator frequency determined in the previous section. These results are 

plotted in per unit of rated V/Hz against rotor speed in figure 10. The optimal 

V/Hz ratio increases very sharply at low speeds in order to compensate for the 
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Figure 10: Optimal Main V/Hz Ratio vs. Rotor Speed 

proportionally higher voltage drop across the stator resistance. This low-frequency 

voltage boost is a common feature of commercially available drive systems^1 ̂ . 

At near rated speed and torque, because a linear model has been assumed 

the optimal per unit V/Hz ratio predicted by theory exceeds unity. In practice, 

operating under these conditions would result in saturation of the magnetic circuit 

and the efficiency would be much lower than predicted. The practical significance 

of this figure is therefore that the V/Hz ratio should be reduced when the machine 

is operated under light load conditions. When increased torque is desired, the 

V/Hz ratio should be increased but should only exceed its rated value at very 

low speed. 
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The optimal auxiliary winding voltage is plotted as a fraction of the optimal 

main winding voltage in figure 11 and it is apparent that this ratio is nearly 

constant for practical values of rotor speed. Figure 12 plots the relative phase 

of the auxiliary winding voltage against mechanical speed. Again, for practical 

values of mechanical speed, the phase is nearly constant. 
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4 Experimental Results 

4.1 Apparatus 

4.1.1 Motor 

Experimental measurements were made on a Franklin Electric model 

2143084416 submersible motor rated for 1 HP at 3450 RPM. This rating is 

given assuming that the motor is immersed in water and is therefore adequately 

cooled. For the purposes of experimental work this cooling requirement was met 

by mounting the motor in a drum filled with water. 

4.1.2 Load 

A heavy duty 24V automotive alternator was directly coupled to the motor 

under test. The alternator was prepared by machining shoulders on the end bells. 

These shoulders were concentric with the alternator shaft and were designed to 

accept bearings. With this arrangement, when mounted in the test fixture, both 

the alternator shaft and housing were free to rotate. 

Torque sensing was accomplished by locating a load cell between the alter

nator housing and a stationary part of the test fixture, preventing rotation of the 

alternator housing. The load cell output was therefore proportional to the total 

torque produced by the motor under test. A fitting was located on the alternator 

housing to accept a torque wrench for the purpose of calibrating the load cell. 
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The rectifiers were removed from the alternator and its windings were short-

circuited. With this connection the total power generated by the alternator was 

dissipated by the alternator windings. An external resistive load bank would have 

been preferable as it would have reduced heating in the alternator but the resistance 

required to achieve a reasonable power transfer was too low to be practical. By 

applying a field current of approximately 2A the alternator produced a braking 

torque equal to the rated torque of the motor under test. 

4.1.3 Supply 

All of the measurements reported here were made at line frequency and with a 

208V three phase supply. Variacs were used to adjust the magnitudes of the main 

and auxiliary winding voltages and an adjustable phase shifting transformer was 

used for variable phase measurements. The majority of tests were run with a fixed 

phase of approximately 90° between the main and auxiliary winding voltages. 

This phase shift was accomplished by Scott-connected isolation transformers. 

4.1.4 Instrumentation 

All electrical quantities were measured using a Data Precision model Data 

6000A waveform analyzer. Isolation amplifiers were used to interface the main 

and auxiliary winding voltages and currents to the analyzer's four inputs. The 

analyzer was programmed as shown in Appendix C to compute the following 

quantities: 
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• Main Winding RMS Voltage 

• Main Winding RMS Current 

• Main Winding Average Power 

• Auxiliary Winding RMS Voltage 

• Auxiliary Winding RMS Current 

• Auxiliary Winding Average Power 

• Auxiliary Winding Voltage Phase 

• Frequency 

The mechanical quantities recorded were average torque and rotor speed. 

A stroboscope was used to determine the rotor speed and average torque was 

measured with a load cell mounted on the alternator, connected to a bridge 

amplifier and calibrated to read directly in N-m. 

4.2 Sources of Error 

4.2.1 Modelling Error 

Numerous assumptions are made in the derivation of the model used to 

describe the motor under test. These assumptions include a linear magnetic 

circuit and a sinusoidal winding distribution. Experimental data presented in the 

following figures show that these assumptions could be expected to introduce 

significant error. Although the voltage supplied to the motor had very low 

harmonic content, the winding currents showed a high level of odd harmonics. 
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Figure 13 shows the main and auxiliary winding voltages with a vertical scale 

of 100 V/div for a load of approximately 0.5 N-m. The corresponding winding 

currents are shown in figure 14 with a vertical scale of 2 A/div. Third harmonics 

due to saturation effects are particularly evident in the auxiliary winding current. 

Saturation effects are also apparent in the main winding current although the 

rectangular shape is somewhat unexpected. 

1 l . o o v -QQV j-O.OOs 5 . o o g / f± STOP 

FreqC 1}=59.97 Hs VrmsC 15=2.000 V VrmsC25=2.345 V 

Figure 13: Main & Auxiliary Voltage 

One unusual feature of the motor under test which may introduce additional 

error is the presence of a liquid filled stainless steel jacket between the rotor and 

stator. Although there is no experimental evidence in support of this claim, 

depending on the thickness of the jacket and the conductivity of the liquid, 

eddy current losses in the space between the rotor and stator could be rather 
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Figure 14: Main & Auxiliary Current 

high. In conventional motors there are no conductive materials in this space, and 

consequently no eddy current losses. 

4.2.2 Measurement Error 

With the exception of the load cell, error introduced by instrumentation 

should be negligible. Voltages and currents measured by the isolation amplifiers 

and waveform analyzer compared well with values displayed by conventional 

metering. The largest source of measurement error is expected to be due to the 

load cell. Because the motor and alternator generated significant heat, the entire 

test fixture including the load cell was subjected to temperature cycling of up 

to 30° C during the course of experiments. Such large changes in the load cell 

temperature could be expected to introduce significant experimental error. 
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4.3 Efficiency Measurements 

Figure 15 plots efficiency against auxiliary winding phase. The main winding 

voltage is supplied with 90% of rated voltage and the auxiliary winding voltage 

is set to 120% of the main winding voltage. Measurements at load torques of 

0.5 N-m and 1.5 N-m correspond to 25% and 75% of rated torque respectively. 

The measured efficiencies compare quite well with simulation results and the 

maximum efficiency occurs when the auxiliary winding current leads the main 

winding current by slightly less than 90°. This result is predicted by the model 

as shown in figure 12. 
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Figure 15: Dual Winding Efficiency vs. Auxiliary Voltage Phase Angle 
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Efficiency as a function of auxiliary winding voltage magnitude is shown 

in figure 16. The main winding voltage is fixed at 80% of rated voltage and 

the auxiliary winding voltage is varied between 90% and 130% of the main 

winding voltage. Auxiliary winding phase is fixed at 87.5°. Although the 

differences between measured and predicted efficiencies are slight and may be 

within experimental error the peak efficiencies occur at unexpected values of 

auxiliary winding voltage. Figure 11 shows that peak efficiency should be 

obtained when the auxiliary winding voltage is 120% of the main winding voltage. 

The data presented in figure 16 indicates that the optimum auxiliary winding 

voltage is between 105% and 115% of main winding voltage. 

100 

90 

80 

70 

^ 60 

>s 

c 50 
2 
o 

E 

m 40 

30 

20 

10 

Simulated Measured 
T = 0.5 N.m 

T= 1.5 N.m 
X X X ) 
+ + + ^ 

< X X 
V + + 

X X . _ > 
( x x x x X X X ; 

x - -x-X X . _ > 

0.9 0.95 1.05 1.1 1.15 
Auxiliary Voltage [p.u.] 

1.2 1.25 1.3 
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Figure 17 shows a plot of efficiency vs. main winding V/Hz ratio. For 

this experiment the auxiliary winding voltage was adjusted to 110% of the main 

winding voltage and the auxiliary winding phase was fixed at 87.5°. There are 

significant differences between measured and predicted efficiencies and at the two 

values of torque shown the peak efficiencies are higher than predicted by theory. 

In addition these peak efficiencies occur at lower V/Hz ratios than predicted by 

theory. This is most likely due to saturation effects which are not accounted for 

by the linear model used in the analysis. 
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Figure 17: Dual Winding Efficiency vs. V/Hz Ratio 

Other authors have reported efficiency improvements by operating at reduced 
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V/Hz ratios and thereby reducing core losses within the machine[6]. This particular 

machine is designed to be very compact and has a very small diameter in 

comparison to its length. Due to its compact design the machine could be expected 

to be well into saturation when operated at rated V/Hz. 

To check this supposition similar tests were run with only the main winding 

of the machine excited and this data is presented in figure 18. Once again the 

effect of varying the V/Hz ratio is dramatic and peak efficiencies occur at lower 

V/Hz ratios than predicted by the model. 
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Figure 18: Single Winding Efficiency vs. V/Hz Ratio 

By inspection of figures 17 and 18 it becomes clear that there is a relationship 
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between optimal V/Hz ratios and load torque for both single and dual winding 

excitation. Both figures show that at 25% of rated torque, efficiency is optimized 

when the V/Hz ratio is between 50% and 60% of rated value. At 75% of rated 

torque the optimum V/Hz ratio is between 75% and 85% of rated value. Based on 

these two data points, a linear approximation to the relationship can be written as: 

V m 0.4 + 0 . 5 - ^ (39) 
Vrated J- rated 

Figure 19 compares measured efficiencies for single and dual winding excitation. 

In both cases the main winding voltage is adjusted according to equation 39. 

The upper data set represents auxiliary winding excitation at 110% of main 

winding voltage and a phase difference of 87.5°. There is clearly an efficiency 

improvement of approximately 5% and this improvement is consistent with that 

predicted by the model. 
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5 Conclusion 

The objective of this analysis was to determine operating conditions which 

provide the highest possible efficiency for single-phase induction motors equipped 

with an auxiliary winding. The analysis was based on a model which is widely ac

cepted and has been used by many authors^10'13' 9 ' 1 2 \ The computer simulations 

which have been presented confirm that the analysis correctly determines optimal 

operating conditions for motors which can be accurately described by the model. 

Experimental measurements made with a submersible single-phase induction 

motor indicate that the effects predicted by theory are present and that it is 

possible to improve efficiency by excitation of the auxiliary winding. However, 

the peak efficiency does not occur under exactly the same conditions as predicted 

by theory and it appears that the linear model used for the analysis is not capable 

of accurately describing the motor under test. The model assumes that the 

permeability of the magnetic circuit is independent of flux density and that skin 

depth effects in both the rotor and stator are negligible. Depending on the type and 

construction of motor, both of these approximations could introduce significant 

error. 

The highest accuracy could be expected for motors designed for high effi

ciency as these motors operate in the linear portion of the magnetization char

acteristic. On the other hand, the model could not be expected to accurately 
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predict the performance of compact motors designed for high starting torque. In

creased starting torque is achieved by taking advantage of deep bar effects so 

that the rotor resistance is strongly dependent on slip frequency and is therefore 

very high during starting^12]. At constant slip, stator frequency and slip frequency 

are proportional and consequently rotor resistance increases with stator frequency. 

Compact motors typically have a smaller magnetic circuit cross section and so 

are further into saturation when operated at rated V/Hz. 

The theory's ability to deal with modelling error could likely be improved by 

experimentally determining sets of parameters which depend on stator frequency 

and flux density. Provided voltage is adjusted in proportion to stator frequency, the 

flux density could be assumed constant and the dependence of model parameters 

on skin depth effects could be determined. The effects of changes in flux 

density could be determined by varying the V/Hz ratio at constant frequency. 

Although such an approach would limit the utility of the analytical work which 

has been presented here, if the equations were used in conjunction with computer 

simulations an accurate prediction of motor performance should be possible. 

Despite the differences between experimental results and computer simula

tions the measured and predicted efficiency improvements compare quite closely. 

Experimental results presented in figure 18 show that, depending on operating 

point, considerable gains in efficiency are possible by operating with single wind

ing excitation and properly choosing the V/Hz ratio to match the load. Because 
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of the ease with which this could be accomplished this should certainly be taken 

advantage of before resorting to dual winding excitation. For this particular mo

tor, when operated at rated speed and 25% of rated torque, a 10% increase in 

efficiency was achieved by operating at approximately 60% of rated V/Hz. This 

optimal V/Hz ratio is consistent with that predicted by theory as shown in figure 

10. Equation 39 can be used to approximate the optimal V/Hz ratio as a function 

of load torque. 

In addition to what can be achieved by properly adjusting the V/Hz ratio, 

further efficiency improvements are possible by appropriate choices of auxiliary 

winding voltage magnitude and phase. Although it is the current phase which 

must be in quadrature to obtain peak efficiency, for all practical purposes it is 

sufficient to maintain the auxiliary winding voltage in quadrature with the main 

winding voltage. 

For the motor under test, experimental results presented in figure 3 reveal that 

peak efficiency is obtained with the auxiliary winding voltage set to approximately 

110% of the main winding voltage as shown in figure 15. When the machine 

is operated with these conditions on auxiliary voltage magnitude and phase, an 

additional 5% increase in efficiency is achieved at rated speed and over a wide 

range of load torques as shown in figure 19. 

In a practical application this efficiency improvement would likely be offset by 
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losses within the auxiliary winding power conditioning unit and careful analysis 

would be required to determine if there would be any benefit to retrofitting such a 

power converter. The author therefore recommends that any project undertaken to 

improve the efficiency of systems using solar powered inverter driven submersible 

single-phase motors such as the Franklin Electric model 2143084416 be completed 

in two stages. 

The first stage should be to experimentally determine optimal V/Hz ratios for 

single winding excitation under a number of operating conditions. These ratios 

should then be correlated to rotor speed and torque and the inverter software 

should be modified to adjust the modulation index depending on operating point. 

Stator frequency and winding current should be sufficient to determine operating 

point as these quantities are very closely related to rotor speed and torque. This 

solution would not involve any hardware changes to existing systems and would 

therefore be a very inexpensive means of improving efficiency. 

If additional improvements are desired after modifying the system to operate 

at optimal V/Hz ratios, the first step should be an economic analysis. Because the 

potential gain in efficiency is quite small, the cost of an auxiliary winding power 

converter may not be justified by the savings in solar cells. In this instance, the 

motor under test is rated at one horsepower and at rated load reaches its peak 

efficiency of approximately 65%. At rated load an increase in efficiency of 5% 

would therefore reduce the electrical input power by 82 Watts. Assuming that 
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the solar cells can be obtained at a cost of $5 per Watt, potential savings would 

be $410 less the cost of additional power electronics required for the auxiliary 

winding power converter. If such savings are large enough to be of interest the 

proposed implementation described in Appendix B could be applied. 
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Appendix A 
Equivalent Circuit Parameters 

The method suggested by VeinottJ13] is used to compute equivalent circuit 

parameters based on DC winding resistance, locked-rotor and no-load tests. 

The usual approximations made in order to obtain equivalent circuit parameters 

from these tests neglect the effects of magnetizing reactance on the locked-rotor 

impedance. It is claimed that Veinott's method provides improved accuracy by 

introducing a slight modification to account for these effects. 

This method does not provide all of the parameters required to model a single-

phase induction motor with both main and auxiliary windings. The two additional 

required parameters model the auxiliary winding stator leakage reactance and the 

effective turns ratio between main and auxiliary windings. The manufacturer was 

able to provide the turns ratio and the leakage reactance was approximated from 

locked-rotor measurements, turns ratio and rotor leakage reactance. 

Vim h m vLa h a PLa 

[Hz] [V] [A] [W] [V] [A] [W] 

30 27.3 5.00 114 39.2 2.50 91 

40 30.5 5.02 117 41.1 2.47 87 

50 33.6 5.01 121 44.0 2.53 96 

60 37.3 5.04 124 45.9 2.49 91 

Table 2: Locked-Rotor Measurements 
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[Hz] 

V0 

[V] 

Io 

. [A] 

Po 

[W] [RPM] 

30 104 4.61 165 1790 

40 138 4.63 215 2392 

50 173 4.68 265 2990 

60 206 4.73 335 3590 

Table 3: No-load Measurements 

During no-load measurements both line current and input power increased 

sharply as the rated V/Hz ratio was approached. This effect is to be expected and 

is due to saturation of the magnetic circuit. While efficient operation at higher 

than rated V/Hz is not possible, it was expected that reducing the V/Hz ratio could 

improve efficiency. No-load measurements were therefore made at 90% of rated 

V/Hz in order to obtain a linearized model which could more accurately predict 

performance over the anticipated range of V/Hz ratios. 

The equations which must be applied to the locked-rotor and no-load data 

[13]. 

wLr 

are 

P 
T2 

- r\ 

Q 
Jin 

'WLm 

T2 

X = xi + x2 = 

Y - - L - 2 V o Y Ao — xl T Xm — — A 

(40) 

(41) 

(42) 

(43) 
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Si. ru w. 
£2. 
W l 

a 

[Hz] [mH] ["] [mH] [ft] [mH] [p.u] 

30 2.63 7.9 11.9 18.9 2.08 7.9 1.234 

40 2.63 7.8 11.9 22.3 2.16 7.8 1.234 

50 2.63 7.4 11.9 16.7 2.35 7.4 1.234 

60 2.63 7.4 11.9 18.3 2.42 7.4 1.234 

Table 4: Equivalent Circuit Parameters 

In a squirrel-cage single-phase induction motor there is no way to separate rotor 

and stator leakage reactances and it is common practice to assume them to be 

equal^13' 9 \ Under this assumption equations 42 and 43 can be solved to yield: 

X l = x2 = X0 (l - y/l - XlX0^j (44) 

and: 

xm = X0 - xi (45) 

The auxiliary winding leakage reactance is approximated by neglecting the 

effects of magnetizing reactance and computing the input reactance from the 

auxiliary winding locked-rotor measurements. This input reactance is the sum 

of rotor and stator leakage reactances. Because the rotor leakage reactance is 

specified with respect to the main winding it must be referred to the auxiliary 

winding by the turns ratio. The auxiliary winding stator leakage reactance is 

approximated by^13^: 

^"vSf-W) ~a2x2 <46) 
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These parameters determine the electrical characteristics of a single-phase 

induction motor but can not model the effects of friction and windage on the 

mechanical performance. Friction and windage losses can be approximated from 

the no-load measurements and equivalent circuit parameters. This is done by 

assuming that friction and windage losses are given by the difference between 

measured input power and resistive losses as computed from equivalent circuit 

parameters and measured current. 

P f w = P 0 - ( r i + R f + R b ) l 2

0 ^ B u m (47) 

Regression analysis on experimental data reveals that the appropriate values 

of the required constants are: 

B = 0.24 
(48) 

n = 1.12 

when wm is specified in rad/s. This data is presented in figure 20. 

The manufacturer of the motor was able to provide a plot of experimentally 

determined performance characteristics and this is displayed in figure 21. This 

data is used as a benchmark to determine the validity of the equivalent circuit 

model as well as the parameters used in the model. Figure 22 shows the results 

of a computer simulation run under the same conditions as the experimental mea

surements. The agreement between the two sets of data is quite good, indicating 

that the model and parameter set accurately describe motor performance. 
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Figure 20: Friction and Windage Losses vs. Rotor Speed 
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S TEST PR 2647 PAGE 119 
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R FRAME 4 INCH SUB HP 1 
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Figure 21: Measured Motor Characteristics 
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MOTOR PERFORMANCE CHARACTERISTICS 

RPIV 
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/, 

[%] [A] [W] 
95 13 3250 

90 12 3000 

85 11 2750 

80 10 2500 

75 9 2250 

70 8 2000 

65 7 1750 

60 6 1500 

55 5 1250 

50 4 1000 

45 3 750 

40 2 500 

35 1 250 

0 0.5 1 1.5 
HORSEPOWER 

2.5 

Figure 22: Simulated Motor Characteristics 
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Appendix B 
Proposed Implementation 

When used for photo-voltaic pumping applications, the single-phase induction 

motor studied here is commonly powered by a single phase inverter. Because the 

voltage provided by the solar cells is relatively low, the inverter is usually an 

H-bridge with trapezoidal or sine-coded pulse width modulation. If sine-coded 

modulation is used, a third harmonic component is sometimes added to increase 

the magnitude of the fundamental component. 

Some changes to this approach will be required in order to supply the auxiliary 

winding. One option would be to provide a second H-bridge for the auxiliary 

winding. However, because the main and auxiliary windings share a common 

neutral, the auxiliary inverter would have to be isolated from the main inverter and 

the cost of providing this isolation is likely to be prohibitive. Without isolation, 

a three phase inverter is the only practical way to provide the required phase 

difference between main and auxiliary windings. 

As shown in figure 23 the auxiliary winding voltage which can be provided 

is limited by the required main winding voltage and the relative phase. The 

maximum fundamental phase voltage which can be provided by a single leg of a 

sine-coded PWM inverter is given by: 
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Figure 23: Voltage Utilization of Three Phase Inverter 

With this limitation on phase voltage, the main and auxiliary winding voltages 

are limited to: 

Vdc 

Vm = —£V/1 - C O S OL 

y (50) 

K = - y V l - c o s / ? 

The phase displacement required to generate the desired main winding voltage 

is given by: 

a = cos"1 (l - 4-jJf) (51) 

Because the relative phase between main and auxiliary winding voltages can be 

written as: 

« + 

= — - - ^ (52) 

the phase displacement required for the auxiliary winding phase is given by: 

p = 2(TT - <f>) - a = 2(TT - <f>) - cos"1 ^1 - 4-p|̂  (53) 
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The maximum available auxiliary winding voltage, as a function of main winding 

voltage and relative phase, is therefore: 

Vdc 1 — COS 2<f> + cos-1 ( 1 - 4 ^ | 

dc 
(54) 

When the main and auxiliary winding voltages are in quadrature 4> = 7 r/2 

and this relationship simplifies to the Pythagorean Theorem. 

V2 + V2 

m > 'a 

V4 = W) (55) 

As the main winding voltage approaches \f2Vph the voltage available for the 

auxiliary winding phase is very low. For the motor under test the power factor 

at rated load is approximately 70% as shown in figure 21. The winding currents 

therefore lag terminal voltages by approximately 45° and a portion of the auxiliary 

winding phase shift could be provided by a series capacitor as shown in figure 24. 

Figure 24: Auxiliary Winding Compensation 

For this application the optimum compensating reactance can be defined as 

the value which minimizes the required link voltage over the desired range of 
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speeds and torques. The optimum slip is independent of torque but varies with 

rotor speed as shown in figures 4 and 6 respectively. Consequently the impedance 

matrix, which has slip dependent terms which are presented in equation 1, depends 

only on rotor speed. As a result the choice of compensating reactance is also 

independent of torque. 

It is possible to show that for a compensating reactance Xc the quantities Va 

and a in figure 24 are given by: 

Va = \][XJa + Va cos (9 + <f>)]2 + [Va sin (9 + <f>f 

and: 

_! (XcIa + VaCOs(9 + <j))\ 0 

a = cos ^ j-9 
The required link voltage V^c can therefore determined by solving: 

Va = "T^Wl - cos 
V2 

2a + cos-1 [ 1 - i-^-

Given that: 

cos (7 + cos - 1 X) = X cos 7 — \J\-X2 

sin 7 

equation 58 can be rewritten as a quadratic in V^c: 

A{Vl)2 + B(Vd

2

c)+C = 0 

where: 
A = [1 - cos (2a)]2 

B = -[1 - cos (2a)] [(2Vm)2 + (2Va)2 1 

C = (2Vmf - 2(2Vm)2(2Va)2 cos (2a) + (2Vaf 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 
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The required link voltage can therefore be determined by applying the 

quadratic formula to equation 60. When rated voltage is applied to the main 

winding, and the auxiliary winding voltage magnitude and phase are chosen to 

provide optimum performance, the link voltage is as shown in figure 25. There are 

two capacitances which result in the same minimum link voltage. Although the 

smaller capacitor would be less expensive, the link voltage increases abruptly for 

small deviations from this optimum value. Consequently the larger value would 

be a more practical choice. 
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Capacitance [uF] 
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Figure 25: Link Voltage vs. Run Capacitance 
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The values shown in figure 25 are only optimal at rated stator frequency but 

the approach could be extended to determine a single value of capacitance which 

minimizes link voltage over the range of anticipated stator frequencies. 
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Appendix C 
Waveform Analyzer Program 

This program is written for the Data Precision model Data 6000A waveform 

analyzer. Input buffers are sampled in lines 10 through 40. Instantaneous power 

is computed as a point by point multiplication of voltage and current for the 

main and auxiliary windings in lines 50 and 60 respectively. Cursor positions for 

positive zero crossings of the main and auxiliary winding voltages are measured in 

lines 70 and 80 and this information is used in lines 100 through 120 to compute 

the phase of the auxiliary winding voltage relative to that of the main winding. 

10 VM = U N I T ( B U F . A 1 , 2 , 0 , 1 0 0 , 2 ) 
2 0 IM = U N I T ( B U F . A 2 , 2 , 0 , 1 0 , 4 8 ) 
3 0 VA = U N I T ( B U F . A 3 , 2 , 0 , 1 0 0 , 2 ) 
4 0 I A = U N I T ( B U F . A 4 , 2 , 0 , 1 0 , 4 8 ) 
5 0 PM = VM*IM 
60 PA = V A * I A 
70 D S P L ( S C : C R S P ( B U F . A 3 ) ) 
80 D S P L ( N X : S E : C R S P ( B U F . A l ) ) 
90 F = FREQ(VM) 
100 PHI = 3 6 0 * X D E L T A * F 
110 PHI = P H I - 1 8 0 
120 PHI = U N I T ( P H I , 2 , 0 , 1 , 4 1 ) 
130 D S P L ( F ) 
14 0 D S P L ( P H I ) 
150 DSPL(RMS(VM)) 
160 D S P L ( R M S ( I M ) ) 
170 DSPL(MEAN(PM)) 
180 DSPL(RMS(VA)) 
190 D S P L ( R M S ( I A ) ) 
2 00 DSPL(MEAN(PA)) 
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