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Abstract

The development of new techniques for stabilizer design has been receiving considerable

attention of power system industry. In this thesis, several new stabilizer design techniques

are developed for the improvement of dynamic stability of multimachine power systems.

Three kinds of dynamic stability problems are dealt with: the low—frequency oscil

lations, the stability of power systems with wide—range changing operating conditions

and the multi—mode torsional oscillations of a two—machine system. Therefore, different

stabilizer design techniques are developed.

First, mathematical models are developed for dynamic studies and stabilizer design

of multimachine power systems. Methods are also developed to select the number and

the locations of stabilizers for the entire power system.

A new pole-placement technique is developed for a decentralized Power System Sta

bilizer (PSS) design to control low—frequency oscillations. The computation is economic.

The technique is applied to the stabilizer designs of a three—machine system and a nine—

machine system. Simulation results show that PSSs thus designed are very effective to

control low—frequency oscillations.

A direct self—tuning regulator (STR) design method is developed for power systems

with wide-range changing operating conditions. The indirect STR of Clarke based on

the Generalized Predictive Control (GPC) method is improved so that the initial step

control parameters are directly estimated and that the subsequent control parameters

are recursively computed. The techniques developed are applied to the STR design of a

nine—machine system. Comprehensive tests show that the STRs designed can effectively
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stabilize the power system with wide—range changing operating conditions while well—

designed PSSs fail to do so.

Finally, another pole—placement technique is developed for the excitation control of

multi—mode torsional oscillations of a power system due to the subsynchronous resonance

of a capacitor—compensated transmission line. This is a decentralized linear feedback de

sign. The new technique is applied to the stabilizer design of the Second Benchmark

Model of IEEE, System 2. Test results show that stabilizers designed can effectively con

trol the torsional oscillations of the system over a wide—range of capacitor compensations.
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Chapter 1

INTRODUCTION

1.1 Motivation

Increasing electrical energy demand results in higher transmission voltages, more and

larger generating units, and more complex interconnections in a power system. New de

vices such as fast—response excitation system, series capacitor compensated transmission

and HVDC transmission are also introduced. As a result, many new problems arise, for

example, dynamic and transient stability, subsynchronous resonance, reliability, security,

and voltage instability. A great deal of research is going on to solve these problems. This

thesis is mainly concerned with the stabilizer design to improve the dynamic stability of

power systems, especially multimachine power systems.

The dynamic stability of a multimachine power system will be considered in the

more general context that after a disturbance in the system such as a change in load,

a change in voltage regulator reference, or a change in governor reference, generators in

the system must settle down to the synchronous speed. Supplementary stabilizers are

usually required for a poorly damped or negatively damped power system to improve its

dynamic stability. Control signals generated by these stabilizers may be applied through

the excitation loops and/or the governor loops of the generating units that have poorly

damped or negatively damped mechanical modes.

One dynamic stability problem is the low-frequency oscillation of a power system,

which is usually stabilized by Power System Stabilizer (PSS). PSS has been developed
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for power system for many years. However, designing PSSs for multimachine systems

remains a challenging problem because the stabilizers must be decentralized ill structure

and only locally measurable signals are used for feedback.

There are two prerequisite decisions to be made prior to multimachine PSS design:

1) how many stabilizers are required and 2) where they should be located. Obviously,

the stabilizers must be located at the most strategic locations so that the number of

stabilizers can be minimized. However, methods of finding the strategic locations require

improvement.

The power system operating conditions are not necessarily constant. Indeed, they are

constantly changing for a large power system. The self—tuning regulator (STR) has been

used in industries other than power system for many years. It may also be beneficial for

power systems to have STR—type stabilizers.

There is another type of dynamic stability problem in a power system, the multi—mode

torsional oscillations of turbine—generator shaft due to the subsynchronous resonance

(SSR) of series—capacitor compensated transmission network. Designing stabilizers for

a power system with SSR, especially for a multimachine system, is also a challenging

problem of dynamic stability control. The IEEE SSR Working Group has published

System 2, Benchmark Model II for the study of such phenomena.

1.2 Objectives of the Thesis

The main objectives of the thesis are:

1. To develop mathematical models for multimachine dynamic stability analyses, sta

bilizer designs and nonlinear high—order digital simulations..

2. To develop a precise technique to determine the number and location of stabilizers

for multimachine system stabilizer design.
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3. To develop a pole-placement technique for decentralized PSS design in order to

stabilize multimachine power systems with low—frequency oscillations.

4. To develop an efficient algorithm for a direct multiple-input multiple—output (MIMO)

self—tuning stabilizer design in order to control multimachine power systems with

wide—range changing operating conditions.

5. To develop a direct pole—placement method for a decentralized linear feedback

control design in order to stabilize the multi—mode shaft torsional oscillations of a

two-machine system.

1.3 Outline of the Thesis

In Chapter 2, a basic multimachine power system model for dynamic stability studies

is developed. The transmission network equations are related to individual machine

equations in d-q coordinates. Based on this model, a linearized model for eigenvalue

analysis and stabilizer designs, and a discretized model for nonlinear digital simulations

are derived.

Methods to determine the number and site of stabilizers are developed in Chapter 3.

Besides the participation factor method of linear analysis, a speed deviation index method

based on nonlinear simulation is proposed. Numerical examples are included.

For the PSS design of multimachine power systems, a new pole-placement technique

with less computation than the existing methods is developed in Chapter 4. The design

procedures are illustrated by two example systems: a three-machine system [21] and a

nine-machine system [3]. The effectiveness of the proposed design method is demon

strated.

A new design technique of a direct MIMO self—tuning regulator (STR) for a mul

timachine power system with wide-range changing operating conditions is developed in

3



Chapter 5. This is an extension of the principle of Clarke’s indirect SISO GPC [29] with

two improvements: the direct estimate of initial step control parameters and the recur

sive computation of subsequent control parameters. A nine—machine system is chosen as

an example for the design. The system with designed STRs is thoroughly tested over

wide—range changing operating conditions.

The problem of multimachine multi-mechanical mode torsional oscillations due to

subsynchronous resonance (SSR) has been posed as System 2 of the Second Benchmark

Model (SBM) by IEEE SSR. Working Group [43]. The system has two nonidentical

machines and a series—capacitor compensated transmission network. Decentralized linear

feedback stabilizers are designed for the excitation control of torsional oscillations of the

system in Chapter 6. For the design, a detailed mathematical model of the system is

derived and a new direct pole-placement design method is developed. Participation

factors are used to find the most effective variables for feedback. Computer simulations

of the system are carried out to examine the performance of the designed stabilizers.

Conclusions and achievements of the thesis are summarized in Chapter 7. Further

developments of the thesis area are also recommended.
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Chapter 2

SYSTEM MODELS FOR STABILIZER DESIGN AND SIMULATION

For stabilizer design and simulation of a multimachine power system, mathematical mod

eling is desirable. Power system component models are presented in Section 2.1 and a

complete system model is presented in Section 2.2. From the complete system model,

a linearized model for eigenvalue analysis and stabilizer design is derived in Section 2.3

and a discretized model for computer simulation test in Section 2.4.

2.1 Component Models of a Power System

2.1.1 Synchronous Generator

The torque equations for a synchronous generator may be written as

= Tm — Te — Dw) (2.1)

S = Wb(W — 1.0) (2.2)

where

w : generator rotor speed

Wb : base speed

6 : rotor angle

Tm, Te : mechanical input and electric output torques

M, B : inertial constant and damping coefficient

and the dot over a variable denotes the derivative with respect to time. All values are in

per unit, except S in rad, LOb 111 2irf rad/s, and M in second.
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Assuming one damper winding per rotor axis, the voltage equations for the generator

rotor windings [1] are

= T_[EFD — e’ — x)] (2.3)

= -[—eq
— id(Xd — Xd) + eq + Tdoeq] (2.4)

A do

= -[—e + iq(xq — x)] (2.5)
qO

where

q transient voltage of a field winding F

e’ : q subtransient voltage of a D damper winding

e’ : d subtransient voltage of a Q damper winding

Xd, x, x d—axis synchronous, transient and subtransient reactances

Xq, X’q’ : q—axis synchronous and subtransient reactances

T0, T’0 : armature—op en—circuited d—axis transient

and subtransient time constants

T0 : armature—open—circuited q—axis subtransient time constant

EFD : field voltage as seen from the armature

d, iq : d—axis and q—axis components of armature current

All values are in per unit, except time constants in seconds.

For low—frequency oscillation and dynamic stability studies, the stator armature and

the transmission network are usually described by algebraic equations since, in most

cases, their eigenmode frequencies are very high and the decay is very fast. Therefore,

the armature voltage equations may be written as

Vd ed Ra X

= + (2.6)
Vq eq Xd Ra

6



A subscript “k” should be given to signify the k—th generator, but is dropped here

for clarity.

2.1.2 Excitation System

Assuming a fast—response exciter and voltage regulator system, the differential equation

for the excitation system may be written as

EFD [KAUE — KA(vt — Vref) — (EFD — EFD0)] (2.7)

with the following constraints

Emin EFD Emax

where TA denotes a time constant, KA an overall gain, Vt the generator terminal voltage,

Vref a reference voltage, and uE a supplementary excitation control signal, if any. Emax.

and Emin. are the constraints for EFD. The block diagram for the excitation system is

shown in Fig. 2.1

Vref-Vt

UE

___

KA E

Figure 2.1: A Fast Excitation System

2.1.3 Governor Systems

Two types of governors are considered, a mechanical—hydraulic governor for a hydro—

electric plant and an electrical—hydraulic governor for a thermo—electric plant. The dif

ferential equations of the hydro turbine and governor system [2] for the hydro—electric
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plant are given by

G1 = (uG + Wref — w — G2 — crGl)

G2 = _G2+si

— G— G3 (2.8)

— (G3Tm+G0) G3

— O.5T —

with the following governor speed and opening constraints

G1—G3
—

9

GOmin <(G3 + G0) GOmax.

In these equations, Gi represents the output of an actuator, G2 that of a dashpot, G3

that of a gate servo, G0 the initial value of gate opening, and Tm the mechanical torque

output of the hydro turbine. UG is a supplementary governor control signal, if any.

GSmin., GSmax., GOmin. and GOmax. are the gate speed and openmg collstrarnts. The

block diagram for the governor—turbine system is shown in Fig. 2.2 (a)

The differential equations of a non-reheat steam turbine and governor system for the

thermo—electric plant are given by

a — (UG+WrefW)kgG

Tsm
(2.9)

=
(G+G0—Tm)

with the following governor speed and opening constraints

GSmin <G < GSmax

GOmin <(G + G0) <GOmax

In these equations, G represents the output of a gate servo and Tm the mechanical

torque output of the steam turbine. UG is a supplementary governor control signal, if

8



(I) Go

(b) Steam Turbine and Governor

Figure 2.2: Hydro Turbine, Steam Turbine, and Governors

(a) Hydro Turbine and Governor

Go
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--+W
— T
— _.fa K KT1
— T2

-

T2
UE

= —m; + + Xps2

For low-frequency oscillation and dynamic stability studies, the transmission network is

usually described by algebraic equations since its eigenmode frequency is very high and

the decay is very fast. The equations of a transmission network of an rn—machine power

system are given by

[ID,Q] = [Y][VD,Q] (2.11)

any. GSmin., GSmaz., GOmin. and GOmar. are the gate speed and opening constraints.

The block diagram for the governor—turbine system is shown in Fig. 2.2 (b)

2.1.4 Power System Stabilizer

A conventional Power System Stabilizer (PSS) is shown in Fig. 2.3. It has two lead—lag

components and one reset block. The differential equations for the PSS are

Xps2

UE

(2.10)

Figure 2.3: Transfer Function of PSS

2.1.5 Transmission Network
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where [ID,Q] and [VD,Q] respectively includes the D and Q components of all generator

armature currents and voltages

T
[ID,Q] = {ZD1, Q1, D2, iQ2, , Dm, ZQmj

T[VD,Q] = [vDl,vQl,vD2,vQ2,.. .,VDm,VQm]

[Y] is the admittance matrix of the transmission network, which is obtained from the

results of a load flow study by eliminating all non—generator buses

[yii] [y12] . . . [Yim]

[Y]
= [y] [Y221 ... [Y2rn1

[ymi] [Ym2] [ymm]

where

G3 -B,
[Yji] =

B3 G,

and denotes the real component and B3 the imaginary component of the admittance

Yij.

2.2 Complete Model of an M—machine System

Let all differential equations for the k-th machine obtained in section 2.1 be expressed as

= [F(Yk, dk, qk, Vtk)] (2.12)

where k is a vector containing all state variables and dk, and Vtk are non—state

variables. The terminal voltage Vtk may be expressed as

Vtk = Vdk + Vk or Vtk = + Vk

11



Let an additional subscript k be added to Eqs. (2.6) to signify the armature voltages

of the k—th generator

[ Vdk ] [ e ] + [ Rajc Xqk ] [ dk ] (2.13)
Vqk eqk Rak qk

The armature currents for the k—th generator can be obtained from Eq. (2.11)

[ Dk ] = [ Z7l(GkvDj — BkvQ,) ] (2.14)
1Qk l(BkvD + Gk3vQ3)

While the armature current and voltage components in Eq. (2.14) are described by

D—Q coordinate of the system network, those in Eqs. (2.12) and (2.13) are described

by individual d—q coordinates of the k-th generator. Coordinate transformation must be

carried out. Since there are more equations (2.12) and (2.13), which includes dk and

there will be less computation if the currents Dk and iqk of Eqs. (2.14) are transformed

into the and qk• As for the armature voltage, since there are more VD’s and VQ’S in

Eq. (2.14), it is preferred that only the voltages vdk and Vqk of Eq. (2.13) be transformed

to vDk and vQk. As result, Eq. (2.13) and Eq. (2.14) becomes

[ sin6k —cos5k ] [ VDk ] [ e ] + [ Raji Xqk ] [ icii ] (2.15)
cos sin vQk eqk —Xdk -l?ak qk

and

sinSk cos45k Zdk = >[l(GkvD — BkvQ3)
(2.16)

— COS 8k sin ‘5k qk Z_-l(BkvD + Gk3vQ3)

where 5j, is the rotor angle of the k—th generator and is one of the state variables in k

of (2.12). The four algebraic equations of Eqs. (2.15) and (2.16), which are required for

the four non—state variables VDk, vQk, Zdk, and and all differential equations of (2.12)

12



form a complete mathematical model for the k-th generator as follows

[k] = {F(Yk, Zdk, qk, VDk, VQk)]

Sfl COS VDk = edk
+

Rak Xqj; Zdk

cos Sk sin 6k vQk eqk —Xdk Rak qk (2.17)

Sfl cos
— Bk3vQ)

—cos6k Sifl5k qk Z,—i(Bk,vD3+ Gk3vQ3)

For a power system of m machines, there are m sets of Eqs. (2.17). The last equation of

Eqs. (2.17) shows the interconnection of all machines. This system model will be used

for most dynamic stability studies in this thesis.

2.3 Linear Model for Eigenvalue study and Stabilizer Design

For eigenvalue analysis and controller design of a multimachine power system, a linear

state model is used. The model consists of linearized first—order differential equations

with state variables only. These equations are derived from the nonlinear differential

equations obtained in the previous section. The non—state variables VD, VQ, d, and q

must be eliminated.

For dynamic stability studies, the effects of rotor D arid Q damper windings, e’q’ and

e, are usually ignored. The reason for this is that a damper winding of a synchronous

generator may be considered as a short—circuited winding of a transformer or an in

duction motor and the voltages induced in these windings at the low frequencies are

negligibly small. The governor system is also ignored because its dynamic response is

usually slow and hence the governor output may be treated as a constant. With these

considerations, there are four differential equations remaining for each machine and the

linearized equations may be rewritten in a matrix form as

± = Ax + Cy (2.18)

13



where

x = [AS,LW,LeJ,LEFD1T

y = [/id,
jqjT

In Eq. (2.18), the currents ziid and /iq are written separately. They are the interacting

variables of machines of the system. A is a 4 x 4 matrix and C a 4 x 2 matrix. Lx =

x(t) — x(O), and x(O) is the given initial operating point of x(t).

The multimachine linear model that has been developed for a decentralized optimal

stabilizer design [3] can be derived in a slightly different way as follows. For a power

system with m machines, there are m sets of Eqs. (2.18) and a subscript “k”, k=1, 2,

m, may be added to signify the k—th machine. The m sets of equations may also be

written in a matrix form as

A1 0 C 0

A2 x2 C2
+ . . LZq2 (2.19)

0 Am Xm 0 Cm
AZdm

lXZqm

Next, the armature voltages and currents are non—state variables and they must be

eliminated. Since the effects of the damper winding have been ignored, Eqs. (2.15) for

armature voltages should be modified as

sin 8k — cos vDk 0 , Rak Xqk dk

= eqk + (2.20)
cos 8k 5fl 6k VQk 1 dk -‘4ik qk

14



Linearization of Eqs. (2.20) gives

F LVDk 1 F 0 1 F Rak Xqk ] F Zjj 1
[Dk] b’k + [Ek] I I = I I eqk

+ L I I (2.21)

L LVQk ] L 1 ] Xdk Rak L /Zqk ]
where

F COS SkoVDko + Sill SkoVQko 1 F 8k0 — C05 6k0 1
[Dk]= I ] , [E,]= I I

L —SZflSkfJVDkO + COS SkOVQkO L cos 6k0 Sill 8k0 ]
where a variable with a subscript 0 denotes its initial value and should be treated as

known quantity. Next, linearization of the armature current equations (2.16) gives

[ zidk ] [ — BkzvQ) 1
[Fk] 8k + [Hk] = I (2.22)

qk ZLl(BkLvD + GkLvQ) ]
where

F cos5kOZdkO — sin5’kOqkO 1 F Sill 8k0 cos 8k0 1
[Fk] = I I and [Ilk] = I

L sin5kOZc1kO + cos Skoqko j L — cos 8k0 Sfl 6kQ j
Eqs. (2.21) and (2.22) respectively can be rewritten as

FAVDk1 FAidkl
I = [Jk]22 I I + [Lk]24 [xk] (2.23)

L VQk j L Aqk J
and

F dk 1
I = [Mk]2x2m[/VD1, /vQ1, LVD2, ZvQ2,.. . , /VDm, /.\Vqm]T + [Nk]24 [xk] (2.24)

L /Zqk j

There are m sets of Eqs. (2.24) for m machines and they can be assembled into a matrix

15



equation

Zd1 /VD1

LZqi /.vQ1

M1 N1 0
d2

N2
= LVQ + (2.25)

Mm 0 Nm Xm

dm VDm

ZZqm LVQm

There are also m sets of Eqs. (2.23) for m machines and they can be substituted into

Eqs. (2.25) to eliminate the voltage vector. With the substitution, Eqs. (2.25) becomes

LZqi

LZd2

x2
= [‘92mx4m (2.26)

Xm

qm

Substituting Eq. (2.26) into Eq. (2.19) gives

A11 A12 . . . Aim

= A21 A22
... A2m

(2.27)

Ami Am2 ... Amm Xm

For conciseness, Eq. (2.27) is usually written as

[rh] = [A][xj (2.28)
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where [x] is a 4m x 1 state vector representing the perturbation of the system state from

its chosen operating point. [A] is a 4m x 4rn system matrix depending on the system

parameters as well as the system operating condition. Eq. (2.28) is the linear model of

the open—loop rn—machine power system, which will be used for eigenvalue analysis and

stabilizer design in Chapter 3 and Chapter 4.

2.4 Discretized Model for Computer Simulation

For dynamic stability studies of power systems, the dynamic responses of the power

systems with and without supplementary stabilizer are usually investigated by digital

computer simulations. The major task of simulations is to simultaneously solve all dif

ferential and algebraic equations of Section 2.2. Let the two differential and algebraic

equation sets be written in matrix form, respectively as

[dY(t)]
= [F(Y(t),Z(t))] (2.29)

[(Y(t), Z(t))] = [0] (2.30)

where Y is a vector containing all state variables and Z is a vector containing all non—

state variables (id, Zq, VD, and VQ of all generators).

Usually, the differential equatiolls, Eqs. (2.29), are solved using some integration

techniques including the Runge—Kutta method while the algebraic equations, Eqs. (2.30),

are solved by a numerical method. Hence, the equations are solved in two separate loops

and the interface error between the two loops must be dealt with. This is not desirable.

A better method is to use the trapezoidal rule of integration to transform Eqs. (2.29)

into a set of algebraic equations so that all equations to be solved are algebraic equations

and can be solved simultaneously.
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2.4.1 Trapezoidal Rule of Integration

Consider a differential equation of Eq. (2.29)

dy(t)
_ f[Y(t) Z(t)] (2.31)

Since the time responses of y(t) are computed on a digital computer at discrete intervals

of time (step size At ), the numerical solution of Eq. (2.31) at time t may be expressed

in integral form as

y(t) - y(t - At)
=

f f[Y(r), Z(r)]dr (2.32)
t-t

Since the RHS of Eq. (2.32) may equal the trapezoidal area of

- At), Z(t - At)] + f[Y(t), Z(t)]}

we have

y(t) = f[Y(t), Z(t)] + yo (2.33)

with Yo known from the solution at the preceding time step,

Yo = y(t — At) + f[Y(t — At), Z(t — At)] (2.34)

The trapezoidal rule has been discussed in detail in Electromagnetic Transients Program

(EMTP) [4]. The error introduced by the trapezoidal rule of integration is negligible for

a very small step size At.

The following is an example. Consider Eq. (2.4)

,, 1 ,, . , ,, I II I

eq = -[—eq
— Zd(Xd — Xd) + eq + TdOq1

do

It may be rewrittell as

d ,, , 1 ,, . , ,,
— eq) = r[—eq

— Zd(Xd
—

Xd) + eq]

do
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Therefore

y(t) = e—e

f[Y(t), Z(t)] = [_e
- id(Xd - x) + eq]

From the trapezoidal rule Eqs. (2.33) and (2.34), we have

II I At ,, . ,

eq — eq = .-[_eq
— Zd(Xd — Xd) + eq] + Yo (2.35)

do

and

II I t II . I II I

Yo = eq — eq + -[—eq
— d(Xd — Xd) + eqj (2.36)

do

where Yo is calculated from the values of variables at time = t — At and hence is treated

as known quantities at time = t. Rearranging Eq (2.35) and (2.36) yields

eq = eq — auqid(x — x) + be”q

where

ae”q
= 2T + At

be”q = e — e + ae”q[2(e — e)
— id(Xd

—

The benq includes the values of variables at time = t — At. Hence, besides a, b is the

known coefficient at time = t

2.4.2 Obtaining Algebraic Equations from Differential Equations

In this subsection, the differential equations of a power system will be transformed to alge

braic equations according to the trapezoidal rule of integration. The resultant a and b co

efficients of these algebraic equations obtained are listed in detail in Table 2.1. Note that

the computation of b coefficients requires the values of some variables at time = t — A t,
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which must be updated after every Lit. However, both a and b coefficients are always

treated as known quantities at time = t.

Applying the trapezoidal rule of integration, the following algebraic equations are

obtained.

Governor for a hydro—electric plant. From differential equations (2.8 ) we

have

Gi = agl(wrcf W G2 + UG) + bgi.

G2 = ag2Gl + bg2 (2.37)

G3
= ag3(G1— G3)

+ bg3, GSmin
Gi — G3

GSma.

Tm = atmiG3 + atm2Go + btm, GOmin (G3 + G0) GOmax

Torque equations of the generator. From the differential equations (2.1) and

(2.2) we have

= aw(Tm — Ta) + b , T = edid + e’q’iq
— ( — X’q’)idiq (2.38)

6 = aS(w — 1.0) + b3 (2.39)

Power system stabilizer. From the differential equations (2.10), we have

x1 = a,81 + b31

+ b32 (2.40)

tIE = auexps2 + bue

Excitation system, F winding and D damper winding. From the differential

equations (2.7), (2.3) and (2.4), we have

EFd = aefd(uE — + V + Vf) + befd, Emin EFD Emax

e’q = aelq[EFD — id(Xd
—
x1)j + be’q (2.41)

eq = eq — aeIlqid(x
—

x) + benq
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Table 2.1: a and b Coefficients

agi = 2T+t bgi = Gi + agl(wref — — G2 — 2aGl + tIG)

2Tr6T b92 — — 1)G2 — ag2Glag2 = 2Tr+t — “

—

_______

ag3
— T bg3 = G3 +

aga(G1_G3)

— t—2Tatml
— T+At

atm2 = btm = (2atm2 — atmi)G3 + (1
—2atm2)Tm + atm2Go

it

= 2M+Dt
= w + aw(Tm — Te — 2DL.))

a3= bs=+a3(w—1.O)

2T

__________

2T-t
a81

= 2T-f-t b31 = 2T+tXP81 — a31w

K(2Ti+a.t) b82 — K(t—2Ta)

_______

a82
= — 2T2+It

X9i + 2T2+tXP82

— 2Ti+t bue — t—2T1 2T2—Itaue
— 2T2+t — 2T2+tXP82 + 2T2+t

aefd

— tKA

___________

— 2TA+t befd = EFD + aejd(UE — + V + Vj
— 2(EFD—EFDO))

KA

aelq
2T0+t

be’q = e + ae!q[EFD — 2e — id(Xd — x)}

Lt
ae”q

= 2T+t
benq = — e + ae”q[2(e — e’) — — x)]

I, I

a’d
= 2T+t

be”d = ed + aeud[iq(xq — Xq)
— 2ed]
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Q damper winding. Finally, from the differential equation (2.5) we have

e = ae”diq(xq — x) + be”d (2.42)

2.4.3 Reduced Equations

To save computation time, the number of equations involved in the numerical solution

for the complete system will be minimized. First, Eqs. (2.38) and (2.39) can be reduced

to a single equation by eliminating w,

6 = ai(Tm — Te) — (2.43)

where

a1 = aa

b1 = aö(1.O
— b) —

Te edzd + e’iq — (x’ — x)idiq

Next, Eq. (2.39) can be rewritten as

w = (1 + 6/a3 — b3/a3) (2.44)

Substituting Eq. (2.44) into the first equation of (2.37) and then eliminating the variables

Gi, G2, and G3 of (2.37) successively, we shall have

Tm = amS + bm (2.45)

with modified coefficients as

am = a1a3atm1 , bm atmi(a,3b,1+ b) + atm2Go + btm

— —agi
b’

— agib/as + bgi —a91(b92 — UG)
a91

— aS(a91a92 + 1) gi
—

a91a92 + 1

a’
— a93

b’
—

_________

—

I + a93 ‘ T9 + a93
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Inserting Eq. (2.45) into Eq. (2.43) gives

(1 — aiam)6 + al[e’d’id + e’iq — (x
— X’q’)diq] — aibm + b1 = 0 (2.46)

Thus, equations (2.37), (2.38) (2.39) have been reduced to a single equation i.e., Eq. (2.46).

Similarly, equations (2.40) and (2.41) can be reduced to a single algebraic equation.

First, the w in the first equation of Eq. (2.40) can be replaced with Eq. (2.44). Next,

substituting X31 and x2 into the equation of UE, we shall have

UE = a’ue6 + b’j (2.47)

where

aueapslaps2
ue a

b’ue = aue(apslaps2 +a32b3i+ b82) + bue
— a’uebs

Inserting Eq. (2.47) into the first equation of Eq. (2.41) and then eliminating EFD and

e, we shall have

eq — a218 + a22id + a23vt — b2 = 0 (2.48)

with modified coefficients,

a21 = aeIqaefda , a2 = ae’q(xd — x) + aeiiq(x — x)

a23 = ae’qaefd , b2 = be’q + bei’q + aelq(aefdvref + aefdbue + befd)

Hence, all differential equations for each machine can be represented by only three

algebraic equations, namely, Eqs. (2.46), (2.48), and (2.42). They are summarized as

(1 — aiam)6 + al[eid + eqiq
— ( — Xq)dZq — aibm + b1 = 0

eq — a216 + a22id +a23v+ V — b2 = 0 (2.49)

ed — aelldiq(xq
— ) — bend = 0
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Eqs. (2.49) can be used for any machine. If a different type of governor is used or there

exists a supplementary governor control, only am and bm coefficients will change. For a

different supplementary excitation control other than PSS, a21 and b2 will change due

to change in a’ue and To take into account the upper and lower limits of variables,

a and b coefficients may be modified. For example, once EFD reaches its upper limit

Emax, Eqs. (2.40) and the first equation of Eqs. (2.41) should betemporarily excluded.

Also, EFD in the second equation of Eqs. (2.41) should be set to Em,j. This is equivalent

to setting a21 = a23 = 0 and setting b2 = be’q + be”q + aeiqEma. in Eqs. (2.49). Hence,

the form of Eqs. (2.49) holds for various control circuits of any one of machines in a

multimachine system. This is very useful in computer programming for the dynamic

stability studies where the behavior of each machine with and without various stabilizers

will be simulated.

2.4.4 Complete System Equations for Simulations

As already mentioned in the previous subsection, all differential equations can be trans

formed into algebraic equations and subsequently be reduced to Eqs. (2.49). Replacing

the differential equations of Eqs. (2.17) with Eqs. (2.49), we have

(1
—

a1ak)Sj, + alk[e’d’kidk + e’iq,.
—

(Xj’ — X’q’k)dkqk1 — alkbmk + bik 0

eqk — a2lk6k+ a22kidk + a23k.Jvk + Vk — b2k = 0

edk — ae”dkiqk(xqk — Xqk) — b”dk = 0

[ sin6j —cosSk ] [ vDk ] [ edk ] + [ Rai, Xqk ] [ dk ] (2.50)

cos Sill VQk eqk Xdk Rak qk

5fl 8,, cos dk 1(GkvD — BkvQ)

—cos6k 5ill5k qk l(BkvD + GkvQ)

The subscript k is added to the first three equations to signify the k—th generator. For

the simulation of a m—machine power system, there exists m sets of these equations for
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all machines. Together they constitute a complete set of simultaneous equations. They

are nonlinear algebraic equations and can be solved by the Newton—Raphson method.

Once the solutions for 8, e’, e, and armature currents and voltages are obtained

from simultaneous equations (2.50) at time = t, they are substituted into the algebraic

equations in subsection 2.4.2 to solve for other state variables which were eliminated

during the equation reductions. For instance, with 6 known, the w is obtained directly

from Eq. (2.39). Thereafter, Gi is obtained from the first equation of Eq. (2.37), G2 from

the second one of Eq. (2.37), and so on. Hence, the solutions for other state variables

involve only substitutions. After the solutions for all variables, the lower and upper limits

for some state variables must be applied and all b coefficients must be updated for the

next computation of Eqs (2.50) at time = t + /t.
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Chapter 3

SELECTION OF NUMBER AND SITES OF STABILIZERS

3.1 Introduction

Power system stabilizers (PSSs) are designed as supplementary control devices in a power

system for the improvement of its stability. To improve the stability of a large power

system, all generators larger than a certain capacity are recommended to be equipped

with PSSs. This may not be economic nor effective since not all large generators are

situated at strategic locations. Therefore, in designing stabilizers for a multimachine

power system, two prerequisite decisions must be made: 1) how many stabilizers are

required and 2) on which machines these should be located.

Eigenvector methods ([5], [6]) were commonly used for the stabilizer site selection.

Later, the participation factor method was proposed by Perez—Arriaga et al. ([7], [8]) and

applied by Hsu and Chen [9] for one stabilizer siting. Participation factors are calculated

from the eigenvectors of a system matrix [A], which may be called the right vectors, and

the eigenvectors of the transpose of the matrix [A], which may be called the left vectors.

Hsu and Chen’s work was concerned with the location of only one stabilizer because the

power system under study had only one unstable oscillating mode. For a large power

system with many unstable modes, further research must be performed.

This chapter is aimed at presenting the results of this research on the number and

site selection of stabilizers for an unstable nine—machine power system. Two methods are

included; the participation factor method and the speed deviation index method. While
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the participation factor method is based on a low—order linearized generator model, the

speed deviation index method is based on a high—order nonlinear model. The index

method defines a weighted speed deviation index from computer simulation results. The

index can identify the most unstable generators which must consequently be equipped

with stabilizers. In these simulations, coherently swinging groups of the system are

also identified. The final selection of stabilizer number and sites, however, can only be

made after examining the results of stabilizer design. For the stabilizer design, a pole-

placement design technique is developed in the next chapter, but the results of several

stabilizer designs are assessed in this chapter using a system stability index (SSI).

Many results of this chapter and the next chapter are published ([it], [12]).

3.2 A Nine—Machine System under Study

A nine—machine system [3], Fig. 3.1, is used for this study. The nine—machine system

is chosen because a system with two or three machines is lot large enough to display

the nature of coherent group behaviour of a large power system. On the other hand,

a system with too many machines will be crowded with results and thus it is hard to

extract useful information from the results.

The system under study comprises nine synchronous generators interconnected by

a transmission network. Machines 3 and 9 are hydro—electric plants with mechanical—

hydraulic governors while the others are thermal—electric plants with electrical—hydraulic

governors. An exciter and voltage regulator system of the fast—response type is assumed

for each generator. The multimachine power system is initially unstable. The system

data are as follows.
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Generator

Figure 3.1: An Initially Unstable Nine—Machine System

I II II I II II
No. Xd 1’q Xd d xq M D Td Td Tq

1 0.70 0.70 0.12 0.098 0.098 25.0 5.0 7.0 0.091 0.455

2 0.60 0.60 0.10 0.084 0.084 30.0 5.0 7.0 0.091 0.455

3 0.50 0.40 O15 0.070 0.070 20.0 5.0 8.0 0.104 0.520

4 1.60 1.60 0.23 0.224 0.224 12.8 5.0 7.0 0.091 0.455

5 0.95 0.95 0.15 0.133 0.133 19.8 5.0 7.0 0.091 0.455

6 0.95 0.95 0.15 0.133 0.133 19.8 5.0 7.0 0.091 0.455

7 1.00 1.00 0.17 0.140 0.140 18.0 5.0 7.0 0.091 0.455

8 1.00 1.00 0.17 0.140 0.140 18.0 5.0 7.0 0.091 0.455

9 0.39 0.32 0.06 0.055 0.055 32.0 5.0 6.0 0.078 0.390

All data are in per unit except M, T, T, and in seconds.
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Bus Load

Bus Pg (p.u.) V (p.u.) Bus Pload (p.u.) Qload (p.u.)

1 (slack) 1.06 11 2.5 0.2

2 3.0 1.04 12 1.5 0.1

3 3.5 1.035 13 2.4 0.2

4 2.0 1.03 14 4.5 0.5

5 1.0 1.035 15 0.0 0.0

6 2.5 1.04 16 3.5 0.2

7 2.5 1.04 17 2.0 0.2

8 2.0 1.01 18 2.0 0.0

9 2.0 1.015 19 1.5 0.0

10 3.5 1.06 20 0.0 0.0

21 3.5 —1.7

Excitation System

TAO.lOs KA=50.0p.U. For machines 7, 8 and 9

TA=0.05 s KA=100.0 p.u. For other machines

—0.7 p.u.EFD<0.7 p.u. —0.12 p.u.UE0.12 p.u.

Hydro Turbine and Governor

u=0.05 p.u. 6=0.25 p.u. T9=0.5 s

T0.02 5 Tr=4.8 S T1.6 8

—0.1 p.u./sSL0.1 p.u./s 0.0PLPmax

—0.15 p.u.UG0.15 p.u.
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Steam Turbine and Governor

TsmO.1 S TCHO.4 S K9=20.0 p.U.

—0.1 p.u./sSL<0.1 p.u./s 0.0PLPmax

—0.15 p.u.UG<0.15 p.u.

Transmission Line

Bus I Bus J R (p.u.) X (p.u.) Bus I Bus J R (p.u.) X (p.u.)

2 13 0.0 0.059 13 14 0.024 0.24

3 13 0.0 0.0135 20 13 0.0096 0.096

5 12 0.0 0.29 20 13 0.0096 0.096

12 13 0.0068 0.068 14 15 0.007 0.07

6 16 0.0 0.05 15 4 0.02 0.232

16 19 0.03 0.3 15 11 0.007 0.07

7 16 0.0 0.10 14 10 0.012 0.12

16 17 0.00145 0.0145 14 18 0.0204 0.204

19 20 0.0106 0.106 14 18 0.0204 0.204

20 21 0.0064 0.064 18 9 0.0 0.28

21 17 0.0161 0.161 17 18 0.0057 0.057

21 14 0.0025 0.025 17 8 0.032 0.32

13 14 0.024 0.24 11 1 0.0 0.032

3.3 Participation Factor

The participation factor was introduced in [7] for selective modal analysis (SMA). A

brief introduction to the participation factor is given in Section 3.3.1. The calculated

participation factors of the nine—machine system are presented in Section 3.3.2.
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3.3.1 Definition of the Participation Factor and Concept

Consider a linear time-invariant system

[] = [A][x] (3.1)

where [x] is an n state vector and [A] an n x n system matrix. There are n eigenvalues

for the system, A, i = 1, ..., n. For each eigenvalue , there is an eigenvector [y] of [A]

satisfying

[A][y} = )j[y] , [y] 0 (3.2)

It is well—known that both [A] and [AlT have the same eigenvaliies but the different

eigenvectors. Let the eigenvector of [AlT for ) be [uj

[A]T[u] = X[u] , [ui] 0 (3.3)

or

[uJT[A] = [u]TA
, [ui] 0 (3.4)

Let [y] be called the right eigenvector and [ui] the left eigenvector. Note that there are

n entries for each eigenvector and the k—th entry of [y] or [ui] belongs to the lc—th state

variable of [x]. A participation factor is defined in [7] as

Pki = UkiYkj (3.5)

where Yki (uk) is the k—th entry of the i—th right (left) eigenvector [y] ([ui]).

Consider the time response of the system (3.1). For an initial condition [x(0)], the

solutions of the [x(t)} are

[x(t)] =[u]T[x(O)}et[y] (3.6)

31



If [x(0)] = [y], Eq. (3.6) becomes

[x(t)] = (3.7)

Since [u3] and [yj] are orthogonal for j i [7], we have

T[uj] [y,] = 0.0 for j z (3.8)

Therefore, Eq. (3.7) becomes

[x(t)] = [uj]T[yj]et[yj]

= (Pij + P2i + + pni)e[yi] (3.9)

Hence, when only the i—th eigenvalue is excited, Pki, k =1, 2, ..., n measures the relative

participation of the k—th state variable in the time response of the i—th eigenvalue mode.

Based on this concept, participation factors of a system can be used to find the most

sensitive state variable to the electromechanical eigenvalues of interest.

3.3.2 Participation Factors of the Nine—machine System

Based on the linearized state equation, Eq. (3.1), the system matrix of the nine—machine

power system can be readily obtained by a Fortran program following the linear model

procedure given in Chapter 2. Each machine is described by a fourth—order model in

which state variables are arranged in a definite order of M, w, and /.EFD. There

are 36 state variables in [x] for the nine—machine system and the system matrix [A] is

a 36 x 36 matrix. The 36 eigenvalues of the system without supplementary stabilizers

(open—loop system) are calculated and listed in Table 3.1. Eigenvalues 11—28 are elec

tromechanical modes. These modes are identified with participation factors. When the

participation factors of a pair of complex—conjugated eigenvalues have the maximum val

ues for state variables LS and &. of a particular machine, this pair of eigenvalues is

closely associated with the mechanical modes of that machine.
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Table 3.1: Eigenvalues of the Open—Loop System

Number Eigenvalues
1 -17.5178
2, 3 -9.9615 ±j 11.1700
4 -15.8514
5, 6 -10.5035 +j 6.8676
7, 8 -10.3454 ±j 6.4374
9, 10 -10.2149 ±j 2.9120
11, 12 -0.3354 ±j 9.1267 #
13, 14 -0.2188 +j 8.6423 #
15, 16 -0.0947 ±j 7.2452 #
17, 18 -0.0627 +j 7.0242 #
19, 20 -0.1970 ±j 6.5043 #
21, 22 0.5083 +j 5.3235
23, 24 0.5260 +j 5.4462 #
25, 26 0.2248 +j 6.1273 #
27, 28 0.0922 ±j 2.8020 #
29, 30 -5.2957 +j 5.2354
31, 32 -6.1138 ±j 4.0579
33, 34 -5.8807 +j 4.0080
35 -4.5908
36 -2.6307

# Denotes electromechanical mode eigenvalues

It is found from Table 3.1 that there are four unstable eigenmodes, or eigenvalue—pairs

with a positive real part (eigenvalues 2 1—28). The participation factors of these unstable

modes are listed in Table 3.2.

For the participation factors of each of the first three unstable modes, there are two

largest values corresponding to M and &4. of a particular machine. It is found that they

belong to machines 7, 8, and 3, respectively. This clearly suggests that the machines 7,

8 and 3 should be the first three to be designed with PSSs. But it is much less clear for

the fourth unstable mode. Since the participation factors of machines 7, 8 and 9 of this

unstable mode all have the largest value, whether a stabilizer designed on machines 7,

33



Table 3.2: Participation Factors of Unstable Modes

Eigenvalues of Participation Factors Machine
Unstable Modes Corresponding to State Variables: Number
(Eigenvalue No.) 116(i) 11w(i) 11e(i) IIEFD(i) (i)

0.05 0.05 0.00 0.00 1
0.05 0.05 0.00 0.00 2
0.02 0.02 0.00 -0.00 3
0.06 0.06 -0.00 0.00 4

0.5083 ±j 5.3235 -0.00 -0.00 0.01 0.00 5
(21 and 22) -0.00 -0.00 0.00 0.00 6

I 0.281 10.271 0.11 0.04 7
-0.06 -0.05 -0.02 0.01 8
0.03 0.03 -0.00 0.00 9

-0.01 -0.01 0.00 -0.00 1
-0.01 -0.01 0.00 -0.00 2
-0.01 -0.01 -0.00 -0.00 3
0.01 0.01 0.00 -0.00 4

0.5260 ±j 5.4462 0.00 0.00 -0.00 0.00 5
(23 and 24) 0.00 0.00 -0.00 0.00 6

0.05 0.05 -0.02 0.01 7

10.401 10.391 0.10 0.05 8
-0.01 -0.01 0.00 0.00 9
0.01 0.01 0.00 0.00 1
0.01 0.01 0.00 0.00 2

I 0.441 I 0.441 0.06 0.00 3
0.02 0.03 -0.00 0.00 4

0.2248 ±j 6.1273 0.00 0.00 0.00 0.00 5
(25 and 26) -0.00 -0.00 0.00 0.00 6

-0.00 -0.00 0.00 -0.00 7
0.00 -0.00 0.00 -0.00 8

-0.01 -0.01 0.00 0.00 9
0.06 0.06 -0.00 -0.00 1
0.06 0.06 0.01 -0.00 2
0.02 0.02 0.00 -0.00 3
0.04 0.04 -0.00 -0.00 4

0.0922 ±j 2.8020 0.05 0.05 0.01 -0.00 5
(27 and 28) 0.05 0.05 0.00 -0.00 6

0.07 0.07 0.00 -0.00 7
0.07 0.07 0.01 -0.00 8
0.07 0.07 -0.00 -0.00 9
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8, or 9 will effectively improve the fourth unstable mode is uncertain. Also, it is unclear

whether three stabilizers on machines 3, 7, and 8 are sufficient to stabilize the entire

system or a fourth stabilizer must be designed. Since the participation factor method

is a linear analysis using a low—order linearized generator model, further analysis of the

nine—machine system through nonlinear simulations using high—order nonlinear system

models probably will provide a more accurate answer.

3.4 Nonlinear Simulations for Open-Loop System

To find a more accurate answer to the question of how many stabilizers are required and

where they should be located, comprehensive time—domain simulations using a high—order

nonlinear system model are performed by the computer simulation method described in

Chapter 2. A three-phase fault is assumed to occur near the terminal bus of each

of the machines in turn for the simulation tests. There are nine machines and nine

different short—circuit tests. All time responses of angle, speed, torque, etc. are recorded.

Therefore, there are numerous curves which can be plotted. Our primary concerns at the

moment, however, are the angular swings and the speed deviations of the nine machines.

3.4.1 Coherent Groups

One of our interests is how these machines behave. Are they swinging coherently or

individually? Typical results found from the short—circuit test at the terminal bus of

generator 1 are shown in Figs. 3.2 through 3.5. The generator angular swings for all

short—circuit tests show that there are six coherent groups and the results are summarized

in Table 3.3.

Although swing curves from the comprehensive nonlinear simulation tests give a clear

picture of how many coherent groups, they still cannot tell how many stabilizers are really
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Table 3.3: Coherent Groups of a 9—machine System

L Groups 1 2 3 4 5 6
Machine No. 1, 2 4, 9 5, 6 3 7 8

required for the stabilization of the system and where they should be located. Although

Hiyama [10] suggested at least one stabilizer for each coherent group of a large power

system, it remains to be examined.

3.4.2 Speed Deviation Analysis

Searching for the most unstable generators in a multimachine system may be helpful in

deciding the stabilizer number and sites for the system. Although the stability perfor

mances of generators may be compared with each other by directly observing generator

speed deviations from system simulations, the comparison of a great number of speed

deviation curves of all machines for various simulation tests is very tedious. To avoid

that, a speed deviation index (SDI) is defined for individual machine generator as follows

SDI =
-J M&4dt (3.10)
k1 o

where Aw is the speed deviation of a machine with respect to the system synchronous

speed in the j—th test, M is the inertia constant of the machine used as a weighting

factor, M&4 has the same unit as kinetic energy, which is integrated over time from 0

to t, and k is the total number of simulation tests. This means that the SDI is defined

by the average value of weighted speed deviations of a machine for all short—circuit tests

over the simulation time. The SDI of a machine measures the degree of stability of the

machine. The larger the SDI value of a machine is, the less stable the machine.

A three—phase short—circuit for 0.12 second is given to each generator terminal of

the system in turn. There are nine simulation tests for the nine—machine system and
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Table 3.4: Speed Deviation Indices of Machines for the Open—loop System

( Normalized with Respect to Their Maximum Value)

r SDI 1.000 0.6713 0.1028 0.0666 0.0658 0.0630 0.0609 0.0404 0.0308
Mc.No. 7 8 3 2 9 1 4 6 5

each simulation lasts 5 seconds, i.e., k = 9 and t = 5 in Eq. (3.10). The SDI values of

all machines are calculated for all simulation tests and normalized with respect to their

largest value. They are listed in Table 3.4 for comparison.

Table 3.4 shows that there are three machines of G7, 08 and 03 which have relatively

larger SDI values and another six machines which have relatively smaller SDI values.

Therefore, machines 3, 7, and 8 are the first three candidates for stabilizer sites. The

remaining questions are whether the three stabilizers are sufficient to ensure the stability

of the entire system or a fourth stabilizer is required.

3.5 Stabilizer Designs

So far it has been found from both participation factors and speed deviation indices that

the first three stabilizers must be designed for machines 3, 7, and 8. Whether three

stabilizers on these machines are sufficient or not must be further investigated through

actual stabilizer designs. For this, different combinations of machines for PSS locations

are as follows:
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Design No. Machines with Stabilizer

1 378

2 3781

3 3782

4 3784

5 3785

6 3786

7 3789

A pole—placement technique developed in Chapter 4 is applied to these power system

stabilizer (PSS) designs for the multimachine system. The design procedure and the

designed PSS parameters will be presented in detail in the next chapter and are not

described here. Our concerns at this moment are the dynamic performances of the nine—

machine system with designed stabilizers in order to make the final decision of stabilizer

number and sites. To assess the merit of a PSS design from the nonlinear simulation

tests in time—domain, a system stability index (SSI) is introduced, which is defined as

= (3.11)

where n is the number of machines in the system, i the i—th machine, j the j—th test

and k the number of simulation tests. For each PSS design, the speed deviations of all

machines of the power system are integrated over the entire simulation duration, and

the results are added for all short—circuit simulations to give a SSI value. The SSI value

measures the degree of stability of the closed—loop power system for this design. The

smaller the SSI value of the system is, the more stable the system.

Again, a three-phase short—circuit for 0.12 second is assumed to occur near a terminal

bus of all generators in turn and the results are recorded for 10 seconds for each short—

circuit test. There are nine machines and nine short—circuit test, i.e., n = 9, k = 9 and
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Table 3.5: System Stability Indices of Various Designs

Design No. Machines with PSS SSI of the System
1 3 7 8 0.55331
2 3781 0.54721
3 3782 0.54680
4 3784 0.55036
5 3785 0.55091
6 3786 0.54382
7 3789 0.54988

t = 10 in Eq. (3.11). The nine simulation tests and calculations of SSI are repeated for

each PSS design. For all simulation tests, the initially unstable nine—machine system

becomes stable for all stabilizer designs. The results of calculated SSI are listed in

Table 3.5.

The results in Table 3.5 indicate that the three—stabilizer design of G3, G7, and G8 is

just as good as any of four—stabilizer designs. It is concluded that the three stabilizers are

sufficient to stabilize the nine—machine system. Some simulation results of the closed—

loop system for the three-stabilizer design will be given in the next chapter.

3.6 Conclusions

1. Both participation factor method of linear analysis and the speed deviation index

(SDI) based on nonlinear simulations are helpful in deciding stabilizer number and

sites for a multimachine system. Stabilizers should be installed on machines whose

speed state variables have relatively larger participation factors of unstable modes

or on machines having relatively larger speed deviation indices.

2. Coherent groups can be found from the nonlinear simulation tests, but it is not

necessary to have a stabilizer for each coherent group.
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3. For the initially unstable nine—machine system, three PSSs on machines 7, 8, and 3

are sufficient to ensure the stability of the system although there are four unstable

modes and six coherent groups for the open—loop system.

Note that the third conclusion has been verified not only from the results of PSS

designs in Chapter 4 but also from the results of a self—tuning stabilizer design in Chap

ter 5.
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Chapter 4

PSS FOR MULTIMACHINE SYSTEMS WITH LOW-FREQUENCY

OSCILLATIONS

Low—frequency electro-mechanical mode oscillations between interconnected synchronous

generators in a large power system stem from the increase in size and in complexity of

power systems. The oscillating frequencies range approximately from 0.2 to 2.5 Hz [13].

To improve damping of low—frequency oscillations, Power System Stabilizers (PSS) are

designed. The use of PSSs has been popular in power industry [14]. However, the

design of PSS parameters for a large power system is still a tough task since PSSs are

usually installed on some large generators in the system and only local variables of these

generators can be readily utilized as feedback signals. Due to the decentralized control

structure and dynamic interaction between machines [15], much effort has been made in

PSS design to coordinate all PSSs of a multimachine system to provide certain damping

for low—frequency oscillating modes of the entire system ([16]—[18]). Progress also has

been made in developing pole—placement methods for determining PSS parameters to

yield exact damping to negatively or poorly damped low—frequency oscillating modes

([19]—[20]). Although these exact pole—placement techniques are useful for PSS design,

they are still complicated and involve much computation. A simpler pole—placement

technique with less computation is desirable.

This chapter presents a new pole—placement design technique for determining PSS

parameters of multimachine power systems in order to move unstable or poorly damped

low—frequency oscillating mode eigenvalues to desired locations on the complex plane.

43



The mathematical formulation of the design method is concise and systematic and the

computational requirement is less than the previous methods ([19]—[20]). Two multima

chine power systems are used as examples to illustrate the design procedure and to show

the effectiveness of the proposed method.

4.1 A New Pole—Placement PSS Design Method

Consider a design of m stabilizers for a multimachine power system. The number of

machines of the system may be equal to or larger than the number of the stabilizers. In

the frequency domain, the linear state equation of the power system may be written as

[sx(s)] = [A][x(s)] + [B][u(s)] (4.1)

where [x] is an n state vector of all machines with the speed variables of m generators in

leading positions, [u] is an m control vector, [A] is an n x n system matrix, and [B] is an

n x m control matrix. Assuming that the control signals of stabilizers are applied to the

excitation systems of the m machines, Eq. (4.1) may be partitioned as

szw(s) A11 A12 /Xw(s) 0
= + [u(s)] (4.2)

sy(s) A21 A22 y(s) B

where [(s)] consists of m speed elements of the m machines for which the stabilizers

are designed and [y(s)] the remaining state variables of [x]. [Ba] is part of [B], also

consisting of mostly null elements except those associated with the transfer functions of

excitation systems.

The speed variable of the j—th machine, is used as feedback input of the decen

tralized stabilizer on the j—th machine to produce a control signal

ui(s) = h(s)(s) (4.3)
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where

h(s)=
i 2rj

; j=1, 2, ..., m (4.4)

and h3(s) is the transfer function of a Power System Stabilizer (PSS), with an additional

reset block, on the j—th machine. The PSS time constant and the reset block time

constant are usually preselected and treated as known quantities. The other PSS

parameters of h,(s) are treated as the unknowns. For the m stabilizers of the power

system, there are m Eq. (4.3) and they may be assembled into

[u(s)] = [H(s)][.(s)] (4.5)

where [H] is an rn x m matrix with only diagonal elements h,(.s),j = 1,.. . , m. Therefore,

the last term of Eq. (4.2) becomes

0 0 sw(s)
[u(s)] = [H(s) 0]

B B y(s)

0 0 &(s)
= (4.6)

BH(s) 0 y(s)

Substituting Eq. (4.6) into Eq. (4.2) gives

[sLw(s)] = [A11][Lw(s)] +[A12][y(s)]

[sy(s)] = [A21 + BH(s)][/.w(s)] +[A22][y(s)]

Eliminating [y(s)j from Eq. (4.7) yields

[F(s)][/w(s)] = [H(s)][w(s)] (4.8)

where

[F(s)] = {A12(sI —A22)’B]
1

[sI — A11 — A12(sI —A22)A21] (4.9)
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and [F(s)] is an m x m matrix.

To find the unknown parameters of hi(s) of the j—th stabilizer, let hi(s) be expressed

explicitly first. Let the j—th speed variable of [&(s)] of Eq. (4.8), L\w(s), be moved to

the first position. Hence, [F(s)] and [H(s)] must be reordered as [F3(s)] and [H3(s)j as

follows

F,11(s) F,12(s) Awi(s) = hi(s) 0 \w3(s)
(4.10)

F21(s) lj22(s) x3(s) 0 H2(s) x3(s)

where hi(s) is separated from other PSS transfer functions and H2(s) is an (m — 1) x

(rn — 1) matrix with the remaining rn — 1 stabilizer transfer functions as its diagonal

elements. [x(s)] is a vector with m — 1 speed variables of [/w(s)] excluding z\w(s).

Eliminating [x(s)] from Eq. (4.10), we shall have the explicit expression of h3(s).

hi(s) = F(s) +Fj12(s)[H2(s) —.F22(s)]’F21(s) (4.11)

The process of reordering Eq. (4.8) to obtain Eq. (4.11) must be repeated for j = 1,. . . , m

so that rn equations of Eq. (4.11) can be obtained for m stabilizers. Let PSS transfer

functions of Eq. (4.11) be replaced by Eq. (4.4). Then, Eq. (4.11) may be rewritten in a

general form

h(s,K,T) = f(s,K1,T1,.. . .,Km,Tm)
(412)

j=1, 2, ..., m

The remaining problem is to determine PSS time constant T and the gain K,. This

can be done in such a way that m pairs of open—loop unstable eigenvalues can be moved

exactly to the desired locations for the closed—loop system. For this purpose, replacing s

in every j—th equation of Eqs. (4.12) with the j-th desired eigenvalue A, or its conjugate
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value ), we have

h1(X1,K1,T1) = fi(;\i,K2,T2,K3,T3,...Km,Tm)

h2(.A2,K2,T2) =f2(\2,K1,T1,K3,T3,.. .Km,Tm)

(4.13)
fj(\j,Ki,Ti,...,Kj_i,Tj_i,Kj+i,Tj+j,...,Km,Tm)

hm(.Am,Km,Tm) = fm(\m,Ki,Ti,K2,T2,...,Km_i,Tm_i)

Finally, the pole—placement design problem has been reduced to the solution of 2m PSS

parameters K, and T3 (j = .. ,m) from the algebraic equations (4.1.3).

Two major advantages of the new design method are clear at this moment. Firstly, it

is obvious that the mathematical formulation involved for reducing system state equation

to algebraic equations (4.13) is concise and systematic. Secondly, since h, is explicitly

expressed in the j—th equation of Eqs. (4.13) (or h, is separated from the arguments

of fj), a relatively simple method, the Gauss—Seidel method or the fixed point method,

can be used to solve for K., and T, j = 1,.. . , ni. But, this cannot be done if all

h, j = 1,.. . , m were implicitly expressed in a set of algebraic equation as in [20]. In

such case, the Newton—Raphson method must be used to find the solution. But, the

required computation of Jacobian matrix at each iteration is very time consuming.

4.2 PSS Designs Using the New Pole—Placement Method

This section discusses how to apply the proposed new pole—placement method to the

PSSs designs for power systems. Two multimachine power systems are used as the

design examples to show the design procedure and the effectiveness of the method.
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4.2.1 Algorithm of Solving PSS Parameters by Gauss—Seidel Method

In this subsection, the Gauss—Seidel method is used to solve for the PSS parameters K.

and T (j = . . ,m) from Eqs. (4.13). The algorithm is as follows.

1. Specify a set of desired new electromechanical mode eigenvalues ) for closed—loop

system and set K.(O), T,(O) for j = 1, ..., m.

Specify error tolerances 6K and ET.

Set iteration index I = 1.

2. Solve K(I) and T(I), j = 1, ..., m from

h1()1,J((I),T1(I))

= f)i,K2(I 1),T2(I_ 1),K3(I_ 1),T3(I_ 1),...Km(1 1),Tm(1 1))

h2(2,K2(1),T2(I))

=f2(2,K1(I),T1(I),K3(I_ 1),T3(I_ 1),...Km(1 1),Tm(1 1))

K(I),T3(I))

= f(;\,K1(I),T1(I),...

K+1(I_ 1),Tj+1(I— 1),...,Km(1 1),Tm(1 1))

hm(Am, Km(I), Tm(I))

= fm(m,Ki(I),Ti(1),K2(I),T2(I),...,Kmi(I),Tm_i(I))

one by one.

3.AreK(I)—K(I—1)<eKandITj(I)—Tj(I—1)I<eT j=1,2,...,rn?

4. Stop if both yes;

Otherwise set I = I + 1 and goto step 2.

48



4.2.2 Selection of Eigenvalues for the Closed—Loop System

The natural frequency w, of an oscillating mode is equal to the absolute value of the

corresponding eigenvalue. For the pole—placement design, new eigenvalue pairs , ))

are specified by designating a new damping factor for initially unstable mode eigenvalues

with their natural frequency remaining unchanged. For example, if is the desired new

damping factor, we shall specify

= + j/1 — 2w

The purpose of selecting eigenvalues for closed—loop system in this way is to con

centrate the control efforts of PSSs on improving the damping of specific low—frequency

oscillating modes.

4.2.3 Design Example 1 — A Three—Machine Power System

To test the new pole—placement method for PSS design, a three—machine power system,

Fig. 4.1, is chosen as the first example system. It consists of three machines and an

infinite busbar. Each machine is equipped with a static exciter. The detailed data of the

system can be found in ([21], [16]). The linearized system state equation is included in

[16]

?c=Ax+Bu

but with state variables reordered here as

x = w2, )3, L61, z62, t53, /eq2, /EFD1, EFD2, 1’FD3]

and

U = [u1, u2,
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—0.039 0.004 0.02 —0.147 0.022 0.046 —0.013 0 0.003 0 0 0

—0.034 0.032 —0.028 0.004 —0.149 0.079 —0.0065 —0.008 0 0 0 0

—0.017 —0.01 —0.017 0.001 0.017 —0.056 —0.003 0 —0.009 0 0 0

377. 0 0 0 0 0 0 0 0 0 0 0

0 377. 0 0 0 0 0 0 0 0 0 0

0 0 377. 0 0 0 0 0 0 0 0 0

A=
—3.393 0.754 1.131 —0.266 —0.087 —0.250 —0.922 0.024 0.072 1. 0 0

1.131 —1.885 0.754 0.121 —1.60 0.460 0.021 —0.21 0.06 0 1. 0

0 0 —1.131 0.083 0.220 —1.20 —0.002 0.011 —0.197 0 0 1.

—309.14 —91.99 —1675 —30.1 24.599 62.051 —60.943 —3.501 —20.194 —20. 0 0

—64.47 —51-6.11 —171.91 —18.48 106.09 16.99 —12.55 —21.67 —11.41 0 —20. 0

—33.93 —46.37 —893.49 —10.1 17 70.1 —6.78 —2.1 —54.4 0 0 —20.

T

0 0 0 0 0 0 0 0 0 800 0 0

B= 0 0 0 0 0 0 0 0 0 0 900 0

0 0 0 0 0 0 0 0 0 0 0 1000

The eigenvalues of the system without PSSs are calculated and listed in the first

colunm of Table 4.2. There are three pairs of complex—conjugated eigenvalues with low

natural frequency and poor damping. A new damping factor 0.3 is specified for all three

poorly damped modes. The new eigenvalues are as follows:

Sites of PSSs Old eigenvalues Specified eigenvalues ()
Machine 1 —0.0627 + j7.3692 —2.1800 + j6.9200

Machine 2 0.0953 + j7.8364 —2.3700 + j7.5300

Machine 3 0.2637 + j4.0915 —1.1700 + j3.7200
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Infinite Busbar

______________

0.0666
10.1782 +jO.7998

0.0926
+ jO.6508

+ jO.3520

_____ _____________

0.1293 +jO.7169

0.0923+jO.5313

0.0628 +jO.4745

Figure 4.1: A Three—Machine Power System for PSS Design

Table 4.1: Tuned Parameters of PSSs

K1 T1 K2 T2 K3 T3
23.6881 0.1828 34.9859 0.2293 18.4519 0.1599

The parameters of the three PSSs are calculated with a Fortran program written

according to the proposed design algorithm and the results are listed in Table 4.1. The

eigenvalues of the closed—loop system with the designed PSSs are computed and listed in

the second column of Table 4.2. As expected, the exact assignment of specified eigenvalues

is achieved by the PSSs designed with the new pole—placement method.

4.2.4 Design Example 2 — A Nine—Machine Power System

The nine—machine power system described in Chapter 3 is chosen as a second example

for PSS design with the new pole—placement method. The system configuration is shown
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Table 4.2: Eigenvalue Comparison

System without PSSs System with PSSs
-0.0627 +j 7.3692 -2.1800 ±j 6.9200 *

0.0953 ±j 7.8364 -2.3700 +j 7.5300 *

0.2637 ±j 4.0915 -1.1700 ±j 3.7200 *

-1.5112 -1.3226
-3.4305 -3.1685
-5.8914 -5.8332

-15.1893 -40.1939
-17.0519 -42.5035
-18.8713 -46.5227

-11.7893 ±j 16.0235
-13.5454 +j 12.1889
-15.5560 ±j 9.4230

-0.2083
-0.2048

_____________________

-0.2027
*: Exactly Assigned Eigenvalues

in Fig. 3.1 and the system data are given in Chapter 3. There are 36 eigenvalues for

the nine—machine system without supplementary control as listed in Table 3.1. The

electromechanical modes eigellvalues of the 36 eigenvalues are listed here. in the first

column of Table 4.4. There are four unstable eigenmodes (last four eigenvalue—pairs)

and two poorly damped eigenmodes (the third and fourth eigenvalue—pairs) among the

electromechanical modes.

It was mentioned in Chapter 3 that either three stabilizers for machines 3, 7, and 8

or four stabilizers for the three machines plus a fourth machine must be designed before

the final decision of stabilizer number and sites. The different combinations of machines

for PSS locations are listed as follows:
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Design No. Machines with PSS

1 378

2 3781

3 3782

4 3784

5 3785

6 3786

7 3789

The details of these designs are as follows. In the first example of PSS design in the

previous subsection, a uniform damping C = 0.3 was specified for all mechanical mode

eigenvalues. The choice of damping factor here for the nine—machine system is not as

simple as that in the first example since the four stabilizers are supposed not only to

move four unstable mode eigenvalue pairs to new places on the complex plane but also to

improve the dampings of two other poorly damped modes. Four stabilizers on machines

3, 7, 8, and 9 have been chosen to carry out designs in order to find proper damping

factors for the four unstable eigenvalues. We began with a uniform damping C = 0.3 for

all four initially unstable modes for the design. The four stabilizers designed with the new

pole—placement method did provide exact damping factor to the four unstable modes as

intended, but failed to improve dampings of the other two poorly damped modes. Then

we varied the dampings one at a time, but kept the other dampings unchanged and

continued the design. Finally, we found that the best damping for the entire system

can be obtained by specifying new non—uniform damping factors 0.8, 0.7, 0.3, and 0.4,

respectively, for the four unstable mode eigenvalues. The specified eigenvalues are as

follows:
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Locations of PSSs Old Eigenvalues Specified Eigenvalues ( Damping)

Machine 7 0.5083±j 5.3235 -4.2782±j 3.2087 (0.8)

Machine 8 O.5260+j 5.4462 -3.8301±j 3.9075 (0.7)

Machine 3 0.2248±j 6.1273 -1.8394±j 5.8490 (0.3)

A fourth machine 0.0922+j 2.8020 -1.1214±j 2.5695 (0.4)

For all designs, the reset block time constant Tr of Eq (4.4) is preselected as 5.0 s and

one time constant T of PSSs as 0.035 s. To find the unknown parameters K and T3 of

the PSSs so that the unstable mode eigenvalues can be changed to those specified new

values, a Fortran program is written according to the proposed pole—placement algorithm

for all designs. The results of all designs are listed in Table 4.3.

The eigenvalues of the nine—machine power system with the designed stabilizers

(closed—loop system) are then computed. Note that since each PSS has three state

variables, there are 9 more state variables for the power system with three stabilizers

and 12 more state variables for the system with four stabilizers. Therefore, there are 45

eigenvalues for the closed—loop system with three stabilizers and 48 eigenvalues for all

closed—loop systems with four stabilizers. Only electromechanical mode eigenvalues of

closed—loop systems for all designs are listed in Table 4.4 for comparison because other

eigenvalues have much larger dampings and higher frequencies. The results show not

Table 4.3: PSS Parameters of Various Designs

Design No. T3 K3 T7 K7 T8 K8 T
1 0.1029 18.0754 0.1039 28.2710 0.1239 31.3517.
2 0.1047 18.0116 0.1033 27.7738 0.1210 32.4351 0.1961 52.2946
3 0.1047 17.9839 0.1046 28.0538 0.1202 29.4844 0.2093 24.4412
4 0.1036 17.9782 0.1038 28.2490 0.1238 31.4645 0.2207 43.9847
5 0.1124 15.9459 0.1030 31.6431 0.1340 37.2103 0.1215 19.5734
6 0.1050 17.7158 0.0969 29.2139 0.0991 20.9985 0.1652 40.4407
7 0.1016 18.6228 0.1039 27.8718 0.1197 30.9386 0.1384 36.3307
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Table 4.4: Electromechanical Mode Eigenvalue Comparison

System without PSSs System with PSSs System with PSSs System with PSSs.
onMachine378 onMachine378l onMachine3782

-0.3354±j 9.1267 -0.3352±j 9.1273 -0.8393±j 7.4043 -0.8846±j 7.3731
-0.2188±j 8.6423 -0.2259±j 8.6496 -0.2309±j 8.6538 -0.2252±j 8.6497
-0.0947±j 7.2452 -0.1267±j 7.2762 -0 .6384±j 7.9944 -0.2448±j 7.6732
-0.0627±j 7.0242 -0.1964±j 6.8179 -0.2902±j 6.1798 -0.3024±j 6.1700
-0.1970±j 6.5043 -0.2521±j 6.1470 -0.2131±j 6.8286 -0.2127±j 6.8316
0.5083±j 5.3235 -4.2782±j 3.2087 * -4.2782±j 3.2087 * -4.2782±j 3.2087 *

0.5260±j 5.4462 -3.8301±j 3.9075 * -3.8301±j 3.9075 * -3.8301±j 3.9075 *

0.2248±j 6.1273 -1.8394±j 5.8490 * -1.8394±j 5.8490 * -1.8394±j 5.8490 *

0.0922±j 2.8020 -0.5275±j 2.7844 -1.1214±j 2.5695 * -1.1214±j 2.5695 *

Denotes Exact Assignment of Eigenvalues

System with PSSs System with PSSs System with PSSs System with PSSs
on Machine 3 7 8 4 on Machine 3 7 8 5 on Machine 3 7 8 6 on Machine 3 7 8 9
-0.3330±j 9.1156 -0.3356±j 9.1252 -0.3353±j 9.1267 -0.3342±j 9.1235
-0.2260±j 8.6497 -0.1260±j 7.3206 -0.5298±j 8.0959 -0.2249±j 8.6497
-0.8807±j 7.3808 -0.6402±j 7.3419 -0.1838±j 7.2780 -0.1118±j 7.1568
-0.1705±j 7.0351 -0.5448±j 6.8192 -0.3232±j 6.6798 -0.8450±j 7.3728
-0.1261±j 6.7231 -0.6727±j 6.1768 -0.4222±j 5.9310 -0.2690±j 6.1339
-4.2782±j 3.2087 * -4.2782±j 3.2087 * -4.2782±j 3.2087 * -4.2782±j 3.2087 *

-3.8301±j 3.9075 * -3.8301±j 3.9075 * -3.8301±j 3.9075 * -3.8301±j 3.9075 *

-1.8394±j 5.8490 * -1.8394±j 5.8490 * -1.8394±j 5.8490 * -1.8394±j 5.8490 *

-1.1214±j 2.5695 * -1.1214±j 2.5695 * -1.1214±j 2.5695 * -1.1214±j 2.5695 *

* Denotes Exact Assignment of Eigenvalues
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only that the exact assignments of specified dampings to unstable modes can be achieved

for all designs but also that the dampings of the other two poorly damped modes are

improved.

To assess the actual performances of all designs, comprehensive nonlinear simulation

tests are performed and system stability indices are calculated as already described in

Chapter 3. Typical simulation results of the closed—loop system for three-stabilizer design

are plotted in Fig. 4.2. The results show how three stabilizers on machines 3, 7, and 8

can effectively stabilize the nine—machine system under a severe disturbance. Note that

the nine—machine system is initially unstable for the same short—circuit test as shown in

Figs. 3.2 through 3.6

4.3 Conclusions

1. A new pole—placement technique is presented in this chapter for decentralized sta

bilizer design of multimachine power systems to damp low—frequency oscillations.

A concise and systematic mathematical formulation is developed to reduce the

system state equations to algebraic equations. The parameters of all PSSs in a

multimachine power system can be determined simultaneously from the algebraic

equations. Since PSS transfer functions are explicitly expressed in our algebraic

equations, less computation is required for the determination of PSS parameters

than the existing methods.

2. The effectiveness of the new pole-placement design technique has been demon

strated by various PSS designs of the two multimachine power systems. Exact

assignment of any number of eigenvalues associated with low—frequency oscillating

modes to new specified locations can be achieved for all designs.

3. Non—uniform damping factors can be assigned to the eigenvalues to be changed.
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Assigning a relatively large damping factor to an unstable mechanical mode can

also improve the damping of poorly damped mechanical modes nearby through the

dynamic interaction of machines.

4. The pole—placement technique in this chapter is general and it can also be applied

to the decentralized stabilizer design of other industries.
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Chapter 5

DIRECT MIMO STR FOR MULTIMACHINE SYSTEMS WITH

CHANGING OPERATING CONDITIONS

The conventional Power System Stabilizer (PSS) is designed for power system in normal

operating state. The system equations for PSS design are linearized around the given

operating conditions. For the PSS design, the data of a power system must be complete

and the parameters of PSSs are fixed. The fixed stabilizers work properly for the power

system only for the given operating conditions. However, the operating conditions of

many power systems are constantly changing due to the intentional energy management

of the electric plants or unintentional disturbances to the system. If the operating condi

tions of a power system vary greatly from the given values for which PSSs are designed,

the parameters of the fixed PSSs must be retuned. Therefore, it is highly desirable to

have a self—tuning stabilizer for some power systems, which can constantly sample the

system output, predict the future behavior of the system and automatically self—tune the

stabilizer parameters to maintain an optimal performance for power systems.

The self—tuning regulator (STR) has been developed since the early 70’s. The min

imum variance regulator (MVR) [22] is designed by minimizing the variance of plant

output. The generalized minimum variance controller (GMV) [23] is generalized by mm

imizing both plant output and control. The pole-assignment controller (PAC) ([24]—[26])

allows the prescription of closed-loop poles. The extended horizon controller (EHC)

([27]—[28]) is designed with a time horizon for output predictor. Finally, the generalized

predictive control (GPC) [29] is developed with a long—range output predictor and a
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control with horizons. A review of the development of these STRs is given in Section 5.1.

In Section 5.2, the principle of Clarke’s GPC for indirect single-input—single--output

(SISO) STR design is extended to a direct MIMO STR design for power systems. There

are two improvements: the initial step control parameters are directly estimated without

solving the Diophantine equation and estimating the plant parameters, and the sub

sequent control parameter is calculated recursively. The computational requirement of

GPC is greatly reduced.

In Section 5.3, the method of the new direct MIMO STR is applied to the STR

design for the nine—machine power system described in Chapter 3. A set of three STRs

is designed for the system. For each STR, the local generator rotor speed and the

terminal voltage are chosen as plant output variables and both governor and exciter ioops

are controlled. The results of the design are evaluated with comprehensive computer

simulations for a multimachine system with wide—range changing operating conditions.

A comparison between conventional PSSs and the designed STRs is also made.

Many results of this chapter are published [39].

5.1 Review of Self—Tuning Controls

5.1.1 Minimum Variance Regulator (MVR)

In Aström’s MVR, the plant is described by a CARMA (Controlled Autoregressive Mov

ing Average) model

Ay(t) = q_kBu(t) + e(t) (5.1)

where y(t) is the plant output, u(t) is the control signal, e(t) is a white noise with zero

mean, t is the sampling instant, and k is the time delay. A and B are polynomials of the
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backward—shift operator q’

A = 1 +a1q’ + ... + anaq_na

B = b0 + b1q1 + ... + bbq’

To find a predictor for output, a Diophantine equation is defined

1 q’F + EA (5.2)

where E and F are polynomials in q’ of degree k — 1 and na — 1, respectively. A

k—step—ahead predictor for y(t), which can be obtained from Eq. (5.1) and Eq. (5.2), is

y(t + k) = Fy(t) + EBu(t) + Ee(t + k) (5.3)

Since Ee(t+k) is the noise in the future, uncorrelated with other RHS terms of Eq. (5.3),

the optimal predictor for y(t + k) is

(1+ kit) = Fy(t) + EBu(t) (5.4)

where (t + kit) represents a k—step—ahead optimal predictor from sampled data up to

t. For minimizing the variance of plant output, (t + kit) is set to zero. Therefore, a

control law becomes

u(t) = —y(t) (5.5)

where

G=EB

The control parameters F and G are directly estimated from Eq. (5.3) without esti

mating plant parameters A and B. Therefore, MVR is a direct self—tuning controller.

Eq. (5.5) shows that polynomial B must have stable roots for u(t) to be bounded.

Therefore, the MVR cannot be applied to a plant with unstable B or a non—minimum

phase plant.
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5.1.2 Generalized Minimum Variance Control (GMV)

The same plant model as Eq. (5.1) is defined for GMV but an auxiliary output is con

sidered

(t) = Py(t) — qRyr(t) + q_kQu(t) (5.6)

where F, Q and R are weighting polynomials chosen by the designer and yr(t) is a

reference output. To find a predictor for (t), a Diophantine equation is defined

p = qkF + EA (5.7)

The k—step—ahead predictor for (t), which can be obtained from equations (5.1), (5.6)

and (5.7), is

(t + k) = Fy(t) + (Q + EB)u(t)
— Ry(t) + Ee(t + k) (5.8)

Since Ee(t + k) is uncorrelated with other RHS terms of Eq. (5.8), the best predictor for

(t + k) is

(t + kit) Fy(t) + (Q + EB)u(t) - Ryr(t) (5.9)

To minimize the variance of the auxiliary output, (t + kit) of GMV must be zero.

Therefore, a control law becomes

u(t)
= Ryr(t) Fy(t)

(5.10)
G

where

G=Q+EB

The closed—loop equation with the control is

RB G
y(t)

= BF + AQYr(t — k) +
BP + AQe(t) (5.11)

The control parameters F and G of this STR are directly estimated from Eq. (5.8).

Therefore, GMV is also a direct self—tuning controller.
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Eq. (5.11) shows that in order for CMV to deal with an unstable B (non—minimum

phase plant), the Q could be taken as a scalar and must be large enough to let the

closed—loop poles approach the zeros of AQ when A is stable; and that in order to handle

an unstable A (open—loop unstable plant), the values of P must be large enough. Hence,

the GMV can control a non-minimum phase or open—loop unstable plant with carefully

chosen Q and P. However, GMV is sensitive to varying delay time k unless Q is large.

5.1.3 Pole—Assignment Control (PAC)

Eq. (5.11) shows that the poles of the closed—loop system with CMV control are the

roots of polynomial BP + AQ. Let

BP+AQ=T (5.12)

where polynomial T may be prespecified with its roots equal to the desired closed—loop

poles. When polynomials P and Q are chosen to satisfy Eq. (5.12), the CMV becomes a

PAC.

For self—tuning control, plant parameters A and B of Eq. (5.1) may be estimated and

P and Q are then calculated from Eq. (5.12). The drawback of PAC is that Eq. (5.12)

cannot be solved if A and B have a common factor.

5.1.4 Extended Horizon Control (EHC)

When the plant time delay k of Eq. (5.1) is uncertain, a more general plant model may

be considered

Ay(t) = q’Bu(t) + e(t) (5.13)

where time delay k is assumed to be 1. For an actual time delay k, the k — 1 leading

coefficients of B of Eq. (5.13) are zero.
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The following Diophantine equation is defined for EHC

1 = q_TF + EA (5.14)

where T is a time horizon chosen for the design, which is usually larger than the actual

plant time delay or the upper limit of a varying plant time delay.

A T—step—ahead predictor for y(t) can be obtained from Eq. (5.13) and Eq. (5.14)

y(t + T) = Fy(t) + EBu(t + T — 1) + Ee(t + T) (5.15)

The optimal predictor for y(t + T) is

(t + Tit) = Fy(t) + EBu(t + T — 1) (5.16)

Let polynomial EB (degree = nb + T — 1) be written as

EB = h0 + h1q’ + . . + hT_lq_(T_1)

(5 17)
+q_(T_1)(giq_1 + g2q2 + + gflbq)

A reference output yr(t + T) is specified in EHC to satisfy

(t + Tit) = yr(t + T) (5.18)

Substituting Eqs. (5.17) and (5.18) into Eq. (5.16), and choosing the constant control

u(t) = u(t + 1) = ... = u(t + T — 1) [27], we obtain a control law

u(t)
= ET_lh(YT(t + T) — Fy(t) —E1gu(t — i)) (5.19)

For this self—tuning control, control parameters F, h1 and g, are directly estimated

from Eq. (5.15). Therefore, the EHC is a direct self—tuning controller. Since the time

horizon T is larger than the actual time delay, the roots of B are not included in the

control signal of the EHC. Therefore, EHC can control a non—minimum phase plant.

However, simulation experience shows that EHC is unstable for an open—loop unstable

plant [29].
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5.1.5 Generalized Predictive Control (GPC)

For GPC design, the plant is described by a CARIMA (Controlled Auto—Regressive and

Integrated Moving Average) model

Ay(t) =q1Bu(t) + e(t)/
(5 20)

A train of Diophantine equations is defined

l=q3Fj+EALS j=1,2,...,T (5.21)

where the degree of polynomial F is na and T is referred to as a maximum output

horizon. A set of predictors for output can be obtained from Eq. (5.20) and Eq. (5.21)

as

y(t+j) = Fy(t) +EBu(t+j —1) +Ee(t+j) j = 1,2,. ..,T (5.22)

Let

E3B = H3+G, j=1,2,...,T

H3 = ho(j) +h1(j)q’ + . .. +h_1(j)q(’) (5.23)

G q_(i_1)(g(j)q_1
+g2(j)q2+ “+g(j)q)

Besides the maximum horizon T, a minimum output horizon nl and a control horizon

flu are defined for selecting the number of optimal predictors from Eq. (5.22). The

selected optimal predictors are written in matrjx form as

[] = [yr] + [H] [us] (5.24)

where

[]=
[yr,] = [F] [y(t), y(t — 1),. . . , y(t — na)]

+ [G] [ZXu(t — 1), /u(t — 2),.. , Lu(t — nb)]T

[us] = [u(t), /u(t + 1),... , ZXu(t + flu —
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wherein the j—th rows of matrices [H], [F], and [G] respectively contain the coefficients

of polynomials H,, F3 and G, j = nl, ..., T. A cost function is then defined as follows

J = ([Th -
[yr])T([YA]

- [yr]) + r[uc]T[uc] (5.25)

Minimizing J with respect to [ut] gives

u(t) = u(t
-

l)+ [F]([yr]
-

[yp]) (5.26)

where [F] is the first row of (HTH + rI)_1HT.

For the self—tuning control, plant parameters A and B of Eq. (5.20) must be estimated

first and F1 and E1 is then calculated from Eq. (5.21). To compute F and E for j = 2,

T, a recursive equation is developed. Finally, the control parameters H3 and G,,

j = 1, ..., T, are obtained from E3B according to Eq. (5.23). Therefore, the GPC is

an indirect self—tuning controller. Moreover, control parameters H3 and G cannot be

obtained directly by a recursive equation. The GPC requires heavy computation.

5.1.6 Summary of STRs

The MVR requires the least computation but cannot handle the non-minimum phase

problem (unstable B polynomial). The GMV control can handle the non—minimum

phase plant, but it is sensitive to the varying time delay of a plant. The PAC allows

the prescription of closed-loop poles, but it cannot cope with a common factor which

may occur in the numerator B and denominator A of the plant transfer function. The

EHC can handle the non—minimum phase and uncertain system time delay, but may

still have difficulty in dealing with the unstable system poles. The GPC is probably the

best method of STR design to handle plants with non—minimum phase, common factor,

uncertain time delay, and unstable open—loop dynamics. The only drawback of GPC

design is the heavy computational requirement.
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5.2 A New Direct MIMO STR for Power System

These STR principles have been applied to pulp mills, chemical processes and other

industrial processes ([30], [31]). The application of STRs to power systems has also been

studied ([32]—[37]), involving only a few of machines. But a larger power system with more

machines should be chosen for study since without a reasonable number of machines, the

dynamic interactions between machines cannot be thoroughly investigated. In addition, a

power system usually has unstable or poorly damped open—loop poles. Also, it is difficult

to have the exact information of both system time delay and non—minimum phase when

the system operation changes over a wide range. Therefore, the principle of GPC is most

attractive for the STR design of power systems. However, the design technique of GPC,

especially the computational requirement, must be improved.

In this section, the principle of Clarke’s GPC for an indirect SISO STR design is

extended to a direct MIMO STR design. A train of modified Diophantine equations

and a set of output predictions are described in subsection 5.2.1. A control law from

minimization of a cost function of weighted optimal predictors and control signals is

derived in subsection 5.2.2. A new recursive equation for control parameter computation

is developed in subsection 5.2.3 and a method of direct estimation of the initial step

control parameters in subsection 5.2.4. The algorithm of the STR design is summarized

in subsection 5.2.5.

5.2.1 Basic Equations and Long-Range Output Prediction

For the MIMO STR design, the vector output of a plant is modeled by

[A] [y(t)] = q’ [B] [u(t)] + [e(t)] / (5.27)
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where

T[y(t)] = [yi(t),y2(t)]

T
[u(t)] = [ui(1),u2(t)]

[e(t)] = [ei(t),e2(t)]T

[A] = [i + A1q’ + + Anaq]

[B] = [B0 + B1q’ + + Bflq_nb]

In Eq. (5.27), [y(t)] is the plant output vector consisting of rotor speed and terminal

voltage at sampling instant t, [u(t)] the control signal vector of excitation and governor

loops, [e(t)] the errors, and [A] and [B] are polynomials of the backward-shift operator

q’ with 2 x 2 matrix coefficients. The integrator 1/Li is introduced to eliminate the

static errors. The superscript T indicates the transpose of a vector or matrix.

For a long—range predictor, an output horizon T (maximum output horizon) is as

sumed and the following Diophantine equation set similar to the original GPC [29], but

in matrix form for MIMO design, may be defined.

[I]q_i[j]+[Ej][Aj j=1,2,...,T (5.28)

where

[F;] = [F(j) + F(j)q’ + ... + F(j)q]

[Ej = [Eo(j) + Ei(j)q1 + ... + Ej_i(j)q_(j_1)]

Here all F(j), .. . , F(j), Eo(j),.. . E_1(j) are 2 x 2 matrices. To simplify the computa

tion of GPC, the Diophantine equation set may be modified as follows. Since [F] = [I]

for q1 = 1 according to Eq. (5.28), [Fj] may be separated into two terms

[F;] =

= [I] + [Fo(j) + Fi(j)q’ + . + Fna_i(j)q’1]
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Therefore, the Diophantine equation set of Eq. (5.28) can be modified as

[I] = q_3([I] + [Fi] z) + [Es] [A] Li j = 1, 2,.. . , T (5.29)

where [F3) has one less matrix coefficient than [Fjj of the original OPC.

Postmultiplying both sides of Eq. (5.29) by [y(t)], we shall have

[y(t)] = q[y(t)] + q [F] z [y(t)] + [E3] [A] [y(t)}

= q[y(t)] + q [Fi] /. [y(t)] + [Es] [B] LS [u(t — 1)1 + [Es] [e(t)]

The j-step-ahead prediction [y(t + j)J can be obtained from the above equation by shifting

time t ahead by j steps

[y(t + j)] = [y(t)] + [Fj] LS [y(t)] + [Es] [B] L [u(t + j — 1)1 + [Es] [e(t + i1
(5 30)

j=1,2,...,T

[Es] [B] of Eq. (5.30) is of degree nb +j — 1 and can be separated into a polynomial [G3]

for the known controls of the past and a polynomial [H3] for the unknown controls of the

future,

[Ei] [B] = [H3] + [GJ

where

[113] = [Ho(j) +H1(j)q’ + + Hj_1(j)q(3’)j

[G3] = q1) {G1(j)q’ +G2(j)q2+ .. . + Gfl(j)q_nb]

All Ho(j),.. . ,H3_1(j), Gi(j),.. . , Gb(j) are 2 x 2 matrices. Therefore, Eq. (5.30) may
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be written

[y(t+j)]= [y(t)]

+ [F0(j)zy(t) +F1(j)zy(t — 1) +. + Fna_i(j)iy(t — na + 1)]

+ [H0(j)/u(t + j — 1) + Hj(j)Liu(t + j — 2) + . . .H_1(j)L(t)]

+ [G1(j)Zu(t — 1) +G2(j)/u(t — 2) + + Gb(j)/.xu(t — nb)]

+ [Eo(j) + Ei(j)q’ + • + Eji(j)q(’)j [e(t +j)]
j=l,2,...,T

(5.31)

There are T equations of (5.31) which may be written in matrix form

[yr] = [yr] + [H] [us] + [E] [e] (5.32)

where [y] is the predicted output of the future, [yr] the output and control of the past,

[us] the control to be determined and [e] the errors of the future. Details are

[yr] = [y(t+ i)T,(t+2)T,.,y(t+T)T]T

[yr,] [C] [y(t)]

+[F] [y(t)T,y(t_1)T,...,y(t_na+1)T]T

+ [G] [u(t — i)T, Au(t — 2)T,.. .
, u(t — nb)T]T

[uJ = [u(t)T, u(t + i)T,
, u(t + T

— 1)T]T

[e] = [e(t + i)T, e(t +2)T,...
, e(t + T)T]T

and

[C]
= [ C(1) C(2) C(3) •.. C(T)

where [C] is a 2T x 2 matrix and C(1), C(2), etc., are 2 x 2 unit matrices. Other details
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are

F0(1) F1(1) F2(1) •.. F_1(1)

F0(2) F1(2) F2(2) Fna_i(2)

[F] = F0(3) F1(3) F2(3) Fna_i(3)

F0(T) F1(T) F2(T) Fnai(T)

G1(1) G2(1) G3(1) •.. Gb(1)

G1(2) G2(2) G3(2) •.. Gb(2)

[G] = G1(3) G2(3) G3(3) Gb(3)

G1(T) G2(T) G3(T) •.. Gb(T)

H0(1)

I[(2) H0(2)

[H] = H2(3) H1(3) H0(3)

HT_j(T) HT_2(T) HT_3(T) •.. H(T) j
[E] is similar to [H] except that E replaces H. Note that each element of [F], [G] and [H]

is 2 x 2 matrix and that the upper—right matrix elements above the diagonal of [H] and

those of [E] are null. The dimensions of [F], [G], and [H] or [E] are 2T x 2na, 2T x 2nb,

and 2T x 2T, respectively.

5.2.2 Control Laws

Consider Eq. (5.32) again. Since the last term of Eq. (5.32) is the disturbance of the

future, the first two terms on the RHS of Eq. (5.32) correspond to a set of optimal
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predictors. Let it be

[] =
(t + 1It)T, (t + 2It)T,.. . , (t + TIt)T]

(5.33)
= [yr,] + [H] [zt]

Consider a desirable optimal predictor [Y]

[Y]
=

(t + n1 t)T, (t + n1 + lt)T,... (t + TIt)T] (534)

which is a subset of [p], or [j less the first 2(n1 — 1) rows, where n1 is a minimum

output horizon, 1 ru T.

Next, since our concern is the increment L\u(t) of the present, the increments Lu(t+j)

of the future for j run, 1 n < T, may be set to zero. Therefore, [un] of Eq. (5.32)

becomes

[] = u(t + 1)T. . . , +u(t + n
— 1)T] (5.35)

and the desired optimal predictor may be written

[Y] {th] +
[i] [•i] (5.36)

where

[th] = [a] [y(t)]

+ {] {y(t)T,y(t_ 1)T,...,y(_na i)T]T

+ [G] [u(t — i)T, u(t — 2)T,. . . , u(t — nb)Tj

and

[C]= [C] without the first 2(ru1 — 1) rows

[F]= [F] without the first 2(ni — 1) rows

[G]= [G] without the first 2(rui — 1) rows (5.37)

[H]= the first 2ruu columns of [H]

without its first 2(ni — 1) rows
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To design a long—range optimal predictive control with minimum control effort, the

following output reference sequence is chosen

[Yr] [yr(t+fli)T,yr(t+fli + 1)T,...,yr(t+T)T]T (5.38)

where

•T
[yr(t+j)] = [yri(t+i),yr2(t+j)] 3 =n1,...,T

Let a cost function be

J = ([Y} - [y])T [Q] ([Y] - [yr]) + [u]T [R] [] (5.39)

where [Q] and [R] are weighting matrices. Substituting Eq. (5.36) into Eq. (5.39), mini

mizing J with respect to [i], and solving for [] give

[] = [-]
T

[ii] + [R])’ [u]T ([yr] - [i]) (5.40)

The control signals of the present correspond to the first two elements of []
u1(t) ui(t—1) 1

= + [F] [Hj [Q] ([yr] — j) (5.41)
u2(t) u2(t — 1)

where [F] is the first two rows of ([H] [Q] [H] + [R])1.

5.2.3 Recursive Computation of Control Parameters

In the original GPC design [29], a recursive equation was developed to calculate pa

rameters [E3], [F3] of the Diophantine equation, but not control parameters. Additional

calculations of control parameters [H(j)] and [G(j)] ,j = 1,2,..., T were required. It was

time—consuming even for the SISO control design. In our direct MIMO STR, a recursive
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algorithm is developed so that the control parameters [F(j)], [G(j)] and [H(j)] are di

rectly computed from [F(j — 1)], [G(j — 1)], and [H(j — 1)] without solving Diophantine

equations.

The recursive formula may be derived as follows. Let j of Eq. (5.31) be replaced by

j — 1 and t of the same equation by t + 1. In other words, let the time t be shifted one

step ahead, we have

[y(t + j)] = [y(t + 1)1 + L [F0(j — 1)y(t + 1)]

+ [Fi(j 1)y(t) + ... + Fna_1(j — 1)Ly(t — na + 2)]

+[H0(j—l)/.u(t+j—l)+H1(j_l)Ziu(t+j_2)+...H_2(j_l)Zu(t+ 1)]

+ [G1(j — 1)zXu(t) + G2(j — 1)Lu(t — 1) ... + G(j — 1)Lu(t — nb + 1)]

+ [E0(j — 1) + Ei(j — 1)q1 + ... + E_2(j — 1)q_U_2)] [e(t + j)]
(5.42)

Rearranging the first two terms on the RFIS of Eq (5.42) gives

[y(t + j)] = [I + F0(j — 1)] [y(t + 1)] — [F0(j — 1)y(t)]

+ [Fi(j — 1)Ay(t) + ... + F_1(j — 1)y(t — na + 2)]

+[H0(j—1)u(t+j—1)+H1(j—1)/u(t+j_2)+...H_2(j_1)Zu(t+ 1)]

+ [Gi(j — 1)Lu(t) + G2(j — 1)Lu(t — 1)... + Gb(j — 1)Lu(t — rib + 1)]

+ [Eo(j — 1) + Ei(j — 1)q’ + ... + E_2(j — 1)q_U_2)] [e(t + j)]
(5.43)

For j=1, Eq (5.31) may be written as follows

[y(t + 1)] = [y(t)]

+ [F0(1)L\y(t) +F1(1)zy(t — 1) + ... + Fna_i(1)Ly(t — na + 1)]

+ [H0(1)/.u(t)] (5.44)

+ [G1(1)zu(t — 1) +G2(1)Lu(t — 2) + ... +G6(1)zu(t — nb)]

+ [E0(1)] [e(t + 1)]
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Substituting Eq (5.44) into Eq (5.43) and comparing the results with the like terms of

Eq (5.31) give a recursive computation formula of the control parameters as follows

• I(F0(j—1)+1)(1)+÷i(j—1) for i=O,l,...,na—2

( (Fo(j—l)+I)F:(l) for i=ria—l

• I(F0(j—l)+I)G(l)+G11(j—l) for i=1,2,...,nb—1
G(j) =

(F0(j—1)+I)G1(1) for i=nb

(5.45)

I H(j—1) for i=O,1,...,j—2
=

(Fo(j—1)+I)Ho(1)+Gi(j_1) for i=j—1

• I E(j—1) for i=O,1,...,j—2
=

( (Fo(j—1)+I)Eo(1) for i=j—1

Note that E parameters are not required for our STR design. The initial step control

parameters, F1(1), H(1), and G(1), can be estimated from system dynamic responses,

which is described in detail in the next subsection.

5.2.4 Direct Estimation of Initial Step Control Parameters

In our STR design, the control parameters F(1), H(1), and G2(1) of Eq. (5.45) are

estimated directly. Since there are two control loops of a power plant, the excitation and

the governor, the i-th row of the [F(1)], [G(1)], and [11(1)] is identified for the i-th loop,

i = 1, 2. To that aim, j of Eq. (5.31) is replaced with 1 and t is back shifted one step,

76



resulting in

z [y(t)] = [F0(1)zy(t — 1) +F1(1)LIy(t — 2) + + Fna_i(1)Ly(t — na)]

+ [H0(1)zu(t — 1)]

+ [Gi(l)L\u(t — 2) +G2(1)L\u(t — 3) + + Gb(l)L\u(t — rib — 1)]

+ [e(t)]

(5.46)

Eq. (5.46) consists of measurement and data of zero mean. Eq. (5.46) may be written

= X(t — l)TO(t) + e(t) i = 1,2 (5.47)

where the data vector X(t — 1) consists of a sequence of system output and control that

are known at time t

X(t — i)T = [z(t — 1)T, — 2)T,. .

. L\y(t — na)T,

Au(t — i)T, Lu(t —2)T,..
. L.u(t — nb — i)T]

and

e(t)T = the i-th row of [F0(1),.. . Fna_i(1), Ho(1),.. . G(1), .. . Gni(1)] j = 1,2

Note that F0(1), ..., Fa_i(1), H0(1), G1(1), ..., Gb(1) are 2 x 2 matrices. For the

estimate of the parameter vector e(t) at each sampling, Bierman’s UDU version of RLS

(recursive least squares) [38] is employed. When these estimated F0(1), ..., Fnai(1),

II(1), G1(1), ..., Gb(1) are available, the subsequent control parameters can be com

puted recursively using Eq. (5.45) in the previous section.

5.2.5 Algorithm of the STR Design

The algorithm of the direct MIMO STR design is summarized as follows

1. Read new [y(t)] and [yr(t)] at sampling instant t
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2. Estimate [F(1)], [H(1)] and [G(1)} by the RLS— Eq. (5.47)

3. Compute [F(j)], [H(j)] and [G(j)] for j> 1— Eq. (5.45).

4. Decide [F], [a], and [H]— Eq. (5.37).

5. Compute [u(t)] and activate it—Eq. (5.41).

6. Set t = t + 1, go back to step 1 and repeat the process

5.3 Example of Design and Simulation Test of the New STR

In this section, the principle and method of the new direct MIMO STR developed in the

previous section are applied to the STR design for the nine—machine system described in

Chapter 3. The system is initially unstable. It has been found in Chapters 3 and 4 that

the machines 3, 7 and 8 are the strategic plants for stabilizer locations. Three STRs will

be designed for these machines.

Some details of the STR design are as follows:

1. The speed deviation &4. and the terminal voltage Vt of a machine to be equipped

with STR are chosen respectively as the output variables Yi and Y2 of Eq. (5.27).

The control signal u1 of the STR is applied to the excitation loop and u2 to the

governor loop of the machine as Fig. 5.1. A reset block is used to eliminate the

effects of u2 on steady state mechanical torque Tm.

2. The weighting matrix [Q] is fixed as a unit matrix [I] while [R] is fixed as O.OO1[Ij

after trial and error. A relatively small [R] provides a better damping to the system

output responses while a relatively large [R] provides a smoother control.

3. The selection of n1,n and T is discussed in detail in [29]. They are chosen as 3, 3

and 5 respectively in our design.
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Figure 5.1: Schematic Diagram of the Direct MIMO STR

4. The sampling period is chosen as 60 ms and both na and nb as 5. Further decrease

of the sampling period or increase of na does not improve the system dynamic

response significantly.

5. A self—adjusting forgetting factor of 0.95 is introduced in the RLS algorithm for

the estimate of control parameters. The forgetting factor allows a discount of some

old data in the estimation so that the estimator may adapt itself to fast changes

of power system operations. The factor is set to 1 when the estimation error

I — XT(t)01(t) is less than 0.001.

After the design, the power system with the STRs is given comprehensive simulation

tests to determine the merits of STRs. For the simulation tests , nonlinear high order
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models are used for each machine, including a 5th order synchronous generator, a 4th

order hydro—plant governor and turbine or a 2nd order steam governor and turbine, and

a 1st order fast excitation system. A computer simulation program for the multimachine

power system is written based on the method in Chapter 2. To simulate the self—tuning

control loops according to the algorithm of the new STR, a Fortran program is added to

the system simulation program.

Mainly three types of simulation tests are performed: successive step changes in

voltage reference, successive step changes in governor gate opening, and three—phase

short—circuits at a machine terminal. These tests are repeated for each machine. For

comparison, similar tests are repeated for the same nine—machine system but equipped

with PSSs designed in Chapter 4. A test of short—circuit and trip—off of the transmission

line is also performed. For all tests, the responses such as speed, voltage, electric power,

excitation and governor control signal etc. of all machines are recorded and examined.

Numerous curves could be plotted but only typical results are shown as Fig. 5.2 through

Fig. 5.6.

Fig. 5.2 shows some responses of 03 (machine #3) to the successive step changes in

reference voltage of G3 for the system with the designed STRs. To each step change,

the STRs adapt very fast to provide damping to the system and the system oscillations

subside very quickly. The terminal voltage, the speed deviation, the excitation and the

governor control signals are separately plotted.

Fig. 5.3 shows the G3—responses to the successive step changes in governor gate

opening of G3 for the system with designed STRs. Again, the STRs are very effective

and the system oscillations are damped very quickly.

Fig. 5.4 shows the G3—responses to a three-phase short—circuit for O.12s near 03

terminal for the system with the designed STRs. The transient stability of the system

recovers very fast, which indicates that the designed STRs are very effective. From
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Fig. 5.2 to Fig. 5.4 only the responses of 03 are plotted since G3—responses are the most

violent ones.

Fig. 5.5 shows the speed deviation responses of several machines to a three-phase

short—circuit of a transmission line for O.12s near Bus 14 and between Bus 14 and Bus 21

for the system with STRs. The short—circuit is removed by tripping off the faulted line,

leaving the system operating in a quite different condition. In spite of the two successive

severe changes, the transient stability of the system recovers although the settling time

is larger than other cases.

Fig. 5.6 compares the responses of 08 for the system with STRs, plotted in solid lines,

with those for the system with the PSSs designed in the Chapter 4, plotted in dotted

lines, to the same successive step changes in governor opening of 08. It is found that the

stability recovers for the system with STRs but not for the system with the PSSs. This

is the case which shows that the STRs are superior to the fixed PSSs.

Note that the PSSs presented in Chapter 4, unlike other PSSs, are of a coordinated

design ensuring a very stable power system. The capability of the PSSs to stabilize

a power system is almost as good as the STRs in most cases. But, when the system

operating conditions change to certain new values as in the case of Fig. 5.6, these fixed

PSSs cannot stabilize the system properly.

5.4 Conclusions

1. Clarke’s principle of indirect SISO STR design [29] is extended to the direct MIMO

STR design in this thesis. Two improved design techniques are developed: the

direct estimate of the initial step control parameters and the recursive computation

of the subsequent control parameters. The computational requirements are reduced.

These improvements are general and can be very useful for the STR design of other
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industries.

2. The principle and method of the direct MIMO STR are applied to the STRs design

of a nine—machine power system. Both excitation and governor loops are controlled

and only three machines require the STRs. Tests of successive step changes in

voltage reference, successive step changes in governor opening, short—circuits near

the machine terminal, and short—circuit and trip—off of the transmission lines all

show that the STRs thus designed can effectively stabilize a power system over a

wide range of operating conditions.

3. The results in Fig. 5.6 show that when system operating conditions change to some

new states, the STRs thus designed still can stabilize the system but the fixed

PSSs cannot do so even though they are very well designed. Therefore, further

exploration of STR design is necessary to the benefit of power system stability

control.

4. The STR design also confirms that only three stabilizers on machines 3, 7 and 8

are sufficient for the stability control of the nine—machine power system.
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Chapter 6

EXCITATION CONTROL OF SHAFT TORSIONAL OSCILLATIONS OF

A MULTIMACHINE SYSTEM

6.1 Introduction

Series capacitor compensation is used in transmission lines to increase HVAC transmission

capacity of power systems. When electric power is transmitted from a thermal—electric

plant over this kind of capacitor—compensated line, series resonance of the line and the

generator at subsynchronous frequency may occur. The subsynchronous resonance (SSR)

may excite the torsional oscillations of a turbine-generator mechanical system and even

cause shaft damage and system interruption. Therefore, stabilizer design to suppress the

torsional oscillations of a power system with SSR is an important power system stability

control problem.

Since the shaft damage caused by SSR at the Mohave power plant [41], two Benchmark

Models have been recommended by IEEE SSR Working Group for SSR studies ([42], [43]).

Extensive analysis of SSR has been made, tests and countermeasures for one—machine

infinite—bus system, such as the First Benchmark Model (FBM) and the system 1 of

the Second Benchmark Model (SBM), have been proposed , and some countermeasures

have been implemented ([44]— [46]). PSS control of SSR with filter is also studied [47].

However, a stabilizer for the system 2 of SBM, which has two nonidentical machines with

one series—capacitor compensated line, has not yet been developed. This chapter designs

a stabilizer through the excitation loop of a generator to damp the multi—mode torsional
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oscillations of the system 2 of the SBM.

For SSR analysis and stabilizer design for the system 2 of the SBM, a mathematical

model must be developed. This model is different from the conventional model for low—

frequency oscillation study which models a turbine—generator system as a single mass

spring system and does not recognize the torsional oscillations between various stages of

turbines , generator and exciter. For SSR study, however, each of all rotating masses

must be modeled by two first—order differential equations because these rotating masses

may oscillate with respect to each other when they are excited by SSR. In addition,

the damper windings of a synchronous generator are usually ignored in the conventional

model for low—frequency oscillation study. But, these damper windings must be included

in the model for SSR study because of their effects at high frequencies. Also, the stator

armature winding of a generator and the transmission network, which are described by

algebraic equations for low—frequency oscillation study, must be remodeled by differential

equations for SSR study to find the electric resonance of the capacitor—compensated

transmission line and the generator. Since the transmissioll network and generators are

usually described in different coordillate systems, coordinate transformation is necessary

for SSR analysis and stabilizer design of the system 2 of the SBM.

Unlike conventional PSS design using only one state variable of a generator as the

feedback input of a PSS, more state variables must be used as the feedback to control

the multi—mode torsional oscillations of a turbine—generator mechanical system. A linear

combination of the local measurable variables is used as feedback in this chapter to

design stabilizers for the system 2 of the SBM. To determine which state variables are

most effective for the feedback, the participation factor method is used. To determine

feedback gains of the decentralized stabilizers, a new direct pole-placement method is

developed. With this method, exact pole—placement can be achieved and the feedback

gains of stabilizers can be obtained directly without iteration. The results of computer
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simulation tests for the systems with and without the designed stabilizers show that the

stabilizers thus designed can effectively damp out all torsional oscillations of the system

over a wide range of capacitor compensation.

Many results of this chapter are published [50].

6.2 System 2 of the Second Benchmark Model (SBM)

The electrical circuit of system 2 of the SBM is shown in Fig. 6.1 (a) [43]. There are

two generator units 01 and 02 connected to a common bus through transformers. The

transmission line between the common bus and bus 1 is series—capacitor—compensated.

R and X1, respectively, denote the resistance and reactance of a transformer, RL and

XL the resistance and reactance of a transmission line, and Xc the series capacitance

varying from 10% to 90% of XL1.

The mechanical system of unit 01 is presented in Fig. 6.1 (b) [43]. There are four

rotating masses of unit G1; the high—pressure turbine (HP), lower—pressure turbine (LP),

the generator (GEN) and the exciter (EX), all on one shaft. Each rotating mass and shaft

constitutes a torsional mass—spring system. The mechanical system of unit G2 is similar

to that of 01 except for no rotating exciter.

6.3 Mathematical Model for the System 2 of SBM

6.3.1 Mechanical System

As previously mentioned, for SSR study, each rotating mass of the mass—spring sys

tem of a turbine—generator—exciter set should be modeled by two first—order differential

equations. Differential equations for high-pressure turbine, low—pressure turbine, the

generator, and the exciter of the first turbine—generator—exciter set in Fig. 6.1 (b) can be
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written as follows [14]

1
WH1 , [TH1 — DH1LIJH1 — KHL1(OH1

— OL1)]
.IVIH1

°H1 = — 1.0)

L1 = [T
— DL1WL1 + KHL1(OH1

— OL1) — KLG1(OL1 —

°L1 = Wb(WL1 — 1.0) (6.1)

= M1
[Tei — D01w1 + KLG1(OL1

—

— KGx1(61
—

— 1.0)

1
= [—Tl—Dxlwxl+KGxl(6l—0xl)]

1’1X1

OX1 — 1.0)

where the w’s are the rotor speeds in per unit with a base value equal to w = 27rf rad/s,

the 0’s are the rotor angles, 6 is the generator rotor angle, the M’s are inertial constants

for rotating masses, the K’s are the shaft stiffnesses, the D’s are dampings, and the

T’s are the torques applied to masses. Subscripts H, L, G and X, respectively, identify

the high— and low—pressure turbines, the generator, and the exciter. Note that turbine

torques TH and TL are also state variables and their differential equations will be given

as Eqs. (6.4) and (6.5) in Section 6.3.2. The generator electric torque output Te is not a

state variable but can be replaced with Eq. (6.14) in Section 6.3.4.

Differential equations for the mass—spring system of the second turbine—generator set

are almost the same as those for G1 except that the last two equations and KGX constant

of Eqs. (6.1) should be deleted and the subscript 1 should be replaced by 2.
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6.3.2 Governor and Turbine

A two-time-constant governor is assumed in Fig. 6.2 (a) where a denotes the speed relay

position and g the governor opening [48]. The differential equations for the governor are

KG 1
a = 1 (‘ref — ,) — —a (6.2)

1+ISR ‘SR

1 g—go
g = —a— (6.3)

TSM TSM

where g0 denotes an initial gate opening.

There are two time constants of the steam turbine [48]: TCH for the steam chest and

TRH for the reheater and/or the cross-over. The transfer function of the steam turbine

is shown in Fig. 6.2 (b). The differential equations for the steam turbine are

• FH 1
TH = —g — —TH (6.4)

ICH ICH

• FL 1
TL = TH — —TL (6.5)

rHIRH ‘RH

The fractions FH and FL are defined as

FH+FL=1 (6.6)

6.3.3 Exciter and Voltage Regulator

A two—time—constant excitation system is chosen in Fig. 6.2 (c) where yR denotes a

voltage regulator output and EFD a generator internal voltage [49]. Two differential

equations can be written for the excitation system

1 IA
yR = (VrefVt)VR+UE (6.7)

‘A ‘A ‘A

• 1 1
EFD = — -EFD (6.8)

1E IE
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where uE is the supplementary control signal of the stabilizer to be designed and Vref a

reference voltage. Vt denotes the generator terminal voltage and can be written as

Vt = Jv + v (6.9)

where Vd and Vq are the d and q components of the Vt and will be described in Section 6.3.4.

6.3.4 Synchronous Generator

For SSR study, it is more convenient to use the generator currents as state variables to

model a synchronous generator ([14]). The generator model can be obtained from Park’s

voltage equations. In Park’s equations, the variables of a generator are described by

the individual d—q coordinate of the generator. For each generator of system 2 of SBM,

besides d and q armature windings on the stator, there are four windings on the rotor: a

damper winding D and a field winding F on the d axis and damper windings Q and S

on the q axis. Therefore, the Park’s equation may be written as follows

Vd = TaZd+d/WbW/)q

Vq = —raiq + q/b + d

VF = rFiF + /-‘F/Wb

o = rDiD+bD/wb (6.10)

0 = rQiQ+bQ/wb

0 = rsis + bs/wb

where V denotes a voltage, i a current, )L’ a flux linkage, w a speed, and r a resistance, all

in per unit. Subscripts d, q, F, D, Q, and S identify the respective windings. To use the

generator currents as state variables, the flux linkages of Eqs. (6.10) can be substituted
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with currents by using the following equations

Xd Xmd Xmd

= Xmd XF Xmd (6.11)

Xmd Xmd XD

Xq Xmq Xmq

= Xmq XQ Zmq (6.12)

Xmq Xmq XS

and Eqs. (6.10) becomes

1 .. .. . .

xdzd + XmdZF + XmdiD) = w(_xqzq + XmqiQ + xmqzs) + raid + Vd

1 .. .. . .

Xqiq + XmqZQ + xmqzs) = —(—xdzd + XmdZF + XmdiD) + TaZq + Vq

1 .

Xmdid + XFZF + XmdiD) TZ + VF (6.13)
Wb

1
FXmdid + XmdZF + XDZD) = TDZD

1 ..

Xmqiq + XQZQ + Xmqis) = —rQZQ

1 .. ..

Xmqiq + XmqiQ + XSZS) = rszs

where xd, Xq, XF, XD, xq, and xs are the reactances of the respective windings, Xmd is

the mutual reactance of windings on d axis, and Xmq is the mutual reactance of windings

on q axis. Note that the generator terminal voltage Vd and Vq are not state variables but

can be eliminated by using Eq. (6.22) in Section 6.3.5.

The generator electric torque Te of Eq. (6.1) is not a state variable , but can now be

replaced by generator currents:

Te = Zd?IdZq?I3q

= (Xq — Xd)idiq + XmdZfZq + XmdqD
—

XmqQd
— Xmqsd (6.14)
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6.3.5 Transmission Network

In individual machine coordinates dk—qk, the terminal voltages of the k-th machine can

be expressed in the sum of the voltages across the transformers and the common bus

voltages [51]

Vql = R1 X1 q1
+

Zql

+
Vcom.ql

(6.15)
Vdl X1 R1 Zdl -‘b Zdl Vcomdl

Vq2 = R2 X2 Zq2

+
q2

+
Vcom.q2

(6.16)
Vd2 —X2 R Zd2 d2 Vcomd2

where R denotes a transformer resistance, X its reactance, wb the base speed, and Vcom.d

and Vcom.q respectively the d and q components of the common bus voltage in individual

machine coordinates. Now, the two individual coordinates must be interfaced by using

a common system coordinate, D—Q coordinate. The position of the infinite bus voltage

is chosen as the D axis of the common coordinate which is also the reference axis of the

rotor angles of both machines. The relationship between the individual d—q coordinate

of the k—machine and the common D—Q coordinate is shown in Fig. 6.3. Therefore, the

Eqs. (6.15) and (6.16) can be rewritten as

Vql = R1 X1 qi

+
zqi

+ [Ti]
Vcom.D

(6.17)
Vdl X1 R1 c11 d1 VcomQ

[ Vq2 ] = [ R2 X2 ] [ ] + [ Zq2 ] + [T2} [ Vcom.D ] (6.18)
Vd2 —Xt2 Rt2 Zd2 d2 VcomQ

where

cos 6 sin 6 cos 82 sin 62
[T1}=

sin 8 — cos 8 sin 62 — cos 62

Vcom.D and Vcom.Q, respectively, are the D and Q components of the common bus voltage

in the D—Q coordinate and 6 and 62 are the rotor angles of Gi and G2.
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Figure 6.3: Individual Machine and Common System Coordinates

In common D—Q coordinate, the common bus voltages can be expressed in terms of

the transmission line, capacitor compensation, and infinite bus voltages as follows:

[VcomD][RL _XL][ILD] [i] [D] [VOD]
(6.19)

VcomQ XL RL ILQ ‘LQ EcQ VOQ

where RL denotes the total line resistance and XL its total reactance. ‘LD and ILQ,

respectively, are the D and Q components of the line currents; ECD and ECQ the compo

nents of the voltage across the capacitor; and VOD and VOQ the components of the infinite

bus voltage, all in the common D-Q coordinate.

Next, the D—Q components of the transmission line current may be expressed in terms

of the d—q components of individual machine currents as

ILD
=[T1] (6.20)

ILQ di d2
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and their derivatives consist of four terms

[1LD] d61 [zi ] + [T1] [‘]
+

[] [ Z2]
+ [T2]

[2]
(6.21)

-TLQ 1d1 1d1 d2 d2

where

— sin 6 cos 6 — sin 62 COS 62
[T19 = [T} =

cos 5 sin 6 ‘52 sin 62

Substituting Equations (6.19), (6.20) and (6.21) into Eq. (6.17), the terminal voltages

of Cl in d—q coordinate become

Vql R1 + RL X1 + XLLl q1
+

XL + X1 Zq1

Vdl —(X1 + XLW1) R1 + RL d1
Wb

Zd1

FeD VOD XL 012 S12 q2
+ [T11 +[T1] +—

ECQ VOQ b 12 012 d2

C12RL +S12XLw2 —S12RL +C12XLW2
+ (6.22)

S12RL — C12XLW2 C12RL +S12XLW2

where

S12 = sin(61
— 62) 012 = cos(61

— 62)

521 = sin(62
— 61) 012 = cos(62

— 61)

Similar equations can be written for the terminal voltage of 02 by simply interchang

ing the subscripts 1 and 2 of Eq. (6.22).

Finally, the differential equations for the voltages across the capacitor compensation

can be written from the current relation

ECD 0 1 BeD ‘LD
= +WbXC (6.23)

ECQ 1 0 ECQ ‘LQ
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where transmission line currents ‘LD and ‘LQ are not state variables, but may be replaced

by Eq. (6.20).

6.3.6 Summary of Mathematical Model

The complete system model for the SSR study includes 40 nonlinear differential equations

as derived in the previous sections. All 40 state variables may be summarized as

[X]T
= {L’H1 °H1 L1 0L1 -‘i 8 a1 gi

TH1 TL1 WH2 °H2 WL2 °L2 ‘2 82 a2 g2

TH2 TL2 di q1 ZF1 D1 Qi ZS1 d2 q2

ZF2 D2 ZQ2 S2 ECD ECQ EFD1 EFD2 VR1 VR2j

The nonlinear differential equations of the state variables are used for simulation

tests. For the control design in the following sections, these nonlinear equations must

be linearized with respect to a set of initial values of the state variables. The linearized

system state equations will be given as Eq. (6.24) in the next section but the details

of the linearized equations are not included. All data of these differential equations are

available in the references ([43],[51j).

6.4 A Direct Pole—Placement Method for Control Design

Iterative pole—placement method has been applied to excitation control design for the

First Benchmark Model which has only one machine [52]. For the control design of the

system 2 of the SBM, which has two machines, a new direct pole—placement method is

developed in this thesis. This method does not require any iterations and the resultant

stabilizers use only local state variables as feedback signals for decentralized control.
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The linearized state equation of a multimachine power system with excitation control

u(t) may be written

±=Ax+Bu (6.24)

where x is the n x 1 state vector and u is the k x 1 control vector. A and B, respectively,

are the n x n system matrix and the n x k control matrix. Assume that there are m

unstable eigenvalues to be replaced and that state variables used as control feedback

signals have been chosen. Assume further that columns and rows of the system matrix

corresponding to the feedback state variables have been moved to the front position. We

have

XI X1
U’

x11 = [A] x11 + [B] (6.25)
U2

XIII X111

where X1 contains m local feedback state variables chosen for u1, the excitation control

of the first generator set, and X11 contains m state variables for u2, the control of the

second generator set, i.e.,

K 0 X1
= (6.26)

U2 0 K11 X11

where K1 is a 1 x m gain matrix of u1 and Ku that of u2. Thus, Eq. (6.25) may be

rewritten as

(I XI
K1 0 0

= A+B x11 (6.27)
0 1(11 0

XIII XIII

Next, let the unstable mode eigenvalues be shifted to desired values )q, i = 1,2,. .. , m,

and let the corresponding eigenvectors be P, i = 1,2,. . . , m. For the i-th new eigenvalues,
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we shall have

K1 0 0
A + B [F,] = [F]) (6.28)

0 K11 0

or

K1 0 0
[Fe] = [A — )I]’[B] [F] (6.29)

0 K11 0

Let

K1 0 0
— [F] = (6.30)

0 K11 0 ,t3

where c, and /3 are constants. Since the value of an eigenvector is not unique, cj ( or

/3) can be chosen by trial and error, but not zero, and both of them are related to P2.

Substituting Eq. (6.30) into Eq. (6.29), we have

[F2] = [A — ),I]’[Bj (6.31)

where [Pg] is an n x 1 vector. For prescribed eigenvalues i = 1, 2,... , m, the corre

sponding eigenvectors F, can be solved one by one from Eq. (6.31) and all eigenvectors

thus obtained can be written in a matrix form as

[F] = [P1 F2 ... F, ... Fm] (6.32)

where [F] is an n x m matrix.

By using Eq. (6.30) and Eq. (6.32), we have

K1 0 0 a1 a2 ... am
— [F] = (6.33)

0 K11 0 /32 ... /3m
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Let [F] be partitioned as

F’

[F] = p11 (6.34)

F”

where both F, and P11 are rn x m matrices. Then, Eq. (6.33) becomes

F’
K1 0 0 a1 a2 ... am

—

p11 = (6.35)
0 K,, 0 /3i ...

F”

Therefore, the control gains [K,] and [K,,] can be solved from

[K,] = —[a’ a2 •. am][F,j (6.36)

[K,,] _[3, 2 •.. /3m][1ii]’ (6.37)

No iterations are required.

The algorithm of the pole—placement method may be summarized as follows:

1. Specify a set of desired new mechanical mode eigenvalues ) for closed—loop system

and select nonzero elements a and /3, i = 1, ..., m.

2. Let X, include m feedback state variables chosen for u, and X,, m variables for u2.

3. Rearrange the columns and rows of system matrix, if necessary, to form the equation

Eq. (6.25).

4. Calculate P from Eq. (6.31), for i = 1, ..., m.

5. Form [P] according to Eq. (6.32).

6. Pick out F, and F,, from Eq. (6.34).

7. Obtain K1 and K,1 from Eq. (6.36) and Eq. (6.37), respectively.
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Table 6.1: Torsional Modes

Mode Frequency of 01 Frequency of 02
1 24.65 Hz 24.65 Hz
2 32.39 Hz 44.9 Hz
3 51.10 Hz —

6.5 Eigenvalues Analysis of the System without Control

To apply the pole—placement controller design method to the system 2 of the SBM, the

eigenvalues of the linearized system model are analyzed in this section to find the unstable

mode eigenvalues. Since the unstable eigenvalues are usually associated with the torsional

oscillation frequencies of mechanical systems, the torsional modes of mechanical systems

are discussed first.

6.5.1 Natural Torsional Oscillating Modes

The natural torsional modes of the turbine—generator—exciter mass-spring system may

be found by the eigenvalues of Eqs (6.1) without damping D’s and forcing torque T’s.

There are usually m — 1 torsional modes for a rn—mass-spring system. These modes

are numbered sequentially according to the values of their frequencies. Mode 1 has the

lowest torsional oscillating frequency and mode rn — 1 has the highest one. For the

system 2 of the SBM, the torsional modes of mechanical systems of two machines (Cl

and 02) were given in [43], and they are also confirmed by our own calculation. These

results are listed in Table 6.1. There are three torsional modes for the mechanical system

of 01 and two modes for that of 02.
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6.5.2 Unstable Mode Eigenvalues

The two generators of system 2 of SBM are assumed operating on full load at a power

factor of 0.9. A 40th—order system model derived in previous sections and linearized

around the operating conditions is used for eigenvalue analyses. For each given capacitor

compensation ratio Xc/XL1,the system model has a set of forty eigenvalues. The ca

pacitor compensation ratio is assumed to vary from 0.05 to 0.9 in 0.05 increments. The

eigenvalues of the system for all these compensations are calculated and examined. It is

found that a low—frequency mode (MO), the mode 1 of Gi (Mu), and the mode 1 of G2

(M12) are unstable, or nearly unstable. The real—part eigenvalue loci of these unstable

modes are plotted in Fig. 6.4. The worst situation occurs around a compensation ratio of

0.70. For this compensation ratio, the unstable eigenvalues and their undamped natural

frequencies are

Eigenvalues Natural Frequencies f (Hz) Torsional Modes

0.9847 +j 155.77 24.79 Mu

0.0243 ±j 155.77 24.79 M12

0.3232 ±j6.9752 1.11 MO

Therefore, the system state equation based on the compensation ratio of 0.7 is singled

out for the excitation control design.

6.6 Stabilizer Design for the System 2 of SBM

The objective of the stabilizer design is to place these unstable mode eigenvalues to

the desired location using local measurable state variables. First, participation factors

of these eigenvalues will be calculated to decide the most effective state variables as

feedback input of stabilizers. Then, the state variables will be transformed to some

measurable variable for the controller design. Finally, since the gain matrix in the design
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is not unique, a gain matrix suitable for the system stability over wide—range capacitor

compensation will be sought.

6.6.1 State Variables for Control Feedback

To move the six unstable eigenvalues to prespecifled locations by the pole—placement

design method, it is necessary to choose six state variables for [X1] and another six for

[Xii]. Participation factor analysis method is used to determine which of the forty state

variables are most sensitive to these unstable modes and should be chosen as the excita

tion control feedback. It is found that the following state variables are most influential

and may be used for feedback design

[Xi]T [Lid1 LZqi M1 L\W1 /&WL1 1iFi]

[X11]T [L.id2 q2 2 L\W2 ‘L2 F2]

The state variables d and q, the d and q components of the armature current, however,

are not directly measurable. They must be replaced by measurable variables. In this

design, the electric power output Fe and the generator armature current t are chosen.

Hence, the desired feedback variables are

[y1]T
= [IFei LSzLl AS1 Aw1 AWL1 AZF1]

[y11]T
= [APe2 Ai2 2 AW2 ALL’L2 AZF2]

They require the following linear transformation

= [T] (6.38)

where T is a 12 x 12 transformation matrix. Twelve linear algebraic equations are required

to form the T matrix. In addition to eight identity equations for the AS’s, the Aw’s, the
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w’s, and the L.iF’s, the remaining four equations are

Pci = ZjV + ZqiVqi

Pe2 = d2’Vd2 + Zq2Vq2 (6.39)

ti = ‘v/Iii + ii

t2 + i2

To eliminate Vdi and Vqi of Eqs. (6.39), Eq. (6.22) may be modified as follows. At the

point of system operation, the derivatives of the currents of Eq (6.22), which constructs

a very small portion of the voltage across the transformers and the transmission line, can

be neglected. The [T1j[ECD ECQ]T representing the voltage across Xc of the capacitor

compensation will vanish if the total line reactance XL of Eq (6.22) is replaced by X =

XL — Xc. Therefore, Eq (6.22) becomes

vql R1 + RL X1 + Xw1 Zqi VOD
=

vdi —(X1 + Xwi) Rn + RL di VQQ

C12RL +S12X2 —S12RL +C12Xw2
+ (6.40)

S12RL — C12Xw2 C12RL + Sl2X2

Note that besides di, q1 there are state variables 6 and of both machines on the RHS

of Eqs. (6.40). Now, Vdi and Vql of Eqs. (6.39) can be replaced with Eq (6.40). Similar

relations can be found for Vd2 and Vq2. Finally, from the results of the linearization of

Eqs. (6.39), the transformation matrix [TI may be completed.

Using Eq. (6.38), Eq. (6.25) can be transformed into

= [A] ] +

[u’]
(6.41)

XIII X111
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where

r—i T 0 T’ 0 T 0
[Aj = [A] [B = [B]

01 0 I 01

Now the control vector is chosen as

u1 K1 0 Y1
= (6.42)

u2 0 i(j

Note that this is a linear similarity transformation and thus the eigenvalues of the system

matrix A are the same as those of the original system matrix A. The control design

method of Section 6.4 still can be applied to the transformed system by simply replacing

A and B matrices by A and B, respectively.

6.6.2 Prespecified Eigenvalues

As already mentioned in Section 6.5.2, there are six unstable eigenvalues among the

forty eigenvalues for the system without control. The six eigenvalues consist of three

complex conjugate pairs. It is intended to change their damping ratio but not their

natural frequencies so that unnecessary control efforts can be avoided. The prespecified

eigenvalues are

Specified Eigenvalues Old Unstable Eigenvalues

—3.4270 ± j155.73 0.9847 ± j155.77

—3.L155±j155.74 0.0243±j155.77

—0.8728 + j6.9279 0.3232 ± j6.9752

6.6.3 Feedback Gain Matrices

Since the feedback gain matrices are not unique, it depends on the choice of the a and

/3 constants. The non—zero elements a and /3, = 1, 2,. . . , m, are all assumed to be
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1.00 to begin with. The control gains are directly determined and exact pole—placement

for those prespecified eigenvalues is obtained without the need of iteration. However, for

stable operation over wide—range capacitor compensation ratio from 0.05 to 0.9, the c

and /3 values of 1.00 chosen for the 0.7 capacitor compensation design should be adjusted.

The final values are

— 1.00 1.00 1.00 1.00 1.00 1.00

/3 — 1.04 1.04 0.94 0.94 1.00 1.00

and the control gains become

[K1] = [1.803 0.198 0.573 — 98.0 125.9 — 2.516]

[KH] = [2.109 — 7.933 8.242 — 8.80 105.8 — 1.503]

The eigenvalues of the six unstable mode have been moved to exact new locations

—3.4270 ±j 155.73 (f = 24.79 Hz)

—3.1155 ±j 155.74 (f = 24.79 Hz)

—0.8728 + 6.9279 (f = 1.11 Hz)

Although the control design is for a particular capacitor compensation ratio of 0.7, eigen

values of the system with the control gains are recalculated for compensation ratio from

0.05 to 0.90 in 0.05 steps. All eigenmodes are stable. Finally, the real—part eigenvalue

loci of the low frequency mode (MO), the mode 1 of 01 (Mu), and the mode 1 of G2

(M12) for the system with stabilizer, are plotted in Fig. 6.5. Although the worst damp

ings of Mu and M12 for the system without stabilizers occur at compensation between

0.6 and 0.8 as shown in Fig. 6.4, the best dampings of both Mu and M12 for the system

with stabilizer occur at 0.7 as shown in Fig. 6.5, and this is exactly what the system is

designed for.
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6.6.4 Nonlinear Simulation Test

Nonlinear simulations are performed to test the excitation control design in this Chapter.

The forty nonlinear differential equations including the governor opening and voltage

regulator constraints are used for the computer simulations. Two types of disturbances

are simulated: a 10% step torque applied to generator 1 or 2, and a 20% pulsed torque

applied to generator 1 or 2 for 0.2 second. All results indicate that the system is stable

for the system with control but unstable for the system without control. Since the

control is designed for a given state of operation, the system responses to the step torque

disturbance are more severe than those to the pulsed torque disturbance. Since the

simulation results of the step torque applied to generator 1 or 2 are similar, only the

results of the step torque applied to generator 1 are presented in this section. Fig. 6.6

shows the responses to this step torque for the system without control and Fig. 6.7 shows

those for the system with control. Multimode oscillations appear in all cases, but the

decay is reasonably fast for the system with control. There are high and low frequency

components in control signal UE. While the low frequency component in UE provides

damping to the low frequency oscillations of mode 0, like conventional PSS, and the

high frequency components produce effective damping to the high frequency torsional

oscillations of mode 1 of both generators.

6.7 Conclusions

1. A mathematical model has been derived for system 2 of the SBM for the SSR

studies.

2. A new direct pole—placement method is developed for the stabilizer design of mul

timachine SSR systems. Only local output signals of individual machines are used

as the feedback input.
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3. The method has been successfully applied to a stabilizer design for excitation con

trol of torsional oscillations of system 2 of the SBM. Effective feedback signals can

be found from participation factor analysis and all unstable mode eigenvalues of

the system can be shifted directly to exact new positions without iteration.

4. The stabilizers thus designed can effectively damp out multi—mode torsional oscil

lations of the system over a wide range of capacitor compensations although the

stabilizers are designed for a particular degree of compensation.
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Figure 6.6: Responses to a Step Torque to Gi for the System without Control. (b)
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Chapter 7

CONCLUSIONS

7.1 New Stabilizer Design Techniques Developed

Three types of stabilizers for dynamic stability control of multimachine power systems

are developed in this thesis: the coordinated and decentralized PSS in Chapter 4, the

direct MIMO STR in Chapter 5, and the decentralized linear feedback stabilizer in Chap

ter 6. A number of new design techniques for these stabilizers are developed. They are

summarized as follows:

1. Mathematical models for multimachine dynamic stability studies and for high order

nonlinear simulations are developed in Chapter 2 and Chapter 6.

2. Participation factors for linear analysis and speed deviation indices (SDI) from

nonlinear simulations are used in Chapter 3 for the selection of number and sites

of stabilizers. The effectiveness of this method is confirmed by the PSS design in

Chapter 4 and the STR design in Chapter 5.

3. A new pole—placement technique is developed in Chapter 4 for decentralized Power

System Stabilizer (PSS) design for multimachine power systems with low—frequency

oscillations. The PSS transfer functions are explicitly expressed in the final equa

tions for the PSS parameter design. The computation required is much less than

the existing methods.
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4. A direct self—tuning regulator (STR) for a multimachine system with wide—range

changing operating conditions is developed in Chapter 5. Clarke’s indirect STR of

GPC method is improved so that the initial step control parameters are directly

estimated and that the subsequent control parameters are recursively computed.

The computational requirement of the original CPC is reduced.

5. A direct pole—placement design technique for decentralized linear feedback stabi

lizers is developed in Chapter 6 for the stabilization of multimachine multi—mode

torsional oscillations. This method is applied to the excitation control design for

System 2 of Benchmark II of IEEE. For the design, a mathematical model for the

system is also developed.

7.2 Applications and Conclusions

Because of the nature of different types of stabilizers for different kinds of dynamic

stability problems, conclusions have been drawn for each topic at the end of each chapter.

The final conclusions of applying these new stabilizer design techniques to power systems

may be drawn as follows.

1. Both participation factor method of linear analysis and the speed deviation index

(SDI) based on nonlinear simulations are helpful in deciding stabilizer number re

quired for a multimachine system and the sites of stabilizer installation. Stabilizers

should be installed on machines having relatively larger participation factors of un

stable modes or on machines having relatively larger speed deviation indices. For

the initially unstable nine-machine system, three stabilizers on machines 7, 8, and

3 are sufficient to ensure the stability of the system although there are four unstable

modes and six coherent groups for the open—loop system.
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2. The effectiveness of the new pole—placement PSS design technique has been demon

strated by various PSS designs of the two multimachine power systems. Exact as

signment of any number of eigenvalues of low—frequency oscillating modes to new

specified locations can be achieved for all designs. Non—uniform damping factors

can be assigned to the eigenvalues to be changed. Assigning a relatively large damp

ing factor to an unstable mechanical mode can also improve the damping of poorly

damped mechanical modes nearby through the dynamic interaction of machines.

3. The principle and method of the direct MIMO STR developed are applied to the

STRs design of a nine—machine power system. Comprehensive simulation results

show that the STRs thus designed can effectively stabilize a power system over a

wide range of changing operating conditions while the stabilizers with fixed param

eters may fail-to do so. Therefore, further exploration of STR design is necessary

to the benefit of power system stability control.

4. The new direct pole-placement method is successfully applied to an excitation con

trol design to damp torsional oscillations of system 2 of the SBM. Effective feedback

signals can be found from participation factor analysis and all unstable mode eigen

values of the system can be shifted directly to exact new positions without iteration.

The stabilizers thus designed can effectively damp out multi—torsional—mode sub-

synchronous oscillations of the system over a wide range of capacitor compensations

although the stabilizers are designed for a particular degree of compensation.

7.3 Future Research

Further research shall be done on both analyses and applications. For example, although

poles can be shifted to the desired locations with the developed pole—placement method, it

needs a method to analytically decide where poles should be shifted for optimal dynamic
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stability control. As for the self—tuning control of Chapter 5, the output and control

horizons id and nu are chosen so far by users and the analytical relationship between

these chosen horizons and stability conditions are still unclear. The question is how

to select the horizons under defined stability conditions. There are also the modeling

problems for more complex systems with HVDC, SVC, etc. Furthermore, there are

many transient stability control problems such as generator tripping, load shedding, etc.

They are beyond the scope of this thesis but should be coordinated with the dynamic

stability control of a power system.

Although the stabilizers presented in the thesis prove very effective for dynamic sta

bility control of power systems from computer simulations, more work remains to be

done to implement them in real power systems. These include instrumentation, data

acquisition, and communication, especially for self—tuning stabilizers.
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