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Abstract 

Due to its high computational demand, MPEG-2 video coding solutions have been based 

mainly on custom hardware (ASIC) systems. Such systems lack the flexibility and adaptability of 

software-based solutions. Achieving real-time MPEG-2 video encoding in software remains to 

be a major challenge. A typical MPEG-2 encoder performs 20 to 30 GOPS (giga operations per 

second), which exceeds the capabilities of the most advanced contemporary processors. 

In this thesis, we have developed and tested a highly optimized, low complexity, high-

quality MPEG-2 video encoder software based on Texas Instruments' fixed-point TMS320C6201 

VLiW (Very Long Instruction Word) processor. First, we developed MPEG-2 video encoder 

software written in C for the C62x processor platform, however, due to the difference in the 

processor architecture, optimization and modification are done on the software to ensure the 

MPEG-2 video encoder runs efficiently in the VLIW architecture. The optimization are done at 

the assembly language level to maximize the attainable instruction-level parallelism (ILP) of the 

C62x VLIW architecture. In our experience, optimizations done alone by the optimizing C-

compiler of the C62x could not meet the real-time requirements of MPEG-2. After code re­

mapping and optimization, the resulting MPEG-2 video encoder implementation runs 

approximately 32 times faster than the original unoptimized MPEG-2 video encoder. Moreover, 

the current version of the encoder can handle SIF(320x240) video format at 16 frames per second 

with both I and P pictures, and CCIR-601 (720x480) at 15 frames per second for the I pictures 

only. Our real-time MPEG-2 encoder has been implemented and tested on the C62x Evaluation 

Model (EVM) board from TI. 
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Chapter 1: Introduction 

Chapter 1 

Introduction 

With the growing deployment and commercialization of the multimedia applications, 

comes the demand for higher performance to be offered to such applications at the lowest 

possible cost. Additionally, multimedia processing platforms must become more flexible 

and easily re-programmable to keep up with changing standards and application domains. 

Currently, video signal processing is the dominating task in terms of computational 

demands as well as amount of information bandwidth, unless compression technology is 

used. The wide demand for video coding applications have led to the development of 

video coding standards for video compression such as ISO/IEC MPEG-1 and MPEG-2. 

The required processing rate for video compression ranges from 100 mega operations per 

second (MOPS) to more than one tera operations per second (TOPS). For instances, the 

real-time MPEG-2 video decoding for National Television Systems Committee (NTSC) 

resolution requires more than 400 MOPS, while MPEG-2 video encoding can require up 

to 30 giga operations per second (GOPS) [1]. Such requirements are beyond the 

capabilities of contemporary microprocessors and have been satisfied mainly through the 

use of Application Specific Integrated Circuits (ASICs) technology only. However, this 

trend is changing with the advent of new fundamental algorithmic enhancements to video 
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Chapter 1: Introduction 

encoding, and with the development of media-enhanced processors from various vendors 

such as the Visual Instruction Set (VIS) extension of Sun Microsystem's UltraSPARC 

[2], the M M X extension of Intel's Pentium processors, the MAX-2 extension of Hewlett-

Packard's PA-RISC [3], and the Multimedia Instruction Set extensions of Silicon 

Graphics' microprocessor [4]. These enhancements have helped real-time video 

applications in software become reality. 

Current solutions for real-time MPEG-2 video encoding and decoding are based 

principally on VLSI implementations such as the custom hardware (ASIC) systems. 

However, in order to make the implementations flexible and cost effective, migrating 

functionality from application specific hardware into software running on a 

programmable general-purpose processor or DSP start to gain great deal of interest. 

Recently developed microprocessors and programmable DSP chips offer powerful 

processing capabilities to do real-time video compression/decompression. These 

processors were designed with the target of realizing a software-implemented MPEG-2 

encoder/decoder in real-time. 

In this thesis, we have developed and tested a highly optimized, low complexity, 

high-quality MPEG-2 video encoder software that runs in real-time or near real-time on 

Texas Instruments' fixed-point TMS320C6201 VLIW (very long instruction word) 

processor. The high performance TMS320C6201 VLIW DSP processor was chosen 

among all the microprocessors and programmable DSP because it employs the VelociTI 

VLIW architecture [5]. Our encoder software is based on the encoder design by Dr. 

2 



Chapter 1: Introduction 

Kossentini and others of the SPMG group at UBC. However, because of the distinctive 

features of the VLIW architecture, the original MPEG-2 video encoder software had to be 

remapped and modified substantially according to the memory and processor architecture 

of the targeted VLIW processor. The modifications and optimization have been applied 

mainly to the time consuming functions of the software, which include the DCT, IDCT, 

block matching (SAD), quantization, and variable length coding. Given the inefficiency 

of the optimizing C-compiler of the C62x, the optimization of most coder functions is 

mainly done at the assembly language level to maximize the attainable ILP (instruction 

level parallelism) of the C62x VLIW architecture. As a result of the assembly level 

optimization and the memory re-mapping the MPEG-2 video encoder runs approximately 

32 times faster on the C62x than the unoptimizied video encoder implementation. 

Moreover, the resulting MPEG-2 video encoder implementation can encode SIF video 

format at 16 frames per second with both I and P pictures, and I pictures only in CCIR-

601 video format at 15 frames per second on the Texas Instrument's C62x Evaluation 

Model board. We believe that this is a big leap forward towards achieving real-time video 

encoding in software-only on a VLIW DSP processor. 

This thesis is organized as the follows. Chapter 2 provides an overview of VLIW 

technology with the Instruction Level Parallelism (ILP) architecture and the related issues 

of the compiler technology of VLIW. Following the discussing of VLIW technology, the 

MPEG-2 video coding standard and the software solution for real-time MPEG-2 video 

encoder proposed by the SPMG group of UBC is discussed in chapter 3. Chapter 4 

introduces the Texas Instrument's C62x VLIW architecture and provides some brief 
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Chapter 1: Introduction 

information on its instruction set and memory structure. This chapter also describes the 

mapping issues of the MPEG-2 video encoder on the E V M and the memory 

configuration and host interface of the algorithms. In Chapter 5, the methodology of 

optimization of the software MPEG-2 video encoder is discussed along with some result 

comparison. Finally, conclusions for the real-time software MPEG-2 video encoder and 

suggestions for the future work towards the full feature real-time MPEG-2 video encoder 

are given in Chapter 6. 
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Chapter 2 

An Overview of VLIW Technology and Different Architecture 

Approaches for Video Processing 

2.1 Introduction 

As stated earlier, the main objective of this thesis is to develop an efficient 

implementation of the MPEG-2 video encoder on the VLIW architecture. Therefore, a 

mutual understanding of the VLIW architecture and realizing the main differences among 

programmable multimedia processor architectures are needed. In this chapter, we first 

present the basic concepts of ILP. This is followed by a discussion of ILP architectures. 

A presentation of the compiler-architecture technology for the VLIW processors is given. 

The chapter then concludes with a discussion of the different architectural approaches to 

programmable processors, which are desirable for the implementation of video 

processing. 

Traditional DSP-oriented chips were mainly built for inner-loop-oriented engines that 

acted as slave processors to a CPU, and let the CPU run the rest of the application and the 

operating system [6]. However, over the past two decades research on VLTW 

architectures has led to the development of stand alone DSP-oriented microprocessor 
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Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches 

chips based on this concept. Additional advancements in the field of compiling and 

architecture technology has made it possible to write the actual compute-intensive loops 

as part of the whole application. As many of the emerging multimedia applications 

continuously change, programmable architectures that provide higher degree of flexibility 

and greater processing power became desirable. Recently, VLIW is one of the fastest 

growing architecture designs that fulfill high performance needs. The VLIW architecture 

has its concept aims at exploiting the instruction-level parallelism inherent in many 

multimedia algorithms to improve the performance. Multiple operations are specified 

within a single long instruction word for concurrent execution in every clock cycle. 

Hence, multiple parallel functional units are implemented in such a way that they can 

concurrently execute instructions. However, full utilization of the parallelism of the 

functional units is difficult to achieve and sustain, often resulting in the occurrence of idle 

resources at run time. Furthermore, compilers for DSPs have generally been unable to 

exploit the features of ILP architecture efficiently. As a result, a significant part of DSP 

applications has to be optimized manually at the assembly language level. Therefore, 

VLIW architectures have two major issues that must be addressed: one is the ILP issues 

and its architectures; and the other is the compiler-architecture interaction for VLIW. 

On the other hand, the differences between architectural approaches for 

programmable processors must also be addressed, as the different architectural 

techniques applied would be able to increase the multimedia performance. By exploiting 

the differences of the architectural approaches, we would further understand the 

adequate/inadequate features of the current processor for handling multimedia 
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Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches 

applications. The techniques can be divided mainly into parallelization strategies and 

adaptation strategies. For the parallelization strategy, it's done primarily on the data, 

instruction, and task levels, which can result in a considerable increase of computational 

power by achieving high level of concurrency of operations. The adaptation strategy 

increases the efficiency of an architecture by economical use of hardware resources. 

2.2 Instruction-Level Parallelism (ILP) issues 

VLIW is a processor with a design philosophy similar to that of the reduced instruction 

set computer (RISC). A VLIW processor is basically a logical extension of the RISC 

processor, except it has more advanced features by adding ILP to a processor. As 

mentioned before, ILP is the key architectural technique employed by today's high-

performance DSPs. ILP is a set of design techniques that speed up the programs by 

executing several RISC-style operations in parallel, such as memory loads and stores, 

integer additions, or multiplications. These operations execute single-cycle operations on 

hardware functional units, rather than performing parallel tasks. Only at the finest-grain 

level are these operations assigned to every possible function units such as adders and 

memory units at the same time as shown in Figure 1. Parallel execution occurs in every 

functional unit during a single-cycle of operation [7]. This parallelism is largely 

transparent to the user. However, advanced users may be well aware of its operation and 

may restructure the code or carry out other actions to enhance ILP. Distinguishing 

between the latent or available ILP inherent in a segment of code and the realizable or 
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achievable ILP provided by the hardware would be a key to maximizing the efficiency of 

the ILP architecture. 

ALU 1 A L U 2 M I L Datal Data2 A L U 3 

add rl,r2 sub r3, r4 mill r5, rd load r7, rS store r9, rlO and rl 1, r!2 

*all six functional units are assigned with operations 

Figure 1: Example of finest-grained level of operations assigned to all functional 
units. 

2.2.1 ILP Hardware 

Several different ways of hardware support are offered in ILP. For instances: 

• more than one functional unit in a processor can execute concurrently, 

• functional units with latency longer than one cycle can be pipelined, 

• multiple functional units can access different register files to add register 

bandwidth for the purpose of parallel execution. 

This hardware support enables the parallelization of the same RISC operations 

that are executed sequentially in the view of the programmer [8]. An example of the 

execution hardware enhanced to exploit potential ILP is depicted in Figure 2, assuming 

that the long instruction word execution takes place during a single-cycle. Having 

separate register banks for the integer and floating-point data can help reducing potential 

hardware resource conflicts. Also including extra integer units enables access to more 

than one integer operation per cycle. 
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Share Bus 

Figure 2: Hardware enhancement for ILP. 

Besides the execution hardware of an ILP processor, microprocessors have 

control hardware as well, which controls the flow of operations instead of carrying out 

the operations that contribute to the desired computation. There are mainly two types of 

architectures embodying the ILP methodology in modern microprocessor control units, 

and both can increase code performance by statically or dynamically scheduling parallel 

streams of single-cycle operations. The two types are: superscalar processors which 

employs dynamic instruction scheduling, and VLIW processors which employ static 

instruction scheduling. It should be noted that the pipelining structure of the two 

processor types is different. 
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2.2.1.1 Superscalar Processors 

In general, most general-purpose microprocessors embody a form of ILP called 

superscalar execution. However, the main difference between scalar and superscalar 

general-purpose processor is that the control hardware is much more complex for the 

latter processor type. Superscalar processors are designed to exploit more ILP in user 

programs. Only independent instructions can be executed in parallel without causing wait 

states. The amount of ILP varies widely depending on the type of code being executed. A 

superscalar processor fetches several RISC-level instructions from a scalar instruction 

stream and processes these instructions in parallel, all these decisions are made at the 

runtime. The control hardware of the processor checks the dependencies among the 

operations, reorders the instructions to take advantage of free function units or other 

resources, performs register renaming, then executes operations in parallel if possible; 

thus speeding up the computation [9]. This more complex hardware is often referred to as 

scheduling hardware. A superscalar processor is handed ordinary code, compiled for a 

sequential model of computation, and the scheduling hardware produces the ILP. For the 

superscalar type of architecture, a specific compiler is not required. 

• Pipelining in Superscalar Processors: The fundamental structure of a superscalar 

pipeline is illustrated in Figure 3. The diagram shows the use of three instruction 

pipelines operating in parallel for a triple-issue superscalar processor. The superscalar 

•processor shown below, of degree three, can issue up to three instructions per cycle, 

where the base scalar processor implemented either in RISC or CISC can only have a 

degree of one. To fully utilize a superscalar processor of degree three, three 
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instructions must be executable in parallel. However, this situation may not happen in 

all clock cycles. In that case, some of the pipelines may be stalling in a wait state. For 

most of the superscalar processors, the simple operation latency should require only 

one cycle. To achieve a higher degree of instruction-level parallelism in programs, the 

superscalar processor depends on an optimizing compiler to exploit ILP. 

A 
ifetch execute 

decode write back 

- > 

0 1 2 3 4 5 6 7 8 
Time in base cycle 

Figure 3: Fundamental structure of a superscalar pipeline with degree of three. 

2.2.1.2 VLIW Processors 

The VLIW processors are in general very similar to superscalar processors in the sense 

that both processors use the same or similar execution hardware to achieve the ILP, 

except that the VLIW processors have extremely simple control units. A typical VLIW 

processor has instruction words hundreds of bits in length such as Texas Instruments' 

fixed-point TMS320C6201 VLIW processor is 256-bit long [10]. In a VLIW, it is the 

task of the compiler to determine the ILP and to schedule operations to run on multiple 
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functional units concurrently. All the functional units share the use of a common large 

register file and the operations to be simultaneously executed by the functional units are 

synchronized in a VLIW instruction. The compiler communicates the information about 

where, how, and when things are done via the program itself, by specifying directly in 

each cycle exactly what each function unit is to do, where it gets its data from, etc. Since 

this design philosophy mandates the simplest possible control hardware, it is common to 

put no-ops in each instruction corresponding to those functional units, making their task 

in that cycle explicit. However, inserting no-ops to all the unused functional unit leads to 

the problem of code size expansion. Coding size is especially critical issue for DSP 

applications. Furthermore, the static nature of scheduling has also led to a more complex 

compiler toolkit. 

The immediate advantage of VLIW methodology is that both power consumption 

and silicon area are significantly reduced compared to an equivalent superscalar 

architecture. One drawback of traditional VLIW architectures is code expansion resulting 

from inserting the no-op operation into the unused functional units during a VLIW 

execution packet instruction cycle. Depending on the number of functional units, N, 

VLIW code expansion could theoretically increase the code size by as much as N times. 

• Pipelining in VLIW Processors: The execution of instructions by an ideal VLIW 

processor is shown in Figure 4, where each instruction specifies multiple operations. 

12 
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execute 3 op 
lfetch 
i i i 

decode write back 

0 1 2 3 4 5 6 7 8 
Time in base cycle 

Figure 4: Execution of V L I W processor instructions in a pipelined fashion. 

VLIW processors behave much like superscalar processors except for the following 

three main differences: 

1. VLIW instructions are much easier to decode than the superscalar instructions. 

2. In terms of code density, the superscalar processor is better when the available 

ILP is less than that exploitable by the VLIW processor. This is due to the fixed 

VLIW format that includes bits for non-executable operations such as the no-ops 

described previously, while the superscalar processor issue only executable 

instructions. 

3. A superscalar processor can be object-code-compatible with a large family of 

nonparallel processors. In contrast, a VLIW processor exploiting different 

amounts of parallelism would require different instruction sets. 

13 
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2.2.2 The Use of V L I W in DSP Applications 

The extreme popularity of the use of VLIW architecture in the DSP world comes for 

several reasons. One of the most important reasons is the ability to take advantage of the 

abundant ILP that's available in typical DSP codes. However, the control hardware can 

become enormous when it must control large numbers of functional units. However, the 

major disadvantage of VLIW architecture as general-purpose microprocessor is the issue 

of object code compatibility. Programs for different VLIW are likely to be different, and 

thus the code must be recompiled for each processor architecture. The object code 

compatibility tends not to be an impediment in the DSP applications, since recompilation 

and unique hardware have been the norms. The relatively static flow of control in DSP 

and multimedia applications has made VLFW a good choice. 

2.3 Compiler-Architecture Technologies for VLIW 

Compiling for VLIW DSP processors was done poorly for the past decade, and the only 

way to obtain an efficient coding was though the hand coding assembly. Clearly, a high-

level language approach was much more desirable. Unfortunately, until 1980s, there were 

no approaches that matched, or even came close to, the performance that hand code could 

provide. The major barrier faced, even by experienced compiler writers, was that 

available practical compiler technology only enabled the scheduling of operations that 

come from single straight-line segments of code, called "basic blocks" by compiler 

writers. Whenever the compiler encountered a jump of any form, or even a branch target, 

the compiler would stop any further scheduling, declare that section done, and starts all 
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over with the next section. Unfortunately, there was little performance to be gained that 

way. If operations could somehow be moved globally between blocks rather then locally, 

far higher degrees of ELP would be available. Therefore, performance gains achieved 

with VLIW architectures will critically depend on the degree of exploitable instruction-

level parallelism in the target algorithm as described previously. To maximize the pool of 

operations that can be scheduled into a single instruction word, sophisticated compiler 

techniques such as loop unrolling, software pipelining, trace scheduling, and guarded 

execution may be applied [11]. 

2.3.1 Trace Scheduling 

As the name of the scheduling algorithm states, trace scheduling is centered on traces 

[12]. The compiler mainly focuses on loop-free sequences of basic blocks embedded in 

the control flow graph rather than a single basic block. Traces are selected and scheduled 

in order of their frequency of execution. The selected trace is then scheduled as if it were 

a single basic block as giving no special consideration to branches. By scheduling the 

trace all at once, the compiler implicitly moves operations between blocks. After a given 

trace has been scheduled, the next most frequently executed trace is selected from among 

the remaining unscheduled operations, including those added in the process of scheduling 

earlier traces. This continues until the entire program has been scheduled. 

The basic concept initiated by trace scheduling is to do the code motions 

implicitly as part of scheduling region, which is much larger than a basic block. 

Frequently in DSP and multimedia applications, the compiler is presented with a single 
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small loop. Hence, trace scheduling does not proceed beyond a back edge, there would be 

little opportunity for the compiler to do the global code motions that allow trace 

scheduling to be truly efficient. Trace scheduling compilers typically do a sophisticated 

job of turning a small piece of code into a long chain of blocks without back edges and 

without the artificial data dependencies that a naive job of unrolling would introduce. 

Unrolling the loops can be very effective as will be discussed further in the following 

section. However, it also bring the problem of generating much extra code and sometimes 

loses performance because there is always a start up and close down delay at the 

beginning and the end of each series of unrolled iterations. 

2.3.2 Loop Unrolling 

Loop unrolling can be a very effective compiler technique, as it replicates the original 

loop body multiple times, and adjusts the loop termination code and eliminates redundant 

branch instructions. The overhead of branching is significantly reduced with loop 

unrolling, especially when the latency of branching is large which is usually the case in 

most of the DSP architectures. This technique usually incorporates reduction of data 

dependencies to fully utilize the efficiency of loop unrolling. The resulting larger basic 

block increases the probability that the instruction scheduler can reorder instructions to 

exploit ILP [13]. Figure 5 shows an example of the compiler performing the loop 

unrolling technique. The initial iteration of the loop is 16 and the loop body is performed 

once every iteration. After performing loop unrolling, the compiler transform the loop 

iteration to four, and the loop body is executed four times every iteration. Given that 
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unrolling the loop not only reduces the redundancy of branch instructions with long 

latency, but also increases the probability of efficient pipeline scheduling. 

int size = 16; 
byte out[size], inl [size], in2[size]; 
for(i = 0; i < 16; i++) 

outfi] - inlfij + in2[i]; 

Before loop 
unrolling 

Cycle 0: load tl_0 = [inl + iO] 
loadtl_l = [inl + il] 
loadtl_2 = [inl + i2] 
load tl_3 = [inl + i3] 

cycle 1: load tl_0 = [in2 + iO] 
loadtl_l = [in2 + il] 
load tl_2 = [in2 + i2] 
loadtl_3 = [in2 + i3] 

cycle 2: add t3_0 = tl_0, t2_0 
add t3_l - tl_l, t2_l 
add t3_2 = tl_2, t2_2 
add t3_3 = tl_3, t2_3 

cycle 3: store [out + iO] = t3_0 
store [out + il] = t3_l 
store [out + 12] = t3_2 
store [out + 13] = t3_3 

Figure 5: An example of loop unrolling compiler technique. 

However, loop unrolling generates extra code and sometimes loses performance 

because the scheduler's effectiveness is limited by artificial dependencies created by loop 

unrolling's naive reuse of registers and other data dependencies between instructions. 

Code size expansion tends to be a problem in most DSP processors, because the program 

memory size is very limited. Therefore, the level of loop unrolling must be compensated 

with the limited code size expansion. 

Code section for the loop 
body after unrolling the 
loop in the compiler 
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2.3.3 Software Pipelining 

Software pipelining parallelize loops by starting new iterations before previous iterations 

complete. Successive iterations start at every initiation interval cycles. A single 

iteration's schedule can be divided into count stages, each consisting of initiation interval 

cycles. Figure 6 shows the execution of five iterations of a four-stage software pipelined 

loop. The three phases during execution of the loop are ramp up, steady state, and ramp 

down. The first stage count minus one cycle constitutes the ramp-up phase when not all 

stages of the software pipeline are executed. The steady-state portion begins with the last 

stage of the first iteration. During the steady-state phase, one iteration completes for 

every one that starts. The steady-state phase ends when the first stage of the last iteration 

has completed. For the final stage count minus one cycle is known as the ramp-down 

phase, one iteration completes every initiation interval cycle. The code generated for the 

three phases of the software pipelined loop are prologue, kernel, and epilogue [14]. 
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Figure 6: Software pipelined loop execution. 

Assume that without software pipelining every iteration takes N cycles to 

complete. With software pipelining, after the prologue, every new iteration takes one 

initiation interval cycle to complete. The speed up is a factor of N divided by initiation 

interval, when ignoring the overhead of the prologue. Scheduling the prologue and 

epilogue code in parallel with the code outside the loop would minimize this overhead. 

The overhead is insignificant for loops with large trip counts. Software pipelining works 

very efficiently for very simple loops and continuing research has broadened its 

applicability considerably. 
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2.4 Architectural Approaches for Programmable Processors 

In this section, various approaches are discussed that are widely employed to enhance the 

processing capability of programmable architectures for multimedia. Parallelization 

strategies are examined separately on data level (SIMD, split-ALU), instruction level 

(VLIW), and task level (MIMD, associative controlling). Adaptation strategies are 

divided into instruction set design modifications (specialized instructions) and the 

incorporation of dedicated hardware modules (coprocessors). Additionally, some remarks 

are given on the memory system design for programmable multimedia processors. 

2.4.1 SIMD 

Data parallelism in image and video processing algorithms can efficiently be exploited by 

SIMD (single instruction stream, multiple data streams) architectures. In SIMD 

processors, a number of parallel data paths is centrally controlled by a global control unit. 

All data paths execute the same stream of instructions, but operate on different data 

items. To enable conditional operations, individual data paths can be excluded from the 

execution of single instructions by binary masking [9]. Figure 7 shows the basic structure 

of the SIMD architecture. 
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Figure 7: SIMD multiprocessor architecture. 

As SIMD processors feature just a single control unit, the largest portion of 

available silicon area can actually be spent for the implementation of multiple data paths, 

leading to high degree of parallelism. However, the reduced control overhead is paid for 

by a lack of flexibility in case of more diverse computation requirements. While SIMD 

processors are highly efficient for algorithms with highly regular computation patterns, 

i.e., low-level tasks, utilization rapidly decreases for more irregular algorithms involving 

a higher portion of data-dependent processing. In consequence, pure SIMD architectures 

are not well suited for the implementation of complex processing schemes of 

heterogeneous nature as frequently encountered in multimedia applications. 
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2.4.2 Split-ALU 

Based on a principle similar to SIMD, the split-ALU concept also targets data-level 

parallelism in multimedia applications. The concept, also referred to as subword 

parallelism, involves parallel processing of several lower-precision data item on a single 

A L U of higher word length: a 64-bit ALU, for example, can execute a single operation 

on eight 8-bit data items simultaneously [15]. The implementation of a split-ALU 

requires only minor hardware extensions - basically, the carry signals arising in 

arithmetic operations have to be prevented from being propagated across the boundaries 

of separate data items. A possible split-ALU implementation is shown in Figure 8. 

Opr 1 Opr 1 

1 1 

16 bit 16 bit 

2x16/ 1x32 bit result 

Figure 8: Split-ALU implementation. 

Similar to SIMD architecture, the main benefit from a split-ALU is obtained for 

highly regular low-level algorithms involving identical operations executed on large data 

volumes. In addition, the degree of exploitable data parallelism depends on the precision 
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required for an operation: with increasing word-length demands, fewer data items can be 

processed in parallel. Since image and video processing tasks mainly involve operations 

on low-precision (8-bit) pixel data, subword parallelism can effectively be exploited to 

enhance the performance for these computation types. By providing different split-ALU 

instructions for various data formats, the achievable parallelism can gradually scale with 

the precision requirements. 

The small incremental hardware cost for a split-ALU makes this concept well 

suited for the extension of existing general-purpose processors with respect to multimedia 

processing. Typical operations to be executed in a split-ALU may include parallel 

addition/subtraction, multiplication, or compare. Furthermore, packing and unpacking 

operations have to be supported to enable a transition between conventional data words 

and packed subwords. As a drawback, split-ALU instructions are generally not supported 

by current compilers due to the lack of adequate high-level language constructs to 

express the desired operations. Moreover, complex code transformations usually become 

necessary before the packing of low-precision items into single long data words is 

enabled. Therefore, split-ALU instructions typically have to be inserted into the high-

level language code manually by the programmer in form of intrinsic functions. 

2.4.3 VLIW 

The VLIW processor architecture concept aims at exploiting the instruction-level 

parallelism. There are two types of VLIW processors. One is the VLIW processor with 

static mapping of the operations slots which relies on static operation scheduling at 

23 



Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches 

compile time. The other is the superscalar processor which dynamically detects 

instruction-level parallelism at runtime. 

Performance gains achieved with VLIW architecture critically depend on the 

degree of exploitable instruction-level parallelism in the target algorithm. However, the 

performance limitations of VLIW processors may arise from the growing hardware 

expense for multiported register files and crossbar switches when the number of 

functional units increases. Moreover, compiler techniques like loop unrolling and trace 

scheduling lead to a heavy increase in code size. The already high bandwidth 

requirements for instruction supply are likely to worsen due to the growing gap between 

processor and I/O speed. This problem is addressed by compressing the instruction words 

in memory and expanding them for execution. Details were given in the previous 

sections. 

2.4.4 M I M D 

An approach exploiting parallelism on both data level and tasks level is given by the 

MIMD (multiple instruction streams, multiple data streams) architecture concept. In 

contrast to SIMD architectures, MIMD processors feature a private control unit for each 

single data path. Consequently, each data path is provided with its individual instruction 

stream, enabling concurrent execution of different programs or tasks. Likewise, by 

supplying several data paths with identical instruction streams, data parallelism can be 

targeted as well [16]. The MIMD multiprocessor concept is depicted in Figure 9. 
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Figure 9: MIMD multiprocessor architecture. 

The major advantage of MIMD architectures is their high flexibility as each data 

path can be controlled individually. Therefore, MIMD architectures are typically better 

suited than SIMD architectures for the execution of compound multimedia processing 

schemes comprising low-, medium-, and high-level tasks. However, the duplication of 

control units and high-bandwidth requirements for a continuous supply of several 

instruction streams dramatically increase the hardware expense, thus limiting the number 

of data paths that can be economically implemented on a single chip. Furthermore, 

MIMD processors include poor programmability and lack of synchronization support. 

Typically, scalar programs have to be developed separately for individual data paths, and 

synchronization among processing elements has to be achieved manually by the 

programmer. The highly complex and time-consuming application development may be 

one reason for the non-popularity of the MIMD processors in multimedia processing. 
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2.4.5 Associative Controlling 

Associative controlling denotes a new concept for multiprocessor architectures aiming to 

prevent the typical drawbacks of both SIMD and MIMD processors in multimedia 

processing. The outstanding feature from the hardware point of view is a lower number 

of control units than parallel data paths. Therefore, in terms of hardware expense, an 

associatively controlled multiprocessor can be classified between SIMD and MIMD 

architectures [17]. Figure 10 gives a structural overview of an associatively controlled 

processor. 

Instruction M e m o r y 

1 i 

Contro l l er 1 Contro l l er 2 • • • C o n t i o i ler 

I n s t r u c t i o n B r o a d c a s t N e t w o r k 

iii in 
Data Path 1 Data Path 2 • • • D a t a Path N 

L o c a l M e m L o c a l M e m L o c a l M e m 

D a t a M e m o r y 

Figure 10: Associatively controlled multiprocessor. 

The control units concurrently issue their individual instruction streams via an 

instruction broadcast network to all parallel data paths. Among the multiple instruction 
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streams offered, each data path autonomously selects an appropriate instruction stream 

for execution. In order to enable unambiguous identification, special signatures are 

assigned to the instruction streams and supplied to the data paths. Individual data paths 

can dynamically switch between different instruction streams offered by the control units. 

This enables, for example, an efficient execution of data-dependent control flow by 

simultaneously supplying the instructions of alternative branches following a decision to 

all data paths and letting each data path select the proper branch according to its local 

status. Moreover, an associatively controlled processor is able to adapt to varying 

parallelization degrees during computation by supporting a dynamic clustering of data 

paths. Issues to be further investigated include the possible area and power overhead for 

the distribution and selection of concurrent instruction streams and the necessary 

compiler support to assist software development for associatively controlled processors. 

2.4.6 Specialized Instructions 

Programmable processors can be adapted to specific algorithms by introducing 

specialized instructions for frequently occurring operations of higher complexity. The use 

of specialized instructions reduces the instruction count and accelerates program 

execution [18]. For example, the use of a specialized MAC (multiply-accumulation) with 

saturation replacing a longer sequence of standard instructions including branches is very 

common in multimedia processing. Other examples of specialized instructions for 

multimedia include extended shift, minimum/maximum, average, and add-sign 

operations. 
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The incorporation of specialized instructions necessitates incremental hardware 

cost for additional function units such as a multiply_add. However, the design complexity 

of additional units can usually be kept modest due to high specialization and optimization 

toward the targeted operations. The decision on which specialized instructions to 

implement involves a tradeoff between additionally required hardware effort and 

probability of their use. The benefit from specialized instructions is not universal, since 

only a subset of algorithms will experience an acceleration. 

2.4.7 Coprocessor/Heterogeneous Multiprocessor 

Both parallelization and adaptation principles are combined within 

coprocessor/heterogeneous multiprocessor architectures. Coprocessor architectures for 

multimedia typically comprise a flexible general-purpose processing module, for 

instance, a standard RISC code performs high-level tasks of lower computational 

requirements as well as control and I/O functions, whereas the adapted module executes 

the computation-intensive but regular low-level tasks [19]. Figure 11 shows an example 

of a coprocessor architecture organization. 

I/O Data Memory 

J k i 

r 

RISC Co-
w Core w processor 

Program Memory 

Figure 11: An example of coprocessor architecture. 
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Alternatively, specialized modules may also be employed for tasks of lower 

computational requirements, but with other special algorithm characteristics that make 

them difficult to implement on standard processors. The mixture of several 

programmable and dedicated modules results in a heterogeneous multiprocessor 

architecture, which can be seen as a generalization of the coprocessor concept. While 

heterogeneous multiprocessors allow us to reach higher performance levels by 

emphasizing parallel execution of several tasks, they are still more tied to a specific 

processing scheme than homogeneous multiprocessors due to the adaptation of individual 

modules. 

2.4.8 Memory System 

As multimedia processing schemes operate on high data volumes, memory system design 

has a significant impact on the overall system performance. The streaming nature of 

multimedia data deviates radically from conventional data access patterns in general-

purpose computing. Typical cache strategies employed in general-purpose processors rely 

on frequent accesses to the same data items, and thus offer little benefit for multimedia 

processing. However, particularly in the low-level parts of multimedia algorithms, 

memory access patterns are very predictable. Therefore, special stream caches have been 

proposed that employ prefetching techniques in order to access shortly needed data in 

advance [20]. 

In addition to the streaming multimedia data types, data structures of nonvolatile 

nature may also be involved in multimedia processing such as coefficient lookup tables. 
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When placed in cache, those data structures would be exposed to frequent replacement by 

the streaming data types. Therefore, the additional integration of software-controlled on-

chip SRAM is advantageous where data are safe from being replaced and can always be 

accessed within the shortest time [21]. 

The performance of multimedia processing is also influenced by the instruction 

memory behavior. As typical for most signal processing applications, multimedia 

processing involves a limited set of tasks periodically executed on incoming data streams: 

the same set of instructions is repetitively fetched and executed. Therefore, conventional 

cache strategies may prove useful for speeding up instruction access, provided the cache 

is large enough and mutual code replacement can effectively be prevented. Code 

positioning schemes have been proposed that help to increase instruction cache 

performance in multimedia applications [22]. Instruction memory performance can 

further be enhanced by the integration of on-chip SRAM for the most heavily executed 

code parts, thus always guaranteeing fastest access without stall cycles due to cache 

misses. 
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Chapter 3 

A Real-Time MPEG-2 Video Encoder 

3.1 Introduction 

After realizing the basic architecture of VLIW processors and understanding the different 

approaches of programmable multimedia processors, the next crucial step is to obtain an 

efficient implementation of a real-time MPEG-2 video encoder. In this chapter, we first 

present the basic concepts of video coding. This is followed by a discussion of the 

MPEG-2 standards and the real-time implementation of the MPEG-2 video encoder 

proposed by our Signal Processing and Multimedia Group of UBC. This chapter 

concludes with an analysis of the proposed software solution for the real-time MPEG-2 

video encoder. 

3.2 Basics of Video Coding 

In general, video sequences contain a significant amount of statistical and subjective 

redundancy within and between frames, i.e. video sequences usually contain statistical 

redundancies in both the temporal and spatial domains. Thus, the goal of video coding is 

to remove statistical and psychovisual redundancies in a video sequence while keeping 

intact as much perceptually important information as possible. Temporal redundancies 

normally exist due to structured motion and camera movement, while the spatial 
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redundancies are normally due to the smoothness and edge continuity. Consequently, 

these two types of redundancies are efficiently reduced through employing the two well 

known compression schemes: inter-frame coding and intra-frame coding. Intra-frame 

compression reduces spatial redundancies within a video frame by employing transform 

coding as in still image coding, therefore, the frames can be encoded independently. This 

type of compression is ideal when the difference between two consecutive video frames 

is very large. Intra-coded pictures are also referred to as I-pictures in MPEG-2. Inter-

frame compression takes advantage of temporal redundancies by coding the difference 

between a predicted frame and the current video frame instead of encoding the current 

frame itself. A forward predicted inter-frame is also referred to as a P-picture while a bi-

directionally predicted inter-frame is referred to as a B-picture. The combination of intra 

and inter-frame coding is called hybrid coding [23]. The generic hybrid video coder is 

shown in Figure 12. 
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Figure 12: Generic hybrid video coder and decoder. 

3.2.1 Motion Estimation and Motion Compensation 

In general, in order to achieve a good prediction of the picture currently being encoded, 

the motion of the objects in the video sequence must be considered. Since if the objects in 

present picture are well predicted from the previous picture, then the amount of 

information needed to be encoded is relatively small given that the difference between 
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pictures is small. Therefore, the introduction of motion compensation (MC) is needed. 

Motion compensation is used to exploit the temporal redundancy inherent in moving 

pictures. It is used for the compression of P-pictures and B-pictures. The idea behind this 

is to reduce the information needed for the storage of the difference between the 

predicted block and the current block along with the motion vector associated with the 

current block, than would be required for storage of the current pixel data. Motion vector 

is the relative distance between the best-matched block in the previous picture and the 

current block. There are two distinct types of motion compensation. The first is called 

forward motion compensation, which is the result of coding a frame based on a previous 

frame in the actual temporal sequence. Figure 13 illustrates forward motion 

compensation. The other form is symmetric, using a subsequent frame in the sequence to 

act as a basis frame for prediction. 

Forward M V 

Figure 13: Forward motion compensation. 
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Block-base motion compensation is considered as one of the best approaches for 

eliminating temporal redundancies. Since in this method, the picture is divided into 

blocks with size M x M pixels each. For every individual block, the previous picture is 

searched for the best match block of the current picture. This searching process is called 

Motion Estimation (ME) as shown in figure 11 also. As we can see, the computation that 

searches for the best match block of the entire picture can be very expensive, therefore, 

ME is usually performed using a limited window size called search window for the 

search process. Figure 14 shows the full search method with search window size that is 

±p pels in the x-direction and ±q pels in the y-direction with block size (M, N). 

Current 
Frame 

Reference 
Frame 

Figure 14: Full search motion estimation process. 

The best-block matching algorithm uses a very simple cost function to evaluate 

the displacement vectors that describe motion in image sequences. In most cases, a 

simple pel-based absolute difference is used to determine the similarity between blocks. 

Two of the most popular cost functions used to measure the similarity between blocks are 
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the mean square error (MSE) and the mean absolute error (MAE). For a block at location 

(xm, ^n) with block size M x N, the MSE and MAE for motion displace d = (dx, dy) are, 

i xm+M yn+N 
MSE(dx,dy) = — - ^ Jj(I(x,y)-Iref(x + dx,y + dy))2, M - N, (1) 

MN 

1 , 1 1 x=xm y=yn 

1 xm+M yn+N 

MAE(dx,dy) = -—Jj ^\l(x,y)-Iref(x + dx,y + dy)\, M = N, (2) 
IVILV x=xm y=yn 

where I and Iref are the pixels of the present frame and the reference frame, respectively. 

The M and N are the dimensions of the block and Iref(x + dx, y + dy) is the value of the 

block element that is located in row x + dx and column y + dy in the reference frame. The 

difference in subjective performance between using the MSE and MAE is quite small for 

most video sequences. Hence, the number of operations necessary for calculating MAE is 

much smaller than that of MSE, therefore, in general, the MAE error measure is more 

commonly used. However, even using the MAE, the computational complexity is still 

quite high for most video sequences, simply because hundreds of reference blocks must 

be considered for each candidate block. For example, for CCIR-601 video (30 

frames/sec, 720x480 pixels/frame) with a (±16, ±16) search window size, a 30 GOPS 

(giga-operations per second)) capable processor is required for performing full search 

block matching algorithm in real-time. 

As we have already suggested, motion estimation and motion compensation are 

the cornerstone of most video coding systems presently in vogue and are the basic 

mechanisms by which temporal redundancies are captured in the current H.261, H.263, 
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MPEG-1, and MPEG-2 standards. Therefore, the importance of exploiting an efficient 

algorithm for the two tasks is essential. There are many existing efficient algorithms such 

as logarithmic search and hierarchical search have been suggested in order to reduce the 

number of operations required to find the best matching block. Later in this chapter, we 

present a fast ME search algorithm developed in our laboratory at UBC. 

3.2.2 Transform Coding, Quantization and Variable Length Coding 

After performing the motion estimation, the difference block between the best matching 

block and the current block is computed. Then a transform operation is applied to the 

different blocks to reduce the spatial redundancies. Transform coding does a reasonably 

good job of exploiting statistical redundancy in images by de-correlating the pel data and 

by compacting information into the lower order coefficients. The most commonly used 

coding algorithm is the Discrete Cosine Transform (DCT), an algorithm that greatly de-

correlates signals and has a smaller complexity compared to that of other transforms with 

similar performance. The definition of the 2-D DCT transform for an 8x8 block is given 

by 

^ = ^ £ 2 > * c o s i 
i=o ;=o 

7 7 ^{2i + l)kji\_((2j + l)ln^ (3) 
v 16 , cos 

V 
16 

where k, 1 = 0 , 7 and 

— : k = 0 
^ : k*0 
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Following the transform coding, resulting coefficients are quantized and the 

quantized DCT coefficients, motion vectors, and side information, such as the picture 

coding type and the quantizer step are entropy coded using the Variable Length Codes 

(VLCs). For the quantization, the coding method is lossy coding while VLC coding is 

lossless. After the quantization, the coefficient block is reconstructed by dequantization 

and application of Inverse Discrete Cosine Transform (JDCT) and feed back to the 

coding loop to be used for prediction of temporally future blocks. The original 8x8 block 

of pixels can be recovered using an 8x8 inverse DCT (IDCT) as follows: 

ck cosl 
i=0 j=0 

n(2i + l)k 
16 \cl cosl 

n(2 j+ 1)1 
16 (4) 

where k, 1 = 0, ..., 7 and 

ck,l = 
k = 0 
k *0 

Although exact reconstruction can be theoretically achieved, it is often not 

possible using finite-precision arithmetic. While forward DCT errors can be tolerated, 

inverse DCT errors must meet the MPEG-2 standard if compliance is to be achieved. 

3.3 The MPEG-2 Video Coding Standard 

The objective of MPEG-2 video coding is to provide high quality and multi-channel 

compressed video signals transmission over limited-capacity broadcasting infrastructure 

such as Cable/HFC and ATM networks. Specifically, MPEG-2 was given the mandate of 
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providing a video quality no less than NTSC/PAL and up to CCIR 601 quality with a 

target bit rates in the range 2 to 10 Mbit/s [24]. The MPEG-2 coding standard only 

specifies the syntax for encoded bit-stream, and many of the complex encoding decisions 

are to provide maximum flexibility for implementing compliant video codecs. This 

flexibility has posed quite a challenge for video coding engineers to design and determine 

the trade-offs between coding performance (high compression with acceptable quality) 

and implementation complexity of various MPEG-2 video coding schemes. 

Like H.261 [25], H.263 [26], and MPEG-1 [27], the MPEG-2 video standard is 

based on motion compensated prediction and DCT residual coding. However, MPEG-2 

offers a more efficient means to code interlaced video signals and supports scalable video 

coding. The readers should be aware that MPEG-2 is a very complex standard. The 

description we provide here is only an overview of its video part. The MPEG 

specification is intended to be generic in the sense that it serves a wide range of 

applications. For example, coded MPEG-2 bit rates of up to 400 Gigabits/s and picture 

sizes up to 16,000 by 16,000 pixels can be defined. In order to cope with the great variety 

of video applications within one coding standard, MPEG-2 adopts a "toolkit-like" 

approach; that is, MPEG-2 is a collection of tools which satisfies the requirements of 

specific major applications. The range of coding support provided by MPEG-2 is divided 

into profiles and levels. For each profile/level, MPEG-2 provides the syntax for the coded 

bit stream and the decoding requirements. 
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A profile is a defined subset of the entire bit stream syntax specified by MPEG-2. 

The MPEG-2 profiles can be divided into two categories: non-scalable and scalable. The 

two non-scalable profiles are the Simple and Main profiles. The three scalable profiles 

are the SNR scalable, Spatially scalable, and High profiles. Within a profile, a level is 

defined as a set of constraints imposed on the parameters of the bit stream. For each 

profile, the four levels are the Low, Main, High-1440, and High levels. The constraints of 

the coding parameters for each level of a profile and the various profiles are shown in 

table 1 and table 2, respectively. Among its profile and level combinations, the most 

widely used combination in the MPEG-2 industry is the main profile/main level. 

Level Parameters 
1920x1152 

HIGH 60 frames/s 

80 Mbit/s 

1440x1152 

HIGH-1440 60 frames/s 

60 Mbit/s 

720 x 576 

MAIN 30 frames/s 

15 Mbit/s 

352x288 

LOW 30 frames/s 

4 Mbit/s 

Table 1: Constraint parameters at each level of a profile. 
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Profile Algorithms 
HIGH 4:2:2-YUV 

I, P,B 

SPATIAL Scalable 4:0:0 - YUV 

I, P,B 

SNR Scalable 4:2:0-YUV 

I, P,B 

MAIN 4:2:0 - YUV 

I, P,B 

SIMPLE 4:2:0 - YUV 

L P 

Table 2: Algorithms and functionalities supported with each profile. 

3.3.1 Bit Stream and Macroblock Layer 

In MPEG-2, the structure of the bit stream syntax depends on the profile adapted by the 

application. As we will concentrate on only the main profile/main level part of the 

standard, we will only describe the bit stream syntax for the main profile. The MPEG-2 

video bit stream consists of six hierarchical layers starting at the block layer (composed 

of 8x8 pels) followed by the macroblock, slice, picture, group of pictures (GOP), and the 

sequence layers as shown in Figure 15. 
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Sequence 
Header 

G O P • • • Sequence 
Header 

G O P • • • 
Sequence 
End Code 

G O P 
Layer 

Picture 
Layer 

Sl ice 
Layer 

M a c r o -
block 
Layer 

G O P 
Header 

Picture Picture • • • Picture 

~ 
Picture 
Layer 

Sl ice Sl ice • • • Slice 

Sl ice 
Header 

M a c r o b l o c k M a c r o b l o c k • • • M a c r o b l o c k 

M a c r o b l o c k 
Header 

B l o c k 0 B l o c k 1 
_ _ _ _ , , <- End of 
• • • B l o c k 5 . . . 

macroblock 

D C coef 
A C coef A C coef 

D C coef 
V L C V L C 

End of 
block 

Figure 15: Video sequences layer. 

The GOP level is where the video sequence determines the ratio of I, P and B 

frames, and where the most relevant work on temporal picture structure is carried out. In 

a typical GOP size of 12 interlaced video frames, the first frame (I-picture) is intra coded, 

and the following 11 frames are inter coded using alternatively the forward motion 

compensation (P-pictures) and bi-directional motion compensation (B-pictures) as shown 

in Figure 16. 
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I B P B P B 

12 Picture 

Figure 16: GOP of 12 frames. 

MPEG-2 video supports different standardized picture formats such as CCIR-601 

(720x480 resolution) and SIF (320x240 resolution), etc. Each input picture from the 

video sequence is divided into macroblocks, and every macroblock (MB) consists of a 

16x16 block (or four 8x8 blocks) of luminance (Y) component and two 8x8 blocks of 

chrominance (Cb and Cr) components. Figure 17 shows the MPEG-2 picture structure at 

CCIR-601 resolution. 
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720 pels 
MB 

1 
MB 

2 • • • MB 
45 

Y l Y2 

Y3 Y4 

Macroblocks (MB) 

Structure of a Macroblock 

Structure of a Block 

Figure 17: MPEG-2 picture structure at CCIR 601 resolution. 

3.3.2 Baseline MPEG-2 Video Encoder 

As shown previously, each picture in the input video sequence is divided into 

macroblocks, and the motion compensated prediction operation is performed at the 

macroblock level, and most of the operation is perform at that level. In MPEG-2 

encoding, a high percentage of the pictures are inter coded to obtain a higher 

compression ratio, except for the first picture of each GOP, which is intra coded. 

Therefore, the inter coding operations dominated most of the encoding computations 

time. Figure 18 shows the encoding diagram for the MPEG-2 baseline encoder. 
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Motion 
Vector 

M C / M S 

Rate 
Control 

-H + h*-

Frame 
Memory 

IQ 

I D C T 

M E - / T V * D C T Q V L C Video 
Buffer M E D C T W Q V L C Video 
Buffer 

Figure 18: Block diagram of the M P E G - 2 encoder. 

For the basic video coding algorithm, the MPEG-2 algorithm has features similar 

to the ITU-T H.261 and the MPEG-1 algorithm. There are six key video coding 

components on the MPEG-2 video encoder, which includes motion estimation and 

motion compensation (ME/MC), mode selection (MS), transform coding (DCT/IDCT), 

quantization (Q/IQ), variable length coding (VLC), and rate control (RC). For intra 

coding mode, motion estimation is not required to be performed on the picture, i.e., the 

8x8 luminance and chrominance blocks are transform coded with two dimensional DCT 

and then the transform coefficients are quantized and VLC coded. For the inter coding 

operation, motion estimation searches for the best motion vector with reference to the 

pervious frame and performs motion-compensation prediction to reduce the temporal 

redundancies. Then transform coding (using discrete cosine transform (DCT) algorithm) 

encodes the motion-compensated prediction of the difference frame to reduce the spatial 
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redundancies. Following transform coding, the resulting coefficients are quantized and 

then the quantized DCT coefficients, the macroblock (MB) coding mode, the 

quantization step, the frame/field motion vectors, and the residuals are finally variable-

length encoded. 

For the motion estimation, full integer pixel motion estimation is preformed first, 

and then the motion search continues with a half-pixel search around the current motion 

vector position. Half-pixel values are found using the eight neighbors of the best full-

pixel motion vector as shown in Figure 19. 

B 

o 
a b c 
X X X 

A d E e C 

O x O x O 

f g h 
x x x 

D 
O 

Figure 19: The half pixel motion estimation. 

Similar to a Differential Pulse Code Modulator (DPCM), MPEG-2 decodes and 

reconstructs the image in the encoder. Then the reconstructed picture is added to the 

current predicted picture in order to obtain the decoded picture, which is then stored in 

frame memory. 
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3.3.3 MPGE-2 Video Decoder 

Bit-strem 
Parse V L D I Q / R L E w Parse w V L D I Q / R L E 

Video Out 
8x8 IDCT 

Figure 20: Block diagram for the MPEG-2 decoder. 

Figure 20 shows a block diagram of the MPEG-2 video decoder. The main functions 

involved in the decoder are bit stream parsing, variable length decoding (VLD), inverse 

quantization (IQ) and run length expansion (RLE), inverse discrete cosine transform 

(IDCT), and motion compensation. First, the bit stream is parsed and variable-length 

decoded to obtain the coefficients, the motion vectors and other side information. After 

the VLD outputs are run-level pairs in a zigzag scan order. The next step is to expand the 

zero runs, quantize the level values and write the result in a row major scan order. After 

the coefficients are decoded by inverse quantization, IDCT is applied to the coefficient 

blocks. If the block is intra coded, the reconstructed block is equal to the result of the 

inverse transformation. For inter coded blocks, the reconstruction is formed by motion 

compensation, i.e. summing the predicted block and the inverse transformed block. 
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3.3.4 Forward and Inverse Quantization 

Depending on the prediction method selected at the encoder, coefficients that are going to 

be quantized can have a wide variation of statistics. In the case of intra prediction, the 

first elements of the coefficient block, called the DC coefficient, takes much larger value 

than the rest of the coefficients, called the AC coefficients. If the block is inter (non-intra) 

coded, then all the coefficients take smaller AC coefficients. In order to efficiently 

quantize intra coded blocks, one quantizer is used for the intra DC coefficient and one of 

31 predefined quantizers is used for the AC coefficients. 

Although the decision levels of the quantizers are not defined within the standard, 

it is suggested that the quantizer for the DC coefficients be a uniform quantizer with a 

step size equal to 8. Each of the other 31 quantizers use different spaced reconstruction 

levels with a non-uniform step size. For the blocks that are inter coded, the AC 

coefficients have a uniform step size. The sign of the quantized transform coefficients is 

signaled at the end of the VLC code word. After inverse quantization, the reconstruction 

levels of all coefficients other than the DC coefficient are clipped to the range -2048 to 

2047. 

3.3.5 V L C Coding of Transform Coefficients 

After quantization, the lowest DCT coefficient (DC coefficient) is treated differently 

from the remaining AC coefficients when performing the VLC coding of transform 

coefficients. Since the human visual system is more sensitive to blocking artifacts, which 

are mainly due to the DC coefficients, the DC coefficient is treated separately from the 
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other 63 coefficients. The DC coefficient corresponds to the average intensity of the 

component block and is encoded using a differential DC prediction method. The coding 

employs a first order predictor which is given by 

DrFF = DQ-DCi . i , (5) 

where DQ is the DC coefficient of the current block and DQ_i is the DC coefficient of 

the previous block in row scan order. Most of the remaining AC values that represent 

higher frequencies become zero. In order to exploit this before VLC coding, the 63 

nonzero quantizer values of the remaining DCT coefficients and their locations are the 

scanned in a zig-zag scan order as illustrated in Figure 21. Then, they are run-length 

entropy coded using variable length code (VLC) tables. 

Figure 21: Zig-zag scan order of a 8x8 block. 

The scanning of the quantized DCT domain 2-dimensional signal followed by 

variable-length code-word assignment for the coefficients serves as a mapping of the 2-

dimensional image signal into a 1-dimensional bit stream. The rearrangement places the 
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DC coefficient first in the array, and the remaining AC coefficients are ordered from low 

to high frequency. The nonzero AC coefficient quantizer values called levels are detected 

along the scan line as well as the distance called run between two consecutive nonzero 

coefficients. Each consecutive run and level pair is encoded by transmitting only one 

VLC code word. Variable length codes are not defined for all the combinations of level 

and run. If a VLC is not found for a specific combination, the combination is coded by a 

6 bit escape code followed by 6 bit run and 12 bit level codes. Other information such as 

prediction types and quantizer indication are also entropy encoded by means of VLC's. 

3.4 Proposed Software Solution for Real-Time MPEG-2 Video Encoder 

at UBC 

The starting point of a software-only real-time MPEG-2 video encoder on the C62x 

VLIW processor, is the development of efficient code that can be efficiently compiled on 

the C62x. Extensive work has been carried out on software MPEG-2 video encoder to 

improve and to implement an efficient real-time MPEG-2 video coding algorithm. Over 

the past two years, the Signal Processing and Multimedia Group at the University of 

British Columbia, has carried out extensive work towards developing software-only 

MPEG-2 compliant video encoders. We have mainly targeted general-purpose processor 

platforms such Intel's Pentium II and III, and VLIW DSPs such as Texas Instrument's 

C62x. The computational complexity reduction in our MPEG-2 software implementation 

is achieved by employing several advanced techniques which are briefly described in the 

following subsections. More detailed description of the algorithms can be found in [28], 
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[29], and [30]. The macroblock layer has been the major focus of our optimization since 

this is where coding gains are obtained and where most of the computational load resides. 

3.4.1 Motion Estimation (ME) 

As we have discussed previously, motion estimation is considered as one of the most 

time consuming tasks to perform in block-based video encoding, as it involves searching 

for the best match between the current block and candidate blocks in a confined search 

windows of the previous encoded frame. The location of the best match block is the 

estimated motion vector and the motion vector is computed using the most widely known 

matching function — sum of absolute differences (SAD). The sum of absolute differences 

SAD is defined by 

where B[j(k, I) represents the (k, Z)th pixel of a 16x16 macroblock from the current picture 

at the spatial location (i, j), and Bj_u> j.v(&, /) represents the (k, /)th pixel of a candidate 

macroblock from a reference picture at the spatial location (i, j) displaced by the vector 

(u, v). To find the macroblock producing the minimum mismatch error, we need to 

calculate the SAD at several locations within a search window. The simplest, but the 

most compute-intensive search method, known as the full search or exhaustive search 

method, evaluates the SAD at every possible pixel location in the search area. Therefore, 

the main objective of ME is finding an optimal motion vector in a limited search window 

using a minimal number of SAD computations while not scarifying the video quality. 

16 16 

(5) 
t=i i=i 
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Several algorithms proposed by the SPMG group at UBC that restrict the search to a few 

points are employed, and will be discussed in the following subsections. 

3.4.1.1 Optimum Fast Block Matching Strategy 

As the search range becomes fairly large for large picture sizes or sequences with fast 

motion, the exhaustive search computational complexity grows very rapidly. Therefore, 

the proposed fast ME algorithms break up the search process into a few sequential steps, 

and each step is based on searching the candidate points located on diamond-shape 

contours. The set of points to be searched at the next step is determined by the current-

step result. There are two versions of the matching strategies: fixed-center diamond 

search, and floating-center diamond search. Figures 22 a) and b) illustrate both fixed-

center and floating-center diamond search matching strategies, respectively. 

Figure 22: (a) Fixed-center, (b) floating-center diamond shape motion vector search 
area. 

X 

(a) (b) 
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The fixed-center diamond search algorithm searches for the best matching 

macroblock in a diamond-shape area (layer). For each layer, the center is fixed and the 

size keeps increasing until it covers the entire rectangular search window when the 

number of motion vector candidates increase as the diamond area expands. However, 

instead of having fixed center, the floating-center algorithm allows the center to move to 

the best matching point of the previous step. For every step, the size of the diamond 

shape is kept constant and contains only the four immediate neighbors of the previous 

search center. The search stops when the current search area is outside the allowed search 

region or when the SAD corresponding to the best candidate in the search area of the 

current step is larger than the SAD of the best candidate at the previous step. In order to 

further reduce the computation an earlier stop criteria, called distortion-computation 

optimized ME (DCME) is used (see [29]). Experiments have shown that the number of 

SAD operations is reduced by 50% and the actual number of computations is reduced by 

a factor ranging from 100:1 to 250:1 compared to the full-search ME [29]. 

3.4.1.2 Hierarchical Block Matching Strategy 

The disadvantage of the two algorithms presented above is that they are often trapped in 

local minima due to the implicit assumption of a monotonically changing matching 

function. In order to solve the problem while reducing the computation, a hierarchical 

search algorithm reduces the computation by utilizing lower resolution of the current and 

reference frames. This is done by downsampling both the current and reference frames by 

a factor of two in both directions. While the search step is preformed at the lower 

resolution of the images and the macroblocks, one half of their original search area is 
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performed with either full-search or fast ME search algorithms. Experiments have shown 

that the hierarchical algorithm performs very close to its single-resolution counterpart for 

both the fixed and the floating center strategies while the SAD computation required is 

reduced by 30% or more depending on the video sequences used [29]. 

3.4.1.3 Additional Stopping Criterion 

The number of computations associated with motion estimation can be further reduced by 

allowing the algorithm to terminate even earlier using a prediction method that detects 

zero macroblocks. Throughout the search process, if the current best match macroblock 

generates a prediction error block that is most likely to be set to zero during quantization, 

then the motion search is terminated [29]. The reason behind this is that any future 

candidate motion vector will produce a zero quantized block as well. 

The idea behind this is whenever a candidate is determined to be the minimum so 

far, its minimum distortion average over the pixels in the block is compared against an 

adaptive threshold. If the value of the distortion is less than the threshold then the motion 

search is terminated. Experimental results show that a reduction in computations by a 

factor of up to three can be achieved with a little loss in video quality. 

3.4.1.4 The Optimum Block Matching Function 

The encoder uses a standard procedure called partial distortion technique to reduce the 

computations associated with SAD operation. Since during motion estimation we are 

only interested in candidates whose SAD is smaller than the current minimum SAD. 

Therefore, as soon as the running SAD of a candidate grows larger than the previous 
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minirnurn SAD, the candidate can be discarded before completing the computation. 

Given this, the unnecessary operations are avoided at the cost of additional comparisons. 

Comparing the running SAD with the current minimum SAD after each pixel difference 

may offset the gain achieved by reducing the number of subtractions, absolute value 

operations, and additions. However, comparison done on each pixel is rather 

computational expensive, thus, comparison is made only after processing a complete row 

of 16 pixels in the macroblock. 

In order to apply the partial SAD computation in the context of the distortion-

computation optimized search, the Lagrangian used for the motion vector search 

termination criterion is computed after each row n: 

Jp(n) = SAD(n) + /3C(n), (6) 

where SAD(n) is the running SAD after the nth row is processed, and C(n) is the running 

number of operations executed since motion estimation started for the current 

macroblock. For each candidate, C(0) is initialized as the number of operations 

performed before considering the candidate. The Lagrangian Jp n is then compared to the 

current minimum Lagrangian Jp*. If Jp n > Jp*, the candidate motion vector is no longer 

considered and the SAD computation is stopped. Otherwise, the process continues until 

the current Lagrangian is larger than the minimum one or the complete SAD has been 

computed. If the latter case is true, the current Lagrangian replaces the minimum 

Lagrangian Jp*. The results of using the partial distortion have shown that the reduction in 
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computations ranges between 50% to 60% for the full search ME and only 15% to 30% 

for the other ME algorithms [29]. 

3.4.1.5 Robust Motion Vector Prediction 

A reliability measure of the predicted motion vector (PMV) has been incorporated to 

access the PMV before using it as a center for motion search. The performance of any 

fast motion algorithm is directly affected by the accuracy of the predicted motion vector. 

If the predicted motion vector is far from the best-match motion vector, the fast ME 

search algorithm will then be quickly trapped into a local minimum, or the algorithm will 

perform too many computations to find the best-match motion vector. Therefore, we use 

a predictor which is the median of three previously coded motion vectors corresponding 

to the macroblock to the left (A), above (B) and above-right (C) as illustrated in Figure 

23. 
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Figure 23: Three predictor of motion vector prediction from surrounding 
macroblock. 

The motion vectors corresponding to these MBs are considered as candidates for 

the PMV. The block matching function is then computed for all candidates MVs as 

applied to the current MB. Finally, the PMV is set to be equal to the candidate MV which 

yields the best match. If the PMV was unreliable, then the fast diamond search will be 

abandon and a full search will commence in the lower resolution image. By using 

different MV predictor and the reliability measures, the PSNR of fast motion sequences is 

improved significantly while the computational demands are also reduced slightly [31]. 

3.4.2 Rate-Distortion Optimized Mode Selection 

The proposed encoder obtains improved rate-distortion (RD) performance by employing 

a rate-distortion based macroblock mode selection. The coding mode is chosen to 
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minimize the RD Lagrangian as the RD-based mode selection leads to substantial 

performance improvements. However, from the view of optimal RD performance, 

having an exhaustive Lagrangian minimization is computationally very expensive. 

Therefore, an efficient rate-distortion optimized mode search algorithm is used to attain a 

close-to-optimal level of compression performance while maintaining the number of 

computations low by exploiting the statistical redundancies in the video sequence [29]. 

3.4.3 Combination of Discrete Cosine Transform (DCT) and Quantization 

After the macroblock coding mode is determined, the chosen motion compensation and 

block transform are applied, the transform coefficients are quantized, and the MB header, 

motion vector, and quantized DCT coefficients are variable-length encoded. For the 

hybrid macroblock coding modes, both the DCT and quantization need to be performed. 

By merging the DCT and quantization into single operation, known as quantized-DCT or 

QDCT, the number of computations can be substantially reduced. QDCT is performed 

only during inter-frame encoding leading to an order of magnitude reduction in 

computations. An early Prediction technique has been incorporated into the QDCT 

algorithm to further reduce the computations required for the normal QDCT [32]. The 

integer implementation of QDCT is especially efficient to run on the C62x platform since 

it uses fixed-point arithmetic. 

3.5 Analysis of the proposed MPEG-2 video encoder 

Timing analysis is critical to identifying the most computational intensive components of 

the MPEG-2 encoder which need substantial optimization. Table 3 shows the relative 
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weights of the most compute-intensive MPEG-2 encoding functions. Clearly, motion-

estimation is still the most computationally demanding algorithm. 

Function Computational Load 

Quantization 4.2% 

DCT 5.1% 

IDCT 5.3% 

ME (SAD Computation) 50.1% 

Motion Compensation 4.4% 

MSE 1.2% 

VLC 10.3% 

Table 3: Relative computational costs of the most compute intensive tasks of the 
MPEG-2 video encoder. 

We have identified the set of components that are computationally intensive but 

which potentially can be optimized efficiently on the C62x platform by exploiting the 

instruction-level parallelism inherent in the algorithm. The main components optimized 

for the C6x encoder implementation include the SAD calculation, DCT/IDCT, 

Quantization, QDCT, mean square error (MSE) calculation, and variable length encoding 

(VLC). 
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Chapter 4 

Mapping the MPEG-2 Software Encoder on the Texas 

Instrument's TMS3206201 DSP Platform 

4.1 Introduction 

After an extensive research on the available media processors and VLIW DSPs, we have 

decided to use Texas Instrument's 1600 MIPS TMS320C6201 VLIW DSP for our initial 

test bed. Texas Instrument's TMS320C6201 VLIW DSP is representative of a new class 

of DSPs that exploit explicit instruction-level parallelism (LLP) and advanced compiler 

techniques to provide thousands of MIPS to potential applications. Among the other 

architectures, the C62x VelociTI VLIW architecture offers the highest probability of 

achieving the software real-time MPEG-2 video encoding. 

In this chapter, we will first give an overview of the TMS320C6x CPU 

architecture, and some brief information on its data path and instructions set. Then, the 

memory structure of the C62x evaluation model (EVM) board that we used for our 

implementation is also described. Afterwards, the design flow and implementation of the 

MPEG-2 video encoder software on the C62x E V M board is discussed. The memory 

mapping of certain video encoder functions are also discussed along with the 

60 



Chapter 4: Mapping the MPEG-2 Video Encoder on C6x 

implementation issues. This chapter concludes with the implementation bottlenecks of 

the MPEG-2 video encoder software on the C62x E V M board such as the memory issues, 

optimized compiler, and instruction latency. 

4.2 Texas Instrument's TMS320C6201 CPU Architecture 

The TMS320C6x VelociTI CPU architecture was the first off-the-shell DSP to use an 

enhancement of the traditional VLIW to achieve high performance through increased 

instruction-level parallelism. A traditional VLIW architecture consists of multiple 

execution units running in parallel to perform multiple instructions during a single clock 

cycle. Parallelism is the key to achieving high performance gains. VelociTI is a highly 

deterministic architecture, with few restrictions on how or when instructions are fetched, 

executed, or stored. This architectural flexibility is key to the breakthrough efficiency 

levels of the C62x compiler. 

4.2.1 VelociTI Principles 

The VelociTI CPU architecture is based on eight principles, underlying the C62x CPU, 

which focus on increasing DSP performance while maintaining ease of programming and 

reducing application development time by allowing creation of a high-performance 

compiler. 

4.2.1.1 Parallelism 

The VelociTI architecture allows parallel fetch, decode, and execution of multiple 

instructions that compose the VLIW instruction word. During each execution, each 
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instruction is performed on a single function unit. For the C62x, there are eight 32-bit 

instructions supplying control for eight independent functional units. 

4.2.1.2 Pipelining of Critical Speedpaths 

The VelociTI architecture sets the simplest of CPU instructions to determine the cycle 

time for the processor. The critical path for C62x is the time for a register-to-register 

A L U operation such as an ADD instruction, and more complex instructions, such as 

multiply, which are implemented with a one-cycle latency. In order to access the high-

performance synchronous on-chip memory, instruction fetch and data access are 

performed in multiple pipeline stages. The pipelining allows the C62x CPU to operate at 

200 MHz or 1600 MIPS [33]. 

4.2.1.3 Reduced Instruction Set Computer (RISC) 

The VelociTI instruction set consists of simple, atomic, and completely independent 

instructions. The DSP algorithm performance results from program compilation 

techniques such as software pipelining and loop unrolling. The RISC architecture 

provides ease of CPU design while maintaining flexibility for high-performance 

algorithms. 

4.2.1.4 Load-Store Architecture 

The VelociTI is a load-store architecture in which the memory operations have been 

decoupled from the arithmetic operations. It also lowers the number of data fetches from 

a particular algorithm and thus lowers the CPU power consumption. 
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4.2.1.5 Orthogonality 

The most frequent instructions can be executed on the largest number of function units. 

In the C62x, the CPU is divided into two identical data paths. Thus, every instruction can 

execute on at least two functional units. The most frequent instructions such as ADD and 

SUB can execute on six functional units. Like most of the other instruction set, the 

register file is highly orthogonal, where any register can be an operand to any instruction 

or any type of functional unit. 

4.2.1.6 Determinism 

The VelociTI pipeline is unprotected and is thus fully exposed to the compiler. Run-time 

interdependencies such as pipeline interlocks between phases used in other DSPs are 

difficult to predict at compile-time. The VelociTI CPU model at compiler time fully 

reflects the execution and completion order of instructions at run time. 

4.2.1.7 Conditional Instructions 

Every VelociTI instruction is conditional to efficiently avoid branch latencies. 

4.2.1.8 Instruction Packing 

VelociTI architecture uses a novel instruction packing technique to achieve code size 

comparable with scalar RSIC processors. 

4.2.2 Data Paths 

The C6x VLIW core consists of two symmetrical data paths with four different functional 

units each and each of the data paths has access to 16 multiported 32-bit registers. The 
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register files have 16 ports which included ten read ports and six write ports. Direct 

communication between both data paths is provided through the cross path (IX, 2X) to 

read operands from the other register file. Also, addresses from one data path may be 

used to load and store values to other data path [34]. Figure 24 shows the block diagram 

of the C62x CPU data paths. 
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Figure 24: C62x C P U data paths. 
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4.2.2.1 Functional Units 

There are four functional units in each data path where each unit can begin execution of a 

new instruction every cycle. Subunits on the same functional unit share the same 

interconnect to the register file to save register porting. Table 4 summarizes subunits 

mapping to the functional units. 

L-unit S-unit D-unit M-unit 

Integer Adder Integer Adder Integer Adder Integer Multiplier 

Logical Logical Load-Store 

Bit Counting Bit Manipulation 

Shifting 

Constant 

Branch/Control 

Table 4: C62x functional units and subunits. 

4.2.2.2 Data Types 

In general, the functional units perform 32-bit integer operations. The four functional 

units of each data path are divided into a logic/arithmetic/compare unit, a 

shift/arithmetic/branch unit, a 16-bit multiplier unit, and a data address calculation unit as 

shown in Table 4. For both of the S-Units and L-Units, they can also perform 40-bit 

integer operations to handle overflow. The integer multipliers in the M-Units generate 

32-bit outputs from two 16-bit inputs. In addition, source operands of different types are 

used, singed (sign extension) or unsigned (zero-filling). 
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4.2.3 C62x Features and Instruction Set 

Texas Instrument's C62x has a total of 38 instructions, and for all the arithmetic 

calculations, saturation arithmetic is supported. 

4.2.3.1 Saturation Arithmetic 

One of the important features of C62x instructions is saturation arithmetic. In regular 

fixed-point arithmetic when an operation overflows or underflows, the most significant 

bit is lost. For example, the addition of two unsigned 32-bit numbers residing in a 32-bit 

register may result in an unsigned 33-bit result. Naturally, this number is too large to be 

represented in a 32-bit register and while the result's low order 32 bits appear in the 32-

bit register, the 33 rd bit does not fit and therefore lost. There is usually a status flag that 

shows overflow. Unless a special attention is paid, this kind of behavior may cause 

serious problems, especially in graphics applications. However, in saturation arithmetic, 

when such an overflow occurs, instead of generating a 33-bit number and loosing the 

most significant bit, the corresponding instruction clamps the 33-bit result to the largest 

possible unsigned number that can be represented by 32 bits, i.e. FFFF FFFF in 

hexadecimal format. C62x supports two types of saturation arithmetic: 

• Unsigned saturation: In case of overflow, the register holds the largest 

number, i.e.2n-l, where n is the bit number. 

• Signed saturation: If overflow occurs the register takes 2 n"'-l, where n is the 

bit number 
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In the C62x architecture, saturation arithmetic is not a mode which may be 

activated by setting a control bit. But instead, some instructions inherently perform 

saturation during their operation. For example, some C62x add instruction employ 

conventional wrap-around arithmetic while others employ saturation arithmetic. 

4.2.3.2 C62x Instruction Set 

C62x instructions mostly perform 32-bit operations which are packed into a 32-bit 

register, however, limited support is provided for 16-bit instruction data. The mapping of 

instructions to functional units is done at code-generation time. In addition, most 

common integer operations can be mapped onto four to eight functional units, and each 

functional unit has special-purpose features which are summarized in the following 

sections. 

4.2.3.2.1 Integer Comparison 

For integer comparison in C62x, rather than having multiple status bits for each 

functional unit, the C62x employs explicit comparison instructions that generate a 1 or 0 

result in a general-purpose register. Placing the result in a general-purpose register allows 

the value to be used directly in computation. 

4.2.3.2.2 Dual 16-bit Pair Arithmetic 

For 16-bit addition and subtraction, there are two instructions ADD2 and SUB2 that 

add/subtract two 32-bit registers while inhibiting the carry between the 15th and 16th bit 

positions. These instructions allow increased add/subtract throughput of 16-bit values. 

Figure 25 illustrate the operation of the ADD2 dual 16-bit pair arithmetic. 
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ADD2 A1,A2, A3 

A l msb 16-bit lsb 16-bit 

+ + 

msb 16-bit lsb 16-bit 

16-bit 4 V 16-bit 16-bit 16-bit 

no carry 

2xl6-bit results without carry from the lsb 16-bit addition 

Figure 25: ADD2 dual 16-bit pair arithmetic. 

4.2.3.2.3 Memory Data Types 

The C62x can load or store bytes, 16-bit half-words, and 32-bit words. Byte and half-

word loads are sign-extended (signed) or zero-filled (unsigned). In addition, certain 

registers have the option of having circular arithmetic performed during address 

calculation (for circular buffers). 

4.2.3.3 Instruction Packing 

The C6x CPU has a 256-bit path for internal program access to fetch eight 32-bit 

instructions every cycle. In typical VLIW architectures, each instruction would 

correspond to a particular functional unit. If that functional unit were idle on any 

particular cycle a NOP would be placed in that functional unit's instruction slot. On the 

other hand, the VelociTI decouples fetch packets from execute packets through a novel 

instruction encoding system. The least-significant bit of every C62x instruction is a called 
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the parallel or p-bit. The p-bit of a particular instruction is set if the instruction starts 

execution in parallel with the next instruction. In addition, the reduced code size of the 

VelociTI instruction also results in fewer program fetch accesses. 

4.2.3.4 Conditional Instructions 

Every C62x instruction can be conditioned on either the zero (false) or the nonzero value 

(true) of one of the five general-purpose registers (Al , A2, BO, BI , B2). All instructions 

will enter the first phase of execution regardless of the evaluation of their condition. 

However, if the condition is not met by the end of the first phase, the instruction will not 

have its results written back to the register file. In addition, a conditional load or store 

instruction whose condition is not met is canceled before entering the data memory 

portion of the execution pipeline. In this way, it prevents any undesired accesses to 

memory, including memory-mapped peripherals where simple access has undesired side-

effects. Conditional instructions can be used to avoid branch latency. In control code, 

conditional instructions allow increased parallelism as multiple paths can be executed 

simultaneously. For instance, both //"paths as well as the else path are executed in a single 

fetch packet. 

4.2.4 Memory Architecture 

The memory architecture of the C6201 consists of four components: the EMEF (External 

Memory Interface); the DMA controller; 64-Kbytes of on-chip program memory 

configurable as mapped memory or as direct mapped cache; and 64-Kbytes of interleaved 

data memory. The instruction cache may alternatively be configured as an on-chip 
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program memory containing a valid address space. The C62x Evaluation Model (EVM) 

board by Texas Instrument has been used for our preliminary software implementation 

platform. The board has a 200 MHz C62x fixed-point DSP processor with access to two 

4- Mbytes of SDRAM (synchronous DRAM running at Vz the CPU clock rate), and 256-

Kbyte of SBSRAM (synchronous burst SRAM with 800 Mbytes/second throughput). 

The internal programming memory contains 16K 32-bit instructions or 2K 256-bit 

fetch packets and the block size of the cache is a fetch packet or eight instructions. For 

the 64-Kbyte C6201 internal data memory, it is organized into eight 8-Kbyte 16-bit-wide 

banks of memory, where these banks are grouped into two blocks consisting of four 

banks each. The address of each bank in a block is interleaved, and the banks are 

arbitrated on a 16-bit cycle-by-cycle basis. The communication between the Host PC and 

the DSP can either use DMA transfer or Host Port Interface (HPI) which is a 16-bit wide 

bi-directional port that interfaces with little logic to a variety of industry-standard 

embedded RISC processors, and microprocessors. The HPI interface can operate at up to 

50 MHz for 100 Mbytes/second of data throughput. More details of the E V M board can 

be found in [35]. 

4.3 Memory Configuration and Host Interface of the MPEG-2 Video 

Encoder 

There are two version of the software MPEG-2 video encoder implemented on the C62x 

E V M board. The first version of the software encoder is implemented at CCIR-601 

resolution with I-frames only, and the second version of the encoder is implemented at 
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SIF resolution with I- and P-frames. Both versions of the software encoder share the 

same structure on the communication between the Host PC and the C62x E V M board. 

The Host PC side, either transmits the uncompressed picture frames to the C62x E V M 

board or it receives the compressed video bit-streams from the C62x to the Host PC. The 

compressed video bit-stream is stored onto the local hard disk to be played later on. The 

video encoding of the MPEG-2 is done on the C62x E V M board with the input of Y U V 

frame data either captured from the camera or loaded from the local hard disk. The output 

of compressed video bit stream is also produced for display. Figure 26 illustrates the flow 

of our implementation of the software MPEG-2 video encoder over the C62x platform. 

Video Camera/ 
Local Frame 

Data 

Video 
Data 

Host PC 
(Pentium) 

YUV Video 
Data 

PCI Bus 

"^Compressed 
Output Bit-

stream 

MPEG-2 
Video 

Encoding 

Figure 26: Software MPEG-2 video encoder over the C62x platform. 

The main video encoding part resides on the C62x E V M board for both the CCIR-

601 and SIF versions are different because the I- and P-frames require more complicated 

algorithms, and the memory requirements are more restricted due to the nature of frame 
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store for motion estimation etc. The following subsections will describe the structure of 

both version of the video encoder on both Host PC and C62x E V M board. 

4.3.1 Video Encoder on the Host PC 

The software MPEG-2 video encoder resides on the Host PC mainly for communication 

purpose. Therefore, both versions of the MPEG-2 encoder (CCIR-601 or SIF resolution) 

are handled the same way on the Host PC. Figure 27 on the following page shows the 

flow diagram of the MPEG-2 video encoder program on the Host PC side. 
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Figure 27: Flow diagram of MPEG-2 video encoder on the Host PC. 

The program starts with initializing all the necessary parameters to setup the 

communication between the Host PC and the C62x E V M board. The configurations are 

done according to the following sequence: 

• Open handle to the E V M board 
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• Cause a hardware reset on the target board 

• Setup the board configuration such as the DSP_CLOCK_NORMAL and 

LITTLE_ENDIAN_MODE 

• Set the boot mode and cause a DSP reset 

• Establish a connection to the HPI of a target board 

• Initialize the EMLE (external memory interface) registers 

• Set the Aux DMA priority higher than DMA 

• Read a CORF file and write the data to DSP memory 

• Release the DSP from the halted state 

After the initialization of the C62x E V M board and loading the program into the 

memory, the video encoder on the C62x E V M board is ready for execution. However, 

before running the program, the input video streams are fed from a video camera or from 

video data files stored on the local hard disk of the PC. Once the video data is ready, it 

will write the frame size to the C62x E V M and follow with the frame data along with a 

flag to notify the complete download of the video frame data onto the C62x memory. All 

the transfer are done through the HPI. Then the Host PC will be put into a sleep state 

while waiting for the encoder on the C62x E V M board to process the video encoding on 

the video data. The Host PC will be keep pulling for a flag from the C62x E V M to notify 

the completion of encoding while in the sleep state. Once the flag is set, the HPI will 

transfer back the compressed video bit-stream. However, since the HPI always transfers 

in 4 bytes size each time, the read length need to be a multiple of 4 to ensure the ending 

bit-streams data are properly transferred without truncation. 
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We can see that putting the Host PC in sleep state while waiting for the C62x 

E V M to do the encoding or halting the C62x to wait for the HPI transfers video data back 

and forth seem to be wasting a lot of resources. Therefore, we have implemented a dual 

buffer system to keep both the Host PC and the C62x E V M busy all the time in order to 

maximize the utilization of both systems. The dual buffer system consists of the 

following structure: 

• Two buffers reside on the single 4-Mbytes SDRAM of the C6x E V M board, and 

• each buffer consists the first 4 bytes as the ready flag, and 

• 1020 bytes for the input video data, and 

• the first 4 bytes after the input video data as the video output bit-stream size, and 

• 1020 bytes for the video output bit-stream data. 

The dual buffer system works while downloading the video data into the first 

buffer, the C62x encodes the video data on the second buffer which has already 

downloaded previously. Once the C62x finish encoding the second buffer's video data, it 

sends a flag to tell the Host PC that the compressed video bit-stream is ready for upload, 

and the C62x will switch to the first buffer with the recently downloaded video data and 

start encoding. Then after the Host PC received all the output video bit-streams from the 

second buffer, the process continues and vice versa. This process is continued until the 

last frame has been encoded and transfers back to the Host PC. By using the dual buffer 

system for our system, the encoder on the C62x E V M is fully utilized except the initial 

setup time for the very first frame. Figure 28 shows the memory structure for the dual 

buffer system implemented for the C62x E V M board. 
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Figure 28: Dual buffer memory structure for the video encoder on the C62x E V M . 

After the video encoder finishes encoding all the frames, the output bit-streams 

are stored onto the local hard disk. Then we have to close the connection with the C62x 

E V M board. This process includes closing the HPI session, causing a hardware reset on 

the target board, setting the boot mode that cause a DSP reset, and finally closing a 

previously opened driver connection to the E V M board. 

4.3.2 MPEG-2 video encoder on C62x E V M board 

For the software MPEG-2 video encoder implemented on the C62x E V M board, there are 

two versions of it: one is the CCIR-601 resolution with I-frames only, and the other is 

SLF resolution with both I- and P-frames. The following subsections will describe the 

implementation of both encoders on the C62x E V M board. 
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4.3.2.1 CCIR-601 resolution on C62x 

Figure 29 depicts the implementation of the MPEG-2 video encoder on the C62x E V M 

board with the CCIR-601 resolution on I-frames only. The program starts with 

initializing the pointer to the input video data (YUV) on the SDRAM. Since the internal 

data memory of the C62x is limited to 64-Kbytes and it is where the data is being 

processed at the fastest speed, we have to partition the video frame into slices (YUV data 

for each slice are @720xl6 for Y, 360x8 for U and V) in order to fit it into the internal 

data memory. Each iteration of the program processes three slices of Y, U, and V with a 

total of 51.84-Kbytes which is just enough to fit into the internal data memory, and the 

rest is reserved for other uses. The three slices of YUV data are moved from the SDRAM 

to the internal data memory. For every iteration, the program performs the video 

encoding individually since the intra-coding of each slice is independent from other 

slices. All the encoded bit-streams are written back to a continuous block of SDRAM in 

order to be transfer back to the Host PC when a complete frame is being encoded. The 

data transfers between the Host PC and the C62x external memory (buffer) are 

transparent to the video encoder on the C62x. To start the execution of the program to 

encode each frame is triggered by receiving a flag from the Host PC for complete data 

transfer, and its ended by writing a flag to the specific memory location in order to notify 

the Host PC to be ready for transfer the compressed video bit-streams back to the PC. 
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Figure 29: Flow diagram for the CCIR-601 resolution video encoder on C62x. 

As shown in Figure 29, after the data is passed over to the encoder, the encoder 

processes the data on a macroblock base for each slice. For every macroblock, six 

identical functions are processed on each 8x8 blocks. These functions include converting 

a byte data into a short data type for 16-bit calculation, forward DCT, quantization, the 

run-length entropy coded using variable length code (VLC) tables, and putbit operation to 

write the data back to the external memory. 
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The memory map of the CCIR-601 with I-frames only is as follows: the encoder 

program is mapped into the internal programming memory; data, stack, and heap are 

mapped onto the internal data memory; the constant and initialization data are mapped 

onto the SBSRAM (synchronous burst SRAM). The input frame (YUV) data and the 

compressed output bit-streams are placed onto the SDRAM. 

The performance of the CCER-601 resolution video encoder on the C62x without 

any assembly optimization runs approximately 0.48 frame/second, which is far from the 

desired real-time video encoding speed at 30 frames/second. Therefore, optimization of 

individual functions is required to achieve an acceptable result, which will be further 

discussed in the next chapter. 

4.3.2.2 SIF resolution on C62x t 

The initialization and program execution of the MPEG-2 video encoder, on the C62x 

E V M board with the SIF resolution on both I- and P-frames, is very similar to the 

previous version of the encoder except one more pointer has been initialized for the 

reference frame which is mapped to the SBSRAM. Also, the encoding process for the IP 

encoder is much more complicated. The memory reserved at the SBSRAM is to store the 

reconstructed current frame in order to be use on the P-frame encoding later. Memory 

arrangements on the internal data memory are much different then the previous version of 

the encoder due to the intensive calculation of motion estimation and the memory 

required to store the reference data and low resolution data for the IP encoder. The 

encoder encodes only one slice of the YUV data (320x16 for Y, 160x8 for U and V) at a 
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time with a total of 7.68-Kbyte used of the internal data memory. This slice of YUV data 

is copied from the SDRAM to the internal data memory. Three slices of the reference 

frame are reserved on the internal data memory in order to do the motion estimation 

calculation and they are copied from the SBSRAM, with a total of 23.04-Kbytes used. 

Memory transfers between SRAM and SBSRAM to internal data memory are transparent 

to the LP encoder. Also, 7.68-Kbyes of internal data memory is reserved for the low 

resolution YUV data that are generated for low resolution motion vector search. Figure 

30 shows the flow diagram of the MPEG-2 LP video encoder with SLF resolution. 
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Figure 30: Flow diagram of the MPEG-2 IP video encoder on C62x. 
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As shown in the diagram above, the intra frame encoding is similar to the 

previous version of the encoder except that the current version of the IP encoder includes 

the inverse DCT and inverse quantization to reconstruct the transformed image for later 

use as the reference frame. However, the inter frame encoding, which does not exist in 

the previous version of encoder, is the most computational intensive part of the IP 

encoder. The inter frame encoding accounts for more than 85% of the entire IP encoder, 

therefore, we will provide a more detailed discussion here. As the C62x has limited 

internal data memory, we can only process one slice of YUV data of the current frame at 

a time because we need to hold another three slices of YUV data from reference frame in 

order to do the motion estimation calculation. The reason we choose three slices of 

reference frame is that we need to have a search window size of ±16 pels horizontal and 

±16 pels vertical. However, the reference slices in the internal data memory vary with the 

three different conditions as shown in Figure 31. 
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Figure 31: Three different condition of the reference slices in the internal data 
memory: a) first reference slice, b) last reference slice, c) all other slices. 
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In Figure 31a, the search window for the first slice of a frame constitutes only the 

positive 16 pels vertically, since the negative pels search area of the reference frame are 

out of the image boundary. Therefore, we only need to compare two slices in the 

reference frame: one is the same location as the compared slice, and the other one would 

be the next slice of the reference frame. Thus, we move in only two slices from the 

reference frame memory. For Figure 31b, instead of having a positive search window 

size, the last slice of the frame only needs the negative 16 pels vertically. The positive 

pels search area is out of image boundary also. But instead of copying from the reference 

frame memory, the two reference slices already reside in the internal data memory, 

therefore, we only need to shift up the two slices to do the motion vector search. Figure 

31c shows the arrangement of all other video slices for the reference window. Since the 

search window is ±16 pels vertical, we need two other reference slices in the reference 

window, which include one slice above and one slice below the current reference slice. 

We only need to copy in one new slice from the reference frame memory, since the other 

two reference slices are already inside the reference window. Therefore, we only shift up 

the two slices that are already in the reference window and then copy the new slice to fill 

up the bottom reference window. Similar processes are done on the low resolution motion 

vector search too. 

After all the necessary YUV data being placed in the internal data memory, the 

inter frame encoding will start first by doing the motion search to find the best motion 

vector of the current macroblock. Algorithms used to find the best motion vector using 
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the SAD are discussed in the previous chapter such as predicted motion vector, 

hierarchical block matching strategy, diamond search, etc. After finding the best motion 

vector, the macroblock would process the forward DCT and inter quantization to obtain a 

transformed block. The inverse quantization and inverse LDCT is also performed to 

obtain the reconstructed image to be use as a reference frame for the next inter frame 

encoding. The transformed macroblock is then run-length variable length encoded and 

write out the compressed video bit-streams back to the buffer (SDRAM). 

The memory map of the LP encoder with SIF resolution is as following: the 

encoder program is mapped into the internal programming memory; data, stack, heap, 

constant, and initialized data are mapped onto the internal data memory. The reference 

frame data are stored onto the SBSRAM. The input frame (YUV) data and the 

compressed output bit-streams are placed onto the SDRAM. 

The performance of the IP video encoder on the C62x without any assembly 

optimization runs approximately 0.52 frame/second, which is far from reaching the goal 

of real-time video encoding at 30 frames/second for I- and P-frames. Therefore, 

optimization of individual function is required into to achieve an acceptable result, which 

will be further discussed in the next chapter. 

4.4 Implementation Bottlenecks 

As shown in the previous section, the preliminary result of both version of the encoder is 

not running as efficient as we would expect, or even worst than expected. Therefore, in 
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this section we would discuss what are the potential problems that could cause the 

inefficiency for execution of the program on the C62x platform. 

4.4.1 Memory Issues 

The internal on-chip bus, external memory interface (EMIF), and peripherals often 

represent the critical bottlenecks in a real-time system. Access to vital external programs 

and data must pass through these critical components on their way to the VLIW core for 

processing. In fact, external memory access delays form the greatest performance 

bottleneck to our MPEG-2 video encoding on the C62x platform. There are two memory 

issues that need to be addressed; one is the internal program memory, and the other is the 

internal data memory. As one major problem was with the internal data memory is that 

the MPEG-2 video encoder program is much larger than the 64-kbyte on-chip memory of 

the C62x, which means that the main program must be run on an external memory. This 

can cause significant slowdown of the program. Therefore, one of the alternatives is that 

we have treated the internal program memory as a memory cache and attempted to 

optimize the cache hit-ratio to enhance the performance; the other alternatives would be 

limiting the functionality of the program in order to fit into the internal program memory. 

Since even with a close to optimal cache hit-ratio, running the entire program under the 

internal program memory still outperform the other option. 

As the internal data memory can transfer data 20 to 30 times faster than the 

external memory, it is desirable to fetch all the data for computation from the internal 

data memory. However, given the limited internal data memory size of the C62x has, 
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fitting all the data into the internal data memory would seem to be impossible and 

impractical. As shown in our implementation of the encoder in the previous section, the 

encoder swapping data in and out from the internal memory to the external SBSRAM or 

SDRAM memory. The swapping process could potentially reduces the performance of 

the program be executed. One alternatives would be use an optimized block move 

algorithm to do the swapping; the other alternatives would be to use the DMA transfer 

without the intervention of the CPU while the data are being swapped. 

4.4.2 Compiler Optimization Issues 

Even though TI provides an optimized compiler with different levels of code 

optimization, the typical code performance is improved only by 30% - 40% on average. 

However, for time critical real-time systems, the level of performance improvement is 

still not sufficient. Much more aggressive optimization can be obtained by hand-

optimized assembly code. For many of the video coding components, assembly-level 

optimization performs three to twenty times faster than the code generated by the 

optimized compiler. However, the development time for using assembly-level 

optimization is several order of magnitudes than just switching on the build-in compiler 

option. Further discussion of the hand-optimization methodology will be given in the 

following chapter. 

4.4.3 Instruction Latency 

Instruction latency for most of the C62x arithmetic operations are one cycle as refer to 

single cycle instruction (ISC), and others such as multiplication instruction requires two 
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cycles latency. However, load/store and branch instructions have a latency of five and six 

cycle, respectively [36]. And for many of the video coding components, load and store 

represents most of the optimization bottlenecks when optimizing the video encoder. 

Further discussion of the load and store instruction issues will be shown in the following 

chapter. 

4.4.4 Memory Bank Conflict 

The memory architecture of C62x consists of four memory banks, and each of which is 

half-word size (or 16-bytes) wide. Simultaneous memory access to the same bank can 

cause a memory bank conflict which stalls one extra cycle for every load or store 

instructions. A possible alternative to avoid memory bank conflict would be arranging the 

entire data element to 32-bit memory align. 
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Chapter 5 

Optimized VLIW Algorithm for MPEG-2 Video Encoding 

5.1 Introduction 

In this chapter, we present platform-specific (VLIW) optimizations for the 

computationally intensive components of MPEG-2 video encoding mentioned in the 

previous chapters. These video coding components include the SAD computation, 

Quantization, Quantized Discrete Cosine Transform (QDCT), variable length encoding 

(VLC), and MSE computation functions which can achieve a much better performance 

with assembly-level hand optimization. The purpose of these optimizations is to take 

advantage of the VLIW architecture of the C62x and to overcome some inherent 

memory-access and I/O bottlenecks so as to enable real-time video encoding on the C62x 

processor. 

Video coding systems, like many other multimedia systems, has very 

computationally intensive core functions that can be implemented efficiently using ILP. 

Thus, a significant performance increase can be expected if the VLIW architecture is 

properly exploited. Therefore, a major goal is to have an efficient MPEG-2 video encoder 

running on the C62x platform. 
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5.2 Optimizing SAD Computations for Motion Estimation 

During inter-frame coding in MPEG-2, motion vectors are found by performing a number 

of SAD operations on 16x16 blocks. For every SAD calculation, there are two unsigned 

load byte instructions, one subtraction, one absolute operation, and one addition which 

consumes a total of five out of the eight available functional units (the two multiplier 

functional units are not use in SAD calculations). The performance of the inner loop of 

the SAD computations is constrained mainly by the number of load/store functional units 

in the C62x processor. Because only two load operations can be performed per cycle, the 

SAD computation can compute the absolute difference of these two values in one step, 

producing one result per cycle at most. Two approaches can be used to optimize the SAD 

computation. 

5.2.1 First Approach of SAD Optimization 

Considering the number of available functional units that C62x has, the inner loop could 

perform one result per cycle at most if every functional unit only processes one video 

data at a time. The first approach unrolls the 16x16 two-dimension loop into a one-

dimensional loop with 16 iterations, each consisting of 16 SAD computations. This loop 

unrolling reduces the number of loop-end branch instructions from 64 to 16. Because 

each branch instruction has a latency of 6 cycles, reducing the number of branch 

instruction has significant impact on speedup. This structure of the SAD program is as 

follows. Before entering the inner loop, eight execution packets are preloaded to increase 

the pipeline efficiency and eliminate load-instruction latency (which is 5 cycles). The 
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inner loop contains 16 execution packets representing a row of 16 SAD operations, with 

each execution packet consisting of at least two load instruction, one subtraction, one 

absolute instruction, and one addition which are executed concurrently in different 

functional units. The 11 th execution packet also includes a "delayed" branch instruction 

that actually takes effect after the 16th execution packet is computed. Figure 32 shows the 

scheduling of instructions on the first iteration of 16 SAD computation using assembly-

level optimization. 
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Figure 32: Instruction scheduling of the first 16 SAD computation. 

In Figure 32, the X represents the load instruction latency. As shown in Figure 32, each 

row presents one instruction packet with up to a maximum of six instructions being 

executed simultaneously since the other two multiplier functional units are not being used 
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in the SAD computation. The reason for loading the two comparing video data in a two 

separate instruction is to avoid resource (simultaneous execution on the same functional 

unit) and memory conflict, and also the inner loop can be nicely packed with 16 

instruction packets for 16 SAD computation. To complete the calculation of the absolute 

difference which requires eight cycles latency and one more cycle to do the sum of all the 

absolute differences. Extra instructions are inserted for the completion of the SAD 

operation such as incrementing the data memory pointer, reducing the loop counter, 

swapping register contents to avoid resource conflict. 

In addition, the next step of optimizing the SAD computations involves resolving 

any possible memory-bank conflicts which can degrade performance. Indeed, the parallel 

loading of two contiguous unsigned data bytes from memory can result in memory bank 

conflicts 50% of the time. As every second load instruction in the same instruction packet 

would stall one extra cycle to load the data. Figure 33 shows how our program avoids this 

conflict by loading every other unsigned data byte during a parallel-load execution 

packet. By applying this technique, the memory accesses for loading data are guaranteed 

to access through different memory bank, thus, avoiding the memory bank conflict. Since 

computing the SAD of a block is independent of which order the pixels are compared as 

long as comparisons are done on the same pixel location between the current and 

reference frame, the correctness of computation is preserved. 
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Figure 33: Avoiding memory bank conflicts by loading every second data from 
different memory banks. 

The optimization of the SAD computation can include the partial SAD 

computation technique with little extra overhead. Since the sum of every row SAD is 

compared to the previous block's minimum SAD, if the current row's SAD is already 

larger than the previous block's SAD value, then the computation of current block of 

SAD will be terminated early. Overall, our SAD function implementation runs 

approximately 4 times faster than the version obtained from the optimizing C compiler of 

the C62x. Specifically, computing the full SAD function without early termination for a 

16x16 block requires only 270 cycles, as compared to 1220 cycles if the C compiler is 

used. A more aggressive approach with the SAD computation is to downsample the 

16x16 block to perform only one row of SAD calculation for every two rows of data. 

This will cut down the number of cycles required by the computation by half. Given such 
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an aggressive approach, the downsampling of the SAD computation does not sacrifice the 

video quality while increasing the performance. 

5.2.2 Second Approach of SAD optimization 

Further optimization is possible by applying the subword parallelism feature of the C62x 

architecture. This can result in producing four SAD results per three execution cycles (i.e. 

about 1.333 results per cycle) compared to the one result per cycle attained by the first 

approach. Instead of loading the two unsigned data bytes in each cycle, the two data 

words, containing four unsigned bytes of data, are loaded. Loading four unsigned data 

bytes at a time eliminates the load instruction constraint as suggested in the first 

approach. The operation of the improved SAD computation technique is depicted in 

Figure 34. After the two data words have been loaded, the half-word subtraction function 

(SUB2) is used to compute the difference between A2 and B2 to obtain r2, and the 

difference between A4 and B4 to obtain r4. Then both data words are right-shifted by 

eight bits and a similar SUB2 function is applied to obtain r l and r3. Now, both r l and r2 

use the EXTU function to extract the 8-bit result of the difference data; while r3 and r4 

will be ANDed with OxOOOFh to clear the upper 24 unrelated bits. Four absolute 

computations are performed concurrently on the results (rl, r2, r3, r4), then the results are 

added up to obtain the SAD for four unsigned data bytes. This implementation requires 

two load instructions, two half-word subtract instructions, two unsigned right shift 

instructions, two unsigned extract instructions, two AND instructions, four absolute 

instructions, and four add instructions. Therefore, the total of number operations require 

18 instructions which can be packed into thee execution packets, as opposed to four 
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execution packet in the first approach. Hence, the resulting speedup. In addition, loading 

32-bit word data also avoids memory bank conflicts. 

word size (4-byte) 
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R2 
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Figure 34: Flowgraph of the SAD computation in VLIW implementation. 

5.3 Quantization 

After the transform coding (DCT) is performed, quantization of the DCT coefficient will 

be processed. The quantizer we use is set to a fixed scale of 10 bits with all of the 

quantizer scale coefficient calculated at the beginning. We use this quantization function 

for the intra-coding stage only. The main quantization step performed is of the following 

form 

Q\i] = {(x\i]+ cl[/])x c2[i]}» 16 ( 7 ) 
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where x is a DCT coefficient, c l is a quantizer scale, and c2 is a computed scale. The 

main computation here consists of quantizing 64 DCT coefficients for an 8x8 block. 

Although the computation required for the quantization of DCT coefficient is straight 

forward, the C6x compiler optimization could not fully exploit the available instruction-

level parallelism. In our optimization, the main constraint is due to each execution packet 

allowing only two load/store instructions. The above quantization step requires three 

loads and one store. Under this constraint we are able to achieve two results per cycle in 

the inner loop. Loop initialization, loop unrolling, and delayed branching have been all 

used in the optimization. The main inner loop consists of 16 execution packets each 

consisting of two load/store operations. Loop unrolling gives the same effect of reducing 

the number of branch instructions and this has a significant impact on speedup. However, 

most of the execution packets are not fully utilized since only one addition, one 

multiplication, and one shift are performed within two cycles on average. The structure of 

the quantization step computation is as follows. Before entering the inner loop, six 

execution packets are preloaded to increase the pipeline efficiency and also eliminates 

load-instruction latency. The optimization structure of the program is slightly different 

than the SAD optimization, since the SAD computation has almost identical instructions 

inside every execution packet in the inner loop. However, different instructions are 

packed in most execution packets with a similar pattern in the quantization step 

computation. Figure 35 illustrates the scheduling of instructions in the quantization step 

computation program. 
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Figure 35: Instruction scheduling for optimizing the quantization step computation. 

As shown in the instruction scheduling of the inner loop, three execution packets 

are used to load two sets of input parameters for the quantization step computation. 

Result of the two computations are computed at the sixth to eighth cycles and the 10th 

cycle. Then store takes place in the 11th cycle. The two final results would not get stored 
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actually until the fifth cycle after the initiation of the store instruction. Overall, our 

optimized quantization function runs on the C62x approximately 20 times faster than the 

optimized C-compiler version. Specifically, quantizing an 8x8 DCT block requires 128 

cycles by our method, as opposed to 2505 cycles generated by the C-compiler, which is 

merely 20 times faster. 

5.4 Quantized Discrete Cosine Transform (QDCT) 

As mentioned before, the QDCT algorithm combines both DCT and quantization into a 

single computation and reduces the overall computational load substantially. Unlike SAD 

and quantization calculations, QDCT's high computational cost is dominated by its 

complexity. The two-dimensional QDCT computation must be unrolled to an 8x1 vector 

such that the column QDCT is preformed first then row QDCT is performed second. In 

QDCT, load and store instructions are no longer the dominant constrains for 

optimization. However, the order of load and store operations still has an important 

impact on the overall performance of the optimization. 

Two methods have been implemented to determine which order of loads and 

stores provides a better optimization level of the QDCT. The first, and simplest, method 

is to do a parallel load of 8 data at the beginning of each iteration, then transformed 

results are store at end each iteration. The advantage of this method is that the code 

linearity is preserved and register usage becomes more flexible. The drawback of this 

method is that resources are poorly utilized when intermediate result, such as those from 

multiplications (2-cycle latency) and load operation (5-cycle latency), are not available. 
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The result of computing a column of QDCT requires 24-instruction cycle in the inner 

loop, and eight iterations are required for completing the column QDCT calculation for a 

total of 192 instruction cycles. In the second method, a sequential order is enforced on the 

load/store instructions such that one load and one store operation are performed per 

instruction execution. However, the paired load and store instructions do not access the 

same row or column of QDCT calculation in the same iteration. In other words, during 

the first iteration of computing the column QDCT, the load instruction is loading in the 

first set of data, and the store operation of the first iteration are disabled. Then for the 

second iteration of column QDCT calculation the store operations are storing the result of 

the first row of QDCT while the load operations are loading in the second data set. This 

method results in much better functional unit utilization than the first methods. The main 

limitation, however, is increased register usage caused by the use of preloaded quantized 

coefficients and the storage of intermediate results. The resource constrain on the number 

of available shift units become the one of the bottleneck as most results are shifted at the 

end to maintain the necessary precision of the integer QDCT computation. Using the 

second method, a QDCT column computation requires 14-instruction cycles in the inner 

loop, and nine iterations for completing the column QDCT calculation for a total of 126 

instruction cycles. Therefore, the second method has a 34% performance gain over the 

first method. The two methods of load/store scheduling are depicted in Figures 36 and 37. 
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Figure 36: Parallel execution of loads at the beginning and stores at the end. 
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Figure 37: Sequential execution of load/store pairs. 

For the column QDCT computation, the average utilization of the C62x functional 

units on the 14 execution packets is 78%. However, for the row QDCT computation, the 

average utilization on 13 execution packets is 81%. Among all the optimization of the 

video components, the QDCT optimization achieves the highest utilization of the 
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functional units in the C62x platform. Finally, the performance gain of using optimized 

assembly is almost 20 times faster as than the C6x C-compiler implementation of QDCT. 

5.5 Variable Length Coding (VLC) 

For the SAD computation, quantization, and QDCT, the performance of the optimization 

is independent of the context of the data, and all of these algorithms have tight inner-

loops that are good candidates for optimization on an LLP architecture. The picture is 

quite different for the VLC algorithm whose structure is more inherently sequential with 

strong data dependencies. The performance of the VLC algorithm is highly dependent on 

the quantized DCT coefficients, the more zeros the quantized 8x8 blocks have, the more 

efficient the algorithm runs. Inserting a branch instruction after every quantized DCT 

coefficient within the 8x8 blocks poses the major hurdle to the VLC algorithm 

performance. In addition, the zig-zag scan of the DCT coefficients in an 8x8 block causes 

further inefficiencies in performance of the program code. We have, therefore, employed 

a method for hard coding the zig-zag scan pattern and generating a table of zero run-

length codes for use with Huffman coding later on. The performance of our optimized 

code is three to four times faster than the code generated by the C-compiler. This has 

been one of the hardest algorithms to optimize for the C62x because of the high inter-

dependencies in the program code execution. For example, in the intra-coding process, 

VLC accounts for almost 50% of the computational load after the other components have 

been optimized. 
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5.6 Mean Square Error (MSE) 

Mean square error (MSE) computation is similar to the SAD computation, except that 

MSE calculate square of the difference between two data elements. For the MSE 

calculation, multiplication is used instead of the absolute function used in the SAD 

computation. The hand-optimized assembly code for MSE is very similar to that of the 

SAD except for the use of an additional multiplication (with a 2-cycle latency) per 

execution packet, and this results in a total of 271 instruction cycles for computing the 

MSE for a 16x16 luminance block. For the two 8x8 chrominance blocks, 95 instruction 

cycles are required for each block. The performance of the assembly level optimization 

on the MSE on a macroblock is 12 times faster than the optimized C version. 

5.7 Putbit 

Putbit is one of the encoder functions that flushes out the variable length encoded bit-

stream to either the external memory of the C62x or to a file on the PC host. This 

function normally contributes to about 10% of the encoder time on intra-coding and less 

than 5% for inter-coding without any optimization. However, when all the other video 

components are being optimized, this putbit function becomes significant. Therefore, 

hand-coded assembly optimization has been done on the putbit function. The overall 

performance of the assembly level optimization on the putbit function is four to eight 

times faster than the optimized C version. 
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5.8 Overall Performance Improvement of the Application 

There are currently two versions of the MPEG-2 video encoder being implemented on the 

C62x E V M board. The first is an I-frame only version of the MPEG-2 video encoder 

which does Intra-coding at SUF resolution. This version currently runs at above real-time 

rate of 40 frames per second. In this setup, the MPEG-2 video encoder directly captures 

video frames from a camera at SIF resolution, and encodes the video in real-time (or 

faster). The newest version of the I-frame MPEG-2 video encoder can encode 15.6 

frames per second at CCIR-601 resolution. The second version of the MPEG-2 video 

encoder is an JPP-version which does both intra- and inter-coding which significantly 

improves the compression ratio. The LPP-version of the encoding at 16.2 frames per 

second at SIF resolution. As compared to the optimized C-compiler of the I-frame only 

and the IPP video encoder on C62 E V M board, the assembly-level optimized programs 

runs more than 30 times faster. 

Table 5 provides a comparison for the MPEG-2 video coding components running 

on a Pentium 166MHz machine, compared to encoder components running on the C62x 

platform, at 166MHz, before and after hand-coded assembly optimization. 
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Video Components 
(per frame @SIF) 

Pentium 
@ 166MHz 

C62x @ 166MHz 
w/o optimization 

C62x @ 166MHz 
with optimization 

SAD 142 ms 274.5 ms 32.6 ms 

Quantization 88.8 ms 164.4 ms 8.4 ms 

QDCT 160.3 ms 197.6 ms 9.3 ms 

VLC 16.4 ms 40.8 ms 12.4 ms 

MSE 4.9 ms 9.3 ms 1.1 ms 

Putbit 15.3 ms 58.5 ms 8.4 ms 

IDCT 197.6 ms 243.5 ms 10.4 ms 

Table 5: Summaries the overall performance of video encoding components on 
different platforms with and without optimization. 
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Chapter 6 

Conclusion and Future Research 

In this thesis, we purpose a software only real-time MPEG-2 video encoder on a VLIW 

processor architecture. Mapping and implementing the real-time MPEG-2 video encoder 

significantly improved the performance of video coding running on the VLIW 

architecture processor. The implementation of the video encoder on Texas Instrument's 

C62x E V M board was tested. The contribution of our research consists of two parts. In 

the first part, we mapped and modified the existing MPEG-2 video encoder designed to 

run on PCs onto the C62x platform. We need to initiate the communication between the 

C62x E V M board and the host PC for transmitting video data to do the video encoding. 

Memory mapping is one of the key issues that we have to deal with as the memory size 

and memory transfer is critical to the performance of the video encoding on the C62x 

VLIW processor. Modification of the program structure and video components is 

required to run the encoder effectively on the C62x platform. These components included 

motion estimation, quantization, variable-length encoding, and putbit function. These 

functions are discussed in Chapter 4. In the second part, we propose assembly-level 

optimizations to exploit the instruction-level parallelism of the C62x VLIW architecture. 

This was done to improve the performance of the MPEG-2 video encoder, since the 
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optimized C-compiler did not provide acceptable results for real-time coding. With a 

maximum throughput of processing eight instructions every CPU cycle, we achieved 

major speed ups for some of the major video computations, particularly the DCT, SAD, 

quantization, variable-length encoding, and data I/O. After employing the optimizations, 

we realized a much faster encoder that can encode more than 15 frames per second (fps) 

on both I-frame only with CCIR-601 resolution and JPP with SUF resolution, and an even 

faster than real-time (40 frames per second) on I-frame only video with SIF resolution. 

As the unoptimized version of our encoder can only encode less than 0.5 fps on the C62x 

E V M board. All the results are discussed in detail in Chapter 5. 

Although this thesis focuses mainly on video encoding on the C62x VLIW 

architecture, some of the techniques and developments can be also applied to other VLIW 

architecture processors. Moreover, the performance of the software implemented MPEG-

2 video encoder can be further improved by further optimization of other video 

components and increasing the data transfer throughput using DMA transfer without 

intervening CPU. 

Another interesting research direction is to extend the hardware features of media 

processors, eg. by incorporating SIMD capability into the VLIW DSP architecture. The 

Philips Trimedia chip can possibly be one such candidate. 
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Acronyms 

List of Acronyms 

2-D Two Dimension 

A L U Arithmetic Logic Unit 

ASIC Application Specific Integrated Circuit 

ATM Asynchronous Transfer Mode 

CCIR International Radio Consultive Committee 

CISC Complex Instruction Set Computer 

CPU Central Processing Unit 

DCT Discrete Cosine Transform 

DCME Distortion-Computation Optimized Motion Estimation 

DMA Direct Memory Access 

DPCM Differential Pulse Code Modulator 

DSP Digital Signal Processing 

EMIF External Memory Interface 

E V M Evaluation Model 

GOP Group of Pictures 

gops Giga Operations Per Second 

HFC Hybrid Fiber-Coax 

HPI Host Port Interface 

EDCT Inverse Discrete Cosine Transform 

ILP Instruction-Level Parallelism 

I/O Input/ Output 

ISC Single Cycle Instruction 

ISO/IEC International Organization of Standardization/ International 

Electrotechnical Commission 

MAC Multiply-Accumulation 

MAE Mean Absolute Error 

MB Macroblock 
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Acronyms 

MC Motion Compensation 
ME Motion Estimation 

MIMD Multiple Instruction Stream, Multiple Data Stream 

MIPS Million Instructions Per Second 

mops Mega Operations Per Second 

MPEG Motion Picture Expert Group 

MSE Mean Square Error 

MV Motion Vector 

NTSC National Television Systems Committee 

PC Personal Computer 

PMV Predicted Motion Vector 

PSNR Peak Signal to Noise Ratio 

QDCT Quantized Discrete Cosine Transform 

RD Rate-Distortion 

RLE Run Length Expansion 

SAD Sum of Absolute Difference 

SBSRAM Synchronous Burst Synchronous Random Access Memory 

SDRAM Synchronous Dynamic Random Access Memory 

SIF Source Intermediate Format 

SIMD Single Instruction Stream, Multiple Data Stream 

SNR Signal to Noise Ratio 

SPMG Signal Processing and Multimedia Group 

SRAM Synchronize Random Access Memory 

tops Tera Operations Per Second 

VLC Variable-Length Coding 

VLD Variable-Length Decoding 

VLrw Very Long Instruction Word 

VLSI Very Large Scale Integration 

YUV Luminance and Chrominance 
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