
MAPPING AND OPTIMIZING A SOFTWARE-ONLY REAL-TIME

MPGE-2 VIDEO ENCODER ON VLIW ARCHITECTURES

by

HENRY LEE

B.A.Sc (Electrical and Computer Engineering)

University of British Columbia, 1997

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQURIEMENT FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

April 2000

© Henry Lee, 2000

In presenting this thesis in partial fulfillment of the requirements for an advanced degree at the

University of British Columbia, I agree that the Library shall make it freely available for

reference and study. I further agree that permission for extensive copying of this thesis for

scholarly purposes may be granted by the head of my department or by his or her representatives.

It is understood that copying or publication of this thesis for financial gain shall not be allowed

without my written permission.

Department of Electrical and Computer Engineering

The University of British Columbia

Vancouver, Canada

Date:

Abstract

Due to its high computational demand, MPEG-2 video coding solutions have been based

mainly on custom hardware (ASIC) systems. Such systems lack the flexibility and adaptability of

software-based solutions. Achieving real-time MPEG-2 video encoding in software remains to

be a major challenge. A typical MPEG-2 encoder performs 20 to 30 GOPS (giga operations per

second), which exceeds the capabilities of the most advanced contemporary processors.

In this thesis, we have developed and tested a highly optimized, low complexity, high-

quality MPEG-2 video encoder software based on Texas Instruments' fixed-point TMS320C6201

VLiW (Very Long Instruction Word) processor. First, we developed MPEG-2 video encoder

software written in C for the C62x processor platform, however, due to the difference in the

processor architecture, optimization and modification are done on the software to ensure the

MPEG-2 video encoder runs efficiently in the VLIW architecture. The optimization are done at

the assembly language level to maximize the attainable instruction-level parallelism (ILP) of the

C62x VLIW architecture. In our experience, optimizations done alone by the optimizing C-

compiler of the C62x could not meet the real-time requirements of MPEG-2. After code re­

mapping and optimization, the resulting MPEG-2 video encoder implementation runs

approximately 32 times faster than the original unoptimized MPEG-2 video encoder. Moreover,

the current version of the encoder can handle SIF(320x240) video format at 16 frames per second

with both I and P pictures, and CCIR-601 (720x480) at 15 frames per second for the I pictures

only. Our real-time MPEG-2 encoder has been implemented and tested on the C62x Evaluation

Model (EVM) board from TI.

Table of Contents

Abstract ii

Table of Contents iii

List of Tables vii

List of Figures viii

Acknowledgments x

Chapter 1 Introduction 1

Chapter 2 An Overview of VLIW Technology and Different Architecture Approaches for
Video Processing 5

2.1 Introduction 5

2.2 Instruction-Level Parallelism (HP) issues 7

2.2.1 LLP Hardware 8

2.2.1.1 Superscalar Processors 10

2.2.1.2 VLIW Processors 11

2.2.2 The Use of VLIW in DSP Applications 14

2.3 Compiler-Architecture Technologies for VLIW 14

2.3.1 Trace Scheduling 15

2.3.2 Loop Unrolling 16

2.3.3 Software Pipelining 18

2.4 Architectural Approaches for Programmable Processors 20

2.4.1 SIMD 20

2.4.2 Split-ALU 22

2.4.3 VLIW 23

2.4.4 MEMD 24

2.4.5 Associative Controlling 26

2.4.6 Specialized Instructions 27

2.4.7 Coprocessor/Heterogeneous Multiprocessor 28

2.4.8 Memory System 29

Chapter 3 A Real-Time MPEG-2 Video Encoder 31

3.1 Introduction 31

3.2 Basics of Video Coding 31

3.2.1 Motion Estimation and Motion Compensation 33

3.2.2 Transform Coding, Quantization and Variable Length Coding 37

3.3 The MPEG-2 Video Coding Standard 38

3.3.1 Bit Stream and Macroblock Layer 41

3.3.2 Baseline MPEG-2 Video Encoder 44

3.3.3 MPGE-2 Video Decoder 47

3.3.4 Forward and Inverse Quantization 48

3.3.5 VLC Coding of Transform Coefficients 48

3.4 Proposed Software Solution for Real-Time MPEG-2 Video Encoder at UBC 50

3.4.1 Motion Estimation (ME) 51

3.4.1.1 Optimum Fast Block Matching Strategy 52

3.4.1.2 Hierarchical Block Matching Strategy 53

3.4.1.3 Additional Stopping Criterion 54

3.4.1.4 The Optimum Block Matching Function 54

3.4.1.5 Robust Motion Vector Prediction 56

3.4.2 Rate-Distortion Optimized Mode Selection 57

3.4.3 Combination of Discrete Cosine Transform (DCT) and Quantization 58

3.5 Analysis of the proposed MPEG-2 video encoder 58

Chapter 4 Mapping the MPEG-2 Software Encoder on the Texas Instrument's

TMS3206201 DSP Platform 60

4.1 Introduction 60

4.2 Texas Instrument's TMS320C6201 CPU Architecture 61

4.2.1 VelociTI Principles 61

4.2.1.1 Parallelism 61

4.2.1.2 Pipelining of Critical Speedpaths 62

iv

4.2.1.3 Reduced Instruction Set Computer (RISC) 62

4.2.1.4 Load-Store Architecture 62

4.2.1.5 Orthogonality 63

4.2.1.6 Determinism 63

4.2.1.7 Conditional Instructions 63

4.2.1.8 Instruction Packing 63

4.2.2 Data Paths 63

4.2.2.1 Functional Units 65

4.2.2.2 Data Types 65

4.2.3 C62x Features and Instruction Set 66

4.2.3.1 Saturation Arithmetic 66

4.2.3.2 C62x Instruction Set 67

4.2.3.3 Instruction Packing 68

4.2.3.4 Conditional Instructions 69

4.2.4 Memory Architecture 69

4.3 Memory Configuration and Host Interface of the MPEG-2 Video Encoder 70

4.3.1 Video Encoder on the Host PC 72

4.3.2 MPEG-2 video encoder on C62x E V M board 76

4.3.2.1 CCIR-601 resolution on C62x 77

4.3.2.2 SIF resolution on C62x 79

4.4 Implementation Bottlenecks 84

4.4.1 Memory Issues 85

4.4.2 Compiler Optimization Issues 86

4.4.3 Instruction Latency 86

4.4.4 Memory Bank Conflict 87

Chapter 5 Optimized V L I W Algorithm for M P E G - 2 Video Encoding 88

5.1 Introduction 88

5.2 Optimizing SAD Computations for Motion Estimation 89

5.2.1 First Approach of SAD Optimization 89

v

5.2.2 Second Approach of SAD optimization 94

5.3 Quantization 95

5.4 Quantized Discrete Cosine Transform (QDCT) 98

5.5 Variable Length Coding (VLC) 101

5.6 Mean Square Error (MSE) 102

5.7 Putbit 102

5.8 Overall Performance Improvement of the Application 103

Chapter 6 Conclusion and Future Research 105

Bibliography 107

List of Acronyms 110

vi

List of Tables

Table 1: Constraint parameters at each level of a profile 40

Table 2: Algorithms and functionalities supported with each profile 41

Table 3: Relative computational costs of the most compute intensive tasks of the MPEG-2 video

encoder 59

Table 4: C62x functional units and subunits 65

Table 5: Summaries the overall performance of video encoding components on different

platforms with and without optimization 104

List of Figures

Figure 1: Example of finest-grained level of operations assigned to all functional units 8

Figure 2: Hardware enhancement for ILP 9

Figure 3: Fundamental structure of a superscalar pipeline with degree of three 11

Figure 4: Execution of VLIW processor instructions in a pipelined fashion 13

Figure 5: An example of loop unrolling compiler technique 17

Figure 6: Software pipelined loop execution 19

Figure 7: SIMD multiprocessor architecture 21

Figure 8: Split-ALU implementation 22

Figure 9: MJJvID multiprocessor architecture 25

Figure 10: Associatively controlled multiprocessor 26

Figure 11: An example of coprocessor architecture 28

Figure 12: Generic hybrid video coder and decoder 33

Figure 13: Forward motion compensation 34

Figure 14: Full search motion estimation process 35

Figure 15: Video sequences layer 42

Figure 16: GOP of 12 frames 43

Figure 17: MPEG-2 picture structure at CCTR 601 resolution 44

Figure 18: Block diagram of the MPEG-2 encoder 45

Figure 19: The half pixel motion estimation 46

Figure 20: Block diagram for the MPEG-2 decoder 47

Figure 21: Zig-zag scan order of a 8x8 block 49

Figure 22: (a) Fixed-center, (b) floating-center diamond shape motion vector search area 52

Figure 23: Three predictor of motion vector prediction from surrounding macroblock 57

Figure 24: C62x CPU data paths 64

Figure 25: ADD2 dual 16-bit pair arithmetic 68

Figure 26: Software MPEG-2 video encoder over the C62x platform 71

Figure 27: Flow diagram of MPEG-2 video encoder on the Host PC 73

viii

Figure 28: Dual buffer memory structure for the video encoder on the C62x E V M 76

Figure 29: Flow diagram for the CCIR-601 resolution video encoder on C62x 78

Figure 30: Flow diagram of the MPEG-2 IP video encoder on C62x 80

Figure 31: Three different condition of the reference slices in the internal data memory: a) first

reference slice, b) last reference slice, c) all other slices 82

Figure 32: Instruction scheduling of the first 16 SAD computation 91

Figure 33: Avoiding memory bank conflicts by loading every second data from different memory

banks 93

Figure 34: Flowgraph of the SAD computation in VLrW implementation 95

Figure 35: Instruction scheduling for optimizing the quantization step computation 97

Figure 36: Parallel execution of loads at the beginning and stores at the end 100

Figure 37: Sequential execution of load/store pairs 100

ix

Acknowledgments

First of all, I would like to thank my parents and my three elder brothers, for their great love and

confidence in me, and for making my life easier during my heavy courses load and research

work.

My research would not have become a reality without the very valuable supervision of

Dr. Hussein Alnuweiri. The guidance and support are greatly appreciated.

I would like to thank my colleagues Don Hoi Ng and Joseph Chu for sharing their

valuable technical knowledge with me. I also wish to express my gratitude to Dr. Faouzi

Kossentini and Dr. Khanh Nguyen for the useful reference materials they has provided me and

our research engineer Dr. Alen Docef for making our lives easier with his great technical

support. Last but certainly not the least, I thank all my colleagues and friends for their invaluable

friendship. This research was supported by a grant from the National Sciences and Engineering

Research Council (NSERC) of Canada and by a grant Rogers Communications.

x

Chapter 1: Introduction

Chapter 1

Introduction

With the growing deployment and commercialization of the multimedia applications,

comes the demand for higher performance to be offered to such applications at the lowest

possible cost. Additionally, multimedia processing platforms must become more flexible

and easily re-programmable to keep up with changing standards and application domains.

Currently, video signal processing is the dominating task in terms of computational

demands as well as amount of information bandwidth, unless compression technology is

used. The wide demand for video coding applications have led to the development of

video coding standards for video compression such as ISO/IEC MPEG-1 and MPEG-2.

The required processing rate for video compression ranges from 100 mega operations per

second (MOPS) to more than one tera operations per second (TOPS). For instances, the

real-time MPEG-2 video decoding for National Television Systems Committee (NTSC)

resolution requires more than 400 MOPS, while MPEG-2 video encoding can require up

to 30 giga operations per second (GOPS) [1]. Such requirements are beyond the

capabilities of contemporary microprocessors and have been satisfied mainly through the

use of Application Specific Integrated Circuits (ASICs) technology only. However, this

trend is changing with the advent of new fundamental algorithmic enhancements to video

1

Chapter 1: Introduction

encoding, and with the development of media-enhanced processors from various vendors

such as the Visual Instruction Set (VIS) extension of Sun Microsystem's UltraSPARC

[2], the M M X extension of Intel's Pentium processors, the MAX-2 extension of Hewlett-

Packard's PA-RISC [3], and the Multimedia Instruction Set extensions of Silicon

Graphics' microprocessor [4]. These enhancements have helped real-time video

applications in software become reality.

Current solutions for real-time MPEG-2 video encoding and decoding are based

principally on VLSI implementations such as the custom hardware (ASIC) systems.

However, in order to make the implementations flexible and cost effective, migrating

functionality from application specific hardware into software running on a

programmable general-purpose processor or DSP start to gain great deal of interest.

Recently developed microprocessors and programmable DSP chips offer powerful

processing capabilities to do real-time video compression/decompression. These

processors were designed with the target of realizing a software-implemented MPEG-2

encoder/decoder in real-time.

In this thesis, we have developed and tested a highly optimized, low complexity,

high-quality MPEG-2 video encoder software that runs in real-time or near real-time on

Texas Instruments' fixed-point TMS320C6201 VLIW (very long instruction word)

processor. The high performance TMS320C6201 VLIW DSP processor was chosen

among all the microprocessors and programmable DSP because it employs the VelociTI

VLIW architecture [5]. Our encoder software is based on the encoder design by Dr.

2

Chapter 1: Introduction

Kossentini and others of the SPMG group at UBC. However, because of the distinctive

features of the VLIW architecture, the original MPEG-2 video encoder software had to be

remapped and modified substantially according to the memory and processor architecture

of the targeted VLIW processor. The modifications and optimization have been applied

mainly to the time consuming functions of the software, which include the DCT, IDCT,

block matching (SAD), quantization, and variable length coding. Given the inefficiency

of the optimizing C-compiler of the C62x, the optimization of most coder functions is

mainly done at the assembly language level to maximize the attainable ILP (instruction

level parallelism) of the C62x VLIW architecture. As a result of the assembly level

optimization and the memory re-mapping the MPEG-2 video encoder runs approximately

32 times faster on the C62x than the unoptimizied video encoder implementation.

Moreover, the resulting MPEG-2 video encoder implementation can encode SIF video

format at 16 frames per second with both I and P pictures, and I pictures only in CCIR-

601 video format at 15 frames per second on the Texas Instrument's C62x Evaluation

Model board. We believe that this is a big leap forward towards achieving real-time video

encoding in software-only on a VLIW DSP processor.

This thesis is organized as the follows. Chapter 2 provides an overview of VLIW

technology with the Instruction Level Parallelism (ILP) architecture and the related issues

of the compiler technology of VLIW. Following the discussing of VLIW technology, the

MPEG-2 video coding standard and the software solution for real-time MPEG-2 video

encoder proposed by the SPMG group of UBC is discussed in chapter 3. Chapter 4

introduces the Texas Instrument's C62x VLIW architecture and provides some brief

3

Chapter 1: Introduction

information on its instruction set and memory structure. This chapter also describes the

mapping issues of the MPEG-2 video encoder on the E V M and the memory

configuration and host interface of the algorithms. In Chapter 5, the methodology of

optimization of the software MPEG-2 video encoder is discussed along with some result

comparison. Finally, conclusions for the real-time software MPEG-2 video encoder and

suggestions for the future work towards the full feature real-time MPEG-2 video encoder

are given in Chapter 6.

4

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

Chapter 2

An Overview of VLIW Technology and Different Architecture

Approaches for Video Processing

2.1 Introduction

As stated earlier, the main objective of this thesis is to develop an efficient

implementation of the MPEG-2 video encoder on the VLIW architecture. Therefore, a

mutual understanding of the VLIW architecture and realizing the main differences among

programmable multimedia processor architectures are needed. In this chapter, we first

present the basic concepts of ILP. This is followed by a discussion of ILP architectures.

A presentation of the compiler-architecture technology for the VLIW processors is given.

The chapter then concludes with a discussion of the different architectural approaches to

programmable processors, which are desirable for the implementation of video

processing.

Traditional DSP-oriented chips were mainly built for inner-loop-oriented engines that

acted as slave processors to a CPU, and let the CPU run the rest of the application and the

operating system [6]. However, over the past two decades research on VLTW

architectures has led to the development of stand alone DSP-oriented microprocessor

5

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

chips based on this concept. Additional advancements in the field of compiling and

architecture technology has made it possible to write the actual compute-intensive loops

as part of the whole application. As many of the emerging multimedia applications

continuously change, programmable architectures that provide higher degree of flexibility

and greater processing power became desirable. Recently, VLIW is one of the fastest

growing architecture designs that fulfill high performance needs. The VLIW architecture

has its concept aims at exploiting the instruction-level parallelism inherent in many

multimedia algorithms to improve the performance. Multiple operations are specified

within a single long instruction word for concurrent execution in every clock cycle.

Hence, multiple parallel functional units are implemented in such a way that they can

concurrently execute instructions. However, full utilization of the parallelism of the

functional units is difficult to achieve and sustain, often resulting in the occurrence of idle

resources at run time. Furthermore, compilers for DSPs have generally been unable to

exploit the features of ILP architecture efficiently. As a result, a significant part of DSP

applications has to be optimized manually at the assembly language level. Therefore,

VLIW architectures have two major issues that must be addressed: one is the ILP issues

and its architectures; and the other is the compiler-architecture interaction for VLIW.

On the other hand, the differences between architectural approaches for

programmable processors must also be addressed, as the different architectural

techniques applied would be able to increase the multimedia performance. By exploiting

the differences of the architectural approaches, we would further understand the

adequate/inadequate features of the current processor for handling multimedia

6

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

applications. The techniques can be divided mainly into parallelization strategies and

adaptation strategies. For the parallelization strategy, it's done primarily on the data,

instruction, and task levels, which can result in a considerable increase of computational

power by achieving high level of concurrency of operations. The adaptation strategy

increases the efficiency of an architecture by economical use of hardware resources.

2.2 Instruction-Level Parallelism (ILP) issues

VLIW is a processor with a design philosophy similar to that of the reduced instruction

set computer (RISC). A VLIW processor is basically a logical extension of the RISC

processor, except it has more advanced features by adding ILP to a processor. As

mentioned before, ILP is the key architectural technique employed by today's high-

performance DSPs. ILP is a set of design techniques that speed up the programs by

executing several RISC-style operations in parallel, such as memory loads and stores,

integer additions, or multiplications. These operations execute single-cycle operations on

hardware functional units, rather than performing parallel tasks. Only at the finest-grain

level are these operations assigned to every possible function units such as adders and

memory units at the same time as shown in Figure 1. Parallel execution occurs in every

functional unit during a single-cycle of operation [7]. This parallelism is largely

transparent to the user. However, advanced users may be well aware of its operation and

may restructure the code or carry out other actions to enhance ILP. Distinguishing

between the latent or available ILP inherent in a segment of code and the realizable or

7

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

achievable ILP provided by the hardware would be a key to maximizing the efficiency of

the ILP architecture.

ALU 1 A L U 2 M I L Datal Data2 A L U 3

add rl,r2 sub r3, r4 mill r5, rd load r7, rS store r9, rlO and rl 1, r!2

*all six functional units are assigned with operations

Figure 1: Example of finest-grained level of operations assigned to all functional
units.

2.2.1 ILP Hardware

Several different ways of hardware support are offered in ILP. For instances:

• more than one functional unit in a processor can execute concurrently,

• functional units with latency longer than one cycle can be pipelined,

• multiple functional units can access different register files to add register

bandwidth for the purpose of parallel execution.

This hardware support enables the parallelization of the same RISC operations

that are executed sequentially in the view of the programmer [8]. An example of the

execution hardware enhanced to exploit potential ILP is depicted in Figure 2, assuming

that the long instruction word execution takes place during a single-cycle. Having

separate register banks for the integer and floating-point data can help reducing potential

hardware resource conflicts. Also including extra integer units enables access to more

than one integer operation per cycle.

8

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

Share Bus

Figure 2: Hardware enhancement for ILP.

Besides the execution hardware of an ILP processor, microprocessors have

control hardware as well, which controls the flow of operations instead of carrying out

the operations that contribute to the desired computation. There are mainly two types of

architectures embodying the ILP methodology in modern microprocessor control units,

and both can increase code performance by statically or dynamically scheduling parallel

streams of single-cycle operations. The two types are: superscalar processors which

employs dynamic instruction scheduling, and VLIW processors which employ static

instruction scheduling. It should be noted that the pipelining structure of the two

processor types is different.

9

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

2.2.1.1 Superscalar Processors

In general, most general-purpose microprocessors embody a form of ILP called

superscalar execution. However, the main difference between scalar and superscalar

general-purpose processor is that the control hardware is much more complex for the

latter processor type. Superscalar processors are designed to exploit more ILP in user

programs. Only independent instructions can be executed in parallel without causing wait

states. The amount of ILP varies widely depending on the type of code being executed. A

superscalar processor fetches several RISC-level instructions from a scalar instruction

stream and processes these instructions in parallel, all these decisions are made at the

runtime. The control hardware of the processor checks the dependencies among the

operations, reorders the instructions to take advantage of free function units or other

resources, performs register renaming, then executes operations in parallel if possible;

thus speeding up the computation [9]. This more complex hardware is often referred to as

scheduling hardware. A superscalar processor is handed ordinary code, compiled for a

sequential model of computation, and the scheduling hardware produces the ILP. For the

superscalar type of architecture, a specific compiler is not required.

• Pipelining in Superscalar Processors: The fundamental structure of a superscalar

pipeline is illustrated in Figure 3. The diagram shows the use of three instruction

pipelines operating in parallel for a triple-issue superscalar processor. The superscalar

•processor shown below, of degree three, can issue up to three instructions per cycle,

where the base scalar processor implemented either in RISC or CISC can only have a

degree of one. To fully utilize a superscalar processor of degree three, three

10

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

instructions must be executable in parallel. However, this situation may not happen in

all clock cycles. In that case, some of the pipelines may be stalling in a wait state. For

most of the superscalar processors, the simple operation latency should require only

one cycle. To achieve a higher degree of instruction-level parallelism in programs, the

superscalar processor depends on an optimizing compiler to exploit ILP.

A
ifetch execute

decode write back

- >

0 1 2 3 4 5 6 7 8
Time in base cycle

Figure 3: Fundamental structure of a superscalar pipeline with degree of three.

2.2.1.2 VLIW Processors

The VLIW processors are in general very similar to superscalar processors in the sense

that both processors use the same or similar execution hardware to achieve the ILP,

except that the VLIW processors have extremely simple control units. A typical VLIW

processor has instruction words hundreds of bits in length such as Texas Instruments'

fixed-point TMS320C6201 VLIW processor is 256-bit long [10]. In a VLIW, it is the

task of the compiler to determine the ILP and to schedule operations to run on multiple

11

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

functional units concurrently. All the functional units share the use of a common large

register file and the operations to be simultaneously executed by the functional units are

synchronized in a VLIW instruction. The compiler communicates the information about

where, how, and when things are done via the program itself, by specifying directly in

each cycle exactly what each function unit is to do, where it gets its data from, etc. Since

this design philosophy mandates the simplest possible control hardware, it is common to

put no-ops in each instruction corresponding to those functional units, making their task

in that cycle explicit. However, inserting no-ops to all the unused functional unit leads to

the problem of code size expansion. Coding size is especially critical issue for DSP

applications. Furthermore, the static nature of scheduling has also led to a more complex

compiler toolkit.

The immediate advantage of VLIW methodology is that both power consumption

and silicon area are significantly reduced compared to an equivalent superscalar

architecture. One drawback of traditional VLIW architectures is code expansion resulting

from inserting the no-op operation into the unused functional units during a VLIW

execution packet instruction cycle. Depending on the number of functional units, N,

VLIW code expansion could theoretically increase the code size by as much as N times.

• Pipelining in VLIW Processors: The execution of instructions by an ideal VLIW

processor is shown in Figure 4, where each instruction specifies multiple operations.

12

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

execute 3 op
lfetch
i i i

decode write back

0 1 2 3 4 5 6 7 8
Time in base cycle

Figure 4: Execution of V L I W processor instructions in a pipelined fashion.

VLIW processors behave much like superscalar processors except for the following

three main differences:

1. VLIW instructions are much easier to decode than the superscalar instructions.

2. In terms of code density, the superscalar processor is better when the available

ILP is less than that exploitable by the VLIW processor. This is due to the fixed

VLIW format that includes bits for non-executable operations such as the no-ops

described previously, while the superscalar processor issue only executable

instructions.

3. A superscalar processor can be object-code-compatible with a large family of

nonparallel processors. In contrast, a VLIW processor exploiting different

amounts of parallelism would require different instruction sets.

13

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

2.2.2 The Use of V L I W in DSP Applications

The extreme popularity of the use of VLIW architecture in the DSP world comes for

several reasons. One of the most important reasons is the ability to take advantage of the

abundant ILP that's available in typical DSP codes. However, the control hardware can

become enormous when it must control large numbers of functional units. However, the

major disadvantage of VLIW architecture as general-purpose microprocessor is the issue

of object code compatibility. Programs for different VLIW are likely to be different, and

thus the code must be recompiled for each processor architecture. The object code

compatibility tends not to be an impediment in the DSP applications, since recompilation

and unique hardware have been the norms. The relatively static flow of control in DSP

and multimedia applications has made VLFW a good choice.

2.3 Compiler-Architecture Technologies for VLIW

Compiling for VLIW DSP processors was done poorly for the past decade, and the only

way to obtain an efficient coding was though the hand coding assembly. Clearly, a high-

level language approach was much more desirable. Unfortunately, until 1980s, there were

no approaches that matched, or even came close to, the performance that hand code could

provide. The major barrier faced, even by experienced compiler writers, was that

available practical compiler technology only enabled the scheduling of operations that

come from single straight-line segments of code, called "basic blocks" by compiler

writers. Whenever the compiler encountered a jump of any form, or even a branch target,

the compiler would stop any further scheduling, declare that section done, and starts all

14

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

over with the next section. Unfortunately, there was little performance to be gained that

way. If operations could somehow be moved globally between blocks rather then locally,

far higher degrees of ELP would be available. Therefore, performance gains achieved

with VLIW architectures will critically depend on the degree of exploitable instruction-

level parallelism in the target algorithm as described previously. To maximize the pool of

operations that can be scheduled into a single instruction word, sophisticated compiler

techniques such as loop unrolling, software pipelining, trace scheduling, and guarded

execution may be applied [11].

2.3.1 Trace Scheduling

As the name of the scheduling algorithm states, trace scheduling is centered on traces

[12]. The compiler mainly focuses on loop-free sequences of basic blocks embedded in

the control flow graph rather than a single basic block. Traces are selected and scheduled

in order of their frequency of execution. The selected trace is then scheduled as if it were

a single basic block as giving no special consideration to branches. By scheduling the

trace all at once, the compiler implicitly moves operations between blocks. After a given

trace has been scheduled, the next most frequently executed trace is selected from among

the remaining unscheduled operations, including those added in the process of scheduling

earlier traces. This continues until the entire program has been scheduled.

The basic concept initiated by trace scheduling is to do the code motions

implicitly as part of scheduling region, which is much larger than a basic block.

Frequently in DSP and multimedia applications, the compiler is presented with a single

15

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

small loop. Hence, trace scheduling does not proceed beyond a back edge, there would be

little opportunity for the compiler to do the global code motions that allow trace

scheduling to be truly efficient. Trace scheduling compilers typically do a sophisticated

job of turning a small piece of code into a long chain of blocks without back edges and

without the artificial data dependencies that a naive job of unrolling would introduce.

Unrolling the loops can be very effective as will be discussed further in the following

section. However, it also bring the problem of generating much extra code and sometimes

loses performance because there is always a start up and close down delay at the

beginning and the end of each series of unrolled iterations.

2.3.2 Loop Unrolling

Loop unrolling can be a very effective compiler technique, as it replicates the original

loop body multiple times, and adjusts the loop termination code and eliminates redundant

branch instructions. The overhead of branching is significantly reduced with loop

unrolling, especially when the latency of branching is large which is usually the case in

most of the DSP architectures. This technique usually incorporates reduction of data

dependencies to fully utilize the efficiency of loop unrolling. The resulting larger basic

block increases the probability that the instruction scheduler can reorder instructions to

exploit ILP [13]. Figure 5 shows an example of the compiler performing the loop

unrolling technique. The initial iteration of the loop is 16 and the loop body is performed

once every iteration. After performing loop unrolling, the compiler transform the loop

iteration to four, and the loop body is executed four times every iteration. Given that

16

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

unrolling the loop not only reduces the redundancy of branch instructions with long

latency, but also increases the probability of efficient pipeline scheduling.

int size = 16;
byte out[size], inl [size], in2[size];
for(i = 0; i < 16; i++)

outfi] - inlfij + in2[i];

Before loop
unrolling

Cycle 0: load tl_0 = [inl + iO]
loadtl_l = [inl + il]
loadtl_2 = [inl + i2]
load tl_3 = [inl + i3]

cycle 1: load tl_0 = [in2 + iO]
loadtl_l = [in2 + il]
load tl_2 = [in2 + i2]
loadtl_3 = [in2 + i3]

cycle 2: add t3_0 = tl_0, t2_0
add t3_l - tl_l, t2_l
add t3_2 = tl_2, t2_2
add t3_3 = tl_3, t2_3

cycle 3: store [out + iO] = t3_0
store [out + il] = t3_l
store [out + 12] = t3_2
store [out + 13] = t3_3

Figure 5: An example of loop unrolling compiler technique.

However, loop unrolling generates extra code and sometimes loses performance

because the scheduler's effectiveness is limited by artificial dependencies created by loop

unrolling's naive reuse of registers and other data dependencies between instructions.

Code size expansion tends to be a problem in most DSP processors, because the program

memory size is very limited. Therefore, the level of loop unrolling must be compensated

with the limited code size expansion.

Code section for the loop
body after unrolling the
loop in the compiler

17

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

2.3.3 Software Pipelining

Software pipelining parallelize loops by starting new iterations before previous iterations

complete. Successive iterations start at every initiation interval cycles. A single

iteration's schedule can be divided into count stages, each consisting of initiation interval

cycles. Figure 6 shows the execution of five iterations of a four-stage software pipelined

loop. The three phases during execution of the loop are ramp up, steady state, and ramp

down. The first stage count minus one cycle constitutes the ramp-up phase when not all

stages of the software pipeline are executed. The steady-state portion begins with the last

stage of the first iteration. During the steady-state phase, one iteration completes for

every one that starts. The steady-state phase ends when the first stage of the last iteration

has completed. For the final stage count minus one cycle is known as the ramp-down

phase, one iteration completes every initiation interval cycle. The code generated for the

three phases of the software pipelined loop are prologue, kernel, and epilogue [14].

18

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

iter 1

II

pipeline
prologue

pipeline
kernel

pipeline
epilogue

sO

si

s2

s3

iter 2
Stage count = 4

sO

si

s2

s3

iter 3

sO

si

s2

s3

iter 4

sO

si

s2

s3

iter 5

sO

si

s2

s3

time

- r o

II

-h 2*n
3*11

— 4 * n

~ 5*11

~ 6*11

— 7*11

8*11

II (Initiation Interval)

Figure 6: Software pipelined loop execution.

Assume that without software pipelining every iteration takes N cycles to

complete. With software pipelining, after the prologue, every new iteration takes one

initiation interval cycle to complete. The speed up is a factor of N divided by initiation

interval, when ignoring the overhead of the prologue. Scheduling the prologue and

epilogue code in parallel with the code outside the loop would minimize this overhead.

The overhead is insignificant for loops with large trip counts. Software pipelining works

very efficiently for very simple loops and continuing research has broadened its

applicability considerably.

19

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

2.4 Architectural Approaches for Programmable Processors

In this section, various approaches are discussed that are widely employed to enhance the

processing capability of programmable architectures for multimedia. Parallelization

strategies are examined separately on data level (SIMD, split-ALU), instruction level

(VLIW), and task level (MIMD, associative controlling). Adaptation strategies are

divided into instruction set design modifications (specialized instructions) and the

incorporation of dedicated hardware modules (coprocessors). Additionally, some remarks

are given on the memory system design for programmable multimedia processors.

2.4.1 SIMD

Data parallelism in image and video processing algorithms can efficiently be exploited by

SIMD (single instruction stream, multiple data streams) architectures. In SIMD

processors, a number of parallel data paths is centrally controlled by a global control unit.

All data paths execute the same stream of instructions, but operate on different data

items. To enable conditional operations, individual data paths can be excluded from the

execution of single instructions by binary masking [9]. Figure 7 shows the basic structure

of the SIMD architecture.

20

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

Instruction
Memory

Controller

1

Data Data • • • Data
Path 1 Path 2 Path N

I
Data Memory

Figure 7: SIMD multiprocessor architecture.

As SIMD processors feature just a single control unit, the largest portion of

available silicon area can actually be spent for the implementation of multiple data paths,

leading to high degree of parallelism. However, the reduced control overhead is paid for

by a lack of flexibility in case of more diverse computation requirements. While SIMD

processors are highly efficient for algorithms with highly regular computation patterns,

i.e., low-level tasks, utilization rapidly decreases for more irregular algorithms involving

a higher portion of data-dependent processing. In consequence, pure SIMD architectures

are not well suited for the implementation of complex processing schemes of

heterogeneous nature as frequently encountered in multimedia applications.

21

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

2.4.2 Split-ALU

Based on a principle similar to SIMD, the split-ALU concept also targets data-level

parallelism in multimedia applications. The concept, also referred to as subword

parallelism, involves parallel processing of several lower-precision data item on a single

A L U of higher word length: a 64-bit ALU, for example, can execute a single operation

on eight 8-bit data items simultaneously [15]. The implementation of a split-ALU

requires only minor hardware extensions - basically, the carry signals arising in

arithmetic operations have to be prevented from being propagated across the boundaries

of separate data items. A possible split-ALU implementation is shown in Figure 8.

Opr 1 Opr 1

1 1

16 bit 16 bit

2x16/ 1x32 bit result

Figure 8: Split-ALU implementation.

Similar to SIMD architecture, the main benefit from a split-ALU is obtained for

highly regular low-level algorithms involving identical operations executed on large data

volumes. In addition, the degree of exploitable data parallelism depends on the precision

22

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

required for an operation: with increasing word-length demands, fewer data items can be

processed in parallel. Since image and video processing tasks mainly involve operations

on low-precision (8-bit) pixel data, subword parallelism can effectively be exploited to

enhance the performance for these computation types. By providing different split-ALU

instructions for various data formats, the achievable parallelism can gradually scale with

the precision requirements.

The small incremental hardware cost for a split-ALU makes this concept well

suited for the extension of existing general-purpose processors with respect to multimedia

processing. Typical operations to be executed in a split-ALU may include parallel

addition/subtraction, multiplication, or compare. Furthermore, packing and unpacking

operations have to be supported to enable a transition between conventional data words

and packed subwords. As a drawback, split-ALU instructions are generally not supported

by current compilers due to the lack of adequate high-level language constructs to

express the desired operations. Moreover, complex code transformations usually become

necessary before the packing of low-precision items into single long data words is

enabled. Therefore, split-ALU instructions typically have to be inserted into the high-

level language code manually by the programmer in form of intrinsic functions.

2.4.3 VLIW

The VLIW processor architecture concept aims at exploiting the instruction-level

parallelism. There are two types of VLIW processors. One is the VLIW processor with

static mapping of the operations slots which relies on static operation scheduling at

23

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

compile time. The other is the superscalar processor which dynamically detects

instruction-level parallelism at runtime.

Performance gains achieved with VLIW architecture critically depend on the

degree of exploitable instruction-level parallelism in the target algorithm. However, the

performance limitations of VLIW processors may arise from the growing hardware

expense for multiported register files and crossbar switches when the number of

functional units increases. Moreover, compiler techniques like loop unrolling and trace

scheduling lead to a heavy increase in code size. The already high bandwidth

requirements for instruction supply are likely to worsen due to the growing gap between

processor and I/O speed. This problem is addressed by compressing the instruction words

in memory and expanding them for execution. Details were given in the previous

sections.

2.4.4 M I M D

An approach exploiting parallelism on both data level and tasks level is given by the

MIMD (multiple instruction streams, multiple data streams) architecture concept. In

contrast to SIMD architectures, MIMD processors feature a private control unit for each

single data path. Consequently, each data path is provided with its individual instruction

stream, enabling concurrent execution of different programs or tasks. Likewise, by

supplying several data paths with identical instruction streams, data parallelism can be

targeted as well [16]. The MIMD multiprocessor concept is depicted in Figure 9.

24

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

Instruction Memory

r
Controller

Controller 1 Controller 2 • • •
r

Data Path 1 Data Path 2 • • • Data Path N

Local Mem Local Mem Local Mem

I
Data Memory

Figure 9: MIMD multiprocessor architecture.

The major advantage of MIMD architectures is their high flexibility as each data

path can be controlled individually. Therefore, MIMD architectures are typically better

suited than SIMD architectures for the execution of compound multimedia processing

schemes comprising low-, medium-, and high-level tasks. However, the duplication of

control units and high-bandwidth requirements for a continuous supply of several

instruction streams dramatically increase the hardware expense, thus limiting the number

of data paths that can be economically implemented on a single chip. Furthermore,

MIMD processors include poor programmability and lack of synchronization support.

Typically, scalar programs have to be developed separately for individual data paths, and

synchronization among processing elements has to be achieved manually by the

programmer. The highly complex and time-consuming application development may be

one reason for the non-popularity of the MIMD processors in multimedia processing.

25

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

2.4.5 Associative Controlling

Associative controlling denotes a new concept for multiprocessor architectures aiming to

prevent the typical drawbacks of both SIMD and MIMD processors in multimedia

processing. The outstanding feature from the hardware point of view is a lower number

of control units than parallel data paths. Therefore, in terms of hardware expense, an

associatively controlled multiprocessor can be classified between SIMD and MIMD

architectures [17]. Figure 10 gives a structural overview of an associatively controlled

processor.

Instruction M e m o r y

1 i

Contro l l er 1 Contro l l er 2 • • • C o n t i o i ler

I n s t r u c t i o n B r o a d c a s t N e t w o r k

iii in
Data Path 1 Data Path 2 • • • D a t a Path N

L o c a l M e m L o c a l M e m L o c a l M e m

D a t a M e m o r y

Figure 10: Associatively controlled multiprocessor.

The control units concurrently issue their individual instruction streams via an

instruction broadcast network to all parallel data paths. Among the multiple instruction

26

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

streams offered, each data path autonomously selects an appropriate instruction stream

for execution. In order to enable unambiguous identification, special signatures are

assigned to the instruction streams and supplied to the data paths. Individual data paths

can dynamically switch between different instruction streams offered by the control units.

This enables, for example, an efficient execution of data-dependent control flow by

simultaneously supplying the instructions of alternative branches following a decision to

all data paths and letting each data path select the proper branch according to its local

status. Moreover, an associatively controlled processor is able to adapt to varying

parallelization degrees during computation by supporting a dynamic clustering of data

paths. Issues to be further investigated include the possible area and power overhead for

the distribution and selection of concurrent instruction streams and the necessary

compiler support to assist software development for associatively controlled processors.

2.4.6 Specialized Instructions

Programmable processors can be adapted to specific algorithms by introducing

specialized instructions for frequently occurring operations of higher complexity. The use

of specialized instructions reduces the instruction count and accelerates program

execution [18]. For example, the use of a specialized MAC (multiply-accumulation) with

saturation replacing a longer sequence of standard instructions including branches is very

common in multimedia processing. Other examples of specialized instructions for

multimedia include extended shift, minimum/maximum, average, and add-sign

operations.

27

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

The incorporation of specialized instructions necessitates incremental hardware

cost for additional function units such as a multiply_add. However, the design complexity

of additional units can usually be kept modest due to high specialization and optimization

toward the targeted operations. The decision on which specialized instructions to

implement involves a tradeoff between additionally required hardware effort and

probability of their use. The benefit from specialized instructions is not universal, since

only a subset of algorithms will experience an acceleration.

2.4.7 Coprocessor/Heterogeneous Multiprocessor

Both parallelization and adaptation principles are combined within

coprocessor/heterogeneous multiprocessor architectures. Coprocessor architectures for

multimedia typically comprise a flexible general-purpose processing module, for

instance, a standard RISC code performs high-level tasks of lower computational

requirements as well as control and I/O functions, whereas the adapted module executes

the computation-intensive but regular low-level tasks [19]. Figure 11 shows an example

of a coprocessor architecture organization.

I/O Data Memory

J k i

r

RISC Co-
w Core w processor

Program Memory

Figure 11: An example of coprocessor architecture.

28

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

Alternatively, specialized modules may also be employed for tasks of lower

computational requirements, but with other special algorithm characteristics that make

them difficult to implement on standard processors. The mixture of several

programmable and dedicated modules results in a heterogeneous multiprocessor

architecture, which can be seen as a generalization of the coprocessor concept. While

heterogeneous multiprocessors allow us to reach higher performance levels by

emphasizing parallel execution of several tasks, they are still more tied to a specific

processing scheme than homogeneous multiprocessors due to the adaptation of individual

modules.

2.4.8 Memory System

As multimedia processing schemes operate on high data volumes, memory system design

has a significant impact on the overall system performance. The streaming nature of

multimedia data deviates radically from conventional data access patterns in general-

purpose computing. Typical cache strategies employed in general-purpose processors rely

on frequent accesses to the same data items, and thus offer little benefit for multimedia

processing. However, particularly in the low-level parts of multimedia algorithms,

memory access patterns are very predictable. Therefore, special stream caches have been

proposed that employ prefetching techniques in order to access shortly needed data in

advance [20].

In addition to the streaming multimedia data types, data structures of nonvolatile

nature may also be involved in multimedia processing such as coefficient lookup tables.

29

Chapter 2: An Overview of the VLIW technolog and Different Architecture Approaches

When placed in cache, those data structures would be exposed to frequent replacement by

the streaming data types. Therefore, the additional integration of software-controlled on-

chip SRAM is advantageous where data are safe from being replaced and can always be

accessed within the shortest time [21].

The performance of multimedia processing is also influenced by the instruction

memory behavior. As typical for most signal processing applications, multimedia

processing involves a limited set of tasks periodically executed on incoming data streams:

the same set of instructions is repetitively fetched and executed. Therefore, conventional

cache strategies may prove useful for speeding up instruction access, provided the cache

is large enough and mutual code replacement can effectively be prevented. Code

positioning schemes have been proposed that help to increase instruction cache

performance in multimedia applications [22]. Instruction memory performance can

further be enhanced by the integration of on-chip SRAM for the most heavily executed

code parts, thus always guaranteeing fastest access without stall cycles due to cache

misses.

30

Chapter 3: A Real-Time MPEG-2 Video Encoder

Chapter 3

A Real-Time MPEG-2 Video Encoder

3.1 Introduction

After realizing the basic architecture of VLIW processors and understanding the different

approaches of programmable multimedia processors, the next crucial step is to obtain an

efficient implementation of a real-time MPEG-2 video encoder. In this chapter, we first

present the basic concepts of video coding. This is followed by a discussion of the

MPEG-2 standards and the real-time implementation of the MPEG-2 video encoder

proposed by our Signal Processing and Multimedia Group of UBC. This chapter

concludes with an analysis of the proposed software solution for the real-time MPEG-2

video encoder.

3.2 Basics of Video Coding

In general, video sequences contain a significant amount of statistical and subjective

redundancy within and between frames, i.e. video sequences usually contain statistical

redundancies in both the temporal and spatial domains. Thus, the goal of video coding is

to remove statistical and psychovisual redundancies in a video sequence while keeping

intact as much perceptually important information as possible. Temporal redundancies

normally exist due to structured motion and camera movement, while the spatial

31

Chapter 3: A Real-Time MPEG-2 Video Encoder

redundancies are normally due to the smoothness and edge continuity. Consequently,

these two types of redundancies are efficiently reduced through employing the two well

known compression schemes: inter-frame coding and intra-frame coding. Intra-frame

compression reduces spatial redundancies within a video frame by employing transform

coding as in still image coding, therefore, the frames can be encoded independently. This

type of compression is ideal when the difference between two consecutive video frames

is very large. Intra-coded pictures are also referred to as I-pictures in MPEG-2. Inter-

frame compression takes advantage of temporal redundancies by coding the difference

between a predicted frame and the current video frame instead of encoding the current

frame itself. A forward predicted inter-frame is also referred to as a P-picture while a bi-

directionally predicted inter-frame is referred to as a B-picture. The combination of intra

and inter-frame coding is called hybrid coding [23]. The generic hybrid video coder is

shown in Figure 12.

32

Chapter 3: A Real-Time MPEG-2 Video Encoder

I(t- l)

I(t)

Generic
Encoder

Generic
Decoder

i(t)

Motion
Estimation

Motion
Compensation

Residual
Coding

Residual
Decoding

Motion
Vector

Frame
Memory W

Motion
Compensation

Figure 12: Generic hybrid video coder and decoder.

3.2.1 Motion Estimation and Motion Compensation

In general, in order to achieve a good prediction of the picture currently being encoded,

the motion of the objects in the video sequence must be considered. Since if the objects in

present picture are well predicted from the previous picture, then the amount of

information needed to be encoded is relatively small given that the difference between

33

Chapter 3: A Real-Time MPEG-2 Video Encoder

pictures is small. Therefore, the introduction of motion compensation (MC) is needed.

Motion compensation is used to exploit the temporal redundancy inherent in moving

pictures. It is used for the compression of P-pictures and B-pictures. The idea behind this

is to reduce the information needed for the storage of the difference between the

predicted block and the current block along with the motion vector associated with the

current block, than would be required for storage of the current pixel data. Motion vector

is the relative distance between the best-matched block in the previous picture and the

current block. There are two distinct types of motion compensation. The first is called

forward motion compensation, which is the result of coding a frame based on a previous

frame in the actual temporal sequence. Figure 13 illustrates forward motion

compensation. The other form is symmetric, using a subsequent frame in the sequence to

act as a basis frame for prediction.

Forward M V

Figure 13: Forward motion compensation.

34

Chapter 3: A Real-Time MPEG-2 Video Encoder

Block-base motion compensation is considered as one of the best approaches for

eliminating temporal redundancies. Since in this method, the picture is divided into

blocks with size M x M pixels each. For every individual block, the previous picture is

searched for the best match block of the current picture. This searching process is called

Motion Estimation (ME) as shown in figure 11 also. As we can see, the computation that

searches for the best match block of the entire picture can be very expensive, therefore,

ME is usually performed using a limited window size called search window for the

search process. Figure 14 shows the full search method with search window size that is

±p pels in the x-direction and ±q pels in the y-direction with block size (M, N).

Current
Frame

Reference
Frame

Figure 14: Full search motion estimation process.

The best-block matching algorithm uses a very simple cost function to evaluate

the displacement vectors that describe motion in image sequences. In most cases, a

simple pel-based absolute difference is used to determine the similarity between blocks.

Two of the most popular cost functions used to measure the similarity between blocks are

35

Chapter 3: A Real-Time MPEG-2 Video Encoder

the mean square error (MSE) and the mean absolute error (MAE). For a block at location

(xm, ^n) with block size M x N, the MSE and MAE for motion displace d = (dx, dy) are,

i xm+M yn+N
MSE(dx,dy) = — - ^ Jj(I(x,y)-Iref(x + dx,y + dy))2, M - N, (1)

MN

1 , 1 1 x=xm y=yn

1 xm+M yn+N

MAE(dx,dy) = -—Jj ^\l(x,y)-Iref(x + dx,y + dy)\, M = N, (2)
IVILV x=xm y=yn

where I and Iref are the pixels of the present frame and the reference frame, respectively.

The M and N are the dimensions of the block and Iref(x + dx, y + dy) is the value of the

block element that is located in row x + dx and column y + dy in the reference frame. The

difference in subjective performance between using the MSE and MAE is quite small for

most video sequences. Hence, the number of operations necessary for calculating MAE is

much smaller than that of MSE, therefore, in general, the MAE error measure is more

commonly used. However, even using the MAE, the computational complexity is still

quite high for most video sequences, simply because hundreds of reference blocks must

be considered for each candidate block. For example, for CCIR-601 video (30

frames/sec, 720x480 pixels/frame) with a (±16, ±16) search window size, a 30 GOPS

(giga-operations per second)) capable processor is required for performing full search

block matching algorithm in real-time.

As we have already suggested, motion estimation and motion compensation are

the cornerstone of most video coding systems presently in vogue and are the basic

mechanisms by which temporal redundancies are captured in the current H.261, H.263,

36

Chapter 3: A Real-Time MPEG-2 Video Encoder

MPEG-1, and MPEG-2 standards. Therefore, the importance of exploiting an efficient

algorithm for the two tasks is essential. There are many existing efficient algorithms such

as logarithmic search and hierarchical search have been suggested in order to reduce the

number of operations required to find the best matching block. Later in this chapter, we

present a fast ME search algorithm developed in our laboratory at UBC.

3.2.2 Transform Coding, Quantization and Variable Length Coding

After performing the motion estimation, the difference block between the best matching

block and the current block is computed. Then a transform operation is applied to the

different blocks to reduce the spatial redundancies. Transform coding does a reasonably

good job of exploiting statistical redundancy in images by de-correlating the pel data and

by compacting information into the lower order coefficients. The most commonly used

coding algorithm is the Discrete Cosine Transform (DCT), an algorithm that greatly de-

correlates signals and has a smaller complexity compared to that of other transforms with

similar performance. The definition of the 2-D DCT transform for an 8x8 block is given

by

^ = ^ £ 2 > * c o s i
i=o ;=o

7 7 ^{2i + l)kji_((2j + l)ln^ (3)
v 16 , cos

V
16

where k, 1 = 0 , 7 and

— : k = 0
^ : k*0

37

Chapter 3: A Real-Time MPEG-2 Video Encoder

Following the transform coding, resulting coefficients are quantized and the

quantized DCT coefficients, motion vectors, and side information, such as the picture

coding type and the quantizer step are entropy coded using the Variable Length Codes

(VLCs). For the quantization, the coding method is lossy coding while VLC coding is

lossless. After the quantization, the coefficient block is reconstructed by dequantization

and application of Inverse Discrete Cosine Transform (JDCT) and feed back to the

coding loop to be used for prediction of temporally future blocks. The original 8x8 block

of pixels can be recovered using an 8x8 inverse DCT (IDCT) as follows:

ck cosl
i=0 j=0

n(2i + l)k
16 \cl cosl

n(2 j+ 1)1
16 (4)

where k, 1 = 0, ..., 7 and

ck,l =
k = 0
k *0

Although exact reconstruction can be theoretically achieved, it is often not

possible using finite-precision arithmetic. While forward DCT errors can be tolerated,

inverse DCT errors must meet the MPEG-2 standard if compliance is to be achieved.

3.3 The MPEG-2 Video Coding Standard

The objective of MPEG-2 video coding is to provide high quality and multi-channel

compressed video signals transmission over limited-capacity broadcasting infrastructure

such as Cable/HFC and ATM networks. Specifically, MPEG-2 was given the mandate of

38

Chapter 3: A Real-Time MPEG-2 Video Encoder

providing a video quality no less than NTSC/PAL and up to CCIR 601 quality with a

target bit rates in the range 2 to 10 Mbit/s [24]. The MPEG-2 coding standard only

specifies the syntax for encoded bit-stream, and many of the complex encoding decisions

are to provide maximum flexibility for implementing compliant video codecs. This

flexibility has posed quite a challenge for video coding engineers to design and determine

the trade-offs between coding performance (high compression with acceptable quality)

and implementation complexity of various MPEG-2 video coding schemes.

Like H.261 [25], H.263 [26], and MPEG-1 [27], the MPEG-2 video standard is

based on motion compensated prediction and DCT residual coding. However, MPEG-2

offers a more efficient means to code interlaced video signals and supports scalable video

coding. The readers should be aware that MPEG-2 is a very complex standard. The

description we provide here is only an overview of its video part. The MPEG

specification is intended to be generic in the sense that it serves a wide range of

applications. For example, coded MPEG-2 bit rates of up to 400 Gigabits/s and picture

sizes up to 16,000 by 16,000 pixels can be defined. In order to cope with the great variety

of video applications within one coding standard, MPEG-2 adopts a "toolkit-like"

approach; that is, MPEG-2 is a collection of tools which satisfies the requirements of

specific major applications. The range of coding support provided by MPEG-2 is divided

into profiles and levels. For each profile/level, MPEG-2 provides the syntax for the coded

bit stream and the decoding requirements.

39

Chapter 3: A Real-Time MPEG-2 Video Encoder

A profile is a defined subset of the entire bit stream syntax specified by MPEG-2.

The MPEG-2 profiles can be divided into two categories: non-scalable and scalable. The

two non-scalable profiles are the Simple and Main profiles. The three scalable profiles

are the SNR scalable, Spatially scalable, and High profiles. Within a profile, a level is

defined as a set of constraints imposed on the parameters of the bit stream. For each

profile, the four levels are the Low, Main, High-1440, and High levels. The constraints of

the coding parameters for each level of a profile and the various profiles are shown in

table 1 and table 2, respectively. Among its profile and level combinations, the most

widely used combination in the MPEG-2 industry is the main profile/main level.

Level Parameters
1920x1152

HIGH 60 frames/s

80 Mbit/s

1440x1152

HIGH-1440 60 frames/s

60 Mbit/s

720 x 576

MAIN 30 frames/s

15 Mbit/s

352x288

LOW 30 frames/s

4 Mbit/s

Table 1: Constraint parameters at each level of a profile.

40

Chapter 3: A Real-Time MPEG-2 Video Encoder

Profile Algorithms
HIGH 4:2:2-YUV

I, P,B

SPATIAL Scalable 4:0:0 - YUV

I, P,B

SNR Scalable 4:2:0-YUV

I, P,B

MAIN 4:2:0 - YUV

I, P,B

SIMPLE 4:2:0 - YUV

L P

Table 2: Algorithms and functionalities supported with each profile.

3.3.1 Bit Stream and Macroblock Layer

In MPEG-2, the structure of the bit stream syntax depends on the profile adapted by the

application. As we will concentrate on only the main profile/main level part of the

standard, we will only describe the bit stream syntax for the main profile. The MPEG-2

video bit stream consists of six hierarchical layers starting at the block layer (composed

of 8x8 pels) followed by the macroblock, slice, picture, group of pictures (GOP), and the

sequence layers as shown in Figure 15.

41

Chapter 3: A Real-Time MPEG-2 Video Encoder

Sequence
Header

G O P • • • Sequence
Header

G O P • • •
Sequence
End Code

G O P
Layer

Picture
Layer

Sl ice
Layer

M a c r o -
block
Layer

G O P
Header

Picture Picture • • • Picture

~
Picture
Layer

Sl ice Sl ice • • • Slice

Sl ice
Header

M a c r o b l o c k M a c r o b l o c k • • • M a c r o b l o c k

M a c r o b l o c k
Header

B l o c k 0 B l o c k 1
_ _ _ _ , , <- End of
• • • B l o c k 5 . . .

macroblock

D C coef
A C coef A C coef

D C coef
V L C V L C

End of
block

Figure 15: Video sequences layer.

The GOP level is where the video sequence determines the ratio of I, P and B

frames, and where the most relevant work on temporal picture structure is carried out. In

a typical GOP size of 12 interlaced video frames, the first frame (I-picture) is intra coded,

and the following 11 frames are inter coded using alternatively the forward motion

compensation (P-pictures) and bi-directional motion compensation (B-pictures) as shown

in Figure 16.

42

Chapter 3: A Real-Time MPEG-2 Video Encoder

I B P B P B

12 Picture

Figure 16: GOP of 12 frames.

MPEG-2 video supports different standardized picture formats such as CCIR-601

(720x480 resolution) and SIF (320x240 resolution), etc. Each input picture from the

video sequence is divided into macroblocks, and every macroblock (MB) consists of a

16x16 block (or four 8x8 blocks) of luminance (Y) component and two 8x8 blocks of

chrominance (Cb and Cr) components. Figure 17 shows the MPEG-2 picture structure at

CCIR-601 resolution.

43

480 pels

.720 pels

Slice

Structure of
Picture

8 pels

8 pels

Chapter 3: A Real-Time MPEG-2 Video Encoder

720 pels
MB

1
MB

2 • • • MB
45

Y l Y2

Y3 Y4

Macroblocks (MB)

Structure of a Macroblock

Structure of a Block

Figure 17: MPEG-2 picture structure at CCIR 601 resolution.

3.3.2 Baseline MPEG-2 Video Encoder

As shown previously, each picture in the input video sequence is divided into

macroblocks, and the motion compensated prediction operation is performed at the

macroblock level, and most of the operation is perform at that level. In MPEG-2

encoding, a high percentage of the pictures are inter coded to obtain a higher

compression ratio, except for the first picture of each GOP, which is intra coded.

Therefore, the inter coding operations dominated most of the encoding computations

time. Figure 18 shows the encoding diagram for the MPEG-2 baseline encoder.

44

Chapter 3: A Real-Time MPEG-2 Video Encoder

Motion
Vector

M C / M S

Rate
Control

-H + h*-

Frame
Memory

IQ

I D C T

M E - / T V * D C T Q V L C Video
Buffer M E D C T W Q V L C Video
Buffer

Figure 18: Block diagram of the M P E G - 2 encoder.

For the basic video coding algorithm, the MPEG-2 algorithm has features similar

to the ITU-T H.261 and the MPEG-1 algorithm. There are six key video coding

components on the MPEG-2 video encoder, which includes motion estimation and

motion compensation (ME/MC), mode selection (MS), transform coding (DCT/IDCT),

quantization (Q/IQ), variable length coding (VLC), and rate control (RC). For intra

coding mode, motion estimation is not required to be performed on the picture, i.e., the

8x8 luminance and chrominance blocks are transform coded with two dimensional DCT

and then the transform coefficients are quantized and VLC coded. For the inter coding

operation, motion estimation searches for the best motion vector with reference to the

pervious frame and performs motion-compensation prediction to reduce the temporal

redundancies. Then transform coding (using discrete cosine transform (DCT) algorithm)

encodes the motion-compensated prediction of the difference frame to reduce the spatial

45

Chapter 3: A Real-Time MPEG-2 Video Encoder

redundancies. Following transform coding, the resulting coefficients are quantized and

then the quantized DCT coefficients, the macroblock (MB) coding mode, the

quantization step, the frame/field motion vectors, and the residuals are finally variable-

length encoded.

For the motion estimation, full integer pixel motion estimation is preformed first,

and then the motion search continues with a half-pixel search around the current motion

vector position. Half-pixel values are found using the eight neighbors of the best full-

pixel motion vector as shown in Figure 19.

B

o
a b c
X X X

A d E e C

O x O x O

f g h
x x x

D
O

Figure 19: The half pixel motion estimation.

Similar to a Differential Pulse Code Modulator (DPCM), MPEG-2 decodes and

reconstructs the image in the encoder. Then the reconstructed picture is added to the

current predicted picture in order to obtain the decoded picture, which is then stored in

frame memory.

46

Chapter 3: A Real-Time MPEG-2 Video Encoder

3.3.3 MPGE-2 Video Decoder

Bit-strem
Parse V L D I Q / R L E w Parse w V L D I Q / R L E

Video Out
8x8 IDCT

Figure 20: Block diagram for the MPEG-2 decoder.

Figure 20 shows a block diagram of the MPEG-2 video decoder. The main functions

involved in the decoder are bit stream parsing, variable length decoding (VLD), inverse

quantization (IQ) and run length expansion (RLE), inverse discrete cosine transform

(IDCT), and motion compensation. First, the bit stream is parsed and variable-length

decoded to obtain the coefficients, the motion vectors and other side information. After

the VLD outputs are run-level pairs in a zigzag scan order. The next step is to expand the

zero runs, quantize the level values and write the result in a row major scan order. After

the coefficients are decoded by inverse quantization, IDCT is applied to the coefficient

blocks. If the block is intra coded, the reconstructed block is equal to the result of the

inverse transformation. For inter coded blocks, the reconstruction is formed by motion

compensation, i.e. summing the predicted block and the inverse transformed block.

47

Chapter 3: A Real-Time MPEG-2 Video Encoder

3.3.4 Forward and Inverse Quantization

Depending on the prediction method selected at the encoder, coefficients that are going to

be quantized can have a wide variation of statistics. In the case of intra prediction, the

first elements of the coefficient block, called the DC coefficient, takes much larger value

than the rest of the coefficients, called the AC coefficients. If the block is inter (non-intra)

coded, then all the coefficients take smaller AC coefficients. In order to efficiently

quantize intra coded blocks, one quantizer is used for the intra DC coefficient and one of

31 predefined quantizers is used for the AC coefficients.

Although the decision levels of the quantizers are not defined within the standard,

it is suggested that the quantizer for the DC coefficients be a uniform quantizer with a

step size equal to 8. Each of the other 31 quantizers use different spaced reconstruction

levels with a non-uniform step size. For the blocks that are inter coded, the AC

coefficients have a uniform step size. The sign of the quantized transform coefficients is

signaled at the end of the VLC code word. After inverse quantization, the reconstruction

levels of all coefficients other than the DC coefficient are clipped to the range -2048 to

2047.

3.3.5 V L C Coding of Transform Coefficients

After quantization, the lowest DCT coefficient (DC coefficient) is treated differently

from the remaining AC coefficients when performing the VLC coding of transform

coefficients. Since the human visual system is more sensitive to blocking artifacts, which

are mainly due to the DC coefficients, the DC coefficient is treated separately from the

48

Chapter 3: A Real-Time MPEG-2 Video Encoder

other 63 coefficients. The DC coefficient corresponds to the average intensity of the

component block and is encoded using a differential DC prediction method. The coding

employs a first order predictor which is given by

DrFF = DQ-DCi . i , (5)

where DQ is the DC coefficient of the current block and DQ_i is the DC coefficient of

the previous block in row scan order. Most of the remaining AC values that represent

higher frequencies become zero. In order to exploit this before VLC coding, the 63

nonzero quantizer values of the remaining DCT coefficients and their locations are the

scanned in a zig-zag scan order as illustrated in Figure 21. Then, they are run-length

entropy coded using variable length code (VLC) tables.

Figure 21: Zig-zag scan order of a 8x8 block.

The scanning of the quantized DCT domain 2-dimensional signal followed by

variable-length code-word assignment for the coefficients serves as a mapping of the 2-

dimensional image signal into a 1-dimensional bit stream. The rearrangement places the

49

Chapter 3: A Real-Time MPEG-2 Video Encoder

DC coefficient first in the array, and the remaining AC coefficients are ordered from low

to high frequency. The nonzero AC coefficient quantizer values called levels are detected

along the scan line as well as the distance called run between two consecutive nonzero

coefficients. Each consecutive run and level pair is encoded by transmitting only one

VLC code word. Variable length codes are not defined for all the combinations of level

and run. If a VLC is not found for a specific combination, the combination is coded by a

6 bit escape code followed by 6 bit run and 12 bit level codes. Other information such as

prediction types and quantizer indication are also entropy encoded by means of VLC's.

3.4 Proposed Software Solution for Real-Time MPEG-2 Video Encoder

at UBC

The starting point of a software-only real-time MPEG-2 video encoder on the C62x

VLIW processor, is the development of efficient code that can be efficiently compiled on

the C62x. Extensive work has been carried out on software MPEG-2 video encoder to

improve and to implement an efficient real-time MPEG-2 video coding algorithm. Over

the past two years, the Signal Processing and Multimedia Group at the University of

British Columbia, has carried out extensive work towards developing software-only

MPEG-2 compliant video encoders. We have mainly targeted general-purpose processor

platforms such Intel's Pentium II and III, and VLIW DSPs such as Texas Instrument's

C62x. The computational complexity reduction in our MPEG-2 software implementation

is achieved by employing several advanced techniques which are briefly described in the

following subsections. More detailed description of the algorithms can be found in [28],

50

Chapter 3: A Real-Time MPEG-2 Video Encoder

[29], and [30]. The macroblock layer has been the major focus of our optimization since

this is where coding gains are obtained and where most of the computational load resides.

3.4.1 Motion Estimation (ME)

As we have discussed previously, motion estimation is considered as one of the most

time consuming tasks to perform in block-based video encoding, as it involves searching

for the best match between the current block and candidate blocks in a confined search

windows of the previous encoded frame. The location of the best match block is the

estimated motion vector and the motion vector is computed using the most widely known

matching function — sum of absolute differences (SAD). The sum of absolute differences

SAD is defined by

where B[j(k, I) represents the (k, Z)th pixel of a 16x16 macroblock from the current picture

at the spatial location (i, j), and Bj_u> j.v(&, /) represents the (k, /)th pixel of a candidate

macroblock from a reference picture at the spatial location (i, j) displaced by the vector

(u, v). To find the macroblock producing the minimum mismatch error, we need to

calculate the SAD at several locations within a search window. The simplest, but the

most compute-intensive search method, known as the full search or exhaustive search

method, evaluates the SAD at every possible pixel location in the search area. Therefore,

the main objective of ME is finding an optimal motion vector in a limited search window

using a minimal number of SAD computations while not scarifying the video quality.

16 16

(5)
t=i i=i

51

Chapter 3: A Real-Time MPEG-2 Video Encoder

Several algorithms proposed by the SPMG group at UBC that restrict the search to a few

points are employed, and will be discussed in the following subsections.

3.4.1.1 Optimum Fast Block Matching Strategy

As the search range becomes fairly large for large picture sizes or sequences with fast

motion, the exhaustive search computational complexity grows very rapidly. Therefore,

the proposed fast ME algorithms break up the search process into a few sequential steps,

and each step is based on searching the candidate points located on diamond-shape

contours. The set of points to be searched at the next step is determined by the current-

step result. There are two versions of the matching strategies: fixed-center diamond

search, and floating-center diamond search. Figures 22 a) and b) illustrate both fixed-

center and floating-center diamond search matching strategies, respectively.

Figure 22: (a) Fixed-center, (b) floating-center diamond shape motion vector search
area.

X

(a) (b)

52

Chapter 3: A Real-Time MPEG-2 Video Encoder

The fixed-center diamond search algorithm searches for the best matching

macroblock in a diamond-shape area (layer). For each layer, the center is fixed and the

size keeps increasing until it covers the entire rectangular search window when the

number of motion vector candidates increase as the diamond area expands. However,

instead of having fixed center, the floating-center algorithm allows the center to move to

the best matching point of the previous step. For every step, the size of the diamond

shape is kept constant and contains only the four immediate neighbors of the previous

search center. The search stops when the current search area is outside the allowed search

region or when the SAD corresponding to the best candidate in the search area of the

current step is larger than the SAD of the best candidate at the previous step. In order to

further reduce the computation an earlier stop criteria, called distortion-computation

optimized ME (DCME) is used (see [29]). Experiments have shown that the number of

SAD operations is reduced by 50% and the actual number of computations is reduced by

a factor ranging from 100:1 to 250:1 compared to the full-search ME [29].

3.4.1.2 Hierarchical Block Matching Strategy

The disadvantage of the two algorithms presented above is that they are often trapped in

local minima due to the implicit assumption of a monotonically changing matching

function. In order to solve the problem while reducing the computation, a hierarchical

search algorithm reduces the computation by utilizing lower resolution of the current and

reference frames. This is done by downsampling both the current and reference frames by

a factor of two in both directions. While the search step is preformed at the lower

resolution of the images and the macroblocks, one half of their original search area is

53

Chapter 3: A Real-Time MPEG-2 Video Encoder

performed with either full-search or fast ME search algorithms. Experiments have shown

that the hierarchical algorithm performs very close to its single-resolution counterpart for

both the fixed and the floating center strategies while the SAD computation required is

reduced by 30% or more depending on the video sequences used [29].

3.4.1.3 Additional Stopping Criterion

The number of computations associated with motion estimation can be further reduced by

allowing the algorithm to terminate even earlier using a prediction method that detects

zero macroblocks. Throughout the search process, if the current best match macroblock

generates a prediction error block that is most likely to be set to zero during quantization,

then the motion search is terminated [29]. The reason behind this is that any future

candidate motion vector will produce a zero quantized block as well.

The idea behind this is whenever a candidate is determined to be the minimum so

far, its minimum distortion average over the pixels in the block is compared against an

adaptive threshold. If the value of the distortion is less than the threshold then the motion

search is terminated. Experimental results show that a reduction in computations by a

factor of up to three can be achieved with a little loss in video quality.

3.4.1.4 The Optimum Block Matching Function

The encoder uses a standard procedure called partial distortion technique to reduce the

computations associated with SAD operation. Since during motion estimation we are

only interested in candidates whose SAD is smaller than the current minimum SAD.

Therefore, as soon as the running SAD of a candidate grows larger than the previous

54

Chapter 3: A Real-Time MPEG-2 Video Encoder

minirnurn SAD, the candidate can be discarded before completing the computation.

Given this, the unnecessary operations are avoided at the cost of additional comparisons.

Comparing the running SAD with the current minimum SAD after each pixel difference

may offset the gain achieved by reducing the number of subtractions, absolute value

operations, and additions. However, comparison done on each pixel is rather

computational expensive, thus, comparison is made only after processing a complete row

of 16 pixels in the macroblock.

In order to apply the partial SAD computation in the context of the distortion-

computation optimized search, the Lagrangian used for the motion vector search

termination criterion is computed after each row n:

Jp(n) = SAD(n) + /3C(n), (6)

where SAD(n) is the running SAD after the nth row is processed, and C(n) is the running

number of operations executed since motion estimation started for the current

macroblock. For each candidate, C(0) is initialized as the number of operations

performed before considering the candidate. The Lagrangian Jp n is then compared to the

current minimum Lagrangian Jp*. If Jp n > Jp*, the candidate motion vector is no longer

considered and the SAD computation is stopped. Otherwise, the process continues until

the current Lagrangian is larger than the minimum one or the complete SAD has been

computed. If the latter case is true, the current Lagrangian replaces the minimum

Lagrangian Jp*. The results of using the partial distortion have shown that the reduction in

55

Chapter 3: A Real-Time MPEG-2 Video Encoder

computations ranges between 50% to 60% for the full search ME and only 15% to 30%

for the other ME algorithms [29].

3.4.1.5 Robust Motion Vector Prediction

A reliability measure of the predicted motion vector (PMV) has been incorporated to

access the PMV before using it as a center for motion search. The performance of any

fast motion algorithm is directly affected by the accuracy of the predicted motion vector.

If the predicted motion vector is far from the best-match motion vector, the fast ME

search algorithm will then be quickly trapped into a local minimum, or the algorithm will

perform too many computations to find the best-match motion vector. Therefore, we use

a predictor which is the median of three previously coded motion vectors corresponding

to the macroblock to the left (A), above (B) and above-right (C) as illustrated in Figure

23.

56

Chapter 3: A Real-Time MPEG-2 Video Encoder

B
MV 2

C
MV 3

A
MV 1

MV

B
MV 2

C
MV 3

A
(0,0)

MV

Picture Border

B
MV 1

C
MV 1

B
MV 2

C
(0,0)

A
MV 1

MV A
MV 1

MV

M V : Current Motion Vector
M V 1 , M V 2 , M V 3 : Three motion vector predictor that are used to predict M V

Figure 23: Three predictor of motion vector prediction from surrounding
macroblock.

The motion vectors corresponding to these MBs are considered as candidates for

the PMV. The block matching function is then computed for all candidates MVs as

applied to the current MB. Finally, the PMV is set to be equal to the candidate MV which

yields the best match. If the PMV was unreliable, then the fast diamond search will be

abandon and a full search will commence in the lower resolution image. By using

different MV predictor and the reliability measures, the PSNR of fast motion sequences is

improved significantly while the computational demands are also reduced slightly [31].

3.4.2 Rate-Distortion Optimized Mode Selection

The proposed encoder obtains improved rate-distortion (RD) performance by employing

a rate-distortion based macroblock mode selection. The coding mode is chosen to

57

Chapter 3: A Real-Time MPEG-2 Video Encoder

minimize the RD Lagrangian as the RD-based mode selection leads to substantial

performance improvements. However, from the view of optimal RD performance,

having an exhaustive Lagrangian minimization is computationally very expensive.

Therefore, an efficient rate-distortion optimized mode search algorithm is used to attain a

close-to-optimal level of compression performance while maintaining the number of

computations low by exploiting the statistical redundancies in the video sequence [29].

3.4.3 Combination of Discrete Cosine Transform (DCT) and Quantization

After the macroblock coding mode is determined, the chosen motion compensation and

block transform are applied, the transform coefficients are quantized, and the MB header,

motion vector, and quantized DCT coefficients are variable-length encoded. For the

hybrid macroblock coding modes, both the DCT and quantization need to be performed.

By merging the DCT and quantization into single operation, known as quantized-DCT or

QDCT, the number of computations can be substantially reduced. QDCT is performed

only during inter-frame encoding leading to an order of magnitude reduction in

computations. An early Prediction technique has been incorporated into the QDCT

algorithm to further reduce the computations required for the normal QDCT [32]. The

integer implementation of QDCT is especially efficient to run on the C62x platform since

it uses fixed-point arithmetic.

3.5 Analysis of the proposed MPEG-2 video encoder

Timing analysis is critical to identifying the most computational intensive components of

the MPEG-2 encoder which need substantial optimization. Table 3 shows the relative

58

Chapter 3: A Real-Time MPEG-2 Video Encoder

weights of the most compute-intensive MPEG-2 encoding functions. Clearly, motion-

estimation is still the most computationally demanding algorithm.

Function Computational Load

Quantization 4.2%

DCT 5.1%

IDCT 5.3%

ME (SAD Computation) 50.1%

Motion Compensation 4.4%

MSE 1.2%

VLC 10.3%

Table 3: Relative computational costs of the most compute intensive tasks of the
MPEG-2 video encoder.

We have identified the set of components that are computationally intensive but

which potentially can be optimized efficiently on the C62x platform by exploiting the

instruction-level parallelism inherent in the algorithm. The main components optimized

for the C6x encoder implementation include the SAD calculation, DCT/IDCT,

Quantization, QDCT, mean square error (MSE) calculation, and variable length encoding

(VLC).

59

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

Chapter 4

Mapping the MPEG-2 Software Encoder on the Texas

Instrument's TMS3206201 DSP Platform

4.1 Introduction

After an extensive research on the available media processors and VLIW DSPs, we have

decided to use Texas Instrument's 1600 MIPS TMS320C6201 VLIW DSP for our initial

test bed. Texas Instrument's TMS320C6201 VLIW DSP is representative of a new class

of DSPs that exploit explicit instruction-level parallelism (LLP) and advanced compiler

techniques to provide thousands of MIPS to potential applications. Among the other

architectures, the C62x VelociTI VLIW architecture offers the highest probability of

achieving the software real-time MPEG-2 video encoding.

In this chapter, we will first give an overview of the TMS320C6x CPU

architecture, and some brief information on its data path and instructions set. Then, the

memory structure of the C62x evaluation model (EVM) board that we used for our

implementation is also described. Afterwards, the design flow and implementation of the

MPEG-2 video encoder software on the C62x E V M board is discussed. The memory

mapping of certain video encoder functions are also discussed along with the

60

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

implementation issues. This chapter concludes with the implementation bottlenecks of

the MPEG-2 video encoder software on the C62x E V M board such as the memory issues,

optimized compiler, and instruction latency.

4.2 Texas Instrument's TMS320C6201 CPU Architecture

The TMS320C6x VelociTI CPU architecture was the first off-the-shell DSP to use an

enhancement of the traditional VLIW to achieve high performance through increased

instruction-level parallelism. A traditional VLIW architecture consists of multiple

execution units running in parallel to perform multiple instructions during a single clock

cycle. Parallelism is the key to achieving high performance gains. VelociTI is a highly

deterministic architecture, with few restrictions on how or when instructions are fetched,

executed, or stored. This architectural flexibility is key to the breakthrough efficiency

levels of the C62x compiler.

4.2.1 VelociTI Principles

The VelociTI CPU architecture is based on eight principles, underlying the C62x CPU,

which focus on increasing DSP performance while maintaining ease of programming and

reducing application development time by allowing creation of a high-performance

compiler.

4.2.1.1 Parallelism

The VelociTI architecture allows parallel fetch, decode, and execution of multiple

instructions that compose the VLIW instruction word. During each execution, each

61

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

instruction is performed on a single function unit. For the C62x, there are eight 32-bit

instructions supplying control for eight independent functional units.

4.2.1.2 Pipelining of Critical Speedpaths

The VelociTI architecture sets the simplest of CPU instructions to determine the cycle

time for the processor. The critical path for C62x is the time for a register-to-register

A L U operation such as an ADD instruction, and more complex instructions, such as

multiply, which are implemented with a one-cycle latency. In order to access the high-

performance synchronous on-chip memory, instruction fetch and data access are

performed in multiple pipeline stages. The pipelining allows the C62x CPU to operate at

200 MHz or 1600 MIPS [33].

4.2.1.3 Reduced Instruction Set Computer (RISC)

The VelociTI instruction set consists of simple, atomic, and completely independent

instructions. The DSP algorithm performance results from program compilation

techniques such as software pipelining and loop unrolling. The RISC architecture

provides ease of CPU design while maintaining flexibility for high-performance

algorithms.

4.2.1.4 Load-Store Architecture

The VelociTI is a load-store architecture in which the memory operations have been

decoupled from the arithmetic operations. It also lowers the number of data fetches from

a particular algorithm and thus lowers the CPU power consumption.

62

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

4.2.1.5 Orthogonality

The most frequent instructions can be executed on the largest number of function units.

In the C62x, the CPU is divided into two identical data paths. Thus, every instruction can

execute on at least two functional units. The most frequent instructions such as ADD and

SUB can execute on six functional units. Like most of the other instruction set, the

register file is highly orthogonal, where any register can be an operand to any instruction

or any type of functional unit.

4.2.1.6 Determinism

The VelociTI pipeline is unprotected and is thus fully exposed to the compiler. Run-time

interdependencies such as pipeline interlocks between phases used in other DSPs are

difficult to predict at compile-time. The VelociTI CPU model at compiler time fully

reflects the execution and completion order of instructions at run time.

4.2.1.7 Conditional Instructions

Every VelociTI instruction is conditional to efficiently avoid branch latencies.

4.2.1.8 Instruction Packing

VelociTI architecture uses a novel instruction packing technique to achieve code size

comparable with scalar RSIC processors.

4.2.2 Data Paths

The C6x VLIW core consists of two symmetrical data paths with four different functional

units each and each of the data paths has access to 16 multiported 32-bit registers. The

63

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

register files have 16 ports which included ten read ports and six write ports. Direct

communication between both data paths is provided through the cross path (IX, 2X) to

read operands from the other register file. Also, addresses from one data path may be

used to load and store values to other data path [34]. Figure 24 shows the block diagram

of the C62x CPU data paths.

load/store
address

load/store
address

L l

SI

M l

DI

D2

M2

S2

L2

f •yt

SS"
re
CO

>
O

U l

(6
OTQ
in
re

S3 ©
I

W

h-'

Figure 24: C62x C P U data paths.

64

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

4.2.2.1 Functional Units

There are four functional units in each data path where each unit can begin execution of a

new instruction every cycle. Subunits on the same functional unit share the same

interconnect to the register file to save register porting. Table 4 summarizes subunits

mapping to the functional units.

L-unit S-unit D-unit M-unit

Integer Adder Integer Adder Integer Adder Integer Multiplier

Logical Logical Load-Store

Bit Counting Bit Manipulation

Shifting

Constant

Branch/Control

Table 4: C62x functional units and subunits.

4.2.2.2 Data Types

In general, the functional units perform 32-bit integer operations. The four functional

units of each data path are divided into a logic/arithmetic/compare unit, a

shift/arithmetic/branch unit, a 16-bit multiplier unit, and a data address calculation unit as

shown in Table 4. For both of the S-Units and L-Units, they can also perform 40-bit

integer operations to handle overflow. The integer multipliers in the M-Units generate

32-bit outputs from two 16-bit inputs. In addition, source operands of different types are

used, singed (sign extension) or unsigned (zero-filling).

65

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

4.2.3 C62x Features and Instruction Set

Texas Instrument's C62x has a total of 38 instructions, and for all the arithmetic

calculations, saturation arithmetic is supported.

4.2.3.1 Saturation Arithmetic

One of the important features of C62x instructions is saturation arithmetic. In regular

fixed-point arithmetic when an operation overflows or underflows, the most significant

bit is lost. For example, the addition of two unsigned 32-bit numbers residing in a 32-bit

register may result in an unsigned 33-bit result. Naturally, this number is too large to be

represented in a 32-bit register and while the result's low order 32 bits appear in the 32-

bit register, the 33 rd bit does not fit and therefore lost. There is usually a status flag that

shows overflow. Unless a special attention is paid, this kind of behavior may cause

serious problems, especially in graphics applications. However, in saturation arithmetic,

when such an overflow occurs, instead of generating a 33-bit number and loosing the

most significant bit, the corresponding instruction clamps the 33-bit result to the largest

possible unsigned number that can be represented by 32 bits, i.e. FFFF FFFF in

hexadecimal format. C62x supports two types of saturation arithmetic:

• Unsigned saturation: In case of overflow, the register holds the largest

number, i.e.2n-l, where n is the bit number.

• Signed saturation: If overflow occurs the register takes 2 n"'-l, where n is the

bit number

66

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

In the C62x architecture, saturation arithmetic is not a mode which may be

activated by setting a control bit. But instead, some instructions inherently perform

saturation during their operation. For example, some C62x add instruction employ

conventional wrap-around arithmetic while others employ saturation arithmetic.

4.2.3.2 C62x Instruction Set

C62x instructions mostly perform 32-bit operations which are packed into a 32-bit

register, however, limited support is provided for 16-bit instruction data. The mapping of

instructions to functional units is done at code-generation time. In addition, most

common integer operations can be mapped onto four to eight functional units, and each

functional unit has special-purpose features which are summarized in the following

sections.

4.2.3.2.1 Integer Comparison

For integer comparison in C62x, rather than having multiple status bits for each

functional unit, the C62x employs explicit comparison instructions that generate a 1 or 0

result in a general-purpose register. Placing the result in a general-purpose register allows

the value to be used directly in computation.

4.2.3.2.2 Dual 16-bit Pair Arithmetic

For 16-bit addition and subtraction, there are two instructions ADD2 and SUB2 that

add/subtract two 32-bit registers while inhibiting the carry between the 15th and 16th bit

positions. These instructions allow increased add/subtract throughput of 16-bit values.

Figure 25 illustrate the operation of the ADD2 dual 16-bit pair arithmetic.

67

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

ADD2 A1,A2, A3

A l msb 16-bit lsb 16-bit

+ +

msb 16-bit lsb 16-bit

16-bit 4 V 16-bit 16-bit 16-bit

no carry

2xl6-bit results without carry from the lsb 16-bit addition

Figure 25: ADD2 dual 16-bit pair arithmetic.

4.2.3.2.3 Memory Data Types

The C62x can load or store bytes, 16-bit half-words, and 32-bit words. Byte and half-

word loads are sign-extended (signed) or zero-filled (unsigned). In addition, certain

registers have the option of having circular arithmetic performed during address

calculation (for circular buffers).

4.2.3.3 Instruction Packing

The C6x CPU has a 256-bit path for internal program access to fetch eight 32-bit

instructions every cycle. In typical VLIW architectures, each instruction would

correspond to a particular functional unit. If that functional unit were idle on any

particular cycle a NOP would be placed in that functional unit's instruction slot. On the

other hand, the VelociTI decouples fetch packets from execute packets through a novel

instruction encoding system. The least-significant bit of every C62x instruction is a called

68

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

the parallel or p-bit. The p-bit of a particular instruction is set if the instruction starts

execution in parallel with the next instruction. In addition, the reduced code size of the

VelociTI instruction also results in fewer program fetch accesses.

4.2.3.4 Conditional Instructions

Every C62x instruction can be conditioned on either the zero (false) or the nonzero value

(true) of one of the five general-purpose registers (Al , A2, BO, BI , B2). All instructions

will enter the first phase of execution regardless of the evaluation of their condition.

However, if the condition is not met by the end of the first phase, the instruction will not

have its results written back to the register file. In addition, a conditional load or store

instruction whose condition is not met is canceled before entering the data memory

portion of the execution pipeline. In this way, it prevents any undesired accesses to

memory, including memory-mapped peripherals where simple access has undesired side-

effects. Conditional instructions can be used to avoid branch latency. In control code,

conditional instructions allow increased parallelism as multiple paths can be executed

simultaneously. For instance, both //"paths as well as the else path are executed in a single

fetch packet.

4.2.4 Memory Architecture

The memory architecture of the C6201 consists of four components: the EMEF (External

Memory Interface); the DMA controller; 64-Kbytes of on-chip program memory

configurable as mapped memory or as direct mapped cache; and 64-Kbytes of interleaved

data memory. The instruction cache may alternatively be configured as an on-chip

69

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

program memory containing a valid address space. The C62x Evaluation Model (EVM)

board by Texas Instrument has been used for our preliminary software implementation

platform. The board has a 200 MHz C62x fixed-point DSP processor with access to two

4- Mbytes of SDRAM (synchronous DRAM running at Vz the CPU clock rate), and 256-

Kbyte of SBSRAM (synchronous burst SRAM with 800 Mbytes/second throughput).

The internal programming memory contains 16K 32-bit instructions or 2K 256-bit

fetch packets and the block size of the cache is a fetch packet or eight instructions. For

the 64-Kbyte C6201 internal data memory, it is organized into eight 8-Kbyte 16-bit-wide

banks of memory, where these banks are grouped into two blocks consisting of four

banks each. The address of each bank in a block is interleaved, and the banks are

arbitrated on a 16-bit cycle-by-cycle basis. The communication between the Host PC and

the DSP can either use DMA transfer or Host Port Interface (HPI) which is a 16-bit wide

bi-directional port that interfaces with little logic to a variety of industry-standard

embedded RISC processors, and microprocessors. The HPI interface can operate at up to

50 MHz for 100 Mbytes/second of data throughput. More details of the E V M board can

be found in [35].

4.3 Memory Configuration and Host Interface of the MPEG-2 Video

Encoder

There are two version of the software MPEG-2 video encoder implemented on the C62x

E V M board. The first version of the software encoder is implemented at CCIR-601

resolution with I-frames only, and the second version of the encoder is implemented at

70

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

SIF resolution with I- and P-frames. Both versions of the software encoder share the

same structure on the communication between the Host PC and the C62x E V M board.

The Host PC side, either transmits the uncompressed picture frames to the C62x E V M

board or it receives the compressed video bit-streams from the C62x to the Host PC. The

compressed video bit-stream is stored onto the local hard disk to be played later on. The

video encoding of the MPEG-2 is done on the C62x E V M board with the input of Y U V

frame data either captured from the camera or loaded from the local hard disk. The output

of compressed video bit stream is also produced for display. Figure 26 illustrates the flow

of our implementation of the software MPEG-2 video encoder over the C62x platform.

Video Camera/
Local Frame

Data

Video
Data

Host PC
(Pentium)

YUV Video
Data

PCI Bus

"^Compressed
Output Bit-

stream

MPEG-2
Video

Encoding

Figure 26: Software MPEG-2 video encoder over the C62x platform.

The main video encoding part resides on the C62x E V M board for both the CCIR-

601 and SIF versions are different because the I- and P-frames require more complicated

algorithms, and the memory requirements are more restricted due to the nature of frame

71

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

store for motion estimation etc. The following subsections will describe the structure of

both version of the video encoder on both Host PC and C62x E V M board.

4.3.1 Video Encoder on the Host PC

The software MPEG-2 video encoder resides on the Host PC mainly for communication

purpose. Therefore, both versions of the MPEG-2 encoder (CCIR-601 or SIF resolution)

are handled the same way on the Host PC. Figure 27 on the following page shows the

flow diagram of the MPEG-2 video encoder program on the Host PC side.

72

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

Initiate
C o m m u n i c a t i o n

-i
l_

Read a new
Frame

*
Send Frame

Size

*
Send Frame

Data

Receive bit-
stream size

Receive
bit-stream

Wr i t e to
Fi le

Figure 27: Flow diagram of MPEG-2 video encoder on the Host PC.

The program starts with initializing all the necessary parameters to setup the

communication between the Host PC and the C62x E V M board. The configurations are

done according to the following sequence:

• Open handle to the E V M board

73

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

• Cause a hardware reset on the target board

• Setup the board configuration such as the DSP_CLOCK_NORMAL and

LITTLE_ENDIAN_MODE

• Set the boot mode and cause a DSP reset

• Establish a connection to the HPI of a target board

• Initialize the EMLE (external memory interface) registers

• Set the Aux DMA priority higher than DMA

• Read a CORF file and write the data to DSP memory

• Release the DSP from the halted state

After the initialization of the C62x E V M board and loading the program into the

memory, the video encoder on the C62x E V M board is ready for execution. However,

before running the program, the input video streams are fed from a video camera or from

video data files stored on the local hard disk of the PC. Once the video data is ready, it

will write the frame size to the C62x E V M and follow with the frame data along with a

flag to notify the complete download of the video frame data onto the C62x memory. All

the transfer are done through the HPI. Then the Host PC will be put into a sleep state

while waiting for the encoder on the C62x E V M board to process the video encoding on

the video data. The Host PC will be keep pulling for a flag from the C62x E V M to notify

the completion of encoding while in the sleep state. Once the flag is set, the HPI will

transfer back the compressed video bit-stream. However, since the HPI always transfers

in 4 bytes size each time, the read length need to be a multiple of 4 to ensure the ending

bit-streams data are properly transferred without truncation.

74

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

We can see that putting the Host PC in sleep state while waiting for the C62x

E V M to do the encoding or halting the C62x to wait for the HPI transfers video data back

and forth seem to be wasting a lot of resources. Therefore, we have implemented a dual

buffer system to keep both the Host PC and the C62x E V M busy all the time in order to

maximize the utilization of both systems. The dual buffer system consists of the

following structure:

• Two buffers reside on the single 4-Mbytes SDRAM of the C6x E V M board, and

• each buffer consists the first 4 bytes as the ready flag, and

• 1020 bytes for the input video data, and

• the first 4 bytes after the input video data as the video output bit-stream size, and

• 1020 bytes for the video output bit-stream data.

The dual buffer system works while downloading the video data into the first

buffer, the C62x encodes the video data on the second buffer which has already

downloaded previously. Once the C62x finish encoding the second buffer's video data, it

sends a flag to tell the Host PC that the compressed video bit-stream is ready for upload,

and the C62x will switch to the first buffer with the recently downloaded video data and

start encoding. Then after the Host PC received all the output video bit-streams from the

second buffer, the process continues and vice versa. This process is continued until the

last frame has been encoded and transfers back to the Host PC. By using the dual buffer

system for our system, the encoder on the C62x E V M is fully utilized except the initial

setup time for the very first frame. Figure 28 shows the memory structure for the dual

buffer system implemented for the C62x E V M board.

75

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

Buffer 1 Buffer 1
0x02000000

0x02000004
Frame Ready 1

Frame Data 1

0x02200000

0x02200004
Frame Ready 2

Frame Data 2

0x02100000

0x02100004
Stream Size 1

Stream Data 1

0x02300000
0x02300004

Stream Size 2

Stream Data 2

Figure 28: Dual buffer memory structure for the video encoder on the C62x E V M .

After the video encoder finishes encoding all the frames, the output bit-streams

are stored onto the local hard disk. Then we have to close the connection with the C62x

E V M board. This process includes closing the HPI session, causing a hardware reset on

the target board, setting the boot mode that cause a DSP reset, and finally closing a

previously opened driver connection to the E V M board.

4.3.2 MPEG-2 video encoder on C62x E V M board

For the software MPEG-2 video encoder implemented on the C62x E V M board, there are

two versions of it: one is the CCIR-601 resolution with I-frames only, and the other is

SLF resolution with both I- and P-frames. The following subsections will describe the

implementation of both encoders on the C62x E V M board.

76

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

4.3.2.1 CCIR-601 resolution on C62x

Figure 29 depicts the implementation of the MPEG-2 video encoder on the C62x E V M

board with the CCIR-601 resolution on I-frames only. The program starts with

initializing the pointer to the input video data (YUV) on the SDRAM. Since the internal

data memory of the C62x is limited to 64-Kbytes and it is where the data is being

processed at the fastest speed, we have to partition the video frame into slices (YUV data

for each slice are @720xl6 for Y, 360x8 for U and V) in order to fit it into the internal

data memory. Each iteration of the program processes three slices of Y, U, and V with a

total of 51.84-Kbytes which is just enough to fit into the internal data memory, and the

rest is reserved for other uses. The three slices of YUV data are moved from the SDRAM

to the internal data memory. For every iteration, the program performs the video

encoding individually since the intra-coding of each slice is independent from other

slices. All the encoded bit-streams are written back to a continuous block of SDRAM in

order to be transfer back to the Host PC when a complete frame is being encoded. The

data transfers between the Host PC and the C62x external memory (buffer) are

transparent to the video encoder on the C62x. To start the execution of the program to

encode each frame is triggered by receiving a flag from the Host PC for complete data

transfer, and its ended by writing a flag to the specific memory location in order to notify

the Host PC to be ready for transfer the compressed video bit-streams back to the PC.

77

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

(Start)

Initialize
pointers

Read
frame data

iteration = 15

Yes
block move 3
slices of YUV

data from SDRAM to
internal Mem

encode CCIR-601
with I only

Ecoding Process

3 slices of
Y U V data

45
macroblock

macroblock
4 Y , I U , I V

data convert
byte to short

forward
D C T

quantization

putintrablk

iteration = 3

iteration = 45

Figure 29: Flow diagram for the CCIR-601 resolution video encoder on C62x.

As shown in Figure 29, after the data is passed over to the encoder, the encoder

processes the data on a macroblock base for each slice. For every macroblock, six

identical functions are processed on each 8x8 blocks. These functions include converting

a byte data into a short data type for 16-bit calculation, forward DCT, quantization, the

run-length entropy coded using variable length code (VLC) tables, and putbit operation to

write the data back to the external memory.

78

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

The memory map of the CCIR-601 with I-frames only is as follows: the encoder

program is mapped into the internal programming memory; data, stack, and heap are

mapped onto the internal data memory; the constant and initialization data are mapped

onto the SBSRAM (synchronous burst SRAM). The input frame (YUV) data and the

compressed output bit-streams are placed onto the SDRAM.

The performance of the CCER-601 resolution video encoder on the C62x without

any assembly optimization runs approximately 0.48 frame/second, which is far from the

desired real-time video encoding speed at 30 frames/second. Therefore, optimization of

individual functions is required to achieve an acceptable result, which will be further

discussed in the next chapter.

4.3.2.2 SIF resolution on C62x t

The initialization and program execution of the MPEG-2 video encoder, on the C62x

E V M board with the SIF resolution on both I- and P-frames, is very similar to the

previous version of the encoder except one more pointer has been initialized for the

reference frame which is mapped to the SBSRAM. Also, the encoding process for the IP

encoder is much more complicated. The memory reserved at the SBSRAM is to store the

reconstructed current frame in order to be use on the P-frame encoding later. Memory

arrangements on the internal data memory are much different then the previous version of

the encoder due to the intensive calculation of motion estimation and the memory

required to store the reference data and low resolution data for the IP encoder. The

encoder encodes only one slice of the YUV data (320x16 for Y, 160x8 for U and V) at a

79

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

time with a total of 7.68-Kbyte used of the internal data memory. This slice of YUV data

is copied from the SDRAM to the internal data memory. Three slices of the reference

frame are reserved on the internal data memory in order to do the motion estimation

calculation and they are copied from the SBSRAM, with a total of 23.04-Kbytes used.

Memory transfers between SRAM and SBSRAM to internal data memory are transparent

to the LP encoder. Also, 7.68-Kbyes of internal data memory is reserved for the low

resolution YUV data that are generated for low resolution motion vector search. Figure

30 shows the flow diagram of the MPEG-2 LP video encoder with SLF resolution.

Initialize
pointers

Read
frame data

iteration! = 15

block move 1
slices of YUV

data from SDRAM to
internal Mem

encode SIF
with I and P

Ecoding I with SIF Encoding P

1 slices of
YUV data

Motion
Estimation

20
macroblock

b J

macroblock
4Y,IU,IV

data convert
byte to short

forward
DCT

quantization

putintrablk

iteratnn =
20

store
reference

data convert
short to byte

inverse
DCT

inverse
quantization

p̂rocess are
similar to intra
except
*motion
estimation to
find best match
motion vectors
•quantization is
done on inter
instead of intra

Figure 30: Flow diagram of the MPEG-2 IP video encoder on C62x.

80

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

As shown in the diagram above, the intra frame encoding is similar to the

previous version of the encoder except that the current version of the IP encoder includes

the inverse DCT and inverse quantization to reconstruct the transformed image for later

use as the reference frame. However, the inter frame encoding, which does not exist in

the previous version of encoder, is the most computational intensive part of the IP

encoder. The inter frame encoding accounts for more than 85% of the entire IP encoder,

therefore, we will provide a more detailed discussion here. As the C62x has limited

internal data memory, we can only process one slice of YUV data of the current frame at

a time because we need to hold another three slices of YUV data from reference frame in

order to do the motion estimation calculation. The reason we choose three slices of

reference frame is that we need to have a search window size of ±16 pels horizontal and

±16 pels vertical. However, the reference slices in the internal data memory vary with the

three different conditions as shown in Figure 31.

81

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

internal
memory
buffer

1 slices
current frame

internal memory
buffer

ME

ref slice 2

reference frame
buffer on SBSRAM

block moved from
SBSRAM to internal
data memory for 2
slices

(a)

internal
memory
buffer

internal
memory
buffer

1 slices
current frame

1 slices
current frame

internal memory
buffer

ME

(b)

internal memory
buffer

ME
ref slice 1

ref slice 2

ref slice 3

shift upward

reference frame
buffer on SBSRAM

shift upward . . . , , \ r no block moved from
SBSRAM to internal data
memory as reference slice
are in the memory already

.shift upward
reference frame

buffer on SBSRAM

-shift up|ward b l o c k m o v e d f r o m

SBSRAM to internal
data memory for 1
slices

(c)

Figure 31: Three different condition of the reference slices in the internal data
memory: a) first reference slice, b) last reference slice, c) all other slices.

82

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

In Figure 31a, the search window for the first slice of a frame constitutes only the

positive 16 pels vertically, since the negative pels search area of the reference frame are

out of the image boundary. Therefore, we only need to compare two slices in the

reference frame: one is the same location as the compared slice, and the other one would

be the next slice of the reference frame. Thus, we move in only two slices from the

reference frame memory. For Figure 31b, instead of having a positive search window

size, the last slice of the frame only needs the negative 16 pels vertically. The positive

pels search area is out of image boundary also. But instead of copying from the reference

frame memory, the two reference slices already reside in the internal data memory,

therefore, we only need to shift up the two slices to do the motion vector search. Figure

31c shows the arrangement of all other video slices for the reference window. Since the

search window is ±16 pels vertical, we need two other reference slices in the reference

window, which include one slice above and one slice below the current reference slice.

We only need to copy in one new slice from the reference frame memory, since the other

two reference slices are already inside the reference window. Therefore, we only shift up

the two slices that are already in the reference window and then copy the new slice to fill

up the bottom reference window. Similar processes are done on the low resolution motion

vector search too.

After all the necessary YUV data being placed in the internal data memory, the

inter frame encoding will start first by doing the motion search to find the best motion

vector of the current macroblock. Algorithms used to find the best motion vector using

83

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

the SAD are discussed in the previous chapter such as predicted motion vector,

hierarchical block matching strategy, diamond search, etc. After finding the best motion

vector, the macroblock would process the forward DCT and inter quantization to obtain a

transformed block. The inverse quantization and inverse LDCT is also performed to

obtain the reconstructed image to be use as a reference frame for the next inter frame

encoding. The transformed macroblock is then run-length variable length encoded and

write out the compressed video bit-streams back to the buffer (SDRAM).

The memory map of the LP encoder with SIF resolution is as following: the

encoder program is mapped into the internal programming memory; data, stack, heap,

constant, and initialized data are mapped onto the internal data memory. The reference

frame data are stored onto the SBSRAM. The input frame (YUV) data and the

compressed output bit-streams are placed onto the SDRAM.

The performance of the IP video encoder on the C62x without any assembly

optimization runs approximately 0.52 frame/second, which is far from reaching the goal

of real-time video encoding at 30 frames/second for I- and P-frames. Therefore,

optimization of individual function is required into to achieve an acceptable result, which

will be further discussed in the next chapter.

4.4 Implementation Bottlenecks

As shown in the previous section, the preliminary result of both version of the encoder is

not running as efficient as we would expect, or even worst than expected. Therefore, in

84

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

this section we would discuss what are the potential problems that could cause the

inefficiency for execution of the program on the C62x platform.

4.4.1 Memory Issues

The internal on-chip bus, external memory interface (EMIF), and peripherals often

represent the critical bottlenecks in a real-time system. Access to vital external programs

and data must pass through these critical components on their way to the VLIW core for

processing. In fact, external memory access delays form the greatest performance

bottleneck to our MPEG-2 video encoding on the C62x platform. There are two memory

issues that need to be addressed; one is the internal program memory, and the other is the

internal data memory. As one major problem was with the internal data memory is that

the MPEG-2 video encoder program is much larger than the 64-kbyte on-chip memory of

the C62x, which means that the main program must be run on an external memory. This

can cause significant slowdown of the program. Therefore, one of the alternatives is that

we have treated the internal program memory as a memory cache and attempted to

optimize the cache hit-ratio to enhance the performance; the other alternatives would be

limiting the functionality of the program in order to fit into the internal program memory.

Since even with a close to optimal cache hit-ratio, running the entire program under the

internal program memory still outperform the other option.

As the internal data memory can transfer data 20 to 30 times faster than the

external memory, it is desirable to fetch all the data for computation from the internal

data memory. However, given the limited internal data memory size of the C62x has,

85

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

fitting all the data into the internal data memory would seem to be impossible and

impractical. As shown in our implementation of the encoder in the previous section, the

encoder swapping data in and out from the internal memory to the external SBSRAM or

SDRAM memory. The swapping process could potentially reduces the performance of

the program be executed. One alternatives would be use an optimized block move

algorithm to do the swapping; the other alternatives would be to use the DMA transfer

without the intervention of the CPU while the data are being swapped.

4.4.2 Compiler Optimization Issues

Even though TI provides an optimized compiler with different levels of code

optimization, the typical code performance is improved only by 30% - 40% on average.

However, for time critical real-time systems, the level of performance improvement is

still not sufficient. Much more aggressive optimization can be obtained by hand-

optimized assembly code. For many of the video coding components, assembly-level

optimization performs three to twenty times faster than the code generated by the

optimized compiler. However, the development time for using assembly-level

optimization is several order of magnitudes than just switching on the build-in compiler

option. Further discussion of the hand-optimization methodology will be given in the

following chapter.

4.4.3 Instruction Latency

Instruction latency for most of the C62x arithmetic operations are one cycle as refer to

single cycle instruction (ISC), and others such as multiplication instruction requires two

86

Chapter 4: Mapping the MPEG-2 Video Encoder on C6x

cycles latency. However, load/store and branch instructions have a latency of five and six

cycle, respectively [36]. And for many of the video coding components, load and store

represents most of the optimization bottlenecks when optimizing the video encoder.

Further discussion of the load and store instruction issues will be shown in the following

chapter.

4.4.4 Memory Bank Conflict

The memory architecture of C62x consists of four memory banks, and each of which is

half-word size (or 16-bytes) wide. Simultaneous memory access to the same bank can

cause a memory bank conflict which stalls one extra cycle for every load or store

instructions. A possible alternative to avoid memory bank conflict would be arranging the

entire data element to 32-bit memory align.

87

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

Chapter 5

Optimized VLIW Algorithm for MPEG-2 Video Encoding

5.1 Introduction

In this chapter, we present platform-specific (VLIW) optimizations for the

computationally intensive components of MPEG-2 video encoding mentioned in the

previous chapters. These video coding components include the SAD computation,

Quantization, Quantized Discrete Cosine Transform (QDCT), variable length encoding

(VLC), and MSE computation functions which can achieve a much better performance

with assembly-level hand optimization. The purpose of these optimizations is to take

advantage of the VLIW architecture of the C62x and to overcome some inherent

memory-access and I/O bottlenecks so as to enable real-time video encoding on the C62x

processor.

Video coding systems, like many other multimedia systems, has very

computationally intensive core functions that can be implemented efficiently using ILP.

Thus, a significant performance increase can be expected if the VLIW architecture is

properly exploited. Therefore, a major goal is to have an efficient MPEG-2 video encoder

running on the C62x platform.

88

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

5.2 Optimizing SAD Computations for Motion Estimation

During inter-frame coding in MPEG-2, motion vectors are found by performing a number

of SAD operations on 16x16 blocks. For every SAD calculation, there are two unsigned

load byte instructions, one subtraction, one absolute operation, and one addition which

consumes a total of five out of the eight available functional units (the two multiplier

functional units are not use in SAD calculations). The performance of the inner loop of

the SAD computations is constrained mainly by the number of load/store functional units

in the C62x processor. Because only two load operations can be performed per cycle, the

SAD computation can compute the absolute difference of these two values in one step,

producing one result per cycle at most. Two approaches can be used to optimize the SAD

computation.

5.2.1 First Approach of SAD Optimization

Considering the number of available functional units that C62x has, the inner loop could

perform one result per cycle at most if every functional unit only processes one video

data at a time. The first approach unrolls the 16x16 two-dimension loop into a one-

dimensional loop with 16 iterations, each consisting of 16 SAD computations. This loop

unrolling reduces the number of loop-end branch instructions from 64 to 16. Because

each branch instruction has a latency of 6 cycles, reducing the number of branch

instruction has significant impact on speedup. This structure of the SAD program is as

follows. Before entering the inner loop, eight execution packets are preloaded to increase

the pipeline efficiency and eliminate load-instruction latency (which is 5 cycles). The

89

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

inner loop contains 16 execution packets representing a row of 16 SAD operations, with

each execution packet consisting of at least two load instruction, one subtraction, one

absolute instruction, and one addition which are executed concurrently in different

functional units. The 11 th execution packet also includes a "delayed" branch instruction

that actually takes effect after the 16th execution packet is computed. Figure 32 shows the

scheduling of instructions on the first iteration of 16 SAD computation using assembly-

level optimization.

90

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

loop
initial

loop
end

S

AB

availaable register
file

(Maximum of 8 instruction per execution
packet)

cycle 1 AD L l AB S L l

2 L2 AD L2 AB S X

3 X L l AD L l AB S X

4 X X L2 AD L2 AB S X

5 X X X L l AD L l AB S X

6 X X X X L2 AD L2 AB S

7 s X X X X L l AD L l AB

8 AB s X X X X L2 AD L2

9 L l AD AB S X X X X L l

10 L2 L2 AD AB S X X X X

11 X L l L l AD AB s X X X

12 X L2 L2 AD AB S X X

13 X L l L l AD AB s X

14 X L2 L2 AD AB S

15 s L l L l AD AB

16 AB L2 L2 AD

AD

NOP 5

L l : load from current frame buffer
L2: load from reference frame buffer
S: subtract the difference of L l and L2
A B : absolute the result
AD: sum of the absolute difference
X : load instruction latency

Increase
Cycle
Count

Figure 32: Instruction scheduling of the first 16 SAD computation.

In Figure 32, the X represents the load instruction latency. As shown in Figure 32, each

row presents one instruction packet with up to a maximum of six instructions being

executed simultaneously since the other two multiplier functional units are not being used

91

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

in the SAD computation. The reason for loading the two comparing video data in a two

separate instruction is to avoid resource (simultaneous execution on the same functional

unit) and memory conflict, and also the inner loop can be nicely packed with 16

instruction packets for 16 SAD computation. To complete the calculation of the absolute

difference which requires eight cycles latency and one more cycle to do the sum of all the

absolute differences. Extra instructions are inserted for the completion of the SAD

operation such as incrementing the data memory pointer, reducing the loop counter,

swapping register contents to avoid resource conflict.

In addition, the next step of optimizing the SAD computations involves resolving

any possible memory-bank conflicts which can degrade performance. Indeed, the parallel

loading of two contiguous unsigned data bytes from memory can result in memory bank

conflicts 50% of the time. As every second load instruction in the same instruction packet

would stall one extra cycle to load the data. Figure 33 shows how our program avoids this

conflict by loading every other unsigned data byte during a parallel-load execution

packet. By applying this technique, the memory accesses for loading data are guaranteed

to access through different memory bank, thus, avoiding the memory bank conflict. Since

computing the SAD of a block is independent of which order the pixels are compared as

long as comparisons are done on the same pixel location between the current and

reference frame, the correctness of computation is preserved.

92

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

First Parallel

Byte Byte

•
•
•

Memory Bank
0

Second Parallel
oad

Byte Byte

•
•
•

Bank 1

Byte Byte

•
•
•

Bank 2

Byte Byte

•
•
•

Bank 3

Figure 33: Avoiding memory bank conflicts by loading every second data from
different memory banks.

The optimization of the SAD computation can include the partial SAD

computation technique with little extra overhead. Since the sum of every row SAD is

compared to the previous block's minimum SAD, if the current row's SAD is already

larger than the previous block's SAD value, then the computation of current block of

SAD will be terminated early. Overall, our SAD function implementation runs

approximately 4 times faster than the version obtained from the optimizing C compiler of

the C62x. Specifically, computing the full SAD function without early termination for a

16x16 block requires only 270 cycles, as compared to 1220 cycles if the C compiler is

used. A more aggressive approach with the SAD computation is to downsample the

16x16 block to perform only one row of SAD calculation for every two rows of data.

This will cut down the number of cycles required by the computation by half. Given such

93

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

an aggressive approach, the downsampling of the SAD computation does not sacrifice the

video quality while increasing the performance.

5.2.2 Second Approach of SAD optimization

Further optimization is possible by applying the subword parallelism feature of the C62x

architecture. This can result in producing four SAD results per three execution cycles (i.e.

about 1.333 results per cycle) compared to the one result per cycle attained by the first

approach. Instead of loading the two unsigned data bytes in each cycle, the two data

words, containing four unsigned bytes of data, are loaded. Loading four unsigned data

bytes at a time eliminates the load instruction constraint as suggested in the first

approach. The operation of the improved SAD computation technique is depicted in

Figure 34. After the two data words have been loaded, the half-word subtraction function

(SUB2) is used to compute the difference between A2 and B2 to obtain r2, and the

difference between A4 and B4 to obtain r4. Then both data words are right-shifted by

eight bits and a similar SUB2 function is applied to obtain r l and r3. Now, both r l and r2

use the EXTU function to extract the 8-bit result of the difference data; while r3 and r4

will be ANDed with OxOOOFh to clear the upper 24 unrelated bits. Four absolute

computations are performed concurrently on the results (rl, r2, r3, r4), then the results are

added up to obtain the SAD for four unsigned data bytes. This implementation requires

two load instructions, two half-word subtract instructions, two unsigned right shift

instructions, two unsigned extract instructions, two AND instructions, four absolute

instructions, and four add instructions. Therefore, the total of number operations require

18 instructions which can be packed into thee execution packets, as opposed to four

94

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

execution packet in the first approach. Hence, the resulting speedup. In addition, loading

32-bit word data also avoids memory bank conflicts.

word size (4-byte)

Al A2 A3 A4

j - (SUB2)

Bl B2 B3 B4

• _ J •

R2 R4

SHRU
>>

SHRU
>>

EXTU

0 Al A2 A3

| - (SUB2)

0 Bl B2 B3

I- h
Rl R3

EXTU

R2

I

R4

ABS

R2

| AB!
Rl

AND

R3

R4

j ABS | AB

Rl R3

SAD

Figure 34: Flowgraph of the SAD computation in VLIW implementation.

5.3 Quantization

After the transform coding (DCT) is performed, quantization of the DCT coefficient will

be processed. The quantizer we use is set to a fixed scale of 10 bits with all of the

quantizer scale coefficient calculated at the beginning. We use this quantization function

for the intra-coding stage only. The main quantization step performed is of the following

form

Q\i] = {(x\i]+ cl[/])x c2[i]}» 16 (7)

95

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

where x is a DCT coefficient, c l is a quantizer scale, and c2 is a computed scale. The

main computation here consists of quantizing 64 DCT coefficients for an 8x8 block.

Although the computation required for the quantization of DCT coefficient is straight

forward, the C6x compiler optimization could not fully exploit the available instruction-

level parallelism. In our optimization, the main constraint is due to each execution packet

allowing only two load/store instructions. The above quantization step requires three

loads and one store. Under this constraint we are able to achieve two results per cycle in

the inner loop. Loop initialization, loop unrolling, and delayed branching have been all

used in the optimization. The main inner loop consists of 16 execution packets each

consisting of two load/store operations. Loop unrolling gives the same effect of reducing

the number of branch instructions and this has a significant impact on speedup. However,

most of the execution packets are not fully utilized since only one addition, one

multiplication, and one shift are performed within two cycles on average. The structure of

the quantization step computation is as follows. Before entering the inner loop, six

execution packets are preloaded to increase the pipeline efficiency and also eliminates

load-instruction latency. The optimization structure of the program is slightly different

than the SAD optimization, since the SAD computation has almost identical instructions

inside every execution packet in the inner loop. However, different instructions are

packed in most execution packets with a similar pattern in the quantization step

computation. Figure 35 illustrates the scheduling of instructions in the quantization step

computation program.

96

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

availaable register file

loop
initial

Inner
loop

cycle 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

loop
end

(Maximum of 8 instruction per execution packet)

AD AD L l L l

M M L2 L2

X X L l L2

L3 L3 SR

SR L4 L4 M M

SI S2 X X AD

L3 L4 SR SR AD

M M

AD L l L l X X

AD L2 L2

M M L l L2

X X L3 L3

SR SR AD AD L4 L4

S3 S4 AD AD

AD AD L3 L4

NOP 5

Increase
Cycle
Count

L l , L3: load odd data
L2, L4: load even data
51, S3: store odd data
52, S4: store even data

SR: shift right
AD: add
M: multiply
X:multipler latency

Figure 35: Instruction scheduling for optimizing the quantization step computation.

As shown in the instruction scheduling of the inner loop, three execution packets

are used to load two sets of input parameters for the quantization step computation.

Result of the two computations are computed at the sixth to eighth cycles and the 10th

cycle. Then store takes place in the 11th cycle. The two final results would not get stored

97

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

actually until the fifth cycle after the initiation of the store instruction. Overall, our

optimized quantization function runs on the C62x approximately 20 times faster than the

optimized C-compiler version. Specifically, quantizing an 8x8 DCT block requires 128

cycles by our method, as opposed to 2505 cycles generated by the C-compiler, which is

merely 20 times faster.

5.4 Quantized Discrete Cosine Transform (QDCT)

As mentioned before, the QDCT algorithm combines both DCT and quantization into a

single computation and reduces the overall computational load substantially. Unlike SAD

and quantization calculations, QDCT's high computational cost is dominated by its

complexity. The two-dimensional QDCT computation must be unrolled to an 8x1 vector

such that the column QDCT is preformed first then row QDCT is performed second. In

QDCT, load and store instructions are no longer the dominant constrains for

optimization. However, the order of load and store operations still has an important

impact on the overall performance of the optimization.

Two methods have been implemented to determine which order of loads and

stores provides a better optimization level of the QDCT. The first, and simplest, method

is to do a parallel load of 8 data at the beginning of each iteration, then transformed

results are store at end each iteration. The advantage of this method is that the code

linearity is preserved and register usage becomes more flexible. The drawback of this

method is that resources are poorly utilized when intermediate result, such as those from

multiplications (2-cycle latency) and load operation (5-cycle latency), are not available.

98

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

The result of computing a column of QDCT requires 24-instruction cycle in the inner

loop, and eight iterations are required for completing the column QDCT calculation for a

total of 192 instruction cycles. In the second method, a sequential order is enforced on the

load/store instructions such that one load and one store operation are performed per

instruction execution. However, the paired load and store instructions do not access the

same row or column of QDCT calculation in the same iteration. In other words, during

the first iteration of computing the column QDCT, the load instruction is loading in the

first set of data, and the store operation of the first iteration are disabled. Then for the

second iteration of column QDCT calculation the store operations are storing the result of

the first row of QDCT while the load operations are loading in the second data set. This

method results in much better functional unit utilization than the first methods. The main

limitation, however, is increased register usage caused by the use of preloaded quantized

coefficients and the storage of intermediate results. The resource constrain on the number

of available shift units become the one of the bottleneck as most results are shifted at the

end to maintain the necessary precision of the integer QDCT computation. Using the

second method, a QDCT column computation requires 14-instruction cycles in the inner

loop, and nine iterations for completing the column QDCT calculation for a total of 126

instruction cycles. Therefore, the second method has a 34% performance gain over the

first method. The two methods of load/store scheduling are depicted in Figures 36 and 37.

99

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

LDH Datal iparallel load of
| |LDH Data2 ;two data

LDH Data3
||LDH Data4

STH Datal ;parallel store of
||STH Data2 ;two data

STH Data3
||STH Data4

Figure 36: Parallel execution of loads at the beginning and stores at the end.

LDH Datal sequential load/
||STH Datal ;store pairs

LDH Data 2
||STH Data2

LDH Data7
||STH Data7

LDH Data8
||STH Data8

Figure 37: Sequential execution of load/store pairs.

For the column QDCT computation, the average utilization of the C62x functional

units on the 14 execution packets is 78%. However, for the row QDCT computation, the

average utilization on 13 execution packets is 81%. Among all the optimization of the

video components, the QDCT optimization achieves the highest utilization of the

100

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

functional units in the C62x platform. Finally, the performance gain of using optimized

assembly is almost 20 times faster as than the C6x C-compiler implementation of QDCT.

5.5 Variable Length Coding (VLC)

For the SAD computation, quantization, and QDCT, the performance of the optimization

is independent of the context of the data, and all of these algorithms have tight inner-

loops that are good candidates for optimization on an LLP architecture. The picture is

quite different for the VLC algorithm whose structure is more inherently sequential with

strong data dependencies. The performance of the VLC algorithm is highly dependent on

the quantized DCT coefficients, the more zeros the quantized 8x8 blocks have, the more

efficient the algorithm runs. Inserting a branch instruction after every quantized DCT

coefficient within the 8x8 blocks poses the major hurdle to the VLC algorithm

performance. In addition, the zig-zag scan of the DCT coefficients in an 8x8 block causes

further inefficiencies in performance of the program code. We have, therefore, employed

a method for hard coding the zig-zag scan pattern and generating a table of zero run-

length codes for use with Huffman coding later on. The performance of our optimized

code is three to four times faster than the code generated by the C-compiler. This has

been one of the hardest algorithms to optimize for the C62x because of the high inter-

dependencies in the program code execution. For example, in the intra-coding process,

VLC accounts for almost 50% of the computational load after the other components have

been optimized.

101

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

5.6 Mean Square Error (MSE)

Mean square error (MSE) computation is similar to the SAD computation, except that

MSE calculate square of the difference between two data elements. For the MSE

calculation, multiplication is used instead of the absolute function used in the SAD

computation. The hand-optimized assembly code for MSE is very similar to that of the

SAD except for the use of an additional multiplication (with a 2-cycle latency) per

execution packet, and this results in a total of 271 instruction cycles for computing the

MSE for a 16x16 luminance block. For the two 8x8 chrominance blocks, 95 instruction

cycles are required for each block. The performance of the assembly level optimization

on the MSE on a macroblock is 12 times faster than the optimized C version.

5.7 Putbit

Putbit is one of the encoder functions that flushes out the variable length encoded bit-

stream to either the external memory of the C62x or to a file on the PC host. This

function normally contributes to about 10% of the encoder time on intra-coding and less

than 5% for inter-coding without any optimization. However, when all the other video

components are being optimized, this putbit function becomes significant. Therefore,

hand-coded assembly optimization has been done on the putbit function. The overall

performance of the assembly level optimization on the putbit function is four to eight

times faster than the optimized C version.

102

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

5.8 Overall Performance Improvement of the Application

There are currently two versions of the MPEG-2 video encoder being implemented on the

C62x E V M board. The first is an I-frame only version of the MPEG-2 video encoder

which does Intra-coding at SUF resolution. This version currently runs at above real-time

rate of 40 frames per second. In this setup, the MPEG-2 video encoder directly captures

video frames from a camera at SIF resolution, and encodes the video in real-time (or

faster). The newest version of the I-frame MPEG-2 video encoder can encode 15.6

frames per second at CCIR-601 resolution. The second version of the MPEG-2 video

encoder is an JPP-version which does both intra- and inter-coding which significantly

improves the compression ratio. The LPP-version of the encoding at 16.2 frames per

second at SIF resolution. As compared to the optimized C-compiler of the I-frame only

and the IPP video encoder on C62 E V M board, the assembly-level optimized programs

runs more than 30 times faster.

Table 5 provides a comparison for the MPEG-2 video coding components running

on a Pentium 166MHz machine, compared to encoder components running on the C62x

platform, at 166MHz, before and after hand-coded assembly optimization.

103

Chapter 5: Optimized VLIW Algorithm for MPEG-2 Video Encoding

Video Components
(per frame @SIF)

Pentium
@ 166MHz

C62x @ 166MHz
w/o optimization

C62x @ 166MHz
with optimization

SAD 142 ms 274.5 ms 32.6 ms

Quantization 88.8 ms 164.4 ms 8.4 ms

QDCT 160.3 ms 197.6 ms 9.3 ms

VLC 16.4 ms 40.8 ms 12.4 ms

MSE 4.9 ms 9.3 ms 1.1 ms

Putbit 15.3 ms 58.5 ms 8.4 ms

IDCT 197.6 ms 243.5 ms 10.4 ms

Table 5: Summaries the overall performance of video encoding components on
different platforms with and without optimization.

104

Chapter 6: Conclusion and Future Research

Chapter 6

Conclusion and Future Research

In this thesis, we purpose a software only real-time MPEG-2 video encoder on a VLIW

processor architecture. Mapping and implementing the real-time MPEG-2 video encoder

significantly improved the performance of video coding running on the VLIW

architecture processor. The implementation of the video encoder on Texas Instrument's

C62x E V M board was tested. The contribution of our research consists of two parts. In

the first part, we mapped and modified the existing MPEG-2 video encoder designed to

run on PCs onto the C62x platform. We need to initiate the communication between the

C62x E V M board and the host PC for transmitting video data to do the video encoding.

Memory mapping is one of the key issues that we have to deal with as the memory size

and memory transfer is critical to the performance of the video encoding on the C62x

VLIW processor. Modification of the program structure and video components is

required to run the encoder effectively on the C62x platform. These components included

motion estimation, quantization, variable-length encoding, and putbit function. These

functions are discussed in Chapter 4. In the second part, we propose assembly-level

optimizations to exploit the instruction-level parallelism of the C62x VLIW architecture.

This was done to improve the performance of the MPEG-2 video encoder, since the

105

Chapter 6: Conclusion and Future Research

optimized C-compiler did not provide acceptable results for real-time coding. With a

maximum throughput of processing eight instructions every CPU cycle, we achieved

major speed ups for some of the major video computations, particularly the DCT, SAD,

quantization, variable-length encoding, and data I/O. After employing the optimizations,

we realized a much faster encoder that can encode more than 15 frames per second (fps)

on both I-frame only with CCIR-601 resolution and JPP with SUF resolution, and an even

faster than real-time (40 frames per second) on I-frame only video with SIF resolution.

As the unoptimized version of our encoder can only encode less than 0.5 fps on the C62x

E V M board. All the results are discussed in detail in Chapter 5.

Although this thesis focuses mainly on video encoding on the C62x VLIW

architecture, some of the techniques and developments can be also applied to other VLIW

architecture processors. Moreover, the performance of the software implemented MPEG-

2 video encoder can be further improved by further optimization of other video

components and increasing the data transfer throughput using DMA transfer without

intervening CPU.

Another interesting research direction is to extend the hardware features of media

processors, eg. by incorporating SIMD capability into the VLIW DSP architecture. The

Philips Trimedia chip can possibly be one such candidate.

106

Bibliography

Bibliography

[I] Yuen-Wen Lee, Faouzi Kossentini, Rabab Ward and Mark Smith, "Towards

MPEG4: An Improved H.263-based video coder," in Signal Processing Image

Communication, Oct. 1997.

[2] VIS extension of Sun Ultra Sparc web site at

http ://w w w. sun .com/microelectronic/vi s/

[3] Hwelett-Packard PA-RISC web site at http://www.hp.com/

[4] Silicon Graphics web site at http://www.sgi.com/

[5] Texas Instrument web site at http://www.ti.com/sc/docs/products/dsp/c6000/

[6] E. A. Lee, "Programmable DSP architectures: Part I," IEEE Acoust., Speech,

Signal Processing Mag., pp. 4-19, Oct. 1988.

[7] P. Faraboschi, G. Desoli, J. A. Fisher, "The Latest Word in Digital and Media

Processing," IEEE Signal Processing Mag., pp. 59-85, Mar. 1998.

[8] B. R. Rau, J. A. Fisher, "Instruction-level parallelism," The Journal of

Supercomputing 7, pp. 9-50, May 1993.

[9] K. Hwang, "Advanced Computer Architecture: Parallelism, Scalability,

Programmability," McGraw Hill Publisher, 1993.

[10] N. Seshan, "High VelociTI Processing," IEEE Signal Processing Mag., pp. 86-100,

Mar. 1998.

[II] M . A. Schuette, J. P. Shen, "Exploiting Instruction-Level Parallelism for Integrated

Control-Flow Monitoring," IEEE, 1994.

[12] R. P. Colwell, R. P. Nix, J. J. O'Donnel, D. B. Papworth, P. K. Rodman, "A VLIW

Architecture for a Trace Scheduling Compiler," IEEE, 1988.

[13] J. W. Davidson, S. Jinturkar, "Improving Instruction-level Parallelism by Loop

Unrolling and Dynamic Memory Disambiguation," IEEE Proc. of MRICRO-28,

1995.

107

http://www.hp.com/
http://www.sgi.com/
http://www.ti.com/sc/docs/products/dsp/c6000/

Bibliography

[14] M . S. Lam, "Software pipeline: An effective scheduling technique for VLIW

machines," A C M SIGPLAN'88, pp.318-328, 1988.

[15] R. B. Lee, "Subword parallelism with MAX-2," IEEE Micro. Vol. 16, pp. 51-59,

Aug. 1996.

[16] M . J. Flynn, "Very high speed computing systems," Proc. IEEE, vol. 54, pp. 1901-

1990, Dec. 1996.

[17] W. Gehrke, K. Gaedke, "Associative controlling of monolithic parallel processor

architectures," IEEE Trans. Circuits Syst. Video Technol., vol. 5, pp. 159-169, Apr.

1993.
[18] K. Nadehara, I. Kuroda, M . Daito, T. Nakayama, "Low-power multimedia RISC,"

IEEE Mirco, vol.15, pp. 20-29, Dec. 1995.
[19] S. Y. Kung, Y. K. Chen, "On architectural styles for multimedia signal processors,"

Proc. IEEE Workshop Multimedia Signal Processing, Princeton, NJ, June 1997.

[20] D. Zucker, M . Flynn, and R. Lee, "Improving performance for software MPEG

player," Proc. Compon, IEEE CS Press, pp. 327-332, 1996.

[21] K. Nadehara, H. J. Stolberg, M . Ikekawa, E. Murata, I. Kuroda, "Real-time

software MPEG-1 video decoder design for low-cost, low-power applications,"

VLSI Signal Processing IX, IEEE, Oct. 1996.
[22] H. J. Stolberg, M . Ikekawa, I. Kuroda, "Code positioning to reduce instruction

cache misses in signal processing applications on multimedia RISC processors,"

Proc. Int. Conf. Acoust., Speech, Signal Processing, pp. 699-702, Apr. 1997.

[23] V. Bhaskaran, K. Konstantinides, "Image and Video Compression Standards:

Algorithms, and Architectures," Kluwer Academic Publishers, Boston, 1995.

[24] Thomas Sikora, "MPEG Digital Video-Coding Standards," in IEEE Signal

Processing Mag., Sept 1997.

[25] "Video codec for aduiovisual services at px64 kbits," ITU-T Recommendation

H.261,Mar. 1993.

108

Bibliography

[26] "Video coding for low bitrate communication," ITU-T Draft Recommendation

H.263, May 1996.

[27] ISO/LEC 11172-1/-2/-3, Information Technology - Coding fo Moving Pictures and

Associated Audio for Digital Storage Media at up to About 1.5 Mbit/s:

Systems/Video/Audio, 1994.

[28] Yuen-Wen Lee, Faouzi Kossentini, Rabab Ward, "Efficient MPEG-2 Encoding of

Interlaced Video," in Signal Processing Image Communication, Oct. 1997.

[29] Alen Docef, Faouzi Kossentini, Rabab Ward, "Towards a Software Solution for

Real-time MPEG-2 Encoding of Interlaced Video," in UBC Abstract draft.

[30] J.L.Mitchell, W.B.Pennebaker, C.E. Fogg, D.J.LeGall, "MPEG Video Compression

Standard," Chapman & Hall 1996.

[31] Ismaeil Ismaeil, Alen Docef, Faouzi Kossentini, and Rabab Ward, "Motion

Estimation Using Long Term Motion Vector Prediction," in UBC Abstract draft.

[32] Khanh Nguyen-Phi, Alen Docef, and Faouzi Kossentini, "Quantized Discrete

Cosine Transform: A combination of DCT and scalar quantization," in ICASSP,

1999. Submitted.

[33] "TMS320C6000 Technical Brief," SPRU197D, Texas Instruments Press, Feb. 1999.

[34] "TMS32C6xx Architectures," Texas Instruments Press, 1997.

[35] "TMS32C6201 Evaluation Model Guide," Texas Instruments Press, 1997.

[36] "TMS32C62xx Instruction Set Guide," Texas Instruments Press, 1997.

109

Acronyms

List of Acronyms

2-D Two Dimension

A L U Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

ATM Asynchronous Transfer Mode

CCIR International Radio Consultive Committee

CISC Complex Instruction Set Computer

CPU Central Processing Unit

DCT Discrete Cosine Transform

DCME Distortion-Computation Optimized Motion Estimation

DMA Direct Memory Access

DPCM Differential Pulse Code Modulator

DSP Digital Signal Processing

EMIF External Memory Interface

E V M Evaluation Model

GOP Group of Pictures

gops Giga Operations Per Second

HFC Hybrid Fiber-Coax

HPI Host Port Interface

EDCT Inverse Discrete Cosine Transform

ILP Instruction-Level Parallelism

I/O Input/ Output

ISC Single Cycle Instruction

ISO/IEC International Organization of Standardization/ International

Electrotechnical Commission

MAC Multiply-Accumulation

MAE Mean Absolute Error

MB Macroblock

110

Acronyms

MC Motion Compensation
ME Motion Estimation

MIMD Multiple Instruction Stream, Multiple Data Stream

MIPS Million Instructions Per Second

mops Mega Operations Per Second

MPEG Motion Picture Expert Group

MSE Mean Square Error

MV Motion Vector

NTSC National Television Systems Committee

PC Personal Computer

PMV Predicted Motion Vector

PSNR Peak Signal to Noise Ratio

QDCT Quantized Discrete Cosine Transform

RD Rate-Distortion

RLE Run Length Expansion

SAD Sum of Absolute Difference

SBSRAM Synchronous Burst Synchronous Random Access Memory

SDRAM Synchronous Dynamic Random Access Memory

SIF Source Intermediate Format

SIMD Single Instruction Stream, Multiple Data Stream

SNR Signal to Noise Ratio

SPMG Signal Processing and Multimedia Group

SRAM Synchronize Random Access Memory

tops Tera Operations Per Second

VLC Variable-Length Coding

VLD Variable-Length Decoding

VLrw Very Long Instruction Word

VLSI Very Large Scale Integration

YUV Luminance and Chrominance

111

