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Abstract

Having examined a number of common warning signals .such a telephone rings, micrpwave |
oven alarms and continuous tone alarms, a software method, eliminating the need for
specialized hardware, was developed for both recognizing known warning signals and learning
new signals. The method, called WARNSIS II was first implemented on a PC-compatible
computer using a Creative Labs signal acquisition board which provided a base for graphical
signal analysis and for the development of algorithms. The algorithms were also implemented
on the Texas Instruments TMS320C30 Evaluation Module (EVM) digital signal processing
board to demonstrate that the algorithms can be easily ported to smaller, more cost effective

platforms.

The WARNSIS II system operates in two modes: learning and recognition. In the learning
mode a template for a signal is constructed by analysing the signal for spectral and temporal
information. The frequency at which the maximum peak in the signal 's spectral energy occurs
is determined and this value is saved in a template. The duration of the signal burst, as well as
the interval time between signal bursts for repetitive signals, are determined and are also saved
in the template. In the recognition mode, the spectrum of the incoming real-time signal is
analysed to determine if any of its spectral components match those found in the template. If
a match is found, timing information is then applied to rule out transients which woﬁld

generate false alarms

The system has demonstrated the ability to recognize warning signals in high background noise

environments and to correctly identify multiple overlapping warning signals.
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Chapter 1

_ 1.0 Introduction

1.1 Background

In.everyday life we are constantly bombarded with information about our environment.
Although humans are visually oriented, much of the important information, that which requires
immediate attention, is transmitted by sound. Warning sounds such bells and buzzers are part
of our everyday life both waking and asleep. Unlike visual information, which is not processed

while asleep, auditory information is processed by the ear and brain continuously.

Approximately eight percent of the general population suffers from some level of
hearing impairment. Approximately 70 out of every 1000 people are "hard of hearing", another
6 out of every 1000 are classified as late deafened adults, and 1 out of every 1000 are deaf
[1,2]. Hard of hearing people are those who use speech as their main method of
communication but have some impairment in their ability to hear. Such impairment may range
from mild to profoand. Late-deafened adults are those who have suddenly become deaf later
in life usually due to accident, illness or medication related causes. This group still uses
speech, but also must rely on speech reading or written aids such as transcription to understand
what others say. Some late deafened adults also sign as a means of communication. People
who are deaf from birth usually use signing as their main method of communication. Signing
is a distinct language apart from any written or spoken language and promotes an independent
culture just as the use of English or French does for speakers of those languages. Those who
consider themselves to belong to this cultural group define themselves as Deaf. There are also

Oral Deaf people, people who have been deaf from birth or an early age but have been taught

to speak, rather than sign as their main method of communication. They may also rely on sign
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occasionally but they rely on speech and speech reading as their main methods of

communication.

Members of all groups are placed at various levels of disadvantage by their hearing loss,
depending on the environment or situation. Such disadvantage can even be life-threatening,
such as failing to hear a smoke detector, fire or burglar alarm. Even missing a phone call can
have serious consequences. To help overcome this disadvantage many devices and approaches

- have been designed in the past to alert a Deaf or hard of hearing person to the presence of
specific warning sounds. These fall into 3 main categories, threshold detectors, hard-wired or

dedicated devices and hearing ear dogs[3].
1.1.1 Threshold Detectors

Most warning signals are designed to be heard above a general ambient noise level and,
as such, are louder than most other sounds that one might encounter in a given environment.
Threshold detectors function by exploiting this fact. They are designed to detect any increase
in sound amplitude over a preset limit or set point. This can work reasonably well in an
isolated environment where the device is required to identify a single warning sound. It can
also be useful when multiple warning signals need to be monitored and all that is required is to

alert the user that one of them has occurred without being specific as to which one.

One of the main drawbacks of threshold detectors, however, is that sounds which are
louder than the preset limit but originate from sources other than the alarm or alert will also
trigger the detector, giving a false positive indication. For example, a threshold detector set
to detect a telephone ring may be erroneously triggered by a doorbell or a fire alarm or even

the passage of a noisy truck.
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Another disadvantage of a threshold detector is the need for adjustment when moving
it from one location to another. If the detector were set to function correctly when in the same
room as the telephone, the amplitude of the sound that reaches the detector if the user moves
it to a different room may not be loud enough to trigger the detector. Adjusting the set point
to a lower value may not be possible due to a greater ambient noise levels in the new location.
The detector would then give a number of false positives that would render the device virtually

useless.

Threshold detectors have been designed to operate on signal sources other than sound.
For example, detectors for magnetic fields emitted by telephones exist, but the detectors must
be located very near the telephone in order to pick up the relatively weak fields generated. This
greatly reduces the range and effectiveness of such devices. Additionally, many newer
telephones do not use electro-mechanical ringers and therefore generate no detectable magnetic

fields.
1.1.2 Hard-wired / Dedicated Devices

Hard-wired or dedicated devices can overcome many of the problems found with the
threshold detection devices described above. Hard-wired devices are electrically, and often
mechanically, connected to the device they are designed to detect. The signalling device may
also be hard-wired, although radio-operated remote pagers which use lights or vibration to
signal the wearer are becoming popular [4]. For the telephone, rather than listening for an
increase in ambient noise level, the detector is electrically connected to the telephone and

monitors the incoming ringing signal from the telephone exchange. When the ringing signal is

detected, the device signals the user by triggering the pager or flashing a lamp on and off.
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There are three main disadvantages to this method:

i) a separate detector is required for each device that is being monitored,
ii) installation requirements can be prohibitive; and

iii) the devices lack portability.

The detectors for these types of devices are usually désigned for a specific piece or type of
equipment. For example, it is unlikely that a telephone detector would be suitable for
connection to a door bell. In addition, many devices that a hard of hearing person would like
to monitor, such as a microwave oven or smoke detector do not have commercially available

detectors.

In those cases where a suitable specific detector is available, its installation may require
expert assistance, or modification of the monitored equipment. This is both inconvenient and

expensive for the user and can be hazardous should the installation be done incorrectly.

Lack of portability is a major drawback fdr the user with hard-wired devices. People
are more mobile now than any time in the past and travel away from the home or office is much
more common than ever before. For some jobs, especially at higher levels of responsibility,
it is a major requirement of the job. Lack of mobility for the hard of hearing person can be a
major impediment to career advancement. Business is more often conducted by phone and
facsimile these days than by personal meeting. When travelling, the hard of hearing person will
not be able to modify all, if any, of the devices that they would normally rely on at home with

hard-wired detectors. Even a simple change of office or building could require significant time

and expense to set up.
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1.1.3 Hearing Ear Dogs

Like Seeing-Eye-Dogs, Hearing-Ear-Dogs are available for all hearing impaired
people. These dogs are very useful, but they are also quite valuable and in short supply. It
takes many months of training to prepare a dog and a reasonable "training" period for the
recipient as well. In addition, dogs require regular "refresher" training. As training is a lengthy

- - and difficult process, it is often not possible or practical to update the animals skills once the -

have been placed with the hearing impaired owner.

In addition, just as for Seeing-Eye-Dogs, not all hearing impaired people would be able
to utilize such a dog. The hard of hearing person may not physically be able to care for a dog
due to age or other disabilities or they may not wish to own a dog. A dog may not be suitable

for other reasons such as living arrangements and there is increased cost and difficulties

involved in the transportation of the dog when travelling.
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2.0 The WARNSIS Project

The objective of the WARNSIS (WARNing Signal Identification System) project is to
develop a device that would overcome the problems and deficiencies noted with the devices -

and solutions described previously. As such, the device:

i) would be required to reliably récognize warning sounds for hard of hearing
and deaf people in the presence of background noise, such as radio music,
conversation and machinery;

ii) must be portable and not require any special connections to the warning signal
generating sources,

iii) must have the ability to not only discriminate between different signals sources
but must also have the ability to easily learn and recognize previously unknown

signals.

In addition, it is an explicit long-term objective of the project to minimize the cost of

manufacture in order to make the device accessible to as many users as possible.

There have been attempts previously to design devices with these capabilities in the
past [5,6], but these devices have suffered from limitations in their abilities to learn a wide

variety of signals or to discriminate between signals with similar timing and spectral

characteristics.
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2.1 WARNSISI

To date there have been two phases of the WARNSIS project. In the initial phase of
the WARNSIS project (WARNSIS I) much of the study was devoted to the characterization
of the various types of warning signals in everyday life. 'WARNSIS I also produced an initial

prototype device.

In WARNSIS I it was determined that the majority of signals that the device would

encounter fell into two categories:

i) either single or repetitive burst signals ( such as telephone rings );

ii) continuous signals (such as produced by fire alarms and smoke detectors).

It was also found that the warning signals examined in the study had at least one

. characteristic frequency or main harmonic above 900 Hz and below 5000 Hz [7].

Ambient noise was also characterized to be broad band with most of its spectra energy
below a frequency of 300 Hz. This is common, as ambient noise in the usual office and home

environments is generated by machinery such as fans and passing automobiles.

The frequency range between 300 Hz and 900 Hz was found to possess both noise and
signal components. Most notably, warning signals from automobile horns (electric) and truck
horns (air) fell into this category with their dominant frequencies in the 300 Hz to 500 Hz
range. The human voice possesses energy at frequencies both inside and outside t_hjs range but
most of the energy in the human voice is contained within this frequency range. The human

voice rises about 5 dB from its base value in the range from 100 Hz to 600 Hz and then falls

by approximately 6 dB, 9 dB, 12 dB and 15 dB in succeeding higher octaves [8].
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The general recommendation for the design of warning devices is that such a device
should be capable of producing an output sound level pressure (SPL) of at least 85 dB (with
reference to 20 u Pa) at a distance of 10 ft from the device [9]. Additiona]ly the warning signal
should be at least 10 dBA SPL above the ambient noise level for warning devices in the home
environment or 15 dBA SPL for those‘ in public places [10]. This is a difficult condition to
satisfy in real environments as most warning devices are preset at the time of manufacture or

installation but the ambient noise levels where the device are used tend to vary with time.
2.1.1 WARNSIS I Recognition Scheme

The WARNSIS I recognition scheme relied on a two-part analysis [7]. The first part
of the analysis was a timing analysis, the second was a spectral analyéis‘ A signal was
"recognized" only if both parts of the analysis were successful. In WARNSIS I, the timing
analysis was performed first in order to speed processing. This was significant, because
processing power was limited by the microprocessors available in the market at that time

(1986-88).
The timing analyser included the following three processes:

1) the Dynamic Amplitude Threshold (DAT),
ii) the Minimum Burst Duration (MBD),
1ii) the Maximum Inter-Arrival Time (MIAT).

The purpose of the DAT process was to identify a signal that may be of "interest" in
order to start the recognition process. The DAT process continuously monitored the input
signal level and updated a threshold level. If the input signal amplitude increased to twice the

threshold level, a "signal of interest" was assumed to be present. The threshold was

8
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continuously updated by averaging the previous threshold with the incoming signal amplitude.

The threshold thus tracked an increase or decrease in the ambient noise level.

The MBD process was used to ﬁltér spurious burst noises before they reached the later
recognition steps. The timing analyser monitored the incoming signal and measured the amount
of time the input signal strength was above the threshold. If the MBD was less than a preset
value the signal was ignored. If the MBD was lbnger than the preset limit a "valid" signal was
assumed. If the MBD was longer than 4 seconds a continuous warning sound was assumed,
if the signal was less than 4 seconds but longér than the preset minimum, a repetitive signal was

assumed.

For repetitive signals the MIAT process was used to determine if the signal was in fact
repetitive or a collection of random noise bursts of duration longer than the MBD. If two burst
occurred in a time period less that the MIAT they were considered to belong to the same
warning signal occurrence. If they occurred outside the MIAT they were considered to have

been produced by separate warning events.

The timing analysis was followed by spectral analysis to determine if the identified burst
was a valid signal. The spectral analyser was based on a NEC chip set designed to perform
Dynamic Time Warping speech analysis and was implemented via an NEC pPD7761 and
uPD7762 Pattern Matching Processor and Controller combination. The input signal was
analysed by passing it through an eight frequency range filter bank and extracting the average
energy contained in each of the eight frequency ranges between 100 Hz and 5000 Hz. The
spectral analysis was then performed by comparing the output from these eight filters with pre-
stored templates. If the output pattern from the filters matched one of the pre-stored templates,

the signal was then considered to be validated and a warning to the user was issued. Similar

filter bank approaches have been tried by other researchers as well [11].
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2.1.2 Evaluation of WARNSIS 1

2.1.2.1 Recognition Scheme

Although the two part system combining a t_ifning analyser and spectral analyser seemed
to give satisfactory results in low background noise cases, it produced a relatively higher
number of false alarms in noisy environments and failed to detect a number of key signals. In
fact, experience has shown that the failure of the device to recognize key signals in noisy

environments was due to the sequence of the two-part timing and spectral analysis scheme .

In particular, as already noted, in WARNSIS I, the MBD detection process, used to
determine if a burst was a warning signal or a transient, was applied before the spectral analysis
to determine if the signal was worth examining. This meaht that fiming, not spectral energy
content, was the main feature that the device detected. This, in combination with the MIAT
measurement, caused the device to fail to detect repetitive signals in noisy environments. The
original WARNSIS I device would identify a signal burst and then wait for the second in a
series of supposed repetitive bursts. If a noise burst (or other warning signal) occurred during
the waiting period, the original signal would be rejected because the MBD or MIAT did not
match the template value. The spectral content of the intermediate burst was not examined,
so there was no way for the device to differentiate if the intermediate burst was a true signal

burst or if it was simply due to noise.

In an attempt to streamline processing, the original recognition scheme included three
other compromises that made its real world use unsatisfactory. Firstly, the WARNSIS I device
required at least one repetition to identify a repetitive signal. Since there is no guarantee in the

real world that a repetitive signal will repeat, such signals should be identified on the basis of

10
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a single appearance. For example, in an emergency situation the warning device could be
damaged before giving the second warning burst or the phone, or the postman, "may only ring
once". Thus, this recognition scheme would ignore the original burst since it detected no

repetitions.

Secondly, the WARNSIS I recognition scheme based its initial signal determination on
the increase in the average total signal amplitude (energy). This meant that from the time the
beginning of a signal burst was identified, until the time that signal burst ended, the device
could not recognize other warning signals. Thus, if a noise burst occurred and triggered the
timing functions before a true signal burst occurred, the signal burst would be completely
ignored, or added into the noise bursts timing. Also, if the device was monitoring a valid signal
and another valid signal occurred, overlapping with the first, the second signal's timing
characteristics would again be added to the first and neither signal would be successfully

.detected. This could quite easily occur in an office environment where a number of phones
could ring simultaneously. Rather than giving a false positive, as would be the case for the

threshold detector, the device would give no indication of any activity at all.

Lastly, although the DAT function successfully tracked the increase in ambient noise
}level to prevent false positives, this actually had the effect of "deafening" the device in high
noise environments. For the start of a burst to be detected, an increase of twice the threshold
limit was required. As the ambient noise level would rise, the threshold would rise. However,
the absolute amplitude of the warning signal, such as the telephone ringer volume, would
remain the same. Thus, the detection requirement of twice the threshold limit could not be met

by the warning signal at high ambient noise levels.

11
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2.1.2.2 Hardware Implementation

The WARNSIS I system consisted of approximately 80 components including 4
microprocessors and a number of specialty NEC spectral analysis chips. Given the level of
complexity of the hardware, multiple processors, specialty chip sets, and the requirement of an
additional PC to coordinate the overall function of the device, it would have been impossible

to turn the prototype into a practical device due to reliability and price considerations.

However, the WARNSIS I project determined that it was possible to detect and
recognize warning sounds in real time, and although the design of the device had several
shortcomings, the WARNSIS 1 project provided the basis for the evaluation of the usefulness

of the timing and spectral information in the detection of this class of signals.
2.2 WARNSIS II Objectives
Given the above analysis of WARNSIS I, the objectives of WARNSIS 1I are:

1. Redefine the detection and recognition algorithms to improve the performance |
in noisy environments and overcome the deficiencies in the original scheme;

2. Reduce the hardware requirements so that a viable, cost effective production
device can be made. |

3. Produce a system that is both easily learned and used by the end user

4, Produce a system that can be easily maintained and upgraded in the
manufacturing environment. |

5. Provide an overall system design, from both a hardware and software

perspective, including support tools for further development and

commercialization of the project.
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3.0 Sound and Signal Recognition Schemes

Currently most speech recognition systems are based on one of two basic mathematical
models: Dynamic Time Warping (DTW) [12,13,14] or Hidden Markov Modelling
(HMM)[12,13,15]. Both of these appréaches are statistically based and are used because of
the need to allow for the variations in speech that occur for the same word or words when

spoken by various speakers or the same speaker at various times.

3.1 Speech Recognition Schemes

3.1.1 Dynamic Time Warping

Dynamic Time Warping is a useful technique when matching spectral patterns between
a known signal (template) and a unknown incoming signal, which may contain tirhing
differences. When a signal is " learned" and a template is created, the incoming signal is divided
into smaller time segments. For each of these time segments a spectral analysis of the incoming
signal is performed by a filter bank. The number of outputs from the filter bank depends on the
spectral resolution required (For example: for WARNSIS 1, this was eight outputs covering a
frequency range between 100 Hz and 5000 Hz). The outputs from the filter bank give an
estimation of the energy content in the spectral region covered by each of the ﬁltérs in the bank.
The outputs from these filters are stored in the templates for each time segment created during

- the learning process.

During the recognition process, the incoming signal is again divided into smaller time
segments and the same spectral analysis is performed by the filter banks. For each time

segment the output from the filter bank for the incoming signal is compared to the values stored

13
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in the templates. If the output and template values match within a set of statistical parameters

a match is indicated for that particular time segment.

The "Dynamic Time Warping" comes into effect by allowing for the misalignment of
time segments. For example, if we wish to be able to recognize the word "hat", we would first
analyse the voice of a speaker saying the word "hat". The length of time to say the word "hat"
during the learning process may be 10 milliseconds and the learning process would divide this
into 50 time segments. During the recognition phase, the speaker would again repeat the word
"hat". However, because of changes in intonation and emphasis, which are normal during the
speaking process, the new occurrence of the word hat may take 15 milliseconds to say. The
analysis process would divide this occurrence into 75 time segments. Since there can not be an
exact one to one correspondence between the original 50 segments stored in the template and
the newly acquired 75 segments, allowances for time "slippage" must be made. The allowance
for slippage is achieved by "Dynamic Time Warping". A more complete mathematical model

for DTW can be found in the literature and will not be repeated here [13].
3.1.2 Hidden Markov Modelling

Hidden Markov Modelling is a statistical method which also models the variations in
the way a speaker pronounces a word. Each word is divided into states and a probabilistic
determination is made on the likelihood of transitions from one state to another. The states in
a typical application are generated by filtering and digitizing the input signal, then segmenting
it into smaller overlapping blocks which are fit to a linear predictive coding model [13]. Once
this has been done a template is created for each word or sound that must be recognized and
the incoming signal is analysed and compared to the pre-existing templates. However because
the HMM is a statistically based process, the templates must be built from a number of

repetitions by the speaker during the learning process [13]. For a given word to be learned

14
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it may require 40 or more repetitions of the word to be spoken in order to produce a template

which accurately maps the possible state transitions [16].

Although there are diﬁ’efences between the DTW and HMM methods, good
implementations of either of the two processes can result in good speech recognition systems.
The trade offs between the two methods come from the decreased learning time require for the
DTW method versus the shorter processing time required for the HMM method. DTW
-algorithms are computationally expensive, since each incoming signal pattern must be compared

to those stored in all of the templates [12].
3.2 Warning Signal Characteristics vs Voice/Word Characteristics

The two methods described above have been designed to learn and recognize human
speech. This is 2 much more complicated process than what is required for the recognition of
warning sounds. Human speech is not uniform between speakers or even for the same speaker.
It is formed by the interaction of the vocal cords, the pharynx, mouth, nose and sinus cavities.
The tongue, teeth and lips also interact to produce the sounds we recognize as speech. The
same word will sound different depending on its use, the mood of the speaker and even the time

of day.

Warning sounds, on the other hand, are mechanically generated and must remain
relatively constant in frequency composition and duration over their lifetime in order to perform
their intended function. For example, phone rings are recognized throughout Canada and the
United States regardless of geographical location because their frequency and timing
characteristics are held within narrow limits. The warning sounds generated by other
equipment also have characteristics which, in general, do not change significantly, if at all, after

installation. Figure 3.1 shows the spectrum for three occurrences of the word "hello", spoken
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by the same speaker. Figures 3.2 through 3.4 shows the spectrum for a number of

electronically and mechanically generated warning signals.

These graphs show why the learning and recognition processes for warning sounds
should be much less complex than those for speech, and why the methods such as DTW and
HMM, although well suited to speech recognition, are not the ideal processes for warning

sound recognition.

The warning signals shown in Figures 3.2 through 3.4 have characteristic peaks that
remain well defined and constant in frequency. They also have burst and interval durations that
remain constant in time. From examining these graphs it is possible design a warning signal
recognition algorithm. In order to detect a warning signal we must correctly identify the
three characteristic features of the signal. For all warning signals, the first feature, the signals

characteristic peak frequency, must be detected.

Next we must identify the timing characteristics of the signal. For burst type signals,
the burst duration must be determined and if the signal is of repetitive burst type, the interval
time between bursts. Should a warning signal be of the continuous type, then we must
determine if the signal we are detecting is actually continuous or simply due to noise by

ensuring that the signal is detected for a long enough time period.

The third characteristic of a signal is its energy content. Additional information about
a warning signal is conveyed by the amount of energy contained in the signal. A louder signal
is, in general, considered to be more urgent or important than a softer one. This is a matter of
perception, and is highly dependent upon the surrounding environment since "loudness" is

usually compared to some arbitrary background noise level. Often just the presence of an

increase in sound level can be enough to alert us that something has occurred.
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This leads us to a 3-part analysis scheme for our recognition algorithm, one part for
spectral analysis, a second for timing analysis and a third for energy content analysis. The
important question here is: in what order do we perform these analyses? Although frequency
, timing and energy characteristics are important, which is most important for recognizing a

warning signal?

When a telephone initially begins to ring, one is alerted to that fact by the presence of
the ringing sound. Before the ringing burst finishes, it can be determined that a telephone call
is incoming. If one is unsure that the telephone actually rang, one can wait for the burst to end
or a second burst to repeat for confirmation. It is, however, the presence of the characteristic
ringing frequency, where there was none before, that gives the first alert. Similarly, in an office
or home, if two closely placed different phones ring simultaneously, the only way to tell them

apart is by the different sound of the two ringers.

Even for an unknown warning signal, it is often the presence of a new spectral
component in the background noise that gives the warning. When a component of a vehicle
breaks down, there is often a new "sound" to the vehicle that is a direct result of the fault. For
example, should a bezin'ng wear out, it is often accompanied by a screeching sound. One may
not have heard the sound before, but it is immediately obvious that something has happened.
It would appear that a significant amount of information required to recognize a warning signal
is contained in the spectral and energy characteristics of the signal. Also, although additional
information is contained in the timing characteristics of a warning signal, those characteristics
would appear to be secondary. For these reasons, for WARNSIS II, we shall approach our

algorithmic design with the intention of performing the spectral and energy analyses first.
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4.0 Spectral Analysis Methods

For WARNSIS II, it was decided to implement as much of the analysis as possible,
including the spectral analysis, in software. The reasons for this are three-fold. First, by relying
on software for as much of the recognition scheme as possible, the overall chip count for the
device can be minimized. This allows for lower overall cost for both design and manufacture.
By reducing the number of chips or specialty chip sets, both the number of parts and the overall
size of the board can be reduced. This in turn will also lower assembly and testing costs. By
reducing the parts count the time required to design and layout the circuit is also greatly
reduced. Eliminating the use of specialty chips is important. The use of specialty chips would
limit the functionality and flexibility of the device because, should improvements to the
recognition algorithm be developed in the future, they would not be easy to incorporate into

the existing hardware. With software, this is not problem.

Secondly, implementing WARNSIS 11 in software means that large economies of scale
can be applied to the production of the final device. With no specific hardware requirements,
any commercially available platform with enough processing power could be used. For
example, a PC sound card with production volumes of millions of units per year could be used

as the basis for implementing some versions of the WARNSIS II system.

Lastly, although the WARNSIS II project is intended to produce a design which can
be implemented as a stand-alone device, the functionality of the WARNSIS II recognition
scheme could provide useful features to be incorporated into other devices such as medical

monitoring equipment. A software approach makes this "generalization" much easier.
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4.1 WARNSIS II Spectral Analysis

For WARNSIS II we propose to perform the spectral analysis via a bcomputational
method. There are a number of reasons for this approach. First, by using a computational
method, such as the Fast Fourier Transform (FFT), the number of frequency ranges and the
total frequency range covered can be adjusted by software on an individual signal or
implementation basis. This allows for a multilevel spectral analysis, if réquired. For example,
an inconﬁng signal could first be examined for energy content above or below a given value in -
order to reduce the search path and execution time. Alternatively, the FFT approach would

allow for finer or coarser frequency determinations in changing noise environments.

The use of a computational spectral analysis method also allows for some type of noise
cancellation. The spectra for the templates obtained during training of the device are likely to
be obtained in the "best" conditions available. This could mean no, low or modest noise
environments, depending on where the signal was "learned". The spectra of signals detected
in the real world are likely to have a large noise content . Noise cancellation on both training
and analysis would give the cleanest signal both for the templates and for comparison, and

should improve the ability of our scheme to recognize a signal in noisy environments.

There are a number of computationai frequency analysis methods in addition to the
FFT, mentioned above, which can be used for spectral analysis. Other computational methods
such as the Wavelet, Hartley and Cosine transforms, and Finite and Infinite Impulse Response
filters (FIR and IIR) are available. These will be compared in the following sections to

determine which method best fits the WARNSIS II requirements.
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4.1.1 Fast Fourier Transform [17,18,19,20,21]

The FFT, first popularized by J.W. Cooley and J.W. Tukey in 1965 [18,21], is currently
one of the most common and successful methods for performing spectral analysis on digitized

data.

Suppose we a sample a continuous function of time A(t) so that we have N consecutive

values, where N is even, with a sampling interval of A.

h,=ht), t,=kA, k=012 .., N-1 (4.1)

If we are attempting to find the Fourier transform for this function, then having N input

values we can produce no more than N independent output values. This means that we can

4.2)

n N
E n=-— ..,
j; NA 2

N[ =

N
2

obtain estimates only for those frequencies at discrete values or bins. We approximate the

Fourier integral by the sum

o N-1 . N-1
n) = fh(t)eznlfntdt = thezﬂlf"tkA - A theznikn/N (
k=0 k=0

The final summation in equation (4.3) above is known as the Discrete Fourier Transform

(DFT). The DFT requires N’ complex multiplications and is an O(N?) process. Using the
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FFT algorithm, the Discrete Fourier Transform can be calculated on the order of O(Nlog,N),

which i's an enormous difference. The FFT is derived as:

EeZnijk/Nf(l-)

j=0
N/2)-1 ‘ /21
eZnik(Zj)/Nf(zj) + Z eZnik(2j+1)/Nf(2j+1)
J=0 Jj=0
N/2)-1 N (N/2)-1 o
eank]/(N/Z)f(zj) " Wk Z e21t1kj/(N/2)f(2j+1)
Jj=0 j=0
Fe + Wk Feo

where WX = "N | sometimes referred to as the "twiddle factor" ¢ F, denotes the k

component of the Fourier transform of length N/2 formed from the even components of the
original f{j) and F,° is the corresponding transform of length N/2 formed from the odd
components. The fact that this formula can be used recursively means that, for transforms for
which N is an integral power of 2, it can be repeatedly broken down until we have only to
calculate transforms of length 1. A Fourier transform of length 1 is simply the identity
operation that copies it input value to its output slot or bin. This means that every length 1
transform in the series corresponds to one of the input values. The cbrrect input value can be
determined by bit reversing the index j for the oﬁginal function. If you take the original data
sequence and rearrange it so that the values are in order not of j, but in order of the numbers
obtained by reversing the bits of j written as a binary number, you have the correct relation
between the inputs and the length one transforms. For example, if j=3 for a length 8 transform

then the correct output bin for the length one transform would be given by:

j=4,,= 100, yielding bin#=001,=1,, 4.5)
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From this it is a simple matter of calculating the combined transforms of size 2, 4, ..., N in
recursive stages. Figure 4.1 shows a length 8 transform being bit reversed and then

recombined.
4.1.1.1 FFT and Spectral Power Estimation [19]

Since we are trying to determine if a signal being analysed by WARNSIS II has a
spectral component at a given frequency, we are interested in the energy content of a signal
at that frequency. This means that rather than using the Fourier Transform itself, as we would
if we were required to perform a cross-correlation with a second signal, we require only the
signal's power spectrum. This can be done using the FFT. Rather than matching the power
at a particular frequency f, that would be obtained from calculating the continuous Fourier
transform, the power given by the FFT is an ';average" or expected value for the frequency bin
centred at f, extending over a narrow window . Historically this has been called a

periodogram. For an N-point sample of a function c(t) using the FFT
N-1

C, = che“"f’f“? k=0,.,N-1 (4.6)

J=0
the periodogram estimate of the power spectrum is defined as

P(0)

1
PG = —|Gif

P(f) - -];,1-5[|Ck|2 v |Che? ] k=1,2,...,(—]2\—[—1) 4.7)

1
P(f) = P(fy,) = 7\,—2|CN/2|2
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Figure 4.1 - FFT Bit Reversal Recombination
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where £, is defined only for the zero and positive frequencies

k N
=2f— k=0,1,.,— 4.
ﬁfN 2 (

_ k
¥ NA
For the periodogram defined above, the narrow window over which the average is taken, as

a function of s the frequency offset in bins, is described by

1 sin(ms) |?

W) =5 [Sn s/ V)

(4.9)

This window has side lobes that contribute significant amount of "leakage" a number of bins

away.
4.1.1.2 Data Windowing

Performing a Fourier transform on a given function of time assumes an infinite sequence
of input values for the integral. The FFT, which is used for discrete data, is always performed
on a sample size somewhat less than this. By performing an FFT on a finite sample size we are
in effect convoluting an "infinite" sequence with a square window function which is 0 except
during the finite sampling time. The overall effect of the finite sample is to cause "leakage" in
the power spectrum from the true frequency to other frequencies a number of bins away as
described above. The "leakage" can be substantial even at frequencies a large number of bins
away from the frequency of interest because the square window function, in effect, turns on and

off instantaneously.
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To overcome this leakage problem it is possible to modify the sampling window
function by multiplying the input signal data ¢; , j - 0, ... N-1 by a windowing function .

There have been a number of alternative window functions proposed [19]:

the Parzen window,

. 1
J - 3 -1
w, = 1 - 7 (4.10)
— (N +1
5 ( )
the Welch window ,
: 1
J 3 W -1
w, = 1 - " - (4.11)
— (N +1
5 ( )
and the Hanning window,
1 ~ 211 \
W, = 5 I 1 - cos (N_—) l (4.12)

Each of these window functions is shown in Figure 4.2 [19]. The effect that each of
the windowing functions have on the "leakage" between bins is different. These effects are
usually given "figures of merit" that can be used to describe the narrowness of the peaks. The
tradeoff between different window functions is between the narrowness of the peak and the fall

off of the tails. In general it is recommended, that if a windowing function is required, the
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Parzen or Welch windows be used. The larger computational effort required for the cosine
function in the Hanning window gives minimal additional value [19]. Figure 4.3 shows the

effects of the three windowing functions in comparison to the square sampling window [19].

4.1.1.3 Maximum Entropy Method [19,32]

As stated earlier, when performing a spectral analysis using the FFT there is a
relationship between the number of samples that must be used to produce a given frequency
resolution for a given sampling rate. The finer the frequency resolution, the larger the number
of samples that must be considered. This can lead to prohibitively large sample sizes which can

consume large amounts of memory while processing.

The Maximum Entropy Method (MEM) [19, 32] for power spectrum estimation allows
one to perform a parametric (model based) spectral analysis which will provide‘ a better
frequency resolution for a smaller sample size. The MEM is an auto-regressive method which
characterizes a known signal in terms of a finite number of poles that best represents its

spectrum in the complex plane.

The MEM can produce a better spectral resolution for a smaller number of samples than
the standard FFT methods. The MEM does, however, have a few disadvantages. Firstly, it
exhibits line splitting at high signal to noise ratios. Secondly, at higher orders the MEM can
introduce spurious peaks. Thirdly, for sinusoidal signals in noise, which would encompass a
large number of the warning signals of interest to a WARNSIS device, there is a frequency shift
in the signals spectrum that is dependant on the initial phase of the signal which we are trying

to recognize. For these reasons and because the MEM requires extra computational effort

to calculate the parametric coefficients, this method was not used for WARNSIS II.
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4.1.2 Discrete Hartley Transform [17,22,23]

The Discrete Hartley Transform (DHT) is applicable to real valued signals and is
closely related to the FFT , in fact the DHT and the FFT can be derived from each other . The

DHT is defined as:
N-1
H(K) = Z x(n) cos(2nk n/ N) + x(n) sin(2nk n/N) k=0,..., N-1 (4.13)
n=0
N-1 .
x(n) = I/N Z H(k) cos(2nk n/ N) +H(k) sin(2rkn/N) k=0,...,N-1 (4.14)
k=0 '

where x(n) is the real valued sequence. There have been a number of claims that the Fast
Hartley Transform (FHT) implementation of the DHT is more efficient than the real-valued
FFT for éomputing the power spectrum for real-valued sequences with N =2F. The two most
recent comparisons of the two methods have concluded fhat the FFT is in fact a more
computationally efficient algorithm [22,23]. The time required for computing the FFT vs the
time required for computing the DHT give a ratio of processing times of 1:1.04 for a size 512
transform [24]. For the TMS320C30 processor used in WARNSIS II, the ratio of processing

time between implementations of the FFT and DHT on the same signal processor is

approximately 1:1.98 in favour of the FFT which is a significant difference [17].
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4.1.3 Discrete Cosine Transform [17,19,24]

The Discreet Cosine Transforms (DCT) also arises from the FFT. The DCT is given by:
N-1

F(K) = Z x(n) cos(ntk n/N) - k=0,.,N-1 (4.15)
n=0 .
where x(n) is_the real valued sequence. Although the DCT appears to be simply the real part

of the Fourier Transform, it differs by a factor of 2. The DCT and Discrete Sine Transforms
(DST) are more useful when applied to boundary value problems than for generating the power
spectrum information that we require. Although new, more efficient, direct computation
algorithms have been proposed for the DCT and DST [24], the FFT is still superior for our
purposes. The ratio of processing time for implementations of both the FFT and DCT on the
TMS320C30 signal processor is approximately 1:1.91 in favour of the FFT for a size 512

transform [17].
4.1.4 Finite and Infinite Impulse Response Filters [17,19,20]

Rather than using the FFT or other similar transform, it is possible to duplicate the
process used in WARNSIS I where the frequency spectrum was divided fnto 8 ranges by the
filter bank by the use of linear digital filters. If we assume that the signal x(n)' is applied to
a bank of complex filters with impulse response h(n)exp(jw,n) where w, is the centre frequency
of any filter, and h(n) is the response of an ideal lowpass filter with bandwidth w,. If the real
part of the filter output is squared, doubled and bandlimited to 2w, then the resulting analysis
is the same as the square of the magnitude of the Short-Time Fourier Transform of x(n) for 2w,

<[ @ | < 1200, [20].

34




Chapter 4 - Spectral Analysis Methods

The generic linear filter is formed by taking the sequence of inputs x, and producing a

series of outputs y, such that

M N
Yo = DG Xt XA, (4.16)
k=0 j=1 _

where ¢, and d; are fixed coefficients which define the filter response. If N=0 so that the second
sum does not contribute to the filter responsé, then the filter is said to be non-recursive or a
finite im?ulse response filter (FIR). If N<>0 then the filter produces a response from not only
the current input values but from its own previous output as well. In this case the filter is said

to be recursive or an infinite impulse response filter (IIR).

The main drawback of using these methods is in the calculation of the coefficients.
There are a number of methods for calculating the coefficients ¢, and d; depending on whether
one is implementing an FIR or IIR. The Remez Exchange Algorithm produces fhe best
Chebyshev approximation for a fixed number of filter coefficients for an FIR and one useful
technique for IIR's is the bilinear transformation method [19]. The drawback is that all of the
methods for calculating the coefficients require large amounts of processing time. This wquld
then require WARNSIS II to use higher speed and higher cost processors to imﬁlément the
spectral analysis component of the WARNSIS II algorithm. A second drawback of the filter
approach is that even though new IIR algorithms are available for tracking sinusoidal signals

in noisy environments, the algorithms all exhibit "rather erratic" convergence behaviour [25].
4.1.5 Wavelet Transform [26,27,28]

The Wavelet Transform (WT) is an alternative time-frequency representation that can
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be used for spectral analysis. The time-frequency version of the WT is defined as

WL @) = [ TR | £ -l a’ @1n)
t/ 0

where y(?) is the "analysing wavelet" and is a real. or complex bandpass function centred
around time t=0 and f, is the centre frequency of y(¢) [26,28]. In principlg the wavelet
transform and the Fourier transform are very similar in their approach to time-frequency
representation, as both can be represented as inner products. In fact the WT is just a special
case of the generalized STFT [27]. There are two essential differences between the wavelet
and Fourier transforms. The first is the choice of a linear time-shift/frequency-shift operator
for the Fourier transform versus a time-scaling/time-shift operator for the wavelet transform.
The second is that the equivalent y(7) function for the Fourier transform isa lowpass function

instead of a bandpass function for the wavelet transform.

B.oth transforms suffer from similar time-frequency resolution limits. Thus, neither
transform can provide arbitrarily good time resolution and frequency resolution simultaneously.
For example using the Fourier transform with a given sampling rate, if one wishes to increase
the frequency resolution of the power spectrum, one must increase the number of samples
taken, thus producing a power spectrum covering a longer time period. However, the Fourier -
and Wavelet Transforms are different regarding their time-frequency resolution in ways which
are important for the WARNSIS II algorithm. In particular, for the Fourier Transform the
time-frequency resolution is the same for all f'requencies. For the Wavelet Transform, however,
the time-frequency resolution is not constant, higher frequencies are analysed with better time
resolution, but with poorer frequency resolution [28]. This is unacceptable for the

WARNSIS II algorithm since it is essentially the higher frequencies that are of interest. The .
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time-frequency resolution should be constant over the entire frequency range of interest since
we have no way of predicting a priori which frequencies will be relevant when the device is

actually in use.
4.2 Evaluation of Computational Methods for Spectral Analysis

The FFT approach to frequency analysis was chosen over the WT for the reasons
explained.above. The FFT is also preferred to the Hartley, and Cosine Transforms and the FIR
and IIR filter methods because of the time comparison factors as discussed in sections 5.1.2,
5.1.3 and 5.1.4, as well as other reasons. Firstly, the FFT is one of the best understood
computational methods and optimized code for performing the FFT is available for most
computer languages and systems available on the market today. Also, because of its popularity,
many of the "off-the-shelf" signal processing chips are architecturally designed to exploit fast |

addressing schemes which provide for a further increase in FFT processing speed.

Additionally, further Speed increases can be gained by exploiting specialized
implementations of the FFT algorithm which are known as RADIX-2 or RADIX-4 versions.
When the number of input values for the FFT is n’ or n* then the FFT processing speed can be
increased by reducing the number of stages used. Also for the WARNSIS II algorithm we are
digitizing real signals, hence the input to the FFT routines will be real values with no complex
parts. This allows us to take advantage of the ability to double the FFT processing speed by

substituting real values for complex values in the input array.

The FIR and IIR methods were not considered as the number of filter banks required

to implement a fine enough frequency resolution would be computationally prohibitive.
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5.0 WARNSIS II Design

5.1 Overview

The WARNSIS II warning sound recognition system is a set of software algorithms
which can be implemented on any hardware platform with sufficient processing power to
perform the required real-time FFT analysis and template matching algorithms. The system
consists of a number of functional modules which allow the WARNSIS II system to operate
in two modes: learning mode and signal recognition mode. In the learning mode, a template
for a warning signal is "learned" by analyzing the signal for épectral and temporal information.
The frequency(s) at which the maximum peak(s) in the signal's spectral energy occur are
determined and these values are saved in a template. Timing information, specifically, the
duration of a warning signal burst and the interval time between warning signal bursts (for

repetitive signals such as telephone rings) are determined and also saved in the template.

In the recognition mode, the spectrum of the incoming real time signal is continuously
analysed. The analysis determines if any of the incoming signal's spectral components match
those stored in one of the "learned" templates. If a spectral match is found, timing information

is then applied to rule out transients which could generate false alarms.

5.2 Learning Mode

As stated earlier, the drawbacks of the devices commercially available today are their
lack of flexibility causing difficulties when moving from one location to another and their lack
of the ability to accommodate new types of warning signals. To overcome these deficiencies

a WARNSIS I device must include the capability for the automatic "learning" of a new signal.
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When the learning mode is entered, a signal learning algorithm begins. The input signal
" is continuously monitored until an increase in the Short Time Average Absolute Amplitude
(STAAA) is found. The STAAA is calculated by averaging the absolute value of the input
amplitude over a period of 512‘ sémples (63.9 ms at 8,012 Hz sampling rate). This is sufficient
to eliminate short noise bursts which would interfere with the second stage of the signal
detection algorithm. When the learning mode is first entered a sample of the background sound
level is taken and its STAAA is calculated. This level then becomes the value against which
all later STAAA's are compared in order to determine if an increase in signal amplitude due to
a warning signal has occurred. If a future STAAA is greater than 1.5 times the background
level value then a valid amplitude increase has been detected. To actually detect the beginning
of a valid signal, the signal acquisition algorithm requires that two consecutive STAAA's 1.5
times greater than the background level be detected. If a valid STAAA is detected, but the
next STAAA fails to exceed 1.5 times the background value, then the first STAAA is ignored.
This differs from the original WARNSIS I algorithm in that there is no Dynamic Amplitude
Threshold (DAT) and that two consecutive valid STAAA's are required to initiate the learning
process. Although this algorithm would be affected by an overall increase in ambient noise
levels, causing it to falsely detect the start of a warning signal, it should be possible in most
cases to "learn” a signal in a low noise environment. For example, it is possible to lower the
ambient noise level in a home or office for a short period of time by tempérarily eliminating the

noise sources. Figure 5.1 shows the leaming mode process described above.
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Figure 5.1 - Short Time Average Absolute Amplitude (STAAA) for Burst Determination
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Once two consecutiye STAAA's have been detected, the signal acquisition algorithm

- sets the start of valid signal flag and begins the spectral analysis. The spectral analysis at this
stage of the learning process is performed by continubusly calculating the FFT on the incoming
signal in 512 sample intervals. As each set of 512 samples are collected the FFT is processed
and the magnitude of the FFT for each bin in the power spectrum is calculated and added to
the total sum of all magnitudes calculated for each bin from all of the previous 512 sample

interval since the start of the warning signals acquisition.

This process continues until thé warning signal is "lost". The signal is lost if fwo
consecutive STAAA's fail to exceed 1.5.times the background STAAA value. If a single
STAAA fails to exceed the background STAAA limit but the STAAA from the ﬁéxt 512
sample interval does exceed it, then the signal is not lost. Once the warning signal has been
lost, the spectral analysis is ended, the FFT magnitude sum is preserved and the warning signal
bﬁr'st duration is calculated as the time from the detection of the first of the two initial
STAAA's to the time of the first of the two consecutive STAAA failures. Monitoring of the
input signal continues until one of two events happens. If tWo new consecutive STAAA's
above the background value are detected before the learning mode "times out”, then a valid
signal repetition is deemed to have been detected and the signal interval time is calculated as
the time from the detection of the first of the two initial STAAA's at the begihnin’g of the
initial burst to the time of the first of the two consecutive STAAA at the beginning of the
repetition.’ If a repetition is detected then the learning mode signal acquisition phase ends.
Alternately, if no repetitive burst is noted before the learning mode times out (after
approximately 30 seconds) the signal acquisition phase is ended anyway. If the learning mode
times out while the signal is still being acquired then a continuous signal, such as that from a

smoke detector, is deemed to have been detected.
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Once the signal acquisition phase ends and the burst duration and interval have been
determined, the FFT magnitude sum is examined to determine the main spectral peak(s). The
centre frequency for the bin which has the greatest magnitude sum among those bins for
frequencies above 900 Hz is deemed to be the dominant spectral peak for the acquired signal.
The peak is detected by an algorithm similar to the algorithm used for detecting the beginning
and end of the signal during the signal acquisition phase. The FFT magnitudes are examined
and the start of a peak is determined by two consecutive increases in FFT magnitude when
compared with the previous adjacént FFT bin magnitude. There is no preset value for the
peak increases to exceed as it is only the increase that is relevant, not the absolute value of the
increase. As peak detection proceeds, the FFT magnitude values are compared for each bin
within a peak. The maximum hlagnitude found for each peak during this examination process
is saved as the peak maximum. The bin number corresponding to the maximum magﬁitude
found is taken as the centre frequency of the peak. Peak detectipn continues until the peak
maximum is detected, again this is determined by two consecutive decreases in FFT magnitude
for adjacent bins. The "down slope" of the peak is monitored until the FFT magnitude exhibits
either two more consecutive increases, indicating the start of another peak, or two consecutive
equal magnitudes, indicating the "bottom" of the peak. The width, centre frequency and

maximum magnitude are thus determined for each peak in the FFT magnitude spectral sum.

Once thé entire spectrum has been scanned and all peaks have been identified, the
characteristic peak for the warning signal is determined to be the peak with the greatest peak
magnitude. The maximum peak magnitude is used, rather than the peak "area", as warning
signals tend to have narrow peaks and noise tends to be broad band covering a larger number
of bins. A noise peak may contain more total energy than a warning signal peak, but that

energy is spread over a greater frequency range for the noise peak than for the signal peak.
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The warning signal is thus characterised by three attributes:

i) a characteristic peak frequency (bin number),
i) burst duration time

ii1) burst interval time (if required).

The peak magnitude and width are not currently used for signal recognition and are not stored

in the learned warning signal's template.
Figure 5.2 shows the flowchart for the generalized WARNSIS II learning algorithm.
- 5.3 Recognition Mode

The recognition mode in WARNSIS II operates much in the same manner as learning
mode, except that, rather than simply using amplitude increases and decreases for identifying
the beginning and ending of signal bursts, it is the presence or absence of a signal's

characteristic peak frequency that determines the beginning and ending of a burst.

While opérating in recognition mode, the input is continuously monitored and the FFT
of the incoming signal is continuously calculated in the same 512 sample size intervals as for
the learning mode. It is important that the same sample size and sampling rate be used for both
the learning mode and the recognition mode as changing the sample size or sampling rate
changes both the size and centre frequency of the bins. Once the FFT has been calculated for

a 512 sample interval, rather than summing the FFT's output for an extended 'period as in the
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Figure 5.2 - Flowchart for WARNSIS II Learning Mode Algorithm
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learning mode, the spéctral analysis is performed on the individual 512 sample intervals. As
each 512 sample segment is processed, all péaks present in that time interval's spectrum are

identified using exactly the same peak detection algorithm as was used in the learning mode.

Each peak above 900 Hz present in the current segment's spectrum that is greater in
magnitude than a minimum limit and that is also greater in magnitude than 25% of the
magnitude of the largest peak is compared to the characteristic peak frequencies stored in the
templates for the various signals that have been learned. The input signal's peak magnitudés
are compared to both a preset minimum peak energy value and the 25% limit in order to
eliminate false peak detection. Since the energy content in the background signal at frequencies
above 900 Hz is generally due to transients and higher harmonics, thé magnitude of thesg peaks
are generally lower than those for true warning signals. By.only looking at fhe significant peaks
in the spectrum we can eliminate the peaks due to transients. Transient signals are eliminated
by this method because signals that are of short time duration with respect to the sampling
period, and are of limited power do not contribﬁte as much to the power spectrum as do

longer duration, higher intensity signals.

The WARNSIS II algorithm is only interested in the spectrum above 900 Hz and takes
no account of any spectral components below 900 Hz. This means that if no warning signal
is present, the spectrum of the incoming signal above 900 Hz will be filled with peaks generated
by the background noise. Since there will be no large magnitude peak due to a warning signal,
the largest peak above 900 Hz will belong to the background noise spectrum and the 25% limit

will be set relative to the background noise. This means that noise peaks would then be

considered as possible candidates for recognition.




Chapter 5 - WARNSIS II Design

The 900Hz lower frequency limit and 25% magnitude limit were chosen by examining
the frequency spectrum from a number of digitized background samples. It was foﬁnd that in
almost all cases the magnitude of peaks in the frequency spectrum decreased signiﬁcantly at
frequencies greater than 900 Hz and that, in general, noise peaks above 900 Hz had
magnitudes less than 25% of the magnitude of the signals that we were examining. These are
not ﬁxed limits. Since these values as well as .all other limits for the WARNSIS II algorithms

are set in the sofiware, different implementations of WARNSIS II could use different limits.

To ox)ercome this problem WARNSIS II uses a 2-part level analysis. In addition to
igndring' peaks which are less than 25% of the maximum peak detected, WARNSIS 11, as stated
earlier, also ignores any peak which is lower in magnitude than avpreset minimum value. By
only "acknowledging" peaks with at least a minimﬁm energy content we can eliminate those

“which do not contain energy substantially above the background level. This is more effective
than using a total signal amplitude threshold approach since in a typical noisy environment that
the device may be used, most of the background noise signal's total energy is generated by
voices, radio or television broadcasts and will be found below 900 Hz. This 2-part analysis
allows a warning signal to be successfully detected by its characteristic frequency peak even

in a very noisy environment.

There is one drawback to this 2-part analysis method. If two warning signals occur at
the same time, the peak magnitudes will be normalized with respect to the stronger signal. If
one of those signals is significantly weaker than thé other, so that the weaker signal's peak does
not exceed the 25% threshold, the detection of the weaker signal would be suppressed. This
means | that a signal with a fixed magnitude may‘ not bé detected in the presence of a

significantly stronger warning signal, even though it would be successfully detected if it
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occurred by itself. However, this is the case for the human ear as well, a ringing telephone at
a given volume will be detected above the general office or home background noise level, but

not above the ring of a fire alarm bell.

Figure 5..3 (a)and (b) show the power spectfum for typical waming signals (in this case
a microwave oven alarm (a) and a mechanical telephone ringer (b)). Figure 5.3 (c) shows the
power spectrum for typical background speech and music. For each figure, the top graph
shows the digitized input signal's magnitude vs time. The second graph in each figure shows
the relative magnitude between peaks for the complete power spectrum for the input signal
from 0 to 5000 Hz. The third graph in each figure shows the relative magnitude for those

peaks in the power spectrum above 900 Hz.

As can be seen from figure 5.3 (a) the majority of the spectral énergy content in the
warning signal is in the range above 900 Hz. Notice the narrowness of the characteristic péak '
and the lack of secondary peaks. This is common for warning signals that are generated
electronically. Warning signals generated mechanically, such as the ring of a telephone bell,
generally show a slightly broader characteristic peak as well as multiple harmonic peaks as
shown in figure 5.3 (b). For the 'general background noise case shown in ﬁgure 5.3 (c), in this
example FM rock music and voices, although there are secondary peaks at frequencies above
900 Hz, most of the energy content and the main peaks in the power spectrum are at

frequencies well below the 900 Hz range. : ' .

The third graph of figure 5.3 (c) shows why, if we selectively look only at those peaks
in the power spectrum above 900 Hz, we require the preset minimum limit for peak detection.

When the low frequency energy content is eliminated from the peak detection process, the
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Figure 5.3 - Typical Warning and Noise Signal Power Spectra
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Figure 5.3 - Typical Warning and Noise Signal Power Spectra
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relatively minor noise peaks become dominant in the'high frequency power spectrum. This
could lead to erroneous spectral matches. These matches aré not likely cause warnings to be
issued to the user since a particular noise spectrum is unlikely to persist long enough to match
the timing criteria of the timing analyser. HoweQer, by eliminating the noise peaks at this stage,

we can increase the overall processing speed of the WARNSIS II algorithm.

In the recognition mode, if one of the detected peaks in the input signal's spectrum
matches the characteristic peak of one of the learned signals in one of the templates, then a
signal match is deemed to have been made for that template. For the recognition mode
acquisition algorithm, as for the learning mode signal acquisition algorithm, two consecutive
signal matches are required in order to determine if a "candidate" warning signal has been
identified. A "candidate" signal is one for which further spectral and timing analyses shall be
performed to determine if indeed an actual Warﬁing signal has been successfully —detected.
Unlike in the leamiﬁg mode, however, in the recognition mode, a warning signal's candidacy
is based on energy content at its characteristic frequencies and not on total energy
(amplitude) increases. Once the "candidate" signal is associated with a given template, the

start-of-burst indicator flag is set and the burst start time is recorded.

The WARNSIS II algorithm uses multiple templates, one for each learned signal, and
each template has its own set of timing records and flags. Thus, it is possible for WARNSIS II
to identify multiple warning signals overlapping in time. Provided that the characteristic peak
of each of the different warning signals in the input to WARNSIS II are at a dii"ferent‘
frequencies, and that each of the warning signals in the input possesses enough energy to meet
the minimum energy (magnitude) criteria stated eérlier, the peak f‘or each individual warning

signal in the combined signal will be detected by the algorithm.
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Once a warning signal's candidacy has been determined, that is a spectral template
match has been found, the burst duration timer is kept running until the _warning' signal's peak
is no longer detected (lost). In the recognition mode, losing the signal requires two consecutive
absences of the given warning signal's characteristic peak in the input signal. Once the signal
is lost, the burst duration is calculated as it was in the learning mode, from the time of detection
of the first of the two initial matches between the input signal's spectral peaks and the warning
signals characteristic peak stored in the template to the time of the first of the btwo consecutive
pe_ak losses. At this point a determination can be made as to whether a spectral and burst
timing match can be made between the input signal and a previously learned signal whose
characteristics are saved in the template. A "match" between an incoming signal and a template
requires both the spectral characteristics and the burst duration timing of the input signal
match the corresponding template values within pre-defined limits. In particular, the burst
duration cbmparison algorithm allows a burst duration match to fall within a time window of
variable length. From examining the variation in a number of real input signals, it was
determined that the input signal's burst duration need only match the template values within +/-
10%. This means that the detected burst can be up to ten percent longer or ten percent shorter
than the value stored in the template. Similarly, the spectral peak comparison algorithm was
determined to require a tolerance of +/- 1 frequency bin (+/- 15.6 Hz for 512 sample intervals
@ 8012 HZ) in order to successfully match a peak from the input signal to a characteristic peak
in a template. \Both tolerances can be defined on either a template to template basis or as an
overall tolerance limit for WARNSIS II and, as for éll other WARNSIS II limits, can be
changed on an implementation to implementation basis. If both tﬁe timing and spectral
characteristics have been matched between the input signal and one of the learned warning
signal templates, a burst recognition flag is set indicating a valid burst match for that warning

signal.

52




Chapter 5 - WARNSIS II Design

For continuous signals, the burst duration must only be longer than the minimum burst
duration that is stored in the template, rather than actual burst duration. If WARN SISII is
trying to recognize a continuous signal, once the minimum burst duration is exceeded a
continuous recognition flag is set. For a continuous signal, the recognition flag can be

* maintained for the duration of the signal, or it can be canéelled automatically after some period
of time and‘re-issued if the warning signal remains on long enough to exceed the minimum

burst duration a second or third time,

WARNSIS II also has the ability to further validate repetitive signals such as telephone
rings by waiting for a second occurrence of the warning signal to appear. When in the learning
mode, we assume that the second increase in amplitude indicates a second signal burst. In the
recognition mode, WARNSIS II requires a second complete burst to occur before it can
attempt to match the interval times of the incoming signal with that of the template's. Rather
than just waiting for a second Burst to start, the entire second burst must occur and match the
same timing and spectral characteristics as the first. This means that noise bursts, as well as
intervening signals from other valid warning devices will not affect the interval timer. The
interval timer also allows a +/- 10% variation in interval time between the input signal and the
warning signals template value for a valid match to occur. If an interval timing match is found
an interval recognition flag is set. The use of the various recognition flags will depend on the
implementation of WARNSIS II in .an actual device. In some cases a notification to the user
thatr a warning signal has been detected could be issued, in others the recognition flag may be

used to trigger further processes in an existing medical device.

Figure 5.4 shows the flowchart for the generalized WARNSIS II recognition algorithm.

The DSP code for both the learning and recognition modes can be found in Appendix A.
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Chapter 6
6.0 WARNSIS II Implementation and Evaluation

The WARNSIS II project has resulted in two separate implementations of the
WARNSIS II algorithms. Much of the initial design and testing was performed onaPC as a
MS-Windows cbmpatible program. This allowed for rapid modification and testing of the
algorithms as well as providiﬁg a rich graphical environment for displaying and analyzing
results. Once the basic algorithms had been designed, the system was then implemented on a
Texas Instruments TMS320C30 Digital Signal Processing Evaluation Board. This provided
the platform for testing the algorithms in real-time on a lower cost system. Finally the tho
implementations were integrated to allow PC .cor‘ltrol of the algorithms operating on the DSP

board.
6.1 PC Based System

The PC version of the WARNSIS II algorithms were written in Turbo Pascal for
Windows Version 1.5 to run under Microsoft Windows on any IBM compatible PC system.
In addition to performing tﬁe WARNSIS II algorithms, the PC based program also provided
a num‘ber of additional routines that were used to display and analyse digitized input signals.
This was very useful in the early stage of development and lead directly to the development of
a number of the WARNSIS II algorithms. By visually examining the digitized signals and their
Fourier transforms, it was possible to determine what features made the warning signals distinct
from other types of input signals. Indeed, many of the WARN SIS IT algorithms are
implementations of the pattern recognition "routines", such as picking out distinct peaks from

-

the background, that were originally performed visually.
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The PC based system also provides a "toolbox" environment for testing and refinement

“of new algorithms in the future. As hew types of recognition algorithms are designed they can
easily be added in a modular fashion to the existing PC program and then tested. This helps
to meet one of the objectives of the WARNSIS II project, namely to provide a method for

easily maintaining and upgrading the WARNSIS II system.

“To allow the maxirﬁum flexibility of the PC-based system, again rather than relying on
an implementation spéciﬁc format, digitized signals are input to the WARNSIS II program in
VOC format. This is a standard PC format originally created by Creative Labs for their "Sound
Blaster" series of signal processing boards. This allows any PC based sound acquisition board
to function as the input system for a PC-based WARNSIS II systeni. For this portion of the

project a Creative Labs Sound Blaster,, was used to provide the digitized input signals.

Using the standard VOC file format and a non-specific input device also provides two
other useful features for WARNSIS II development. Since the VOC format provides for the
storage of input signals in digital format as a file, new algorithms can be tested against existing
digitized signals. This means that comparison of the new algorithms can be made against
existing algorithms on the same signal. Even the best quality tape recordings will deteriorate |
over time whereas the digitized files can be used ovér and éver. The second advantage comes -
from the ability to use VOC ﬂles from any source. If a test of a specific warning signal is
required, a VOC file for the warning signal can be easily sent via modem or network from a

remote location.
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6.1.1 Results of PC Based Implementation

Figure 6.1 (a) and (b) show an example of the results of the WARNSIS II learning
mode algorithms. The top graph shows the input signal amplitude versus time for
approximately 6.33 seéonds of telephone ringing signal generated by an electronic, rather than
mechanical bell, ringer. The entire first burst of the telephone ringing signal is shown, but only
the beginning of the second dnging burst is shown as learning mode does not require the entire
second burst for interval determination. Additionally, the top graph shows vertical lines
ivndicati‘ng the beginning and end of the first burst and the beginning of the second burst
calculated by the STAAA method. The burst duration and interval times calculated using the
STAAA method for this sigﬁal were found to be 2.189 seconds and 6.178 seconds respectively

which is in agreement with the telephone standards [29].

The middle graph shows the overall FFT power spectrum for the input signal for the
time period between the vertical lines indicating the start and end of the first ringing burst. As
stated earlier, this is the combined power spectrum totalling each of the FFT magnitudes
calculated for the 46 individual 512 sample FFTs performed during the burst. The bottom
graph shows the combined power spectrum for frequencies above 900 Hz and also shows the
peaks in the power spectfum identified by learning mode. The small vertical lines at the bottom
of each peak show the width of the peak as detected by the peak detection algorithm as well
as the centre frequency for each peak, shown by the small vertical line at the top of the peak.
The characteristic peak is highlighted at the top of the third graph by a horizontal line showing
the width of the characteristic peak. Aithough, at present, the width of the characteristic peak
is not used in recognition mode (nor calculated in the DSP version), it is included as a feature

in the PC version of the learning mode in order to supply more spectral information when
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developing new algorithms. F 6r the telephone ringing signal shown in this set of graphs, the
characteristic peak frequency was determined to be 1,593 Hz with a width of 275 Hz from
1,458 Hz fo 1733 Hz. The céntre frequency is in close agreement with the frequency of 1575
Hz measured by oscilloscope and is within the accufacy limits for the FFT at thé sample rate
of 11,025 Hz and 512 samples. The horizontal line near the bottbm of this graph shows the
average peak power above 900 Hz and again is shéwn as a development "tool" rather than as

one of the parameters for signal recognition.

Figure 6.2 (a) shows graphically the dverall results obtained by the WARNSIS II
recognition mode algorithms from a complex signal. The graph in Figure 6.2 (a) shows 7.64

seconds of digitized signal. The signal is a composite of four separate signals:

i) Background Noise (FM rock radio and voices)
ii) Warning Signal A, microwave oven alarm
iii) Warning Signal B, electronic tone telephone ringer

iv)  Warning Signal C, mechanical bell telephone ringer

Figure 6.2 (b), (c) and (d) shows the individual digitized warning signals without the
background noise signal. For each of the warning signals in Figure 6.2 (b), (c) and (d) the
values showing the characteristic peak frequency, burst duration time and interval time were
obtained from the WARNSIS II learning mode algorithm. Figures 6.2 (b) and (c) show

multiple bursts so that interval times can be shown, whereas the composite signal shown in.

Figure 6.2 (a) contains only a single repetition of signals B and C.
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3: 604 ms (microwav.wip) 1254 ms Dur. Match : microwav.wip Int. Match : microwav.wip

4: 139 ms (mech_phn.wip)

5: 139 ms (mech_phn.wip)

é: 139 ms (mech_phn.wip)

7: 650 ms (microwav.wip) 1207 ms Dur. Match : microwav.wip Int. Match : microwav.wip

8:

2090 ms (elec_phn.wip) Dur. Match : elec_phn.wip

(a) - Results of WARNSIS II‘ Analysis of Composite Signal

Figure 6.2 - Composite and Individual Warning Signals Analyses. The figure above shows the results

of the PC-based recognition mode analysis. The central graph of the figure shows a combined signal consisting of
background noise and three different warning signals: a - Microwave Oven Alarm, b- Electronic Telephoné Ringer,
¢ - Mechanical Telephone Ringer. The set of horizontal lines at the top of the graph, indicated as a, b and ¢, show
the position of each of the individual wamning signals in the composite signal , as defermined by the recognition mode
analysis. The small vertical lines at the bottom of the graph, indicated as ¢, b and a, show each successful spectral
match for each warning signal in the composite. Each vertical line corresponds to one 512 sample period. Each of
the horizontal lines above the graph corresponds to one set of vertical lines below the graph are arranged .

symmetrically around the central time axis.

\
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Figure 6.2 - Composite and Individual Warning Signals Analyses
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Figure 6.2 (a), produced directly by the PC based implementation, shows the combined
results of the timing and spectral analysis algorithms. For each warning signal in the composite
signal, the spectral matches between the peaks in the FFT power spectrum for the composite
signal and the characteristic peaks stored in the templates for each of the warning signals is
shown by a small vertical line below the digitized signal. Each vertical line corresponds to a
spéctral match for one 512 sample time interval. The spacing between each vertical line is not
constant due to the resolution limits of the display screen, but the timing is identical for each
of the 512 sample intervals. The timing analysis for each warning signal burst is shown by the -
horizontal lines above the digitized signal. The corresponding spectral and timing indication
liﬁes are symmetric about the horizontal axis at the centre of the digitized signal, shown by
labels a-a, b-b etc.. Thus the first set of spectral match lines below the digitized signal

correspond to the first horizontal timing line above the digitized signal.

Below the graph, the calculated burst duration and interval times as well as burst
duration and interval match messages are shown for the warning signals in order of their
recognition. Thus, although warning signal C started before wafning signal. A, the burst for
signal A ended before that vfor signal C, allowing A's burst duration to be calculated and the

user message for signal A to be generated before signal C ended.

The spectral matching acquisition algorithm's requirement for two consecutive matches
or losses can be clearly seen in the spectral match lines for warning signal B. Approximately
half way into signal C's spectral match series a single spectral match for signal B is shown on
the graph. Since this was a single occurrence, the two consecutive spectral match criteria was
not met and the signal'bs candidacy was not successful at this stage. Approximately 6 time

segments later signal B was successfully determined to be a candidate. The signal remains a
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candidate until the end of the warning signal burst, even though there are two occasions
indicated by missing vertical lines when a spectral match for a single 512 sample interval is not
found for signal B. This is one of the key features of the spectral analysis algorithm. It allows

the temporary loss of the signél without interrupting the timing analysis.

The two consecutive loss algorithm can be extended to three or more consecutive losses
for determining candidacy or loss of a signal. This could allow the WARNSIS II signal
recognition algorithm to operate in a higher noise environment than for the standard two
match/loss algorithm. For example, for the two consecutive loss algorithm, a signal would be
lost after being masked by background noise for only two time periods. If a signal requires
three or four consecutive losses to end the signal's candidacy, then in a very noisy environment
the signal could be masked by background noise for up to four time periods without being lost.

This would allow noise bursts to be longer in duration without interrupting the timing analyser.

This would also, however, hé\}e the eﬁ'ect‘ of lengthening the time after the warning
signal ends before the burst recognition flag is set, since three or more time intervals, instead
of two, would be requiréd to elapse after the end of the signal burst. This would not -
necessarily cause a problem as the time intervals are on the order of 64 msec (sample rate for
the PC version of WARNSIS II was 11,025 Hz) and 4 time intervals would only amount to
1/4 of a second delay. A greater.problem would occur from linking spurious noise bursts into
a single long duration burst. The higher the number of dropouts allowed in the signal matching
algorithm, the greater the likelihood that a series of noise burst would be group.ed into a single
burst. This could cause a false positive message to be issued, especially for continuous signals

‘where a timing match only requires exceeding a minimum burst duration time.
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- Figure 6.2 (a) also shows why a two part spectral and timing analysis is required.
- Although the WARNSIS II spectral analysis correctly identifies the spectral matches for the
initial dccurrence of warning signal C, after warning signal C ends, the spectral matching
algorithm continues to find a number consecutive spectral matches between the input signal
and the characteristic peak for warning signal C. These are listed in the burst duration
calculation tables shown below the graph as 139 ms duration bursts. However, because these
bursts do not match the timing requirements of the timing analysis algorithm, no burst duration
or interval time match message is issued to the user. If only spectral information had been
used, the recognition of the signal by the 5pe_ctral analyser alone would have issued an

erroneous message.

As can be seen in Figure 6.2 (a), the use of both spectral and timing analysis in
combination with the use of multiple templates (one for each warning signal learned) allows the
WARNGSIS II system to detect multiple overlapping warning signals in a noisy environment.
Figure 6.2 (a) shows at one pdint the simultaneous occurrence of the three warning signals in
addition to the background noise. It should also be noted that the characteristic peaks of
warning signals B and C are at frequencies of 1658 Hz and 1593 Hz respectively. This is a
separation of only 65 Hz or 3 bins for a sample rate of 1 1,025 Hz. Since the spectral matching
algorithm allows for a variation of plus or minus one bin for a valid spectral match, this is very

close to the operational frequency resolution limits of WARNSIS II.
6.1.2 Other Results

As the spectral analysis for WARNSIS II is performed in software by the using the FFT,

it is important to determine the effects of digitization, sampling rate, and the data sampling
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window on our algorithm. The PC-based implementation provides not only a basis for
implementing the WARNSIS II algorithms but also for testing the effects of various parameters
and features of the WARNSIS 1II algorithms. The following sections detail the results of those

investigations and their effects on the WARNSIS II algorithm.
6.1.2.1 8 Bit vs 16 Bit Digitization

The VOC format .provides for the storage of digitized signals in both 8 and 16 bit data
sizes. Initially both 8 and 16 bit data formats were used for digitizing the input signal when
testing the WARNSIS 1I algorithms. An 8 bit digitization allows for 256 levels of input signal
(+/- ~ 0.4%), a 16 bit digitization allows for 65536 levels (+/- ~0.002%). Calculatihg the
STAAA's averages the input signal's magnitudes over a time period of 512 samples. If we
assume a maximum error of % of a bit between the real and digitized input signals for each of
the 512 samples then the maximum error for 8-bit digitization is 512*1/2 bit = 256 bits. For
512 samples this would give a maximum error.of 256/512 = Y, bit maximum error after the
average is taken. The result is the same for 16-bit digitization. Since the STAAA process
requires a increase of 50% in the input signal amplitude above the background level to start the

learning process, the difference between 0.4% and 0.002% is irrelevant.

As the spectral analysis relies only on relative magnitude differences in the FFT power
spectrum, the extra resolution provided by the greater number of input_bits is of no extra value.
Since peaks lower in magnitude than 25% of the largest peak found and lower than a preset
minimum are ignored, the extra resolution is lost in the background. Given these results, it was
found that when performing eitherlthe STAAA 'an‘alysis or the FFT analysis that the data

digitization at either 8 or 16 bits had no effect on the function of the WARNSIS 1I algorithms.
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6.1.2.2 FFT Size, Frequency Resolution and Sampling Rate

For the FFT the relationship between frequency resolution, sampling rate and sample

size is given by,

Af=R/N (6.1)

where Af is the frequency resolution between adjacent bins, R is the sampling rate and N is the
size of the FFT. The larger N, the FFT size, becomes, the smaller Af becomes. However, the
larger N becomes, the longer the period of time a single FFT power spectrum covers. These

are the time-frequency resolution limits described earlier in section 4.1.5.

There is no theoretical limit on sampling rate and size, and time-frequency resolution
for WARNSIS II. The WARNSIS II algorithms can be implemented at any sampling rate. The
trade-off, again is between the time and frequency resolution. For a WARNSIS II device to
operate successfully it must be able to meet the two following criteria. Firstly, to discriminate
between multiple overlapping signals, the characteristic peak frequencies of the two signals
must be resolved separately from éach other. In order to do this the frequency resolution of
the FFT must be fine enough to place the characteristic peaks from two separate signals into
different bins. Secondly, if two warning signals have identical characteristic frequencies, then
they can only be successfully recognized if they do not overlap in time, and they have different

burst and/or interval times.

This means that the time-frequency resolution issue must be solved on a practical basis

such as the processor memory requirements or expected signal characteristics. If the sample
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N

size was set so that only a few bins covered the entire spectrum, then the frequency
performance of the WARNSIS II algorithm would suffer accordingly. Conversely, if the
sample size is too great then the memory requirements and the time resolution would be

similarly effected.

For the WARNSIS II algorithms, the size of 512 samples was chosen for two main
reasons. First, choosing a sample size of 512 we can achieve a frequency resolution of
approximately 21.5 Hz covering a period of 46.4 msec for a sampling rate of 11,025 Hz for
the PC based implementation. This provides a reasonably good resolution for both frequency
and time. Secondly, a sample size of 512 allows the DSP implementation to maintain two
separate FFT sample arrays and processing code in the processor's internal memory. This
greatly increases the speed of the DSP FFT algorithm [17]. By maintaining the same sample

size for both implementations it is easier to compare algorithms between the two platforms.

More important than using a specific sample rate or sample size, is the requirement tha£
the same sample rate and size be maintained both in the learning mode and in the recognition
mode. Since not only the frequency resolution, but also the centre frequencies of the bins
(henée the bin #) changes with sampling rate and size, a signal learned at one sample rate and
size will not have the same centre frequency 6r bin number if the rec_égnition algorithm operates

at a different sample rate and size.
6.1.2.3 Sampling Window Effects

Section 4.1.1.2 discussed the effect that various sampling window functions would have

on the leakage of energy between bins in the FFT power spectrum. Figures 6.3 (a), (b), (c)
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and (d) show the effect of the standard square window, the Parzen window, the Welch
Window and the Hanning window on the FFT spectfum of a 2040 Hz signal. Although the
Parzen, Welch and Hanning window .ﬁmctions all irﬁprove the leakage between bins, as shown
by the narrowing of the base Qf the peak, they provide little advantage for the WARNSIS II
spectral analysis algorithm. The reduction in leakage is so small that it is lost in the background
noise. This can be seen in Figures 6.4(a) and (b). Figure 6.4 (a) shows the power spectrum
of the background noise signal using the standard square window. Figure 6.4 (b) shows the
power spectrum for the same signal using the Hanning window function. There is virtually no
difference in the spectrum aside from a slight "smoothing" effect that the Hanning window has
on the peaks and valleys as was shown in Section 4.1.1.2. Since only the relative magnitudes
of the peaks above the preset limit and above 25% of the maximum peak are important, the use
of any one of the additional windowing functions simply adds to the processing time of the

algorithm with no appreciable benefit.
6.1.2.4 Speed Considerations

Although the PC implementation of the WARNSIS II algorithms operates on stored
data files, an attempt was made to have the algorithms perform at a "real-time." rate. Due to
the overhead of the Windows environment and the extra effort required by the PC's processor
to display the graphical informatioh generated by the program, there was not enough
processing power to have the algorithms process all of the incoming data in real time. To speed
up the processing time, rather than performing the FFT analysis on all of the data, the program
was modified so that the FFT was only calculated for one of two, one of three, one of four, etc.
Sample periods. The time for the intervals for which the FFT was not calculated was included

in the burst duration calculations, but no spectral analysis was performed on these missed
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Figure 6.3 - Effect of Sampling Window Function on Power Leakage
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Figure 6.3 - Effect of Sampling Window Function on Power Leakage
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intervals to determine if a signal was still a candidate or had been lost. The same two
consecutive spectral matches or loss for signal acquisition or loss were still required, but these
consecutive matches were now spaced further apart in time by the number of "missed"
intervals. In comparison to those test signals that were successfully detected by the standard
algorithm when no intervals were missed, the modified algorithms were able to miss up to 6
consecutive intervals and still successfully identify the warning signals. This brought the
processing speed on a SOMHz 486 PC to the point where the signals could be processed in an

amount of time less than or equal to the actual duration of the input signal .

An additional increase in processing speed was obtained by comparing the square of the
peak magnitudes instead of the peak magnitudes. Since we are only interested in relative
magnitudes and not absolute magnitudes there is no need to perform the square root function
required to obtain the absolute magnitude from the real and imaginary parts of the FFT. This
provides a great increase in speed for the spectral analysis algorithm since processing the square

roots requires as much processing time as performing the FFT itself.
6.2 TMS320C30 Based System

The DSP version of the WARN SISII algonthms were written in TMS320C3x assembly
language code and implemented on a Texas Instruments TMS320C3x Evaluation Module
(EVM). The EVM is a half length board that installs in an IBM compatible PC. The EVM can
run in stand alone mode operating completely independently from the PC or can be interfaced
to the PC through the PC's I/O port structure. The EVM itself consists of a 33 MFLOP 32 bit
TMS320C30 Digital Signal Processor with 2K words of internal RAM. 16K words of

additional zero wait-state RAM are also provided on the circuit board as well as a TLC32044
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Anailog Interface Circuit (AIC). The AIC provides 14 bit digitization for audio signals which

can be input directly from a microphone or via a preamplified line [30].

In the WARNSIS II setup the AIC of the EVM was connected via the Creative Labs
Sound Blaster,, to a standard 500 Ohm unidirectional microphone. For the DSP
implementation of WARNSIS II, the Sound Blaster,, was used only as a preamplifier for the
microphone and no digitization or filtering was performed by this board. The TLC32044
AIC however has an internal bandpass filter with the ripple bandwidth and 3-dB low frequency
roll-off points of the highpass section at 150 Hz and 100 Hz respectively, and a high frequency
3-dB roll-off at approximately 3,700 Hz for a sample rate of 8,012 Hz [31]. The sample rate
of 8,012 Hz is used for the DSP implementation as the AIC filtering circuits are optimized for
this frequency. The lower sample raté for the DSP implementation vs the PC implementation
presents no problems in that it still provides a maximum frequency resolution of 15 64 Hz and
an interval time of 63.9 msec. The maximum frequency limit from the lowpass section of the
AIC filter also presents no problems as all of the warning signals that we have identified so far
have their characteristic peak frequencies well below this limit. As for the PC implementation,
the actual choice of sampling rate and sample size is a practical one guided by memory

requirements and desired frequency resolution, not a theoretical one.

The TMS320C3x Digital Signal Processor family was chosen due to the support
available from the manufacturer as well as the availability of a number of versions of the
processor at various speed and price ranges. Although the EVM cost was on the order of
$1200 US, some versions of the bfbcessor itself caﬁ be purchased in quantity for under

$20 US. This means that a relatively low cost implementation of a stand alone device based

on the TMS320C3x DSP could be designed.
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6.2.1 Program Size

The size of the compiled assembly language program for the DSP implementation was
1,492 words and required 1,801 words of data storage. Of the 1,492 words of program code,
952 words were required for implementing the WARNSIS II algorithms and communications
routines with the PC, 420 words were required for the FFT routine, 78 words were required
to implement a floating point divide routine and the remaining 42 words were for miscellaneous -
interrupt vectors and processor control. Of the 1,801 words of data storage, 1,024 were
required for maintaining two 512 word tables, one for collecting the current 512 input samples,
the second for simultaneously calculating the FFT of the previous 512 samples. The rest of
the data storage was comprised of 256 words of storage for the FFT sums for learning mode,
256 words for the FFT "twiddle factors", 120 words for peak identification, 40 words for
templates, 10 words for I/O buffers for PC communications and 55 words for miscellaneous
variables. The majority of both code and data were accommodated in the 2K 6f internal RAM

provided on the TMS320C30 DSP chip,‘meaning less than 2K of external RAM was required.

6.2.2 Results of DSP Based Implementation

The WARNSIS II spectral and timing analysis algorithms functioned sirﬁilarly in the
DSP based implementation as they had for the PC based implementation. The TMS320C30,
however, provided enough processing speed to perform the analysis in real time. In fact, of the
63.9 msec interval time for 512 samples, approximately 0.57 msec was required to process the
FFT from the previous 512 samples. As the current samples are input via an interrupt routine
the time not used for processing the FFT's is availab]e for the peak detection, spectral and

timing analysis and template comparison algorithms. Also, because the data is input via an
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interrupt routine and the burst timing and spectral analysis are performed in real time as the
input signal is digitized, the delay from the end of a burst, or interval between bursts, to the
time a message is issued to the user is less than one 512 sample interval. This means that there
is no appreciable time delay between the end of a warning signal's occurrence and the setting

of the recognition flag.

6.2.2.1 Performance Measurements

Tests of the DSP implementation of the WARNSIS II algorithms were performed under
quiet office conditions with an. ambient ﬁoise level below 50 dB. The background noise added .
for testing was generated by a standard stereo receiver playing a combination of FM rock
music and voices. Figure 6.5 (a) shows .the physical location of signal and noise sources in
relation to the microphone input. N shows the location of the noise generating source, W, the
location of the warning signal source A, Wy, the location of the warning signal source B, M the
microphone location and S the location of the sound level meter. Warning signal source A was
a typical telephone ring generated by a Panasonic PD-2300 telephone whose FFT spectrum and
characteristic peak frequency are shown in Figure 6.6. Warning signal source B was a
continuous 2200 Hz tone generated by a function generator whose FFT spectrum and
characteristic peak frequency are shown in Figure 6.7. Sound level measurements wére made
with a Realistic (TM) Sound Level Meter with both standard A and C weighting. As shown
in Figure 6.5 (b) the C weighting' éurve has a flat frequency response from 32 Hz to
approximately 2,500 Hz, the A weighting curve has a 3 dB highpass roli-off at approximately

500 Hz. This means that more low frequency energy is measured with the C weighting than

for the A weighting.
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Table 6.1 shows the upper limits on signal and noise for the DSP implementation of
WARNSIS 1I for sound level measurements with both A and C weightings. As can be seen,
the DSP implementation of the WARNSIS II algorithms can successfully detect warning
signals in very noisy environments. The DSP implementation was able to detect a 57 dB
warning signal at a distance of 4 ft from the device generating the warning signal in.the
presence of 76 dB average background noise. This is a signal-to-noise ratio of -19 dB. Since
most warning signals are designed to be at least 10 dB above ambient noise levels, the DSP
implementation far exceeds the requirements. In fact, in testing, the DSP implementation of
WARNSIS II outperformed the author's own ability to detect warning signals by ear and to
discriminate between warning signals in very noisy environments. The DSP implementation
of the WARNSIS II algorithms performed with 100% recognition accuracy during testing. All
occurrences of perviously leaméd warning signals were recognized until the background noise

level exceeded the values shown in Table 6.2.2.1 below and no false positives were generated.

Table 6.1 - Single Warning Signal vs. Noise Sound Level Measurements

Distance | Distance | Meter Warning Signal Maximum Average Maximum Peak
a (ft) b (ft) | Weighting | Strength (dBA) | Noise Level (dBA) Noise Level (dBA)
11 2 A 56 72 7.4
11 2 C 58 80 84
11 4 A 56 62 66
11 4 C 57 76 78
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To determine if the presence of one warning signal would suppress the detection of
another signal in a noisy environment, a second signal was introduced during testing. In order
to determine the level at which the second warning signal (B) would suppress the detection
of the original warning signal (A) the following procedure was used. First the noise
background level was increased to the point where detection of warning signal A was
suppressed by the noise alone. Next the noise level Was decreased by 2 dBA to allow detection
of warning signal A. The level of warning signal B was then increased to the point where
detection of warning signal A was again suppressed. Table 6.2 shows the upper limits for the

sound level for the two signals and the background noise.

Table 6.2 - Dual Warning Signal Vs Noise Sound Level Measurements

Warning | Warning Maximum Maximum
Distance | Distance | Meter Signal A | Signal B Average Peak
a (ft) b (ft) | Weighting | Strength | Strength Noise Level Noise Level
(dBA) (dBA) (dBA) (dBA)

11 2 A 58 58 70 72
11 2 C 62 58 78 82
11 4 A 58 55 60 62
11 4 C 60 55 70 74
11 4 A 58 55 - -

11 4 C 60 55 - -
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The first four rows of table 6.2 show the level at which the detection of warning signal
A was suppfessed by warning signal B in the presence of background noise. The last two rows
of table 6.2 show the level at which detectioh of warning signal A waé suppressed by warning
signal B alone, without the addition of background noise. It is significant to note that the
presence or absence of the background noise has no effect on level at which suppression of

signal A by signal B occurs.

Figure 6.8 shows the FFT spectrum of the background noise. Note that most of the
energy is in the range below 900 Hz. Figure 6.9 shows the combined spectrum of signal A and
signal B at the point just before suppression of signal A occurs. This shows that suppression
of signal A occurs when the maghitude of the characteristic peak for signal B is approximately
four times that of signal A. The noise signal can only contribute to the suppression of signal
A by signal B if there is significant energy in the noise spectrum at the characteristic frequency
peak of signal B. This is in agreement with the original algorithm design as discussed in

section 5.3.

It would appear from the sound level readings that the strength of both signal A and
signal B are at approximately the same level, 55 dBA to 60 dBA, and the magnitude of their»
characteristic peaks should also be approkimately the same. However, since signal B is a pure
tone, all of the energy in signal B is found at its characteristic frequency. Signal A, on the other

hand, has its energy distributed across the spectrum, including a portion below 900 Hz, which

means less energy is contained at the characteristic frequency .
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Chapter 7
7.0 Conclusions and Recommendations

It has been shown that the WARNSIS II algorithms, can, by the application of
separate spectral, energy and timing analysis routines, in that order, learn and then later
recognize warning sounds with 100% accuracy in very noisy background environments. The
signal-to-noise ratio in these enviropments can be on the order of -20 dB. It has also been

shown that warning signals can be successfully recognized on the basis of four characteristics:

i) peak frequency
it) energy content at the peak frequency
iii) burst duration

iv) interval time.

Both continuous and burst warning signals can be recognized by this method. In
particular, a burst signal can be recognized after a single burst and- a repetitive warning signal
can be successfully recognized on the basis of a single repetition. A warning signal can also be
identified with no appreciable delay due to processing after the signal burst has ended.
| Additionally, it has been shown that it i's:possible to éuccessﬁllly recognize multiple overlapping
warhing signals in the presence of background noise. These results mean that it would be

possible to implement a device that could operate successfully in real-life situations.

The implementations of the WARNSIS II algorithms on both a PC and a DSP module
have also shown that it is possible to implement a system that does not rely on any spécialized

hardware and can be easily ported to distinctly different platforms.
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In addition to aidihg the design and development of the WARNSIS II algorithmé, the
PC implementation has pfovided, not only a tool for further development of WARNSIS II
based systems, but a tool for general spectral z;nalysis as well. The base routines and
functionality of the PC program as well as the graphical displays for instantaneous signal
amplitude, absolute signal amplitude and FFT power spectrum can easily be used as the starting

point for other projects in this field.

The DSP implementation further shows that it is possible to implement a low cost, low
part-count system, with sufficient power to perform the required analysis. The EVM board
used in the DSP implementation contains only 24 IC's and proyides extra functionality such
as analog output and secondary serial communiéations not required for the WARNSIS II
implementation. Although the EVM provided 16K of additional zero wait state RAM, less
than 2K of this RAM was required for the vWARN SIS II algorithms. This means that a stand-
alone implementation of WARNSIS 1I could be produced on a system consisting of fewer than
the 24 IC's on the EVM. Since the code and data space and processing time requirements for
the WARNSIS II algorithms are small, it fnay be possible to add the WARNSIS II functionality

to existing equipment without additional memory or processing power.
7.1 Future Work

Although the WARNSIS 1II system performed extremely well and met all of the

objectives of phase II of the project, there are some areas where further improvement is

possible.
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7.1.1 Improved Learning Mode

Although the WARNSIS II recognition mode is able to operate in extremely high noise
background areas, the vleaming mode élgorithms require that the warning signal that is being
learned be significantly louder than the background noise. In most cases this would not be a
problem as it should be possible to arrange, temporarily at least, for a sufficiently quiet
background in which to learn a warning signal. There may be cases, however, where this
would not be possible and the warning signal would have to be learned in a high .noise |

background environment.

It may be possible to improve the learning mode's ability to learn new signals in high
noise environments by using an approach similar to the recognition mode's warning signal
- "candidacy" algorithm. Rather than relying on a single burst and using the STAAA to identify
the beginning ahd end of a burst, multiple signal bursts and frequency characteristics could be
used. For example, the first burst coﬁld be used to identify the characteristic frequency for the
warning signal by moniton'ng for the occurrence of a strong peak in the power spectrum. The
second burst could then be used for confirmation of the spectral peak and burst timing and a
third complete burst could be used for interval timing and confirmation of the characteristic

frequency and burst times.

If the WARNSIS II device were provided with enough memory to store the digitized

input signal for two complete bursts, the learning mode could be designed to learn from a single

repetition of a warning signal by performing the spectral analysis twice on the initial burst. The
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first pass would identify the characteristic peak, the second pass would be used to identify the
burst duration time. At least one partial repetition would still be required, however, to identify

the interval time.

7.1.2 Improved Recognition Mode

It was stated earlier in section 5.3, and shown in section 6.2.2.1, that the presence of
a warning signal that was significantly greater in power than other warning signals could, in
effect, suppress the recognition of those other warning signals should they occur at the same
time. It may be possible to overcome the suppression by performing a multi-pass frequency
analysis. In the first pass, the peak with the largest magnitude in the spectrum would be used
for normalizing the spectral magnitudes. Once the spectrum had been analysed using this peak
for normalization, the process would be repeated using the next largest peak to normalize the
spectrum.  This would continue until all peaks that exceed the preset minimum "backgrbund"
value had been used for normalization. This way a single powerful signal would not be able
to suppress a valid peak. This would, however, require an increase in both processing power
and memory. The pr_oceésing would only require extra time to recalculate the normalized
magnitudes for each pass, not to recalculate the FFT. The data storage requirements would
increase by 8 words (256 bits, one for each frequency bin) for flags to indicate if a peak had

been previously used for normalization.
7.1.3 Additional Features

We have shown that a WARNSIS II device is capable of correctly identifying warning

sounds in noisy environments. There is often other information conveyed with a warning signal
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in addition to that simple presence or absence of the sound. Humans rely on binaural hearing
for sound localization. An improved WARN SIS IT device could supply even more information
 to the user if some type of sound localization could be performed. Additionally, an estimate
of the "loudness" of the warning signal could provide added benefit to the user. The

implementation of these features should be explored.
7.2 Other Applications

As stated earlier the functio'nali‘ty of the WARNSIS II algorithms can be incorporated
into other devices. This could provid¢ assistance. not only to the hard of hearing or the deaf
but also to people in other situations. The problem of recognition of warning sounds is not
limited to those with hearihg impairments. There are situations which arise on a day-to day .
basis which can have serious affect on people with normal hearing. In many industrial
envirbnments auditory warning signals are commonly used. On qonstmction or mining sites
it is common practice to use auditory warning signals to signal blasting or movement of heavy
machinery. In mills and chemical processing plants the starting of a piece of equipment is often
preceded by an auditory warning burst. Often the noise present in these environments and the
need for personnel to wear hearing protection makes it difficult to hear these signals.
Personnel who are working in an area where the risk of injury is high would benefit from a

device that was able to alert them to these signals.

Another possible use for the WARNSIS 11 system is in hospitals. In critical care areas,
patients may be connected to a number of different medical devices, each with its own alarm
sound. Rather than relying on separate recording instruments or hard-wiring the alarms to the

central station, a WARN SIS IT device which monitors all alarms and reports to the central
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stétion could save both wiring and training costs. Time and effort would also be saved when
new equipment was introduced to a critical‘care afea. Since each medical device would have
its own warning signal characteristics which could b¢ "pre-learned" by the WARNSIS II device,
no extra connections or training would be required each time the equipment was introduced

into a new area. By elimination of the hard-wire requirements for some devices, the space near

the patient would be less cluttered, allowing for better patient access.
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“Appendices

Appendix - A WARNSIS II TMS320C30 Assembly Language Code
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*
*
*
*
*
*
*
*

FILENAME : warnsis.asm
WRITTEN BY : Kim Dotto
DATE ~: 23rd June 1994
VERSION : 1.0
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* ok ok ok Ok *

VER DATE COMMENTS

1.0 23rd June 94 TMS320C30 Implementation of WARNSIS II project
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SYNOPSIS:

The WARNSIS Program is designed to detect the presence of audible warning
signals. These signals can be single or repetative burst type in nature,
or they can be continuous. Typical devices generating these warning ’
signals would be telephones, microwaves, smoke detectors or other home
or office devices. S .

The WARNSIS II algorithms eliminate the need for specialized hardware and
provides very good performance in noisy environments. Spectral analysis
is performed continuously by software using the FFT instead of specialized
chipsets. The start or end of a warning signal burst or repetition is
determined by the presence or absence of key spectral information for

a given warning signal. The FFT power spectrum for the realtime input
is compared to information stored in predefined templates. If the

spectral information matches the template a spectral match is registered.
The signal is then continuously monitored until the spectral signature
disappears. The burst duration and interval times are then compared to
those in the template. If a match occurs for both spectral and burst
duration then a burst match is indicated. If a match also occurs for
the interval time then an interval match is indicated.

Because the spectral analysis is carried out in software, the WARNSIS II
project can be ported to any hardware with sufficient power to perform
the FFT analysis in realtime. This includes a 50MHz 486 PC running under
MS Windows, where the software was originally designed. The Windows
program that performs the analysis is called WARNSIS.EXE and was written
for Borland's Turbo PASCAL for Windows Ver. 1.5. This program and the
accompanying source files should be available from the same source as
this file. '
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This version of the WARNSIS II project is desgined to run on the Texas
Instruments TMS320C30 DSP and the C30 Evaluation Module and is intended
to show that the project can be implemented on a low cost DSP chip, not
just an Intel 80C486 50MHz system.

* % ok * % * *
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*

* FILES:

*

* WARNSIS.ASM Main program file

* WARNMATH.ASM Math routines for Floating Point Divide
* WARNFFT.ASM -+ FET subroutine code file

* WARNTWID.ASM ' FFT twiddle factors file (sine_table)

* .

* WARNFFT.CMD Linker command file

*

Ihkhhkhkhkhkhhkhkhkhkhkkhhhkdkhkhkhkrhhrhkhkhkhhhhhkhkhkhkhhhhkdhhkhkhkhdrhkhhhkrhkhkhkhkhkhohkhkhkhkhkhkhhkhhhhhhk

PASCAL PSEUDOCODE:
program warnsis;
const

sine table = array [0..255] of real} {twiddle factors} -

min_hz = 1000; {minimum cutoff frequency}
max_hz = 4000; ) {maximum cutoff frequency}
min_power = 1000; {minimum spectral peak power below}
{which peak will not be considered}
var , ,
i, ] : integer; {general purpose counters}

fill cnt : integer; {current position of table being filled}
fftdat0, fftdatl : array[0..511] of real; {2 tables for collecting input}
' ' {and calculating fft power }

{spectrum info }

ffttotal : array [0..511] of real; {storage for total fft spectrum power}
{used in learning mode }

max_fft : real; {maximum fft magnitude in power spectrum,used for }
. {normalization of power spectrum between samples }

ave fft : real {average fft magnitude in power spectrum, gives |
‘ I

{baseline for comparison of peak to background noise

{Each new type of signal must be learned before it can be detected }
{each "learned" signal has its own template with the following info}

template = record

info : string[301; {template name}

burst duration : real: " {burst duration}

interval_time : real; {interval duration}

waiting : boolean; {currently matching spectrum flag}
end;

%k ok R ok ok % b R % ok o R O ok 2k ok ok % ok ok ok ok F %k 2k ok A ok o F F ok * * ¥ F *

procedure ffft rl(fft size, log_size: integer; source_addr, dest_addr,
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sine_table : ptr; bit_reverse: boolean );

begin ‘

if source_addr=dest addr then

calculate_ fft inplace

else

calculate fft;

if bit_reverse then do_bit_reversals;
end;

{get_realtime_data id called upon end of conversion interrupt}

procedure get realtime_data : interrupt
begin
tmp real:=get analog_value;
if storing_table0 then
begin
fftdatO[fill_cnt]:=tmp real
end
else
begin ,
fftdatl[fill cnt]:=tmp_ real
end;
inc(fill cnt):;
start_neit;conversion;
end;

begin {main program}
initialize_data_structures;
start first A/D conversion;
repeat
if learning_mode then
begin
cancel template tests;
if check for available_ template=true then
begin
. initialize_total_ fft power array;
wait_for input_signal above predefined amplitude;
start_duration_timer;
start_interval_timer; .
while input_above_limit do
begin
calculate_ fft _every 512 samples;
add_- current fft magnitudes_to_total fft magnitudes
end;
end_duration timer;
save_duration_time;
find main_peak_in_fft power spectrum;
save_peak_frequency_ and_peak width;
wait for input signal_above_predefined_ amplltude _again;
if second _amplitude_increase_found then
begin
end interval_timer:;
save_interval time:;
end
else
cancel_interval_ timer;
exit_learning mode;
end
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else
issue_warning;
end
else
begin
if fill cnt=512 then
begin
fill cnt:=0;
set_other table_to be filled:
if fftdatO_full then
ffft_r1(512,9, fftdat0, fftdat0,sine_table, false)
else
ffft rl1(512,9, fftdatl, fftdatl, sine table false)

{1fft| and find the maximum and average value of table for those}
{fft values for frequencies between max _hz and min_hz }

ave fft:=0
max_fft:=0;
3:=0;

for i:=0 to 255 do
if £fft hz[il>min hz and fft_hz[i]<max_hz then
begin
~inc(3):
Fft realli}:=
sqrt (fft real[i)*fft_real[i)+fft imag[i]*fft_imag[i]);
if fft reall[i]>max_fft then max fft:=fft real[i];
ave_ fft: =ave__ fft+fft _realf[i];
end;
ave_fft:=ave fft/j;

identify_ peaks:; {identify peaks in spectrum > 0.25*max_fft}
for all _templates do
begin
for each_peak_ found do
if (abs(peak_freq-template freq)<template_ tolerance) and
(peak magnitute>2.5*ave fft) and
(peak magn1tude>m1n_power) then {found a spectral match}
begin
if currently tlmlng a spectral match_ for this_template then
begin
. if have_been_timing for at least 2 sample_periods then
set flag to indicate valld start _of signal;
cont1nue_t1m1ng_spectral_match,
end;
else
begin
start_timing_spectral match;
end
end
else
begin
if currently timing a spectral match for this template then
if have_lost the match_ for_at_least 2 sample_perlods then
begin
stop_timing spectral match;
if timing duration=template_value+-tolerance then
issue_duration _match message;
if currently timing interval then

100




end;
end

if interval duratlon template_value+- tolerance then
issue interval _match message; :
reset_lnterval_t1mer_for_th1s_template;
end;

end;

wait_for full table

end;
until done;

*

*

*

*

*

*

*

* else
*

*

*

* end;
*

*

*
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.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
. .global
..global
.global
.global
.global
.global
.global
.global

.global
.global
.global
.global
.global
.global
.global

.global
.global
.global

sinetab ‘

process mode, fill cnt,rla addr,rlb_addr

_ffft rl

SQRT

FINV

FDIV

find _peaks, fft magnitude, flnd match, £111 _array,get_data
start learning,start_analysis, Lidle _loop, setup fft
fent,wfill, process_mode

max_fft_ave_fft cycle cnt

rla_addr, rlb_addr, fft_addr )

t_ info, t conflg,t burst _dur,t_interval time

t_ _range_min,t_ range_max, Lt _range_tol,t range_peak
t_waiting

peak_hz,peak cnt,peaks hent,peaks_tcnt, g_up,peak max
peak cs

t2000

t_sig

shortmix

microsht

no_message

test_burst,test_interval, template_ loop

casel _0O,casel_1, L casel _2,casel_3,casel_4,casel_end
case2 0 case2 _1l,case2 2 case2 3 case2 _4,case2 end

case3_0,case3_1,case3_2,case3_3,case3_4,case3_5,case3_end
case4 0,cased 1 cased 2 cased 3 cased 4,cased 5 cased end
found burst, found int, ,data 1ndex max_peak

ave ampl learn_ cnt, keep waltlng,tmp table

no_fft req,flnd template,less_than _min, find main peak
find _amplitude, sum_ffts,copy fft sum,plck _main peak
save_témplate_info, clear_table average fft sum

sysinit,aicreset,com _parm, hcontrol, receive0
hreadl6,hwritel6, hread32,hwrite32
wait transmit 0, dmadone, wordflag

;Template Information for 5 templates

t_info
t _burst dur
t_interval_time

.usect ".fftdata",5 ;template name
.usect ".fftdata",5 ;burst duration
.usect ".fftdata",5 ;interval duration




", fftdata",5

t_range_peak .usect ;peak frequency

t_waiting .usect  ".fftdata",5 s;currently matching spectrum flag
t bstart .usect ".fftdata",5 ;burst timer start time

t_bend .usect ".fftdata",5 ;burst timer end time

t_int count .usect ".fftdata",>5S ;interval timer

process. mode .usect ".fftdata",1 ;analyze=0 learn=1

fill cnt .usect ".fftdata",1 ;realtime data count flag

fcnt .usect ".fftdata",1 ;realtime data count

wfill .usect ".fftdata",1 ;realtime data array flag
cycle_cnt .usect ".fftdata",1 ;timing cycle counter

none_waiting .usect ".fftdata",1 ;no templates waiting flag

learn cnt .usect ".fftdata",1 ;learning mode cycle counter

ave ampl .usect ".fftdata",1 ;average input signal strength
test _ampl .usect ".fftdata",1 ;average input signal strength
peak_cnt .usect ".fftdata",1 ;number of peaks in spectrum

g_up .usect ".fftdata",1 ;going up a peak or down?

peak_hz .usect ".fftdata",60 ;frequency bin# of identified peak
peak max - .usect ".fftdata",60 ;power of identified peaks
rla_addr .usect ".fftdata",1 ;table 0 address

rlb_addr . .usect ".fftdata",1 ;table 1 address

fft_addr .usect ".fftdata",1 ;fft table address :
data_index .usect ".fftdata",1 ;address index of real data
max_fft .usect ".fftdata",1 ;maximum value for normalization
ave_fft .usect ".fftdata",1 ;average fft magnitude

tmp_table .usect ".tmpdata",256 ;temporary table for summing ftts
max_peak .usect ".fftdata",1 ;peak with greatest magnitude in FFT
peak_cs .usect ".fftdata",10 ;frequency bin# of identified peaks
peaks_hent .usect ".fftdata",1 ;peak with greatest magnitude in FFT
peaks_tcnt .usect ".fftdata",1 ;peak with greatest magnitude in FFT
cont_ flag .usect ".fftdata",1 ;continous signal flag

****************************************************************t********

stack size .set 500

stack .usect ".stack",stack_size
.sect " _vecs"

PARMS:

reset .word warnsis

int0 .word cmd_write

intl .word null_int

int2 .word null_int ;hreadlé

int3 .word null int

xinto .word transmit0

;rint0 .word receive0




rint0 . .word fill array

xintl .word transmitl
rintl .word recievel
tint0 .word null_int
tintl .word timerl

dinto .word null _int

AEKAIA KA A A AR A A AAKRKEAAAAAAAAKRARAARAKRAAAAA AR AA KA A AR AR A AR A A Ak A Ak kA kA kA hh*k

.data
min_ampl .float 500.0 ) ;minimum amplitude (500)
min_power . .float 3.0e6 ;6 . ;minimum spectral peak power
hostport .word 000804000h
ram0_addr . .word 809800H
raml addr .word 809CO0H
ramla_ addr .word 809COO0OH
-ramlb_addr .word 809EOOH
tmp_addr .word tmp_table ;address temp calculation table
peak_table .word peak hz ;address of peak table
peak mtable .word peak_max ) ;address of peak maximum values
sine .word sinetab ;address of twiddle factors
templates .word t_info ;address of template info
t_rp .word t_range_peak ;address of template peaks
t_bdur .word t burst dur ;address of template burst durations
t_wait © .word t_waiting ;address of template waiting flags
t_start .word t_bstart ;address of template burst start
t_end .word t_bend ;address of template burst end
t_int .word t_interval time ;address of template interval time
t_intc .word t_int count ;address of template interval count
temp def ".word template_defaults ;address of template defaults
peak _ctable .word peak cs ;address of peak table
peaks_hcount .word  peaks_hcnt ;address of peak table index
peaks_tcount .word peaks_tcnt ;address of peak table index

fft voc_data .word microsht . ;address of realtime data

template_ defaults

.word 0 ;template names
.word 1

.word 2

.word 3

.word 4

.word 13 ;burst durations
.word 34

.word 1000

.word 1000

.word 1000

.word 26 ;interval times
.word 92

.word 1000

.word 1000

.word 1000

103




.word 92 ; range peak

.word 101

.word 255

.word 255

.word 255

.word 0 ;waiting state flags

.word 0

.word 0

.word 0

.word 0

.word 0 sburst timer start times

.word 0 :

.word 0

.word 0

.word 0

.word" O ;burst timer end times

.word v

.word 0

.word 0

.word 0

.word 0 ;interval timer start times

.word 0

.word 0

.word 0

.word 0

.sect ".aicdata"
;stack _addr .word stack ;address of stack
;intl_hwrlé .word hwritelé ;Address of 16 bit host write function
;intl_hwr32 .word  hwrite32 ;Address of 32 bit host write function
;intl_cwr .word cmd_write ;Address of command write function
;int2_hrdl6é .word  hreadlé ;Address of 16 bit host read function
;int2 hrd32 .word  hread32 ;Address of 32 bit host read function
;crmd_temp .word com_cmd ;Temporary address of command
parameters
;com_parm .word com stat ;Address of command parameters

;wordflag .word 0

*****************************************************************

* Addresses of various peripherals and memory control registers *
FhhkhkhkhAh Ak AAAAAAA A AR A KA A KA A A A AAr kA hkhkhrArARrAA kA Ak A A h A hk bbbk dhhkhkhhhhk

;dma_ctl .word 000808000h ‘;dma global control register

"mentlr0 .word 000808064h ;i/0 interface control reg. addr.
" mentlrl | .word 000808060h ;parallel interf. cntl. reg. addr.
t0_ctladdr .word 000808020h ;Timer O
tl_ctladdr .word 000808030h . - ;Timer 1
p0_addr .word  000808040h ;Serial port O

hhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkrkhhkhkhkhkhkkrbhkhhkhkhkrdhkdrdkhkhhhhkhdhhhkhrhkhkhkrrhkrrhhrrrhhik

* Control parameters to large to fit in immediate wvalue *.
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enbl eintl
- enbl_eint2
enbl sp0 r
intoff

intclr
t0_ctlinit

p0_global

;dma_wctl

;dma_ rctl

.word
.word
.word
.word

.word |

.word

.word

.word

.word

000020400h
000040400h
000000020h
0fff0fbflh

Offff£fffoh
0c00002C1h

00e970300h

0C0000943h

0C0000A13h

;intl enterrupt dma (host writes)
;int2 interrupt dma (host writes)
;serial port 0 receive interrupt
;turn off intl,int2,int3,eint0,eintl
;eint2, eint3, dma

;clr out int0-2

;set timer as clk out, H1/2 period
;timer will run when cpu stops in
;emulation mode

;serial port 0 global control register

;dma write control

;com. reg. -> C30 mem.

;interrupt driven from host writes
;dma read control

;30 mem -> com reg

;interrupt driven from host reads
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* Host communications command structure *
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;com_stat
;com_cmd
;com_countl
;com_counth
;com_saddrl
;com_saddrh
;com_daddrl
;com_daddrh

.Wor
.WOor

d
d

.word
.word
.word
.word
.word
.word

0000000000n
0000000000h
0000000000hQ
0000000000h
6000000000h
0000000000h
0000000000h
00000000000

;command status

; command

-;transfer count low
;transfer count high
;source addr low

;source addr high
;destination address low
;destination address high

AAIA KA EA AR KA AR KR ARA KR AKRKIAKRA AR AR AAAAA KA A A AR A A AR AR A AR A Ak Ak hk kA k kA hkk

* Various constants
E R R R RS S R R R R R R R SR R R R R R E RS R R R R SRS R R RAL R RS SRS SRS RS R R SR R R b 8t &84

WAITO
WAIT1
CACHE
ENBL_GIE
ENBL_INTO
ENBL_INT1
ENBL_INT2
ENBL_INT3
ENBL_XINTO
ENBL_RINTO
ENBL_XINT1
ENBL_RINT1
ENBL_TINTO
ENBL_TINT1
ENBL_DINT

BEGIN CMD_SEND
END_CMD_SEND

INIT DONE

CMD_OK
CMD_ERROR

set

.set
.set
.set

set

.set
.set
.set

set

.set
.set
.set
.set
.set
.set

.set
.set

.set

.set
.set

0000h
0000h
1800h
2000h '
0001h
0002h

- 0004h
0008h
0010h
0020h
0040h
0080h
0100h
0200h
0400h

1
2
5

*

;memory control reg val,
;memory control reg val,
;clear and enable cache
;global interrupt enable

parallel bus
i/o bus

;interrupt 0 enable

;interrupt 1 enable

;interrupt 2 enable

;interrupt 3 enable :
;serial port 0 transmit int. enable
;serial port 0 receive. int. enable
;serial port 1 transmit int. enable
;serial port 1 receive int. enable

;timer 0 interrupt enable
;timer 1 interrupt enable
;dma interrupt enable (cpu)

;Begin sending cmd parameters
:End sending cmd parameters
;Reset intialization complete

;Received cmd parameters ok
;Error on receiving command parameters
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| CMD_FINISH .set 0 ;Status, command is finished

‘ CMD_LOAD .set 1 ;Status, command is being loaded
CMD_ACTIVE .set 2 ;Status, command is currently active
CMD_NOP .set 10 ;Nop command
CMD_HOST MR16 .set 11 ;C30 memory read, 16 bit mode

CMD_ HOST MWle .set 12 ;C30 memory write, 16 bit mode
CMD_HOST MR32 .set 13 ;C30 memory read, 32 bit mode
CMD_HOST_MW32 .set 14 ;C30 memory write, 32 bit mode
CMD_HOST _DMAR .set 15 :C30 memory read via dma, 16 bit mode

;C30 memory write via dma, 16 bit mode

CMD_HOST DMAW .set 16

warnsis:

start_init:

;

end init:

defaults

.text

Xor
Xor

xor
1dp
1di
sti
1di
1di
1di
rptb

1df

subf
1di
sti

1di
1di
ldp
sti-
sti
sti
sti
sti
sti
1di
sti
not-
sti
sti
sti
sti
sti
1di
1di

1di
rptb
1di

ie,ie
if,if

RO, RO
@raml_addr, DP
@fft voc data,ARO
RRO, @data_index
@raml_addr, ARO
@sine, AR2

1023,RC

end init

*ARO, R1
128,R1
0,R1
R1, *ARO++

@ramla_addr, ARO
@ramlb_addr,AR1l
@process_mode, DP
"ARO, @rla_addr
AR1l, @rlb_addr
RO, @process_mode
RO, @fcnt
RO, @peaks_hcnt
RO, @peaks_tcnt
@hostport,AR4
RO, *AR4
RO,R1
R1,@wfill
R1, @process_mode
RO, @fill_cnt
RO, @cycle_cnt
RO, @none waiting
LQtemplates, ARC
@temp_def,AR1

39,RC
end_temp
*AR1++,R1

;clr RO

;set data page

;get address of real data
;save it in data_index

;load address of RAMla block
;load address of sine table
;load repeat counter for 1024
; repeats

;get real data
;subtract 128 offset

;save adjusted real data
;start first A/D conversion
;load address of RAMla block
;load address of RAM1lb block
:set data page

;save table address current
;data page

;set for normal operation:
;set counter to zero

;set peak table head pointer=0
;set peak table tail pointer=0

;send 0 to pc

:set initial table
:set for learning mode; -
rset fill ent to O
;set timer count to 0O
;set no templates waiting to 0
;load address of template info
;load address of template

; repeats
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;set up default templates

end_temp: sti R1, *ARO++

1dp PARMS _

or ENBL_GIE, ST ;enable global interrupt

or ENBL_XINTO, IE ;enable serial port 0 tx int
; or ENBL_INTZ, IE ;enable serial port 0 tx int

or ENBL_INTO, IE ;enable serial port 0 tx int
; or ENBL_RINTO, IE ;jenable serial port 0 rx int

call aicreset ;routine to reset aic

1dp @process_mode, DP ;set data page

;The processor waits here while it fills the arrays with data
;when an array is full then processing begins

idle_loop:

do_analysis:

’

data?

end__idle:

Xor
cmpi

beq
callu

call
1di

cmpi
calleq
br

;Analysis Subroutines

setup_fft:

££t 0:

~,

1di
push
1di
push
1di
1di
not
cmpi
beg
1di

sti
push

push
1di
push
1di
push

Xor
call
or

pop
pop
pop

RO, RO

@process_mode, RO

do_analysis

start_learning

fill array

@fill cnt,RO

512, R0

start_analysis

idle_loop

1,R0

RO

@sine, RO

RO .
@rla_addr, RO
@wfill,R1
R1,R1

0,R1L

£ft 0
@rlb_addr, RO

RO, @fft_addr
RO

RO

9,R0O

RO

512,R0

RO

ENBL_GIE,ST
_ffft rl
ENBL GIE,ST

RO
RO
RO

jare we in learning mode?
;if we are do learning routine

;get data
;else have we 512 pieces of

;if we do process then
;else wait for more data

;set flag for doing bit reversals
;put it on the stack
;get address of sine table
sput it on the stack
;get address of data table 0
;get which table flag wfill
snot (wfill) to recover flag
;are we using table 07?

;no then get table 1 address

;save location of fft when done
;push correct table address on
;stack for both source and dest.
;log(fftsize) :=9
;put it on the stack
;fftsize:=512
;put it on the stack

;disable global interrupt
scalculate fft
;enable global interrupt

;get rid of parameters for
;_ffft rl




pop RO

pop RO
pop RO
retsu

;Subroutine to perform Main Analysis for signal detection
start_analysis:

Xor RGO, RO
sti RO, @fill_cnt
; 1di Ghostport, AR4 ; .
; ) sti RO, *AR4 H send it to pc
1dp @process_mode,DP ;set data page
1di @cycle cnt,RO ;get cycle cnt
addi 1,R0 ;inc(cycle_cnt)
sti RO, @cycle_cnt ;save cycle cnt
Xor ENBL_GIE, ST ;disable global interrupt
call setup_ fft
; 1dp . @raml_addr,DP ' ;set data page
; 1di @raml_ addr, ARO ;load address of RAMla block
call fft magnitude . ;calc magnitude, maximum and ave
H 1ldp @raml_addr,DP ;set data page ‘
; 1di @raml_addr,ARO 7load address of RAMla block
call find peaks ;find peaks in spectrum
call find match ; find any template matches

end_analysis: retsu

;Learning Subroutine

start learning:

push DP

push ARO : ;template interval time
push AR1 ;template burst duration
push AR2 ;burst timer end times
push AR3 ;burst timer start times
push AR4 ;waiting flags

push BR5 : ;template peak values

push ARG :peak table magnitudes
push AR7 ;peak table peak values
push RO

push R1

push R2 ;

push R3 - i

push R4 ‘ -; found flag

push RS ;waiting flag

push =~ R7 ;

push IRO - ;peak tables index

push IR1 ' ;template tables index

1dp @peak_hz,DP ;set data page

1di @peak table,AR7 ;get address of peak table
1di @peak_mtable,AR6 ;get address of peak max table
1di - @t_rp,AR5 ;get address of template peaks

1di @t_wait,AR4 ;get address of template flags




1di
1di
1di

1di
1df
stf

1di
call

@t _start,AR3
@t_end, AR2
@t_intc,ARO

0,IR1
-1.0,R0
RO, @test ampl

OE0OOh, R7
write queue

;insert code here to
;cancel all waiting templates from process mode

;when entering learning mode, can be done while looking

; for blank template because all unused templates are after
;the templates that are being used

find_template: 1di
cmpi
beq
addi
br

found template:
1di
addi
call

*+ARS5 (IR1),RO
255,R0

found_template

1,IR1
find template

OE020h, R7
IR1,R7
write_queue

;get address of burst timer start

-;get address of burst timer end

;get address of interval timer

‘;template_index:=0

’

;set test amplitude flag

;send flag for learning mode

;1f template peak = 255 then
; found blank template

;else

; ‘inc(index) and try again

;send flag for learning mode

;save cycle count here to set absolute time limit on
;learning cycle to recover from unknown signal

1di
sti

Xor
sti
sti’
sti
sti
call

keep waiting:

; call

1di
cmpi
bne

'Xor
sti
1di
1di
not
cmpi
beq
1di

fft 00:
sti

1dp

@cycle_cnt,RO
RO, @learn_cnt

RO, RO

RO, @cont_flag

RO, *+AR2 (IR1)
RO, *+AR3 (IR1)

RO, *+ARO0 (IR1)

clear table

£fill array
@fill_cnt,RO
512,R0

keep waiting

RO, RO

RO, @fill cnt
@rla_addr,RO
@wfill,R1
R1,R1

0,R1

££t_00
@rlb_addr,RO

RO, Qfft_addr

;continuous signal flag
;zero burst end

; burst start

; and interval times
;clear fft sum table

;rget data
;do we have 512 pieces of data?

r’ .
;no then keep collecting data

;reset fill cnt flag to wait
;get address of data table O
;get which table flag wfill
;not (wfill) to recover flag

.;are we using table 07

;no then get table 1 address

;save location of fft when done

@process_mode,DP ;set data page
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1di @cycle_cnt,R0O ;get cycle cnt

addi 1,R0 ;inc(cycle cnt)
sti RO, @cycle_cnt i save cyclg_cnt
1di @cycle cnt,RO ;gét current cycle_cnt
1di @learn_cnt,R1 rget count at start of learn cycle
subi R1,RO ‘ ‘
cmpi 300,RO ;have we spent more than 500 cycles
blt keep_going ; ~20 seconds .
cmpi 2,R5 ;1f not timing burst then end mode
blt end_learning ;
cmpi 4,R5 ;if finished burst then not contin.
bge not_continuous ; '
1di 2,R0O
sti RO, @cont_flag
br find _main_peak
not_continuous: ‘
1di 1,R0
sti RO, @cont_flag
br find _main_peak
keep_ going:
call find amplitude ;get average amplitude
1df @test_ampl,RO '
cmpf -1,RO ;have we sampled background level
bne bg_ok
1df @ave_ampl, RO ;
mpyf 1.5,R0 ' ;multiply by 1.5 ,
stf RO, @test ampl ;save 1.5*first sample as background
bg_ok:
» 1di *+AR4 (IR1) ,R5 ;get waiting flag:;
cmpi 4,R5 ) ;have we finished with burst
bge no_fft req ;then just wait to ident interval
cmpi 1,R5 ;
blt no_fft req ;
Xor ENBL_GIE, ST ;disable global interrupt
call setup fft ;calculate current fft
Xor ENBL_GIE, ST ;disable global interrupt
call fft magnitude ;calculate current fft magnitudes
call sum_ffts ;add to total magnitudes
or ENBL_GIE, ST ;enable global interrupt
no_fft req:
; Xor RO, RO
; sti RO, @fill_cnt ;reset fill cnt
1ldf @ave_ampl, RO ;get average signal amplitude
; fix RO,R7
; call write queue : »
; 1df @mih_ampl,RZ ;get minimum allowable amplitude
1df . @test ampl, r2 ;use test background instead
H fix R2,R7
; call write_queue _
cmp £ R2,RO ;if average amplitude < minlevel then
blt less_than min :
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case3 0: cmpi 0,R5 ; O:begin
bne case3 1 ;
1di @cycle_cnt,RO0  ;
sti RO, *+AR3 (IR1) ; save burst start time
1di 1,R0O ;
sti RO, *+AR4 (IR1) ; waiting:=1
br case3_end ; end
case3_1: cmpi 1,R5 ; l:begin
bne case3_2 H
1di 2,R0 ;
sti RO, *+AR4 (IR1) H waiting:=2
br case3_end H end
case3_2: cmpi 2,R5 ; 2:begin
bne case3_3 ; do nothing
br case3_end ; end;
case3_3: cmpi 3,R5 ; 3:begin
bne case3_ 4 ;
1ldi 2,R0 ;
sti RO, *+AR4 (IR1) ; waiting:=
br case3_end H end
case3_4 : cmpi 4,R5 : 4:begin
bne case3_5 ;
1di @cycle cnt,RO ;
sti RO, *+ARO0 (IR1) ; save interval time
1di 5,R0 ;
sti RO, *+AR4 (IR1) ; waiting:=5
br case3_end ; end
case3_ 5 cmpi 5,R5 ; S5:begin
. bne case3_end ;
1di 6, R0 H
sti RO, *+AR4 (IR1) ; waiting:=6
br case3_end ; end
case3 end: br cased_end ;end
less_than _min:
;case waiting of
cased O0: cmpi 0,R5 ; O:begin
bne cased 1 ; do nothing
br cased_end ; end
case4d_1: cmpi 1,R5 ; 1l:begin
bne cased 2 ;
1di '0,RO ;
sti RO, *+AR3 (IR1) ; reset burst start time
sti RO, *+AR4 (IR1) ; waiting:=0
call clear table ; clear FFT magnitude sums
br cased_end ; end
cased_2: cmpi 2,R5 ; 2:begin
bne case4_3 ;
1di @cycle_cnt,RO ;
sti RO, *+AR2 (IR1) H save burst end time
1di 3,R0 ' ;
sti RO, *+AR4 (IR1) ; waiting:=3
br cased_end ; end
cased_3: cmpi 3,R5 ; 3:begin
bne cased_A4 ;
1di 4,R0 H
sti RO, *+AR4 (IR1) ; waiting:=4
; end

br case4_end
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cased 4:

cased 5:

cased_end:

cmpi
bne
br
cmpi
bne
1di
sti
br

1di
cmpi
bne

find main peak:

Xor
call
call
call
call
or

save_template_info:

no_set int:

no_set burst:

1di
sti
1di
addi
call

1di
1di
subi
1di
1di
subi

ldi
1di

1di
cmpi
blt
1di

cmpi
blt
1di

sti
sti
1di
addi
call
1di
addi

4,R5

case4d 4
cased end
5,R5
cased4_end
4,R0

RO, *+AR4 (IR1)
case4_end

*+AR4 (IR1),R5
6,R5
keep_waiting

ENBL GIE, ST
copy_fft sum

average_ fft sum

find peaks

pick main peak

ENBL_GIE, ST

@max_peak, RO
RO, *+AR5 (IR1)
0E100h, R7

RO, R7
write_queue

*+AR3 (IR1), RO
*+AR2 (IR1),R1
RO, R1
*4+AR3 (IR1), RO
*+ARO (IR1),R2
RO, R2

@t bdur,AR2
@t_int,AR3

@cont_flag,RO
1,R0O
no_set_int
0,R2

2,R0
no set burst
0,R1

R1, *+AR2 (IR1)
R2, *+AR3 (IR1)
0E200h, R7
R1,R7
write_queue
OE300h, R7
R2,R7

4:begin
do nothing
end

5:begin

waiting:=4
end

Ne e Ne N Ny Ne ve Ne e

0]
o]
Q.

;get waiting flag
;are we finished?

;no then keep waiting
;else

jdisable global interrupt

;copy sum from temporary table
;calculate max and average of sum
;find the peaks in sum table
;pick the largest peak

;enable global interrupt

;get frequency of maximum peék
;save it in table

;send flag for learning mode

;get burst start time
;get burst end time
;get difference

;get burst start time
;get interval time
;get difference

;get addr of template burst durration

;get addr of template interval time

;get continous flag

;save burst durration in template
;save interval time in template

;send flag for learning mode




call write queue ;send flag for learning mode

end learning:

1di OE010h,R7

call write_queue ;send flag for learning mode
Xor RO, RO

sti RO, @process_mode ;set for normal operation
sti RO, *+AR4 (IR1) ;waiting:=0 so it will detect later
or ENBL GIE,ST ;enable global interrupt

pop IR1

pop IRO

pop R7

pop. R5

pop R4

pop R3

pop R2 -

pop R1

pop RO

pop AR7

pop . ARG

pop ARS

pop AR4

pop AR3

pop AR2

pop AR1

pop ARO

pop DP

retsu )

;Find_amplitude finds the average absolute amplitude of the input signal
;to test for begining and end of signal burst.

find_amplitude:

push DP
push AR7
push R4
push R3
push R2
push R1
push RO
push RC
push RE
ldf 0,RO
1di @fft_addr,AR7 ;get address of current fft table
1di 511,RC ‘;set to sum 255 words
rptb sum_average '
1df *AR7++,R1 ;get current input data
absf R1,R1 ;get absolute value
sum_average: addf R1,RO : ;add total
float 512,R1 ;divide sum by 512 to get average
call FDIV ;input absolute amplitude and
stf RO, Gave_ampl ;save it in ave_ampl
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pop
pop
pop
pop
pop
pop
pop
pop
pop

retsu

RE
RC
RO
R1
R2
R3
R4
AR7
DP

;Sdm_ffts sums the current FFT magnitudes with those saved in the tota
; fft magnitude table tmp table

sum_ffts: _
push

push

" push

push

push

push

push

1df
1di
1di
1di
rptb

1dp
1df
ldp
1df
addf
sum_table: stf

pop
pop
pop
pop
pop
pop
pop
retsu

DP
AR7
ARG
R1
RO
RC
RE

0,RO
@tmp_addr,AR7
@fft addr,AR6
254,RC
sum_table

@raml_addr,DP
*AR6++, RO
@tmp_table,DP
*AR7,R1

R1,RO

RO, *AR7++

RE
RC
RO
R1
ARG
AR7
DP

;get address of temporay table
;get address of current fft table
;set to sum 255 words

;get data page of current fft table
;get current fft magnitudes

- ;get data page of temporary table

;get fft sum from temporary table
;add current fft to table
;and save sum in tmp_ table

;Copy fft sum copys Sum of FFT magnitudes back to the FFT arrays so that
;Find peaks subroutine can operate

copy_ fft sum:
: push
push
push
push
push
push

1di
1di

DP
AR7
AR6
RO
RC
RE

@tmp_addr,AR7
@fft_addr, ARG

;get address of temporay table
;get address of current fft table
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1di 254,RC ;set to copy 255 words
rptb copy_sum

1dp @tmp_table,DP ;get data page of temporary table

1df *AR7++, RO ;get fft sum from temporary table

1dp @raml_addr, DP ;get data page of current fft table
copy_sum: stf RO, *AR6++ ;fft table[AR6] :=tmp_table[AR7]

pop RE

pop RC

pop RO

pop ARG

pop AR7

pop DP

retsu

;Find the average amplitude of fft peaks from the sum of all the ffts

average_ fft sum:

push DP
push RE
push RC

push AR5
push ARG

push RO

push R1

push R2

push R3

push R4

push IRO

ldp @rla_addr,DP ;set data page

Xor RO, RO

stf RO, Gmax_ fft imax_fft:=0

stf RO, Gave fft save fft:=0

1di @fft_addr,ARS ;get address of fft table

1ldi 1,IR0 ;set index to 1

1di 254,RC ;255 values

rptb end_ave_loop

cmpi .58, IR0 ' ;if less than 900HZ then

_ ;@ sample rate 8000Hz

blt end ave loop ;don't calculate max or ave

1df *+ARS (IR0O),RO ;rget fft real[IRO]

1df @max_fft,R1 ;get current max_fft

cmpf R1,RO . ;if max fft>new magnitude

blt no_new_amax ;then don't pdate max_fft

stf RO, @max_ fft ;else store new max

no_new_amax: .

ldf @ave fft,R1

addf RO, R1

stf R1l, Gave_fft ;ave fft:=ave fft+max fft-

end_ave_loop: addi 1,1IR0 ;inc (IRO) '

1df @ave fft,RO ;get average total

1df 197,R1 ;get number of additions
;note 197 for sample rate
;of 8000 Hz

call FDIV }

stf RO, Qave fft ;save it
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ave_sum_end:

pop IRO
pop R4

pop R3

pop R2

pop R1

pop RO

pop AR6
pop AR5
pop RC

. pop RE

pop DP

retsu

;Pick_main peak scans the peak table generated by find peaks and looks

;for the peak with the greatest magnitude

pick main peak:
push DP
push AR5
push ARG
push AR7

push RO

push R1

push RC

push RE

1df 0,R0O ;test mag:=

1di 0,ARS ;max_peak:=0

1dp @peak hz,DP ;set data page

1ldi @peak_table,AR7 - ;get address of peak table

1di @peak mtable,AR6 ;get address of peak max table

1di @peak cnt,RC ;get peak_cnt

subi 1,RC ;set to test all peaks found

rptb next peak

1df *AR6++,R1 ;get peak magnitude

cmpf R1,RO ;is it bigger than current

bgt next peak ;if greater than

1df R1,RO ;then save magnitude and

1di AR7,ARS. ;index to peak frequency table
next peak: addi 1,AR7 ;inc (index)

1di *AR5, RO ;get frequency of largest peak

sti RO, @max_peak : ;save it in max_peak

pop RE

pop RC

pop R1

pop RO

pop AR7

pop AR6

pop AR5

pop DP

retsu.

;Clear_table clears the FFT magnitude sum table




clear_table:
push
push
push
push
push

1df
1dp
1di
1dp
1di
rptb
clr table: stf
pop
pop
pop
pop
pop
retsu

DP
AR7
RO
RC
RE

0,RO

@tmp_ addr,DP
@tmp_addr, AR7
@tmp_table, DP
254,RC
clr_table

RO, *AR7++

RE
RC
RO
AR7
DP

;get data page of temporary table ptr

;get address of temporay table
;get data page of temporary table
;set to clear 255 words

;tmp table[AR7]:=0.0

;Matching Subroutine matches peaks found in find_peaks to info

;stored in templates

find match:
push
push
push
push
push
push
push
push
push
push
push
push
push
push
push
push
push
push

1dp
1di
idi
1di
1di -
1di
1di
1di

1df
1df

mpyf

~

DP
ARO
AR1
AR2
AR3
AR4
AR5
ARG
AR7
RO
R1
R2
R3
R4
RS
R7
IRO
IR1

@peak hz,DP

@peak_table,AR7
@peak_mtable, AR6

@t_rp, AR5
@t_wait,AR4
@t_start,AR3
@t_end,AR2
@t_intc,ARO

@min_power, R2
@ave fft,R3
2.5,R3

;template interval time
;template burst duration
;burst timer end times
;burst timer start times
;waiting flags

;template peak values
";peak table magnitudes
;peak table peak values

;min_power
;2.5%ave fft
; foung flag
;waiting flag

;peak tables index
;template tables index

;set data pageé ,

;get address of peak table

;get address of peak max table
;get address of template peaks
;get address of template flags
;get address of burst timer start
;get address of burst timer end
;get address of interval timer

;iR1l:=2.5*ave_fft




mpyf

1ldi
template_loop:
1di
1di
1di
subi
rptb
1df
crpf
blt
crmpf
blt

float
float

subf
absf
cmpf
bgt
addi
addi
1di
cmpi
beg

test_temps:

casel 0: cmpi
bne
1di
sti

1di
sti
br

cmpi
bne
1di-
sti
br

cmpi
bne

casel 1:

casel_ 2:

1di
dur

1di

cmpi

bne
test_cont:

ldi

1di

subi

1di

sec)

subi

float

6.25,R3
0, IR1

0,R4

0,IRO
@peak_cnt,RC
1,RC

test temps
*+AR6 (IRO), RO
R3,R0O
test_temps
R2,R0
test_temps

*+ARS5 (IR1),R1
*+AR7 (IRO),RO

RO,R1

R1,R1 .

3,R1
test_temps
1,R4

1, IR0

*+AR4 (IR1) ,R5
0,R4
not_found

0,R5
casel 1
@cycle cnt,RO

RO, *+AR3 (IR1)

1,R0

RO, *+AR4 (IR1)
casel_end
1,R5

casel 2

2,R0

RO, *+AR4 (IR1)
casel _end
2,R5

casel_3

@t_bduf,ARl

*+AR1 (IR1),RO
0,R0
no_test cont

@cycle_cnt, RO
*+AR3 (IR1),R1
R1,R0O
31,R1

R1,RO
RO, RO

iR1:=6.25%ave fft no sqrts
;template_index:=0

; found:=false
;peak index:=0
;get number of peaks found

;get next peak in peak table
+if peak mag<2.5*ave_fft
;then not a valid peak

;if peak mag<min_ power limit
;then not a valid peak

;get template value
;RO:=peak frequency

;R1:=R1-RO

;1f abs(peak-template)>tolerance
;then no peak match

;else found:=true

;inc (peak_index)

;get waiting flag

;1f not(found) then

;no template match

;case waiting of
O:begin

~. N

~. ~e

get current cycle count
temp[IR1l] .burst_start:=cycle_cnt

waiting:=1
end
l:begin

waiting:=2
end
2:begin
do nothing just wait

Ne e Ne N Ne Na Ve e Ne N

} get address of template burst
H get template burst durration
; else dont issue message

; get burst end time

; get burst start time

; burst durration:=end-start
H get continuous burst dur. (2

; convert to floating point
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absft RO, RO
float 31,R1
mpy £ 0.30,R1
cmp f RO,R1

get |RO-R1|

Rl set for +-15% tolerance
on burst duration

if difference between burst

duration and stored value
in template < 15% of stored

value then burst matches

e Ne Ne e e

e we we

blt no_test cont
1di - 0,RO H
sti RO, *+AR4 (IR1) ; waiting:=0
1di 0COO0O0H, R7 ; diplay message BOO plus index
addi IR1,R7 ;
push AR4 ;
push IRO ;
1di @peak ctable,AR4; store message in peak table
ldi @peaks_tcnt, IRO ;
sti R7, *+AR4 (IRO) H
addi 1,IRO
cmpi 10, IRO ;
bne nové
Xor IR0, IRO
nov4:
sti IR0, @peaks_tcnt ;
pop IRO ;
pop AR4 ;
no_test cont:
br casel_end ; end;
casel 3: ' cmpi 3,R5 y ; 3:begin
bne casel 4° H
1di 2,RO ;
sti RO, *+AR4 (IR1) ; waiting:=2
br casel_end ; end
casel 4: cmpi 4,R5 ; 4:begin
bne casel end ;
1di 2,R0O ;
sti RO, *+AR4 (IR1) ;  waiting:=2
; end
casel end: br temp loop end iend
not_ found:
;case waiting of
case2 O: cmpi 0,RS5 ; O:begin
bne case2 1 ; do nothing
br case2_end ; end
case2_1: cmpi 1,R5 ; l:begin
bne case2 2 ;
1di 4,R0O ;
sti RO, *+AR4 (IR1) ; waiting:=4
br case2_end ; end
case2_2: cmpi 2,RS ; 2:begin
bne casez_3 ;
1di @cycle_cnt,R0O ; get current cycle count
sti RO, *+AR2 (IR1) ; temp[IRl].burst;end:=cycle_cnt
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case2 3:
test _burst:
dur

found burst:

novl:

test_interval:

time

~e

1di
sti
br
cmpi
bne
1di
sti

1di
1di
subi
1di

1di
subi
float

- absf

float

mpy£f
cmpf

blt
1di
addi

push
push
1di
1di
sti
addi
cmpi
bne
Xor

sti
pop
pop

1di

float
float

crpf
beq

subf
float
subf
absf
float
mpyf
cmpf
bgt

3,R0

RO, *+AR4 (IR1)
case2_end
3,R5

case2_4

0,RO

RO, *+AR4 (IR1)

*+AR2 (IR1),RO
*+AR3 (IR1),R1
R1,RO
@t_bdur, AR1

*+AR1 (IR1),R1
R1,RO

RO, RO

RO, RO

*+AR1 (IR1),R1
0.30,R1

RO,R1

no_message
0OBOOOH, R7
IR1,R7

AR4

IRO

@peak ctable,AR4

@peaks tcnt, IR0

R7, *+AR4 (IRO)
1, IR0

10, IRO

novl

IR0, IRO

IR0, @peaks_tcnt

IRO
AR4

@t_int,AR1

*+AR3 (IR1),RO
*+ARO (IR1),R1
0,R1

not_zero

R1,RO,R1

*+AR1 (IR1), RO

RO, R1

R1,R1

*+AR1 (IR1), RO

0.10,R0

RO, R1
no_message

~e

~e

. e

~

Ne Ns Ne Ns we N We Na Ne N N

.- Ne N

e Ne Se we we

waiting:=3
end
3:begin

waiting:=0

get burst end time

get burst start time

burst durration:=end-start
get address of template burst

get template burst durration

convert to floating point
get |RO-R1]
Rl set for +-15% tolerance

on burst duration
if difference between burst
duration and stored value
in template < 15% of stored
value then burst matches
else dont issue message
diplay message B00O plus index

store message in peak table

get address of template interval

get burst start time

get current interval timer cnt
if interval timer = 0 then
not currently timing interval

Rl:=interval timer-burst_start
get template interval time

get magnitude of difference
get template interval time
set 10% tolerance

if magn of diff < 10% of stored

; interval time then interval
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match

bgt not zero ; interval time then interval
match
1di 0,RO
sti RO, *+ARO (IR1) ; interval timer:=0;
found int: 1di 0OB10OH,R7 H diplay message B10 plus index
addi IR1,R7 ;
push AR4 ;
push IRO ;
1di @peak ctable,AR4; store message in peak_table
1di @peaks tecnt, IR0
sti R7, *+AR4 (IRO) ;
addi 1,IRO ;
cmpi 10, IR0 ;
bne - nov2
Xor IR0, IRO
novz:
sti IR0, @peaks_tcnt
pop IRO H
pop AR4 ;
not_zero: .
ldi *+AR3 (IR1),RO
sti RO, *+ARO (IR1) P interval timer:=burst_start
_ br caseZ_end
no_message: .
1di 0,R7
not R7,R7
, br case2_end v end
case2 4: cmpi 4,R5 ; 4:begin
bne .caseZ_end ;
1di 0,RO ; ,
sti RO, *+AR4 (IR1) ; waiting:=0
; end
case2 end: br temp loop end ;end
temp loop end: addi 1,IR1 ;inc (template_index)
cmpi 5,IR1 ;more templates?
blt template_loop ' ;compare next template
‘ ;else we are done
pop IR1
pop IRO
pop R7
pop R5
pop R4
pop R3
pop R2
pop R1
pop RO
pop AR7
pop ARG
pop AR5
pop AR4
pop AR3
pop AR2

pop AR1




pop ARO
pop DP

end match: retsu

;Subroutine to find peaks in spectrum from FFT

find_peaks:
push DP
push AR4
push AR5
push AR6
push AR7
push RO
push R1
push R2 -
push R3
push IRO
push IR1
1dp @peak hz,DP ;set data page
1di @peak_table,AR7 ;get address of peak table
1di @peak_mtable,AR6 ;get address of peak max table
Xor RO, RO
sti RO, @peak_cnt ;peak_cnt:=0
sti RO, @g_up ;g _up:=0
1di RO, IRO ;peak_hz table index:=0
1di RO, IR1 ; £ft peak table index:=0
1ldf 0,R1 .
1di 49,RC ;
rptb init peak
_stf R1, *AR6++ , ;set all peak maximums to O
init_peak: sti RO, *AR7++ ‘ ;set all peaks to O
1di @peak_table,AR7 ‘ iget address of peak table
1di @peak _mtable, ARG ;get address of peak max table
1di @fft addr,ARS ;get current fft peak table
1di @g _up,R2 ;get g up flag :
1di 254,RC
rptb test_peaks
cmpi 57,IR1 ;1f less than 900HZ
;@ sample rate 8000Hz
blt test_peaks ;dont look for peaks
1df *+AR6 (IR0),RO ;get current peak max[IRO]
1df *+AR5 (IR1),R1 ;get current fft value[IR1]
cmpf RO,R1 ;1f R1>R0O (ie fft>peak max)
ble going_downl ;then we are going down a peak
cmpi 1,R2 ;1if g_up<l then
bge going upl ; ’
addi 1,R2 ;inc(g_up)
going_upl:
stf R1, *+AR6 (IR0) ;peak max[IR0]:=fft value[IR1]:;
sti IR1, *+AR7 (IRO) ;peak_hz[IR0]:=[IR1]
br test peaks
~ going_downl: , . :
cmpi 0,R2 ;71f g up>0 then
ble test_peaks ;begin
subi 1,R2 ° ‘ ; dec(g_up)

cmpi 0,R2 if g _up=0

bne going_down3 ‘ ; begin




1ldf @max fft,R3 ;

; mpyf 0.25,R3 ;
mpy£f 0.0625,R3 ; no sqgqrt
1df *+AR6 (IR0),RO ;i get peak max[IRO]
cmpf R3,R0 ; 1f peak max{[IR0]>0.25*max_fft
ble going downd ;
addi 1,IRO0 ; inc (peak_cnt)
sti IR0, @peak_cnt. ; save peak cnt
br test peaks
going_down4: 1df 0,RO ; else
stf RO, *+AR7 (IR0O) H peak max[IR0]:=0;
Xor RO, RO ;
sti RO, *+AR6 (IRO0) ; peak hz[IRO0]:=0;
: ; end
going down3: ;end;
test_peaks: addi 1,IR1 ;inc (IR1)
; 1di @peak_cnt,RO ;get current peak count
; 1di @peak_ctable,RAR4 ;get address of peak count
table v
; idi @cycle cnt, IRO ;get current cycle
; sti RO, *+AR4 (IRO)
pop IR1
pop IRO
pop R3
pop R2
pop R1
pop RO
pop AR7
pop ARG
pop AR5
- pop AR4
pop DP
end_find_peaks:
retsu

;Realtime Data array filling routine called by interrupt

fill_array:
nop
nop
push ST
push DP
‘push AR7
push RO
push IRO
push R7
1dp @rla_addr,DP ;set data page
1di @rla_addr, AR7 ;get address of table 0
1di @wfill,RO ;get table filling flag
cmpi 0,RO ;are we filling table 0 ?
beq fillo ;yes then just continue
1di @rlb_addr,AR7 ;else get address of table 1
£il110:
call receive0
; ‘ call get_data ;get the current realtime data
1di @fcnt, IRO © ;get table index
.stf R7, *+AR7 (IRO) ;store data in table
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addi
cmpi
bne
sti
1di
not
sti
1di

no_reset_cnt:
sti
pop
pop
pop
pop
pop
pop
nop
nop

end fill:
reti
rets

1,IR0O

512, IR0
no_reset cnt
IR0,@fill cnt
@wfill, RO

RO, RO

RO, @wfill

0, IRO

IR0, @fent
R7
IRO
RO
AR7
DP
ST

;inc index

;is table full-?

;no then keep filling
;else set fill _cnt flag
;get table filling flag
;invert which table flag
;save which table flag
;reset index

; save index

;Place holder subroutine for getting realtime data

;returns data in R7

get_data:
push DP ;save data page
push AR7 ; save AR7
1ldp @data_index,DP ;get current real data page
1di @data index,AR7 ;get current real data address
1ldf *ART7++,R7 ;get data, inc(data_ index)
subf 128, R7 ;subtract 128 for 8 bit voc
format
sti AR7,@data_index ;save new index
pop AR7 ;restore registers
pop DP
retsu

;Place holder for do nothing interrupt routine
null_int: retiu

;Subrotuine for calculating FFT magnitudes, maximum and average
fft magnitude:

push DP
push RE
push RC

push AR5
push AR6

push RO

push R1

push R2

push R3

push R4

push IRO

1dp @rla_addr,DP :set data page

Xor RO, RO




stf RO, @max fft

stf RO,@ave:fft
1di @fft_addr,BR5
1di @fft addr,AR6
addi 512,RR6

1di 1,IRC

1di 254,RC

rptb end_magn_loop
cmpi 58, IR0

blt end_magn_loop
1df *+ARS5 (IR0), RO
idf *~AR6 (IRO),R1

mpyf RO, RO
mpy £ R1,R1
addf R1,RO

; call SQRT

stf RO, *+ARS5 (IR0)

1df @max_fft,R1

crpf R1,RO

blt no_new_max

stf RO, Gmax_fft
no_new _max:

1ldf @ave fft,R1

addf RO,R1

stf R1l, Rave_fft
end magn_loop: addi 1,1IR0

1df Bave fft,RO

1df 197,R1

call FDIV

stf RO, Qave_fft
fft mag_end:

pop IRO

pPop R4

pop R3

pop R2

pop R1

pop RO

pop AR6

pop ARS

pop RC

pop RE

pop DP

retsu

rmax fft:=0
;ave fft:=0
;get address of fft table

;get address of end of fft table
;set index to 1
;255 wvalues

;1if less than S00HZ then
;@ sample rate 8000Hz
;don't calculate max or ave
;rget fft real[IRO]

;get fft imag[IRO]

;square real part

;square imag part

;sum the squares

;take the sqrt

;save it in table at real value

;get current max_ fft

;7if max_fft>new magnitude
sthen don't pdate max fft
;else store new max

;ave;fft:=ave_fft+max_fft
;inc (IRO)

rget average total

;get number of additions
;note 197 for sample rate
;of 8000 Hz

;save it
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aicreset

Reset and intialize the AIC

Reset the AIC

* Ok o F F F X * *

Intialize the AIC

Intial the serial ports
Take AIC out of reset

*
*

*

Operations: Set up timer 0 to supply AIC master clock *

*

*
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1 * Enable receive interrupts *
‘ * *
R S R SRS E EEE EE R RS R LS RS

aicreset:
1di 2,iof ;xf0 to output, set xf0 to O
1di @t0_ctladdr, ar0 ;get address of timer control
register '
1di 1,rl ;tclk0 will equal hl/2
sti rl,*+ar0(8) ;set the period register to 1
1di @t0_ctlinit, rl ;get timer 0 setup value
sti . rl, *ar0 ;set timer 0 to run in pulse mode
1di @p0_addr, ar0 * ;get address of serial port 0
1di 111lh,rl
sti rl,*+ar0(2) ;intialize transmit port control
sti rl,*+ar0(3) f ;intialize receive port control
1di @p0_global, rl sintialize port 0 global control
sti rl,*ar0
Xor rl, rl
sti rl, *+ar0(8) ;set transmit data to O
1di 0,R7
rpts 99 )
nop ;wait for 50 timer out clocks
14i 6,iof ;set xf0 to 1, !reset AIC
;set up the aic
call wait_ transmit O ;poll for transmit interrupt
1di 3,rl
sti rl, *+ar0(8) ; secondary transmittion
call wait_transmit_ 0
1di la34h,rl ;set the sampling rate
sti rl, *+ar0(8)
1di *+ar0(12),rl
; . call wait_transmit_ 0 ;poll for transmit interrupt
; 1di 3,rl
N sti : rl, *+ar0(8) ;secondary transmittion
; call wait_transmit 0 '
; 1di 3872h, rl ;set the sampling rate for 10.3kHz
; 1di 3C7ah, r1 ;set the sampling rate for 9.6kHz
; 1di . 346Ah, r1’ ;set the sampling rate for 11kHz
; sti rl,*+ar0(8)
; 1di *+ar0(12),rl
call wait_transmit_0 ;setup aic transmit and recieve
1di 3,rl ;sampling rates '
sti rl, *+ar0(8)
call wait_transmit 0
1di 2a7h, rl
sti rl,*+ar0(8)
1di *+ar0(12),rl
Xor if,if ;clear out all interrupt flags
Xor ENBL XINTO,IE ;disable serial port 0 tx int
or @enbl_sp0_r,ie ;enable serial port O

rets

;wait_transmit_0:
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xor if,if ;wait for the transmit interrupt
wloop: tstb 10h,if ;flag to be set.

bz wloop

rets

e we N

~e

wait_transmit_0:

wloop: tstb 1h,R7 ;flag to be set.
bz wloop
1di 0,R7
rets
transmit0: 1di 1,R7 ;
reti -

transmitl: reti
recievel: reti

timerl: reti
receive0:; push st ' ;save registers
push r0
push ar0
push dp
1dp PARMS
1di @p0_addr, ar0 ;get port address
1di *+ar0(12),r0 ;read input
1di RO, R7
1sh 16,R7
ash -18,R7
float R7,R7
sti r0, *+ar0(8) ; send output
pop dp ;restore registers
pop - aro0
pop ro
; pop st
rets
reti

hhkkhkkhkhkkhkhkkhhkhhhhkhkhhrhhkhkhkhkhkhkkhkhkhkkhkhkhhkhkhkhkhhkhkkhkhhkrdhkhhhkhrkhhhkhkhhkkhhhd

*  hread() *
* *
* Read data from c30 memory and write to communications reg. *
* *
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hreadlé:

push st ;save registers

push ro

push aré
push IRO

push dp

1dp process_mode, DP
1di @peak_ctable, ARE ;get address of output buffer
1di @peaks_hcnt, IR0 ;get pointer to head of buffer
cmpi @peaks_tcnt, IRO ;get pointer to tail of buffer
beq send_zero ;if equal do nothing
1di *+AR6 (IR0O), RO ;else get nest message
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1di Qhostport,ar6 ;load host port address

sti r0, *ar6 ;store data
addi 1,IRO ;inc head pointer
cmpi 10, IRO ;have we rolled over
bne miss_reset pointers ;no then save new head pointer
Xor IR0, IRO o ;else reset head and tail so buffer
sti IR0, @peaks_hcnt ;doesn;t overflow (10 words max)
; sti IR0, @peaks_tcnt
br no_reset pointers
miss_reset pointers:
sti IR0, @peaks hcnt ;save head pointer
no_reset pointers:
pop dp ;restore registers
pop - 1IRO
pop areé
pop r0
pop st .
rets
send_zero:
Xor RO, RO
1di @Ghostport,aré ;load host port address
sti r0, *aré ;store data '
pop . dp ;restore registers
pop IRO
pop areé
popr ro
pop : st
rets

;command write

cmd write:

push st ;save registers
push ro
push ar6
push dp
push R7
; 1dp process_mode, DP
Xor RO, RO
1di @hostport, ar6 ;load host port address
1di *ar6,R7 ‘ ;get input command
cmpi 0,R7
beq no_echo
call write_queue ;echo to output queue
cmpi 1,R7
bne not 1
not RO, R7
sti R7, @process_mode ;set flag for learning mode
not 1:
no_echo: :
call hreadlé ;write next queue entry to PC
pop R7
pop dp . ;restore registers
pop ar6 :

pop ro




pop
reti

write_queue:

‘nov3:

push
push
1di
1di
sti
addi
cmpi
bne
Xor

sti
pop
pop

st

AR4

IRO
@peak_ctable,AR4
@peaks_tcnt, IR0
R7, *+AR4 (IRO)
1,IRO

10, IRO

nov3

IR0, IRO

IR0, @peaks_tcnt
IRO
AR4

Se we we

~e o N

~

store message in output queue
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File : warnmath.asm

***************************************************************************

hhkkhkkhkhkhkhhkhhhhkhkhhkhhkhdhhkhhkhkhrkhkrkkkhkhrkrkhkkhhkhkhkx
SUBROUTINE: FPINV

WRITTEN BY: GARY A. SITTON
: GAS LIGHT SOFTWARE
HOUSTON, TEXAS
MARCH 1989.

FLOATING POINT INVERSE: RO <= 1/RO

INPUT RESTRICTIONS: RO !'= 0.0.
REGISTERS FOR INPUT: RO.

REGISTERS USED AND RESTORED: DP AND SP.
REGISTERS ALTERED: R0O-2 AND R4.
REGISTERS FOR OUTPUT: RO.

ROUTINES NEEDED: NONE. :
EXECUTION CYCLES (MIN, MAX): 33 , 33.
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APPROXIMATE ACCURACY: 8 DECIMAL DIGITS. *
*

*

"

*

*

*

*

*

; EXTERNAL PROGRAM NAMES
.GLOBL FPINV

INTERNAL CONSTANTS

~e

.DATA
ONE .SET 1.0
TWO .SET 2.0
MSK .WORD OFFTFFFFFH
’ . TEXT -
: .sect ".mtext"
; START OF FPINV PROGRAM
FPINV:
LDF RO, RO .+ TEST F
RETSZ ; RETURN NOW IF F = 0
; GET APPROXIMATION TO 1/F. FOR F = (14M) * 2**E
H AND 0 <=M < 1, USE: X[0] = (1-M/2) * 2**-E

PUSH DP ; SAVE DATA PAGE POINTER




LDP @MSK ; LOAD DATA PAGE POINTER

PUSHF RO » ; SAVE AS FLT. PT. F = (1+M) * 2**E
POP R1l ; FETCH BACK AS INTEGER
XOR @MSK, R1 ; COMPLEMENT E & M BUT NOT SIGN BIT
PUSH R1 ; SAVE AS INTEGER, AND BY MAGIC...
POPF R1 ; Rl <= X[0] = (1-M/2) * 2**-E.
POP DP ; UNSAVE DP
: NEWTON ITERATION FOR: Y(X) =X - 1/F =0 ...
MPYF R1,R0,R4 ; R4 <= F * X[0]
SUBRF  TWO, R4 ; R4 <= 2 - F * X[0]
MPYF R4,R1 ; Rl <= X[1] = X[0] * (2 - F * X[0])
MPYF R1,R0O,R4 -7 R4 <= F * X[1]
SUBRF TWO,R4 ; R4 <=2 - F * X[1]
MPYF R4,R1 ; Rl <= X[2] = X[1) * (2 - F * X[1])
MPYF R1,RO,R4 ;: R4 <= F * X[2]
SUBRF  TWO, R4 ; R4 <=2 - F * X[2]
MPYF R4,R1 ; Rl <= X[3] = X[2] * (2 - F * X[2])
; FOR THE LAST ITERATION: X[4] = (X[3] * (1 - (F * X[3]))) + X[3]
RND RO, R4 ROUND F BEFORE LAST MULTIPLY

RND R1,R0O ; ROUND X[3] BEFORE MULTIPLIES
MPYF RO, R4 ; R4 <= F * X[3] =1 + EPS

FINISH ITERATION AND RETURN

~e

POP R2 ;7 R2 <= RETURN ADDRESS

BUD R2 ; RETURN (DELAYED)

SUBRF ONE, R4 ; R4 <=1 - F * X[3] = EPS

MPYF - RO,R4 ; R4 <= X[3] * EPS

ADDF R4,R1,RO ; RO <= X[4] = (X[31*(1 - (F*X[3]))) + X[3}
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SUBROTUINE: FDIV

WRITTEN BY: GARY A. SITTON .
GAS LIGHT SOFTWARE
HOUSTON, TEXAS
APRIL 1989.

FLOATING POINT DIVIDE FUNCTION: RO <= RO/R1.

APPROXIMATE ACCURACY: 8 DECIMAL DIGITS.

INPUT RESTRICTIONS: R1 t= 0.0.

REGISTERS FOR INPUT: RO (DIVIDEND) AND R1 (DIVISOR).
REGISTERS USED AND RESTORED: DP AND SP.

REGISTERS ALTERED: RO-4.

REGISTERS FOR OUTPUT: RO (QUOTIENT).

ROUTINES NEEDED: FPINV.

EXECUTION CYCLES (MIN, MAX): 43 , 43.
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; EXTERNAL PROGRAM NAMES
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.GLOBL FDIV
.GLOBL FPINV

H . TEXT
.sect ".mtext"

; START OF FDIV PROGRAM

FDIV:
RND RO,R3 ; R3 <= RND X
LDF R1,R0O ; Rl <= Y
CALL FPINV ; RO <= 1/Y
RND RO ; ROUND BEFORE *
MPYF R3,R0 ; RO <= X
RETS ; RETURN
.END

*
*
*
*
A I AAAA A A A AA AR AAAAAAA A A A AT AR A A A AR A AR AR AR kAR A A A Ak A kA hk A rhdhhkhhkkkhrt

* Kk Kk Kk




% de de Kk Kk K kK ok ok ok o gk Kk ok ke ok ok ek ok ke e ke sk ok ke ke sk ke ke e g ke ke ok ok ke ke ke kR ke ok R ok ke ke ok ok ke ke ke ok b ok ke ke ke ok ok ok ke ok ok
* Kk Kk

* FILENAME : warnfft.asm

3

* ADAPTED FROM : Texas Instrument
*

* DATE : 23rd June 1994 .
*

* VERSION : 3.0

*
KAhkhkhkhkhkhkhhkhkkhkhkhkhkrkrhkkhkkrkhkhkkhkhkrhkrrkhkhkhkhbhkrrkhbhhhkhhkhkhhkhhkhhkhhdkhhdkhhdhdhhkkihkkhhk
* % % %k

* VER DATE COMMENTS

18th July 91 Original Release.
23rd July 91 Most Stages Modified.
Minimum FFT Size increased from 32 to 64.
Faster in place bit reversing algorithm.
Program size increased by about 100 words.
One extra data word required.
23rd June 94 Used as 2 512 word FFT banks
Both Bank2 to reside in RAM1 internal bank
Code to reside in RAMO intenal bank
NOT called as a C subroutine
Called as an assembly language routine only!

* % % %k ok * ok % Ok o * *
w
o
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SYNOPSIS: int  ffft rl( FFT SIZE, LOG SIZE, SOURCE_ADDR, DEST ADDR,
 SINE_TABLE, BIT_REVERSE );

int FFT_SIZE ; 64, 128, 256, 512, 1024,

int  LOG_SIZE ; 6, 7, 8, 9, 10,

float *SOURCE_ADDR .+ Points to location of source data.
float *DEST_ADDR Points to where data will be

operated on and stored.

Points to the SIN/COS table.

= 0, Bit Reversing is disabled.’

<> 0, Bit Reversing is enabled.

~.

float *SINE TABLE
int BIT REVERSE

e Ve Ne N

*

*

*

*

*

*

*

*

*

*

*

*

* NOTE: 1) If SOURCE_ADDR = DEST ADDR, then in place bit
* reversing is performed, if enabled (more
* processor intensive).

* 2) FFT_SIZE must be >= 64 (this is not checked).
*

*

C

*

*

*

*

*

*

*

*

DESCRIPTION: Generic function to do a radix-2 FFT computation on the
30.
The data array is one of 2 FFT SIZE-long tables with only
real data. The output is stored in the same locations with
real and imaginary points R and I as follows:

DEST_ADDR[O0] -> R(0)
R(1)
R(2)
R(3)




R(FFT_SIZE/2)
I(FFT_SIZE/2 - 1)

I(2)
DEST_ADDR[FFT_SIZE - 1] -> I(1l)

This subroutine is based on the FORTRAN program in the paper
by Sorensen et al., June 1987 issue of Trans. on ASSP.

Bit reversal is optionally implemented at the beginning
of the function.

The sine/cosine table for the twiddle factors is expected
to be supplied in the following format:

SINE_TABLE [0] -> sin(0*2*pi/FFT_SIZE)
sin(1*2*pi/FFT_SIZE)
sin((FFT_SIZE/2-2)*2*pi/FFT_SIZE)

SINE_TABLE[FFT_SIZE/2 - 1] -> sin((FFT_SIZE/2-1)*2*pi/FFT_SIZE)

NOTE: The table is the first half period of a sine wave.

Stack structure upon call:

Frm e ——— +
-FP(7) | BIT_REVERSE |
-FP(6) | SINE_TABLE |
-FP(5) | DEST_ADDR |
~-FP(4) | SOURCE_ADDR | '
-FP(3) | LOG_SIZE |
-FP(2) | FFT _SIZE |
-FP (1) | return addr |
-FP(0) | old FP |

e +

* ok % %k ok * * % R F ¥ F X F F F F F * F % F F F F X * * A ¥ ¥ % % * * % * * *

**********************************************************************‘-***

* % ok k

x

* .

* WARNING: DP initialised only once in the program. Be wary
* ‘ with interrupt service routines. Make sure interrupt
* service routines save the DP pointer.

. ;

* WARNING: The DEST_ADDR must be aligned such that the first
* LOG_SIZE bits are zero (this is not checked by the
* program) .

*

Akkkhkhkdkhkhhkhdkhhhkhhkhkhkhhhhkdkkhhddhhkhdhkhhhhdhhhdhdhkhhhdkddhhhkokokkhhkkhkkkkkkokkkk
kkkok
*

* REGISTERS USED: RO, R1, R2, R3, R4, R5, R6, R7 .
* ARO, AR1, AR2, AR3, AR4, AR5, ARG, AR7
* ' IR0, IR1 :




RC, RS, RE
DP

MEMORY REQUIREMENTS: Program = 405 Words (approximately)
Data = 7 Words
Stack = 12 Words

* % * ok * * *
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* k%K
*

* BENCHMARKS: Assumptions - Program in RAMO

* - Reserved data in RAMO

* - Stack on Primary/Expansion Bus RAM

* - Sine/Cosine tables in RAMO

* - Processing and data destination in RAMI.

* - Primary/Expansion Bus RAM, 0 wait state.

*

* FFT Size Bit Reversing Data Source Cycles(C30)

* | emmmemem——— | e e i ——. ———————————

* 1024 OFF RAM1 19816
approx.

* Note: This number does not include the C callable overheads.
*

Add 57 cycles for these overheads.
*

AEKEKAAAAKAKAAARAAKIAAAAKRAARAAAAA AR KRA A A A A A A A A A kA kA ARk kA kA hk Ak k Ak hkhhhhhkh ik
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ENBL_GIE .set 2000h ;global interrupt enable
FP .set AR3
.global _ffft rl ; Entry execution point.
FFT_SIZE: .usect ".fftdata",1 ; Reserve memory for arguments.
LOG_SIZE: .usect - " _fftdata",1
SOURCE_ADDR: .usect ".fftdata",1
DEST ADDR: .usect v _fftdata",1
SINE_TABLE: .usect ".fftdata",1
BIT REVERSE: .usect ".fftdata",1
SEPARATION: .usect ".fftdata",1

;
; Initialise C Function.

.
’

.sect ".ffttext"

_ffft rl: PUSH FP : Preserve environment.
LDI SP, FP
PUSH RO
PUSH RI1
PUSH R2
PUSH R3
PUSH R4
PUSH RS

PUSH R6
PUSH R7
PUSH ARO
PUSH ARl
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PUSH AR2

PUSH AR3
PUSH AR4
PUSH ARS
PUSH AR6
PUSH AR7
PUSH IRO
PUSH IR1
PUSH DP
LDP  FFT_SIZE ; Initialise DP pointer.

LDI *~FP(2),R0 ; Move arguments from stack.
STI RO,@FFT_SIZE )
LDI *-FP(3),R0

STI RO,@LOG_SIZE

LDI *_FP(4),R0

STI RO,@SOURCE_ADDR

LDI *~FP(5),R0

STI RO, @DEST_ADDR

LDI *~FP(6),RO

STI RO,@SINE_TABLE

LDI *~-FP(7),R0

STI RO, @BIT_REVERSE

Check Bit Reversing Mode (on or off).

e Ne Ne W

BIT REVERSING = 0, then OFF (no bit reversing).
; BIT_REVERSING <> 0, Then ON.

LDI @BIT REVERSE,RO
CMPI O,RO
BZ MOVE_DATA

; Check Bit Reversing Type.

7 If SourceAddr = DestAddr, Then In Place Bit Reversing.
; If SourceAddr <> DestAddr, Then Standard Bit Reversing.

LDI @SOURCE_ADDR, RO
CMPI QDEST_ADDR,RO
BEQ IN_PLACE

;

; Bit reversing Type 1 (From Source to Destination).’

i : J

; NOTE: abs(SOURCE_ADDR - DEST_ADDR) must be > FFT_SIZE, this is not
checked.

’

LDT @FFT_SIZE,RO

SUBI 2,R0

LDI @FFT_SIZE,IRO

LSH ~-1,IR0 ; IRO = Half FFT size.
LDI @SOURCE_ADDR,ARO :




LDI  GDEST ADDR,AR1
LDF  *ARO++,R1

RPTS RO
LDF  *ARO++,R1
I STF  R1,*AR1++(IR0O)B’

STF R1l, *AR1++(IR0O)B

BR START

; In Place Bit Reversing.

4

; Bit Reversing On Even Locations, 1lst Half Only.

IN_PLACE: LDI @FFT_SIZE,IRO
LSH -2,IR0 ; IRO = Quarter FFT size.
LDI 2,IR1

LDI  QFFT_SIZE,RC
LSH -2,RC

SUBI 3,RC

LDI  @DEST_ADDR,ARO
LDI  ARO,AR1

LDI  ARO,AR2

NOP *AR1++ (IRO)B ‘
NOP *AR2++ (IR0)B ’
LDF *++AR0 (IR1),RO
LDF *AR1,R1
CMPI AR1,ARO .; Xchange Locations only if ARO<ARI.
LDFGT RO,R1
LDFGT *AR1++(IRO)B,R1

RPTB BITRV1
LDF  *++ARO0(IR1),RO

|| STF RO, *ARO -
LDF *AR1,R1
|| STF R1, *AR2++ (IR0) B

CMPI ARI1,ARO
LDFGT RO,R1 .
BITRV1: LDFGT *AR1++ (IR0)B,RO

STF RO, *ARO
STF  R1,*AR2

; Perform Bit Reversing On Odd Locations, 2nd Half Only.

LDI  @FFT SIZE,RC
LSH -1,RC

LDI  @DEST_ADDR,ARO
ADDI RC,ARO" :
ADDI 1,ARO
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LDI  ARO,AR1
LDI  ARO,AR2
LSH -1,RC
SUBI 3,RC

NOP *AR1++(IR0O)B

NOP *AR2++ (IR0)B

LDF  *++ARO (IR1),RO

LDF  *AR1,R1

CMPI AR1,ARO ; Xchange Locations only if ARO<ARI1.
LDFGT RO, R1 :

LDFGT *AR1++(IR0)B,R1

RPTB BITRVZ2 )
LDF *++AR0 (IR1),RO

|| STF RO, *ARO
LDF *AR1,R1
Il STF R1,*AR2++ (IR0)B

CMPI AR1,ARO
LDFGT RO,R1
BITRV2: LDFGT *AR1++(IR0)B, RO

STF RO, *ARO
STF  R1,*AR2

; Perform Bit Reversing On 0Odd Locations, 1lst Half Only.

LDI  @FFT_SIZE,RC
_LSH -1,RC

LDI  RC,IRO

LDI  @DEST_ADDR,ARO
LDI  ARO, ARl

ADDI 1,ARO

ADDI IRO,AR1

LSH -1,RC
LDI  RC,IRO
SUBI 2,RC : -~

LDF  *ARO,RO
LDF  *AR1,R1

RPTB BITRV3
LDF  *++ARO(IR1),RO
|1 STF RO, *AR1++(IR0)B
BITRV3: LDF  *AR1,R1
: [l STF R1,*-ARO(IR1)

STF RO, *AR1
STF R1, *ARO

BR START

; Check Data Source Locations.

; If SourceAddr = DestAddr, Then do nothing.
; If SourceAddr <> DestAddr, Then move data.
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MOVE_DATA: LDI @SOURCE_ADDR, RO
CMPI @DEST_ADDR, RO
BEQ START

LDI @FFT_SIZE,RO
SUBI 2,R0

LDI @SOURCE_ADDR, ARO
LDI @DEST_ADDR, AR1
LDF *ARO++, R1

RPTS RO

LDF *ARO++, R1

Il STF R1, *AR1++

STF  R1,*AR1

Perform first and second FFT loops.

; |7 AR1 -> | I1 .| 0 <—- [X(I1) + X(I2)] + [X(I3) + X(I4)]
; | AR2 -> | 12 | 1 <- [X(I1) - X(I2)]
; | AR3 -> | _I3 | 2 <- [X(I1) + X(I2)] - [X(I3) + X(I4)]
: | _AR4 -> | _I4_| 3 <- -[X(I3) - X(I4)]
; AR1 -> | | 4
H i .
; NI/
START: ' LDI  @DEST ADDR,AR1
LDI ° ARl,AR2
LDI  ARl,AR3
LDI  AR1,AR4
ADDI 1,AR2
ADDI 2,AR3
ADDI 3,AR4
LDI 4, IR0
LDI  QFFT_SIZE,RC
LSH -2,RC
SUBI 2,RC
LDF  *AR2,RO ; RO = X(I2)
|| LDF *AR3, R1 , ; Rl = X(I3)
ADDF3 R1, *AR4, R4 ; R4 = X(I3) + X(I4) _
SUBF3  R1,*AR4++(IR0),RS ; R5 = —[X(I3) - X(I4)] —--+
SUBF3 RO, *AR1,R6 ; R6 = X(I1) - X(I2) -—+ |
ADDF3 RO, *AR1++(IR0),R7 ; R7T = X(I1) + X(I2) [
ADDF3 R7,R4,R2 ; R2 = R7 + R4 ~———- +
|
SUBF3 R4,R7,R3 ; R3 =R7 - R4 —+ | |
; | |
RPTB LOOP1 2 o [ R
LDF  *+AR2(IRO),RO : [0 1
|| LDF *+AR3 (IRO),R1 o [0 1
ADDF3 R1, *AR4,R4 ; [ I
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|| STF R3, *AR3++ (IRO0) ; X(I3) <—————-—- + 1t
SUBF3 R1, *AR4++ (IR0),R5 ; I

Il STF R5, *~AR4 (IRO) ; X(I4) <——————————— [ p—
SUBF3 RO, *AR1,R6 ; P
|l STF R6, *AR2++ (IRO) ; X(I2) €——————————— |——+
ADDF3 RO, *AR1++ (IR0),R7 ; [
|| STF R2, *-AR1 (IRO) ; X(I1) <——mmmmm———- +
ADDF3 R7,R4,R2
LOOP1_2: SUBF3  R4,R7,R3
STF R3,*BR3
|| STF R5, *-AR4 (IRO0)
STF R6, *AR2

|| STF R2, *-AR1 (IRO0)

Perform Third FFT Loop.

N+ Ne Ne Ne N N

Part A:
| ARL -> | _I1_ | 0 <- X(I1) + X(I3)

; | | I 1

; I 1_I2__| 2

; [ l I 3

; | AR2 -> | I3 | 4 <- X(I1l) - X(I3)

; I I I 5 '

; | AR3 -> |_I4_ | 6 <- -X(I4)

; I_ | | 7

; AR1 -> | | 8

; f (.

; | !

: N/
LDI  @DEST_ADDR,AR1
LDI  AR1,AR2
LDI  AR1,AR3
ADDI 4,AR2
ADDI 6,AR3
LDI  8,IR0
LDI  @FFT_SIZE,RC
LSH -3,RC
SUBI 2,RC
SUBF3 *AR2, *AR1,R1
ADDF3 *AR2, *AR1,R2
'NEGF *AR3,R3
RPTB LOOP3_A
LDF  *+AR2(IRO),RO ; RO = X(I3)
Il STF R2, *AR1++ (IR0) :
SUBF3 RO, *AR1,R1 ; Rl = X(Il) - X(I3) --——- +
I STF R1, *AR2++ (IR0) I
ADDF3 RO, *AR1,R2 ; R2 = X(Il) + X(I3) --+ |
|| STF R3, *AR3++ (IR0) ; _ [

LOOP3_A: NEGF *AR3,R3 ;7 R3 = -X(I4) -+ bl
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Ne Ne Ve Ne N5 e Ve N Ne N N

AR TR T AR T T 1T

X(Il) <—==———— |——————- + |

STF R2, *AR1 :
Il STF R1, *AR2 7 X(I3) <==—m—me | ——mmmmmm e +
STF R3, *AR3 ; X(I4) <——————m +
Part B:
I | | 0
| ARO -> | _I1 | 1 <- X(I1) + [X(I3)*COS + X(I4)*COS]
f | | 2
| ARl => |_I2 | 3 <~ X(I1l) - [X(I3)*COS + X(I4)*COS]
! [ | 4 -
| AR2 ~> |_I3 | 5 <- -X(I2) - [X(I3)*COS - X(I4)*COS]
I |16
I_ AR3 -> |__TI4__| 7 <- X(I2) - [X(I3)*COS - X(I4)*COS]
| | 8
ARO -> | | 9 NOTE: COS(2*pi/8) = SIN(2*pi/8)
| -
\I/

LDI  @FFT_SIZE,RC

LSH -3,RC .
LDI  RC,IR1
SUBI 3,RC

LDI  8,IRO

LDI  @DEST_ADDR,ARO
LDI  ARO,ARL

LDI  ARO,AR2

LDI  ARO,AR3

ADDI 1,ARO0

ADDI 3,AR1

ADDI 5,AR2

ADPI 7,AR3

LDI @SINE_TABLE, AR7 ; Initialise table pointers.

LDF  *++AR7(IR1),R7 ; RT = COS(2*pi/8)
; *AR7 = COS(2*pi/8)
MPYF3 *AR7, *AR2, R0 ; RO = ¥(I3)*COS
MPYF3 *AR3,R7,R1 ; R5 = X(I4)*COS
ADDF3  RO,R1,R2 ; R2 = [X(I3)*COS + X(I4)*Cos]
MPYF3 *AR7, *+AR2 (IR0), RO ‘
| SUBF3 RO,R1,R3 ; R3 = —[X(I3)*COS - X(I4)*COS]
SUBF3 *AR1,R3,R4 ; R4 = -X(I2) + R3 ——+
ADDF3 *AR1,R3,R4 = ; R4 = X(I2) + R3 ——|——+
|| STF R4, *AR2++ (IRO) 7 X(I3) <———————————— + |
© SUBF3 R2, *ARO,R4 ; R4 = X(I1) - R2 ——+ |
f| STF R4, *AR3++ (IR0) ; X(I4) <—————mr————— | ——+
ADDF3 *ARO,R2,R4 ; R4 = X(Il) + R2 ——|——+
|| STF R4, *AR1++(IR0) ; X(I2) <-—=——==———-—- + |

RPTB LOOP3_B ; |
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MPYF3 *AR3,R7,R1 ; [
[l STF R4, *AR0++ (IRO) i X(I1) <———mmmmm—m—— +
ADDF3  RO,R1,R2
MPYF3 *AR7, *+AR2 (IR0), RO
.|| SUBF3 RO,R1,R3
SUBF3 *AR1,R3,R4
ADDF3 *AR1,R3,R4
|l STF R4, *AR2++ (IRO)
SUBF3 R2, *ARO, R4
] STF R4, *AR3++ (IRO)
LOOP3_B: ADDF3 *ARO,R2,R4
|| STF R4,*AR1++ (IRO)

MPYF3 *AR3,R7,R1

|| STF R4, *ARO++ (IR0)
ADDF3  RO,R1,R2
SUBF3 RO,R1,R3

SUBF3 *AR1,R3,R4

ADDF3 *AR1,R3,R4

|| STF R4, *AR2

SUBF3 R2, *AR0, R4

|| STF R4, *AR3

ADDF3 *ARO,R2,R4

|| STF R4, *AR1

STF R4, *ARO

; Perform Fourth FFT Loop.

; Part A:

; | AR1 -> |_I1 | 0 <- X(I1) + X(I3)
H I I 1

; I I | 2

; I I I 3

; | i__I2_ | 4

; I | | 5

; I I | 6

; | I [ 7

; | AR2 -> |_I3_ | 8 <- X(Il) - X(I3)
; I ! | 9

; | | | 10 .

; I i 111

; | AR3 -> | _I4 | 12 <- -X(I4)
; I I | 13

; I i | 14

; |_ I | 15

; ARl -> | 15 | 16

; I [ 17

; | -

; \I/

LDI  @DEST_ADDR,ARI
LDI  AR1,AR?2
LDI  ARl,AR3




LOOP4_A:

Ne Ne ws Ne We Ne e “e

Ne Ne Ne Ve Ve we Ne e N N

~

e e Ne N

~e

Se S

Part B:

AR1

RR4

ADDI 8,AR2

ADDI 12,AR3

1LDI 16, IR0

LDI  @FFT_ SIZE,RC
LSH -4,RC

SUBI 2,RC

SUBF3 *AR2, *AR1,R1
ADDF3 *AR2, *AR1,R2
NEGF *AR3,R3

RPTE LOOP4_A

LDF *+AR2 (IR0), RO ; RO = X(I3)
|| STF R2, *AR1++ (IRO)
SUBF3 RO, *AR1,R1 ; Rl = X(I1l) - X(I3) =~===n +
|| STF R1, *AR2++ (IR0) ; _ I
ADDF3 RO, *AR1,R2 ; R2 = X(I1l) + X(I3) -+ |
|| STF R3, *AR3++ (IRO0) ; | |
NEGF *AR3,R3 ; R3 = -X(I4) —-+ I
; | I
STF - R2, *AR1 ;O X(I1l) <—————im | mmmmmm + |
|| STF R1, *AR2 ; X(I3) <——————- [ +
STF R3, *AR3 ; X(I4) <===mm-mm +
I | O
ARO => |_I1 (3rd) | 1 <- X(Il) + [X(I3)*COS + X(I4)*SIN]
|_I1_(2nd)_| 2
| _I1_(1st)_| 3
| | 4

|__I2_(ist)_| 5
|__I2"(2nd)_| 6

-> | _12 (3rd)_| 7 <~ X(Il) - [X(I3)*COS + X(I4)*SIN]
I 1 8 o
AR2 <> |_13 (3rd)_}| 9 <- -X(I2) - [X(I3)*SIN - X(I4)*COS]
| I3 _(2nd)_| 10 .
-> |_13 (1st)_| 11 .
| | 12
|14 (1st)_| 13
|_14_(2nd)_| 14 . _
AR3 > | 14 (3rd) | 15 <- X(I2) - [X(I3)*SIN - X(I4)*COS]
I | 16 :
-> | | 17
| . |
NI/

LDI  @FFT_ SIZE,RC
LSH  -4,RC

LDI  RC,IRL

LDI  2,IRO

SUBI 3,RC
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X(I4)*Cos]

@DEST_ADDR, ARO

LDI
LDI  ARO,AR1
LDI  ARO,AR2
LDI  ARO,AR3
LDI  ARO,AR4
ADDI 1,ARO
ADDI 7,AR1
ADDI 9,AR2
ADDI 15,AR3
ADDI 11,AR4
LDI  @SINE_TABLE,AR7
LDF  *++AR7 (IR1),R7 ; R7 = SIN(1*[2*pi/16])
; *AR7 = COS(3*[2*pi/16])
LDI  AR7,AR6 :
LDF  *++AR6(IR1),R6 ; R6 = SIN(2*[2*pi/16])
; *AR6 = COS(2*[2*pi/16])
LDI  AR6,AR5 :
LDF  *++AR5(IR1),R5 ; R5 = SIN(3*[2*pi/16])
. i *AR5 = COS(1*[2*pi/16])
LDI  16,IR1
MPYF3 *AR7, *AR4, RO ; RO = X(I3)*COS(3)
MPYF3 *++AR2(IR0),R5,R4 ; R4 = X(I3)*SIN(3)
MPYF3 *--AR3(IRO),R5,R1 ; Rl = X(I4)*SIN(3)
MPYF3 *AR7, *AR3, RO ; RO = X(I4)*COS(3)
|| ADDF3  RO,R1,R2 i R2 = [X(I3)*COS + X(I4)*SIN]
MPYF3 *AR6, *-AR4, RO
| | SUBF3 R4,RO,R3 ; R3 = —[X(I3)*SIN -
SUBF3 *--AR1(IR0),R3,R4 ; R4 = -X(I2) + R3 --+
ADDF3 *AR1,R3,R4 ; R4 = X(I2) + R3 —-|--+
|l STF R4, *AR2-- i X(I3) <——mmmmmm———- +
SUBF3 R2, *++AR0 (IR0),R4 ; R& = X(I1) - R2 ——+ |
Il STF R4, *AR3 i X(I4) <———mm—m————— | -—+
ADDF3 *AR0,R2,R4 ; R4 = X(I1l) + R2 ——|-——+
|l STF R4, *AR1 C 7 R(I2) <mmmmmmmmm—— +
; |
 MPYF3 *++AR3,R6,R1 ; |
|| STF R4, *ARO P X(I1) <=mm—m—mm o +

ADDF3  RO,R1,R2

MPYF3

*ARS5, *~AR4 (IR0) , RO

|| SUBF3 RO,R1,R3

SUBF3
ADDF3
|| STF
SUBF3
|l STF
ADDF3
|l STF

MPYF3
|| STF
MPYF3
MPYF3

*++AR1,R3,R4
*AR1,R3,R4
R4, *AR2
R2,*--RAR0, R4
R4, *AR3
*ARO,R2,R4
R4, *AR1

*--AR2,R7,R4
R4, *ARO

*++AR3,R7,R1
*ARS, *AR3, RO

|| ADDF3  RO,R1,R2




LOOP4_B:

MPYF3 *AR7, *++AR4 (IR1),RO
|| SUBF3 R4,R0,R3

SUBF3
ADDF3
i} STF
SUBF3
|| STF
ADDF3
|} STF

RPTB
MPYF3
|l STF
MPYF3
MPYF3

*++AR1,R3,R4"
*AR1,R3, R4

R4, *AR2++ (IR1)
R2, *--ARO, R4
R4, *AR3++ (IR1)
*ARO, R2, R4

R4, *AR1++ (IR1)

LOOP4 B

*++AR2 (IR0) ,R5, R4
R4, *ARO++ (IR1)
*--AR3 (IRO),R5,R1
*AR7, *AR3, RO

|| ADDF3  RO,R1,R2

MPYF3

*AR6, *~AR4, RO

| | SUBF3 R4,R0,R3

SUBF3
ADDF3
|| STF
SUBF3
||l STF
ADDF3
|| STF

MPYF3
il STF

*--AR1 (IRO),R3,R4
*AR1,R3,R4

R4, *AR2--

R2, *++AR0 (IR0) , R4
R4, *AR3

*ARO, R2, R4

R4, *AR1

*++AR3, R6,R1
R4, *ARO

ADDF3  RO,R1,R2

MPYF3

*AR5, *~AR4 (IR0),RO

|| SUBF3 RO,R1,R3

SUBF3
ADDF3
|l STF
SUBF3
|| STF
ADDF3
|| STF

MPYF3
|| STF
MPYF3
MPYF3

*++AR1,R3, R4
*AR1,R3, R4
R4, *AR2

R2, *--ARO, R4
R4, *AR3
*ARO, R2, R4
R4, *AR1

*--AR2,R7,R4
R4, *ARO

*++AR3,R7,R1
*ARS5, *AR3, R0

|| ADDF3  RO,R1,R2
MPYF3  *AR7, *++AR4 (IR1),RO
|| SUBF3 R4,RO,R3

SUBF3
ADDF3
|1 STF
SUBF3
|| STF
ADDF3
il STF

MPYF3
|| STF
MPYF3

*++AR1,R3,R4
*AR1,R3,R4

R4, *AR2++ (IR1)
R2, *--AR0,R4
R4, *AR3++ (IR1)
*ARO,R2,R4
R4, *AR1++(IR1)

*++AR2 (IR0),R5,R4
R4, *ARO++ (IR1)
*--AR3 (IRO),R5,R1



MPYF3 *AR7, *AR3, RO

|| ADDF3  RO,R1,R2
MPYF3 *AR6, *-AR4, RO

|| SUBF3 R4,R0,R3
SUBF3 *--AR1 (IR0),R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2--

SUBF3 R2, *++AR0 (IR0), R4
|| STF R4, *AR3

ADDF3 *ARO,R2,R4

|| STF R4, *AR1 :

MPYF3 *++AR3,R6,R1
|| STF R4, *ARO

ADDF3  RO,R1,R2
MPYF3 *AR5, *-AR4 (IRO),RO
|| SUBF3 RO,R1,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4
|| STF R4, *AR2
SUBF3 R2, *~-ARO, R4
Il STF R4, *RAR3
ADDF3 *ARO,R2,R4
|| STF R4, *AR1

MPYF3 *--AR2,R7,R4
|| STF R4,*ARO
MPYF3 *++AR3,R7,R1
MPYF3 *ARS5, *AR3, R0
|| ADDF3  RO,R1,R2
SUBF3 R4,R0,R3

SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4, *AR2
SUBF3 R2, *--ARO,R4
|| STF R4, *AR3 e
ADDF3 *ARO,R2,R4

1 STF R4, *AR1

STF R4, *ARO

Perform Remaining FFT loops (loop 4 onwards).

e ve No o -

H LOOP

; 1st 2nd .....

; _ N/ N/

; | | X' (I1) ) 0 <- X'"(I1l) + X'(I3)

; | ARl -> | _ X(I1) (1st) | 1 1 <- X(Il) + [X(I3)*COsS +
X{(I4)*SIN]

~e

| | _X(I1) (2nd) | 2 2 .
|__x(11)_(3rd)_| 3

~e

I
l
I
! A -> | I
l
I
f

| X'(12)_| 8 16
B -> | . |

Ne e Ne Ne e N
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~

| |
|_X(12)_(3rd)_| 13 29
| _X(I2) _(2nd) | 12 30

| BAR2 -> | _X(I2) (1st) | 15 31 <- X(I1) - [X(I3)*COS + X(I4)*SIN]

| | X' (13) | 16 32 <- X'(I1) - X'(I3)

| AR3 -> | X(I3) (1lst) | 17 33 <- -X(I2) - [X(I3)*SIN -
(I4)*CO0s]

| _X(I3) (2nd) | 18 34
|__X(I3) _(3rd)_| 19 35
I . f

-> | ‘ |

X
; |
; J
; |
; | v
; | | X' (I4) | 24 48 <- -X'(I4)
; | => | . |
; I
; | | |
; | | _X(I4) (3rd)_| 29 61
; | |__X(I4) (2nd)_| 30 62 .
; I AR4 -> | _X(I4) (1st) | 31 63 <- X(I2) - [X(I3)*SIN -
X (I4)*Cos]
; | | 32 64
; ARl -> | | 33 65
; | . |
; ¥4
LDI @FFT_SIZE,IRO
LSH -2,IR0
STI IR0, @SEPARATION
LSH -2,IR0
LDI 5,R5
LDI 3,R7
LDI 16,R6
LDI @DEST ADDR,ARS5
LDI @DEST_ADDR,ARl
LSH -1,IRO0
ILSH 1,R7
LOOP: ADDI 1,R7
LSH 1,R6
LDI  AR1,AR4
ADDI R7,AR1 e ; ARl points at A.
LDI  AR1,AR2
ADDI 2,AR2 ; AR2 points at B.
ADDI R6,AR4
SUBI R7,AR4 ; AR4 points at D.
LDI  AR4,AR3
SUBI 2,AR3 ; AR3 points at C.
LDI @SINE_TABLE,ARO ; ARO points at SIN/COS table.
LDI R7,IR1
DI  R7,RC
INLOP: ADDF3 *——-AR1 (IR1),*++AR2(IR1),R0 ; RO = X'(I1l) + X'(I3)
_._+ .

SUBF3 *--AR3(IR1), *AR1++,R1 ; Rl = X'(I1) - X'(I3) —+|
NEGF *--AR4,R2 _ ; R2 = -X'(I4) --+ b




Il STF RO,*-AR1 . ;X' (I1) <~——m——- | —————— |+

STF  R1,*AR2-- ; X' (I3) <—————=- [~=m——— +
|| STF R2, *AR4++(IRL) ; X' (I4) <——————- +
LDI @SEPARATION, IR1 ; IR1=SEPARATION BETWEEN SIN/COS TBLS
SUBI 3,RC .
MPYF3 *++ARO (IR0), *AR4,R4 ; R4 = X(I4)*SIN
MPYF3 *ARO, *++AR3,R1 ; R1L = X(I3)*SIN
MPYF3 *++ARO (IR1), *AR4,R0O ; RO = X(I4)*COS
MPYF3 *ARO, *AR3, RO ; RO = X(I3)*COS
|l SUBF3 RI1,RO,R3 ; R3 = —[X(I3)*SIN - X(I4)*COS]
MPYF3 *++ARO (IR0), *-AR4, R0 _
1| ADDF3 RO,R4,R2 : R2 = X(I3)*COS + X(I4)*SIN
SUBF3 *AR2,R3,R4 ; R4 = R3 - X(I2) --*
ADDF3 *AR2,R3,R4 ; R4 = R3 + X(I2) ——|--*
|| STF R4, *AR3++ ; X(I3) <——————————- *
SUBF3 R2, *AR1,R4 ; R4 = X(I1l) - R2 —-* |
|} STF R4, *AR4-- ; X(I4) <----—- ———— | —=*
ADDF3 *AR1,R2,R4 ; R4 = X(I1) + R2 —-—|—-=*
|| STF R4, *AR2-- ; X(I2) <——————————- * |
; |
RPTB IN_BLK .3 !
LDF *~ARO (IR1),R3 o |
MPYF3 *AR4,R3,R4 ; |
| STF R4, *AR1++ " .. ;7 X(I1l) <===—————mmm———— *

MPYF3 *AR3,R3,R1
MPYF3 *ARO, *AR3, RO
|| SUBF3 R1,R0O,R3
MPYF3 *++AR0 (IR0), *~AR4, RO
|| ADDF3 RO, R4,R2
SUBF3 *AR2,R3,R4
ADDF3 *AR2,R3,R4
|| STF R4, *AR3++
SUBF3 R2, *AR1,R4
|| STF R4,*AR4--

IN BLK: ADDF3 *AR1,R2,R4
|| STF R4,*AR2--

LDF *~ARO (IR1),R3

MPYF3 *AR4,R3,R4

|| STF R4, *AR1++

MPYF3 *AR3,R3,R1

MPYF3 *ARQ, *AR3, RO

| ] SUBF3 R1,R0,R3

LDI R6,IR1
ADDF3 RO,R4,R2

SUBF3 *AR2,R3,R4

ADDF3 *AR2,R3,R4

|| STF R4, *AR3++(IR1)

SUBF3 R2, *ARL1,R4

| | STF R4, *AR4++(IR1)

ADDF3 *AR1,R2,R4

|| STF R4, *AR2++ (IR1)

STF R4, *AR1++(IR1)

SUBI3 ARS,AR1,RO




CMPI QFFT_SIZE,RO

BLTD INLOP ; LOOP BACK TO THE INNER LOOP

LDI  Q@SINE_TABLE,ARO ; ARO POINTS TO SIN/COS TABLE
LDI  R7,IR1

LDI  R7,RC

ADDI 1,R5

CMPI @QLOG_SIZE,R5.

BLED LOOP o ‘
LDI  @DEST ADDR,AR1

LSH -1,IR0O

LSH 1,R7

e S

Return to C environment.

POP DP ; Restore environment variables.
POP IR1
POP IR0

POP AR7

POP ARG

POP ARS

POP AR4

POP AR3

POP AR2

POP AR1

POP ARO

POP R7

POP R6

POP RS

POP R4

POP R3 ) ,

POP R2 L

POP R1

POP RO

POP FP

RETS

.end

*

* No more.

* .

R R R R R R R RS R S R RS RS S R R SRR R RS R RS R RS R R RS R R R SRR RS R R R RS R R RS SR RS SRS ]
* Kk k Kk
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AAKAKAKKKAAKKAKAAAEARKAAAAARAKR A AR AR A KA A A Ak kA A Ak hkkhkhhhkkhkhkhrhhhhkhhkhkhkhhkhkhhhkhkhhhkhkddrx

warntwid.asm

FFT _SIZE: 512

* ok ok % K o ok * ok *

AAAKKKKAKAKAKAKAAAAKAKRAAKAKRA A AR IAAAA A Ak kA ARk Ahhk kb khk kb hhdkhkkhkhkhkhkhkhkhkhkhkhkhhhhkhkhhd

.global sinetab
.data L
sinetab

.float 0.00000000000
.float 0.01227153829
.float 0.02454122852
.float 0.03680722294
.float - 0.04906767433
.float 0.06132073630
.float 0.07356456360
.float 0.08579731234
.float 0.09801714033
.float 0.11022220729
.float 0.12241067520
.float 0.13458070851
.float 0.14673047446
.float 0.15885814333
.float 0.17096188876
.float 0.18303988796
.float 0.19509032202
.float 0.20711137619
.float 0.21910124016
.float 0.23105810828
.float 0.24298017990
.float’ 0.25486565960
.float 0.26671275748
.float 0.27851968939
.float 0.29028467725
.float 0.30200594932
.float 0.31368174040
.float 0.32531029216
.float 0.33688985339
.float 0.34841868025
.float 0.35989503654
.float 0.37131719395
.float 0.38268343236
.float 0.39399204006
.float 0.40524131400
.float 0.41642956010
.float 0.42755509343
.float 0.43861623854
.float 0.44961132965
.float 0.46053871096




.float
.float
.float
.float
.float
.float
.float
.float

.float.

.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float

[eNeoaoNeoNoNoNoNaoNeoNeloleoNoNeNoNololeloloNoleNoleloleNeBoleNoloNeloNeRoloNeloNejlNoNoleNeNe NelololNoNo oo oo el o oo RNol

.47139673683
.48218377208

.49289819223
.50353838372

.51410274419
.52458968268

.53499761989
.54532498842

.55557023302

.56573181078

.57580819142

.58579785746
.59569930449
.60551104140
.61523159058
.62485948814
.63439328416
.64383154289
.65317284295
.66241577759
.67155895485 -
.68060099779
.68954054474
.69837624941
.70710678119
.71573082528
.72424708295
.73265427167
.74095112535
.74913639452
.75720884651
.76516726562
.77301045336

.78073722857
.78834642763
.79583690461
.80320753148
.81045719825
.81758481315

.82458930279
.83146961230
.83822470555
.84485356525
.85135519310
.85772861000
.86397285612
.87008699111
.87607009419
.88192126435
.88763962040

.89322430120
.89867446569
.90398929312
.90916798309
.91420975570
.91911385169
.92387953251
.92850608047




.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float

[sNeloNoNoNelololoNoNoloNoleleoNeleolelNeleNoleolololoNoleoNoleoNoleoNoNeNeNoleNeNeNoloNoNeNolleoRoNololNeNe oo Nol ool oo ool

.93299279884
.93733901191
.94154406518
.94560732538
.94952818059
.95330604035
.95694033573
.96043051942
.96377606579
.96697647104
.97003125319
.97293995221
.97570213004
.97831737072
.98078528040
.98310548743
.98527764239
.98730141816
.98917650996
.99090263543
.99247953460
.99390697000
.99518472667
.99631261218
.998729045668
.99811811290
.99879545620
.99932238459
.98969881869
.998992470183
.998999999999
.99992470183
.99969881869
.99932238459
.99879545620
.99811811290
.99729045668
.99631261218
.99518472667
.99390697000
.99247953460
.99090263543
.98917650996
.98730141816
.98527764239
.98310548743
.98078528040
.97831737072
.97570213004
.97293995221
.97003125319
.96697647104
.96377606579
.96043051942
.95694033573
.95330604035
.94952818059
.94560732538




.float
.float

.float

.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float

[oNeoloNeoNoNeNoeNolNoBoNoNeNoReoReNeoNeNoNoRoNoNoNoNoNoReoNeNoNeoNoNoNoNeNoNoNoNoloRBoRoNaeloNeNoelNoNeNeNoeRoeNeNo e No oo Noll ool

.94154406518
.93733%01191
.93299279884
.92850608047
.92387953251
.91911385169
.91420975570
.90916798309
.90398929312
.89867446569
.89322430120
.88763962040
.88192126435
.87607009419
.87008699111
.86397285612
.85772861000
.85135519311
.84485356525
.83822470555
.83146961230
.82458930278
.81758481315
.81045719825
.80320753148
.79583690461
.78834642763
.78073722857
.77301045336
.76516726562
.735720884651
.74913639452
.74095112536
.73265427167
. 72424708295
.71573082528
.70710678119
.69837624941
.68954054474
.68060099780
.67155895485
.66241577759
.65317284295
.64383154289
.63439328416
.62485948814
.61523159058
.60551104140
.58569930449
.58579785746
.57580819142
.56573181078
.55557023302
.54532498842
.53499761989
.52458968268
.51410274419
.50353838373




.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float

float
float
float
float

.float

float

.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float
.float

[eNeoNololelNeNoNoNoRoloNolsoloNeloNeoNolNoNololelNelNoNeNoNoNolleNelN ol olNoNolo o lNolNelNo

.49289819223
.48218377208
.47139673683
.46053871096
.44961132965
.43861623854
.42755509343
.41642956010
.40524131400
.39399204006
.38268343236
.37131719395
.35989503654
.34841868025
.33688985339
.32531029216
.31368174040
.30200594932
.29028467725
.27851968939
.26671275748
.25486565961
.24298017990
.23105810828
.21910124016
.20711137619
.19509032202
.18303988796
.17096188876
.15885814334
.14673047446
.13458070851
.12241067520
.11022220729

09801714033

.08579731234
.07356456360
.06132073630
.04906767433
0.
0.
0.

03680722294
02454122852
01227153829
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/******************************************_******************************/
/* File : WARNSIS.CMD

*/
/* . . */
/* TMS320C30 EVALUATION MODULE REAL FFT */
/* PROGRAM LINK COMMAND FILE */
/* : ' */
/* Kim Dotto June 22 1994 */
/* ' */

/************************************************************************/

warnsis.obj
warnfft.obj
warntwid.obj
warnmath.obj
-0 warnsis.out
-m warnsis.lst
-f£f 0x00000000

MEMORY

{
VECS: org = 0 len = 0x40 /* RESERVED VECTOR LOCATIONS */
SRAM: org = 0x40 len = 0x3FCO /* PRIMARY BUS SRAM (16K) - */
RAMO: org = 0x809800 len = 0x400 /* INTERNAL RAMO (1K) */
RAMla: org = 0xX809C00 len = 0x200 /* INTERNAL RAML (1K) */
RAM1b: org = 0x809E00 len = 0x200 /* INTERNAL RAMI (1K) */

}

SECTIONS

{
.vecs: {} > VECS /* RESET/INTERRUPT VECTORS */
.text: {} > SRAM /* CODE */
.tmpdata: {} > SRAM /* temporary calculation table */
.fft 3sg: {} > RAMla /* 2000 Hz test data */
.fftsrcO: {} > RAMla /* 1st 512 words of FFT SOURCE DATA */
.fftsrcl: {} > RAM1Db /* 2nd 512 words of FFT SOURCE DATA */
.ffttext: {} > RAMO /* FFT SUBROUTINE */
.fftdata: {} > RAMO /* FFT SUBROUTINE DATA */
.mtext: {} > RAMO /* MATH SUBROUTINE */
.mdata: {} > RAMO /* MATH SUBROUTINE DATA */
.bss: {} > RAMO /* VARIABLES */
.data: {} > RAMO /* ASSEMBLY CODE CONSTANTS _ */
.stack: {} > SRAM
.fft_voc: {} > SRAM /* Temporary voc file storage */
.aicdata: {} > SRAM /* AIC Info */
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