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A B S T R A C T 

Altered copy numbers of D N A sequences are a characteristic of solid tumors. 

Microarray-based Comparative Genomic Hybridization (CGH) has emerged as a 

promising technology that has the potential to identify minute genomic changes, in the 

order of single D N A copy number changes, at the gene level. 

The data to be extracted from the two microarray images of a 2-color microarray 

experiment, in the image analysis step, are the ratios of the fluorescent intensities of each 

spot of the microarray in one image and that of the corresponding spot in the other image. 

Without identifying the sources of experimental error, and correcting for these errors or 

removing the data corrupted by significant errors, microarray results can lead to incorrect 

experimental conclusions. 

This research focuses on improving the "image analysis" step of array-CGH experiments. 

The aim is to reduce the variability and increase the validity of the experimental results. 

Two issues are addressed in this work: 1) identifying spots likely to be of poor quality, 

and 2) normalization of the data to remove systematic errors. 

In this work, we present a novel approach to quality filtering of microarray spots. We use 

a variety of shape and image texture measures and design a binary decision tree to 

discriminate between the spots likely to produce meaningful data and the ones with 

unreliable measurement data. The proposed procedure is shown to reduce the variability 

of the data resulting from the low quality spots. 

In addressing the second issue, possible sources of systematic variations are examined 

and accordingly a three-step normalization scheme is used to remove these systematic 

variations. 

The normalization scheme we used consists of the following steps. The spatial bias of the 

ratio of each spot is estimated using a sliding window centered on each spot and the 

median of the ratios of the spots inside the window is calculated. The spatial bias is then 

removed from the data. In the next step, microplate effects are removed from the data. In 

the final step, the intensity dependent bias is estimated by fitting a LOESS curve to the 
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logarithm of ratios of spots as a function of the intensities of spots. This bias is then 

subtracted from the log ratios. 

This normalization scheme was shown to increase the accuracy and precision of 

microarray data. 
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C H A P T E R 1 I N T R O D U C T I O N 

Normal human cells contain two copies of each of the 22 non-sex chromosomes and 

depending on the sex of the individual either two X chromosomes (female) or an X and a 

Y chromosome (male). In tumor cells parts of chromosomes (i.e. D N A sequences) may 

be deleted or amplified. Considering only non-sex chromosomes, D N A sequence copy 

numbers are defined to be 2 copies for normal cells, 1 copy for a single deletion, 0 for a 

double deletion, 3 copies for a single copy gain, and greater than 3 copies for higher level 

amplifications. 

In the past, the analysis of the genomes of tumors has been accomplished through the 

process of Comparative Genomic Hybridization (CGH) of fluorescently labeled D N A to 

metaphase chromosomes. This technique can only detect very large, in extent, coy 

number alterations. Recent improvements in the resolution and sensitivity of C G H have 

been possible through implementation of microarray-based C G H (array-CGH). 

Microarray-based comparative genomic hybridization (also known as array-CGH) 

provides a means to quantitatively measure D N A copy-number aberrations at a very high 

base-pair resolution and to map them directly onto genomic sequence. Ideally the purpose 

of array-CGH technology is to construct a map of the copy number alterations based on 

D N A clones (small pieces of DNA) as a function of the position of the clone within the 

genome. Array-CGH technology is potentially the most powerful tool currently available 

for research and clinical applications in medical genetics and cancer understanding. 
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Test D N A Reference D N A 

D N A copy number 
changes covering the 
entire genome 

1 2 

Figure 1-1 Array-CGH experimental steps 

In figure 1-1 we summarize the different steps involved in an array-CGH experiment. 

The DNA clones to be spotted (deposited) on the array are selected based on the 

experimental design and prepared for robotic printing by an Arrayer. The Arrayer 
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deposits D N A spots of the same concentration and same volumes at uniform distances on 

a microscope slide using an array of pins. To test for copy number changes in tumor 

D N A for example, the test (tumor) and reference (normal) genomic D N A are 

differentially fluorescently labeled, mixed, and deposited onto the microaray slide. After 

hybridization (the process of single strands of D N A finding and hybridizing to their 

complementary strand), the fluorescence signals are detected. Using image-analysis 

software, chromosomal regions with an abnormal test to reference ratio which indicate a 

loss or gain of D N A sequences, can be detected. The copy number changes can then be 

positioned according to their location in the genome to give a full view of the alterations 

in the genome (shown in figure 1 -1). 

1.1 Goals of this research 

Analyzing and reporting data generated from D N A microarray experiments is a 

challenging process. There are many potential sources of errors that must be controlled to 

obtain valid and reproducible results from these experiments and estimate relative copy 

number of D N A sequences. 

The data to be extracted from the microarray images are the test to reference ratios of 

fluorescent signal intensities for the D N A spots of the array. Before the high level 

analysis of the data with the goal of finding regional gains or losses of DNA, some 

intermediate processing steps are needed to ensure the quality of results. This 

preprocessing includes identifying the spots for which the detectable characteristics 

indicate that data from those locations are very likely to be unreliable to exclude them 

from further analysis and normalization to remove the systematic variations in the data. 

The goal of this work is to generate a more valid and reproducible measure of array-CGH 

microarray data. Microarrays were originally developed to measure relative gene 

expression levels, which vary greatly, in order to find genes that are differentially 

expressed in test and reference samples. Array-CGH microarrays are newly developed to 

measure relative copy number of D N A sequences. Array-CGH technology has more 

stringent performance requirements than Gene Expression microarrays in that the number 

of copies of specific D N A sequences within cells is highly regulated and reproducible. 

There performance requirements are: 1) To detect Single D N A copy number changes 
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within tumor cells with some degree of contamination from normal cells, and 2) Due to 

the high cost of the material and experiments, performing replicate experiments should be 

avoided as much as possible. 

To achieve these requirements, we attempted to: 1) improve the removal of low quality 

spots, and 2) improve the normalization of the spot data to remove as much systematic 

variation as possible while preserving the real biological variations. 

1.2 Overview of the thesis 

Chapter 2 presents a summary of the basic biological background relevant to this work of 

this study as well as a summary of the various steps of microarray experiments in general. 

Chapter 3 deals with the particular type of array used in this work and explains the details 

of the array fabrication, probe labeling and hybridization and image acquisition applied at 

our center to obtain array-CGH data. The focus of this research is presented at the end of 

chapter 3. 

The body of this thesis consists of two studies. The first study addresses the issue of 

removing the defect data points, i.e. spots of the image, that do not satisfy certain quality 

conditions, which correlate with the generation of unreliable data. The second study 

focuses on reducing the systematic variations in the data (through a process called 

normalization) to improve the consistency and accuracy of data across replicated 

experiments. 

Chapter 4 addresses the issue of filtering out the low quality spots. It provides a literature 

review on this topic, the study hypothesis, methodology used to address the hypothesis 

and finally the results. Chapter 5 deals with the second study, optimization of the data 

normalization step. It contains a literature review of the topic, the study hypothesis and 

methodology, and the results. The conclusions and suggested future directions are given 

in chapter 6. 
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C H A P T E R 2 B A C K G R O U N D 

In this chapter, a brief background on molecular biology concepts that are used in this 

thesis are presented. Microarray technology and experimental steps involved in 

microarray experiments are then explained. 

2.1 Genes and Genomes 

The blueprint of life is carried in the genome, an assembly of D N A bases organized into 

genes, and chromosomes. Cells pass an exact copy of the genome to newer cells during 

cell division, and the blueprint is inherited during reproduction. The genome is an 

organism's complete D N A sequence and encodes the genetic code required to create a 

particular organism with its own unique traits. 

The structural arrangement of D N A looks like a ladder twisted into a helix, the sides of 

the ladder are formed by molecules of sugar and phosphate, while the rungs consist of 

pairs of nucleotide bases A (Adenine), T (Thymine), C (Cytosine) and G (Guanine) 

joined by hydrogen bonds. An important feature of the four bases is that they pair up with 

one another in a particular way. Nucleotide base A always pairs with T, and G always 

pairs with C. The two bases linked up in this way are called the "base pair". Each strand 

of the double helix consists of a sequence of nucleotides that are made of one of four 

bases A , T, G, C, a molecule of sugar and one of phosphate. The particular order of the 

bases arranged along the sugar-phosphate backbone is called the DNA sequence. 

Because of the way bases pair up with one another, the two strands of the D N A are said 

to be complementary. The size of D N A sequences are measured in a unit known as the 

base pair corresponding to one nucleotide pair of double stranded DNA. 
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A l l cells in a single human contain the same D N A but despite carrying the same set of 

instructions, cells are actually different. These differences are due to the fact that, 

stimulated by cell regulatory mechanisms or environmental factors, segments of D N A 

express the genetic code and provide instructions to the cells on when and in what 

quantity to produce specific proteins. These segments of the D N A are the genes. Each 

gene encodes a specific mRNA and protein, the latter of which imparts biological 

function in the cell. The process by which they become active is called their expression.. 

Gene expression takes place in two phases: transcription and translocation. During the 

transcription phase, one of the two complementary strands of the gene, transcribes base U 

(Uracil) for A , A for T, G for C and C for G into a strand of mRNA (messenger RNA). 

The mRNA transcript is moved from the nucleus to the cellular cytoplasm where it serves 

as a template on which tRNA molecules, carrying amino acids are lined up. The amino 

acids are then linked together to form a protein. 

The gene expression level is a measure that provides a quantitative description of the 

gene expression by measuring the number of intermediary molecules produced during 

this process. Because the gene expression consists of copying its D N A code into mRNA 

molecules, a measure of the gene expression level is the abundance of mRNA produced 

during this process. This is the main assumption behind the large scale measurement of 

gene expression levels in gene expression microarrays [2]. 

2.2 Microarray technology 

The microarray technology was first developed to simultaneously measure the relative 

expression level of thousands of genes within a particular cell population or tissue. In the 

newly developed array-CGH technology, the goal is to simultaneously measure the 

changes in the copy number of tens of thousands of D N A sequences within the genome 

of the tissue tested. 

In the following section we define what the term "microarray" refers to and include an 

explanation of the gene expression microarrays and C G H microarrays. 
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2.2.1 What is a Microarray? 

A microarray is an ordered array of microscopic elements on a planar substrate. 

"Microscopic" is defined as anything smaller than 1 mm (1000 urn). An ordered array is 

a collection of analytical elements configured in rows and columns. Analytical elements 

are also called spots in the microarray literature. Ordered elements must have a uniform 

size and spacing and a unique location on the microarray substrate. 

Microarray elements are collections of target molecules that allow specific binding of 

probe molecules including genes and gene products. Microarray target material can be 

derived from whole genes or parts of genes and may include genomic DNA, cDNA, 

mRNA, protein, small molecules, tissues, or any other type of molecule that allows 

quantitative gene analysis. Target molecules include natural and synthetic derivatives 

obtained from a variety of sources such as cells, enzymatic reactions and processes that 

carry out chemical synthesis. 

A planar substrate is a parallel and unbending support material such as glass, plastic, or 

silicon onto which a microarray is configured. Glass is the most widely used substrate 

material. 

Specific binding refers to unique biochemical interactions between probe molecules in 

solution and their cognate target molecules on the microarray. Binding specificity allows 

a gene or gene product to be analyzed quantitatively with a single microarray target 

element [3]. 

Below we describe several technical concepts relevant to this measurement process: 

Polymerase Chain Reaction: PCR is a method that allows selective amplification of any 

nucleic acid sequence from small quantities of starting material. PCR is used widely in 

microarray analysis for the amplification of D N A [3]. 

Cloned DNA: D N A Cloning consists of a number of molecular techniques that 

ultimately serve to place a defined segment of D N A within an organism, typically a 

different organism from which the D N A was originally derived, such that the D N A 

segment may be replicated repeatedly within the recipient organism. Several types of 

cloned D N A are used commonly in microarray analysis, including cDNA 

(complementary DNA) and B A C (Bacterial Artificial Chromosome). cDNA is a double 

stranded D N A molecule of -0.2-5 kb (kilo base pair) length that is an exact replica of an 
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mRNA molecule. B A C D N A contains 50- to 250- kb segments of genomic D N A inserted 

into replicating bacteria. B A C clones are finding increasing use in microarray assays 

because they allow the representation of a large amount of genetic information on a 

single chip. The entire 3 billion bases of the human genome could be configured in a 

single microarray containing 30000 B A C clones with non-overlapping 100 kb inserts [3]. 

Reverse Transcription: the mRNA transcript of a gene can be experimentally isolated 

from a cell, and reverse-transcribed into a complementary D N A copy called cDNA [3]. 

Hybridization: is the process of base pairing of two single strands of D N A or RNA. 

D N A molecules are double-stranded and these two strands melt apart at a characteristic 

melting temperature, usually above 65°C. As the temperature is reduced and held below 

the melting temperature, single stranded molecules bind back to their counterparts. The 

process of binding back is again based on the principle of "base pairing", that is only two 

complementary strands of D N A can hybridize (bind) [3]. 

Oligonucleotides: are single stranded 15- to 70-nucleotide molecules made by chemical 

synthesis. 

2.2.2 Gene Expression Microarrays 

The use of expression microarrays is currently much more common than that of array-

C G H microarrays so we begin by describing expression arrays. 

In their most generic form, gene expression microarrays are ordered sets of D N A 

molecules attached to a solid surface. The D N A molecules are typically either 

oligonucletide or cDNAs. The matrix to which the D N A is attached is usually glass, 

silicon or nylon. Labeled (usually with a fluorescent nucleotide) cDNA representation of 

the cellular mRNA from a specimen (e.g. normal tissue, cell line, or tumor tissue) is 

hybridized to the array of D N A segments. Then the amount of cDNA at each D N A spot 

is detected and assumed to correspond to the transcript level (mRNA abundance) of the 

particular gene spotted at that location. Therefore the expression of thousands of genes 

can be analyzed in a single experiment [4]. 
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2.2.3 Array-CGH 

Microarrays have been exploited for gene expression studies but other applications can be 

envisioned and developed. One such application is the use of microarrays to study 

genomic D N A for detection of gains and losses of chromosomal regions [4]. Analysis of 

changes in D N A sequence copy numbers offers several advantages over the examination 

of the gene expression levels for the understanding of cancer and the process which leads 

to cancer. 

Copy numbers of D N A sequences are more tightly controlled than the gene expression 

levels of the approximate 30000 human genes. Different genes are expressed at many 

different levels while the copy numbers of different sequences of normal D N A are 

always a constant. Another difference is that the range of copy number changes for 

different clones is small, from 50% to 100% decrease for loss and up to 100 fold increase 

for amplification. Thus the dynamic range of analysis is likely to be much more 

manageable than the gene expression changes which can be over 6 orders of magnitude in 

size [4]. 

Comparative Genomic Hybridization: In the past, the analysis of the genomes of the 

tumors has been accomplished with the process of Comparative Genomic hybridization 

(CGH) of fluorescently labeled D N A to metaphase spreads. In this technique, D N A from 

the tumor is labeled with a fluorescent dye in one color while a normal reference sample 

is labeled in a different color and these samples are co-hybridized to normal metaphase 

chromosomes (each chromosome representing a linear spatially localized target of 

ordered base pairs). Chromosomal imbalances across the genome in the test (tumor) 

D N A samples are quantified and positionally defined by analyzing the ratio of 

fluorescence of the two different colors along the target metaphase chromosomes. C G H 

has been successfully applied to analyze a variety of human tumors to detect 

chromosomal imbalances. However the resolution of C G H applied to metaphase spreads 

is limited to several mega base pairs. In addition, considerable cytogenetics expertise is 

required to apply this method. Given that chromosome distribution in every metaphase 

spread is unique it is very hard to develop automated methods for data capture and 

analysis. Moreover, the use of metaphase spreads limits the sensitivity of the method. 
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C G H performed on metaphase spreads is therefore not a high throughput technology and 

is limited to specialist research applications. 

The limitations of C G H were resolved with the advent of microarray-based C G H . First 

described in 1997, matrix-CGH (also known as array-CGH) paved the way for higher 

resolution detection of D N A copy number aberrations. Array-CGH is based on the same 

principles as metaphase-CGH, except that the targets are mapped genomic clones instead 

of whole chromosomes [5, 6]. These genomic clones are spotted at specific locations on 

a glass slide in the form of a microarray. 

The array format for C G H can provide a number of advantages over the use of 

chromosomes, including higher resolution and dynamic range, direct mapping of 

aberrations to the genome sequence and higher throughput. Furthermore, since the array 

format lends itself to automation, array CGH-based in vitro diagnostic devices are 

possible [1]. 
The performance goals of array C G H are more stringent than those of related array-based 

methods for measuring gene expression; the simplest array-CGH task is detection of large 

increases in copy numbers in D N A extracted from homogeneous cell lines. Achieving 

adequate performance is more difficult i f one desires to reliably detect low level (single 

copy) gains and losses, especially as the size of the aberrant region decreases. Another 

dimension of challenge involves the use of tissue specimens, which may contain 

heterogeneous cell populations, (for example genomically normal cells within tumors), 

which makes the reliable detection of single copy changes in the tumor D N A subset 

relative to the normal diploid state even more difficult. In addition those precise 

measurements must be achieved for hybridizations involving the entire mammalian 

genome, a nucleic acid pool that has over ten times the complexity of usual expressed 

sequences, and which includes a significant quantity of repeated sequences. Moreover, 

the use of tissue from clinical specimens may impose constraints on the amount of D N A 

available for analysis. Finally, different applications have different tolerances for error, 

which substantially affect their performance requirements. For example, i f one seeks 

composite information on the general characteristics of aberrations that occur in a set of 

specimens, the penalty for any single error is small. Indeed, missing a whole type of 

aberration is acceptable i f other valuable information is obtained. However, it is much 
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more of a challenge to obtain specific information from an individual specimen with 

sufficient confidence for clinical use [1,7]. 

2.3 Microarray Experiments 

Microarray Analysis is the process of using microarrays for scientific exploration. Figure 

2-1 summarizes the basic steps in a microarray experiment. These steps are described in 

more detail in the following sections. We mainly discuss the issues concerning "two-

channel" D N A microarrays. 

1. Experimental design 

2. Target preparation and Array manufacturing 

3. Probe Preparation 

4. Hybridization of the 
probe to the target 

5. Microarray Imaging 

6. Image analysis 

Spot Indexing 

Spot Segmentation 

Spot Data Quantification 

Removal of low quality 
spots 

Spot Data Normalization 

7. Data analysis 

Figure 2-1 Microarray experimental steps 
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2.3.1 Experiment Design 

Depending upon the biological question to be examined, a specific experiment is 

designed. The design of these experiments involves selecting the microarray probe, 

target, the number of biological and technical replicates to be performed, and the number 

of required replicate spots per target clone. 

2.3.2 Target Preparation and Array Manufacturing 

In this step, target DNA samples are prepared and the microarray is constructed. There 

are different types of microarrays which differ based on the DNA elements they are 

constructed with. These types of DNA elements include cDNAs, short oligonucleotides 

(e.g. 25bp) and long oligonucleotides (e.g. 70bp), and DNA drived from BAC clones. 

Some microarray technologies, such as Short oligonucleotide arrays, synthesize the 

targets directly onto the array, which is also called a chip in this case. 

The microarray technologies that do not synthesize the target DNA directly on the chip, 

first create the targets in a micro-plate format and then print these onto glass slides. 

Depositing the target DNA samples onto the glass slide, in order to create the high 

density arrays, is accomplished via microarray printing robots (also called arrayers or 

spotters) which come in many designs. The majority of spotters belong to the family of 

contact printers. These rely on a pin, which is loaded with sample, physically contacting 

the slide to deposit nano-liter scale volumes of printing solution [3]. 

2.3.3 Probe Preparation 

The next step in a microarray experiment is the preparation of the test and reference DNA 

samples. The two samples will then be labeled by two different fluorescent dyes. The 

labeled samples are then mixed together. This mixture is called the probe. 

Labeling: fluorescence dyes are typically used to label the DNA samples. Fluorescence 

can be defined as "the molecular absorption of light energy (photon) at one wavelength 

and its re-emission at another, usually longer, wavelength." Molecules that are able to 

absorb and emit light are known as fluorochromes or fluorophores [8]. 
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Usually CyDye fluorophores (fluors) are used for labeling the probes before 

hybridization. CyDye fluors have well spectrally separated emission peaks that enable 

multiplexed detection. The relative probability that a fluorophore will be excited by a 

given wavelength of incident light is shown in its excitation spectrum. This spectrum is a 

plot of emitted fluorescence versus excitation wavelength. The relative probability that 

the emitted photon will have a particular wavelength is described in the fluorophore's 

emission spectrum, a plot of the relative intensity of emitted light as a function of the 

emission wavelength. Figure 2-2 shows the emission and absorption spectra of the two 

most commonly used CyDyes, Cy3 (green fluorescent dye) and Cy5 (red fluorescent dye) 

[8]. 

The green and red dyes have been interchangeably used for the Cy3 and Cy5 fluorescent 

dyes respectively throughout this thesis. 

Wavelength (nm) 

Figure 2-2 Emission and absorption spectra of Cy3 and Cy5 fluorescent dyes, figure from [8] 

Fluorophores differ in the level of brightness they are capable of producing. Brightness 

depends on two properties of the fluorophore: its ability to absorb light (extinction 
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coefficient), and the efficiency with which it converts absorbed light into emitted 

fluorescent light (quantum efficiency) [8]. 

The quantum efficiency, excitation and emission spectra of a fluorophore can be affected 

by a number of environmental factors, including temperature, ionic strength, pH, 

excitation light intensity and duration, covalent coupling to another molecule, and non-

covalent interactions (e.g. insertion into double-stranded DNA). 

The intensity of the emitted fluorescent light varies with the intensity and wavelength of 

incident light and the brightness and concentration of the fluorophore. In general, when 

more intense light is used to illuminate a sample, more of the fluorophore molecules are 

excited, and the number of photons emitted increases. When the illumination wavelength 

and intensity are held constant, the number of photons emitted is a linear function of the 

number of fluorophore molecules. At very high fluorophore concentrations, the signal 

becomes non-linear because some of the emitted light is reabsorbed by other fluorophore 

molecules (fluorescence quenching). This is a common property of fluorescent 

compounds and requires close proximity of fluors. Different fluors have different 

quenching properties. 

The amount of light emitted by a given number of fluorophore molecules can be 

increased by repeated cycles of excitation. In practice, however, i f the excitation light 

intensity and fluorophore concentration are held constant, the total emitted light becomes 

a function of how long the excitation beam continues to illuminate those fluorophore 

molecules (this time is called the exposure time). 

General requirements of labeled microarray samples are: 

o Faithfully represent the relative abundance of each transcript in the mRNA 

population in both probes 

o Sufficient amount of probe for efficient and even hybridization 

o Sufficient degree of flour incorporation for required detection sensitivity, it 

should be noted that high labeling density can lead to quenching. [8] 

The success of CyDye labeling is monitored through measuring the amount of CyDye in 

the probe D N A with spectrophotometry. A spectrophotometer is employed to measure 

the amount of light that a sample absorbs. The sample's absorbance spectrum is 

determined. The spectrum is a plot of absorbance versus wavelength and is characterized 
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by the wavelength (Am r a) at which the absorbance is the greatest. This wavelength is 

characteristic of each compound. 

2.3.4 Hybridization of the Probe to Targets 

After the probe is prepared, it is put on the surface of the microarray. Each DNA 
sequence in the probe will then find its complementary target sequence and hybridizes to 
it. Hybridization reactions between single stranded targets and probe molecules occur by 
hydrogen bond formation between the bases of complementary nucleic acid sequences 
[3]. 
The intensity of microarray hybridization signal is determined by: 

o Amount of probe in hybridization reaction 
o Number of molecules in target samples 
o Labeling density 
o Efficiency of hybridization of probe to targets (determined by hybridization 

conditions such as temperature, PH, etc., length of labeled molecules, structure of 
the target sequence, etc.) 

o Detection set up (e.g. exposure time) 

2.3.5 Imaging the Microarray 

Imaging is the next step in microarray analysis. In this phase of the experimental process, 
the florescent intensity of the labeled probe molecules, bound to the target molecules, at 
each microarray location must be captured in a digital image by a scanning device. One 
image is generated for each channel of the microarray, i.e. for each different dye used. 
Each scanner has the following components: 

o Light source to activate the fluorescent molecules present on the array surface 
o A strategy for exciting the fluorophores in a way that maximizes utility and 

minimizes the undesired effects such as light induced photo bleaching effects and 
cross talk caused by simultaneous excitation of different fluorophores. 

o Optical design that provides a means of scanning the sample at the desired 
resolution 
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o Detectors for measuring the magnitude of the fluorescence signals 

o A mechanism for orienting the slide and positioning during scanning [4] 

In general microarray scanners fall into two main categories: those that use a white light 

source and charge coupled devices (CCDs) as detectors and others that use laser light 

with photomultiplier tubes (PMTs) [4]. Each category of scanners has its own advantages 

and disadvantages that are outside the scope of this study. 

The scanning step results in one image fde for each florescent label used in the 

microarray experiment. For example i f two different fluorescent dyes are used for 

labeling the test and reference samples, then the microarray will be scanned at two 

different wavelengths corresponding to the emission spectra of the two dyes. 

2.3.6 Microarray Image Analysis (Data Extraction) 

The images obtained from the microarray slide in the previous step, are considered the 

raw data for the "image analysis" phase of the microarray experiment. One such image is 

shown in Figure 2-3. The process of converting the digital images into numerical 

measures of the amount of probe hybridized into each target spot is called "Microarray 

Image Analysis" (also known as data extraction). 

Figure 2-3 A sample microarray image 
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Since the introduction of microarrays, a number of microarray image analysis packages, 

both commercial software and freeware, have become available. The processing of 

scanned microarray images can be separated into three tasks: 

1. Indexing or gridding is the process of assigning coordinates to each of the spots. 

Automating this part of the procedure permits high throughput analysis. 

2. Segmentation allows the classification, of pixels of the image either as 

foreground, or as background. Foreground pixels are pixels corresponding to a 

spot of interest. Background pixels are pixels outside of the boundary of the spot 

of interest. 

3. In the spot data quantification step, for each spot in each microarray image (for a 

two-color microarray experiment, there are two microarray images, one for each 

channel), the foreground intensity (spot fluorescence), the background intensity 

(non-spot fluorescence) and possibly some spot quality measures are calculated 

[10]. 

Estimating the background intensity for each spot is generally considered necessary for 

the purpose of performing background correction. The motivation for background 

correction is that a spot's measured fluorescence intensity includes a contribution which 

is not specifically due to the hybridization of the probes to the target D N A . Background 

correction of the spot intensities is usually performed by subtracting background 

estimates from the foreground pixel intensities. This is done with the aim of improving 

the accuracy by reducing the bias in the spot data due to the background effects. 

Spot quality measures may include measures of spot size or shape, or measures of 

background intensity relative to foreground intensity. 

2.3.6.1 Indexing (Gridding) 

The basic structure of a microarray image, i.e. the location of each spot within the array, 

is determined by the Arrayer (Spotter). However, to match an idealized model of the 

array with the image of the array, a number of parameters need to be estimated. These 

parameters include: separation between rows and columns of each block of spots, 

individual translation and/or rotation of blocks (caused by slight variations in arrayer's 

17 



print tip positions), separation between rows and column of spots within each block, 

small individual translation of spots, and overall position of the array in the image. 

It is desirable for the addressing procedure to be as reliable as possible to ensure accuracy 

of the whole measurement process. Most software systems now provide both manual and 

automatic gridding procedures. 

2.3.6.2 Segmentation 

Segmentation classifies the image pixels as foreground or background. This allows 

fluorescent intensities to be calculated for each spotted DNA sequence as measures of the 

amount of DNA sequence hybridized to that spot. Existing segmentation methods for 

microarray images can be categorized into four groups according to the geometry of the 

spots they analyze [10]: 

o Fixed circle segmentation: fits a circle with a constant diameter to all the spots in 

the image. This method is easy to implement and works nicely when all the spots 

are circular and of the same size, 

o Adaptive circle segmentation: the circle's diameter is estimated separately for 

each spot. 

o Adaptive shape segmentation: Two commonly used methods for adaptive 

segmentation in image analysis are the watershed and seeded region growing. 

These methods are beginning to be applied in microarray analysis, although not in 

the most widely-used software packages. 

o Histogram segmentation: uses a target mask which is chosen to be larger than 

any spot. For each spot, foreground and background intensity estimates are 

determined in some fashion from the histogram of pixel values for pixels within 

the masked area. These methods therefore do not make use of any local spatial 

information. 

2.3.6.3 Data Quantification 

The key information that needs to be extracted from each spot of two-channel (two-color) 

microarrays is the relative amount of the DNA sequence corresponding to that spot in the 

test sample versus the amount of that sequence in the reference sample. Under idealized 
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conditions this translates to the ratio of the total fluorescent intensities of the spot in the 

two channel images. These idealized conditions are [4]: 

o The incorporation of dyes into the probe during the labeling process is the same 

for both dyes used so that for the same amount of D N A samples the same amount 

of dye molecules are incorporated to the probes, 

o The amount of D N A binding to the spot is proportional to the labeled D N A 

concentration in the probe, 

o The detection efficiency of both dyes is the same (for the same number of 

fluorescent labels in the D N A , the quantum yield, photo bleaching and other 

physical chrematistics of two dyes are different but the camera exposure time 

should is usually adjusted to balance the intensity of both dyes.) 

o There is no unbound or non-specifically bound probe attached to the spot, 

o There is no auto-fluorescence of the glass slide and no other contaminant 

fluorescence, 

o There is no signal contamination. 

o The signal pixels are correctly identified by the image analysis software. 

Traditionally, for two-color gene expression arrays, the "ratio" of fluorescent intensities 

of each spot in the two channels has been used to determine whether gene expression 

differs significantly for the red and green samples. Such an approach is intuitive since 

equal distributions for red and green values lead to a red/green ratio close to 1, and 

significantly unequal distributions lead to a red/green ratio significantly different from 1. 

This approach is typically applied by biologists developing microarrays [11]. 

The process o f estimating the ratio o f the amount o f D N A sequences bound to the spots 

based on quantifying of the fluorescence intensities of the spot is called the "data 

quantification" phase. 

In the most widely used method of data quantification, the pixel intensities of the areas in 

the image defined as foreground and background during the segmentation process, are 

averaged separately to give the foreground and background intensities, respectively. The 

median or other intensity extraction methods can be used when there are extreme values 

(outliers) in the spots that skew the distribution o f pixel intensities. In this approach it is 

assumed that subtracting the background intensity of the spot from the foreground 
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intensity of the spot estimates the intensity of the probe D N A . The correctness of the 

whole approach of background subtraction in microarray images relies on the assumption 

that the local background is additive to the true signal. There are alternative methods of 

estimating the ratios that are not commonly used in image analysis software packages and 

therefore are not discussed here. 

After extracting the ratio data for each spot, the first transformation that is commonly 

applied to microarray data is the log transformation. The raw ratio of intensities is not 

used. In stead the log transformed ratios are used. The log ratios are preferred to raw 

ratios because: 

o Random error of the intensity measurement is approximately proportional to 

signal intensity; Moreover, most parametric statistical tests assume an additive 

rather than a proportional error model. Transforming expression data to a log 

scale (any base) removes much of the proportional relationship between random 

error and signal intensity (Low signals are often an exception. Random error of 

log-transformed data is often inversely proportional to the signal in the low signal 

range because of the proportionally nontrivial error associated with background 

correction). The Log transform has the advantage of transforming the error model 

from a proportional to an additive one since log (a/b) = log (a) - log (b). 

o Distributions of replicated raw measured intensities and ratios tend to be 

asymmetric (skewed). This violates the normality assumption of many statistical 

tests. The central limit theorem affords little protection for most microarray 

studies because of the typically small sample sizes, which produce incorrect P-

values associated with parametric analyses like the t-test and A N O V A . 

o Summary statistics of replicated ratios yield different quantities, depending on the 

numerator/denominator assignment. In contrast, summary statistics of log ratios 

yield the same quantities, regardless of the numerator/denominator assignment. 

[29] 
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2.3.6.4 Removal of Low Quality Spots 

It is crucial for any high throughput technology to have sufficient quality control for each 

step of the process. This is particularly true for microarray studies. Noise and 

irregularities of spot shape, size and position are common problems, especially in large-

scale high-density microarrays. Therefore, users need to be able to acquire data quality 

measures to control for imperfections that happen during printing and hybridization. 

Without a good scheme to produce reliable, high quality data, analysis of data may lead 

to erroneous results. 

The purpose of filtering out low quality spots is to identify those spotted samples that are 

likely to produce unreliable data therefore the experimenter wants to exclude from further 

analysis. 

2.3.6.5 Data Normalization 

As stated earlier, the key information that needs to be extracted from each spot of two-

channel (two-color) microarrays is the relative amount of the D N A sequence 

corresponding to that spot, in one sample versus the amount of that sequence in the other 

sample. The goal of data normalization is to ensure that the ratio of intensity 

measurements made on the two images is equal to the D N A concentrations. For this to 

be true any systematic errors need to be removed. These systematic errors arise from 

background fluorescence within the D N A spots on the array, differences between the 

detection efficiency of the two dyes used for the test and control samples, difference in 

the incorporation efficiency of dyes into the D N A samples during the labeling process, 

fluorescence quenching effects that reduce the signal when the dyes fluoresce intensely, 

differences in hybridization efficiency, etc. 

2.3.7 Microarray Data Analysis 

After the image analysis step, the data extracted from the microarray slide are ready to be 

analyzed. Below we include a summary of microarray data analysis methods. Although 

the data analysis issue will not be addressed directly in this thesis but a summary of 

microarray data analysis methods is given below for both gene expression and C G H 
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microarrays. We believe this helps in understanding the differences the two studies 

described in this work would make on the final goal of microarray experiments. 

2.3.7.1 Data Analysis for Gene Expression Arrays 

This section describes the most popular techniques for the analysis of gene expression 

data in (possibly repeated) comparative experiments. The objective of this analysis is to 

identify the genes with significant expression change across two conditions (test and 

reference samples). 

The choice of analysis method depends on the particular experiment design. A simple 

microarray experiment may be carried out to detect differential expression between two 

conditions. Using two color cDNA microarrays, samples can be compared directly on the 

same microarray or indirectly by hybridizing each together with a common reference 

sample. In the former case, the null hypothesis of no differential expression implies that 

the true log ratio should be zero and in the latter case that the log ratios (test sample to 

reference) should not differ between the two conditions. If a single color expression assay 

is used then we are again considering a null hypothesis of no expression level difference 

between the two conditions and methods described here can be applied directly. 

A distinction should be made between RNA samples that represent replicate but 

independent biological samples, biological replicates, and those that represent repeated 

measurements of the same biological material, technical replicates. Ideally, each 

condition should be represented by multiple independent biological samples, biological 

replicates, in order to conduct statistical tests. If only technical replicates are available, 

statistical testing is still possible but the scope of the conclusions may be limited. If both 

technical and biological replicates are available, for example the same biological samples 

are each measured twice, the individual log ratios can be averaged to yield a single 

measurement for each biological unit in the experiment. More complicated settings that 

involve multiple layers of replication can be handled using the mixed model analysis of 

variance techniques. 

Fold change is the simplest method for identifying differentially expressed genes. It is 

based on the observed ratio (or average of ratios) between two conditions. An arbitrary 

cut-off value (for example, 2 fold) is used to identify differentially expressed genes. This 
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is not a statistical test and there is no associated level of confidence. The fold change 

method is subject to bias i f the data are not properly normalized and may also be sensitive 

to variance heterogeneity across genes. For example, an excess of low intensity genes 

may be identified as being differentially expressed due to an excess of variation relative 

to high intensity genes. Intensity specific thresholds have been proposed as a remedy for 

this problem. [12] 

If replicate spots or experiments are available then one-sample t-test can be used on 

replicate measurements for the spot so as to test the hypothesis of no differential 

expression. The Mest is a simple, statistically based method for detecting differentially 

expressed genes. In replicated experiments, error variance can be estimated from the log 

ratios on a gene-by-gene basis and a standard Mest can be conducted for each gene. This 

gene-specific Mest is robust to variance heterogeneity across genes but it may have low 

power due to few degrees of freedom. It is possible to compute a global Mest using an 

estimate of error variance that is pooled across all genes under the assumption of 

homogeneous variation. This is effectively a fold change test and may suffer from the 

same biases i f the error variance is not truly constant for all genes. 

When there are more than two conditions in an experiment, we cannot simply compute 

ratios. A more general concept of relative expression is needed. One approach, which 

can be applied to cDNA microarray data from any experimental design, is to use 

A N O V A (Analysis of Variance) to obtain estimates of the relative expression for each 

gene in each sample. In the A N O V A model, the expression level of a gene in a given 

sample is computed relative to the weighted average expression of that gene over all 

samples in the experiment. We note that the A N O V A is not based on log ratios. Rather it 

is applied directly to intensity data. However the difference between two estimated 

expression values can be interpreted as the mean log ratio for comparing two samples 

[12]. 

2.3.7.2 Data Analysis for CGH Arrays 

The experimental component of an array-CGH experiment, i.e. the new information that 

is sought in the experiment, is different from that of gene expression arrays. In gene 

expression microarrays the final goal is to find the genes that are expressed significantly 
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differentially in two samples or two conditions. The goal of array-CGH is to partition the 

clones of a given genomic probe into sets that have the same copy numbers. 

Genomic rearrangements lead to gains or losses of sizable contiguous parts of the 

genome; therefore, in the analysis of the copy number changes of the clones, it is 

desirable to make use of the physical dependence of the nearby ordered clones. 

The goal of the analysis of this type of data includes detection of locations of copy 

number changes, called breakpoints, and estimating the copy number value before and 

after the change. Knowing the exact locations of a breakpoint is important to identify 

possibly altered genes [13]. 

The problem of identifying the regions of gains and losses of D N A and finding the 

breakpoints is fairly new and ongoing research on this is being conducted while this 

report is being written. We include a summary of the articles addressing this issue. 

Jong et al, [13, 14], define the problem as model fitting to search for most-likely-fit 

model for the given data. A model describes a number of breakpoints, a position for each, 

and parameters of the distribution of copy number for each. 

Autio et al, [15], try to identify regions of amplifications and deletions, using k-means 

clustering and dynamic programming. The dynamic program utilizes the Markov 

property and identifies change points of the constant levels by minimizing sum of mean 

square errors for all combinations of C G H ratios. 

Fridlyand et al, [16], use unsupervised Hidden Markov Models approach to utilize the 

spatial coherence between nearby clones and partition them into the states which 

represent underlying copy number for the group of clones. 
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CHAPTER 3 ARRAY-CGH EXPERIMENTS 

In section 2.3, the steps of a microarray experiment were described. Detailed description 

of the specific steps of the array-CGH experiments of this study is presented in section 

3.1. 

In section 3.2, the specifications of the data of this study are presented. 

After describing the experimental steps, in section 3.3, we specify the steps that are the 

focus of this study. 

3.1 Steps of Array-CGH Experiments 

The data of this study were obtained from array-CGH experiments performed in the BC 

Cancer Research Center with the SMRT (Sub Mega base Resolution Tiling) arrays [17] 

which are the first tiling resolution B A C arrays with complete coverage of the human 

genome using 32,433 fingerprint-verified individually amplified B A C clones. 

3.1.1 Array Production from BAC DNA 

The first step in a microarray experiment is to choose and prepare the D N A clones to be 

spotted on the array. The D N A samples to be spotted on the array are prepared by PCR. 

The PCR is done in Tetrad PCR machines. Each Tetrad machine accommodates four 96-

well plates of PCR products. The D N A samples of the four plates are then re-arrayed in a 

384-well (96 x 4 = 384) microplate that is used by the Arrayer. Figure 3-1 shows how the 

re-arraying is done. 
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From 96-well plate A From 96-well plate B 

Figure 3-1 Rearraying of four 96_well plates into one 384-well microplate 

The D N A samples from the 384-well microplate are then printed on the slides using a 

VersArray ChipWriter Pro (BioRad) Arrayer. This Arrayer uses an array of 4x12 

spotting pins. The arrayer deposits the D N A samples in the specific locations on the array 

called spots. 

The process of printing the slides takes place as follows: 

The 4 x 1 2 spotting pins of the Arrayer are dipped in the 4x12 wells of the microplate 

and deposit 4x12 samples three times so each target clone is replicated in three spots. 

These three replicate spots are in a single column next to each other. 

Next, the array of pins are dipped in the next 4 x 12 wells of the microplate and deposited 

onto the array. This "dipping and depositing" cycle is repeated until all the clones from 

the microplates are deposited onto the array (see figures 3-2 and 3-3). 

The set of all of the spots that is printed by the same spotting pin is called a subgrid. 

Since the arrayer has 4x12 spotting pins, there are 4x12 subgrids on the microarrays. 

The entire set of 32,433 solutions is spotted in triplicate onto two slides each containing 

52272 spots. 2415 of these clones are spotted on both slides. 
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A microarray slide 

Figure 3-2 The first "dipping and depositing" cycle of printing the array, the pins are dipped in the first 48 
wells of the microplate and spot the first 48 spots of the array, one spot from each subgrid is printed during 

each cycle. 
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Figure 3-3 Grids and subgrids of a microarray, (a) printed spots after one cycle of "dipping and depositing'' 
(b) after two cycles of "dipping and depositing", the printed spots are shown in full circles. 
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The volume of the D N A material that is deposited on each spot is 0.8 nano-liter at 

concentration of ~1 microgram/micro-liter. The spacing between the spots within a 

subgrid isl33 micro meter. 

3.1.2 DNA Labeling and Hybridization 

The labeling of test and reference D N A has been done separately with Cy3 and Cy5 

dCTPs (labeled C nucleotide) using a random priming protocol. Before hybridization 

unincorporated nucleotides are removed and the activity (the amount of each dye in the 

probe) of each dye is measured and human cot-1 D N A is added to the mixture of probes 

to block the repetitive sequences from hybridization with the spotted DNA. 

3.1.3 Array Imaging 

The hybridized slides were imaged using the CCD-based imaging system: ArrayWoRx 

Biochip Reader. 

3.1.3.1 About ArrayWoRx Biochip Reader 

This system is based on a C C D camera and filtered white light source. 

The white light source is a high intensity metal halide bulb and associated optical 

components that deliver a beam of white light to the excitation filter. 

The filter assembly holds up to four pairs of excitation and emission filters. One emission 

filter and one excitation filter are required to measure the intensity of a single 

fluorophore. Scanning software and motion control hardware place the appropriate filters 

in the light path for the fluorophore being measured. 

The CCD camera, or Charge-Coupled Device camera, collects light which passes the 

emission filter and converts it into a digital signal that the scanner software processes to 

create an image file. The CCD chip is an array of semiconductor devices or camera 

pixels. Each camera pixel stores an electrical charge generated by the fluorescence light 

from the sample. This charge is proportional to the intensity of the light, or number of 

photons, that reaches the pixel. Electronic circuitry on the camera converts pixel electron 
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counts from the CCD chip into a digital signal that represents the intensity of light at each 

pixel. 

Light emitted from the white light source is passed through an excitation filter, then 

distributed through 19 fiber optic strands and uniformly distributed to the slide/specimen. 

The emitted fluorescence travels through an objective lens, a designated emission filter, 

and is captured by the CCD camera (See figure 3-4). 

Images are taken at multiple slide positions in order to assemble the high-resolution 

image "tiles" into a single, high-resolution image. [18] 

3.1.4 Image Analysis 

The images were analyzed using SoftWoRx Tracker Spot Analysis software (Applied 

Precision). Below we describe how the software estimates the ratios: 

First, the microarray geometry is specified by the user. This includes the specification of 

nominal values of spot diameter, spacing between spot centers, number of spots, and 

number of rows, column, and subgrids. The software will automatically adjust for 

Figure 3-4 ArrayWoRx Biochip reader (from [18]) 
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imperfections in the geometry. Usually the locations of some spots are not correctly 

identified by the software. Therefore, the user completes the spot finding process by 

manually adjusting the location of those spots. 

After the spots are detected, the image pixels associated with the spots (foreground 

pixels) are determined. As a result, each spot is represented by a region of arbitrary 

shape. 

Next, the pixels to be used in estimating the background are determined. To accomplish 

this, two circles are defined around the contour of the spot, one inner circle and one outer 

circle forming an annulus. The pixels within the annulus are used to estimate the 

background intensity. The radii of the inner and outer circles are 15% and 85% of the 

nominal edge to edge distance of two adjacent spots, respectively. 

The "normalized intensity" of each spot in each of the two channels, is calculated as the 

mean of the intensities of the foreground pixels minus the median of the intensities of the 

background pixels. 

The ratio for each spot is obtained by dividing the "normalized intensity" value of the 

spot in one channel by the "normalized intensity" value of that spot in the other channel. 

The ratios are further normalized so that the mean value of the log ratios is zero. 

The output of the image analysis software, including the intensities of the spots, the 

estimated ratios, and some quality measures, is saved in a text file. 

A custom analysis software (SeeGH, [19]) takes the generated text file as input and 

performs the removal of low quality spots as follows: Currently it averages the ratios of 

the triplicate spots and calculates their standard deviations. A l l spots with standard 

deviation higher than 0.075 or signal to noise ratio (defined as the intensity of the spot 

divided by the standard deviation of the spot's background) less than 20 are removed 

from further analysis. This software then visualizes all data as log2 ratios plotted versus 

the genomic order. 

3.2 Data Description 

Our study analysis is mainly based on data from four sets of experiments across 24 

different microarray slides from the Cancer Genetics Department of BC Cancer Research 

Center. 
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The first experiment was a self-self experiment, i.e. both test and reference sample were 

from the same D N A sample and were only labeled separately with different dyes. Normal 

male genomic D N A was used for both test and reference material. The four slides making 

up this experiment are referred to as M M - 1 to M M - 4 through out this thesis. 

Name Cy3 DNA Sample Cy3 

Activity 

Cy5 DNA Sample Cy5 

Activity 

Cy3 

Exposure 

time 

Cy5 Exposure 

time 

Resolution 

H526-1 H526 400ng 9.1 Male Genomic 400ng 5.7 0.600 sec 1.700 sec 9.7560 um 

H526-2 H526 600ng Male Genomic 600ng 0.700 sec 1.300 sec 9.7560 um 

H526-3 H526 400ng 8.5 Male Genomic 400ng 5.1 0.700 sec 2.000 sec 9.7560 um 

H526-4 H526 400ng 8.5 Male Genomic 400ng 5.1 0.700 sec 2.000 sec 9.7560 um 

H526-5 H526 200ng 9.1 Male Genomic 200ng 5 0.800 sec 1.600 sec 9.7560 um 

H526-6 H526 200ng 9.1 Male Genomic 200ng 5 1.000 sec 2.000 sec 9.7560 um 

H526-7 H526 400ng 11.5 Male Genomic 400ng 7.1 

H526-8 H526 400ng 11.5 Male Genomic 400ng 7.1 

MM-1 Male genomic 

200ng 

20.3 Male genomic 200ng 17 

MM-2 Male genomic 

200ng 

20.3 Male genomic 200ng 17 

MM-3 Male Genomic 

250ng 

8.6 Male Genomic 250ng 5.3 1.000 sec 2.000 sec 9.7560 um 

MM-4 Male Genomic 

300ng 

8.3 Male Genomic 300ng 5.3 0.800 sec 2.000 sec 9.7560 um 

MF-1 Female Genomic 

300ng 

6.3 Male Genomic 300ng 4 0.800 sec 2.500 sec 9.7560 um 

MF-2 Male Genomic 

300ng 

9.1 Female Genomic 300ng 6.3 0.700 sec 1.100 sec 9.7560 um 

T-l 400ng Male 400ng 0% 

Contamination (del) 

T-2 400ng Male 400ng 15% 

Contamination (del) 

T-3 400ng Male 400ng 30% 

Contamination (del) 

T-4 400ng Male 400ng 50% 

Contamination (del) 

T-5 400ng Male 400ng 75% 

Contamination (del) 
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Name Cy3 DNA Sample Cy3 

Activity 

Cy5 DNA Sample Cy5 

Activity 

Cy3 

Exposure 

time 

Cy5 Exposure 

time 

Resolution 

T-6 400ng Male 16.26 50% Contamination 

(amp) 

9.03 

T-7 400ng Male 16.93 75% Contamination 

(amp) 

9.39 

T-8 400ng Male 13.42 0% Contamination 

(amp) 

7.29 

T-9 400ng Male 14.47 15% Contamination 

(amp) 

7.73 

T-10 400ng Male 10.95 30% Contamination 

(amp) 

6.4 

Table 3-1 Summary of slides names and descriptions 

The second experiment uses H526 cell line D N A and compares it against normal male 

DNA. The 8 slides making up this experiment are named H526-1 through H526-8. 

The third experiment was normal male D N A versus normal female DNA. The two slides 

from this experiment are named MF-1 and MF-2. 

The Fourth set of experiments is a series of titration experiments comparing X 

chromosome loci to autosomal (non-sex) loci by comparison of male and female D N A 

[55]. A single copy deletion was simulated by hybridizing normal male versus normal 

female D N A , generating a 1:2 ratio of X chromosomes. Contamination from normal 

cells was then simulated by spiking varying amounts of female D N A into the male D N A 

sample (slides TI through T5). Single copy amplifications were modeled by comparing 

a 50/50 mixture of male and female D N A against a male D N A reference. In this model, 

contamination from normal cell was simulated by spiking varying amounts of female 

D N A into the male/female D N A mixture (Slides T-6 through T-10). 

The detailed description of the slides is given in table 3-1. In this table, activity of each 

dye is the amount of the incorporated dyes during the labeling process that is measured 

by the spectrophotometer. Also in table 3-1 the exposure times for scanning each 

channel of the microarray slide is reported. Since some information about some of the 

slides was missing, there are some empty cells in this table. 
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3.3 Aims 

The aim of this thesis was to improve the "Image Analysis" step of the array-CGH 

experimental analysis in these two areas: 1) improving and optimizing the removal of 

spots likely to generate unreliable data (filter out low quality spots) and 2) normalization 

of the spot data to remove as much systematic variation as possible while preserving the 

real biological variations. The former issue will be addressed in chapter 4 and the latter 

will be addressed in chapter 5. 
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CHAPTER 4 FILTERING OUT THE LOW QUALITY 
SPOTS 

This chapter addresses the issue of filtering out the low quality spots. It provides a 

literature review on this topic, study hypothesis, an examination of sources of artifacts in 

the data, methodology used to address the hypothesis and finally the results. 

4.1 Background 

It is crucial for any high throughput technology to have sufficient quality control for each 

step in the process to enable the collection of good quality data. The data acquisition step 

of microarrays analysis is not an exception. Noise and irregularities in spot shape, size 

and position are common problems which may affect the measurement accuracy, 

particularly in large scale high density microarrays. Therefore users need to be able to 

acquire a measure of the quality of data, to control for imperfections that happen during 

printing and hybridization. Without a good scheme to produce reliable, high quality data, 

any complex data mining tools one may use can lead to misleading results [20]. 
There are two different approaches to .quality measurement of microarray data. First is 

through replicate spots. Spot replicates are considered to be a valuable source of 

information for data significance and confidence analysis of differentially expressed 

genes. They can also be successfully utilized for flagging of low quality spots, which are 

highly likely to produce unreliable results. The most common approach to quality control 

in this area has been based on the replicate outlier removal. The presence of an outlier 

replicate within measurements raises concern about quality of the measurements. The 

most significant drawback of this approach is the necessity for a fairly large number of 

replicates. 
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The other approach to quality assessment is the assessment of quality through confidence 

measures. These confidence measures are obtained during the image analysis phase. The 

choice of these measures mainly depends on the particular microarray design, equipment 

sophistication and measurement extraction procedures. The most widely used measures 

are the ratio of the standard deviation of the signal within the spot to its mean intensity, 

the offset of the spot from its expected position in the grid and spot circularity measures. 

These measures used separately or combined into some kind of a decision tree can be 

used to flag a spot as of low quality. However it is not obvious how to compose a unique 

confidence number from such set of quantities. 

Sources that reduce the quality of a spot and increase the chance that it produces 

unreliable data can be separated into two groups. The first group consists of defects 

introduced during the slide printing and scanning process. The other group includes 

miscalculations as a consequence of the poor performance of the spot finding and image 

segmentation techniques applied to the image [4]. There are not a lot of publications that 

have done a systematic study on these quality assessment issues. The following 

represents a review of the few studies addressing this issue. 

Wang et al, [20], define several quality scores for each spot on the array according to its 

size, signal to noise ratio, background level and uniformity, and saturation status. Based 

on these five individual scores, a composite score qcom is defined for each spot to give an 

overall assessment of its quality. They demonstrated that the variability in ratio 

measurements correlates closely with qcom in that high-quality spots are less variable and 

that qcom is better than intensity level or spot size used alone in a data filtering scheme. 

Brown et al., [21], calculated the normalized standard deviation of the ratio distribution, a 

value they referred to as SRV (Spot Ratio Variability), as a measure of ratio non-

homogeneity that summarizes the reliability of the expression ratio for a spot. They 

suggested using this metric in combination with other obvious problems to capture all 

anomalies including those not captured by the SR V alone. 

Tseng et al, [22] used multiple spotting of each target sequence on a slide as a means to 

assess the quality of data for a spot on that slide. They assumed that the quality of data on 

the expression level of each gene is inversely related to the coefficient of variation (i.e. 

standard deviation divided by the mean) of the set of ratios of the corresponding multiple 

35 



spots. The measure was referred to ass CV. By a windowing procedure they marked all 

the genes having C V values larger than a threshold as poor quality data. For each gene 

they constructed a windowing subset by selecting the 50 genes whose mean intensities 

are closest to that of this gene. If the C V of this gene is among the top 10% among genes 

in its windowing subset then they regard the data on this gene as unreliable. 

Ruosaari et al, [23] address the problem of detecting spots of low quality from the 

microarray images by extracting features describing the spatial characteristics of the spots 

on the microarray image and train a classifier using a set of labeled spots. They assess the 

results for classification of individual spots using region of ROC analysis and for a 

compound classification using a non-symmetric cost structure for misclassifications. 

Hautaniemi et al, [24], suggested using Bayesian networks for computing the spot quality 

value from spot specific features. The features they used in their study were: spot 

intensity, size of the spot, roundness of the spot, alignment error, background intensity, 

background noise and bleeding of one spot's target into its neighboring spots. 

In studies of Ruosaari et al [23] and Hautaniemi et al [24], the assessment of quality of 

the spots was done visually; however, Wang et al [20] and Brown et al [21] used the 

experimental variability of the ratios for the assessment of the quality of spots. 

4.2 Hypothesis 

The replicate filtering approach has a significant disadvantage: the need for a rather large 

number of replicate spots per target clone. This method is not cost effective. The fact that 

the amount of D N A available for experiment is usually limited makes it less practical 

especially for clinical experiments. When the number of replicate spots per target clone is 

not large there is no way to find the outlier measurements among the replicate 

measurements because the number of defect spots is not known. It can be one or more 

than one of the replicate spots. So the only solution would be to discard all the replicate 

measurements which eliminates all the measurements for a clone (hence the biological 

feature is excluded) and is not desirable. 

The quality measure approach does not have the discussed disadvantage of the other 

approach. However the following two issues need to be addressed. First, the choice of the 

features of the spots that most significantly describe the validity or quality of the intensity 
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and/or ratio measurements and second how to combine the single selected features onto a 

unified quality score so that the final quality score conforms to the quality of the spots. 

The few studies published on this issue have the following drawbacks: the selection of 

the features and the choice of the unified quality score have been done based on 

observations alone, the feature sets have not been comprehensive to contain all the 

possible quality features of the spots, and finally in cases that a classifier have been used 

for the purpose of identifying the defect spots, the performance of the classifier in terms 

of removing the outliers from the data have not been evaluated in a database that enables 

the assessment against truth . 

Currently in our lab, our microarray images of array-CGH slides are analyzed with 

SoftWoRx Tracker microarray experiment management and analysis software. Using a 

custom in house viewing software (SeeGH, [9]) the standard deviation (s.d.) of triplicate 

spots are calculated and all spots with higher s.d. or lower signal to noise ratios (SNR), 

are excluded from further analysis. SNR is defined as the ratio of the background 

subtracted mean signal divided by the standard deviation of the background of the spot. 

The hypothesis tested in this part of the thesis is: Can a binary decision tree consisting of 

linear discriminant functions with a comprehensive set of features calculated for each 

spot result in the same or better accuracy than the current approach for filtering out the 

low quality spots in array-CGH data? 

If successful, the proposed method would reduce the number of replicate spots per target 

clone from three to two and the whole SMRT array set of clones would fit on one slide 

instead of two. The latter makes the experiments much more cost and material effective. 

4.3 Usual Artifacts 

In the following sections the types of artifacts observed in the microarray images in our 

database will be described. 
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4.3.1 Printing Artifacts 

For understanding this type of artifacts, some knowledge of the microarray slide spotting 

system is necessary. 

By following the pattern of spotting we can find all the spots that are printed from the 

same 96-well original plate. Figure 4-1 shows this grouping of spots on the array. We 

refer to these groups as the plate groups. 

Figure 4-1 Grouping of the spots into plate groups on one subgrid of a slide, the same grouping repeats on 
each subgrid, the larger grid shows the plates and the smaller grid shows the spots 

The reason that we are interested in this is that apparently sometimes during the 

preparation of probes one of the steps goes wrong in either one of four 96_well plates or 

all four of them in each round of PCR. The latter is the reason that some groups of spots 

are observed that all look very dim in the image. If the PCR was unsuccessful in all four 

of the plates of the tetrad, the pattern repeats in all subgrids, but i f it is unsuccessful in 

just one of the plates, then the pattern repeats in every one out of four subgrids (figure 4-

2). 
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Figure 4-2 Printing artifacts, an example of "bad" plates 

4.3.2 Background Contamination 

Background defects can appear in various parts of an image due to a variety of reasons. 

Such an artifact can influence the signal level of a large number of spots located in the 

contaminated area (Figure 4-3). 
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Figure 4-3 Example of background contamination 

39 



4.3.3 Signal Contamination 

A non-homogenous distribution of material within the spot also indicates a problem 

which can be caused by of one of the following: an external object on the surface of the 

array, dye separation and/or clumping during hybridization, scratches on the surface of 

the slide that are formed at the time of washing the slides, etc. (figures 4-4 and 4-5) 
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Figure 4-4 Dye separation, an example of signal contamination 
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Figure 4-5 Example of scratch on the surface of the slide 

4.3.4 Saturation 

Saturation occurs when spot pixel intensity values exceed the detection range of the 

scanner, in our case the CCD camera detector. Saturation of bright spots should be 

avoided by properly setting the exposure time (the amount of time that a pixel of the 

CCD is exposed to the emission light from the excited sample). Yet saturation still may 

occur in some spots of amplified sequences or spots that contain contaminations in the 
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form of a bright artifact such as dye clumps and dust, since these typically result in a 

strong intensity value. 

When saturation happens the measured signal is less than its true value and this in turn 

will result in incorrect signal ratios. 

4.3.5 Spurious Artifacts 

Even when the spot is not compromised during the slide preparation, hybridization and 

scanning, the data extraction phase can go wrong for several reasons and this makes the 

spot measurements unreliable. Since each slide contains tens of thousands of spots, it is 

not possible to manually check the results of the addressing and segmentation phases to 

see i f the foreground and background are correctly identified by the automated image 

analysis part. 

Some of the artifacts that can be introduced by the data extraction step are: 

When there is a dust particle very close to the foreground of the spot patch or on the 

foreground, the segmentation can be fooled and misidentify the dust as the foreground. 

If for some reason, during the printing of the slide, the spot's center location is shifted 

from its expected location, i f the offset is too big, the addressing algorithms can not 

correctly locate the center of the spot and this effects the results of the segmentation 

process and as a'result the wrong foreground and background values are found. 

4.3.6 The Problem of Low Intensity Spots 

The intensity of the spots has been found to be a significant factor affecting the accuracy 

and repeatability of the data and data variation increases for the low intensity spots. 

This problem has been discussed in the literature from different points of view. 

A weak spot, on a gene expression array, may represent an unexpressed gene. According 

to the linear model of measurement error for gene expression of Rocke and Durbin, [25], 

the intensity measurement y for each gene in each channel is modeled by the equation 

y = a + fjen+e where n is the expression level in arbitrary units, a is the mean intensity 

of unexpressed genes, e is the additive error prominent at low expression levels and n is 

the multiplicative error and is noticeable mainly for highly expressed genes. So, in this 
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context, weak spots should be treated in a way that the genes expressed at low but stable 

levels can be distinguished from those unexpressed [26]. Apparently this is not applicable 

to array-CGH data as there are no absent sequences in the control sample. 

A spot whose intensity is below the detection limit is considered too weak to give reliable 

measurements. Microarray scanners are fluorescence imaging systems. The criterion for 

measuring the detection limit of a fluorescent imaging system is signal to noise ratio 

(SNR), which is the ability of the instrument to detect a signal (in this case, fluorescent 

dye bound to the arrayed biomolecules) above background (the microarray slide). SNR is 

typically expressed as the background subtracted signal divided by the variation in the 

background: 

SNR = (signal-background)/s.d. of background 

If SNR is accepted as a detection limit, the next step would be to choose a minimum 

acceptable SNR. According to [4] a commonly accepted criterion for the minimum signal 

that can be accurately identified is the sample value for which the signal is three times 

greater than the background noise, that is SNR=3. 

The problem with this criterion is that the background inside each microarray spot might 

not be the same as the background around each spot and the true signal may start from a 

level lower or higher than the neighborhood background level. This makes the defined 

SNR incorrect. 

The additive error from the background correction becomes significant for low intensity 

spots. The standard approach to background correction is to subtract an estimate of the 

background intensity from the intensity measured in the spot (the foreground intensity). 

This approach can cause problems when the foreground intensity is low, for example, i f it 

is of the same magnitude as the background intensity. This situation will cause estimates 

of the expression ratio to become very noisy. Some methods have been proposed tp 

improve the background correction [27] but they all depend on the assumption that the 

background estimated from around the spot is the same as the background inside the spot. 

In inspecting the data from our database, the variation of the log2 ratios of the triplicate 

spots in each slide was found to increase as the intensity of the spots decreases (see figure 

4-6). 
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Rank of average intensity of triplicate spots 

Figure 4-6 Plot of s.d. of the log2 ratios of triplicate spots sorted versus the average intensity of the 
triplicates 

We believe that i f the lower SNR or lower intensity of the spot affects the repeatability of 

the log ratio of the spot, it will be reflected in one of the quality features associated with 

the spot especially those who measure the consistency of pixel information from both 

channels. So, our approach to this problem was to include such features in the feature list 

and let the linear discriminant function analysis find the features that best discriminate 

the unstable low intensity spots. We believe this works better than choosing one arbitrary 

threshold for SNR or the intensity of the spot and filtering all the spots below the 

threshold. 
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4.4 Method of Quality Filtering 

Our approach to the problem of filtering out the low quality spots is to extract, for each 

spot, a set of features indicating the characteristics of the spots. A binary decision tree 

consisting of linear discriminant functions is constructed to classify the spots into two 

groups of "good" and "bad" spots. In sections 4.4.1 through 4.4.3, the descriptions of the 

classifier, the feature extraction and the training set are given. In section 4.5, the 

constructed binary decision tree is presented and its performance in classifying the spots 

is evaluated. The discussions of the results are given at the end. 

4.4.1 Classification 

The classifier software program that was used in this study is a custom in house software, 

named C E L L CLASSIFY, which was originally developed for classifying the images of 

cell nuclei for detection of abnormal cells. 

C E L L CLASSIFY is a general classification software program used to identify particular 

object types. When loaded with object features and optionally object images, it can be 

used to manually or automatically sort the objects into classification groups. The program 

can be used to explore the data graphically and process it by binary decision trees. 

The C E L L CLASSIFY requires an image and a feature file as input. The images from a 

microscope slide are recorded in a proprietary image file format (*.img). Image files 

constitute the primary data from which feature files are derived. Within the file, the entire 

information describing one image makes up a complete and independent record. This 

record contains: 1) The focused image, 2) The calculated mask (A segmentation process 

is applied to determine the object boundary and an ROI (region of interest) mask is 

created.), and 3) An image file header (comprising the file name, class, normalization 

coefficient, diagnosis code, and slide coordinates). The image file usually contains 

numerous records, each one corresponding to a different image. 

Numerical values from each image file, known as features, are extracted and recorded in 

a format known as the binary feature file (*.fb?). The question mark in the file extension 

identifies which version of features was calculated. 
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The image file and its corresponding feature file are loaded in the C E L L CLASSIFY 

program. The main windows and graphs that can be used for the purpose of visualization 

or classification are: 

Groups: The user assigns individual images into categories, or Groups. The program 

assigns a unique identification color to each group which correlates with the information 

in other displays. The Groups window shows groups numbers from zero to nineteen and 

the number of images in each group. 

Features: This window presents the feature names and feature values associated with the 

selected image. Users select the features to label the graphs and images during data 

display and analysis. 

Image display: This window presents a gallery of the image records making up the file. 

It may display the images, or the masks in the cell's group color, according to user 

requests. Below each image an identification label describes the image that displays the 

assigned feature value. In addition to this image display, a user can view a magnified 

version of each individual image and its corresponding mask in a separate window. 

Histogram display: this window displays the histogram of the selected feature. Dual and 

multiple histograms can also be used. 

Scatter plot display: This window displays a two parameter scatter plot of two assigned 

features. 

Operators: the binary operator formats used for object classification by C E L L 

CLASSIFY. The selections include: 1) Threshold operator: allows the user to classify 

the images into two groups based on the value of the corresponding feature. 2) Linear 

discriminant operator: A Linear Discriminant Function is a binary operator used as an 

object classifier. From the defined list of features, Stepwise Selection only uses the 

features that provide the best discrimination. F tolerances (F-enter and F-remove) can be 

set by the user or the default values will be used. And 3) Neural network operator: this 

option was not used in this study. 

Figure 4-7 shows a screen shot of the C E L L CLASSIFY program. 
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Figure 4-7 a screen shot of the " C E L L C L A S S I F Y " program 

4.4.1.1 Stepwise Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a commonly used technique for data 

classification and dimensionality reduction. Probably the most common application of 

LDA is to include many measures in the study, in order to determine the ones that best 

discriminate between groups. Put in another way, we want to build a model of how we 
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can best predict to which group a case belongs. In stepwise discriminant L D A , a model of 

discrimination is built step-by-step. Specifically, at each step all variables are reviewed 

and evaluated to determine which one will contribute most to the discrimination between 

the group means. That variable will then be included in the model, and the process starts 

again. The stepwise procedure is "guided" by the respective F-enter and F-remove values. 

The F value for a variable indicates its statistical significance in the discrimination 

between groups, that is, it is a measure of the extent to which a variable makes a unique 

contribution to the prediction of group membership. A linear discriminant 

equation,/),. =a + b^Xx + b2 X2 +... + bpXp, where X i , X 2 , . . . X p are the features, 

bi,b2,...,b p are the corresponding coefficients, a is the a constant term, and / = 1,2 refers 

to each group, is constructed such that the two groups differ as much as possible on £),-. 

That is, the weights are chosen so that were you to compute a discriminant score (A) for 

each subject and then do an A N O V A (Analysis of Variance) on Z), the ratio of the 

between groups sum of squares to the within groups sum of squares is as large as 

possible. In this analysis it is assumed that the data for the variables (features) represent a 

sample from a multivariate normal distribution [51]. 

4.4.2 Feature extraction 

In addition to reporting the estimate of the foreground and background intensity of spots, 

most microarray image analysis software, generate some basic quality measures such as 

the size of the spot, signal to noise ratio (with different definitions), standard deviation of 

the foreground and background, etc. But i f we want to define and use additional quality 

measures we will need to have access to the actual pixel values of the foreground and 

background regions of each spot. Unfortunately none of the software packages provide 

this information. This necessitated that we redo the segmentation of the microarray 

images into foreground and background of spots as it is required for the feature extraction 

step. 

Before performing the segmentation, the microarray images were converted to the 

"image" file format (refer to section 4.4.1 for a description of image file format). Using 

the coordinates of the centroid of the spots reported in the output file of the SoftWorx 

47 



tracker software, a rectangular patch around each spot was taken and all the image pixel 

intensities in that patch were recorded in the image fde in binary format. Each image data 

block is then followed by a binary image of the same size which is the mask of the 

foreground and background image obtained by segmentation. In addition each image 

block is preceded with a header that has some information about the block such as its top 

left corner position in the original microarray image and it also has some empty place. 

The classifier program fills the empty space with the information of the group and class 

of each "object" (figure 4-8). 

Header 

Image 

Header 

Mask 

(a) (b) 

Figure 4-8 (a) a spot image and its mask, (b) format of data in the img file 

4.4.2.1 Segmentation 

As previously reported an adaptive segmentation approach has shown to work 

satisfactory for this purpose [10]. We chose "seeded region growing" segmentation [28]. 

SRG segmentation requires the specification of starting points, or seeds, i.e. the location 

and number of features should be determined beforehand. In microarray images the 

number of features (spots) is known exactly and the approximate locations of the spot 

centers are determined at the addressing stage. In this study, we didn't perform the 
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addressing stage instead we used the output of the image analysis software that reports 

the coordinates of the center of each spot. 

The S R G algorithm 

Segmentation of spots into foreground and background was carried out using the seeded 

region growing (SRG) algorithm of Adams and Bischof [28]. 

This method works as follows. A number of seeds are provided as input to the algorithm. 

These are groups of pixels which serve as starting points for a region growing process. 

Seeds may consist of only a single pixel or they can be of any size and do not need to 

form a connected set. 

After specification of seeds, the algorithm proceeds by growing all the foreground and 

background regions simultaneously until all pixels in the image have been allocated to 

one of the regions. At each stage, all pixels which are as yet unallocated, but which have 

at least one neighbor which has already been allocated, are considered for allocation. Out 

of all these region-neighboring pixels, the algorithm selects the one whose pixel value is 

nearest (in terms of absolute grey-level difference) to the average of the pixel values in 

the neighboring region. The process repeats until all pixels have been allocated. Pixel 

queues are used to optimize the efficiency of the procedure. 

For this application of SRG, the algorithm is applied to each image block in the image 

file. 

The scanner generates two registered images for each microarray slide (one image for 

each channel). Before the segmentation can be performed, a combined image needs to be 

formed. One choice for the combined image can be the sum of the two images from two 

channels; these images are named R for the Cy5 channel and G for the Cy3 channel. But 

in order to prevent the combined image from being dominated by one of the channel 

images, a better way is to scale both of the images to the same scale as follows, provided 

that the majority of spots do not show any differential gene expression or copy number 

change. 

So median pixel values are calculated for each image, ntR and mc and the combined 

image is computed as: 

{R + (mJmG)G)/2 
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where R is the image of the cy5 channel and G is the image of the cy3 channel and niR 

and mc, are the median pixel values of R and G respectively. 

Then the segmentation algorithm is applied to each block of the combined image that 

corresponds to a block of the image in the "image" file so that the foreground mask is 

generated for each spot separately. 

The next step is to construct the foreground and background seeds for each spot. The 

image analysis software has already adjusted the predetermined location of the spots from 

the template to the actual position of the spots. The coordinates of the centeroid of the 

spots are then taken from the output fde of the SoftWoRx Tracker software. A patch 

around the center pixel including the 8-connected neighbors of the pixel is used as the 

foreground seed. As for the background seeds the pixels in the four corners of the 

rectangular patch around the spot and their immediate 8-connected pixels are used (figure 

4-9). 

Figure 4-9 Spot image, the foreground seeds marked in the middle and the background seeds marked in the 
corners 

4.4.2.2 Features 

The reliability of the ratio measurement of a spot is affected by multiple characteristics or 

"features" of the spot images. In this study a variety of shape, texture, and foreground and 

background distribution features are generated for each spot so that the linear 

discriminant function analysis can find the features that best discriminate between the 

two groups of interest, "good" and "bad" spots. 

Table 4-1 shows the name and description of the features specifically designed for the 

microarray spots in this study. In this table, for each spot, N is the total number of 

foreground pixels , M is the total number of background pixels, {rj} and {gj}, i=l,2,...,N, 

are the foreground pixel intensities of cy5 and cy3 channels, respectively, and {br;} and 
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{bgi}, i=l ,2, . . . ,M, are the background pixel intensities of cy5 and cy3 channels. Also in 

this table, s.d. is the standard deviation and cv . is the coefficient of variation (standard 

deviation divided by the mean). 

Feature name Description 
mean_sig_595 mean{gj}, i = 1,2, • • •, N 

mean_sig_685 mean\ri}, i = 1,2, • • •, N 

median_sig_595 median{gi}, / = 1,2, • • •, N 

median_sig_685 median^ }, i = 1,2, • • •, N 

mean_bckg_595 meanfagj}, i = 1,2, • • •, M • 

mean_bckg_685 mean{bri}^x...,M 

med_bckg_595 median\bgi}i=u2,-.;M 

med_bckg_685 medicm\bri}i=xx...,M 

std_sig_595 

std_sig_685 

std_bckg_595 s-d.{bgi}i=]2,„M 

std_bckg_685 

cv_sig_595 

cv_sig_685 C - V - f c L l , 2 , , » 

cv_bckg_595 C-V-fe/}/=1.2,-,*f 

cv_bckg_685 C-V-{* riL,2,.,*f 

dif_s_b_595 mean{gi }.=12...^ - mean{bgj \j=xx...M 

dif_s_b_685 meanfa }.=12;..<N - meaner,. \MX...M 

ratio_s_b_595 mean{gi },.=12 ..iJV/meanfe)} .=] 2 w 

ratio_s_b_685 meanfo}.=]2,„N/mean{brJ} ,=u ^ 

std_pixel_ratio s.d.< 
1=1,2,—,W 

cv_pixel_ratio cv.- ri 

i=\,2,-,N 

std_pixel_ratio_G s.d.< S, 
> 

i=l,2,-,JV 
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Feature name Description 

cv_pixel_ratio_G c.v.< 
. ' J i=\,2,-~,N 

std_pix_ratio_b s.d.-
rt - median^} j = i i n 

> 

i=\,2,-,N 

std_pix_ratio_b s.d.-
gi-median{bgj}M2 N 

> 

i=\,2,-,N 

cv_pix_ratio_b c.v.-
' r, -median^rj}.^ N 

> 

i=l,2,—,Af 

cv_pix_ratio_b c.v.-
gi-median{bgj)M2 N 

> 

i=l,2,—,Af 

corr_coef Pearson correlatio coefficietn of{rt}ana\gi\i=\2,---,N 

snr_595 
mean{gi},.=12... w -median{bgj \M2,..M 

snr_595 

snr_685 
mean{r. },.=12 - median\brj},=12...M 

snr_685 
s.d.{bri}M2,„M 

sat_percent numberof spot pixels that : ri>2[6-256 or g>2 1 6-256 sat_percent 
N 

Spot_Peak_lnt_G maxfe-L,2,.,^ 
Spot_Peak_lnt_R m a X { l } / = 1 . 2 , . , A T 

Table 4-1 Feature names and their descriptions 

In addition to these features that have been specifically designed for microarray spots, a 

variety of morphological and texture features that have been originally developed for 

classifying cells of different types in the Cancer Imaging Department of BC Cancer 

research center are also used. The description of these features can be found in [52] and 

[53]. 

4.4.3 Training the classifier 

After extracting all the features, an appropriate number of features that can best 

discriminate the "good" and "bad" spots are to be determined with the use of a stepwise 

L D A (Linear Discriminant Analysis) implemented in the " C E L L CLASSIFY" program. 

In order to do that a training set and a testing set were assembled. 

In order to build the training set and the test set, the data from 8 slides H526-1 through 

H526-8 were used. The standard deviation (s.d.) of the l o g 2 ratios of triplicates was 

calculated for all the eight slides in this experiment and all the spots with s.d. higher than 
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0.075 were chosen in the first step. This was done in order to reduce the number of 

potential candidate spots for manual classification because with 52272 spots on each slide 

manual classification of all the spots would take a prohibitively long time. We believe 

that this would not affect the accuracy of classification because in the spots chosen in this 

way, we observed all types of defects that we would normally observe in spots from a 

microarray so by limiting the number of potential cases nothing is missed. 

In the next step, the spots in this set were manually classified into two groups of "good" 

and "bad". Then the data from slides H526-1 to H526-4 were merged and used as the 

training set and the data from slides H526-5 to H526-8 were merged and used as a totally 

independent test set. 

The total number of spots in the test set is 3303 from which 1840 spots are manually 

classified as bad and 1463 spots are classified as good. The total number of spots in the 

test set is 4257 from which 1300 spots are classified as bad and 2957 are classified as 

good. 

4.5 Results 

After examining the training set data, it was concluded that a single discriminate function 

was not able to discriminate between the two groups of objects, i.e. the "good" and "bad" 

spots. So, the classification was done in several steps: 

It was observed that i f from the three replicate spots on a slide; one or more of them have 

saturation percentage higher than zero, the standard deviation of the ratio measurement of 

the triplicates is higher than average. Therefore, in the manual classification of spots of 

the training set, spots with saturation percentage higher than zero were classified as "bad" 

spots. 

The first step in classifying the spots into two groups of "good" and "bad" was therefore 

filtering away all the spots whose saturation percentage (percentage of the saturated 

pixels of the foreground) is higher than zero in either channel. A threshold operator was 

used for this purpose. 

The segmentation method that was used to segment image pixels into foreground and 

background was an adaptive segmentation. So the masks of foreground regions of spots 

are connected objects of arbitrary shapes. Spots with masks that are non-circular are 
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obviously somehow unreliable as the irregularity in shape indicates the presence of an 

artifact. Spots with masks that are circular in shape, however, are not all "good" spots. 

The non-uniformities of the intensity of the spot surface might not affect the 

segmentation result i f it is not strong enough. Spots with separated dyes or scratches on 

their foreground surface that have circular masks have been observed repeatedly in the 

training set. 

Based on these observations, the classification of spots into two groups of "good" and 

"bad" was done in two steps. First step is to classify the spots into two groups based on 

the shape of their mask. The first group consists of spots with circular masks and the 

second consists of spots with masks of irregular shape. 

The second step is to take the first group of the previous classification which consists of 

circular spots and classify the spots based on the texture of their foreground and 

background intensity. These two steps are explained in more detail below. 

To train a classifier to find the spots with irregular shapes, a new training set was needed 

with "good spots" in one group and "bad spots" with irregular shapes in the other group. 

The training set spots were manually classified to assemble this new training set. 

The linear discriminant function that performs this classification was constructed from 

morphological features only. 

Throughout the experiment we found that a function with about 10 features is able to do 

the job. Table 4-2 shows the selected features and their coefficients in the linear 

discriminant function. 
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Feature Coefficient Feature Description 

16 mean radius 4.9892 
mean value of the length of the objects's raidal vectors 
from the object centroid to its 8-connected edge pixels 

17 max radius -5.9938 max values of the length of the objects's raidal vectors 
18 var radius 9.9991 variance of the length of the objects's raidal vectors 

19 sphericity 48.1313 
a shape measure, maximum equlas one for a circular 
object, mean_radius/max_radius. 

20 eccentricity -10.4536 

a shape measure, estimate of the ratio of the major axis to 
a minor axis of the best fit ellipse which best describes the 
object and gives minimal value of 1 for circles. 

22 inertia_shape 27.4646 

a measure of roundness of an object, calculated as the 
moment of inertia of the object mask normalized by the 
area squared, to give the minimal value of 1 for circles 

26 freq high ffi -0.0152 

an estimate of fine boundary variation, measured as the 
energy of the high frequency Fourier spectrum (from 12th 
to 32nd harmonics) of the object's radial function 

27 harmonOI ffi 0.4556 

estimate of boundary variation, calcualted as the 
magnitude of the Fourier transfrom coefficients of the objct 
radial function, for each harmonic 

29 harmon03 ffi -0.2133 as above 
35 harmon09 ffi 0.5308 as above 

Table 4-2 Morphological features chosen by the discriminant function analysis and their coefficient in the 
function 

Next step was to find the circular spots that are somehow defected and unreliable. At this 

step, the morphological features are not included in the analysis as the spots to be 

classified have already passes the shape requirements. 

The linear discriminate function analysis implemented in the C E L L CLASSIFY program 

takes as input the "F-enter" and "F-remove" parameters of the stepwise linear 

discriminate analysis algorithm as well as the maximum number of features to be used. In 

order to find the best discriminant function the F-enter and F-remove parameters were set 

to their default values (F-enter of 4.0 and F-remove of 3.996). The number of features 

was varied from 1 to 30. Each number of features generates a linear discriminant 

function. The discriminant function was then applied to the test set to calculate the 

accuracy of the classifier. 

It should be noted that the overall accuracy of the classifier is defined as the number of 

correctly classified objects divided by the total number of the objects. The true positive 

percentage is defined as the number of "good" spots that are classified as "good" spots 
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divided by the total number of good spots. The true negative percentage is the number of 

"bad" spots correctly classified as "bad" spots divided by the total number of bad spots. 

After 30 features, increasing the number of features allowed, did not change the number 

of selected features. So the experiment stopped at that point. Figure 4-10 shows the plot 

of accuracy of the classifier versus the number of features for both test set and training 

set. As the plot shows for the test set the accuracy first increases with increasing the 

number of features and then it gets to a constant level and after that it decreases which is 

because of over training of the classifier. So the best accuracy was obtained using 25 

features and the corresponding function was chosen as the optimum classifier. Table 4-3 

shows the features selected and their coefficients. 

• Overall test 

• Overall training 

0 5 10 15 20 25 30 35 

Number of features 

Figure 4-10 Accuracy of the classifier on the test set and training set using different numbers of features 

Features Coefficients Feature Description 

Medium DNA area -1.6330 See references [52] and [53] for descriptions 
Low DNA compactness 1.1410 

See references [52] and [53] for descriptions 

Entropy -1.9339 

See references [52] and [53] for descriptions 

Energy -5.2412 

See references [52] and [53] for descriptions 

Number of local maxima of 
the object intensity function -26.8945 

See references [52] and [53] for descriptions 

Number of local minima of 
the object intensity function 7.4589 

See references [52] and [53] for descriptions 

Center of gravity -4.7090 

See references [52] and [53] for descriptions 

Fractal dimension -1.0495 

See references [52] and [53] for descriptions 

Average run length -0.0777 

See references [52] and [53] for descriptions 

Minimum run length percent -6.6135 

See references [52] and [53] for descriptions 
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Features Coefficients Feature Description 
std sig 685 0.0005 Refer to Table 4-1 

cv sig 685 -14.1689 
cv bckg 685 3.6076 
dif s b 685 0.0002 
ratio s b 595 0.6143 
std pixel ratio 10.8451 
cv pixel ratio -30.9444 

corr coef 3.8938 
std pix ratio b 0.2860 
Spot Peak lnt_R -0.0003 

mean bckg 595 -0.0003 
med bckg 595 0.0004 
cv sig 595 -0.0026 
std pixel ratio G -0.0042 
cv pixel_ratio_G -0.0039 

Table 4-3 Texture features chosen by the LDA algorithm and their corresponding coefficients in the 
function 

Bad spots 

Bad spots 

Good spots Bad spots 

Figure 4-11 The designed binary decision tree 
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true positive true negative over all 
training set 79.50% 96.53% 89.31% 
test set 91.08% 83.92% 87.50% 

Table 4-4 Overall accuracy of the classifier in test and the training set 

A l l of these steps were combined in a binary decision tree as shown in figure 4-11. Table 

4-4 shows the overall results of the final classifier on the test and training set. 

The classifier designed in this way, was then applied to data from each of the self-self 

experiments (slides MM-1 through MM-4, refer to section 3.2 for the description of these 

data). Use of the self-self experiments allows us to compare the log2 ratios with their 

expected values which are zeros. For comparison purposes, we filtered the data with the 

triplicate filtering method and with our classifier. For this experiment the log2 ratios of 

spots from each slide were normalized using the method that will be described in chapter 

5. 

When using the classifier, the constant term in the two discriminant functions needed to 

be adjusted for each data set. So we manually adjusted the constant term to get the 

appropriate separation of the good and bad spots. In fact, the values of the two 

discriminant functions can be considered as a quality score. By changing the constant 

term, the threshold of the quality score is changed. The threshold can not be set to a fixed 

value for all the slides as the distribution of the discriminant function values is different 

for different slides so the threshold should be adjusted according to that (when using the 

triplicate filtering method, the same threshold adjustment process is applied to the s.d. 

measure of the triplicates). 

Table 4-5 shows the percentage of the standard deviation of the normalized log2 ratios 

before and after low quality spot filtering relative to the standard deviation of the log2 

ratios before low quality spot filtering. Table 4-6 shows the variation, calculated as the 

sum of the absolute value of the log2 ratios, before and after quality filtering. As these 

two tables show removing the low quality spots decreases the total variation of the log2 

ratios by a significant value. 

In terms of reducing the variation, the classifier performs as well or some times better 

than the triplicate filtering method. But the fact that the classifier doesn't need replicate 

spots should also be considered when the two methods are compared. For the triplicate 
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filtering method i f the s.d. of the log2 ratios of the triplicates is higher than a threshold, all 

of them are filtered as there is no robust way of finding the outlier measurement specially 

when the number of replicates is small (in this case three). So with only one or two of the 

spots defected, all of the triplicates are filtered and this removes all the measurements of 

a particular clone of the array. While the classifier removes only the defected spot and 

with one or two of the replicate spots filtered there will still be a measurement for that 

particular clone. Table 4-7 shows the number of excluded clones (clones for which there 

are no valid measurements) using each of the filtering methods. Table 4-8 shows the 

percentage of the number of excluded clones divided by the total number of clones of the 

slides. The results show that although the methods have comparable performance in 

reducing the variation, the number of clones excluded by the triplicate filtering method is 

always higher than the other method. 

MM-1 MM-2 MM-3 MM-4 
Triplicate filtering 26.18% 36.83% 49.77% 49.97% 
Discriminant function 24.93% 35.91% 42.39% 47.35% 

Table 4-5 The s.d. of the log 2 ratios after low quality spot filtering relative to their original s.d. 

MM-1 MM-2 MM-3 MM-4 
Triplicate filtering 10.79% .4.38% 1.00% 5.64% 
Discriminant function 10.23% 4.13% 2.27% 3.91% 

Table 4-6 The percentage of reduction in the variation of log 2 ratios after low quality spot filtering 

MM-1 MM-2 MM-3 MM-4 
Triplicate filtering 2752 5691 3895 5055 
Discriminant function 1643 2160 425 535 

Table 4-7 Number of excluded clones after quality filtering 

MM-1 MM-2 MM-3 MM-4 
Triplicate filtering 15.79% 32.66% 22.35% 29.01% 
Discriminant function 9.43% 12.40% 2.44% 3.07% 

Table 4-8 Numbers of excluded clones relative to the total number of clones 
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4.6 Conclusions and Discussions 

We designed a binary decision tree with a threshold operator to identify the saturated 

spots and two linear discriminant functions to identify the spots with irregular shapes and 

spots with circular shapes but defected in some other way. The former uses a set of 

morphological features and the latter is constructed with texture features. The linear 

dicriminant functions are trained using a training set and an independent test set. 

We then tested the performance of the classifier on identifying the low quality spots by 

applying the classifier to the data from four complete slides. We used the slides MM-1 

through M M - 4 as a model to investigate data variability as we know from the 

experimental design that the ratios should be uniform across the whole slide for these 

. slides (i.e. we have an absolute definition of truth). 

The constant terms in the two linear discriminant functions are to be adjusted 

interactively by the experimenter by looking at the chromosome plots of log ratios and/or 

the scatter plots of the spot intensities. 

Throughout this experiment, we demonstrated that a large part (in this study as high as 

10%) of variability of ratio measurements is due to the low quality of image spots and 

that the designed binary decision tree can identify the low quality spots therefore 

reducing the variation. 

Use of the proposed method for quality filtering instead of filtering the spots based on the 

variation of the replicate spots in a slide which is the method that is currently used in our 

lab has a significant practical advantage. Using the new method enables us to reduce the 

number of replicates per target clone to two instead of three and the SMRT array clones 

that currently are spotted in triplicate across two slides can be fitted into one slide and 

this will make the array-CGH experiment more cost, material and time effective. We 

compared the results of triplicate filtering method and the new method in terms of 

reducing the variance and showed that the two methods have comparable performances 

while the new method doesn't require the replicates for quality filtering. This assures us 

that the SMRT array clones can be safely fitted into one slide without loss of accuracy at 

the filtering stage. 

The main concept of using discriminant function analysis to select the features that best 

discriminate between the "good" and "bad" spots and use of a binary decision tree to 
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classify the spots is applicable to single channel microarrays too. However, a new set of 

features specific to single channel microarray spot data needs to be defined. 
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C H A P T E R 5 N O R M A L I Z A T I O N 

In this chapter the issue of removing the systematic variations from the microarray data 

will be addressed. The process of removing the systematic variations from the microarray 

data is called Normalization. 

In this chapter, a review of normalization issues (including the systematic variations, 

normalization methods and methods of evaluation) is first given. Then systematic 

variations observed in the data from the data base of this study are discussed and a 

stepwise normalization strategy to remove those variations is proposed. The performance 

of this normalization strategy is then evaluated and compared to other existing methods. 

The conclusions are discussed at the end. 

5.1 Background 

The following sections present a review of the systematic variations known to be present 

in the microarray data. Existing normalization methods are then summarized. The 

existing models of the measurement system that relate the measured fluorescent intensity 

to the actual amount of probe hybridized to the targets are discussed. These models try to 

explain the biases in the measured intensities and/or ratios. The existing methods used for 

evaluating the performance of normalization on the data are then presented. 

5.1.1 Review of Systematic Variations 

The basic assumption underlying microarray analysis is that the measured intensities for 

each target represent the amount of the probe hybridized to the target. Before these 

intensities can be compared appropriately, a number of transformations and 
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normalizations must be carried out in the data to eliminate unreliable or low quality 

measurements (previously discussed) and to adjust the measured intensities to remove or 

minimize the systematic variations. 

The ratio of the two fluorescent signals at each spot is commonly used to infer the ratio of 

the D N A concentrations in the two D N A samples compared on the array. The ratio of the 

fluorescent signals is influenced by systematic effects from non-biological sources that 

can introduce biases in estimated ratios. These biases should be removed before drawing 

conclusions about the relative levels of DNA. The process of removing systematic effects 

is often referred to as normalization. 

The use of two samples and taking the ratio of their intensities instead of absolute 

intensity level, automatically removes the effect of variations in the size and amount of 

target D N A in each spot. However associating two samples that are labeled with two 

different fluorescent dyes introduces "dye bias" into the measurements. "Dye bias" is a 

systematic error that is caused because two dyes have different characteristics. Different 

physical characteristics such as molecule size make the efficiency of the incorporation of 

the labels into the probe D N A different. The efficiency of hybridization of labeled probes 

to the targets may also be affected by the characteristics of the dyes. Different quantum 

yields and different sensitivity to heat, light, pH, etc. make the efficiency of detection 

different for different dyes. 

As a result of the dye bias, differences observed between red and green channel 

fluorescent intensities for a given transcript may be due to either a true biological 

difference or to a systematic bias resulting from individual transcript dependent 

differences in efficiencies of dye incorporation and sample hybridizations. 

For each sequence that is present in both test and reference samples with the same 

amount, the number of dye molecules that incorporate to that sequence in the test sample 

will be different than the number of dye molecules that incorporate to the same sequence 

in the reference sample. The sequence is then hybridized to its corresponding target on 

the array. The hybridization efficiency may not be the same for the two differentially 

labeled sequences so the amount of hybridized probes labeled with different dyes may be 

different. Finally, when the spot is scanned and the fluorescent intensity is detected, the 

detection efficiency would not be the same for the two different fluorescent dyes. So, the 
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fluorescent intensity measured from the spot corresponding to that sequence won't be the 

same. 

If all of the differences mentioned above (the difference in the efficiency of labeling, 

hybridization and detection) were the same for all of the sequences in the probe, then dye 

bias would be the same for all intensity measurements of the microarray. This is not 

usually the case. 

A commonly observed bias in microarray data is the dependence of the log ratio (ratio of 

the florescent intensities of the spot in the two channels) for each spot on the average of 

the fluorescent intensities of that spot in the two channels [22, 30]. This is best observed 

in the plot of logarithm of the ratio of the spots intensities, against the average of the log 

intensities of the spots. This plot is called the M-A plot. 

The dye-bias also generally varies with spatial position on the slide. Positions on a slide 

may differ because of differences between the print tips on the array printer, variation 

over the course of the print-run, non-uniformity in the hybridization, or from artifacts on 

the surface of the array which affect one channel more than the other. 

Differences between spots may arise from differences in print quality, from differences in 

ambient conditions when the plates were processed or simply from changes in the 

scanner settings [33]. 

Another potential source of bias in two-color microarray experiments, which has been 

less considered in the literature, is the bias that may arise from competitive 

hybridization of differentially labeled probes [9]. In the two-color microarray 

hybridization experiments, differentially labeled D N A sequences from the test and 

reference that correspond to the same target spot, both compete for the same target. The 

rate of formation of the hybridized product for each spot depends on the hybridization 

rate constants, the amount of the unhybridized probe sequences, and the amount of the 

unhybridized target seqeunces. Therefore, the hybridization kinetics of the two sequences 

effectively determine the concentration of the final hybridized products. For example, i f 

one of the two differentially labeled sequences hybridizes to the target sequence at a 

faster rate than the other labeled sequence, the ratio of the product signals will not be 

equal to the ratio of the initial amounts of the sequences in the probe. 
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5.1.2 Models of Measurement System 

In this section different existing models that relate the intensity measurement to the actual 

amount of probe D N A hybridized to the target D N A are summarized. Note that there are 

no models specially developed for C G H microarrays and the following models have 

originally been developed for gene expression microarrays. 

Consider an experiment with clones i = 1,2,...,/ from D N A samples c = l , 2 , . . . , C Let 

Xci be the true D N A level for clone / in channel c. Let Yci be the corresponding 

observed D N A level. For spectrally well separated microarray experiments, the 

measurement functions for each channel are assumed to be separable equations. We then 

have that: 

where the measurement function fc. (•) is unknown. This is a general model that includes 

the measurement noise and systematic biases. The measurement function in general is 

dependent on the clone and on the channel. 

For two-color microarray experiments (c = 1,2) we refer to two channels as R and G so 

we have: 

^ , = A , , ( ^ , ) a n d F G , = / G , ( Z G , ) 

A linear measurement function means that fci (•) = bc where bc is the scale factor for 

channel c. If the measurement function was linear, then we would have: 

Y*J = b R X XRJ a n d YG,i = b C X X C J 

it then follows that the observed log ratios are: 

M, = log 2 (YXJ/Yaj) = log 2 (XKJ /XG.)+ log 2 (bK /bG) 

= \og2(ri)+Mbias 

where r, is the true ratio and Muas is the constant bias. So i f the measurement function was 

linear the bias of the log ratios would be additive and constant. 

Obviously the linear measurement function doesn't explain the nonlinearities in M - A 

plots. 

Rocke and Durbin [25] applied a two component model for analytical methods which 

was introduced by Rocke and Lorenzato [40] to gene expression microarray signals. 
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The following two component model was introduced by Rocke and Lorenzato [40]: 

y = a + Pfien + s 

where y is the response of the measuring apparatus at concentration //. rj ~ N(0, and e 

~ N(0, ae). rj represents the proportional error and e represents the additive error. The 

normality of the error terms rj and e is assumed for convenience, but this is in practice 

often a reasonable assumption. This two-component model approximates a constant 

standard deviation for very low concentrations and approximates a constant relative 

standard deviation (coefficient of variation) for higher concentrations. 

Rocke and Durbin [25] adapted that model to gene expression microarray signals. For 

gene expression arrays, this model is: 

y - a + pen +s 

where y is the intensity measurement and JU is the expression level in arbitrary units since 

the expression level can not actually be measured in molecular units. It can only be 

relatively measured because usually there is no calibration data (that is, samples of 

known expression levels), a is the mean intensity of unexpressed genes, e and rj are the 

additive error and multiplicative error terms respectively, s ~ N(0, and rj ~ N(0, any e 

represents the standard deviation of the background (intensity of the unexpressed genes), 

and rj represents the proportional error that always exists but is noticeable mainly for 

highly expressed genes. 

The model of Cui et al, [35], is very similar to the model of Rocke and Durbin. It 

decomposes the measurement error terms into multiple components: 

Yai=al+blXlke^+ek+Slk 

The error associated with the fluorescent signal at spot k in channel i is decomposed into 

multiplicative and additive components. Each of these two components is in turn 

decomposed into a common component (£* and nk) that is shared by both channels and a 

channel-specific component (<5,* and They assume that the distributions of all error 

components are symmetric with mean zero. 

They attempted to simulate some of the microarray features by varying the parameters of 

their model. Here are their results from the simulations: "Excess variation at the low 

intensity end can be simulated using large channel-specific additive errors. Variation of 
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the log ratios at the high intensity end is controlled by the channel-specific multiplicative 

error. Curvature of RI plots can be generated by unequal mean backgrounds and/or 

unequal slopes between the two channels." 

Based on the results of this simulation, the linear model (with an additive and a 

multiplicative error term) is promising. 

5.1.3 Review of Normalization Methods 

Depending on the experimental design, a decision must be made as to which set of genes 

to use for normalization. There are a number of considerations in this decision, such as 

the proportion of genes that are expected to be differentially expressed in the red and 

green samples and the availability of control D N A sequences. 

A l l genes on the array may be used for normalization i f only a relatively small proportion 

of the genes will vary significantly in expression between the two mRNA samples. 

For Gene expression arrays, instead of using all genes on the array for normalization, one 

may use a smaller subset of genes, often called housekeeping genes (genes that are 

assumed to be expressed at a constant level al the time) that are believed to have constant 

expression across a variety of conditions. A limitation of housekeeping genes is that they 

tend to be highly expressed and hence may not be representative of other genes of 

interest. 

An alternative to normalization by housekeeping genes is to use spiked controls or a 

titration series of control sequences. In the spiked controls method, synthetic D N A 

sequences or D N A sequences from an organism different from the one being studied are 

spotted (deposited) on the array (with possible replication) and included in the two 

different mRNA samples at equal amount. These spotted control sequences should thus 

have equal red and green intensities and could be used for normalization. In the titration 

series approach, spots consisting of different concentrations of the same gene are printed 

on the array. These spots are expected to have equal red and green intensities across the 

range of intensities [38]. 

Tseng et al, [22], proposed a rank invariant method to select the non-differentially 

expressed genes for normalization where all signals from both arrays are sorted and 

signals with ranks deviating by less than a threshold are included. 
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Yang et al, [30], correctly suggested that in case of the gene expression arrays, the use of 

all genes for normalization, in biological samples which show significant divergence, 

may not produce accurate normalized log ratios. In such instances, it would be more 

appropriate to normalize using the control spots alone. 

After choosing the subset of genes for normalization, the appropriate normalization 

approach should be chosen. A number of normalization approaches have been introduced 

for gene expression microarray data analysis including: 

1. Global normalization 

2. Total intensity normalization 

3. Normalization using A N O V A models 

4. Shift transforms 

5. Self-normalization 

6. Adaptive normalization 

Below we describe each of these methods. 

Global Normalization: is based on two assumptions: firstly, that the center of the 

distribution of gene expression ratios (i.e. mean or median) on a log scale is zero. 

Secondly, that the systematic error makes the central line move vertically, but otherwise 

leaves the distribution invariant. Therefore a global normalization shifts the center of the 

log ratio distribution to zero. However the systematic error in microarray data is often not 

constant and the performance of the global normalization is not satisfactory. 

Total Intensity Normalization: has been developed for the gene expression microarrays 

and relies on the assumption that the quantity of initial mRNA is the same for both 

labeled samples. Furthermore, one assumes that some genes are up-regulated in the query 

sample relative to the control and that others are down-regulated. For the hundreds or 

thousands of genes in the array, these changes should balance out so that the total 

quantity of R N A hybridizing to the array from each sample is the same. Consequently, 

the total integrated intensity computed for all the elements in the array should be the 

same in both the Cy3 and Cy5 channels. Under this assumption, a normalization factor is 

calculated by dividing the total intensity of all the spots in one channel by the total 
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intensity of the other channel. This factor is then used to re-scale the intensity for each 

spot on the array [39]. Since a constant scale factor is used for all spots data, this method 

is not able to remove the nonlinear biases. In addition, according to its assumptions, this 

method is only applicable to gene expression data. 

The main difference of this approach and the global normalization approach is that based 

on its assumption, this method is specific to gene expression arrays; while global 

normalization approach can also be used for array-CGH microarray data. 

Normalization using ANOVA models: An analysis of variance model for microarray 

data was proposed by Kerr et al. [36]. Similar models have been described elsewhere in 

the literature. The A N O V A (Analysis Of Variance) model is applied to transformed 

intensity data, for example, a logarithmic transform of raw intensity data. It allows one to 

account for sources of variation in the data that are attributable to factors other than 

differential expression of genes, thus it effectively normalizes the data. Main effects of 

the array and dye and interactions between array and dye, variety and gene, dye and gene, 

array and gene and variations of duplicated spots on one array are included in the model. 

The variety-by-gene terms capture variations in the expression levels of a gene across 

varieties and are the quantities of primary interest in the analysis and are referred to as 

relative expression values. The relative expression values are normalized data in the 

sense that effects due to the array, gene, spot, etc., have been removed. Although the use 

of relative expression values represents a departure from the customary analysis of ratios, 

differences in normalized expression values are in fact estimates of the log ratio of the 

relative expression between two samples (assuming the raw data have been log 

transformed). 

The power of the A N O V A formulation is that it allows investigators to consider 

experiments that involve more than two samples and to combine information across 

multiple arrays that are hybridized with experimental samples in (almost) any 

arrangement. 

Shift Transforms: Based on the linear model of Rocke and Durbin [25] (previously 

described) the so-called "shift-log" normalization method was proposed by Kerr et al. 
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[56]. This method adjusts the log ratios by adding a constant to the signal values of one 

channel and subtracting the same constant from the signals in the other channel prior to 

the logarithmic transformation: 

ZRJ = !og2 (YRJ + C) and Z G , = log 2 (YGJ - c) 

The constant C is estimated by minimizing the absolute deviation of each log ratio 

(ZRJ -ZGJ) from the median log ratio of the array. The shift-log transformation moves 

the origin on a scatter plot of Yr versus Yg along the line Yr = -Y to approach the 

regression line of Yr versus Yg. The curvature-causing background difference is, 

therefore, minimized. Shift-log does not specifically adjust the slope of the regression 

line of Yr versus Yg; therefore, it should be less effective on curvatures resulting from 

slope differences. 

Newton et al., [37], proposed a similar shift transformation in the context of shrinkage 

estimation. Their method moves the origin along the line Yr = Yg by adding the same 

positive constant to both channels. 

Z R J = \og2(YRi + C) and Z G J = log 2 (7 c , + c) 

Although this was not the intended purpose of this transformation, it can decrease the 

curvature in an RI plot. However, when the slopes of the two channels are the same 

(bR =bG) moving the origin along the Yr - Yg line cannot bring the origin closer to the 

regression line [35]. 

It will be discussed later in this chapter why this method can't be applied to our data. 

Self-Normalization (as named by Fang et al, [41]): The self-normalization method 

assumes that experimentally introduced error is multiplicative and that for corresponding 

spots in replicated measurements it is consistent. Based on this assumption, the error on a 

log scale is additive and a subtract operation applied to the data sets from two replicate 

experiments will remove this systematic error. This approach requires the association of a 

dye-flip technique. The dye-flip (also known as dye-swap or reverse labeling) technique 

generates paired slides where on the first slide one mRNA sample is labeled by Cy5 and 

the other mRNA sample is labeled by Cy3 while on the second slide the labels for the 
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two samples are exchanged. Based on self-normalization, the normalized result for a spot 

is half the difference between logged ratios measured from a pair of dye-flipped 

replicates for this spot. Therefore self normalization has the property that it corrects 

feature-specific (i.e. probe specific or spot-specific) differences [41]. 

Since this method is not applicable in cases that two dye-flip slides are not available, it 

was not considered in this thesis. 

Adaptive Normalization involves regression techniques to estimate the bias from the 

data [39, 41]. This approach employs the assumption that the bias introduced in the 

experiment is dependent on a number of factors (intensity, print tips, spot position, etc.) 

and employs regression techniques to obtain a fit of the specific relationship and then 

makes the correction. Adaptive normalization performs differently for the different 

regression techniques employed. 

The adaptive normalizations methods include linear or non-linear intensity dependent 

normalization and spatial normalization. 

The intensity dependent normalization techniques consider the regression models in the 

form of 

M = c(A) 

Where M = \og(R/G) = log(i?)- log(G) is the log ratio and A = l/2(log(i?) + log(G)) is 

the average log intensity and R and G are the intensities of the Cy5 and Cy3 channels 

respectively and cQ is a regression function. 

For finding c(A) the promising approach of Yang et al. uses "LOESS" regression of log 

ratios (M) as a function of the average of log intensity (A) (the LOESS regression will be 

described in detail later in this chapter). LOESS was used for local linear regression of M 

versus A rather than regressing \og(R) directly to log(G), to attribute uncertainty to both 

channels by regressing to the geometric mean of the intensity. 

Workman et al, [42], proposed using splines for finding the fit. Their approach seeks to 

transform the signal distribution of one array to the signal distribution of a target array in 

order to make the signal distributions comparable. The method uses quantiles from array 

signals and target signals to fit smoothing B-splines. The splines are then used as signal-

dependent normalization functions on the array signals. 
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Recently, some regression-based normalization techniques have been proposed to remove 

the location dependent systematic differences that result in spatial heterogeneity of signal. 

Variability in Cy3/Cy5 ratios has been shown to be generated, in part, by the specific 

print-tip used during the spotting of the cDNA probes by Yang et al, [30]. They 

introduced print tip-LOESS normalization which performs the intensity dependent 

LOESS over each print tip group. 

Spatial effects are not only caused by the printing device but may also be related to 

temperature or humidity during the time of printing, the batch of cDNA represented by a 

specific plate, reagent flow during the washing procedure after hybridization, or from 

uneven or tilted glass surfaces during scanning. Workman et al, [42], suggested that 

signal gradients can be normalized by subtracting local signal estimates (log intensities or 

log-ratios) and devised a spatial gradient normalization using a two-dimensional 

Gaussian function. Local signal (log-ratio) was estimated for each probe using a weighted 

mean of neighboring probe signals. A sliding square window centered on the each probe 

(50 x 50 for oligonucleotide arrays, and 10 x 10 for cDNA) was used to define the local 

neighborhood. Weights were defined by their Euclidean distance to the center probe 

using a Gaussian function (standard deviation 19 for 50 x 50 neighborhood and 3 for the 

1 0 x 1 0 neighborhood). For both oligonucleotide and cDNA array data, this adjustment 

was made after global quantile-spline normalization. 

Wilson et al, [43], transformed the logged intensities to the mean versus difference scale 

(instead of the red versus green scale); fitted a single LOESS curve to the transformed 

data, computed the residuals from the curve fit and spatially smoothed the residuals with 

a median filter to estimate the spatial trend and computed the residuals from the spatial 

trend estimate. Spatial median filtering with a 3 x 3 block of spots (where each spot is 

represented by a pixel) was used to correct both streaky spatial effects, as well as picking 

up global trend while not being skewed by highly differentially expressed genes. 

Colantuoni et al, [44], proposed the normalization of all array element signal intensities 

to a mean intensity that is estimated locally across the 2-D surface of each microarray. 

This mean intensity is estimated using the "LOESS" function in the R statistical 

language. The LOESS function is used to calculate the mean element signal intensity at 
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each point across the array surface using intensities at neighboring points. This method 

was originally proposed for one-channel microarray experiments. 

Fang et al., [41], in order to remove the spatial biases, used a two dimensional regression 

technique that took the spot position as the independent variable and the log ratio as the 

dependent variable. They then correct the log ratios by subtracting the obtained fit from 

them. The regression is applied to each block separately. 

5.1.4 Methods of Evaluating the Normalization Performance 

While there are many publications on normalization for gene expression arrays only a 

few has been published on the performance evaluation of methods and validation of the 

assumptions. Below we include a summary of the few systematic studies that have 

addressed this important issue. 

Usually the effect of normalization on reducing the bias and systematic variations is 

considered, but to what degree the biological variations are preserved is not tested. One 

way of evaluating the effect of normalization of gene expression data which has been 

used in most of the studies is to see how normalization affects the identification of 

differentially expressed genes. There is no unique way of identifying the differentially 

expressed genes and there is usually no true reference to compare the results to because 

the true expression level of genes is unknown. 

In order to compare the different normalization procedures, Yang et al., [30], considered 

their effect on the location and scale of the log ratios M using box plots. A Gaussian 

kernel density estimator was also used to produce density plots of the log ratios for each 

of the normalization methods. They also considered the effect of the normalization 

procedures on the ^-statistics used in the t-test to find differentially expressed genes. 

Colantouni et al, [44], attempt to remove the spatially systematic artifacts and compare 

the spatial distribution of genes found to be differentially expressed before and after 

normalization. The point is that they want to remove the localization of differentially 

expressed genes. This localization results from the systematic bias. 

Workman et al, [42], assess the efficiency of normalization in three different steps: global 

assessment in which they compare the distribution of signals before and after 

normalization, signal dependent assessment in which they visually compare the signal 
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dependent bias in the data before and after normalization, and finally biological 

assessment in which they take a set of genes known to be differentially expressed from 

other experiments (other than microarray) and compare the significance of a t-test to find 

the differentially expressed genes before and after normalization. 

Park et al, [45], use the variability among the replicated slides to compare performance of 

global, linear and non-linear intensity dependent normalization methods. They also 

compare normalization methods with regard to bias and mean square error using 

simulated data. 

5.2 Hypothesis 

As seen above, there have been several studies on the normalization methods for gene 

expression microarray data and the effect of different normalization strategies on the 

reproducibility and accuracy of these data; however to the best of our knowledge no 

studies have been carried on the data from the newly developed CGH microarrays. 

Although the microarray experimental steps are the same for both gene expression arrays 

and CGH arrays, the type of the quantity that is measured in each assay is different, in the 

case of the gene expression arrays the quantity of interest is the relative expression level 

of each gene in each sample and in case of CGH arrays, it is the copy number of the DNA 

sequences. Genes are expressed at many different levels in the genome and expression 

level of the same gene is not exactly the same in two different samples and that is what 

makes the true relative expression level of genes in an experiment unknown. In contrast, 

in case of the CGH arrays, the copy number of DNA sequences is a known value for 

the normal cells, which make the majority of the probe in our experiments, so the 

"truth" about the relative copy number of the majority of clones is known and this 

fact can be used in the evaluation of the normalization methods. Moreover, in gene 

expression assays a ratio of less than 2 is generally considered a non-significant change in 

the gene expression level; however for CGH arrays a single copy number amplification 

of a clone compared to a normal clone will result in a ratio of 3/2. Considering the fact 

that there is usually some degree of contamination of normal cells into the tumor 

(abnormal) cells, the fold change in the copy number can frequently be even smaller than 
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3/2. So the challenge would be to preserve the true copy number changes while removing 

the systematic variations. 

There is ongoing research on normalization and preprocessing of gene expression 

microarray data and there is yet no best method to normalize the data. The normalization 

strategies that have been used for gene expression data need to be tested for accuracy and 

precision and may be adapted to the specific characteristics of the C G H microarray data. 

We hypothesize that we can correct for systematic sources of variation while maintaining 

the true biological variations as small as single copy number changes in contaminated 

samples which makes the true fold change even smaller. 

To test this hypothesis, after a thorough investigation of the systematic variations in the 

data from our array-CGH experiments, and based on the existing normalization methods 

for gene expression data, we propose a stepwise normalization framework. We develop 

several methods for evaluating the performance of this stepwise normalization using a 

variety of experiments. We show, through the results of our experiments, that stepwise 

normalization scheme that we propose is successful in terms of reaching the determined 

goals. 

5.3 Systematic Variations 

In the following sections we describe the different types of systematic variations that we 

observed in our data and attempt to identify their sources. 

We start with a major source of bias, the background fluorescence and consider its effects 

on the log ratios. 

We then continue the data investigation by looking at the histograms of data in our 

dataset. 

Two significant sources of bias, intensity dependent dye bias and spatial dye bias are then 

examined and a measure for quantification of the strength of these biases is introduced. 

A discussion about the non-linearities in the log ratios is then presented. 

Finally another source of systematic variation, although not as significant as dye bias, is 

reported. 
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5.3.1 Background Fluorescence 

The background fluorescence is caused by many sources including: 

o Unbound or non-specifically bound probes 

o Auto-fluorescence of D N A , glass slides and other material put on the spot (such 

as reagents, etc.) 

o Contamination on the surface o f the slide, etc. 

The Background on the substrate presents a special case of bias. On the assumption of 

additive error, an estimate of background is usually subtracted from the measured 

fluorescent intensity of the spot foreground value before correcting other systematic 

errors. 

The background inside a spot can not be measured but the background around the spot 

can be estimated. The conventional method for estimating the background around the 

spot is to select a region around every spot and compute the background from this area. 

Traditionally, it has been assumed that the background around the spot is the same as the 

background inside the spot. Recently, there have been some studies indicating that this 

assumption is not always true. 

Tran et al, [46], published the results of a study in which they visualized the D N A spots 

before hybridization using unincorporated red dye staining and they found that D N A 

fluorescent intensity may begin at a level below the background signal intensity. 

Martinez et al, [47], identified spot-localized, contaminating fluorescence in the Cy3 

channel on several commercial and in-house printed microarray slides. They also 

determined the intensity of persistent spot-localized, contaminating fluorescence after 

hybridization could not be predicted from scanning microarray slides prior to 

hybridization trough mock hybridizations. 

Inaccurate estimates of background fluorescence under the spot create a source o f error, 

especially for low intensity spots. Some of the research groups working with microarrays 

have decided not to subtract the background intensity from the fluorescent intensity of the 

spots. If background intensity is not subtracted from the intensity of the spots, the log of 

red to green ratios shows a systematic bias towards the positive values for the low 

intensity spots, this happens because the background intensity in the red channel is higher 

than the background intensity in the green channel (which is in turn caused by the 
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detection setup). The ratio of red intensity to green intensity will then be artificially 

higher than what it should be because the measured intensity in the red channel, which is 

a combination of the true signal and the background signal, is higher than that of the 

green channel. As an example, Figure 5-1 shows the log2 ratio of the red to green 

intensity of each spot of slide H526-4 plotted versus the average of the log2 of red 

intensity and the green intensity for that spot. The increase in the log2 ratio for lower 

intensities that can be observed in this figure is a systematic bias. We refer to this bias as 

the "background bias". 
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Figure 5-1 "Background bias" 

Therefore not correcting for the background fluorescence has the disadvantage that 

introduces the explained bias into the data. In contrast, subtracting the background adds 

noise to the lower intensity spots. There seems to be a third option and that is to attempt 

to estimate the ratios without estimating the background and based only on the intensities 

of the spots pixels. 

This motivates us to try a background-independent ratio estimation method. 
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5.3.1.1 The regression Method for Estimating the Ratios 

According to Jain et al, [48], given the sets of foreground and background pixels for the 

test and reference channels, there are several ways to estimate the ratio. One method for 

ratio estimation is to compute the ratio of the foreground intensity less the estimated 

background intensity for the test and reference channels. The foreground and background 

intensities are the average of pixel intensities of the foreground and background regions. 

This corresponds to the ratio of the coordinates of the center of mass of the foreground 

pixels corrected for background. This method requires an estimate of background. If a 

line is fitted to the foreground pixel intensities of one channel versus the other, the slope 

of the line can be used as a background-independent estimate of the ratio (figure 5-2). We 

call this method of ratio estimation as the "regression method". 

4 
x 10 

2.2 i 

Green channel foreground pixel intensities 

Figure 5-2 The linear regression method for estimating the ratio 
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There is no published study that evaluates the performance of the regression method in 

estimating the ratios. Since the idea behind this method is to estimate a background-

independent ratio, we examined it in more depth in the following experiment. 

Experiment: Each clone is spotted three times in our microarrays. The regression 

method and the conventional method of ratio estimation were compared based on the 

variability that they cause in the ratios of the triplicates. The best ratio estimation method 

is the one that generates the closest ratios for the triplicate spots. 

Methods: the ratio for each spot was estimated using the "regression method". The ratio 

for each spot was also estimated using the conventional method as follows: 

(mean of foreground pixel Intenisties - estimate of background)C5 c h a m e l 

ratio — -. j-
(mean of foreground pixel Intenisties - estimate of background) Cyi channel 

The median pixel intensity of the background pixels was used as the estimate of the 

background. 

Using the ratios estimated by each method, we then calculated the coefficient of variation 

(standard deviation divided by the mean) of three log2 ratios obtained for three replicate 

spots for each triplicate set. The average of the coefficient of variations of the triplicate 

sets of each slide was used as a measure of closeness of the estimated ratios to the truth. 

The fact that all three of the triplicates are printed with the same pin within the same 

dipping cycle and they are located in the same column of each subgrid next to each other 

makes them ideal for our comparison purpose. Since the triplicates are from the same 

clone and in about the same region, so no normalization is needed before this comparison 

can be performed. 

The data from Slides H526-1 to H526-4 were used in this experiment. 

Results: Table 5-1 shows the average of coefficient of variation of the triplicate log2 

ratios of spots in each slide. The Regression method increased the variability in ratios of 

triplicates in all the cases. 

H526-1 H526-2 H526-3 H526-4 
Conventional method 21.9% 4.4% 1.5% 0.4% 
Regression method 54.1% 11.5% 23.7% 20.9% 

Table 5-1 average coefficient of variation of triplicate log 2 ratios 
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In an attempt to find the reason of this, we plotted for each spot the scatter plot of red 

intensities against green intensities. The intensities of foreground and background pixels 

are plotted with different markers. In order to test the effect of segmentation results on 

the regression method, the regression is performed with all the data points first and then 

the closest data point to the origin is removed and the regression is performed again and 

this is repeated until all the data points are removed. Then a plot of the slopes of the 

regression functions is prepared (figure 5-3). 
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Figure 5-3 (a) Plot of red channel pixel intensities versus green channel pixel intensities with the 
foreground and background data points shown in different shapes, (b) Plot of the estimated ratio using the 
regression method for different combinations of the foreground and background pixels 

In figure 5-3 (a) the points closer to the origin are the background pixels intensities and 

the points further from the origin are the foreground pixels. Figure 5-3 (b) shows that 

removal of the points that are very close to the origin does not change the slope of the 

regression function but as more and more of the points are removed and we get close to 

the pixels on the border of the foreground region then removal of each point changes the 

80 



slope considerably. In fact the border pixels are in the region of rapid changes in figure 5-

3 (b). 

According to this observation we believe that the reason that the variation of log2 ratios 

of the triplicate spots is increased by using the regression method is that this method is 

not robust to the misidentification of the pixels in the border of the foreground and 

background region so that removal or addition of each single pixel from or to the 

foreground affects the ratio a lot. 

The conventional method of calculating the ratios is more robust to the misidentification 

of data points as foreground or background due to the fact that the pixel intensities are 

averaged to obtain the foreground intensity. 

After a closer look, we found that the reason that the regression method is not robust is 

that the distribution of data points in the scatter plot is more like a cluster. In other words 

the range of variations of intensities of the foreground pixels is not wide enough to allow 

the robust estimate of the slope of the fitted line. 

As a result the regression method can not be used as a ratio estimation method and we are 

still left with two options in dealing with the background issue: 1) To subtract the 

background so that the "background bias" (as described before) is not introduced to the 

log ratios. This approach has the disadvantage that it increases the variability of the log 

ratios of the lower intensity spots. 2) Not to subtract the background and to remove the 

background bias in the normalization phase. We will compare the performance of both of 

these approaches later in this chapter. 

5.3.2 Histogram Inspection. 

As the first and most basic tool of data inspection, we looked at the histograms of signals 

from our microarray database. Histograms are especially useful for getting an overall idea 

of the center (i.e., the location) of the data, spread (i.e., the scale) of the data, and 

skewness of the data. We examined the histograms of the raw intensities, background 

intensities and background-subtracted intensities. 

Results: 

o The centers of the distributions of the red channel intensities were found to be 

either about the same or lower than the green channel. 
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o The average of background intensity of the red channel was found to be higher 
than green channel. 

o The center of the distribution of background-subtracted intensities was found to 
be lower for the red channel, 

o The standard deviation of the intensities of the red channel was found to be lower 
than the green channel. 

Figures 5-5 through 5-8 show the summary of the descriptive statistics of the intensities 
of the two channels. 
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Figure 5-4 Average of foreground spot intensities (without background subtraction) 
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Figure 5-5 Average of foreground spot intensities (after background subtraction) 
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Figure 5-6 Average of background intensities of spots 

o 

10000 
8000 
6000 
4000 
2000 

0 

1 r bf] fl 1 . I L i 1 n bf] L L I L I I L L L L 
II •1 11 I • 

I 
cn 
ro 
CD 

X 
oi 
ro cn 
ro 

I 
cn 
ro 
CD 

X 
oi 
ro 
CD 

X 
cn 
ro 
CD 

X 
cn 
ro 
CD 

X 
cn 

X 
cn 
ro 
CD CD 

i s i 

Slide Name 

s s 
ro co 

ICy3 foreground-background intensity s.d. 

I Cy3 foreground-background intensity s.d. 

Figure 5-7 S.d. of foreground spot intensity (after background subtraction) 
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Figure 5-8 Coefficient of variation of the background corrected intensities 

In order to compare the distributions of the ratios to the normal distribution, the quantile-

quantile plots (QQ-plots) were used. In these plots, quantiles of input samples are plotted 
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versus the quantiles of a standard normal distribution. If the plot is linear then the 

distribution of the input samples is normal. Figure 5-9 shows the QQ-plot of log2 ratios 

from one o f the slides in our database. This QQ-plot is typical o f all o f the datasets in our 

database. The plot shows that the distribution of the data is very close to normal except 

for very low and very high quantiles which correspond to the tails of the distribution. 

This assures us that the distribution of the log2 ratios can be confidently assumed to be 

normal (we wi l l make use of this fact later in this chapter). 
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Figure 5-9 A typical QQ-plot of log 2 ratios of the slides in our database 

Discussion: When starting with the same amount of D N A for both probes (which is the 

case for all the slides in our database), under idealized conditions, the distributions of the 

measured fluorescent intensities is expected to be the same for both channels, however 

this was not the case. 

Although the measures o f repeatability of data wi l l be discussed in detail later, but as a 

very simple measure of repeatability, the Pearson Correlation Coefficient of data from 

each pair of replicate H526 slides is used here to compare the repeatability o f the data to 

see i f there is a relationship between the closeness of distributions and the repeatability o f 

the data. The correlation coefficients are shown in figure 5-10. The correlation coefficient 

of the data from slide H526-5 with other data is the least followed by the correlation 
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coefficient of the data from slide H526-7 with other slides. A s figures 5-4 and 5-5 show, 

the difference between the average intensity of the two channels is the most for these two 

slides. 

This preliminary analysis shows that the closeness of distributions o f signals of the two 

channels affects the precision o f the data. 
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Figure 5-10 The correlation coefficient of the log 2 ratios from each pair of replicate slides 

A global linear normalization (i.e. global scaling of log ratios) that basically forces 

intensity distributions to have the same central tendency (arithmetic mean, geometric 

mean, median) by multiplying the ratios by a scaling factor is not able to improve the 

correlation because it only shifts the log ratios by a constant value, therefore has no effect 

on the correlation. 

5.3.3 Intensity Dependent Dye-Bias 

Perhaps the best way to show the intensity-dependent dye bias is through the M - A plot. 

In the so-called M - A plots the log ratio M - \og2(I/Ig) = log2(f) - logjflg) is plotted 

against the mean log intensities A =l/2( \og2(Ir) + \og2(Ig)) where Ir and Ig are the 

intensity o f the red and green channels respectively. Although M - A plots are basically 

only a 45° rotation of plot of Ir versus Ig with a subsequent scaling, they are usually 

85 



preferred to the Ir versus Ig plot. This is because, first, they reveal intensity-dependent 

patterns more clearly than the original plot because the patterns will be compared to the 

zero line (if ratio equals one then the log ratio is zero) and second, usually performing a 

regression follows the visual inspection of the M - A plot. In this way by regressing to the 

log of the geometric mean of the intensities 

(A = 1/2(log2(lr) + log 2(l g)) = log 2 (^ / r xIg ]), the error is attributed to both channels 

instead of just one of them. 

Due to the extremely large number of data points, the M - A plot may not show the trend 

in the data clearly as the accumulation of the points is not seen clearly at each intensity 

interval. So it will be useful to smooth the M - A plot by a moving mean or a moving 

median filter or a nonlinear scatter plot smoother like LOESS, which will be described in 

detail later, along the intensity axis so that the dependence of M on A is shown more 

clearly (figure 5-11). 

Some of the M - A plots clearly show a non-linear dependence of log ratios M on spot 

intensity A. For low intensities M is biased towards the negative values. Another point of 

interest in the plots is that the deviation around the smoothed curve is generally higher at 

lower intensities. 
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smoothed M 
M 

Figure 5-11 M-A plots of slides, the bright line shows the smoothed M 

5.3.4 Spatial Dye-Bias 

The representation of log ratios based on the corresponding spot location on the 

microarray slide is another type of plot which can be used to reveal the space-dependent 

dye bias. We refer to this plot as M - X Y plot. As in the case of M - A plots, we can plot the 

spatially smoothed M to see the general trend of log ratios across the location on the array 

(figure 5-12) 
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In most of the slides, the spatial heterogeneity in log ratios is observed. In particular the 

patterns of the smoothed M - X Y plot are interesting. 

Some times the patterns start at the edges of the slide and it seems that it is related to the 

way the hybridization solution is put on the surface of the slide. There are usually two 

methods used for putting the probes on the surface of the slide. Sometimes the material is 

put in the middle of the slide and then the slide cover is put over the surface. Some times 

the material is put close to one edge of the slide. From the spatial patterns we guess that 

for example slides MM-3 and MF-3 are among the first group and slides MM-1 and MF-

1 are among the second. 

The spatial heterogeneity was originally believed to be caused by the different print tips 

used in printing the targets on the slides. For example, look at the box plot of log ratios of 

each print-tip group (figure 5-13). Now we know that at least for our arrays the spatial 

heterogeneity is not caused by the print tips for two reasons. First the spatial patterns are 
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not block wise and they seem to be continuous. Second i f it was for the print tips then for 

all the arrays printed in the same print run, the patterns would be the same which is not 

the case. 
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Figure 5-13 B o x plot o f the log 2 ratios o f each print tip group 

Another important point is that there is the possibility that the spatial variability be 

caused by the true biological variations. We reject this possibility for two reasons; first, 

the print order of spots in our experiments did not follow a specific order so that groups 

of consecutive sequences were not all located close to each other, instead the location of 

sequences was random. Second, even i f the patterns were representing biological 

variations by chance, then the same pattern should have been seen in all replicates o f an 

experiment which is not the case. 

5.3.5 Quantification of the Dye-Bias Effects 

Visual inspection is an important first tool to detect the systematic biases but it is not 

useful by its own. To measure the degree of dependence of M (log2 ratio) on A (average 

log2 intenisty) and X-Y (spatial location), we need to have a measure to quantify these 
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effects. The importance of finding a measure that quantifies the strength of the intensity 

dependent and spatial biases is that by obtaining the bias before and after the 

normalization, we can get an estimate of how successful the normalization is in removing 

the bias. 

Assume that the log2 ratios are plotted versus the average log2 intensities ( M - A plot) or 

versus the spatial location ( M - X Y plot). The correlation of the log2 ratios of the spots and 

the smoothed log2 ratios (either versus the intensity or spatial location) can be used as a 

measure o f the intensity dependent or spatial bias. We refer to this measure as "Local 

correlation". If the log2 ratios are not correlated, a "Local correlation" close to zero is 

expected. 

For the intensity dependent bias, the moving averages o f the log2 ratios as a function of 

intensities are calculated by sliding a window of appropriate size on the log2 ratios. The 

average of the log2 ratios inside the window is then taken. The log2 ratio of the spot in the 

center of the window is excluded in averaging to assure that the calculated moving 

average for each spot is independent of the log2 ratio of that spot. The calculation of the 

moving average was implemented using an FIR filter with symmetric padding at the 

edges, i.e. input array values outside the bounds of the array, were computed by mirror-

reflecting the array across the array border. The filter coefficients were all one except for 

the center coefficient which is zero. The length of the window was 363. 

For the spatial dye bias, we used a two-dimensional moving average filter which again 

excludes the point itself in calculating the average of data points in its neighborhood. A 

two-dimensional FIR filter was used for implementing it. Size of the window was 33 

rows by 11 columns. 

Figure 5-14 shows the local correlation values calculated for the slides in our database. 
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Figure 5-14 Local correlation of the log2 ratios with the smoothed log2 ratios 

5.3.6 Non-Linearity in Log Ratios 

The linear model of measured intensity was described in the Measurement function 

section. As the simulations of Cui et al, [35], showed the linear measurement function is 

able to explain the non-linearity in the M - A plot. However, there are some facts observed 

in our data that do not match with the characteristics of the linear function. 

First, in some cases, the non-linearity not only exists in the M - A plot but also exists in the 

scatter plot of intensities of Red channel versus the intensities of the Green channel. 

Figure 5-15 shows an example of the non-linear trend in the scatter plot. For the linear 

measurement function to be true, the intensities of the two channels should be linearly 

related. 
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Figure 5-15 Plot of red channel intensities versus the green channel intensities that shows a nonlinear trend 

Second, even i f the nonlinearity in the scatter plot is quite low; the slope of the linear 

measurement function is dependent on the location of the spot on the array. To visualize 

this, we developed an interactive tool that allows us to select a region on the M - X Y plot 

and then plots the scatter plot of the corresponding spots intensities in a new window. In 

this way one can compare the scatter plots of different regions to find the source of 

heterogeneity in the log2 ratios. A sample slide is shown in figure 5-16. Three different 

regions are chosen and shown on the M - X Y plot and their corresponding scatter plots and 

the linear fit to the scatter plots are shown in figure 5-17. The slopes are quite different 

for three different regions. 
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Figure 5-17 Plot of red channel intensities versus the green channel intensities for the spots in the three 
regions of figure 5-16 
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Based on these observations, we believe that first; the slope of the linear model of 

measured intensities varies across the surface of the array and generates the spatial 

heterogeneity. Second, the slope of the linear function depends on the actual fluorescent 

signal as well. Based on these conclusions, the "shift transform" normalization approach 

(previously described) that is based on the linearity of the measurement function would 

not perform satisfactory in this case. 

5.3.7 Other Systematic Effects 

For removing the spatial heterogeneity in the microarray data in the M - X Y plots, we 

calculate the spatial trend (details in the methods section) and recalibrate the log2 ratios 

by subtracting the log2 of spatial trend from them. After removing the spatial trend we 

noticed another type of spatial pattern in the data. 

The pattern seen in one subgrid is repeated in all subgrids and is the same as the plate 

groups, (refer to section 4.4.1 for the definition of plate groups). 

As another diagnostic plot, we looked at the box-plot of log2 ratios from each group plate. 

The box plots show a systematic variation among different plate groups. The variation is 

systematic since when looking at all the samples of one plate group which are from 

different subgrids, we expect the median log2 ratio be near zero, i.e. positive and negative 

deviations should cancel out in each plate group but they do not. 

This might be because of the fact that different clones that are produced in different 

plates have experienced different physical conditions during the PCR (Polymerase Chain 

Reaction) that has affected the efficiency of the PCR and resulted in this kind of artifact. 

At this point, after inspecting the systematic variations in the data, we are ready to 

propose a frame-work for normalization that removes the observed biases from the data. 

These biases were intensity dependent dye bias, spatial dye bias, and plate effects. 

5.4 Proposed Framework for Normalization 

After inspecting the systematic biases introduced into the microarray data in our study 

and reviewing the normalization techniques currently used for normalizing the gene 

expression microarray data, we now describe our approach for normalizing the data. 
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According to the discussion of section 5.3.6 we decided to use a locally linear regression 

of log2 ratios as a function of log2 intensities as we found that the intensity dependent dye 

bias is nonlinear in nature. For the spatial dye bias we decided to use a since we observed 

that it only changes the slope of the linear model changes 

Our proposed strategy consists of three steps: 

1. Removal of spatial heterogeneity of ratios: first the ratios are spatially smoothed 

with a median filter to estimate the spatial trend. Then the residuals from the 

spatial trend estimate are computed, 

2. Removal of plate specific variations: the ratios are grouped based on the plate 

batches. The ratios of each group are then scaled by the median ratio of the group. 

3. Removal of intensity dependent dye bias by fitting a single LOESS curve to the 

results of the previous step and computing the residuals from the curve fit. 

We assume that all the biases are additive to the log2 ratios (multiplicative to the raw 

data). This assumption has been shown to perform well in the literature. 

Each of the steps stated above will be described in detail in the following sections. 

5.4.1 Methods 

As indicated earlier, the first step in choosing a proper normalization method is to choose 

a set of genes used for normalization. Our approach is to use all of the clones on the array 

for this purpose. The reason for choosing this approach is that we are dealing with 

experiments where the majority of clones are normal clones and only a small percentage 

of them are amplified or deleted. This is true especially because we measure the copy 

number of D N A sequences. Unlike the expression levels that are variable in different 

samples, the copy numbers are always fixed unless there is some kind of abnormality in 

the Genome. 

In this section we describe the details of each step of our normalization procedure. 

95 



5.4.1.1 Intensity Dependent Normalization 

According to the discussion of section 5.3.6 we decided to use a locally linear regression 

of log2 ratios as a function of log2 intensities as we found that the intensity dependent dye 

bias is nonlinear in nature. 

We use the robust scatter plot smoother "LOESS", [57], implemented in the statistics 

toolbox of Matlab, to perform a local A-dependent normalization: 

M = log 2(R/G)-> log 2(R/G)-c(A) 

where c(A) is the LOESS fit to the M - A plot. The LOESS scatter plot smoother performs 

robust locally linear fits. In particular, it will not be affected by a small percentage of 

differentially expressed genes, which will appear as outliers in the M - A plot. 

LOESS Description 

The name "LOESS" is derived from the term "locally weighted scatter plot smooth," as 

the method uses locally weighted linear regression to smooth data. The smoothing 

process is considered local because, like the moving average method, each smoothed 

value is determined by neighboring data points defined within the span. The process is 

weighted because a regression weight function is defined for the data points contained 

within the span. In addition to the regression weight function, you can use a robust 

weight function, which makes the process resistant to outliers. Finally, it uses a linear or a 

quadratic polynomial for regression. 

The local regression smoothing process follows these steps for each data point: 

1. Compute the regression weights for each data point in the span. The weights are 

given by the function shown below. 

f I |3V 
CO, = 1 

d(x) 

x is the predictor value associated with the response value to be smoothed, x, are 

the nearest neighbors of x as defined by the span, and dfx) is the distance along 

the abscissa from x to the most distant predictor value within the span. The 

weights have these characteristics: 

a. The data point to be smoothed has the largest weight and the most 

influence on the fit. 
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b. Data points outside the span have zero weight and no influence on the fit. 
2. A weighted linear least squares regression is performed. The regression uses a 

first or second degree polynomial (in this work only the first degree polynomial 
was used. 

3. The smoothed value is given by the weighted regression at the predictor value of 
interest. 

If the smoothing calculation involves the same number of neighboring data points on 
either side of the smoothed data point, the weight function is symmetric. However, if 
the number of neighboring points is not symmetric about the smoothed data point, 
then the weight function is not symmetric, therefore the span never changes. 

Robust Smoothing Procedure 

If the data contains outliers, the smoothed values can become distorted, and not reflect 
the behavior of the bulk of the neighboring data points. To overcome this problem, we 
can smooth the data using a robust procedure that is not influenced by a small fraction of 
outliers. The robust LOESS method includes an additional calculation of robust weights, 
which is resistant to outliers. The robust smoothing procedure follows these steps: 

1. Calculate the residuals from the smoothing procedure described in the previous 
section;. 

2. Compute the robust weights for each data point in the span. The weights are given 
by the function shown below. 

n is the residual of the zth data point produced by the regression smoothing 
procedure, and MAD is the median absolute deviation of the residuals: 

The median absolute deviation is a measure of how much the residuals are spread 
out. If r, is small compared to 6MAD, then the robust weight is close to 1. If r, is 
greater than 6MAD, the robust weight is 0 and the associated data point is 
excluded from the smooth calculation. 

MAD = median(\r\ 
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3. Smooth the data again using the robust weights. Calculate the residuals from the 

smoothing procedure. 

4. Repeat the previous two steps for a total of five iterations. [49] 

5.4.1.2 About Window Size of LOESS 

The span in the LOESS algorithm is a user-defined parameter and is the fraction of the 

data used for smoothing at each point; the larger the f value, the smoother the fit. 

The span should be large enough to capture all the nonlinearity in the log2 ratios, at the 

same time it should be small enough to reduce the risk of over smoothing the data. 

In our study, when all of the data from one slide (52272 spots) is used in LOESS 

smoothing, a span of more 10% means that for each data point more than 5000 

neighboring data points participate in the local regression. The neighborhood size in this 

case is big enough to assume that spots with significant copy number changes won't 

affect the regression, especially since a robust version of LOESS is being used. 

To further observe the effect of the span size on the normalized log2 ratios, the LOESS 

smoothing was performed with three different span sizes, 10%, 25% and 40% for slides 

H526-1 to H526-8. As you will see in the evaluations section, the choice of the span size 

does not have a significant effect on the smoothed curve. So a span size of 10% was 

chosen for normalizing the data using this method. 

5.4.1.3 Spatial Normalization 

Based on the observations described in section 5.3.6, the spatial dye bias is caused by 

changes in the slope of the linear function. Accordingly, we assume that the spatial bias is 

multiplicative and can be removed by estimating the bias at each spot and divide the ratio 

by the estimated bias. The spatial trend is estimated by computing, for each spot, the 

median ratio over its spatial neighborhood. 

The size of the smoothing element in the spatial median filtering is an important choice to 

make. It should be small enough to be able to capture the general trend in the ratios and it 

should be large enough to reduce the risk of over fitting. We wanted to choose a window 

size that assures us that there are enough spots in the window that the outliers can not 

shift the median value and by outliers we mean both biological outliers and artifacts. 
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Since each consecutive three rows are replicates in our arrays, we also needed to choose 

an asymmetrical window which is longer in the columns than in the rows to make sure 

that the replicates are not being over emphasized. 

In addition, we wanted to remove the "general" trend only, so that after removing it, the 

plate effects are still there. This is because we believe that plate normalization performs 

better for removing the plate effects. If the window size is chosen so small that enables 

the spatial normalization to remove the plate effects, there is a chance that some of the 

true biological variations are also removed by the normalization. But i f the window size 

is bigger, the remaining plate effects after normalization can be removed by the plate 

normalization as will be described later. The plate normalization uses all the spots that 

are printed from the same plate group for normalization, so chances that the plate 

normalization removes the true biological variations are smaller. 

We chose window size of 11 x 11 of "unique" spots which when taking the replications 

into account, corresponds to a window of 11 x 3 = 33 rows and 11 columns. We found the 

mentioned element size suited to pick up global trend while not being skewed by the 

altered clones. 

A median filter was chosen rather than a mean filter so that amplified or deleted clones 

being outliers in each group of spots (pixels), would not affect the spatial trend estimates. 

Hence, altered clones will remain altered after this step as long as they are sufficiently 

isolated spatially, with just the spatial trend element of their values removed. 

The median filtering is performed with symmetric padding at the edges, i.e. values 

outside the bounds of the input array are computed by mirror-reflecting the array across 

the array border. 

Before performing median filtering, we filter the spots from the "bad" plates (as 

explained in the previous chapter) and interpolate the surface at the filtered points using 

bilinear interpolation. 

After finding the spatial trend, the ratios are rescaled by the median filtered ratios i.e. 

each spot's ratio is divided by the median ratio of the spots in its neighborhood. 

As stated earlier, the basic assumption for this step of normalization is that there is no 

predetermined order of spotting the clones with similar sequences or consecutive 

sequences in the same neighborhood. 

99 



5.4.1.4 Plate Effects 

Assuming that the average of log2 ratios of spots from each plate group should be zero, 

we find the median log2 ratio of each plate group and subtract it from all the log2 ratios of 

the group so that the median log2 ratio of all plate groups equals zero after the 

normalization. 

The assumption of median log2 ratio of zero for each plate can be violated i f the copy 

numbers of the clones on a plate biologically differ between the test and the control 

samples. We do not believe this is the case in the experiments our studies here. 

Before doing this, we filtered out the spots from those plate groups that have means that 

are "significantly" different from the other plate groups. 

5.5 Evaluation of the Performance of the Proposed Normalization 

Strategy 

To evaluate the performance of the proposed normalization strategy, we compare the 

accuracy (closeness of the measurements to the truth) and precision (closeness of the 

replicate measurements to each other) of the data obtained by different normalization 

methods for a given number of replicates. 

There are two types of errors introduced to every measurement, systematic and random. 

Random error is a measure of uncertainty in the measurement and is therefore central to 

statistical inference. Random errors reflect inevitable uncertainties in all scientific 

measurements, making statistical procedures necessary. Systematic errors are biases; they 

result in a constant tendency to over or underestimate true values, thereby decreasing 

accuracy [29]. 

Accuracy depends on our ability to remove the systematic error contained in microarray 

data. For self-self experiments, the data points should center around the zero line on an 

M - A plot and this can be used for the assessment of the accuracy of normalized data. In 

general, for non-self-self data, it is not known around what line the data points should 

center. The precision of normalized data can be assessed by the data consistency; this is 

represented by the difference of normalized data from replicate experiments. The 

comparison of this difference between different normalization techniques applied to the 
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same data sets can answer the question of which normalization approach works better 

[41]. 

In gene expression arrays, the assumption that gene expression values obtained from 

biological replicate experiments are the same (provided that there is no error in the 

experiment) is not valid; however this assumption is true for C G H microarrays. 

So, we perform our proposed stepwise normalization and some other normalization 

schemes (including the state-of-the-art techniques and more basic ones) and compare the 

consistency of the data obtained by performing each normalization method on the data 

from each replicate. 

We would like to state that at the time of performing this study the state of the art in 

normalizing the two-channel gene-expression microarray data was print-tip LOESS 

normalization [20]. The normalization method used to normalize the data in our lab was 

global normalization. 

As for the different methods, we started with simple one-step normalization methods and 

added to the complexity gradually. The methods that are compared are summarized in 

table 5-2. (In the following figures each of these methods will be referred to by its index 

number in table 5-2.) 

In the following sections the detailed description of the four sets of experiments, which 

were done to assess the performance of the normalization, are presented. In this section, 

experiments are described and the quantities that were measured are introduced and their 

values are reported through out figures and tables. The results of each set of experiments 

will be discussed in section 5.6. 
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Index Method Name Description Performed on 

1 No normalization 
ratio of background 
subtracted intenisties 

2 Global mean scaling ratios scaled by their mean 

3 Print tip mean scaling 
ratios of each print-tip group scaled by 
the mean ratio of that group 

4 Global loess, span=10% 

5 Global loess, span=25% 

6 Global loess, span=40% 

7 Print tip loess, span=40% 
loess performed on the ratios from each 
print-tip group 

8 Spatial previuosly described 

9 Spatial + Plate spatial followed by plate normalization 

10 Loess + Spatial loess followed by spatial 

11 Loess + Spatial + Plate 

12 Spatial + Plate + Loess 

13 No Normalization 

ratio of non-background 
subtracted intenisties 

14 Global mean 

15 Print tip mean 

16 Global loess, span=10% 

17 Spatial 

18 Loess + Spatial 

19 Loess + Spatial + Plate 

Table 5-2 Summary of methods that are evaluated 
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5.5.1 Self-Self Experiments 

The self-self experiments (slides MM-1 through MM-4) were used to study the effect of 

normalization on removing the bias from the data and increasing the accuracy. 

In these experiments the samples to be compared are both from the same male genomic 

D N A pool and are labeled separately with cy3 and cy5 dyes. So the copy number of all 

the sequences is expected to be the same in both samples resulting in zero value for the 

log2 ratio of intensities. This is a special case in which we know what exactly the log2 

ratios should be. 

The effects of normalization in removing the bias were examined by calculating the 

following measures on the data normalized by each of the normalization methods: 

o Standard deviation (s.d.) of the log2 ratios for each slide 

o Correlation of log2 ratios and the smoothed log2 ratios as a function of the 

intensities (intensity dependent "local correlation") 

o Correlation of log2 ratios and the smoothed log2 ratios as a function of the spatial 

location (spatial "local correlation") 

Figure 5-18 shows the standard deviation of log2 ratios of each of the M M slides. Ten 

percent of the spots with the lowest average intensities were extracted and the standard 

devotions were calculated again. The new s.d. values are plotted in the same figure with a 

darker color. 

Figure 5-19 shows the correlation of log2 ratios and log2 ratios smoothed against their 

corresponding spot's average intensities for each slide and for each method. Figure 5-20 

compares the local correlation of log2 ratios and log2 ratios smoothed against their spatial 

location. 
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Figure 5-18 S.d. of log2 ratios after normalization for slides MM-1 through MM-4, (horizontal axis 
represents the method number (refer to table 5-2)) 
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Figure 5-20 Local correlation of log2 ratios with the log2 ratios smoothed versus spatial location after each 
normalization method (horizontal axis represents the method number (refer to table 5-2)) 

5.5.2 Replicate Experiments 

In order to see how the normalization affects the consistency of the data, 8 biological 

replicate experiments were performed (biological replicates in the sense that the 

hybridization involves DNA from different extractions, i.e. from different samples of 

cells from a particular cell line, this design involves a higher degree of variation in 

measurements compared to technical replicates who involve DNA from the same 

extraction). 

The biological replication can not be used for gene expression microarrays as the actual 

expression values of genes are different in different biological samples. But due to the 

106 



different nature of array CGH technology and the fact that it measures changes in the 

DNA copy number, the same results are always expected from biological replicates. 

We used three different measures of repeatability of data which are as follows: 

1. The Standard deviations of the log2 ratios of the same spot across the 8 replicate 

slides were calculated and averaged across all the spots for each normalization method. 

According to table 5-3, My , i=l,..,8 and j=l,..,52272 (52272 is the total number of spots 

in one slide.), refers to the log2 ratio of spot j in slide i. Sj is the s.d. of My for i=l,..,8. 

The average of the standard deviations will then be: 

52272 / 
g S , /52272 

The results are shown in figure 5-21. 

Spot 1 Spot 2 Spot 

52272 

Replicate slide 1 M u M i , 2 ... Mi ,52272 

Replicate slide 2 M 2 , i JVJ.2,2 M2,52272 

... 
Replicate slide 8 M 8 , i M 8 , 2 Mg>52272 

s.d. of log2 ratios Si s 2 S52272 

Table 5-3 Calculating the average of s.d. of log2 ratios 
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Figure 5-21Average of the standard deviations of each spot's log2 ratio across replicate slides (horizontal 
axis represents the method number (refer to table 5-2)) 

2. Pearson's Correlation Coefficient which represents the covariance of 

normalized variables. Each variable is normalized by subtracting the variable mean and 

dividing by its standard deviation. When there is a linear relationship between tJie two 

variables, the correlation will have a value of 1, indicating perfectly matched order of the 

two variables. A value of -1 indicates a perfect negative covariation. A correlation value 

of 0 indicates a completely random relationship between the two variables. 

The correlation coefficient was calculated for the data from each pair of the replicate 

slides, thus 28 different correlations were calculated for 28 pairs of slides. The average of 

the 28 correlation coefficients for each single method was calculated. The results are 

shown in figure 5-22. 

3. Intraclass Correlation Coefficient (ICC): This is an ANOVA-based type of 

correlation. It measures the relative homogeneity within groups in ratio to the total 

variation: 
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where n is the number of cases in each category of the measured variable, MSbetween groups 

is the estimate of the between group variance, and MSwuhin groups is the estimate of the 

within groups variance. These estimates are taken from the A N O V A tables. 

The maximum value of the intraclass correlation coefficient is 1.0, but its maximum 

negative value is (-l/(n-l)). Intraclass correlation coefficient is large and positive when 

there is no variation within the groups, but the group means differ. It will be at its largest 

negative value when group means are the same but there is great variation within groups. 

A negative intraclass correlation occurs when between-group variation is less than 

within-group variation [50]. 

ICC was shown to be useful for the assessment of technical and biological variations in 

microarray experiments in [54]. 

The ICC was calculated for the set of data obtained from 8 replicate slides and 

normalized using each of the methods described above. The results are shown in figure 5-

22. 

I ice • Average correlation coefficient 

Method Number 

Figure 5-22 ICC and Average correlation coefficient of replicate slides (horizontal axis represents the 
method number (refer to table 5-2)) 
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5.5.3 Male-Female Hybridizations 

As another experiment in evaluating the effect of normalization on the microarray data, 

two experiments were conducted with male genomic DNA as one sample and female 

genomic DNA as the other sample. The first 22 chromosomes are in pairs for both males 

and females and as for the sex chromosomes, females have two X chromosomes and 

males have an X and a Y chromosome. This experiment simulated a single copy deletion 

by hybridizing normal male versus normal female DNA, generating a 1:2 ratio of X 

chromosomes and 2:2 ratio of chromosomes 1 to 22. So this experiment forms another 

case that the log2 ratios are known prior to the experiment. 

The normalization methods described above were applied to the data from these two 

experiments and a t-test was performed on the log2 ratios of two groups of clones. The 

first group consists of clones from chromosomes 1 through 22 and the second group 

consists of clones from chromosome X. 

For the t-test it is assumed that the two samples are from a normal distribution and the t-

test is performed to test whether two samples could have the same mean when the 

standard deviations are unknown but assumed equal. The t-statistic is defined as: 

where s is the pooled sample standard deviation and n and m are the numbers of 

observations in the x and y samples. 

The value of the T statistic is shown in figure 5-23 for both slides and for the results of 

each normalization method. 

T = x-y 
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Figure 5-23 Values of T-statistic after each normalization method for slides MF-1 and MF-2 (for MF-2, the 
T-statistics are multiplied by -1 for comparison purposes) (horizontal axis represents the method number 

(refer to table 5-2)) 

5.5.4 Titration Experiments 

Tumors contain a number of normal cells. Contamination from normal cells may affect 

the ability to detect copy number aberrations. In case of an amplification, contamination 

from normal cells (DNA sequences with copy numbers of 2) makes the average copy 

number of the sequences in the test sample smaller than what it really is. In case of a 

deletion, contamination from normal cells increases the average number of copies of 

D N A sequences in the test sample. In this experiment, we show that normalizing the spot 

data can allow us to handle more contamination in the tumor sample. 

We used the data from a titration experiment that compares X chromosome loci (clones) 

to autosomal (non-sex) loci by comparing male and female DNA. A single copy deletion 

was simulated by hybridizing normal male versus normal female DNA, generating a 1:2 

ratio of X chromosomes. Contamination from normal cells was then simulated by 

spiking varying amounts of female D N A into the male D N A sample (slides T1-T5). 

Single copy amplifications were modeled by comparing a 50/50 mixture of male and 

female D N A against a male D N A reference. In this model contamination from normal 
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cell was simulated by spiking varying amounts, of female D N A into the male/female 

D N A mixture (Slides T-6 to T-10). 

For these slides only the results of normalization with our proposed stepwise 

normalization (spatial + plate + LOESS normalization on the background subtracted data) 

were used. T-test was performed on two groups of data from each slide. The first group 

consists of clones from chromosomes 1 through 22 and the second group consists of 

clones from chromosome X . T-values are shown in Figure 5-24. 

The purpose of this experiment was mainly to see how the normalization affects the 

single copy number amplification or deletion with some degree of contamination which 

makes the real copy number ratio even smaller. The main concern in this experiment was 

to find out whether or not normalization removes some of the biological variations i.e. 

whether or not it over normalizes the data. 
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Figure 5-24 T-statistic values before and after normalization for the titration experiment slides (T1-T10) 

5.6 Results and Discussions 

A normalization scheme is expected to remove the systematic variations in the data and 

leave the true biological variations unchanged. So in evaluating the performance of the 

normalization methods, both of these issues should be considered. 

In this section the results from the four sets of experiments that were performed and 

described in sections 5.5.1 through 5.5.4 will be discussed. 
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1. The self-self experiments were used as a model to investigate the accuracy of the 

normalized data. The standard deviation of the log2 ratios was used as a measure of 

accuracy. A lower standard deviation for the normalized data shows the better 

performance of the normalization in removing the bias. 

As figure 5-18 shows, among the normalization methods that are performed on the 

ratios of background subtracted intensities, the three step normalization results in 

lowest s.d. in all four slides. Also, among the normalization methods that are 

performed on the ratios of non-background subtracted intensities, the three step 

proposed normalization scheme results in lowest s.d. 

Now, let us compare the results of normalization methods that are performed on ratios 

of background-subtracted intensities and non-background subtracted intensities. It is 

observed that ratios of non-background subtracted intensities result in quite high s.d. 

values i f they are not normalized or i f only spatial normalization is performed. This 

result conforms to our observations of diagnostic plots of the ratios. If background 

subtraction is not performed on the intensities before taking the ratios, the ratios of 

red to green intensities are always higher for lower intensities. This is due to the 

inherent lower intensity of the cy5 channel intensities than the cy3 channel which is 

more pronounced for lower intensity spots. However, i f LOESS normalization is 

performed on the data, the standard deviations become lower. This is because the 

curvature in the M - A plot caused by the "background bias" (for the definition, refer to 

section 5.3.1) is removed by the LOESS normalization. In fact, when the three-step 

proposed normalization is performed on the ratios of non-background subtracted 

intensities, it has better performance, in terms of reducing the s.d. of log2 ratios, than 

when it is applied to the ratios of background-subtracted intensities. 

We suspect that this is not because some part of the variation of the log2 ratios, which 

we measure in form of the s.d., is not systematic; but is because of random variations 

of ratios. Background subtraction adds to the random variation of the intensities of the 

spots because of the uncertainties in estimating the background intensity. At lower 

spot intensities, this added noise becomes significant when compared to the intensity 

of the spot. As a result i f background subtraction is not performed and the bias that it 

114 



introduces into the data is removed by the LOESS normalization, then the s.d. of 

ratios will decrease. 

To test this idea, 10% of the lowest intensity spots were removed and standard 

deviations were calculated again for these four slides. As figure 5-18 shows not only 

the standard deviation of the new set of spots is lower than the original set, but also 

the s.d. of the ratios after normalization is now comparable for both cases of 

background subtracted and non-background subtracted intensities. 

This suggests that the reduction of standard deviation of log2 ratios may not be the 

best indicator of reduction of the "systematic" variations. The other two measures, 

intensity dependent "Local correlation" and spatial "Local correlation", are more 

appropriate for the purpose of measuring the intensity dependent and spatial biases. 

Figure 5-19 compares the intensity dependent bias obtained after each normalization 

method is performed on the data. From this figure it is observed that LOESS 

normalization is most effective in removing the intensity dependent bias when it is 

performed on ratios of background subtracted intensities (compare columns 11 and 19 

in all four sub plots). 

As figures 5-19 and 5-20 show the intensity dependent bias becomes smallest after 

global LOESS or print-tip LOESS normalization is performed on the data. Spatial 

normalization reduces the intensity dependency only slightly. Spatial normalization 

followed by LOESS is almost as effective as LOESS performed alone but when the 

LOESS normalization is followed by spatial normalization the local correlation is 

increased relative to when LOESS is performed alone or after spatial normalization. 

The same thing happens when spatial bias is measured. Spatial normalization has the 

best performance either alone or when performed after LOESS normalization but i f it 

is followed by LOESS normalization, it is less effective in removing the spatial bias. 

This is an important result and indicates that i f the LOESS normalization and spatial 

normalization are performed iteratively, their performance might improve in terms of 

reducing the bias. 

2. To compare the effects of normalization on the precision (repeatability) of 

normalized data, 8 replicate slides were used. Three different measures of 
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repeatability, s.d., Pearson correlation, and intraclass correlation were used to 

compare the precisions. 

The standard deviation becomes smallest after the three-step proposed normalization 

scheme is performed on the data. When the proposed normalization is performed on 

the ratios of non-background subtracted data, its performance is slightly better than 

when it is performed on ratios of background subtracted intensities. 

The ICC and Pearson correlation coefficient conform to each other in almost all the 

methods except for non-normalized ratio. For methods 1 and 13, the ICC is quite low 

while the correlation coefficient is high. The reason is that without normalization, the 

averages of log ratios of different replicate slides are different. Correlation coefficient 

is not affected by the averages of the data; However ICC gets quite low in this case, 

because of the fact that between group variation is lower than within group variation. 

Both ICC and Correlation coefficient are highest after the three-step normalization 

method. This applied for both the ratios of non-background subtracted intensities and 

ratios of background subtracted intensities. ICC and Correlation coefficient are 

slightly higher when background subtraction is not performed on intensities. 

3. In the third study, the T-statistic values were calculated for the results of each 

normalization method for slides MF-1 and MF-2 and were compared to determine 

which method results in best separation of clones with no copy number change and 

those with a single copy number change (chromosome X clones). A larger value for 

the T-statistic shows higher separation between the means of the two samples. 

For the data from slide MF-1, the largest T-statistic is obtained after spatial 

normalization followed by plate and LOESS normalizations are performed on ratios 

of background subtracted intensities. For this slide normalization methods performed 

on ratios of non-background subtracted intensity are not as effective. Especially if 

LOESS normalization is not performed on the ratios of non-background subtracted 

intensities, the T-statistic is even lower than that of non-normalized ratios of 

background subtracted intensities. 

For MF-2 data, normalization methods do not significantly change the value of the T-

statistic. The three-step normalization performed on the ratio of non-background 
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subtracted intensities slightly increases the T-statistic. As figure 5-14 shows the 

intensity dependent bias and the spatial bias are both quite low for this slide compared 

to the other slides (below 15%). This explains the fact that the T-statistic values do 

not change after normalization. Also the average of the background intensities for this 

slide is quite low compared to the other slides (see figure 5-6). This explains why 

performing and not performing background subtraction doesn't have a significant 

effect on the T-statistic of the ratios. 

It should be noted that according to the results of previous experiments, the 

performances of methods 11 and 12 from table 5-2, which are "LOESS + spatial + 

plate" and "spatial + plate + LOESS" respectively, were "about" the same. In other 

words, the order of performing the spatial and intensity dependent normalizations did 

not affect the results. 

4. The purpose of the last experiment (Titration experiment) was to find out how the 

normalization affects the ratio of single copy number changes with some degree of 

contamination of reference sample into the test sample. The normalization method 

was the three-step normalization performed on the ratios of background-subtracted 

intensities (method number 12 in table 5-2). 

The T-statistic values are higher after normalization in all cases which assures us that 

the separation of the groups is increased and the small copy number changes are 

maintained and even magnified. (As slides TI to T5 simulate a single copy number 

deletion the T-statistics are negative.) 

One significant result of this experiment is that the proposed normalization scheme 

enables us to deal with contamination of reference sample into the test sample by 

increasing the separation between the distributions of the normal and abnormal 

clones. In figure 5-24, for example, the T-statistic corresponding to slide T-9, which 

simulates a single copy amplification with 50% contamination, after normalization 

becomes quite close to the T-statistic of the slide T-6 that simulates a case with no 

contamination. 
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In figures 5-25 through 5-28, chromosome plots of the data from two of the replicate 

H526 slides, generated by SeeGH software [19], are shown. Chromosome plots 

show base two logarithm of ratios for each of the target D N A clones, as a function of 

the location of the clone in the chromosome. Figures 5-25 and 5-26 show the 

chromosome plots for chromosomes 1 and 2 of slide H526-5 respectively. Figures 5-

27 and 5-28 show the chromosome plots for chromosomes 1 and 2 of slide H526-1 

respectively. For each slide and each chromosome the log2 ratios are shown after 

global normalization and after three-step normalization. 

The variability of log2 ratios from slide H526-5 is much higher than that of slide 

H526-1. In fact, data from slide H526-5 were the least reproducible data according to 

the Pearson correlation coefficients of each pair of H526 slides. In contrast, data from 

slide H526-1 were among the most reproducible datasets (refer to figure 5-10). 

For the H526 cell line, the regions of copy number change are known [17]. The 

region of amplification on chromosome one and the micro-amplification on 

chromosome 2 are marked on the plots. 

As the figures show, for data from slide H526-5 (low quality data), the normalization 

reduces the unwanted variations so that after the three-step normalization, due to the 

reduced variations, the altered regions are clearer. For data from slide H526-1 (high 

quality data), where the variation of the log2 ratios is quite low even before 

normalization, the important point to note is that normalization does not remove the 

true biological variations. 
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Figure 5-25 Plot of log2 ratios of clones from chromosome 1 versus their location across the chromosome, 
left: after global normalization, right: after the three-step proposed normalization, data from slide H526-5 
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Figure 5-26 Plot of log2 ratios of clones from chromosome 2 versus their location across the chromosome, 
left: after global normalization, right: after the three-step proposed normalization, data from slide H526-5 
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Figure 5-27 Plot of log 2 ratios of clones from chromosome 1 versus their location across the chromosome, 
left: after global normalization, right: after the three-step proposed normalization, data from slide H526-1. 
The three vertical lines for each plot are scale bars indicating of log 2 ratios of -1, 0, and 1 from left to right. 

121 



Mil 
i ; • • 
Hn 
• i * i 

Iii! 
i tf 1 
ill! 
IN! 
1!!! 
• i l l 
I I I i 
I I I ' 

l i l t 

i i i ! 
! I:: 
j i t ; 
Mis 
MM 

" I . \ 

i l l ! 

$112 

20123 2a 13 
Tnii 1 23112 20113 

2q31 1 20312 20313 2032.1 20322 2q323 
20.3J.1 
20333 

10300341 
-1 1 

103003^ nnrmaliTQrl now 
Multiple Alignment for Chromosme 2 

c c 

Figure 5-28 Plot of log2 ratios of clones from chromosome 2 versus their location across the chromosome, 
left: after global normalization, right: after the three-step proposed normalization, data from slide H526-1 

5.7 Conclusions and Suggested Future Directions 

Putting the results of the previous experiments all together, performing the proposed 

three step normalization increases the accuracy and precision of microarray data. It has 

better performance in terms of increasing the accuracy and precision of data than the 

print-tip L O E S S normalization which is the most widely used normalization method for 

gene expression data and it of course has much better performance than the global 

normalization approach that is currently being used in our lab for normalizing the array-

C G H data. 
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The proposed method was also tested for preserving the biological information while 

removing the systematic variations through a titration experiment and it was observed 

that even for copy number changes as low as single copy deletions with different degrees 

of contamination by normal DNA, the biological information are preserved (proven by 

the increased power of the T-test). This fact is the main difference of microarray C G H 

performance requirement compared to gene expression microarrays. As previously 

discussed, for gene expression microarrays, usually only genes with expression changes 

more than two fold are considered as differentially expressed. 

The normalization methods were performed on the ratios of non-background subtracted 

intensities as well as the ratios of background subtracted intensities. It was observed that 

subtracting the background removes the "background bias", while not subtracting the 

background decreases the random variation especially for the lower intensity spots. The 

data from one slide of the male-female experiments which served as a model of single 

copy deletion showed that not subtracting the background may result in lower t-statistic 

values meaning the separation between the two group of normal and deleted clones has 

been decreased. Although the result is not quite conclusive as there are only two slides in 

this experiment but we believe that not subtracting the background may result in 

reduction of accuracy of the microarray data and suggest that further experiments be 

performed in this area. 

Throughout this study, we found that the data from self-self experiments are correlated 

even after normalization. For self-self experiments, which simulate a case of no copy 

number change, the variability of the ratios is due to systematic or random errors. After 

the normalization, assuming that all the systematic errors are removed, the remaining 

variations are due to random error. Therefore the data from each self-self experiment is 

expected to be uncorrelated with the data from the other self-self experiments. However 

this was not the case. We smoothed the log2 ratios from slides MM-1 through M M - 4 (the 

self-self experiments) as a function of the chromosomal location of the clones by a 

moving average function (with a window size of 64). When we compared the plots of the 

data before and after normalization, we observed that some of the correlations were 

removed; however, for some of the chromosomes the patterns of the normalized log2 
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ratios were still quite similar. Figure 5-29 shows two of the chromosome plots that show 

a strong correlation even after normalization. 
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Figure 5-29 Log 2 ratios of clones plotted versus the chromosomal location shown for two chromosomes, 
upper: chromosome 11, lower: chromosome 19 

This correlation indicates a systematic error that is dependent on the chromosomal 

location of the clones. We believe that more experiments need to be performed to further 

study this type of systematic error. 

Throughout this study, we also observed that the G C content (the percent of G or C 

nucleotide bases in the sequence) of the target clone of each spot might have a systematic 
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effect on the intensities and the ratio corresponding to that clone. Patterns similar to the 

GC content of the clones plotted versus genomic order, are sometimes observed in the 

intensities and/or ratios corresponding to those clones. This might be due to the fact that 

the labeling of the sample D N A is done with dyes that are attached to the C nucleotide 

bases. We believe that this might be a source of systematic error and more investigation 

needs to be done in this area to find the source of this bias and ways to handle it. As an 

example, Figure 5-30 shows the log2 ratios and intensity of the clones of chromosome 7 

plotted versus the genomic order along with the GC content of the clones. 

o 

Base pairs of chromosome 7 x 107 

Figure 5-30 Log 2 ratios and intensity of the clones of chromosome 7 plotted versus the genomic order 
along with the GC content of the clones 

One approach to a more complete study of normalization methods for microarray data is 

to perform the spatial and intensity dependent normalizations iteratively and to evaluate 

its performance in terms of accuracy and precision of data. 
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Finding better ways of dealing with the problem of background correction and its effect 

on the lower intensity spots will have a large impact on quality of microarray data. One 

approach will be to consider subtracting the background from the intensity of higher 

intensity spots and not subtracting the background for lower intensity spots. 

Another open area for future work is to consider the effects of competitive hybridization 

in introducing bias into ratio measurements. One possible experiment for this study might 

be to design an array with the same target material but different target concentrations for 

the spots and investigate the effects of the target concentrations on the ratio of spots. 
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CHAPTER 6 CONCLUSIONS 

This research focused on improving the "image analysis" step of array-CGH experiments. 

Specifically, two issues were addressed in this study: First, identifying the spots for 

which the detectable characteristics indicate that data from those locations are very likely 

to be unreliable, and second, normalization of the spot data to remove as much systematic 

variability (both experimental and device) as possible. These two tasks are both done 

with the aim of reducing the variability in the log ratios and increasing the validity of the 

results. 

Regarding the first issue, filtering out the low quality spots, we aimed to identify the low 

quality spots in a more robust and efficient way than the current procedure. This was 

accomplished by the design of a binary decision tree with a threshold operator to identify 

the saturated spots, and two linear discriminant functions to identify the spots with 

irregular shapes and spots with circular shapes but defected in some other way. 

The performance of the classifier in identifying the low quality spots was evaluated in an 

experiment by applying the classifier to the data from four microarray images and 

examining the reduction in variation that results from excluding low quality spots. 

As part of this experiment, we demonstrated that a large part (in this study as high as 

10%) of the variability of ratio measurements is due to low quality image spots. The 

binary decision tree was able to reduce the variability significantly by filtering out the 

low quality spots. 

Use of our proposed method for filtering out low quality spots instead of filtering out the 

spots based on the variation of replicate spots on a slide (which is the current practice) 
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has a significant practical advantage. Using the new method enables us to reduce the 

number of replicate spots per target clone to two instead of three and this in turn enables 

the SMRT array clones that currently are spotted in triplicate across two slides to be fitted 

onto a single slide. This will make the array-CGH experiment significantly (almost a 

factor of two) more cost, material and time effective. We compared the results of 

triplicate filtering method and the new method in terms of reducing measurement 

variance and demonstrated that the two methods have comparable performances while 

the new method doesn't require the triplicates for quality filtering. This assures us that 

the SMRT array clones can be safely fitted into one slide without loss of measurement 

accuracy. 

The second issue that was addressed in this research was the normalization of data. We 

investigated the systematic variations in the data in our microarray images. Based on our 

experimental observations of the systematic variations, we proposed a three-step 

normalization scheme to remove those systematic variations. We conducted four sets of 

experiments and developed a methodology to evaluate the performance of the 

normalization procedures. We showed that performing the proposed three-step 

normalization increases the accuracy and precision of microarray data. Our proposed 

method has better performance in terms of increasing the accuracy and precision of data 

than the global normalization approach, which is the approach currently taken in our lab 

for normalizing the array-CGH data. Our proposed scheme has also better performance 

than the print-tip LOESS normalization [38]. which is the most widely accepted and used 

normalization scheme for gene expression data, however to the best of our knowledge, its 

effect hasn't been evaluated on the C G H data previously. 

The main difference in the performance requirement of C G H microarrays versus gene 

expression microarrays is the fact that for gene expression microarrays, genes with 

expression changes less than two fold are not considered differentially expressed and 

therefore are not of interest; however for C G H microarrays, detection of single copy 

number changes in contaminated samples that might be quite a bit smaller than two fold 

are of high interest. This requires the level of systematic variation removal to be 

significantly more stringent. The proposed method was tested such that it preserved the 

biological information while removing the systematic variations through a series of 
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titration experiments. It was observed that even for copy number changes as low as single 

copy deletions with varying degrees of contamination by normal D N A , the biological 

information could be preserved (demonstrated by the increased power of the T-test results 

from our normalization experiments). 

6.1 Suggested Future Directions 

With regards to the first study of this thesis, removal of low quality spots, it will be useful 

to track the reason for identifying a spot as of low quality to explain the cause of the low 

quality of the spots. This information can help in controlling the quality of microarray 

manufacturing and hybridization processes, and avoiding the artifacts by providing the 

experimenter with feedback. 

With regards to the second study, normalization of spot data, our work strongly suggests 

that there would be significant benefit to a more complete study of normalization 

methods for microarray data such as to perform the spatial and intensity dependent 

normalizations iteratively and to evaluate the performance in terms of accuracy and 

precision of the resultant data. 

Another useful study would involve developing improved methods of dealing with the 

problem of background correction and its effects on the lower intensity spots would have 

a large impact on the quality of microarray data. One approach to be considered for future 

work would be trying the subtraction of the background from the intensity of higher 

intensity spots and not subtracting the background for lower intensity spots. 

Another open area for future work is to consider the role of competitive hybridization in 

introducing bias into ratio measurements. One possible experiment to examine this 

question would be to design an array with the same target material but different target 

concentrations for the spots and investigate the effects of the target concentrations on the 

ratio of spots. 
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