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Abstract 

This work presents a new obstacle detection algorithm that uses Gabor filters. The task 

performed by this algorithm is the detection of moving and stationary obstacles from an 

autonomous vehicle undergoing predominantly rectilinear motion. Image measurements 

from stereo cameras are used to extract three-dimensional properties of viewed objects 

and of the vehicle. Properties such as depth and motion are used to predict if (and when) 

the object will collide with the vehicle. 

Three inherently difficult problems associated with the estimation of depth and mo­

tion from stereo images are solved. (1) Stereo and temporal correspondence problems are 

solved using predictive matching criteria. (2) Segmentation of the image measurements 

into groups belonging to stationary and moving objects is achieved using error estima­

tion and the "Mahalanobis distance." (3) Compensation for transient rotations produced 

by a shaking camera is achieved by internally representing the inter-frame (short-term) 

camera rotations in a rigid-body dynamical model. These three solutions possess a cir­

cular dependency, forming a "cycle of perception." A "seeding" process is developed to 

correctly initialize the cycle. 

An additional complication is the translation-rotation ambiguity that sometimes ex­

ists when sensor motion is estimated from an image velocity field. Eigenvalue decompo­

sition is used to detect such ambiguity. Temporal averaging using Kalman filters reduces 

the effect of motion ambiguities. 

The obstacle detection algorithm operates correctly in a variety of difficult condi­

tions such as: stereo images with different brightness; image sequences with large image 

velocities; transient sensor rotations; and concurrent object and sensor motion. Under 
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these difficult conditions, the obstacle detection algorithm presented in this thesis is able 

to identify moving objects, and distinguish between obstacles that will collide with the 

vehicle and objects that will pass safely by the vehicle. 
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Chapter 1 

Introduct ion 

Autonomous vehicles are designed to operate without human intervention. They can 

operate in hostile environments making them ideal for tasks like space and undersea ex­

ploration, as well as inspection of contaminated areas. A common task for an autonomous 

vehicle is to move safely from its current location to another. An important requirement 

for safe motion is the reliable detection of unexpected obstacles. This thesis introduces a 

new obstacle detection algorithm that can be used in the navigational control system of 

an autonomous vehicle. The use of collision parameters—the point-of-collision and the 

time-to-collision—is a departure from standard methods. 

Section 1.1 describes the utility of obstacle detection and differentiates the detection 

of obstacles, which impede the vehicle motion, from the detection of objects, which can 

be used as landmarks for passive navigation. Section 1.2 describes the modules within a 

navigational control system and how they interact. Section 1.3 introduces the point-of-

collision and the time-to-collision as important concepts of obstacle detection. 

Section 1.4 defines the scope of the work and parameters used in the thesis. The 

section discusses the choice of sensors, the choice of prediction models, and the choice of 

error models. Section 1.5 describes existing camera-based implementations that relate 

to autonomous navigation. It also introduces a new obstacle detection algorithm that 

uses Gabor filters and discusses its contribution to the field. Section 1.6 concludes the 

introduction with an outline of the thesis. 

1 



Chapter 1. Introduction 2 

1.1 Obstacle De tec t i on 

Obstacle detection can be useful in three different contexts. It can be used to assist a 

human operator, it can be used to increase the autonomy of a vehicle, or it can be used 

as part of the navigational control system of an autonomous vehicle. As an assistant to 

a human operator, the obstacle detection module acts as an alarm, alerting the operator 

if an object impedes the planned path. This is useful if the operator has more than one 

task to perform or if the operator is fatigued. Increased autonomy is useful for remote 

operations. Remotely operated vehicles, such as Martian land rovers, experience large 

transmission delays between commands. Direct control of the vehicle is not possible. 

Obstacle detection, combined with a simple obstacle avoidance scheme, can protect the 

remote controlled vehicle from unanticipated hazards. As part of the navigation con­

trol system of an autonomous vehicle, the obstacle detection module must provide the 

computer pilot with sufficient information to avoid obstacles. The information includes 

the "point-of-collision" and the "time-to-collision" for each viewed object. The point-

of-collision specifies either the location (on the vehicle) at which the object will collide 

with the vehicle or how close the object will be as it passes by the vehicle. The time-

to-collision specifies how much time will elapse before the object collides with (or passes 

by) the vehicle. 

Obstacle detection is often grouped, and sometimes confused with, two related tasks: 

object detection, and obstacle avoidance. To avoid confusion, it is important to dis­

tinguish between objects and obstacles. An "object" is any physical feature within the 

sensor's field of view. An "obstacle" is an object that obstructs the vehicle's desired 

motion trajectory 1. From these definitions it is apparent that object detection is based 

' i n a practical implementation, the definition of an obstacle is expanded to include objects that 
obstruct small deviations from the desired trajectory. The expanded definition allows the determination 
of feasible escape routes when the desired trajectory is obstructed. 



Chapter 1. Introduction 3 

on measurement: sensor information is used to localize the object's three-dimensional 

position and velocity. Obstacle detection is based on prediction. Using the position 

and velocity of the object relative to the sensor, the obstacle detection module predicts 

the point-of-collision and the time-to-collision 2 . Obstacle avoidance is a control prob­

lem. The obstacle avoidance module generates control signals to maneuver around any 

detected obstacles. 

1.2 Navigat ion Control for an A u t o n o m o u s Vehicle 

This section describes the modules within a navigation control system, displayed in figure 

1.1. The goal is assigned by the human task master. The goal is usually time-invariant; 

it only changes when the task is completed or aborted. A typical goal would be to move 

safely to a new location. The next levels contain a hierarchy of maps and path planners. 

The maps model the position of known objects in the ego-vehicle's environment. The 

path planners navigate around them. 

There is always a degree of uncertainty in the absolute position of the ego-vehicle. 

Any uncertainty in the vehicle's position will affect the accuracy of the relative position 

of known obstacles. In addition, the position of moving obstacles is continually changing. 

Both the obstacle detection and obstacle avoidance modules, whose basis is sensor data, 

are required to safely navigate around these unexpected obstacles. 

The purpose of the obstacle detection module is to predict imminent collisions of the 

ego-vehicle with an obstacle. A detailed description of the obstacle detection module 

appears in chapter 4. The obstacle avoidance module selects evasive maneuvers when a 

collision is imminent. It is an emergency module that is used when there is insufficient 

time to update the local map and plan a new path. In such cases the control signals from 

2The object is an obstacle if the point-of-collision is on the ego-vehicle. 
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Figure 1.1: Modules of an Autonomous Navigation System 
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the obstacle avoidance module override the speed and direction signals from the local 

path planner. 

The modules in figure 1.1 interact with each other. Higher order objectives are fil­

tered down through the path planners to the actuator (steering, braking) level. Sensor 

information rises to higher levels as obstacles are detected and maps are updated. The 

frequency of these interactions is related to the module's position in the control hier­

archy. The sensor information and the actuator control signals, at the bot tom of the 

control hierarchy, are updated frequently; the goal, at the top of the hierarchy, might be 

time-invariant. 

Complete vehicle autonomy is not always practical. In many cases a human operator 

is still required. As the degree of autonomy is increased, less operator supervision is 

required; the frequency of interaction between man and machine is reduced. To increase 

the degree of autonomy of a vehicle, the design of higher level modules must be preceded 

by the proper selection of sensors and the robust design of the obstacle detection module. 

1.3 Collision Parameters 

In this section, important obstacle detection parameters—the time-to-collision and the 

point-of-collision—are discussed. Models of the sensor and object motion are required to 

predict these collision parameters. Three possible kinetic models are proposed. 

The path travelled by an object relative to the sensor group is referred to as the 

"observer frame trajectory" of the object. This trajectory is given by 

x(t) = x0+ [ x(t) dt, (1.1) 
J to 

y(t) = y0+ fy(t)dt, (1.2) 

z(t) = z0+ f z(t) dt, (1.3) 
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where t0 is the current time, (x0, y0, ZQ) is the current position of an object, and (x, y, z) 

is the object velocity relative to the observer coordinate frame. The point-of-collision is 

the intersection of the object's trajectory and the plane defined by z(t) = 0; that is 

rto+tcol 
Xcoi = Xo + / x{t) dt, (1.4) 

J to 

rto+tcol 

Vcoi = yo+ y(t) dt, (1-5) 
J t0 

fto+tcol 
0 = z0+ / z{t) dt, (1.6) 

J to 

where (xcoi, ycoi) is the point-of-collision, and tco\ is the time-to-collision. If the point-of-

collision is less than the extent (height, width) of the ego-vehicle, a collision will occur. 

An obstacle detection algorithm that uses the point-of-collision and time-to-collision can 

be considered a very intelligent (predictive) proximity sensor. 

The use of the point-of-collision and the time-to-collision in obstacle detection rep­

resents a departure 3 from traditional methods. Most implementations are designed for 

operation in a stationary environment [6] [12] [40] [41] [42] [43] [48] [49]. In such cases, 

the observer frame trajectory is simply defined by the position of the object relative 

to the ego-vehicle, and the velocity of the ego-vehicle. As a result, most research has 

been concentrated on localizing the three-dimensional position of objects (particularly 

the depth), and maintaining the positional representation as the ego-vehicle moves [6]. 

The time-to-collision is a measure of the urgency associated with a colliding obstacle. 

In a stationary environment, either depth (z0) or time-to-collision can be used to measure 

urgency. Close obstacles present a more immediate danger than distant obstacles. Distant 

obstacles can be temporally ignored while the obstacle avoidance module maneuvers the 

3The use of point-of-collision and time-to-collision is a departure from traditional computational 
vision approaches. The terms have been used in psychology for quite some time. Gibson [25], in a 
1938 paper, described an automobile driver's perception of obstacles in terms of clearance lines and 
point-of-potential-collision, which are similar to the point-of-collision. Lee [37] described the (perceived) 
proximity of an obstacle using time-to-collision. 
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vehicle around close obstacles. In a stationary environment, the time-to-collision increases 

if the ego-vehicle slows down; a halted vehicle has no chance of collision. In a dynamic 

environment, however, stopping does not ensure safety. A moving obstacle can collide 

with a halted vehicle. In such an environment, depth is no longer the best measure of 

urgency; time-to-collision becomes more important. 

The point-of-collision and the time-to-collision are predicted from the past sensor 

and object motions. Prediction requires models of the sensor and object motion. Three 

possible motion models include pure translation, predominantly rectilinear, and general 

translation and rotation. Pure translation is the simplest model. It assumes there is 

no sensor rotation. The advantage of this model is that the collision parameters can 

be estimated from the current position and velocity of the object relative to the ego-

vehicle. The predominantly rectilinear model assumes that the sensor is undergoing 

both translation and small rotation. The advantage of this model is that the solution 

can be obtained using a simple least squares approach if the scene structure, that is 

the depth, is known. In the general motion case, the sensor rotation is unconstrained. 

The solution to this nonlinear problem is obtained using iterative schemes that require 

good initial guesses. The choice of models may be limited by the physical properties of 

the sensor motion and the environment in which the ego-vehicle operates. If a choice is 

available, it is a good idea to choose the simplest model that adequately represents the 

motion. 

In this work, the predominantly rectilinear model is used for the inter-frame (short-

term) sensor motion. The extended (long-term) sensor motion and the object motion 

are modelled as pure translation. The implementation of these models can be found in 

chapter 4. 



Chapter 1. Introduction 8 

1.4 Task and Scope 

This section defines the task to be completed and the scope of the thesis. The operating 

environment of the ego-vehicle is defined, the sensors are selected, and the models of 

sensor and object motion are chosen. Sources of additional knowledge that can improve 

performance are identified. 

The task in this work is to develop an obstacle detection algorithm for an autonomous 

vehicle undergoing rectilinear motion in a dynamic environment. By dynamic environ­

ment, it is assumed that in addition to a moving ego-vehicle, there are also moving 

objects. Both the ego-vehicle and objects are undergoing translational motion, but ex­

perience disturbances that cause small transient rotations. It is also assumed that the 

ground surface is stationary and rigid, and that the moving objects are rigid. 

The work presented in this thesis concentrates on object detection and obstacle detec­

tion. Object detection requires a high resolution imaging sensor to localize 3D position. 

In this work, a stereo pair of CCD cameras are used. A stereo camera system is selected 

for the following reasons: it is passive, it has low power consumption, and it is available. 

Passive sensors are very important in military applications. Active sensors tend to reveal 

the presence of the ego-vehicle. A vehicle equipped with passive sensors has a greater 

probability of surviving in a battle zone. Power consumption is an important constraint 

for space vehicles. Active sensors, such as laser range finders, consume too much power to 

be useful on a Martian rover [41]. Finally, the CCD cameras are commercially available. 

Obstacle detection requires models of sensor and object motion to predict the collision 

parameters. Since the cameras used in this work have a narrow field of view 4, the inter-

frame image measurements are very sensitive to sensor rotation. The predominantly 

rectilinear model is appropriate for the inter-frame sensor motion because it internally 

4Most of the image sequences in chapter 5 are obtained using cameras with a field of view spanning 
30 degrees. 
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represents the transient sensor rotations. In contrast, small transient rotations of a 

viewed object have little effect on the inter-frame image measurements. As a result, the 

inter-frame object motion is modelled as pure translation. 

The extended sensor and object motions are modelled as pure translation. The ex­

tended motion is an estimate of the sensor/object translation integrated over the image 

sequence. The extended sensor and object motions are combined to obtain the relative 

translation of each object to the sensor. The relative translation, (x,y, i ) , is used in the 

following equations to estimate the collision parameters: 

Xcol = XQ + X tcl, (1.7) 

Vcoi = yo + y tcoi, (1-8) 

tool = ~Z4. (1.9) 
z 

The use of stereo cameras as the sensor creates problems that must be addressed. Im­

age measurements are very sensitive to camera rotations. As previously mentioned, the 

solution is to use an inter-frame sensor motion model that internally represents the tran­

sient rotations. Another problem, which is related to the co-existence of stationary and 

moving objects in the scene, is the segmentation of the image measurements into groups 

belonging to stationary objects and moving objects. The solution to the segmentation 

problem is discussed in section 4.3. Solutions to the stereo and temporal correspondence 

problems are discussed in chapter 3 and section 4.6.1. 

The final significant problem is the inherent translation-rotation ambiguity that some­

times exists when sensor motion is estimated using image measurements [3]. This ambi­

guity can be resolved using additional knowledge sources, such as motion constraints or 

auxiliary sensors. The (camera) sensor and object motion models can incorporate con­

straints such as planar motion. The planar constraint has two forms: a planar surface 
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with a known surface normal, and a planar surface with an unknown surface normal. In 

this work, such constraints are incorporated using penalty terms (see chapter 4). The 

ego-vehicle can also be equipped with auxiliary sensors that measure inter-frame motion 

parameters directly: such as a speedometer, or (changes in) compass heading. In general, 

motion constraints and auxiliary sensors are not necessary, but the information can im­

prove the inter-frame (camera) sensor motion estimate for certain scene structures (such 

as a frontal plane, see chapter 5, experiment 1). The effect of the translation-rotation 

ambiguity on the extended sensor motion is reduced by temporal integration. 

1.5 Prev ious Works and Author 's Contr ibut ions 

There are numerous camera-based implementations relating to navigation of an au­

tonomous vehicle. They typically belong to one of three classes: restrictive environment; 

three-dimensional positional integration; and image displacement methods. This section 

discusses the strengths and weaknesses of the "better" implementations from each class. 

This section also introduces the new Gabor filter-based obstacle detection algorithm and 

discusses its principal contributions. 

The restrictive environment implementation uses knowledge of its operating environ­

ment to navigate safely. The restrictive environment has a simple structure that can be 

modelled using a small number of scene parameters. Road-following autonomous vehicles, 

such as [48] [49], are examples. German researchers, Dickmanns et al [16] [17] [18] [19] 

[36] [44] [53], have produced the most impressive 5 of the road-following implementations. 

The strength of Dickmanns' design stems from the use of the Kalman filter, which 

consists of the following: state variables that comprise scene and motion parameters; 

dynamical (process) models that enforces world knowledge about the physical laws of 

5It has been tested at speeds upto 100 km/hr. 
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motion and the conventions used in road design; and a measurement model that enforces 

knowledge of the perspective transformation of state variables into image features (road 

edges). Dickmanns' implementation of the Kalman filter forms a "cycle of perception:" 

the dynamical models predict future state variables from the current state and future 

control inputs; the measurement model and state variables are used to predict the position 

of road edge in the camera image; and the detected road edges are used to update the 

state variables. The prediction of the position of the road edge in the image defines the 

"context of perception [4]," reducing the search space for a road edge and improving the 

robustness road detection. 

The weaknesses in the Kalman filter approach are related to the accuracy with which 

the state variables represent the actual process, and the initialization of the cycle of per­

ception. Dickmanns' state variables and dynamical models do not account for transient 

rotations. It is noted in [18] that the quality of the state estimation is affected by the 

pitching motion of the vehicle (one component of transient rotation). The initialization 

of the cycle of perception is very important. If the initial search for the road edge pro­

duces incorrect estimates of the state variables, then the cycle of perception will search 

the wrong regions of future images for new road edges. Groupings of image features and 

knowledge about road structure are used by Dickmanns to ensure a correct start-up state 

[18]. 

Dickmanns et al [19] have developed an obstacle detection algorithm for their road-

following vehicle. The image projection of the road lane is searched for edges belonging 

to other vehicles. Detected edges are used in a Kalman filter to estimate the range 

(depth, z) and the range rate ( i ) of the ego-vehicle relative to the other vehicle. The use 

of range and range rate together provides the same information as the time-to-collision. 

Knowledge of road convention (in this case, lane markings) eliminates the need for an 

equivalent to the point-of-collision; it is only necessary to determine if the lane is blocked. 
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The drawback of this approach is that Dickmanns' obstacle detection algorithm can not 

anticipate collisions when the obstacle is moving across the road (as often occurs at 

intersections). 

There are a number of implementations that use three-dimensional position informa­

tion to form local maps (in place of parameterized scene models) and to determine the 

sensor motion [6] [40] [43]. The position measurements of distinctive physical features 

are integrated over time. For optimal integration, a positional error estimate, in the form 

of a 3 by 3 error covariance matrix, must be maintained for each physical feature. These 

physical features are used as landmarks for estimating sensor motion. The sensor motion 

model enforces the following constraints: the environment is rigid and stationary. 

The main weakness of [6] and [40] is that they are not designed for scenes with 

moving objects. Another weakness, with respect to obstacle detection, is the over-head 

associated with modelling positional uncertainty. For the case of obstacle detection, 

motion information is more important than positional information 6 . In [40], the inter-

frame sensor motion is estimated in two stages: image measurements are transformed 

into three-dimensional position estimates for a set of features; then, the sensor motion 

is estimated from the differences in three-dimensional position of features in successive 

images. The positional error covariance matrices ensures that no information is lost in this 

intermediate step. It is possible to by-pass the intermediate positional representation by 

measuring positional changes directly from the image. In such an approach, the positional 

error covariance matrices are not necessary for the estimation of sensor motion. 

Image displacement methods measure the positional change of brightness pattern in 

the image over time [5] [27]. A map of the local two-dimensional image displacements 

is referred to as an "optical flow field." Adiv [2] uses the optical flow field to segment 

6It can be seen from (1.7) and (1.8) that an error in the in-plane velocities, x and y, will alter the 
point-of-collision more than positional errors in XQ and yo, when the time-to-collision is large. 
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an image sequence and to estimate motion. The strength of Adiv's method is that it 

internally represents sensor rotation. 

The weakness of Adiv's method is the (improper) use of world knowledge and his 

choice of inputs. Adiv segments the image sequence by grouping image measurements 

that are consistent with rigid-body motion of a planar surface patch. As a result, the 

segmentation is based on structure, as well as motion. An extra knowledge source is 

needed to identify which groupings belong to stationary objects. Another drawback of 

this method is that it relies on the optical flow field, which is difficult and computationally 

expensive to calculate [2] [3] [31]. 

The calculations associated with the optical flow field can be avoided by using the 

component of image velocity that can be directly (and locally) measured: that is, the 

"normal image velocity." Nelson and Aloimonos [46] use flow-field divergence in the com­

ponent (normal) direction to avoid obstacles. Collisions are avoided by steering away 

from image regions with large flow-field divergence. The strength of this method is that 

it does not require an optical flow field, and it is not affected by the translation-rotation 

ambiguity. The weakness of the flow-field divergence method is that it is a primitive 

form of obstacle detection: there is no prediction of the time-to-collision or the point-

of-collision. A second weakness is that the large divergence criterion can produce false 

positive responses; in addition to a close object that is approaching the sensor, a large 

divergence can be caused by a depth gradient or a motion boundary. 

Jenkin and Jepson [34] use stereo camera-based trajectory detectors to identify ob­

stacles. Stereo Gabor filters, tuned to a particular disparity and pair of normal image 

velocities 7, are used to estimate the "out-of-plane" motion, i , and the "in-plane" mo­

tion, x and y. The disparity and the out-of-plane motion provide sufficient information 

7Disparity is the image displacement between stereo viewpoints. It is used to calculate depth. The 
normal image velocity is the component of image displacement over time in the direction normal to the 
image contour. Both terms are described in chapter 2. 
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to calculate the time-to-collision. The weakness of the trajectory detector is tha t it is 

unable to predict the point-of-collision because it can not distinguish between motion 

induced by in-plane translation and non-axial sensor rotation. 

The inability to distinguish between translation and rotation is due to the fact that 

the trajectory detector is based on local image measurements [31]. Global characteris­

tics of a set of image measurements can be used to determine the sensor motion. One 

computationally efficient technique is "direct passive navigation" [31] [33] [45]. Subject 

to certain assumptions (listed below), a set of local image gradient measurements can 

produce an estimate of the inter-frame sensor motion. The gradient of any image mea­

surement can be used, but image intensity is the most common [5] [33]. The strengths 

of the direct passive navigation approach is that it avoids the calculation of the optical 

flow field (resulting in an order of magnitude speed-up [30]), and it internally represents 

both sensor translation and rotation in a rigid-body motion model. 

The weaknesses of the direct passive navigation approach stems from two assump­

tions. It is assumed that all the image gradient measurements belonging to stationary 

objects. In a dynamic environment, the image sequence has to segmented into image 

measurements belong to stationary and moving objects. The second assumption is that 

the depth (or at least the scene structure) is known at each image measurement. Stereo 

cameras can be used to extract depth. However, to avoid the "difficulties" and the "com­

putational burden" [31] associated with the measurement of depth from stereo, either the 

structure of the scene must be constrained (as in [45]) or the motion must be constrained 

(as in [31]). Such constraints have utility only if the operating environment enforces the 

constraints. 

The above-mentioned camera-based navigation approaches provide an insight into 

useful obstacle detection design. The use of world models that enforce natural constraints 

in the operating environment can reduce the computational requirements and improve 
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the robustness of state estimation (as demonstrated by Dickmanns et al [18]). There 

is a tendency, however, to choose constraints that make the algorithm tractable (for 

example, [2] [31] [45]), instead of evaluating the environmental constraints. To ensure 

that all chosen constraints are acceptable, it is very important to test constraint-based 

algorithms using real or "realistic" data. The obstacle detection algorithm presented in 

this thesis (chapter 4) is thoroughly tested using realistic data (chapter 5). 

The new obstacle detection algorithm presented in this thesis possesses many of the 

strengths mentioned above: it uses a cycle of perception to measure normal image velocity 

and sensor/object motion; and it internally represents sensor rotation to compensate for 

motion transients. In addition, the new algorithm has the ability to predict collisions 

with moving objects in an unrestricted environment. It can even predict a collision for 

the case of an object crossing the forward path of the ego-vehicle (a problematic case for 

Dickmanns). 

Constraints on the scene structure limit the generality of an implementation. In 

this thesis, the depth is estimated using disparity from stereo cameras. The disparity 

is measured using Gabor filters. Since the preprocessing of images using Gabor niters 

is common to both the disparity and normal image velocity modules, the estimation of 

depth represents only a modest additional computational burden to the proposed obstacle 

detection algorithm. 

The new Gabor filter-based obstacle detection algorithm combines the direct passive 

navigation and the trajectory detector approaches. In order to use these two approaches 

simultaneously, the image sequence must be segmented into regions belonging to station­

ary objects and moving objects. The rigidity constraint is used to detect the moving 

objects, whose image measurements are inconsistent with those induced by sensor mo­

tion only. Image measurements belonging to stationary objects are used as landmarks in 

the direct passive navigation approach to estimate sensor motion. After compensating 
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for sensor motion, the motion of each moving object is estimated using the trajectory 

detector approach. 

The new obstacle detection algorithm can be described briefly. The phase and magni­

tude responses from Gabor filtered images are used to extract disparity and normal image 

velocity. Those image measurements belonging to stationary objects are combined to ob­

tain an estimate of the inter-frame sensor motion (both translation and rotation). The 

inter-frame translation of each moving object is estimated using the excess normal image 

velocity; that is, the measured normal image velocity minus the image velocity induced 

by the sensor motion. The inter-frame sensor and object translations are integrated over 

the image sequence using Kalman filters. The difference between the object and sensor 

translations is the observer frame trajectory of the object. The object's trajectory, along 

with its current position, is used to predict the collision parameters. 

The work presented in this thesis makes the following principal contributions: 

• it implements direct passive navigation using phase-differences instead of intensity 

derivatives; 

• it develops error models for the Gabor-based image measurements that are propa­

gated into collision parameter uncertainty; 

• it develops a "seeding" technique that is necessary to initialize the segmentation 

process; 

• it stabilizes the image sequence from transients caused by camera shake. 

Image displacements measured using phase-differences are more stable than intensity 

derivatives [21] [23]: to changes in image contrast and brightness; and to geometrical de­

formations caused by changes in sensor position, orientation, or viewpoint. The expected 

error for an image measurement is needed to perform segmentation of stationary objects 
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and moving objects. The expected error determines if the difference between the mea­

sured and predicted (sensor motion-induced) normal image velocity is significant. The 

seeding process is necessary to obtain the initial estimate of the sensor motion. The sta­

bilization of the image sequence is obtained by dropping the inter-frame rotation terms 

when the model of sensor motion changes from predominantly rectilinear (for inter-frame 

sensor motion) to pure translation (for the Kalman filter). All of these contributions 

improve the robustness of the algorithm. 

1.6 Outl ine of the Thes is 

Chapter 2 reviews the technical prerequisites for performing obstacle detection using 

stereo cameras. The effect of object and sensor motion on the stereo image sequence is 

discussed. Chapter 2 also contains algorithms for determining the position and velocity 

of obstacles, and the velocity of the autonomous vehicle. These algorithms use local 

image displacements obtained from the stereo image sequence, such as stereo disparity 

and normal image velocity. 

Chapter 3 discusses the Gabor representation and describes how it is used to measure 

the disparity and the normal image velocity. The description includes the selection of 

image features, the testing of feature stability with respect to viewpoint or motion-

induced image deformations, and the testing of stereo and temporal correspondences. 

The phase-based refinements of the disparity and normal image velocity estimates are 

discussed. Expressions for the expected error in disparity and the expected error in 

normal image velocity are derived. 

Chapter 4 discusses the obstacle detection algorithm and its various modules. The 

discussion includes: estimation of the inter-frame sensor motion; segmentation of the 

image sequence into stationary and moving object features; temporal integration of the 
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sensor and object translation; and estimation of the collision parameters. Implemen­

tation details, such as the seeding process and the generation of stereo and temporal 

correspondences, are addressed. 

Chapter 5 contains the results of applying the obstacle detection algorithm to real 

stereo image sequences. Chapter 6 is the summary. 



Chapter 2 

Technical Prerequisites 

The purpose of this chapter is to review the technical prerequisites for understanding 

stereo camera-based object and sensor motion estimation. The review begins with back­

ground information on image formation (section 2.1). In section 2.2, various coordinate 

systems, used to represent position and velocity, are defined. Sections 2.3 and 2.4 de­

scribe the image velocity as functions of object and sensor motion. Later sections discuss 

the inverse problem: estimating the motion of objects and the sensor from the image 

velocity field. The inverse problem involves estimating the depth from stereo images 

(section 2.5), estimating the localized time-to-collision from the stereo image velocity 

field (section 2.6), and estimating the sensor motion (section 2.7). Section 2.8 summaries 

the key concepts presented in this chapter. 

2.1 Image Formation 

This section briefly reviews image formation for a pinhole camera. Certain geometric and 

radiometric phenomena that can cause problems for image measurements are described. 

A typical camera can be modelled as a pinhole camera. The projection geometry of 

a pinhole camera is shown in figure 2.2. In figure 2.2, a virtual image plane has been 

placed in front of the camera lens at zs = zj for illustrative convenience. The actual 

image plane is behind the lens at zs = —zj. A camera is a passive sensor that measures 

the reflectance of a scene. The brightness pattern at the image plane is formed by rays of 

light traveling in straight lines from the surface of an object, through the pinhole, onto 

19 
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Figure 2.2: Projection Geometry of a Pinhole Camera 

the image plane. The resulting two-dimensional image is a perspective projection of the 

three-dimensional scene. 

Since the image formation process measures the reflectance along various rays passing 

through the pin-hole (or lens), an image is a function of both geometry and radiometry. 

Subsequent sections in this chapter deal exclusively with the geometric aspects of imag­

ing. Errors will occur as a result of this geometric-only model of the camera. Certain 

radiometric and geometric phenomena will produce image brightness patterns that are 
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unstable with respect to changes in viewpoint. The unstable radiometric phenomena in­

clude specular reflections and shadows. Geometric instabilities can occur due to chance 

alignment of foreground and background features at surface discontinuities. Points on 

the occluding contour of curved objects are also unstable; the image outline of a curved 

object is dependent on the viewpoint as well as the surface shape. 

The existence of these unstable image features can lead to errors in the local estimation 

of depth and motion. Thus, any camera-based method for estimating depth and motion 

should perform consistency tests on the measurement set to identify, and reject, unstable 

image features. The obstacle detection algorithm described in chapter 4 fulfills this 

requirement. 

2.2 Coordinate Sys t ems 

The measurement of position and velocity must be preceded by the assignment of a 

coordinate system. In this work, five coordinate systems are used: two-dimensional im­

age coordinates, three-dimensional scene coordinates, three-dimensional observer coordi­

nates, three-dimensional vehicle coordinates, and three-dimensional world coordinates. 

The first two coordinate systems correspond to the sensor module. The remaining three 

coordinate systems—the observer, vehicle, and world coordinates—correspond to the ob­

stacle avoidance, the local map, and the global map modules, respectively. Although a 

global map is not used in this work, the three-dimensional world coordinates are necessary 

for measuring the vehicle motion (both translational and rotational) and its subsequent 

effect on the image sequence. 
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2.2.1 Sensor Coordinates 

There are two sensor coordinate systems: scene coordinates and image coordinates. The 

scene coordinate system represents the position of an object relative to the camera lens; 

the image coordinate system represents the position of the object's image projection 

relative to the center (origin) of the image plane. The scene coordinate system uses 

three-dimensional coordinates denoted by xs, ys, and zs (see figure 2.2). The 2s-axis, 

also referred to as the "optical axis," is defined as the viewing direction. The other scene 

coordinates, xs and ys, represent the position along the horizontal and vertical axes, 

respectively. The image coordinates are given by x and y. The origin of the image is the 

point at which the optical axis intersects the image. The image and scene origins are 

offset by the focal length Zf along the optical axis zs. 

The position of object can be represented using image coordinates or scene coor­

dinates. The transformation of a point P(xs,ys,zs) from scene coordinates to image 

coordinates is given by 

x = xs^- (2.10) 

y = ys~. (2.11) 

zs 

A mixed coordinate system, given by (x,y,zs), defines the depth zs at each image pixel. 

2.2.2 Observer Coordinate Sys t em 

The observer coordinate system represents the three-dimensional position of an object 

relative to a sensor group. A sensor group is configured such that each camera has a 

similar, but slightly different, view of a scene; that is, the angular separation between 

pairs of optical axes is small. If the observer coordinate axes are denoted by x, y, and 

z, the 2-axis is chosen such that it is parallel or nearly parallel to each optical axis. The 

£-axis is defined to be tangential to the sensor group platform; the y-axis is normal to the 
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Figure 2.3: Stereo Camera Setup 

platform. For the case of stereo cameras, the x-axis is parallel to the baseline separation 

of the camera. 

A stereo camera setup is shown in figure 2.3. Consider the left camera. The scene 

coordinate origin for the left camera is offset (by - f ) fr om the observer coordinate origin. 

In addition, there may be an angular offset between the observer coordinate frame and 

the left scene coordinate frame. The transformation from the observer coordinate frame 

to the left scene coordinate frame is given by 

%L e 

= R •oa(L) 

' 
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X 

y 

z 

b 
+ 2 

1 

0 

0 

•• 

> 

(2.12) 
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where (small angle approximation) 

1 -aL fa 

Ros(L) - aL 1 - 7 L , (2.13) 

-fa 1L 1 

and <*£,, fa, "JL are the z, y, and x angular offset of the left scene coordinate frame relative 

to the observer coordinate frame. The rotational difference about the x, y, and z axes 

are referred to as tilt, pan, and roll, respectively. The angular offsets for the right camera 

are denoted by OR, fa, JR. The rotation matrix that comprises the angular offset for the 

right camera is denoted by ROS(R) 

2.2.3 Vehicle Coordinate Sys tem 

The vehicle coordinate system represents the three-dimensional position of an object 

relative to the vehicle. The vehicle coordinate axes are denoted by xv, yv, and zv. The 

2„-axis is defined as the vehicle heading. The xv-axis is tangential to the floor of the 

vehicle; the y^-axis is normal to the floor. 

The relationship between the vehicle coordinates and the image coordinates is worth 

noting. If the scene is stationary and the vehicle and scene origins coincide, the intersec­

tion of the 2„-axis with the image plane is the "focus of expansion." The significance of 

the focus of expansion is discussed in section 2.4. 

2.2.4 World Coordinate Sys tem 

The world coordinate system is needed to estimate the motion of the vehicle. This three-

dimensional Cartesian coordinate system is fixed relative to the ground surface. The 

world coordinate axes are denoted by xw, yw, and zw. 
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2.3 Image Veloc i ty and Scene Mot ion 

This section defines the image velocity in terms of scene motion. Using the projection 

geometry of the camera, spatial shifts in image brightness patterns are predicted from 

changes in the position of viewed objects. The "aperture problem" associated with the 

apparent shift of a local brightness pattern is reviewed. The effect of sensor and object 

motion on the normal image velocity is discussed. Two important transformation vectors, 

used in chapter 4 to predict normal image velocity from sensor motion and object motion, 

respectively, are defined. 

The motion of the sensor, and objects in its field of view, affects the brightness pat­

terns in an image sequence. If the point P{xs,ys,zs) moves relative to the camera, the 

corresponding brightness pattern in the image sequence also moves (as shown in figure 

2.4). This differential motion of the brightness pattern is referred to as the "image veloc­

ity." The x and y components of image velocity are denoted by 14 and Vy, respectively. 

The differential motion of the point P(xs, ys, zs) is represented by the vector [xs ys zs]
T. 

The transformation from the relative motion of the point P(xs,ys,zs) to the image ve­

locity is given by the matrix A(z~1): 

V* 

Vy 
Aiz;1) Vs (2.14) 

A = z - i (2.15) 
Zf 0 —x 

0 zf -y 

It is difficult to measure locally both the x and y components of image velocity. 

Consider a line contour viewed through a circular aperture, as shown in figure 2.5. If the 

contour moves, only motions normal to the line will produce shifts in the local brightness 

pattern (as viewed through a stationary aperture); motions along the line have no effect 
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Figure 2.4: Image Projection of Motion 
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Figure 2.5: Aperture Problem 

on the local image. This phenomena is referred to as the "aperture problem" [38] [54]. 

Thus, if the line moves, only the component of image velocity normal to the line can be 

measured. This component is referred to as the "normal image velocity" and is denoted 

by Vn. The normal direction of the line is measured relative to the s-axis, and is denoted 

by </>„. The transformation from the image velocity to the normal image velocity is given 

by the vector n: 

(2.16) 

where 

n =[cos(f)n s in^ n ] . (2-17) 

Image velocity is caused by motion of objects relative to the observer (sensor group). 

The motion of the sensor group, can be described by six parameters: three translational 

velocities, represented by the vector T, 

T = [Tx Ty TZ]T; (2.18) 

Vn = n1 
V, 
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and three rotational velocities, represented by the vector 0 , 

o = [nx ny nz]
T. (2.19) 

These velocities represent the instantaneous motion of the observer coordinate frame 

relative to the world coordinate frame. If the world coordinate frame is defined as the 

initial position of the observer coordinate frame, then Tx, Ty, Tz are the translational 

velocities of the observer origin along the xw, yw, zw axes, and £lx, $ly, Qz are the 

rotational velocities about the xw, yw, zw axes. The six parameters of instantaneous 

sensor motion * are represented by the vector 0: 

0 = 
T 

n 
(2.20) 

The motion of an object is described using three translational parameters localized about 

a point P(x, y, z). The three translational velocities, measured with respect to the ground 

surface (world coordinate frame), are represented by 

J-obj — l^-oij Vobj Zobj\ (2.21) 

The velocity of a point P(x, y, z), with respect to the observer coordinate frame, is given 

by 

x 

y 

z 

= B(z)0 + Tobj, (2.22) 

B(z) 

-1 0 0 0 -z y 

0 - 1 0 z 0 -x 

0 0 - 1 -y x 0 

(2.23) 

1This is more accurately described as the instantaneous observer motion or the instantaneous sensor 
group motion. 



Chapter 2. Technical Prerequisites 29 

The matrix B(z) transforms the instantaneous sensor motion into three translational 

parameters localized about the point P(x,y,z). 

If the previously mentioned matrices are combined, the normal image velocity, local­

ized about the image coordinates (x,y), is given by 

Vn(x,y) = JT6 + JjbjTobj, (2.24) 

where JT — nTA(z~1)R0SB(z). and JJbj = nTA(z~1)Ros. The matrix Ros converts the 

observer velocity into the sensor coordinate frame. The transformation vectors J and 

J0bj convert the sensor motion and the object motion, respectively, into the normal image 

velocity. These transformation vectors are used in chapter 4. 

From (2.22) and (2.24), it can be seen that the sensor and object motions have different 

effects on the image sequence. The sensor motion changes the position, with respect to 

scene coordinates, of every object within the scene. It will induce global (coherent) shifts 

in the brightness patterns throughout the image. For the case of an object, motion 

induces shifts that are localized to a small region of the image. 

2.4 Image Veloc i ty Field and Sensor Mot ion 

The "image velocity field" is the set of image velocity vectors defined at each pixel in 

the two-dimensional image. This section discusses the effects of sensor motion, both 

translation and rotation, on the image velocity field. As mentioned in the previous 

section, the sensor motion has a global effect on the image velocity field. 

If a point P(x, y, z) is stationary with respect to the ground surface (world coordinate 

frame), it is possible to estimate the velocity of its image projection from the instanta­

neous sensor motion. The transformation of the instantaneous sensor motion into normal 

image velocity is given by 

Vn(x,y) = JTd. (2.25) 
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In this section, the image velocity is being examined. The transformation of the instan­

taneous sensor motion into image velocity is given by 

V, 

Vy 
A(z;1)R0SB(z)e. (2.26) 

The transformation described by (2.26) uses two difference coordinate systems: ob­

server coordinates in matrix B(z); and mixed image/scene coordinates in matrix A(z~x). 

It is useful to convert the observer coordinates of B(z) into the mixed image/scene co­

ordinates. The matrix B(z) can be written as 

B(z) = [BT Bo], (2.27) 

where Bnc = —I (I is the identity matrix) and 

0 -z y 

Bn= z 0 -x • (2.28) 

—y x 0 

The submatrix BT is not a function of position, so it does not need to be modified. If the 

scene and observer origins are offset by ^ along the £-axis, the matrix product R0SBQ(Z) 

can be written as 

zf 

0 -zs 

ROSBQ = Zf 0 

-y x 

Substituting (2.27) and (2.29) into (2.26), we get 

y 

X 

0 

f>*os 

b 
~ 2 

0 

-/? 

—a 

P 
0 

1 

a 

- 1 

0 

Rn (2.29) 

V, 

Vy 

= ^[-C(x,y)Rosf - -E(x,y)R0Sti] + D(x,y)Rosti, 
Z. L 

(2.30) 
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(2.31) 

(2.32) 

(2.33) 

It can be seen that for a given image coordinate (x, y), the transformation from sensor 

motion to image velocity has only one unknown: the depth zs. 

Equation (2.30) contains two terms: the first term is normalized by the depth, zs\ 

and the second term is constant. The first term is the component of image velocity due 

to sensor translation; the second term is the component of image velocity due to sensor 

rotation. Both of these terms are measured using scene coordinates. Note that when 

there is an offset between the origins of the observer and scene coordinate frames (in this 

case j along the ar-axis), the observer rotation 0 produces both translation and rotation 

in the scene coordinate system. 

It is interesting to examine the effects of each sensor motion parameter on the image 

velocity field. In the following subsections, the effects of scene translation and rotation 

on image velocity are examined. 

2.4.1 T r a n s l a t i o n 

This subsection investigates how the image velocity field is affected by sensor translation 

(measured with respect to the scene coordinate frame). The focus of expansion is defined, 

where 

C(*,y) , - i 

D(x,y) = C(x,y) 

and 

zf 0 

0 zf -y 

E(x,y) = C(x,y) 

0 -zf i 

Zf 0 —a 

-y x c 

0 P a 

-(3 0 - 1 

-a 1 0 
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and its significance is discussed. 

The image velocity due to scene translation is given by 

V, 

Vy 

-^C(x,y)Ts. 
z. 

(2.34) 

where 

RosT + - Rostt. (2.35) 

0 0 a 

-/3 0 - 1 

-a 1 0 

When there is no rotation, Ts = [xs ys zs]
T 

The effects of the sensor translation on the image velocity field can be seen by exam­

ining (2.34). The x and y translations appear in the image as x and y image velocities: 

the direction of motion is the same, but the speed is reduced by a scale factor —^-. The 

z translational motion causes an expansion (or contraction) of the velocity field about 

the origin of the image. The direction of the image velocity vectors radiate from (point 

towards) the origin. The speed increases with the radial distance from the image origin 

and decreases with the depth of the object. 

If a camera is moving towards an object, all image velocity vectors will diverge from 

a point referred to as the "focus of expansion." Under the pure translation assumption, 

the focus of expansion is given by 

X a 

Xfo zr 

Vfoe = Zf~. 

(2.36) 

(2.37) 

The focus of expansion is not dependent on the depth of an object. 

Equations (2.36) and (2.37) show that the focus of expansion is determined by the 

relative translational velocity of an object in the scene coordinate system. In general, 
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each moving object will have a different focus of expansion; only objects with common 

velocities will have a common focus of expansion. A camera translating through static 

environment is an example of a scene with one common focus of expansion. The focus 

of expansion for stationary objects is determined by the sensor translation; this special 

case is referred to as the "sensor's focus of expansion." 

A number of researchers use the sensor's focus of expansion to extract properties of 

the sensor translation from the image velocity field. The direction of the image velocity 

at various image locations is used to estimate the sensor's focus of expansion, which is 

subsequently used to determine the direction of camera translation (see section 2.7). This 

estimate is obtained without depth information. Although the sensor's focus of expansion 

is useful for constraining the direction of translation when the depth is unknown, the focus 

of expansion becomes a singularity point if depth estimation from a known sensor motion 

is at tempted (see section 2.5). 

2.4.2 Rotat ion 

This subsection investigates how the image velocity field is affected by sensor rotation. 

It is shown that rotations about the xs- and ys-axes produces an approximately constant 

offset in the image velocity field. 

The image velocity due to sensor rotation, measured using scene coordinates, is given 

by 

= D(x,y)ft„ (2.38) 

where £ls = Rosft- The image velocity due to rotation about the (tilting the 

sensor) is given by 

Vt = ^ O ^ , (2.39) 

Vy 
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V2 

Vy = (zf + —)nXtS. (2.40) 
zf 

Both the speed and direction of the Qx ,,-induced image velocity changes with the image 

coordinates. If the field of view of the camera is small (zf » xmax,ymax), the image 

velocity can be approximated by (Vx, Vy) ~ (0, z/)i}XtS. When this approximation is valid, 

the rotation about the contributes a constant flow throughout the image along 

the i/-axis. This constant depth-independent image velocity can be easily mistaken for a 

translation in the ys direction. 

The image velocity due to rotation about the y^-axis is given by 

Vx = -(zf + - ) < ! „ , „ (2.41) 
zf 

Vy = -Any,s. (2.42) 
zf 

If the field of view is small the image velocity can be approximated by (Vx, Vy) « 

(—Zf,0)ilytS. This constant image velocity can be mistaken for a translation in the xs 

direction. 

The image velocity due to rotation about the zs-axis is given by 

Vx = ynz,s, (2.43) 

Vy = -xQz,s. (2.44) 

The component of image velocity produced by f i 2 5 is orthogonal to that produced by Tz. 

All of the above scene rotation-induced image velocities are independent of depth. 

Thus, rotation of a camera will not provide depth information. 

2.4.3 Discuss ion 

In the previous subsections, the effect of scene motion on the image velocity field has been 

discussed. It was shown that rotations about the xs- and ys-a,xes produce similar flow 
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patterns to translations in the ys and xs directions, respectively. The primary difference 

between the two flow patterns is that the translation induced pattern is dependent on 

depth. If the variation of depth within the scene is small, a given image velocity field 

can be produced (within a small error) by a set of translation-rotation combinations [3]. 

In such cases, the problem of estimating the three-dimensional sensor motion from the 

image velocity field is poorly conditioned (see section 4.6.3). 

2.5 Est imat ing D e p t h 

This section describes how stereo cameras are used to estimate depth. It is assumed that 

the optical axes of the stereo cameras are approximately parallel. A method of compen­

sating for small convergence/divergence and differential tilt angles between the pair of 

cameras is discussed. This compensation transforms the configuration into an equivalent 

parallel stereo configuration. The remainder of the section addresses characteristics of 

the parallel stereo configuration. These characteristics include: the accuracy of the depth 

estimate, deformation of image features due to changes in viewpoints, and the sensitivity 

of depth estimates to the normal direction of an image feature. 

Under certain conditions, it is possible to estimate the depth zs using (2.30) if the 

sensor motion is known. The conditions are: that the viewed object must be stationary 

with respect to the ground surface (world coordinate frame); and its image velocity due 

to scene translation must be non-zero; The second condition is violated at the sensor's 

focus of expansion. In autonomous vehicle operations, the sensor is translating primarily 

along the zs-axis, placing the focus of expansion near the origin of the image. Any 

depth measurements near the focus of expansion will be undefined or very sensitive to 

measurement error. Thus, forward translation along the z-axis is not a good motion 

direction for measuring depth [39] [40]. 
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For the purpose of measuring depth, translational motion parallel to the image plane 

is preferred. Sensor motion along the xs- or ys-axis places the focus of expansion far from 

the image origin. Rather than continuously altering the course of the vehicle, tacking 

like a sailboat travelling upwind, the motion parallel to the image plane is simulated 

using matched stereo cameras that are offset along the Stereo cameras can also 

measure the depth of moving objects if the cameras are synchronized using shutters. If 

the stereo images are obtained at the same time instant, all objects in the scene will 

appear stationary; that is, the effects of object motion disappear. Thus, synchronized 

stereo cameras, offset along the fulfill the two above-mentioned conditions. In 

this section, extracting depth using stereo cameras is investigated. 

Since the stereo vision system contains two imaging sensors, a three-dimensional 

observer coordinate system must be defined. Assume that the scene coordinate origins, 

for the left and right cameras, are separated by b. The baseline connecting the two 

scene origins is defined as the rc-axis of the observer coordinate frame. The origin of 

the observer coordinate frame is defined as the midpoint between the scene origins. The 

2-axis is chosen to be nearly parallel to both optical axes. A typical stereo configuration 

is shown in figure 2.3. 

A stereo vision system represents a three-dimensional scene by two image projections 

that differ in viewpoint. The apparent shift of an object due to changes in viewpoint is 

referred to as "disparity." Disparity information provided by stereo cameras is used to 

estimate the depth of an obstacle relative to the observer. Consider a point P(x,y,z), 

whose position is defined using observer coordinates. The position of the point P(x, y, z) 
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using the mixed image/scene coordinates of the left camera, P(XL, y^, za(L)), is given by 

ZS 

XL 

fa 
Zf 

R, os(L) 

X 

y 

z 

b 
+ 2 

1 

0 

0 

> . (2.45) 

Similarly, the position using the mixed image/scene coordinates of the right camera, 

P(xR,yR, zs(R)), is given by 

zf 

XR 

fa 
zi 

R, os(R) < 

X 

y 

z 

b 
~2 

1 

0 

0 

^ 

j 

(2.46) 

If it assumed that ROS(L) and ROS(R) are orthonormal and that the focal length Zf is the 

same for each camera, then 

zs(L)R0S(L) 

XL 

fa 
Zf 

Zs(R)ROS{R) 

XR 

fa 

. Zf . 

= Zfb 

1 

0 

0 

(2.47) 

The two scene depths, ZS(L) and zs(#), are obtained by solving the simultaneous equations. 

In this work, since the stereo cameras are being used to simulate motion along the x-

axis, the stereo cameras are configured in a nearly parallel setup; that is, the orientation 

of the scene coordinate frame for each camera is nearly the same as the orientation of the 

observer coordinate frame. In such a case, the small angle approximation of ROS(L)
 a n d 

Ros(R) c a n D e used. Further simplifications are possible. The left and right coordinate 

rolls, aL and OR, represents the rotation of the respective image planes about their optical 

axis. This rotation can be set to zero by resampling each image such that the x- and y-

axes in the stereo images are parallel. Thus, it can be assumed without loss of generality 

that OLL and OLR are both zero. 
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Using the small angle approximation and the zero roll assumption, (2.47) produces 

the following three equations: 

ZS(L)(&L + PLZJ) ~ ZS(R)(XR + PRzf) = zfb, (2.48) 

zs(L){yL - iLZf) - zs(R)(yR - *fRzj) = 0, (2.49) 

ZS(L){-PLXL + 1LVL + z/) - zs(R){-(3RxR + -)RyR + zf) = 0. (2.50) 

When the tilt (/?) and yaw (7) angles are small and the field of view of each camera is 

small (zf » xmax or ymax)i it can be seen using (2.50) that zs^) w Z
S(R) « z. Thus, 

(2.48) and (2.49) can be written as 

XL-XR + (fiL - /3R)zf = ^b, (2.51) 
z 

VL-VR = iriL - 1R)ZJ. (2.52) 

The disparity of a point P(x,y,z) projected onto the left and right images in the x 

and y directions are respectively given by 

di = xL- xR, (2.53) 

dy = fa- VR- (2.54) 

The differential tilt and yaw between the left and right cameras are respectively given by 

W = PL- PR, (2.55) 

A 7 = 7 L - 7 f l . (2.56) 

The differential yaw angle is also referred to as the "vergence angle." Using the small 

angle approximation and the zero roll assumption, the depth is given by 

z = */* . ( 2 . 5 7 ) 

dx + APzf
 v ' 
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It can be seen that the depth of an object is dependent on the x disparity and the 

vergence angle, not on the absolute image coordinates or the absolute yaw angles. The 

y component of disparity is independent of depth: 

dp = A 7 zf. (2.58) 

For a given differential tilt (assuming small angle, zero roll), the disparity dp is constant 

throughout the stereo image pair. 

The parallel stereo configuration (A/3 = 0 and A 7 = 0) is examined in the remainder 

of this section to provide a better understanding of the characteristic of a stereo image 

pair. The parallel stereo configuration is shown in figure 2.6. The position of the lens 

for the left and right cameras are denoted by OL and OR, respectively. Consider a point 

in the observer coordinate space: P(x,y,z). The left and right lens positions and the 

point P(x,y,z) form a triangle in the three-dimensional space. These three points also 

define a plane, referred to as the "epipolar plane" [5] [7] [8]. The projection of the point 

P(x, y, z) onto the left and right images must lie on the epipolar plane. The intersection 

of the epipolar plane and the image plane defines the "epipolar line." 

The epipolar plane can be defined by the two lens positions and a point in the left (or 

right) image plane. Once the projection of a point is identified in the left (right) image, 

the matching projection will be located on the right (left) image's epipolar line. Thus, 

the direction of the disparity is constrained by the camera configuration. This is referred 

to as the "epipolar constraint." For the parallel configuration shown in figure 2.6, the 

epipolar line is parallel to the x-axis. 

Once matching projections (corresponding image features) are found in the left and 

right images, the position of the point P(x,y,z) can be estimated using triangulation. 
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^s(L) 

Left Image 

yS(R) 

s(L) 

P(x,y,z) 

zs(R) 

A 

Right Image 

ks(R) 

Figure 2.6: Point in Three-dimensional Space 
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The three-dimensional position, with respect to the observer coordinate frame, is calcu­

lated using 2 

x = | ^ i ^ , (2.59) 

V = J ^ H (2-60) 

'='£• ^ 
The accuracy of the three-dimensional position is dependent on the depth of the point, 

baseline separation and the focal length of the cameras, and the resolution of the disparity. 

The resolution of the disparity affects the accuracy of depth estimates. The fractional 

error in the depth estimate is given by 

z 4 + A 4 ' ' 

where Ad^ is the error in the x disparity estimate. If the error in the disparity estimate 

is fixed (say one pixel), the fractional error in depth is small for large disparities. The 

disparity increases as an obstacle approaches the cameras. Thus, the parallel stereo 

camera configuration estimates the depth of close objects with better accuracy than 

distance objects. Since the obstacle avoidance module usually assigns a high urgency (as 

defined in section 1.2) to close objects, the improved close depth accuracy is an asset. 

The disparity, and the accuracy of the depth estimate, can be increased by increasing 

the baseline separation or the focal length. 

There are a number facts that must be considered when choosing a camera focal 

length or baseline separation. The field of view is affected by the baseline separation 

and the focal length. The field of view for a single camera is defined by the size of the 

image plane and the focal length. For a fixed size image plane, the monocular field of 

2These equations are valid for the parallel stereo configuration. For nearly parallel configurations, 
the disparity dx must be replaced by dx + A/? zj. 
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view contracts as the focal length increases. The stereo field of view is the intersection 

of the left and right monocular fields of view. Increasing the baseline separation or the 

focal length contracts the stereo field of view. 

Increasing the baseline separation makes the stereo images less similar. Due to dif­

ferences in viewpoint, an object is projected differently onto the two images. As a result, 

establishing stereo correspondences becomes more difficult. Consider as an example a 

flat surface marked with periodic vertical stripes (see figure 2.7). If the projection of the 

surface normal onto the x-z plane is not parallel to the 2-axis (and the optical axes of 

the cameras), the frequency of the pattern in the left and right images will be different. 

The difference in frequency at the two image projections of P(x,y, z) is given by 

Sf = faveb ybx'z„ (2.63) 

where ( ^ ) is the slope of the surface in the x-z plane relative to the x-axis, and fave 

is the average frequency of the pattern as viewed by the left and right cameras. The 

fractional difference in frequency (-̂  ) increases with the baseline separation and the 

slope of the surface. Note that the difference in frequency becomes more pronounced as 

the obstacle approaches the cameras. Since the difference is larger for close obstacles, 

obstacle detection is hindered by this effect 3. 

Similar to the image velocity measurements, the measurement of depth using stereo 

is subject to the aperture problem. The x component of disparity can be best measured 

at vertical image features (</>„ ~ 0). If the normal component of disparity is denoted by 

dn, then the x component of disparity is given by 

d* = — 2 - . (2.64) 
cos <z>„ 

3The problems associated with the frequency differences are less significant for the Gabor filter-based 
method, presented in chapter 3, than pixel correlation methods, such as [43]. 



Chapter 2. Technical Prerequisites 43 

Left Lens Right Lens 

Figure 2.7: Viewing an Inclined Surface 

It can be seen from (2.64) that the depth of horizontal image features (< n̂ = ^) can not 

be measured using parallel stereo cameras whose baseline separation is along the x-axis. 

The previous paragraphs have addressed three problems that are dependent on: the 

choice of focal length and baseline separation; and the normal direction of the image 

feature. Assume that the focal length is fixed. Increasing the baseline separation increases 

the accuracy of the depth estimate but makes stereo correspondence more difficult. This 

tradeoff can be eliminated if extra cameras are placed along the baseline. If both the 

vehicle and the scene are stationary, this collinear camera configuration can be simulated 

by moving the camera along a sliding mount [39]. The sensitivity of depth estimation to 

the normal direction of an image feature can be reduced by adding extra cameras that 

form noncollinear baselines [6]. Consider the case where a third camera is positioned 

such that one pair of cameras has a vertical baseline separation and another pair of 

cameras has a horizontal baseline separation. Since the epipolar lines in the horizontal 
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and vertical camera pairs are orthogonal, the depth of both horizontal and vertical image 

features can be estimated. In this work, only the binocular stereo camera setup is used. 

2.6 Stereo Image Veloc i ty 

In the previous section, it was shown that stereo images can be used to estimate depth. 

In this section, the stereo image velocity field is used to produce local estimates of the 

time to collision and the velocity z. The stereo camera setup is as follows: the baseline 

separation is given by 6, and the orientation of the cameras relative to the observer 

coordinate frame is given by (0,^L,1L) and (0,/3R,JR). It is assumed that the angular 

offsets are small enough that the small angle approximation introduced in section 2.5 

is valid, and that the epipolar line is approximately parallel to the x-axis. The time 

to collision is estimated using the difference of image velocity vectors at corresponding 

points in the left -and right images. 

The image velocity due to sensor motion is given by (2.26). For small angles, the left 

image velocity can be approximated as 

Vy,L 

= Z - 1 
zj 0 -(xL + ZffiL) 

0 zf ~(fa - Z/7L) 

{B{z)0 + Tobi\. (2.65) 

A similar expression exists for the right image. The matrix B(z) is defined in terms of 

observer coordinates. The observer coordinates can be expressed in terms of the mixed 

image/scene coordinates for the left image: 

x 

y 

z 

zf 

XL + zf/3L 

fa - ZfJL 

Zf 

b 
~2 

1 

0 

0 

(2.66) 
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The expression for the right image is given by 

X 

y 

z 

z 
XR + zf/3R 

VR - zpR 

zs 

b 
+ 2 

1 

0 

0 

(2.67) 

Substituting (2.66) and (2.67) into B(z), the difference between the image velocity along 

the ic-axis at corresponding image points is given by [51] 

Vst, xst . 
vx,L - vx,R = (dx + A/3 zf)[t£, + ^ n x - -±n„], 

Zf Zf 

where 

t-ro/ — 
TK- Z0bj 

z 

z 

y* = 

xst 

fa + jjR- Zf(lL + lR) 
2 

XL + XR + Zf((3L + f}R) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

It is often the case that the field of view of the camera is small and R0S(L) = R^s(R)'i ^n a^ 

is Zf » xmax,ymax, (3L = —f3R and JL = ~1R- In such a case, 

dx + Ap zf 
^col (2.72) 

VXtL — VXiR 

If the depth is known, the object translation along the z-axis relative to the sensor is 

given by 

z = ~ (2.73) 
tool 

The localized z can be used to segment the image into projections of moving objects 

and stationary objects. Since T0y = 0 for a stationary object, a necessary condition for a 

stereo image feature to belong to a stationary object is i w — Tz. Thus, any stereo image 

feature with a z significantly different than — Tz is processed as belonging to a moving 

object 4. 
4The sensor velocity Tz can be estimated from the extended sensor motion (section 4.4), if it is 

available. Tz can also be approximated by the vehicle speed if the vehicle is travelling along the z-axis. 
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Another local measurement, namely depth, can be used to verify this image velocity-

based estimate of z. The change in depth at corresponding points in the temporal 

sequence can also be used to estimate z. If there is a significant difference between 

the image velocity-based and the depth-based estimates, then either an unstable point 

has been chosen or a correspondence error (stereo or temporal) has occurred. Such an 

estimate can be rejected. 

The above mentioned segmentation scheme is one step used to segment the image. A 

more detailed description of the segmentation (seeding) process appears in chapter 4. 

2.7 Est imat ing Three-dimensional Mot ion 

The previous sections described how the image velocity field is generated by the three-

dimensional motion of an observer in a rigid environment. This section reviews various 

techniques for solving the inverse problem: estimating the three-dimensional motion from 

an image velocity field. 

The image velocity can be calculated directly from the three-dimensional motion 

parameter, as shown in (2.74): 

=-?lC(x,y)T + D(x,y)ti. (2.74) 

The inverse problem can be solved if there is a degree of coherence in the image ve­

locity field. If rigidity assumptions are valid, and all objects in the scene are moving 

at a common velocity 5, the three-dimensional motion parameters can be estimated by 

minimizing the difference between the measured image velocity field and the field that 

would be induced by the three-dimensional motion. If an image velocity field (containing 

5A group of stationary objects fulfill both the rigidity and common velocity assumptions. 

Vy 
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N flow vectors) is available, the least square solution is obtained by minimizing 

N 

Piv — 2—i ei 
t = l 

where 

d = 
V, 

V(l 

+ ^-C(x,y)T-D(x,m-

(2.75) 

(2.76) 

If only normal image velocity measurements are available, the least square solution is 

obtained by minimizing 
N 

rniv — / j ei 5 

i = \ 

where 

e,- = Vn(i) - J2 
T 

(2.77) 

(2.78) 

The summations in the above equations include selected points in the image velocity field 

(or set of normal image velocities) that are believed to belong to stationary objects. The 

selection is done by pre-segmenting the velocity field or by assuming that all objects are 

stationary. The accuracy of any assumptions is indicated by the size of the residual, r,„ 

or rniv: a large residual indicates errors. 

The image velocity is a non-linear function of depth, translation, and rotation. Most 

methods for determining the three-dimensional motion attempt to create a linear problem 

by assuming (or measuring) the translation, or by assuming (or measuring) the depth. 

Methods based on assumed values use the residual to determine the "goodness of fit" to 

the measured image velocity field. 

Many image velocity-based methods use only one camera to estimate sensor motion. 

Monocular solutions, however, can only determine the translation and the depth up to a 

scale factor. From (2.74), it can be seen that an image velocity field produced by a given 

translation and depth is identical to the image velocity field produced by doubling both 
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the translation and the depth. As a result, monocular implementations attempt to find 

the direction of translation or the structure of the scene (the depth of an object relative 

to its neighbours). 

A number of researchers use the Hough transform to determine the direction of trans­

lation [2] [12] [28]. The space of possible directions of translation is sampled. The 

residual for each candidate direction is calculated by the implicit (using complementary 

subspaces) selection of a sensor rotation and scene structure that best fits the measured 

image velocity field. The direction of translation (or set of directions) producing the 

smallest residual (or near smallest set) is accepted as the actual direction. Once the di­

rection of translation is specified, the the rotation is determined by examining the portion 

of the image velocity field that is orthogonal to the translation-induced field. The direc­

tion of each image velocity vector is required to obtain the orthogonal component. Thus, 

the image velocity field must be estimated; the normal image velocity measurements are 

not sufficient. 

The alternative approach is to assume or measure the depth of the scene. If the depth 

is known, the three-dimensional motion can be solved using a least square solution that 

is based on the normal image velocity measurements [31] [33]. If only the parametric 

form of the scene structure is known, it is possible to iterate to a solution. Parametric 

structures include planar and quadratic surfaces. For the case of planar scenes, the surface 

normal is iteratively updated until a good fit with the set of normal image velocities is 

obtained [45]. For quadratic surfaces, a set of surface parameters are selected as starting 

points for the iterative process [33]. All of the known depth methods use a set of normal 

image velocities instead of the image velocity field. Approaches that use the normal 

image velocity are referred to as "direct methods," because the image velocity field is not 

estimated as an intermediate stage. 

It can be seen from the above discussion that there is a tradeoff: either the depth of the 
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scene must be measured, or the image velocity field must be estimated. In this work, the 

known depth case of the direct methods is used. The stereo cameras are used to measure 

the depth of selected features. The stereo correspondence problem exists, and it is often 

cited as a motivation for choosing the monocular approaches. Although correspondence 

errors are possible, the effect of such errors can be reduced using error estimation and 

outlier testing. The known depth method and the normal image velocity-based outlier 

test (Mahalanobis distance) are described in chapter 4. 

2.8 Summary 

This chapter has reviewed various aspects of stereo camera-based motion estimation. The 

two most important aspects are: the geometric properties of image formation for the case 

of a moving object and a moving sensor; and how to exploit these properties to estimate 

the object and sensor motion. It was shown that the sensor motion induces global changes 

to the image velocity field and that object motion induces localized changes to the image 

velocity field. Localized parameters, such as the depth and the time-to-collision, are 

used in the segmentation process to identify moving objects. After segmenting the image 

into moving and stationary objects, image measurements (normal image velocity and 

disparity) belonging to stationary objects are combined to obtain an estimate of the 

sensor motion. 

The stereo image sequence provides sufficient information to perform obstacle de­

tection. The stereo images provide the depth that is required for direct sensor motion 

estimation. With the depth information, there in no scale ambiguity in the sensor trans­

lation estimate that is typically associated with monocular camera systems. Even if 

the sensor motion is known, stereo cameras provide better depth estimates than the 

monocular counterpart. The forward motion of a monocular camera system produces a 
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singularity for depth estimation at the focus of expansion. In addition, monocular camera 

systems are not suited for concurrent estimation of depth and object motion. Concurrent 

estimation is not a problem for stereo configurations. Finally, the stereo image velocity 

fields provide local quantities that are used to identify moving and stationary objects; 

they provide the initial segmentation of the normal image velocity set. Thus, the stereo 

image sequence makes estimation of three-dimensional sensor motion simple and reliable, 

as well as providing the local information needed to estimate the object motion. 



Chapter 3 

Measuring Normal Image Veloc i ty and Dispar i ty 

In this chapter, techniques for measuring normal image velocity and disparity from a 

stereo image sequence are discussed. The basis of these techniques is the Gabor filter 

whose magnitude and phase responses are used to extract interesting features, estimate 

disparity, and estimate normal image velocity. Before proceeding with the Gabor-based 

methods, a general overview of measuring image properties is presented. 

3.1 General Overview 

This section reviews the general requirements for measuring normal image velocity and 

disparity. The characteristics of image features that are suitable for measuring normal im­

age velocity or disparity are discussed. An approach for establishing the correspondence 

of image features over time and viewpoint is presented. A combined feature matching-

phase gradient approach to measure normal image velocity and disparity is recommended. 

3.1.1 Interest ing Image Features 

An image region comprises a group of pixel intensities whose spatial distribution forms 

a brightness pattern. This subsection discusses different types of brightness patterns: 

omni-directional features, uni-directional features, and textureless regions. The omni­

directional and uni-directional features are suitable references for measuring image dis­

placement; the textureless regions provide no motion information. These brightness 

patterns are characterized by the magnitude and distribution of spectral energy within 

51 
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the image region. 

A camera image is a projection of a physical scene. The physical scene contains 

changes in surface properties (such as depth, texture, reflectance) that are projected 

as brightness patterns onto the image. Both the brightness pattern and its physical 

source (changes in surface properties) are referred to as a "feature." If there is a need to 

discriminate between the two types of features, the brightness pattern will be referred to 

as an "image feature;" the change in surface property will be referred to as a "physical 

feature." 

Interesting features are selected from the stereo image sequence to measure the posi­

tion and velocity of objects. For the purpose of obstacle detection, an interesting feature 

is a distinct region on an object that is easily found in images. The interesting feature 

should be detectable in a set of images that differ slightly in time or viewpoint; that is, 

the feature must be stable with respect to image deformations caused by sensor/object 

motion or by the stereo camera separation. These features become references that can 

be used to measure inter-frame displacements over time or viewpoint. 

A region in an image must have some variation in pixel intensity in at least one 

direction to be distinct enough to be a feature. A good feature has significant intensity 

variations in orthogonal directions. Directional intensity variations can be measured 

using information from the spectral (Fourier) domain. By applying a two-dimensional 

Fourier transform to a local region of an image, the frequency and orientation of the 

dominant modes of intensity variation are made explicit. In this work, the dominant 

modes within a local region are made explicit using a Gabor representation of an image. 

A region must have multiple modes, containing at least two (preferably orthogonal) 

orientations, to unambiguously resolve local motion. These regions (corners, crosses, T-

junctions) are referred to as "omni-directional features." Regions containing a single line, 

edge, or grating can not fully resolve local motion (aperture problem). These types of 
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regions have a single dominant spectral orientation, and are referred to as "uni-directional 

features." Uni-directional features are defined in the frequency domain in terms of the 

dominant spectral orientation. Note that the dominant spectral orientation of a uni­

directional feature is the same as the normal direction <f)n. Regions without intensity 

variations can not be used as references. These textureless regions do not contain enough 

spectral energy to locally resolve motion. 

In this work, a set of oriented bandpass filters, known as Gabor filters, is used to 

highlight uni-directional features (see section 3.2.2). A given image brightness pattern 

may appear in the output of a number of bandpass (Gabor) channels. In this work, 

multiple channel responses, produced by a wide bandwidth brightness pattern, are treated 

as separate uni-directional features. 

3.1.2 Measuring Feature Displacement 

This subsection discusses the measurement of feature displacement. The requirements of 

reliable feature correspondence are addressed. The gradient constraint equation, used to 

measure small displacements, is introduced. A combined feature matching-phase gradient 

approach is proposed. 

For a continuous image sequence, normal image velocity is the differential motion of 

a brightness pattern. In this work, the image sequences are discrete; thus, inter-frame 

displacements are measured instead of image velocities. Both disparity and normal image 

velocity can be described as inter-frame displacements. Disparity is the displacement of 

a feature over viewpoint; normal image velocity is estimated from the displacement of a 

feature over time. 

To measure inter-frame displacement, a correspondence between features in each im­

age must be formed. Once an interesting feature is identified in a given image, the 

matching feature must be found within the other image. A search of the set of features 
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will produce many potential matches. A method or set of criteria is needed to reduce 

the number of potential matches to one or zero. No match can be made if the feature is 

viewed by one image only. 

A method of reducing the number of potential matches is to provide a "rich" descrip­

tion of the feature. In this work, local attributes are assigned to a feature. Certain local 

attributes are stable with respect to changes in viewpoint or sensor/object motion: they 

include local magnitude and normalized moment of inertia (see section 3.2.2). Candidate 

matches with significantly different local attributes are rejected. 

A priori information can be used to reduce the number of potential matches. A 

priori information can be obtained from other Gabor channels, from past measurements, 

or from spatial constraints (see section 4.6.1). This information is used to predict the 

image position of the corresponding feature. A limited search around the predicted 

position is performed. The feature with the most similar local attributes is considered 

the corresponding feature. 

Although both normal image velocity and disparity measurements are based on inter-

frame displacements; the two cases differ. The size of the inter-frame displacement for 

a normal image velocity measurement is typically small, but the direction is unknown. 

For disparity measurements, the reverse is true: the inter-frame displacement is typically 

large, but the direction of displacement is known (due to the epipolar constraint). The 

remainder of this section will address these two cases. 

When the inter-frame displacement of a feature is small, gradient-based techniques 

can be used. The gradient-based approach uses the partial derivatives of local image 

measurements to constrain image velocity field [5]: 

8c 8c 8c , 
e- = Jlv* + Jiv> + 7t=0' (X79) 

where c is a candidate function based on local image measurements. Possible candidate 
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ux = 

w * = 

w< = 

Sx"1 

8c 

8f 
6c 

It' 

functions include intensity, contrast, entropy, average, and directional derivatives [5]. In 

this work, the local phase of a bandpass (Gabor) filtered image is used as the candidate 

function. 

The partial derivatives of phase are equivalent to the local image frequencies in each 

spatial/temporal direction: 

8C (3.80) 

(3.81) 

(3.82) 

The spatial phase derivatives, ux and u^, can be written in terms of the normal image 

direction n: 

[ux u$] = u>nn
T, (3.83) 

where 

^n = H + 4}0-5. (3.84) 

From (3.79) and (3.83), it can be seen that the normal image velocity, speed and direction, 

is given by [22] [23] 

K = - — , (3.85) 

tjj-

cos</>„ = — , (3.86) 

sm<f>n = ^-. (3.87) 

The basis of the gradient method is the constraint equation (3.79). Equation (3.79) 

is derived from the assumption that the candidate function c at the image point (x,y) 

and time t has the same value after it moves to the image point (x + Ax, y + Ay) at time 

t + At; that is 

g(x + Ax, y + Ay, t + At) = g(x, y, t). (3.88) 
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If the left hand side of (3.88) is approximated by a first-order Taylor expansion about 

(x, y, t), a variation of (3.79) is obtained: 

8c K „ 8c A ^ 8c A , 

MA*+fjA» + « A < R , ° - <3-89> 
The accuracy of (3.89) depends on the size of the higher order terms in the Taylor 

expansion. The higher order terms are dependent on the characteristics of the candidate 

function to motion-induced deformations, such as image translation, image dilation, and 

image rotation. In this work, the phase is chosen as the candidate function because it is 

stable with respect to image deformations associated with sensor/object motion [23]. 

The phase gradient approach is designed to measure small motions. The maximum 

measurable image displacement, Vn At, is limited by phase wraparound. Since the phase 

is modulo 27r, the phase difference is restricted: 

- « < A9 < IT. (3.90) 

Thus, the measurable image displacement is limited to 

\Vn At\ < \^^A = JL, (3.91) 

Features undergoing larger image motions will be aliased. Even if the phase is unwrapped, 

the motion between successive images may be larger than the spatial extent of the filter. 

To accommodate large motions, the spatial portion of the filter must be moved with the 

feature. If the spatial portion is moved along a predicted trajectory, the phased-based 

image displacement would measure the prediction error. In this work, large (but coarse) 

motion is obtained using a feature matching approach; the residual error is estimated 

using a gradient-based approach. The magnitude response of a bandpass (Gabor) fil­

tered image is used for feature matching, and the phase response is used in the gradient 

approach. This approach is referred to as a "combination method" because it uses both 

feature matching and gradient-based techniques. 
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The combination method is ideal for measuring disparity in stereo images. The coarse 

estimate of disparity produces an offset along the epipolar line that effectively aligns the 

left and right images. This "epipolar offset," denoted by E0ffaet, tunes the stereo cameras 

to a preferred depth 1: 

Zo = - ^ _ . (3.92) 
^offset 

The residual error, measured using the phase gradient approach, is referred to as the 

"relative disparity." The relative disparity, denoted by drei, is obtained using the following 

constraint: 

dreiuJi + (OR - OL) = 0, (3.93) 

where 9R and 0t are the local phase at corresponding points in the right and left images, 

respectively. The measured disparity is given by 

dx = ^offset + drei. (3.94) 

3.2 Us ing the Gabor Representat ion to Process Images 

This section introduces the Gabor representation. It shows how the local magnitude 

information is used to select interesting image features, and how local phase differences 

are used to estimate local spatial frequency. The local magnitude and phase are also 

used to implement a combined feature matching-phase gradient approach for extracting 

both disparity and normal image velocity. 

3.2.1 Gabor Representat ion 

This subsection discusses aspects of the Gabor representation: the Gabor function, the 

log-polar set of Gabor filters, and the spatial sampling lattices. It also discusses how the 

1The epipolar offset only alters the relative position of the origin for the left and right images; it does 
not affect the the baseline separation or the viewing direction of the cameras. 
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local magnitude and phase are measured. 

The Gabor representation is a joint position-frequency representation of an image. 

There are two commonly used versions: the Gabor expansion [9] [14] [15] and the Gabor 

filter [1] [20] [27] [50]. The expansion decomposes an image into a weighted sum of Gabor 

functions; the filter method convolves an image with a set of Gabor functions. The Gabor 

filter method is used in this work. 

Gabor Funct ion 

The following paragraphs describe the Gabor function: the kernel used in a Gabor filter. 

The spatial and spectral characteristics of the Gabor function are discussed. The un­

certainty constraint, which illustrates the trade-off with respect to spatial and spectral 

localization, is reviewed. 

The basis of the representation is the Gabor function [13] [24]. In two-dimensions, it 

is a frequency-modulated elliptical Gaussian window given by 

Gi = g(x, y)cos[ux + vy + p], (3.95) 

where 

g(x,y) = exp-7r[(*y + (JLy], (3.96) 
a cto 

( i , y) = (£ cos (j>o — y sin <f>a, x sin 4>Q + y cos <f>a). (3.97) 

The variables u and v represent the frequency of the modulating wave in the x and 

y directions, respectively. The phase of the modulating wave relative to the spatial 

centroid of the Gaussian window is denoted by p. (x, y) represents a position in a rotated 

coordinate system; <J>G is angle of rotation for the elliptical Gaussian window relative to 

the z-axis. The final two variables, a and a, are the aspect ratio and the scale of the 

elliptical Gaussian window. In this work, the frequency variables u,v are defined in polar 
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form: 

Co = (u2 + v2)0-5, (3.98) 

4> = a rc tan[ - ] , (3.99) 

where u and <̂  are the frequency and orientation, respectively, of the modulating wave. 

In addition, the rotation of the elliptical Gaussian window is constrained such that one 

of the principle axes has the same orientation of the modulating wave (<f>G = 4>). 

Consider the case of a Gabor function whose spectral orientation is along the x-axis 

(<j) = 0). The Gabor function and its Fourier transform are shown in figure 3.8. The 

window of the Gabor function has a Gaussian shape in both domains; however, only 

one contour is shown in figure 3.8 for simplicity. Note that the Gabor function has 

a finite frequency and orientation bandwidth. As a result, the Gabor filter can only 

extract information within the passband centered about u>k and 4>\. The passband for 

quadrature Gabor filters is referred to as the "Gabor channel," and it is described by its 

center frequency, CJ and </>. 

With respect to energy, the Gabor function is localized in both the spatial domain 

and frequency domain [24] [13]. The effective frequency bandwidth Aa> and orientation 

bandwidth A<̂> are shown in figure 3.8. These bandwidths are given by 

27T 

Aw = — , (3.100) 
a 

~ 7T Ld'K 
A$ = 2arctan[ ] w . (3.101) 

OLUCJ aaCb 

The effective spatial extent in the x and y directions are given by 

Ax = a, (3.102) 

Ay = aa. (3.103) 
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Figure 3.8: Gabor Function and its Fourier Transform 
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From (3.100), (3.101), (3.102), and (3.103), it can be seen that the bandwidth and 

spatial extent for <f> = 0 are subject to 

AxACo = 2TT, (3.104) 

and 

Ay (uA4>) = 2?r. (3.105) 

Equations (3.104) and (3.105) are the uncertainty constraints for the Gaussian window. 

The uncertainty constraints shows that arbitrary resolution can not be achieved in both 

the spatial and frequency domains simultaneously. Choosing a scale (<r) and/or aspect 

ratio (a) that provides a narrow bandwidth will result in a wide spatial extent. It is 

possible to adjust the frequency bandwidth and the orientation bandwidth independently 

because (3.104) and (3.105) are not coupled. 

The above uncertainty constraints are valid for <f> = 0. For Gabor channels with other 

spectral orientations, the uncertainty constraint is denned in terms of rotated image 

coordinates: Ax and Ay are substituted for Ax and Ay, respectively. 

Log-polar Representat ion 

The following paragraphs describe the sampling of the joint frequency-position space for 

the log-polar representation. The frequency domain is sampled by selecting the frequency 

and orientations, as well as the bandwidths, of the Gabor filters. By using the minimum 

number of Gabor channels that maintain completeness, the selection of a filter set is 

reduced to the selection of two parameters. Within each channel, a spatial sampling 

lattice is chosen. The minimally complete spatial sampling interval is defined. 

A set of Gabor filters is defined by the selection of phases (p), orientations (<^/), 

modulation frequencies (&*;), scales (o^), and aspect ratio (a). The selection of these 

parameters is partially constrained because, in the log-polar representation, all Gabor 
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functions are rotation and/or dilations of each other [14]. Rotation is obtained by using 

the rotated spatial coordinates (x,y). This constrains the direction of a given spatial 

sampling lattice to be the same as the orientation of the Gabor function. Dilation requires 

that the scale of the Gaussian window be increased by the same factor as the modulation 

frequency is reduced; that is 

<?k = -erjk-i, (3.106) 
P 

&k = P&k-i. (3.107) 

Note that the frequency-scale product is constant; it is not affected by rotation or dilation. 

The inverse of this constant product is referred to as the "bandwidth-frequency ratio," 

and is given by 

' 2 T A*k (3.108) 

Since A is constant for the log-polar representation, defining the channel frequency also 

defines the channel bandwidth. 

Since a Gabor channel has a finite frequency and orientation bandwidth, it is necessary 

to use a set of Gabor filters to "completely" extract the image information. Completeness 

means that the output obtained from the Gabor filters provides sufficient information 

to uniquely reconstruct the image. The smallest set of Gabor filters that preserves 

completeness is referred to as a "minimally complete" set. 

If it is assumed that the filter set is minimally complete, the filter parameters can 

be systematically chosen. Two phases are sufficient for a minimally complete set. Each 

channel comprises a quadrature pair of Gabor filters. In this work, the phase for the 

quadrature pair is defined as p = ±j. 

In a minimally complete set, the angular difference between adjacent orientations is 

equal to the orientation bandwidth; that is 

^ - ' £ , _ ! = A4>. (3.109) 
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The orientation has a TT wrap-around making the orientations <j> and <f> + 7r dependent. 

Thus, the orientation bandwidth in the minimally complete set must be chosen such that 

A<^ = — , (3.110) 

where nr is the (integer) number of orientations in the filter set. In the log-polar repre­

sentation, the orientation bandwidth is the same for all Gabor functions; the orientation 

bandwidth is not affected by rotation or dilation. 

In the minimally complete set, the difference between adjacent modulation frequencies 

is given by 
Auk + A£fc_x 

w*-<*;*_! = . (3.111) 

Combining (3.100), (3.101), (3.107), (3.110), and (3.111), it can be seen that the fre­

quency multiplication factor p is given by 

^ro + r* 
2wa — n$ 

Once p is defined, the set of modulation frequencies and scales are defined by the selection 

of a base frequency CJQ and A. 

From the previous equations, it can be seen that there are four important constants 

used in forming a set of Gabor filters: nr, a, p, and A. The minimally complete frequency 

spacing of the Gabor channels is defined by the selection of nr and one of a, p, or A. 

A Gabor filter will oversample the spatial domain; an output is produced at each 

pixel location of the image. If minimal completeness is enforced in the spatial domain, 

the sampling interval in the x and the y (rotated axes) directions are determined by the 

respective spatial extents; that is 

xn - z„_i = Axk = ak, (3.113) 

Vm - Vm-i = Ayfc = aak. (3.114) 
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Figure 3.9: Spatial Sampling Lattices 

The set of spatial sample points (xn,ym) is referred to as the "spatial sampling lattice" 

for the channel Uk, <$>\. 

Each Gabor channel has its own spatial sampling lattice. The shape of the lattices 

vary with the frequency and orientation of the channel. It can be seen in figure 3.9 that 

higher frequency channels have higher spatial resolutions. It can also be seen that each 

lattice is rotated to match the orientation of the Gabor channel. The spatial sampling 

lattice is discussed further in section 3.3. 

Local M a g n i t u d e and Phase 

This paragraph discusses how the local magnitude and phase are measured- A Gabor 

filter produces a coefficient a() at each lattice point (xn,ym): 

a(xn,ym;&k,<i>i,p) =11 I(x,y)Gi(x - xn,y- ym;uk,^i,p)dxdy. (3.115) 
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The coefficients from quadrature Gabor filters are used to calculate a magnitude and 

phase which is localized about x,y in the spatial domain and &k,<f)i in the frequency 

domain. The local magnitude for the channel ujk, <j>i is given by 

m(x,y;uk^i) = [a(x,y;u;k,<j>hp)2 + a(x,y;uk, 4>i,P + gOT'5'• (3.116) 

The local phase is given by 

5(x,y;wjfe,0/) = axctanl t n—~—f-\. (3.117) 

a{x,y;uk,(t>hp) 

The output of each Gabor channel forms a magnitude and a phase map. The set of maps 

provide a multiscale, multiresolution representation of the original image. 

The magnitude and phase are used in subsequent subsections to extract image features 

(section 3.2.2), to estimate local image frequency (section 3.2.3), and to measure inter-

frame displacements (sections 3.2.4 and 3.2.5). 

3.2.2 Select ing Interest ing Features 

This subsection discusses how the local magnitude is used to extract uni-directional and 

omni-directional features. Three thresholds are applied to a magnitude map. The omni­

directional features are identified using the normalized moment of inertia. 

The Gabor representation makes interesting features explicit. The magnitude re­

sponse within a Gabor channel represents the significance of the feature. A good feature 

will produce a large local magnitude. 

In order to extract uni- and omni-directional features, large magnitudes must be 

identified in each channel. In this work, three thresholds are applied to the magnitude 

response to detect significant values. The first threshold is based on the absolute magni­

tude. It defines the minimum magnitude to be considered a feature. This threshold can 

be selected as a fraction of the maximum magnitude or as a multiple of the noise level. 
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The second threshold is based on the local magnitude at a given lattice point relative to 

its spatial neighbours. It rejects the hypothesis that a lattice point contains a significant 

image measurement (a feature) if one of its spatial neighbours has a large magnitude. 

The third threshold compares the local magnitude response in neighbouring channels. It 

is based on the relative magnitude of a potential feature viewed through channels with 

neighbouring orientations, but common frequency. A large magnitude in channel <̂ i at 

spatial coordinates (x, y) inhibits the instantiation of a feature in channels <̂ 0 and <$>i at 

(*» y)-

Omni-directional references can be found by combining the magnitude responses from 

all orientations 2. If, at a point (x,y), the magnitude responses display significant spectral 

energy in different (preferably orthogonal) orientations, then the local region is an omni­

directional feature. The minimum normalized moment of inertia is an estimate of the 

variance in the orientation of the local region's spectral energy. An omni-directional 

feature has a high normalized moment of inertia. 

The normalized moment of inertia for the orientation fa is given by [9] 

I(x,r,Uk) = 2^ n s i n [ ^ / - ^ r ] , (3.118) 

where 

Ci(x,y;wk) = ^2m(x,y;cbk,^i). (3.119) 

The minimum moment of inertia is obtained by substituting the following orientation 

into (3.118): 

^ = 0.5 arctan S i " ( * , & * * , ft) ™ t f i . ( 3 . 1 2 0 ) 

E;m(x,y;a)fc,^;)cos2^/ 

The minimum normalized moment of inertia is limited to an interval given by 

0<I(x,y;uk)<0.5. (3.121) 

2Interpolation is required because the spatial lattices from different Gabor channels are not aligned. 
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A uni-directional reference has a minimum normalized moment of inertia near zero; for 

an omni-directional reference, I(x,y;&k) is near one-half. 

3.2.3 Measuring P h a s e Differences 

This subsection discusses how the phase difference between lattice points is measured. 

The phase difference is used to estimate the local frequency and the expected frequency 

error. Criteria for identifying phase measurements that are likely to be unstable with 

respect to image deformations induced by sensor/object motion are established. The 

sensitivity of the phase difference measurement to image noise is discussed. 

The local spatial frequency and small inter-frame displacements are estimated using 

phase differences. The local phase difference is given by 

M = 61-O0 = arctan MP)«I(P + V - ai(p)a0(p + z) 
a1(p)a0(p) + a1{p+^)a0(p + ^y V ; 

where the ai(p) and a0(p) are coefficients at lattice points 1 and 0, respectively, obtained 

from a Gabor filter with phase p. For the case of local frequency estimation, the two lattice 

points belong to the same channel, and the same image. For inter-frame displacements, 

the lattice points belong to to the same channel, but different images. Discussion of the 

inter-frame displacements can be found in later subsections on Gabor-based disparity 

(section 3.2.4) and normal image velocity (section 3.2.5) estimation. 

The local spatial frequencies, u>£ and ujy, are estimated using the average phase shift 

between the lattice point (xn,ym) and its spatial neighbours along the x and ?/-axes, 

respectively; that is 
An \a 

u . = 0,5[ y r l + _ • : ], (3.123) 
•^n %n—l *^n+l *n 
A/9 Af) 

•5[- ~ + ~ —U (3.124) 
Vm — Vm-1 Vm+1 — Vm 

where 

A0„,n_i = 8(xn, ym) - 9{xn_u ym). (3.125) 



Chapter 3. Measuring Normal Image Velocity and Disparity 68 

The difference between the two phase shifts is used to measure the expected frequency 

error in the x and y directions: 

\Aux\ = 1 Myr' - ,A0n+y. I, (3.126) 

lAa;̂  = 1 A ^ - 7 ~ 1 _ A^m+17 |. (3.127) 
Vm — Vm-1 Vm+1 — Vm 

The expected frequency errors, Aojj. and Au>g, are used to estimate the expected error in 

disparity and normal image velocity. 

The expected frequency error is one measure of phase stability with respect to small 

image deformations. The phase is generally stable throughout the image. There are some 

image regions, referred to as "phase singularity neighbourhoods [21]," where the phase 

is not stable. When the expected frequency error is large, the gradient-based estimate 

of the inter-frame displacement will be unreliable; the assumption that the higher-order 

phase terms in the Taylor expansion are negligible is invalid. 

The difference between the local frequency and the channel frequency is also used to 

detect phase singularity neighbourhoods. Although the local frequency un is generally 

different than the channel frequency Uk, the difference should not be much larger than 

half the bandwidth of the filter. Consider the case of an image filtered using a Gabor 

function modulated along the x-axis, that is, <f>\ — 0. The ratio of the x frequency 

difference and the effective bandwidth of the Gabor filter is given by [21] 

Ao)* 
Tw(x) = — — . • ( 3 . 1 2 8 ) 

The ratio of the orthogonal frequency difference and the effective bandwidth (in the y 

direction) is given by 

T ^ " A 3 T (3J29) 

In this work, an image region is removed from the active feature list if either 

Tu(i) > 0.5, (3.130) 
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or 

r„m > 0.5. (3.131) 

Note that the above constraints are valid for <fn = 0; rotated coordinates are used in 

(3.128) and (3.129) when fa ^ 0. 

The measurement of the local frequency imposes a new requirement on the spatial 

sampling interval. The local frequency is estimated using the phase change between 

lattice points. The spatial lattice must be oversampled (with respect to the minimally 

complete spatial sampling interval) to ensure that all frequencies within the channel 

passband can be measured. To avoid aliasing, the phase change between the reference 

lattice point and its neighbours must be less than ±7r. The demodulated phase change 3 

between adjacent lattice points in the direction of modulation is given by 

AOdemod = (U£ - &k)Axs, (3.133) 

where Axs is the sampling interval along the i-axis. To ensure that |A#demod| is less than 

a chosen threshold, 0O, for all 

| a , f - u > f c | < ^ p L , (3.134) 

the lattice spacing Axs must be constrained: 

Axs < J ^ L = - ^ . (3.135) 

The phase change between adjacent lattice points that are orthogonal to the modulation 

is given by 

A0 = c^ Ays, (3.136) 

3The phase response is demodulated before measuring A0. The conversion from the demodulated 
phase derivative to local image frequency along the i-axis is given by 

w*«Wjfc + — — — . (3.132) 
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where Aya is the sampling interval along the y-axis. The constraint on the lattice spacing 

Ays that ensures that \A9\ < 0o, for all 

is given by 

K l < ^ (3-137) 

Ays<
2-^ = J ^ . (3.138) 
A u k u>k(A<f>) V ' 

A good choice for the threshold phase is 0o = -|. 

The relative magnitude between adjacent lattice points can be used to determine if the 

frequency measurement is aliased or is being influenced by neighbouring image features. 

Consider an edge whose normal is parallel to the i;-axis. Assume that it passes through 

the reference lattice point. If there are no other significant features in the neighbourhood, 

the magnitude at the adjacent point in the modulation direction will be attenuated: 

rm(£)(edge) = — - = exp[ -a f c (Ai s ) 2 ] , (3.139) 
mo,o 

where 

« , = ^ £ , (3.140) 

and rriij is the magnitude at a lattice point that is offset from the reference point by 

(iAxs, jAys). The relative magnitude rm(fj can be less if the edge does not pass through 

the reference point. Consider an edge that passes to the left of the reference point by 

^ i . The relative magnitude between the reference and the right adjacent point is 

rmmled9e,mc) = g j l f f ^ g j = exp[-2a i ( Ax,)>] , (3.141) 

where (edge, wc) denotes the worst case attenuation for an edge. 

A similar attenuation exists for adjacent lattice points in the orthogonal direction. 

Consider an edge whose normal is tilted relative to the modulation direction of the 
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Gabor channel. The largest tilt within the channel bandwidth is -$•. For such a case, 

the attenuation is given by 

rm W ) («feC , wc) = ^ 1 = e x p [ - p | ( ^ ) 2 ] . (3.142) 
mo,o 47rar lot 

The above-mentioned attenuations are valid for the special case of a edge. Most 

uni-directional features, such as sine wave gratings, will experience less attenuation. A 

magnitude test that identifies local frequency estimates that are aliased or are influenced 

by neighbouring image features can be formed. If the relative magnitude (for a uni­

directional feature) is defined as 

/ -x . r
m l , 0 m 0 , 0 i , 0 , , 0 x 

i~m(x){um) = mm , , (3.143) 
™o,o rnlfi 

Tm(y){uni) = m i n [ — - , — - I . (3.144) 
"^o,o rn0,i 

then the test for valid phase change measurements are given by 

Tm(x)(edge,wc) < Tm(x)(uni) < 1.0, (3.145) 

Tm(y)(edge,wc) < Tm^)(uni) < 1.0. (3.146) 

Adjacent points whose relative magnitude does not satisfy the above constraints are 

rejected. 

The local frequency is estimated using the average of two phase changes. If one 

of the phase changes is rejected, the local frequency can still be estimated using the 

remaining measurement. The expected error for the local frequency is set equal to half 

the channel bandwidth in this case. If both phase changes are rejected, the feature is 

consider unstable and is removed from the active feature list. 

The expected frequency error is used in sections 3.2.4 and 3.2.5 to estimate the ex­

pected disparity error and the expected normal image velocity error, respectively. The 
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expected error in the phase shift for the inter-frame displacement is also used. An expres­

sion for the expected inter-frame phase error, obtained using sensitivity analysis, appears 

below. 

The sensitivity of (3.122) to errors in the Gabor coefficients is given by the following 

derivatives: 

8A6 a 0 ( p + j ) 
So^ = JMP)= n^F"' (3-147) 

8 Ad a i ( p + f ) ( . Sl{p) = MS = ~~M- ' (3,148) 

where 

m = [a\p) + a\p+-)]°\ (3.149) 

The error in the local phase difference (SAO) due to errors in the Gabor coefficients (8a) 

is given by 

[tf(A*)]a = 5 o 2 ( p ) ^ ( p ) + 5 o 2 ( p + | ) ^ ( P - r ^ ) + 5 1
2 ( P ) ^ ( P ) + 5 ^ P + | ) ^ 1 ( P + ^ ) - (3-150) 

If it is assumed that the error in the Gabor coefficient is due to in-channel noise whose 

power is denoted by OQ, the error in the local phase difference is approximately given by 

8(A9) « 2<7G . (3.151) 
v ' mo + rri! y J 

Thus, given a model of the image noise within the Gabor channel, the expected inter-

frame phase error can be estimated. Note that the expected inter-frame phase error is 

inversely dependent on the signal-to-noise ratio of the filtered image. 

3.2.4 Dispari ty 

This subsection discusses how disparity is measured using Gabor filters. An oversampled 

lattice is proposed to extend to measurable range of depths. Criteria for rejecting incor­

rect feature matches are established. The expected error in the disparity measurement 

is estimated. 
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The use of stereo disparity to calculate depth was reviewed in chapter 2. It was shown 

that the disparity for parallel stereo cameras is constrained to the epipolar line. In this 

work, only the Gabor channels whose orientation is along the epipolar line are used for 

estimating disparity. These channels are referred to as the "epipolar channels." 

Disparity is measured by comparing maps from the same channel, but from the left 

and right images. Once corresponding lattice points are identified in the left and right 

images, the relative disparity is measured using the phase difference: 

drel = ^ M , (3.152) 

where A9itR is the phase difference between the left and right images. Because of the 

epipolar constraint, only the x component of the local frequency is estimated; u>$ is not 

required. 

The range of measurable depths for (3.152) is limited. Since the local phase difference 

is modulo 27r the measurable disparity is restricted to 

- — < drel < — . (3.153) 
ux U)x 

This interval, referred to as the "disparity interval," is dependent on the local frequency 

of the filtered image. Since ux ~ Uk (see (3.128)), the disparity interval will be very small 

for high frequency channels. 

The range of measurable depths can be extended by selecting a set of epipolar offsets 

with overlapping disparity intervals. The epipolar offsets can be chosen as multiples of 

the spatial sampling interval (Axs); that is 

Eo/fset = n0Axs, (3.154) 

where n0 is a non-negative integer. In such a case, a set of epipolar offsets can be achieved 

by matching a lattice point in the right image with incremental lattice points in the left 
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image. To ensure that the disparity intervals overlap and to avoid phase wraparound, 

the spatial domain is oversampled along the epipolar line. If adjacent spatial samples are 

separated by a phase shift of 7r (with respect to the channel frequency, &fc), the sampling 

interval is given by 

Ax, = ^-. (3.155) 

Multiple disparity intervals produce a set of possible depths: the correct depth, and 

many aliased depths. Aliased depth estimates must be identified and rejected. There a 

number of constraints and measures that can be used to reject unlikely depth estimates: 

the disparity is positive (for parallel stereo cameras); the best match should have a small 

phase shift; and the local magnitude and normalized moment of inertia are similar at 

corresponding points. 

The cameras can only view objects that are in front of them. As a result, the disparity 

for parallel stereo cameras is always positive. Candidate matches with negative disparities 

are identified as aliased and are rejected. 

The phase difference can be used to reject bad matches. If the spatial domain is 

oversampled to satisfy (3.155), corresponding lattice points will usually have a phase 

shift that is less than £. The largest phase shift, accounting for the finite bandwidth of 

the Gabor channel, is restricted to 

| A 0 | < | ( 1 + ^ ) . (3.156) 

Any potential match with a phase shift exceeding (3.156) can be rejected. If there are 

two neighbouring disparity intervals that satisfy (3.156) and the other matching criteria, 

the interval with the lower phase shift is the better match. 

Differences in the local magnitude between stereo images can be used to detect alias­

ing. Consider as an example a scene that consists of a dark spot on a light coloured wall. 

The spot become a reference feature when the scene is viewed by stereo cameras. If the 
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centroid of the spot coincides with a lattice point in the right image, the spot will be 

displaced from the corresponding lattice point in the left image by the relative disparity 

dTei. The spot produces the maximum magnitude response in the right image, and an 

attenuated response in the left image. The attenuation in the local magnitude 4 is given 

by 
• r "*f l (g ,y) mL(x,y) ,drel 2 , „ . _ 

rR,L = min[ ——-, ——•] = exp -TT( ) . (3.157) 
mL(x,y) mR(x,y) ak 

The disparity interval containing the correct depth produces a large rRjr,, near unity. If 

TR,L is small, then the relative disparity is too large and the depth estimate is identified 

as aliased. 

If the relative disparity is small enough such that aliasing does not occur, (3.157) can 

be rewritten in terms of the local phase difference: 

VR,L = exp[-7rA 2 (—) 2 ] . (3.158) 

Since the onset of aliasing occurs at \A6\ = 7r, 

TRJL < raiias = exp[-7r(-) 2] (3.159) 

indicates an aliased measurement 5. 

Differences in the normalized moment of inertia can also be used to detect aliasing. 

The normalized moment of inertia is more difficult to use as a matching criterion than 

local magnitude. In this work, heuristic thresholds are used to identify uni-directional 

features and omni-directional features. A uni-directional feature is given by I < 0.3; 

an omni-directional feature is given by / > 0.4. Any potential pairing that at tempts to 

match a uni-directional with an omni-directional features is rejected. In this work, the 

normalized moment of inertia is used only in the E0ffset histogram described in chapter 

4. 
4It is assumed that the gains of the stereo cameras are matched. 
5A tighter bound can be obtained by using |A^maa; | = ^(1 + -|) instead of n. 
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The above criteria are used to reject bad matches. Even after applying these con­

straints, more than one potential match may still exist. Information from other sources is 

used to select the correct disparity interval. A priori information sources include disparity 

estimates from the lower frequency channels and from past images. The use of a priori 

prediction for feature correspondence is discussed in chapter 4. Note that the E0ffset 

histogram mentioned in the previous paragraph is used when no a priori information is 

available. 

It is desirable to model the accuracy of the disparity measurement. The error in a 

disparity measurement is given by 

8dx = (Eoffset -E) + SdreU (3.160) 

where E is the selected epipolar offset, and 8dTei is the error in the relative disparity. The 

disparity estimate has two primary sources of error: an incorrect epipolar offset or an 

inaccurate estimate of the relative disparity. An incorrect epipolar offset, or equivalently 

a correspondence error, is usually large and difficult to model. If the image feature is 

moving, the correspondence error will be identified in later stages of processing, during 

the velocity-based outlier test (Mahalanobis distance in chapter 4). Errors in the relative 

disparity are primarily due to inaccurate estimation of the local frequency OJX and due to 

noise OQ. The model of the relative disparity error is given by 

(6drel)
2 « (dlt) ( ^ ) 2 + ( f£ ) ' [0 .5 (m„ + mL))-\ (3.161) 

where mi, and TUR are the local magnitude of the left and right images. Equation (3.161) 

is used in chapter 4 as the expected disparity error. 

3.2.5 Normal Image Veloc i ty 

This subsection discusses the Gabor-based estimation of normal image velocity. The 

matching criteria established for disparity measurements are reformulated for normal 
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image velocity. The expected error in the normal image velocity measurement is esti­

mated. 

Measuring normal image velocity is similar to measuring the disparity except that the 

direction of image motion is not known. As a consequence, both the x and y components 

of local frequency must be estimated. Normal image velocity measurements are obtained 

from each channel. The Gabor channels whose orientation is not along the epipolar line 

are referred to as "oblique channels." A special case is the channel whose orientation 

is orthogonal to the epipolar channel. This channel is referred to as the "orthogonal 

channel." 

Normal image velocity is measured by comparing maps from the same channel, but 

from successive images in an image sequence. To measure normal image velocity, we need 

the normal direction ((f>n), the local frequency along the normal (u}n), and the temporal 

frequency (u;t). The normal direction, with respect to the epipolar line, is defined as 

<pn = arctan —- = q>\ + arctan — . (3.162) 

The local frequency along the normal direction is given by 

un = [u>l + ul]0-5. (3.163) 

The local temporal frequency, ut, is measured using the phase shift of corresponding 

points from two successive images: 

where 

At = ti-ti_1. (3.165) 

If there is no lattice offset between the corresponding lattice points, the normal image 

velocity is obtained by substituting u>t and un into (3.85). If there is a lattice offset, the 
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normal image velocity is given by 

Vn = % 2 * cos 4>n + % ^ sin <t>n--, (3.166) 
Ar At un 

where x0ffset
 a n d Voffset are the lattice offsets along the x- and y-axes, respectively. 

As in the case of disparity, the spatial domain must be oversampled. In this work, a 

lattice sampling interval of 

Axs = ^- (3.167) 

is used. It will ensure that some x0ffset exists such that A0(£,-) does not experience phase 

wraparound. The y direction is also oversampled: 

Ay s = ™. (3.168) 

The lattice offset between corresponding lattice points is obtained using a hypothesis-

test approach. The lattice offset is predicted from the current estimate of sensor motion. 

This estimate is based on information from lower frequency channels. At the lowest fre­

quency channel, the lattice shift is assumed to be zero. This assumption is acceptable 

because the phase-based estimator of image displacement covers a large spatial region for 

low frequency channels. Once a lattice offset prediction is made, the four nearest lattice 

points (in the corresponding image) are tested as potential matches. The matching crite­

ria is a subset of the disparity test: the local magnitude must be similar at corresponding 

lattice points; and the best match has a small phase shift. 

The accuracy of the normal image velocity and the normal direction can be estimated. 

The constraints (3.128) and (3.129) ensure that the local frequencies within a Gabor 

channel are approximately given by 

wf « wfc, (3.169) 

ut » 0. (3.170) 
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In such a case, errors in the normal direction and the normal frequency, due to errors in 

the local frequency (but not correspondence errors), are approximated by 

Hn ~ ^ , (3.171) 

8un^8u±. ' (3.172) 

The expected error in the normal image velocity, which include the effects of noise, is 

given by 

\2 ^ fUt \2r^Un^2 , /< 7Gx2rn K( , \12 (8Vn)
2 « (-^)\—Y + (^)2[0.5(mi + m 0)] 2 , (3.173) 

where m\ and ra0 are the local magnitude of the successive images. 

3.3 N o t e s on the Sampling Latt ice 

This section discusses further the spatial sampling lattice. The utility of a multiscale, 

multiresolution representation for measuring and predicting image displacements is dis­

cussed. Sampling schemes that reduce the size of higher frequency lattices are examined. 

The effect of spatial oversampling on the estimation of the inter-frame sensor motion is 

discussed. 

For the case of the log-polar representation, multiscale refers to a set of Gabor chan­

nels with different channel frequencies and different channel bandwidths; multiresolution 

refers to a set of lattice with varying sampling densities. Multiscale, multiresolution 

representations are useful for estimating disparity and normal image velocity. Both dis­

parity and normal image velocity is easily estimated using lower frequency channels. In 

low frequency channels, phase-based measurements of image displacement cover a large 

interval. In addition, low frequency channels contain a sparse number of lattice points 

which simplifies correspondence. The drawback of low frequency measurements is that 

the expected error tends to be large. 
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Lower frequency measurements can be used as a priori predictions of the more accu­

rate higher frequency measurements. Lower frequency disparity measurements provide 

a local constraint on the possible disparities in higher frequency channels. The lower 

frequency normal image velocity measurements are used to produce an estimate of the 

sensor motion; the sensor motion is subsequently used to predict the position of corre­

sponding features in higher frequency channels. The prediction of disparity and normal 

image velocity is detailed in chapter 4. 

The size of the spatial sampling lattices is large for high frequency channels. Both 

the size of the lattice and the sampling density increases with the square of the channel 

frequency. One may wish to restrict the size of the spatial sampling lattices of higher fre­

quency channels in order to reduce the memory and computational requirements. These 

lattice restrictions have utility only if they exclude image measurements that are unim­

portant or redundant. 

In autonomous vehicle operations, a stationary object near the sensor's focus of ex­

pansion will (eventually) obstruct the vehicle. To ensure reliable detection of stationary 

obstacles, lattice points near the sensor's focus of expansion must be retained. For the 

case of a forward translating sensor, the focus of expansion is near the image origin. 

Any lattice restrictions should retain the important samples near the image origin, and 

exclude periphery points. If the number of lattice points is fixed, the size of the region 

covered by the lattice is reduced as the channel frequency is increased. The restricted 

sampling lattice is shown in figure 3.10. 

One limitation of this restricted sampling lattice is that it considers only the detection 

of stationary obstacles, and not the requirements for disparity measurements. In the 

restricted lattice shown in figure 3.10, the maximum epipolar offset reduces as the channel 

frequency increases. As a result, many stereo correspondences will be lost. Without 

a disparity estimate, the associated normal image velocity measurement is useless for 
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• 

Figure 3.10: Restricted Sampling Lattice 

estimating sensor motion. 

An alternative approach is to use a band sampling lattice for the epipolar channel, 

and the restricted sampling lattice for the oblique channels. The band sampling lattice 

extends across the image in the direction of the channel orientation. Band sampling 

restricts the lattice in one direction only: the direction orthogonal to the channel orien­

tation. For the epipolar channel, band sampling produces a high resolution band parallel 

to the £-axis, as shown in figure 3.11. A virtue of band sampling is that the number of 

points along the epipolar line is increased. As a result, larger disparities can be measured. 

A second advantage of band sampling is that the number of stereo velocity measurements 

is increased. This will result in better detection of moving objects. The final advantage 

of band sampling is that peripheral measurements can help distinguish between rotation 

and translation when the sensor is viewing a scene with a constant depth. With the 

additional peripheral epipolar measurements, the Tx and Vty sensor motion parameters 

are more accurately estimated. 
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Figure 3.11: Band Sampling Lattice 

The final advantage would seen to be a reason to use band sampling for oblique 

channels. Although more sample points would improve the accuracy of Ty and Ctx, the 

accuracy may not be required. In a typical autonomous vehicle application, the vehicle is 

travelling on a planar surface and the optical axis of the sensor is approximately parallel 

to the ground plane. Knowledge of planar sensor motion can be used to improve the 

accuracy of Ty and ttx, as shown in chapter 4. 

The spatial sampling lattice is oversampled to avoid aliasing in the measurement 

of local frequency, and to produce overlapping disparity (and normal image velocity) 

intervals. The oversampling does not increase the amount of information available from 

a Gabor channel; the larger number of measurements represent the same amount of 

information. As a result, when the disparity and normal image velocity measurements 

are combined to estimate the inter-frame sensor motion, the weight assigned to each 

measurement must be discounted. A brief discussion of the discount factor follows. A 

more detailed discussion can be found in appendix A. 
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In chapter 4, a weighted least squares technique is used to estimate the inter-frame 

sensor motion. If all the image measurements are independent, the assigned weight is 

the inverse of the expected squared error of the measurement. If an active feature has no 

active neighbours, the measurement can be considered independent. In such a case, no 

discount is required. If an active feature is surrounded by other active features, the mea­

surement is dependent on, and highly correlated with, the neighbouring measurements. 

A larger discount factor is required to properly model the amount of new information 

produced by each correlated measurement. The discount factor is the inverse of the 

sum of the overlaps between the reference feature and all its active neighbours. If the 

neighbourhood of interest is restricted the eight closest points in the spatial lattice (the 

adjacent vertical and horizontal lattice points and the adjacent diagonal lattice points), 

the discount factor, ^discount, will be in the following range (see appendix A): 

where 

a = exp[-^(Aa> f cAi,)2], (3.175) 

and 

b = exp[-^-(-ibkAys)
2}. (3.176) 

z a 

The overlap between adjacent horizontal, vertical, and diagonal points are denoted by a, 

b, and ab, respectively. 

3.4 Discuss ion and Summary 

It should be apparent that normal image velocity and disparity measurements are not 

made at every pixel in the image. The image is encoded into a representation that com­

prises a set of spatially subsampled bandpass channels. Distinctive image features are 
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identified from the magnitude maps of each channel. Even though the spatial position of 

features may coincide, the maps from the set of Gabor channels are processed indepen­

dently. The application of the thresholds to the magnitude maps result in a significant 

reduction in data without losing important information. The resulting set of features 

may have a sparse and nonuniform distribution. Data is also reduced using constraints 

on the local frequency. Features that are likely to be unstable with respect to sensor 

motion-induced image deformations are identified and rejected. 

The remaining features in each channel are used to measure the disparity and the nor­

mal image velocity. At this stage, some cross channel coherence is assumed. Information 

from lower frequency channels is exploited to aid feature correspondence. 

Along with the disparity and normal image velocity measurements, the Gabor-based 

approach estimates the expected error in each measurement. The expected error or 

other measure of uncertainty is important when information is combined. In chapter 4, 

all features with valid normal image velocity and disparity measurements are combined 

to estimate sensor motion. A weighted least square estimate of sensor motion reduces the 

influence of uncertain measurements. In addition, knowledge of the expected measure­

ment error allows the calculation of the error covariance matrix for the inter-frame sensor 

motion. The expected measurement error and the error covariance matrix are used in the 

Mahalanobis distance test to identify and reject features that belong to nonstationary 

objects. 

The propagation of the expected measurement error can go beyond the inter-frame 

sensor motion stage. In this work, the expected measurement errors eventually become 

part of the error covariance matrix for the extended sensor motion, the error covariance 

matrix for each object motion, and the expected error in the collision parameters for each 

moving object. It will be shown in chapter 4 that the various error covariance matrices 

are needed to integrate auxiliary sensor information and to exploit external knowledge 
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such as planar motion. The expected error in the collision parameters would be used by 

the obstacle avoidance module. 



Chapter 4 

Obstacle Detec t ion using a Stereo Image Sequence 

This chapter describes how the collision parameters are estimated from a stereo sequence 

of images. An overview of the obstacle detection algorithm is presented in section 4.1. 

The mathematical descriptions of the algorithm's important submodules—inter-frame 

sensor motion, Mahalanobis distance, and Kalman filter—are included in later sections. 

Subtle details that are necessary to implement the algorithm are investigated. A com­

parison of the various submodules of this algorithm with the work of other researchers is 

provided. 

4.1 Overview of the Obstacle Detec t ion Algor i thm 

This section provides a brief overview of the obstacle detection algorithm. Information is 

transformed from pixels in a stereo image sequence into collision parameters for moving 

objects. 

The obstacle detection algorithm is shown in figure 4.12. The stereo image sequence 

is processed using the Gabor filter technique described in chapter 3. A set of interesting 

image features are selected (section 3.2.2). The disparity, the normal image velocity, and 

the associated expected errors are measured at corresponding features (sections 3.2.4 and 

3.2.5). The disparity is converted into a depth estimate using (2.57). From the depth 

and the image coordinates, the transformation matrices A(z~x) and B(z) are calculated 

for each feature. The normal image velocity measurement provides both the magnitude 

Vn, and direction <J>n. The normal direction vector n, along with A(z~x) and B(z), form 

86 
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Figure 4.12: Obstacle Detection Algorithm 



Chapter 4. Obstacle Detection using a Stereo Image Sequence 88 

the transformation vector J . 

The vector J transforms the inter-frame sensor motion into an estimate (prediction) of 

the normal image velocity. This prediction is valid for stationary objects only because it 

does not account for object motion. The difference between the measured and predicted 

normal image velocity is the prediction error. If the prediction error is much larger than 

the expected error, the hypothesis that the feature belongs to a stationary object is 

rejected. This hypothesis is tested using the Mahalanobis distance (section 4.3). 

The features that pass the Mahalanobis distance test are used to refine the estimate of 

inter-frame sensor motion. The inter-frame sensor motion is estimated using a weighted 

least square approach (section 4.2). The expected error in the normal image velocity is 

used to weight the sensor motion estimation. 

Any normal velocity measurement inconsistent with its sensor motion-based predic­

tion is processed as a moving object. The excess normal image velocity—the measured 

less the sensor motion-induced normal image velocity—is used to estimate the transla­

tional motion of the object relative to the ground surface. 

The inter-frame motion estimates are integrated over the image sequence. The trans­

lational portion of the inter-frame sensor motion is integrated using a Kalman filter 

(section 4.4). Similar Kalman filters are used to integrate the translational motion of 

each moving object. The difference between these integrated motions is used to estimate 

the collision parameters for each moving object (section 4.5). 

The above paragraphs are a simplified summary of the obstacle detection algorithm. 

Note that an estimate of the inter-frame sensor motion is required to test the stationary 

object hypothesis. During the start of the inter-frame estimation stage, no sensor motion 

estimate is available. The startup or bootstrapping stage uses a seeding process described 

in section 4.6 to resolve this problem. 
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4.2 Inter-frame Sensor Mot ion 

This section provides a description of the inter-frame sensor motion estimation. It shows 

how a set of normal image velocity measurements is combined to estimate the inter-frame 

sensor motion. A by-product of the estimation process in the error covariance matrix for 

the inter-frame sensor motion. An expression for the expected error is derived. 

If the image features belonging to stationary objects are identified, and the depth z 

is known, the inter-frame sensor motion can be estimated from a set of normal image 

velocities using weighted least squares: 

0 = Q7«P, (4-177) 

where Qint = Y,iwiJiJ?, P = YliwiJiVn(i), and W{ is a weighting term. The weighting 

term w is defined as the inverse of the expected squared error in Vn, discounted by ^discount 

to account for feature overlap; that is 

Pdiscount 
W = (4.178) 

E[(svnyy 
where E[ ] denotes expected value. The matrix Qint is referred to as the "Hessian" matrix; 

p is referred to as the "measurement vector." Note that the inverse of the Hessian matrix 

is the error covariance matrix for the inter-frame sensor motion. 

The expected squared error of the normal image velocity has two components: mea­

surement error and estimation error. The expected squared error in the measured normal 

image velocity is given by 

£ [ ( A K „ „ , ) 2 ] = ( ^ n ^ r + T ^ _ - <4179) 
un ujn [mave u>n) 

The expected squared error in the estimated normal image velocity is given by 1 

E[(AVn,estY} = (^-jr £ [ ( ^ n ) 2 ] + (8-fjf E[{8xf] + ( g f l ) 2 E[{8yf] 

1Equation (4.180) assumes that the error in each of <j>n, x, y, and rf£ are uncorrected. 
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H^-W E[{8dtf\. (4.180) 

If the sensor motion is known, the sensitivity derivatives of the normal image velocity 

estimate can be obtained from the derivative of J with respect to the parameters </>n, x, 

y, and d,£. Unfortunately, the sensor motion estimate may change as more measurements 

are incorporated. 

To reduce the effect of the changing sensor motion estimate, the sensitivity derivative 

can be approximated using stable quantities. The most stable quantities are obtained 

from the Gabor sampling lattice: x, y, u>/t, and $/. Other stable quantities are estimated 

locally from the stereo image sequence: dj. (or z), Vn, <f)n and tco\. A moderately stable 

quantity is the image velocity: 

V* 

Vy 

= AR0,B e. (4.181) 

The image velocity is usually insensitive to changes in the inter-frame sensor motion 

estimate because errors in 0 are primarily due to the difficulty in distinguishing between 

rotation about the x-axis (y-axis) and translation along the y-axis (a:-axis). Even if there 

is a confusion between sensor translation and rotation, the errors tend to balance, leaving 

a good estimate of the image velocity. 

The approximate sensitivity derivatives of the estimated normal image velocity are 

listed below. The sensitivity to errors in the normal direction is given by 

[— s i n <f> 
n 

COS (f)n] 

V* 

Vy 

(4.182) 

The expected squared error in Vn due to errors in the image coordinates is approximated 

{fjf E[{8xf] + (j-J? E[(Sm « (^)2 . (4.183) 
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Only image coordinate errors in the normal direction affect the normal image velocity. 

The error along the rotated axis x is used as an approximation to the normal coordinate 

error: 

Sx = 0 .5Ai s = - ? - . (4.184) 

This error is equal to half the resolution of the Gabor spatial sampling lattice. The 

sensitivity of the estimated normal image velocity with respect to disparity errors is 

difficult to calculate using only stable quantities. The portion of normal image velocity 

caused by sensor translation is sensitive to errors in disparity; the rotation-induced normal 

image velocity is almost independent of disparity. To ensure repeatability, it is assumed 

that the normal image velocity is caused by sensor translation only. Under the pure 

translation assumption, the sensitivity due to disparity errors is given by 

Tl" T- < 4 ' 1 8 5 ) 

cdx a% 

Using the above approximations, the expected squared error in the normal image 

velocity is 

E[(8Vn)
2} = E[(SVn,meas)

2) + E[(SVntest)
2} + el (4.186) 

where ev is a constant term used to compensate for approximation errors. Note that the 

estimate of E[(6Vn)
2] ignores the correlation 2 between E[(SVntmeas)2] and E[(SV2

est\. As 

a result, the expected squared error is slightly over-estimated. 

4.3 Mahalanobis Dis tance 

In order to use (4.177) it is necessary to exclude feature belonging to moving objects. 

The "Mahalanobis distance" [6] can be used to test the hypothesis that a given normal 

image velocity measurement belongs to a stationary object. The Mahalanobis distance 

2The measured normal image velocity and disparity share a common image. The noise in that image 
appears in both E[(6V„mea,)

2] and E[(6dz)2]. 
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is an image velocity-based hypothesis tester that compares the prediction error with the 

expected error. In this application, the squared Mahalanobis distance is given by 

*LK = ^ 5 j , (4-187) 

where e = Vn — JT6. The expected squared error, -E[e2], contains two parts: the expected 

squared error due to measurement noise, and the expected squared error due to motion 

parameter uncertainty: 

E[e2} = E[{8Vnf] + FQ&J. (4.188) 

A threshold is applied to the Mahalanobis distance to identify measurements that are 

inconsistent with the estimated sensor motion 9 and the stationary object assumption 

[27]. 

Note that the Mahalanobis distance requires Q~^t and 0. In order to insure that the 

inverse of Qint exists and the current estimate of 0 is accurate, it is necessary to "seed" 

Qint and p using measurements belonging to known stationary objects. The seeding 

process is examined in section 4.6. 

4.4 Kalman Filtering 

This section presents two Kalman filter implementations: one for the extended sensor 

motion; the other for the extended object motion. A batch solution to the extended 

sensor motion is provided to facilitate understanding of the transformation from the 

predominantly rectilinear model to the pure translation model of motion. This trans­

formation effectively stabilizes the stereo image sequence. The recursive implementation 

of the Kalman filter follows. As part of the Kalman filter, the state transition and 

measurement equations for the sensor and object cases are defined. 

Equation (4.177) estimates the inter-frame sensor motion; that is, the three-dimensional 

sensor motion over a short time interval. Because of the correlation between the x (y) 
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translation and y (x) rotation, the Hessian can be ill-conditioned. This ill-conditioning 

occurs when the features used in (4.177) are poorly distributed in three-dimensional 

space. Even if the feature are well distributed throughout the image, insufficient vari­

ation in depth relative to the average depth will lead to two small eigenvalues in the 

Hessian matrix (see section 4.6.3). Temporal consistency can be used to improve the 

three-dimensional velocity estimates. 

The predominantly rectilinear model of sensor motion assumes that the vehicle trans­

lation is invariant over time. The sensor translation, however, will change as the observer 

coordinate frame is rotated. If, for the moment, the effect of observer coordinate rotation 

is ignored, the three-dimensional motion over longer image sequences can be estimated 

by minimizing 

rseq = J2rniv(i), (4.189) 
i 

subject to 

Tx(i) = Tx, (4.190) 

Ty(i) = T„ (4.191) 

Tz(i) = Tz, (4.192) 

where i denotes the inter-frame motion over the time interval ^ to t t + 1 . For the purpose 

of solving this constrained minimization, consider the normal image velocity of a feature 

being tracked over the image sequence. If the feature belongs to a stationary object, the 

transformation from sensor motion to normal image velocity is given by 

f 
K ( 0 ) 

K ( i ) 

Vn(n) 

J£(0) JT(0) 0 

J£(n) 0 0 

0 

0 

JE(n) 

0(0) 

fl(l) 

« ( n ) 

(4.193) 
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where the number in brackets denotes the inter-frame interval. A set of normal image 

velocities over the entire image sequence are combined to estimate the sensor motion. 

A weighted least square estimate of the sensor motion is formulated using the set of 

inter-frame Hessian matrices and measurement vectors obtain from different time inter­

vals. Using the block form of the inter-frame measurement vector and Hessian matrix, 

P(*) = [Pa(0 Pb(i)]T, and 

Qa(i) Qb(i) 

Ql(i) Qc(i) 

respectively, the least square solution is given by 

Qint{i) = (4.194) 

f 

n(o) 
0(1) 

0(n) 

ZiQa(i) Qb(0) Qb(i) 

Qf(0) Qc(0) 0 

Ql(i) o Qc(i) 

Ql(n) 0 0 

Qb(n) 

0 

0 

Qc(n) 

- l 

EiPo(0 

Pfc(O) 

ft(i) 

Pb(n) 

(4.195) 

The least square estimate of the extended sensor translation is given by (see appendix B 

for details) 

T = A"1 £[p„(i) - ^(OQc'^OftCO] (4-196) 

where 

A = £[3a(0 - ^(O^COQfCOl- (4.197) 

Note that the extended sensor translation is calculated without explicitly determining 

the set of inter-frame rotations. This implicit calculation is achieved by decoupling the 

effects of rotation from the inter-frame matrices Qint and p. The new decoupled matrices, 

containing only inter-frame translational information, are given by 

- I n T QT = Qa-QbQ;1Ql (4.198) 
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PT = Pa- QbQ^Pb, (4-199) 

Equation (4.196) can be written as a temporal integration of the decoupled inter-frame 

matrices: 

r = EW0]"1EM0]- (4-200) 
i i 

Equation (4.200) considers the entire image sequence as a batch. A recursive formulation 

is most useful for autonomous vehicle applications. 

In this work the Kalman filter is used to integrate the sensor motion over the entire 

image sequence. The Kalman filter is a recursive parameter estimator that requires 

a model of the underlying process and a model of the measurements of the process. 

In this application, the parameters (state variables) to be estimated are the extended 

sensor translation along the x, y, and z-axes. The process is the sensor motion and the 

measurements are the normal image velocities at various points and at various times. 

The model of sensor motion includes the effects of the observer rotation. 

To understand how the observer rotation is included in the Kalman filter, it is neces­

sary to review the inter-frame sensor motion. The inter-frame sensor motion is a discrete 

approximation of the instantaneous sensor motion. In the instantaneous sensor motion, 

all translation and rotation components occur simultaneously. The inter-frame sensor 

motion must be described sequentially. In this work, it is assumed that the translation 

occurs before the rotation. Figure 4.13 illustrates the transformation of the old observer 

coordinate frame at time ti into the new observer frame at time t,-+1. The new ob­

server frame is obtained by translating, then rotating, the old observer frame using the 

inter-frame sensor motion: 

y 

z 

RT(U) { 

t(i+l) 

X 

y 

z 

+ 

* ( « • ) 

T 

Ty 

T* . 

A*}, (4.201) 
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Figure 4.13: Model of Inter-frame Sensor Motion 
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Figure 4.14: Model of the Extended Sensor Motion 

where At is the time between successive images ( t t + i — ti). The rotation matrix R, using 

the small angle approximation, is given by 

R = 

1 

ClzAt 

-nyAt 

-ttzAt 

1 

nxAt 

fly At 

-nxAt 

I 

(4.202) 

The model of the extended sensor motion (the process model) is shown in figure 4.14. 

The vehicle (or equivalently, the origin of the observer coordinate frame) is translating 

at a constant velocity. The stereo cameras are undergoing transient rotations; the orien­

tation of the observer coordinate frame is changing. In this work, the extended sensor 

translation is represented using the current observer coordinate frame. In order to predict 

the translation at U+i, the R matrix must be included in the process model to account 

for any changes in the orientation of the observer coordinate frame during the inter-frame 

transition from t, to ^ + 1 . The extended sensor motion is describe in recursive form as 

Taen(ti+l) = R (ti) Tsen(ti) + Tlp, (4.203) 
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where np is the process noise vector. The state vector Tsen represents the estimate of the 

extended sensor translation, not the inter-frame translation. 

The measurement model is given by 

Vn = JT6 + nm, (4.204) 

where nm is the measurement noise. Note that the state vector for the process model 

(Tsen) and the measurement model (9) are different. It is necessary to convert the inter-

frame sensor motion into a more compatible format. The inter-frame sensor motion 

combines a large number of normal image velocity measurements obtained at a given 

time instant. A model that combines all normal image velocity measurements obtained 

at time instant ti can be described as 

P = Qint 0- (4.205) 

The measurement noise is incorporated into the Hessian matrix Qint- The measurement 

model (4.205) still needs modification. In order to use the inter-frame motion information 

in the Kalman filter, the effects of rotation must be decoupled from Qint and p. Using 

the decoupled matrices, Qj and px, the new measurement model becomes 

PT = QTTsen. (4.206) 

The decoupling of the rotational parameters effectively stabilizes the image sequence, 

allowing the use of a pure translation model for extended sensor motion. 

The following equations are a modified version of the "alternative Kalman filter" 

presented in [11]: 

Qsen(tl) = Qsen(tl/t0) + QT, (4.207) 

fsen{h) = Tsen(h/t0) + Q:?n(h) [PT - QTT,m(t1/t0)], (4.208) 

T8m{hlt1) = Iffa) T^), (4.209) 
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Qienfa/h) = [RT Q7MR]-1 = RT(h)Qsen(t1)R(t1), (4.210) 

where Qaen is the Hessian matrix for the extended sensor motion. The notation (ti/to) 

indicates a prediction for time ti based on the estimate at time to. The second equal­

ity in (4.210) assumes that the rotation matrix R is orthonormal. This matrix is not 

orthonormal, but for small rotational angles the error in making such an assumption is 

small. Note that the inverse of the Hessian matrix, Qj^ni 1S the error covariance matrix 

of the extended sensor motion. 

The Kalman filter equations, (4.207), (4.208), (4.209), and (4.210), describe two dis­

tinct operations: updating Hessian and state variables with new data, and predicting the 

next Hessian and state variables from past information. In (4.207), the decoupled inter-

frame Hessian QT is added to the predicted Hessian Qsen(ti/to)- The addition of new 

information reduces the error covariance of the translation estimates; new information 

improves the estimate of the extended sensor translation. Equation (4.208) updates the 

estimate of the extended sensor translation. The measurement error, 

PT ~ QxTsenih/to), ( 4 . 2 1 1 ) 

weighted by the error covariance, adjusts the predicted translation. The predicted trans­

lation is recursively defined by (4.209). The rotation matrix R transforms the translation 

estimates into next observer coordinate frame representation. Equation (4.210) is used 

to predict the next Hessian. In its current form, (4.210) only transforms the Hessian to 

the next observer frame representation. It is only valid when the process noise vector is 

zero over the entire sequence; it does not allow for deviations from the modelled vehicle 

motion trajectory. The process noise must be modelled if the stereo image sequence is 

long. If the covariance structure of the motion disturbance is not known, a forgetting 

factor (Xforget) can be incorporated to reduce the influence of older data: 

Q.enfa/h) = XforgetRT(tl)Qsen(tl)R(tl) ( 4 . 2 1 2 ) 
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where 0 < Xforget 5: 1- When the motion disturbance has a known error covariance 

structure, Nsen, (4.210) can be modified as follows: 

Qsenih/h) = [RT Q-se\(h)R + Nsen]~\ (4.213) 

In section 4.6.6, it is shown how rotational terms and cross terms from the inter-frame 

error covariance matrix can be used in iVsen. 

The translational velocity of each object can be integrated over time using a Kalman 

filter. By subtracting the estimated normal image velocity due to sensor motion, the 

excess normal image velocity can be integrated. The translational velocity estimated 

using the excess normal image velocity is relative to the world coordinate frame. The 

process model for the object motion is given by 

Tobj(ti+1) = RT(ti) Tobj(ti). (4.214) 

The inter-frame sensor rotation is included in the process model to account for changes in 

the orientation of the observer coordinate frame. The measurement model for the object 

motion is given by 

Vn,excess = *n ~ J " — Jobj^obj i (4.215) 

where JJbj = nTARos. 

The Kalman filter equations for the object motion are as follows: 

Qobj(h) = Qobj(ti/t0) + wJobjJjbj, (4.216) 

K{tx) = w Q:b)(h)Jobj, (4.217) 

T0bj{t\) = Tohjfa/to) + K(tx) [Vn 
.excess 

J^ToMto)], (4.218) 
Tobjih/h) = RT(t1) r o W ( i i ) , (4.219) 

Qobjfa/h) = RTit^QobAtiWi), (4.220) 
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where Q06j is the Hessian matrix for the extended object motion, and u; - 1 = E[(8Vntexcess)
2] 

The expected squared error in the excess normal image velocity is given by 

E[(SVlexcesa] = E[(8Vnf] + FQ^J. (4.221) 

If the moving objects are processed after the inter-frame sensor motion, E[(8V2
 excess] « 

i?[(<$T4)2]. The vector K is referred to as the "Kalman gain." A high K indicates the 

influx of important new data. 

As in the extended sensor motion case, the Hessian prediction equation, (4.220), must 

be modified to account for process noise if the stereo sequence is long (see section 4.6.6). 

If the unmodified version of (4.220) is used, the Kalman gain will approach zero as time 

elapses. 

4.5 Est imat ing Collision Parameters 

This section uses the extended object and sensor translation to estimate the collision 

parameters. The collision parameters, the point-of-collision and the time-to-collision, are 

important because they indicate if and when an object will collide into the sensor. It 

is also important, particularly for obstacle avoidance, to determine the accuracy of the 

collision parameters. The object and sensor motion error covariance matrices are used 

to estimate the expected error for the point of collision and the time to collision. 

The relative velocity of each object can be estimated using the integrated object 

motion and the integrated sensor motion: 

x 

= Tobj - Tsen. (4.222) 
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The collision parameters for each object are given by 

tCoi = -r, (4.223) 
z 

Xcoi = x + x tcoh (4.224) 

Vcoi = y + y tcol. (4.225) 

Uncertainty in the position and velocity of the object relative to the observer produces 

uncertainty in the collision parameters: 

_ _ 
8xcoi 

fiVcol 

btcol 

= Hcoi 

8x 

8y 

8z 

8x 

8y 

8dj; 

(4.226) 

where 

Hcol — \_Hcol,v -"co/,pJ — 

-Xfoetcoi Zf . v djt 

-yf t i 0 — 2 £ 2 t 

'•col 

(4.227) 

tcol 0 

0 t^ 

0 0 

The collision parameter uncertainty expression (4.226) has been linearized using a first-

order Taylor series expansion about the actual collision parameters, {xcoi,ycoi,tcoi). In 

this work, the estimated collision parameters are used instead of the actual. 

In order to determine the expected error in the collision parameters, it is necessary 

to determine the error covariance of the relative position and velocity of the object. The 

error covariance for the position of a feature is 

{8xf 0 0 

0 {8yf 0 

0 0 (W4)2 

Q;1 (4.228) 
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The error covariance of the relative translation for a moving object is given by 

Q7e) = Qob) + Qjel (4-229) 

There is a cross-correlation between the position and velocity estimates, which is given 

by 

V pv — 

where vp = [0 0 z~2]T. The effect of Qpv is insignificant when the extended object 

translation is estimated over a sequence of image and/or using many features (group­

ing of moving object features is discussed in section 4.6.4). In such cases, Qpv can be 

approximated as 03^3. 

The expected error for the collision parameters of features belonging to stationary 

objects are calculated in a similar manner. The position error covariance is the same 

as (4.228). The error covariance for the relative translation is set equal to the error 

covariance for the extended sensor motion; that is, 

Q7ei = QlL- (4-231) 

Since the sensor motion is estimated using a large number of features, the cross-correlation 

between the position and velocity is considered insignificant (Qpv ~ 03^3). 

The error covariance matrix for the collision parameters, for both the moving and 

stationary objects, is given by 

- 1 

Hit- (4-232) 

When the cross-correlation between position and velocity is small, the error covariance 

is approximated by 

Q7oi = Hcoi,vQ7eiHcoi,v + Hcoi,PQp Hcolp. (4.233) 

{ds2^obi^obj^obj) (4.230) 

Qcol = Hcol 

*v pv *vp 
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Note that , for a constant relative translation (x, y, i ) , the following terms are time-

invariant: the object's focus of expansion (xfoe, y/0e) a nd the object's point-of-collision 

(xcoh Vcoi)- If the relative translation and the error covariance matrices Q~^ and Q~1 are 

constant, the first term in (4.233) is proportional to the square of tco\\ the second term 

is proportional to the square of z. Thus, the accuracy of the collision parameters will 

improve as the object approaches the observer. 

4.6 Implementat ion Detai ls 

This section explains implementation details that are necessary to run the proposed 

algorithm. It examines establishing feature correspondences, seeding the Hessian matrix 

to avoid startup problems, and grouping features that belong to a common moving object. 

It discusses how to improve inter-frame sensor motion estimates by exploiting constraints 

such as planar motion. Two extensions to the Kalman filter equations are proposed: the 

incorporation of rotational uncertainty and pilot commands into the process model. 

4.6.1 Feature Correspondence 

This subsection discusses how feature correspondence, stereo and temporal, are estab­

lished. Stereo correspondence exploits a priori information from lower frequency Gabor 

channels, past measurements, and heuristic spatial constraints. Temporal correspondence 

is guided by the estimate of the inter-frame sensor motion and object motion. 

The concept of feature correspondence is simple: given a feature in one image, find 

the feature in a companion image that corresponds to the same physical feature within 

the scene. The implementation of a correspondence method, however, is difficult. In 

the previous chapter, it was shown how local attributes can be compared to test the 

plausibility of two lattice points, each from different images, belonging to the same object 
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feature. This local test will reject some feature pairings, but there is still the possibility 

of multiple candidate matches. In this subsection, a priori information is used to limit the 

search space such that a single best match or no match is found. Once a feature is found 

in a given image, the a priori prediction of the position of the corresponding feature is 

used to define the search space in the companion image. The search space for a disparity 

measurement consists of the two lattice points along the epipolar line that are closest 

to the predicted position. The search space for a normal image velocity measurement 

consists of the four closest lattice points, surrounding the predicted position. Note that 

the search space is defined in terms of lattice points within a Gab or channel. The search 

space for the lower frequency Gabor channels spans a larger number of pixels than the 

higher frequency channels. As a result, greater prediction accuracy is required for high 

frequency channels. 

The multi-scale approach to feature correspondence is useful for estimating disparity. 

Coarse information from low frequency channels are used to predict the disparity in 

higher frequency channels. Direct predictions are not always possible. The application 

of the three thresholds (see section 3.2.2) to the magnitude map usually produces sparsely 

distributed features, and subsequently, sparsely distributed disparity measurements. The 

disparity estimates are interpolated to fill-in the disparity map for each epipolar channel. 

Interpolated disparity estimates from lower frequency epipolar channels are used to select 

the appropriate epipolar offset in the higher frequency epipolar channels. Since disparity 

measurements are obtained from the epipolar channel, interpolated data is also used to 

estimate disparity of features found in oblique channels of the same frequency. 

Accompanying the disparity estimates are the expected disparity errors. The dispar­

ity errors are used to weight the interpolation process. The interpolation of disparity 

estimates consists of two stages: a filling-in stage, and a four-point interpolation stage. 

In the first stage, every lattice point in the epipolar channel is assigned a disparity value 
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aj) = < 

and an error value. Direct measurements of disparity and error are left unchanged. Lat­

tice points near direct measurements are assigned a similar disparity value but a larger 

error. A drift penalty assigns progressively larger errors as the distance from a direct 

measurement increases. In this work, the disparity is estimated from a weighted sum of 

neighbouring lattice points: 

4 ( 0 , 0 ) = [a0,o<4(0,0) + ao,id*(0,1) + « i , o ^ ( l , 0) + a0 _ i ^ ( 0 , - 1 ) + a_lfid£(-l, 0)], 

(4.234) 

where 

a-sum = «o,o + «o,i + «i,o + «o,-i + 0-1,0, (4.235) 

' EUSdz)2] if i = j = 0 
lV ; J J (4.236) 

E[(8ds; + edrift)
2] otherwise, 

and edrift is the drift penalty. The interpolation error is set to the minimum error in the 

neighbourhood: 
a0,o = min[a0,o a0<1 aifl a0 _i a_i,o]- (4.237) 

Once the filling-in stage is complete, each lattice point in the epipolar channel will have 

a disparity and error estimate. 

For oblique channels, the disparity and error are interpolated from the epipolar chan­

nel. A weighted average of the four nearest points provide the off-epipolar disparity 

estimates. The error is calculated in a similar fashion. This interpolation scheme is 

also used to project initial (predicted) values of disparity and error into higher frequency 

epipolar channels. The initial estimates are used to select the appropriate epipolar offset 

and to aid the subsequent filling-in stage. A cross-scale penalty is added to the error 

estimate to reduce the influence of the lower frequency data. 

It is necessary to estimate the disparity for the lowest frequency channel without an 

a priori estimate. A histogram of the epipolar offset of all possible candidate matches 
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is formed. To reduce the number of potential matches, an additional test using the 

normalized moment of inertia is performed (see section 3.2.2). The dominant mode and 

the larger of its two neighbours are selected as the candidate epipolar offsets for the 

entire channel. Since the lowest frequency lattice contains a small number of points, the 

computational complexity is small. In addition, since the spatial extent of low frequency 

Gabor functions is large, the range of measurable depths is quite large. 

The multi-scale approach is not perfect; no match is made when both candidate 

epipolar offsets fail the local attribute test. Past information is also used to establish 

matches. Past depth measurements from the channel of interest are projected to the 

current time instant. The image velocities due to sensor and object motion predict the 

changes in the lattice positions of corresponding points. In most cases, the temporal 

estimate of the epipolar offset will confirm the scale-based prediction. There will be 

instants when the temporal estimates will produce extra matches. These additional 

feature correspondences will increase the density of the stereo matches and improve the 

certainty of the interpolated disparity map. 

The density of stereo matches can be increased by enforcing a heuristic ordering con­

straint. If a surface is sufficiently smooth, corresponding features along an epipolar line 

will appear in the same order in the left and right images [32]. The application of the 

heuristic ordering constraint is shown in figure 4.15. The existing correspondences, es­

tablished by the scale-based and temporal-based matching algorithms, act as boundaries 

for other yet unseen matches. If an unmatched feature is detected in the left image, and 

it is bounded by two stereo features, the currently unmatched corresponding feature in 

the right image must be bounded by the two corresponding stereo features (see figure 

4.15). This limited space is searched for a potential match. If one unambiguous match 

is found, the correspondence is established. In this work, multiple candidate matches 

are ignored. Multiple candidate matches could be resolved using dynamic programming 



Chapter 4. Obstacle Detection using a Stereo Image Sequence 108 

Unmatched Feature 
Left Epipolar Line 

Search space for 
Potential Match 

Right Epipolar Line 

| Stereo Feature 

- • Stereo Correspondence 

Figure 4.15: Heuristic Ordering Constraint 

[40]. Once the heuristic ordering constraint instantiates a correspondence, the temporal 

constraint will propagate the correspondence over time. 

A multi-scale approach, embedded within a cycle of perception, is useful for creating 

temporal correspondences and for estimating normal image velocities. Candidate tem­

poral correspondences are generated using the estimates of inter-frame sensor motion 

and extended object motion, as shown in figure 4.16. The inter-frame sensor motion, 

estimated from the lower frequency channels 3 , is used to predict the temporal shift in 

the lattice position of a feature belonging to a stationary object. The object motion, 

estimated using past information from the channel of interest (see subsection 4.6.4), is 

used along with the sensor motion to predict the lattice shift for moving object features. 

3At the lowest frequency channel, the predicted image velocity is zero. 
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Figure 4.16: Cycle of Perception 
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In the epipolar channel, both stereo and temporal feature correspondences can be 

made. This four point correspondence produces a stereo motion detector, such as de­

scribed in section 2.6. The stereo motion detector, also referred to as a "trajectory 

detector," is tuned to a preferred three-dimensional observer trajectory and has a finite 

velocity bandwidth. 

As mentioned previously, candidate temporal correspondences are predicted from the 

sensor and object motion. For an epipolar channel, the candidate correspondences (the 

lattice offsets that are closest to the predicted image displacement) are generated using 4 

V&,L 
= Hv[B(z)e + Tobj], (4.238) 

where 

H„ = 

zf 

zf 

0 

0 

0 

zf 

-xR 

~xL 

-y 

(4.239) 

The candidate correspondences are tested and the best match (if any) is accepted. The 

lattice offset along the y-axis, y0ffset, is the same for both the left and right images. The 

lattice offsets along the x-axis, xi,t0ffaet in the left image and XRt0ffset in the right image, 

can be different. The lattice offsets form a trajectory detector that is tuned to a preferred 

three-dimensional velocity ( i 0 , y0, z0): 

x0 

Vo 

Zo 

H. - i 

XR,offset 

xL,oJfset 

yoffset 

J_ 
A*' 

(4.240) 

4For the case of parallel stereo cameras, the image velocity Vy is the same for both the right and left 
images. 
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H'1 z_ 1 

zj Eoff. set 

where 

XL -XR 0 

y -y -Eoffset , (4-241) 

zf -zf 0 

and E0ff3et — &L — XR. The term E0ffset is the preferred disparity of the trajectory 

detector. Due to lattice quantization, the preferred velocity will not, in general, be the 

same as the actual velocity B(z)0 + T0bj. The actual velocity will be within the velocity 

bandwidth of the trajectory detector. 

The three-dimensional velocity bandwidth of the trajectory detector is described using 

a covariance matrix. If the largest change in image velocity without further offsetting 

the lattices is ±^ f f or ± T | J , the covariance matrix for the trajectory detector is defined 

as 

Cv3d — 

E[{Ax)2] E[AxAy] E[AxAz] 

E[AyAx] E[{Ayf] E[AyAz] 

E[AzAx] E[AzAy] E[{Azf] 

H, - i 

V 2 A i / 

0 

0 

0 

( Axs \ 2 
V 2 A i ^ 

0 

0 

0 

(Ah\? 

H. -T 

(4.242) 

If Ays = osAxs, the covariance matrix can be written as 

Cv3d = ( ) ( 
Z „ j , £±XS \2 

z}'
 y2Et offset 

x\ + XR HXL + XR) Zf(xL + XR) 

•f y(xL + xR) 2tf + o*El}}set 2yzf • (4.243) 

zf(xL + xR) 2yzf 2zj 

It can be seen that the velocity bandwidth along the coordinate axes are different 

z ,Ax Ai > 2 - ° ' 5 - ( ^ ) , 
Zfy2Ath 

Ay-Tf{2At^ 

Az = 2 0.5 z Ax°\ 
Eoffset 2At 

(4.244) 

(4.245) 

(4.246) 
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The velocity bandwidth along the z-axis is usually the largest 5 of the three coordinate 

bandwidths. 

Estimates of the object motion may be known from past images. In such cases, 

(4.238) can be used to predict candidate temporal correspondences. Unfortunately, the 

object motion T0bj is not always known. In such cases, candidate correspondences are 

generated using a default set of probable or important object translations. In this work, 

the default set contains the translation of stationary objects, moving objects that are 

currently being tracked, and objects on collision trajectories. 

T0bj = 0 is a probable object translation because it is assumed that most of the objects 

in the scene are stationary. A candidate correspondence predictor that assumes T0bj = 0 

is said to be "tuned to stationary objects," and is referred to as a "stationary object 

correspondence predictor." Such a predictor will also detect moving objects within its 

velocity bandwidth. Once a moving object is detected and its three-dimensional motion 

is estimated (see section 4.6.4), the information is used in subsequent images to predict 

temporal correspondences. It is important to retain the estimate of T0bj because the 

velocity bandwidth will contract as the object approaches the observer. 

Once a moving object has been detected, it is useful to search for other features be­

longing to the same object. Such action is useful for finding moving object features in 

higher frequency channels where the velocity bandwidths are small. Since we are search­

ing for features belonging to a specific object, the depth of the candidate correspondence 

must be close to the depth of the object. The matching depth requirement reduces the 

amount of computations and reduces the probability of chance (incorrect) matches. This 

is important when the scene contains many moving objects. 

The most important objects are obstacles: objects with collision trajectories. There is 

5The largest bandwidth is along the eigenvector of CV3d that is approximately equal to vV3d = 
[(xL + xR)2y2zf}. 
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no guarantee that a candidate correspondence predictor tuned to stationary objects will 

detect an obstacle. A correspondence predictor that is tuned to objects with collision 

trajectories is required. The following paragraphs review collision prediction for the 

monocular case, then extend it for the stereo case. 

For a monocular observer, a collision can be predicted from the projected image 

coordinates of the object, denoted by (x0bj,y0bj), and the object's focus of expansion, 

(xfoe, y/o e) . Recalling section 2.4.1, the object's focus of expansion is defined as 

where 

•''foe 

V}oe 

zs 

kt = 

T0bj + BTO — Tobj — T, (4.247) 

'obj Tx 
- — . (4.248) 

Zf Zft col 

A collision will occur if (£0&j, y0bj) — (xfoei Vfoe)- For the stereo camera setup 6 , a collision 

will occur if the object's focus of expansion lies between the projections of the object in 

the left and right images; that is, if XR^J < xjoe < XL,O6J and y0bj — yfoe-

In order to determine which T0bj should be used to detect obstacles, we need to 

consider the stereo image velocity: 

Vx,R 

V,,L 

. VV . 

kfHy 

X foe 

Vfoe 

Zf 

-f Hv BQ£1. (4.249) 

If the obstacle will collide into the right camera, {xjifibj,y0bj) = (xfoe,yfoe), the stereo 

6For parallel stereo cameras, the object's focus of expansion will be the same in both the left and 
right images. 
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image velocity is 

VX,L 

E offset 

1 col 

(xR=Xfoe) 

0 

1 

0 

+ Hv J 5 Q 0 . (4.250) 

If the obstacle is heading for the left camera, (xi^j, Vobj) = {xfoe, Hfoe), the stereo image 

velocity is 

VA,R 

V~x,L 

Vy 

E offset 

t col 

- 1 

0 

0 

+ Hv BQD,. (4.251) 

(xL=xioe) 

To detect an obstacle that will pass between the cameras, we wish to select T0bj such 

that 

V,,R 

V-X,L 

vf, (xR = Xfoe) 
Vy 

1 

2At 

If 

E offset 
< 

(xL=Xfoe) 

Ax, 

Axs 

Axs 

Ay, 

(4.252) 

(4.253) 
tCoi 2A^ 

then (4.252) is satisfied by setting T0t,j = T. In this work, the extended sensor translation, 

Tsen, is used instead of the inter-frame sensor translation T. Thus, if the time-to-collision 

is sufficiently large, such that (4.253) is satisfied, tuning the correspondence predictor 

to the sensor translation Tsen will generate the correct correspondences for objects on 

collision trajectories. 

In summary, the above-mentioned four point correspondences produce three types of 

trajectory detectors. The first type of trajectory detector is tuned to the detect stationary 

objects. This type is used in section 4.6.2 to identify features that belong to stationary 

objects. The second type of trajectory detector is tuned to the velocity of a known 

object at a specific depth. This type of trajectory detector is used to identify features 
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that belong to a specific moving object. The final type of trajectory detector is tuned to 

the sensor translation. This trajectory detector is used to identify features belonging to 

obstacles (objects that will collide into the observer). 

4.6.2 Seeding the Hessian Matr ix 

In order to use the Mahalanobis distance as a test for stationary objects, the Hessian 

matrix Qint must have a full rank. Thus, the Mahalanobis distance can not be used 

during the startup stage of estimating inter-frame sensor motion. A multi-stage seeding 

process is used to increase the rank of the Qint- In the first stage, a priori predictions 

of the sensor motion (usually from auxiliary sensors), along with the associated errors 

increase the rank of the Hessian. The remaining stages identify features belonging to 

known (or at least probable) stationary objects. These stationary object features are 

combined to produce an initial estimate of the inter-frame sensor motion before testing 

the normal image velocity of other (uncertain) measurements. 

A priori predictions can be obtained from other sensors, such as a speedometer, or 

from default values. The extended sensor translation, if available, can be used as a 

prediction of the inter-frame sensor translation. To illustrate how predicted parameters 

can be incorporated into the inter-frame sensor motion estimate, it is useful to formulate 

a cost function that penalizes deviations from the measured data and deviations from 

the predicted parameters: 

(-'seed = (-'data "f (ypred- (4.254) 

The cost function for deviating from the measured data is given by 

Cdata = 0.5 £ Wi{Vn(i) - Jj Of. (4.255) 
i 

The matrix form of (4.255) is 

Cdata = O.5 0TQ6-pT8 + cl (4.256) 
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where cv is a constant term. The cost function for deviating from the predicted values is 

Cpred = 0.5 (6 — Opred) Wpred(9 — 6pred), (4.257) 

where Qpred is the predicted sensor motion and Wpred is a weighting matrix. The inverse 

of the weighting matrix is the error covariance matrix for the predicted sensor motion. 

The least square estimate of 9 is obtained by solving 

P + Wpredepred = [Qint + Wpred) 6. (4.258) 

The next stage of seeding attempts to order the data such that the processing of 

uncertain data is delayed. Candidate seed features are selected and tested for global 

consistency. Inconsistent features are culled from the seed set. This stage relies on 

four assumptions: an estimate of the sensor translation is available, the depth has been 

measured, the rotation about the z-axis is small, and that most of the features in the 

scene belong to stationary objects. The effect of errors in the above assumptions are 

discussed at the end of this subsection. 

Initial seeding candidates are obtained from the epipolar channel. Stereo image fea­

tures that have similar z are grouped together. The velocity z is estimated locally using 

the difference in image velocity at corresponding points in the stereo images (see section 

2.6). Any stereo image feature whose z is significantly different than —TZtSen is excluded 

from the seed set. The estimate of TZtSen is obtained from the extended sensor translation 

or from an auxiliary sensor such as a speedometer. 

The features fulfilling the z requirement are tested for in-plane motion consistency, 

as shown in figure 4.17. The normal image velocity is measured at each seed feature. A 

companion set of predicted normal image velocities is formed using the extended sensor 

translation. The difference between the measured and predicted normal image velocity 

is due to sensor rotation. Since the features are obtained from the epipolar channel, 



Chapter 4. Obstacle Detection using a Stereo Image Sequence 117 

Inter-frame 
Sensor Motion 

0 

A(z)B(z) 

Extended 
Sensor 
Translation 

sen 

A(z) 

Predicted 
Image 
Velocity 

Predicted 
"*" Image Velocity 

No Rotation 

Temporal 
"*" Correspondence 

n 

Measure Normal 
Image Velocity 

•© 

Store Difference 
in Histogram 

Label Features 
in Dominant Mode 
as Stationary 

Figure 4.17: Identifying Stationary Object Features Using In-plane Motion Consistency 

the difference is measured in one direction: along the x-axis. If the rotation about the 

2-axis is zero, the difference between the measured and predicted set of normal image 

velocities should be a nearly constant offset caused by Qy (see section 2.4.2). The normal 

image velocity differences are stored in a histogram. If the first assumption (most of the 

features in the scene belong to stationary objects) is valid, the features associated with 

the histogram's dominant mode belong to stationary objects. 

The previous paragraph describes how stationary object features from the epipolar 
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channel are identified. A similar histogram technique is used to identify stationary object 

features from the orthogonal channel. The features associated with the dominant mode 

are assumed to belong to stationary objects. The x and y image velocity offsets, estimated 

from the epipolar and orthogonal channels, respectively, are used to identify stationary 

object features within the remaining (oblique) channels. 

The final stage of the seed process incorporates known stationary object features 

available from past segmentations. Most of these features will have been detected by the 

previous stage. 

In summary, the estimation of the inter-frame sensor motion has four distinct steps. 

In the first step, information from auxiliary sensors is used to initialize the inter-frame 

Hessian matrix and the measurement vector. In the next step, a conservatively chosen 

set of seed measurements are used to update the Hessian matrix and the measurement 

vector. The Mahalanobis distance test is inhibited. In the third step, features previously 

identified as belonging to stationary objects are incorporated, subject to passing the 

Mahalanobis distance test. Finally, the remaining features passing the Mahalanobis 

distance test are incorporated into the inter-frame Hessian matrix and measurement 

vector. The four steps introduce a serial processing requirement to the estimation of 

inter-frame sensor motion. Parallel processing is possible within each step. 

It is important to note that the seeding process (the first three steps) does not ex­

clude features; culled features are retested during the final step. At the final step, the 

Mahalanobis distance is used to reject features that do not belong to stationary objects. 

The exceptional case is stereo features that are identified as belonging to moving ob­

jects. Such features are immediately removed from the seed set. The processing of these 

"moving object features" is discussed in in subsection 4.6.4. 

Since the seed process does not exclude features, errors in seed assumptions are usually 

not serious. The sensitivity of the seeding histogram to inaccuracies in Tx and Ty is related 
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to the variation in depth within the scene. If the variation in depth is small, the errors 

will simply change the image velocity offset, but the same features will remain in the 

dominant mode. Large variations in depth coupled with errors in Tx and Ty tend to 

smear the histogram. In such a case, the dominant mode in the histogram will contain 

only features from the depth interval with the most features. 

Inaccuracies in Tz and a non-zero fi2 tend to degrade the histogram process. When 

the estimate of Tz is inaccurate, the dominant mode in the histogram will comprise 

measurements from a local part of the image containing a high density of features with 

small variations in depth. Sensor rotation about the z-axis produces a constant offset 

along each column of the Gabor lattice. The offset will be different in each column. 

The histogram process will pick features localized about a given column of the sampling 

lattice when fi2 is not zero. 

The critical assumption is that most of the features in the image belong to stationary 

objects. If most of the objects are moving at a common (non-zero) velocity, the histogram 

process will select the wrong mode. This is less likely to occur for stereo features (from 

the epipolar channel) because the local estimate of i is used is used to cull moving object 

features. 

4.6.3 Explo i t ing Planar Mot ion 

The poor distribution of features in the scene can produce image velocity fields that 

are not unique to a given sensor motion. This subsection discusses how non-uniqueness 

is identified. It also discusses how physical constraints such as planar motion can be 

exploited to improve the conditioning of the Hessian matrix. Two cases of planar motion 

are examined: the unknown plane and the known plane. 

Strictly speaking, the set of normal image velocities will produce a unique least square 

estimate of sensor motion if Q~*t exists. However, if the conditioning of the Hessian matrix 
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is poor, the least square solution will not be stable to small changes in the measurement 

vector. Since measurement errors exists, an ill-conditioned solution may exhibit a large 

change in parameter estimates when a new measurement is incorporated. 

The condition of the Hessian matrix is measured by the ratio of the largest and 

smallest eigenvalues; a large eigenvalue ratio indicates poor conditioning. Associated with 

each eigenvalue is an eigenvector. The eigenvectors are dependent on the distribution 

of features in the image and scene. Consider the case where the features are evenly 

distributed throughout the image. Four of the six eigenvectors will be approximately 

equal to 7 

« b « [ - ^ - 0 0-0 - 2 / 0 ] , (4.259) 
Zave 

t ; 5 « [* /00 0 - ^ - 0 ] , (4.260) 

vi « [0 -^- 0 zf 0 0], (4.261) 

and 

v4 « [0 zf 0 - - ^ - 0 0], (4.262) 
Zave 

where zave is the average depth of the scene 8 . The eigenvectors VQ and V\ represents the 

in-plane motion; the average shift in the image velocity field along the x- and y-axes, 

respectively. The eigenvectors v5 and v4 represents the variations in Vx and Vy due to 

variations in depth. In most cases, v0 and v\ will produce the largest eigenvalues; v4 and 

v$ will produce the smallest eigenvalues. When the eigenvalue associated with v5 (v4) is 

small, it is very difficult to distinguish between Tx and Viy (Ty and £lx) from the image 

velocity field. 

7The following eigenvectors can be considered as an ideal case that is sufficiently accurate for illus­
trative purposes. 

8This "average" depends on the weighted average of the features being processed as stationary objects. 
It is not explicitly calculated. 
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Some of the eigenvalues can be increased by enforcing physical constraints. In many 

cases, an autonomous vehicle is travelling on a planar surface, such as a floor. The planar 

surface constrains the sensor motion: sensor translation must be along the surface, and 

axis of sensor rotation must be normal to the surface. Thus, the translation vector is 

orthogonal to the rotation vector. In vector form, the constraint is given by 

f f l = fl. (4.263) 

This constraint does not assume that the surface normal is known. 

To illustrate how the planar motion constraint can be exploited, it is useful to define 

a cost function that penalizes deviations from the measured data and deviations from 

planar motion. The proposed cost function is given by 

Cp = Cdata + 0.5 wpe
2

p, (4.264) 

where wp is a scalar weighting term and 

ep = (T Tti). (4.265) 

The cost function 

Cp = 0.5 
f 

Q 

T 

can be written as 

Qa Qb 

.Ql Qc. 

T 

ti 
~ [Pa Pb] 

T 
+ cl + 0.5wp(TIny(TJSl). (4.266) 

The gradient with respect to inter-frame sensor translation and rotation are respectively 

given by 

VCP(T) = QaT + Qbti -pa + wpepa, (4.267) 

and 

VCp{Cl) = QfT + Qcn -pb + WptpT. (4.268) 
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Setting both gradients to zero, we get 

Pa 

Pb . 

— Qa Qb 

.QI Qc. 

T 

Cl 
+ wpep 

03*3 / 

. / 03x3 . 

T 

ft 
(4.269) 

where 03^3 is a 3 by 3 matrix of zeroes and 7 is a 3 by 3 identity matrix. Equation (4.269) 

can be rewritten as 
P 03*3 7 

V = {Qint + Wptf }e. (4.270) 
7 O3.3 

Assume that the surface normal, denoted by np = [nx ny nz]
T, is known. A cost 

function that penalizes deviation from this known planar motion can be made: 

Cn = data + 0.5 wTe\ + WQe2
u, 

where WT and wn are scalar weighting terms, ex = T • np and en 

square solution is 

0 = [Qint + W p / a n e ] " 1 ^ 

where 
r Wa 03x3 

(4.271) 

fl x np . The least 

W, plane 

03^3 Wc 

(4.272) 

(4.273) 

Wa = Wj 

nx nxny nxnz 

nxny n'y nynz 

nxnz nynz n 

(4.274) 

and 

Wc = wQ 

ny + n\ -nxn 
x,l"y -nxnz 

—nxny nx -f n\ -nynz 

—nxnz —nynz nx + ny 

(4.275) 

It is useful to compare the two types of planar constraints. The known plane weighting 

matrix Wpiane has a rank of three. It is applied directly to the Hessian matrix and should 



Chapter 4. Obstacle Detection using a Stereo Image Sequence 123 

be incorporated into the seed phase with the auxiliary sensor motion estimates. The 

unknown plane constraint has a rank of one. The constraint contains the error term ep; 

thus, the unknown plane a non-linear problem that is dependent on the current estimate 

of sensor motion. As a result, an iterative process is required to find the solution. The 

unknown plane constraint is applied after all the data has been incorporated into the 

inter-frame sensor motion estimate. It has little value as a seeding tool. 

The planar constraint reduces, but does not eliminate, the problem of poor condi­

tioning. The unknown plane constraint only has a rank of one; there are typically two 

small eigenvalues in the Hessian matrix. In addition, there is no guarantee that the un­

known plane constraint will affect either of the smallest eigenvalues. For the case of an 

observer travelling forward along a plane whose surface normal is given by np = [0 1 0 ] r , 

the unknown plane constraint will primarily affect the eigenvalues associated with ilz. 

The known plane constraint suffers from a similar limitation, but to a lesser extent. For 

the previously mentioned case, the known plane would constrain eigenvalues associated 

with Ty, ilx, and £lz. The eigenvalue associated with V4 would increase significantly. 

The eigenvalue associated with v$ would be unaltered. Thus, for the typical operation 

of a ground-based autonomous vehicle, the planar constraints provide only marginal im­

provements in the overall conditioning of the Hessian matrix. The planar constraints will 

improve certain individual motion parameter estimates. 

4.6.4 M o v i n g Objects 

This subsection describes how features belonging to moving objects are processed. The 

grouping of features is discussed. 

The stereo features that belong to moving objects are identified at two stages in 

the processing: early in the processing during the seed stage; and later, after the inter-

frame sensor motion stage is complete. The selected stereo features are tested for z 
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consistency; that is, to check if both the image velocity-based and depth-based estimates 

of z are similar (see section 2.6). A by-product of the z consistency test is a local estimate 

of the time-to-collision. A feature tracking process is activated if the feature has a short 

time-to-collision. The time-to-collision restriction is used to reduce the number of active 

(tracked) features. The segmentation of the image sequence is discussed in section 4.6.5. 

Once the active features are identified, it is necessary to group features that belong 

to a common moving object into a common object class. The features within a given 

object class have the same translational velocity and approximately the same depth. For 

the purpose of testing the similarity of two object classes, a second Mahalanobis distance 

is defined: 

xah2 = [Tobj(l) - Tobj(2)] [Qobj(l) + Qobj(2)] iTobj(l) ~ Tobj(2)\ 

[4(1) -d,{2)f 
(4.276) 

£[(A<4(l))2] + £ [ ( A 4 ( 2 ) ) 2 r 

This Mahalanobis distance measures the difference in object velocity and in the disparity. 

The disparity term is particularly useful when an object class has a small number of 

features. A small class can have a large error covariance Q'^; thus, the expected motion 

error is too large to reject other object classes. If the maximum size of the viewed object 

is known, the difference in the average x and y position of two object classes can be 

included in the Mahalanobis distance. 

In this work, the grouping process is sequential. Each stereo pair of features is assigned 

its own object class. The Mahalanobis distance is calculated for each pair of object classes. 

The two object classes that produce the smallest Mahalanobis distance (that does not 

exceed a given threshold) are merged. This procedure is repeated until all remaining 

pairs of object classes exceed the threshold. 

The above-mentioned method groups stereo features together. Since all the stereo fea­

tures are obtained from epipolar channels, the Hessian matrix Q0t,j will be ill-conditioned. 



Chapter 4. Obstacle Detection using a Stereo Image Sequence 125 

Features from oblique channels are required. Candidate oblique features are selected from 

the set of features as belonging to non-stationary objects 9 . The disparity similarity is 

enforced to reduce the number of candidates for a given object class. If more than one 

candidate remains, flow-field divergence [46] is used to estimate the time-to-collision and 

subsequently, the velocity z0t,j. Once this initial culling process is complete, the remain­

ing candidates are tested using the second Mahalanobis distance. Acceptable candidates 

are merged into the appropriate object class. 

In some cases, there are no oblique candidate features. This can be a result of 

lack of oblique features, severe culling of features, or incorrectly identifying features 

as belonging to stationary objects. To allow the calculation of the error covariance Q~^, 

the y component of object motion, y0(,j, must be assumed. If the object and sensor are 

travelling on the same plane, the combined object/sensor motion has the same yfoe as 

the sensor motion. An alternative (worst case) approach is to assume a y/oe that will 

cause the object to collide with the sensor or pass-by at the height of the sensor. The 

object's "padded" Hessian matrix, that incorporates the assumed y/oe, is given by 

typad — tyobj T 2 (4.277) 

0 0 0 

0 Z) (zf Vfoe) 

0 (ZfVfoe) ffoe 

where Qpad is the padded Hessian matrix and wpad is the padding confidence term. The 

padding confidence is the inverse of the expected squared error in y0f,j resulting from the 

assumption of y/oe-

Not all features belonging to moving objects will be incorporated into an object 

class. It is desirable to identify these unassigned monocular image features for two 

reasons: to prevent the image features from accidentally being identified as belonging to 

9Oblique features belonging to non-stationary objects are available after the inter-frame sensor motion 
stage has been completed. 
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stationary objects; and to identify regions of uncertainty in the scene. Certain moving 

objects can be identified, without depth information, by the normal image velocity. If 

the measured normal image velocity is incompatible with the positive depth/stationary 

object assumption, the viewed object must be moving. Consider, as an example, a 

forward translating camera with no rotation. Any feature whose normal image velocity 

points towards the sensor's focus of expansion must belong to a moving object. This 

directional test will identify moving objects that will pass in front of the sensor. This 

method for identifying moving objects is also valid for a rotating sensor. The effect of 

sensor rotation must be subtracted from the normal image velocity before applying the 

directional test. In summary, an image feature must belong to a moving object if [29] 

(Vn - hTARosBn 0) nTf}oe < 0, (4.278) 

where ffoe = [(x - xfoe) (y - yfoe)]
T, 

Xfoe = ZJY' (4-2 7 9) 

and 

VSoe = z^- (4.280) 

Equation (4.278) will only detect a moving object (that is passing in front of the cam­

era) at certain parts of the object's trajectory. Consider a forward moving camera and 

the right moving object. If the projection of the moving object is at the left periphery of 

the image, the normal image velocity induced by the object motion opposes the normal 

image velocity induced by the forward translation of the sensor.. Equation (4.278) is 

activated at the point in the object's trajectory where the object-induced normal image 

velocity exceeds the normal image velocity induced by the sensor translation. This will 

occur at some point because the normal image velocity induced by the sensor translation 

decreases to zero as the image feature approaches the sensor's focus of expansion. Once 
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the image feature crosses the sensor's focus of expansion, the two normal image veloci­

ties will have the same directions. At this point in the trajectory, (4.278) is no longer 

activated. 

If a standoff depth is assigned, more types of moving objects can be detected. Very 

fast image features will be nagged as significant. These features belong either to mov­

ing objects at an arbitrary positive depth or to stationary objects within the standoff 

depth. Either case is consider interesting by the obstacle avoidance module. The fast 

moving/standoff depth test is given by 

( K - nTAR0SBQ 0 ) nTf}oe > (nTffoe)
2—, (4.281) 

Zstnd 

where zstnd is the standoff depth. Note that the right side of the inequality is positive for 

forward translating sensors. 

4.6.5 Interact ion B e t w e e n Module s 

This section describes the interaction of the various modules in the obstacle detection 

algorithm. Particular attention is given to the segmentation of the image sequence into 

stationary objects and moving objects. 

The modules of the obstacle detection algorithm are shown in figure 4.18. Significant 

features are selected from the Gabor-filtered images. The disparity and the normal image 

velocity, along with the expected errors, are measured. The stereo normal image velocity 

and the disparity produce a local estimate of z. 

The velocity z is used to segment the image sequence. If an estimate of the extended 

sensor translation is available, the object velocity z0bj can be estimated: 

zob] = z + Tz<sen. (4.282) 
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A necessary condition for a stationary object is 

| i O 6 j |~0 . (4.283) 

A sufficient condition for a moving object is 

\zobj\ » 0. (4.284) 

Two thresholds are applied to z0bj, initially segmenting the stereo image features into 

stationary objects, moving objects, or uncertain. The stationary object threshold, zat, is 

non-zero (but small) to allow for errors in the local estimate of z and the sensor motion 

estimate TZiSen. The moving object threshold, zmt, is chosen significantly larger than zero 

to avoid false detections. Stereo features whose z0^ is between the thresholds are labelled 

as uncertain. 

The potential stationary object features are tested for in-plane motion consistency 

using the seeding histograms. Inconsistent measurements are labelled uncertain. The 

potential moving objects are tested for urgency. Any object with a large time-to-collision 

is labelled as uncertain because these measurements are sensitive to errors. Moving object 

that are being tracked from previous images, referred to as "tracked moving" in figure 

4.18, by-pass both the im< and tco\ tests. 

The features identified by the seed stage as belonging to stationary objects are com­

bined to obtain an initial estimate of the inter-frame sensor motion, denoted by 0teej 

in figure 4.18. The inter-frame Hessian associated with 63eed is usd in the Mahalanobis 

distance to test if uncertain features are consistent with the stationary object hypothesis. 

The image measurements of consistent features are used to update the inter-frame sensor 

motion estimate. Any inconsistent features remain labelled as uncertain. 

After all the stationary object features have been identified and combined, the final 

inter-frame sensor motion estimate (denoted by 6 in figure 4.18) is integrated into the 
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extended sensor translation estimate (denoted by Tsen). The Hessian matrix associated 

with 0 is used to test the stereo features belonging to moving objects. If both of the stereo 

features are consistent with the stationary object hypothesis, the features are removed 

from the moving object list. 

Uncertain stereo features are checked for collision trajectories. The correspondence 

predictor, that is tuned to collision trajectories, uses both Taen and 6. This step identifies 

moving obstacles whose velocity is orthogonal to the z-axis (z0bj is small). Next, the 

uncertain features are tested for inconsistent motion. Any normal image velocity mea­

surement with an incompatible direction (that satisfies equation (4.278)) is identified. If 

matching stereo features exist, the stereo features are labelled as a moving object. This 

step identifies moving objects that will pass in front of the cameras. 

The moving object features, both the new and tracked, are merged into equivalence 

classes. The extended object motion for each class is estimated. In the current imple­

mentation, only stereo features from the epipolar channel are used to estimate object 

motion. As a result, the yfoe of the object is assumed to be zero. The extended object 

and sensor motions are combined to estimate the observer frame trajectory. The collision 

parameters for each feature are predicted using the image coordinates, the depth, and 

the observer frame trajectory. Note that each feature belonging to a given object has a 

different point-of-collision. 

4.6.6 Extens ions to the Kalman Filter 

This subsection investigates extensions to the Kalman filter equations presented in sec­

tion 4.4. Uncertainty in the inter-frame rotation is modelled as process noise (motion 

disturbances) in the extended sensor and object translation equations. It is also shown 

how pilot commands, such as the steering angle and braking, can be incorporated into 

the process model to predict future states. 
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The process model of the extended sensor translation is given by 

Taen(ti+i/ti) = R (ti)Taen(ti). (4.285) 

The error, the process noise, is given by 

STsen{U+xlU) = RT(ti) 6T.en(ti) - S 6ti, (4.286) 

where 

S = T 

—T T 
-1 z,sen J- y,aen 

0 — T 

-T T 

At. (4.287) 

In matrix form, the error can be written as 

^Tsen(ti+1/ti) = HN 

t>Tsen(ti) 

8Cl 
(4.288) 

PRT(U) = (4.289) 

where Hj, = [RT - S]. 

The error covariance matrix of this noise corrupted process is denoted by 

Q:}n{U) E[6TsenSnT] 

E[6n 6Tsen] E[6U snT] 

The error covariance for the inter-frame sensor motion can be written in a similar form: 

QT1 Pm 

_ PUT PQU 

The block elements of PRJ and Q~^t are related: 

Qint (4.290) 

E[STsen 6tiT] = VPTQ, 

E[6n 6fJen] = rjPUT, 

E[6Cl 8tiT) = Pnn, 

(4.291) 

(4.292) 

(4.293) 
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where 

V = QILQT- (4.294) 

The matrix 77 represents the influence of the current inter-frame sensor motion estimate 

on the extended sensor translation. It will tend to decrease as more information is 

integrated. 

The error covariance of the extended sensor translation at time 2,+i can be predicted 

from PRT at t ime U: 

Q7en(U+i/U) = HT
N PRT{ti)HN = [RT - S}PRT(ti) 

This equation can be rewritten as 

Q7en(U+i/U) = RTQ:e
l
n(ti)R + N.en(U), (4.296) 

where 

N.m(ti) = - 7 / [ i ? r P r n 5 r + SParR] + SPQUST. (4.297) 

The matrix Nsen is the error covariance of the motion disturbance described in section 

4.4. 

A similar model of process noise exists for the extended object translation. The 

process model for the object translation is given by 

Tobj(ti+1/ti) = RT(ti)fobj{ti). (4.298) 

Since T0bj is based on the excess normal image velocity, the object translation and the 

inter-frame sensor rotation are uncorrelated; that is, 

E[TobjClT] = (£?[ft fJbj])T = 03,3. (4.299) 

Thus, the error covariance of the extended object translation is given by 

Q;b)(ti+1/U) = RTQ;b)(ti)R + SobjPnnS&j, (4.300) 

R 

-ST 
(4.295) 
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^obj — 

0 —T2<obj 

Tz,obj 0 

-*y,obj -Lx,obj 

At. (4.301) 

where 

-* y,obj 

-L x,obj 

0 

The rotational uncertainty increases the predicted error covariance Qobj(ti+i/t>)- As a 

result, the relative importance of future inter-frame object translations will increase. This 

result is also true for the extended sensor translation case. 

It is possible to incorporate pilot commands into the process model for the extended 

sensor motion. In its current form, the model of vehicle motion is pure translation 10. 

Certain forces applied to the vehicle, such as steering, propulsion, and braking, cause 

the vehicle to accelerate. The acceleration, by definition, will cause the velocity of the 

vehicle to change. A vehicle translation model, that includes these accelerations, is given 

by 

Tvek(ti+1/t,) = Rlh[Tveh(U) + Aa], (4.302) 

where Twh is the translation of the vehicle (relative to a world coordinate frame), Rveh 

is a rotation matrix representing the change in vehicle heading, and A„ is the change in 

vehicle speed. Note that Tveh(ti+i/ti) in (4.302) is represented using the same coordinate 

frame as Tveh(ti). The vehicle translation at time <,• is (assuming no sideways slip) 

0 

J- veh — 0 (4.303) 

where s is the speed of the vehicle. 

Vehicle acceleration has two forms: changes in vehicle heading, and changes in vehicle 

speed. For a standard automobile, the steering angle is used to alter the vehicle heading. 

10The matrix R(t{) changes the coordinate frame representing the sensor translation from the observer 
frame at time ti to the observer frame at time t,-+i. The change in the orientation of the observer frame 
is assumed to be due to transients, such as camera shake, not due to changes in the vehicle heading. 
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The steering angle, 7a t r , causes the vehicle to travel in a circle whose radius, rstr, is given 

by 

r,tr = - ^ _ , (4.304) 
tan •ystr 

where Lw^ is the wheel base of the vehicle. The change in heading, A0/,, is dependent on 

the steering angle and the distance the vehicle travels during At: 

A0h = — / (s + at) dt, 
J-'wb Ji\ 

where a is the linear acceleration. The vehicle speed is given by 

s(ti+1) = kas(ti), 

where 

K = 1 + 
j a dt 

(4.305) 

(4.306) 

(4.307) 

The new model of vehicle motion is 

-Lveh\ti+l/ti) — fcai*-vehl-veh\*i)i 

where 

(4.308) 

cos A0h 0 sin A9h 

Rveh= 0 1 0 - (4.309) 

- sin Aflfc 0 cos A ^ 

The above equations describe the vehicle translation. The extended sensor translation 

is given by 

T.en(ti) = RlMT^iU), (4.310) 

where Rv0 is the difference in orientation between the observer and vehicle coordinate 

frames. When the roll angle between the coordinate frames is zero, and the pan and tilt 
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angles are small, 

Zj 0 —Xf0 

Zf 
0 Zf -yi oe 

Xjoe Vfoe *f 

The new model of the extended sensor translation is 

(4.311) 

Tsen(ti+i/ti) = kaR {ti)RvoRvehRvoTsen(ti). (4.312) 

In this work, pilot commands are not incorporated into the process model for the 

extended sensor translation. Such a model would be useful for obstacle avoidance. Simple 

evasive maneuvers, described by the steering angle and braking/propulsion, could be 

tested to predict how long a given path can be followed before encountering an obstacle. 

Maneuvers that decrease the time-to-collision should be avoided. 

This subsection has proposed extensions to the extended sensor and object Kalman 

filters. The uncertainty associated with the inter-frame rotation is incorporated into 

the Kalman filters as process noise. This rotation-induced process noise is included in 

the current implementation. The current implementation does not incorporate pilot 

commands. The ease in which an obstacle avoidance module can be added should be 

apparent. 

4.7 Comparison 

The implementation described in this chapter is a cascade of a number of different al­

gorithms. This section provides a comparison of the submodules of this implementation 

with the works of other researchers. 

The inter-frame sensor motion is similar to the direct passive navigation problem first 

studied by Negahdaripour and Horn [45], later by Ito and Aloimonos [33], and Horn 

and Weldon [31]. It is most similar to the known structure case found in both Ito and 
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Aloimonos, and Horn and Weldon. This implementation differs from the previously 

mentioned works in a number of ways. First, phase derivatives from bandpass (Gabor) 

filtered images are used in place of image intensity derivatives. The advantage of using 

phase is that , unlike image intensity, phase is stable with respect to changes in contrast 

and to geometrical deformations such as dilation and rotation [21]. The second difference 

is that error estimates are used to weight the normal image velocity measurements. Thus, 

a weighted least squared solution is obtained. Finally, this work is designed for a dynamic 

environment, the other researchers assume that the scene is stationary. 

The depth of each feature must be measured to estimate the inter-frame sensor mo­

tion. The depth is measured using a set of epipolar Gabor filters. The depth module 

is a combination of the works of Sanger [47], Jenkin and Jepson [34], and Fleet, Jepson 

and Jenkin [21]. The interesting features obtained from their works include a multiscale 

approach for estimating disparity, and a matching criteria for reducing the likehood of 

false disparity estimates. I have extended their work by estimating the measurement 

error. This work also uses temporal consistency and a heuristic ordering constraint to 

increase the number of detected stereo features. 

Gabor filters are also used to estimate the normal image velocity. This module follows 

the work of Fleet and Jepson [22] [23]. There are some differences, however. This 

implementation uses the inter-frame sensor and object motion to predict the normal 

image velocity. This extends the maximum inter-frame displacement. In addition, this 

implementation estimates the measurement error. 

The Mahalanobis distance is used to identify features belonging to stationary objects. 

Heeger and Hager [29] applied the Mahalanobis distance to image velocity field; this 

implementation uses the normal image velocity. The Mahalanobis distance compares 

the estimated velocity error with the expected error. Both errors are available from the 

inter-frame sensor motion module. Thus, motion segmentation using the Mahalanobis 
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distance is a natural extension of the weighted least square approach to direct passive 

navigation when the structure is known. 

Kalman filtering is used to estimate the object and sensor motion over the entire 

image sequence. The uniqueness of a given implementation of the Kalman filter is in the 

modelling of the motion and the error. In this implementation, a pure translation model 

is used. Dropping the inter-frame rotation parameters has the effect of stabilizing the 

image sequence. The inter-frame rotation terms are comparable to the extra terms used 

in an augmented Kalman filter [11]. 

In summary, the key difference between this implementation and the many works it 

draws from is error estimation. The error estimated from the Gabor filters is propagated 

through each stage of processing until it reaches the collision parameters. The error 

estimates are particularly important for motion segmentation. Error estimates are also 

used to fuse measurements of vehicle motion from auxiliary sensors. The error covariance 

matrices used in the inter-frame sensor motion estimation and the Kalman filter can 

be used to incorporate physical constraints, such as planar motion, into the motion 

estimates. 

The rest of this section compares this implementation as a whole with that of Ayache 

and Faugeras [6]. Ayache and Faugeras use three-dimensional positional information to 

perform stereo (trinocular) camera-based navigation. The three-dimensional position of 

physical features (lines in a three-dimensional space) are tracked and integrated over 

time using a Kalman filter. The uncertainty in the three-dimensional position is stored 

in an error covariance matrix. As time elapses, and more information is accumulated, 

the error covariance for tracked three-dimensional feature decreases. The changes in 

the three-dimensional position of features over time are used to estimate the inter-frame 

sensor motion as well as the inter-frame error covariance matrix. The inter-frame motion 

is used to aid temporal correspondences by predicting the the future position of a physical 
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feature. The Mahalanobis distance is used to reject outliers (candidate correspondences 

that are inconsistent with the inter-frame motion). The Mahalanobis distance is also 

used to test groups of features for coherent properties (such a belonging to a common 

plane). Coherent features are merged. 

There are many similarities between the implementation used by Ayache and Faugeras 

and the implementation presented in this work. Both implementations use Kalman filters 

to integrate information, use inter-frame motion to predict correspondences, use the 

Mahalanobis distance to reject outliers and to test features for coherent properties, and 

both merge coherent features to improve accuracy. There are notable differences. Ayache 

and Faugeras use the three-dimensional position as the state variables in the Kalman 

filter; I use the three-dimensional velocity as state variables. The obvious reason for this 

difference is that Ayache and Faugeras are building a three-dimensional description (map) 

of a static environment, where as I am estimating the collision parameters of obstacles. 

The position of physical features relative to the cameras is important for building a 

map of the environment where as the trajectory of the object relative to the sensor is 

important for obstacle detection. Merging features with coherent positions improves the 

accuracy of a map; merging features with coherent motion improves the accuracy of the 

estimated trajectory. 

There are also differences in the data representations. In the implementation used 

by Ayache and Faugeras, feature information is transformed from an image representa­

tion to a three-dimensional representation immediately after the disparity is measured. 

The implementation presented in this work delays the transformation. Both depth and 

motion are measured in the image coordinate frame using stereo disparity and normal 

image velocity, respectively. The transformation from an image representation to a three-

dimensional representation occurs during the estimation of the inter-frame sensor motion. 

There is an advantage in using the image coordinate frame to measure both motion 
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and depth. In this work, changes in position are measured directly using phase differences; 

the positional information is only coarsely measured. The advantage of such an approach 

is that changes in position can often be measured more accurately than the individual 

positions. Consider as an example a sine wave grating. It is difficult to localize the 

position of such a feature, but it is easy to determine how much it has moved. Since the 

estimates of the inter-frame sensor and object motions are based on changes in position 

(normal image velocity and disparity), the implementation is less sensitive to positional 

errors. A much simpler error model can be used to represent positional uncertainty (only 

the disparity error in maintained). Error covariance matrices are maintained for the 

sensor and object motion, but not for positional information. 



Chapter 5 

Resul ts 

In this chapter, three data sets, which comprise eight stereo image sequences, are used 

to test the individual modules of the algorithm as well as to demonstrate the algorithm's 

robustness as a system to various scene structures, various lighting conditions, and various 

combinations of sensor and object motions. All image sequences contain scenes are 

captured using CCD cameras; there are no computer synthesized images. 

Data set 1 is comprised of two stereo image sequences obtained from an optical bench. 

In both experiments 1 and 2, the cameras are undergoing pure translation in a stationary 

environment. The purpose of data set 1 is to test the accuracy of various modules in the 

obstacle detection algorithm. 

Data set 2 is also obtained from an optical bench. Three controlled experiments are 

presented that are designed to imitate difficult, but typical, situations encountered by 

an autonomous vehicle. In experiment 3, the stereo cameras are panning the scene, as if 

the computer pilot is turning its "head" to better view interesting features (as in [18]). 

Experiments 4 and 5 are designed to imitate two vehicles (one of which is the ego-vehicle) 

approaching an intersection. In experiment 4, the two vehicles reach the intersection at 

the same time; in experiment 5, the other vehicle reaches the intersection before the 

ego-vehicle. The purpose of data set 2 is to test the accuracy of the algorithm in the 

presence of sensor rotation and the algorithm's ability to segment a moving object from 

the background. 

140 
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Data set 3 presents three experiments which are performed under less controlled light­

ing conditions and less precise motion than in data sets 1 and 2. Experiment 6 contains 

an outdoor scene with shadows. Experiment 7 has a moving sensor that experiences 

transient rotations. Experiment 8 contains a scene with two independently moving ob­

jects. The purpose of data set 3 is to test the accuracy of the algorithm in realistic 

environments. 

Before proceeding with the experimental results, section 5.1 will specify the system 

parameters used in the eight experiments, and section 5.2 will establish standards for 

judging the accuracy of the results. 

5.1 S y s t e m Parameters 

This section specifies system parameters used to process the image sequences. The Gabor 

channels are defined by the selection of the filter set and spatial sampling lattices. Various 

thresholds, used to identify important features, to test the stability of features, and to 

test feature correspondences, are selected. 

The set of Gabor filters used in the following experiments comprises 3 frequen­

cies, 4 orientations, and 2 phases (a total of 24 filters). The three frequencies are 

(0.0407r,0.0927r,0.2107r) radians per pixel or (0.020,0.046,0.105) cycles per pixel. The 

four orientations are (0, ^, ^, ^f). The two phases are (—f, f ) . The three constants de­

scribed in section 3.2.1—the aspect ratio of the Gabor function a, the ratio of adjacent 

frequencies p, and the bandwidth-frequency ratio A—are given by 

a = 1.00, (5.313) 

p = 2.29, (5.314) 

A = j . (5.315) 
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The spatial lattice is oversampled, with respect to the minimally complete definition 

(equations (3.113) and (3.114)), by a factor of 2.55 in both the x and y directions. 

This sampling density exceeds the "local frequency estimation" sampling requirement 

(section 3.2.3) and matches the overlapping disparity interval requirement (section 3.2.4). 

A bandsampled lattice is used in the epipolar channels; a restricted sampling lattice is 

used in the oblique channels. The width of the bandsampled lattice is limited to 35 

lattice points. The 35 lattice point limit is enforced in both the x and y directions for the 

restricted lattices (total number of lattice points is restricted to 1225). In the experiments 

presented in this chapter, the 35 lattice point limit affects only the spatial lattice in the 

highest frequency channel. 

Important features have local magnitudes that exceed three thresholds: an absolute 

threshold, a relative orientation threshold, and a relative spatial threshold (see section 

3.2.2). The absolute threshold is set between 0.1 and 0.2 of the maximum magnitude. 

The relative threshold for orientation neighbours is set to 0.95. The relative threshold 

for spatial neighbours is set to 1.0. 

The size of the relative spatial threshold may be misleading. The spatial threshold 

is applied to a relative significance measure that is calculated using a peak detector 

method. The local magnitude at a given lattice point is compared to the attenuated 

magnitude of other nearby lattice points. The attenuation is obtained using a Gaussian 

window whose spatial support is twice the support width of the Gabor filter's kernel. The 

relative (spatial) significance is the ratio of the local magnitude and the largest of the 

Gaussian windowed (neighbouring) responses. A relative spatial threshold of 1.0 using 

this peak detector method is similar to a threshold of 0.8 when unattenuated adjacent 

spatial neighbours are compared. 

The relative magnitude thresholds used to test stereo and temporal correspondences 

(see sections 3.2.4 and 3.2.5) are both set to 0.8. The thresholds for the relative magnitude 
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test for the stability of features (see section 3.2.3) are set to 0.5 for the x direction and 

0.7 for the y direction. The thresholds for the local frequency test for stability (equations 

(3.128) and (3.129)) are set to 0.5 for both the x and y directions. 

5.2 Standards for Comparisons 

This section defines the standards for judging the utility of the obstacle detection al­

gorithm and its various modules. Three standards will be used to compare measured 

data with actual values. The difference between the measured and actual values can 

be compared to the accuracy of methods used by other researchers, the expected error 

estimated by the algorithm, and the accuracy required to discriminate between obstacles 

and objects. 

It is difficult to make useful comparisons with other researchers. As will be seen in 

the following eight experiments, camera-based results depend heavily on image, scene, 

and motion quantities. An additional problem (perhaps due to the previous observation) 

is that there are few published results for real image sequences. Despite these obvious 

difficulties, I will at tempt to formulate standards for judging the accuracy of disparity 

and depth, normal image velocity, and the direction of sensor motion. 

Matthies et al [39] published disparity and depth results for a flat tiger poster that 

is the same as the one used in experiment 1. The RMS error in the disparity is 0.12 

pixels. The RMS error in depth is 0.5 percent of the actual depth. It is also useful to 

compare the accuracy to other sensors: a laser range finder with 256 levels [48] has a 

depth accuracy of 0.4 percent of the maximum depth 1. I consider the results of [39] to 

be "very good." 

Weng et al [52] judge the accuracy of the image velocity using the RMS difference 

1In most cases, 0.4 percent of the maximum depth will be less accurate than 0.5 percent of the actual 
depth. 
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between the measured image velocity field and the field predicted by the inter-frame 

sensor motion; that is, the RMS error is given by 

AVRMS = [ ^ ] 0 - 5 , (5.316) 

where r,„ is defined by (2.75). In this work, the RMS error is given by 

AK,*M5 = [ ^ r , (5.317) 

where rn,„ is defined by (2.77). In the real image sequence found in [52], the RMS error 

is 0.84 pixels. It is claimed in [52] that an RMS error less than one pixel is "satisfactory." 

The accuracy of the direction of sensor translation is dependent on many conditions: 

the speed of translation, the distribution of features in the image, and the variety of 

depths in the scene. Large inter-frame translation tend to improve the directional accu­

racy; a sparse number of features, clustering of the features in a small portion of the image, 

or clustering of features in a small depth interval will produce ambiguous image velocity 

fields which tend to reduce the directional accuracy. Establishing a fixed "standard" for 

judging the directional accuracy ignores the (inherent) translation-rotation ambiguity [3] 

that can exist when sensor motion is estimated from the image velocity field. Acknowl­

edging its limitations, I will at tempt to determine a fixed standard by comparing the 

directional accuracy reported by other researchers. Table 5.1 contains published results 

for real image sequences produced by a camera (or cameras) undergoing predominantly 

axial translation (Tz > Tx, Ty). If the reference contains more than one example of axial 

translation, the best result is listed. Table 5.1 also lists any assumptions used to improve 

the results 2. It appears that a directional error of less than 1.0 degree in each of the pan 

and tilt directions can be considered "very good." 

The second standard for judging accuracy is the expected error. In this work, each 

measurement of disparity and normal image velocity is accompanied by an expected error 

2 The no rotation assumption is often used to avoid the translation-rotation ambiguity. 
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Table 5.1: Comparison of Directional Accuracies 

Researcher 
Matthies [40] [42] 

Hayashi and 
Negahdaripour [26] 

Heel and 
Negahdaripour [30] 

Adiv [2] 

Directional Error 
< 1.0 degree 

4.3 degrees 

0.7 degrees 

1.0 degree 

Assumptions 
Stereo, 3D point matching, 
Planar motion (Tx, Tz, Oy) 

Correspondenceless stereo, Direct, 
No rotation 

Monocular, Direct, 10 image integration, 
No rotation, Frontal plane (one depth) 

Monocular, Requires optical flow 

estimate. These expected errors are propagated to other modules as error covariance 

matrices. The expected error is useful for judging the accuracy of motion estimates and 

collision parameters because it accounts for any inherent ambiguities that arise due to 

poor feature distribution. If the difference between the measured and actual values (of 

a motion or collision parameter) is within the expected error, the measured value is said 

to be "consistent" with the actual value. 

The third standard is the accuracy required to successfully complete the task at hand. 

In this work, the task is to estimate the collision parameters of objects with sufficient 

accuracy that the computer pilot can avoid any obstacles. The accuracy of the point-of-

collision required for obstacle detection is related to the size of the object/obstacle, and 

the baseline separation of the stereo cameras (or the size of the ego-vehicle). 

5.3 D a t a Set 1 

Data set 1 tests the following modules: disparity, normal image velocity, inter-frame 

sensor motion, and the extended sensor motion. Two stereo image sequences are formed 

by viewing stationary environments with forward translating cameras. The first sequence 

has a flat scene structure with one depth; the second sequence has a variety of depths. 
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Both stereo image sequences were obtained from the Calibrated Imaging Lab at Carnegie 

Mellon University 3 . 

The image sequences are obtained from an optical bench, which ensures precise motion 

control. The stereo image sequence is produced using one camera; the baseline separation 

is obtained by moving the camera along the a:-axis. This technique guarantees that the 

focal lengths used in the right and left image sequences are matched. The stereo baseline 

is 2.54cm (1.0 inch). The optical axes of the stereo cameras are parallel. The direction 

of sensor translation is along the z-axis (axial translation). 

The nominal camera parameters are as follows: the focal length of camera is 16mm; 

the physical size of the CCD array is 6.6mm by 8.8mm; and the image size is 480 x 512 

pixels. The effects of using nominal camera parameters instead of the actual values is 

discussed in appendix C and in the section summary. 

5.3.1 Exper iment 1: Tiger P o s t e r 

In this experiment, stereo cameras move towards a stationary poster. A stereo pair from 

the image sequence is shown in figure 5.19. The poster contains the face of a tiger. The 

poster is flat and its surface normal is parallel to the z-axis; that is, the scene structure 

has one depth. The image projection of the poster contains many uni-directional features 

that comprise a variety of normal directions. 

Using the theory outlined in the previous chapters, we can make predictions regarding 

the performance of various modules of the algorithm for this particular image sequence. 

The disparity module should perform well because the scene structure is simple (constant 

depth). All of the stereo correspondences can be made using the E0jfset histogram for the 

lowest frequency channel and the multiscale prediction for the higher frequency channels 

3The sequences were supplied by Larry Matthies who is currently working at the Jet Propulsion 
Laboratory. 
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Figure 5.19: Experiment 1, Stereo Images (upper) Left Image, (lower) Right Image. 
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(see section 4.6.1); the heuristic ordering constraint will not produce additional matches. 

The normal image velocity module should also perform well because the axial motion is 

small. Generating the correct temporal correspondences will be simple because most of 

the matches will have no lattice offset. 

The Hessian matrix used to estimate inter-frame sensor motion will be ill-conditioned 

due to the lack of variation in depth. As a result, the x component of motion may be 

incorrectly distributed between Tx and £ly. Similarly, the y component may be incorrectly 

distributed between Ty and £lx. Enforcing motion constraints should improve the inter-

frame parameter estimates. 

The objectives of this experiment are: to measure the structure of the scene and 

compare with the flat poster; to measure the normal image velocity and compare with 

the flow pat tern predicted by the sensor motion; to measure and compare the two inter-

frame sensor motions; to determine if the motion constraints improve the inter-frame 

sensor motion estimates; and to measure the extended sensor translation. Success of this 

experiment will verify the correct operation of the phase-based measurements of disparity 

and normal image velocity. It will also verify the correct operation of the primary stereo 

correspondence predictors: the E0jjset histogram and the multiscale prediction. 

The interpolated disparity and the associated uncertainty, for each of the three epipo-

lar channels, are shown in figures 5.20, 5.21, and 5.22. There is a total of 284 stereo 

feature pairs across the three epipolar channels. The disparity is approximately constant 

throughout the image. The average disparity of these features is 51.07 pixels. The mea­

sured standard deviation is ±0.16 pixels. It is comparable with the RMS error of ±0.12 

pixels reported in [39]. 

The top view and side view of the local map (observer coordinate frame) are shown in 

figure 5.23. The top view (the upper image) is the projection of stereo features from all 

epipolar channels onto the x-z plane. The side view (the lower image) is the projection 
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Figure 5.20: Experiment 1, u0 = 0.040*- rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 42 pixels and 52 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. 
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Figure 5.21: Experiment 1, a?! = 0.092TT rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 42 pixels and 52 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. 
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Figure 5.22: Experiment 1, w2 = 0.2107T rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 42 pixels and 52 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. 
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Table 5.2: Inter-frame Sensor Motion for Experiment 1 

Frame 
0-1 
1-2 

cm/frame 
J- x J-y -L z 

0.0452 0.0416 0.7194 
-0.0018 0.0036 0.7204 

10 3 rad/frame 
»'x * 'y *"z 

0.856 -1.232 0.043 
0.056 -0.144 -0.051 

of the stereo features onto the y-z plane. In each view of the local map, the observer 

origin is positioned at the bottom-center tick. 

The local map correctly illustrates the flat planar structure of the scene. The average 

depth is 46.30 cm and the standard deviation is ±0.14 cm. Thus, the RMS error in depth 

is 0.3 percent of the average value, which is better than the standard described in section 

5.2. 

The normal image velocity measurements (also referred to as "component flow vec­

tors") for the four orientations with the channel frequency of 0.0927T radians per pixel 

are shown in figures 5.24 and 5.25. It can be seen that the normal direction of each 

component flow vector is within the orientation bandwidth of its respective channel. All 

four channels display flow patterns that are characteristic of a sensor undergoing axial 

motion: the component flow vectors point away from the image origin and the speed 

increases with the (normal) distance from the origin. The RMS error in the measured 

normal image velocity field, compared to the field predicted by the inter-frame sensor 

motion, is 0.10 pixels, which is better than the one pixel standard described in section 

5.2. 

The two inter-frame sensor motions and the expected errors appear in tables 5.2 and 

5.3, respectively. The two inter-frame sensor motions are consistent with each other; 

that is, the parameter differences between the two inter-frame transitions are less than 
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Figure 5.23: Experiment 1, Local Map. Stereo features are denoted by black squares. 
Distance between ticks is 7.5 cm. (upper) Top View, x-z projection, (lower) Side View, 
y-z projection. 
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Figure 5.25: Experiment 1, Normal Image Velocity for a>x = 0.0927T rad/pixel. Compo­
nent flow vectors are represented by a "T." The direction and length of the stem of the 
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Table 5.3: Expected Error in Inter-frame Sensor Motion for Experiment 1 

Frame 
0-1 
1-2 

cm/frame 
T T T 

± 0.1360 ± 0.2002 ± 0.0163 
± 0.1329 ± 0.1883 ± 0.0144 

10 3 rad/frame 

i »x y *"Z 

± 4.246 ± 2.875 ± 0.370 
± 4.052 ± 2.848 ± 0.349 

the expected errors. The inter-frame sensor motions are also consistent with the axial 

motion; the direction of translation (^f, ^f) and the rotation are approximately zero 

(within the expected errors). 

An eigenvalue decomposition of Qint shows that the inter-frame parameters Tx, Ty, 

Q,x, and £ly are sensitive to measurement errors. The six eigenvalues and eigenvectors are 

as follows 4: 

Ao 

Ai 

A2 

A3 

A4 

A5 

= 948781 

= 339083 

= 4482.5 

= 3727.3 

= 33.123 

= 13.362 

v0 = 

Vl = 

v2 = 

V3 = 

V4 = 

v5 = 

0.702 

-0.002 

-0.023 

-0.004 

-0.674 

0.229 

0.002 

0.703 

-0.021 

-0.010 

0.229 

0.673 

-0.004 

-0.029 

-0.820 

-0.571 

0.024 

0.024 

-0.001 

-0.710 

0.021 

0.001 

0.227 

0.666 

0.712 

-0.001 

0.015 

0.007 

0.664 

-0.226 

0.005 ] r , 

0.011 ] T , 

0.571 ] T , 

-0.821 ]T , 

-0.010 ) T , 

-0.002 ] r . 

It can be seen, by comparing eigenvalues A0 and A5, that the inter-frame motion estimate 

is poorly conditioned (the condition number is 71000). Any constraints that increase A4 

and A5 will improve the estimates of 7^, Ty, £lx and tty. Two constraints are considered: 

the known rotation constraint, which will increase both A4 and A5; and the motion along 

a known plane constraint, which will increase A5. 

For the known rotation case, the rotation and the uncertainty are assumed to be 

4The rotation terms in the eigenvectors have been normalized by the average scene depth, znorm = 46 
cm. 
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Table 5.4: Inter-frame Sensor Motion, Known Rotation, for Experiment 1 

Frame 
0-1 
1-2 

cm/frame 
T T T 
J-x -Ly J 2 -0.0107 0.0016 0.7209 

-0.0082 0.0010 0.7207 

10 3 rad/frame 
0 tx «"y i»z 

0.0069 -0.0522 0.0177 
-0.0002 -0.0071 -0.0402 

Table 5.5: Inter-frame Sensor Motion, Known Plane Constraint, for Experiment 1 

Frame 
0-1 
1-2 

cm/ frame 
T T T 
J-x -'-y -L z 0.0356 0.0010 0.7195 

-0.0019 0.0005 0.7205 

10 3 rad/frame 

«'x *'y *"z 

-0.0045 -1.029 0.0324 
-0.0102 -0.1418 -0.0388 

( 0 , , 0 , , Qg) = (0.000 ± 1.000, 0.000 ± l.OOO, 0.000 ± l.OOO) 10- 3 radians per frame. 

The inter-frame sensor motion for the known rotation constraint appears in table 5.4. 

The surface normal of the known plane is np = [0 1 0]T. The weighting terms used in 

the known plane constraint are Ay = 472.6 and An = 106, which produce the following 

auxiliary inter-frame estimates: 

Ty = 0.000 ± 0.046 cm per frame, (5.318) 

ttx = 0.000 ± 1.000 10"3 radians per frame, (5.319) 

ft2 = 0.000 ± 1.000 1 0 - 3 radians per frame. (5.320) 

The inter-frame sensor motion for the known plane constraint appears in table 5.5. The 

known rotation constraint improves the accuracy of Tx, Ty, Qx, and tty. The known plane 

constraint improves the accuracy of Ty and i}x. 

The extended sensor motion appears in table 5.6. The extended sensor motion is 



Chapter 5. Results 158 

Table 5.6: Extended Sensor Motion for Experiment 1 

Frame 
0-1 
0-2 

cm/frame 
T T T 
J-x -Ly -•- z 0.0452 0.0416 0.7194 

0.0211 0.0202 0.7198 

Pred. Error cm/fr 
AT, ATy ATZ 

± 0.136 ± 0.200 ± 0.016 
± 0.093 ± 0.136 ± 0.011 

consistent with the axial translation, and improves as more images are integrated. The 

final estimate of the direction of translation along the x- and y-axes (pan and tilt) are 

0.029 radians (1.68 degrees) and 0.028 radians (1.61 degrees), respectively. The pan 

and tilt directional errors are slightly larger than the one degree standard established in 

section 5.2. These results are surprisingly accurate considering the inherent translation-

rotation ambiguity that exists when viewing frontal planes. 

To summarize experiment 1, the image measurements of disparity and normal image 

velocity are very good. The disparity measurements provide an accurate representation 

of the scene structure, verifying the correct operation of the E0ffset histogram and the 

multiscale prediction. The normal image velocity measurements produce a flow pattern 

that is consistent with sensor motion. The two inter-frame sensor motions are consis­

tent (within the expected error) with each other and with the axial motion. The known 

rotation and plane constraints improve the inter-frame sensor motion estimates, as pre­

dicted by the eigenvalue analysis of Qint- The direction of the extended sensor translation 

estimate is within the expected error of axial motion. 

5.3.2 Exper iment 2: M o d e l Ci ty 

In this experiment, stereo cameras move towards a stationary model of a city. A stereo 

pair from the image sequence is shown in figure 5.26. The model city contains buildings, 
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cars, railroad tracks, and trees. The scene structure has a variety of depths, including 

some large depth gradients. The image projection of the model city contains many uni­

directional features, primarily features with vertical and horizontal normal directions. 

The image contains some specular reflections from the railroad tracks. 

Theoretical predictions can be made for this image sequence. The disparity module 

will be challenged by this scene structure. Since there are large depth gradients, the 

Eoffset histogram and the multiscale prediction will miss some stereo features. The 

heuristic ordering constraint will make additional matches. The temporal constraint will 

propagate these matches into future stereo images. 

The normal image velocity module should perform well because the axial motion is 

small. The inter-frame sensor motion estimate should be good: the conditioning of the 

inter-frame Hessian matrix will be much better than experiment 1 (the scene contains a 

variety of depths). As a result, the known rotation constraint will provide only a modest 

improvement in the estimate of inter-frame sensor motion. 

The objectives of this experiment are: to measure the disparity and normal image 

velocity; to measure and compare the two inter-frame sensor motions; to determine if 

the known rotation constraint improves the inter-frame sensor motion estimates; and 

to measure the extended sensor translation. Success of this experiment will verify the 

correct operation of secondary stereo correspondence predictors: the temporal constraint 

and the heuristic ordering constraint. 

The interpolated disparity and its uncertainty are shown in figures 5.27, 5.28, and 

5.29. These figures illustrate the increasing resolution with channel frequency. The low 

frequency channel provides only a vague description of the scene structure. The scene 

details become discernible in the higher frequency channels. 

The top and side views of the local map are shown in figure 5.30. There is a total of 

298 stereo feature pairs across the three epipolar channels. The local map captures much 
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Figure 5.26: Experiment 2, Stereo Images (upper) Left Image, (lower) Right Image. 
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Figure 5.27: Experiment 2, u;0 = 0.040TT rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 10 pixels and 45 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. 
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Figure 5.28: Experiment 2, u>i = 0.092x rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 10 pixels and 45 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. 
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Figure 5.29: Experiment 2, u>2 = 0.2107T rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 10 pixels and 45 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. 
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Figure 5.30: Experiment 2, Local Map. Stereo features are denoted by black squares. 
Distance between ticks is 15 cm. (upper) Top View, x-z projection, (lower) Side View, 
y-z projection. 
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Table 5.7: Inter-frame Sensor Motion for Experiment 2 

Frame 
0-1 
1-2 

cm/frame 
T T T 
J-x J-y -Lz -0.0101 -0.0055 0.4631 

-0.0031 -0.0089 0.4772 

10 3 rad/frame 
i "x "*y *'z 

0.027 0.105 0.032 
-0.005 -0.117 0.094 

Table 5.8: Expected Error in Inter-frame Sensor Motion for Experiment 2 

Frame 
0-1 
1-2 

cm/frame 
T • T T 
•Lx xy -1-z ± 0.0112 ± 0.0135 ± 0.0155 

± 0.0111 ± 0.0134 ± 0.0158 

10 3 rad/frame 
HX illy \LZ 

± 0.199 ± 0.151 ± 0.287 
± 0.197 ± 0.150 ± 0.290 

of the scene structure. The flat surfaces, such as the front of the buildings, are correctly 

represented. 

The normal image velocity measurements for the epipolar and orthogonal channels 

are shown in figure 5.31. The normal image velocity measurements display the outward 

flow associated with axial motion. The speed of the component flow vectors increase with 

the (normal) distance from the image origin and the disparity of the feature. The RMS 

error in the measured normal image velocity field, compared to the field predicted by 

the inter-frame sensor motion, is 0.09 pixels, which is better than the one pixel standard 

described in section 5.2. 

The inter-frame sensor motions and the expected errors appear in tables 5.7 and 5.8, 

respectively. The inter-frame sensor motions are consistent with axial motion (within 

the expected errors). The two inter-frame translations are consistent with each other. 

An eigenvalue decomposition shows that the inter-frame Hessian matrix is better 

conditioned in this experiment than in experment 1. The eigenvalues and eigenvectors 
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Figure 5.31: Experiment 2, Normal Image Velocity for a>a = 0.0927T rad/pixel. Compo­
nent flow vectors are represented by a "T." The direction and length of the stem of the 
"T" denote the normal direction and the image displacement, respectively. The lengths 
of the vectors have been multiplied by 5.0. (upper) Epipolar Channel, </>0 = 0, (lower) 
Orthogonal Channel, (f>2 = f radians. 
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Table 5.9: Inter-frame Sensor Motion, Known rotation, for Experiment 2 

Frame 
0-1 
1-2 

cm/frame 

J-x J-y J-z 

-0.0095 -0.0057 0.4632 
-0.0031 -0.0090 0.4772 

10 3 rad/frame 

i"x * 'y *'z 

0.024 0.098 0.021 
-0.006 -0.115 0.083 

are given by 5 

Ao 

Ai 

A2 

A3 

A4 

A5 

= 544702 

= 406505 

= 7519.1 

= 5646.7 

= 2218.8 

= 1486.3 

v0 = 

Vl = 

v2 = 

V3 = 

V4 = 

V5 = 

0.723 

-0.076 

0.583 

0.100 

-0.164 

-0.308 

-0.073 

-0.758 

-0.077 

0.288 

-0.523 

0.241 

-0.030 

-0.032 

-0.096 

0.865 

0.448 

-0.200 

0.067 

0.644 

-0.085 

0.386 

-0.588 

0.280 

0.683 

-0.066 

-0.622 

-0.076 

0.195 

0.314 

0.001 ]T , 

-0.009 ] T , 

0.501 ]T, 

0.064 ] T , 

0.338 ]T , 

0.794 }T. 

The condition number is 366, which is 194 times smaller than in experiment 1. 

For comparison with experiment 1, the known rotation constraint is applied to the 

inter-frame sensor motion; the results appear in table 5.9. The rotation and uncertainty 

are assumed to be (Slx, ft„, Clz) = (0.000 ± 1.000, 0.000 ± 1.000, 0.000 ± 1.000) 10"3 

radians per frame. No significant improvement is obtained (for a rotational uncertainty 

of ±0.001 radians per frame). 

The extended sensor motion appears in table 5.10. The extended sensor transla­

tion is consistent with axial motion. The measured direction of translation is (—0.014, 

—0.016) radians, or (—0.79, —0.89) degrees, relative to the axial motion. The pan and 

tilt directional accuracies are better than the one degree standard established in section 

5.2. 
5The rotation terms in the eigenvectors have been normalized by the average scene depth, znorm — 78 

cm. 
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Table 5.10: Extended Sensor Motion for Experiment 2 

Frame 
0-1 
0-2 

cm/frame 

J- x *- y •*- z 

-0.0101 -0.0055 0.4631 
-0.0065 -0.0073 0.4702 

Pred. Error cm/fr 
ATX ATy ATZ 

± 0.0112 ± 0.0135 ± 0.0161 
± 0.0079 ± 0.0095 ± 0.0113 

In summary, the disparity measurements are good, capturing the structure of the 

scene, and verifying the correct operation of the heuristic ordering constraint and the 

temporal constraint. The normal image velocity measurements produce a flow pattern 

consistent with the sensor motion. The variations in depth improve the estimate of 

inter-frame sensor motion over experiment 1. The motion constraint does not improve 

significantly the inter-frame sensor motion estimates, as predicted by the eigenvalue anal­

ysis. The direction of the extended sensor translation is within the expected error of axial 

motion. 

5.3.3 Discuss ion and Summary 

The actual motion of the cameras for experiments 1 and 2 are believed to be 0.762cm (0.3 

inch) and 0.508cm (0.2 inch) per frame, respectively. The Tz component of the extended 

sensor translation for the two experiments are 0.720cm and 0.478cm, respectively. The 

percent error in the motion is approximately the same for both experiments: 5.8 for the 

tiger poster sequence, and 6.2 for the model city sequence. In both sequences, the error 

is limited to the speed of the sensor translation; the direction of translation is accurately 

measured. 

The above-mentioned speed errors are caused by the camera parameter uncertainty. 

The nominal camera parameters are used instead of the actual values because calibration 
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data is not available. The speed errors are probably due to an incorrect focal length and 

to pixel scaling errors (see appendix C). Both errors affect the speed, not the direction, 

of translation 6 . 

A speed error can also be caused by an error in the baseline separation. Since the base­

line separation is produced by precise lateral motion on the optical bench, the baseline 

error should be negligible. 

To summarize this section, the image measurements are very good: stable features are 

selected, stereo and temporal correspondences are correctly made, disparity is measured 

to sub-pixel accuracy, and normal image velocity measurements are consistent with the 

component flow pattern predicted by the sensor motion. The local maps capture the scene 

structure. The inter-frame and extended sensor motions are consistent with axial motion. 

The known rotation and known plane constraints improve the inter-frame parameters 

when the Hessian is ill-conditioned. The condition number of the inter-frame Hessian 

matrix is a good measure of the extent to which the motion estimates are affected by the 

inherent translation-rotation ambiguity. 

5.4 D a t a Set 2 

The second data set contains three stereo image sequences which test the ability of the 

obstacle detection algorithm: to estimate motion in the presence of sensor rotation; to 

segment moving and stationary objects; and to predict collision parameters. In the first 

sequence, stereo cameras view a stationary scene while translating and rotating. In the 

second sequence, a translating object is on a collision trajectory with forward translating 

cameras. In the final sequence, the translating object has a trajectory that will pass safely 

in front of the forward translating cameras. The image sequences are obtained from an 

6Focal length errors and symmetric pixel scaling errors are not serious problems for obstacle detection 
because they have no effect on the time-to-collision or the point-of-collision. 
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optical bench, insuring precise sensor and object motions. The stereo image sequences 

in data set 2 were obtained from the Laboratory for Computational Intelligence at the 

University of British Columbia 7 . 

Separate cameras are used to capture the right and left image sequences. Unfortu­

nately, the stereo cameras could not be mounted with great precision. The left camera 

has a 0.01 radian roll, which is compensated by rotating (and re-sampling) the image 

about the optical axis. The left camera also has a slight upward tilt, requiring a -3 pixel 

offset along the y-axis to approximate a parallel stereo setup (see section 2.5). A one 

pixel offset along the A-axis compensates for a slight camera convergence. The stereo 

baseline is 5.2 ± 0.05cm. The nominal camera parameters are as follows: the focal length 

of each camera is 8.5mm; the physical size of the CCD array is 6.6mm by 8.8mm; and 

the image size is 480 x 512 pixels. 

The sequences in data set 2 are affected by a problem with the image acquisition sys­

tem. The acquisition system introduces random vertical offsets into the image sequence. 

Depending on when the frame grabbing process is initialized, relative to the camera syn­

chronization pulse, the stereo images can either be registered correctly or offset vertically 

by two pixels. The random toggling between the zero and two pixel offsets is interpreted 

by the sensor motion module as transient rotations about the a;-axis (pitch motion). 

The same scene is used in all three experiments. A stereo image pair is shown in 

figure 5.32. The stereo images are viewing two plastics toys and a background poster. 

The toy at the right periphery of the image, the "eco-sub," is on a movable platform. The 

platform moves to the left in experiments 4 and 5. The toy on the left, the "toxic cannon," 

is stationary in each experiment. The toys and the rails of the movable platform produce 

specular reflections and shadows. Additional complications are that the brightness of the 

two images are slightly different, and the peripheral image features are compressed due 

7Technical work was performed by Stewart Kingdon. 
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to lens distortion 8 . 

The interpolated disparity and its uncertainty are shown in figures 5.33, 5.34, and 

5.35. The top and side views of the local map are shown in figure 5.36. There are 

300 stereo feature pairs across the three epipolar channels. The background poster has a 

parabolic shape in figure 5.36, instead of planar. This parabolic shape is believed to be 

caused by lens distortion. 

It is possible to compensate for the distortion in the depth estimate 9 . The compen­

sated local map is shown in figure 5.37. Note that the surface normal of the plane is not 

parallel to the z-axis. This non-zero angle suggests that the focal lengths of the stereo 

cameras are mismatched. 

In the following three experiments, the lens distorted (uncompensated) image se­

quences will be used. 

5.4.1 Exper iment 3: Camera Rotat ion 

The purpose of this experiment is to test the robustness of the sensor motion module to 

sensor rotation. The stereo cameras are moving in a stationary environment: the sensor 

translation is along the ^ - a x i s ; and the sensor rotation is about the j/-axis. 

Theoretical predictions regarding the performance of the various modules can be 

made for this image sequence. The normal image velocity module should perform well 

because all of the image features belong to stationary objects, and the axial motion is not 

large relative to the depth of the objects. The accuracy of the inter-frame sensor motion 

estimate will be degraded by the depth distortion. The parabolic depth distortion in this 

image sequence will cause Tz to be over-estimated (see appendix C). 

8The arching of the top edge of the background poster board is believed to be due to radial lens 
distortion. 

9The radial distortion constant ib, found in appendix C, equation (C.376), is adjusted until the 
background poster is planar. 
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Figure 5.32: Experiment 3, Stereo Images (upper) Left Image, (lower) Right Image. 
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Figure 5.33: Experiment 3, u>0 = 0.040TT rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 12 pixels and 30.3 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. A region that is black in both the disparity and uncer­
tainty maps indicate a disparity estimate whose uncertainty is too large to be meaningful. 
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Figure 5.34: Experiment 3, ui\ = 0.092TT rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 12 pixels and 30.3 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. A region that is black in both the disparity and uncer­
tainty maps indicate a disparity estimate whose uncertainty is too large to be meaningful. 
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Figure 5.35: Experiment 3, u^ = 0.210x rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 12 pixels and 30.3 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. A region that is black in both the disparity and uncer­
tainty maps indicate a disparity estimate whose uncertainty is too large to be meaningful. 
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Figure 5.36: Experiment 3, Local Map. Stereo features are denoted by black "X"s. 
Distance between ticks is 20 cm. (upper) Top View, x-z projection, (lower) Side View, 
y-z projection. 
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Figure 5.37: Experiment 3, Local Map with Distortion Compensated. Stereo features 
are denoted by black "X"s. Distance between ticks is 20 cm. (upper) Top View, x-z 
projection, (lower) Side View, y-z projection. 
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Table 5.11: Actual Inter-frame Sensor Motion for Experiment 3 

Frame 
0-1 
1-2 
2-3 

cm/ frame 
Tx Ty Tz 

0.0443 0.0000 2.5396 
0.0222 0.0000 2.5399 
0.0000 0.0000 2.5400 

10 3 rad/frame 

transient 8.727 0.000 
transient 8.727 0.000 
transient 8.727 0.000 

The objectives of this experiment are: to measure the inter-frame sensor motions; 

and to measure the extended sensor translation. Success of this experiment will verify 

the ability of the inter-frame sensor motion stage to measure rotation, and the correct 

implementation of process model used in the Kalman filters. 

The normal image velocity measurements for the epipolar and orthogonal channels 

are shown in figure 5.38. The epipolar channel displays the outward flow associated 

with axial motion and a -4 pixel offset associated with the rotation fly. The orthogonal 

channel has an outward flow pattern. The RMS error in the measured normal image 

velocity field, compared to the field predicted by the inter-frame sensor motion, is 0.16 

pixels, which is better than the one pixel standard described in section 5.2. 

The actual inter-frame sensor motion over the image sequence appears in table 5.11. 

The precise movements of the cameras include a forward translation of 2.54cm (1.0 inch) 

and a rotation of 0.00873 radians (0.5 degrees) per frame. Other parameters are approx­

imately known. The pan and tilt angles of the observer axes, relative to the direction 

of camera motion, are believed to be 0.0174 radians (—1.0 degree) and 0 radians, re­

spectively, at the start of the sequence (time to). It is also believed that the center of 

rotation of the stereo cameras is at the origin of the observer coordinate frame. The 

apparent pitch velocity (£lx), which is caused by the random occurrence of zero or two 

pixel (vertical) offsets, will be one of three values: —3.2a:10-3, 0.0, or 3.2zl0~3 radians 
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Figure 5.38: Experiment 3, Normal Image Velocity for &i = 0.0927T rad/pixel. Com­
ponent flow vectors are represented by a "T." The direction and length of the stem of 
the "T" denote the normal direction and the image displacement, respectively, (upper) 
Epipolar Channel, </>0 = 0, (lower) Orthogonal Channel, </»2.= f radians. 
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Table 5.12: Inter-frame Sensor Motion for Experiment 3 

Frame 
0-1 
1-2 
2-3 

cm/frame 
Tx Ty Tz 

0.0577 -0.0562 2.6986 
0.0178 -0.0329 2.6821 
0.0018 -0.0877 2.6834 

10 3 rad/frame 

-0.461 8.672 0.042 
-3.536 8.864 0.161 
-0.795 8.588 0.182 

Table 5.13: Expected Error in Inter-frame Sensor Motion for Experiment 3 

Frame 
0-1 
1-2 
2-3 

cm/frame 
T T T 

± 0.0648 ± 0.1165 ± 0.0357 
± 0.0594 ± 0.1263 ± 0.0337 
± 0.0576 ± 0.1209 ± 0.0327 

10 3 rad/frame 
a Lx \ by A 1% 

± 1.089 ± 0.530 ± 0.621 
± 1.199 ± 0.495 ± 0.649 
± 1.200 ± 0.490 ± 0.604 

per frame. 

The estimated inter-frame sensor motion and expected errors appear in tables 5.12 and 

5.13, respectively. The Tz is over-estimated (as expected), but it is consistent throughout 

the image sequence. The other translational parameters are within the expected error of 

the actual motion. The fiy rotation is within the expected error of the actual value. The 

largest difference between the measured and actual Vty is 0.00014 radians (0.008 degrees) 

per frame. 
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Table 5.14: Inter-frame Sensor Motion, Known flz, for Experiment 3 

Frame 
0-1 
1-2 
2-3 

cm/frame 
Tx Ty Tz 

0.0581 -0.0560 2.6987 
0.0192 -0.0314 2.6822 
0.0032 -0.0866 2.6835 

10 3 rad/frame 
\lx « 'y u'2 

-0.459 8.669 0.033 
-3.521 8.852 0.124 
-0.785 8.576 0.144 

The eigenvalues and eigenvectors of the inter-frame Hessian matrix are given by 

Ao 

Ai 

A2 

A3 

A4 

A5 

= 33406 

= 7485.1 

= 901.73 

= 289.44 

= 101.12 

= 33.552 

Vo = 

Vl = 

v2 = 

v3 = 

v4 = 

v5 = 

0.690 

0.047 

-0.106 

0.368 

-0.612 

-0.004 

0.063 

-0.736 

0.015 

0.017 

0.025 

-0.673 

-0.021 

-0.003 

0.983 

0.142 

-0.108 

0.022 

-0.057 

0.671 

0.012 

0.058 

0.025 

-0.737 

0.718 

0.072 

0.130 

-0.344 

0.586 

0.004 

-0.002 ] T , 

-0.022 ] r , 

-0.068 ] T , 

0.850 ] T , 

0.518 ] T , 

0.063 f. 

The condition number is 996. It can be seen that the following parameters are sensitive 

to measurement errors: Ty and fix; and to a lesser extent, Tx, Q,y, and Q,z. The random 

vertical offsets prevent the use of the known plane constraint (which would increase A5). 

The known Clz constraint is chosen in an attempt to improve the inter-frame sensor 

motion estimate. 

The inter-frame sensor motion for the known Q,z appears in table 5.14. For this 

experiment, the rotation is assumed to be Vlz = 0.000 ± 1.000 10 - 3 radians per frame. 

The known axial rotation does not alter significantly the inter-frame parameters. 

The extended sensor motion appears in table 5.15. The extended sensor translation 

is consistent with the actual direction of translation throughout the sequence. In the 

10The rotation terms in the eigenvectors have been normalized by the average scene depth, znorm = 117 
cm. 
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Table 5.15: Extended Sensor Motion for Experiment 3 

Frame 
0-1 
0-2 
0-3 

cm/frame 
Tx Ty Tz 

0.0577 -0.0562 2.6986 
0.0253 -0.0456 2.6900 
0.0011 -0.0656 2.6876 

Pred. Error cm/fr 
ATX ATy ATZ 

± 0.0648 ± 0.1165 ± 0.0357 
± 0.0419 ± 0.0853 ± 0.0245 
± 0.0307 ± 0.0695 ± 0.0196 

Kalman filter's process model, the translation estimate is rotated after each inter-frame 

motion to account for the change in the orientation of the observer coordinate frame. 

Without this coordinate change, the direction estimate of the extended sensor motion 

would lag the actual motion. The final estimate for the direction of translation is (0.0004, 

—0.0244) radians, or (0.02, —1.40) degrees (actual direction is believed to be (0,0)). The 

pan directional error is less than the standard established in section 5.2; the tilt error is 

slightly larger than the one degree standard. 

In summary, the inter-frame sensor motion parameters are good despite the sensor 

rotation and the lens distortion. The good distribution of features in the image suppressed 

many of the detrimental effects of lens distortion, such as biases in the direction of sensor 

translation (see appendix C). The direction of sensor translation is consistent with the 

actual motion, verifying the correct implementation of the process model for the sensor's 

Kalman filter. 

5.4.2 Exper iment 4: Mov ing Object on Collision Trajectory 

The purpose of this experiment is to test the ability of the algorithm to segment the image 

sequence into stationary and moving objects, and to identify an object on a collision 

trajectory. In this experiment, the sensor translation is along the z^-axis; the translation 

of the eco-sub is along the x^-axis. 
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Theoretical predictions can be made for this image sequence. The normal image 

velocity module should perform well. Even though the eco-sub is moving, its normal 

image velocity is within the velocity bandwidth of a correspondence predictor tuned to 

stationary objects (see section 4.6.1). The accuracy of the inter-frame sensor motion 

estimate will be affected by the lens distortion and the feature clustering. Most of the 

stationary object features for the epipolar channel will be clustered in the left half of the 

image n ; thus, Tz will be over-estimated, and Tx will be biased towards the left. 

The objectives of this experiment are: to measure the inter-frame and extended sensor 

motions; to segment the image sequence; to measure the object translation; and to predict 

the collision parameters. Success of this experiment will verify the correct operation of 

the segmentation stage and the collision trajectory predictor. 

The stereo image velocity measurements for the epipolar channel are shown in figure 

5.39. The RMS error in the set of normal image velocity measurements belonging to 

stationary objects, compared to the set predicted by the inter-frame sensor motion, is 

0.17 pixels. The normal image velocity measurements belonging to stationary objects 

exhibit an axial motion flow pattern. The normal image velocity measurements belonging 

to the eco-sub are small compared to the neighbouring axial flow vectors; the flow pattern 

of the eco-sub is typical of an object on a collision trajectory for the case of no sensor 

rotation. 

The actual inter-frame motion includes a forward camera translation of 2.54cm (1.0 

inch) and a leftward object (eco-sub) translation of 0.847cm (0.33 inch) per frame. Both 

the pan and tilt angles of the observer axes relative to the direction of camera motion 

are believed to be 0 radians throughout the image sequence. 

The estimated inter-frame sensor motion and the expected errors appear in tables 5.16 

u T h e inter-frame sensor motion is estimated using stationary object features only. Because it is 
moving, the eco-sub measurements are not included. 
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Figure 5.39: Experiment 4, Normal Image Velocity for u>i = 0.0927T rad/pixel. Compo­
nent flow vectors are represented by a "T." The direction and length of the stem of the 
"T" denote the normal direction and the image displacement, respectively. The lengths 
of the vectors have been multiplied by 2.0. (upper) Left Epipolar Channel, (lower) Right 
Epipolar Channel. 
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Table 5.16: Inter-frame Sensor Motion for Experiment 4 

Frame 
0-1 
1-2 
2-3 

cm/frame 
Tx Ty Tz 

-0.1545 -0.0436 2.6672 
-0.1392 -0.0749 2.7166 
-0.1546 -0.0530 2.6816 

10 3 rad/frame 

2.797 0.874 0.654 
-0.693 0.670 0.565 
-0.579 0.881 0.679 

Table 5.17: Expected Error in Inter-frame Sensor Motion for Experiment 4 

Frame 
0-1 
1-2 
2-3 

cm/frame 
T T T 
J-x J-y x z ± 0.0620 ± 0.1215 ± 0.0536 

± 0.0627 ± 0.1116 ± 0.0555 
± 0.0608 ± 0.1061 ± 0.0506 

10 3 rad/frame 
«t>x * "y &Lz 

± 1.132 ± 0.497 ± 0.664 
± 1.041 ± 0.515 ± 0.642 
± 1.026 ± 0.506 ± 0.641 

and 5.17. The lens distortion and the clustering of stationary object features produces 

a bias in the x component of motion. The x component of sensor motion is given by (for 

xK-Tx-zVty. (5.321) 

The x bias is consistent over the sequence; the bias in x for a poster feature, whose depth 

is (127.5, 125.0, 122.5) cm at (tQ, tu t2), is (0.0431, 0.0555, 0.0467) cm per frame. In 

addition to the x bias, the lens distortion-feature clustering alters the distribution of x 

between Tx and fly. The lens distortion also results in an over-estimated Tz. 
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Table 5.18: Inter-frame Sensor Motion, Known flz, for Experiment 4 

Frame 
0-1 
1-2 
2-3 

cm/frame 
Tx Ty Tz 

-0.1492 -0.0453 2.6703 
-0.1350 -0.0749 2.7193 
-0.1497 -0.0522 2.6841 

10 3 rad/frame 

2.786 0.825 0.496 
-0.682 0.630 0.436 
-0.562 0.835 0.523 

The eigenvalues and eigenvectors are given by 

Ao 

Ax 

A2 

A3 

A4 

A5 

= 26357 

= 7394.1 

= 428.81 

= 236.34 

= 103.24 

= 29.918 

VQ = 

Vt = 

v2 = 

vz = 

v4 = 

v5 = 

0.682 

0.049 

-0.020 

0.499 

-0.531 

0.037 

0.052 

-0.746 

-0.014 

-0.033 

0.014 

0.663 

0.096 

-0.051 

-0.937 

-0.290 

-0.126 

-0.096 

-0.050 

0.659 

-0.094 

-0.068 

-0.013 

0.741 

0.721 

0.060 

0.131 

-0.419 

0.553 

-0.018 

-0.017 ] r , 

0.009 ] T , 

-0.308 ] T , 

0.697 ] T , 

0.647 ]T, 

0.027 ]T. 

The condition number is 881, which is similar to experiment 3. 

The inter-frame sensor motion for the known Vtz constraint appears in table 5.18. The 

rotation and uncertainty are assumed to be £lz = 0.000 ± 1.000 10~3 radians per frame. 

As in experiment 3, the known axial rotation did not alter significantly the inter-frame 

parameters. Constraints on Tx, Ty, Qx and fty would be more effective. 

The extended sensor motion appears in table 5.19. The Tx bias, seen in the estimate of 

inter-frame sensor motion, also appears in the extended sensor translation. As a result, 

the directional error is larger than the one degree standard established in section 5.2. 

The measured direction of translation is (-0.057, -0.021) radians, or (-3.3, -1.2) degrees 

(actual direction is believed to be (0,0)). 

The segmentation of the image sequence is in shown in figure 5.40. The segmentation 
12The rotation terms in the eigenvectors have been normalized by znorm = 120 cm. 
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Figure 5.40: Experiment 4, Segmentation of Image Sequence. Stereo features identified 
as belonging to the eco-sub are denoted by black squares, (upper) Epipolar Channel, 
£>i = 0.0927T rad/pixel, (lower) Epipolar Channel, &2 = 0.2107T rad/pixel. 
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Table 5.19: Extended Sensor Motion for Experiment 4 

Frame 
0-1 
0-2 
0-3 

cm/frame 
T T T 

-0.1546 -0.0436 2.6672 
-0.1509 -0.0566 2.6906 
-0.1532 -0.0564 2.6874 

Pred. Error cm/frame 
ATX ATy ATZ 

± 0.0620 ± 0.1215 ± 0.0536 
± 0.0416 ± 0.0820 ± 0.0384 
± 0.0321 ± 0.0646 ± 0.0311 

Table 5.20: Extended Object Motion for Experiment 4 

Frame 

0-1 
0-2 
0-3 

cm/frame 
T T 

-0.9458 -0.1680 
-0.9550 -0.1239 
-0.9494 -0.0768 

Pred. Error cm/fr 
AT, ATZ 

± 0.0589 ± 0.2339 
± 0.0429 ± 0.1620 
± 0.0362 ± 0.1339 

of the eco-sub features from the stationary object features is successful: there are no false 

positive responses (no stationary features are identified as part of the eco-sub). Most of 

the features identified in figure 5.40 belong to the arms of the eco-sub. 

The extended object motion appears in table 5.20. The \x0bj\ is over-estimated. Since 

the object motion is estimated using the excess normal image velocity, the bias in the x 

component of sensor motion affects the object motion. If this bias (which is about 0.07 

at the depth of the eco-sub) is removed, x0bj is approximately —0.87, which is 0.32 of 

the measured TZiSen (the ratio of the actual object and sensor motion is 0.33). There is 

a small bias in the z0bj that decreases as the object moves towards the origin. The cause 

of this bias is discussed in appendix C. 

Each feature on a given object has a different point-of-collision. The arm of the eco-

sub that is closet to the driver (the right-most arm in the image) is used as a reference 
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Table 5.21: Eco-sub Collision Parameters for Experiment 4 

Frame 
0 
1 
2 

Units 
Estimate 

-2.4 35.5 
-3.9 34.8 
-3.9 34.2 

xcoi cm, tcoi frames 
Actual Pred. Error 

-9 40 
-9 39 
-9 38 

± 2.4 ± 3.1 
± 1.6 ± 2.1 
± 1.3 ± 1.8 

point. The collision parameters (xcoi and tcoi) of the arm appear in table 5.21. Both the 

point-of-collision and the time-to-collision have been under-estimated. These errors are a 

result of the biases 13 in Tx and z0bj. Despite the biases, the point-of-collision is accurate 

enough, relative to the spread of features (see figure 5.40), to identify the eco-sub as 

an obstacle 14. The final time-to-collision under-estimates the actual value by about 10 

percent. 

In summary, the inter-frame and extended sensor motions are affected by the combi­

nation of lens distortion and clustering of stationary object features: Tz is over-estimated, 

and Tx is biased. The object translation is also biased and over-estimated. As a result, 

the time-to-collision is under-estimated by 10 percent. Despite the distortion, the seg­

mentation of the eco-sub from the stationary background is successful. In addition, the 

estimated point-of-collision is sufficiently accurate (relative to the size of the eco-sub) to 

identify the eco-sub as an obstacle. 

13The bias in Tx is partially compensated by the bias in the object velocity x0ij. A residual of —0.08 
cm per frame (-0.15 + 0.07) remains. This residual decreases the \xeoi\ by about 3 cm. The bias in z0ij 
decreases \xeoi\ further by about 1.5 cm. 

14The spread of features is related to the body length of the eco-sub, which is 20 cm. A collision is 
predicted if xcoj for the reference arm is between 0 and -20 cm. 
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Table 5.22: Inter-frame Sensor Motion for Experiment 5 

Frame 
0-1 
1-2 
2-3 

cm/frame 
T T T 
J- x •Ly J 2 -0.1477 -0.0706 2.6810 

-0.1568 -0.0766 2.7241 
-0.1284 -0.1013 2.6971 

10 3 rad/frame 

2.665 0.757 0.476 
-3.943 0.858 0.679 
-0.832 0.632 0.263 

5.4.3 Experiment 5: Moving Object on Pass-by Trajectory 

The purpose of this experiment is to test the ability of the algorithm to identify an object 

that will pass in front of the cameras. This experiment is similar to experiment 4 except 

that the speed of the eco-sub has been doubled. 

The stereo image velocity measurements for the epipolar channel are shown in figure 

5.41. The RMS error in the set of normal image velocity measurements belonging to 

stationary objects, compared to the set predicted by the inter-frame sensor motion, is 

0.18 pixels. The normal image velocity measurements belonging to the eco-sub have a 

leftward direction in both the left and right images. This component flow pattern is 

characteristic of an object that will pass in front of the cameras for the case of no sensor 

rotation. 

The actual inter-frame motion includes a forward camera translation of 2.54cm (1.0 

inch) and a leftward object (eco-sub) translation of 1.69cm (0.67 inch) per frame. Both 

the pan and tilt of the observer axes are believed to be 0 radians throughout the image 

sequence. 

The inter-frame sensor motion and expected errors appear in tables 5.22 and 5.23. 

As in experiment 4, x is biased and Tz is over-estimated. The i; bias is consistent over 

the sequence; for a poster feature, whose depth is (127.5, 125.0, 122.5) cm at (t0, t\, t2), 
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Figure 5.41: Experiment 5, Normal Image Velocity for £>i = 0.0927T rad/pixel. Compo­
nent flow vectors are represented by a "T." The direction and length of the stem of the 
"T" denote the normal direction and the image displacement, respectively. The lengths 
of the vectors have been multiplied by 2.0. (upper) Left Epipolar Channel, (lower) Right 
Epipolar Channel. 
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Table 5.23: Expected Error in Inter-frame Sensor Motion for Experiment 5 

Frame 
0-1 
1-2 
2-3 

cm/frame 

J-x J-y J- z 

± 0.0625 ± 0.1227 ± 0.0550 
± 0.0609 ± 0.1173 ± 0.0567 
± 0.0628 ± 0.1129 ± 0.0529 

10 3 rad/frame 

3 Lx °'y *"z 

± 1.138 ± 0.503 ± 0.715 
± 1.097 ± 0.501 ± 0.680 
± 1.080 ± 0.521 ± 0.676 

Table 5.24: Extended Sensor Motion for Experiment 5 

Frame 

0-1 
0-2 
0-3 

cm/frame 

lx -Ly J- z 

-0.1477 -0.0706 2.6810 
-0.1534 -0.0700 2.7018 
-0.1489 -0.0874 2.6994 

Pred. Error cm/fr 
AT, AT; ATZ 

± 0.0625 ± 0.1227 ± 0.0550 
± 0.0413 ± 0.0844 ± 0.0395 
± 0.0319 ± 0.0674 ± 0.0316 

the x bias is (0.0512, 0.0496, 0.0510) cm per frame. 

The extended sensor motion appears in table 5.24. The Tx bias seen in the estimate of 

inter-frame sensor motion also appears in the extended sensor translation. As a result, the 

directional error is larger than the one degree standard (see section 5.2). The measured 

direction of translation is (-0.055, -0.032) radians, or (-3.2, -1.9) degrees (actual direction 

is believed to be (0,0)). 

The segmentation of the image sequence is in shown in figure 5.42. As in experiment 4, 

the segmentation of the eco-sub features from the stationary object features is successful: 

there are no false positive responses. Most of the features identified in figure 5.42 belong 

to the arms of the eco-sub. 

The extended object motion appears in table 5.25. The object velocity is approxi­

mately double the speed of the eco-sub in experiment 4 (as expected). If x bias (which is 
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Figure 5.42: Experiment 5, Segmentation of Image Sequence. Stereo features identified 
as belonging to the eco-sub are denoted by black squares, (upper) Epipolar Channel, 
u>i = 0.0927T rad/pixel, (lower) Epipolar Channel, u>2 = 0.21 Or rad/pixel. 
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Table 5.25: Extended Object Motion for Experiment 5 

Frame 
0-1 
0-2 
0-3 

cm/frame 
Tx Tz 

-1.8977 -0.3223 
-1.8568 -0.0332 
-1.8787 -0.1144 

Pred. Error cm/fr 
ATX ATZ 

± 0.0730 ± 0.3438 
± 0.0468 ± 0.1841 
± 0.0392 ± 0.1570 

Table 5.26: Eco-sub Collision Parameters for Experiment 5 

Frame 

0 
1 
2 

Units: 
Estimate 

•^col ''col 

-44.3 34.7 
-48.1 37.2 
-47.8 34.9 

•Ecoi em, rc 

Actual 

%col '•col 

-50 43 
-50 42 
-50 41 

,1 frames 
Pred. Error 

Axco, Atcol 

± 5.4 ± 4 . 1 
± 3.4 ± 2.6 
± 3.7 ± 2.8 

about 0.07 at the depth of the eco-sub) is removed, x0bj is approximately —1.81, which 

is 0.67 of the measured TZi3en (the ratio of the actual object and sensor motion is 0.67). 

As in experiment 4, there is a bias in z0bj. 

The forward arm of the eco-sub is used as a reference point. The collision parameters 

of the arm appears in table 5.26. As in experiment 4, both the point-of-collision and the 

time-to-collision have been under-estimated. The final time-to-collision under-estimates 

the actual value by 15 percent. The point-of-collision correctly identifies the eco-sub as 

an object that will pass safely in front of the cameras. 

In summary, the inter-frame and extended sensor motions are affected by the com­

bination of lens distortion and the clustering of stationary object features: Tz is over­

estimated, and Tx is biased. The object translation is also biased and over-estimated. 
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As a result, the time-to-collision is under-estimated by 15 percent. Despite the distor­

tion, the segmentation of the eco-sub from the stationary background is successful. The 

estimated point-of-collision is sufficiently accurate (relative to the size of the eco-sub) to 

identify the eco-sub as a pass-by object. 

5.4.4 S u m m a r y 

Lens distortion (or any other non-scalar error) has a detrimental effect on the estimated 

depth, motion, and collision parameters. The planar background appears parabolic in 

the local map. The Tz is over-estimated in each image sequence. In experiments 4 and 5, 

the combination of feature clustering and lens distortion causes biases in Tx. In addition, 

the magnitude of the collision parameters are under-estimated. 

The algorithm performed fairly well in spite of the lens distortion. In experiment 

3, the sensor rotation and the direction of sensor translation are within the expected 

errors. Because the image has a good distribution of stationary object features, motion 

biases did not appear. In experiments 4 and 5, the segmentation of the image sequence 

is successful; and the collision parameters are sufficiently accurate, relative to the size of 

the eco-sub, to determine if the eco-sub is an obstacle (as in experiment 4) or a pass-by 

object (as in experiment 5). 

5.5 D a t a Set 3 

In this final set of image sequences, we leave the precise environment of the optical 

bench. In the first of three experiments, an outdoor scene is analyzed. The second 

experiment measures the motion of tripod-mounted cameras that are moving through a 

stationary indoor environment. The last experiment estimates the collision parameters 

of two manually moved objects viewed from stationary cameras. 
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5.5.1 Exper iment 6: Outdoor Scene 

In this experiment, only one stereo pair is available 15; it is an outdoor scene shown in 

figure 5.43. The ground surface is flat in the foreground, and hills are present in the 

background. The foreground contains stationary objects: rocks, dirt piles, and trees. 

Beyond the rocks and dirt piles, the shadows reduce the contrast of viewed objects. 

The nominal camera parameters are as follows: the focal length of each camera is 

16mm; the CCD array is 6.6mm by 8.8mm; and the image size is 240 x 256 pixels. The 

stereo baseline is 25cm. The cameras are convergent, requiring an 11 pixel offset along 

the x-axis to approximate a parallel stereo setup (see section 2.5). This offset is estimated 

by manually measuring the disparity of features along the horizon 16. 

Theoretical predictions can be made regarding the performance of the disparity mod­

ule. The E0jj3et histogram and the multiscale prediction will detect large objects in the 

foreground, such as the big rock and the tree. The flat ground produces a large depth 

gradient in the image along the y-axis, causing the disparity module to rely heavily on 

the heuristic ordering constraint. The horizon will be difficult to match because it is 

predominantly horizontal; the preferred spectral orientation is orthogonal to the epipolar 

channel. The shadow covering the background hides objects. As a result, the number of 

disparity measurements in background will be small. 

The objective of this experiment is to measure the scene structure and to make a 

qualitative comparison with the presumed structure. Success of this experiment will 

verify the disparity module's robustness to outdoor conditions which include large depth 

gradients, and lighting phenomena such as shadows. 

The interpolated disparity and its uncertainty are shown in figures 5.44 and 5.45. 

The black regions in the disparity map indicate that the uncertainty is too large for a 

15This stereo image was supplied by Larry Matthies. 
16It is assumed that the parallel stereo disparity of a distant horizon point is approximately zero. 
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Figure 5.43: Experiment 6, Stereo Images (upper) Left Image, (lower) Right Image. 
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Figure 5.44: Experiment 6, £b\ — 0.092*" rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are -15 pixels and 35 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. A region that is black in both the disparity and uncer­
tainty maps indicate a disparity estimate whose uncertainty is too large to be meaningful. 
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Figure 5.45: Experiment 6, o^ = 0.210x rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are -15 pixels and 35 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. A region that is black in both the disparity and uncer­
tainty maps indicate a disparity estimate whose uncertainty is too large to be meaningful. 
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meanful estimate of disparity. These regions include the shadowed background points. 

Two local maps are shown in figures 5.46 and 5.47. Figure 5.46 displays most of the 

stereo features with the exception of four background features. Figure 5.47 is a more 

detailed map of the foreground features. The relative position of objects in the scene can 

be compared with the presumed structure. The presumed ordering of objects, from the 

most distant features to the foreground features, is as follows: the crest of the hill, the 

shadowed background, the tree, and the rock pile. The measured depths of these features 

have the correct order. 

Experiment 6 has measured the disparity and depth for an outdoor scene. Although 

the disparity module did not detect many shadowed background features, it did not make 

any foolish matches. If an image sequence was available, the number of detected stereo 

features and the variation in depth would have been sufficient to accurately estimate the 

inter-frame sensor motion. 

5.5.2 Exper iment 7: Camera Mot ion wi th Transients 

In this experiment, stereo cameras move in a stationary environment: namely, a graduate 

student office. A stereo pair from the image sequence is shown in figure 5.48. The office 

contains tables, chairs, bookshelves, boxes, beverage cans, and stacks of papers. The 

background is a uniform coloured wall with some posters. The image projection of the 

office contains uni-directional features from various orientations, but primarily features 

whose normal direction is either horizontal or vertical. 

The image sequence is obtained by moving stereo cameras, which are mounted to 

a tripod, at approximately 10 cm per frame in a forward direction (believed to be the 

z-axis). Tripod flex introduces transient rotations into the sequence. The optical axes 

of the stereo cameras are believed to parallel. The stereo baseline is 11cm. The nominal 

camera parameters are as follows: the focal length of each camera is 16mm; the CCD 
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Figure 5.46: Experiment 6, Local Map. Stereo features are denoted by black uX"s. 
Distance between ticks is 250 cm. (upper) Top View, x-z projection, (lower) Side View, 
y-z projection. 
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Figure 5.47: Experiment 6, Local Map of Foreground. Stereo features are denoted by 
black "X"s. Distance between ticks is 150 cm. (upper) Top View, x-z projection, (lower) 
Side View, y-z projection. 
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Figure 5.48: Experiment 7, Stereo Images (upper) Left Image, (lower) Right Image. 
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array is 6.6mm by 8.8mm; and the image size is 480 x 512 pixels. 

The disparity module will work well because there are no large disparity gradients. 

Most of the stereo correspondences will be made by the E0ffset histogram and the multi-

scale prediction. The heuristic ordering constraint and temporal constraint will provide 

some additional matches. There will be large regions in the image with no epipolar fea­

tures, and therefore, no direct disparity measurements. These include image regions with 

no spectral energy, such as the uniform coloured wall, and the shadowed region below 

the desk. 

The normal image velocity module will be challenged by this sequence. Large axial 

translation and transient rotation result in non-zero lattice offsets between (temporal) 

corresponding points. The generation of correct correspondences in higher frequency 

channels will depend heavily on the accuracy in which the low frequency motion estimate 

can predict the image velocity field. 

The inter-frame Hessian may be ill-conditioned because of the poor distribution of 

features in the image. Almost all of the features are found in the top part of the image. As 

a result, the axial rotation Qz will produce a similar image velocity field to those produced 

by Tx and fly. The known Qz constraint may improve the estimate of inter-frame sensor 

motion. 

The objectives of this experiment are: to measure the inter-frame sensor motion; to 

determine if the known fi2 constraint improves the inter-frame motion estimate; and to 

measure the extended sensor motion. Success of this experiment will verify that the 

sensor motion module is insensitive to transient rotations induced by camera shake. 

The interpolated disparity and its uncertainty are shown in figures 5.49, 5.50, and 

5.51. The uncertainty maps display large regions of uncertainty: the shadowed area 

beneath the table, and the uniform coloured portions of the wall. 

The top and side views of the local map are shown in figure 5.52. The local map 
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Figure 5.49: Experiment 7, CJQ = 0.040TT rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 18 pixels and 39 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. A region that is black in both the disparity and uncer­
tainty maps indicate a disparity estimate whose uncertainty is too large to be meaningful. 
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Figure 5.50: Experiment 7, o>i = 0.092TT rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 18 pixels and 39 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. A region that is black in both the disparity and uncer­
tainty maps indicate a disparity estimate whose uncertainty is too large to be meaningful. 
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Figure 5.51: Experiment 7, (upper) Interpolated Disparity and (lower) Uncertainty for 
Cb-i = 0.2107T rad/pixel. (upper) Interpolated Disparity. The minimum (black) and max­
imum (white) responses are 18 pixels and 39 pixels, respectively, (lower) Uncertainty. 
Dark regions have large uncertainties. Light regions denote direct disparity measure­
ments. A region that is black in both the disparity and uncertainty maps indicate a 
disparity estimate whose uncertainty is too large to be meaningful. 
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Figure 5.52: Experiment 7, Local Map. Stereo features are denoted by black squares. 
Distance between ticks is 50 cm. (upper) Top View, x-z projection, (lower) Side View, 
y-z projection. 
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Table 5.27: Inter-frame Sensor Motion for Experiment 7 

Frame 
0-1 

.1-2 
2-3 

cm/frame 
Tx Ty Tz 

0.1816 0.0794 9.513 
-0.0068 0.0060 9.421 
-0.2750 -0.0252 9.627 

10 3 rad/frame 

3.649 10.265 0.078 
-0.166 -1.581 1.140 
1.436 1.085 1.710 

captures the scene structure: a corner of a room with assorted office materials. The 

distant features roughly define the wall. Note that the wall features, which are vertically 

aligned, appear slanted in the local map. This slant suggests that one of the stereo 

cameras is mounted with a non-zero roll angle. 

The normal image velocity measurements for the epipolar and orthogonal channels, 

during the first inter-frame transition (from to to i i ) , are shown in figure 5.53. The 

normal image velocity measurements are consistent with an axial flow pattern offset by 

— 10 pixels in the x direction. The nearly constant offset is induced by a transient sensor 

rotation about the y-axis. The RMS error in the measured normal image velocity field, 

compared to the field predicted by the inter-frame sensor motion, is 0.17 pixels, which is 

better than the one pixel standard described in section 5.2. 

The inter-frame sensor motion and the expected errors appear in tables 5.27 and 

5.28, respectively. The inter-frame sensor motion estimates are good despite transient 

rotations. The direction of translation is consistent with axial translation (within the 

expected errors). The inter-frame frame estimates of Tz are consistent with the final 

estimate of the extended sensor translation (Tz<aen = 9.51). 
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Figure 5.53: Experiment 7, Normal Image Velocity for a>i = 0.0927T rad/pixel. Com­
ponent flow vectors are represented by a "T." The direction and length of the stem of 
the "T" denote the normal direction and the image displacement, respectively, (upper) 
Epipolar Channel, <f>0 = 0, (lower) <f>2 = f r a c u a ns . 
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Table 5.28: Expected Error in Inter-frame Sensor Motion for Experiment 7 

Frame 
0-1 
1-2 
2-3 

cm/frame 
J-x J-y J- z 

± 0.3313 ± 0.4109 ± 0.0994 
± 0.3038 ± 0.3051 ± 0.1019 
± 0.3170 ± 0.3419 ± 0.1222 

10 3 rad/frame 

± 1.343 ± 1.044 ± 0.799 
± 1.019 ± 0.985 ± 0.712 
± 1.196 ± 1.065 ± 0.794 

The eigenvalues and eigenvectors are given by 

A0 

Aa 

A2 

A3 

A4 

A5 

= 9894.2 

= 5649.1 

= 142.89 

= 34.999 

= 5.3994 

= 4.8512 

v0 = 

Vl = 

v2 = 

vz = 

v4 = 

V5 = 

0.699 

-0.006 

-0.082 

-0.234 

-0.314 

-0.593 

-0.005 

-0.711 

0.034 

-0.055 

0.626 

-0.313 

-0.022 

-0.014 

0.988 

-0.036 

-0.116 

-0.087 

0.006 

0.703 

0.054 

-0.035 

0.628 

-0.327 

0.714 

-0.005 

0.111 

0.207 

0.305 

0.585 

-0.016 ] r , 

0.016 f, 

0.003 } T , 

-0.947 ]T , 

0.089 ] r , 

0.308 f. 

The condition number is 2040. It can be seen, from the eigenvectors associated with A3, 

A4, and A5, that all the parameters except Tz are sensitive to measurement errors. 

The known £lz constraint is applied to improve the inter-frame estimates 18. It is 

assumed that the axial rotation ttz is zero with a standard deviation of ±1.000 10 - 3 

radians per frame. The inter-frame sensor motion for the known axial rotation can be 

found in table 5.29. The known f̂  constraint appears to improve the parameter estimates 

for the inter-frame transition from t2 to t3. 

The extended sensor motion appears in table 5.30. The temporal variations in the 

inter-frame translation are smoothed by the integral nature of the extended sensor motion 

17The rotation terms in the eigenvectors have been normalized by the average scene depth, znorm = 303 
cm. 

18Constraints on Tx, Ty, Qx, or Qy would also be useful. Unfortunately, the tripod flex makes most 
of the motion constraints invalid. The known Q2 is itself a bold assumption. 
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Table 5.29: Inter-frame Sensor Motion, Known Axial Rotation, for Experiment 7 

Frame 
0-1 
1-2 
2-3 

cm/frame 
T T T 
J-x J-y J-z 

0.1924 0.0810 9.5149 
0.1457 0.0397 . 9.4481 
-0.0184 0.0047 9.6837 

10 3 rad/frame 

1 &x * "y *"z 

3.655 10.230 -0.030 
-3.610 -2.086 0.496 
1.568 0.212 0.654 

Table 5.30: Extended Sensor Motion for Experiment 7 

Frame 

0-1 
0-2 
0-3 

cm/frame 
T T T 
-*• x J- y -* z 

0.1816 0.0794 9.5131 
0.0499 0.0405 9.4710 
-0.0653 0.0137 9.5142 

Pred. Error cm/fr 
AT, ATy ATZ 

± 0.3313 ± 0.4109 ± 0.0994 
± 0.2179 ± 0.2430 ± 0.0726 
± 0.1755 ± 0.1949 ± 0.0633 

module. The extended sensor motion is consistent with the axial sensor translation. 

The (final) measured direction of translation is (-0.0069,0.0014) radians, or (-0.39,0.08) 

degrees, from the 2-axis. The impressive directional accuracy (the error is less than half 

of the standard established in section 5.2) is partial due to the large axial translation. 

In summary, the inter-frame sensor motion estimates displayed temporal variations, 

but they are within the expected errors. The known Qz constraint partially stabilized 

these variations. The extended sensor motion smoothed the variations, producing pa­

rameter estimates that are consistent with axial translation. Experiment 7 has shown 

that the sensor motion module is insensitive to transient sensor rotations. 
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5.5.3 Exper iment 8: Mult ip le M o v i n g Object s 

In this experiment, two moving objects, in an otherwise stationary environment, are 

being viewed by stationary stereo cameras. Stereo pairs from the beginning (£0) and 

end (t4) of the image sequence are shown in figures 5.54 and 5.55, respectively. The 

two moving objects in the foreground are beverage cans on top of stools. The two 

moving objects can be easily distinguished because the attached cans are competing cola 

brands: the left object will be referred to as the "C-cola stool" and the right object 

will be referred to as the "P-cola stool." The stationary background consists of a large 

bookshelf filled with assorted manuals and equipment. A stationary chair appears in 

the foreground at the right periphery of the stereo images. The scene structure is very 

complex, containing large depth gradients and viewpoint sensitive (unstable) alignments 

of foreground and background features. The image projection of the background contains 

many uni-directional features that have horizontal or vertical normal directions. 

The image sequence is produced by manually moving objects which are in the field 

of view of stationary cameras. The C-cola stool is heading towards the cameras along a 

collision trajectory at 10 cm per frame. The P-cola stool is heading towards the cameras 

at 20 cm per frame, but the stool will pass safely in front of the cameras. 

The stereo cameras are divergent and are differently tilted, requiring a -12 pixel offset 

along the x-axis and -10 pixel offset along the y-axis to approximate a parallel stereo 

setup. The right camera has a 0.012 radian roll angle which is compensated by rotating 

the right image. The stereo baseline is 10.2 cm. 

The nominal camera parameters are as follows: the focal length of each camera is 

16mm; the CCD array is 6.6mm by 8.8mm; and the image size is 480 x 512. 

The theory outlined in the previous chapters predict that this image sequence will be 
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Figure 5.54: Experiment 8, Stereo Images at t0, (upper) Left Image, (lower) Right Image. 
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Figure 5.55: Experiment 8, Stereo Images at t4, (upper) Left Image, (lower) Right Image. 
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extremely difficult to analyze. The image sequence contains viewpoint sensitive align­

ments of foreground and background features, which are unstable with respect to sensor 

motion as well as stereo camera separation. These unstable features appear in image 

regions near the stools. 

Generating the correct stereo correspondences in image regions near the stools will 

be difficult: the depth gradients are very large; the presence of the stools changes the 

order in which features appear along an epipolar line in the left and right images, making 

the heuristic ordering constraint invalid; and there are unstable alignments of foreground 

and background features. The different alignment of the foreground and background in 

the left and right images can result in a low relative magnitude between stereo features, 

prompting a "no match" response from the correspondence tester. The "no match" 

response most likely to occur if the image projection of the aligned backgrounds (in 

left and right images) contain significant features. If the background is uniform over 

the spatial extent of the Gabor function, the correspondence testing and the disparity 

estimation of foreground features will not be affected. Note that the rejection of unstable 

measurements is desirable in moderation; excessive culling will make the stools "invisible" 

to the algorithm. 

The normal image velocity module will perform in a similar manner. Temporal cor­

respondences for features belonging to moving objects will be difficult to create. As the 

object moves, its position relative to the background changes, causing many candidate 

correspondences to be rejected in regions where the background not uniform locally. Gen­

erating temporal matches will be most difficult for the P-cola stool. The image velocity 

associated with the P-cola stool is very large; there is a good possibility that the velocity 

bandwidth of a correspondence predictor, tuned to stationary objects, will be exceeded. 

Generating the correct temporal match will be easier for the C-cola object because it 

has a collision trajectory. An object on a collision trajectory produces a near zero image 
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velocity when viewed by stationary cameras. 

The objectives of this experiment are: to measure the inter-frame and extended sensor 

motions; to measure the object motions; and to predict the collision parameters. Success 

of this experiment will verify the ability of the obstacle detection algorithm to segment 

and track multiple objects, both collision and pass-by cases. 

The interpolated disparity and its uncertainty are shown in figures 5.56, 5.57, and 

5.58. Despite the difficult scene structure, the disparity module is able to produce many 

good disparity measurements. 

The top and side views of the local map are shown in figure 5.59. The two forward 

clusters of features belong to the two stools. The other features belong to the bookshelf 

in the background. The planar structure of the bookshelf is correctly depicted in figure 

5.59. 

Figure 5.60 shows the stereo image velocity for the epipolar channel at time t3. The 

actual normal image velocity of each background feature is zero. The RMS error in 

the set of normal image velocity measurements belonging to the stationary background, 

compared to the set predicted by the inter-frame sensor motion, is 0.14 pixels. The 

epipolar image velocity for the C-cola stool is small and has opposite directions in the 

left and right images. This stereo flow is typical for an object on a collision trajectory 

(when there is no sensor rotation). The stereo image velocity for the P-cola stool has 

the same direction in both images, as we would expect for an object that will pass in 

front of the cameras. The inter-frame displacement for the P-cola stool is very large: 

approximately 14 pixels during the first inter-frame transition. This displacement is near 

the limit of the velocity bandwidth 19 for a correspondence predictor, tuned to stationary 

objects, for the channel u>i. 

19Depending on which four points are selected by the correspondence predictor, the maximum mea­
surable displacement can vary. For the channel Q\, the range in the x direction varies from 5.5 to 16.5 
pixels (0.5Ax, to 1.5Ax,). 



Chapter 5. Results 218 

Figure 5.56: Experiment 8, u^ — 0.040x rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 22 pixels and 57.3 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. A region that is black in both the disparity and uncer­
tainty maps indicate a disparity estimate whose uncertainty is too large to be meaningful. 
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Figure 5.57: Experiment 8, a>i = 0.092TT rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 22 pixels and 57.3 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. A region that is black in both the disparity and uncer­
tainty maps indicate a disparity estimate.whose uncertainty is too large to be meaningful. 
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Figure 5.58: Experiment 8, u?2 = 0.2107T rad/pixel. (upper) Interpolated Disparity. The 
minimum (black) and maximum (white) responses are 22 pixels and 57.3 pixels, respec­
tively, (lower) Uncertainty. Dark regions have large uncertainties. Light regions denote 
direct disparity measurements. A region that is black in both the disparity and uncer­
tainty maps indicate a disparity estimate whose uncertainty is too large to be meaningful. 
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Figure 5.59: Experiment 8, Local Map. Stationary stereo features are denoted by black 
squares. Moving stereo features are denoted by black crosses (in foreground). Distance 
between ticks is 62.5 cm. (upper) Top View, x-z projection, (lower) Side View, y-z 
projection. 
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Figure 5.60: Experiment 8, Normal Image Velocity for Epipolar Channel, $0 = 0, 
&i = 0.0927T rad/pixel. Component flow vectors are represented by a "T." The di­
rection and length of the stem of the "T" denote the normal direction and the image 
displacement, respectively, (upper) Left View, (lower) Right View. 
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Table 5.31: Inter-frame Sensor Motion for Experiment 8 

Frame 
0-1 
1-2 
2-3 
3-4 

T 
0.1082 
-0.0124 
-0.0473 
0.0718 

cm/frame 
Ty 

-0.0008 
-0.0685 
-0.0996 
-0.0368 

Tz 

-0.0417 
0.0360 
-0.0085 
-0.0552 

10~3 

nx 
-0.002 
-0.198 
-0.235 
-0.057 

rad/frame 
5 *>y J l> z 

-0.224 0.344 
0.086 0.576 
0.124 0.141 
-0.118 0.560 

Table 5.32: Expected Error in the Inter-frame Sensor Motion for Experiment 8 

Frame 
0-1 
1-2 
2-3 
3-4 

cm/frame 
J-x -Ly J- z 

± 0.1865 ± 0.0676 ± 0.1461 
± 0.1359 ± 0.0731 ± 0.1451 
± 0.1173 ± 0.0705 ± 0.1676 
± 0.1216 ± 0.0585 ± 0.1759 

10 3 rad/frame 
1 'x *'y **z 

± 0.191 ± 0.447 ± 0.395 
± 0.206 ± 0.336 ± 0.529 
± 0.228 ± 0.301 ± 0.569 
± 0.201 ± 0.306 ± 0.511 

The inter-frame sensor motions and the expected errors appear in tables 5.31 and 

5.32, respectively. Since the cameras are stationary, each parameter should be zero. 

Most of the inter-frame parameters are within the expected errors. 

The eigenvalues and eigenvectors are given by 20 

A0 = 6780.0 v0 = 

Aj = 5522.9 V! = 

A2 = 124.24 v2 = 

A3 = 45.557 u3 = 

A4 = 39.569 v4 = 

A5 = 15.465 t>5 = 

-0.065 0.739 -0.036 -0.666 -0.068 -0.022 ]T 

0.676 0.069 0.010 -0.062 0.729 -0.046 ]T 

-0.035 0.638 0.252 0.701 0.017 -0.191 ]T 

-0.128 -0.129 0.948 -0.198 0.110 0.129 ]T 

-0.126 -0.161 0.056 -0.144 0.058 -0.965 )T 

0.711 -0.019 0.181 -0.028 -0.669 -0.115 ]T . 

20The rotation terms in the eigenvectors have been normalized by znorm = 400 cm. 
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Table 5.33: Extended Sensor Motion for Experiment 8 

Frame 
0-1 
0-2 
0-3 
0-4 

cm/frame 
T T T 
J-x -Ly ± z 0.1082 -0.0008 -0.0417 

0.0338 -0.0319 -0.0094 
-0.0059 -0.0558 -0.0182 
0.0169 -0.0503 -0.0231 

Pred. Error cm/fr 
AT, AT; AT; 

± 0.1865 ± 0.0676 ± 0.1461 
± 0.1093 ± 0.0496 ± 0.1022 
± 0.0798 ± 0.0403 ± 0.0867 
± 0.0666 ± 0.0330 ± 0.0777 

The condition number is 438. The inter-frame parameters associated with A3, A4, and A5 

(Tx, Tz, (7X, and Q2) are sensitive to measurement errors. 

The extended sensor motion appears in table 5.33. The extended sensor motion is 

approximately zero. 

The segmentation of the image sequence at four time instants is shown in figures 5.61 

and 5.62. The features on the right belong to the P-cola stool. During the inter-frame 

transition from t0 to t1, all correspondence predictors are tuned to stationary objects. As 

a result, only one stereo feature belonging to the P-cola stool is detected at time t0 (the 

algorithm is fortunate to have detected this feature). After detecting this first feature, a 

new correspondence predictor, tuned to this moving object, is automatically generated. 

As a result, more features belonging to the P-cola object are detected in later images. 

Note that the tracked features for the P-cola stool change over time, as the alignment of 

the stool and the background changes. 

The feature at the left in figures 5.61 and 5.62 belongs to the C-cola stool. Most of 

the tracked C-cola features are found in other epipolar channels (u>o and u^). Note that 

a correspondence predictor tuned to a stationary object is also tuned to a moving object 

with a collision trajectory, when the cameras are stationary. As a result, the detection 

of the C-cola stool does not cause a new correspondence predictor to be generated. 
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Figure 5.61: Experiment 8, Segmentation of Image Sequence for Cj\ = 0.0927T rad/pixel, 
Stereo features identified as belonging to the P-cola (C-cola) stool are denoted by black 
(gray) squares, (upper) Epipolar Channel, t0, (lower) Epipolar Channel, t\. 
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Figure 5.62: Experiment 8, Segmentation of Image Sequence for u>i = 0.0927T rad/pixel, 
Stereo features identified as belonging to the P-cola (C-cola) stool are denoted by black 
(gray) squares, (upper) Epipolar Channel, t2, (lower) Epipolar Channel, t3. 
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Table 5.34: Extended P-cola Motion for Experiment 8 

Frame 
0-1 
0-2 
0-3 
0-4 

cm/frame 
-t x,obj -L 2,06.7 

-5.912 -13.945 
-6.320 -19.678 
-6.198 -17.984 
-5.905 -17.498 

Pred. Error cm/fr 

±0.520 ±7.944 
± 0.160 ± 3.208 
± 0.116 ± 2.196 
± 0.100 ± 1.597 

Table 5.35: Extended C-cola Motion for Experiment 8 

Frame 
0-1 
0-2 
0-3 
0-4 

cm/frame 
J-x,obj -*2,ofcjf 

1.481 -9.122 
1.427 -8.985 
1.373 -9.280 
1.417 -9.841 

Pred. Error cm/fr 
£^J-x,obj *^-L z,obj 

± 0.193 ± 1.418 
± 0.134 ± 1.003 
± 0.166 ± 1.228 
± 0.131 ± 0.969 

The extended object motion for the P-cola and C-cola stools appear in tables 5.34 and 

5.35. The actual P-cola velocity is approximately (x0(,j, i0(,j) = (6.0,19.1); the actual 

C-cola velocity is about (x0bj,z0i,j) = (1.4,9.9). The C-cola estimates are closer to the 

actual value than the P-cola estimates. Most of the object translation parameters are 

within the expected errors. 

Each feature on a given object has a different point-of-collision. The P-cola and C-

cola collision parameters, at selected reference points, appear in tables 5.36 and 5.37. 

The reference point for the P-cola stool is at the left leg for t0 and fj, and at the right 

side of the P-cola can for t? and t^ 21. The reference point for the C-cola stool is at the 

white stripe of the C-cola can. Most of the estimated collision parameters are within the 

21The change of the reference point alters the actual xcoi in table 5.36. 
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Table 5.36: P-cola Collision Parameters for Experiment 8 

Frame 
0 
1 
2 
3 

Units 
Estimate 

•^col '•col 

-119.0 22.2 
-88.4 15.0 
-74.4 14.3 
-74.1 13.8 

xcoi cm, t( 

Actual 
•^col ''col 

-80 16 
-80 15 
-65 14 
-65 13 

~oi frames 
Pred. Error 

Axcol Atcol 

± 65.4 ± 12.7 
± 13.7 ± 2.5 
± 9.7 ± 1.8 
± 6.5 ± 1.3 

Table 5.37: C-cola Collision Parameters for Experiment 8 

Frame 
0 
1 
2 
3 

Units 
Estimate 

XQOI '•col 

5.0 26.5 
6.0 25.8 
4.5 23.9 
3.2 21.6 

xcoi cm, t 
Actual 

Xcoi '•col 

3 25 
3 24 
3 23 
3 22 

~0\ frames 
Pred. Error 

Axcol Atcoi 
± 5.2 ± 4.2 
± 3.1 ± 2.9 
± 2.2 ± 3.2 
± 1.6 ± 2.2 
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expected tolerances. The collision parameters correctly identify the P-cola stool as an 

object that will pass safely in front of the cameras, and the C-cola stool as an obstacle. 

The final error in the time-to-collision is 6.2 percent and 1.9 percent of the actual values 

for the P-cola and C-cola stools, respectively. 

In summary, experiment 8 has shown that the obstacle detection algorithm can esti­

mate the collision parameters of multiple moving objects, simultaneously. 

5.5.4 Summary-

Data set 3 has tested the obstacle detection algorithm under realistic conditions. Exper­

iment 6 demonstrates that the disparity module can operate in an outdoor environment 

which has large depth gradients and uneven lighting (shadows). Experiment 7 demon­

strates the sensor motion module's robustness to transient rotations associated with 

camera shake. Experiment 8 demonstrates the obstacle detection algorithm's ability to 

process multiple moving objects. 

5.6 Summary 

The results presented in this chapter demonstrate the robustness of the obstacle de­

tection algorithm to various difficult conditions: stereo images with different brightness 

and contrast (experiments 3, 4, 5); images containing shadows and specular reflections 

(experiments 2, 3, 4, 5, 6); unstable alignments of foreground and background features 

(experiment 8); image sequences with large image velocities (experiment 8); scenes with 

large depth gradients (experiment 6); constant and transient sensor rotations (exper­

iments 3, 7); concurrent object and sensor motions (experiments 4, 5); and multiple 

moving objects (experiment 8). Experiments 1,2, and 6 verified the correct implementa­

tion of the stereo candidate correspondence predictors. Experiment 8 demonstrated the 
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Table 5.38: RMS Error in the Normal Image Velocity 

Experiment 
1 
2 
3 
4 
5 
7 
8 

RMS Error 
0.10 pixels 
0.09 pixels 
0.16 pixels 
0.17 pixels 
0.18 pixels 
0.17 pixels 
0.14 pixels 

Comments 

Lens Distortion 
Lens Distortion 
Lens Distortion 

automatic generation and the correct operation of temporal correspondence predictors 

tuned to moving objects. Experiment 4, 5, and 8 demonstrated the correct operation of 

the segmentation algorithm. 

The accuracy of various modules within the obstacle detection algorithm have been 

measured. The RMS error of the disparity and the depth in experiment 1 is ±0.16 pixels 

and 0.3 percent of the actual depth, respectively. Theses results are comparable with the 

published results of Matthies et al [39] (0.12 pixels and 0.5 percent of the actual depth 

for a similar scene). The RMS error in the normal image velocity field is summarized in 

table 5.38. All of the RMS errors are within the one pixel "satisfactory" level used by 

Weng et al [52]. 

The directional errors in the sensor translation are summarized in table 5.39. The 

directional accuracy tends to be better when the condition number of the inter-frame 

Hessian is low and the speed of sensor translation is large. The directional accuracy 

degrades in the presence of lens distortion and feature clustering. The better results 

presented in this chapter (experiments 2, 7) are below the one degree standard established 

in section 5.2; a standard which is based on the best reported results of other researchers. 

The percentage error in the time-to-collision for moving objects is summarized in 
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Table 5.39: Directional Errors in Sensor Translation 

Experiment 
1 
2 
3 
4 
5 
7 

Directional Error 
Pan (deg.) 

1.68 
-0.79 
0.02 
-3.3 
-3.2 

-0.39 

Tilt (deg.) 
1.61 

-0.89 
-1.4 
-1.2 
-1.9 
0.08 

Comments 
Frontal Plane, ill-conditioned 

Lens Distortion 
Lens Dist., Feature Clustering 
Lens Dist., Feature Clustering 
Large translation (10 cm/fr) 

Table 5.40: Percentage Error in the Time-to-Collision 

Experiment 
4 
5 

8 (P-cola) 
8 (C-cola) 

Percent Error 
10 percent 
15 percent 
6.2 percent 
1.9 percent 

Comments 
Lens Distortion 
Lens Distortion 

table 5.40. The lens distortion causes the time-to-collision to be under-estimated in ex­

periments 4 and 5. The accuracy of the time-to-collision for the P-cola and C-cola objects 

in experiment 8 are within the expected errors and should be sufficient for most obstacle 

detection/avoidance applications. The point-of-collision in each experiment is sufficiently 

accurate relative to the size of the object to discriminate between obstacles with collision 

trajectories (experiments 4, 8) and objects with pass-by trajectories (experiments 5, 8). 



Chapter 6 

Summary and Conclusion 

In this chapter, the obstacle detection algorithm is summarized, possible extensions are 

discussed, and conclusions are made. 

6.1 Summary 

The obstacle detection algorithm transforms a stereo image sequence from pixels with 

time varying intensities to the collision parameters for viewed objects. The collision 

parameters, the point-of-collision and the time-to-collision, along with the expected errors 

can be used by a computer pilot to avoid obstacles. 

The pixel-based stereo image sequence is first converted into a Gabor representation 

(section 3.2.1). The representation comprises a set of channels formed by filtering the 

image sequence with log-polar Gabor filters. Minimal completeness is used to form a 

laconic description of the filter set. Once a reference frequency, orientation, and phase 

have been chosen (u>o, <j>o, and po), we need only to select the number of orientations ni, 

and one of the following: the aspect ratio a, the ratio of adjacent frequencies p, or the 

bandwidth-frequency ratio A. 

The output of each channel is sampled, forming a two-dimensional sampling lat­

tice. Two types of lattice are used: a band sampled lattice for epipolar channels, and a 

restricted sampling lattice for oblique channels. Constraints on the spatial sampling in­

tervals that avoid aliasing in the measurement of spatial frequency, disparity, and normal 

image velocity are established. 

232 
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The magnitude and phase responses in each channel is used to extract image fea­

tures, estimate disparity, and estimate normal image velocity. To extract features, three 

thresholds are applied to the magnitude response: an absolute threshold, a relative spa­

tial threshold, and a relative orientation threshold. The features with unstable phase 

responses are rejected using frequency and magnitude tests. The phase and magnitude 

responses are also used to estimate the expected error in the disparity and normal image 

velocity measurements. 

The disparity is measured using a combination feature matching-phase gradient ap­

proach (section 3.2.4). The feature matching stage attempts to establish stereo corre­

spondences between lattice points in the left and right images. The candidate lattice 

shifts are predicted using: an epipolar offset histogram, multiscale consistency, temporal 

consistency, and a heuristic ordering constraint. The candidate shifts are tested using a 

matching criteria that compares attributes such as the local magnitude and the phase 

shift. Once the correspondence has been established, the disparity estimate is refined 

using the phase gradient. 

The normal image velocity is measured using a similar feature matching-phase gradi­

ent approach (section 3.2.5). The candidate correspondence prediction is achieved using 

estimates of the inter-frame sensor motion (obtained from lower frequency channels) and 

the object motion (obtained from past measurements). Three types of correspondence 

predictors are available. They are tuned to: stationary objects, objects with collision 

trajectories, and moving objects seen in past measurements. Correspondence predictors 

of the third kind (tuned to past moving objects) are generated automatically. Once the 

correspondence has been established, the normal image velocity is refined using the phase 

gradient. 

Features in the image sequence are segmented into moving objects and stationary 

objects using: the local z velocity, seeding histograms, and two Mahalanobis distance 
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measures. The local i estimate, obtained from the stereo image velocity, is used to 

detect moving objects. The seeding histograms identify stationary object features by 

testing the set of image measurements for in-plane velocity consistency (section 4.6.2). 

Consistent measurements are combined to produce an initial estimate of the inter-frame 

sensor motion. The first Mahalanobis distance is used to test the hypothesis that a 

normal image velocity measurement belongs to a stationary object (section 4.3). The 

second Mahalanobis distance tests the hypothesis that two moving object classes belong 

to the same object (section 4.6.4). 

The inter-frame sensor motion is estimated using image measurements (normal image 

velocity and disparity) from features belonging to stationary objects (section 4.2). The 

image measurements are weighted using the expected squared errors which are approxi­

mated using stable image quantities. The weighted least square estimation also produces 

an inter-frame Hessian matrix whose inverse is the error covariance. The inter-frame 

error covariance is used in the first Mahalanobis distance, in the eigenvalue analysis, and 

in the error covariance of the extended sensor motion. 

The eigenvalues and eigenvectors of the inter-frame Hessian are useful for determining 

the stability of the motion parameter estimates, and for predicting which motion con­

straints will be most effective in improving the stability of the parameters. Three different 

constraints are used in this work: the known rotation, known plane, and the unknown 

plane. The known rotation and the known plane constraints improve the inter-frame 

sensor motion when the Hessian is ill-conditioned (see experiment 1). 

A Kalman filter, which integrates inter-frame sensor translations, is used to estimate 

the translational parameters and error covariance for the extended sensor motion (sec­

tion 4.4). The rotation terms are decoupled from the inter-frame Hessian matrix and 

measurement vector, which converts the sensor motion model from predominantly recti­

linear to pure translation. The effect of the decoupling process is to stabilize the image 
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sequence from transient rotations. 

Kalman filters are also used to estimate the extended translation for each moving ob­

ject. The effect of inter-frame sensor motion is compensated by subtracting the predicted 

sensor motion-induced image velocity from the measured normal image velocity. 

Collision parameters are estimated for each feature belonging to a moving object 

using the observer frame trajectory (section 4.5). The observer frame trajectory for 

each object is estimated using the difference between the extended object and sensor 

translations. The uncertainty in the collision parameters are calculated from the er­

ror covariance matrices for the extended object and sensor motions, and the feature's 

positional uncertainty. 

The performance of the obstacle detection algorithm and its various modules—disparity, 

normal image velocity, depth, motion, segmentation, and collision parameters—are ana­

lyzed in chapter 5. Good results are obtained in difficult conditions: stereo images with 

different brightness and contrast (experiments 3, 4, 5); images containing shadows and 

specular reflections (experiments 2, 3, 4, 5, 6); unstable alignments of foreground and 

background features (experiment 8); image sequences with large image velocities (experi­

ment 8); scenes with large depth gradients (experiment 6); constant and transient sensor 

rotations (experiments 3, 7); concurrent object and sensor motion (experiments 4, 5); 

and multiple moving objects (experiment 8). 

The image measurements, which use the Gabor representation, are very good: the 

feature extraction stage selected stable image features, the disparity is measured to sub-

pixel accuracy, the normal image velocity measurements had speeds and directions that 

are consistent with the sensor and object motions as well as the scene structure. The RMS 

error in the disparity for experiment 1 is 0.14 pixels, compared with 0.12 pixels reported 

in [39] for a similar scene. The RMS error in the normal image velocity measurements, 

compared with the component flow field induced by the inter-frame sensor motion, varies 
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from 0.09 pixels in experiment 2 to 0.18 pixels in experiment 5. Each RMS error is less 

than the 0.84 pixel error reported in [52]. 

The depth and motion accuracy is limited by the uncertainty associated with using 

nominal camera parameters. Deviations from the nominal camera parameters produce 

scale factor errors and distortion errors. The scale factor errors are not serious because 

they do not affect the structure of the scene (the relative depth of features), the direction 

of sensor/object translation, or the sensor rotation. Distortion errors alter the scene 

structure. If the features are clustered away from the image origin, distortion errors 

also introduce bias terms into the motion estimates, and alter the distribution of x (y) 

between Tx and Qy (Ty and Clx). 

The scene structure, the direction of translation, and the sensor rotation are accu­

rately measured. In experiment 1, the RMS error in the measured depth, when fitted to 

a frontal plane structure, is ±0.16 cm; the RMS error is 0.3 percent of the average depth 

(compared to 0.5 percent in [39]). The directional accuracy of the extended sensor trans­

lation for experiment 7 is within 0.4 degrees of the actual value (compared to 1.0 degree 

in [40]). The fly rotation in experiment 3 is within ±0.01 of a degree for an inter-frame 

rotation of 0.5 degrees. 

The segmentation of moving objects and stationary objects is successful in each of the 

experiments containing moving objects. All the identified features belonged to moving 

objects. The accuracy of the object translation is good; that is, it is usually within the 

expected error. The accuracy tends to be better for obstacles with collision trajectories 

than pass-by objects. 

The estimates of the collision parameters are good. The scale factor errors due to 

camera uncertainty have no effect on the time-to-collision; most scale factor errors do 

not affect the point-of-collision. The distortion errors in experiment 4 and 5 caused 

the magnitude of the collision parameters to be under-estimated. Despite the distortion 
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errors, the point-of-collision in each experiment is sufficiently accurate, relative to the 

size of the object, to determine if the object will collide with or pass-by the cameras. 

6.2 Extens ions 

There are many possible extensions to the obstacle detection algorithm presented in this 

work. They include the use of a priori scene structure, and additional sensors. 

In many operating environments, information regarding the scene structure is avail­

able, such as a scene model or the maximum (minimum) depth. A model of the scene, 

such a planar ground surface, can be used to produce default disparity estimates at each 

lattice point, replacing or enhancing, the epipolar offset histogram. Minimum and max­

imum disparities can be used as search bounds for the epipolar offset histogram and the 

heuristic ordering constraint. 

The seeding histograms, which test in-plane velocity consistency, use the assumption 

that the axial rotation (flz) is zero. Although failure of this assumption has little effect 

for stationary environments, it may prove more significant for scenes with many moving 

objects. The seeding histograms can be easily altered to use a known flz. An auxiliary 

sensor that measures camera roll could provide this information. In certain cases, the 

camera roll can be estimated from the image sequence prior to the seeding stage. If the 

scene has a horizon, the changes in the image position and orientation of the horizon 

line can produce initial estimates of fly and flz. Horizon line is often easily identified; in 

experiment 6, it is a dark to light transition extending across the image. 

A third camera that provides a vertical baseline separation would be useful for dis­

parity estimation, seeding histograms, and object motion estimation. In the current 

implementation, disparity is estimated using features from the epipolar channel only. 

A vertical camera separation could provide direct disparity measurements for features 
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in the orthogonal channel 1. The vertical cameras would also provide a stereo image 

velocity field for the orthogonal channel. The resulting estimate of z can be used to re­

move moving object features from the orthogonal channel's seeding histogram, increasing 

the reliability of the seeding process. The moving object features from the orthogonal 

channel can be combined into object classes, providing an accurate estimate of vertical 

component of object translation and an improved estimate of the axial component. 

Pilot commands can be incorporated into the sensor's Kalman filter to predict changes 

in the collision parameters in response to an evasive maneuver. In a simpler Kalman filter 

implementation, pilot commands can be used to adjust the forgetting factor. When the 

vehicle changes heading or speed, the forgetting factor can be temporarily increased 

to flush old data. The Kalman filters for the object motion can also be expanded. If 

the maneuverability of the object is known, a process noise model can be formed. The 

uncertainty in the collision parameters would represent a probabilistic model accounting 

for possible perturbation in the object trajectory. 

6.3 Conclusion 

This work has demonstrated the utility of the Gabor representation as an image process­

ing stage for stereo-based obstacle detection. The importance of error estimation and 

propagation have also been demonstrated. 

The work presented in this thesis makes the following principal contributions: 

• it develops sampling constraints and predictive matching criteria that detect and 

avoid aliasing in the measurements of local frequency, disparity, and normal image 

velocity; 

1 Orthogonal with respect to the horizontal stereo cameras. 
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• it provides robust detection of moving objects by automatically generating trajec­

tory detectors tuned to moving objects seen in past images; 

• it implements direct passive navigation using phase-differences instead of intensity 

derivatives; 

• it develops image measurement error models using stable quantities, and propagates 

the image measurement errors into collision parameter uncertainty; 

• it develops a "seeding" technique that is necessary to initialize the segmentation 

process; 

• it stabilizes the image sequence from transients caused by camera shake. 

• it uses eigenvalue/eigenvector analysis to determine if a motion estimate is stable 

and which motion constraint will most improve the stability of the sensor motion 

estimates. 

All of these contributions produce a very robust obstacle detection algorithm. 



A p p e n d i x A 

Discount Factor 

The "weight" used in the weighted least square estimate of the inter-frame sensor motion 

(see section 4.2) is given by 

rediscount / i or»<-*\ 

" = WKFY
 (A-322) 

where /^discount is a discount factor that compensates for the spatial oversampling. This 

appendix shows how the discount factor is determined. 

Assume that an image is corrupted by white noise whose power is given by a\. When 

the image is filtered by the Gabor filter (Gaussian bandpass), the noise power is reduced 

and becomes correlated. The noise power within the Gabor channel is 

aG = a2
n <GiyGi > = ^ , (A.323) 

where 

< Gt, Gj>= IJ GiGj dx dy. (A.324) 

The correlation matrix RG is given by 

RG = <rGRs, (A.325) 

where Rs is a matrix that contains the correlation (or overlap) between every pair of 

Gabor functions in the set of lattices. The matrix Rs usually contains the correlation 

between Gabor functions from different channels (referred to as "cross-channel corre­

lation"). In this work, the cross-channel correlation is small because the set of Gabor 

filters is minimally complete (see section 3.2.1). The most significant correlation occurs 

240 
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within a given channel because the spatial sampling lattice is oversampled (to calculate 

the phase gradient without aliasing; see section 3.2.3). 

If we ignore the cross-channel correlation and consider only the correlation in the x 

direction, the correlation matrix Rs is given by 

Rs,± = 

< G_i ,G_l > < Go, G_i > < Gj ,G_i > 

< G_i, Go > < Go, Go > < G\, Go > 

< Cr_i, G\ > < Go, G\ > < Gi , Gi > 

(A.326) 

If the Gabor functions are normalized such that < Gi, Gi > = 1, Rs,& can be rewritten as 

Rx.ik = 

1 a a4 a9 • • 

a 1 a a4 • • 

a4 a 1 a 

a9 a4 a 1 

(A.327) 

where 
•K 

a = exp[—'^(XukAxs)
2}. (A.328) 

It can be seen that the correlation decreases as the separation between pairs of Gabor 

functions increases; tha t is, the elements of Rsj. decrease from the diagonal. Thus, RSt£ 

is a local operator. 

The matrix Rs used in (A.325) contains the correlation in both the x and y. The 
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matrix Rs is written as a block matrix: 

(A.329) 

where 

b = exp[-^(-u;kAys)
2}. (A.330) 

z a 

The blocks in Rs decrease from the diagonal as the separation along the y-axis increases. 

Thus, Rs is a local operator. 

The optimal weighting for a least square estimate of the inter-frame sensor motion is 

[40] 

0 = {HTWH)-xHTWVn, (A.331) 

where Vn is a vector containing all normal image velocity measurements Vn(i), H is a 

matrix containing all the associated transformation vectors J,-, and W is the optimal 

weighting matrix. Vn and H are given by 

H=[J1J2 ••• J n ] , (A.332) 

Vn = [ K ( l ) K(2 ) • • • Vn(n)]T. (A.333) 

If the error due to Sun is ignored, inverse of W is given by 

W-1 = M~XRGM-T, (A.334) 

**js,x *'-f*js1x " •**'S,X 

Rs bRs R s,x bR s,i 

b Rs & oRs % Rs ± 
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where 

M = 

m0 0 0 ••• 0 

0 mi 0 ••• 0 
(A.335) 

0 0 0 ••• m„ 

and m,- is the magnitude at lattice point i. The optimal weighting is impractical because 

the matrix Rs (as well as RG and l^7-1) has a very large size. In addition, the inverse of 

Rs is required to obtain W. Because of the oversampling of the spatial lattice, a unique 

inverse of Rs does not exist. It is desirable to obtain an approximate local solution that 

is conservative, but near optimal. 

The optimal solution contains the matrix product HTW. Consider measurements 

from the epipolar channel (^/ = 0). If all the features are vertical, H can written as the 

following six column vectors: 1 

where 

H = [v1v2 ••• vG], 

vi = [~zf ~zf ••• ~ zff, 

S2 = [00 ••• 0]T , 

v3 = [x(l) x(2) • • • x(n)]T, 

_ r a ( l )y ( l ) z(2)y(2) * (3)y(n) i r 

v4 = [ : • • • J , zf zf zf 

i2(l)w x 2 (2) , , x\n)^T 

Zf Zf Zf 

v& = [y{\)y{2) ••• y(n))T-

Note that the matrices Rs and M are symmetric; thus 

W-1 = Rs[MM}-la2
G. 

(A.336) 

(A.337) 

(A.338) 

(A.339) 

(A.340) 

(A.341) 

(A.342) 

(A.343) 

1 Similar column vector can be formed for the other channels. 
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The matrix product HTW can be written as 

HTW = [v*R;p v*Rjp • • • vjRjp][MM]-\ (A.344) 

where R~p is a pseudo-inverse of Rs. The lower bound for vj R~p is given by 

vjR:P = R;pv{ > - U , (A.345) 

where Ao is the largest eigenvalue in Rs. A sub-optimal weighting matrix is given by 

Wsub = J—L[MM]. (A.346) 

Since the error due to Sun is ignored, the expected square error in Vn(i) is 

E[{SV«n = &• (A.347) 

Using the sub-optimal weighting matrix, we get 

HTWsubVn = Y,WiJiVn(i), (A.348) 
t 

HTWsubH = J2 WiJiJf, (A.349) 

where 

wi = l~E[(6Vnn. (A.350) 

Thus, the discount factor is given by pdiscount — AQ • 

For the above case, all that remains is to determine the largest eigenvalue and to 

discuss the reduction in accurary introduced by using a sub-optimal weight. The eigen­

vector associated with A0 is ve(0) = [1 1 • • • l ] r . The largest eigenvalue of Rs is the sum 

of all overlaps with the reference function: 

A0 = Yl < G" Go > « 1 + 2a + 26 + iab. (A.351) 
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Note that Ao is dependent on the Gabor filter, and the spatial sampling lattice spacing. 

Because it is not dependent on the signal information, it can be precomputed. 

It is interesting to see how the eigenvector ve compares with the actual vectors 

Vi • • • VQ. It can be seen that v\ and v2 are scalar multiples of the eigenvector when 

the normal image direction is the same for all sample points. In such a case, Wsub will 

produce the optimal estimates of Tx and Ty. Since Rs is a local operator, the condition 

stated previously can be made less restrictive: the normal image direction need only be 

constant within a small region about the reference point. Wsub will produce near optimal 

estimates of flx and Qy if the normal direction is locally constant and if the field of view 

is small (— and -^ « 0). The estimates of Tz and flz will not be optimal. Since Rs is 

local, the estimates Tz and Qz should be reasonably close to optimal. 

In this work, not every sample is used. Only significant features are incorporated 

into the weighted least square estimate of the inter-frame sensor motion. As a result, 

the matrix Rs must be altered so that it contains only the overlap of significant (active) 

features; all other elements of Rs must be set to zero. The lower bound obtained using 

Ao will be very conservative in a region containing a sparse number of features. Instead 

of using the largest eigenvalue A0, which is define globally, the approximate local bound 

for the spatial neighbourhood about the reference Go can be used. The local bound for 

G{ is approximated by 

A / < H » / ( 0 « E <Gj,Gi>, (A.352) 
active(j) 

where the subscript active(j) indicates that the sum includes only the overlaps between 

active (significant) features. The local discount factor for the measurement Vn(i) is 

^discount = T 7TT. (A.OOOJ 
MocalV) 



A p p e n d i x B 

Least Square Es t imate of E x t e n d e d Sensor Translation 

This appendix provides details of how the inter-frame sensor motion is used to update the 

estimate of the extended sensor translation. The least square solution of the extended 

sensor translation and the transient inter-frame rotations over an image sequence is given 

by 

Q(0) 

n(n) 

, - 1 

.Aq Bq 

Bj Cq 

Dv 

E„ 
(B.354) 

where Aq = £,• Qa(i), Bq = [Qb(0) • • • Qb(n)}, 

Qc(0) 0 

Ca 

0 Qc(l) 

0 0 

0 

0 

Qc(n) 

(B.355) 

Dp = 52iPa(i), and Ep = [^(0) • • • Pb(n)]7'• Using the block matrix inversion, we get 
- l 

where 

A q Bq 

BT
q Cq 

A-1 

-C^BjA-i 

A = Aq-

-A-^C-1 

C-1 + C^BJA-'B.C-1 

- B,C?Bf. 

The extended sensor translation is given by 

Tsen — A~ (Dp — BqC~ Ep). 
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(B.356) 

(B.357) 

(B.358) 
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Note that 

BqC;'Ep = £ Qb{i)Q:x(i)ph(i), (B.359) 
» 

B*C?BI = E & W ^ W t f (0. (B-360) 

and 

A = £[<?„(«') - QMQfWQfti)]. (B.361) 

Thus, 

Tsen = A"1 £[p0(«) - QbWQ^WPbd)]- (B-362) 



A p p e n d i x C 

T h e Effect of Camera Uncerta inty on Collision Parameters 

This appendix discusses the effect of uncertainties in the camera parameters and the 

stereo setup on the estimates of depth, motion, and the collision parameters. The camera 

parameter uncertainties include an incorrect focal length, pixel scaling errors in the x and 

y directions, and lens distortion. Uncertainties in the stereo setup include mismatches of 

the focal lengths; baseline separation errors; and non-parallel camera configurations. 

C. l Incorrect Focal Length 

An incorrect focal length causes errors in the estimated depth, and sensor/object trans­

lation. The error in depth, due to an incorrect focal length, is given by 
c 

8z = z-^-. (C.363) 

The error in sensor translation is given by 
c 

8T = - T - ^ - . (C.364) 
ZS 

Object translation is affected in a similar manner. In each case, the error is a scale factor 

of the actual value. Note that the speed of the translation is altered by 6zf, but not the 

direction. 

The collision parameters are unaffected by incorrect, matched focal lengths. The 

collision parameters can be expressed in terms of image measurements, independent of 

the Zfi 

tcoi = —7 = 77 r r ~ , (C.365) 
Z Vx,L - Vx,R 
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•^ X 

sy = 

nx 

VCCD 

ny 

Xcoi = x + x tcoi = (xav - xfoe)—, (C.366) 

where x"av = 0.5(XL + xp). 

C.2 P ixe l Scaling Errors 

The horizontal and vertical pixel sampling intervals are the distances between adjacent 

pixels on the CCD array. The horizontal and vertical pixel scale factors, denoted by sx 

and sy, respectively, convert the pixel coordinates into physical distances (in cm): 

XCCD (C.367) 

(C.368) 

where (XCCD, VCCD) are the physical dimensions of the the CCD array (in cm), and 

(nx, ny) are the number of pixels along the x- and y-axes. The ratio of the vertical and 

horizontal pixel scale factors is given by 

rpix = X (C.369) 
sx 

This section considers the effect two types of pixel scaling errors: symmetric pixel scaling 

errors, which have the correct rpix; and asymmetric pixel scaling errors, which alter rpix. 

Asymmetric pixel scaling errors affect the estimated motion and collision parameters. 

Consider the case where nominal value of sx is correct, but the nominal value of sy is 

too large. Because sx is correct, the depth estimates will not be affected. The large 

sy will distort the image velocity field by over-estimating Vy. The effect on the sensor 

motion parameters will depend on the distribution of features (both position and normal 

direction) in the image. In most cases, \TZ\ will be over-estimated; thus, the time-to-

collision of an object being approached by forward translating sensors will be under­

estimated. 
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A horizontal scaling error can be introduced by the frame grabbing process. The 

CCD camera converts the image into an analog output which is redigitized by an image 

acquisition board. A horizontal scaling error can occurred due to mismatches between 

the clock frequencies of the camera and acquisition board. The error in s £ will have a 

similar effect as an incorrect focal length: it will alter the depth and motion estimates. 

The asymmetry in the pixel scale error will alter the time-to-collision and further altering 

the motion estimate. 

Symmetrical pixel scaling errors will have no effect on the time-to-collision and point-

of-collision. 

C.3 Lens Distort ion 

This section discusses the effect of radial lens distortion on the depth, motion, and 

collision parameter estimates. The radial lens distortion can be modelled as 

&d = . . . ' , . 2 V (C370) 
1 + kd(x

2 + y2) 

h = m^kwr (c-371) 
where (xd, yd) represents the image coordinate of the distorted image. In this section, 

only the changes in the x coordinate are considered. For convenience, the distortion 

model is modified: 

x = xd(l + kx2
d). (C.372) 

The lens distortion will alter the measured depth. If the distortion is not compensated, 

the measured depth is given by 

zm = . Z ' \ , (C.373) 
Xd,L - Xd,R 
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where xdtL and xdfR are the distorted image coordinates for the left and right images. 

The actual depth, z, (for parallel stereo cameras) is obtained by solving the following 

equation: 

The relationship between the measured and actual depth is given by 

zm = kzz, (C.375) 

where 

kz = 1 + k(x\L + xdiLxd<R + x2
dtR). (C.376) 

It can be seen that the peripheral depth measurements will over-estimate the actual 

depth. 

The lens distortion will also affect the image velocity measurements. The velocity in 

the distorted image plane will be reduced compared to the undistorted image velocity: 

Vx4 = kvVx, (C.377) 

where 

kv = [l+3kxl]~1. (C.378) 

The effect of lens distortion on the estimated sensor motion is difficult to model. The 

sensor motion is estimated by combining a set of image measurements. Consider the 

case of forward axial sensor motion, which produces an outward flow pattern from the 

image origin. The radial distortion will affect each image measurement: it will reduce 

the image velocity by kv, it will reduce the x position by (1 + kx2), and it will increase 

the depth by kz. If the features are evenly distributed, Tz will be over-estimated and Tx 

will be approximately zero. If the features are clustered to the left or right of the image 

origin, biases in Tx will appear. 
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The effect of lens distortion on the time-to-collision varies depending the object's po­

sition and motion. Consider the case of data set 2 where the sensor is forward translating 

(Tz > 0) and the objects have no axial translation (z0bj — 0). The time-to-collision will 

be under-estimated near the image origin, and over-estimated at the periphery. 

In experiments 4 and 5, the object is moving along the #-axis. Because of the lens 

distortion, the estimated object motion (imio6j5
 zm,obj) (obtain from the stereo image 

velocity) will have a directional bias: 

£obj ~ •Em,obj Zm,obj~j~Z • yKj.O t\f j 
kzZf 

It can be seen that the directional bias decrease as the object approaches the image 

origin. 

C.4 Mismatched Focal Lengths 

This section investigates the effect of mismatches in the focal length for the left and right 

cameras on the measured depth and motion. For the case of parallel cameras, we have 

—xL-—3tR = b, (C.380) 
zf(L) zf(R) 

where zj^) and 2/(.R) are the focal lengths of the left and right cameras, respectively. 

The relationship between the actual and measured depth is given by 

1 A 

Z~l = Zmeas ~ Szf(LJt) , " " , ( C . 3 8 1 ) 
ZfO Zf 

where 8zS(LtR) = zf{L) - zf{R}, zf = 0.5[zf(L) + zf(R)], and xav = Q.b[xL + xR}. The 

mismatched focal lengths produces an apparent gradient along the f-axis for the disparity 

measurements. 

The measured direction of sensor translation will be altered by mismatches in the 

focal lengths. Consider the case of a forward translating sensor. If the features are evenly 
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distributed, the measured direction of translation will be biased towards the camera with 

the smaller focal length. This bias will affect the accuracy of the measured point-of-

collision. 

C.5 Basel ine Separation Errors 

The baseline separation is an important parameter for converting the disparity into depth. 

Errors in the measured baseline separation (bm) will affect the estimate of depth, trans-

lational motion, and the point-of-collision. 

The error in depth is 
CI 

8z = z—, (C.382) 

where 6b = bm — b. Consider the case where bm is too large. The depth will be over­

estimated by a factor y . Since the image velocity measurements are not affected, the 

translation estimates will be over-estimated by the same factor. The time-to-collision 

will be unaffected. The point-of-collision will be over-estimated by y . 

C.6 Non-paral le l Camera Configurations 

This section discusses the effect of non-parallel camera configurations on the estimated 

depth, motion, and collision parameters. In chapter 2, a first-order compensation, (2.57), 

is described that transforms a convergent stereo configuration into a parallel approxima­

tion. The effect of errors in the compensation term A/9, as well as higher-order effects 

associated with (2.57), are discussed. 

The measured depth, which incorporates the first-order compensation, is given by 

zm = Zs\ . (C.383) 
ds + A/3m zf 
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If A/?m is less than the actual A/?m, both the depth and translational motions will be 

under-estimated. Note that an incorrect A/3m has a larger effect on distant objects than 

close ones, causing a distortion along the zTO-axis. If a scene has a large depth gradient 

across the camera's field of view, the zm distortion will alter the estimated direction of 

the sensor translation and the estimated point-of-collision. 

The measured direction of object translation is not affected by an incorrect A/3m 

(the depth variation of an object is small). However, an incorrect A/3m will cause the 

measured speed of the object to change as it moves in the z direction. If A(3m is less 

than the actual value, then the measured speed will decrease as the object approaches 

the cameras. The measured speed of the, object will become more accurate as the object 

approaches the camera. The time-to-collision will not be affected. 

The first-order compensation is not exact. Even if the compensation parameters, Af3 

and A7 , correctly selected, the measured depth will be distorted. If /?£, = — /3R and 

7 i = — 7/j, the relationship between the actual and measured depth (after the first-order 

compensation) is given by 

z + (h A/3)x - (h A7)y, (C.384) 

where 

2{xL - xR + A/3 zj) 

This relationship can be written in terms of image coordinates and depth: 

-1 -1 , X.ave Ap XgyeVave ^ 7 /n Q 0 / ; \ 
z =*•—+ 1T-& 7}—T' ( a 3 8 6 ) 

where xave = 0.5(xL+xn) and yave = 0 .5 ( J /£+? /H) . It can be seen that camera convergence, 

A/? > 0, causes a parabolic distortion. A differential tilt, A7 ^ 0, causes a distortion 

that makes vertical object appear slanted (in depth). 
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For the case of a forward translating sensor viewing well-distributed features, the 

parabolic distortion causes Tz to be over-estimated; the slanting introduces a Ty bias. In 

the presence of a parabolic distortion, the time-to-collision will be under-estimated near 

the image origin, and over-estimated near the periphery. The slanting distortion will 

affect the point-of-collision. 

C.7 S u m m a r y 

Two types of errors have been discussed in this appendix: scale factor errors and dis­

tortion errors. The scale factor errors include: an incorrect (matched) focal length; 

symmetric pixel scaling errors; and baseline separation errors. Each error alters the mea­

sured depth by a scale factor. None of the scale factor errors affect the time-to-collision. 

The incorrect focal length and the symmetric pixel scaling errors do not affect the point-

of-collision. An incorrect baseline separation alters the point-of-collision by a scale factor 

(no sign changes). Thus, scale factor errors have little effect on obstacle detection. 

The distortion errors include: asymmetric pixel scaling errors, radial lens distortion, 

mismatched focal lengths, and non-parallel camera configurations. With the exception of 

the asymmetric pixel scaling errors, the distortion errors affect the depth estimates. In 

addition to altering the estimated depth, the ordering of feature along the z-axis is often 

changed. As a result, the effect of the distortion errors on the estimated sensor motion and 

collision parameters is dependent on the distribution of features in the scene (distribution 

in image position, normal direction, and depth). The distortion errors, combined with 

the clustering of features away from the image origin, introduce biases in the estimated 

motion which affect both the estimated point-of-collision and time-to-collision. Thus, 

distortion errors have a negative effect on obstacle detection. 
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