
IMPLEMENTATION AND EVALUATION OF VARIOUS STOP AND
WAIT TYPE II HYBRID ARQ SCHEMES FOR MOBILE RADIO

by

REMO L. AGOSTINO

B. A. Sc., University of British Columbia, 1990.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

Department of Electrical Engineering

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

September 1993

© Remo L. Agostino, 1993

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

(Signature)

Department of

...-/et^Cze

The University of British Columbia
Vancouver, Canada

Date

DE-6 (2/88)

ABSTRACT

This thesis investigates the design and implementation issues involved in the de-

velopment of various Stop-and-Wait (SW) Type II Hybrid Automatic Repeat reQuest

(ARQ) strategies. The modulation scheme utilized is the North American digital cellular

standard known as 7r/4—shift DQPSK. The general Complementary Punctured Convolu-

tional (CPC) SW Type II ARQ scheme is presented and numerically analyzed in both an

AWGN channel and a combined AWGN and Rayleigh fading channel. The three varia-

tions of the general scheme implemented are: Rate 3/4 CPC SW Type II ARQ, Rate 3/4

CPC SW Type II ARQ with Code Combining, and an Adaptive CPC SW Type II ARQ

scheme. The prototypes are implemented with two Spectrum TMS320C30 Digital Signal

Processing (DSP) cards and a host IBM PC. The experimental data for the prototypes

were verified and were in good agreement with the numerical results. This validated the

prototypes' correct and proper operation along with the DSP software modules used by

the prototypes. It is shown that the upgrade of the CPC SW Type IT ARQ scheme to

a Code Combining and an Adaptive scheme requires small software modifications. It is

the versatility and flexibility of the DSP cards which allow these upgrades to be easily

accomplished and extremely cost effective. The Code Combining upgrade increased the

throughput performance of the general rate 3/4 scheme at low SNR levels. The Adaptive

scheme resulted in an increase at both low and high SNR levels with a slight degradation

at medium SNR levels with respect to the throughput curve of the general rate 3/4 scheme.

Contents

ABSTRACT ^ ii

List of Tables ^ vi

List of Figures ^ vii

Acknowledgments ^ ix

Chapter 1 Introduction ^ 1

1.1 ARQ Schemes ^ 1

1.1.1 Stop-and-Wait ARQ ^ 1

1.1.2 Type I Hybrid ARQ ^ 3

1.1.3 Type II Hybrid ARQ ^ 4

1.2 Thesis Goals ^ 4

1.3 Thesis Organization ^ 6

Chapter 2 7/4—Shift DQPSK Modulation Scheme ^ 8

2.1 Introduction ^ 8

2.2 Transmitter Model ^ 8

2.3 DSP Implementation of the Phase Shift Encoder and

Baseband Generator ^ 11

2.4 RF Modulator/Demodulator and Channel ^14

2.5 DSP Implemented Baseband Differential Detector ^ 16

2.6 Theoretical Analysis and Prototype Performance ^ 18

2.7 Conclusions ^ 21

111

Chapter 3^Application of Complementary Punctured Convolutional

Codes to a SW Type II ARQ Scheme ^ 22

^

3.1^Introduction ^ 22

^

3.2^Review of Complementary Punctured Convolutional

Codes (CPC) ^ 22

3.2.1^CPC Codes ^ 23

^

3.3^Generalized CPC SW Type II Hybrid ARQ Algorithm . . ^ 24

3.4 DSP Implementation of a CPC SW Type II ARQ Scheme . 25

3.4.1 Frame Structure ^ 28

3.4.2 Frame Synchronization ^ 29

3.4.3 Encoder/Transmitter DSP Card ^ 33

3.4.4 Receiver/Decoder DSP Card ^ 36

3.4.4.1 Viterbi Decoder ^ 39

3.4.4.1.1 Numerical Analysis ^ 41

3.4.4.1.2 Computer Simulation ^ 42

3.4.4.1.3 Viterbi Decoder Performance ^ 42

3.5 Prototype Performance ^ 43

3.5.1 Throughput Analysis^ 44

3.5.1.1 Numerical Results ^ 45

3.5.2 Experimental Throughput^ 46

3.5.3 Rayleigh Fading Channel ^ 48

iv

^

3.6^CPC SW Type ll ARQ Scheme with Code Combining . . 50

^

3.7^Conclusions ^ 53

Chapter 4^An Adaptive SW Type ll ARQ Scheme ^54

^

4.1^Introduction ^ 54

^

4.2^The Adaptive Coding Rate Algorithm ^54

^

4.3^DSP Implementation of the Adaptive Scheme^56

^

4.4^Performance Evaluation ^ 57

^

4.5^SW ARQ Scheme Comparisons ^ 63

^

4.6^Conclusions ^ 65

Chapter 5^Conclusions and Future Research ^ 66

^

5.1^Conclusions ^ 66

^

5.2^Future Research ^ 69

^

5.2.1^Symbol Synchronization ^ 69

^

5.2.2^Selective Repeat Upgrade ^ 69

^

5.2.3^Adaptive Header ^ 69

^

5.2.4^FEC Schemes ^ 70

Bibliography ^ 71

Appendix A^Software Listings ^ 74

List of Tables

Table 1^Phase Shift as a function of Information Symbol. ^ 11

Table 2^7r14 Shift DQPSK State Encoder Look Up Table. ^ 13

Table 3^Distance Spectrum of Code with Rate 1/2 ^42

Table 4^Distance Spectra of Rate 3/4 Punctured Convolutional

Code of Memory m=4. ^ 45

vi

List of Figures

Figure 1.1^Stop-and-Wait ARQ Scheme ^ 2

Figure 1.2^Typical Type I Hybrid ARQ System ^ 3

Figure 2.1^Block Diagram of the 7r/4 shift DQPSK Transmitter. . . . ^ 9

Figure 2.2

^

^State-space diagram of the 7r/4 shift DQPSK modulated

carrier at sampling points 10

Figure 2.3^Flow chart representing baseband transmission

algorithm ^ 12

Figure 2.4^Modulator, Demodulator, and Channel simulator. ^ 15

Figure 2.5^DSP Baseband Differential Detector Block Diagram^. ^ 16

Figure 2.6^BER Performance in AWGN. ^ 19

Figure 2.7^BER Performance of 7r/4—shift DQPSK in a Rayleigh

Fading Channel for Various BDT. ^ 21

Figure 3.1^Block Diagram of Prototype SW Type ll ARQ Scheme. . ^ 26

Figure 3.2^Detailed Structure of Frame. ^ 28

Figure 3.3^Correlation Sidelobes of Flag used in Prototype^30

Figure 3.4^(a) and (b) Effects of Changing Threshold value used for

Flag Correlation ^ 32

Figure 3.5^Frame Encoding and Construction Algorithm of DSP

Transmitter Card. ^ 35

Figure 3.6^Frame Decoding Algorithm of DSP Receiver Card.^. ^ 38

Figure 3.7^Choosing a Path Survivor^ 40

Figure 3.8^Rate 1/2 Soft Decision Viterbi Decoder Performance. . . ^ 43

vii

Figure 3.9^Numerical and Experimental Throughputs ^46

Figure 3.10^Throughput of Prototype in a Rayleigh Fading Channel. ^ 49

Figure 3.11^Throughput of CPC SW Type ll ARQ Scheme with and

without Code Combining ^ 51

Figure 3.12^Histograms for Rate 3/4 CPC SW Type II ARQ with and

without Code Combining ^ 52

Figure 4.1^Threshold Regions Defining Coding Rates. ^55

Figure 4.2^Experimental Throughputs of rate 1/2, 3/4, and 1^57

Figure 4.3^Adaptive CPC SW Type ll ARQ Throughput. ^58

Figure 4.4^Affect of varying N for the Adaptive Scheme's

Throughput^ 59

Figure 4.5^Adaptive CPC SW Type ll ARQ in Rayleigh Channel.. . ^ 60

Figure 4.6^Adaptive CPC SW Type II ARQ in a Rayleigh Channel for

Various BDT Products^ 62

Figure 4.7^Effect of varying N for the Adaptive Scheme in a Fading

channel. ^ 63

viii

Acknowledgments

I would like to thank my mother and aunt, Maddalena and Maria Taddei, for their

continuous moral support and constant encouragement throughout my academic career. I

would also like to issue a special thanks to my uncle, Tony Bolognese, for having played a

major role in my decision to enter the exciting field of communications. I am enormously

grateful to my supervisors, Dr. Samir Kallel and Dr. V. C. M. Leung, for their constant

guidance, moral support, and invaluable experience which allowed me to complete this

thesis. I would also like to thank my fellow students and especially Dimitrios P. Bouras

and William Cheung for their insightful and stimulating discussions. Finally, I would

like to acknowledge the assistance provided by the B.C. Science Council.

ix

Chapter 1

Chapter 1 Introduction

Section 1.1 ARO Schemes

The problem of providing an efficient reliable data communications link in a land

mobile radio channel is of great practical importance. Automatic Repeat reQuest (ARQ)

protocols or similar custom tailored Radio Data Link Protocols are commonly used to

provide a virtually error free data link for the radio channel. The ARQ protocol ensures

a consistent data quality under varying channel conditions. The functions the ARQ

protocol must accomplish can be divided into two different classes: low level functions

involved with encoding and decoding of protocol information in the data packets and

high level functions concerned with the request retransmission algorithm to support frame

transmission services. The message itself is contained in the data packet of the frame,

whereas the destination address and other pertinent information is contained in the header

which precedes the data packet. A code with good error detecting capability is used to

encode the header and data packet separately. Typically, a Cyclic Redundancy Code

(CRC) is used [1]. The header is independently encoded to allow all mobile radio users

to decode it in order to distinguish if the frame is addressed to them and decide whether

to process the data packet.

1.1.1 Stop-and-Wait A RQ

In a Stop-and-Wait ARQ (SW ARQ) scheme, the transmitter sends a single frame and

stops to await the reply of the receiver. No other frame can be sent until the receiver's

reply arrives at the transmitter. Three possible events may arise once a transmission

has taken place. The receiver may send an acknowledgment (ACK) to indicate that the

Section 1

Chapter 1

frame was received error free; or a negative acknowledgment (NACK) if it was received

in error; or no reply if the frame was so corrupted by noise as not to be received. To

account for this last event, the transmitter is equipped with a timer. Once a frame has

been sent, the transmitter awaits for a recognizable reply (ACK or NACK). If no such

reply is received during the time-out period, the frame is retransmitted. Therefore, any

reply other than an ACK will result in the transmitter retransmitting the same frame

again. Figure 1.1 illustrates the SW ARQ scheme.

It is inefficient to utilize a SW ARQ protocol in a single frequency system because

the time required for the transmitter to await the receiver's reply is wasted air time. The

typical mobile radio system uses a number of frequencies to communicate between the

base stations and the mobile users. This configuration allows the SW ARQ protocol to

make efficient use of its air time. For example, after the base transmits a message to

mobile A, it can send another message to any other mobile while awaiting the reply of

mobile A on the return channel. In this respect the SW ARQ protocol can be well suited

for mobile radio systems.

Idle time^ Retrans ission

Transmitter

Receiver

Figure 1.1 Stop-and-Wait ARQ Scheme

Section 1
^

2

Message
CRC

ENCODER
• CONVOLUTIONAL

ENCODER

NOISE

ACK

NACK
•^

VITERBI
DECODER

CRC
CHECKER

Chapter 1

1.1.2 Type I Hybrid ARQ

A hybrid ARQ system utilizes both Forward Error Correction (1-EC) coding and error

detection coding (incorporated in the ARQ scheme). The FEC code is used to reduce

the number of retransmissions. In a Type I Hybrid ARQ scheme the message and its

error detecting parity bits (typically CRC), are further encoded with a FEC code. At

the receiver, the FEC parity bits are used to correct channel errors. The FEC decoder

(typically a Viterbi Decoder) outputs an estimate of the received message and its error

detecting parity bits. This estimate is tested by the error detection decoder (CRC checker)

to determine if the message is error free. Figure 1.2 depicts a Type I Hybrid ARQ

communication system.

Figure 1.2 Typical Type I Hybrid ARQ System

The efficiency of a Type I ARQ system in comparison to a plain ARQ system

depends on the level of noise corrupting the channel. If the Signal-to-Noise Ratio (SNR)

is high, the Type I ARQ scheme does not result in any improvement. The FEC parity

bits are wasted, as a result of the signal strength being strong enough to deliver error

free messages. On the other hand, the Type I system does show an increase in efficiency

Section 1^ 3

Chapter 1

at low SNR levels, and since the signal strength is so poor, error free reception is very

unlikely and the FEC parity bits are utilized to correct channel errors.

1.1.3 Type II Hybrid ARQ

In a Type II ARQ scheme, the FEC parity bits are only sent if the received message

contains errors. The transmitter would alternate between sending the message with its

error detection parity bits on one transmission, and the FEC parity bits on the next. Note

that the FEC parity bits are only sent if the received message contains errors. With

this scheme, any error free reception of the message with its error detection parity bits

delivers the message. If the FEC parity bits are invertible, any error free reception of

the FEC parity bits also delivers the message. Finally, if both the message with its error

detection parity bits and the FEC parity bits are in error, combining these two frames

for error correction may successfully deliver the message. The Type II system offers the

benefit of performing as a plain ARQ scheme at high SNR and performing as a Type

I system at low SNR.

Section 1.2 Thesis Goals

The disadvantage of Type I and Type II hybrid ARQ schemes is the failure to

provide a useful throughput at high channel error rates. Application of code combining

to hybrid ARQ schemes to achieve a useful throughput has been investigated [2, 3].

Code combining involves taking frames received in error and optimally combining them

with their repeated copies. Therefore, the receiver would process a combination of all

received sequences for that frame, rather than only the two most recently received ones

as in the conventional Type II system.

Section 1^ 4

Chapter 1

An adaptive hybrid ARQ system utilizing code combining would be optimal. Adap-

tive refers to the FEC coding scheme being able to adjust to the channel conditions and

data protection needs. Typically, a fixed code with a certain error rate and correction

capability matched to the protection requirement of the data and the worst channel con-

ditions is used. Unfortunately, different data (voice, FAX, computer data files, all using

the same channel) have different error protection needs and what may be appropriate for

one type may be inappropriate for another. Another problem, is the mobile radio channel

conditions are constantly changing due to its multipath and time varying characteristics.

Therefore, an adaptive code combining hybrid ARQ scheme would generally yield a

higher throughput than a non-adaptive scheme in a radio channel [4].

Motivated by the above, this thesis investigates the design, implementation issues,

and performance evaluation of various adaptive and non-adaptive FEC coding schemes

of a Type II SW ARQ system. The research contributions can be summarized as follows:

1. The Software design, implementation, and test of a Digital Signal Processing (DSP)

Module Library for the Spectrum TMS32C30 DSP card housed in an IBM PC

platform. The library consists of the following modules:

• CRC Encoder/Decoder

• Rate 1/2 Convolutional Encoder

• Puncturing Module

• Rate 1/2 Soft Decision Viterbi Decoder

• Block Interleaver

• Soft Data Deinterleaver

• Queueing Module

Section 2^ 5

Chapter 1

. 71/4—shift DQPSK Baseband Transmitter/Receiver

2. The Software implementation and evaluation of a Complementary Punctured Convo-

lutional (CPC) coding scheme for the SW Type II ARQ system with and without code

combining utilizing the DSP library in an AWGN channel and a combined AWGN

and Rayleigh Fading channel.

3. Software upgrade and performance evaluation of an Adaptive CPC SW Type II ARQ

scheme utilizing the DSP library in an AWGN channel and a combined AWGN and

Rayleigh fading channel.

Section 1.3 Thesis Organization

The thesis consists of five chapters and one appendix. It is organized as follows:

• Chapter 2 discusses the 7r/4—shift DQPSK modulation system implemented and its

theoretical and practical performance.

• Chapter 3 explains the generalized Complementary Punctured Convolutional (CPC)

coding scheme for a SW Type II ARQ protocol with and without code combin-

ing. It also discusses in detail the DSP prototype CPC SW Type II ARQ scheme

implemented. Finally, the prototype's performance is analyzed and evaluated.

• Chapter 4 presents the Adaptive CPC SW Type II ARQ scheme implemented and

its performance evaluation. This chapter will also compare the three ARQ schemes

implemented and discuss their performances.

• The thesis' conclusions and suggestions for future work are cited in Chapter 5.

• Appendix A contains the software listings for the DSP Module Library, the Adaptive

SW Type II ARQ Protocol, the Transmitter DSP card, and the Receiver DSP card.

Section 2^ 6

Chapter 1

The CPC scheme's software is a subset of the Adaptive scheme and is therefore not

listed.

Section 3^ 7

Chapter 2

Chapter 2 7114-Shift DQPSK Modulation Scheme

Section 2.1 Introduction

The 7r/4 shift Differential Quadrature Phase Shift Keying (DQPSK) modulation

scheme has become the modulation standard for the North American and Japanese

digital cellular communications system [5]. This modulation scheme is used in the

implementation of the SW Type II ARQ scheme for mobile radio communications in order

to get practical results which are of interest to the cellular industry. The organization

of this chapter is as follows. Section 2 will review the 7r/4 shift DQPSK modulation

technique. Sections 3 to 5 will describe the DSP software and the RF hardware

required to construct the system. A performance comparison between the theoretical

and implemented modulation scheme is presented in Section 6.

Section 2.2 Transmitter Model

Figure 2.1 illustrates the transmitter model of the 7/4 shift DQPSK system. The

Phase Shift Encoder and Baseband Generator Block produce the unfiltered rectangular

pulse waveforms which are denoted as u(t) and v(t) in the Inphase (I) and Quadrature (Q)

channels respectively. The waveforms u(t) and v(t) are Nyquist filtered and passed to the

RF modulator which mixes the I and Q components to form the RF modulated signal.

8

Chapter 2

Equations 2.1 and 2.2 represent the RF modulated signal.

\/271E, cos (wct 2;)
si(t) =

2E^7F .
Sz (t) { cos wct cos —z — wct sin —7F i}^i= 0, 1, • • • , 7.^(2.2)

4^4

In Equation 2.2, E repesents the energy per symbol, T, is the symbol duration, and tv, is

the carrier frequency. Figure 2.2 is the state-space signal diagram which illustrates the

possible 8 modulated carrier signals at their sampling instants. The state-space diagram

shows that the transmitted signals are chosen from two signal groups, the circles (even

numbered points {0, 2, 4, 6}) and the crosses (odd numbered points {1, 3, 5, 7}). If the

current signal is at one of the four phase states designated by a circle, it shifts to one of

the four phase states designated by a cross at the next symbol transition and vice versa.

The current signal is not allowed to shift to a fellow member of its phase state at the next

symbol transition (i.e., circle to circle or cross to cross). As a result of this constraint,

the differential phase shift between two consecutive symbols can only be k7r/4, where

Section 2^ 9

(2.1)

Chapter 2

k = +1 or ±3. Consecutive phase shifts of ±7r/2 and 7r are inhibited. The connections in

the state-space diagram indicate the possible phase transitions.

u(i)

Figure 2.2 State-space diagram of the r/4 shift DQPSK modulated carrier at sampling points [5].

The differential phase shift encoding operation can be mathematically represented by

Equations 2.3, 2.4(a), 2.4(b), and Table 1 [6].

s(t) = 2E
{ uk cos wt — vk sin wt}

Ts (2.3)

uk = uk_i cos Ok — vk_i sin Ok^ (2.4a)

vk^uk_i sin Ok vk_i cos Ok•^ (2.4b)

In Equations 2.4(a) and 2.4(b), uk and vk are the signal levels of the pulse amplitudes of

Section 2^ 10

Chapter 2

Information Symbol ek
11 7r/4

01 37r/4

00 -37r/4

10 -7r/4

Table 1 Phase Shift as a function of Information Symbol.

u(t) and v(t) for a period equal to the symbol duration. The signal levels uk and vk are

determined from the previous signal levels, uk_j and vic_i and the phase shift, k resulting

from the current information symbol. The relationship between the phase shift and the

current information symbol is given in Table 1. From Equations 2.4(a) and 2.4(b), it can

be seen that the amplitudes of u(t) and v(t) can take the values of 0 +'`L ' or ±1. For2

example, assume the current signal is so(t) (i.e., Bo = 0, uo = 1, and vo = 0 during

t r.fs). At time t = Ts, the information symbol 11 is sent. Therefore, 9]=7/4 and from

^

,^,Equations 2.4(a) and 2.4(b), tti=^and^denoting signal si(t).

From the state-space diagram and the mathematical model it follows that the infor-

mation symbol is contained in the phase difference between two consecutive sampling

instants. The receiver only requires the phase difference between two consecutive sam-

pling intervals in order to retrieve the transmitted information symbol. As a result, the

receiver does not need to phase synchronize with the transmitter.

Section 2.3 DSP Implementation of the Phase
Shift Encoder and Baseband Generator

The transmitter and receiver is implemented utilizing the Texas Instruments

TMS320C30 DSP chip. The DSP platform consists of a Spectrum TMS320C30 card

and software development tools for an IBM PC. The TMS320C30 DSP cards were cho-

Section 3^ 11

Chapter 2

sen due to their availability and excellent software support. A software based DSP design

is more versatile, flexible, and modular than an all hardware design. The DSP system

allows the user to make changes and updates to their software algorithms in a fraction

of the time required for a hardware update.

The flowchart shown in Figure 2.3 describes the baseband transmission algorithm.

The algorithm is interrupt driven by one of the two timers that the TMS320C30 chip

features. The timer is set to 6.6 its, which is the upper limit available on the Spectrum card

Section 3^ 12

Chapter 2

housing the TMS320C30. The timer value has a direct result on the rate of transmission.

The smaller the timer value, the higher the transmission rate. The baseband transmission

routine is interrupt driven to allow the DSP chip to encode and construct other frames

for transmission while the current frame is being transmitted. Therefore, even though a

SW ARQ scheme is being used, the scheme may be upgraded to a Selective Repeat (SR)

ARQ with little or no change to the transmission algorithm.

The Baud rate, which is the number of symbols transmitted per second, is determined

by the number of times the routine is executed per symbol or dibit. The variable

symbol_duration_count keeps track of this value, which is compared to a user set limit.

In the algorithm shown in Figure 2.3, the limit is set to a value of 8 and gives rise to a

baud rate of 18.939kHz according to equation 2.5.

Baud rate = {(symbol_duration_count Limit)* 6.6 us}l . (2.5)

Every time the interrupt routine is executed, the symbol_duration_count is checked. If

a new symbol or dibit is required, it is fetched from memory and the amplitudes uk and

vk, of the baseband signals u(t) and v(t), are chosen from the 7r/4 shift DQPSK encoder

look up table displayed as Table 2. Table 2 shows all possible state transitions given the

I^Previous Signal s1(t)
Current Symbol 0 1 2 3 4 5 6 7

00 5 6 7 0 1 2 3 4

01 3 4 5 6 7 0 1 2
10 7 0 1 2 3 4 5 6
11 1 2 3 4 5 6 7 0

Table 2 7r/4 Shift DQPSK State Encoder Look Up Table.

previous signal s1(t) and the current symbol or dibit to be transmitted. This table is a direct

Section 3
^

13

Chapter 2

result of equations 2.4(a), 2.4(b), and Table 1. Once the values for uk and vk are chosen,

they are written to the Digital to Analog registers, which in turn outputs an analog voltage

on the I and Q channels. Note the transmitter outputs a +5 volt synchronization pulse on

the TMS320C30 digital channel at approximately the middle of the symbol duration.

The baseband waveforms u(t) and v(t) are filtered before being sent to the RF

modulator. In the transmitter model discussed in Section 2.2, Nyquist filters were used

in order to eliminate Intersymbol Interference (ISI) and maximize the Signal-to-Noise

Ratio (SNR). Butterworth filters, which are contained on the Spectrum DSP cards, were

used in the prototype implementation. As a consequence of not using Nyquist filters, the

received noise power will be greater in the Butterworth filter case.

Section 2.4 RF Modulator/Demodulator and Channel

A detailed block diagram of the hardware implemented RF modulator/demodulator is

shown in Figure 2.4 and presented in [7]. The modulator and demodulator are designed to

operate at the relatively low carrier frequency of 1.5 MHz. The carrier frequency enters

the modulator to be divided into its I and Q components by a 900 splitter. The carrier's

I and Q components are then mixed with the I and Q baseband signals and summed by

a signal combiner. The resulting RF modulated carrier is amplified and passed to the

channel module, which allows fading to be simulated by the use of the Digital Fading

Simulator presented in [8]. White Gaussain noise is also added to the channel from a

White Noise Generator whose band coverage is 6 kHz to 25 MHz. The modulated carrier

and white noise is filtered by a Band Pass Filter (BPF), which has a 3 dB bandwidth

of 200 kHz centered at the carrier frequency of 1.5 MHz. The bandwidth of the BPF

Section 3^ 14

Chapter 2

is much greater than that of the Low Pass Filters (LPF) at the demodulator and is used

to minimize noise.

The demodulator takes the received RF modulated carrier and splits it into its I and

Q components, which are then coherently mixed down to the baseband signals. The

baseband I and Q signals are passed through Low Pass Filters (LPF) and fed to the DSP

card for Differential Baseband Detection.

Figure 2.4 Modulator , Demodulator, and Channel simulator.

Section 4^ 15

Symbol Sync Signal

Butterworth
LPF -I-

Sample &
 Hold

ADC

^ ii
k I k

Sample &
Butterworth ^ Hold

LPF ADC Decision Rules

DSP Receiver Card

ü(t)

r(t)

qr)•Low Pass
Filter

Low Pass
Filter

cos(wt)

sin(wt)

RF Demodulator

Chapter 2

Note the symbol synchronization pulse is directly connected from the transmitter DSP

card to the receiver DSP card. In practice a local oscillator, closely tuned to the symbol

rate of the I and Q channels, would trigger the receiver. This procedure was investigated,

but it resulted in a synchronization problem. It was observed that approximately 150-200

symbols were correctly received, immediately followed by 50-100 incorrect symbols and

then the cycle begins again. The local oscillator drifted in and out of synchronization

with the I and Q channels' symbol rate. In order to obtain optimum synchronization,

a Phase Locked Loop (PLL) circuit was employed. The PLL worked and the results

were encouraging but required further research. Since the investigation of symbol

synchronization effects is beyond the scope of this thesis, we opted to use the transmitter

DSP card to trigger the receiver.

Section 2.5 DSP Implemented Baseband Differential Detector

The block diagram of the Differential Detector is shown in Figure 2.5 [6]. Once

Figure 2.5 DSP Baseband Differential Detector Block Diagram

the RF modulated carrier is converted into its I and Q baseband signals et(t) and 1/(t), it

is ready to be processed by the DSP Differential Detector. The DSP card drives each

baseband signal through a Butterworth filter, a Sample and Hold circuit, and an Analog

Section 4^ 16

Chapter 2

to Digital Converter (ADC). It is the digital output of the ADC that the TMS320C30

addresses in order to obtain a real floating point representation of the amplitudes Ilk and

14 of the received baseband signals. The DSP detector samples each symbol and uses

equations 2.6(a) and 2.6(b) in order to transform the DQPSK real data Ilk and 14, to

QPSK real data wk and zk [6].

^Wk = iik_iiik + 2,k_124 = cos (Ok
— Ok — i)
^

(2.6a)

^zk = iik—V3k — 14—iiik = sin (Ok — Ok—i) -^(2.6b)

This transformation of 7r/4—shift DQPSK data to QPSK data makes each symbol no

longer dependent on the previous symbol for decoding purposes. Note that wk and zk

are equivalent to sin (Ok — Ok—i) and cos (Ok — Ok_i), where Ok — Ok—i is the phase shift.

It follows that, since the phase shift can only be k7r/4, where k = ±1 or ±3, wk and

,\/zk will be approximately +—T. The real floating point values obtained for wk and zk

may be fed into a soft decision Viterbi decoder or can be hard decoded according to the

following decision rules:

SI = 1 if wk > 0^SI = 0 if wk < 0
(2.7)

SQ = 1 if zk > 0^SQ = 0 if zk < 0

where Si. and SQ are the least and most significant bit of the symbol respectively. Note

the prototype system utilizes the same carrier frequency for both the modulator and

demodulator. In practice a local oscillator tuned to the same frequency as the transmitter

is used to demodulate the received carrier. This local oscillator will have a constant phase

difference but it has been shown that the phase error is cancelled through differential

detection [6].

Section 5^ 17

Chapter 2

Section 2.6 Theoretical Analysis and Prototype Performance

The probability of a binary digit error for four-phase DPSK with Gray coding in an

AWGN channel is given by [9] as

^{

P4b(e) = e N°

—2 Eb

k=0(.\/ — 1)k Ik(
_Eb^1 T^'N,Eb

No^2A°^N^'^
(2.8)

where Ik is the kth order modified Bessel function of the first kind. The Bit Error Rate

(BER) curve based on Equation 2.8 is plotted in Figure 2.6.

Figure 2.6 also shows two experimentally measured curves of the prototype modula-

tion scheme in an Additive White Gaussian Noise (AWGN) channel. The curve labelled

as "Uncoded BER with Butterworth Filtering" is the actual performance of the prototype

implemented. There is a considerable degradation of 6 dB as compared to the theoretical

ideal curve. This degradation is primarily due to the substitution of the required Nyquist

filters with 4th order Butterworth filters. The required Nyquist filters were unavailable

and the Butterworth filters are contained on the DSP cards. The effect of the Butterworth

filter is to allow more noise to pass through to the receiver and cause 1ST in comparison

to the Nyquist case. As a result, the prototype will have worse performance since the

SNR after the receiver filter will be less than the Es/No which would exist when em-

ploying a square root Nyquist filter. Through the use of a computer simulation, which

used the Butterworth and Nyquist filters' bandwidths as parameters, it was found that the

difference between the Butterworth and Nyquist case is approximately 5 dB. The curve

labelled as "Uncoded BER with Nyquist correction" is a result of this correction factor.

Note that this is an approximation, the true Nyquist correction factor must also account

for the added ISI caused by the Butterworth filter. The prototype's corrected performance

Section 6^ 18

Chapter 2

is relatively close to the theoretically expected performance with a maximum degradation

of 1 dB. This deviation is attributed to the following factors.

• The non-ideal signal space at the demodulator output, due to the imperfect RF

components.

• The imperfect timing of the software controlled symbol synchronization signal.

• The ISI caused by the Butterworth filters.

For convenience, all subsequent performance curves of the implemented system will

be adjusted by this "Nyquist correction factor". This also holds for the coded case, since

Section 6^ 19

Chapter 2

the performance is plotted against the SNR level. The SNR level that would exist with

the Nyquist case is just a simple adjustment as above.

Figure 2.7 presents the measured BER performance of the modulation system in a

combined AWGN and Rayleigh fading environment with BDT equal to 0.0043, 0.0022,

and 0.00084. The BD T products correspond to a 7r/4 shift DQPSK system operating

with a carrier frequency of 900MHz, a baud rate of 19.2kBaudis, and vehicle velocities

of 100, 50, and 20km/hr respectively. Also shown in the graph, is the theoretical BER

results for a static multipath fading channel. Static refers to the channel having a constant

phase modulation (i.e., the receiver or vehicle is at rest). The experimental results are

for vehicles in motion and therefore, are expected to be worse than the theoretical curve

for a vehicle at rest. It is evident that the theoretical and experimental results are in

close agreement until a residual error floor is established by the experimental curves.

This error floor is a result of the random phase modulation caused by the doppler spread

obtained from the vehicle being in motion. An increase in the doppler spread results

in an increase in the level of the error floor. The experimental results are less than

an order of magnitude higher than the computer simulated results of Feher [10] and

Bouras [7]. This deviation is due to the imperfections in the modulation scheme and the

hardware Rayleigh simulator, as well as the Receiver DSP Card clipping the input voltage

waveforms of the I and Q channels to ±3 volts even though the amplitude periodically

fluctuates beyond these limits.

Section 6^ 20

Chapter 2

Section 2.7 Conclusions

The operation of the prototype 7r/4 shift DQPSK system was verified through ex-

perimental measurements. The BER performance data obtained for the AWGN channel

and the combined AWGN and Rayleigh Fading Channel were in very good agreement

with the expected theoretical results illustrating the proper operation of the prototype

modulation scheme.

Section 7^ 21

Chapter 3

Chapter 3 Application of Complementary
Punctured Convolutional Codes to
a SW Type II ARQ Scheme

Section 3.1 Introduction

Recently, Kallel has introduced a new class of punctured convolutional codes which

are complementary [11]. In this Chapter we will briefly review Complementary Punctured

Convolutional (CPC) Codes and their structure. Section 3 will present the generalized

CPC SW Type II Hybrid ARQ algorithm, and Section 4 will discuss its specific imple-

mentation using DSP cards housed in an IBM PC. The performance of the implemented

prototype will be compared to numerical and computer simulated models in Section 5.

Section 3.2 Review of Complementary Punctured
Convolutional Codes (CPC)

In general, a high rate (b/N) punctured convolutional code can be constructed from

a rate 1/N0 mother code by periodically and selectively deleting (bNo—N) code bits

according to a specific perforation pattern [12]. The function of deleting code bits is

usually performed by the use of a perforation matrix which consists of b columns and

No rows for a rate of b/N punctured code. Each column is associated with one encoding

cycle, and each row is associated with each coded bit stream from the No modulo-2

adders of the 1/N0 encoder. The perforation matrix consists of ones and zeros which

corresponds to transmitting and not transmitting code bits. An example, of a rate 3/4

punctured convolutional code of period 3 obtained from a rate 1/2 code is given by

_ [^oo^t 1 .
- 1 1^_I (3.1)

22

Chapter 3

An equivalent punctured code can be obtained by likewise cyclically shifting the

No rows. At the most, this will yield b distinct codes which have the same distance

properties and error performance capabilities [13]. As a result, P2, which is given by

[0 1 1
P2 = 1^0^1]' (3.2)

and Pi are equivalent perforation matrices.

3.2.1 CPC Codes

Allow Pi, i=1,2, p, to denote the perforation matrices of p equivalent CPC codes of

rate b/N obtained from a rate 1/N0 mother code, where p=r14=1• The result of perforation

matrix Pi is code CPCi. Define the matrix PTOTAL as

PTOTAL^Pz •^ (3.3)
i=1

The p equivalent codes CPC,, i=1,2, p, are said to be Complementary if every element

of PTOTAL is greater than or equal to one. Note that for convenience the p equivalent

codes were denoted as CPC, but if they do not met the above restriction associated with

PTOTAL, they should not be referred to as CPCi. The rate of PTOTAL is given by b/(pN)

which results in two possible cases. If N = N0, we have p = b and the rate of PTOTAL will

be b/(bN) = 1/N0, which is the original mother code. On the other hand, if N>N0 and p<b

matrices are chosen to satisfy Equation 3.3, then some elements of PTOTAL will be greater

than one and the combined rate is b/(pN). As an example, the two previous matrices Pi

and P2 of rate 3/4 are combined to form PTOTAL and yield a resulting code rate of 3/8.

PTOTAL = [2 (3.4)

Section 2^ 23

Chapter 3

Section 3.3 Generalized CPC SW Type ll Hybrid ARQ Algorithm

Allow Pi, i=1, 2, ..., p, to denote the perforation matrices of p CPC codes of rate

b/N obtained from a rate 1/N0 mother code, as discussed above. The result of perforation

matrix Pi is code CPC.

The scheme begins by appending ndp detection parity bits and m tail bits, corre-

sponding to the encoder's memory, to each k-bit data packet. The resulting sequence is

encoded by the rate 1/N0 mother code and then punctured and transmitted according to

the following algorithm [11].

1. Level 1: Puncture the sequence with 131, resulting in packet A of code CPC/ which

is transmitted. The receiver decodes packet A using a rate 1/N0 Viterbi decoder and

perforation matrix 13/. The error detection decoder checks the decoded sequence

consisting of data bits and parity bits. If the sequence is declared error free,

transmission of A is complete. Otherwise, the received sequence is stored for future

decoding attempts and the algorithm moves up to the next level.

2. Level i, I< i <p: Transmit packet A of code CPC, resulting from Pi. Initially, use

Viterbi decoding with perforation matrix Pi. If the decoded sequence is declared

error free, transmission of A is complete. Otherwise, reapply Viterbi decoding but

on the combination of all i sequences, previously stored up to this level, and using

perforation matrix PTOTAL=P 1+P 2+ . • .4-P i • If the resulting sequence is declared error

free, transmission of A is complete. Otherwise, the current sequence is stored and

the algorithm moves to the next level.

3. Level p: Send packet A of code CPC,. As above, initially decode using only the

received sequence. If unsuccessful, decode using all p sequences. If the resulting

Section 3^ 24

Chapter 3

sequence is still in error, discard the received sequence of code CPC] and the

algorithm moves to the next level.

4. Level (p+j), j=1,2,... : Send Packet A of code CPC,. Decode using the received

sequence in conjunction with perforation matrix Pi. If unsuccessful, decode using

all p sequences. In the event that decoding is still unsuccessful, discard received

sequence at level j+1 and the algorithm moves to the next level.

It should be pointed out, that the above encoding and transmitting strategy did not discuss

the implications of appending a flag and a header to packet A. In the event that a flag

is not found in the implemented prototype, the receiver will time out, and the algorithm

will reinitialize at the current level. In practice it is the transmitter which times out if

it receives no response from the receiver. If a header failure is detected, the current

packet is discarded and the algorithm also reinitializes at the current level. Since the

transmitter and receiver DSP cards are contained in the same PC they are initialized and

synchronized by the Host ARQ protocol.

Section 3.4 DSP Implementation of a CPC
SW Type ll ARQ Scheme

The Stop and Wait Type II Hybrid ARQ Protocol is written in Borland C++ and

resident on the host PC. The protocol behaves as discussed above with p=2 CPC codes

of rate 3/4 from a rate 1/2 mother code. The two perforation matrices used by the DSP

transmitter card for encoding the data packet are given by

[i 0 11^n^1 11
-r2 —1 1 0^1 0 1

(3.5)

Figure 3.1 shows the physical block diagram of the prototype communication system. The

protocol constructs the header and random data packet, places them in the Dual Access

Section 4^ 25

Chapter 3

Memory (DAM), and strobes the DSP transmitter card to send and the DSP receiver card

to listen. The DSP transmitter card retrieves the header and data packets and encodes

them according to the information placed in the header. Once the frame is constructed,

it is transmitted through the channel to the DSP receiver card, which is contained in

the same PC. The DSP receiver card processes the received frame and either places an

acknowledgment (ACK) or negative acknowledgment (NACK) in the DAM and strobes

the protocol. Once the protocol fetches the DSP receiver's reply, two events may occur.

If an ACK was sent, the protocol will construct a new header and a new random data

packet to place in the DAM. If a NACK was sent, the protocol will keep the data packet

but construct a new header which indicates the new Pi to be used for encoding the data

packet. Note that if a frame is lost, the DSP receiver is equipped with a time-out feature

which will result in a NACK.

Figure 3.1 Block Diagram of Prototype SW Type II ARQ Scheme.

It is during the construction of the header, that the protocol decides which perforation

matrix P1 or P2 to use for encoding the data packet based on the receiver's reply. Along

with the NACK, the receiver sends the motive which may be either a Header CRC Failure

or a Data CRC Failure. In the event of a header failure or lost frame (time-out), the

protocol will not switch perforation matrices. In the event of a data failure, the protocol

Section 4^ 26

Chapter 3

alternates between P1 or P2. The result of this algorithm is to maximize throughput.

This algorithm ensures that if a corrupted data sequence of code CPC1 is received, the

next data sequence received can only be encoded by P2 and be of code CPC2. If the

data sequence of code CPC2 is unsuccessfully decoded, it may be combined with the

data sequence of code CPC1 for subsequent decoding. The modulation scheme used by

the SW Type II ARQ Protocol for transmission, is the 7r/4 Shift DQPSK discussed in

detail in Chapter 2.

The following assumptions or simplifications are incorporated in the implemented

prototype which consists of the DSP transmitter and receiver cards in the same Host PC

under the control of the SW ARQ protocol.

• As a consequence of the transmitter and receiver DSP cards being in the same Host

PC, they are initialized and synchronized by the ARQ Protocol running on the Host

PC. In practice, there is an initialization and synchronization process to be executed

by the independent transmitter and receiver.

• In practice a noisy return channel is used to send the receiver's reply. In the prototype,

the receiver's reply is passed internally through the PC via the DAM. This is a noise

free return channel.

• As a result of the ARQ protocol controlling both the transmitter and receiver, it is the

receiver which times out if a flag is not found. Again, in practice it is the transmitter

that times out if it does not get a response from the receiver.

• Symbol Synchronization is accomplished by hard wiring the transmitter and receiver.

The actual symbol timing signal is software generated and is not ideal. A practical

system would have the receiver utilize a Phase Locked Loop or some other synchro-

Section 4^ 27

635 DATA BITS
^

32 BITS 5 BITSAA

Chapter 3

nization circuit to obtain symbol synchronization with no link to the transmitter.

These simplifications do not compromise the accuracy of the experimental results. The

prototype is used to evaluate various FEC strategies which are unaffected by the above

simplifications.

3.4.1 Frame Structure

The detailed structure of the frame used for transmission in the prototype system

is illustrated in Figure 3.2. Excluding the preamble and flag, the maximum length

the encoded frame may attain is 1024 bits. The frame begins with an 8 bit Symbol

Sync Preamble. Since a Stop and Wait scheme is implemented, the channel will

always be idle before a transmission and the preamble allows the receiver to realize

symbol synchronization and stabilize before the remaining portion of the frame arrives.

Immediately following the preamble is the Flag or Frame Sync, whose purpose is to

present the receiver with a unique bit pattern so that the receiver may synchronize itself

with the data stream's frame structure. The receiver is continuously hunting for the flag

pattern and the actual procedure and choice of flag is investigated in the next section.

8 BITS^r4 BITS 128 ENCODED BITS
I 4

896 ENCODED BITS
4^ •

PREAMBLE FLAG HEADER CRC 16 TAIL
^

DATA BITS
^

FCS32 TAIL

2941B3

ADDRESS

•^
16 BITS

LENGTH Pi RESERVED^FCS16 TAIL

4 P4

6 BITS^10 BITS

• •
2 BITS

• • •^• •
9 BITS^16 BITS 5 BITS

Figure 3.2 Detailed Structure of Frame.

Section 4^ 28

Chapter 3

Control information is contained in the 64 bit header, which includes a 16 bit Frame

Check Sequence (FCS) and a 5 bit tail for decoding. The header's address field is used

to identify the station that is to receive the frame. The next two fields, Ns and l■Ir are

sequence numbers used to number the frames. The sequence numbers are not required for

the operation of the prototype but has been included for future upgrading to a Selective

Repeat scheme. The next field contains the length of the data packet following the

header. The following field consists of two bits which indicate the perforation matrix

Pi used in the puncturing operation during the encoding of the data. Reserved is the

next field which consists of 9 bits and is not used by the current version of the protocol.

The remaining 16 bits represent the FCS which is a result of the generator polynomial

CRC—CITT defined as G16 (x) = x16 + x12 + x5 + 1.

The information or data bits are contained in the data packet of the frame. This

consists of a maximum of 896 CPC encoded bits. As a result of using a perforation

matrix which yields a rate of 3/4, the maximum number of information bits which

the data packet can contain is (896) — 32 — 5 = 635 bits. The length of the entire

frame consisting of preamble, flag, header, and data packet is 1056 bits. The generator

polynomial used for the FCS is the CRC32 given as G32 (X) = x32 + x26 + x23 + x22 +

x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + xl + 1.

3.4.2 Frame Synchronization

The 24 bit flag, denoted in hexadecimal as 2941B3, is used by the receiver to

synchronize itself with the data stream's frame structure. A good flag sequence has

the property that the absolute value of its correlation sidelobes is small. A correlation

sidelobe is the value obtained by correlating a flag sequence with a time-shifted version

Section 4^ 29

Chapter 3

of itself. Therefore, a correlation sidelobe value, Ck, for a k-symbol shift of a N bit flag

sequence ffjj, is given by

N—k
Ck =
^FjFj+k ,^ (3.6)

3=

where Fi (1 i 1\1) is an individual bit taking values of ±1, and the adjacent bits (associated

with index values i>N) are assumed to be 0 [14]. The actual flag was found through

the use of computer simulations.

Figure 3.3 shows the correlation sidelobes of the flag used in the prototype. The

sidelobes are very low when compared to the main lobe of Co, which yields a value of

24. This sidelobe profile ensures a very high probability that the receiver will find the

exact starting point of the flag rather than a bit shifted version of it.

Correlation Sidelobes of Flag 2941B3 hex

0
-1

30

25

20

15

10

o
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ck

Figure 3.3 Correlation Sidelobes of Flag used in Prototype.

The following procedure is followed to allow the receiver to locate the flag. The

receiver correlates the known flag pattern to the incoming data. If the incoming data does

not contain a flag, the correlation value will be low. On the other hand, when a flag is

Section 4^ 30

Chapter 3

encountered the correlation value will be very high. The correlation value, C, for a 24

bit flag pattern {TV and a 24 bit data sequence {Di] is given by

2 4
C =^F.)^,^ (3.7)

=i

where Fi and Di take on values of +1 or —1 representing bits 1 and 0 respectively. The

maximum value of C is 24 which indicates a flag with 0 bit errors has been located. The

prototype compares C to a user set threshold value which limits the number of bit errors

which will be accepted in the flag and still ensure frame synchronization (i.e., a threshold

value of 16 indicates that 20 bits of the data sequence match the flag pattern).

The optimum threshold value was found through experimentation. For each SNR

tested, a 1000 uncoded frames were sent to the receiver whose correlation threshold

value was altered over the range of 10 to 24. Referring to Figure 3.3, it is seen that

the highest sidelobe has a value of 5. A starting point for the threshold value is to take

twice the highest sidelobe value which is 10. Figure 3.4(a) illustrates that the probability

of a bit error is relatively equal for threshold values of 24 to 10. However, lowering

the threshold value below 10 results in the prototype operating very slowly because it

must process a large number of false flags. The lower the threshold value, the larger the

amount of false flags that the prototype must process. Figure 3.4(b) shows the percentage

of flags successfully found given the different threshold values. It is seen that the lower

the threshold value, the greater the success of finding the flags. Another observation is

that decreasing the threshold value below 12 has a marginal affect on the flag success

rate. A balance must be found in which a threshold value that gives a good flag success

rate does not burden the prototype with false flags. The two curves representing threshold

values of 10 and 12 give the best success rates and are relatively equal. It is obvious from

Section 4^ 31

142^4^6^8^10^12

12 14
10

2^4^6^8^10
Eb/1\10 1oll3

Uncoded Frame using threshold = 10 ^•^
Uncoded Frame using threshold = 12 3̂^
Uncoded Frame using threshold = 14 ----In---
Uncoded Frame using threshold = 16^a
Uncoded Frame using threshold = 20 ^
Uncoded Frame using threshold = 24 ^

Lb/Ne
Uncoded Frame using threshold = 10 ^•^
Uncoded Frame using threshold = 12 ^
Uncoded Frame using threshold = 14 ---11^
Uncoded Frame using threshold = 16
Uncoded Frame using threshold = 20
Uncoded Frame using threshold — 24

Figure 3.4 (a) and (b) Effects of Changing Threshold value used for Hag Correlation

Section 4^ 32

100

10

-2
10

-3
10

-4
10

10

-6
10

-7
10

-8

•̂

0.9

0.8

r,^0.7

X,^0.6

§
0.5

±1^0.2

0.1

Chapter 3

By comparing the correlation value, C, to a threshold value, a certain number of

false flags will be located. The prototype receiver implemented is "smart" enough to

eliminate the majority of false flags. When a flag is located, the header is immediately

decoded and two events may occur.

1. If the header fails the CRC check, the next subsequent flag is located and the new

header is decoded. If the CRC check fails again, the process repeats itself until the

header CRC is passed.

2. If the header passes the CRC check, the length of the frame is obtained and all the

false flag occurrences falling within the range of the frame are ignored.

By using this simple procedure a very large majority of the false flags are ignored.

3.4.3 Encoder/Transmitter DSP Card

The Encoder/Transmitter DSP Card contains the following C software modules:

• CRC Encoder is responsible for calculating the Frame Check Sequence (FCS) bits

and is able to use generator polynomials up to 32 bits.

• Rate 1/2 Convolutional Encoder outputs two data streams representing the two

modulo-2 adders of the encoder. A simple module named Combine is required

to interleave the two outputs of the adders. The two generator polynomials are

Gi (x) = x4 + X3 + 1 and G2 (X) = X4 + X2 + X1 + 1 and are user configurable.

• Puncture Module individually punctures the two data stream outputs of the rate 1/2

convolutional encoder. The module punctures according to the perforation matrix Pi

which is chosen by the host SW ARQ protocol. Combine is required in order to

interleave the two punctured outputs of the encoder adders.

Section 4^ 33

Chapter 3

• Block Interleaver accepts the coded symbols in 128, 256, or 512 bit blocks. The

interleaver may be visualized as a rectangular array of I rows and n columns. The

encoded symbols are read into the array by rows and read out by columns. The

vertical dimension of the array, I, is called the interleaving degree and is user

configurable by selecting values of 4, 8, and 16. The prototypes tested used an

interleaving degree of 16.

• Queueing Module manages an 8 slot queue and is responsible for beginning and

terminating the operations of the 7r/4 shift DQPSK baseband generator.

It is the main program written in DSP Assembly language which utilizes the above

software modules and provides the encoding and transmitting services required by the

host protocol. Figure 3.5 is a detailed description of the self explanatory procedure

followed by the main program to encode and construct a frame. The two final operations

not shown would be to interleave the frame and place it in the queue for transmission.

The header and data are fetched from the Dual Access Memory.

Section 4^ 34

Chapter 3

Section 4^ 35

Chapter 3

3.4.4 Receiver/Decoder DSP Card

The Receiver/Decoder DSP card contains the following DSP Assembly software

modules:

• Flag Correlator is used to locate the occurrence of a flag in a data stream according

to a user set threshold value. Section 3.4.2 gives a detailed explanation of this

software module.

• Transform is responsible for transforming the soft 7r/4 shift DQPSK data to soft

QPSK data and as a result eliminate the dependency between neighboring symbols.

Section 2.5 discusses this transformation and its results.

• Soft Data Deinterleaver is required to deinterleave the soft QPSK data. This module

operates on soft data as compared to its inverse module Block Interleaver which

operates on hard data.

• CRC Encoder is the same module used by the transmitter DSP card. The difference

is that the calculated Frame Check Sequence (FCS) is compared to the received FCS

in the decoding mode.

• Data Sequence Combiner is responsible for combining soft data sequences of

different codes, such as CPC1 or CPC2, to form a more powerful code for error

correction purposes.

• Rate 1/2 Soft Decision Viterbi Decoder is utilized to decode the header and data

according to the perforation matrix used in the encoding process.

• In the CPC SW Type II ARQ scheme with code combining, an additional module

called Code Combining, which optimally combines data sequences of equal codes

such as CPC], is required.

Section 4^ 36

Chapter 3

Figure 3.6 is a detailed flow chart of the Receiver/Decoder DSP algorithm. The algorithm

is a direct result of the general scheme presented in Section 3.3 with p=2 CPC codes of

CPC1 and CPC2. As shown in Figure 3.6, the replacement of a module is necessary in

order to incorporate code combining. Rather than simply save the most current corrupted

data sequence of code CPC1 or CPC2, the module combines the current sequence with

all previous corrupted sequences of the same code for further subsequent decoding.

Section 4^ 37

START•
FIND FLAG

OCCURENCE HAVE
BOTH

CPC I &
CPC2?

GET CODED
DATA NO

SEND NACK

CHOSE PUNCTURE
MATRIX
PI or P2 YES

TRANSFORM
DQPSK TO QPSK

SOFT DATA

COMBINE CPC I
& CPC2

DEINTERLEAVE
REAL DATA

RATE 1/2
SOFT DECISION

VITERBI

CRC DECODER

YES
FCS
OK? SEND ACK

SAVE COPY OF
CURRENT

CODED DATA
CPC I or CPC2

YES
SEND NACK

NO

SEND NACK

THIS MODULE IS SUBSTITUTED FOR THE
ONE ABOVE IT IF CODE COMBINING IS REQUESTED.

COMBINE CURRENT
COPY OF CODED

DATA CPC1 or CPC2
WITH EXISTING

COPIES

GET CODED
HEADER

RATE 1/2
SOFT DECISION

VITERBI

CRC DECODER

Chapter 3

Viterbi Decoder A 16 state rate 1/2 soft decision maximum likelihood Viterbi Decoder

is the heart of the receiver. It is entirely written in DSP Assembly Language for speed and

efficiency. The soft decision decoding scheme makes use of past information bit history

and a metric function to decode the incoming data. It follows, that the performance of the

Viterbi decoder is primarily influenced by the choice of path history length and the metric

function. It is common practice to select a path history length equivalent to four or five

times the constraint length of the encoder which results in negligible degradation from the

optimum decoder performance [14]. In the case of the prototype, the constraint length is

5 and the path history length utilized is 32 information bits. The Viterbi decoder operates

on soft QPSK data which is the product of the transformation of soft 7r/4 shift DQPSK

data. The metric chosen is the Euclidean distance based on the signal constellation of

the QPSK signals. The Euclidean distance is defined as

D = \ I(X c — X11)2 + (Yc — YR)2 ,^ (3.8)

where Xc and Yc are the coordinates of the signal on the constellation for QPSK and

XR and YR are the coordinates of the received data. Calculating the metric as defined in

equation 3.8 is a very tedious and time consuming operation. The square root operation

is not performed, and although it is not a linear function, distance values without the

square root operation work well because the relationship between x and VT(is one-to-one

and monotonic. To further simplify 3.8, one may expand the brackets and discard the

squared terms to yield

D = XcXR d-YcYR•^ (3.9)

There is a considerable amount of time saved in calculating 3.9 as opposed to 3.8.

Section 4^ 39

Chapter 3

Once the Viterbi decoder is initialized, it will keep track of 16 surviving paths through

the trellis. As depicted in Figure 3.7, at each new decoding instant, each survivor leads

to two new states or paths, thereby yielding a total of 32 new paths. The decoder

calculates the branch metrics ,3 and y, related to the two new states, and then adds them

to the accumulated metric a resulting in new accumulated metrics of cH-13 and a+-y. The

smallest new accumulated metric will be chosen as the new surviving path.

a

PREVIOUS^ CURRENT
STATE^ STATES

^4,41•10 so^a + 13

BRANCH
METRICS

Si^+ y

PREVIOUS^ NEW
ACCUMULATED^ ACCUMULATED

METRIC^ METRICS

Figure 3.7 Choosing a Path Survivor.

In practice, it is not possible to continue to accumulate the metric distances without

encountering an overflow problem. Therefore, a weighted accumulation method is used

to determine the accumulated metric and is given as

Dnew = 13Dold + (1 — MDbranch,
^ (3.10)

where 0<</3<1 denotes the weighting factor, Dbranch is the branch metric, and D„,„ and

Doid are the new and old accumulated distances respectively. This ensures that the new

accumulated metric is bound. The value of /3 is a performance parameter which is chosen

to be 0.98 in the implemented Viterbi decoder.

Section 4^ 40

Chapter 3

Numerical Analysis Given the free distance df„, and the distance spectra ad and cd,

where ad is the number of incorrect paths of Hamming weight d that diverge from the

correct path and remerge with it sometime later, and cd denotes the total number of bit

errors in all the paths having Hamming weight d, the probability of a bit error for Viterbi

decoding is upper bounded [15] by

co
P(B) <^CdPd •
^ (3.11)

d=df,„

Pd is the probability that a wrong path at distance d is selected and depends only on the

channel and modulation scheme used [9].

For an AWGN channel and R-14 shift DQPSK, Pd may be obtained as follows. The

probability of a binary digit error for four-phase signalling over L statistically independent

AWGN channels is given by [16] as

E (\/-1)ki-k(\/—yrbL)^12./0(V-2_,\ErobL)

k=0 1

L

P4b(C)^C (3.12)

L-1
71.1CnM +^(.\/^(,\TEabL)

where CT, = 22L-1^

(2L — 11^)
k^} •

k=0

Pd is the probability that a wrong path at distance d is selected and may be obtained

from Equation 3.12 by substituting d for L. Using 3.11 and 3.12 with the substitution, an

upper bound for the performance of the rate 1/2 Viterbi decoder was calculated. Figure

Section 4^ 41

Chapter 3

3.8 depicts the resulting upper bound using a rate 1/2 code with weight spectrum given

by Table 3.

Rate
Generator

dfiee

(adfree+j 1 j=0, 1, ...4)

{Cdftee+j, j=0,^1, ...41
Polynomials

(2, 3, 4, 16, 37)
1/2 23, 35 7

{4, 12, 20, 72, 2251

Table 3 Distance Spectrum of Code with Rate 1/2.

Computer Simulation A C computer simulation was used to verify the prototype

Viterbi decoder's performance. The computer model simulates the prototype which uses

a 7/4 shift DQPSK modulation system with the receiver transforming the soft DQPSK

data to soft QPSK data for decoding purposes. Figure 3.8 shows the BER curve resulting

from the computer simulation. As a result of transmitting 106 bits for each SNR level

tested, the BER curve is accurate for points above 10-5. The simulation BER curve is

below the upper bound curve for all accurate SNR levels tested.

Viterbi Decoder Performance Figure 3.8 illustrates the probability of a bit error for the

Viterbi decoder implemented. For each SNR level tested, the Viterbi decoder processed

107 bits. As is evident, the prototype curve is slightly worse than the simulation curve

but close to the upper bound curve. This is expected since the simulation cannot take into

account implementation losses. The small deviation between the simulated and prototype

curves is due to the imperfect modulation system and synchronization timing. The rate

Section 4^ 42

Chapter 3

Pi/4 QPSK Modulation Scheme
•

\mi

1 0°

1 0

-2
1 0

-3
10

-4
1 0

-5
10

-6
10

-7
10

-8
10

0
^

2^4^6^8
^

10
^

12
^

14
Eb/No [dB]

^Computer Simulation for Rate 1/2 Viterbi Decoding^•

^

Prototype BER for Rate 1/2 Viterbi Decoding •̂

^

Numencal Analysis for Rate 1/2 Viterbi BER ^•

^

Uncoded theoretical BER Curve ^

Figure 3.8 Rate 1/2 Soft Decision Viterbi Decoder Performance.

1/2 soft decision Viterbi decoder implemented operates as expected and its performance

is verified by the computer simulation and upper bound curves.

Section 3.5 Prototype Performance

In this section the throughput performance of the prototype CPC SW Type II ARQ

system in AWGN is compared to the ideal numerical results. The prototype's throughput

performance in a Rayleigh fading channel is also presented and discussed.

Section 5^ 43

Chapter 3

3.5.1 Throughput Analysis

The throughput 7/ is defined as the average number of accepted information bits

per transmitted channel symbol and has a maximum possible value of 2 for DQPSK

modulation. In general, 71 may be defined as RIN, where R is the code rate and N

is the average number of packets transmitted per correctly decoded packet. If the error

detection parity bits along with the overhead of the header and flag are taken into account,

the resulting throughput is

R
71 =^LED "JOH
^ (3.13)

where LED
k + ndp +

(k ndp m)
and Lau =^

*(k ndp^h +f

The factor LED is the loss in throughput due to the addition of parity bits ndp and the tail

of m known bits. The factor Loll is the loss in throughput as a result of the overhead

incurred by the frame for appending a rate 1/2 header, h, and a flag, f, to each block

of k information bits. The average number of packets transmitted per correctly decoded

packet, N, for a CPC SW Type II ARQ scheme is given in [11] as
p-1

1 + EPr{Dd(z)})1_ Pr{Dd(P)}
(3.14)

where Dd(j) is the event {decoded sequence obtained by combining j equivalent codes,

is detected in error}. As in [11], Pr{Dd(j)}, assuming the undetected error probability

is negligeable, is bounded as

Pr{Dd(j)} <1— (1— P(E))1 ,^ (3.15)

Section 5^ 44

Chapter 3

where P(E) is the error event probability of Viterbi decoding with a code obtained by

combining j equivalent CPC codes (i.e., CPC1+CPC2+...+CPC1) and where 1 is the number

of trellis level (1,-(k+ndp)1b).

P(E) is bounded as [15],

00

P(E) <
^

(3.16)
d=d3free

where Pd is the probability that a wrong path at distance d is selected, and where c/frel and

al are the free distance and weight spectra of the code obtained by combining j equivalent

CPC codes. Pd is dependent on the channel and modulation scheme employed [9].

Numerical Results Table 4 contains the distance spectra for the rate 3/4 punctured

convolutional code used in the CPC SW Type II Scheme. Pd is given in Equation 3.12,

Code Perforation Matrix dfree (ad+j, j=0,1..5)

CPC1
[1^0^1 i 3 (1, 2, 23, 124, 576, 2852)

110 J

cpc2 [1^1^0-1 3 (1, 2, 23, 124, 576, 2852)

011]

CPC1 + CPC2
[2^1^1 1 8 (1, 4, 3,^11, 18, 38)

121 i

Table 4 Distance Spectra of Rate 3/4 Punctured Convolutional Code of Memory m=4.

where d is substituted for L. Using the values in Table 4 and Equations 3.13, 3.14, 3.15,

Section 5
^

45

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

•̂ U

Chapter 3

and 3.16 a lower bound on the throughput for an AWGN channel with 7r/4 shift DQPSK

modulation can be calculated. The resulting lower bound is plotted in Figure 3.9.

3.5.2 Experimental Throughput

The rate 3/4 CPC SW Type II ARQ scheme is tested over several SNR levels

by executing the scheme until 1000 frames are successfully delivered. The resulting

throughput is plotted in Figure 3.9 along with the previously calculated lower bound.

Note that the throughput, which is the average number of information bits accepted per

symbol, can be greater than one. This is a consequence of using 7r/4 shift DQPSK which

has a maximum throughput of 2 information bits per accepted symbol. For medium to

Rate 3/4 CPC SW Type II ARQ Scheme in AWGN

1

2^4^6^8
^

10
Es/No [dB]

Ideal Lower Bound Throughput
Experimental Prototype Throughput

Adjusted Throughput for Header & Frame Loss

Figure 3.9 Numerical and Experimental Throughputs.

12
^

14

•

Section 5^ 46

Chapter 3

high SNR levels, the experimental curve and the lower bound are in good agreement. This

is expected, since the Viterbi BER curve plotted against its upper bound is also in good

agreement. At low SNR levels, the prototype throughput has a maximum degradation

of I dB. The calculated lower bound does not take into account header failures or lost

frames. Whereas when the prototype encounters a lost frame or header failure, the entire

data packet is discarded and taken into consideration for the throughput calculation. If

header failures and lost frames are accounted for, the throughput of the system in question

will suffer a decrease. To further prove this point, Figure 3.9 also plots a curve labelled

as "Adjusted Throughput for Header & Frame Loss". This curve is obtained by ignoring

lost and header damaged frames in the prototype system. Recall, that the receiver is

capable of transmitting a NACK which indicates whether the frame had a header failure

or data failure. The transmitter keeps track of the type of NACKs, as well as the lost

frames (time-outs). It is this information which is used to adjust the throughput for header

failure and frame loss. It is clear that this adjusted curve is in good agreement with the

lower bound with slight degradation at low SNR levels resulting from implementation

losses which are critical at lower SNR levels. The scheme is able to correct a certain

number of errors. At medium to high SNR levels, the scheme easily corrects the channel

errors as well as the errors associated with the implementation losses. At low SNR levels,

the number of channel errors in addition to the implementation loss errors places a load

on the scheme and results in a negligeable degradation of 0.5dB (maximum) from the

lower bound curve. The implementation losses are factors such as:

• imperfect symbol synchronization,

• non-ideal modulator and demodulator, and

Section 5^ 47

Chapter 3

• 1ST from the Butterworth filtering.

It is clearly evident that since the prototype rate 3/4 CPC SW Type II ARQ scheme

is in very good agreement with the lower bound, it is correctly operating and behaves

as expected.

3.5.3 Rayleigh Fading Channel

The throughput of the prototype rate 3/4 scheme was also investigated in the combined

AWGN and Rayleigh fading channel environment. The measurements were obtained for

three BDT products of 0.0043, 0.0022, and 0.00084. These BDT products correspond to

a 7r/4 shift DQPSK system operating with a carrier frequency of 900MHz, a baud rate

of 19.2kHz, and vehicle velocities of 100, 50, and 20km/hr respectively. The throughput

curves are plotted in Figure 3.10.

For comparison purposes, a lower bound on the throughput for a combined AWGN

and a static multipath fading channel is also plotted. The lower bound is calculated in the

same fashion as before, by using Equations 3.13, 3.14, 3.15, and 3.16. The probability

of a binary digit error for four-phase signalling over L statistically independent AWGN

with static multipath fading is given by [16] as

L-1, (2k) (1 — /12)
k
]

i \^1^it
k^4 — 2,u2P4blel — -- [1^V2 — it2 k=0

'Yc where ft = 1 +

and -T, is the average received SNR.

Section 5^ 48

(3.20)

Chapter 3

1.4

1.3

1.2

1.1

0
5^

.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0

••
•

•

•

5^10^15^20^25^30
Es/No [dB]

Experimental Throughput for BT=0.00084
Experimental Throughput for BT=0.0022
Experimental Throughput for BT=0.0043

Static Fading Lower Bound

Figure 3.10 Throughput of Prototype in a Rayleigh Fading Channel.

As before, Pd is obtained from equating 3.20 by substituting d for L. The resulting

lower bound is for a static multipath fading channel. The term static refers to the phase

modulation of the multipath channel being constant (i.e., the receiver or vehicle being

at rest). It is obvious that the three throughput curves obtained for the various vehicle

speeds should be worse than the lower bound since the vehicle is not at rest. When

the vehicle is in movement, the Doppler spread causes random phase modulations which

in turn is responsible for the existence of residual error floors in the bit error rate as

discussed in Section 2.6. In effect, the lower bound may actually be viewed as an upper

bound when it is being compared to the prototype throughput at various vehicle speeds.

Rate 3/4 CPC SW Type II ARQ Scheme in Rayleigh Fading

•••

Section 5^ 49

Chapter 3

Section 3.6 CPC SW Type II ARO Scheme with Code Combining

The upgrading of the CPC SW Type II ARQ scheme to accommodate code combining

is very simple. Only the receiver must be modified by the replacement of ten lines of

DSP Assembly Language code. The new code or module ensures that the most currently

received corrupted data sequence of code CPC1 or CPC2 will be combined with all

previous corrupted copies of the same code (if the copies exist). The non—code combining

scheme simply discards the previous copy of the corrupted data sequence once a new

data sequence is received. It has been shown that code combining will increase the

throughput of the scheme at low SNR levels [3].

Figure 3.11 illustrates the experimental results for the rate 3/4 CPC SW Type II ARQ

scheme with and without code combining. As expected, the code combining case resulted

in an increase in throughput to a maximum of 1dB. If the code combining curve is adjusted

for header failure and lost frames, it is expected to perform better than the ideal Type II

lower bound curve. Recall, that the Type II lower bound curve does not take into account

lost or header damaged frames. Figure 3.11 also displays the "Adjusted Throughput

for Header & Frame Loss with Code Combining", which as expected has a substantial

performance gain in throughput in comparison to the ideal Type II lower bound. To

further verify the code combining scheme, measurements counting the number of frames

transmitted to successfully deliver each of the 1000 frames at a certain SNR level were

accumulated. Figures 3.12(a) and 3.12(b) are histograms representing the accumulated

data for the non—code combining and code combining cases at a SNR level of 3.32dB. In

comparing the two histograms, it is evident that the code combining case requires fewer

transmitted frames to successfully deliver a frame since it is constantly combining data

Section 6^ 50

Chapter 3

sequences. This results in the number of transmitted frames being concentrated toward

the lower end of the histogram, as opposed to the non-code combining case where the

number of transmitted frames are spread out. These experimental results verify the correct

operation of the code combining scheme.

Kate 3/4 uru s w 1 ype 11 IkKl,2 Jcneme in HWU1N

AS A • • • I/iii(5,, Ai.-

1
//

1
1-.-•• •i

/

/^2^4^6^8^10^12^1
Es/No [dB]

Ideal Lower Bound Throughput
Experimental Prototype Throughput

Adjusted Throughput for Header & Frame Loss
Experimental Prototype throughput with Code Combining

Adjusted Throughput for Header & Frame Loss with Code Combining

• • TT 7.ell•

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

•
•

Figure 3.11 Throughput of CPC SW Type II ARQ Scheme with and without Code Combining

Section 6^ 51

500 Type II ARQ scheme using CPC Codes without Combining

400

300

(§)
200

100

o
0^2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A. Z. A .4! A
Number of Successive Transmissions Required to Deliver a Frame

SNR = 3.32dB with No Code Combining

Chapter 3

500

400

Type II ARQ scheme using CPC Codes and Combining

300

200

100

o
0^2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of Successive Transmissions Required to Deliver a Frame

SNR = 3.32dB with Code Combining

Figure 3.12 Histograms for Rate 3/4 CPC SW Type II ARQ with and without Code Combining

Section 6^ 52

Chapter 3

Section 3.7 Conclusions

A prototype rate 3/4 CPC SW Type II ARQ scheme of memory m=4 was imple-

mented utilizing a host IBM PC, two TMS320C30 DSP cards, an existing RF modula-

tor/demodulator, and an existing channel simulator. The rate 1/2 soft decision Viterbi

Decoder was thoroughly tested in section 1 and behaved as expected according to both

computer simulations and numerical results. The throughput of the prototype was exper-

imentally measured for both an AWGN channel and a combined AWGN and Rayleigh

Fading channel. The experimental results for the AWGN channel were in very good

agreement with the numerical results. In the case of the combined AWGN and Rayleigh

channel, the throughput curves were referenced to numerical results obtained for a static

multipath fading channel. The experimental curves behaved as expected indicating proper

operation of the prototype.

When code combining was added to the prototype, the throughput at lower SNR

levels increased. There is no extra cost associated with upgrading the prototype to

a code combining scheme. It only requires the replacement of ten lines of DSP

Assembly Language code. The code combining prototype was also verified for proper

operation by comparing the histograms at certain SNR levels which counted the number

of transmissions required to successfully deliver a frame.

The comparison of the experimental data of the prototype's performance to the

numerical results clearly validate the proper and correct operation of the implemented

scheme.

Section 7^ 53

Chapter 4

Chapter 4 An Adaptive SW Type II ARQ Scheme

Section 4.1 Introduction

The previous chapter illustrated how the CPC SW Type II ARQ scheme utilizing

code combining achieved an increase in throughput at low SNR levels as compared to

the same scheme without code combing. This chapter will focus on increasing throughput

at all SNR levels by employing an adaptive coding rate to the CPC SW Type II ARQ

scheme. The adaptive scheme uses Channel State Information (CSI) to decide which

coding rate is the most appropriate to encode the data packet. Section 2 will present the

algorithm used to adapt the coding rate to the AWGN or combined AWGN and Rayleigh

channel. Section 3 will discuss the necessary software modifications to the existing DSP

Assembly code and host IBM Protocol software. Section 4 will present the performance

of the adaptive scheme for both the AWGN and combined AWGN and Rayleigh channel.

Finally, all three implemented variations of the CPC SW Type II ARQ scheme will be

compared and discussed.

Section 4.2 The Adaptive Coding Rate Algorithm

A very simple and effective algorithm is used to select the current coding rate of the

adaptive prototype. The algorithm calculates the throughput of the most recent N frames

transmitted. The throughput is a measure of the channel state condition for the time

interval required to transmit N frames. Based on this throughput, the algorithm decides

which of the available coding rates to use from a user defined table. A user defined

54

Chapter 4

threshold diagram which utilizes three coding rates is illustrated in Figure 4.1 It follows

THRESHOLD
VALUE 2

THRESHOLD
VALUE 1

Figure 4.1 Threshold Regions Defining Coding Rates.

that the performance of the adaptive scheme is influenced by the selection of the value N

and the threshold values. The smaller the value of N, the quicker the scheme adapts to

the changing channel conditions. The threshold values are obtained from the throughput

curves of the individual rates. In essence, one would superimpose the throughput curves

and select threshold values to maximize the overall throughput of the scheme over all

SNR values (i.e., select threshold values that will yield an overall maximum throughput

equivalent to the maximum envelope of the individual throughputs).

The generalized adaptive coding rate algorithm is best described by the following

procedure.

1. Level 0: Select the most powerful coding rate (Rate 1) and transmit using this rate

for N frames. The algorithm moves up to the next level.

2. Level 1: Calculate the throughput of the last N frames transmitted. If the throughput

is less than THRESHOLD VALUE 1, continue using Rate 1 to send the N frames

and the algorithm remains at this level. Otherwise, if the throughput is greater than

THRESHOLD VALUE 1, select Rate 2 to transmit the N frames and the algorithm

moves up to the next level.

Section 2^ 55

Chapter 4

3. Level i, i>1: Calculate the throughput for the most recent N frames transmitted.

If the throughput is less than THRESHOLD VALUE i-1 select Rate i-/, transmit N

frames, and move down to the next level. If the throughput is between THRESHOLD

VALUE i-1 and THRESHOLD VALUE i, continue using Rate i, transmit N frames,

and remain at this level. If the throughput is greater than THRESHOLD VALUE i,

select Rate i+1, transmit N frames, and move up to the next level.

In the prototype, code rate synchronization is obtained by using two bits in the rate 1/2

header to indicate the coding rate of the data packet following.

Section 4.3 DSP Implementation of the Adaptive Scheme

The adaptive coding algorithm is contained in the SW ARQ protocol running on the

host PC. The transmitter and receiver DSP boards require minor software modifications

to be able to encode and decode any of the supported coding rates. The other necessary

modification is to use 2 of the 9 bits, labelled as RESERVED in the header, to indicate

which rate is currently being used to encode the data packet.

In the adaptive prototype scheme, N is chosen to be 5 and the coding rates used

are 1/2, 3/4, and 1. The adaptive SW ARQ protocol can also be forced to transmit at

one of the three code rates. Figure 4.2 depicts the experimental throughputs obtained

for the three individual coding rates. Referencing Figure 4.2, THRESHOLD VALUE 1 is

selected to be 0.77 and THRESHOLD VALUE 2 is 1.2. From the above algorithm, the

rates of 1/2, 3/4, and 1 correspond to the code Rates of 1, 2, and 3 respectively. Notice

by selecting THRESHOLD VALUE 2 to be 1.2, there will be a region of the overall

throughput which will be less than the maximum envelope of any of the three individual

throughputs. Maximizing the throughput over all SNR levels is not always possible. The

Section 2^ 56

Chapter 4

CPC SW Type II ARQ Scheme in AWGN

.^ • I

*

•
,

+/

A— 1^41 a

/
/

/
jr

/

/
/

• • • •

/
/,./•

/

i
/

/
1

i

2^4^6^8
^

10
^

12
^

14
Es/No [dB]

^Experimental Throughput of Rate 1/2 Scheme ^
Exioerimental Throughput of Rate 3/4 Scheme— A-

^Experimental Throughput of Rate 1 Scheme ^• ^

Figure 4.2 Experimental Throughputs of rate 1/2, 3/4, and 1.

specific SNR area is between 8dB and 10.5dB. If 1.2 is selected as a threshold value

and the current rate is 3/4, once the throughput reaches 1.2 it switches to rate 1. This

takes place at approximately 8dB where the throughput of a rate 3/4 system is 1.2 but

the throughput of a rate 1 system is 0.85. As a result the adaptive scheme constantly

switches between rate 1 and rate 3/4 within this region and maximum throughput is not

obtained. The expected result is to obtain an average between the throughput curves of

rate 3/4 and rate 1 in this region.

Section 4.4 Performance Evaluation

Recall that the goal of the Adaptive CPC SW Type II ARQ protocol is to increase

en
0

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Section 4^ 57

Ir-

•

Chapter 4

or equal the throughput at all SNR levels as compared to the rate 3/4 CPC SW Type II

ARQ protocol. The prototype is tested over several SNR levels by executing the scheme

until 1000 frames are successfully delivered. Figure 4.3 displays the resulting Adaptive

CPC SW Type II ARQ throughput in an AWGN channel. As expected, the throughput

has increased at all SNR levels excluding the area between 7dB and 10dB. The slight

degradation in this area was predicted and is a factor of the selection of THRESHOLD

VALUE 2. It is observed that the throughput curve has a stair case shape. This is due

to rate 1/2 being utilized at low SNR levels, rate 3/4 at medium SNR levels, and rate

1 at high SNR levels. The results in Figure 4.3 clearly validates the operation of the

adaptive scheme.

CPC SW Type II ARQ Scheme in AWGN

1.6

1.5

1.4

1.3

1.2

1.1

1

-c 0.9toz
0 0.8

E-1^0.7

0.6

0.5

0.4

0.3

0.2

0.1

00 2^4^6^8^10
Es/No [dB]

12
^

14
^

16

Experimental Throughput of Adaptive Rate Scheme
Experimental Throughput of Rate 3/4 Scheme^A-

Figure 4.3 Adaptive CPC SW Type II ARQ Throughput.

Section 4^ 58

Chapter 4

Figure 4.4 displays the adaptive scheme's throughput for various values of N. N is

a performance parameter which adjusts how quickly the scheme reacts to changes in

the channel conditions. It is observed that changing the value of N between 5 and 15

(i.e., approximately 5000 to 15000 bits) has marginal effect on the performance of the

scheme in an AWGN channel. This can be accounted to the fact that an AWGN channel's

SNR level is constant for all practical purposes as compared to the instantaneous SNR

level of the Rayleigh fading channel which fluctuates according to a rayleigh distribution.

Changing the value of N for the combined AWGN and Rayleigh channel is expected to

affect throughput performance.

CPC SW Type II ARQ Scheme in AWGN

0^2^4^6^8^10
Es/No [dB]

Experimental Throughput of Rate Adaptive Scheme with N=5
Experimental Throughput of Rate Adaptive Scheme with N=10
Experimental Throughput of Rate Adaptive Scheme with N=15

Figure 4.4 Affect of varying N for the Adaptive Scheme's Throughput.

1.6

1.5

1.4

1.3

1.2

1.1

1

• 0.9(on
O

•

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
12
^

14 16

• ^

Section 4 59

•

•

Chapter 4

Figure 4.5 illustrates the Adaptive CPC SW Type II ARQ scheme in a combined

AWGN and Rayleigh fading channel for a BDT product of 0.00084. The value for N is 5

and the threshold values chosen are 0.76 and 1.19. The threshold values are slightly lower

than those used in the AWGN channel as the fading channel is a very harsh environment

and it is more difficult to reach and maintain the threshold values. For comparison

purposes, the experimental throughput for the rate 3/4 CPC SW Type II ARQ is also

plotted. As in the AWGN channel, the throughput is increased at lower SNR levels,

Adaptive CPC SW Type II ARQ Scheme in Rayleigh Fading

to

F-4

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

•

•

•

•

•

5^10^15^20
^

25
^

30
Es/No [dB]

Experimental Throughput for Adaptive N-5
Rate 3/4 Experimental Throughput for BT=0.00084 •

Figure 4.5 Adaptive CPC SW Type II ARQ in Rayleigh Channel.

degraded at medium SNR levels, and increased at high SNR levels. Again the stair case

Section 4^ 60

Chapter 4

shape is evident. As in the AWGN channel, it is a result of the rate 1/2 code being used

at low SNR levels, rate 3/4 at medium SNR levels, and rate 1 at high SNR levels.

Figure 4.6 depicts the remaining BDT product curves for the adaptive scheme. It

is observed that the slower the vehicle speed (i.e., the smaller the BDT product) the

quicker the maximum throughput is reached at the higher SNR values. This is a very

important observation which implies that the set of code rates used must be optimized

to the set of BDT products representing the average vehicle speeds and transmission rate

used. The three BDT products of 0.0043, 0.0022, and 0.00084 correspond to a 7r/4 shift

DQPSK system operating with a carrier frequency of 900MHz, a baud rate of 19.2kHz,

and vehicle velocities of 100, 50, and 20 km/hr respectively. It is observed that the code

rates of 1/2, 3/4 and 1 results in a relatively good throughput for the 20km/hr case as

compared to the non-adaptive scheme. The same cannot be said about the remaining

two speeds of 100 and 50km/hr which will eventually reach the maximum throughput

but at a higher SNR level. This implies that a different set of code rates is required to

give better performance. The random phase modulation caused by the increase in vehicle

speed cannot be overcome by the Rate 1 code (uncoded). It requires higher SNR values

to successfully deliver the frame as opposed to the 20km/hr case. In other words, a more

powerful code than Rate 1 but weaker than 3/4 is required.

Figure 4.7 shows the effect of varying the value of N which changes the amount

of time it requires for the adaptive scheme to react to channel conditions. When larger

values of N are chosen, which indicates the adaptive scheme will take longer before

reacting to the channel conditions, the performance degrades. This is due to the time

varying characteristic of the Rayleigh channel. By selecting a smaller value of N, the

Section 4^ 61

^IR

••

1^
•

a

Chapter 4

scheme can quickly adapt and maximize its throughput as opposed to a larger value of

N which makes the scheme more lethargic. In other words, the smaller the value of N,

the more successfully the adaptive scheme can track the channel conditions.

Adaptive CPC SW Type II ARQ Scheme in Rayleigh Fading

1

0.9

0.8
taA

0.7

0.6

0.5

0.4

0.3

0.2

0.1

5^10^15^20
^

25
^

30
Es/No [dB]

Experimental Throughput for Adaptive N=5
Experimental Throughput for Adaptive N=5, BT= 0.0043
Experimental Throughput for Adaptive N=5, BT= 0.0022

Experimental Throughput for BT=0.00084
Experimental Throughput for BT= 0.0022
Experimental Throughput for BT= 0.0043

Figure 4.6 Adaptive CPC SW Type II ARQ in a Rayleigh Channel for Various BDT Products.

•••

Section 4^ 62

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Chapter 4

Adaptive CPC SW Type II ARQ Scheme in Rayleigh Fading

5^10^15^20
Es/No 1cIB1

Adaptive BT= 0.0043, N=15

^

Adaptive BT= 0.0043, N=5 0̂
Adaptive BT= 0.0022, N=15

^

Adaptive BT= 0.0022, N=5^&-

^

Adaptive BT=0.00084, N=15 ^

^

Adaptive BT=0.00084, N=10 ^

^

Adaptive BT=0.00084, N=5 ^

Figure 4.7 Effect of varying N for the Adaptive Scheme in a Fading channel.

Section 4.5 SW ARO Scheme Comparisons

The three CPC SW Type II ARQ schemes implemented are listed below and ranked

according to throughput performance.

1. Adaptive CPC SW Type II ARQ Scheme

2. Rate 3/4 CPC SW Type II ARQ Scheme with Code Combining

3. Rate 3/4 CPC SW Type II ARQ Scheme

25
^

30

Section 5^ 63

Chapter 4

All three schemes are based on the CPC SW Type II ARQ protocol and utilize the

identical general DSP software library. The performance of the rate 3/4 scheme was

verified by the use of numerical results. The rate 3/4 code combining case resulted in an

increase at low SNR levels. In code combining, repeated copies of the identical coded

data sequences are optimally combined for subsequent decoding. This upgrade consisted

of replacing 10 lines of DSP Assembly code. It does not require any additional memory

because the receiver stores the combined data sequence and discards the most recent

single copy (i.e. the most recent corrupted data sequence is combined with the previous

copies of identical coded data sequences from a certain memory slot and then stored in

that same memory slot). In order to obtain a greater increase in throughput over a larger

region of SNR levels, the adaptive scheme was implemented. In comparison to the rate

3/4 scheme, the adaptive scheme's throughput increased for low and high SNR levels

and decreased for medium SNR levels. As discussed above, the slight degradation (less

than 1 dB) in the medium range is the result of the threshold value and the shapes of

the individual rate throughput curves. The compromise of a slight degradation is well

worth the gain in performance at lower and higher SNR values. It was also observed

that the adaptive scheme's performance varied as a result of the system's BDT product

which implies using a set of codes that are optimized for a set of BDT products. The

actual adaptive upgrade consisted of adding case statements in DSP Assembly code to

account for the various code rates. The threshold values and selection of the coding rate

was added to the Host PC protocol program. The only other modification was to utilize

2 of the 9 Reserved bits of the header to indicate the rate of the data packet.

Section 5^ 64

Chapter 4

Section 4.6 Conclusions

An Adaptive rate CPC SW Type II ARQ scheme was implemented using the existing

prototype of Chapter 3 with software modifications. The goal was to utilize the existing

general software modules in order to minimize any cost associated with the upgrade.

The Adaptive coding rate algorithm was presented and explained. The throughput of

the adaptive prototype was experimentally measured for both an AWGN channel and

combined AWGN and Rayleigh fading channel. In both channels, the experimental

throughput showed a general increase in performance. More specifically, the adaptive

scheme's throughput increased for low and high SNR levels and decreased for medium

SNR levels in comparison to the rate 3/4 scheme. The compromise of a slight degradation

is well worth the gain in performance at lower and higher SNR values. The effect of

varying N, which controls the reaction time of the adaptive scheme, was also investigated.

It was found that the value of N had marginal affect on the throughput in an AWGN

channel. In a combined AWGN and Rayleigh fading channel, as N is decreased the

throughput performance increases. The Rayleigh channel is time varying and the smaller

the value of N, the more successfully the adaptive coding rate can track the channel

conditions.

The experimental results indicate that the upgrade of the CPC SW Type II ARQ

protocol to an adaptive scheme was successful.

Section 6^ 65

Chapter 5

Chapter 5 Conclusions and Future Research

Section 5.1 Conclusions

This thesis investigated the design, implementation issues, and performance evalua-

tion of various adaptive and non-adaptive FEC coding schemes of a Type II SW ARQ

system. The research contributions can be summarized as follows:

1. The Software design, implementation, and test of a Digital Signal Processing (DSP)

Module Library for the Spectrum TMS32C30 DSP card housed in an IBM PC

platform. The library consists of the following modules:

• CRC Encoder/Decoder

• Rate 1/2 Convolutional Encoder

• Puncturing Module

• Rate 1/2 Soft Decision Viterbi Decoder

• Block Interleaver

• Soft Data Deinterleaver

• Queueing Module

• 7r/4 shift DQPSK Baseband Transmitter/Receiver

2. The Software implementation and evaluation of a Complementary Punctured Convo-

lutional (CPC) coding scheme for the SW Type II ARQ system with and without code

combining utilizing the DSP library in an AWGN channel and a combined AWGN

and Rayleigh Fading channel.

66

Chapter 5

3. Software upgrade and performance evaluation of an Adaptive CPC SW Type II ARQ

scheme utilizing the DSP library in an AWGN channel and a combined AWGN and

Rayleigh Fading channel.

In this thesis a general algorithm for Complementary Punctured Convolutional Coding

applied to a Stop-and-Wait ARQ scheme was presented. A rate 3/4 CPC SW Type II

ARQ protocol was implemented with the use of two Spectrum TM5320C30 DSP cards

and a host IBM PC. The following assumptions or simplifications are incorporated in the

implemented prototype which consists of the DSP transmitter and receiver cards in the

same Host PC under the control of the SW ARQ protocol.

• As a consequence of the transmitter and receiver DSP cards being in the same Host

PC, they are initialized and synchronized by the ARQ Protocol running on the Host

PC. In practice, there is an initialization and synchronization process to be executed

by the independent transmitter and receiver.

• In practice a noisy return channel is used to send the receiver's reply. In the prototype,

the receiver's reply is passed internally through the PC via the DAM. This is a noise

free return channel.

• As a result of the ARQ protocol controlling both the transmitter and receiver, it is the

receiver which times out if a flag is not found. Again, in practice it is the transmitter

that times out if it does not get a response from the receiver.

• Symbol Synchronization is accomplished by hard wiring the transmitter and receiver.

The actual symbol timing signal is software generated and is not ideal. A practical

system would have the receiver utilize a Phase Locked Loop or some other synchro-

nization circuit to obtain symbol synchronization with no link to the transmitter.

Section 1^ 67

Chapter 5

These simplifications do not compromise the accuracy of the experimental results. The

prototype is used to evaluate various FEC strategies which are unaffected by the above

simplifications.

The rate 3/4 CPC SW Type II ARQ scheme was numerically analyzed for both an

AWGN channel and a combined AWGN and Rayleigh fading channel. The experimental

data obtained from the prototype was in good agreement with the numerical results

validating the implementation and correct operation of the scheme.

The rate 3/4 CPC SW Type II ARQ scheme was upgraded with Code Combining in

an effort to gain an increase in the throughput performance. This allows the receiver

to optimally combine copies of the same coded sequence for subsequent decoding.

The experimental throughput performance increased at low SNR levels as compared

to the non-code combining case verifying its proper operation. The upgrade consisted

of replacing 10 lines of DSP Assembly Language. The memory requirement remains

constant since one data sequence, which consists of the combined copies, is kept rather

than the individual copies.

In an effort to further increase the throughput performance of the prototype, the CPC

SW Type II ARQ protocol was upgraded with an Adaptive Coding Rate. The resulting

experimental throughput showed an increase at low and high SNR levels and a slight

degradation at medium SNR levels with respect to the throughput of the original rate 3/4

prototype. The compromise of a slight degradation is well worth the gain in performance

at lower and higher SNR values. This degradation is due to the selection of threshold

values used in the adaptive coding rate algorithm.

The three implemented schemes behaved as expected and their experimental through-

Section 1^ 68

Chapter 5

puts verified their correct operation.

Section 5.2 Future Research

5.2.1 Symbol Synchronization

The 7r/4 shift DQPSK modulation system used by the prototypes suffers from

imperfect symbol synchronization. As a result, the throughputs of the prototypes are

degraded at lower SNR levels. It would be interesting to further investigate the symbol

synchronization of the system.

5.2.2 Selective Repeat Upgrade

Although a Stop-and-Wait ARQ protocol was used for the prototypes, the software

modules and the design of the system were such that an upgrade to a Selective Repeat

(SR) Protocol is possible. It would be interesting to have the prototypes upgraded to

SR as this would only require software modifications but the majority of DSP library

modules do not have to be modified.

5.2.3 Adaptive Header

The implemented adaptive scheme varied the coding rate of the data packet while the

coding rate of the header remained constant (rate 1/2). If the coding rate of the header is

also made adaptive the throughput will increase. At high SNR levels, a powerful code

is not required and a larger data packet can be sent resulting in greater throughput. At

lower SNR levels, a more powerful coded header will deliver the data packet and reduce

the number of retransmissions for header failures. The coding rate for the header should

always be more powerful than the coding rate of the data packet. In order to indicate the

rate of the header, a miniature header should proceed the header.

Section 2^ 69

Chapter 5

5.2.4 FEC Schemes

With the existing testbed used for the prototypes and the modular structure of the

DSP library software, this leads to endless possible FEC schemes that may be investigated

and explored.

Section 2^ 70

Bibliography

[1] S. Lin and J. D. J. Costello, Error Control Coding: Fundamentals and Applications.
Prentice Hall, 1983.

[2] J. Hagenauer, "Rate-compatible punctured convolutional codes (RCPC codes) and
their applications," IEEE Trans. Commun., vol. 36, pp. 389-400, Apr. 1988.

[3] S. Kallel, "Analysis of a type II hybrid ARQ scheme with code combining," IEEE
Trans. Commun., vol. 38, pp. 1133-1137, Aug. 1990.

[4] K. J. Guth and T. T. Ha, "An adaptive stop-and-wait ARQ strategy for mobile
data communications," in the Proceedings of IEEE the 40th Vehicular Technology
Conference, pp. 656-661, Apr. 1990.

[5] D. P. C. Wong and P. T. Mathiopoulos, "Nonredundant error correction analysis and
evaluation of differentially detected 7/4-shift DQPSK systems in a combined CCI
and AWGN Environment," IEEE Trans. Veh. Tech., vol. 41, pp. 35-48, Feb. 1992.

[6] C. L. Liu and K. Feher, "Noncoherent detection of 7/4-QPSK systems in a CCI-
AWGN combined environment," in the Proceedings of the 39th Vehicular Technology
Conference, pp. 83-94, May 1989.

[7] D. P. Bouras, "Optimal decoding of PSK and QAM signals in frequency nonselective
fading channels," Master's thesis, University of British Columbia, 1991.

[8] E. Casas and C. S. K. Leung, "A simple digital fading simulator for mobile radio,"
IEEE Trans. Veh. Tech., vol. 39, pp. 205-212, Aug. 1990.

[9] J. G. Proakis, Digital Communications. New York:McGraw-Hill Book Company,
2 ed., 1989.

[10] C. L. Liu and K. Feher, "Performance of Non-coherent 7/4-QPSK in a frequency-
selective fast Rayleigh fading channel," in the Proceedings of SUPERCOM/ICC 90,
Atlanta GA, pp. 335.7.1-335.7.5, Apr. 1990.

[11] S. Kallel, "Complementary Punctured Convolutional (CPC) Codes and their use
in hybrid ARQ schemes," in the Proceedings of IEEE Pacific Rim Conference,
pp. 186-189, May 1993.

[12] S. Kallel and D. Haccoun, "Generalized type II hybrid ARQ scheme using punctured
convolutional coding," IEEE Trans. Commun., vol. 38, pp. 1938-1946, Nov. 1990.

71

[13] G. Begin and D. Haccoun, "High rate punctured convolutional codes: structure
properties and construction techniques," IEEE Trans. Commun., vol. 37, pp. 1381—
1385, Dec. 1989.

[14] J. A. Heller and I. M. Jacobs, "Viterbi decoding for Sattelite and space communi-
cation," IEEE Trans. Commun., vol. 19, pp. 835-848, Oct. 1971.

[15] A. J. Viterbi, "Convolutional Codes and Their Performance in Communication
Systems," IEEE Trans. Commun., vol. 19, pp. 751-772, Oct. 1971.

[16] J. G. Proakis, "Probabilities of Error for Adaptive Reception of M-Phase Signals,"
IEEE Trans. Commun., vol. 16, pp. 71-80, Feb. 1968.

[17] P. F. Driessen, "Performance of frame synchronization in packet transmission using
bit erasure information," IEEE Trans. Commun., vol. 39, pp. 567-573, Apr. 1991.

[18] T. Matsumoto and F. Adachi, "BER analysis of convolutional coded DQPSK in
digital mobile radio," IEEE Trans. Veh. Tech., vol. 40, pp. 435-442, May 1991.

[19] D. Chase, "Code Combining- a maximum-likelihood decoding approach for combin-
ing an arbitrary number of noisy packets," IEEE Trans. Commun., vol. 33, pp. 385—
393, May 1985.

[20] J. Hagenauer, "Forward Error Correction coding for fading Compensation in Mobile
Sattelite Channels," IEEE Journal Select. Areas Commun., vol. 5, pp. 215-225, Feb.
1987.

[21] N. R. Sollenberger, J. C. I. Chuang et al., "Architecture and implementation of an
efficient and Robust TDMA frame structure for digital portable communications,"
IEEE Veh. Trans., vol. 40, pp. 250-260, Feb. 1991.

[22] J. B. Cain, G. C. Clark Jr., and J. M. Geist, "Punctured Convolutional codes of Rate
(n-1)/n and simplified maximum likelihood decoding," IEEE Trans. Inf. Theory,
vol. 25, pp. 97-100, Jan. 1979.

[23] J. C. I. Chuang, "Comparison of two ARQ protocols in a Rayleigh fading channel,"
IEEE Veh. Trans., vol. 39, pp. 367-373, Nov. 1990.

[24] C. S. K. Leung and A. Lam, "Forward error correction for an ARQ scheme," IEEE
Trans. Commun., vol. 29, pp. 1514-1519, Nov. 1981.

[25] R. W. Lucky, J. Salz, and E. J. Weldon, Jr., Principles of Data Communication.
McGraw-Hill Book Company, 1968.

72

[26] W. C. Lindsey and M. K. Simon, Telecommunication Systems Engineering. Prentice-
Hall Inc., 1973.

[27] P. Bylanski and D. G. W. Ingram, Digital Transmission Systems. Peter Peregrinus
Ltd., 1976.

[28] K. Feher, Digital Communications: Satellite/Earth Station Engineering. Prentice
Hall Inc., 1983.

[29] K. Feher, Digital Communications: Microwave Applications. Prentice Hall, 1981.

[30] A. M. Michelson and A. H. Levesque, Error-Control Techniques for Digital
Communications. John Wiley & Sons, 1985.

[31] S. Haykin, An Introduction to Analog and Digital Communications. John Wiley &
Sons, 1989.

[32] K. Feher and Engineers of Hewlett Packard Ltd., Telecommunication Measurements,
Analysis, and Instrumentation. Prentice Hall, 1987.

[33] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Prentice
Hall, 1989.

73

Appendix A Software Listings

The software listings appear in the following order:

CSUB.0 — DSP Module Library.

ADAPT.0 — Adaptive SW Type II ARQ Protocol for IBM Host PC.

• XMITADAP.ASM — DSP Assembly code for Transmitter DSP card.

• RCVRADAP.ASM — DSP Assembly code for Receiver DSP card.

• VARSRCVR.ASM — Variables, definitions, and memory locations used by the

assembly code for the transmitter and receiver DSP Cards.

74

Oct 6 1993 14:18:30^CSUB.0^Page 1 Oct 6 1993 14:18:30^CSUB.0^Page 2
1 #include <stdlib.h> 57 *^ current 32 bit word
2 #include <stdio.h> 58 *^index2^ -current bit position in 32 bit word
3 #include <math.h> (0-31)
4 main() 59 *^infobit^ -input bit to LFSR
5
6
7

60
61

*^outputbit
shift^

-output bit from LFSR
*^ -amount to shift LFSR to get outputs
bit

8 /*** 62 *^shreg^ -contents of LFSR****** 63 *^feedback^-feeback value for LFSR
9 64 *^connections^-bits representing connections of LF
10 * polydiv^v1.02^Feb 93 SR
11 * 65 *^temp^ -temp storage of outputs of LFSR
12 * This module implements a linear feedback shift register for 66 *^remainder^-remainder of polynomial division
13 * polynomial division.^It is used for CRC calculation and 67 **
14 * the decoding of convolved data chunks. *******/
15 * This module requires 5 parameters: 68
16 * K^- constraint length valid up to 33 decimal 69
17 * MESGDATA^- pointer to message or data (dividend) 70 long unsigned polydiv(int K, long int *MESGDATA,^long unsigned int P
18 * POLY^- polynomial to be divisor OLY,
19 * TOTAL^- length of dividend in 32 bit words 71 int TOTAL,^long int *RESULT)
20 * RESULT^- pointer where quotient is to be stored 72 1
21 * 73
22 The resulting LFSR will be: 74 int index?,^index2,^infobit,^outputbit,^shift;
23
24

*
*

75 long unsigned int shreg,^feedback, connections,^temp,^remain
der;

25 I^>x0^I^>xl^I^>x2-^>x(K^1)-^I^> 76
26 * 77
27 * where the connections are determined by POLY. 78 shift.0;
28 * 79 temp.0;
29 * NOTE:^POLY is read from right to left 80 shreg^0;
30 * ie 1+x+x'4^---->^10011 . POLY 81 connections =0;
31 * 82 /*The standard used is to read polynomials from right to lef
32 RESULT t.
33 * 83 This module needs them in left to right format so we rever
34 * POLY^I^MESGDATA^REMAINDER se
35 * 84 the bits of POLY^ie 0010 --> 0100.
36
37

*
*

85 The following code reverse POLY and stores it in connectio
ns*/

38 * The data is feed into the LFSR msb first and lab last 86
39 * ie 87 for^(index?^K-1;^index? > 0;^index?--)
40 * address^data 88
41 * 300^25a4e845 39 if^(^((POLY)^&^(1 «^index?^-1))^:=^0)
42
43

*
*

301^84fe68dc 90
91

connections^I. 1^(K-1 - index?^);

44 * "548e4a52cd86ef48" ^LFSR 92
45 * 93)^/* end of reversal routine */
46 * 94
47 * Decoder Notes: 95
48 * 1>^Give all 5 parameters and use quotient stored at 96 /*This section of code determines the amount to shift the
49 * *RESULT.^Remainder can be discarded. 97 register by.^This is needed because if the constraint
50 * 98 length is,^for example,^7 but we only use the first two
51 CRC Notes: 99 registers^(ie POLY^0000011)^then we must shift the
52

make
1>^If calculating the CRC it is your responsibility to 100 register by 5 positions to get the output of the 2nd regis

ter */
53 * sure the data is premultiplied (padded with zeros) b 101

y X°K 102 for^(index?^K;^indexl >. 0;^index?--)
54 2>^The REMAINDER is the CRC value 103
55 104 if^(^(POLY &^(1«^(index1-1)))^!=0)
56 indexl^ -general variable used as loop count 105

er & 106 shift.(K-indexl);

Oct 6 1993 14:18:30^CSUB.0^Page 3 Oct 6 1993 14:18:30^CSUB.0^Page 4
107
108
109
110
111

index1=-1;

}/* end of finding shift amount */

if^(K==33)^ /*exceptional case with 32bi

156
157
158
159
160

/*END =
return(remainder);

t CRC/ 161 }
112 shift=0;^ /*and we don't require a shi 162

ft^*/ 163 #define K^((Int^*)0x809c00)
113 164 #define POLY1^((Int^*)0x809c01)
114 outputbit = 0; 165 #define POLY2^((Int^*)0x809c02)
115 166 /***
116 /*This next section implements the LFSR and feeds the entire *****
117 encoded message through it.^The msb of the polynomial/mes 167 * CONV^V1.02^Feb 93

sage 168
118 is feed into the LFSR first. 169 This module implements a convolutional encoder of rate
119 ie encoded message is "F78jNd"^dNj87F---->LFSR 170 1/2 with variable length K and generator polynomials

*7 171 POLY1 and POLY2.
120 172 This module requires 5 parameters:
121 for^(indexl = TOTAL -1;^indexl >=0;^indexl--) 173 * *MESG^- pointer to data to be convolved
122 174 * *MESGP1^- pointer to convolved data as a result of P
123 for^(index2 = 31;^index2^>= 0;^index2--) OLY1
124 175 * *MESGF2^- pointer to convolved data as a result of P
125 /*lets get bit to input into LFSR */ OLY2
126 infobit=0; 176 * SIZE^- # of 32 bit words to convolve
127 if^(^(*(MESGDATA + indexl^)^&^(1 « index2)) 177 *

1=^0) 178
128 infobit =1; 179 ^> P1 bits
129 180 POLY 1
130 /* if output=1 then feed it back */ 181
131 if^(outputbit^== 1) 182 I^1^I^2^ I^K^I
132 feedback . Oxffffffff & connections; 183
133 else 184 POLY 2
134 feedback = 0; 185 ^> P2 bits
135 186 *
136 187 * The encoder is implemented by polynomial multiplication of t
137 shreg = feedback^((infobit « K - 2)^I^shr he

eg»1); 188 data and POLY1 and POLY2 polynomials respectively. This is
138 outputbit=(^shreg>>^(shift)^)^& 1; 189 * achieved by shifting and exclusive ORing.
139 190
140 /* this shift register SHREG is implemented 191 Notes:

with the */ 192 1> When using cony be sure to have a storage area with K ext
141 /* lsb being the msb of the shift register ma

193 bits so that none of the convovled data bits are lost.
142 /*^cab^ lsb 194 ie

195 16 bits of data
143 /*^ie^.^r4 r3 r2 rl r0 196 K =4 ^ > requires 20 hi

Is
144

f poly
/*^x0 xl x2 x3 x4 c--- powers o

*/
197

ce
of storage spa

145 198
146 199
147 if^(index2^==^0) 200 vmesg[]^- vector containing data to be convolved
148 201 vmesgPl[]^- vector containing convolved data from POLY
149 remainder = shreg;
150 202 vmesgP2[]^- vector containing convovled data from POLY
151 *(RESULT + indexl)^. temp; 2
152 temp = outputbit cc 31; 203 temp[]^- intermediate storage vector
153 204 indexl^- general loop index
154 else 205 index2^- general loop index
155 (temp)^I= outputbit cc^(index2^- 1); 206 index3^- general loop index

Oct 6 1993 14:18:30^CSUB.0^Page 5 Oct 6 1993 14:18:30^CSUB.0^Page 6
207 firstbit^- firstbit of current 32 bit word 258 firstbit = 11;
208 * lastbit^- 32nd bit of current 32 bit word 259 else
209 * mask^- used to select which term of POLYx is used 260 firstbit .^01;

in 261 1
210 * multiplication 262 }/*end of shifting^(polynomial multiplication)*/
211 * byte^-intermediate storage variable 263
212 264 /* add the terms of the polynomial multiplication to
213 * RETURNS^- nothing ./
214 ..

/
265 /* the appropriate vector according to their generat

or*/
215 266 /* polnomials POLY1 and POLY2.
216 void conv(^long unsigned int *MESG,^long unsigned int *MESGP1, */
217 long unsigned int *MESGP2,^int SIZE) 267
218 268 if^((*POLY1 & mask)^!. 0)
219 (269 (
220 270 for(index3.0;^index3<SIZE;^index3++)
221 long unsigned int^temp[33],^vmesg1331,^vmesgP1[33],^vmesgP2 271 vmesgPl[index3]^^=temp[index3];

[33]; 272)
222 int indexl,^index2,^index3,^firstbit,^lastbit,^mask; 273
223 long byte; 274 if^((*POLY2^& mask)^!.^0)
224 275 {
225 /* get message into vector for processing */ 276 for(index3.0;^index3<SIZE;^index3++)
226 for^(indexl . 0;^indexl < SIZE;^indexl++) 277 vmesgP2[index3]^^=temp[index3];
227 { 278 }
228 vmesg[indexl)^. *(MESG + indexl); 279
229 temp[index1].0; 280 mask . mask « 1;
230 vmesgPl[index1].0; 281 (7* end of adding up terms */
231 vmesgP2[indexl]=0; 282
232 } 283 /* now place the convolved messages P1 and P2 in the Dual */
233 /* convolution using polynomial multiplication of POLY1 and 284 /* memory so that the PC host can retrieve it.^*/

*/ 285 for(indexl . 0;^indexl < SIZE;^indexl++)
234 /* POLY2.^Implemented by shifting and XOR vextors. 286 {

*/ 287 *(MESG^+ indexl)^= vmesg[indexl];
235 288 *(ME5GP1 + indexl)^= vmesgPl[indexl];
236 mask . 11; 289 *(ME5GP2 + indexl)^. vmesgP2[indexl];
237 for(indexl^= 0;^indexl < *K;^indexl++) 290 }
238 (291
239 firstbit^. 0; 292 return;
240 lastbit .^0; 293 }
241 294 /...
242 /* shifting routine which shifts entire contents of ../

.7 295 /*
243

.7
/* vector.^Note that shifting does occur across 296

297
The parameters chosen are used in interleaving by 128 bit
blocks which represent 128/2 . 64 SYMBOLS

244 /* element boundaries. .7
.7 298

245 for(index2^. 0;^index2 a SIZE;^index2++) 299 #define ROW^ 16^/* BLOCK INTERLEAVING PARAMETE
246 { RS*/
247 if^(indexl^==^0) 300 #define COLUMN^ 16
248 { 301 *define BITS PER_SYMBOL^2
249 302 #define SYMB3LS_PER LINE^16^/*LINE . 32 BIT WORD*/
250 temp[index2]=vmesg[index2]; 303 #define FLAG1^Ox0T)000003^/* FLAG1 MUST CORRESPOND TO
251 } 304 BITS PER SYMBOL
252 else .7
253 { 305
254 byte = temp[index2]; 306 /...
255 lastbit.byte & 0x80000000; 307
256 temp[index2].^(byte « 1)1^(firstbit 308 interleaver^V1.00^Jan 93

309
257 if^(lastbit^!.^0) 310 This module will take the data given by pointer DEINT_ADDR

Oct 6 1993 14:18:30^CSUB.0^Page, 7 Oct 6 1993 14:18:30^CSUB.0^Page 8
311 and interleave it according to the parameters above and 359 {
312 then place it starting at pointer INT_ADDR. 360
313 361 int cur row,^cur_column,^pickbit,^addr, mod,^shift=0;
314 This module is a block interleaver. 362 int symol=0;
315 eg 363 int symbol_counter=0;
316 364 long unsigned int TEMP . 0;
317 Given: 365 for(cur_row=1; cur_row<=ROW; cur_row++)
318 8 symbols/line 366 {
319 4 bits/symbol 367
320 [^4 X 4]^Result: 368 for(cur_column=0; cur_column<COLUMN; cur_column++)
321 12345678^159D^159D26AE 369 1
322 9ABCDEFO^26AE^378F4800 370 symbol = cur_row + cur column * ROW;
323 37BF 371 addr =^(symbol - 1)^/^-YMBOLS PER_LINE;
324 48C0 372 mod . (symbol 8 SYMBOLS_PER_LYNE);
325 373 if^(mod =0)
326 374 pickbit .^(SYMBOLS_PER_LINE - 1)^* B
327 The module uses the current row and column of the array to c ITS_PER_SYMBOL;

alculate 375 else
328 the symbol to be placed in the resulting interleaved data wo

rd.
376 pickbit .^(mod - 1)^*BITS_PER_SYMBO

L;
329 Once the symbol is known, the module calculates how much to 377

increment 378 symbol_counter++;
330 the data pointer DEINT_ADDR, and how much to shift the FLAG1 379

. 380 shift = pickbit -^(symbol_counter - 1)^* BIT
331 Next,^the module gets the symbol and stores it temporarily i S_PER_SYMBOL;

n TEMP. 381 shift = shift *
332

333

When enough symbols have been obtained to write a 32 bit wor
d,

the module places the interleaved word (TEMP) at INT_ADDR an

382

383

/*The above line ensures the compiler compil
es the shift

as a LSH rather than an ASH^DO NOT REMOVE*/
d 384

334 increments the pointer. 385 TEMP . TEMP I^(*(DEINT_ADDR + addr) &^(FLAG1
335 « pickbit))«shift;
336 Note: Regardless of the dimensions of the array the module w 386

ill 387 /*if enough symbols for 32 bit word then write */
337 always place the result in 32 bit lengths.^As shown above w 388 if (symbol_counter == SYMBOLS_PER_LINE)

ith 389 {
338 the 4X4 array giving rise to 2 32 bit lines of interleaved d 390 *(INT ADDR++)^. TEMP;

ata. 391 symboi_counter=0;
339 392 TEMP = 0;
340 393)
341 INT ADDR^-pointer to interleaved data 394 1
342 DEIRT_ADDR^-pointer to deinterleaved data 395 }
343 396 1
344 cur_row^-current row 397 /***
345 cur_column^-current column ***/
346 addr^-amount to increment DEINT_ADDR 398
347 pickbit^-bit amount to shift FLAG1 so that correct 399 int^RATES[8][6]^={
348 symbol is obtained 400 {1,^1,^0,^1,^1,^01,^/*import^value^"0"
349 shift^-bit amount to shift symbol before placing i */

t 401 {0,^1,^1,^0,^1,^11,^/*import value^"1"
350 in TEMP */
351 mod^-intermediate calculation used for pickbit 402 {1,^0,^1,^1,^0,^11,^/*import^value^"2"
352 symbol^-current symbol */
353 symbol_counter^-used to count symbols and write in 32 bit 403 {1,^1,^0,^1,^1,^01,^/*import value^"3"
354 lengths */
355 404 (0,^1,^0,^1,^0,^1),^/*import^value^"4"
356 ** */

**********/ 405 (1,^0,^1,^0,^1,^0),^/*import^value^"5"
357 */
358 void interleaver(long int *DEINT_ADDR,^long int *INT_ADDR) 406 (1,^0,^1,^0,^1,^0),^/*import^6*/

Oct 6 1993 14:18:30^CSUB.0^Page 9 Oct 6 1993 14:18:30^CSUB.0^Page 10
407 {0,^1,^0,^1,^0,^1));^/*import^7*/ 465 combineheader^v1.02^Feb 93
408 466 *
409 void puncture(int CHOSENRATE,^long int *NEW,^long int *OLD,^int TOTA

L)
467 *^This module is used to combine the outputs of the adders of

the
410 { 468 *^convolutional encoder to form the header.^The header will e
411 int^array[6]; ither
412 unsigned long int mask=1; 469 *^be rate 1/2,^3/4 or 1/3.
413 470 *
414 int^index,^value,^bits,^newbits=0; 471 */
415 472
416 473 void combineheader(long int *P1,^long int *92,^long int *HEADER,^int
417 for^(index=0;^index<6;^index++) NEWBITS)
418 array[index]=RATES[CHOSENRATE][index]; 474 {
419 475 int bits,^counter=0;
420 for(bits=1;^bits<=TOTAL;^bits++) 476 unsigned long int templow=0;
421 477 unsigned long int temphigh=0;
422 value= array(bits % 6]; 478 unsigned long int mask=1;
423 if^(value==1)^ /*keep bit*/ 479 unsigned long int maskhigh=0x10000;
424 480 /* NEWBITS must be halfed and rounded up since every word yo
425 if^(^(*OLD & mask)^> 0^) u give
426 *NEW^I=^(^1 « newbits); 481 this module it automatically combines it into 2 words.^S
427 o if
428 newbits++; 482 NEWBITS=64^the module changes it to 64/2=32 since it wor
429 ks on
430 /*^else if^(value>1) 483 the high^(16-31)^and low (0-15) bits simultaneously givin
431 g rise
432 for(index=0;^index<value;^index++) 484 to 2 bits for every one that NEWBITS counts.
433
434 if^(^(*OLD & mask)^> 0^) 485 NEWBITS =^(NEWBITS/2)+^(NEwBITS%2);
435 *NEW I=^(1 « newbits); 486
436 487 for^(bits=1;^bits<=NEWBITS;^bits++)
437 488
438 newbits++; 489 /*^if^(^((*P1^& mask)^I^(*P2^& mask)<<l)^>^0^)
439 if^(newbits==32) 490
440 491 templow 1= 1 « counter;
441 newbits=0; 492
442 493 if^(^((*P1 & maskhigh)^I^(*P2 & maskhigh)«1)^>0^)
443 NEW++; 494 temphigh 1= 1 « counter;^*/
444 495
445) 496
446)^*/ 497
447 498 templow^I=^(^(*Pl&mask)^I^(*P2&mask)«1^)«counter;
448 mask«=1; 499
449 if(mask==0) 500 temphigh^1-=(^(*Pl&maskhigh)»1^I^(*P2&maskhigh)^)»
450 (15-counter);
451
452

OLD++;
mask=1;

501
502 counter +=1;

453) 503 mask«=1;
454 if^(newbits==32) 504 maskhigh<<=1;
455 505
456 newbits=0; 506 if^(maskhigh==0)
457 507
458 NEW++; 508 mask=1;
459 509 maskhigh=0x10000;
460 510 *HEADER++=templow;
461 } 511 *HEADER++=temphigh;
462 512 counter=0;
463 /*** 513 templow=0;

*** 514 temphigh=0;
464 515 Pl++;

Oct 6 1993 14:18:30 CSUB.0^Page 11
516
517
518

P2++;

519 if^(maskhigh^!=0)
re not^*/

/* Finished in loop but if we we

520 (
ivisable*/

/* not given an amount of bits d

521 *HEADER++=templow;
maining */

/* by 32 then we must get the re

522 *HEADER++=temphigh; /* bits that are combined.

523)
524)

Oct 6 1993 14:23:52^ADAPT.0^Page 1 Oct 6 1993 14:23:52^ADAPT.0^Page 2
1 #include^<stdlib.h> 54 .
2 *include^<stdio.h> 55 *^Data^I^CRC^I^Tail^I
3 *include^<graphics.h> 56 *^3/4^635^32^5
4 #include^<conio.h> 57 *^1^859
5 #include^ "c:\lib\tms30.h " 58 *^1/2^411
6 59 .
7 #define CONTROL WORD^(0X30008) 60 ...*..............**..........********...........*****..........*****
8 #define VIRGIN HEADER^(0x30010)/
9 #define VIRGIN_DATA^(0x30013) 61
10 62 struct^window (
11 #define ACKO^(0x3007b) 63 int left;
12 #define STROBE_RCVR^(0x3007c) 64 int right;
13 #define STROBE HOST^(0x3007d) 65 int top;
14 #define FLAGOPT^(0x30000) 66 int bottom;
15 #define MENU OPTION^(0x30006) 67 };
16 #define NOT _READY^01 68
17 #define READY^11 69 void main(void)
18 #define TROUBLE^(0x30130) 70 {
19 #define RUN^Offffl 71 FILE *fp;
20 72 int header[4],^transmit[64],^rovr[64],frame[1000],output[20]
21
22 /..............................*****.........*******......******.... 73 int menu,^rate,^packet,^control,^midx, midy,^locx,^boy;..*. 74 float ber2, value;
23 .^ADAPT.0^SEPT 1993 75 int indexl;
24 76 char beep = 7;
25 Adaptive Complementary Punctured Convolutional Coding Scheme 77 unsigned long int current,^index2;

for a 78 unsigned int temp,berword;
26 *^Conventional Type II Stop and Wait ARQ System. 79 unsigned long int ber,symbols, oldber;
27 80 int ack,^nack,^trans,^oldtrans,^oldnackr0;
28 Using rate 1,^3/4,^and 1/2 codes derived from a rate 1/2 81 int CPC1,^CPC2,^CPC1CPC2;
29 mother code. 82 int headfail,^crcfail,^lost,^tot;
30 83
31 See DSP software for actual perforation matrix and generator 84 int^noldtrans,^N;
32 polynomials. 85 float^noldinfobits,^ninfo,^rat,^blockn=0;
33 86
34 87
35 *^Frame Structure: 88 int errorcode;
36 89 short errormsg;
37 8 bit preamble + 24 bit flag^ 32 b 90 long int STRT,^temps,response;

its 91 struct window rcv,^xmit,^stat;
38 92
39 .^AA^294153

.
93 int^address,^Hr,^Na,^length,^PlorP2,^CSI;

40 94 int successframe, headllow, headlhigh, head2low, head2high;
41 * CONVOLVED RATE 1/2 HEADER^ 128 b

its
95 float^infobits,^totalbits,^infoconstant,^Current_factor=1.

2;
42 96
43 *^address^I^Na^I^Hr^I^length^I 97
44 *^14^4^4^10 ^ >32 bits 98
45 99 /*graphics variables*/
46 P1 or P2^I^CSI^I^Reservedl^CRC^I^Tail^I 100 int gdriver=DETECT, gmode,bkco1=DARKGRAY,maxx, maxy;
47 2^2^7^16^5 ^ >32 bits 101 char msg[120];
48 102
49 * CONVOLVED DATA^ 864 103 for^(index1=0;^indexl<1000;^indexl++)

bits 104 frame[index1]=0;
50 105

---- 106
51 1024 107

bits 108 /*Initialize graphics screen*/
52 109 initgraph(&gdriver,^&gmode,
53 * UNCONVOLVED DATA - for use with rate 3/4 punctured from a rate 1/2 110 errorcode . graphresult();

Oct 6 1993 14:23:52^ADAPT.0^Page 3 Oct 6 1993 14:23:52^ADAPT.0^Page 4
111 if^(errorcode^!= grOk) 169 outtextxy(10,^135,^msg);
112 f 170 sprintf(msg,^"# of NACKs arrived:");
113 printf("graphics error:%s\n",^grapherrormsg(errorcod 171 outtextxy(10,^145,^meg);

e)); 172 sprintf(msg,^"Current Frame #^(of 1000):");
114 printf("Press any key to halt:"); 173 outtextxy(10,^155,^msg);
115 getch(); 174 sprintf(msg,^"Current Rate:");
116 exit(1); 175 outtextxy(10,^165,^msg);
117 176
118 } 177 settextjustify(CENTER_TEXT, TOP TEXT);
119 cleardevice(); 178 sprintf(msg,^"Receiver DSP Board 0x290");
120 setbkcolor(bkcol); 179 outtextxy(maxx*.75,^85,^msg);
121 maxx=getmaxx()-2; 180 settextjustify(LEFT_TEXT,^TOP_TEXT);
122 maxy=getmaxy(); 181 sprintf(msg,^"Error Free Rcvd Farmes:");
123 midx = maxx/2; 182 outtextxy(midx+10,^115,^meg);
124 midy . maxy/2; 183 sprintf(msg,^"8 of lost Frames:");
125 setlinestyle(SOLID_LINE,^1,^THICK_WIDTH); 184 outtextxy(midx+10,^125,^meg):
126 rectangle(0,^0,^maxx,^maxy*.15); 185 sprintf(msg,^"# of error Frames:");
127 rectangle(0,^maxy*.15,^maxx*.5,^maxy*.5); 186 outtextxy(midx+10,^135,^meg);
128 rectangle(maxx*.5,^maxy*.15,^maxx,^maxY*.5); 187 sprintf(msg,^"Throughput:");
129 rectangle(0,^maxy*.5,^maxx,^maxy); 188 outtextxy(midx+10,^145,^meg);
130 setlinestyle(SOLID LINE,^1, NORM_WIDTH); 189
131 sprintf(msg,^"STATUS WINDOW"); 190 sprintf(msg,^"Total ACKs");
132 outtextxy(10,^maxy*.5+5,^msg); 191 outtextxy(10,^maxy*.5+20,^msg);
133 192 sprintf(msg,^"CPC Code 1");
134 rcv.top =^.24*maxy; 193 outtextxy(210,^maxy*.5+20,^msg);
135 rcv.bottom =^.48*maxy; 194 sprintf(msg,^"CPC Code 2");
136 rcv.left^=^.83*maxx; 195 outtextxy(360,^maxy*.5+20,^meg);
137 rcv.right =^.99*maxx; 196 sprintf(msg,^"CPC 1 & CPC 2");
138 xmit.top =^.24*maxy; 197 outtextxy(510,^maxy*.5+20,^msg);
139 xmit.bottom =^.48*maxy; 198
140 xmit.left^=^.33*maxx; 199 sprintf(msg,^"Total NACKs");
141 xmit.right .^.48*maxx; 200 outtextxy(10,^maxy*.5+50,^nag);
142 stat.top = maxy*.56; 201 sprintf(msg,^"Header Failure");
143 stat.bottom = maxy*.6; 202 outtextxy(210,^maxy*.5+50,^nag);
144 stat.left^=^10; 203 sprintf(msg,^"Data CRC Failure");
145 stat.right^. maxx*.98; 204 outtextxy(360,^maxy*.5+50,^nag);
146 205 sprintf(msg,^"Lost Frame");
147 /* Set Text and Headings for the display screen^*/ 206 outtextxy(510,^maxy*.5+50,^msg);
148 settextjustify(CENTER_TEXT,^TOP_TEXT); 207
149 sprintf(msg,^"Statistics Module for:"); 208 /*End of text set up */
150 outtextxy(midx,^15,^meg); 209
151 sprintf(msg,^"Adaptive Complementary Punctured Convolutional 210 errorcode=SelectBoard(0x290);

Stop and Wait Type II ARQ scheme"); 211 if^(errorcode == 0^)
152 outtextxy(midx,^25,^meg); 212 printerror(1);
153 sprintf(msg,^"PI74 DQPSK Modulation Scheme"); 213
154 outtextxy(midx,^35,^meg); 214 errorcode=LoadObjectFile("RCVRADAP.OUT");
155 sprintf(msg,^No Code Combining"); 215 if^(errorcode^!=^0)
156 setcolor(RED); 216 printerror(2);
157 outtextxy(midx,^45,^meg); 217 Reset();
158 setcolor(WHITE); 218 setcolor(RED);
159 219 settextjustify(CENTER_TEXT,^TOP_TEXT);
160 220 sprintf(msg,^"Loaded and running...");
161 sprintf(msg,^"Transmitter DSP Board 0x390"); 221 outtextxy(maxx*.75,^95,^meg);
162 outtextxy(maxx/4,^85,^msg); 222 for(index1=0;^indexl<3000;^indexl++);
163 settextjustify(LEFT_TEXT,^TOP_TEXT); 223
164 sprintf(msg,^"Total Frames sent:"); 224
165 outtextxy(10,^115,^msg); 225 errorcode=SelectBoard(0x390);
166 sprintf(msg,^"Baud Rate"); 226 if^(^errorcode == 0^)
167 outtextxy(10,^125,^nag); 227 printerror(3);
168 sprintf(msg,^"# of ACKs arrived:"); 228

Oct 6 1993 14:23:52^ADAPT.0^Page 5 Oct 6 1993 14:23:52^ADAPT.0^Page 6
229 errorcode=LoadObjectFile("xmitadap.out"); 286 transmit(^index2^]^. 0;
230 if^(^errorcode^!.^0^) 287
231 printerror(4); 288 /*rate decision must be made here*/
232 Reset(); 289 N.trans-noldtrans;
233 sprintf(msg,^"Loaded and running..."); 290 ninfo.infobits-noldinfobits;
234 outtextxy(maxx/4,^95,^msg); 291 if^(N>=5)
235 settextjustify(LEFT_TEXT, TOP_TEXT); 292 {
236 setcolor(WHITE); 293 blockn.(2.0*(ninfo/(1056.0*N)));
237 294 if^(CSI^..^1)
238 295 i
239 N=0; 296 if^(blockn<1.18)
240 rat.0.0; 297 {
241 noldtrans.0; 298 CSI^.^2;
242 noldinfobits.0.0; 299 goto out;
243 ninfo.0.0; 300)
244 blockn.0.0; 301 }
245 302 else if^(CSI^.. 2)
246 oldtrans.0; 303 f
247 trans.0; 304 if^(blockn>1.19)
248 ack =0; 305 {
249 CPC1.0; 306 CSI = 1;
250 CPC2.0; 307 gob o out;
251 CPC1CPC2.0; 308 }
252 nack=0; 309 else if^(blockn<.77)
253 headfail=0; 310 1
254 crcfail=0; 311 CSI^= 3;
255 infobits=0.0; 312 gob o out;
256 totalbits.0.0; 313 }
257 infoconstant.0.0; 314)
258 tot.0; 315 else if^(CSI^.. 3)
259 316 {
260 successframe.0; 317 if^(blockn>.76)
261 bar =^0; 318 {
262 oldber=0; 319 CSI . 2;
263 nack .0; 320 goto out;
264 lost=0; 321 }
265 locy=0; 322)
266 locx.10; 323 ninfo.0.0;
267 current . 01; 324 out: noldinfobits . infobits;
268 response .01; 325 N.0;
269 Put32Bit(ACKO,^DUAL,^69691); 326 noldtrans . oldtrans;
270 327 goto out2;
271 /*******************************.**..*********************** 328 }

****/ 329
272 /*^Initialize Header variables*/ 330
273 address = Ox1000;^ /* 14 bit address*/ 331
274 Ns .^0; 332 out2: if^(CSI^..^1)
275 Hr .^0; 333 {
276 length . 608;^ /* full frame */ 334 tot.52;
277 PlorP2^. 1;^ /* which code to us 335 infoconstant.859.0;

e^*/ 336 }
278 CSI = 3;^ /*channel state info 337 else if^(CSI^..^2)

*/ 338 {
279 339 tot . 38;
280 340 infoconstant-635.0;
281 341)
282 342 else if^(CSI == 3)
283 for^(index1.0;^successframe<1000;^indexl++) 343 (
284 1 344 tot = 24;
285 for^(index2.0;^index2<64;^index2++) 345 infoconstant = 411.0;

Oct 6 1993 14:23:52^ADAPT.0^Page 7 Oct 6 1993 14:23:52^ADAPT.0^Page 8
346 } 398 menu = Oxl;
347 399 rate . 0x4;
348 400 packet = 0;
349 401
350 for^(index2=0;^index2<tot;^index2++) 402 control= menu^I^rate^I^packet;
351 (403
352 transmit[^index2^]^= rand(); 404 errorcode . Put32Bit(CONTROL_WORD,^DUAL,^control);
353 if^(^(index2^+^1)^%^8^==^0) 405 if^(errorcode^!.^0^)
354 transmit[index2]^= transmit[index2] 406 printerror(6);

&^Ox07ff; 407
355 408 /*frame transmitted*/
356 ruvr[^index2^]^. 0; 409 setviewport(xmit.left,^xmit.top,^xmit.right,^xmit.bo
357 /*generate 608 random^data bits to be transmitted * ttom,^1);

/ 410 clearviewport();
358 } 411 sprintf(msg,^"^%d",^trans);
359 /*transmit[37]=0;*/ 412 outtextxy(10,^0,^msg);
360 413 sprintf(msg,^"^18.93^kHz");
361 /*** 414 outtextxy(10,^10,^meg);******/ 415 sprintf(msg,^"^%d",^ack);
362 /* Build Header 416 outtextxy(10,^20,^meg);*/ 417 sprintf(msg,^"^%d",nack);
363 address . address +1; 418 outtextxy(10,^30,^msg);
364 PlorP2=1; 419 sprintf(msg,^"^%d",^index1+1);
365 420 outtextxy(10,^40,^meg);
366 do(421 if^(CSI^==^1)
367 trans++; 422 rat=1.0;
368 if^(response > 1000)^/*^if retransmit a 423 else if^(CSI == 2)

lternate*/ 424 rat= .75;
369 t 425 else if^(CSI == 3)
370 if^(response^!= 9999) 426 rat=.5;
371 (427 sprintf(msg,^"%3.3E",rat);
372 if^(PlorP2^== 1^) 428 outtextxy(10,^50,^msg);
373 PlorP2 . 2; 429
374 else 430
375 PlorP2 = 1; 431
376) 432
377 } 433 errorcode.WarmSelect(0x290);
378 434 if^(^errorcode .. 0^)
379 for^(index2=0;^index2<4;^index2++) 435 printerror(1);
380 header[^index2]^. 0; 436
381 437 menu . 3;
382 438
383 header[0]^. Ns «14^I^address; 439 Put32Bit(MENU_OPTION, DUAL, menu);
384 header[1]^.^(Ns » 2)^I^(Nr « 2)^I^(length «6); 440
385 header[2]^=^(PlorP2)^I^(CSI «2); 441
386 442 for(index2=0;^index2<30000;^index2++);
387 WrBlkInt(VIRGIN_HEADER,^DUAL,^2,^header); 443 for(index2=0;^index2<30000;^index2++);
388 /* Header built and sent to DSP transmitter 444 for(index2=0;^index2<30000;^index2++);

*/ 445 for(index2=0;^index2<30000;^index2++);
389 /*** 446

******/ 447 Put32Bit(STROBE_RCVR,^DUAL,^Oxffffl);
390 448
391 449 for(index2=0;^index2<30000;^index2++);
392 errorcode . WrBlkInt(VIRGIN_DATA, DUAL, tot/2,^trans 450 for(index2=0;^index2<30000;^index2++);

mit); 451 for(index2.0;^index2<30000;^index2++);
393 if^(errorcode^!=^0) 452 for(index2=0;^index2<30000;^index2++);
394 printerror(5); 453
395 454
396 455 while(Get32Bit(sTROBE_HOST,^DUAL)=.01);
397 456

Oct 6 1993 14:23:52^ADAPT.0^Page 9 Oct 6 1993 14:23:52^ADAPT.0^Page 10
457 Put32Bit(STROBE HOST,^DUAL,^01); 515 setcolor(GREEN);
458 response = Get3Bit(ACKO,^DUAL); 516 sprintf(msg,^"^%d",^ack);
459 Put32Bit(ACKO,^DUAL,^88881); 517 outtextxy(15,^5,^msg);
460 518 sprintf(msg,^"^%d",^CPC1);
461 if^(response < 1000) 519 outtextxy(215,^5,^msg);
462 (520 sprintf(msg,^"^%d",^CPC2);
463 ack++; 521 outtextxy(365,^5,^msg);
464 successframe++; 522 sprintf(msg,^"^%d",^CPC1CPC2);
465 infobits +=infoconstant; 523 outtextxy(515,^5,^msg);
466 totalbits +=1056.0; 524
467 525
468 if^(response == 100) 526 setviewport(stat.left,^maxy*.63,^stat.right,^maxy*.6
469 CPC1++; 7, 1);
470 else if^(response == 200) 527 clearviewport();
471 CPC2++; 528 setcolor(BLUE);
472 else if^(response == 300) 529 sprintf(msg,^"^%d",^flack);
473 CPC1CPC2++; 530 outtextxy(15,^5,^meg);
474 531 sprintf(msg,^"^%d",^headfail);
475 } 532 outtextxy(215,^5,^msg);
476 else 533 sprintf(msg,^"^%d",^crcfail);
477 (534 outtextxy(365,^5,^msg);
478 nack++; 535 sprintf(msg,^"^%d",^lost);
479 totalbits +.1056; 536 outtextxy(515,^5,^meg);
480 if^(response == 9999) 537 setcolor(WHITE);
481 headfail++; 538
482 else if^(response == 6666) 539 setcolor(WHITE);
483 crcfail++; 540 WarmSelect(0x390);
484 else if^(response == 8888) 541
485 lost++; 542 }while^(response , 10001);
486 } 543
487 544 frame[indexl]^= trans - oldtrans;
488 545 oldtrans = trans;
489 RdBlkInt(FLAGOP1,^DUAL,^tot/2+5,^rcvr); 546
490 547 }
491 548
492) 549 printf("%c",beep);
493 550 printf("%c",beep);
494 551 printf("%c",beep);
495 552 printf("%c",beep);
496 553
497 554 for^(index1=0;^indexl<20;^indexl++)
498 555 output[indexl]=0;
499 556
500 last: 557 for^(index1=0;^indexl<1000;^indexl++)
501 setviewport(rcv.left,^rcv.top,^rcv.right,^rcv.bottom 558 output[frame[indexl]]++;

,^1); 559
502 clearviewport(); 560 setviewport(stat.left,^maxy*.7,^stat.right,^maxy*.97,^1)•
503 sprintf(msg,^"^%d",^ack); 561 sprintf(msg,^"Number of Transmissions required for Reception
504 outtextxy(10,^0,^meg);
505 sprintf(msg,^"^%d",^lost); 562 outtextxy(5,^5,^meg);
506 outtextxy(10,^10,^meg); 563
507 564 for^(index1=0;^indexl<20;^indexl++)
508 sprintf(msg,^"^%d",^crcfail+headfail); 565 (
509 outtextxy(10,^20,^meg); 566
510 sprintf(msg,^"^%7.4E",2.0*infobits/totalbits); 567 sprintf(msg,^"^%d",^indexl);
511 outtextxy(10,^30,^meg); 568 outtextxy(30*indexl,^20,^meg);
512 569
513 setviewport(stat.left,^stat.top,^stat.right,^stat.bo 570 setcolor(GREEN);

ttom, 1); 571 sprintf(msg,^"^%d^",^output[indexl]);
514 clearviewport(); 572 outtextxy(30*indexl,^30,^meg);

Oct 6 1993 14:23:52^ADAPT.0^Page 11
573
^

setcolor(WHITE);
574
575
576
577^/*
578
^

for (index2=0; index2<64; index2++)
579
^

printf("%x ",transmit[index2 1);
580
581^printf("\n");
582
^

for (index2=8; index2,64; index2++)
583
^

printf("%x ",rovr[index2 1);
584
585
^

exit (1)
586
587
588
589
590^}
591
592
593
^

printerror(int number)
594
595^char msg[80);
596
^

int maxy;
597
598
^

switch (number)
599
600^ case 1:sprintf(msg, "Select Board 290h has failed.")

601^ break;
602^ case 2:sprintf(msg,
603^ break;
604^ case 3:sprintf(msg,

"Loading RCVR.out has failed.");

"Select Board 390h has failed.")

605^ break;
606^ case 4:sprintf(msg, "Loading F.OUT has failed.");
607^ break;
608^ case 5:sprintf(msg, "Downloading transmission frame

to DSP board has failed.");
609^ break;
610

^

^ case 6:sprintf(msg, "Writing Control Word to transmi
tter has failed");

611^ break;
612

^

^ default:sprintf(msg, "Problem with error print mutt
ne.");

613
614
615
616
617
618
619
620
621
622
623^}

}
maxy=getmaxy();
setcolor(GREEN);
setbkcolor(WHITE);
outtextxy(10, maxy*.7+15, msg);
/*getch();*/
exit)l)
return(S);

Oct 6 1993 14:48:30^XMITADAP.ASM^Page 1 Oct 6 1993 14:48:30^XMITADAP.ASM^Page 2
1 4

51 .word 7h ;Polynomial2 .10111,1+x+x°2+
2
3 ,•

XMITADAP.asm^V1.00^Dec 92

^

V1.01^Jan 93 52
x°4

.word 9665 ;CRC-CCITT
4 V1.02^Mar 93 53 .word 374732215 ;CRC-32
5 v1.03^Apr 93 54 .word B1492AAh ;flag for packet
6 V2.00^Aug 93 55 .word ;Q_START --> 809c06
7 V2.01^Sept 93 56 .word ;Q_START(1)
8 ; The purpose of this code is to set up the dsp board environm 57 .word ;Q_START(2)

ent, 58 .word ;Q_START(3)
9 , variables,^and memory.^This code is used as the main interf 59 .word ;Q_START(4)

ace 60 .word ;Q_START(5)
10 , between the PC and the dsp board. It places all necessary 61 .word ;Q_START(6)
11 ; assembler and C routines in memory and then awaits in a simp 62 .word ;Q_START(7)

le 63 .word ;Q_END --> 809c0e
12 , loop, where the ARQ shell can poke the appropriate info into 64 .word ;Q_END(1)
13 ; DSP memory and then run the appropriate routine. 65 .word ;Q_END(2)
14 , 66 .word ;Q_END(3)
15 67 .word ;Q_END(4)
16 68 .word ;Q_END(5)
17 69 .word ;Q_END(6)
18 .include VARS.ASM 70 .word ;Q_END(7)
19 .global^.bss 71 .word 09c06h ;Q_START --->809c16
20 .global cinit^ ;init table^(from li 72 .word 09c0Eh ;Q_END --->809c17

nker)
too

.global _c_in
;starting address^(C standard)

73
9C18

.word 0804214 ;DIGITAL PORT ADDRESS --->80

21 .global _interleaver 74 TAB_ENC .WORD ;pi/4 QPSK encoding table
22 .global _puncture 75 .WORD ;---> 809c19
23 .global _combineheader 76 .WORD
24 .global^_conv^ ;the convolutional en 77 .WORD

coding 78 .WORD
25 ;routine 79 .WORD
26 .global^_polydiv^;polnomial division r 80 .WORD

outine 81 .WORD
27 82 .WORD
28 83 .WORD
29 .sect^".init"^ ;interrupt section 84 .WORD
30 RESET .word^_c_int00^ ;RESET -> start addr 85 .WORD

ass 86 .WORD
31 INTO .word^NO^ ;all others to dummy 87 .WORD

reti 88 .WORD
32 INT1 .word^INT_TRANSMISSION^;except the sync int 89 .WORD
33 INT2 .word^NO 90 .WORD
34 INT3 .word^NO 91 .WORD
35 XINTO .word^NO 92 .WORD
36 RINTO .word^NO 93 .WORD
37 XINT1 .word^NO 94 .WORD
38 RINT1 .word^NO 95 .WORD
39 TINTO .word^NO 96 .WORD
40 TINT1 .word^NO 97 .WORD
41 DINT .word^NO 98 .WORD
42 99 .WORD
43 100 .WORD
44 101 .WORD
45 ; Data section to initially be loaded at $30000h but then 102 .WORD
46 moved to $809c00^(on chip ram). 103 .WORD
47 104 .WORD
48 .data 105 .WORD
49 .word^5^;constraint length 106 ICHAN .WORD fff0000H ;IBIT CHAN^1 volt
50 .word^19h^;polynomiall .11001.1+x°3+x^ 107 .WORD a780000H ;0.707

Oct 6 1993 14:48:30^XMITADAP.ASM^Page 3 Oct 6 1993 14:48:30^XMITADAP.ASM^Page 4
108 .WORD^0^;0.00 157
109 .WORD^-5a780000H^;-0.707 158 LOT^@PRIMCTRL, ARO^;Hardware specific i
110 .WORD^-7fff0000H^;-1.00 nit
111 .WORD^-5a780000H^;-0.707 159 LOT^INITIAL,^RO
112 .WORD^0 160 STI^RI,^*ARO
113 .WORD^5a780000H 161 LOT^@EXPCTRL, ARO
114 QCHAN .WORD^0 162 LOT^NULL,^RO
115 .WORD^5a780000H 163 STI^RI,^*ARO
116 .WORD^7fff0000H 164 LOT^@SERIALO, ARO^;SET DIGITAL OUTPUT
117 .WORD^5a780000H TO 0
118 .WORD^0 165 LDI^2H,^RO
119 .WORD^-5a780000H 166 STI^ED,^*ARO
120 .WORD^-7fff0000H 167
121 .WORD^-5a780000H 168
122 .WORD^809C19H
123 .WORD^809C39H 169 This portion of code is absolutely necessary when mixing C
124 .WORD^809C41H 170 modules with assembly language.^It ensures that the
125 171 variables defined in the C module are properly initialized.
126 172
127 173

address
LDP^CODES^ ;get page of stored

128 Variables to be ued for initialization. 174 LDI^@INIT_ADDR, ARO^;get address of mit
129 tables
130 STACK .usect^".stack",STACK_SIZE 175 CMPI^-1, ARO^ ;if RAM model,^skip
131 mit
132 .text 176 BEQ^init_done
133 STACK_ADDR .word^STACK^ ;address of stack 177 LOT^*ARO++, R1^;get first count
134 INIT_ADDR .word^cinit^ ;address of mit tab 178 BZD^init_done^;if 0,^nothing to do

les 179 LOT^*ARO++, AR1^;get dest address
135 PRIMCTRL .word^00808064h^;primary bus control 180 LDI^*ARO++, RI^;get first word

address 181 SUBI^1,^121^ ;count^-^1
136 EXPCTRL .word^00808060h^;expansion bus contr 182

ol address 183 do_init: RPTS^R1^ ;block copy
137 TIMECTL1 .word^808030H^ ;timer 1 control 184 STI^NO,^*AR1++
138 SERIAL() .word^808042h^ ;FSX/DX/CLKX port co 185 II LDI^*ARO++,^RI

ntrol 186 LDI^RI,^R1^ ;move next count int
139 TIMECTL2 .word^808020h^ ;timer 2 control o R1
140 RSTCTRL

era
.word^601h^ ;reset value for tim 187

epeat
BNZD^do_init^ ;if there is more,^r

141 PERIOD .word^808038h^ ;timer 1 period 188 LDI^*ARO++, AR1^;get next dest addre
142 COUNT .word^55^ ;period value for ti SS

mar 1 189 LDI^*ARO++,^RI^;get next first word
143 SETCTRL .word^6c1h^ ;set value for timer 190 SUBI^1,^R1^ ;count - 1

s 191
144 RAM1 .word^809c00h^ ;On chip ram area 192
145 DUALSTART .word^30000h^ ;temp variables
146 DUALEND .word^33300h^ ;change for 64k 193 This code block copies all of the variables placed at $30000
147 DUALMEM .word^300BFh
148 :*** 194 and moves them to the on chip memory area at $809c00 - $80a0*** 00
149 The following code sets up the stack pointer and then 195
150 initializes the DSP hardware as outlined in the Technical 196 init_done:
151 Reference Manual. 197 LDI @DUALSTART, ARO
152 198 LDI @RAM1, AR1
153 _c_int00: 199 LDI *ARO++,^RO^;since parallel instruction
154

address
LDP^CODES^ ;get page of stored 200

0
;coming up must initialize R

155 LDI^@STACK_ADDR,^SP^;load the address in 201
to SP 202 RPTS DATALENGTH

156 LDI^SP,^FP^ ;and into FP too 203 LDI *ARO++,^RI

Oct 6 1993 14:48:30^XMITADAP.ASM^Page 5 Oct 6 1993 14:48:30^XMITADAP.ASM^Page 6
204 IISTI^RO,^*AR1++ 259 STI R2, @MENU_OPTION
205 260 BZ MENU^ ;if no choice loop back206 261
207 262

263 ;LSH -2,^RO
208 264 ;AND RI,^121,^R3^ ;get^data RATE209 LDI @DUALSTART, R6 ;clear DUAL memory 265 ;STI R3,^ORATE
210 LDI @DUALEND, R7 ;$30000^-->$33300 266
211 CALL CLEAR 267 LSH -2,^RI
212 268 LDI PACKET_MASK, R1^;get PACKET_NUM
213 LDP ONCHIP ;initialize variables 269 AND RI, R1, R4
214 LDI 0, RI^ ;used in transmission interrupt 270 OTT R4, @PACKET_NUM
215 LDI 0,^R1 ;routine 271
216 LDI^32,^R2 272 LDP CODES
217 STI RI, @SINE POINTER ;sine_pointer = $809c08 273 LDI @VIRGIN_HEADER, AR1
218 STI RI,^@COSIT4E POINTER ;cosine_pointer.$809c08 274 LDI *AR1++, RI
219 STI R2, @POINT EOUNT ;point_count = 32 275 LOT LENGTH MASK, R1^;get LENDATAO
220 STI R1,^@DATA in-TORD ;data_word . 0 276 LSH -22,^RI
221 STI R1, @CURRNT ADDRESS ;current_address = 0 277 AND RI, R1, R5
222 OTT R1, @END ADDiESS ;end address . 0 278 ldi*arl,^r0
223 STI R1, @Q_OTFSET ;q_oTfset . 0 279 and 3,^r0^ ;get puncture matrix#224 STI R1,^@TRANSMISSION ;transmission = 0^(not busy) 280 ldi *arl,^rl
225 STI R1, @Q_OFF TRANS ;q_off_trans . 0 281 and 12,^rl
226 STI R1, @GET_NWFRAME_FLAG ;flag .^0 282 lsh -2,^rl^ ;get rate to be used227 LDI 40H,^BK ;BK . 40H 283 LDP DUAL
228 284 sti rO,^@CODE
229 285 sti rl,^ORATE
230 286 STI R5, @LENDATAO

287
231 This section places the flag for the frames in the appropria 288

te 289 CMPI 1,^R2
232 ;^memory locations. 290 BZ OPTION1
233 291 CMPI 2,^R2
234 ADD_FLAG: 292 BZ OPTION2
235 LDP ONCHIP 293 CMPI 3,^R2
236 LDI @FLAG,^RI 294 BZ OPTION3
237 LDP CODES 295 LDI 2,^R7
238 LDI @FLAGOP1, AR1 296 BR ERROR
239 ;LDI^15,^RC ;16 packets 297 DEAR: BR DEAR
240 ;RPTB ENDLOOP1 298 ;***
241 addi 63h,^an ;cut it out because interef ***

eras 299 OPTION 1 - ADAPTIVE SCHEME
242 ;with combine area must be c 300 Construct frame from given header and data. Use

lean!! 301 rate 1/2 for header and appropriate CPC matrix
243 302 ; chosen rate of data packet.
244 OTT RO,^*AR1 303 OPTION1:
245 ENDLOOP1: 304
246 ;ADDI 21h, ART ;get next flag address 305 ;***
247 ****
248 306 ;CRC calculation and appending to header information stored
249 307 ;at VIRGIN_HEADER
250 308
251 ;strip information from CONTROL_WORD 309 LDP CODES
252 310 LOT @VIRGIN_HEADER, AR1^;get original header and place253 START_OF_MAIN_ROUTINE: 311 LOT *AR1++, RI^ ;at HEADBUF1 padded with x°16
254 312 LDI *AR1,^R1^ ;zeros
255 LDP DUAL 313 LDI @HEADBUF1, AR5
256 MENU:^LDI @CONTROL WORD, RI 314
257 LDI MENU_MASi, R1 ;get MENU_OPTION 315 LDI @HIGH MASK, R2
258 AND RI,^R1,^R2 316 LSH 16, RI

Oct 6 1993 14:48:30^XMITADAP.ASM^Page 7 Oct 6 1993 14:48:30^XMITADAP.ASM^Page 8
317 AND RO,^R2,^R3 372
318 LSH -16,^R3 373
319 OR R1,^R3 374 LDP CODES
320 LSH 16,^RO 375 LDI OFRAMEBUFP1, AR3^;where to place result
321 STI RU,^*AR5++ 376 LDI 64, RO^ ;bit length of adderl
322 STI R3,^*ARS__ 377 LDI @HEADBUF1, ARO^;adder 1 output bits
323 378 LDI OHEADBUF2, AR1^;adder 2 output bits
324 LDI 17,^RO^ K constraint length 379
325 LOT POND CCITT, R1^ POLY divisor 380 PUSH NO
326 LDI 2, RI^ length of header in 32 bit 381 PUSH AR3

words 382 PUSH AR1
327 LDI @HEADBUF2,^R3^ where to place RESULT^(not 383 PUSH ARO

needed 384 CALL^combineheader
328 in this CRC case) 385 SUBI^.,^SP
329 386
330 PUSH AR1^ save VIRGIN_HEADER+1 387 ;End of header construction
331 PUSH R3^ *RESULT . HEADBUF2 388
332 PUSH R2^ TOTAL . 2 389 ;***
333 PUSH R1^ POLY . CRC_CCITT ******
334 PUSH AR5^ MESGDATA = HEADBUF1 390 ;^Data CRC calculation
335 PUSH RU^ K = 17 391
336 392
337 393
338 CALL _polydiv^ Do CRC calculation 394 LDI @VIRGIN_DATA, ARO^;start of data
339 CRC checksum returned in R 395

0 396 LDI 33,^RO^ ;K constraint length
340 397 LDI @CRC 32,^R1^ ;POLY
341 398 LDI ODATT,BUFP1,^R3^;address to store RESULT
342 SUBI 5,SP^ clean stack 399 LDI @VIRGIN_DATA, AR3^;*MESGDATA
343 POP AR1^ get back VIRGINHEADER+1 400 SUBI 1, AR3^ ; same as premultiply by x^K
344 LSH 5, RU^ shift CRC before placing 401
345 LDI *AR1, R1^ in VIRGIN_HEADER+1 402 LDP DUAL
346 OR R1,^RU 403 LDI ORATE, R7
347 STI RU,^*AR1 404 LDP CODES
348 405 CMPI 1,57
349 ;End of CRC calculation and appending to header info 406 LDIZ 27, R2^ ;26 DATA WORDS + BLANK CRC
350 407 CMPI 2,^R7
351

**
;*** 408

409
LDIZ 20, R2^ ;19 DATA WORDS + BLANK CRC
CMPI 3,^R7

352 ;Convolutional encoding of header information stored at 410 LDIZ 13, R2^ ;12 DATA WORDS + BLANK CRC
353 ;VIRGIN HEADER.^Resulting encoded header is stored at 411 CMPI 0,^R7
354 ; AdderT output encoded header bits^ > HEADBUF1 412 BZ ERROR
355 ; Adder2 output encoded header bits^ > HEADBUF2 413
356 414
357 415
358 LDI @VIRGIN HEADER, ARO^; data to be convolved 416 LDI R2,^R7
359 LDI OHEADBUT.1, AR1^; address of adderl bits 417 PUSH R7
360 LDI @HEADBUF2, AR2^; address of adder2 bits 418 PUSH R3^ ;*RESULT^(not used)
361

lye
LDI 2,^RO^ ;^# of 32 bit words to convo 419

rds +
PUSH R2^ ;TOTAL = length in 32 bit wo

362 420 ;^1 for CRC32
363 PUSH RU^ ;^SIZE 421 PUSH R1^ ;POLY . CRC_32
364 PUSH AR2^ ; MESGP2 422 PUSH AR3^ ;MESGDATA = VIRGIN_DATA
365 PUSH AR1^ ; MESGP1 423 PUSH RU^ ;K = constraint length
366 PUSH ARO^ ; MESG 424
367 425 CALL _polydiv
368 CALL _conv 426
369 427 SUBI 5,^SP
370 SUBI 4,^SP 428 ADDI 1, AR3^ ;Point to @VIRGIN_DATA
371 ;End of convolutional encoding of header 429

_...-

Oct 6 1993 14:48:30^XMITADAP.ASM^Page, 9 Oct 6 1993 14:48:30^XMITADAP.ASM^Page 10
430 POP R7 486 LDI @DATABUFP1, ARO^;pointer to data bits P1
431 SUBI^1,^R7 487 LDI @DATABUFP2, AR1^;pointer to data bits P2432 ADDI R7, AR3 488 LDI @FRAMEBUFP1, AR2^;pointer to frame P1
433 OTT RO,^*AR3^ ;place CRC at end of data 489 LDI @FRAMEBUFP2, AR3^;pointer to frame P2
434 490
435 491
436 ;At this point the data exists @VIRGIN_DATA with a 32 bit CR 492 ;***

C ******
437 ;appended to it right after the last data bit 493 ;Puncture and combine bits of adderl and adder2
438 ;0X30013^-^0X30025 DATA^CRC^@ 30026 494
439 495
440 496 PUNCTURE AND COMBINE:
441

,*** 497 EDP ElUAL

498 LOT @RATE, R7
442 ;Convolutional encoding of data information @VIRGIN_DATA. 499 LDP CODES
443 ;Resulting encoded data is stored at: 500 CMPI 1,R7
444 ;^P1 encoded data ---> DATABUFP1 501 BZ RATE1
445 ;^P2 encoded data ---> DATABUFP2 502 CMPI 2,^R7
446 503 BZ RATE75
447 504 CMPI 3,^R7
448 ;need to get number of 32 bit words to convolve and also add 505 BZ RATES

K 506 CMPI 0,^R7
449 ;^(constraint length)^bits to 507 BZ ERROR
450 1> rounded up word count, and 508
451 2> bit count of encoded data 509 ;data bits of adder 1 are @DATABUFP1
452 510 ;data bits of adder 2 are 9DATABUFP2
453 LDP CODES 511
454 LOT @VIRGIN DATA, ARO 512 RATE1:
455 LDI @DATABUET1, AR1 513 LDP DUAL
456 LOT @DATABUFP2, AR2 514 LOT @CODE, R7
457 LDP DUAL 515 ldp CODES
458 LOT @RATE,^R7 516 CMPI 1,^R7
459 LOP CODES 517 BZ CODE1
460 CMPI 1,R7 518 CMPI 2,^R7
461 LDIZ 28, R4^ ;26 DATA WORDS + BLANK CRC 519 BZ CODE2
462 CMPI 2,^R7 520 BZ ERROR
463 LDIZ 21, R4^ ;19 DATA WORDS + BLANK CRC 521
464 CMPI 3,^R7 522 RATE75:
465 LDIZ 15, R4^ ;12 DATA WORDS + BLANK CRC 523 LDP DUAL
466 524 LOT @CODE, R7
467 PUSH R4^ ;SIZE 525 ldp CODES
468 PUSH AR2^ ;MESGP2 526 CMPI 1,^R7
469 PUSH AR1^ ;MESGP1 527 BZ CODE75 CPC_ONE
470 PUSH ARO^ ;MESG 528 CMPI 2,^117
471 529 BZ CODE75_CPC_TWO
472 CALL _conv 530 BZ ERROR
473 531 RATES:
474 SUBI 4,^SP 532 LDP CODES
475 ;End of convolutional encoding of data 533
476 ;*** 534 LOT 9DATABUFP1, ARO

**** 535 LOT @DATABUFP2, AR1
477 ; Construct frame 91 and P2 and place at: 536 BR RATE_HALF
478 ;^frame P1 ---> FRAMEBUFP1 537
479 ;^frame P2 ---> FRAMEBUFP2 538
480 ; This procedure is made a bit tedious because if the header 539
481 ;^length is not a multiple of 32 then we must shift and OR 540
482 ; all the data bits so that they can be appended directly 541 PUSH_AND_CALL:
483 ;^after the header bits!! 542 PUSH RO^ ; Routine used by all rates to push
484 543 PUSH AR1^ ; parameters and call puncture modul
485 e

Oct 6 1993 14:48:30^XMITADAP.ASM Page 11 Oct 6 1993 14:48:30^XMITADAP.ASM Page 12
544 PUSH AR3 601 LDI 672,^RO
545 PUSH R1 602 LDI 3, R1^ ;Puncture Adder2 by 3/4
546 603 LDI @DATABUFP4, AR3
547 CALL _puncture 604 LDI @DATABUFP2, AR1
548 605 CALL PUSH AND_CALL
549 SUBI 4,^SP 606 BR COMBINE
550 RETS 607
551 608 RATE_HALF:
552 CODEl: 609 LOT 448,^RI ;14 WORDS * 32 BITS
553 LDI^896,^RO 610 LDI @FRAMEBUFP2, AR3
554 LOT^4,^R1 ; Puncture Adderl bits by 1/ 611 PUSH RO

2 612 PUSH AR3
555 LDI 8DATABUFP1, AR1 613 PUSH AR1
556 LET @DATABUFP3, AR3 614 PUSH ARO
557 CALL PUSH_AND_CALL 615 CALL^combineheader
558 616 SUSI IT, ^SP
559 LDI^896,^RO 617 BR CONSTRUCT
560 LDI^5,^R1 ;Puncture Adder2 bits by 1/2 618 COMBINE1:
561 LDI @DATABUFP4, AR3 619 LDI @DATABUFP3, ARO
562 LDI @DATABUFP2, AR1 620 LDI @DATABUFP4, AR1
563 CALL PUSH AND_CALL 621
564 BR COMBINE1 622 LDP CODES
565 CODE2: 623
566 LDI^896,^RI 624
567 LDI 6,^R1 ; Puncture Adderl bits by 1/ 625 LDI @FRAMEBUFP2, AR3

2 626 LDI 896,^RD ;21 WORDS * 32 BITS
568 LDI @DATABUFP1, AR1 627 PUSH RI
569 LDI @DATABUFP3, AR3 628 PUSH AR3
570 CALL PUSH_AND_CALL 629 PUSH AR1
571 630 PUSH ARO
572 LDI^896,^RI 631 CALL^combineheader
573 LDI 7,^R1 ;Puncture Adder2 bits by 1/2 632 SUET 7i,^SP
574 LDI @DATABUFP4, AR3 633 BR CONSTRUCT
575 LDI @DATABUFP2, AR1 634
576 CALL PUSH AND_CALL 635
577 BR COMBINE]. 636 COMBINE:
578 637 LDI @DATABUFP3, ARO
579 638 LDI @DATABUFP4, AR1
580 CODE75_CPC ONE: 639
581 LDY 672,^RO 640 LDP CODES
582 LDI^0,^R1 ; Puncture Adderl bits by 3/ 641

4 642
583 LDI 8DATABUFP1, AR1 643 LDI @FRAMEBUFP2, AR3
584 LDI @DATABUFP3, AR3 644 LDI 672,^RI ;21 WORDS . 32 BITS
585 CALL PUSH_AND_CALL 645 PUSH RO
586 646 PUSH AR3
587 LDI^672,^RO 647 PUSH AR1
588 LDI^1,^R1 ;Puncture Adder2 bits by 3/4 648 PUSH ARO
589 LDI 8DATABUFP4, AR3 649 CALL^combineheader
590 LDI @DATABUFP2, AR1 650 SUBI Z,^SP
591 CALL PUSH AND_CALL 651
592 BR COMBINE 652 ;End of header construction
593 653
594 CODE75_CPC TWO: 654 CONSTRUCT:
595 LDT 672,^RI 655 LDP CODES
596 LDI^2,^R1 ;Puncture Adderl by 3/4 656 LOT @FRAMEBUFP1, AR1
597 LDI @DATABUFP1, AR1 657 ADDI 4,AR1
598 LOT 8DATABUFP3, AR3 658 LDI 8FRAMEBUFP2, ARO
599 CALL PUSH_AND_CALL 659 ldp DUAL
611 660 LDI 27,^RI ;copy possible 27 words if r

Oct 6 1993 14:48:30^XMITADAP.ASM^Page 13 Oct 6 1993 14:48:30^XMITADAP.ASM Page 14
ate^1/2 715

661 LDI^*ARO++,^R1 716
662 RPTS RO 717 LDP DUAL
663 718 LDI 0,^R6
664 LET^*ARO++,^R1 719 STI R6, @CONTROL_WORD
665 IISTI^R1,^*AR1++ 720
666 721 LDP CODES
667 722 LDI @FRAMEBUFP1, R6
668 723 LDI R6,^R7
669 BR TRANY 724 ADDI 40H, R7
670 725 CALL CLEAR
671 ;End of constructing Frames P1 and P2 726 LDI @DATABUFP3, R6
672 ;.**

727 LDI R6,^R7

673
674

•,^Now we must save the frame P2 for future possible
•,^retransmission and interleave frame P1 which will

728
729
730

AUDI 200h,^R7
CALL CLEAR

675 also be save and then queued for transmission. 731 BR START_OF_MAIN_ROUTINE
676 732
677 Save frame P2^---> @PACKETxHARDP2 733
678 Interleave P1 and save ---> @PACKETxHARDP1 734
679 735 TRANY:
680 736 LDI 31,^RO
681 737 LDP CODES
682 nop 738 LDI @FRAMEBUFP1, ARO
683
684

nop
nop

739
3

LDI @PACKET3HARDP1, ARC ;COPY FRAME TO SLOT

685 ldi BLOCKS,^r2 740 LDI *ARO++,^R1
686 741 RPTS RO
687 INTERLEAVE MORE: 742 LDI *ARO++,^R1
688 PUSH R2 743 IISTI R1,^*AR1++
689 PUSH AR2 744
690 PUSH ARO 745 ;Now set up for transmission
691 746
692 CALL _interleaver 747 LDI @PACKET3HARDP1, ARO
693 POP ARO 748 SUBI 1, ARO
694 POP AR2 749 LDI ARO, AR3
695 POP R2 750 ADDI 33, AR3
696 751 LDI ARO,^R7
697 752 LDI AR3,^R6
698 ;ADDI 4, AR2^ ;not required,^subroutine au 753 CALL QUEUE

tomatically 754
699 ADDI DEINT_ROW, ARO^ ;increments AR2 cont 755

ants 756 LDP DUAL
700 SUBI^1,^R2 757 LDI^0,^R6
701 BNZ INTERLEAVE_MORE 758 STI R6, @CONTROL_WORD
702 759
703 ;Completed interleaving of frame P1 and saving of frame P1 & 760 LDP CODES

P2 761 LDI @FRAMEBUFP1, R6
704 :***

762 LDI R6,^R7
763 ADDI 40H,^R7

705 764 CALL CLEAR
706 ;Now set up for transmission 765 LDI @DATABUFP3, R6
707 766 LDI R6, R7
708 LDI @PACKET3HARDP1, ARO 767 AUDI 200h, R7
709 SUBI 1,^ARO 768 CALL CLEAR
710 LDI ARO, AR3 769
711 AUDI 34,^AR3 770 BR START_OF_MAIN_ROUTINE
712 LDI ARO, R7 771
713 LDI AR3, R6 772
714 CALL QUEUE 773

Oct 6 1993 14:48:30^XMITADAP.ASM^Page 15 Oct 6 1993 14:48:30^XMITADAP.ASM^Page 16
774 ,*** 827****** 828 CALL _interleaver
775 829 POP ARO
776 ; The purpose of this option is to encode the data using a rat 830 POP AR2

831 POP R2
777 ; 1/2 convolutional encoder and the two polynomials defined in 832
778 ; VARS.ASM. The encoded data is placed in a frame and sent thr 833

ough 834 ;ADDI 4, AR2^ ;not required,^subroutine au779 ; the channel. tomatically
780 ;

terbi
Main purpose for this option is to test perfomance of the Vi 835 AUDI DEINT_ROW, ARO^ ;increments AR2 cont

ents
781 Decoder in the RCVRCPC.ASM module. 836 SUBI 1,^R2
782 837 BNZ INTERLEAVE_MORE2
783 OPTION2: 838
784 LDP CODES 839 ;frame is now interleaved and placed into the slot 30123
785 LDI @VIRGIN_HEADER, ARO^ ;address of data to 840 ;and it also has a flag appended to it

convolve 841
786 LDI @FRAMEBUFP1, AR1^ ;Pl bit buffer 842 ldi @PACKET3HARDP1, ar2
787 LDI @FRAMEBUFP2, AR2^ ;P2 bit buffer 843 SUBI 1, AR2^ ;AR2 points to flag @ start
788 LDI 16,^HO^ ;# of 32 bit words t of frame

o encode 844 ldi ar2,^ar0
789 845 ADDI 34, ARO
790 PUSH HO^ ;SIZE 846 LDI AR2,^R7^ ;start address of frame
791 PUSH AR2^ ;MESGP2 847 LDI ARO,^R6^ ;end address + 2
792 PUSH AR1^ ;MESGP1 848 CALL QUEUE^ ;transmit frame
793 PUSH ARO^ ;MESG 849
794 850 LOP CODES^ ;clear memory 8$30000 to
795 CALL _conv^ ;convolve data 851 LDI @DUALSTART, R6^;$300bf and branch back for
796 SUBI 4,^SP next
797 852 LDI @DUALMEM, R7^ ;option
798 ;Now the P1 bits and P2 bits must be combined 853 CALL CLEAR
799 854 BR START_OF_MAIN_ROUTINE
800 LDI 512,^RO 855
801 LDI @FRAMEBUFP1, ARO 856
802 LDI @FRAMEBUFP2, AR1 857
803 LDI @DATABUFP1, AR3 858
804 859
805 PUSH HO^ ;# BITS 860
806 PUSH AR3^ ;address of convolve

d data 861 OPTION 3 - Take 992 random data bits delivered @VIRGIN_HEADE
807 PUSH AR1^ ;Pl bits
808 PUSH ARO^ ;P2 bits 862 and look at control word in order to determine
809 863 which P1 frame slot to place data in.^Then trans
810 CALL _combineheader mit
811 SUBI 4,^SP 864 random UNCODED data with a flag.
812 865
813 866 The purpose of this option is to allow the user t
814 ;Now set up to interleave & transmit frame through channel
815 867 obtain the Bit Error Rate (with a PC host Program
816 LDI @PACKET3HARDP1, AR2^;slot address of frame
817 LDI @DATABUFP1, ARO^;random data start address 868 of the modulation scheme being used.^This option
818 869 takes the random data, adds a flag and just
819 870 transmits the 1024 bit frame through the channel.
820 871
821 ldi BLOCKS,^r2 872 OPTION3:
822 873
823 INTERLEAVE_MORE2: 874 LDP CODES
824 PUSH R2 875 LDI @PACKET3HARDP1, AR2^;slot address of frame
825 PUSH AR2 876 LDI @VIRGIN_HEADER, ARO^;random data start address
826 PUSH ARO 877

Oct 6 1993 14:48:30^XMITADAP.ASM^Page 17 Oct 6 1993 14:48:30^XMITADAP.ASM^Page 18
878
879 932 LDI @Q_END, AR1^ ;QUEUE
880 ldi BLOCKS,^r2 933 STI R6,^*+AR1(IRO)
881 934
882
883

INTERLEAVE_MORE3:
PUSH R2

935 LDI^IRO,^RO^ ;Adjust offset value which i
s used

884
885

PUSH AR2
PUSH ARO

936 ADDI 1, RO^ ;to make the QUEUE a circula

886 937 CMPI 8,^RU^ ;buffer887 CALL _interleaver 938 LDIZ 0,^RO
888 POP ARO 939 STI RO,^@Q_OFFSET
889 POP AR2 940
890
891

POP R2 941 LDI @TRANSMISSION, RO^;Check if busy transmitting
if not

892
893 ;ADDI 4, AR2^ ;not required,^subroutine au

942
943

BZ BEGIN_TRANS^ ;begin transmission
RETS

tomatically 944
894 ADDI DEINT_ROW, ARO^ ;increments AR2 cont

ents
945

895
896

SUSI^1,^R2
BNZ INTERLEAVE_MORE3

946 This section of code is used to begin transmission of a fram

897
898 ;frame is now interleaved and placed into the slot 30123

947
948

and initialize various parameters for transmission interrupt
routine.

899
900
901

;and it also has a flag appended to it

ldi @PACKET3HARDP1,^ar2

949
950

It is used for the first frame transmission as well as any
subsequent frame transmission when the interrupt has disable

902 SUBI 1, AR2^ ;AR2 points to flag @ start 951 its^self.
of frame 952

903 ldi ar2,^ar0 953 BEGIN_TRANS.
904
905
906

ADDI 34, ARO
LDI AR2,^R7^ ;start address of frame
LDI ARO,^R6^ ;end address + 2

954
955
956

Set up timer 1 which will be used to trigger interrupt 1
every 6.6 mircoseconds.^55/.12 = 6.6mircoseconds

LDP CODES
907 CALL QUEUE^ ;transmit frame 957 LDI^@TIMECTL2, AR1908 958 LDI^@TIMECTL1, ARO
909 LOP CODES^ ;clear memory @$30000 to 959 LDI^@RSTCTRL, RO
910 LDI @DUALSTART, R6^;$300bf and branch back for 960 STI^RO,^*ARO

911
next

LDI @DUALMEM,^R7^ ;option
961 STI^RO,^*AR1^ ;Reset timers 0,^and

1
912 CALL CLEAR 962
913
914

BR START_OF_MAIN_ROUTINE 963 LDI @PERIOD, AR1^ ;Set timer 1 to trig
ger

915 964 LDI @COUNT,^RO^ ;every 6.6microsecon
ds

916 This section of code places the start and end address of a 965 STI RO,^*AR1
917 frame to be transmitted in the queue. 966 LDI @SETCTRL, RO
918 Note: before calling this routine ensure that 967 STI RO,^*ARO
919 R6^end address of frame + 2 locations 968 LDP ONCHIP
920 R7 = start address of frame 969 LDI OFFFFH, RE
921 970 LDI @Q_START,ARO
922 QUEUE: 971 STI RO,^@TRANSMISSION^;set transmission flag to bu
923 sy
924 LDP ONCHIP 972
925 LDI @Q_START, ARO 973 LDI @Q_OFF_TRANS,^IRO
926
927

KEEPCOING:
LDI @Q_OFFSET,^IRO

974 LDI *+ARO(IRO), AR3^;AR3 = address of frame star

928 LDI *+ARO(IRO),^R1^;QUEUE is full so keep loopi 975
ng until 976 KEEP_TRANS:

929 BNZ KEEPGOING^ ;this slot is available 977
930 978
931 STI R7,^*+ARO(IRO)^;Place start and end address 979

Oct 6 1993 14:48:30^XMITADAP.ASM^Page 19 Oct 6 1993 14:48:30^XMITADAP.ASM^Page 20
980 ;LDI @SINEO,^RO 1036 ERROR:
981 LDI 0,^RO 1037 LDP DUAL
982 STI RD.^@SINE_POINTER^;sine_pointer = 809c08 1038 STI R7, @ERROR_NUM
983 STI RD.^@COSINE_POINTER^;cosine_pointer^809c08 1039 DEAD BR DEAD
984 LDI 8,^RD 1040
985 STI RO,^@POINT_COUNT^;point_count = 8 1041
986 ldi^16,^r0 1042
987 sti rO,^@DIBIT_COUNT 1043 , * *************** ** *************** ** *************** * ****************
988 LDI *AR3++,^RD^ ;place first data in DATA_WO ****

RD 1044 This interrupt 1 is responsible for the actual transmission
989 STI RO, @DATA_WORD of
990 1045 the frame.^It consists of 30 instructions^(if it does not j
991 LDI AR3,^RD ump
992 STI RO,^@CURRENT_ADDRESS^;save incremented pointer 1046 to get a NEWDIBIT).
993 LDI @Q_END, ARO 1047 30 X 6Ons = 1800ns
994 LDI^*+ARO(IRO),^RD 1048
995 STI RO, @END_ADDRESS^;save end address 1049 Interrupt 1 occurs every^55^(count value)/.12 = 6.6 microse
996
997 ldi^0,^r0 1050 6.6microsec/60ns = 110 instructions
998 sti^rO,^*+ar0(ir0) 1051
999 ldi @Q_START,^ar0 1052 110 - 30 = 80 instruction between interrupts
1000 sti^rO,^*+ar0(ir0) 1053
1001 1054 Note: NEWDIBIT is called after 32 points have been output fo
1002
1003 LDI IRO,^RD^ ;Adjust offset used to make 1055 each symbol.^NEWDIBIT is very time consuming and woul

QUEUE
1004 AUDI 1,^RD^ ;a circular buffer 1056 practically take the entire 6.6 microseconds.
1005 CMPI 8,^RO 1057
1006 LDIZ 0,^RI 1058
1007 STI RI, @Q_OFF_TRANS 1059 INT_TRANSMISSION:
1008 1060
1009 LDI @GET_NEWFRAME_FLAG, RD 1061 PUSH ST
1010 BZ ENABLE_RET 1062 XOR 2000H,^ST
1011 LDI^0,^RD 1063 PUSH RD^ ;save registers before using
1012 STI RI, @GET_NEWFRAME_FLAG them
1013 RETS 1064 PUSH R1^ ;in interrupt routine
1014 1065 PUSH R2
1015 ENABLE_RET: 1066 PUSH ARO
1016 OR 2H,^IN^ ;ENABLE INTERRUPT 1 1067 PUSH AR1
1017 OR 2000H, ST^ ;ENABLE GLOBAL INTERRUPTS 1068 PUSH AR3
1018 RETS 1069
1019 1070 push ir0
1020 1071 PUSH DP
1021 1072

1073 LDP ONCHIP
1022 ;This section clears memory chunks specified by ARO --› AR1 1074 LDI @IBIT_POINTER, ARO^;ar0 = sine table pointer
1023 1075 LDI @QBIT_POINTER, AR1^;arl = cosine table pointer
1024 CLEAR: 1076
1025 SUBI R6,^R7 1077 LDI @SINE_POINTER,^IRO
1026 LOIN 1,^R7 1078
1027 BN ERROR 1079
1028 LDI NULL,^RD 1080 LDI *+ARO(IRO),^R1^;output value to channel and upda
1029 LDI R6,^ARO te
1030 RPTS R7 1081 LDI *+AR1(IRO),^R2^;table pointers respectively
1031 STI RD.^*ARO++ 1082 STI R1, OADCHANA
1032 RETS 1083 STI R2, @ADCHANB
1033 ;*** 1084

**** 1085 ldi^@SERIAL°, AR3
1034 ;This section is used for debugging various errors 1086 LDI^2H,^R2
1035 1087 STI^R2,^*AR3

Oct 6 1993 14:48:30^XMITADAP.ASM^Page 21 Oct 6 1993 14:48:30^XMITADAP.ASM^Page 22
1088 1145 ;1diz^0,^r0
1089 LDI @POINT_COUNT, RD ;check if 32 points per symb 1146 ;sti rO,^@COSINE_POINTER

ol 1147 ;ldi^16,^r0
1090 ;SUBI^1,^RD ;has been output to channel 1148 ;sti rO,^@DIBIT_COUNT
1091 CMPI 4,^RD 1149
1092 1150 ;ldiz @FLAG,^r0^ ;continuous flag output
1093 1151 ;sti rO, @DATA_WORD
1094 BNZ NOPULSE 1152 ;LDI^16,^RD
1095 PULSE_RCVR: 1153 ;STI RI,^@DIBIT_COUNT
1096 1154
1097 ;if 16th point then output 1155 BZ NEWWORD^ ;frame output
1098 LDI^6H,^R2 ;a pulse on the serial 0 por 1156

t 1157 NEXT:^LDI @SINE_POINTER, RI^ ;use DIBIT to dec
1099 STI^R2,^*AR3 ide how much
1100 NOPULSE: 1158 MPYI 8,^R2
1101 1159 ADDI R2,^RD
1102 SUBI 1,^RI 1160 LDI RI,^IRO
1103 STI RO,^@POINT_COUNT 1161 LDI @TABLE ENC, ARO
1104 BZ NEWDIBIT ;if so get another dibit 1162 LDI *+ARO(TRO),^R1
1105 1163 STI R1,^@SINE_POINTER
1106 FINISH: 1164
1107 ;STI ARO,^@SINE POINTER ;save new pointers 1165
1108 ;STI AR1,^@COSIRE_POINTER 1166
1109 1167
1110 FINISH2: 1168
1111 POP DP ;restore registers before re 1169

turning 1170
1112 pop ir0 1171 BR FINISH2
1113 POP AR3 ;from interrupt routine 1172
1114 POP AR1 1173 NEWWORD:
1115 POP ARO 1174 LDI 16,^RD
1116 POP R2 1175 STI RO,^@DIBIT_COUNT
1117 POP R1 1176
1118 POP RI 1177 LDI @CURRENT_ADDRESS, AR3^;get pointer to data to tran
1119 POP ST emit
1120 OR 2000h,^ST 1178 LDI *AR3++,^RD^ ;get data pointed to
1121 RETI 1179 STI AR3, @CURRENT ADDRESS^;save incremented pointer
1122 1180 STI ED, @DATA_WORE^;save data
1123 1181 CMPI @END_ADDRESS, AR3^;check if end of frame reach
1124 NEWDIBIT: ad
1125 LDI @GET_NEWFRAME_FLAG, RD ;if newframe flag set 1182 BZ SETFLAG
1126 BN NEWFRAME ;get newframe 1183 OR NEXT^ ;if not do NEXT
1127 LDI^8,^RI 1184
1128 LDI^3,^R1 ; R1 = 3 mask for 2 lsb's 1185 SETFLAG:
1129 STI RI,^@POINT_COUNT ;initialize POINT_COUNT . 32 1186 LDI -1,^RD
1130 LDI @DATA WORD, RI ; RO = DATA_WORD 1187 STI RI, @GET_NEWFRAME_FLAG
1131 AND3 RI,^17d,^R2 ; R2 = DATA_WORD & 3 1188 BR NEXT
1132 LSH -2,^RI ;shift DATA_WORD by 2 1189
1133 STI RI,^@DATA WORD 1190 NEWFRAME:
1134 LDI @DIBIT_COTINT,^RI 1191 ;MIGHT WANT TO ADD TIME DELAY BETWEEN FRAMES
1135 SUBI 1,^RI 1192 LDI @Q_START, ARO
1136 STI RO,^@DIBIT_COUNT 1193 LDI @Q_OFF_TRANS,^IRO
1137 1194 LDI *+ARO(IRO),^AR3
1138 hnz NEXT 1195 LDI AR3,^RI^ :RI will set ST flag
1139 1196 BZ STOP TRANS
1140 ;ldi @COSINE_POINTER,^ar0 ;random bit stream output 1197 CALL KEEPTRANS
1141 ;ldi^*ar0++,^r0 1198 BR FINISH-i
1142 ;sti rO,^@DATA_WORD 1199
1143 ;ldi^ar0,^r0 1200 STOP_TRANS:
1144 ;cmpi^Offffh,^r0 1201 LDI 0,^RI

Oct 6 1993 14:48:30^XMITADAP.ASM^Page 23
1202
1203
1204^STI RO, @TRANSMISSION
1205^STI RO, @GET_NEWFRAME_FLAG
1206
1207^POP DP^ ;restore registers before re

turning
1208^pop ir0
1209^POP AR3^ ;from interrupt routine
1210^POP ARO
1211^POP ARO
1212^POP R2
1213^POP R1
1214^POP RO
1215^POP ST
1216^XOR 2000H, ST
1217^RETI
1218
1219 UPDATE1:
1220^LDI *ARO--(DELTA)%, RO^;output value to channel and

update
1221^LDI *AR1++(DELTA)%, R1^;table pointers respectively
1222
1223^; SUBI DELTA, ARO
1224^; ADDI DELTA, AR1
1225^; BR UPDATE2
1226^;***

1227 ;^All other interrupts simply return
1228
1229 NO:^RETI
1230
1231
1232
1233 .end

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 1 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 2
1 51 .word 9h ;polynomiall =11001=1+x^3+x^

4
2 RCVRADAP.asm^V1.00^Dec 92 52 .word 7h ;polynomial2 =10111.1+x+x^2+
3 V1.01^Apr 93 x^4
4 V2.00^Sept 93 53 .word 9665 ;CRC-CCITT
5 ; 54 .word 374732215 ;CRC-32
6 ,•^The purpose of this code is to set up the dsp board environm 55 .word B1492AAh ;flag for packet

ent, 56 .word ;Q_START --> 809c06
7 ,^variables,^and memory.^This code is used as the main interf 57 .word ;Q_START(1)

ace 58 .word ;Q_START(2)
8 ,^between the PC and the dsp board. It places all necessary 59 .word ;Q_START(3)
9 ;^assembler and C routines in memory and then awaits in a simp 60 .word ;Q_START(4)

le 61 .word ;Q_START(5)
10
11

,^loop, where the ARQ shell can poke the appropriate info into
,•^DSP memory and then run the appropriate routine.

62
63

.word

.word
;Q_START(6)
;Q_START(7)

12 64 .word ;Q_END --> 809c0e
13 65 .word ;Q_END(1)
14 66 .word ;Q_END(2)
15 67 .word ;Q_END(3)
16 68 .word ;Q_END(4)
17 .include VARSRCVR.ASM 69 .word ;Q_END(5)
18 .global^.bss 70 .word ;Q_END(6)
19 .global cinit^ ;init table^(from li 71 .word ;Q_END(7)

nker) 72 .word 09c06h ;Q_START --->809c16
20 .global _c_int00^ ;starting address^(C 73 .word 09c0Eh ;Q_END^>809c17

standard) 74 .word 08042H ;DIGITAL PORT ADDRESS --->80
21 .global _interleaver 9C18
22 .global _puncture 75 TAB_ENC .WORD ;pi/4 QPSK encoding table
23 .global _combineheader 76 .WORD ;--->^809c19
24 .global^_conv^ ;the convolutional en 77 .WORD

coding 78 .WORD
25 ;routine 79 .WORD
26 .global^_polydiv^;polnomial division r 80 .WORD

outine 81 .WORD
27 82 .WORD
28 83 .WORD
29 84 .WORD
30 .sect^".init"^ ;interrupt section 85 .WORD
31 RESET^.word^_c_int00^ ;RESET -> start addr 86 .WORD

ess 87 .WORD
32 INTO^.word^NO^ ;all others to dummy 88 .WORD

reti 89 .WORD
33 INT1^.word^RCV^ ;except the sync int 90 .WORD
34 INT2^.word^NO 91 .WORD
35 INT3^.word^NO 92 .WORD
36 XINTO^.word^NO 93 .WORD
37 RINTO^.word^NO 94 .WORD
38 XINT1^.word^NO 95 .WORD
39 RINT1^.word^NO 96 .WORD
40 TINTO^.word^NO 97 .WORD
41 TINT1^.word^NO 98 .WORD
42 DINT^.word^NO 99 .WORD
43 100 .WORD
44 101 .WORD
45 102 .WORD
46 Data section to initially be loaded at $30000h but then 103 .WORD
47 moved to $809c00^(on chip ram). 104 .WORD
48 105 .WORD
49 .data 106 .WORD
50 .word^5^;constraint length 107 ICHAN .WORD AA50000H ;IBIT CHAN^1 volt

address
LDI^@STACK_ADDR, SP^;load the address in

to SP
LDI^SP, FP^ ;and into FP too

nit
^LDI^@PRIMCTRL, ARO^;Hardware specific i

LDI^INITIAL, RI
STI^RI, *ARO
LDI^@EXPCTRL, ARO
LDI^NULL, RI
STI^RI, *ARO
;LDI^@SERIAL°, ARO

^
;SET DIGITAL OUTPUT

TO 0
;LDI^2H, RI
;STI^RI, *ARO

This portion of code is absolutely necessary when mixing C
modules with assembly language. It ensures that the
variables defined in the C module are properly initialized.

address
^LDP^CODES^ ;get page of stored

LDI^@INIT_ADDR, ARO^;get address of init
tables

mit
^CMPI^-1, ARO^ ;if RAM model, skip

BEQ^init_done
LDI^*ARO++, R1^;get first count
BZD^init_done^ ;if 0, nothing to do
LDI^*ARO++, AR1^;get dest address
LDI^*ARO++, RI^;get first word
SUBI^1, R1^ ;count - 1

do_init:^RPTS^R1^ ;block copy
STI^RI, *AR1++

II^LDI^*ARO++, RI
LDI^RI, R1^ ;move next count int

o R1
BNZD^do_init^ ;if there is more, r

epeat
LDI^*ARO++, AR1^;get next dest addre

ss
LDI^*ARO++, RI^;get next first word
SUBI^1, R1^ ;count - 1

This code block copies all of the variables placed at $30000

and moves them to the on chip memory area at $809c00 - $80a0
00

init_done:
LDI^@DUALSTART, ARO
LOT^@RAM1, AR1
LDI^*ARO++, RI ;since parallel instruction

;coming up must initialize R

Oct 6 1993 14:39:55 RCVRADAP.ASM^Page 3 Oct 6 1993 14:39:55 RCVRADAP.ASM^Page 4
108 .WORD^1E280000H^;0.707
109 .WORD^0^ ;0.00 159
110 .WORD^-1E280000H^;-0.707
111 .WORD^-2AA50000H^;-1.00 160
112 .WORD^-1E2800001-1^;-0.707 161
113 .WORD^0 162
114 .WORD^1E280000H
115 QCHAN .WORD^0 163
116 .WORD^1E2800001-1 164
117 .WORD^2AA50000H 165
118 .WORD^1E2800001-1 166
119 .WORD^0 167
120 .WORD^-1E280000H 168
121 .WORD^-2AA50000H
122 .WORD^-1E280000H 169
123 .WORD^809C19H^;TABENC ---> 170
124 .WORD^809C39H^;IBIT CHAN 171
125 .WORD^809C41H^;QBIT CHAN^---> 172
126
127 173
128 174129 ;444**44******4444.4*****4

444*** 176
130 ;^Variables to be used for initialization. 177
131
132 STACK .usect^u.stacku,STACK_SIZE 178
133
134 .text 179
135 STACK_ADDR .word^STACK^ ;address of stack
136 INIT_ADDR .word^cinit^ ;address of mit tab 180

les 181
137 PRIMCTRL .word^00808064h^ ;primary bus control 182

address 183
138 EXPCTRL .word^00808060h^ ;expansion bus contr 184

ol address 185
139 TIMECTL1 .word^808030H^ ;timer 1 control 186
140 SERIAL° .word^808042h^ ;FSX/DX/CLKX port co 187

ntrol 188
141 TIMECTL2 .word^808020h^ ;timer 2 control 189
142 RSTCTRL

ers
.word^601h^ ;reset value for tim 190

143 PERIOD .word^808038h^ ;timer 1 period 191
144 COUNT .word^55^ ;period value for ti

met 1 192
145 SETCTRL .word^6c1h^ ;set value for timer

s 193
146 RAM1 .word^809c0Oh^ ;on chip ram area 194
147 DUALSTART .word^30000h^ ;temp variables 195
148 DUALEND .word^33300h^ ;change for 64k 196
149 DUALMEM .word^3008Fh
150 REALSTART .word^31000H 197
151 REALEND .word^32fffH
152 ;.*************444444********************444444*****************444*

* * *
153 The following code sets up the stack pointer and then 199
154 initializes the DSP hardware as outlined in the Technical 200
155 ;^Reference Manual. 201
156 202
157 _c_int00: 203
158 LDP^CODES^ ;get page of stored 204

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 5 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 6
0 260 LDI ARO, R1^ ;& increment flag pointer to205 next

206 RPTS^DATALENGTH 261 ADDI 1,^R1^ ;position in table.^If BOTT207 LDI^*ARO++,^RI ON of
208 IISTI^RI,^*AR1++ 262 CMPI @TABLE_BOTTOM, R1^;table reached reset pointer209 263 BNZ NORESET^ ;to TOP210 264 LDI @TABLE_TOP, R1
211 265 NORESET:

266 STI R1, @CURRENT FLAG
212 267 ;At this point RIT) contains address of real data value of the
213 LDI @DUALSTART, R6 ;clear DUAL memory 268 ;very last dibit of FLAG
214 LDI @DUALEND, R7 ;$30000^-->$33300 269
215 CALL CLEAR 270 SUBI 17,^RO^ ;point to first dibit of FL216 AG
217 ldf^0,^r0 271
218 ldi @RCVD_SIGNAL_ENERGY,ar0 272 cmpi @CIRC BOTTOM, r0
219 stf^rO,^*ar0

220
273 bge NO _ADJUST
274 addi 0Iffh, ^r0

221 LDI @CPC1I,^R6 275 ;This next section of code is used to check the validity of
222 LDI @REALEND, R7 the
223 CALL CLEARFLOAT 276 ;FLAG found.^That is,^it checks if the flag found has occur224 red
225 ldi^@CPC2Q,^r6 277 ;in a frame of data thus resulting in a false flag.
226 ldi^r6,^r7 278
227 addi 300h,^r7 279 NO_ADJUST:
228 call CLEARFLOAT 280 LDI @START_FRAME, R1^;start add of last frame dec229 oded
230 281 LDI @STOP_FRAME, R2^;stop add of last frame deco231 LDI OFFFH,^BK ;set circular length of inpu dad

t 282 LDI RI,^R3^ ;R3 . flag address232 ;buffers 283
233 OR 2H,^IE ;enable interrupt 1 284 CMPI 121,^R2^ ;STOP > START?234 OR 2000H,^ST ;enable global interrupts 285 BP NO CIRC_ADJUST^;yes, no adjustment required235 286 ldi r,^r4
236 BOSS: 287 ADDI 100061,^R2^ ;NO,^adjust^for circular237 288 cmpi r4,^r3
238 ldp DUAL 289 bp NO CIRC_ADJUST
239 ldi @STROBE_RCVR,^r0 290 ADDI 1000H, R3^ ;buffer by adding circular240 bnz GOAHEAD 291 ;length241 hr BOSS 292
242 293 NO_CIRC_ADJUST:
243 STROBETHEHOST: 294 ;IF (FLAG ADD > START FRAME^&^FLAG_ADD < STOP_FRAME)244 ldp DUAL 295 ,^FLAG IS INVALIB
245 ldi^0,^r0 296 ;OTHERWISE PROCESS DATA
246 sti rO,^@STROBE_RCVR 297
247 ldi^255,^r0 298 CMPI R1, R3^ ;FLAG - START248 sti al,^@STROBE_HOST 299 BLE VALID
249 hr BOSS 300 CMPI R2,^R3^ ;FLAG - STOP250 301 BGE VALID
251 302 BR BOSS
252 GOAHEAD: 303
253 LDP CODES 304
254 LDI @CURRENT_FLAG, ARO ;get latest found flag point 305 •

er 306 ; A this point we have a valid flag and will now select
255 307 ; which mode the user has chosen for the RCVR.
256 BACKUP:^LDI *ARO,^RO 308
257 BZ STROBETHEHOST^;check if flag found 309 VALID:
258 LDI 0,^R1 310 LDP DUAL
259 STI R1,^*ARO ;if found reset pointer to z 311 LDI @MENU OPTION, R1

ero 312 AND 3h, RT.

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 7 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 8
313
314

CMPI^1,^R1
BZ MODE1

369 CALL QPSK1^ ;decode chunk of length
R1

315
316

CMPI 2,^R1
BZ MODE2

370
371

;and place starting at AR2

317 CMPI 3,^R1 372
318 HZ MODE3 373
319 BR VALID 374
320 375
321 376
322 ;*** 377 ;Refresh start and stop frame pointers used in flag validati

on
323 ;^MODE 1 378 LDI @CURRENT_START, RU
324 This mode makes the rcvr simply hard decode the data rcvd, 379 STI RU,^@START_FRAME
325 place it at slot P1 0,^and send an ACK. 380
326 No decoding is done since,^it is assumed that no coding 381 ADDI 21014,^RU
327 was performed.^This mode allows the ser to check the channe 382 LDI @CIRC_TOP, R1

383 CMPI R1,^RU
328 conditions of the system with no coding. 384 BLT NO_SUB1
329 385 SUBI^100014,^RU
330 Requires: 386
331 RD^real data flag start 387 NO_SUB1:STI RI, @STOP_FRAME
332 Modifies: 388
333
334

RU,^R1,^R2,^R3,^R4,^R5,^R6,^R7
ARO,^AR1,^AR2

389
390

LOT 1, R1^;send an ACK° to HOST PROGRAM
LDP DUAL

335 Returns: 391 STI R1,^@ACK°
336 Nothing 392 LDP CODES
337 393 BR BOSS
338 MODEl: 394
339 LDP DUAL^ ;insure ACKO is clear 395
340 LDI 0,^R7
341 STI R7,^@ACK° 396
342 LDP CODES 397 ; MODE VITERBI DECODE CHANNEL
343
344

LDI @FLAGOP1,^R6^ ;clear slot 0 area of P1
LDI @PACKET1HARDP1,^R7

398 This mode assumes that the frame rcvd contains a flag with 4
96 bits

345
346

CALL CLEAR 399 convolved with a rate 1/2 code given by polynomials in VARS.
ASM

347 sti rO,^@CURRENT_START 400 and constraint length K=5.
348 401 The frame^32 bits --> flag
349
350

402
403

992 bits^convolved data

351 LDI 16,^R1^ ;hard decode flag 404 1024 bit frame
352 LDI @FLAGOP1, AR2^;slot to store decoded data 405
353 CALL HARDDECODE_CHUNK^;decode chunk of length^R1 406 MODE2:
354
355

;and place starting at AR2 407
408

LDP DUAL^ ;insure ACED is clear
LDI 0,^R7

356 LDI @CURRENT_START, RO 409 STI R7,^@ACK°
357 ADDI 10H,^RU^ ;transform DQPSK data to QPS 410 LDP CODES

358
K data

cmpi @CIRC_TOP,^r0
411
412

LDI @FLAGOP1,^R6^ ;clear slot 0 area of P1
LDI @PACKET1HARDP1, R7

359 BLT NO_ADJ1 413 CALL CLEAR
360 SUBI OFFFh,^RI 414
361 NO_ADJ1: 415 sti rO, @CURRENT_START
362 CALL DQPSK_DEINT 416
363 417
364 LDI @BUFP1, ARO^ ;Zk value 418
365 LDI @BUFP2, AR1^ ;Wk value 419 LDI 16,^R1^ ;hard decode flag
366 420 LDI @FLAGOP1, AR2^;slot to store decoded data367 LDI 512,^R1^ ;hard decode flag 421 CALL HARDDECODE_CHUNK^;decode chunk of length = R1368 LDI @PACKETOHARDP1, AR2^;slot to store decoded

data
422
423

;and place starting at AR2

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 9 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 10
424 481
425 LDI @CURRENT_START, RD 482 LOT 16,^R1 ;hard decode flag426 AUDI 10H,^RD ;transform DQPSK data to QPS 483 LDI @FLAGOP1, AR2

K data 484
427 cmpi @CIRC TOP,^r0 485 CALL HARDDECODE_CHUNK
428 BLT NO ADJ 486
429 SUBI OTFFh,^RD 487 LDI @CURRENT_START, RD
430 N0_ADJ2: 488 ADDI 10H, RD ;transform DQPSK data to QPS431 CALL DQPSK_DEINT K data
432 489 cmpi @CIRC_TOP,^r0
433 LDI @BUFP1, ARO ;Zk value 490 BLT NO ADJ
434 LDI @BUFP2, AR1 ;Wk value 491 SUBI^0-F-EFh,^RD
435 492
436 LDI^512,^R1 493
437 LDI @FLAGOP1, AR2 494 ;NO_ADJ: LDI RD, ARO ;real I values438 ADDI 1, AR2 495 LOT RO, AR1
439 LDI^7,^RU 496 ADDI 10008, AR1 ;real Q values440 STI RO, @ADDER_ONE_PUNC 497
441 STI RO,^@ADDER_TWO_PUNC 498 LDF *ARO++(1)%,^R2
442 499 STF R2,^@OLDI ;initialize OLDI & OLDQ443 CALL START_VITB 500 LDF *AR1++(1)%,^R2
444 501 STF R2,^@OLDQ
445 502
446 503 LDI @BUFP1, AR3 ;I447 504 LDI @BUFP2, AR4 ;4448 505 LDI 496,^R4 ;length to decode449 ;Refresh start and stop frame pointers used in flag validati 506

on 507 ;MORE:
450 LDI @CURRENT START, RD 508 LDF @OLDI, RD
451 STI RD.^@STAT2T_FRAME 509 LDF @OLDQ, R1
452 510 LDF *ARO++(1)%,^R2
453 ADDI 210H,^RO 511 LDF *AR1++(1)%,^R3
454 LOT @CIRC TOP,^R1 512 PUSH R4
455 CMPI R1,^13-0 513 CALL DIFFERENTIAL_PHASE_DECODING
456 BLT NO SUB2 514 POP R4
457 SUBI^1-0-00H,^RD 515 STF R6,^*AR4++(1)% ;Wk LSB458 516 STF R7,^*AR3++(1)% ;Zk MSB
459 NO_SUB2:STI RU,^@STOP_FRAME 517 ;branch symbol ZkWk460 518 ;or IQ461 LDI^1,^R1 ;send an ACED to HOST PROGRAM 519 STF R2,^@OLDI
462 LDP DUAL 520 STF R3, @OLDQ
463 STI R1,^PACED 521 SUBI 1,^R4
464 LDP CODES 522 BP MORE
465 BR BOSS 523 flop
466 524 LOT @BUFP1, ARO ;Zk value
467 525 LOT @BUFP2, AR1 ;Wk value
468 LDP DUAL ;insure ACED is clear 526 LDI 64,^R1
469 LDI^0,^R7 527 LDI @FLAGOP1, AR2
470 STI R7,^@ACKO 528 ADDI 1, AR2
471 LOP CODES 529 CALL START_VITB
472 LDI @FLAGOP1,^R6 ;clear slot 0 area of P1 530
473 LDI @PACKET1HARDP1, R7 531 ;Refresh start and stop frame pointers used in flag validati
474 CALL CLEAR on
475 532 LDI @CURRENT START, RU
476 STI RD, @CURRENT_START 533 STI RD,^@STATt.T_FRAME
477 LDI 496,^R1 ;496 dibits . 992 bits 534 addi 200h,^r0
478 535 cmpi 3200h,^r0
479 ;CALL DATA_CHUNK_FULL ;insure all 496 dibits rcvd 536 bit NO SUB
480 ;before any further processi 537 subi 1T)00h,^r0

ng 538 ;NO_SUB: sti rO, @STOP_FRAME

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 11 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 12
539 ;SUBI^1,^AR2 597
540 ;LDI AR2,^R6 598 LDP CODES
541 ;STI R6,^@STOP_FRAMF 599 LDI @PACKETOHARDP1, AR1
542 600 LDI *AR1++,^RO
543 LDI 1, R1^;send an ACK° to HOST PROGRAM 601 LDI *AR1,^R1
544 LDP DUAL 602 LDI R1,^R4
545 OTT R1,^@ACKO 603 LDI @CRC MASK, R2
546 LDP CODES 604 AND R2,^1.4
547 605 LSH -5,^R4 ;R4 . CRC
548 606 LDI 31,^R2
549 607 AND R2, Ni ;mask out TAIL & CRC from he
550 BR BOSS ader
551 608
552 609 LDI 9HEADBUF1, AR5

610 LDI @HIGH MASK, R2
553 ; 611 LSH 16, RT
554 ; MODE ADAPTIVE CPC DECODING 612 AND NO,^R2,^R3
555 ;^This mode allows the receiver to decode a rate 1/2 header 613 LSH -16,^R3
556 ;^either a rate 1,^3/4 or 1/2 data packet. 614 OR R1, R3
557 615 LSH 16,^RD
558 616 STI RO,^*AR5++
559 617 STI R3,^*ARS--
560 MODE3: 618
561 LDP DUAL^ ;insure ACED is clear 619
562 LDI 8888,^R7 620
563 STI R7,^@ACK° 621 LDP CODES
564 LDP CODES 622 LDI 17,^NO
565 LDI @FLAGOP1,^R6^ ;clear slot 0 area of P1 623 LDI @CRC CCITT,^R1
566 LDI @PACKET1HARDP1, R7 624 LDI^2,^R.
567 CALL CLEAR 625 LDI @HEADBUF2, R3
568 626
569 STI RU, @CURRENT_START 627
570 628 PUSH R3
571 LDI 16, R1^ ;hard decode flag 629 PUSH 92
572 LDI @FLAGOP1, AR2 630 PUSH R1
573 631 PUSH AR5
574 CALL HARDDECODE_CHUNK 632 PUSH RO
575 633 CALL _polydiv
576 634 SUBI 5,^SP
577 LDI @CURRENT_START, NO 635
578 ADDI 10H,^RD^ ;transform DQPSK data to QPS 636 CMPI RU,^R4

K data 637 LDINZ 9999,^R1
579 cmpi @CIRC_TOP,^r0 638 BNZ NACK ;if CRC fails send NACK
580 BLT NO_ADJ 639 ;otherwise strip info from header
581 SUBI OFFFh,^RD 640 ;and decode data packet
582 NO_ADJ: 641
583 CALL DQPSK_DEINT 642 ldi @PACKETOHARDP1, AND
584 643 LDI *++ARO,^RU ;get 2nd word of header
585 LOT 9BUFP1, ARO^ ;Zk value 644 ldi rO,^rl
586 LDI @BUFP2, AR1^ ;Wk value 645 AND 3,^RD
587 LDI^64,^R1 646 and 12,^rl
588 LDI @FLAGOP1,^1R2 647 LDIZ 9999,^R1
589 ADDI 1, AR2 648 BZ NACK ;if rate is wrong header is NFG
590 LDI 3fh,^RU 649 LDP DUAL
591 STI NO, @ADDER_ONE_PUNC 650 lsh -2,^rl
592 STI RO, @ADDER_TWO_PUNC 651 STI Ni,^@RATE ;get rate of data packet
593 652 sti rO,^@CODE ;get CPCi code to use i=1,^2
594 CALL START_VITB 653
595 654 LDP CODES ;^1^- CPC1
596 ;HEADER SOFT DECODED AND PLACED 9 300C1--300C2 655 ;^2^- CPC2

Oct 6 1993 14:39:55 RCVRADAP.ASM^Page 13 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 14
656 716
657 717 DECODE:
658 718 LDI @PACKETOHARDP1, AR2
659 LDI @BUFP1, ARO 719 ADDI 3, AR2^;leave blank word for CRC calc
660 LOT @BUFP2, AR1 720
661 721
662 ADDI 64, ARO 722
663 ADDI 64, AR1 723 STI R1, @ADDER_ONE_PUNC
664 724 STI R2, @ADDER_TWO_PUNC
665 CMPI^1,^R1 ;rate 1 725 LDI R3, R1^;BIT LENGTH TO DECODE
666 BZ RATE1 726 PUSH R7
667 CMPI 2,^R1 ;rate 3/4 727 PUSH R4
668 BZ RATE75 728 CALL START_VITB
669 CMPI 3,^R1 ;rate 1/2 729
670 HZ RATE50 730 ;CRC calculation for data packet
671 LDI 9999,^R1 731
672 BR NACK 732 LDI @PACKETOHARDP1, AR3
673 733 ADDI 2, AR3
674 RATE1: 734 LDI 33,^RO
675 LDI 896,^R3 735 LDI @CRC 32,^131
676 LDI 27,^R4 736 LDI @DATT,BUFP1, R3
677 737 POP R4^ ;# OF DATA WORDS
678 CMPI^1,^RO 738 LDI R4,^R2
679 LDIZ 15H,^R1 739 PUSH R4
680 LDIZ 2AH,^R2 740
681 LDIZ 100,^R7 741 PUSH R3
682 742 PUSH R2
683 CMPI^2,^RO 743 PUSH R1
684 LDIZ 2AH,^R1 744 PUSH AR3
685 LDIZ 15H,^R2 745 PUSH RO
686 LDIZ 200,^R7 746
687 BR DECODE 747 CALL _polydiv
688 RATE75: 748
689 LDI^672,^R3 749 SUSI 5,^SP
690 LDI^20,^R4 750 LDI @PACKETOHARDP1, ARO
691 751 POP R4
692 CMPI^1,^RO 752 ADDI R4, ARO
693 LDIZ 2dh,^131 753 ADDI 2, ARO
694 LDIZ lbh,^R2 754 LDI *ARO,^R1
695 LDIZ^100,^R7 755 POP R7
696 756 CMPI EU,^R1
697 CMPI 2,^RI 757 LDIZ R7,^R1
698 LDIZ 36h,^R1 758 HZ ACK
699 LDIZ 2dh,^R2 759
700 LDIZ 200,^R7 760 LDP DUAL
701 BR DECODE 761 LDI @CODE,^RO
702 RATE50: 762
703 LOT^448,^R3 763 LDP CODES
704 LDI 13,^R4 764 LDI @SEQUENCES, R1
705 765
706 CMPI^1,^RU 766
707 LDIZ 3fh,^R1 767 CMPI 1,^RU^ ;if rate CPC1 load pointers
708 LDIZ 3fh,^R2 768 LDIZ @CPC1I, ARO^ ;and update sequence count
709 LDIZ 100,^R7 769 LDIZ @CPC1Q, AR1
710 770 LDIZ 1,^R2
711 CMPI 2,^RU 771
712 LDIZ 3fh,^R1 772 CMPI 2,^RU^ ;if rate CPC2 load pointers
713 LDIZ 3fh,^R2 773 LDIZ @CPC2I, ARO^ ;and update sequence count
714 LDIZ 200,^R7 774 LDIZ @CPC2Q, AR1
715 BR DECODE 775 LDIZ 2,^E2

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 15 Oct 6 1993 14:39:55^RCVRADAP.ASM Page 16
776 829
777 OR R2,^R1 830 LDP DUAL
778 STI R1,^@SEQUENCES^;write sequence count 831 LDI BRATS, R7
779 832 ldp CODES
780 ;save CPCx code to appropriate slot for possible combination 833 CMPI 1,^R7
781 834 BZ RATE1A
782 LDI @BUFP1, AR2 835 CMPI 2,^R7
783 LDI @BUFP2,^AR3 836 BZ RATE75A
784 ADDI 64, AR2^ ;point to real values of dat 837 CMPI 3,^R7

a packet 838 BZ RATE50A
785 ADDI 64, AR3 839
786 LOP *AR2++,^SO^ ;preload registers for copyi 840 RATE1A:

ng 841 STI 53, @ADDER_ONE_PUNC
787 LDP *APO++, R1 842 STI 54, @ADDER_TWO PUNC
788 LDI lffh, RC^ ;copy 512 WORDS 843 STI R4, @ADDER_1PRIME_PUNC
789 RPTB COPY_SEQUENCE 844 STI R3, @ADDER_2PRIME_PUNC
790 845 LDI 896,^RC
791 ;ldf^*ar2++,^r0 846 LDI 27,^R2
792 ;ldf^*ar0,^rl 847 BR CONTINUE
793 ;addf^rO,^rl 848 RATE75A:
794 ;stf rl,^*ar0++ 849 STI R1, @ADDER_ONE_PUNC
795 850 STI RO, @ADDER_TWO PUNC
796 ;ldf^*ar3++,^r0 851 STI R2, @ADDER_1PRTME_PUNC
797 ;ldf^*arl,^rl 852 STI 51, OADDER_2PRIME_PUNC
798 ;addf rO,^rl 853 LDI 672,^RC
799 ;COPY_SEQUENCE:^stf rl,^*arl++ 854 LDI 20,^R2
800 855 BR CONTINUE
801 ;The above commented out instructions are used in Code Combi 856 RATE50A:

ning 857 STI R5, @ADDER_ONE_PUNC
802 858 STI R5, @ADDER_TWO PUNC
803 LDF *AR2++,^SO 859 STI R5, @ADDER_1PRYME_PUNC
804 IISTF RO,^*ARO++ 860 STI R5, @ADDER_2PRIME_PUNC
805 COPY_SEQUENCE: 861 LDI 448,^RC
806 LDF *AR3++,^51 862 LDI 13,^R2
807 IISTF R1,^*AR1++ 863 BE CONTINUE
808 . 864 CONTINUE:
809 865 PUSH R2
810 ;currently rcvd data packet placed in CPC1 or CPC2 slot 866 LDI @CPC1I, ARO
811 867 LDI @CPC1Q, AR1
812 LDI @SEQUENCES,^SO 868 LDI @CPC2I,^A52
813 869 LDI @CPC2Q, AR3
814 CMPI^3,^RO 870 LDI 9BUFP1, AR4
815 LDINZ 6666,^51^ ;do we have at least two seq 871 LDI @BUFP2, ARS

uences 872 ;combine 512 words for each I and Q
816 BNZ NACK^ ;to combine 873 RPTB COMBINE
817 ;NO - send NACK 874
818 ;YES - combine sequences and 875 LDI @PUNC COLUMN, 51

decode 876 MPYI 2, RT
819 ;combine CPC1 and CPC2 877 CMPI 64,^51
820 LDI 32,^RO^ ;initialize all necessary p 878 LDIZ 1,^R1

ointers 879 sti rl, @PUNC_COLUMN
821 STI SO,^@PUNC_COLUMN^;and variables for combining 880
822 881 TSTB OADDER_ONE_PUNC, R1
823 LDI lbh,^SO^ ;CPC1 and CPC2 I and Q val 882 LDFZ 0,^R2

ues 883 BZ OVER1
824 LDI 2dh,^R1 884 LDF *ARO++, R2 ;R2^. Ii
825 LDI 36h,^R2 885
826 LDI^15h,^R3 886 OVER1:^TSTB OADDER_1PRIME_PUNC, R1
827 LDI 2ah,^R4 887 LDFZ 0,^R3
828 ldi^3fh,^r5 888 BZ OVER2

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 17 Oct 6 1993 14:39:55^RCVRADAP.ASM Page 18
889 LDF *AR2++,^R3^ ;R3 - 12 949 LDI @CRC_32,^R1
890 950 LDI @DATABUFP1, R3
891 OVER2:^TSTB @ADDER_TWO_PUNC, R1 951 POP R2
892 LDFZ 0,^R4 952 PUSH R2
893 BZ OVER3 953
894 LDF *AR1++,^R4^ ;R4 = Ql 954 PUSH R3
895 955 PUSH R2
896 OVER3:^TSTB @ADDER_2PRIME_PUNC, R1 956 PUSH R1
897 LDFZ 0,^R5 957 PUSH AR3
898 BZ OVER4 958 PUSH RU
899 LDF *AR3++,^R5^ ;R5 = Q2 959
900 960 CALL _polydiv
901 961
902 OVER4: 962 SUBI 5,^SP
903 ADDF R2,^R3 963 LDI @PACKETOHARDP1, ARO
904 ADDF R4,^R5 964 POP R2
905 965 ADDI R2, ARO
906 STF R3,^*AR4++ 966 ADDI 2, ARO
907 COMBINE:STF R5,^*AR5++ 967 LDI *ARO,^R1
908 968 and @MASK1,^r0
909 ;clear memory at PACKETOHARDP1 969 and @MASK1,^rl
910 LDI @PACKETOHARDP1, R6 970
911 ADDI 3,^R6 971 CMPI RU,^R1
912 LDI @PACKET1HARDP1, R7 972 BZ CLEAN_COMBINE
913 CALL CLEAR 973 LDI^6666,^R1
914 974 BR HACK
915 ;viterbi decode rate 1/2 combined sequences 975
916 976 CLEAN_COMBINE:
917 ldp CODES 977 LDP CODES
918 ldi @BUFP1,^ar0 978 LDI^0,^R1
919 ldi @BUFP2,^AR1 979 STI R1,^@SEQUENCES
920 ldi @PACKETOHARDP1,^ar2 980 LDI^300,^R1
921 addi 3,^ar2 981 BR ACK
922 982
923 983
924 LDI^3fh,^RU 984 ;Refresh start and stop frame pointers used in flag validati
925 STI RU, @ADDER_ONE_PUNC on
926 STI RU, @ADDER_TWO_PUNC 985 ACK:
927 986 ;LDI 1,^R1
928 LDP DUAL 987 LOP DUAL
929 LDI @RATE, R7 988 STI R1,^@ACK°
930 ldp CODES 939 LDP CODES
931 CMPI 1,^R7 990 ldi 8BUFP1,^r6
932 ldiz^896,^rl 991 ldi r6,^r7
933 CMPI 2,^R7 992 addi Oeffh,^r7
934 ldiz^672,^rl 993 call CLEARFLOAT
935 CMPI 3,^R7 994
936 ldiz^448,^rl 995 ldi @CPC2Q,^r6
937 996 ldi r6,^r7
938 997 addi 300h,^r7
939 CALL START_VITB 998 call CLEARFLOAT
940 999
941 ;check CRC again 1000 CLEANER:
942 1001 LDI @CURRENT START, RU
943 1002 STI RU,^@STAFT.T_FRAME
944 ;CRC calculation for data packet 1003 addi 210h,^r0
945 1004 ldi @CIRC_TOP,^rl
946 LDI @PACKETOHARDP1, AR3 1005 cmpi rl,^r0
947 ADDI 2, AR3 1006 bit NO SUB
948 LDI^33,^RU 1007 subi 100h,^r0

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 19 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 20
1008 NO_SUB: sti rO,^@STOP_FRAME 1064 stf r3,^*ar3++
1009 1065
1010 1066
1011 BR BOSS 1067 LDF *ARO++(1)%,^R2^ ;load real data I
1012 1068 IILDF *AR1++(1)%,^R3^ ;and Q
1013 NACK: 1069 ;ldi @TROUBLE2,^ar3
1014 ;LDI 9999, R1^;send an NACKO to HOST PROGRAM 1070 stf r2,^*ar3++
1015 LDP DUAL 1071 stf r3,^*ar3++
1016 STI R1,^@ACK° 1072 ldf @OLDI,^r5
1017 LDP CODES 1073 stf r5,^*ar3++
1018 cmpi^6666,^rl 1074 ldf OOLDQ,^r5
1019 bz CLEANER 1075 stf r5,^*ar3
1020 ;BR POLIZIA 1076
1021 BR BOSS 1077 PUSH R1
1022 1078 PUSH R4
1023 1079 ldf @OLDI,^r01024 ;*** 1080 ldf @OLDQ,^rl

* 1081 CALL HARDDECODE^ ;hard decode it
1025 ; This section of code is responsible for hard decoding a chun 1082

k 1083 POP R4
1026 ; of data given: 1084 POP R1
1027 ; Requires: 1085 STF R2,^@OLDI
1028 ; RD^= start of real data I channel 1086 STF R3,^@OLDQ^ ;refresh OLDI & OLDQ
1029 ; R1^. length to decode in Dibits 1087
1030 ; AR2 . where to place hard data 1088 LDI *AR2,^R2^ ;place dibit @ current boat
1031 ; Modifies: ion
1032 ; R1,^R2,^R3,^R4,^R5,^R6,^R7 1089 LSH -2,^R2
1033 ; ARO, AR1,^AR2 1090 LSH 30,^NO
1034 ; Returns: 1091 OR RU, R2
1035 ; Nothing 1092 STI R2,^*AR2
1036 1093
1037 HARDDECODE CHUNK: 1094 SUBI 1, R4^ ;decrement dibit count
1038 L]:)-^0,^R2 1095 BNZ NO_MEM INC
1039 STF R2,^@OLDI^ ;initialize OLDI & OLDQ 1096 irtADDI 1, A.^ ;increment memory pointer
1040 STF R2,^@OLDQ 1097 LDI 16,^R4^ ;reset dibit count
1041 1098
1042 LDI RO, AR7^ ;store flag start for future 1099 NO_MEM_INC:

ref 1100 SUBI 1,^R1^ ;length . 0^?
1043 LDI NO, ARO^ ;ARO . I channel pointer 1101 BNZ MORE_DIBITS^ ;no, branch back
1044 LDI RO, AR1^ ;add offset to get Q channel 1102 RETS^ ;yes,^return

ptr 1103
1045 ADDI 1000H, AR1^ ;AR1 = Q channel pointer 1104 ;***
1046 LDI 16,^R4^ ;R4 . dibit count *
1047 1105
1048 ldf^*ar0++(1)%,^r2 1106 ;^This section of code checks to insure that the necessary dat
1049 stf r2,^@OLDI a
1050 ldf^*arl++(1)%,^r2 1107 ;^chunk has ALL been rcvd (real data) before any further proce
1051 stf r2,^@OLDQ ssing
1052 1108 ;^done
1053 MORE_DIBITS: 1109 ;^Requires:
1054 1110 ;^ RU . start of flag pointer
1055 1111 ;^ R1 . # of dibits that chunk consists of
1056 ldi 8TROUBLE2,^ar3 1112 ;^Modifies:
1057 LOT ARO,^R2 1113 ;^ R1,^R2
1058 LDI AR1,^R3 1114 ;^Returns:
1059 sti^r2,^*ar3++ 1115 ;^ Nothing
1060 sti^r3,^*ar3++ 1116
1061 ldf^*ar0,^r2 1117
1062 ldf^*arl,^r3 1118 DATA_CHUNK FULL:
1063 stf^r2,^*ar3++ 1119 LOT RO, R2_ ___^,

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page, 21 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 22
1120 ;ADDI 16,^R2^ ;R2 . start of data chunk 1176 MPYF3 RO, R3,^R5^ ;R5 = oldI * newQ
1121 1177 SUBF R4,^R5,^R7^ ;R7 . R5 - R4
1122 ADDI R1, R2^ ;R2 now contains address poi 1178

nter 1179 ;At this point R6 . Wk and R7 = Zk
1123 ;for last dibit 1180
1124 GO: 1181 RETS
1125 ;cmpi @CIRC TOP,^r2 1182
1126 cmpi @CIRCLESS1,^r2 1183 ;***
1127 bit WAIT2 ***
1128 subi OFFFh,^r2 1184 ;^This section of code is responsible for the actual hard deco
1129 WAIT2: ding
1130 ldi @REAL_IBIT_POINTER, rl 1185 ;^It references Wk and Zk and uses these real values to decide
1131 cmpi r2,^rl 1186 ;^which dibit was sent.
1132 bnz WAIT2 1187
1133 1188 ;^Requires
1134 1189 ;^RO = oldI
1135 1190 ;^R1 . oldQ
1136 WAIT: 1191 ;^R2 . newI
1137 ;LDI @REAL IBIT_POINTER, R1 1192 ;^R3 . newQ
1138 ;CMPI R2,^lil^ ;reached last dibit^? 1193 ;^R6 = Wk
1139 ;BLT WAIT^ ;no,^then wait 1194 ;^R7 . Zk
1140 GETOUT: 1195 ;^Modifies:
1141 ldi 9TROUBLE3, ar0^;debug code to check when 1 1196 ;^RI,^R4,^R5,^R6,^R7

eft loop 1197 ;^Returns:
1142 sti^rl,^*ar0++ 1198 ;^RI . dibit received
1143 ldi rl,^arl 1199
1144 ldf *arl,^rl 1200 HARDDECODE:
1145 sti rl,^*ar0 1201 CALL DIFFERENTIAL_PHASE_DECODING
1146 RETS^ ;yes,^then return 1202
1147 1203 ;if^(Wk > 0 & Zk > 0)1148 1204 CMPF 0,^R6
1149 1205 BLE Li1150 ;***

1206 CMPF 0,^R7
1207 BLE Li

1151 ;^This section of code is responsible for decoding the differe 1208 ; dibit is decoded as 3
ntial 1209 LDI 3,^RO

1152 ;^phase from the real data.^It operates on the real data from 1210 RETS
1153 ;^the I and Q channel and outputs real data which is no longer 1211
1154 ;^dependent on the previous real data.^That is it transforms 1212 Li:^;else if^(Wk > 0 & Zk < 0)
1155 ;^pi/4 - DQPSK real data to QPSK real data for hard decoding. 1213 CMPF 0, R6
1156 ;^The mapping of this transform is given by Wk and Zk. 1214 BLE L2
1157 ; 1215 CMPF 0, R7
1158 ;^Requires 1216 BGE L2
1159 ;^RI . oldI 1217 ;dibit is decoded as a 2
1160 ;^R1 = oldQ 1218 LDI 2,^RI
1161 ;^R2 . newI 1219 REIS
1162 ;^R3 = newQ 1220
1163 ;^Modifies: 1221 L2: ;else^if^((6k <^0^&^Zk > 0)
1164 ;^R4,^R5,^R6,^R7 1222 CMPF 0,^R6
1165 ;^Returns: 1223 BGE L3
1166 ;^R6 = Wk . oldI * newI + oldQ * newQ 1224 CMPF 0,^R7
1167 ;^R7 . Zk = oldI * newQ - oldQ * newI 1225 BLE L3
1168 ; 1226 ;dibit is decoded as a 1
1169 1227 LDI 1,^RI
1170 DIFFERENTIAL PHASE DECODING: 1228 RETS
1171 MPYF^RI,^1-22,^R4^ ;R4 = oldI * newI 1229
1172 MPYF3 R1,^R3,^R5^ ;R5 . oldQ * newQ 1230 L3: ;Otherwise dibit is decoded as a 0
1173 ADDF R4,^R5,^R6^ ;R6 . R4 + R5 1231 LOT 0,^RI
1174 1232 RETS
1175 MPYF3 R1,^R2,^R4^ ;R4 = oldQ * newI 1233 7 ***

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 23 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 24

1286 TSTB 1,^R4
1234 ;^This section of code uses a shift register which is shifted 1287 BZ OVER

and ORed 1288 ADDI 1,^R6
1235 ;^with the most recent decoded dibit.^This register is then 1289 OVER:
1236 ;^compared to the flag and if it matches the address which poi 1290 LSH -1,^R3

nts 1291 LSH -1,^R4
1237 ;^to the occurrence of this flag (in real data)^is saved in 1292 SUBI 1,^R7
1238 ;^the FLAG_ADDRESS_TABLE. 1293 BP TEST
1239 ; 1294
1240 ;^Requires: 1295 SUSI R5,^R6
1241 ;^RO = contains most recent decoded dibit 1296 CMPI @THRESHOLD, R6
1242 ;^Modifies: 1297 BGE FLAG_FOUND
1243 ;^RO,^R1,^AR2 1298 BR ENDS
1244 ;^Returns: 1299 ;.**
1245 ;^Nothing
1246
1247 FLAG_CHECKER:

1300 ;^This section of code is responsible for hard decoding a chun
k

1248 LDI @FLAG TO_BE, R1^;load current decoded word 1301 ;^data given:
1249 LSH -2, RI^ ;shift word right by 2 1302 ;^Requires:
1250 LSH 30,^RO^ ;shift dibit left by 30 1303 ;^ARO^. start of MSB data Zk Q1251 OR RO, R1^ ;OR dibit with current word 1304 ;^AR1^= start of LOB data Wk I1252 STI R1,^@FLAG_TO_BE 1305 ;^R1^. length to decode in Dibits1253 lsh -8,^R1 1306 ;^AR2 = where to place hard data1254 1307 ;^Modifies:
1255 CMPI @FLAG_COMP, R1^;compare word to flag patter 1308 ;^R1,^R2,^R3,^R4,^R5,^R6,^R7n 1309 ;^ARO,^AR1,^AR2
1256 ;BNZ ENDS 1310 ;^Returns:
1257 BNZ^CORRELATE^;if no match,^then return 1311 ;^ Nothing
1258 1312
1259 FLAG_FOUND: 1313 QPSK1:
1260 LDI @FLAG_ADDRESS_TABLE, AR2^;yes,^flag found 1314 LDI 16,^R4^ ;R4 = dibit count1261 1315 MORE_DIBITS1:
1262 LDI @REAL_IBIT_POINTER,^RD^;get address location of fla 1316 LDF *ARO++,^R7^ ;load real data MSBg end 1317 IILDF *AR1++,^R6^ ;and LSB1263 STI RO,^*AR2++^ ;store in FLAG_ADDRESS_TABLE 1318
1264 LDI AR2,^RO 1319 PUSH R1
1265 CMPI @TABLE_BOTTOM, RO^;if FLAG_ADDRESS_TABLE reach 1320 PUSH R4

ed 1321 CALL QPSK2^ ;hard decode it1266 BNZ UPDATE_TABLE^ ;bottom of buffer 1322
1267 LDI @TABLE_TOP,^RO^;reset to top of buffer 1323 POP R4
1268 UPDATE_TABLE: 1324 POP R1
1269 STI RO, @FLAG_ADDRESS_TABLE 1325
1270 1326 LDI *AR2,^R2^ ;place dibit @ current locat1271 ion
1272 ENDS:^RETS 1327 LSH -2,^R2
1273 1328 LSH 30,^RO
1274 CORRELATE: 1329 OR RU,^R2
1275 LDI @FLAG COMP, R2 1330 STI R2,^*AR2
1276 XOR R1,^R,^R3^ ;R3^. negative l's 1331
1277 NOT R3,^R4^ ;R4 . positive l's 1332 SUBI 1,^R4^ ;decrement dibit count1278 LDI 0,^R5^ ;R5 . number of negative 1 b 1333 BNZ NO_MEM INC1

its 1334 ADDI 1, ARI^ ;increment memory pointer1279 LDI 0,^R6^ ;R6 = number of positive 1 b 1335 LDI 16,^R4^ ;reset dibit countits 1336
1280 LDI 24,^R7^ ;correlate for 24 bit length 1337 NO_MEM_INC1:
1281 TEST: 1338 SUBI 1,^R1^ ;length . 0 ?
1282 TSTB 1,^R3 1339 BNZ MORE_DIBIT51^ ;no, branch back1283 BZ LOOK_POS 1340 RETS^ ;yes,^return1284 ADDI 1,^R5 1341
1285 LOOK_POS: 1342 ; *****.***

-^... _.

Oct 6 1993 14:39:55^RCVRADAP.ASM^Pee 25 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 26

1400
1343 ; This section of code is responsible for the actual hard deco 1401 ;^Deinterleaver currently set for 256 bit blocks

ding 1402 ;^which is 8 ROWS by 16 COLUMNS of SYMBOLS
1344 ; It references Wk and Zk and uses these real values to decide 1403 ;^can handle up to 256 bit block if a larger
1345 ; which dibit was sent. 1404 ;^size is required the DSP board requires more memory
1346 ; 1405 ;^to handle the operation and FREE1 and FREE2 should be
1347 ; Requires 1406 ;^changed to reflect the increase in memory as well as
1348 ; R6 = Wk 1407 ;^the MAP.CMD file used for compiling and linking.
1349 ; R7 . Zk 1408
1350 ; Modifies: 1409 DQPSK_DEINT:
1351 ; R6,^R7 1410 LOT RO, ARO^ ;real I values1352 ; Returns: 1411 LOT NO, AR1
1353 ; RI . dibit received 1412 ADDI 1000H, AR1^ ;real Q values1354 ; 1413
1355 QPSK2: 1414 LDF *ARO++(1)%,^R2
1356 ;if^(Wk >^0^&^Zk > 0) 1415 STF R2,^@OLDI^ ;initialize OLDI & OLDQ1357 CMPF 0,^R6 1416 LDF *AR1++(1)%,^R2
1358 BLE L11 1417 STF R2,^@OLDQ
1359 CMPF 0,^R7 1418
1360 BLE Lll 1419 LOT @BUFP1,^AR3^ ;I1361 ;^dibit is decoded as 3 1420 LOT @BUFP2, AR4^ ;41362 LDI^3,^NO 1421 ldi^512,^r4
1363 RETS 1422 ;LOT 496,^R4^ ;length to decode1364 1423
1365 L11: ;else^if^(Wk >.^0^& Zk <^0) 1424 MORE:
1366 CMPF 0,^R6 1425 LDF @OLDI,^RO
1367 BLE L12 1426 LDF @OLDQ, R1
1368 CMPF 0,^R7 1427 LDF *ARO++(1)%,^R2
1369 BGE L12 1428 LDF *AR1++(1)%,^R3
1370 ;dibit is decoded as a 2 1429 PUSH R4
1371 LDI^2,^RO 1430 CALL DIFFERENTIAL_PHASE_DECODING
1372 RETS 1431 POP R4
1373 1432 STF R6,^*AR4++(1)%^ ;Wk LSB1374 L12: ;else^if^(Wk <^0 & Zk a 0) 1433 STF R7,^*AR3++(1)%^ ;Zk MSB1375 CMPF 0,^R6 1434 ;branch symbol ZkWk1376 BCE L13 1435 ;or IQ1377 CMPF 0,^R7 1436 STF R2,^@OLDI
1378 BLE L13 1437 STF R3,^@OLDQ
1379 ;dibit is decoded as a 1 1438 SUBI 1,^R4
1380 LDI^1,^RO 1439 BP MORE
1381 RETS 1440
1382 1441
1383 L13: ;Otherwise dibit is decoded as a 0 1442 ;AT THIS POINT Zk VALUES ARE AT @BUFP1 AND Wk AT @BUFP21384 LDI^0,^RO 1443
1385 RETS 1444 ;DEINTERLEAVE THE DATA1386 ;**.

**
1445
1446 LOT @FREE1,^R6

1387 ; 1447 LOT R6,^R7
1388 ; This code transforms real DQPSK data to real QPSK data and 1448 ADDI 600H,^R7
1389 ; then deinterleaves the data placing it 880FP1 and @BUFP2 1449 CALL CLEARFLOAT
1390 ; for either hard decoding by QPSK or soft decoding. 1450
1391 ; 1451
1392 ; 1452 LDI @BUFP1, ARO
1393 ; Requires: 1453 LDI @BUFP2, AR1
1394 ; RO . start address of real I data in receiver buffer 1454 LDI @FREE1, AR2
1395 ; 1455 LDI @FREE2, AR3
1396 ; Returns: 1456
1397 ; BUFP1 contains Zk real values MSB 1457 LDI 0,^RI^ ;RO is block count ‹. 81398 ; BUFP2 contains Wk real values LSB 1458 KEEP_DEINT:
1399 ; 1459 LDI^0,^R1^ ;R1^. ROW .^0,1,2,3

-^--

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 27 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 28
1460 LDI^0,^R2^ ;R2^= COLUMN =^0,1,2,3,..,15 1516
1461 1517 ADDI 1, NO^ ;BLOCK COUNT++
1462 SYMBOL: 1518 LDI NO,^R3
1463 LDI R2,^R3^ ;R3 . SYMBOL 1519 MPYI DEINT BLOCK, R3
1464
1465

MPYI DEINT ROW, R3
AUDI R1,^"irt

1520
1521

ADDI R3, A170
ADDI R3, AR1

1466 LDI R3,^IRO 1522
1467 1523 CMPI BLOCKS, NO^ ;BLOCK COUNT<=7 KEEP DE1468 LDF *ARO++,^R4^ ;pick the symbol from interleav INT

ed 1524 BNZ KEEP_DEINT
1469 LDF *AR1++,^R5^ ;buffer and place in deinterlea 1525

ved 1526
1470 STF R4,^*+AR2(IRO)^ ;buffer 1527
1471 STF R5,^*+AR3(IRO) 1528 ;***
1472 **
1473 AUDI 1,^R2^ ;COLUMN++ 1529 ;^This is the beginning of the Viterbi decoding algorithm.
1474 CMPI 16,^R2^ ;IF COLUMN<=15 GOT() SYMBOL 1530
1475 BNZ SYMBOL 1531
1476 1532
1477 ADDI^1,^R1^ ;ROW++ 1533
1478 LDI 0,^R2^ ;COLUMN . 0 1534 START_VITB:
1479 CMPI DEINT_ROW, R1 1535 LDP CODES
1480 BNZ SYMBOL^ ;IF ROW<=3 GOTO SYMBOL 1536 LDI 32,^RI
1481 1537 STI RI, @PUNC_COLUMN
1482 ;1 128BIT BLOCK DEINTERLEAVED AND READY TO BE COPIED BACK 1538
1483 ;TO THE BUFFER IT CAME FROM 1539 LDI 2,^NO
1484 1540 STI NO,^@DEEP^ ;used to intial1485 ize trellis
1486 LDI @BUFP1, ARO 1541 LDI 0,^RO
1487 LDI @BUFP2,^AR1 1542 STI NI, @FORCE_END_ZEROS
1488 LDI RO,^R1 1543 subi 4,^rl^ ;length-4
1489 MPYI DEINT BLOCK, R1 1544 PUNC:
1490 ADDI R1, A50^ ;Adjust the pointers @BUFP1, 1545 LDI 0,^NO

@BUFP2 1546 CMPI 5,^R1
1491 AUDI Ni, AR1 1547 LDILE OFFFFH, NO
1492 1548 STI RO, @FORCE_END_ZEROS
1493 LDF *AR2++,^R6 1549
1494 LDF *AR3++,^R7^ ;preload registers before bl 1550

ock below 1551 LDI @PUNC COLUMN, RO
1495 ;is executed 1552 MPYI 2,^RT)
1496 ldi DEINT BLOCK,^RC 1553 CMPI 64,^NO
1497 SUBI 1,^RE 1554 LDIZ 1,^NO
1498 RPTB DEINT 1555 STI RO,^@PUNC COLUMN
1499 1556 TOTS @ADDER_ORE_PUNC, NO
1500 LDF *AR2++,^R6 1557 LDFZ 0,^R2^ ;stuff zero as I value
1501 IISTF R6,^*ARO++ 1558 BZ GET_Q_VALUE
1502 DEINT: 1559 LDF *ARO++,^R2^ ;get I value from data
1503 LDF *AR3++,^R7 1560
1504 IISTF R7,^*AR1++ 1561 GET_Q_VALUE:
1505 1562 TSTB @ADDER_TWO_PUNC, RI
1506 ;clear @FREE1 and @FREE2 1563 LDFZ 0,^R3^ ;stuff zero as Q value
1507 LOT @FREE1,^Ni 1564 BZ SKIP OVER
1508 LOT R6,^R7 1565 LDF *ARY++, R3^ ;get real Q value from data
1509 ADDI^600H,^R7 1566
1510 CALL CLEARFLOAT 1567
1511 1568
1512 LDI @BUFP1, ARO 1569
1513 LDI @BUFP2, AR1 1570 ;LDF *ARO++(IRO),^R2^;get real I value
1514 LDI @FREE1, AR2 1571 ;LDF *AR1++(IR1),^R3^;get real Q value
1515 LDI @FREE2, AR3 1572 SKIP_OVER:

,.^....

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 29 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 30
1573 LDI^16,^RO 1627 ldi^*-ar3(2),^r4 ;top partial metric previous1574 LOT @FORCE_END_ZEROS, R4 ;force zero for last 5 symbo state

is 1628 ldi^*+ar3,^r6 ;lower partial metric previo1575 us state
1576 LDINZ 16,^RO 1629
1577 STI RI,^@PATH 1630
1578 ;LDFNZ^-7.07E-1,^R3 1631 PUSHF R3
1579 1632 PUSH R3
1580 LDI @DEEP,^RI 1633 PUSHF R2
1581 CMPI 16,^RI ;if trellis is not initialized 1634 PUSH R2
1582 BLE INIT_VITB ;4 branches deep then call mit 1635

_vitb 1636 CALL FIND_CORRECT_SURV
1583 1637
1584 ;At this point the Viterbi Decoder is initialized 4 branches 1638 ;CMPF R5,^R7 ;R7 - R5

1585
deep.

;That is there are 16 survivors and now we can go through th
1639

h
;BGT UPPER_BRANCH ;R7 > R5 choose upper branc

e 1640
1586 ;repeat process of looking at all 32 paths,^calculating part

Sal
1641

ch
;LDI *++AR3,^R4 ;R7 < R5^choose lower bran

1587 ;metrics,^and decoding. 1642 ;CALL FIND_CORRECT_SURV ;R5 >= R7 choose lower bran1588 ch
1589 1643
1590 LDI^0,^RO 1644 ONWARD: POP R2
1591 ;^SUBI^4,^R1 ;R1 = length - 4 1645 POPF R2
1592 TOP: 1646 POP R3
1593 LDI rO,^R4 ;calculate offset to add to 1647 POPF R3

base addr 1648
1594 MPYI 7,^R4 1649 ADDI 1,^NO
1595 LDI @STATE TABLE, AR3 1650 CMPI @PATH,^RO ;repeat for all 32 paths1596 ADDI R4, ATO ;add offset to base addr 1651 BN TOP
1597 ;^Ri'Rq' 1652
1598 LDF *++AR3,^R4 ;R4 = Ri'^0^0 1653
1599 LDF *++AR3,^R5 ;R5^= Rq'^/ 1654 LDI @SURV_STATE TABLE, AR4 ;update survivors1600 ;^ / 1655 LDI @NEXT 16_SUV, AR5
1601 LDF *++AR3(2),^R6 ;R6 = Ri"^/^Ri"Rq" 1656 LDI^15,^li.
1602 LDF *++AR3,^R7 ;R7 = Rq"^0/ 1657 RPTB BLOCKS
1603 ;This is the short cut metric 1658
1604 ;^MPYF R2,^R4 1659 LDI *AR5++,^R2
1605 ;^MPYF R3,^R5 1660 STI R2,^*AR4++
1606 ;^ADDF R4,^R5 ;R5 = top partial metric 1661
1607 negf r5 1662 LDF *AR5++,^R2
1608 1663 STF R2,^*AR4++
1609 MPYF R2,^R6 1664
1610 MPYF R3,^R7 1665 LDI *AR5++,^R2
1611 ADDF R6,^R7 ;R7 = bottom partial metric 1666 STI R2,^*AR4++
1612 ;^negf r7 1667
1613 ;This is the distance squared 1668 BLOCKS: ADDI 1, AR4
1614 subf r2,^r4 1669
1615 subf r3,^r5 1670
1616 mpyf r4,^r4 1671
1617 mpyf r5,^r5 1672
1618 addf r4,^r5 1673 LOT @SURV_STATE_TABLE, AR3 ;find smallest accum metric1619 1674 LDI 15, RC
1620 subf r2,^r6 1675 LDF *++AR3,^R2 ;R2 = accumulated metric1621 subf r3,^r7 1676 ldi ar3,^ar4 ;ar4 = address of min metric1622 mpyf r6,^r6 1677 RPTB BLOCKS
1623 mpyf r7,^r7 1678 LDF *++AR3(4),^R31624 addf r6,^r7 1679 CMPF R3, R2 ;R2-R31625 1680 LDFGT R3, R2 ;R2 > R3 so take r3 as min1626 1681 BLOCK6: LDIGT AR3, AM

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 31 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 32
1682 1737 LDI 0,^R2
1683 ;At this point R2 . minimum metric & AR4 the address of this 1738 LDF 0,^R3

metric 1739 RPTB BLOCK7
1684 1740
1685 LDI *--AR4,^R3^ ;R3 = output bit path histor 1741 STI R2,^*AR3++

Y 1742 STF R3,^*AR3++
1686 AND 1,^R3^ ;R3 = output bit 1743 STI R2,^*AR3++
1687 LDI @BIT COUNT, R4 1744 BLOCK7: STI R2,^*AR3++
1688 LOB R4,^1723 1745
1689 ldi^*ar2,^r5 1746 LDI^-27,^R2
1690 OR R3,^r5 1747 STI R2,^@BIT_COUNT1691 sti^r5,^*ar2 1748
1692 ADDI 1,^R4 1749
1693 CMPI 32,^R4 1750 RETS
1694 BNZ NO_BIT_COUNT_RESET 1751
1695 LDIZ 0,^R4 1752
1696 ADDI 1,^AR2 1753
1697
1698

NO_BIT_COUNT RESET:
STI 17(4,^@BIT_COUNT

1754 ;This section of code
er

is usedto initialize the viterbi decod
1699 1755
1700 SUBI^1,^R1^ ;length -1 1756 INIT_VITB:
1701 ;could add force to zero for 1757 LDI @STATE TABLE, AR4last 1758 LDI @SURV_TATE_TABLE, AR31702 ;5 data bits???? 1759 LDI 0,^RD1703 1760 TOP2:
1704 1761 ;ADDI 1,^AR21705
1706

BNZ PUNC 1762 LDI^*+AR3(2),^R6
urvivor

;get last state of current s
1707 ;Input data is finished so clean up and wrap up Viterbi deco

ding
1763 LDI^*++AR4(3),^R7

a match
;compare to state table for

1708 1764 CMPI R6,^R71709
1710

LDI *AR4,^R3^ ;get path history
LSH -1,^R3^ ;lose first bit which was

1765 CALLZ INIT_METRIC
metric

;if matches calculate branch
1711
1712

;output just above 1766
1767

LDI^*++AR4(3),^R7
CMPI R6,^R7

;repeat for lower branch
1713 ;NEGI R4,^R5^ ;negate bit count 1768 CALLZ INIT_METRIC1714 LDI R3,^R6 1769
1715 ;addi^1,^r4 1770 ADDI 1,^RO1716 LSH R4,^R3^ ;shift path history 1771 CMPI 16,^NO1717 ldi *ar2,^r7^ ;before writing to buffer 1772 addi 1,^an1718 OR R3,^r7 1773 BNZ TOP2
1719 sti^r7,^*ar2++ 1774
1720 1775 LDI @SURV_STATE_TABLE, AR3 ;copy next state fields to1721 LDI 33,^r5^ ;check if any more bits to o 1776 LDI 0,^R3 ;last state fields ofutput 1777 LDI 15,^RC ;SURV_STATE_TABLE1722 SUBI R5,^R4 1778 RPTB BLOCK2
1723 bp CLOSE 1779 LDI^*++AR3(3),^R21724 ldi^*ar2,^r7 1780 STI R3,^*AR31725 1781 STI R2,^*-AR3
1726 LSH R4,^R6 1782 BLOCK2: ADDS 1, AR3
1727 OR R6,^r7 1783
1728
1729

sti^r7,^*ar2
CLOSE:

1784
1785

LDI @DEEP,^R2 ;make sure the proper number

1730
1731

;reset the survivor table to original values
;ldi^*+ar4,^r6

1786 MPYI 2,^R2
for

;of survivors is initialized

1732 ;ldi @TROUBLE6,^ar4 1787 STI R2,^@DEEP ;the first 4 branches1733
1734

*ar4;sti^r6, 1788
1789

;will^be^(2,^4,^8,^16)
1735 LDI @SURV STATE_TABLE, AR3 1790 CMPI 16,^R2
1736 LDI 15,^RE 1791 BGT PUNC

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 33 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 34
1792 MPYI 2,^R2 ;copy all 5 fields for each 1846 ;R7 lower partial metric

survivor 1847
1793 LDI @SURV STATE_TABLE, AR3 1848 LDI 15,^RC
1794 LDI AR3,^T:R4 1849 LDI @SURV STATE TABLE, AR4
1795 ADDI R2, AR4 1850 LDI^*++AR74(2),^TR.-3 ;load last state of SURV
1796 LDI *AR3++,^R3 1851 RPTB BLOCK4
1797 SUBI 1,^R2 1852
1798 RPTS R2 1853
1799 LDI *AR3++,^R3 1854 CMPI R4, R3 ;cmp to last state of top br1800 IISTI^R3,^*AR4++ anch
1801 BR PUNC ;go back for more data 1855 ldiz ar4,^ar5 ;top branch1802 1856 cmpi r6,^r3 ;cmp to last state of lower1803 branch
1804 INIT_METRIC; 1857 ldiz ar4,^ar6 ;lower branch
1805 LDF *-AR4(2),^R4 ;R4 . state table I 1858
1806 LDF *-AR4, R5 ;R5 . state table Q 1859 NOP
1807 ;MPYF R2,^R4 1860 BLOCK4:^LDI *++AR4(4),^R3 ;get next last state1808 ;MPYF R3,^R5 1861
1809 ;ADDF R4,^R5 ;R5 . partial metri 1862

c 1863 ;ARS address of last state for top branch1810 ;negf r5 1864 ;AR6 address of last state for lower branch1811 1865
1812 cuff r2,^r4 1866 LDF *-AR5, R4
1813 cuff r3,^r5 1867 mpyf BETA, r4
1814 mpyf r4,^r4 1868 mpyf ONE_MINUS_BETA, r5
1815 mpyf r5,^r5 1869
1816 addf r4,^r5 1870 ADDF R4, R5 ;r5=accum metric with top br1817 anch met
1818 LDF ***AR3,^R4 ;get accumulated met 1871

tic of 1872 LDF *-AR6,^R6
1819 ;current survivor 1873 mpyf BETA, r6
1820 mpyf BETA,^r4 1874 mpyf ONE_MINUS_BETA, r7
1821 mpyf ONE_MINUS_BETA, r5 1875
1822 1876 ADDF R6, R7 ;R7=accum metric with lower1823 ADDF R4,^R5 ;add branch metric branch met
1824 STF R5,^*AR3 ;update accumulated 1877

metric 1878 CMPF R5,^R7 ;^R7 - R5
1825 1879
1826 LDI^*--AR3,^R4 ;get output history 1880 BGT UPPER_BRANCH ;R7 > R5 choose top branch R
1827 LSH -1,^R4 ;R4 » 1 5
1828 LDI 0,^R5 ;output^"0" 1881
1829 CMPI 8,^RO ;if RClecurrenc state 1882 ldi ar6,^ar4 ;R5 > R7 choose lower branch

>=8 R7
1830 LDIGE @BIT_MASK, R5 ;then output^"1" 1883 CALL UPDATE_SURV
1831 OR R5,^R4 1884 REIS
1832 STI R4,^*AR3 ;update path history 1885
1833 1886 UPDATE_SURV:
1834 STI RO,^*++AR3(3) ;save next state 1887 ;we have the correct survivor so now we update it
1835 1888
1836 ADDI 1, AR3 ;move to next surviv 1889 ;R7 = accumulated metric

or 1890 ;ar4= last state SURV_TABLE
1837 RETS 1891
1838 1892 LDI @NEXT 16_SURV, AR5
1839 ;This next section is used to find the correct survivor 1893 LDI RO, lj
1840 FIND_CORRECT_SURV: 1894 MPYI 3,^R3 ;get offset to add t
1841 o base add
1842 1895 ADDI R3, AR5
1843 ;R4 last state for top partial metric 1896
1844 ;R5 top partial metric 1897 STF R7,^*+AR5 ;save annum metric
1845 ;R6 last state for lower partial metric 1898

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 35 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 36
1899 ;save bit 1958 ;***
1900 LDI^*-AR4(2),^R5 ***
1901 LSH -1^,^R5 1959
1902 LDI^0,^R6 1960 RCV:
1903
1904

CMPI 8,^RO
LDIGE @BIT_MASK, R6

1961 PUSH ST^ ;IMPORTANT MUST USE OTHERWISE REST 0
F

1905 OR R6,^R5 1962 ;PROGRAM WILL NOT WORK PROPERLY1906 STI R5,^*ARS^ ;save past history 1963 XOR 2000H,^ST^;disable interrupts
1907 STI RO,^*+AR5(2)^ ;save last state 1964
1908 RETS 1965 PUSH DP^ ;save register contents1909 1966
1910 1967 push ir0
1911 1968 push irl
1912 1969 push bk
1913 1970 push ie
1914 1971 push if
1915 1972 push iof
1916 1973 push rs
1917 1974 push re
1918 1975 push rc
1919 1976
1920 UPPER BRANCH: 1977 PUSH RO
1921 ldf r5,^r7^ ;R5 metric in R7 1978 pushf r0
1922 LDI AR5, AR4^ ;choose upper branch 1979 PUSH R1
1923 CALL UPDATE_SURV 1980 pushf rl
1924 RETS 1981 PUSH R2
1925 1982 pushf r2
1926 1983 PUSH R3
1927 1984 pushf r3
1928 1985 PUSH R4
1929 1986 pushf r4
1930 - 1987 PUSH R5

1988 pushf r5
1931 Interrupt 1 is responsible for obtaining real data from the 1989 PUSH R6
1932 I and Q channels and then hard decoding each dibit while 1990 pushf r6
1933 simultaneously searching for the occurence of a flag. 1991 PUSH R7
1934 1992 pushf r7
1935 Interrupt 1 occurs once every symbol duration time period. 1993 PUSH ARO
1936 Currently a symbol lasts for: 1994 PUSH AR1
1937 1995 PUSH AR2
1938 6 *^6.6micros . 39.6 micros 1996
1939 1997 LDP CODES
1940 39.6ms/60ns^= 660^instructions 1998 LDI @ADCHANA1, ARO^;read I channel1941 1999 LDI 8ADCHANB1, AR1^;read Q channel1942 This allows for the execution of 660 instructions between 2000 LOT *ARO, RO
1943 interrupt trigger times. 2001 LLD' *AR1, R1
1944 2002
1945 Currently this interrupt consists of^xx instructions giving 2003
1946 rise^to^: 2004 ash -16,^r0
1947 660 - xx = yy instructions of main code. 2005 ash -16,^rl
1948 2006 FLOAT RO, R2^ ;convert A to D hex value to1949 Requires: float
1950 Nothing 2007 FLOAT R1,^R3
1951 Modifies: 2008
1952 RO,^R1,^R2,^R3,^R4,^R5,^R6,^R7 2009 MPYF @SCALE, R2^ ;scale float value down1953 ARO,^AR1,^AR2 2010 MPYF @SCALE, R3
1954 Returns: 2011
1955 Nothing 2012
1956
1957

2013 At this point R2 and R3 contain a scaled down floating poin
t

..^;,...

Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 37 Oct 6 1993 14:39:55^RCVRADAP.ASM^Page 38
2014 ;representaion of the I and Q channel just read 2069 ;^All other interrupts simply return
2015 2070
2016 LDI @REAL_IBIT_POINTER, ARO^;get current pointer to I an 2071 NO:^RETI

d Q 2072
2017 LDI @REAL_QBIT_POINTER, AR1^;real data 2073 ;***
2018 *******
2019 STF R2,^*ARO++(1)%^;save real value I and Q in 2074 ;^This section clears memory chunks specified by ARO --> AR1
2020 STF R3,^*AR1++(1)%^;circular memory 2075 CLEAR:
2021 2076 SUBI R6,^R7
2022 STI ARO,^@REAL_IBIT_POINTER^;update pointers to real dat 2077 LDIN 1,^R7

a 2078 BN ERROR
2023 STI AR1, @REAL_QBIT_POINTER 2079 LDI R6,^ARO
2024 2080 LDI 0,^R6
2025 ldf @OLDI_INT,^r0 2081 RPTS R7
2026 ldf @OLDQ_INT,^rl 2082 STI R6,^*ARO++
2027 CALL HARDDECODE^ ;decode current dibit 2083 REPS
2028

rence
STF R2,^@OLDI_INT^ ;save current dibit for refe 2084 ;***

2029 STF R3,^@OLDQ_INT^ ;by the next future dibit 2085 ERROR:
2030 2086 LDP DUAL
2031 CALL FLAG_CHECKER^ ;checks if flag has been enc 2087 STI R7, @ERROR_NUM

ountered 2088 DEAD:^BR DEAD
2032 2080 ;***
2033 POP AR2 ******
2034 POP AR1 2090 ;^This section clears memory chunks specified by ARO --> AR12035 POP ARO 2091 CLEARFLOAT:
2036 popf r7 2092 SUBI R6,^E7
2037 POP R7 2093 LDIN 1, R7
2038 popf r6 2094 BN ERROR
2039 POP R6 2095 LDI R6, ARO
2040 popf r5 2096 LDF 0,^R6
2041 POP R5 2097 RPTS R7
2042 popf r4 2098 STF R6,^*ARO++
2043 POP R4 2099 REPS
2044 popf r3 2100
2045 POP R3 2101
2046 popf r2 2102
2047 POP R2 2103 .end
2048 popf rl
2049 POP R1
2050 popf r0
2051 POP RI
2052
2053 pop rc
2054 pop re
2055 pop rs
2056 pop iof
2057 pop if
2058 pop ie
2059 pop bk
2060 pop in
2061 pop ir0
2062
2063 POP DP
2064 POP ST
2065 OR 2000h,^ST
2066 RETI
2067
2060 ;***

Oct 7199301:57:01^VARSRCVR.ASM^Page 1 Oct 7 1993 01:57:01^VARSRCVR.ASM Page 2
1 VARS.asm^V1.00^JAN 93 60 TRANSMISSION^.set 809d07H
2
3
4
5

-,^This file is used to set variables which are constantly
•,^used throughout the assembly section of the code.
•,

61
62
63
64

Q_OFF_TRANS^.set
GET NEWFRAME_FLAG .set
DIBET_COUNT^.set

809D08H
809D09H
809D0AH

6 .text 65
7 STACK_SIZE^.set^400h^;size of system stack 66 ;RCVR VARIABLES
8 FP^.set^AR3^;frame pointer 67 ADCHANA1 .word^804000h9 DELTA^.set^2^;amount to jump in SIN table 68 ADCHANB1 .word^804001h
10 INITIAL^.set^800h 69 ;SCALE .float^3.052e-511 NULL^.set^0 70 SCALE .float^9.155553e-5
12 71
13 DATALENGTH^.set^100h 72
14 CODES^.set^0 73 REAL_IBIT_POINTER .word 1000h
15 DUAL^.set^30000h 74 REAL_QBIT POINTER .word 2000h16 ONCHIP^.set^809C0Oh 75 FLAG_ADDRESS_TABLE .word 3000h17 76 TABLE_TOP .word 3000h18 DEINT_ROW^.set^16 77 TABLE BOTTOM .word 3Offh19 DEINT BLOCK^.set^256^;symbols per block 78 FLAG_EOMP .word B1492H
20 BLOCKS^.set^2 79 MASK .word FFFFFFOOH
21 80 MASK1 .WORD Offffffh22 K^.set^809c0Oh 81 OLDI .float
23 POLY1^.set^809c01h 82 OLDQ .float
24 POLY2^.set^809c02h 83 OLDI_INT .float
25 CRC_CCITT^.word^69665 84 OLDQ_INT .float
26 CRC 32^.word^4374732215^;problem with length 85 FLAG TO BE .word
27
28

FLAG-^.set ^809c05h 86 START_FEAME
s

.word 2000h ;init to dummy value

29
30

MENU MASK^.set^3h
PACKET_MASK^.set^7h

87 STOP_FRAME
s

.word 2fffh ;init to dummy value

31 LENGTH MASK^.set^3ffh 88 CURRENT FLAG .word 3000h ;init to table_top32 CRC _MASK^.word^01FFFEOH 89 CIRC_BOTTOM .word 1000h33 HIGE_MASK^.word^Offff0000h 90 CIRC TOP .word 2000H34 91 TROUBLE .word 0100h35 CPC_ONE_ADDER1^.set^Oh 92 TROUBLE2 .word 00F0h36 CPC ONE ADDER2_^_^ .set^lh 93 TROUBLE3 .word 0110h37 CPC_TWO_ADDER1^.set^2h 94 TROUBLE4 .word 0120h
38 CPC_TWO_ADDER2^.set^3h 95 TROUBLE6 .word 0130h39 96 HD LENGTH .word
40 97 DIEIT .word
41 ADCHANA^.set^804000H 98 THRESHOLD .word 2
42 ADCHANB^.set^804001H 99 CIRCLESS1 .word lfffh43 TROUBLEA^.WORD^31000H 100 RCVD SIGNAL_ENERGY .word 000fh44 101 SYMBOLS .word 0010h
45 Q_START^.set^809c16H^;contains add of Q table 102 but .word 1000h46 Q_END^.set^809c17H^;contains add of Q end tabl 103 buf2 .word 2000h

e 104 CURRENT START .WORD
47 SERIALO^.set^809C18H 105 ;VITERBT DECODER TABLES & VARIABLES
48 TABLE_ENC^.set^809C49H^;CONTAINS POINTER TO TAB_ENC 106
49 IBIT_POINTER^.set^809C4AH^;contains IBIT pointer 107 BETA .set^9.9e-1
50 QBIT_POINTER^.set^809C4BH^;contains Qbit pointer 108 ONE_MINUS_BETA .set^1.0e-2
51 109 BIT_MASK .word^80000000h
52 110 BIT COUNT .word^-27
53 SINE POINTER^.set^809D0OH 111 DEEP .word ^2
54 COSINE_POINTER^.set^809D01H 112 PATH .word^16
55 POINT _COUNT^.set^809D02H 113 FORCE END ZEROS .word^0
56 'WORDDATA^.set^809003H 114 PUNC EOLUe4-N .word^1
57 CURRENT ADDRESS .set^809004H 115 ADDEE_ONE_PUNC .word^7
58 END_ADDEESS^.set^809D05H 116 ADDER_TWO PUNC .word^7
59 Q_OFFSET^.set^809006H 117 ADDER_1PRTME_PUNC .word^7

Oct 7 1993 01:57:01 VARSRCVR.ASM Page, 3 Oct 7 1993 101:57:01 VARSRCVR.ASM Page 4

118 ADDER_2PRIME_PUNC .word 7 178 .word 7 ;state 7
119 SEQUENCES .word 0 179 .float 7.07e-1 ;I(s)
120 180 .float -7.07e-1 ;4(s)
121 .label TABLE_STATE 181 .word 14 ;s
122 .word 0 ;state 0 182 .float -7.07e-1 ;I(s+1)
123 .float -7.07e-1 ;I(s) 183 .float 7.07e-1 ;Q(s+1)
124 .float -7.07e-1 ;4(s) 184 .word 15 ;s+1
125 .word 0 ;s 185
126 .float 7.07e-I ;I(s+1) 186 .word 8 ;state 8
127 .float 7.07e-1 ;4(s+1) 187 .float 7.07e-1 ;I(s)
128 .word 1 ;s+1 188 .float 7.07e-1 ;Q(s)
129 189 .word 0 ;s
130 .word 1 ;state I 190 .float -7.07e-1 ;I(s+1)
131 .float 7.07e-1 ;I(s) 191 .float -7.07e-1 ;Q(s+1)
132 .float -7.07e-1 ;4(s) 192 .word 1 ;s+1
133 .word 2 ;s 193
134 .float -7.07e-I ;I(s+1) 194 .word 9 ;state 9
135 .float 7.07e-1 ;Q(s+1) 195 .float -7.07e-1 ;I(s)
136 .word 3 ;s+1 196 .float 7.07e-1 ;4(s)
137 197 .word 2 ;s
138 .word 2 ;state 2 198 .float 7.07e-1 ;I(s+1)
139 .float -7.07e-1 ;I(s) 199 .float -7.07e-1 ;Q(s+1)
140 .float 7.07e-1 ;(2(s) 200 .word 3 ;s+1
141 .word 4 ;s 201
142 .float 7.07e-1 ;I(s+1) 202 .word 10 ;state 10
143 .float -7.07e-1 ;4(s+1) 203 .float 7.07e-1 ;I(s)
144 .word 5 ;s+1 204 .float -7.07e-1 ;4(s)
145 205 .word 4 ;s
146 .word 3 ;state 3 206 .float -7.07e-1 ;I(s+1)
147 .float 7.07e-1 ;I(s) 207 .float 7.07e-1 ;Q(s+1)
148 .float 7.07e-I ;Q(s) 208 .word 5 ;s+1
149 .word 6 ;s 209
150 .float -7.07e-1 ;I(s+1) 210 .word 11 ;state 11
151 .float -7.07e-1 ;Q(s+1) 211 .float -7.07e-1 ;I(s)
152 .word 7 ;s+1 212 .float -7.07e-1 ;4(s)
153 213 .word 6 ;s
154 .word 4 ;state 4 214 .float 7.07e-I ;I(s+1)
155 .float -7.07e-1 ;I(s) 215 .float 7.07e-1 ;Q(s+1)
156 .float 7.07e-1 ;4(s) 216 .word 7 ;s+1
157 .word 8 ;s 217
158 .float 7.07e-1 ;I(s+1) 218 .word 12 ;state 12
159 .float -7.07e-I ;0(s+1) 219 .float 7.07e-I ;I(s)
160 .word 9 ;s+1 220 .float -7.07e-1 ;4(s)
161 221 .word 8 ;s
162 .word 5 ;state 5 222 .float -7.07e-1 ;I(s+1)
163 °float 7.07e-1 ;I(s) 223 .float 7.07e-1 ;Q(s+1)
164 .float 7.07e-1 ;4(s) 224 .word 9 ;s+1
165 .word 10 ;s 225
166 .float -7.07e-1 ;I(5+1) 226 .word 13 ;state 13
167 .float -7.07e-1 ;Q(s+1) 227 .float -7.07e-1 ;I(s)
168 .word 11 ;s+1 228 .float -7.07e-1 ;4(s)
169 229 .word 10 ;s
170 .word 6 ;state 6 230 .float 7.07e-1 ;I(s+1)
171 .float -7.07e-1 ;I(s) 231 .float 7.07e-1 ;Q(s+1)
172 .float -7.07e-1 ;4(s) 232 .word 11 ;s+1
173 .word 12 ;s 233
174 .float 7.07e-I ;I(s+1) 234 .word 14 ;state 14
175 .float 7.07e-1 ;4(s+1) 235 .float 7.07e-1 ;I(s)
176 .word 13 ;s+1 236 .float 7.07e-1 ;4(s)
177 237 .word 12 ;s

Oct 7 1993101:57:01 VARSRCVR.ASM Page 5 Oct 7 1993 01:57:01 VARSRCVR.ASM Page 6

238 .float -7.07e-1 ;I(s+1) 298
239 .float -7.07e-1 ;Q(s+1) 299 SURV8 .word 0 ;past history
240 .word 13 ;s+1 300 .float 0 ;accumulated metric
241 301 .word 0 ;last state
242 .word 15 ;state 15 302 .word 0 ;next state
243 .float -7.07e-1 ;I(s) 303
244 .float 7.07e-1 ;4(s) 304
245 .word 14 ;s 305 SURV9 .word 0 ;past history
246 .float 7.07e-1 ;I(s+1) 306 .float 0 ;accumulated metric
247 .float -7.07e-1 ;Q(s+1) 307 .word 0 ;last state
248 .word 15 ;s+1 308 .word 0 ;next state
249 309
250 .label TABLE_SURV 310
251 SURVO .word 0 ;past history 311 SURV10 .word 0 ;past history
252 .float 0 ;accumulated metric 312 .float 0 ;accumulated metric
253 .word 0 ;last state 313 .word 0 ;last state
254 .word 0 ;next state 314 .word 0 ;next state
255 315
256 316
257 SURV1 .word 0 ;past history 317 SURV11 .word 0 ;past history
258 .float 0 ;accumulated metric 318 .float 0 ;accumulated metric
259 .word 0 ;last state 319 .word 0 ;last state
260 .word 0 ;next state 320 .word 0 ;next state
261 321
262 322
263 SURV2 .word 0 ;past history 323 SURV12 .word 0 ;past history
264 .float 0 ;accumulated metric 324 .float 0 ;accumulated metric
265 .word 0 ;last state 325 .word 0 ;last state
266 .word 0 ;next state 326 .word 0 ;next state
267 327
268 328
269 SURV3 .word 0 ;past history 329 SURV13 .word 0 ;past history
270 .float 0 ;accumulated metric 330 .float 0 ;accumulated metric
271 .word 0 ;last state 331 .word 0 ;last state
272 .word 0 ;next state 332 .word 0 ;next state
273 333
274 334
275 SURV4 .word 0 ;past history 335 SURV14 .word 0 ;past history
276 .float 0 ;accumulated metric 336 .float 0 ;accumulated metric
277 .word 0 ;last state 337 .word 0 ;last state
278 .word 0 ;next state 338 .word 0 ;next state
279 339
280 340
281 SURV5 .word 0 ;past history 341 SURV15 .word 0 ;past history
282 .float 0 ;accumulated metric 342 .float 0 ;accumulated metric
283 .word 0 ;last state 343 .word 0 ;last state
284 .word 0 ;next state 344 .word 0 ;next state
285 345
286 346
287 SURV6 .word 0 ;past history 347 .label TABLE_NEXT_16
288 .float 0 ;accumulated metric 348 NEXTSURVO .word 0 ;past history
289 .word 0 ;last state 349 .float 0 ;accumulated metric
290 .word 0 ;next state 350 .word 0 ;last state
291 351
292 352
293 SURV7 .word 0 ;past history 353
294 .float 0 ;accumulated metric 354 NEXTSURV1 .word 0 ;past history
295 .word 0 ;last state 355 .float 0 ;accumulated metric
296 .word 0 ;next state 356 .word 0 ;last state
297 357

Oct 7 1993 01:57:01 VARSRCVR.ASM Page 7 Oct 7 1993 01:57:01 VARSRCVR.ASM^Page 8
358 418
359 419
360 NEXTSURV2 .word 0 ;past history 420 NEXTSURV12 .word 0^;past history
361 .float 0 ;accumulated metric 421 .float 0^;accumulated metric362 .word 0 ;last state 422 .word 0^;last state
363 423
364 424
365 425
366 NEXTSURV3 .word 0 ;past history 426 NEXTSURV13 .word 0^;past history
367 .float 0 ;accumulated metric 427 .float 0^;accumulated metric368 .word 0 ;last state 428 .word 0^;last state
369 429
370 430
371 431
372 NEXTSURV4 .word 0 ;past history 432 NEXTSURV14 .word 0^;past history373 .float 0 ;accumulated metric 433 .float 0^;accumulated metric374 .word 0 ;last state 434 .word 0^;last state
375 435
376 436
377 437
378 NEXTSURV5 .word 0 ;past history 438 NEXTSURV15 .word 0^;past history379 .float 0 ;accumulated metric 439 .float 0^;accumulated metric380 .word 0 ;last state 440 .word 0^;last state381 441
382 442
383 443
384 NEXTSURV6 .word 0 ;past history 444 STATE TABLE .WORD TABLE_STATE385 .float 0 ;accumulated metric 445 SURV_TATE TABLE .WORD TABLE_SURV
386 .word 0 ;last state 446 NEXT_16_SUiV .WORD TABLE_NEXT_16
387 447
388 448
389 449
390 NEXTSURV7 .word 0 ;past history 450
391 .float 0 ;accumulated metric 451 ;^Memory Map of On chip memory $30000 - $3ffff
392 .word 0 ;last state 452
393 453 ;^v1.00 Feb 93
394 454
395 455 LENHEADO .set 30000h ;length of unencoded header396 NEXTSURV8 .word 0 ;past history 456 LENDATAO .set 30001h ;length of unencoded data397 .float 0 ;accumulated metric 457 LENHEADENC .set 30002h ;length of encoded header398 .word 0 ;last state 458 LENDATAENC .set 30003h ;length of encoded data399 459 PACKET_NUM .set 30004h ;packet number Ns400
401

460 RATE
g

.set 30005h ;rate to be used for encodin

402 NEXTSURV9 .word 0 ;past history 461 MENU OPTION .set 30006h ;menu option 1,^2,^or 3403 .float 0 ;accumulated metric 462 ERROi_NUM .set 30007h ;error number404 .word 0 ;last state 463 CONTROL WORD .set 30008h ;control info from protocol405
406

464 LENHEADT,1
s

.set 3000ah ;bit length of P1 header bit

407 465 LENHEADP2 .set 3000bh ;bit length of P2 header bit
408 NEXTSURV10 .word 0 ;past history s
409 .float 0 ;accumulated metric 466 LENDATA_WORD .set 3000ch ;word length of data chunk
410 .word 0 ;last state 467 LENDATA BIT .set 3000dh ;# of left over bits from da
411 ta chunk
412
413

468 TOTAL_WORDS
e

.set 3000eh ;word length of current fram

414 NEXTSURV11 .word 0 ;past history 469 CODE .set 3000fh
415 .float 0 ;accumulated metric 470 ;unused 30009-3000f
416 .word 0 ;last state 471
417 472 ; Careful^!!^these are pointers to specific memory locations

Oct 7 1993 01:57:01 VARSRCVR.ASM^Page 9
473
474 .text
475 VIRGIN_HEADER^.word 30010h ;start of virgin header
476 TAIL1^.set 30012h ;used for header CRC calc
477 VIRGIN_DATA^.word 30013h ;start of virgin data
478 TAIL2^.set 30030h ;space to store data CRC
479 HEADBUF1^.word 30031h ;header buffer 1
480 HEADBUF2^.word 30033h ;header buffer 2
481 HEADBUF3^.word 30035h ;header buffer 3
482 HEADBUF4^.word 30039h ;header buffer 4
483
484 DATABUFP1^•word 3003dh ;data buffer 1
485 DATABUFP2^.word 3005ch ;data buffer 2
486 ;7bh--->7fh Unused
487 ACK()^.set 3007Bh ;ACKO
488 STROBE_RCVR^.set 3007ch
489 STROBE_HOST^.set 3007dh
490
491 FRAMEBUFP1^.word 30080h ;frame buffer 1
492 FRAMEBUFP2^.word 300a0h ;frame buffer 2
493
494 FLAGOP1^.word 300c0h ;flag for frame 0,^P1
495 PACKETOHARDP1^.word 300c1h
496 PACKET1HARDP1^.word 300e2h
497 BUFP1^.word 30100H
498 BUFP2^.word 30500H
499 CPC1I^.word 30900H
500 CPC1Q^.word 30b0OH
501 CPC2I^.word 30d0OH
502 CPC2Q^•word 33800H
503 FREE1^•WORD 33100H
504 FREE2^.WORD 33400H
505
506
507

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132

