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ABSTRACT

Molecular orbital calculations have been successively
applied to mineralogical studies of eqguilibrium molecular

geometry, electronic charge distributions, electronic spectra

and bulk modulus calculations. To date, these studies have

modelled bonding at atmospheric pressure. With the ever
increasing interest in high pressure phases and ~mantle
" mineralogy, bonding studies of molecular groups at  simulated
high pressure can be an invaluable aid to understanding high
pressure crystal chemistry, bond energetics and electronic
spectra. |

This 1investigation tests the feasibility of wvarious
models to simulate pressure in ab initio SCF MO calculations
on common metal-oxygen polyhedra. Pressure is.simuléted in
the cluster, HgSi,0,, by systematically stepping helium atoms
directed . along the Si-O bridging vectors toward the bridging
oxygen. Changes in the Si-O bond lengths, Si0OSi angles and
Si-O force constants are monitored with increasing pressure.

For an increase of 60 kbar pressure, the Si-O0 bond length
and Si0Si angle decrease 0.30% and 4.5%, respectively, which
compares well with the 0.30% and 6.6% decrease observed in ¢~
quartz for a similar increment of ©pressure. The linear
correlation of Si-O0 bond 1length and -sec(SiOSi), known to
occur at one bar, holds at elevated pressure. In addition,
the Si-O stretching and SiOSi bending force constants show a

percentage increase in the ratio 1:6 up to an estimated

i



pressure of 140 kbar.



TABLE OF CONTENTS

ABSTRACT ...........,.....5.;....
LIST OF TABLES """'7";"""'
LIST OF FIGURES +vvvevevnnnnen. ..
ACKNOWLEDGEMENTS .....ovvvnnnnnns
I. INTRODUCTION ...vvevvnnenervnnnn.
I1. MOLECULAR ORBITAL METHOD ........

DesCcription w.veeeeeeesns oo

MO Methods ..eieeererneeenns ..

III. CALCULATIONS .+ v vevnvnvnenennnnns
IV. MODELS ......... e, ...
V. RESULTS AND DISCUSSION ....oovn..

Model I ....c0ivveves c et ene e

Model I ..icieveeeeaoane ceesc e

VI. CONCLUSIONS ....iiiieeerencnnnnns

REFERENCES &t iv vt eveeoooenonsnses

Page

ii.

vi,

viii,

11

14

17

22

22

25

46

49

jv



Table

II1,

ITI.

LIST OF TABLES

Asymmetric stretching force constants (kg
calculated at 1 bar for the clusters HgSi,O
H,Al1,0,°2%, H,,Sis0, And H,,AlSi,0, ' with a
Si0Si and AlOSi angles equal to 180°.

)
77
11

-Comparison at 1 bar of calculated symmetric

stretch, vs , asymmetric stretch, va, and
bending, vy, frequencies for HgSi,0, with those
determined from infrared and raman spectra for
S$1,0,°¢, (0(Si(CH;),),, and BaTiOSi,0,.

Mulliken bond overlap populations, n(Si-Op) and
n(Si...Si), and atomic charges on bridging
oxygen, Q(Op), and silicon, Q(Si), for HgSi,O,
at 1 bar,. 60 kbar and 140 kbar; the bridging

. Si-0 bond and Si0OSi angle are optimized.

I—'.’age

24

28

38



Figure

LIST OF FIGURES

Molecular conformation for the dimers .studied
with - model I (note the straight. bridging

angle); pressure is simulated by decreasing the
intertetrahedral distance.

Molecular conformation for HgSi,0; studied with
model II. Note the bent bridging angle and
positioning of helium atoms used to simulate
pressure by systematically decreasing the d(He-
Op) distances.

Log of the asymmetric Si-O stretching force

constant, log(ka) , plotted against the log of

the intertetrahedral distance, log(d(T...T)),

for HgSi,0,; where :

log(ka ) =-7.35log(Si..Si) +4.55 (r?=0.999)

H Al 07-2' '

log(ka) =7, 42109(Al...Al) +4.63 (r?=0.998)
H,,S81i:0,:

log(kg ) =-7.12lo0g(Si...Si) +4.47 (r?=0.999) ;

and H12Alsia0u: :

log(kg) =-7.411og(Al...Si)+4.62 (r?=0.998).

~e

~e

A comparison of  -asymmetric stretching
frequency, vs , plotted against bridging bond
length, d(Si-0, ), for a group of twelve
pyrosilicates ?a) and HgSi,0, (b); vs's were
determined from spectroscopic experiments for
pyrosilicates whereas vz 's for HgSi,0, were
calculated.

The potential energy surfaces for HgSi,0, and
He ,H¢Si,0, at 1 bar and 140 kbar, respectively,
plotted as a function of the bridging bond
length, d(Si-0Op), and the SiOSi angle.

A comparison of the potential energy curves for
HeS1i,0; and He,H¢Si,0, plotted as a function of
the bridging distance, d(Si-Op ), at 1 bar
(upper curve) and 140 kbar (lower curve),
respectively. '

A comparison of the potential energy curves for
HgSi,0; and He,HSi,0; plotted as a function of

the Si0OSi angle at 1 bar (upper curve) and 140

kbar (lower curve), respectively.

Page

20

26

29

31

33

34

vi



- Figqure -

10.

11,

12.

Symmetric. stretching $i-0 force constant, kg,

plotted against the SiOSi angle at 1 bar (left)

where kg=0.038(Si0Si)+1.941, r?=0,97, and 140
kbar (right) where kg =0.040(Si0Si)+3.964,
r2=0.93. : :

‘Mulliken bond overlap - population,. n(Si-Op ),

plotted against the bridging Si-O distance at 1

bar (a) and against the symmetric stretching .

force constant at 1 bar (b) with r? values. of
0.997 and " 0.989 , respectively; the

corresponding relationships at 140 kbar™ are

found in (c¢) and (d) with r? values of 0.999

and 0.971, respectively.

Mulliken bond overlap population, n(Si-Op ),
plotted against the bridging SiOSi angle at 1
bar (a) and against the percentage s-character
of the hybrid orbitals on the bridging oxygen,

100/(1+x%), at 1 bar (b) with the corresponding

relationships at 140 kbar found in (¢) and (d).
The curvilinear trends of (a) and (c) both
become linear in (b) and (d4). :

The relationship between the bridging §i-0
distance and -sec(Si0Si) for HgSi,0, at 1 bar
and - an elevated pressure estimated to be 140
kbar.

A comparison between the average Si-O bridging
distance plotted against -sec(Si0Si) for

coesite (left) and H¢Si,0; (right); at 1 bar

and 52 kbar, the r? values for coesite based on
the experimental data of Levien and Prewitt
(1981) are 0.97 and 0.90, respectively; the r?
values based on calculations at 1 bar and 60
kbar for H¢Si,0, are 0.97 and 0.98,
respectively. :

Illustration of how estimates of k,Ax roughly
equal to 60 kbar pressure were obtained.
Modelling changes that occur in e-Quartz at
this pressure, d(Si-Op) was kept constant while
decreasing the Si0OSi angle from 144° to 134°
(path A-C); path B-C shows the Ax associated
with an increment of 60 kbar pressure.

: Pa’ge

35

38

41

42

44

45

vii



ACKNOWLEDGEMENTS

Sincere thanks are extended to Dr. E.P. Meagher for his
guidance, support and encouragement throughout this study.
This work was supported by the National Science . and
Engineering Research CounCil with NSERC .grant 67-7061 énd
summer grants were provided by the NAHS. The <cooperation of
the computing centre at the University of British Columbia is
also gratefully acknowledged.

Appreciation is expressed to Dr. G.V. Gibbs for
introducing me to the exciting world of molecular orbital
theory and to Monigue Roussy for her many fruitful
discussions.

Fiﬁally I thank Gord Hodge for his deft hand at
draughting .and his concern for the aesthetic appeal of all

illustrations used in the text.

viii



I. INTRODUCTION

SignificantAadvances have been made in the past twenty
five yeérs with regards to the accurate determination of
siliéate-structures whiéh have, in turn, supplied a wealth of
data for crystal chemical investigations of this Qeologically
important mineral group. For the most part, these
in?estigations have dealt .with structural variations as a
function of substituent cation radius, température, and in
recent years, pressure (Papike et al. , 1969; Cameron et al. ,
1973; Levien and Prewitt, 1981).

Until recently, investigations dealing with the chemical
bonding in silicate minerals have been few in number and have -
been based mainly on the electrostatic model (Whittaker, 1971;
Ohashi and Burnham, 1972). With the general knowledge that
silicates have a high covaient character in their chemical
bonding (Pauling, 1981), there has been a trend in the past
decade toward utilizing molecular orbital methods in silicate
bonding studies. In particular, there has been a concerted
effort to understand the stereochemistry of silicates using
molecular orbital formalisms ranging from the semi-empirical
extended Huckel method (Louisnathan and Gibbs, 1972) and the
CNDO/2 method  (Meagher et al. , 1979) to the more
sophisticated self-consistent field (SCF) ab initio method
(Newton and Gibbs, 1980).

In addition to the "success of the molecular orbital



methodbin‘stereochemical-studies,jit has also been~ applied
.successively to Dbulk modulﬁs calculations (Newton et al. ,
1980) and to the interpretationvdf. absorptibh,. emission and
photoelectronic spectra. 1in silica and silicatel minerals
(Tossell, 1973, 1979; Dejong and Brown, 1980). The agreement
between molecular orbital calculations and observed values for
silicates supports the .view that isolated molecular groups
possess local bonding forces that are similar to those found
in three dimensional solids.

To date, these studies have modelled bonding at
atmospheric pressure and molecular orbital calculations have
Anoﬁ,. as a rule, been applied to thermodynamic properties of
minerals. Thé quantities K (bulk modulus) and dK/dP (first
derivative of the bulk modulus with respect to‘préssure) are
important parameters in the equations of state émployed in
geophysical research and in high pressure crystal chemicél
studies of minerals. Unfortunately these quantities are
difficult to determine experimentally, especially at high
confining pressures. Recent advances 1in crystal structure
determinations at high pressures by x-ray diffraction methods
have yielded some valuable data. The experiments are
currently limited, however, to approximately 60 kbars pressure
and foreseeable advances will extend the pressure range'to 200
kbars at best.

Ovef the past fifty years, various empirical
relationéhips between K and molar volumes of solids have been

proposed. Recently ‘investigators have proposed an empirical



feiationship between the bulk - modulus of ‘;cation—anion
polyhedfa (Kp)-- and the  mean cation-anioﬁ.distances‘atfbne
atmosphere pressure (Hazen and Finger, 1979).v They suggest
that - in order to predict K of a complex sclid one must know
the Kp -values of the component polyhedra 1in the solid.
Althoughv these relationéhips lend * themselves to predicfihg
compressibilities of simple solids at low confining pressures,
they are. not successful for more complex 'solids or for
predictions of K at high confining pressures.

An alternative approach is proposed whéreby the
quantities Kp and d(Kp)/dP will be computed wutilizing the

relationship,

Kp = V(D2E/or?)(dr/dv)?
= V(kg(dr/av)? (1)

where V is the volume of the polyhedron, r is the cation-anion
distanée,'E is the total energy and ks is the stretéhing force
constant.

This study is the first in a series investigating
compressibilities of the more common metal-oxide -polyhedra
found in the earth's crust and mantle. The groundwork for
future studies is laid by testing models for simulation of
pressure with SCF molecular orbital calculations. Among the
molecular clusters of geological interest is the Si,0, dimer.
In this study, we monitor changes in the stereochemistry of

HgS1,0, as a function of pressure as well as changes in the



stretchiﬁg and . bending force constants of the Si0Si linkage
with pressure. Thé.computation of polyhedral bulk moduli and
their wvariation with pressure will be completed in work now.
‘underway on the SiO, and AlO, tetrahedra and in future work on
octahedral oxyanionv clusters - of magnesium, aluminum and
silicon. Investigations such as the above provide insights

into the atomic responses to pressure in silicate structures.



1T ‘MOLECULAR ORBITAL METHOD -

Description

The molecular orbital (MO) method forms the ‘underlying
basis for the calculations in this study. The MO method
provides an- approximate solution to the Schrodinger wave

equation, -
H¥=E¥ : ‘ - (2)

for a mény—electron molecule or cluster of atoms. This is
equivalent to an eigenvector (¥) eigenvalue (E) problem. The
central premise in MO theory is thaf the complex many-
elect;on wavefunction, ¥, can be approximated as an
antisymmetrized product of one-electron wavefunctions, LT
called moleculer orbitals,

= v (3)

™=

M@ny»dlz clron m/!

where n is the total number of electrons in the system. The
optimal wavefunction, ¥ (also known as the Hartree-Fock
wavefunction), will be the one which minimizes the total

energy for an atomic cluster in its ground state, E

mel?



E = gw*H@dr ' o (4)

W\D‘

where ¥ is the many-electron wavefunction defined in (3) and H
is the many-electron Hamiltonian operator.

Incorporated in the hamiltonian .are the kinetic and
potential energies of the nuclei and electrons in the atomic
group. If the Born-Oppenheimer approximation is accepted,
wvhereby the nuclei are considered fixed, the hamiltonian for
an atomic .cluster with m nuclei and i,j electronS'canbbe
expressed in the following way,

R Y TR N
H=) (~h2/2M)V / i(Zﬂ@ /T +{ (e2/rij) ,  (5)
f ' i m i< j :

where YZ is the Laplacian operator. The first term represents
the kinetic energy of the electrons, the second term
represents their potential energies due to attraction with the
nuclei and the third term represents the repulsion between.
electrons.

The hamiltonian is frequently divided into one-electron

terms, H , and two-electron terms, ez/ry, such that

H =EE:H;£Ej§gZez/ry). (6)
| i i<j ’

The energy relating to the one-electron operator (also known

as the core hamiltonian) is



| * . ' .
Em=g;m(1)H;%m(1)dr(, ' v (7)
where E represents the sum of the kinetic and potential
energy due to an electron occupying orbital ¢,. A typical
two-electron term representing the repulsive potential energy

between electrons i,j is -
Vo= v () e (1) (e?/ry) v (3)w, (3) dr.dr; -
m m Y vrj nj_ ity

SS’W:(i)wh(i) (ez/rj) v:(j)wn(j) dr,dB

= Jpn~ Kppr (8)

where Jp, is the Coulomb repulsive energy and. K,,is the
exchange energy. The total energy of the system can be

expressed as

. 1
NV |
e T 5 Jae) Yo
m mwmLn min
for molecular orbitals m and n.
‘After defining the hamiltonian, suitable wavefunctions

+ ¥, Must be found which satisfy the one-electron Schrédinger

equation,

Fy (10)

il
m

where the operator F is the -Hartree-Fock or effective one-



electron Hamiltonian and ¢, is the one-electron energy.l In
other words, there  will be a series. of ¢M whiéh.- are
A eigenvectors of the 1linear -opefator F,Aeach with a unique
energy €, . In practice the molecular. orbitals, v, afe
‘expanded in terms of a convenient basis set of N atomic

orbitals, ¢,, centered on the various atoms of the molecule,

gﬂ=§ $rC e (11)

That  is, the molecular orbitals are expressed as a linear
combination of atomic orbitals (LCAO). The atomic orbitals
can be any genéral set of specified single-electron functions.

The best approximations for the.wavefunctions, v, , will
be those that give the lowest energies, e,, . This is in
accordénce with the Variation Principle which states that the
value of the calculated -energy is always greater than or equal
to the true ground state electronic energy. The problem is
reduced to finding the set of coefficients, crn, that yields
the lowest energy. This is done by minimizing the energy with
respect to each of the coefficients. Following this method,
the coefficients must satisfy equatiohs which can be written

in matrix form,
FCm= €4 SCpn (12)

where S"\ is a column vector of MO coefficients, F is the

matrix whose elements are defined as



where F=H+J-K and g_is the overlap matrix with elements,

Sd,=J;f¢de. : (14)
The secular equations (6r Roothaan equations),
FC=SCE (15)

are solved iteratively with successively better ¢y and E
values until convergence (self-consistency) is achieved.

in. addition to the total molecular energy, we are
interested in the orbital population analysis which partitions
the total number of electrons in the system into various
atomic and bond contributions (Mulliken, 1955). Integration

of the total molecular orbital density function

n

o(x) =Zwi<gwm(,rv>, (16)

=
expanded in terms of the atomic orbital basis,
N n '
o (x) ='chsrcfr¢§(£>¢f<£>, (17)
st re1

yields the total number of elecrons, n:



N n

n =L C_i_r 5—%
st r=1

. The Mulliken bond bverlap population for a pair of ‘atoms, s-t,

is defined by

148
n(s-t) =§z:quﬁsgt (19)

r=1

when summed over all atomic orbitals on center s and all

»r O ae

10

atomic orbitals on center t. . If the overlap population .

betﬁeen_two atoms is pdsitive, they are'bonded; ‘if negati§e,
theyvare antibonded.

The atomic orbital population for an atom s, g(s), is
obtained by summing the gquantity n(s-t) over all atomic

-orbitals on t:
q(s) =;E:n(s—t). (20)
1 : _
The atomic charge of atom s, Q(s), is defined by
Q(s) = go(s)-q(s) (21)

where qo(s) is the total number of electrons in the ground

state of the free, neutral atom s.



11

MO Methods. |

Molecular orbital calculatidns.can be classified into two
general catégories: "approximate molecular orbital ‘methodS"
and‘ " ab iniﬁio " calculations.In the approximate MO’methods,v
a large pértion of the electron integfals involved in the
' calcﬁlation are’approximéted by known atomic quantities and by
the use of "semi—empirical".expressions for elements in the
Hartree-Fock matrix. The approximations addpted for these
integrals and the seﬁi—empirical -expressibns are evaluated
with respect to their ability to predict experimental results.

| One of the better-known approkimate> MO methodS'-is the
Complete' Neglect of 'Differential Overlap (CNDO/2) method
(Pople gg al. ,:1965); As its name ‘implies, all electron
vrepulsion »integralﬁ of the “différential overlap" type' are
neglected. 1In addition, semi-empirical expressions are used
to calculate-the'elements 6f the Hartree-Fock matrix. CNDO/?2
-molecular orbital calculations on disiloxane (Tossell and
Gibbs, 1977) and pyrosilicic acid (Meagher et al. ,1979) yield
minimum energy SiOSi angles in close agreement with observed
values for silica polymorpHs and ' glass. 'However, CNDO/2
calculationsvtend to drastically overestimate bond lengths for

second row elements (Marsh and Gordon, 1976).

'An 'example of an elecron repulsion integral of the
differential overlap type is ff¢r(1)¢s(1)(1/qg¢+_(2)¢U (2)drdr,
where ¢.,¢<,¢+,and gyare atomic orbitals. ~



. In recent years, we have seen the developmentiof ab

‘initio  SCF MO'»dalculations and computer pfograms  'uSing’

' Gaussién‘ expansions of Slater-type IOrbitals. . Unlikg"thé
approximate MO methods, ab initio calculafiohs attempt‘ to
solve the full velectronié Schrodinger equaton f6r a many-
electron system. vAfter defining the atomic positions ana,wave
funétidns, ali atomic overlap intégfals, S.s , are calculated.
The kinetic and potential one-electron integrals which make up
the - core hamiltonian are evaluated next. Caléulation of the

_two-eléctron'integralsf follows., The wuse . of Gaussian—type
wavefunctions for - the atomic orbitals expedites ‘the
computation of these integrals.. An initiél_ guess of the
Hartree-Fock matrix is made .thfough'fa~ Huckel or extended
'Hﬁckél approximationzyof through»diagohalization of the core

~ hamiltonian. - With . the apprdximated Hartree-Fock matrix; the
eigenvalues (or molecular  orbital energies, e, ) and
eigenvectors (c.m's) are solved. With successively better
coefficients and energy values, the secular equations (15) are
solved iteratively until convergence is achieved.

Ab initio computations enable us to solve for equilibrium
bond lengths ‘and angles for molecules 1involving first and
secbnd row elements with a high degree of accuracy (Collins et

al. , 1976). - Optimized T-0 distances and TOT angles, for

*With the extended Huckel approximation, the elements of the
Hartree-Fock matrix are approximated with the Valence Orbital
Ionization Potential (VOIP):

F =VOIP(u) ; F =K(VOIP(u)+VOIP(v))

12



example, compare well. with:‘Local. geometries in~ ‘silica
polymorphs,  silicates, and siloxanes (Meagher et al. ,
1979;Newton and Gibbs, 1980); ~ Furthermore, - ab initio

calculations of quadratic force constants on a large number of
polyatomic molecules satisfactorily account ‘fOr‘nearly all
experimental trends (Newton -et al. , 1970). For these

reasons, ab initio calculations were used in this study.

,13-



III.- CALCULATIONS

Ab initio - SCF molecular orbital  calculations were.

undertaken with the Gaussian 76 computer program (Binkley et

al. , 1 1978). . Throughout thisfstudy, a minimal baSiskset, @,
was adopted in which each atomic orbital of the constituent
atoms 1is represented by a single Slater-type orbital (STO)

basis function. For example, we are ‘dealing with nine STO

14

basis functions for silicon and five STO basis functions for

oxygen. To _ease the computaticn of the two-electron

integrals, .the STO functions are , in turn, expanded as

Gaussian-type orbitals~(GTO‘s)v(Hehre'g;-gl. , 1969). 'In. the

‘minimal basis set calculations used in this study (referred to.

as a minimal STO-3G basis set), each STO is represented by a
linear cémbinatidn of three Gaussian funétions; Newton and
Gibbs (1980) and Gibbs et al. (1981) have shown that a STO-3G
minimal basis set is sufficient when studying the bond length
and angle feiationships for Hssi207 .

Molecular orbital calculations.lend themselves readily to
the evaluation of forcé consténts (Newton et al. , 1979). The

potential énergy is expanded in terms of q,
E = E, + (9E/2g)g + 0.5(9%E/2g2?)g? + + .+ . (22)

which is either the displacement from the équilibrium bond

length, r-re, or angle, 6-6,, depending on whether a



sfretching force cbnstant r Keg or’bending force constant, kg,
is being calculated. In this study, r refefs to the bridging
Si-0 bond length and e is the SiOSi angle; r, and 6, are their
respective equilibrium values. By definition, the guadratic

force constant is twice the coefficient of the quadratic term:

. =(2?E/2q?) Nm- ' (23)

~

kg=(2?E/2q?) /r? Nm- (24)

where g gnd r are defined above. Thus the force constants are
found directly by fitting a parabola to the potential energy

curve. Increments of 0.01 A about the equilibrium bond length

15 -

and 2° ébout the equilibrium bridging angle were used to fit

the parabola. With ranges of 0.05 A and 8° about the

equilibrium bond length and bridging angle, higher order terms
in the expansion of the potential energy (22) were found to be
insignificant. The definition of the bending force constant
given above (24) is preferred because it yields the same
dimensions (force/length) as the stretching force constant.
Three principal vibrational . frequencies for the
pyrosilicic acid molecule can be determined from the Si-0
stretching and SiOSi bending force constants by following the
method outlined by Herzberg (1945) for a XY, molecule.
Treating the cluster as an XY, molecule, (O(H,SiO,;),), and
assuming a valencé force field model , we «can express the

potential energy as



E' = O.Sksqr? + 0.5k,ge? o (25)

where gr is the displacement from the equilibrium bond length
and g6 is the displacement from -the equilibrium bridging
angle. The valence .force model assumes that there are no

cross terms in the potential energy if it is expressed in

terms of qgr and ge . With the potential energy defined by'

(24), we can derive the following equations (Herzberg, 1945;

p;169):
Ar?y? = (1 + (2my/m,) sinz(éo/Z) ) kg/mg (é6)
Ar?lv2+yl2) = (1 + (2my/m,) cos?(6,/2) ) kg/my
+ (1 + (2my/m,) sin?(e,/2) ).2k5/mY (27)
16n“v;vg = 2(1 + (2my/m,) )'ksks/mi (28)
where v5; ,vy and v, are the symmetric Si-0O stretching,

antiSymmetric Si-O0 stretching and SiOSi bending frequencies,
respectiveiy; m, is the mass of X (0), m, is the mass of ¥
(H;0Si,;) and all other terms have been defined previously.
Equations (26),(27) and (28) are solved simultaneously for

Vs sva and vy .

16



IV. MODELS -

Basically two different models were used in an effort to
simulate elevated ' pressures in» our calculations. In the
initial model, which we will refer to as model I, pressure was
simulated bby simply locking the Si.,.Si | distance at
successively shorter values while maintaining a straight SiOSi
angle{ Thisimbdel has restricted applicatiohs because of the
need to maintain a straight 5i0Si angle. However, model I was
useful in comparingvsymmetric and asymmetric stretching force
constants at one bar - and asymmetric force constants at
elevated pressures for the clusters H¢Si,0,, HgAl,0,°2 ,
H,,51i50, and H,,AlSi, 0, "'. The symmetric force constants
- were calculated by keeping fhe bridging oxygen immobile while
monitoring the changes in energy as the Si atoms were brought
in toward the oxygen. The asymmetric force constants, on the
other hand, were calculated by maintaining a constant Si...Si
distance while monitoring the changes in energy as the
bridging oxygen was oscillated. We also used model I to study
the effect of polymerization on the Si-O force constant as
well as the effect that substituting aluminum for silicon has
upon the stretching force constants .af one bar and as a
function of pressure.

In all of the clusters studied with model 1, staggered
~conformations were used and the SiOSi and AlOSi angles were

‘maintained at 180° . 1In the HgSi,0, cluster, the O-H bond

17



iengths_were*0.96 A while the SiOH and 0Si0 angles were locked
at 109.,47° ; reépectively (Figure t). 1In the largef clusters,
the OSiH and OAlH angles were 109.47° while the Si-H distances
were locked ét 1.49 A, Tetrahedral, T4 , symmetry was
maintained withiﬁ the Si0O, and AlQ, tetrahedra throughout all
computations. |

In the second model, which we will refér to as model II,
pressure was simulated about an HgSi,0; cluster by placing
inert helium atoms along the Si-0 bridging vector and
systematically stepping the two heliums toward the bridging
oxygen. This model allows for pressure simulation at bent
Si0Si angles and isbmore precisely a uniaxial sfress directed
along the Si-0O vectors. _

The HgSi,0, dimer (Figure 25 was placed in a staggered

conformation with O-H distances, d(0-H), and Si-O nonbridging

bond " lengths, d(Si-0p )}, of 0.96 2 and 1.65 A, respectively.

.The 0SiO and SiOH angles were likewise maintained at 109.47°
and 180° , respectively, throughout all computations.

At one atmosphere, the equilibrium distances were the
same with or without the helium atoms. At elevated pressures,
we found that the Mulliken bond overlap populations between
helium and nonbridging oxygens, n{(He-Onk ), and heliuh and
silicon, n(He-Si), were never greater than 0.004 and 0.007,
respectively.

Whereas model I yields asymmetric stretching force
constants at elevated pressure, model 1II yields symmetric

stretching force constants at one bar and at pressure. The

18



Figure 1. Molecular conformation for the dimers studied with model I
(note the straight bridging angle); pressure is simulated by decreasing
the intertetrahedral distance.

61



Figure 2., Molecular conformation for HgSipO; when studied with model II.
Note the bent bridging angle and positioning of helium atoms used to
simulate pressure by systematically decreasing the d(He-Op) distances.,

0¢



following were studied with model 1II: 1). changes in the
equilibrium stereochemistry of H¢Si,0, as a function of
pfeséure;_Z) changeé» in the sﬁretching and bending force
consténts with pressure; and 3) the total potential energy as
a function of bridging bond lengths and angles at elevated
pressures., Model IIlis_preferred because thé bridging angle
energetics as well as the bridging bond energetics’ éan' be

studied as pressure is increased.

21



V. RESULTS AND DISCUSSION

Model I .

As stated, model. I provides a means of compafing the
symmetric, kg , and asymmetric , kg, stretching force
constants. At one bar, the calculated ks and kg for HgSi,0, 3
are 774 Nm~' and 861 Nm-' , respectively. Siﬁilarly, the
asymmetric stretching force constant for HgAl,0,°2 % , 630
Nm-' , is lower than the symmetric stretching force constant,
715 Nm~' . These results conflict with calculations. based on
infrared and raman spectroscopic data for a Si,0, group with a
linear bridge (Lazarev, 1972). The calculated asymmetric, vy,
and symmetric, ?sr stretching frequencies of the SiOSi bridge
indicate the asymmetric force constant is greater. The
asymmetric stretching frequency is expected to be higher since

it 1involves a large amplitﬁde of vibration for the lighter

central atom and a small amplitude of vibration for the

terminal .groups. Conversely, vy should be 1low since the

central atom has a small amplitude of wvibration and the

terminal groups have a large amplitude of vibration in the

3The d(Si-On) =1.65 A in thisiHGSi207 cluster.

“The d(Al-0,) =1.735 & in this HsAl,0,-2 cluster.
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symmetric mode (Ross, 1972). Model I, howeVer,- predictSffthe
opposite to what is‘expected.

In addition to comparing kg and kg *, .model I was used to

study the effects that polymerization and sUbstitution'-of, Al

for Si have upbn‘;the4 force constants at . one bar and as a
function of pressure. A comparison of asymmetric stretching
~force constants at atmospheric.  pressure for the dimers,

HgSi1i,0, and HgAl,0,-% ,and highly-polymerized clusters,

H;,Si50, and H;,AlSi,0,"' , 1is found in Table 1. With'
increasing polymerization from HgSi,0, to H,,Sis0, , the

asymmetric stretching- force constant of d(Si-0,) does not

increase significantly. Spectroscopic 'studies on framework

silicates show asymmetric. stretching freguencies for TOT

linkages are in the range 950-1200 cm~' (Milkey, 1960; Moenke,

1962; Lyon, 1962; Moenke, 1966).  Furthermore, these‘ values
overlap the range found for pYrosilicateé and chain siliéates
(Farmer, 1974) thus supporting our results. |

A decfease in the asymmetric stretching force constant
from 788 Nm-' to 647 Nm-' was found by substituting aluminum
for'silicon in the dimer. The cluster with Al0OSi 1linkages,
H,,Al1S81,0,~" , has an asymmetric stretching force constant of
695 Nm- ! which is less than that for the §i-0 bond and
greater than that for the Al-O bond showing that there is a
‘gradual decrease in ka as the aluminum content increases. In
‘keeping with our results, Milkey (1960) has noted that the
center of gravity of absorption bands in the region 950-1200

cm" tends to shift to lower frequency with increasing
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Table TI. Asymmetric stretchiné force conStants (kyg)

calculated at 1 bar for the clusters - HgSi,04,
‘HgAl,0,°2, H,,Sis0,, and H,,AlSi,0, ' with all SiOSi
and AlOSi angles equal to 180°.

Cluster ko(Nm-')
HgAl,0, 2 647
H,,S5i50, 796

H12AlSinu'1 695
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-aluminum content.

25

" Calibration of pressure for the. élustérs- studiedf'Wiﬁh“

" ‘model - I 'was not possible. Wé’were,,however, able to look at

- relative changes and values of the  force constants with =

increasing"pressure by .plotting log(k) verses log( d(T...T)

“‘Whérevd(T...T)-is the intertetrahedral distance (Figure 3). |

‘As d(T...T) decreases the pressure :-increases, hence the -

pressure increases from right to left 1in Figure 3. The

asymmetric stretching force constants for d(Al-0, ) are

‘consistently lower than those for d(8i-0y ) with increasing -

pressure.‘ In addition, the force constants for the dimers
-(Figure 3a) and the highly¥polymerized_ clusters (Figure 3b)
increase’ similarly with decreasing intertetrahedral distances

as seen by the nearly parallel trends.

The use of model I verified the feasibility of studyingf

Si-0 bond energetics and force constants at simulated elevated

pressures with ab initio SCF molecular orbital calculations.
The model was abandoned, however, in favor of model 1II which
allows us to incorporate the important structural variable of

the Si0Si angle.

Model II !

With the Si0Si bending force constant and symmetric S$i-0O

stretching force constant, we can solve equations (26), (27)



Figure 3. Log of the asymmetric Si-O stretching force constant, log(k,), plotted against the inter-
tetrahedral distance, log( d(T...T) ), for HgS1,07 where log(ka)=-7.35log(Si...S1)+4.55 (r2=0.999);
HgAl, 07-2 where log(ka)——7 421og(Al JAL) 63 %r2=0.998) H12S1504 where log(ka)—-7 121log(Si...Si)
+4 45 (r2=0.999); and HypAlSi40;4~! where log(k, )=-7.41l0g(AL. ..S1)+4.62 (r2=0.998).
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and (28) simultaneously for ya,_bsland vp. Table II presents

a comparison between;the.”vibrétional frequencies - calculated

for HgSi,0; at one bar and those determined from infrared and
raman spectroscopic experiments at one bar for compounds

containing Si0Si linkages. The Si,0,-% anion, siloxane,

(0(Si(CH;),), -, and pyrosilicate, Ba,Ti0OSi,0;, , display a

rangé_ of values for .the principal vibrational frequencies.
For example, vy varies from 503-665 cm~' while v, ranges from
1029-1104 cm~ ' . The only bending vibrational frequency
attributed solely to SiOSi bending is 169 cm-' for the Si,0,-¢
anion. The calculated values show a reasonable agreement with
experimental déta. The results are even more encouraging
considering we are comparing the - energetics of the SiOSi
linkage in H¢Si,0, with the energetics of the SiOSi linkage in
very complex compounds. This lends further support to the
premise tha£ the 1local bonding forces in siloxanes and
silicates are similar to those in isolated molecular clusters
involving the same atoms and coordination number. _

In Figure 4a, vy is plotted against the average bridging
Si-O0 bond length for twelve pyrosilicates at atmospheric
pressure (Farmer, 1974). A.similar trend is found for HgSi,O0,4
(Figure 4b) where the different d(Si-0p ) correspond to
calculated equilibrium distances at different SiOSi angles.
Both trends show a decrease in the asymmetric Si-O stretching
frequency as d(Si-OL ) increases. Since vy is directly
_proportional to the squafe root of the symmetric stretching

force constant (19), kg also decreases as d(Si-Op) increases.
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. Table II. Comparison at 1 bar of calculéted symmetric
‘stretch, vs, and asymmetric stretch, vg, and bending,
vh, freguencies for HgS1,0, with those determined from

infrared and raman spectra for Si,0,°%, (O(Si(CH;),),,
and BaTiOSi207. -

Calculated

Experimental
Frequencies (cm-')’

Frequencies (cm™ ')

. . a . b . . c
He¢Si,0, - 8i,0,°¢ O(Si(CH,;),), BaTiOSi,0,

ve 588 503 547 665

Va 1252 1029 1104 1039

vp 133 169 -

aGillespie and Robinson, 1964.

Lazarev, 1972.

“Gabelica-Robert and Tarte, 1981,
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Figure 4. A comparison of the asymmetric stretching frequency,v,, plotted against the

bridging bond length, d(S1-Op), for a group of twelve pyrosilicates (a) and HgS1i707 (b)5

V,'s were determined from spectroscopic experiments for the pyrosilicates whereas Tg's
for HgS1207 were calculated.
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‘In  other words, the bridging Si-O bond becomes more .

incompréssible’(that is, greater kg ) as the bridging bond -

" length decreases.

The agreement between our calculations and experimental

studies at atmospheric pressure was encouraging enough for us
to proceed with the simulation of pressure.v Because the
equilibrium}d(Si—Ob) decreases as the bridging angle ﬁidens at
one.bar'(Newton and Gibbs, 1980), constant d(He-0O}) values do
~not represent equal pressures at different bridging angles.
- To approximate eqﬁivalent pressures for different angular
configurations, Hooke's Law was employed and the fact that
pressure is directly proportional to the force being applied.
Therefore wunits of eguivalent pressures egual to kévAx were
established where k 5, Ax is the average of the symmetric
stretching force constant over the interval, aAx, studied.
These provide reasonable approximations of equivaleﬁt
pressures as lohg as the interval, Ax, is small.

Using this method, a potential energy surface for
He,H¢Si,0, was constructed as a function of the bridging Si-0
bond 1length and SiOSi angle at elevated pressure (Figuré 5).
This pressure is estimated to be 140 kbar by methods explained
later. At one bar, the energy surface shows a 1long, narrow
valley surrounded on three sides by steep energy barriers
(Figure 5). The topology of the enerqgy surface changes
notébly with pressure. At 140 kbar, the surface shows a
distinct minimum surrounded on four sides by energy barriers

which are significantly steeper than those at one bar.



Figure 5. Potential energy surfaces for HgSi,0; at 1 bar and
140 kbar plotted as a function of the bridging distance, d(bi-Ob)

and the S$10Si angle.
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Comparing the minimum of the energy trough at one bar and. 140_:

kbar, we see that there is. a narrowing of the SiOSi angle from

142° to 132° and a decrease of the bridging Si-O bond from

1.585 R to 1.565 A. The steepening of the sides of the energy

surface is reflected by the increase in kg from 743 Nm~' at

one bar to 913 Nm~' at 140 kbar (Figure 6) and an almost

tripling of kg from 8.2 Nm-' at one bar to 20.6 Nm~' at 140

kbar (Figure 7). By taking vertical cross sections through

the potential energy suffaces, the relationship hetween kg, and
the SiOSi angle can be studied at one bar and 140 kbar;
Figure 8 shows that kg increases as the bridging angle widens
at‘ the two pressures. Earlier - we investigated the
relationship between and d(Si-0Op) at atmospheric pressure for
HgSi,0; and a group of pyrosilicates (Figure 4) mentioning

that vz 1is directly propoftional to kg. Newton and Gibbs

(1980) have demonstrated at one bar that d(Si-Op) is inversely -

correlated with the SiOSi angle. Therefore we are restating
the relation between vy and d(Si-Op) (Figure 4) in terms of kg
and the bridging angle (Figure 8); in addition, we predict
that this relationship holds at pressure.

The increase in ks and kg with pressure is supported by
the infrarea spectroscopic studieé of Ferraro and Manghnani
(1972) and Ferraro et al. (1972) on o-quartz and silicate
glasses at pressures up to 58.8 kbar. They found that the
intertetrahedral Si-O stretching frequency for es-quartz, fused
silica, Vycor, and Pyrex . shows a positive dependence with

pressure. The mixed 0SiO and $iOSi bending frequency for e-
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Figure 6. A comparison of the potential energy curves for H681207
plotted as a function of the bridging distance, d(Si-0y), at 1 bar
(upper curve) and 140 kbar (lower curve), where He2H6SiZO7 is the
high pressure phase.
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Figure 7. A comparison of the potential energy curves for HgS1i,07
plotted as a function of the Si0Si angle at 1 bar (upper curve%
and 140 kbar (lower curve), where He.,HGSiZO7 is the high pressure

phase. .
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Figure 8., Symmetric Si-O stretching force constant, k., plotted against the Si0Si
angle at 1 bar (left) where kg=0.038(Si0S1i)+1.941, r2=0.97, and 140 kbar (right)

where k =0.040(S1081)+3.964, r2=0.93.
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quartz alSomshows a positive dependence'*Withi pressure. - The

pressure dependence " noted for thlS frequency primarily'

reflects the change of the Si0Si angle linking the tetrahedra.

“The results indicate that compre551on 'of glassv»takes place

along ,network chains cau51ng tetrahedra to move closer to one

-another (Ferraro et al , 1972)

The change in Siosi angle is the most promlnent effect of

pressure .in our calculations, narrowing 7.0% for a pressure.

~increment off 140 kbar while d(Si-0 ) decreases 1.3%. Recent

'high pressure crystallographic studies of o quartz- (Jorgensen,

1978; Levien et al. , 1980) have also _shown that the major
effect of pressure on the structure is to close.down the SiOSi
angle. Between one bar and 61;4 kbar, Levien et al. (1980)
"found that the average Si40 bond‘length decreased 0.3% while
the Si0Si angle decreased 6;6%._ In thiS'study, a comparative
increase of 60 kbar resulted in a 0.3% decrease in da(si-0yp )
and 'a 4.5% decrease in the bridging angle. Jorgensen (1978)
and Levien et al. (1980) performed the high-pressure
experiments under hydrostatic conditions. With an increase in
pressure, the framework of corner-linked tetrahedra can be
collapsed ideally -(therebyl reducing molar volume) by a
cooperative tilting of the-rigid tetrahedra in such a way that
the -tetrahedra remain undistorted; the Si0Si angle, however,
is reduced significantly. In our calculations, a directed
stress is. imposed by helium atoms placed along the Si-0
vectors. The reason for this 1intrinsic preference for a

smaller SiOSi angle with increased pressure in the He,H¢Si,O,
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“molecule . is not apparent.- ' The kelectrohic‘,adeStments with
'incfeasing'jpre55ure”‘are’minimal as can be seen in Table III.

. There is éésentially no change,in'the  Mulliken bond overlap

» populatibn n(Si-0p) as well as the net charges on.the'bridgingl;

oxygen and silicons . Likewise gross charges on the valence

37

~orbitals of silicon and oxygen show no significant variation. =

The ihcreasing;negétive véldes of n(Si...Si) (Table III) would
tend to favor a wider SiOSi angie Qith increasingwpressure,
It is of interest; however, that the molecular group shows an
intrihsic preference for smél;er Si0Si angles unrelated to

volume considerations.

Although n(Si-0Of) exhibits no change with increasing

pressure. (Table 1III), it can be correlated with d(si-0j,) and

kg when pressure remains constant (Figure 9). An increase of
the electronic overlap pobulation between Si and © reéults in
a shorter bond length and a concommittanf increase in kg at
one bar and 140 kbar. Newton .and .Gibbs (1980) have
demonstfated at one bar that 'n(Si—Ob ) shows a curvilinear
trend when plotted‘ against SiOSi but is linearly correlated

with -sec(Si0Si). The latter correlation can be related to

hybridizatién of the valence orbitals on the bridging oxygen

6f HeS1i,0, (Brownvgg al. , 1969). 1If the hybrid orbitals on
the oxygen are expressed in the form s+\p where X\ is the s-p
~mixing coefficient, it can be shown that \Z2=-sec(Si0Si);
furthermore, the Si0Si angle determines ‘the percentage s-
character, 100/(1+\?), of each hybrid '(McWeéney, 1979). "To

investigate how pressure affects this relationship, n(Si-0p)
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Table III. = Mulliken bond overlap populations, n(Si-
Op) and n(Si...Si), and atomic  charges on bridging
oxygen, QO ), - and silicon, Q(Si), for HgSi,O, at 1
bar , 60 kbar and 140 kbar; bridging 8i-O bonds .and
Si0Si angle are optimized.

P (kbar) .n(si-Op) n(Si...si) 0(0p) 0(si)

1x10-®  +0.50 . -0.058 ~0.70 1.57
60 +0.50 -0.060 -0.70 1.58

140 +0.50  -0.062 -0.71  1.59
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Figure 9. Mulliken bond overlap population, n(Si-0Oy), plotted against
the bridging distance, d(Si-0Op), at 1 bar (a) and against the symmetric
stretching force constant, kg, at 1 bar (b) with r2 values of 0.997 and
0.989, respectively; the corresponding relationships at 140 kbar are
found in (c¢) and (d) with r2 values of 0.999 and 0.971, respectively.
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,-vélues.were plotted against the bridging angle at one bar = and
140 .kbarﬁ(Eigufes 10é'and~10c). The trends at both pressures

are curvilinear . On the other hand, when ,n(Si—OkD)' was

" plotted against the percentage s-character. of the bridging

~ oxygen at the two pressures - (Figures 10b .and 10d); well-

developed ~linear correlations‘(r2=0.996_at“1-ba;; r?=0.997 at

140 kbar)’Were obtained.

A correlatioﬁ closely_nrelated to. the above 1is the
relationship -between d(Si-bb) and_-sec(SiOSi). At atmospheric
pressure, Newton and Gibbs (1980) have found that a linear
correlation exists between d(Si-O}, ) and '—sec(SiOSi). With
- increasing SiOSi, the s—characte:,of the hybrid'orbitals on
the bridging oXyéen increases and d(si-Op, ) decreases. Wheh

~ observed Si-O bridging bond lengths. in céesité‘are plotted

40‘ ..

égainSt -sec(Si0OSi) at one bar (Gibbs et gl.', 1977), ‘a well-

developed linear correlation (r?=0.96) is obtained wiﬁh the
short bonds involving wide -angles. It has beén suggested
(Levien et al. , 1980; Levien and Prewitt, 1981) that this
relationship fails to hold with increasing pressure. However,
one would not expect the relation to hold for a given bond
iength' with changing pressure; rather, one would expect the
relation to hold for‘ all bond 1lengths in a strﬁcture at
constant pressure whether it be one bar or ah elevated
pressure. To investigate this, we undertook a - study of the
relationship between d(Si-Op) and -sec(Si0Si) at an elevated

pressure. ‘Figure 11 presents the results confirming our

predictions that a significant linear correlation exists at a



- Figure 10. Mulliken bond overlap population, n(Si-0,), plotted against
the bridging SiOSi angle at 1 bar (a) and against tRe percentage §-
character of the hybrid orbitals on the bridging oxygen, 100/(1+ ), at
1 bar (b) with the corresponding relationships at 140 kbar found in (c)
The curvilinear trends in (a) and (c¢) both become linear in

and (d).
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Figure 11. The relationship between the bridging Si-0 distance and -sec(S10Si)

for H,Si, 0, at 1 bar and an elevated pressure estimated to be 140 kbar.
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" given high pressure (r2?=0.96) as well as 1 bar (r2=0.97).

Recent work on the structure and compressibility of

coesite at high pressure (Levien and Prewitt, 1981). supports
this finding. When the average Si-O bridging bond lengths are
plotted against -sec(Si0Si) at 51.9 kbar, a significant linear
correlation‘(r2=0.90) is found. Fiqure 12 compares the data
for coesite at'bne bar-and 51.9 kbar with the calculated data
for Hssizo7.at one bar ahd 60 kbar. The agreement between
experiment and theory is encouraging. |

Estimates of pressure corresponding to kg, Ax £erms were
obtained by modelling changes that occur 1in e-quartz with
pressure. Levien et al. (1980) have noted a very slight
- decrease in the mean Si-O distance and a shift in the SiOSi
angle from 143.7° to 134.2° for an increase of 61.4 kbar
pressure. The kg, Ax value corresponding to 61.4 Kkbar was
approximated by keeping d(Si-0Of ) constant.in H¢S1,0, while
decreasing SiOSi from 144° to 134°, Diagrammatically this ié
path A-C in Figure 13. Path B-C shows that there is a
significant Ax associated with a change in pressure of 61.4
kbar.  The value of 140 kbar for kg,Ax used in many of the
preceding calculations was estimated by extrapolation from the

61.4 kbar value.
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Figure 12, A comparison between the average Si-0 bridging distance plotted against
-sec(810S81) for coesite (left) and HgSi,07 (right); at 1 bar and 52 kbar, the r2
values for coesite based on experimental data from Levien and Prewitt (1981) are
0.97 and 0.90, respectively; the rZ values based on calculations at 1 bar and 60
kbar for HgSip0Oy are 0.97 and 0.98, respectively.
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Figure 13. Illustration of how estimates of k,,ax roughly equivalent to 60 kbar pressure
were obtained. Modelling changes that oc¢cur in’ -quartz at this pressure, d(Si-0p) was
kept constant while decreasing the Si0Si angle from 1440 to 1349 (path A-C); path B-C
shows the x associated’ with an increment of 60 kbar pressure.
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VI. CONCLUSIONS

Molecular orbital theory is a bonding formalism based

upon quantum mechanical principles and has been applied to

mineralogical studies of equilibrium molecular geometry, .

electronic charge distribﬁtions, electronic spectra and force
constant calculations. To date, these studies have been
limited ,to'Qﬁe‘atmoépﬁere'pressure. With the evér increasing
interest in ultra-high pressufe phases and mantle mineralogy,

bonaing studies of molecular groups at simulated high pressure

can be an 1invaluable aid to wunderstanding high pressure

crystal chemistry, bond energetics and electronic spectra. 1In

addition, such studies will enable us to simulate pressures‘

beyond the limits of current experimental technology.

This investigation is devoted to the study of equilibrium
Si-O bond lengths, SiOSi angles and Si-O force constants with
increasing pressure. Although the method of applying pressure
is rather crude in that helium atoms are used to apply a
directed stress axial with the Si-O bridging bond length, we
feel the results are reasonable approximations of expected
trends. For example, with increasing pressure the Si-0O bond
length and SiOSi angle decrease 0.3% and 4.5% , respectively,
up to 60 kbar pressure which compares well with the 0.3% and
6.6% decrease observed in e¢-quartz (Levien et al. , 1980),
Furthermore, the linear correlation of Si-0O bond length and

-sec(Si0Si), known to. occur at one atmosphere, holds at
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. incrgased pressure; this trend is also observed in coesite at
high pressures.

Symmetric Si-O stretching and SiOSi bending force
constants show a percenﬁage increase in the ratio.of 1:6 up to
én estimated pressure. of 140 kbars which is' in keeping with
the relative decrease in d(Si-Op ) and the SiOSi = angle.
Experimentally ' determined stretching and bending force

constants in silicates at high pressure are sparse. Ferraro

et g;. (1972) and  Ferraro and Manghnani (1972) have.

investigated the infrared spectra of e-quartz, fused silica,
Pyréx,_ Vycor and a variety of sodium silicate glasses at
pressures up to 58.8 kbar. The absorption bands attributéd to
' §i-0-Si stretch vibrations show, in general, a positive
dependence with pfessure indicating a corrésponding increase
in the stretching force constant. Similarly the mixed bending
frequency of thé Si0Si and O0SiO angles shows a positive
dependence with pressure for o-quartz and the sodium silicate
glasses; the positive pressure dependence noted for this
frequency primarily reflects the change in the SiOSi angle
(Ferraro et él. , 1972) and indicates that the Si0Si bending
force constant is increasing with pressure.

Although this study has focused on the HgSi,0, cluster,
it represents the initial installment in a series of studies
on the compressibilities of geologically important metal-

oxygen polyhedra. Work is currently in progress on the H,SiO,

and H,Al0,-' tetrahedra and we are calculating force-

constants, polyhedral bulk moduli, Kp, as well as the first
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‘derivative of Kp with respect to pressure, d(Kp)/dP. "Fﬁthre
:wofk will ‘be devoted to force constant, Kp and d(Kp)/dP
detefminétioné-for oxyanion clusteré of magnesium, aluminum
and silicon in octahedral coordination. Ultimately we hope to
approximate the bulk modulus of a solid phase aﬁ high pressure

through computed Kp -and bending force constants.

a8



REFERENCES'

Binkley, J.S., R. Whiteside, P.C. Haribaran, R. Seeger,
w.Jd. Hehre, W.A. Lathan, M.D. Newton, R. Ditchfield,
and J.A. Pople, 1978, Gaussian 76- an ab initio molecular
orbital program:  Quantum Program Chemical Exchange,
Bloomington, IN, : :

Bfown, G.E., G.V. Gibbs and P.H. Ribbe, 1969, The nature and
variation in length of the Si-O bond and Al-O bonds in
framework silicates: Am. Mineral., 54 , 1044-1061.

Cameron, M., S. Sueno, C.T. Prewitt and J.J. Papike, 1973,
" High temperature crystal chemistry  of acmite, diopside,
hedenbergite, jadeite, spodumene and ureyite: Am. Mineral.,
58 , 594-618. :

Collins, J.B., P. Von R. Schleyer, J.S. Binkley and J.A.
Pople, 1976, Self-consistent molecular orbital methods.
XVII, Geometries and binding energies of second row
molecules. A comparison of three basis sets: Jour. Chem.
Phys., 64 , 5142-5151, .

De Jong, B.H.W.S. and G.E. Brown, 1980, The polymerization
of - silicate and aluminate tetrahedra in glasses, melts and
agueous solutions-1I. Electronic structure of HgSi,0,,
H¢AlSiO, '~ and HgAl,0,%- : Geochim. Cosmochim. Acta, 44 ,
491-511.

Farmer, V.C., ed., 1974, The infra-red spectra of minerals:
Mineral. Soc. London, 539 p.

Ferraro, J.R. and M.H. Manghnani, 1972, Infrared absorption
spectra of sodium silicate glasses at high pressures: Jour.
Appl. Phys., 43 , 4595-4598.

Ferraro, F.R., M.H. Manghnani and A. Quattrochi, 1972,
Infrared spectra of several glasses at high pressures:
Phys. Chem. Glasses, 13, 116—J21.

Gibbs, G.V., E.P. Meagher, M.D. Newton and D.K. Swanson, in
press, A comparison of experimental and theoretical bond
length and angle variations for minerals, inorganic solids
and molecules: 34 p. In O' Keeffe, M. and A, Navrotsky
(eds.), Structure and bondlng in crystals: Academic Press,
New York.

Gibbs, G.V.,.C.T. Prewitt and K.J.. Baldwin, 1977, A study of
of structural chemistry of coesite: Zeit. Kristall., 145 ,
108-123,

Gillespie, R.J. and E.A. Robinson, 1964, Characteristic

49



'freQUencies of'compounds éontaining Si4O-Si, 'P—O?P,.'SQO-S
and  vibrational C1-0-Cl bridging -groups: Can. ' Jour.. =
Chem., 42 , 2496-2503. - o oo Sl

‘Hazen, R.M. and L.W. Finger, 1979, Bulk modﬁlus—Volﬁmé ,
~ relationship for cation-anion polyhedra: Jour.  Geophys.
Res., 84 , 6723-6728. :

‘Hehre, W.J., R.F. Stewart and J.A. Pople, 1969, Self-
-consistent molecular orbital methods. 1I. - Use of Gaussian -
- expansions of Slater-type atomic "orbitals: Jour. Chem,
Phys., 51 , 2657-2664. : -

Herzbérg,vG., 1945,'Infrared and raman spectra of polyatomic
molecules, vol. .2: D. Van Nostrand Co., New York, 632 p.

- Jezowska-Trzebiatowska, B., J. Hanuza and W. Wojciechowski, .
1967, 1Infra-red and vibrational frequencies of the X-0-X
bonds for the IVth periodic group of elements: Spectrochim,
Acta, 23A , 2631-2636. -

Jorgensen, J.D., 1978, Compression mechanisms in g-quartz
structures- SiO, and GeO,: Jour. Appl. Phys., 49 , 5473-
5478. . : :

Lazarev, A.N., 1972,gVibrétional spectra and structures of
silicates, translated from Russian: Consultants Bureau, New
York, 302 p. ‘

Levien, L. and C.T. Prewitt, 1981, High-pressure crystal
structure and compressibility of coesite: Am. Mineral.,
66 , 324-333. :

Levien, L., C.T. Prewitt and D.J. Weidener, 1980, Structure
and elastic properties of quartz at pressure: Am.
Mineral., 65 , 920-930. '

Louisnathan, $.J. and G.V. Gibbs, 1972, Variation of Si-0
distances in olivines, sodamelilite and sodium metasilicate
as predicted . by semi-empirical molecular orbital
calculations: Am. Mineral., 57 , 1643-1663.

Lyon, R.J.P., 1962, Minerals in the infrared: Stanford
Research Institute, California.

McWeeney, R., 1979, Coulson's valence: OXford Univ. Press,
Oxford, 434 p.

 Meagher, E.P., J.A. Tossell and G.V. Gibbs, 1979, A CNDO/2
molecular orbital study of the silica polymorphs quartz,
cristobalite and coesite:lPhys. Chem. Min., 4 , 11-21,

- Milkey, R.G., 1960, Infrared spectra of some tectosilicates:



Am. Mineral., 45 , 990-1003.

Moenke, H., 1962, Minéralspektren,I.:-Akademie—Verlag,'Berlin;-

Moenke, H., 1966, Mineralspektren,Il.: Akademie-Verlag,
Berlin. _ ‘

Mulliken, R.S., 1955, Electronic population analysis on LCAO-
. MO molecular wave functions. 1I.: Jour. Chem. Phys., 23,
1833-1840. ‘ :

Newton, M.D. and G.V. Gibbs, 1980, Ab initio calculated ,
geometries and charge distributions for H,SiO, and HgSi,O,
compared with experimental values for silicates and
siloxanes: Phys. Chem. Min.,, 6 , 221-246.

Newton, M.D., W.A. Lathan, W.J. Hehre and J.A. Pople, 1970,
Self~consistent molecular orbital methods. V. Ab initio
calculation of equilibrium geometries and quadratic force
constants: Jour. Chem. Phys., 52 , 4064-4072,

Newton, M.D., M. O'Keeffe and G.V. Gibbs, 1980, Ab initio
calculation of interatomic force constants in HgSi,O, and
the Dbulk modulus of o-quartz and ec-cristobalite: Phys.
Chem. Min., 6 , 305-312,

Ohashi, Y. and C.W. Burnham, 1972, Electrostatic and

repulsive energies of the M! and M2 cation sites in

pyroxenes. Jour. Geophys. Res., 77 , 5761-5766.

Papike, J.J., ed., 1969, Pyroxenes and amphiboles. Crystal
: chemistry and phase determinations: Mineral. Soc. Am.
Special Paper, 2.

Pauling, L., 1980, The nature of the silicon-oxygen bonds: Am.
Mineral., 65 , 321-323,

Pople, J.A., D.P. Santry and G.A. Segal, 1965, Approximate
self- consistent molecular orbital theory. I. Invariant
procedures: Jour. Chem. Phys., 43 , S129-S135,

‘Ross, §.D., 1972, Inorganic infrared and raman spectra:
McGraw- Hill Book Co. (UK) Lmtd., London, 448 p.

Tossell, J.A., 1973, Molecular orbital interpretation of x-ray
emmission and ESCA spectral shifts 1in silicates: Jour.
Phys. Chem. Solids, 34 , 307-319, '

Tossell, J.A., 1979, Diverse chemical bond types in
minerals: Trans. Am. Crystall. Assoc., 15 , 47-63.

Tossell, J.A. and G.V. Gibbs, 1977, Molecular orbital
studies of geometries and spectra of minerals and inorganic
compounds: Phys. Chem. Min., 2 , 21-57,

51



Whittaker, E.J.W., 1971, Madelung energies and site o
preferences in:amphiboles,1: Am. Mineral.,-§§>, 980-99¢6.

52



