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Abstract 

One major problem associated with the testing of fiber reinforced concrete specimens under 

flexural loading is that the measured post-cracking response is severely affected by the stiffness 

of the testing machine. As a consequence, misleading results are obtained when such a flexural 

response is used for the characterization of composite toughness. Unfortunately, many existing 

standards allow the use of such a flexural response for toughness characterization. As a part of 

this research program, assessment of a new toughness characterization technique termed the 

Residual Strength Test Method (RSTM) has been made. In this technique, a stable narrow crack 

is first created in the specimen by applying a flexural load in parallel with a steel plate under 

controlled conditions. The plate is then removed, and the specimen is tested in a routine manner 

in flexure to obtain the post-crack load versus displacement response. Flexural response for a 

variety of fiber reinforced cementitious composites obtained using the Residual Strength Test 

Method has been found to correlate very well with those obtained with relatively stiffer test 

configurations such as closed-loop test machines. A good agreement between the flexural 

response obtained from the aforementioned methods seems to validate the Residual Strength Test 

Method. This method is simple, and can be carried out easily in any commercial laboratory 

equipped with a test machine with low stiffness. The Residual Strength Test Method is found to 

be effective in differentiating between different fiber types, fiber lengths, fiber configurations, 

fiber volume fractions, fiber geometries and fiber moduli. In particular, the technique has been 

found to be extremely useful for testing cement-based composites containing fibers ait very low 

dosages (< 0.5% by volume). 

As another major objective of this research program, an analytical model based on shear lag 

theory is introduced to study the problem of fiber pullout in fiber reinforced composites. The 

proposed model eliminates limitations of many earlier models and captures essential features of 

pullout process, including progressive interfacial debonding, Poisson's effect, and variation in 

interfacial properties during the fiber pullout process. Interfacial debonding is modeled using an 

interfacial shear strength criterion. Influence of normal contact stress at the fiber-matrix 

interface is considered using shrink-fit theory, and the interfacial frictional shear stress over the 
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debonded interface is modeled using Coulomb's Law. Stresses required to cause initial, partial 

and complete debonding of the fiber-matrix interface are analyzed, and closed form solutions are 

derived to predict the complete fiber pullout response. Analysis shows that the initial debonding 

stress strongly depends upon fiber length and fiber elastic modulus. The process of interfacial 

debonding turns catastrophic at the instant the fiber pullout stress begins to drop with an increase 

in debond length. This condition is satisfied when the difference between the change in the 

frictional component and the adhesional component of pullout stress occurring due to increase in 

debond length equals to zero. The magnitude of interfacial frictional shear stress along the 

embedded fiber length is found to vary as a result of the Poisson's contraction of the fiber. 

Moreover, Poisson's effect manifests itself in the form of a non-linear relationship between the 

peak pullout stress versus embedded fiber length plot. Based on energy considerations, an 

analytical solution is derived to compute the interfacial coefficient of friction. This solution 

depicts the dependence of the interfacial coefficient of friction on fiber pullout distance. For 

both steel and polypropylene fibers, interfacial coefficient of friction is found to decrease 

exponentially with increase in pullout distance. Matrix wear resulting from fiber pullout appears 

to be responsible for the aforementioned physical phenomena. Parametric studies are carried out 

to investigate the influence of fiber-matrix interfacial properties (adhesional bond shear strength, 

normal contact stress and coefficient of friction) and elastic modulus of the fiber. Results 

suggest that for a given set of interfacial properties, initial debonding stress, maximum pullout 

stress, stability of debonding process, catastrophic debond length, interfacial shear stress 

distribution, and overall pullout response significantly depend upon the elastic modulus of the 

fiber. Given the fiber elastic modulus, recommendations are made as to how efficiency of fiber 

in pullout may be improved by modifying different interfacial properties.. 
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Notations 

n - modulus ratio between concrete and steel 

b - width of concrete beam 

d - depth of concrete beam 

L - length of concrete beam 

5 - span of concrete beam 

8150 - beam deflection of magnitude S/150 

Tja - JSCE Absolute Toughness 

Gb - JSCE Flexural Toughness Factor 

dp - depth of the steel plate 

y - depth of neutral axis 

Mc - bending moment at cracking 

oc - stress carried by the beam at cracking 

os - stress carried by steel plate at the instant beam cracks 

Pcr - cracking load of beam 

8cr - deflection at cracking load of beam 

a - fiber radius 

b - outer radius of the matrix coaxial cylinder in a pullout test geometry 

r - radial direction in a pullout specimen 

z - axial fiber direction in a pullout specimen 

L - embedded fiber length in a pullout specimen 

T m - matrix shear stress 

ra - interfacial shear stress 

Ts - fiber-matrix interfacial shear strength 

Tf - interfacial shear stress over the debonded interface 

wm - matrix axial displacement 

wa - matrix displacement at the interface (i.e., r=d) 

M>b - matrix displacement at the surface of coaxial cylinder (i.e., at r=b) 

<y0 - fiber pullout stress 

Of - fiber axial stress 
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Gm - matrix axial stress 

Ga - matrix axial stress at the interface (i.e., r=a) 

Go.bond - bond component of pullout stress 

Oo.fric - frictional component of pullout stress 

Go.peak - fiber peak pullout stress 

Gb - matrix axial stress at the surface of coaxial cylinder (i.e., at r=b) 

Gc - contact stress at the fiber-matrix interface 

Gcp - contact stress at fiber-matrix interface after Poisson's contraction of fiber 

Gd - fiber debonding stress 

8r - fiber-matrix misfit 

\i - interfacial coefficient of friction 

jlt - initial value of the interfacial coefficient of friction 

jiss - steady-state value of the interfacial coefficient of friction 

c - rate at which the interfacial coefficient of friction decays with increase in pd 

A - pullout displacement 

Apeak - pullout displacement corresponding to peak pullout load 

Aa - decrease in fiber radius due to Poisson's contraction of fiber 

Id - interfacial debond length 

ld,cat - catastrophic debond length of interface 

Pd - rigid body displacement of fiber in a pullout test 

Pdi - rigid body displacement of the fiber in a pullout test 

Pd2 - rigid body displacement of the fiber in a pullout test 

Ppdi - pullout load corresponding to the pullout distance, pdi 

Ppd2 - pullout load corresponding to the pullout distance, pd2 

Ub - fiber displacement when fiber is completely bonded 

Upd - fiber displacement during partial interfacial debonding 

Updpeak - fiber displacement corresponding to peak pullout load 

fiber displacement beyond completion of interfacial debonding 

Wp - Work of fiber pullout when the rigid body displacement of the fiber increases 

from pdi to pd2 

v m - Poisson ratio of matrix material 
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V f - Poisson's ratio of fiber material 

Em - matrix elastic modulus 

Ef - fiber elastic modulus 

MOR - Modulus of Rupture 

RS - Residual Strength 

RSI - Residual Strength Index 
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Chapter 1 

Introduction 

Plain concrete is a brittle material characterized by its low tensile strength, low tensile strain 

capacity and low fracture toughness. To render concrete a usable structural material, it has to be 

reinforced. Historically, concrete reinforcements have been in the form of continuous steel 

reinforcing bars and stirrups, which are placed strategically in the structure to withstand the 

imposed tensile and shear stresses. In the last couple of decades, another type of concrete 

reinforcement that has gained immense popularity is discontinuous short fibers [1-3]. 

Continuous bars and discontinuous short fibers perform different roles in concrete. While 

conventional reinforcing bars are used to increase the tensile and shear capacities of concrete, the 

primary reason for inclusion of discontinuous short fibers in the concrete matrix is to improve its 

post-cracking response (i.e., to augment apparent ductility, energy absorption capacity, impact 

resistance and cracking resistance of concrete). Because of its superior energy absorption 

capability, fiber reinforced concrete has been widely used in a variety of civil engineering 

applications including thin sheet products, large precast products, shotcrete, offshore structures, 

seismic structures, pavements, overlays, crash barriers, machine foundations, hydraulic structures 

and thin and thick repairs. 

While the influence of fibers on the pre-cracking behavior is only marginal, the potency of fiber 

addition becomes apparent after the brittle concrete matrix has cracked. In the post-cracking 

stage, fibers that bridge a crack apply closing pressure at the crack front. Closing pressure 

suppresses the tendency of crack growth by reducing the stress intensity at the crack tip. In this 

context, efficiency of fibers in suppressing crack growth is directly dependent upon the 

magnitude and the nature of the closing pressure field generated due to the interaction between 

fiber and matrix in the wake region of the crack tip. With the opening of the crack, fibers pull 

out of the matrix and absorb energy in the process. This energy that is absorbed at the 

micromechanical level in the fiber pullout process appears at the macromechanical level as 

toughness of the fiber reinforced composite. In this context, the significance of interfacial 
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micromechanics becomes apparent, given the dependence of both the the fiber-matrix interaction 
and macromechanical composite properties on the micromechanical properties of the fiber-
matrix interface. Despite numerous theoretical and experimental studies on the micromechanics 
of interfaces that have been carried out, it is not clear as to how micromechanical properties of an 
interface must be tailored to improve fiber pullout efficiency. It is also of utmost importance to 
understand the combined influence of fiber elastic modulus and interfacial properties on fiber 
pullout response, since fibers with a wide variety of elastic moduli are commonly employed to 
produce fiber reinforced cementitious composites. The aforementioned aspects are explored as 
part of this research program. 

Ductility or the energy absorption capability of fiber reinforced concrete is commonly measured 
by loading a specimen in flexure and measuring the corresponding load versus displacement 
response. The area under the load versus displacement response represents the flexural 
toughness of the composite. Some testing standards for characterizing flexural toughness that 
fall under this category include ASTM C1018 [4] and JSCE-SF4 [5]. Although not widely 
recognized, one major problem that is associated with the testing of a specimen under flexural 
loading (for instance, as per ASTM C1018 or JSCE SF-4) is that the measured post-cracking 
response is severely affected by the stiffness of the testing machine [6]. For a given testing 
system, the severity of this effect is more pronounced at low fiber dosage rates and when fibers 
with a low modulus are used. To accurately characterize the flexural behavior of fiber reinforced 
cementitious composites, a new test method called the Residual Strength Test Method (RSTM) 
has recently been adopted as a testing standard by the American Society of Testing and Materials 
[7]. Another major objective this research program is to investigate the validity of the Residual 
Strength Test Method. 

1.1 Objectives and Scope 

The present work on fiber reinforced concrete is categorized under the following two categories: 
macromechanical studies, and 
micromechanical studies 
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The objectives that fall under the category of macromechanical studies are: 

to examine the influence of machine stiffness on the measured flexural load versus deflection 

response of fiber reinforced concretes (in particular, fiber reinforced concretes with low 

toughness); 

• to assess the validity of the newly developed Residual Strength Test Method (RSTM) 1 for the 

measurement of the post cracking response of fiber reinforced concrete; 

to investigate the influence of various material variables on the flexural toughness of fiber 

reinforced concrete. 

The objectives that fall under the category of micromechanical studies are: 

to examine the influence of various pullout parameters on the fiber pullout responsei; 

• to develop a fiber pullout model in order to understand the mechanics of interaction between 

the fiber and the cement based matrices, and to understand the progressive debonding 

behavior of the fiber-matrix interfaces; 

• to conduct parametric studies using the developed fiber pullout model from the viewpoint of 

understanding the influence of the fiber-matrix interfacial properties and the mechanical 

properties of the constituents on the fiber pullout response. 

1.2 Thesis Organization 

The pertinent literature is reviewed in Chapter 2. The influence of various material variables on 

the flexural toughness of FRC is described in Chapter 3. In addition, this chapter explores the 

influence of machine stiffness on the flexural load versus deflection response of FRC. Two 

testing schemes are used for this purpose - an open-loop test scheme and a closed-loop test 

scheme. The stiffness of the former testing machine is lower than that of the latter. Also, in the 

latter test scheme, a feedback signal from the beam deflection or the crack opening displacement 

is utilized in order to crack the beam at a controlled rate. Furthermore, in Chapter 3, an 

assessment of the Residual Strength Test Method is made. Apart from the intensive 

investigations carried out in this context at the University of British Columbia, a Round Robin 

Test Program was accomplished between the Ministry of Transportation of Ontario, the 

Technical University of Nova Scotia and the University of British Columbia. Results from this 

test program are also reported in this chapter. 

1 Residual Strength Test Method (RSTM) is now an American Society of Testing & Materials (ASTM) test standard 
- A S T M 1399-98 [7]. 
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The influence of various pullout parameters on the fiber pullout response is described in Chapter 

4. Pullout parameters investigated include water/binder ratio, matrix shrinkage properties, 

matrix modification by pozzolans, fiber length and fiber surface roughness. Pullout tests were 

carried out on fibers with different elastic moduli. 

To understand the mechanics of interaction between the fiber and the matrix, an analytical model 

for the problem of fiber pullout is developed and presented in Chapter 5. Validation of the 

proposed model is carried out in Chapter 6. Further, parametric studies are carried out using the 

proposed pullout model to study the influence of the fiber-matrix interfacial properties and the 

mechanical properties of the constituents on the fiber pullout response. Results form the 

aforementioned parametric studies are presented in Chapter 7. 

Finally, Chapter 8 summarizes the important conclusion drawn from this work. 
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Chapter 2 

Literature Review 

2.0 Introduction 

The fundamental reason behind the addition of discontinuous fibers to cementitious materials is 

to suppress the inherent tendency of the brittle matrix to crack at low strains. While 

conventional reinforcing bars increase the tensile and shear capacities of concrete, discontinuous 

fibers, when added to a concrete matrix, enhance the material's ability to deform and absorb 

energy. Thus, toughness of fiber reinforced concrete is a measure of the energy absorption 

capability (i.e., deformability) of the composite and its ability to resist fracture when subjected to 

applied loads. There are several approaches that may be adopted to evaluate the toughness of 

fiber reinforced concrete. The primary difference between these approaches stems from the 

characteristics of the applied load on the structure. These characteristics include: 

i . mode of loading: tension, compression, or flexure 

i i . rate of loading: static, dynamic, or impact 

Flexural toughness under static loading is most commonly used to characterize the toughness of 

fiber reinforced cementitious composites. Some flexural toughness testing standards that fall 

under this category include A S T M C1018 [4] and JSCE SF-4 [5]. A brief literature review on 

the characterization of flexural toughness of fiber reinforced concretes is presented in this 

chapter. 

While the influence of fibers on the pre-cracking behavior is only marginal, the potency of fiber 

addition becomes apparent only after concrete has cracked. In the post-cracking stage, fibers that 

bridge a crack apply a closing pressure at the crack front. This tends to close the crack and 

suppresses the tendency of crack growth by reducing the stress intensity at the crack tip. In this 

context, efficiency of fibers in suppressing crack growth is directly dependent upon the 

magnitude and the nature of the closing pressure field resulting from the interaction between 

fiber and matrix. Given the dependence of composite response on interfacial micromechanical 

properties, it becomes critical to tailor the interfacial micromechanical properties for achieving 
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the desired composite properties. For this reason, experimental and theoretical investigations on 

the micromechanics of interfaces actively continue. Several experimental test methods have 

been developed for the characterization of the fiber-matrix interfacial properties, such as the 

single fiber pullout test, microdebond test, single fiber fragment test, and fiber pushout test (also 

known as indentation test) [8]. Among these, the single fiber pullout test is most commonly 

employed in the field of fiber reinforced concrete. Yet another objective of this chapter is to 

present a literature review on the topics of micromechanical and macromechanical properties of 

fiber reinforced cementitious composites. First, the relevant micromechanical models for the 

problem of fiber pullout are reviewed. This is followed by a review of important experimental 

fiber pullout studies carried out to this date. Finally, a brief review of important 

micromechanical models describing the tensile behavior of fiber reinforced cementitious 

composites is presented. 

2.1 Issues Of Significance Concerning Characterization of Toughness of Fiber Reinforced 

Concretes 

Several definitions of toughness, all in the form of energy absorption, have been developed to 

quantify the toughness of fiber reinforced cementitious composites under static loading. For 

instance, flexural toughness, compressive toughness and tensile toughness are some definitions, 

which correspond to toughness obtained through flexural, compressive and tensile tests, 

respectively. In the following, flexural toughness is discussed in detail, as it is one of the most 

common loading states for fiber reinforced concrete applications. 

Extensive work [4,5,9-51] has been done towards the characterization of flexural toughness of 

fiber reinforced concretes, and many different test methods have been developed for this 

purpose. Most of these test methods use a static third-point bending configuration, and the 

energy absorbed by the specimen is computed from the area under the load-deflection curve. In 

addition, several different toughness definitions and descriptions exist in various test standards 

and in the literature. Kasperkiewicz and Skarendahl [9] have classified the various toughness 

characterization methods into two categories: 

i . Absolute value descriptions 

i i . Relative value descriptions 
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Methods based on an 'absolute value description' measure the total energy required either to 

fracture a specimen of arbitrary size, or to load the specimen to a particular end-point deflection. 

Thus, an absolute description of toughness does not use any ideal material as a reference. 

Methods that fall under this category include: Japanese Society of Civi l Engineers, JSCE - SF4 

[5], Dutch CUR-Recommendation N° 10 [10], Belgian Standard N B N B15-238 [11], Spanish 

AENOR U N E 83-510-89 [12], German D B V Recommendations [13-15], RJEEM Energy 

Absorption [16]. As an example of the absolute approach, the Japanese Society of Civil 

Engineers in its standard "Method of Test for Flexural Strength and Flexural Toughness of Fiber 

Reinforced Concrete - JSCE-SF4 [5]" defines a toughness parameter called the Absolute 

Toughness, TJCI as the area under the load-deflection curve to a deflection of loading span/150. 

Methods based on a 'relative value description' normalize the energy absorbed up to a specified 

deflection by the energy absorbed up to approximately the elastic limit of the material, or by the 

energy absorbed in fracturing the unreinforced matrix. Methods falling under this category 

include: A S T M C1018 [4], ACI Committee 544 Recommendations [17], Barr Indices [18-22], 

French Standard PI8-409 [23], Wang and Backer Index [24], Ward and L i Indices [25], and 

Shah et al. [26]. An example of the relative approach is A S T M C1018 standard titled "Standard 

test method for flexural toughness and first-crack strength of fiber reinforced concrete (using 

beam with third-point loading)." Toughness parameters of the A S T M C1018 [4] technique are 

based on determining the amount of energy required first to deflect and crack a fiber reinforced 

concrete beam loaded at its third-points and then to selected multiples of the first crack 

deflection. Toughness Indices, I5, I 1 0 , 1 2 0 . I30 and LJO are then calculated by taking the ratios of 

the energy absorbed to a certain multiple of first crack deflection and the energy consumed up to 

the occurrence of the first crack itself. 

In addition to the above definitions there exist several other toughness characterization schemes 

that do not fall in the aforementioned categories. For example, Mobasher and Shah [27] define 

the fracture toughness, Gf as the area under the load-deflection response (extrapolated to the 

value of zero load), divided by the net cross-sectional area of the specimen. A few other 

proposed methods describe the toughness in the form of equivalent flexural strength, for 

instance, Banthia and Trottier [28] quantify toughness by a parameter called 'post crack 

strength', which is evaluated at various deflections. Similarly, Norwegian Concrete 

Association's guidelines for shotcrete, NBP No 7 [29], describe the toughness parameters in the 
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form of residual flexural strength at specified deflections. According to the Norwegian NBP No 

7 guidelines, toughness properties of shotcrete are determined according to four different classes 

- the two highest classes (Class 2 and Class 3) involve determination of: 

• residual flexural strength from the load-deflection curve (residual flexural stress at fixed 

deflections of 1 and 3 mm, respectively) 

• flexural strength 

• minimum fiber content as a function of fiber length and material. 

The E F N A R C [30] recommendation also uses a toughness classification similar to that of the 

Norwegian NBP No 7. 

As can be noted, there are several definitions of flexural toughness and several test standards to 

characterize the flexural toughness of fiber reinforced concretes. As a result of the multitude of 

definitions and standards, there is considerable controversy amongst the users of FRC about the 

best way to characterize flexural toughness. Both approaches (absolute and relative) provide 

important information about the mechanical properties of fiber reinforced concretes, but neither 

approach is sufficient. For instance, it is possible for two materials to have different mechanical 

performances but still have the same value of absolute toughness. Similarly, in context of the 

relative approaches, it is possible for two materials that are mechanically different to have the 

same A S T M C1018 toughness indices. 

Several investigators [24,41,42,44,45,47,49,51] have expressed their doubts about the definition 

and determinations of first crack according to A S T M C1018. Doubts have also been cast about 

the measurement of net beam deflection and instability after the peak load for materials with low 

toughness, which could lead to substantial errors in the evaluation of toughness parameters. 

Gopalaratnam et al. [42] and Trottier and Banthia [45] pointed out that the toughness indices 

were not very sensitive in distinguishing amongst different fiber contents. Johnston [32-34] on 

the contrary, found the reverse to be true. Balaguru et al. [49] reported that A S T M indices I5 and 

I10 were not good indicators of the variation present in the load-deflection response, and 

recommended that indices such as I100 occurring at much higher deflections, rather than I5 and 

I10, should be used for the toughness evaluation of FRC. 

Some issues of significance pertinent to toughness testing and toughness characterization are 

summarized below: 



i. Deflection measuring procedure 

Large inaccuracies in toughness computation may result if beam deflections are not. measured 

accurately. Large extraneous deformations result due to local crushing of the test beam at the 

supports, the elastic and inelastic deformations of the loading fixtures, and deformations in the 

support system. Note that, up to first crack, extraneous deformations contribute most of the 

measured deflections, and after the first crack, extraneous deformation constitute only a small 

fraction of the total beam deflection. For characterizing toughness accurately, these extraneous 

deflections should be excluded from the deflection measurements. Further details on this issue 

can be found in Reference 42. 

ii. Specimen Geometry and Size Effect 

It is well established that the strength of concrete structures is dependent on the size of the 

structure. Both strength (also, first-crack strength) and post-peak ductility decrease with an 

increase in structural size. Consequently, toughness parameters are also affected by the size of 

the specimen and hence are size dependent. 

The extremely small ratio of shear-span to beam depth ratio as specified by most Standards 

causes high shear stresses similar to those in deep beams and walls. This could lead to a 

pronounced influence of shear on the test results. Furthermore, this state of stress is 

unrepresentative of the most common applications of fiber reinforced concrete, for example, 

tunnel linings and slabs-on-grade [41]. 

iii. Stiffness of testing machine 

During testing, the loading system deforms and stores energy. At first crack or at the peak load, 

part of this energy is suddenly released and absorbed by the specimen. For concretes with low 

fiber content, this normally causes a sudden instability in the load-deformation response, which 

consequently affects the toughness evaluation. The degree of this instability depends on the 

relative stiffness of the loading system, with softer loading systems releasing larger amounts of 

energy. Banthia and Trottier [44] have pointed out the effects of instability on the measurement 

of A S T M Toughness Indices. 
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iv. Identification of first crack 

In the ASTM C1018 method, the indices depend upon the energy absorbed by the specimen up 

to the occurrence of the first crack; therefore, it is very important to locate the first crack exactly. 

ASTM C1018 identifies the first crack on the load-deflection curve as "the point of the load-

deflection curve at which the form of the curve first becomes nonlinear". Note that, according to 

this definition, objectively locating the point of first crack in the ascending part of the load-

deflection response is not possible and is always subject to human-judgement error. This 

becomes an even bigger problem for beams that exhibit post-cracking strengthening. Thus the 

need is to establish an objective definition of first crack for fiber reinforced concretes with 

different volume fractions of fibers. 

The following recommendations were made by Gopalaratnam and Gettu [41] with regard to the 

characterization of flexural toughness of FRC using the four-point bending test: 

• Avoid the use of first-crack deflection to define toughness. If first crack is needed it should 

be objectively defined. 

• Use shallow beams (1/d ratios > 5) to minimize structural effects and large shear spans to 

minimize the effect of shear stresses. 

• Ensure stability of the test at all times through the use of a stiff machine and/or a servo-

controlled machine. 

• Use absolute energy and associated equivalent flexural strength at prescribed deflection 

limits for a standard beam as sensitive measures of toughness. 

• Use deflection limits that are related to specimen size. 

In addition, Gopalaratnam and Gettu [41] recommended the use of the equivalent post-cracking 

approach for incorporating energy absorption of FRC in structural design. Further, they suggest 

that this approach should be coupled with serviceability-related and application specific limits on 

deflection or crack width. 

2.2 Micromechanical Models for Investigating the Fiber-Matrix Interfacial Behavior 

Depending on the choice of criterion that is used for fiber-matrix interfacial debonding, the 

theoretical analysis of the problem of fiber pullout can be classified into two distinct approaches: 

strength based approach [52-78] and fracture mechanics based approach [78-99]. Theoretical 
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models based on the former approach use maximum interfacial shear stress as the interfacial 

debonding criterion such that when the interfacial shear stress exceeds the interfacial bond 

strength, debonding is supposed to occur. On the other hand, if theoretical models based on the 

concepts of fracture mechanics, the debonded zone is considered as an interfacial crack, and the 

extension of the crack is dependent on the energy criterion being satisfied. 

Cox [52] developed the first strength-based analytical model to describe the transfer of stress 

between fiber and matrix. This model assumes that the tensile stresses in the matrix are 

negligible relative to those in the fiber and the shear stresses in the fiber are small compared to 

those in the matrix.1 Assuming compatibility of fiber and matrix displacements at the interface, 

i.e., no slip, Cox [52] derived analytical expressions for the axial stress distribution in the fiber 

and the shear stress distribution at the interface. The analytical model by Greszczuk [53] was 

also based on similar assumptions. Greszczuk [53] further postulated that at the instant when the 

shear strength of the interface was attained, catastrophic debonding would occur over the entire 

embedded length of fiber. However, in reality, debonding may be limited to the zone in which 

the elastic shear stress exceeds the adhesional shear bond strength, and in that scenario, the 

process of load transfer will be comprised of frictional shear transfer at the debonded zone and 

elastic shear transfer over the remaining length of fiber. Greszczuk's model [53] did not include 

the possibility of the existence of frictional bond, which constituted a major limitation of the 

model. The combined stress transfer mechanism was first treated analytically by Lawrence [55]. 

In this model, interfacial frictional shear stresses over the entire debonded zone were assumed to 

remain constant. Models developed by Gopalratnam and Shah [55], Nammur.et al. [61], 

Gopalaratnam and Cheng [65], Stang et al. [78] also took into account the combined stress 

transfer mechanisms. It is apparent that the shear stresses (both elastic and frictional) that 

develop parallel to the fiber-matrix interface are of utmost importance in controlling the fiber-

matrix stress transfer mechanism. However, stresses and strains may also develop normal to the 

fiber-matrix interface as a result of the Poisson effect, volume changes, and multiaxial loading. 

They may induce considerable variations in the resistance to frictional slip, which is sensitive to 

normal stress. A comprehensive approach to the stress-transfer problem therefore requires 

simultaneous treatment of all the above-mentioned effects, namely, elastic shear transfer, 

frictional slip, debonding and normal stresses and strains. Analytical models developed by 

Takaku and Arridge [54] and Hsueh [66-68] are more comprehensive than the previously cited 

1 Models based on this assumption are now known as Shear-lag Models. 
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since these models take into consideration influence of Poisson's contraction of the fiber on the 

pullout response. 

The fracture mechanics approach is characterized by the assumption that the propagation of the 

debonding zone requires a certain amount of energy, and that this energy is characteristic of the 

bond between the fiber and the matrix [106]. Thus, the debonding energy is proportional to the 

magnitude of the increase of the debonded zone. Based on the concepts of fracture mechanics, 

the total energy release rate, G, can be written as [106]: 

dW dW dWf 

G = ^lex__^21e_ L 2.1 
da da da 

where, a is the increase in debonded area due to extension of the crack, Wex is the work done by 

external load, We is the elastic strain energy stored in the system, and Wf is the energy dissipated 

in inelastic parts of the structure, e.g., work done by friction on the debonded interface. In fiber 

pullout problems it is often assumed that the critical energy release rate corresponds to the mode 

II toughness of the interface, G"r", i.e., the contribution of mode I to the energy release rate is 

insignificant. Thus, with this assumption, the criterion for interfacial debonding is given by 

equating the energy release rate with the critical energy release rate G-,"' of the interface: 

G™' =G 2.2 

Bowling and Groves [87], Stang and Shah [64, 78], Gao et al. [92], Morrison et al. [85], Zhou et 

al. [89], and Kim et al. [88] have proposed fiber pullout models based on the concepts of fracture 

mechanics. 

A review of some important fiber pullout models follows. 

Greszczuk [53] 

Greszczuk [53] assumed that the fiber load was transferred to the matrix through the elastic shear 

stresses only. Further, it was assumed that, when the magnitude of this elastic shear stress 

exceeded the matrix shear strength at the location where fibers entered the matrix, catastrophic 

debonding took place along the fiber length. He proposed a method to determine the shear 

strength and shear modulus of the fiber. This method is based on the pullout test on fibers that 
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are embedded in the matrix to various lengths. Based on the shear lag theory, the final solution 

for the interfacial shear stress at a point located at a distance x from where the fiber enters the 

matrix in terms of the average shear stress T a v = P llmrl was derived as: 

T( X) 

= a/{sinh(rxc) - coth(a/) cosh(cec)} 2.3 

where, a = 
-11/2 

2G, 
b,rE, 

2.4 

and, 

G, = shear modulus of the matrix 

bi = effective thickness of the interface 

r = fiber radius 

Ef = fiber modulus 

From the above equation, the maximum shear stress would occur at x = 0, hence: 

^ = cd{coth(od)} 2.5 

According to the above equation, as od—>0, the limit xmax/xav-4 1, i.e., xmax —> t a v. Greszczuk 

proposed that this condition can be used to determine the shear strength of the interface. Since, 

in the above equation, a is a constant, therefore, T m a x / T a v would be a function of embedded fiber 

length only. Thus, by conducting pullout tests on fibers that are embedded in the matrix to 

various lengths, the shear strength, T m a x , of the interface can be estimated by plotting a curve of 

x a v versus /, and extrapolating i a v at / = 0. 

As mentioned above, for a given fiber and matrix type, the value of interfacial shear strength T m a x 

is established. Now, for a fiber with a given embedded length, the average shear stress T a v can be 

obtained from the experimental pullout test result, and thereafter the ratio i a v /T m a x be evaluated. 

Using Equation 2.5, a value of cd that corresponds to the calculated ratio xav/xmax can be 

computed. With length of the fiber / and cd known, the value of a can be computed. Finally, 

using Equation 2.4, the shear modulus G, of the interface can be calculated. Here, Equation 2.4 

assumes that the thickness of the interface £>, is known. 
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Lawrence [55] 

The model developed by Lawrence [55] includes the effects of both the interfacial elastic shear 

stresses and the frictional shear stresses, and it recognizes the conditions for either a gradual, or 

an instantaneous debonding of the interface. He has shown that the form of the distribution of 

the shear stress and the load along the fiber length depends upon the elastic properties of 

constituents and the fiber embedded length. Lawrence [55] extended the theory developed by 

Greszczuk [53] by taking into account the process of progressive debonding of the fiber-matrix 

interface. He suggested that the maximum fiber pullout load would occur at the instant when 

debonding of that part of fiber length where the elastic bond is still intact takes place in a 

catastrophic manner. 

Lawrence [55] derived the following equation for the distribution of load P(x) along the fiber 

length: 

„. . „ sinh-y/a x 
P(x)=Pf ?i=— 2.6 

sinhVtt le 

where, Pf is the fiber pullout load, x is the distance of the point under consideration measured 

from the embedded fiber end, le is the embedded fiber length, and a is an elastic constant given 

by: 

a = CK\ 
1 1 

AfEf A E 
j j m m 

2.7 

where, C is the fiber perimeter, Af and Am are the areas of the fiber and the matrix, respectively, 

Ef and Em are the elastic modulus of the fiber and the matrix, respectively. K is a constant that 

relates the interfacial elastic shear stress Twith the virtual displacement (u-v) of the interface by 

the equation r=K (u-v), where u is the virtual displacement in the direction of the fiber at a point 

on the fiber located at a distance x from the embedded fiber end, and v is the virtual displacement 

of the matrix at the same point, if the fiber was replaced by the matrix. 

Based on the Equation 2.6, Lawrence pointed out that the hyperbolic sine function is 

approximately linear for small values and exponential at large values. As a result, the 

distribution of the relative load P(x)/Pf is affected by the embedded fiber length le. Accordingly, 
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for fibers with small lengths, the buildup of load along the fiber length is approximately linear, 

however, this is not the case for the fibers with longer lengths. 

Further, Lawrence derived the following equation for the distribution of shear stress T(X) along 

the embedded fiber length: 

T ( X ) = 
KPf cosh ~J~a x 

•Jot sinhVa le 

1 1 
AfEf 

2.8 

Following Equation 2.8, the maximum shear stress occurs at the point where the fiber enters the 

matrix, and is given by: 

EL cothVa I 
1 1 

AfEf AmEm 

2.9 

The above equation also depicts that for a given value of a, the distribution of the relative shear 

stress along the embedded fiber length is influenced by the fiber length. 

Lawrence assumed that it was possible for the fiber-matrix interface to partially debond, rather 

than the catastrophic debonding assumed by Greszczuk [53]. Further, in his analysis he took into 

consideration the existence of frictional shear stresses T, over the debonded fiber length. 

According to Equation 2.9, when the fiber load Pf is such that the interfacial shear stress 

equals xs (the interfacial elastic shear strength), the fiber would debond from the matrix at the 

point where it enters the matrix. Whether the fiber would continue to debond at a constant load 

Pf or whether an increase in pullout load would be necessary would depend on the embedded 

length of the fiber le, and the ratio of the elastic shear strength Ts and the frictional shear strength 

T, of the fiber-matrix interface. The maximum value of fiber pullout load Pf™* would occur 

when the distance, x, of the debonded point from the embedded fiber end equals: 

1 
-"•max — I— cosh"1 p - 2.10 

From the above equation, it is clear that the stage at which the debonding becomes catastrophic 

is dependent upon the ratio T/T,. When T S / T ; >cosh2 V a /e(i.e., when x = x^, = le), the 

debonding process becomes catastrophic as soon as it commences. On the contrary, if 
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T s / T i < cosh2 -fa le, a further increase in fiber pullout load, Pf, is necessary for debonding to 

continue. Accordingly, the maximum value of the fiber pullout load P /

m a x required to achieve 

complete debonding and initiate the fiber pullout is given by the following equations, 

,-y/a 
K 

•A,Ef 

A E A f E f 

m m } } 

tanhVa le Ip ^ Xn 2.11 

K 
''AE-AfEf ^ 

m m J S 

AmEmAfEf 

tanh 4a xmax + T,C(Z - xmax) le > Xn 2.12 

From the above equations it is clear that the maximum fiber pullout load that a fiber can achieve 

is not only a function of the ratio T/T, (i.e. but it is also a function of the embedded fiber 

length le. In addition, Equation 2.10 implies that, for any fiber length that is less than or equal to 

Xmax, the process of debonding would be catastrophic. 

At the instant when the entire fiber length is debonded, the resistance to fiber pullout would drop 

to a value of T, C le, and subsequently it would decrease as the fiber pulls out from the matrix. 

When the interfacial frictional shear strength T, is equal to zero, then according to Equations 2.10 

and 2.11 catastrophic debonding of the interface would take place; i.e., the fiber pullout load 

would drop from maximum to zero as soon as elastic shear stress at the location where the fiber 

enters the matrix equals the interfacial shear strength TS. 

For the determination of the shear strength of the interface experimentally, the maximum 

pullout load Pf

 m a x for fibers with different embedded length le is plotted against the function 

le. The shape of the curve so obtained is a function of the ratio T/T, as shown in Figure 

2.2.1. The shape of the experimental fiber pullout load versus displacement curve obtained is 

also dependent on this ratio. Figure 2.2.2 depicts the schematic fiber pullout load versus 

displacement curves for the various ratios of T/T,. 
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Figure 2.2.1: Variation of maximum fiber pullout load with embedded fiber length factor for 
various friction conditions [55] 

8 5 

(a) Tyr,- =1 (b) 1 < T / T ; < oo (C) T/T/=oo 

Figure 2.2.2: Variation of pullout load with fiber displacement for various interfacial frictions conditions [109] 
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When T/T,- =1, the fiber pullout load versus slip response is as shown in Figure 2.2.2a, and 

the P /

m a x versus le curve is a straight line as shown in Figure 2.2.1. The shear strength of the 

interface can be computed from the equation, 

2.13 

In this situation, debonding is not catastrophic, and the fiber pullout load decreases linearly from 

maximum to zero as shown in the Figure 2.2.2a. 

When 1 < T/T, < oo, the fiber pullout load versus displacement curve is as shown in Figure 

2.2.2b, and the P /

m a x versus -fa le curve is as shown in Figure 2.2.1. In the P /

m a x versus 4oc le 

curve a point of discontinuity occurs and the slope of the curve, A, becomes constant. The point 

of discontinuity corresponds to the fiber length le that equals x^ as given by Equation 2.10. 

Lawrence points out that the slope of the curve A is related to the frictional resistance to fiber 

pullout after the fiber-matrix interface has completely debonded, and it can be set equal to T, C/a. 

Thus, 

%• = 2.14 
1 C 

Also, from the definition of (Equation 2.10), the magnitude of the interfacial shear strength 

can be determined as, 

2.15 

When the P /

m a x versus -Ja le curve has no obvious discontinuity and becomes linear at long 

embedment lengths, this implies that the frictional shear resistance is very small, and for this 

case the fiber pullout load versus slip curve is as shown in the Figure 2.2.2c. Accordingly, the 

ratio T/T,= O O , and all embedded fiber lengths are less than xniax as given by the Equation 2.10. 

The interfacial shear strength Ts can be determined from the asymptotic value of P /

m a x ( i .e . , 

P /

m a x = Pf°°) from the P /

m a x versus -fa le curve. Rearranging Equation 2.10, one can obtain, 
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2.16 

Gopalaratnam and Shah [56] 

With regard to interfacial shear stresses, Gopalaratnam and Shah [56] made similar assumptions 

to those made by Lawrence [55] to obtain the solution to the fiber pullout problem. Thus, this 

model takes into consideration the following: the existence of interfacial elastic shear stresses 

prior to the inception of fiber-matrix interfacial debonding, the existence of both the interfacial 

elastic shear stresses and the interfacial frictional shear stresses when the fiber-matrix interface is 

partially debonded, and the existence of interfacial frictional shear stresses after the fiber-matrix 

interface has completely debonded and is pulling out. 

In the model developed by Lawrence [55], the parameter K that relates the interfacial elastic 

shear stresses, T, with the virtual displacement of the interface, u-v, was inadequately defined. 

Gopalaratnam and Shah [56] assumed a square packing geometry of the fibers and related the 

interfacial elastic shear stress,T, with the shear displacement of the matrix at the interface u-v in 

the following way, 

T = . .Gm Ju-v) 2.17 
r l n ^ / r / V , /2 ) 

where r is the fiber radius, Gm is the shear modulus of the matrix, V) is the volume fraction of the 

fibers, v is the fiber displacement in the axial direction at the interface and u is the matrix 

displacement at the surface of the coaxial cylinder. 

When the fiber is partially debonded, the axial stress distribution in the fiber, F(x) and the 

interfacial shear stress distribution, re(x), over the bonded length of fiber were derived as 

follows: 

F(x) = C, cosh fix + C2 sinh fix + C 3 

2.18 

Te (x) = — — (C, sinh fix + C2 cosh fix) 
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and, the axial stress distribution in the fiber, F(x), and the interfacial shear stress distribution, 

re(x) over the debonded length of fiber were derived as follows: 

F(x) = P-2Ttrxi 

Xe(x) = -xi 

— X 
2 

2.19 

where P is the pullout load, Xj is the interfacial frictional shear stress at the interface, and 

constants fi, Cu C2 and C3 are described in reference [56]. 

Takaku and Arridge [54] 

Takaku and Arridge [54] developed Greszczuk [53] model by taking into consideration the 

existence of frictional shear stresses at the debonded interface when the fiber was completely 

debonded. However, the possibility of progressive interfacial debonding was not considered. 

Thus, according to this model, catastrophic debonding of the interface takes place at the instant 

when the interfacial elastic shear stress at the location where the fiber enters the matrix exceeds 

the elastic bond strength of the interface. The relationship between the embedded fiber length, /, 

and the shear strength, Xmwc was assumed to be the same as that derived by Greszczuk, i.e., 

^ = cd{coth(od)} 2.20 

However, they defined the elastic parameter a in a different manner, as given by the following 

equation, 

a = 

-11/2 

rf  E i H rm/rf) 
2.21 

where Gm is the shear modulus of the matrix, ry is the fiber radius, rm is the radius of matrix 

surrounding the fiber, and Ef is the fiber modulus. To evaluate the values of shear strength of the 

interface, T ^ , and the elastic parameter a, they proposed a graphical method based on the 

results obtained from the experimental pullout tests. 
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Unlike Greszczuk [53], however Takaku and Arridge [54], considered the frictional resistance to 

fiber pullout after complete debonding had occurred, and derived the following relationship for 

the tensile stress a(x) in the fiber at any distance x from the embedded fiber end, 

a s (x) = A[l - exp(-fljc)] 2.22 

Putting x=xe (embedded fiber length), the relationship between the initial fiber pullout stress o; 

and the embedded fiber length xe was written as: 

CT. = A[l-exp(-Bxe)] 2.23 

where A is a function of the normal compressive stress, o~0, exerted by the matrix on the fiber 

across the interface, and the elastic properties of the fiber and the matrix. Its value can be 

obtained from the following equation: 

A=°°E< ( 1 + V J 

where v m and vy are the Poisson's ratio for the matrix and the fiber, respectively; B is a function 

of the coefficient of friction between the fiber and matrix at the interface, fl, and the elastic 

properties of the fiber and the matrix; Its value can be obtained from the following equation: 

B= 2 £ - V ' " 2.25 
E, r , ( l + v j 

C T 0 and ji can be determined using Equation 2.23 and the experimental relationship between o~, 

andxe.. 

Pinchin and Tabor [57] 

Pinchin and Tabor [57] hypothesized that a 'misfit' occurs between the fiber and the matrix since 

the matrix shrinks during the process of setting, hardening, and curing. Defining the fiber-matrix 

misfit, 6, as the difference between the radius of the fiber and the radius of the hole in the matrix 

in the absence of the fiber, they provided a theoretical elastic analysis of fiber pullout stress, 

a(x), in terms of the fiber-matrix misfit, 8, the coefficient of friction fi at the fiber-matrix 

interface, and the elastic constants of the materials. Their analysis demonstrated that the 
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frictional resistance to pullout, and hence the fiber pullout force, was very sensitive to the fiber-

matrix misfit. 

Due to fiber-matrix misfit, strain, e0 (=8/rf, where, r, is fiber radius) between the fiber and the 

matrix is produced normal to the interface. And, as a consequence, an interfacial contact 

pressure, P, develops normal to the interface at every point along the length of the fiber, the 

magnitude of which is given by the equation: 

(l + vm)/Em+(l-vf)Ef 

2.26 

where vm and v, are the Poisson's ratio of matrix and fiber, respectively, and Em and Ef are the 

elastic modulus of matrix and fiber, respectively. When the fiber is loaded along its length by a 

stress <7f(x), it undergoes a Poisson contraction (ef=VfOf(x)/Ef), and this results in a reduction in 

the fiber-matrix misfit. Following Equation 2.26, a reduction in misfit strains by an amount ef (e 

= e0-£f) causes a reduction in the interfacial contact pressure. Taking all the above mentioned 

factors into consideration, Pinchin and Tabor derived an expression to calculate the stress in the 

fiber o(x) at any distance x from the embedded fiber end: 

<Jf(x) = 
8 Et 

rf v f 

1-exp 
-2vf/ix 

{Efrf{(l + vJ/Em+(l-vf)/Ef} 
2.27 

When Ef» Em, Equation 2.27 reduces to Equation 23 derived by Takaku and Arridge [54]. An 

estimate of the magnitude of fiber-matrix misfit can be obtained from the experimental 

relationship between the fiber pullout stress and the embedded fiber length, and using Equation 

2.27. 

Based on experimental pullout test results obtained for steel fibers, they concluded that during 

the process of pullout the frictional resistance markedly decreased. They hypothesized that the 

observed decrease in pullout load was not due to the wear of the matrix but it was due to the 

compaction and densification of the cement particles near the fiber surface which caused a non­

reversible reduction in the fiber-matrix misfit. 
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Hsueh [67] 
Hsueh [67] modeled progressive debonding of the fiber-matrix interface using shear lag theory. 

Stresses required to debond the fiber-matrix interface and to pull out a fiber were analyzed as a 

function of embedded length of fiber. With an assumption that interfacial debonding initiates 

when the maximum interfacial shear stress exceeds the interfacial shear strength, T„ the initial 

debonding stress, Od (i.e., the applied pullout stress Cy required to initiate debonding), was 

derived as: 
( ,~ , X , . s f. . „ 1 , 9 , ^ xlf, 9 , , , . x , , 9 9 , ,„TP/2 A (2/a)[(l+vj{l + (b2/a2-\)(EJEf)]p2\n(b/a)-(b2-a2)/2f2 

(b2la2- \)(Em IEf )coth(ar) + 2/{(exp(ar) - exp(-ar)} 
2.28 

where, a is fiber radius, b is the outer radius of the coaxial cylinder of the pullout specimen, t is 

fiber length, vm is matrix Poisson's ratio, £/and Em are the elastic modulus of fiber and matrix, 

respectively, and a is defined by: 

1 
a = — 

a 
a2Ef+(b2-a2)Em 

Ef(\+vm)^2ln(b/a)-(b2-a2)/2\ 
2.29 

From the above equation, it can be seen that the initial debonding stress, Cy, depends upon the 

length of fiber, t. Also, for a partially debonded fiber with a debond length equal to h, the 

debonding stress, Cy, can be obtained by replacing t by t-h in the Equation 2.28. 

It was shown that at the debonded interface pullout of the fiber was resisted by the frictional 

shear stress arising due to the existence of the residual clamping stress, ac at the interface. 

Shrinkage of the matrix or the thermomechanical mismatch between fiber and matrix that take 

place during fabrication were identified as the phenomena responsible for the presence of a 

residual clamping stress at the interface. As assumed in other models [54,57], Hsueh [67] also 

assumed a constant value of residual clamping stress, oc, along the entire fiber length. Further, it 

was demonstrated that the radial compressive stress at the interface decreases due to Poisson's 

contraction of fiber, and as a result, the interfacial frictional shear stress distribution along the 

debonded length of fiber becomes nonlinear. With these assumptions, the axial stress 

distribution, 07, in a partially debonded fiber was derived as: 
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— { l - exp(m2z)}+ 5{exp(m, z) - exp(m2z)}+ ad exp(m2z) 2.30 
l2 

where z=0 at the embedded end and is equal to L (fiber length) at the location where the fiber 

enters the matrix; specimen geometry and material property dependent coefficients A2, A3, B, mi, 

and m2 are defined in the reference [67]. 

Nammur et al. [61] and Naaman et al. [62,63] 

The fiber pullout model introduced by Nammur, Naaman and Clark [61] is a cohesive interface 

type model [106]. A cohesive interface type model assumes that only relative displacements 

between the fiber and the matrix can activate stress transfer at the interface. Also, in these types 

of models the interfacial traction is described as a function of the displacement discontinuity, and 

since there exists a unique relationship between interface traction and interface displacement 

discontinuity, it is not required to distinguish between the debonded and the bonded interface. In 

this model, the relationship between the interfacial bond stress versus relative slip between fiber 

and matrix was assumed to be of the type shown in Figure 2.2.3. 

As can be noticed in the above figure, the bond-slip curve is assumed to be linear elastic up to 

the point where the bond strength Xmax of the interface is attained. In the elastic region, the slope 

of the bond stress vs. slip curve represents the bond modulus, K. Beyond the slip corresponding 

to Xmax, a constant frictional shear stress equal to T, is assumed to exist at the interface. 

Furthermore, it was assumed that T, cannot exceed Xmax- Since the interfacial bond due to 

chemical adhesion is not slip induced, the application of the bond stress vs. slip relationship 

assumed in this model is limited to the cases where chemical adhesion is negligible. The other 

slip 

Figure 2.2.3: Interfacial bond stress vs. slip relationship [61] 

24 



major limitation of this model is that it assumes a constant value of interfacial shear stress at the 

debonded front. 

Applying the bond stress vs. slip constitutive relationship to a cylindrical fiber-matrix coaxial 

pullout model, relationships were derived for interfacial shear stress distribution, axial shear 

stress distribution, and fiber displacement at the various stages of pullout loading. In the interest 

of brevity these relationships are not included in this review. 

Applying shrink-fit theory to the problem of pullout and hypothesizing that the radial misfit 

between fiber and matrix decreases as a fiber is pulled out of the matrix, Naaman et al. [62,63] 

modified the previous model developed by Nammur et al. [61]. It was shown that as the fiber 

pulled out from the matrix, the interfacial frictional shear stress at the debonded interface 

decreased as a result of the decrease in radial misfit. 

Wang, L i and Backer [69] 

In this work [69], the authors emphasize the triviality of fiber-matrix interfacial elastic shear 

bond on the overall pullout response of both high as well as low modulus fibers. They compared 

the theoretical pullout response for steel fibers embedded in two different types of matrix using 

the model developed by Gopalaratnam and Shah [56]. With the first kind of matrix, the 

interfacial fiber matrix bond was considered to be purely frictional, and with the second kind of 

matrix, both elastic and frictional bonds were assumed to exist. They demonstrated that, for both 

cases, the theoretical pullout responses predicted by the Gopalaratnam and Shah model [56] were 

very similar. Commenting on the influence of fiber modulus, they pointed out that for fibers 

with lower E f / E m ratios, the effect of elastic shear stresses on pullout response would be even 

less. They concluded that for most cases, the pullout analysis could be simplified by neglecting 

the elastic stress field existing at the fiber-matrix interface. 

Further, they developed a model to predict the pullout load versus displacement response of 

polymeric fibers. For modeling purposes, they assumed a linear elastic constitutive behavior for 

both polymeric materials studied (nylon and polypropylene). Also, the effect of Poisson's 

contraction of the fiber, and the effect of the elastic shear stress field were ignored. In the 

pullout curves reported by the authors, the fiber pullout load increased with the pullout distance. 

They attributed this increase to an increase in interfacial frictional shear stresses while the fiber 

pulled out from the matrix. They pointed out that this increase in frictional shear stresses was 
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due the wear of the fiber surface during the fiber pullout process. Based on this observation they 

developed a model to predict the pullout response, which took into account the variation of the 

interfacial frictional bond strength as a function of fiber pullout distance. They assumed the 

frictional bond strength t(s), to be a quadratic function of the slippage distance, s, 

r(s) = a0+a]s + a2s2 2.31 

where a0, au and a2 are constants, determined empirically such that the theoretical pullout curves 

match the experimental curves. However, they also pointed out that an alternative expression 

based on the theory for fiber-cement friction and wear would be more desirable to represent the 

%-s relationship. 

2.3 Experimental Studies on the Fiber Pullout Behavior 
Interfacial bond defined as the shearing stress at the interface between the fiber and the 

surrounding matrix allows transfer of stress between the two materials. As discussed in the 

previous section, the fiber-matrix interface has been modeled and studied extensively because of 

its important role in composite materials. It is well accepted that the contribution of fiber in 

increasing the toughness of a composite is primarily governed by the energy dissipation 

mechanisms associated with the pullout of fibers from the matrix. Because of the importance of 

the interfacial properties on the overall composite response, various researchers [110-153] have 

put considerable effort into the investigation of interfacial properties via single fiber pullout tests. 

Fiber pullout tests are also routinely carried out in other fiber reinforced composites, such as 

fiber reinforced ceramics [169-177] and fiber reinforced metals [8,178,179]. In addition, 

because of the dependence of micromechanical properties on the interfacial microstructure, 

considerable effort has also been put toward the microstructural investigation of cementitious 

interfaces [160-168]. A brief review of some important experimental fiber pullout studies 

follows. 

Gopalaratnam and Abu-Mathkour [125] investigated the influence of fiber embedded length, 

fiber diameter and matrix quality on the pullout behavior of steel fibers. They concluded that the 

average bond strength was inversely related to the embedded length and that the average bond 

strength increased with an increase in fiber diameter. Additionally, they found that the peak 

pullout load did not increase with an increase in the matrix compressive strength. Based on this 
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result they concluded that the frictional bond strength might be unrelated to the matrix 

compressive strength. Similarly, Gray and Johnston [107] also found no correlation to exist 

between the matrix compressive strength and the average interfacial bond strength for the case of 

straight fibers. 

Investigating the pullout response of deformed and straight fibers, Naaman and Najm [123] 

found that for deformed fibers the load increased with matrix strength even beyond the peak 

pullout load, i.e., in the descending branch, while for smooth fibers the increase was mostly 

noticeable in the ascending branch. Thus, they concluded that as the matrix strength increases, 

the bond between the fiber and matrix also increases; however, the debonding rate following the 

peak load is greater for high strength matrices. They also investigated the influence of various 

mineral admixtures: micro-silica, fly ash, and latex. They found that micro-silica did not 

improve the interfacial bond strength. On the other hand, small improvements were obtained 

with the addition of fly ash. Similarly, addition of latex led to a significant increase in the peak 

pullout load but had no effect on the post-peak response, suggesting that addition of latex 

increased the adhesional bond strength but had no effect on the frictional bond strength. Larson 

and Bayasi [139] also reported that bond strength drastically increased with the addition of latex. 

Banthia [131] found that addition of silica fume improved the adhesional bond strength but at the 

same time made the matrix more brittle. Also, pullout resistance was found to be better at 

subzero temperatures (-55°C) in comparison to that at normal temperature (22°C). It was also 

found that the mortar matrices offered a greater resistance to fiber pullout in comparison to 

cement paste. It was suggested that the sand particles possibly act as tiny crack arresters 

(blunting and deflecting crack) in the vicinity of the fiber and help arrest debonding of the 

interfacial crack. Influence of curing temperature on the pullout response was also studied in this 

investigation. 

Pinchin and Tabor [141,146-147] reported that compaction of the concrete surrounding a fiber 

enhanced the frictional bond, and that the pullout load increased almost linearly with increase in 

confining pressure. They also reported that pullout load was proportional to the fiber-matrix 

misfit, defining misfit as the difference between the radius of the wire and that of the hole in the 

matrix in the absence of the wire. Similar conclusions have been made recently by Geng and 

Leung [120]. In an earlier study, Geng and Leung [119] found that the post-peak pullout 

response displayed different trends for fibers with different materials. For instance, for steel 
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fibers the post-peak load decreased rapidly, for polypropylene fibers the post-peak load 

decreased slowly and for nylon fibers the post-peak pullout load increased with the sliding 

distance. Wang et al. [115,116] observed that synthetic fibers like polypropylene and nylon are 

easily abraded by cement particles during the process of pullout. The severity of surface 

abrasion of fiber was found to increase with increase in fiber slip and it was accompanied with 

an increase in the apparent fiber/matrix bond strength. 

Gokoz and Naaman [145] reported that the peak pullout load, which is indicative of the elastic 

bond on the interface, was not sensitive to strain-rate. Banthia and Trottier [127] and Banthia et 

al. [134] also investigated strain rate sensitivity of bond for straight and deformed fibers. They 

found that pullout performance for deformed fibers was sensitive to the rate of loading. On the 

other hand, for straight fibers no definite conclusion could be made with regard to the strain rate 

sensitivity of the interfacial bond. In particular, for deformed fibers they found that both the 

peak pullout load and the pullout energies increased with an increase in the rate of loading. They 

concluded that since steel, cementitious matrices and the fiber-matrix interface all have 

properties dependent upon the rate of loading, the capability of the fiber to resist pullout largely 

depends upon the rate at which fiber pullout occurs. In addition, in these studies, cement paste 

matrices were found to be less sensitive to loading rate in comparison to the mortar matrices. 

Pacios et al. [138] also investigated the influence of rate of loading on interfacial response 

between fibers and cementitious matrices. They found that both pullout load and slip increased 

with increase in the rate of loading. 

Naaman and Shah [142] found that the efficiency of bond in the case of pullout of an inclined 

steel fiber (with respect to loading axis) was at least as good as that of fibers aligned parallel to 

the loading direction. Ouyang el al. [86] also found that pullout resistance of inclined fibers was 

generally greater than that of aligned fibers. The maximum inclination of fiber with respect of 

loading axis investigated in this study was 37°. On the other hand, Banthia and Trottier [127] 

investigated a wider range of fiber inclination (0° - 60°) and concluded otherwise, stating that the 

bond efficiency of aligned fibers was greatest, and increasing inclinations of fiber with respect to 

the loading axis reduced the efficiency of interfacial bond. Maage [140,144] also investigated 

the influence of fiber inclination and reported that the bond efficiency increased to a maximum 

and then decreased as the angle between the fiber and the loading direction increased. 
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Gray and Johnston [107] found that the bond strength depended on the direction of casting, 

concluding that vertically cast specimens developed a higher interfacial bond strength than 

horizontally cast specimens. Additionally they found that an increase in the sand-cement ratio in 

the mortar matrix led to a decrease in interfacial bond for the vertically cast specimens and an 

increase in bond for the horizontally cast specimens. Burakiewicz [143], on the other hand, 

reported otherwise, stating that the bond strength was virtually insensitive to vibration and fiber 

orientation during setting and hardening of the matrix. 

Shao et al. [154] studied the processes of matrix cracking and fiber-matrix interfacial debonding 

using high-sensitivity Moire interferometry techniques. The initiation and propagation of 

cracking and interfacial debonding were observed during uniaxial tension tests, and fiber stress, 

interfacial slip, interfacial shear stress, and the matrix strain distribution were calculated from the 

experimental information. Based on the experimental study, they questioned the validity of the 

fiber-matrix interfacial shear stress versus slip constitutive relationships assumed in several fiber 

pullout models [60-63]. 

Kawamura and Igarashi [149] carried out a fluorescence microscopic study of the interfacial 

zone between steel fibers and cementitious matrices subjected to pullout load. They reported 

that progressive debonding of the interface originated from the point where the fiber entered the 

matrix, as predicted by shear-lag theory based analytical pullout models. A similar conclusion 

was made by L i et al. [81,82], based on the fluorescence optical microscopic investigation 

carried out on uniaxial tensile specimens. Kawamura and Igarashi [149] also found silica fume 

modified cementitious matrices to be less tough in comparison to the matrices without silica 

fume. Further, they reported that during the propagation of interfacial cracks, local failures 

around a fiber in the silica fume matrices were limited to smaller regions around the interface 

because of the presence of denser and more homogeneous bulk phases in the matrix; on the other 

hand, the toughening mechanisms of non-silica fume matrices were responsible for deflection 

and branching of cracks due to unhydrated cement particles and Ca(OFf)2 crystals. In an another 

study, Kawamura and Igarashi [151] reported that the maximum pullout load increased with 

increasing silica fume content (20% replacement) but the drop in load immediately after the 

maximum load was considerably small. Also, the total work of pullout was considerably greater 

with the silica fume matrix and authors attributed this to the increase in frictional resistance 

along the debonded surfaces due to the addition of silica fume. In this study authors also found 

that the values of microhardness (measured using the ultramicrohardness tester with Vickers 
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indenter - minimum load=0.1gm) in the bulk cement paste matrix as well as in the interfacial 

transition zone were increased by the addition of silica fume. 

2.4 Mechanical Behavior of Fiber Reinforced Cementitious Composites 

Especially since the pioneering work of Romualdi and Batson [180] on steel fiber reinforced 

concrete, extensive research into the mechanical properties of fiber reinforced cementitious 

composites has taken place [1-3, 181-184]. Moreover, in recent years, several advancements 

have been made with regard to matrix, fibers, interfaces and the composite production process. 

Some examples include [182]: i.) the commercial introduction of a new generation of additives 

such as superplasticizers that allow high matrix strengths to be readily achieved with little loss in 

workability; ii.) the increasing use of active or inactive micro-fillers such as silica fume and fly 

ash and a better understanding of their effect on matrix porosity, strength, and durability; iii.) the 

increasing availability for use in concrete of fibers of different types and properties which can 

add significantly to the strength, ductility, and toughness of the resulting composite; iv.) the use 

of polymer addition or impregnation of concrete which adds to its strength and durability but 

also enhances the bond between fibers and matrix thus increasing the efficiency of fiber 

reinforcement; and, v.) innovations in production processes to achieve uniform mixing of high 

volume fiber fractions with reduced effects on the matrix porosity. 

In general, the parameters governing the behavior of fiber reinforced cementitious composites 

can be classified under three categories. The first category consists of the parameters related to 

the fibers, such as elastic modulus, tensile strength, ductility, length, diameter, and volume 

fraction. The second category consists of the parameters related to the matrix such as fracture 

toughness, elastic modulus, ultimate tensile strength, ultimate tensile strain, and initial flaw size. 

Finally, the third category consists of the micromechanical parameters related to fiber-matrix 

interface, such as interfacial bond strength. Traditionally, research on fiber reinforced concrete 

has focused on studying the dependence of composite behavior on one or two of the 

aforementioned properties at a time. Typically, these properties have been fiber volume fraction 

and fiber aspect ratio. Thus, it is important to recognize that fiber volume fraction, for instance, 

is only one of an array of parameters under our control when designing fiber reinforced 

cementitious composites. For this reason it is not sufficient to understand the individual 

influence of each parameter on composite properties. Composite optimization requires 
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establishing the combined influence of all relevant parameters on composite properties. Through 

composite optimization, composites with tailored properties can be produced with only moderate 

volume fraction of fibers. In this regard, development of high-performance cementitious 

composites, (i.e., composites with an optimized combination of properties, such as quasi-strain 

hardening behavior, multiple cracking, strength, toughness, energy absorption, stiffness, 

durability, and corrosion resistance) require an understanding of the fundamental 

micromechanisms controlling the composite behavior. 

Strain 

AB - multiple cracking 

BC - softening response 

Strain 

Figure 2.4.1: Stress-strain response for a fiber reinforced cementitious composite showing strain hardening response 

Figure 2.4.1 shows the stress-strain response in tension for a fiber reinforced cementitious 

composite exhibiting multiple cracking. The overall tensile response can be divided into three 

regions. First, the initial linear region up to the Bend-Over-Point (BOP) represents the elastic 

loading of the composite (i.e., the region OA). Beyond this region, multiple cracking of the 

matrix takes place, and the stress-strain curve rises in a non-linear fashion showing a quasi-strain 

hardening response (i.e., the region AB). Finally, at the end of multiple cracking, strain 

localization takes place and the stress-strain curve shows a softening response (i.e, region BC). 

The extent of these stages depends on the properties of the fiber, matrix and interface. So far, 

considerable research efforts have been put into modeling the tensile behavior of fiber reinforced 

composites [185-214]. However, as Shah and Ouyang [105] have pointed out, despite the 

extensive modeling efforts, the phenomenon of crack propagation in fiber reinforced cement 
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based matrices still remains poorly understood. A brief review of literature describing the 

conditions leading to quasi strain hardening and multiple cracking behavior is presented below. 

These solutions generally identify a number of controlling parameters, such as fiber reinforcing 

parameters, the interfacial fiber-matrix bond, critical fiber volume that lead to quasi strain 

hardening and multiple cracking. 

Aveston et al. [185] proposed an analytical model to predict the conditions required to obtain 

multiple matrix cracking and crack spacing in the event of multiple cracking. This model is 

commonly known as the A C K model. The authors suggested that if one of the two constituents 

(fiber or matrix) of a fibrous composite breaks at a much lower elongation than the other, then 

provided the non-broken constituent is able to bear the load, a tensile specimen will show 

continued or multiple fracture of the more brittle phase until the specimen finally breaks when 

the ultimate strength of the stronger phase is reached. The above statement suggests that if the 

breaking strain of the matrix is less than that of the fiber then the matrix will be successively 

fractured into shorter lengths by a process of multiple fracture, until the fiber attains its failure 

strain. Likewise, if the breaking strain of the fiber is less than that of the matrix, then the fiber 

will be successively fractured into shorter lengths by a process of multiple fracture, until the 

matrix attains its failure strain. The condition for multiple cracking of matrix was derived as: 

where Ofu and amu are fiber and matrix strength, respectively, a'f is the fiber stress required to 

produce a strain equal to the breaking matrix strain, and Vy and Vm are volume fractions of fibers 

and matrix, respectively. The right hand side of the above equation represents the composite 

stress at the instant matrix attains failure strain. Thus, the above equation suggests that the fibers 

are able to sustain the additional load thrown upon them when the matrix fails. The minimum 

fiber volume fraction required to achieve multiple cracking (i.e., critical fiber volume fraction) 

can be obtained by using the equality expressed in the above equation. Furthermore, assuming a 

linear distribution of shear stress in the debonded zone, authors calculated the crack spacing x' 

as: 

2.32 

x = 2.33 
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where amu is the matrix fracture stress, r is the fiber radius, and r i s the average fiber-matrix 

interfacial bond strength. By assuming that the crack spacing at the beginning of multiple 

cracking is 2x', (i.e., sliding occurs along the entire fiber-matrix interface), authors derived the 

solution for failure strain of matrix, em Mfrom the energy balance as: 

^ mu 

, - i l /3 
\2vtmEsV) 

EcE2

mrVm 

2.34 

where ym is the fracture surface work in forming a crack in matrix, Ec is the elastic modulus of 

composite, Em is the elastic modulus of the matrix. 

Budiansky et al. [186] generalized the A C K model to include the three types of fiber interface 

conditions: perfectly bonded fibers, debonded sliding fibers and unbonded, sliding fibers. This 

model is commonly known as the B H E model. Authors obtained distributions of stress and 

strain in the fiber and matrix based on shear lag analysis. The strain energy release rate of 

composites was calculated from the obtained stress distributions, and the multiple cracking 

response was predicted from the energy balance, which equated the strain energy release rate of 

composites to the sum of energies resulting from debonding and sliding, and the matrix surface 

energy. For a perfectly bonded fiber, the B H E model predicts the composite stress, oCf, for 

multiple cracking as: 

C T . lVfEfGmcp 

rE E 
y m c 

2.35 

where 

1 
P=7T 

3 l l /2 
2K, 6E 

Vm |_-61og(y / ) -3V 1 . (3-V / ) Ef(l + vm) 

where v m is Poisson's ratio of the matrix, Gmc is the fracture resistance of matrix, Ef, Em and Ec 

are the elastic modulus of fiber, matrix and composite, respectively, and Vf and Vm are the 

volume fraction of fiber and matrix, respectively. 

Naaman [187] proposed a solution based on the mechanics of composite materials for predicting 

conditions required for achieving multiple cracking of matrix. Assuming a three dimensional 

fiber distribution, he derived equations for predicting the first cracking stress, occ, and the 
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maximum post-cracking stress (or bridging stress), apc. The composite tensile stress at first 

cracking of matrix was derived as: 

o"cc = cmu(l-Vf) + ala2W/Ud 2.36 

where 

Vf = volume fraction of fibers 

L = fiber length 

d = fiber diameter 

cmu = matrix tensile strength 

x = average bond strength at the fiber matrix interface 

a,i = coefficient representing the fraction of bond mobilized at first matrix cracking 

a 2 = efficiency factor of fiber orientation in the uncracked state of the composite 

The maximum post cracking stress, apc, was derived assuming that a critical crack exists across 

the entire section of the tensile member, the crack is normal to the tensile stress field, and the 

contribution of the matrix is negligible. Thus, the maximum post cracking stress, opc was 

derived as: 

Gpc=\X2XixVfLld 2.37 

where 

Xi = expected pullout length ratio (equal to 1/4 from probability considerations) 

X2 = efficiency factor of orientation in the cracked state 

X3 = group efficiency factor associated with the number of fibers pulling out per unit area 

For multiple cracking to Occur, the maximum post-cracking stress must be larger than the first 

cracking stress, i.e.: 

Combining Equations 2.36-38, the minimum fiber volume required to guarantee multiple 

cracking (i.e., critical fiber volume, VfCrit) was obtained as: 

V = - 2 39 
Vf,cril T L 

1 + — — ( h K K - t t & i ) 

34 



The above equation depicts that the fiber aspect ratio and the ratio of fiber-matrix interfacial 

bond strength and matrix tensile strength are influential parameters in controlling the fiber 

volume fraction required for multiple cracking to occur. Parametric studies conducted using the 

above equation depict that a higher fiber aspect ratio and a lower interfacial bond strength to 

matrix tensile strength ratio lead to reduction in critical fiber volume. 

Vf • = 2 40 

L i and Wu [188] assumed a random fiber orientation and used the fracture mechanics based J-

integral approach (originally proposed by Marshall and Cox [202]) to derive the condition 

leading to multiple cracking and quasi-strain hardening. They derived the critical fiber volume 

fractions as: 

gr(Lf/df )8a 

where Jc is the composite crack tip toughness, which may be related to the matrix fracture 

toughness, Km, as suggested in Reference [195]. Lf and df are fiber length and diameter, 

respectively. The snubbing factor, g, and interfacial frictional bond strength, T, are the 

parameters describing the interaction between fiber and matrix. The snubbing factor accounts 

for the variation in bridging force across a matrix crack when a fiber is pulled out at an inclined 

angle. And, finally, 8Q in the above equation represents the crack opening at which the fiber 

bridging stress reaches a maximum, a0, and is given by: 

* ~ f 2.41 
~° Efdf(l+ri) 

where n = (VfEf)/(VmEm), and Vf and Ef are the fiber volume fraction and fiber elastic modulus, 

respectively, and Vm and Em are the matrix volume fraction and matrix elastic modulus, 

respectively. 

For a pseudo strain hardening material, the ultimate strength of the composite, acu coincides with 

the maximum bridging stress, o~0, given by: 

" cu 2 6 / 
( T ^ 

ZL 2.42 

From the viewpoint of composite design, Equation 2.40 is significant, since it provides 

guidelines to tailor the micromechanical parameters for strain hardening materials such that VfiCrit 
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is minimized. In an another article, L i [196] has recommended the following with regard to the 

tailoring of micromechancial parameters: 

Matrix Toughness Tailoring: With a decrease in matrix toughness, Jc, smaller amount of 

fibers is needed to make the transition from the quasi-brittle failure mode to the strain-

hardening failure mode. From the viewpoint of matrix design, in order to tailor the matrix 

toughness, adjustments can be made to the water/cement ratio, size and type of aggregates, 

and microfillers such as silica fume. 

Interfacial Bond Tailoring: Enhancing the interfacial frictional bond, T, while still 

ensuring that fiber fracture does not occur, would assist in lowering the amount of fibers 

required to achieve multiple cracking. The ductility of fiber reinforced cementitious 

composites is associated with the inelastic strain generated as a consequence of multiple 

cracking. Moreover, the composite inelastic strain is a function of the multiple crack 

density and crack opening. The multiple crack density can be expected to increase with the 

interfacial bond strength, T, which controls the stress transfer from the bridging fiber into 

the matrix material. To improve the interfacial bond strength, several methods can be 

employed, such as fiber surface modification, fiber deformation, and transition zone 

modification. 

Fiber Length Tailoring: Equation 2.40 depicts that the critical fiber volume fraction, VfCri,, 

is inversely proportional to L , 3 (since S0 is proportional to Lf), suggesting that fibers with 

long lengths are preferable. However, difficulty in processing places a limitation on the 

choice of fiber length. 

In addition to the models discussed above, several other micromechanical models have been 

proposed for predicting cracking behavior in fiber reinforced cementitious composites (including 

the ones by Leung and L i [190,191], Tjiptobroto and Hansen [200,201], Cox and Evans 

[203,204], Nemat-Nasser and Hori [205], Marshall, Mai [206], Mori and Mura [207], Yang et al. 

[208], Hillerborg, Modeer and Peterson [209], Foote, Mai and Cotterell [212], Jenq and Shah 

[213] and Ouyang, Mobasher and Shah [214]). 
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Chapter 3 

Macromechanical Behavior of Fiber Reinforced Concrete (FRC) & 
Measurement of Flexural Response of Low Toughness FRC 

3.0 Introduction 

Cementitious materials have low strain capacity and ductility. The tensile strain capacity and 

energy absorption capability (i.e., ductility) of these materials can be dramatically improved by 

inclusion of fibers in the matrix. The extent of improvement obtained due to the addition of 

fibers depends on the mechanical properties of the fiber and the matrix, and on the nature of 

interaction between the two. Optimal design of fiber reinforced concretes can be accomplished 

only when the influence of various material variables on the macromechanical behavior of fiber 

reinforced concrete composite is properly understood. Therefore, one objective of this research 

is to experimentally investigate influence of various important material variables on the post-

cracking response in flexure and the ensuing toughness of fiber reinforced concretes. 

Measured flexural response of fiber reinforced concretes is also influenced by the various test 

variables [41,42]. One such test variable is stiffness of testing machine. The present A S T M 

standard (ASTM C1018 [4]) and the JSCE standard (JSCE-SF4 [5]) for evaluating flexural 

response and toughness of fiber reinforced concretes are appropriate only for fiber reinforced 

concretes with high toughness [6]. For low toughness fiber reinforced concretes, the measured 

flexural response based on the aforementioned standards has been found to grossly depend upon 

the relative stiffness of testing machine [6]. Thus, another major objective of this research is to 

address the issue of rationally measuring the true flexural response of fiber reinforced concretes 

with low toughness. A S T M has recently accepted a new test method [7] as a test standard for 

measurement of flexural performance of fiber reinforced concretes. This method is referred as 

the Residual Strength Test Method in this chapter. Validity of this method is explored as a part 

of this research program and the results are reported in this chapter. 
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3.1 Material Variables Influencing Macromechanical Behavior and Toughness of FRC 

This section investigates the influence of various material variables on the macromechanical 

behavior and toughness of FRC. Important material variables investigated include properties of 

matrix, volume content of fibers, fiber geometry, fiber aspect ratio, surface properties of fibers, 

and shrinkage properties of matrix. 

Materials and Mixes 

The materials and the mixes used in this investigation are given below in Table 3.1.1. CSA Type 

10 normal Portland cement was used. Clean river sand with a fineness modulus of 2.3 was used 

as the fine aggregate, and pea gravel with a maximum size of 10 mm was used as the coarse 

aggregate. A l l mixes contained air-entraining agent at a dosage of 0.1 ml/kg of cement. For a 

few other mixes, different mix proportions were used and those will be indicated at appropriate 

locations in this section. Geometry and mechanical properties of fibers used in this investigation 

are given in the Table 3.1.2. 

Table 3.1.1: Mix Proportions 

Cement Water Sand Aggregate Air Entraining 
(10 mm) Agent 

(kg) (kg) (kg) (kg) (ml/kg of cement) 

400 200 800 1000 0.1 

Table 3.1.2: Description of fibers investigated 

Fiber Material Geometry Cross- Length Diameter 

sectional 
shape (mm) (mm) (MPa) (GPa) 

STL-STR Stainless Steel Straight Circular 40 0.76 1100 210 
PP-STR1 Polypropylene Straight Oval 40 0.63 450 3.5 
PP-STR2 Polypropylene Straight Oval 38 0.19 450 3.5 

PVA-1 PVA* Straight Oval 29 0.42 1100 23 

ST-HKD Steel Hooked-end Circular 35 0.55 1115 210 

ST-HKD2 Steel Hooked-end Circular 30 0.50 1115 210 

ST-CR1 Steel Crimped* Crescent 38 2.0 x 0.35 1037 210 

* PVA - Polyvinyl Alcohol; * Crimp amplitude=lmm and Wave length=7.5mm; 
- Tensile strength of fiber; Ef- Elastic Modulus of fiber 

Specimens and Test Methods 

Cylinders for compressive strength test: Cylindrical specimen 200 mm long and 100 mm in 

diameter were used to test the compressive strength of FRC and plain concrete mixes. Cylinders 
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were tested in compression in a 1000 kN compression testing machine as per A S T M C 39 at 7 

and 28 days. 

Beams for flexural toughness test: Beam specimens conforming to the dimensions recommended 

in A S T M C1018 - (100 mm x 100 mm x 350 mm) were used for flexural testing of FRC and 

plain concrete mixes. A pan type concrete mixer (capacity: 0.18 m3) was used for mixing the 

concrete and the procedure outlined in A S T M C192 "Method of Making and Curing Concrete 

Specimens in the Laboratory" [215] was followed. A l l coarse aggregate and some of the mixing 

water were first mixed, followed by the addition of fine aggregate, cement, water, pozzolanic 

admixture in slurry form (when included), air entraining agent and fibers. 

Figure 3.1.1: Test setup for flexural toughness test according to ASTM C 1018 [4] 

For flexural tests, a 150-kN capacity floor mounted, Instron electro-mechanical testing machine 

was used. A l l operations were controlled by a microprocessor based central processing unit. 

Two LVDTs mounted on a Japanese Yoke, shown in Figure 3.1.1, recorded the net deflection of 

the beam at the mid-span. With the use of a Japanese Yoke, extraneous deflections resulting 

from settlement of supports, crushing at load points, and load-fixture deformations are eliminated 

and only the true deflections are recorded [42,44]. The load was applied at a constant cross-head 

displacement rate of O.lmm/min. A PC-based data acquisition system was used to digitally 

record loads and displacements at a frequency of 10 Hz. The output signals from the testing 

machine and LVDTs were acquired by a computer-based high-speed data acquisition system. 

The data acquisition system comprised a PC-486 computer, a 16 channel A / D conversion board, 
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and a 16 1/0 channel A C and DC conditioner unit in which each channel was equipped with 

amplifiers with gains of up to 1000. The maximum sampling rate of this data acquisition system 

is 10 million points per second, i.e., 1 MHz. The software package used for acquiring data was 

"Quicklog" by Strawberry Inc. The resulting load versus mid-span deflection plots were 

analyzed for JSCE flexural toughness parameters [5]. The test procedure described above is also 

referred as the Open-loop Test Method (OLTM) in this thesis. 

3.1.1 Mineral Admixtures 

Constituents of the binder have a significant influence on the chemistry and microstructure of the 

matrix in the interfacial regions. Both chemistry and microstructure of matrix are modified to a 

considerable extent when a portion of cement is replaced by a mineral admixture such as 

pozzolan. For example, a silica fume modified matrix gives rise to a very densified 

microstructure at the fiber-matrix interface [105]. It can be expected that the post-cracking 

response of FRC would be affected as a consequence of the modified interfacial properties 

brought about by the inclusion of pozzolans. The objective of the following studies was to 

investigate the influence of matrix modification by pozzolans on the post-cracking response of 

FRC. 

Influence of Matrix Modification by Silica Fume Pozzolan 

The influence of pozzolanic modification of the matrix on the post-cracking response of fiber 

reinforced concrete was investigated. Pozzolan-silica fume was chosen for this purpose; 

properties of the silica fume used are given in Table 3.1.3. The two mixes investigated contained 

straight-smooth, stainless steel fibers at a volume fraction of 0.76%. The mix proportion used 

was - water : binder : sand : aggregate = 0.35 : 1.00 : 1.50 : 1.75. The control mix did not 

contain silica fume and the silica fume mix contained silica fume at a dosage of 10% by weight 

of binder as shown in Table 3.1.4. The twenty-eight day compressive strength for the control 

mix was approximately about 69 MPa and that for the silica fume mix was about 71 MPa. 
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Table 3.1.3: Properties of Pozzolans 

Property Silica fume High-Reactivity 
Metakaoline 

Average Particle size, fl m 0.1 1.5 

Reactive Component Si0 2 SiOi+AlzOj+FejOj 
(minimum percent by mass) (97%) (95%) 

Specific Gravity 2.2 2.5 

Five beams were tested for each mix. The average flexural responses for these mixes are 

compared in Figure 3.1.2. It can be noticed that the post-peak flexural response in the case of 

mix containing silica fume was relatively inferior in comparison to the mix without silica fume. 

JSCE toughness parameters [5], namely, "Absolute Toughness (7jC I)" and "Flexural Toughness 

Factor (Ob)" were calculated from the average flexural response. The Absolute Toughness, T J C I is 

defined as the area under the load-deflection curve to a deflection of span/150. The Flexural 

Toughness Factor, ob, (a measure of the equivalent flexural strength) is defined as: 

where S is beam span, w is beam width, d is beam depth, and 8150 is 5/150. The calculated JSCE 

toughness parameters are given in Table 3.1.4. Apparently, the observed disparity in the flexural 

performance in the two cases is related to the micromechanics of fiber-matrix interface. The 

influence of matrix modification by mineral admixtures on fiber pullout response is a subject of 

investigation in Chapter 4. 
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Figure 3.1.2: Comparison of flexural load versus deflection response for fiber reinforced concrete mixes with and 

without silica fume and containing straight-smooth, stainless steel fiber at a dosage of 0.76% 

Table 3.1.4: JSCE Absolute Toughness and Flexural Toughness Factor - Influence of Pozzolan 

Fiber Id. Fiber 
Description 

Binder Type 

(% weight) 

Fiber 
Volume 

(%) 

MOR 

(MPa) 

Absolute 
Toughness, 

TJCI 

(N-m) 

Flexural 
Toughness 
Factor, Oi, 

(MPa) 

STL-STR Straight-smooth, 
stainless steel 

100% CSA Type 
10NPC* 0.76 

5.51 

(0.51)@ 

14.9 

(1.28) 

2.25 

(0.19) 

SRL-STR Straight-smooth, 
stainless steel 

90% CSA Type 
10 NPC + 10% 

Silica fume 
0.76 

5.46 

(0.54) 

12.5 

(0.90) 

1.88 

(0.14) 

NPC - Normal Portland Cement; - Figures in brackets indicate standard deviations 

Influence of Pozzolan Type 

While the addition of pozzolans densifies the matrix microstructure, it also increases the 

brittleness of matrix. Increased matrix brittleness is of particular concern when deformed fibers 

are involved. Increased matrix brittleness can cause crushing and splitting of the matrix and in 

turn, curtail the ability of fibers to transfer stresses during pullout, thus reducing the overall 

toughness. In addition to the water/binder ratio, one may anticipate that the type, chemical 

reactivity, and particle size of the pozzolan used will have a decisive effect on the brittleness of 

the matrix and on the fiber-matrix bond. The objective of this investigation was to study the 

influence of various matrix modifications on the flexural toughness performance of steel fiber 

reinforced concrete. Two types of pozzolanic admixtures were investigated, namely, 

i . silica fume, and 

i i . high-reactivity metakaolin (HRM) 
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High-reactivity metakaolin (HRM) is produced by calcining purified kaoline clay in the 

temperature range of 700 to 800°C. H R M is a poorly crystallized white powder with a high 

pozzolanic reactivity, which earns it the name super-pozzolan. It comprises nearly 95% of 

(Si0 2+Fe 203+Al20 3) and has elongated particles about l/Jrn in size on average. Physical 

characteristics and chemical properties of silica fume and H R M investigated are given in Table 

3.1.3. 

Mix CF (control mix) contained only CSA Type 10 (ASTM Type I) cement as the cementing 

material. The mix proportion (by weight) for the control mix was:' water : cement : fine 

aggregate : coarse aggregate = 0.35 : 1.0 : 1.5 : 2.25. In Mix SF, on the other hand, 10% of 

cement was replaced by an equal quantity of silica fume, and in Mix M F , 10% of cement was 

replaced by an equal quantity of high-reactivity metakaolin. Finally in Mix SMF, a combination 

of 5% silica fume and 5% high-reactivity metakaolin replaced 10% of cement. In all the mixes, 

hooked-end steel fibers, 30 mm long and 0.5 mm in diameter were added at 1% by volume. 
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Figure 3.1.3: Comparison of flexural load versus deflection response for fiber reinforced concrete mixes different 

types of pozzolans 

Representative load versus mid-span deflection plots for the various steel fiber reinforced 

concrete mixes are given in Figure 3.1.3. It can be observed that the post-peak performance of 

fiber reinforced concrete with H R M was superior to other composites. Silica fume concrete 

(Mix SF) exhibited a relatively brittle behavior with a steeper drop in load beyond peak. The 

load-deflection performance of the control, non-pozzolan concrete (Mix CF) and the hybrid-

pozzolan concrete (Mix SMF) was between that of concretes with H R M (Mix MF) and silica 

fume (Mix SF). As expected, at a high fiber volume fraction of 1% used in this investigation, 
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some pseudo-strain hardening occurred in the post-peak region for all composites. JSCE 

toughness parameters, shown in Table 3.1.5, also depict the superior performance of concrete 

containing H R M . Lower JSCE numbers for silica fume concrete (mix SF) are directly related to 

the relatively steeper drop in the load that occurred after peak, indicating a greater rate of 

softening and damage in these composites. Visually, one could notice that the silica fume matrix 

had cracked more extensively, and fibers as a result could not develop adequate mechanical 

anchorage with the matrix. These fibers then pulled out with minimal straightening of the hooks 

and absorbed much less energy. For fibers in concrete with high-reactivity metakaolin, on the 

other hand, the ends had been straightened for a greater number of fibers signifying an increased 

absorption of energy. 

Table 3.1.5: JSCE Absolute Toughness and Flexural Toughness Factor - Influence of Pozzolan Type 

Mix Id, Fiber 
Description 

Binder Type 

(% weight) 

Fiber 
Volume 

(%) 

MOR # 

(MPa) 

Absolute 
Toughness, 

TJCI 

(N-m) 

Flexural . 
Toughness 
Factor, Ob 

(MPa) 

CF Hooked end steel 
ST-HKD 100% Cement 1.0 7.19 

(0.53)@ 

39.20 
(3.8) 

5.88 
(0.44) 

SF Hooked end steel 
ST-HKD 

90% Cement 
+ 10% Silica fume 1.0 8.37 

(0.30) 
32.0 

(3.36) 
4.80 
(0.50) 

MF Hooked end steel 
ST-HKD 

90% Cement 
+ 10% HRM 1.0 8.39 

(0.82) 
41.4 
(3.24) 

6.40 
(0.49) 

SMF Hooked end steel 
ST-HKD 

90% Cement 
+ 5% Silica fume 
+ 5% HRM 

1.0 8.39 
(0.32) 

36.8 
(4.30) 

5.81 
(0,45) 

* - MOR - Modulus of Rupture; @ - Figures in brackets indicate standard deviation 

3.1.2 Fiber Volume Content 

To investigate the influence of fiber volume content, three types of fibers were chosen. Fiber 

types and the corresponding fiber volumes investigated were, 

i . Straight-smooth, stainless steel fiber, STL-STR - V f = 0.76% and 5.0% 

ii . straight, smooth polypropylene fiber, PP-STR1 - V f = 1.0% and 5.0% 

ii i . straight polyvinyl alcohol fiber, PVA-1 - V f = 1.0% and 5.0% 
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Figure 3.1.4a: Comparison of flexural load versus deflection response for fiber reinforced concrete mixes -

Influence of fiber volume, V f = 0.76% and 5.0% of straight-smooth, stainless steel fiber (STL-STR1) 

Five beams were tested for each mix. The average flexural responses for the various mixes are 

shown in Figures 3.1.4a, b and c. JSCE Flexural Toughness and Flexural Toughness Factor for 

the various mixes are reported in Table 3.1.6. It can be noticed that the flexural toughness 

increases with increase in fiber volume. Also, both the prepeak and the postpeak response are a 

function of properties of fibers incorporated in the matrix. In specimens reinforced with 5% steel 

and polyvinyl alcohol fibers, considerable multiple cracking of the matrix took place and this 

gave rise to strain hardening response in the prepeak region. On the other hand, for specimens 

reinforced with 5% polypropylene fibers, no multiple cracking of the matrix took place. 

Moreover, the strain hardening response observed in the postpeak region was most likely related 

to the constitutive behavior of polypropylene fibers. 
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Figure 3.1.4b: Comparison of flexural load versus deflection response for fiber reinforced concrete mixes -

Influence of fiber volume, V f = 1.0% and 5.0% of straight, smooth polypropylene fibers (PP-STR1) 
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In the specimens reinforced with steel and polypropylene fibers it was also observed that the 

majority of crack bridging fibers pulled out during crack opening. On the other hand, for 

specimen reinforced with polyvinyl alcohol fibers, the majority of crack bridging fibers fractured 

during pullout, which led to relatively steeper drop in post-crack load. High interfacial 

adhesional bond strength and low transverse shear strength of polyvinyl alcohol fibers could be 

the possible reasons responsible for fracture of fibers. 

Table 3.1.6: JSCE Absolute Toughness and Flexural Toughness Factor - Influence of fiber volume 

Fiber Id. Fiber Description Fiber Volume 

(%) 

MOR 

(MPa) 

Absolute 
Toughness, Tja 

(N-m) 

Flexural 
Toughness 
Factor, oj, 

(MPa) 

. STL-STR Straight-smooth, 
stainless steel 

0.76 

5.0 

5.51 (0.51) 

8.59 (0.73)® 

14.9(1.28) 

42.8(2.87) 

2.25 (0.19) 

6.43 (0.43) 

PP-STR1 Straight, smooth 
polypropylene 

1.0 

5.0 

5.14(0.55) 

5.19(0.65) 

7.41 (0.63) 

32.8 (3.25) 

1.11 (0.09) 

4.91 (0.10) 

PVA-1 Straight polyvinyl 
alcohol 

1.0 

5.0 

6.21 (0.60) 

6.81 (0.86) 

21.5(1.29) 

39.0(1.74) 

3.23(0.19) 

5.85 (0.26) 

- Figures in brackets indicate standard deviations 
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Figure 3.1.4c: Comparison of flexural load versus deflection response for fiber reinforced concrete mixes -

Influence of fiber volume, V f = 1.0% and 5.0% of straight polyvinyl alcohol fibers (PVA-1) 

3.1.3 Fiber Aspect Ratio 
Fiber aspect ratio is defined as the ratio of fiber length to fiber diameter. The influence of fiber 

aspect ratio was investigated by comparing the flexural toughness response of concretes 

reinforced with the following polypropylene fibers, namely: 
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i . straight, smooth polypropylene fiber, PP-STR 1 (L=38 mm, d=0.63 mm, L/d=6Q) 

i i . straight, smooth polypropylene fiber, PP-STR2 (L=38 mm, d=0.19 mm, Z/*=200) 

Both fibers were virgin polypropylene with an elastic modulus of approximately 3.5 GPa. Five 

beams were tested for each mix. The average flexural responses for FRC reinforced with these 

fibers are shown in Figure 3.1.5, and the corresponding JSCE flexural toughness parameters are 

reported in Table 3.1.7. Two features are apparent in the load versus deflection plots: 

A higher fiber aspect ratio led to an increase in total energy absorption. 

Instability was more pronounced in the case of fibers with lower aspect ratio. 
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Figure 3.1.5: Comparison of flexural load versus deflection response for fiber reinforced concrete mixes - Influence 

of fiber aspect ratio, V f = 0.50% of straight, smooth polypropylene fibers (PP-STR 1 and PP-STR2) 

Table 3.1.7: JSCE Absolute Toughness and Flexural Toughness Factor - Influence of fiber aspect ratio 

Fiber Id. Fiber Description Aspect ratio 

1/d 

Fiber 
Volume 

(%) 

MOR 

(MPa) 

Absolute 
Toughness, 

TJCI 

(N-m) 

Flexural 
Toughness 
Factor, oj, 

(MPa) 

PP-STR 1 Straight, smooth 
polypropylene 68 0.50 5.86 (0.83)@ 3.5 (0.34) 0.52 (0.05) 

PP-STR2 Straight, smooth 
polypropylene 200 0.50 5.49 (0.35) 6.88 (0.61) 1.03 (0.09) 

- Figures in brackets indicate standard deviations 

3.1.4 Surface Characteristics of Fiber 

Influence of surface characteristics of fiber on toughness of FRC was.investigated by testing 

concretes reinforced with the following fibers: 
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i . straight-smooth, stainless steel fiber, STL-STR; V f = 0.76% 

ii . grease coated, straight-smooth, stainless steel fiber, STL-STR; V f = 0.76% 

ii i . straight polyvinyl alcohol fiber, PVA-1 ; Vf = 1.0% 

iv. grease coated, straight polyvinyl alcohol fiber, PVA-1 ; Vf= 1.0% 

Five beams were tested for the each mix mentioned above. Figure 3.1.6a compares the average 

flexural response for virgin and grease coated steel fibers (STL-STR). The corresponding JSCE 

toughness parameters are reported in the Table 3.1.8. In the figure, it can be noticed that the 

prepeak response remained practically unaltered as a result of grease coating of steel fibers. On 

the other hand, considerable variation in the postpeak flexural response was seen as a result of 

the grease coating - the postpeak flexural performance of concrete with grease coated steel fibers 

was inferior in comparison to that of concrete with virgin steel fibers. This variation in 

performance is possibly related to the reduction in fiber-matrix interfacial coefficient of friction 

(and hence, reduction in interfacial frictional bond) brought about by the coating of grease. 
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Figure 3.1.6a: Comparison of flexural load versus deflection response for fiber reinforced concrete mixes -

Influence of fiber surface characteristics, Steel fiber - STL-STR @ V f = 0.76% 
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Table 3.1.8: JSCE Absolute Toughness and Flexural Toughness Factor - Influence of fiber surface characteristics 

Fiber Id. Fiber 
Description 

Fiber 
Volume 

(%) 

MOR 

(MPa) 

Absolute 
Toughness, T]a 

(N-m) 

Flexural Toughness 
Factor, oj, 

(MPa) 

STL-STR Straight, 
smooth steel 0.76 5.51 (0.51)® 14.9(1.28) 2.25 (0.19) 

STL-STR Grease coated, 
straight steel 0.76 5.31 (0.43) 10.72 (0.23) 1.61 (0.03) 

PVA-1 Straight, 
smooth PVA 1.00 6.21 (0.60) 21.5 (1.29) 3.23 (0.19) 

PVA-1 Greased coated, 
straight PVA 1.00 5.76 (0.66) 30.31 (1.32) 4.55 (0.20) 

- Figures in brackets indicate standard deviations 

Figure 3.1.6b compares the average flexural response for virgin and grease coated, polyvinyl 

alcohol fibers (PVA-1), and the corresponding JSCE toughness parameters are reported in Table 

3.1.8. In the figure it can be noted that the total energy absorption was superior in the case of 

grease coated polyvinyl alcohol fibers. Visually, it was noticed that in the concrete reinforced 

with virgin polyvinyl alcohol fibers, most fibers had fractured during crack opening. On the 

other hand, in the concrete reinforced with grease coated polyvinyl alcohol fibers, a greater 

number of fibers had pulled out during crack opening. It appears that a high adhesional bond 

between fiber and matrix leads to fracture of virgin fibers, and as a result, energy absorption 

remains low. The coating of grease possibly reduces the adhesional bond between fiber and 

matrix. Consequently, a greater number of fibers are able to pull out, and in this process they 

absorb a greater amount of energy relative to the energy absorbed by the concrete specimen 

reinforced with virgin fibers. 
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Figure 3.1.6b: Comparison of flexural load versus deflection response for fiber reinforced concrete mixes -

Influence of fiber surface characteristics, Polyvinyl alcohol fiber - PVA-1 @ V f = 1.00% 
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From the above experimental investigation it can be concluded that the flexural toughness 

response of fiber reinforced concretes is strongly dependent upon the characteristics of the fiber 

surface. Dependence of micromechanical properties of interface on characteristics of the fiber 

surface will be a subject of investigation in Chapters 4-7. 

3.1.5 Fiber Geometry 
Influence of fiber geometry was investigated by comparing the flexural toughness response of 

concretes reinforced with three different steel fiber types, namely, 

i . Straight-smooth, stainless steel fiber, STL-STL, V f = 0.76% 

ii . hooked-end steel fiber, STL-HKD, V f = 0.76% 

ii i . crimped steel fiber, STL-CR1, V f = 0.76% 

STL-STR 

| / STL-CR1 

1 1 

STL-HKD 

0 1 2 3 4 5 

Deflection (mm) 

Figure 3.1.7: Comparison of flexural load versus deflection response for fiber reinforced concrete mixes - Influence 

of fiber geometry 

Fiber beam specimens were tested for the each case mentioned above. Flexural load versus 

deflection responses for fiber reinforced concretes reinforced these fibers are shown in Figure 

3.1.7, and the corresponding JSCE flexural toughness parameters are reported in Table 3.1.9. 

Comparing the performance of the three fibers, it is clear that for stiff fibers like steel, the 

geometry of the fiber has a considerable influence on flexural toughness response. Concrete 

specimens reinforced with deformed steel fibers absorbed more energy in comparison to those 

reinforced with straight-smooth steel fibers. Also, different fiber geometrical configuration gave 

different degrees of energy absorption. It appears that the main energy absorption mechanism is 

derived from the cold working of steel that takes place when deformed portions of fibers are 
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pulled out. For the crimped fiber, it was noticed that considerable matrix damage took place 

during the process of fiber pullout, and this had an unfavorable influence on the overall energy 

absorption. 

Table 3.1.9: JSCE Absolute Toughness and Flexural Toughness Factor - Influence of fiber geometry 

Fiber Id. Fiber 
Description 

Fiber 
Volume 

(%) 

MOR 

(MPa) 

Absolute 
Toughness, Tja 

(N-m) 

Flexural Toughness 
Factor, Oi, 

(MPa) 

STL-STR Straight, 
smooth steel 0.76 5.51 (0.51)® 14.9(1.28) 2.25 (0.19) 

STL-HKD Hooked-end 
steel 0.76 6.21 (0.56) 34.1 (1.98) 5.11 (0.30) 

STL-CR1 Crimped steel 0.76 5.87 (0.64) 22.7(1.74) 3.41 (0.26) 

- Figures in brackets indicate standard deviations 

3.1.6 Shrinkage Properties of Matrix 
Shrinkage of cementitious matrix largely depends upon the setting, hardening and curing history 

of concrete and upon the properties of the matrix. For a given history of setting, hardening and 

curing, it can be expected that a cementitious matrix containing shrinkage compensating 

admixtures will experience reduced shrinkage. A type of cementitious matrix that falls under 

this category is available commercially under the name 'non-shrink grout'. Below, comparison 

is made for the flexural toughness performance for fiber reinforced concretes with two different 

kinds of matrix, namely: 

i . CSA Type 10 normal Portland cement matrix, and 

i i . Non-shrink grout matrix 
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Figure 3.1.8: Comparison of flexural load versus deflection response for fiber reinforced concrete mixes - Influence 

of shrinkage properties of matrix 

Flexural toughness performance of composites reinforced with straight-smooth, stainless steel 

fibers at Vf=0.76% was investigated. Five beams were tested for each combination of matrix and 

fiber. Figure 3.1.8 compares the average flexural responses of fiber reinforced concretes for the 

two types of matrices investigated. The corresponding results are tabulated in the Table 3.1.10. 

It can be seen that the fiber reinforced concrete specimens with normal Portland cement (CSA 

Type 10) matrix absorbed more energy in comparison to the non-shrink grout matrix. This 

behavior is possibly related to the to the higher fiber pullout resistance offered by the normal 

Portland cement matrix. This aspect is explored from the micromechanical perspective in 

Chapters 4. 

Table 3.1.10: JSCE Absolute Toughness and Flexural Toughness Factor - Influence of matrix shrinkage 

Fiber Id. Fiber 
Description 

Matrix Fiber 
Volume 

MOR Absolute 
Toughness, Tja 

Flexural Toughness 
Factor, Oj, 

(%) (MPa) (N-m) (MPa) 

STL-STR 
Straight, 
smooth 
steel 

CSA Type 10 
Normal Portland 

Cement 

Non-shrink 
Grout 

0.76 

0.76 

5.51 (0.51)® 

5.22 (0.60) 

14.9(1.28) 

9.1 (0.76) 

2.25(0.19) 

1.36(0.11) 

- Figures in brackets indicate standard deviations 
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3.2 Characterization of Flexural Toughness of Fiber Reinforced Concretes 

Toughness is the most important property of any fiber reinforced concrete. One variable that 

significantly influences the measured toughness of FRC is the stiffness of testing 

machine/loading system on which the test is performed. When a loading system applies a load 

on a test specimen, there is a reactive force on the loading system itself, and due to this reactive 

force, the loading system deforms and stores energy. The extent of energy built up in the loading 

system depends upon its stiffness - the softer the testing system, the greater the energy built up in 

it. At the instant when the beam cracks, a part of the stored energy is suddenly released into the 

specimen. The specimen absorbs this incoming energy, and as a consequence, the amount of 

energy absorbed by the specimen from the external load is reduced. If an FRC specimen is 

inadequately reinforced, the sudden release of energy causes unstable propagation of cracks, thus 

influencing the post-cracking flexural response. 

Unfortunately, the currently available methods of quantifying toughness using a flexural 

specimen are riddled with ambiguities and considered unacceptable. A S T M C1018 test 

procedure [4] to characterize flexural toughness of concrete suffers from the above-mentioned 

problem. Thus, the test procedure is particularly worrisome when concrete reinforced with a low 

volume fraction of synthetic or other fiber is tested using an open-loop test machine with low 

stiffness under load control. Under such circumstances, the brittle nature of concrete manifests 

itself in the post-peak region of the load-displacement curve and two specific features become 

apparent (Figure 3.2.1): 

• Immediately following the peak load, the load drops suddenly in an uncontrolled and 

unstable manner depending upon the stiffness of the machine. The data-logger even when 

running at a very high frequency does not usually record any points in this region. 

• After the unstable part, the curve attains a stable softening level, during which loads are 

again functions of the test machine characteristics. If the machine stiffness is too low, the 

release of energy during the unstable part will be high and the specimen may suffer a greater 

damage due to the higher incoming energy. If so, the loads during softening will be lower 

and the post peak load carrying response will be inferior as compared to close-loop testing 

(high stiffness) where this sudden release of energy and related damage are not allowed to 

occur (Figure 3.2.1). 
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Figure 3.2.1: Comparison of Close-loop Test Method with Open-Loop Test Method for Flexural Tests on Fiber 

Reinforced Concrete. Notice the large load instability that occurs during at the peak load during an 

open-loop test, and the related damage [6] 

For most fiber reinforced concretes, rather than the pre-peak response, which is not expected to 

be very different from plain concrete, it is the post-peak response that is of a primary interest. 

With the above mentioned artifacts in the post-peak load displacement part of the curve, any 

analysis carried out using the standardized A S T M C1018 technique (or any other technique for 

that matter) is going to be of limited use and even misleading. One possible solution, naturally, 

would be to always use a close-loop machine, especially when pronounced instability in the post-

peak part of the curve is expected. Unfortunately, close-loop tests are difficult to run and time 

consuming. These tests are also expensive and necessitate sophisticated and complex 

instrumentation and data acquisition devices. Since most testing laboratories are equipped only 

with open-loop test machines, any new methodology developed should be designed such 

machines and still provide a valid post-peak response. 

A new test method, called the Residual Strength Test Method [6,7], has recently been developed 

which characterizes the softening part of the curve by first loading the specimen in conjunction 

with a steel plate. Steel plate absorbs the energy released by the machine at the occurrence of 

matrix cracking, and in this manner, damage to the specimen resulting from the sudden release of 

energy is minimized. After first cracking, the specimen is unloaded, the steel plate is removed, 

and the specimen is reloaded. The post-peak response thus obtained on reloading is expected to 

give the true stress transfer capability (and the toughening capability) of fibers across a crack. 
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Until this date, no systematic and exhaustive study has been carried out to assess the validity of 

the Residual Strength Test Method. This aspect has been explored in the following investigation. 

The major objectives of this investigation are: 

• To assess the validity of the Residual Strength Test Method. This is achieved by examining 

the data obtained from the proposed test method and comparing it with the results obtained 

from an open-loop test machine with low stiffness and a close-loop test with high stiffness. 

• To assess the capability of the Residual Strength Test Method to identify the influence of 

various fiber characteristics such as type, length, configuration, volume fraction, geometry, 

and the elastic modulus. 

3.2.1 Residua] Strength Test Method (RSTM) - Assessment and Calibration 

In the Residual Strength Test Method, fiber-reinforced beams are pre-cracked under third-point 

flexural loading in parallel with a 12 mm thick steel plate as shown in Figure 3.2.2a and b. The 

steel plate provides the support and absorbs the energy that is released from the machine at the 

occurrence of the peak load when compliance of specimen changes suddenly. At a net deflection 

between 0.25 mm and 0.50 mm, the cracked beam is unloaded, residual beam deflection on 

complete unloading is recorded (relaxation of beam during unloading is monitored by LVDT's) , 

and this is followed by the removal of the steel plate. The cracked beam is then reloaded without 

the steel plate in four-point bending to obtain the residual load-deflection curve. The loads 

supported by this beam at 0.5, 0.75, 1.0 and 1.25 mm of beam deflection are then averaged and 

normalized to obtain Residual Strength, RS values by using an elastic analysis. In other words, 

4 J • " 

where P0.s, P0.75, P1.0, P1.25 correspond to the load values at 0.5, 0.75, 1.0 and 1.25 mm beam 

deflection, respectively, L is the test span, b is width of the beam and d is the depth of the beam. 

Notice that the Residual Strength, RS, which has the units of stress, is not the true stress in the 

specimen (which has already cracked and the application of the elastic equation is strictly not 

valid), but a measure of an approximate "engineering" stress. 
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Further, the Residual Strength Index, RSI can be calculated as: 

RSI{%) = x 100 3.3 MOR 

where RS is the Residual Strength as defined in Equation 3.2, and MOR is the modulus of rupture 

of the material calculated by testing beams (without the steel plate) in accordance with the 
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A S T M Test Method C 78 [218]. This test procedure, an assessment of which was the principal 

objective of this investigation, is abbreviated as R S T M . 

3.2.1.1 Experimental Procedure 

Materials and Mixes 

To assess Residual Strength Test Method, three types of polymeric fibers were investigated: 

i . Fiber PP1: Fiber PP1 was 100% polypropylene with a special blend of fibers with lengths 

in the range of 11-20 mm. This fiber was fibrillated. 

i i . Fiber PP2: Fiber PP2 was also 100% polypropylene with a length of 19 mm. This was a 

monofilament fiber. 

i i i . Fiber NL1 : Fiber NL1 was 100% nylon with a length of 19 mm. Like the fiber PP2, this 

was a monofilament fiber without fibrillation. 

Table 3.2.1: Mix Proportions 

Cement Silica-fume Water Sand Aggregate (10 mm) Superplasticizer 
(kg) (kg) (kg) (kg) (kg) (ml/100 kg of Cement) 

460 51 179 767 893 600 

The mix proportions of the concrete matrix are given in Table 3.2.1. The design compressive 

strength was approximately 70 MPa. A particularly high design compressive strength was 

chosen to exaggerate the problem of instability. Cement, aggregate and part of the silica fume 

were first dry mixed in a pan type mixer. The rest of the silica-fume and the superplasticizer 

were added to water to form a slurry. This slurry was then added to the dry-mix to obtain a 

workable wet-mix. Lastly, fibers were added gradually to avoid any fiber balling. Fiber addition 

rates were 0.1, 0.3 and 0.5 percent by volume of the PP1 and PP2 fibers and 0.5 percent by 

volume of the NL1 fibers. 

Six compression cylinders of size 100 mm x 200 mm and 15 beams of size 100 mm x 100 mm x 

350 mm were cast for each mix. External vibration was used for consolidating the concrete into 

the moulds. Specimens were demolded 24 hours after casting and then cured in a tank with lime 

saturated water for 28 days before testing. 
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Typical values of the slump, air content and unit weight for the control and 0.5% fiber volume 

concretes are presented in Table 3.2.2. Notice that there was some drop in the slump values due 

to fiber reinforcement, but generally the mixes were well workable and in the practical range. 

Table 3.2.2: Fresh Properties of Concrete Mixes 

Mix Slump (mm) Air Content (%) Unit Weight (kg/m3) Compressive S 
7 days 

trength (MPa) 
28 days 

Control Plain 140 1.6 2405 54.5 71.4 
FRC - PP1 Fiber* 120 1.5 2402 52.9 71.5 
FRC - PP2 Fiber* 110 2.0 2382 54.5 71.8 
FRC - NL1 Fiber* 80 1.4 2413 55.2 72.8 

*Fiber volume fraction of 0.5% 

Test Procedure 

Close-loop testing was conducted in a 150 kN MTS machine with a function generator. Figure 

3.2.3a shows the experimental test setup and Figure 3.2.3b shows the schematic of the controls. 

Figure 3.2.3a: Test on a Fiber Reinforced Concrete Beam using the Close-Loop Test Method. 

As seen in the Figure 3.2.3a, a crack mouth opening displacement (CMOD) transducer 

monitored the crack opening displacement and supplied the feed-back signal to the servo-

controller. A Japanese Yoke [5] was mounted around the specimen to record the net deflections 

so that the extraneous deflections resulting due to the settlement of supports, crushing at the load 

points, and the loading fixture deformations were eliminated and only the net deflections were 
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recorded. Two LVDT were used to record the net deflection of the beam at mid-span and data 
from these were then averaged. At the start of the program, specimens were tested under control 
signals first from the CMOD transducer and then from the two LVDTs determine whether the 
source of feedback signal made any difference to the load-displacement curves. No particular 
difference was noticeable. The rest of the close-loop tests were then performed under CMOD 
control, as illustrated in Figure 3.2.3b. In a typical test, the CMOD, the applied load, and the 
vertical net displacement values were recorded using a digital data acquisition system based on a 
personal computer. The close-loop Test Method is abbreviated as CLTM. 

Note that the Open-loop Test Method (OLTM) has already been described in Section 3.1. 
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Figure 3.2.3b: Schematic of controls in a flexural Close-loop Test Method 
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3.2.1.2 Results 

The differences between the curves from the close-loop and the open-loop tests were discussed 

previously and are illustrated in Figure 3.2.1. Typical close-loop and open-loop curves for 

concrete with PP1 fiber are compared in Figures 3.2.4 and 3.2.5 for 0.1 and 0.3% fiber volume 

fractions, respectively. The same for FRC with PP2 fibers are compared in Figure 3.2.6 and 

3.2.7. In general, for both fiber volume fractions, a large instability region was noticeable 

immediately after the peak load when the displacement jumped from -0.04 mm at the peak load, 

to -1.0 mm (25 fold) at the end of the instability. This sudden release of energy from the 

machine in all likelihood created some damage in the specimen, with cracks undergoing a large 

uncontrolled opening, and the load carrying capacity beyond the instability was affected. 
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In Figures 3.2.8-10, the close-loop load-deflection plots for concrete with PP1 fiber are 

compared with those from the Residual Strength Test Method (RSTM) for fiber volume fractions 

of 0.1, 0.3 and 0.5%, respectively. The same for FRC with PP2 fibers are compared in Figures 

3.2.11-13. The corresponding curves for FRC with NL1 fibers at a fiber volume fraction of 0.5% 

are compared in Figure 3.2.14. Notice that the curves from the C L T M and R S T M match quite 

well in the post-peak region. The R S T M curves start at a certain finite displacement, which is 

the same as the residual displacement in the specimen after the first loading with the steel plate. 

Notice also that the R S T M curves start at varying initial displacements,, indicating that varying 

levels of damage were induced in these beams during the first loading with the steel plate. These 

minor variations in the induced damage during the first loading, however, do not appear to alter 

or influence the load carrying capacity during the second loading. 
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In Table 3.2.3, the Residual Strength (RS) values (Equation 3.2), for the various fibers, are 

reported. Generally speaking, the RS values obtained using the Open-Loop Test Method were 

the lowest and those obtained using the close-loop method were the highest. The values from the 

proposed R S T M were in-between these two extremes, but were closer to values from the close-

loop method. This is to be expected, given that substantial damage is induced in the specimen 

during the open-loop testing. In the RSTM, on the other hand, the presence of the steel plate 

substantially reduces the damage and the technique more or less imitates close-loop testing. The 

good agreement between the C L T M and the R S T M data indicates that the proposed method is 

capable of accurately measuring the capacity of fiber reinforced concrete to carry loads beyond 

cracking. 

Table 3.2.3: Residual Strengths, RS for various mixes 

Residual Strength, RS (MPa) 

Mix/Fiber Vf(%) Open-Loop Test Close-Loop Test Residual Strength Test 

Method (RSOLTM)® Method (RSCLTM) Method (RSRSTM) 

FRC- PP1 Fiber 
0.1 0.61 (0.11)* 0.67 (0.08) 0.63 (0.12) 

FRC- PP1 Fiber 
0.61 (0.11)* 0.67 (0.08) 0.63 (0.12) 

Fibrillated Polypropylene 
0.3 0.78 (0.35) 1.27 (0.02) 1.19(0.13) 

Fibrillated Polypropylene 
0.5 

0.78 (0.35) 1.27 (0.02) 1.19(0.13) 
Fibrillated Polypropylene 

0.5 — 1.88 (0.21) 1.75 (0.17) 

FRC-PP2 Fiber 
0.1 0.33 (0.06) 0.32 (0.04) 0.31 (0.02) 

FRC-PP2 Fiber 
0.33 (0.06) 0.32 (0.04) 0.31 (0.02) 

Monofilament Polypropylene 
0.3 0.4(0.12) 0.74 (0.09) 0.66 (0.08) 

Monofilament Polypropylene 
0.5 

0.4(0.12) 0.74 (0.09) 0.66 (0.08) 
Monofilament Polypropylene 

0.5 — 0.87 (0.24) 0.69 (0.22) 

FRC-NL1 Fiber 
0.1 ~ - -
0.3 _ 

Monofilament Nylon Monofilament Nylon 
0.5 — 1.16(0.19) 1.02 (0.15) 

* Figures in brackets indicate standard deviation; 

® For the Open-loop Test Method where P A 5 and P0JS were in the unstable region, the Residual Strength (RS) was 

calculated by ignoring the load values (in Equation 3.2) falling under the unstable region. 

The C L T M results for the various fiber types are further compared with the R S T M results in 

Figure 3.2.15. Note again a very good match between these techniques at all fiber volume 

fractions. Notice also that at a certain fiber volume fraction, the C L T M predicts the PP1 fiber to 

be more effective than the PP2 fiber, and an identical conclusion can be drawn from the R S T M 

data. Further, the nylon fiber (NL1) is less effective than the PP1 fiber but more effective than 

the PP2 fiber as per the close-loop data, and an identical conclusion can be drawn from the 

Residual Strength Test Method. These data indicate very clearly that the R S T M is entirely 
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capable of distinguishing between not only the various fiber volume fractions of the same fiber 

type but also between the various fiber types at a given volume fraction. 
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Figure 3.2.15b: Residual Strength for Various Mixes using 

the Residual Strength Test Method 

One way to assess the effectiveness of the RSTM as compared to the C L T M , is to calculate the 

difference, S, as: 
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Figure 3.2.16: Percentage Difference (5) in RS Values between the Close-Loop 

Test Method and the Residual Strength Test Method 

These values of the difference, 8, are plotted in Figure 3.2.16 for the various fiber types. Notice 

that 8 is always positive (i.e., the R S T M always underestimates the capacity) and is in the range 

of 5-25 percent depending on the fiber type. It also appears that the difference 8 is directly 

related to fiber efficiency; a fiber with lower efficiency indicates a higher 8. This is logical since 
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a less effective fiber with a poorer pull-out resistance may lead to more damage during the first 

loading cycle and thus sustain lower loads in the second loading cycle. 

3.2.1.3 A Round-Robin Test Program to Validate RSTM 
To assess the validity and inter-laboratory reproducibility of the proposed Residual Strength Test 

Method, a round-robin test program was carried out between the University of British Columbia 

(UBC), The Ministry of Transportation of Ontario (MTO), and the Technical University of Nova 

Scotia (TUNS). This section describes the results obtained from this test program. 

Twenty-five fiber reinforced concrete beams (100 mm x 10 mm x 350 mm) were cast at UBC 

with mix details given in Table 3.2.1. Only one fiber volume addition rate of 0.3% was 

investigated. Fifteen beams were retained at UBC, five beams were sent to MTO and the 

remaining five to TUNS. The division of tasks for the three laboratories is outlined in Table 

3.2.4. All of the tests were performed at the specimen age of 14 days. 

Table 3.2.4: Test planning 

Institute A S T M C1018 Residual Strength Test A S T M C1018 
(Close-loop) Method (Open-loop) 

U B C V V V 

M T O V 

TUNS V 

Results of the open-loop and close-loop tests performed on identical beams at UBC are given in 

Figure 3.2.17. Notice that although the two test configurations result essentially in identical peak 

loads, the post-peak load-displacement behaviors are markedly different for the reasons stated 

earlier. Figure 3.2.18 compares the load-displacement curves recorded in close-loop conditions 

with those recorded during the second stage loading of the proposed RSTM technique by the 

three institutes. Notice that for a proper comparison, the starting displacements for the RSTM 

curves are shifted by the amount of residual displacement in the specimen (considering 

relaxation) after the first loading with the steel plate. The residual displacement at the end of 

first loading ranged from 0.25 mm to 0.75 mm and was noticeably different for each of the three 

laboratories. One would expect that the residual displacement, apart being a function of machine 

stiffness, is also a function of operator experience. UBC, having had more experience with the 

test procedure, managed to halt the loading sufficiently rapidly after the creation of the crack in 

the specimen, and thus had lower residual displacements at the end of the first stage. 
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Figure 3.2.18: Comparison of Close-Loop and Residual 

Strength Test Method Curves for Concrete with 0.3% of 

Fibrillated Polypropylene Fiber (PP1) 

In spite of the variation in the residual displacement from one laboratory to the other, 

interestingly, the residual load carrying capacity remained relatively unaffected as seen in Figure 

3.2.18. As stipulated in the proposed technique, the load-displacement curves were analyzed for 

Residual Strength, RS, which are reported in Table 3.2.5. Notice that the Residual Strength 

reported by the three laboratories are comparable, and the within batch standard deviations (0.17, 

0.08 and 0.18) are not very different from the inter-laboratory standard deviation (0.14). A 

variation in the residual displacement (and hence, in the extent of damage in the beam) at the 

onset of the Residual Strength test does not appear to affect the residual strength capacity in any 

way; the specimens tested at TUNS suffered most damage during the first stage of loading, but 

also recorded the highest Residual Strength. 

Table 3.2.5: Residual Strengths, RS - Canadian Round-Robin Test Program [221] 

Residual Strength, RS (MPa) 

Open-loop Close-loop Residual Strength Test Method 

UBC UBC UBC MTO TUNS 

0.78 0.96 
0.97 (0.17)* 0.81 (0.08) 1.03 (0.18) 

0.78 0.96 
Average=0.94 (0.14) 

* Figures in brackets indicate standard deviation 

Thus, from the results obtained from the Canadian Round-Robin Test Program it was concluded 

that the Residual Strength Test Method is capable of characterizing the contribution of fibers in 

the post-matrix cracking stage with acceptably low within-batch and inter-laboratory variation. 
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3.2.1.4 Discussion 

In the following, the stress state in the composite (FRC beam + steel plate) at the instant matrix 

cracking occurs is analyzed (i.e., at the instant beam is unloaded). 

The response of a concrete beam to an applied load while supported by a plate is expected to be 
significantly different from that of the beam loaded without the plate. Assuming that the 
concrete beam and the steel plate act monolithically (i.e., there is no slip between the two and 
strain compatibility is maintained), one can show that for the composite beam, the depth of the 
neutral axis prior to cracking is: 

nbd. 

y=-

(d) 
d+^- +bd 

2 
V ) bd + nbd r 

3.5 

where, n = modulus ratio between concrete and steel (~6), d and b = depth and width of concrete 
beam, and dp = depth of the steel plate. 

The maximum tensile stress carried by the beam at the instant of cracking is given by [219]: 

Mc(d-y) 
CT = 

B D ' + B J - D 

12 y~2 
V d3 f 

+ nb-E- + nbdn 12 " 
d 

d + -L-y 
V 3.6 

and the corresponding stress in steel plate is given by [219]: 

nMc(d + d-y) 
CT = 

bd3 

12 
+ bd\ _ d f 

+ nb-L- + nbdn 12 ' 

\2 
3.7 

d + •y 

where, Mc is the moment at cracking. Assuming full compatibility between steel plate and 

concrete beam (i.e., both steel plate and concrete beam flex about a combined neutral axis) at the 

instant beam cracks, the maximum tensile stress in concrete, cc calculated using Equation 3.6 is 

given in Table 3.2.6 for the various mixes. Clearly, the maximum stress in concrete attained 

with the steel plate underneath remains significantly lower than the corresponding modulus of 

rupture value for the various mixes. This indicates that when the concrete beam is loaded in 

parallel with the steel plate, at failure it carries peak stresses far below its flexural capacity and 
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that its compliance is not significantly altered. Moreover, it can also be shown that stresses in 

concrete and the corresponding damage to the concrete beam will reduce further as the thickness 

of steel plate is increased. 

Table 3.2.6: Maximum concrete stress at peak load with and without steel plate 

Mix/Fiber 

Modulus of 
Rupture$ 

MOR 
(MPa) 

C 

Cracking 
Load$ 

Per 
(kN) 

oncrete beam + Steel 

Deflection at 
Cracking Load$ 

(mm) 

Plate 

Theoretical 
Concrete Stress® 

ac 

(MPa) 
FRC- PP1 Fiber 

Fibrillated Polypropylene 
5.64(0.41)* 28.3 (5.83) 0.037 (0.0096) 1.60 

FRC-PP2 Fiber 

MonofilamentPolypropylene 
5.46 (0.64) 26.9 (5.15) 0.036 (0.0092) 1,52 

FRC-NL1 Fiber 

Monofilament Nylon 
4.83 (0.52) 34.1 (9.21) 0.038 (0.0086) 1.93 

- Data for beams with different V f (Table 3.2.3) combined for calculating average values and standard 
deviations reported in the table 

® - Maximum concrete stress calculated assuming full compatibility between concrete beam and steel plate 
* - Figures in brackets indicate standard deviation 

Note that full compatibility between steel plate and concrete beam is assumed in the above 

calculations. In reality, however, some slip will occur between the two, which will increase the 

stress in concrete, and the actual value of maximum concrete stress, crc, may be expected to lie 

somewhere between the theoretical value of oc (Table 3.2.6) and the corresponding Modulus of 

Rupture values. 

The exact distribution of the applied load between the concrete beam and the steel plate will 

depend upon the extent of slip possible between the two. If the two remain monolithic slip, the 

steel plate will carry a much larger share of the load and the stresses in the concrete as described 

above will remain low. As the possibility of slip between the two increases, so do the stress in 

concrete and the portion of the load carried by concrete beam. At the limit, if concrete beam and 

steel plate act totally independently of each other (i.e., both steel plate and concrete beam flex 

about their own centroidal axes), the concrete beam will carry nearly all of the applied load with 

only a very minor portion (< 2%) carried by the plate. 
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3.2.2 Residual Strength Test Method - Performance of Various Composites 

After having established the validity of the test technique, the technique was applied to fiber 

reinforced concrete carrying various volume fractions of polymeric and steel fibers. Based on 

the extensive Residual Strength data reported below, it is clear that the technique is highly 

suitable for characterizing the mechanical response of fiber reinforced composites. 

3.2.2.1 Materials, Mixes and Testing 

Two sets of beams were cast as described below. In Set 1, the objective was to investigate 

fibrillated and monofilament polymeric fibers at low to medium dosage rates in concrete. In Set 

2, concretes reinforced with high volume fractions of steel, P V A and deformed polypropylene 

fibers were investigated. The concrete mix proportions are given in Table 3.2.7. Cement, sand 

and aggregate were first mixed dry in an Omni-mixer, followed by the addition of water. Lastly, 

fibers were added gradually to avoid any fiber balling. For each mix, eight beams of size 100 

mm x 100 mm x 350 mm were cast using external vibration. In addition, six compression 

cylinders of size 100 mm x 200 mm were cast for compressive strength determination. 

Table 3.2.7: Mix Proportions 

Cement Water Sand Aggregate (10 mm) Air Entraining Agent 
(kg) (kg) (kg) (kg) (ml/kg of cement) 

400 200 1000 800 0.1 

Set 1: Polymeric Fibers at Low to Medium Dosages 

In the first set, a total of seven different polymeric fibers—five micro-denier and two macro-

denier—were investigated. The details of the test program are given in Table 3.2.8. As seen, 

both the Open-Loop Test Method (OLTM) and the Residual Strength Test Method (RSTM) were 

employed to characterize the composites (see Sections 3.1 and 3.2 for details). Of the seven 

fibers investigated, six were of polypropylene and one was of nylon (Table 3.2.8). Further, of 

the six polypropylene fibers, four were fibrillated (PPF-1 to PPF-4) while the remaining two 

were monofilament type (PPM-1 and PPM-2). The nylon fiber (NLM-1) was also a 

monofilament type. A l l four fibrillated fibers had similar geometrical configurations and were 

procured from different manufacturers. The two monofilament polypropylene fibers investigated 

were also procured from different manufacturers. Monofilament PPM-1 fiber was 38 mm long 
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and had a diameter of 0.19 mm. Monofilament PPM-2 fiber was also 38 mm long but had a 

diameter of 0.63 mm. 

Table 3.2.8: Fibers Investigated in Set 1 and Details of Test Program [220] 

Fiber and Fiber Length Test Method 
Mix Id. Information 

(mm) v f= 0.2% vf= 0.4% vt= 0.5% v f= 0.6% vf = 0.8% 
OL" RS+ OL" RS+ OL~ RS+ OL~ RS+ OL" RS+ 

PPF-1 Fibrillated 
Polypropylene 38 X X X X X X X X X X 

PPF-2 Fibrillated 
Polypropylene 38 X X X X X X X X X X 

PPF-3 Fibrillated 
Polypropylene 38 - - - - X X - - - -

PPF-4 Fibrillated 
Polypropylene 38 - - - - X X - - - -

PPM-1 Monofilament 
Polypropylene 38 - - - X X : - • , - -

PPM-2 Monofilament 
Polypropylene 38 X X X X X X X X X X 

NLM-1 Monofilament 
Nylon 38 X X X X X X X X X X 

OL - Open-Loop Test Method; + RS - Residual Strength Test Method 

Set 2: Large Diameter Steel and Polymeric Fibers at High Dosages 

The four commercially available macro fibers (large diameter) investigated in Set 2 are described 

in Table 3.2.9. The mixes and the test program are described in Table 3.2.10. Of the four fibers 

investigated, one was polypropylene fiber, another was polyvinyl alcohol fiber and the remaining 

two were deformed steel fibers. One hybrid mix was also investigated, where both 

polypropylene and steel fibers were combined in the same mix. As in the case of the Set 1 

specimens, both Open-Loop and Residual Strength Test Methods were employed. 

Table 3.2.9: Fibers investigated in Set 2 
Fiber Material Geometry Cross-

sectional 
shape 

Length 

(mm) 

Diameter 

(mm) 

Size 
Amplitude 

(mm) 

Wave 
length 
(mm) (MPa) 

E f

J 

(GPa) 

PP-STR Polypropylene Straight Oval 50 0.63 - - 450 3.5 

PVA-1 PVA* Flattened-
ends Oval 29 0.42 - - 1100 23 

ST-HKD Steel Hooked-end Circular 35 0.55 • - • - 1115 210 

ST-CR1 Steel Crimped Crescent 38 2.0 x 0.35 1.0 7.5 1037 210 

* PVA - Polyvinyl Alcohol; @ ft - tensile strength; $ E f - Fiber Elastic Modulus 
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Table 3.2.10: Various Mixes Investigated in Set 2 and Details of Test Program 

Fiber and Fiber Material and Test Method 
Mix Id. Type 

V f = 0.76% v f = 1.0% v f = 1.6% v f = 3.0% Vf=PP @ 1.6% + 
Steel @ 0.25% 

OL~ RS + OL~ RS + OL" RS + OL" RS + OL~ RS + 

PP-STR Straight 
Polypropylene - - - - X X X X - -

PVA-1 Straight Polyvinyl 
Alcohol - - X X X X - - - -

ST-HKD Hooked-end 
Steel X X - - - - - - - -

ST-CR1 Crimped 
Steel x X - - - - - - - -

HBRD-1 
Hybrid 
1.6% PP-STR 
+0.25% ST-HKD 

- - - - - - - - X X 

Typical values of slump, V-B time, air content, and unit weights for the mixes in Set 2 are given 

in Table 3.2.11. Notice that all mixes were adequately workable and the V-B time increased 

with an increase in the fiber dosage rate. Testing procedures are similar to those described in the 

Sections 3.1 and 3.2. 

3.2.2.2 Results 

Compressive Strengths 

Twenty-eight day compressive strengths for mixes belonging to Set 1 are given in Table 3.2.12. 

Clearly, influence of fiber type and fiber volume on compressive strength was not seen. The 

twenty-eight day compressive strength for mixes belonging to Set 2 are given in Table 3.2.13. 

Again, no influence of fiber type and fiber volume fraction on the compressive strength was 

noticeable. 

Analysis of Flexural Toughness: Specimens from Set 1 

In Set 1 as described, the performance of four fibrillated polypropylene (PPF-1 to PPF-4), two 

monofilament polypropylene (PPM-1 and PPM-2), and one monofilament nylon (NLM-1) fibers 

was investigated at fiber volume fractions of up to 0.8%. To illustrate the general performance, 

the curves for fiber PPF-1 are shown in Figures 3.2.19a-e for an increasing fiber volume fraction 

from 0.2% to 0.8%. Curves for the other fibers depicted similar qualitative trends and hence are 

not reproduced in the interest of brevity. In Figures 3.2.19a-e, notice that for concrete mixes 

with very low fiber volume fractions (Vr=0.2%), considerable instability occurred in the open-

loop tests. Even in such cases, the Residual Strength Test Method was able to capture the 

71 



toughening due to fiber reinforcement. The instability problem worsened for mixes containing 

nylon fibers (NLM-1) where even for fiber volume fractions as high as 0.4%, no reading could 

be recorded in the post-peak region (Figure 3.2.20). Once again the Residual Strength Test 

Method was able to capture fiber toughening in the case of nylon fiber at all fiber volumes 

including 0.4%. 
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Fiber PPF-1 @Vf=0.8% Fiber NLM-1 @Vf=0.4% 
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Figure 3.2.19e: Load-Deflection Curves for F R C with 

PPF-1 Fiber at Dosage Rate of 0.8% 

Figure 3.2.20: Load-Deflection Curves for F R C with 

NLM-1 Fiber at Dosage Rate of 0.4% 

As the fiber dosage is increased (Figures 3.2.19a-e), one can notice a decrease in the load 

instability in the O L T M . One can also notice an increase in the post-peak load carrying capacity 

as measured by the R S T M and hence a related increase in the Residual Strength (RS) values 

(Equation 3.2). The R S T M was thus capable of predicting the post-peak toughness performance 

for composites with a wide range of various fiber volume fractions—both low and high. 

The results obtained for all the fibers tested in Set 1 are given in Table 3.2.14, where the 

modulus of rupture (MOR) from the open-loop test, and the Residual Strength (RS, Equation 

3.2) and Residual Strength Index (RSI, Equation 3.3) values from the Residual Strength Test 

Method are reported. The RS values are plotted in Figure 3.2.21 as a function of fiber volume 

fraction for the various fibers. The RSI values follow similar trends and hence are not 

reproduced. As seen clearly in Figure 3.2.21, the Residual Strength, RS, increases almost 

linearly with an increase in the fiber volume fraction. For the fiber volumes tested, interestingly, 

Residual Strength, RS did not reach an asymptotic limit as is often expected. The performance 

of fibrillated fibers PPF-1 and PPF-2 was very similar at various fiber volume fractions. Also, 

the performance of the other two fibrillated fibers (PPF-3 and PPF-4), which were tested only at 

a fiber dosage rate of 0.5%, compared well with that of PPF-1 and PPF-2 fibers at the given 

volume fractions. Monofilament polymeric fibers had inferior performance in comparison to 

their fibrillated counterparts. Among the two monofilament fibers investigated, the performance 

of the small diameter fiber PPM-1 was superior to that of the large diameter fiber PPM-2. A 

small diameter resulted in an increased fiber surface area for a given volume fraction and hence a 
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greater total frictional resistance during the process of fiber pullout during a test. In general, for 

the fibrillated fibers, Residual Strength increased by nearly 7 to 8 times when the fiber volume 

increased from 0.2% to 0.8%; the corresponding increase in the case of the monofilament fibers 

was only of the order of 5 to 6 times. 

Fiber Volume, Vf (%) 

Figure 3.2.21: Residual Strength Values Plotted as a Function of Fiber Volume for Fibers in Set 1 

Analysis of Flexural Toughness: Specimens from Set 2 

In Set 2, performance of eight commercially available large diameter fibers was investigated at 

high volume fractions equal to or exceeding 0.76%. Given that high volume fractions of fibers 

were investigated in Set 2, the damage resulting due to instability even in an open-loop test was 

marginal. The results are compiled in Table 3.2.15. Some illustrative flexural load versus 

deflection curves for FRC with various fibers are shown in Figures 3.2.22 to 26. In Figure 3.2.22 

data for the straight polypropylene fiber (PP-STR) are given at 1.6% by volume. Notice that the 

Residual Strength values for concrete reinforced with 1.6% of straight polypropylene fiber (PP-

STR) were inferior than those for concrete reinforced with even a lower volume fraction of the 

fibrillated fiber (PPF-1 and PPF-2) (Tables 3.2.14 and 3.2.15). This is most likely due to the 

large diameter of the PP-STR fiber; a similar trend was observed previously when comparing the 

PPM-1 fiber with the PPM-2 fiber and the fibrillated fibers (Figure 3.2.21). In Figure 3.2.23, the 

results for the hybrid mix (HRBD-1) with a combination of the straight polypropylene fiber (PP-

STR) at 1.6% by volume and hooked-end steel fiber (ST-HKD) at 0.25% by volume are 

presented. When Figures 3.2.22 and 3.2.23 are compared, a significant improvement due to the 
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addition of steel fibers is clearly noticeable. This is also clear from the RS values reported in 

Table 3.2.15. 

2 3 

Deflection (mm) 

Figure 3.2.22: Load-Deflection Curves for FRC with PP-

STR Fiber at a Dosage Rate of 1.6%. 
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Figure 3.2.23: Load-Deflection Curves for FRC with a 

Hybrid Combination of PP-STR Fiber @ 1.6% and Steel 

Fiber (ST-HKD) @ 0.25%. 

Finally, in Figures 3.2.24-26, the results for the P V A fiber (PVA-1), the hooked-end steel fiber 

(ST-HKD) and the crimped steel fiber (ST-CR1), respectively, are presented. Notice that the 

high modulus P V A fiber performed better than the low modulus polypropylene fibers (Table 

3.2.15) and that the instability was minimized due to the higher modulus. Steel fibers with the 

hooked ends (Figure 3.2.25) gave the highest RS values of all composites tested even at a modest 

volume fraction of 0.76%. The crimped steel fiber, on the other hand, was not as effective as the 

hooked-end steel fiber (Figures 3.2.25 and 3.2.26) and this clearly demonstrates the ability of the 

RSTM to distinguish between steel fibers of various geometries. 

Fiber PVA-1 @ Vf=1.6% 
OLTM 

Deflection (mm) 

Figure 3.2.24: Load-Deflection Curves for FRC with PVA-1 Fiber at a Dosage Rate of 1.6%. 
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Figure 3.2.25: Load-Deflection Curves for F R C with Steel Figure 3.2.26: Load-Deflection Curves for F R C with Steel 

Fiber S T - H K D at a Dosage Rate of 0.76%. Fiber S T - C R l at a Dosage Rate of 0.76%. 

3.2.2.3 Discussion 
The purpose of the research reported in this section was to make an assessment of the validity of 

the newly developed Residual Strength Test Method for toughness characterization of fiber 

reinforced concrete. The Residual Strength Test Method was seen to be highly effective in 

differentiating between different fiber types, fiber lengths, fiber configurations, fiber volume 

fractions, fiber geometries and fiber moduli. With respect to the specific composites tested, the 

following conclusions could be drawn: 

• Based on the results from specimens in Set 1, it is clear that at a given fiber volume fraction, 

fibrillated polypropylene fibers provide better toughening than monofilament polypropylene 

fibers or the monofilament nylon fibers. In the range of fiber volume fractions investigated 

(0.2%-0.8%), both the Residual Strengths and the Residual Strength Indices increase almost 

linearly with the fiber volume fraction. Other parameters remaining the same, performance 

of FRC with small diameter fibers is better. 

. Data from specimens tested in Set 2 indicate that the Residual Strength Test Method equally 

well predicts the toughening capabilities of steel and other macro-fibers at large volume 

fractions. The post-peak instability in these composites, however, was minimal. Steel fibers 

provided very high Residual Strengths, but among the steel fibers the hooked-end steel fiber 

demonstrated better toughening capability than the crimped steel fiber. Combining 

polypropylene and steel fibers in the same mix had a synergistic effect and composites with 

very high Residual Strengths were obtained. 
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3.3 Conclusions 
• Material factors that were found to influence toughness of fiber reinforced concrete include 

fiber aspect ratio, fiber surface characteristics, fiber geometry, fiber volume content, 

shrinkage properties of matrix, and mineral admixtures (pozzolans). 

• The influence of test machine stiffness on the measured flexural load versus deflection 

response of fiber reinforced concrete composites has been evaluated. It has been found that 

the measured flexural response of fiber reinforced cementitious composites, particularly of 

the ones containing low fiber volume fractions, is greatly influenced by the machine 

configuration. For machines with open-loop test configuration with low stiffness, the load 

drops suddenly in an uncontrolled and unstable manner immediately following the peak load, 

the extent of this instability being dependent upon machine stiffness and loading rate. In 

addition, after the unstable part, the curve attains a stable softening level, during v/hich loads 

are functions of the test machine characteristics. For the aforementioned reasons the use of 

such load versus deflection curves to quantify toughness often translates into meaningless 

toughness parameters. Unfortunately, the existing standards to characterize toughness make 

use of such flexural load versus deflection curves, and therefore toughness measures using 

these standards are highly suspect. 

• An evaluation of the Residual Strength Test Method (RSTM) for the measurement of post-

cracking performance and flexural toughness of fiber reinforced concrete composites has 

been carried out. In the test method, a stable narrow crack is first created in the specimen by 

applying flexural load in parallel with a steel plate under controlled conditions. The plate is 

then removed, and the specimen is tested in a routine manner in flexure to obtain the post-

crack load versus displacement response. In the experimental test program, several fiber 

reinforced concrete mixes containing a variety of fibers at different volume fractions were 

evaluated. Results from the test program suggest that the R S T M holds promise in the 

measurement of post-cracking performance of fiber reinforced concrete composites. 

• The Residual Strength Test Method is seen to be highly effective in differentiating between 

different fiber types, fiber lengths, fiber configurations, fiber volume fractions, fiber 

geometries and fiber moduli. In particular, the technique is very useful for testing cement-

based composites containing fibers at very low dosages. 
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It is recommended that proper care must be exercised while removing the steel plate before 

reloading the cracked specimen. Specimen mishandling may increase the damage and the 

consequent results. 

The post-peak load-deformation curves obtained from the Residual Strength Test Method 

correlated well with those obtained from the Close-Loop Test Method for all three types of 

fibers (PP1, PP2 and NL1 fibers) investigated at various fiber volume fractions up to 0.5%. 

Slightly lower Residual Strength (RS) values are obtained from the Residual Strength Test 

Method as compared to the close-loop method. The error is magnified to a small extent for 

low efficiency fibers. When various fiber types are compared using the close-loop method, 

fibrillated polypropylene (PP1) is found to be the most effective followed by the nylon (NL1) 

fiber and the monofilament polypropylene (PP2) fiber. The Residual Strength Test Method 

was also capable of accurately predicting these important trends. 

At a given fiber volume fraction, fibrillated polypropylene fibers provide better toughening 

than monofilament polypropylene fibers or the monofilament nylon fibers. In the range of 

fiber volume fractions investigated (0.2%-0.8%) of these fibers, both the Residual Strengths 

and the Residual Strength Indices increase almost linearly with increase in fiber volume 

fraction. Other parameters remaining the same, FRC with smaller diameter fibers have better 

performance. 

The Residual Strength Test Method equally well predicts the toughening capabilities of steel 

and other macro-fibers at large volume fractions. The post-peak instability in these 

composites, however, is minimal. Steel fibers provide very high Residual Strengths, but 

among the steel fibers, the hooked-end steel fiber demonstrates better toughening capability 

than the crimped steel fiber. Combining polypropylene and steel fibers in the same mix has a 

synergistic effect on the toughness of FRC. 
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Chapter 4 

Bond-Slip Performance of Fibers Embedded in Cementitious Matrices 

4.0 Introduction 
In the previous chapter, it was observed that the energy absorption capability of fiber reinforced 

concrete was dependent upon the properties of its constituents, i.e., properties of fibers and 

properties of matrix. It was also noted that the main energy absorption mechanism in fiber 

reinforced concrete composite is associated with pullout of fibers from the matrix. More 

specifically, the micromechanical properties of fiber-matrix interface dictate the fiber pullout 

response and the consequent composite toughening or strengthening. If optimization of 

composite toughening or composite strengthening is sought, it becomes critical to identify 

different variables that influence micromechanical properties of the fiber-matrix interface and the 

consequent fiber pullout response. Therefore, the objective of the present investigation is to shed 

some light on this important aspect through experimental fiber pullout studies. 

4.1 Bond-Slip Performance of Fibers - Influence of Pullout Parameters 
Despite numerous micromechanical fiber pullout studies done in the past, the extent of 

dependence of micromechanical properties (and the consequent fiber pullout response) on the 

various pullout parameters is not properly understood. The objective of the present investigation 

is to critically explore this important aspect. In this regard, dependence of experimental fiber 

pullout response on the following pullout parameters has been explored: 

• Fiber elastic modulus 

• Fiber length 

• Fiber surface roughness 

• Matrix shrinkage properties 

• Matrix water/cement ratio 

• Matrix modification by pozzolan - silica fume 
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Single fiber pullout tests were performed using the specimen shown in Figure 4.1.1. The 

specimen preparation is as follows - the specimens are cast in two parts separated by a plastic 

separator film. The lower part (labeled T in Figure 4.1.1) is cast first with the fiber embedded 

in it, and is allowed to cure for 24 hours. Once the lower half has hardened, the other half 

(labeled 'IF in Figure 4.1.1) of the specimen is cast. The assembly is further cured for a period 

of 28 days. For preparing specimens with fiber lengths longer than the standard specimen size 

shown in Figure 4.1.1, an attachment is added to the standard mould while casting. Pullout tests 

were performed in a 150-kN floor mounted testing machine. Load was applied at a cross-arm 

travel rate of 0.1 mm/min through a 5-kN load cell. Displacements were measured by two 

LVDTs (Linear Variable Differential Transformers). Loads and displacements were digitally 

recorded using a 16-bit data acquisition system operating at a frequency of 10 Hz. 

65 mm <b -

A Pullout 
concrete matrix T load 

steel anchorage ring —. 
5 mm 

simulated crack 
surface 

(plastic separator) 

LVDT 

LVDT 
holder 

130 mm 

Figure 4.1.1: Schematic of a standard pullout test specimen 
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Three fiber types were investigated, namely, 

i . straight-smooth, stainless steel fiber (fiber diameter - 0.44 mm) 

i i . straight, stainless steel fiber with rough surface1 (fiber diameter - 0.44 mm) 

ii i . straight, smooth polypropylene fiber (fiber diameter - 0.95 mm) 

Matrix types investigated were: 

i . normal strength matrix (Concrete matrix, CSA Type 10 Portland Cement) 

• Compressive strength - 36 MPa 

i i . high strength matrix (Concrete matrix, CSA Type 10 Portland Cement) 

• Compressive strength - 69 MPa 

i i i . non-shrink grout matrix (Mortar matrix) 

• Compressive strength - 18 MPa 

iv. silica fume modified high strength matrix (Concrete matrix, CSA Type 10 Portland Cement) 

• Compressive strength - 71 MPa 

The experimental fiber pullout test results are reported below. 

4.1.1 Straight-smooth, Stainless Steel Fibers Embedded in Normal Strength Matrix 

The experimental pullout responses of straight-smooth, stainless steel fibers embedded in a 

normal strength matrix were investigated, and the corresponding results are reported here. The 

mix proportion used was - water : cement: sand : aggregate = 0.50 : 1.0 : 2.5 : 2.0. Cement used 

was of CSA Type 10 specification. The above mix proportion gave an average 28-day 

compressive strength of approximately 36 MPa, as determined by testing five 200 mm x 100 mm 

<p cylinders. Fibers with embedded lengths equal to 15 mm, 30 mm, 60 mm and 90 mm on both 

sides of the crack were chosen, and for each fiber length, five fibers were tested for pullout. 

Figure 4.1.2 shows the pullout response of fibers tested. The average pullout curves have also 

been plotted in the same figure (thick lines). Results from these pullout tests are tabulated in 

Table 4.1.1. The total pullout energy, Emau was measured by numerical integration of pullout 

curve. 

1 Straight-smooth stainless steel fibers were sand blasted for about 25 minutes to produce the straight stainless steel 
fibers with rough surface 

84 



180 

0 10 20 30 40 50 60 70 80 90 

Displacement (mm) 

Figure 4.1.2: Pullout response of straight-smooth, stainless steel fibers embedded in normal strength matrix 

Table 4.1.1: Experimental pullout test results for straight-smooth, stainless steel fibers embedded in normal strength 

matrix 

Fiber Matrix 
Embedded 

Fiber Length 
(mm) 

Ppeak 

(N) 

Pullout Response 

8peak 

(mm) (N-mm) 

15 51.2(6.6)* 0.034 (0.011) 226 (32) 

Straight-smooth, Normal 30 95.1 (9.0) 0.120(0.038) 769 (166) 
stainless steel strength 60 100.5 (8.3) 0.387 (0.099) 1940 (288) 

90 134.5 (21.3) 0.484 (0.054) 3818 (374) 

Ppeak - Peak load; 8peak- Displacement at peak pullout load; E m a l - Total pullout energy 
- Figures in brackets indicate standard deviation 

4.1.1.1 Influence of Fiber Length 

In the Table 4.1.1, it can be noticed that increase in fiber length led to an increase in peak pullout 

load. However, the rate of increase in peak pullout load diminished with increase in fiber length. 

The peak pullout load reached an asymptote at very long fiber lengths as seen in Figure 4.1.3. 
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Fiber embedded length (mm) 

Figure 4.1.3: Embedded fiber length vs. peak pullout load curve for straight-smooth, stainless steel fibers embedded 

in normal strength matrix 

4.1.2 Straight, Stainless Steel Fibers with Rough Surface Embedded in Normal Strength 

Matrix 

The experimental pullout response of straight, stainless steel fibers with a rough surface 

embedded in a normal strength matrix was investigated and the corresponding results are 

reported here. The mix proportion used and the concrete compressive strength were same as 

mentioned in the previous sub-section. Fibers with embedded lengths equal to 15 mm, 30 mm, 

60 mm and 90 mm on both sides of the crack were chosen, and for each fiber length five fibers 

were tested for pullout. Figure 4.1.4 shows the pullout response of the fibers tested. The 

average pullout curves have also been plotted in the same figure (thick lines). Results from these 

pullout tests are tabulated in Table 4.1.2. 

Table 4.1.2: Experimental pullout test results for straight, stainless steel fibers with rough surface embedded in 

normal strength matrix 

Fiber Matrix 
Embedded 

Fiber Length 
(mm) 

Ppeak 

(N) 

Pullout Response 

(mm) (N-mm) 

Straight, fiber 
with rough 

surface 
Normal 
strength 

15 

30 

60 

90 

105.9(14.3)* 

116.1 (9.6) 

127.9 (14.0) 

135.9 (10.39) 

0.052 (0.019) 

0.123 (0.038) 

0.546 (0.131) 

0.591 (0.109) 

450(145) 

1160 (228) 

3201 (557) 

5916(1045) 

Ppeak - Peak load; 8peak- Displacement at peak pullout load; Elotai - Total pullout energy 
# - Figures in brackets indicate standard deviation 
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Figure 4.1.4: Pullout response of straight, stainless steel fibers with rough surface embedded in normal strength 

matrix 

4.1.2.1 Influence of Surface Roughness 
To study the influence of fiber surface roughness on the fiber pullout response, the pullout curves 

for 30 mm long smooth and rough fibers are compared in Figure 4.1.5. It can be seen that peak 

pullout loads were higher for fibers with rough surface. Also, the peak pullout displacement and 

the total pullout energy were higher for fibers with rough surface (compare Table 4.1.1 and 

Table 4.1.2). With increase in fiber length, disparity between the peak pullout loads for smooth 

fiber and rough fiber diminished. 

rough steel fiber 

•smooth steel 
fiber 

10 15 20 

Displacement (mm) 

25 30 

Figure 4.1.5: Comparison of the pullout response of 30 mm long straight-smooth, stainless steel fibers and 30 mm 

long straight, stainless fibers with rough surface (normal strength matrix) 

87 



4.1.2.2 Influence of Fiber Length 

For fiber with rough surface, it can be seen that an increase in fiber length led to an increase in 

the peak pullout load (Figure 4.1.6). However, the rate of increase in peak pullout load 

diminished with increase in fiber length as seen in Table 4.1.2 and Figure 4.1.6, and reached an 

asymptotic value. The asymptotic value of pullout load for straight-rough, stainless steel fibers 

was very close to that obtained for the straight-smooth, stainless steel fibers (compare Figure 

4.1.5 and Figure 4.1.6). 

160 

z 120 w x 
X 

/ x Experimental 

-Trendline 

0 20 40 60 80 100 

Fiber embedded length (mm) 

Figure 4.1.6: Embedded fiber length vs. peak pullout load curve for straight, stainless steel fibers with rough surface 

4.1.3 Straight-smooth, Stainless Steel Fibers Embedded in Non-Shrink Grout Matrix 

The frictional resistance to fiber pullout is dependent upon the normal contact stresses (acting 

perpendicular to the longitudinal fiber axis) that develop at the fiber-matrix interface. The 

normal contact stress at the fiber-matrix interface results from matrix shrinkage taking place 

during the curing, setting and hardening of the matrix. The greater the matrix shrinkage, the 

higher the magnitude of interfacial normal contact stress and the corresponding frictional 

resistance. Thus, it can be inferred that a cementitious matrix that experiences less shrinkage 

will offer lower resistance to fiber pullout. A type of cementitious matrix that undergoes 

relatively lesser shrinkage is available commercially under the name 'non-shrink grout' (mortar 

matrix). Fiber pullout response of straight-smooth, stainless steel fibers embedded in non-shrink 

grout matrix was investigated. The 28-day compressive strength of the non-shrink grout matrix 

was approximately 18 MPa, as determined by testing five 200 mm x 100 mm 0 cylinders. Fibers 

with embedded lengths equal to 15 mm, 30 mm, 60 mm and 90 mm on both sides of the crack 
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were chosen, and for each fiber length, five fibers were tested for pullout. Figure 4.1.7 shows the 

pullout response of fibers tested. The average pullout curves have also been plotted in the same 

figure (thick lines). Results from these pullout tests are tabulated in Table 4.1.3. 

70 

60 4 

-o 
2 

a 

Straight-smooth, stainless steel fiber 
embedded in non-shrink grout matrix 

60 mm 

90 mm 
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Displacement (mm) 

Figure 4.1.7: Pullout response of straight-smooth, stainless steel fibers embedded in non-shrink grout matrix 

Table 4.1.3: Experimental pullout test results for straight-smooth, stainless steel fibers embedded in non-shrink 

grout matrix 

Fiber Matrix 
Embedded 

Fiber Length 
(mm) 

Ppeak 

(N) 

Pullout Response 

(mm) 
Etotal 

(N-mm) 

15 26.1 (3.9)# 0.013 (0.003) 83 (12) 

Straight-smooth, Non-shrink 30 36.6 (4.6) 0.044 (0.009) 269 (67) 
stainless steel grout 60 39.5 (5.8) 0.148(0.049) 754 (145) 

90 42.5 (5.9) 0.160(0.057) 1560 (240) 

Ppeak - Peak load; S p e a k - Displacement at peak pullout load; E m a i - Total pullout energy 
- Figures in brackets indicate standard deviation 
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4.1.3.1 Influence of Matrix Shrinkage Behavior 

To study the influence of matrix shrinkage on the fiber pullout response, the pullout curves for 

30 mm long straight, smooth fibers are compared in the Figure 4.1.8 for the following two types 

of cementitious matrices: 

i . CSA Type 10 normal strength matrix 

i i . Non-shrink grout matrix 

0 5 10 15 20 25 30 

Displacement (mm) 

Figure 4.1.8: Pullout response of 30 mm long fibers embedded in normal strength matrix (CSA Type 10 cement) 

and in non-shrink grout matrix 

In the figure, it can be noticed that the peak pullout load attained in the case of non-shrink grout 

matrix was much lower in magnitude in comparison to that obtained in the case of CSA Type 10 

normal strength matrix. Also, the displacement at peak pullout load and the total pullout energy 

was lower in the case of non-shrink grout matrix. 

4.1.3.2 Influence of Fiber Length 

It can be seen that increase in fiber length led to an increase in peak pullout load. However, the 

rate of increase in peak pullout load diminished with increase in fiber length. The peak pullout 

load reached an asymptote at very long fiber lengths as seen in Figure 4.1.9. The asymptotic 

value of pullout load obtained in this case (= 43 N) was much lower than that obtained in the 

case of CSA Type 10 normal strength concrete matrix (= 135 N). 
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Fiber embedded length (mm) 

Figure 4.1.9: Embedded fiber length vs. peak pullout load curve for straight-smooth, stainless steel fibers embedded 

in non-shrink grout matrix 

4.1.4 Straight-smooth, Stainless Steel Fibers Embedded in High-Strength Matrix 

The experimental fiber pullout response of straight-smooth, stainless steel fibers embedded in a 

high strength matrix was investigated, and the corresponding results are reported here. The mix 

proportion used was - water : cement: sand : aggregate = 0.35 : 1.00 : 1.50 : 1.75. Cement used 

was of CSA Type 10 specification. The above mix proportion gave an average 28-day 

compressive strength of approximately 69 MPa, as determined by testing five 200 mm x 100 mm 

(j) cylinders. Fibers with one-side embedded lengths equal to 30 mm were tested for pullout. 

Figure 4.1.10 shows the pullout response of the fibers tested. The average pullout curve has also 

been plotted in the same figure (thick line). Results from these pullout tests are tabulated in 

Table 4.1.4. 

Table 4.1.4: Experimental pullout test results for straight-smooth, stainless steel fibers embedded in high strength 

matrix 

Fiber Matrix 

Embedded 

Fiber Length 

(mm) 
Ppeak 

(N) 

Pullout Response 

&peak 

(mm) (N-mm) 

Straight-smooth, 
stainless steel High strength 30 102.80 (9.95) 0.134 (0.038) 1026 (271) 

Ppeak - Peak load; 8peak- Displacement at peak pullout load; £,„,„/- Total pullout energy 
- Figures in brackets indicate standard deviation 
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Figure 4.1.10: Pullout response of straight-smooth, stainless steel fibers embedded in high strength matrix 

4.1.4.1 Influence of Water/Cement Ratio 

To study the influence of water/cement ratio on fiber pullout response, the pullout curves for 30 

mm long straight, smooth fibers are compared in Figure 4.1.11 at the following two 

water/cement ratios: 

i . w/c = 0.50 

i i . w/c = 0.35 

In Figure 4.1.11 it can be seen that the pullout loads in the descending branch of the pullout 

curve at a w/c ratio of 0.35 are greater in comparison to those at a w/c ratio of 0.50. The post-

peak pullout loads are a function of the frictional shear resistance that mobilizes at the fiber-

matrix interface. A superior post-peak descending pullout curve obtained at lower w/c ratio (= 

0.35) implies that the interfacial frictional resistance was greater at this w/c ratio. Autogeneous 

shrinkage of matrix associated with the low w/c ratio matrices is one possible reason that may 

influence the frictional resistance. It must be noted that an enhanced matrix shrinkage leads to 

an increase in fiber-matrix interfacial contact stress and the consequent interfacial frictional 

bond. The physical characteristics of the sliding surfaces between the fiber and the matrix is yet 

another factor that to some extent may influence the interfacial frictional bond. 
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Figure 4.1.11: Pullout response of straight-smooth, stainless steel fibers embedded in normal strength matrix and 

high strength matrix 

4.1.5 Straight-smooth, Stainless Steel Fibers Embedded in Silica-fume Modified High-

Strength Matrix 

The experimental fiber pullout response of straight-smooth, stainless steel fibers embedded in a 

silica-fume modified normal strength matrix was investigated and the corresponding results are 

reported here. The mix proportion used was - water : binder : sand : aggregate = 0.35 : 1.00 : 

1.50 : 1.75. The binder contained a mixture of cement (90% by weight) and silica fume (10% by 

weight). Cement used was of CSA Type 10 specification. The above mix proportion gave an 

average 28-day compressive strength of about 71 MPa, as determined by testing five 200 mm x 

100 mm 0 cylinders. Fibers with one-side embedded lengths equal to 30 mm were tested for 

pullout. Figure 4.1.12 shows the pullout response of the fibers tested. The average pullout curve 

has also been plotted in the same figure (thick line). Results from these pullout tests are 

tabulated in Table 4.1.5. 

Table 4.1.5: Experimental pullout test results for straight-smooth, stainless steel fibers embedded in silica-fume 

modified high strength matrix 

Embedded Pullout Response 

Fiber Matrix Fiber Length Ppeak 8peak Etolal 

(mm) (N) (mm) (N-mm) 

Straight-smooth, 
stainless steel 

Silica fume 
Modified 

High strength 
30 101.9 (4.60)# 0.125 (0.032) 1295 (209) 

Ppeak - Peak load; 8peak- Displacement at peak pullout load; E m a l - Total pullout energy 
* - Figures in brackets indicate standard deviation 
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Figure 4.1.12: Pullout response of straight-smooth, stainless steel fibers embedded in silica fume modified high 

strength matrix 

4.1.5.1 Influence of Silica-fume Modification 

To study the influence of matrix modification by silica-fume on the fiber pullout response, 

pullout curves for 30 mm long straight-smooth, stainless steel fibers pulled out from two 

different types of matrices are compared in Figure 4.1.13. These matrices are: 

i . High strength matrix 

i i . Silica fume modified high strength matrix 

Displacement (mm) 

Figure 4.1.13: Pullout response of straight-smooth, stainless steel fibers embedded in high strength matrix and silica 

fume modified high strength matrix 
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In Figure 4.1.13, it can be seen that the fiber pullout response was superior in the case of the 

silica fume modified high strength matrix. Disparity in the fiber pullout response with the above 

two matrix systems could be the result of one or more of the following factors: chemical nature 

of the interface, shrinkage behavior of the matrix, and the physical characteristics of the sliding 

surfaces during fiber pullout. 

4.1.6 Straight, Smooth Polypropylene Fibers Embedded in Normal Strength Matrix 

The experimental pullout response of straight, smooth polypropylene fibers embedded in a 

normal strength matrix was investigated and the corresponding results are reported here. The 

mix proportion used was - water : cement: sand : aggregate = 0.5 : 1.0 : 2.5 : 2.0. Cement used 

was of CSA Type 10 specification. The above mix proportion gave an average 28-day 

compressive strength of about 36 MPa, as determined by testing five 200 mm x 100 mm 0 

cylinders. Fibers with embedded lengths equal to 5 mm, 15 mm, 30 mm, and 60 rnm on both 

sides of the crack were chosen, and for each fiber length, five to six fibers were tested for 

pullout. Figure 4.1.14 shows the pullout response of fibers tested. The average pullout curves 

have also been plotted in the same figure (thick lines). Results from these pullout tests are 

tabulated in Table 4.1.6. 

Table 4.1.6: Experimental pullout test results for straight, smooth polypropylene fibers embedded in normal 

strength matrix 

Fiber Matrix 

Embedded 

Fiber Length 

(mm) 

D 
r peak 

(N) 

Pullout Response 

(mm) (N-mm) 

5 12.4 (2.00)* 0.047.(0.02) 28 (3) 
Straight, smooth 

Normal 15 14.9(1.25) 0.300 (0.24) 139 (59) 
polypropylene strength 30 17.6(1.00) 1.251 (0.89) 306 (46) 

60 22.3 (2.70) 2.983(1.46) 894 (87) 

Ppeak - Peak load; S p e a k - Displacement at peak pullout load; E t o t a l - Total pullout energy 
- Figures in brackets indicate standard deviation 
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Figure 4.1.14: Pullout response of straight, smooth polypropylene fibers embedded in normal strength matrix 

4.1.6.1 Influence of Fiber Length 

It can be seen that increase in fiber length led to an increase in peak pullout loads. However, the 

rate of increase in peak pullout load diminished with increase in fiber length. The peak pullout 

load reached an asymptote at longer fiber lengths as shown in the Figure 4.1.15. Also, it can be 

noticed that for any given fiber length, the peak pullout load attained for polypropylene fiber was 

much lower in comparison to that for steel fiber (compare Figure 4.1.3 and Figure 4.1.15). 

Furthermore, for polypropylene fibers, the asymptotic value of pullout stress was reached at a 

much smaller fiber length in comparison to that for steel fibers. 
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Figure 4.1.15: Embedded fiber length vs. peak pullout load curve for straight, smooth polypropylene fibers 

4.2 Conclusions 

• Increase in fiber length led to an increase in peak pullout load. However, at long fiber 

lengths, the peak pullout load reached an asymptote. 

• For a given fiber length, an increase in fiber surface roughness increased the peak pullout 

load. However, disparity between the peak pullout load for a smooth steel fiber and a rough 

steel fiber decreased with increase in fiber length. The asymptotic value of peak pullout load 

attained at long fiber lengths in the case of rough steel fiber was very similar to that obtained 

for smooth steel fiber. The displacement corresponding to peak pullout load and the total 

energy absorption were also found to increase with increase in surface roughness. 

• For a given fiber length, peak pullout loads decreased substantially when steel fibers were 

pulled out from non-shrink grout matrix. The observed decrease in peak pullout load is 

likely related to the shrinkage behavior of the non-shrink grout matrix. 

• The post-peak pullout response for steel fibers embedded in high-strength matrix was 

superior in comparison to that for steel fibers embedded in normal strength matrix. This 

observation implied that frictional resistance in the former was greater. 

97 



For any given fiber length, the peak pullout load attained for polypropylene fiber was much 

lower in comparison to that for steel fiber. Also, for polypropylene fibers, the asymptotic 

value of pullout stress was reached at a much smaller fiber length in comparison to that for 

steel fibers. 
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Chapter 5 

Progressive Debonding Model for Fiber Pullout 

5.0 Introduction 
Both one-sided and two-sided pullout specimens are commonly used to investigate the fiber-

matrix interfacial properties [108]. In a two-sided pullout test specimen, a matrix crack is 

simulated at the center of the specimen. A single fiber embedded on both sides of the simulated 

crack provides resistance to the crack opening. Figure 5.0.1 depicts one side of a two-sided 

pullout test specimen. A fiber of radius a and length 2L is embedded at the center of the matrix 

coaxial cylinder of radius b. The gripping fixtures of the testing machine hold the matrix coaxial 

cylinders on each side of the simulated crack, and the specimen is subjected to tensile stress in 

the axial direction (normally at a constant rate of displacement). The pullout load versus 

displacement response is recorded to yield the pullout curve. 

Simulated surface 

Figure 5.0.1: Single fiber embedded in concrete matrix. Figure depicts one side of a two-sided 
pullout test specimen 

Interpretation of pullout curves is commonly carried out using the analytical models based on the 

shear-lag analysis [52-78]. The shear-lag analysis assumes that the extensional stresses in the 

matrix are small relative to those in the fiber and that the shear stresses in the fiber are small 
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compared to those in the matrix [109]. Some important shear-lag models [53-56,61,67,68] that 

are widely used to study the interfacial debonding phenomena in the problem of fiber pullout 

were reviewed in Chapter 2. Table 5.0.1 shows the important features captured by these models. 

A brief discussion on these models follows. 

Table 5.0.1: Various parameters taken into consideration in the theoretical fiber pullout models 

Parameter 
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Adhesional shear 
bond V V V V 

Progressive 
debonding X V X V V 

Dependence of 
debond stress on 
fiber length 

X X X X 

Poisson's effect 

(Non-constant 
interfacial frictional 
shear bond) 

X X V X X 

Evolution of 
interfacial properties 
during pullout 

X X X X x- X 

x - not considered V - considered 

Models by Greszczuk [53], Takaku and Arridge [54], Lawrence [55], Gopalaratnam and Shah 

[56], Naamur et al. [61] and Hsueh [67,68] acknowledge the existence of the adhesional shear 

bond at the bonded interface. Furthermore, these models use a strength based criterion to govern 

interfacial debonding (i.e., interfacial debonding is assumed to occur when the interfacial shear 

stress equals the adhsesional shear bond strength of the interface). Greszczuk [53] was the first 

to derive an interfacial debonding criterion using the shear-lag theory. Progressive debonding 

was not considered in his analysis, since he postulated that catastrophic debonding would occur 

with the initiation of debonding. Thus, his solution did not consider the stabilization of the 

debonding process that may take place due to the existence of frictional shear bond at the 

debonded interface. For the first time, existence of frictional shear bond at the debonded 

interface was included in the analysis by Lawrence [55]. Assuming existence of adhesional 
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bonded interface and a constant frictional shear bond at the debonded interface, Lawrence [55] 

derived a solution for progressive debonding. Later, Gopalaratnam and Shah [56] and Nammur 

et al. [61] also developed solutions for progressive debonding with an assumption of a constant 

frictional shear bond at the debonded interface. Note that the magnitude of the frictional shear 

bond at the debonded interface is actually dependent upon the interfacial contact stress and the 

coefficient of friction of the sliding surfaces. Since the interfacial contact stress varies with the 

fiber axial force and coefficient of friction may vary with the sliding distance, it is not necessary 

that the frictional shear bond remain constant over the debonded region. Therefore, the 

assumption of a constant frictional shear bond constitutes a major limitation of the above-

mentioned progressive debonding models. 

It is also important to include the influence of Poisson's contraction of the fiber in the analysis. 

This is because Poisson's contraction of the fiber reduces the net contact stress at the interface 

and, in turn, the frictional shear bond. Models by Lawrence [55], Gopalaratnam and Shah [56], 

and Naamur et al. [61] do not include the influence of Poisson's effect in the analysis. Neither 

do these models explicitly include interfacial properties such as coefficient of friction and 

interfacial contact stress in the analysis. These constitute major limitations of the above 

mentioned models. It must be noted that the dependence of interfacial frictional bond on the 

interfacial contact stress and the coefficient of friction warrants explicit inclusions of these 

parameters into the analysis. Only, the models by Takaku and Arridge [54] and Hsueh [67,68] 

include both parameters in the analysis. The model by Takaku and Arridge [54] was the first to 

consider the influence of Poisson's contraction of fiber in the analysis. However, these aspects 

were considered in the analysis only after the occurrence of complete interfacial debonding (i.e., 

in the fiber pullout case as explained later). Thus, the influence of Poisson's contraction during 

progressive debonding remained unaccounted, which constituted a major limitation of this 

model. The model by Hsueh [54] considers Poisson's effect during progressive debonding, 

however the analysis and the closed-form solutions presented are complex to use. 

During the process of fiber pullout, considerable matrix wear close to the interface is expected to 

occur. In such a scenario, the interfacial coefficient of friction would diminish with increase in 

pullout distance. Therefore, to objectively characterize the fiber-matrix interface, variation in the 

interfacial coefficient of friction with pullout distance must be taken into consideration. 
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Surprisingly, the existing theoretical fiber pullout models have not addressed this important 

aspect. In light of this fact, it may be possible to explain why the predictions obtained from the 

existing pullout models deviate considerably from the experimental results. To appreciate this 

fact profoundly, in what follows, predictions from the pullout models by Takaku and Arridge 

[54], Gopalaratnam and Shah [56] and Hsueh [67,68] are compared with the experimental 

results. Figure 5.0.2 compares the experimental pullout curve for a steel fiber reported by 

Gopalaratnam and Shah [56] with the predicted responses using the models mentioned above. 

Note that the fiber diameter was 0.25 mm and the fiber length was 12.5 mm. For making 

predictions using the models by Takaku and Arridge [54]1 and Hsueh [67,68]2, the fiber length 

was assumed to be 12 mm, since the source codes were written to accept only integer values for 

fiber length. In the figure it can be seen that all three theoretical predictions deviate considerably 

from the experimental curve. The reason for such wide disparity could possibly be attributed to 

the fact that these models disregard the evolution of interfacial properties during the pullout 

process. 

0 3 6 9 12 15 

Displacemert (rrrrj 

Figure 5.0.2: A comparison between the experimental pullout response for a steel fiber with the predicted responses 

using the existing pullout models. The experimental pullout response is by Naaman and Shah [142] 

1 The source code for Takaku and Arridge model [54] is attached in Appendix A. 
2 The source code for Hsueh model [67,68] is attached in Appendix B. 
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The above discussion brings to attention the inadequacy of the existing fiber pullout models, and 

also the fact that a need exists for a model that realistically captures the physical phenomenon 

occurring during the process of fiber pullout. A new fiber pullout model is proposed below that 

considers the evolution of the interfacial coefficient of friction during the process of fiber 

pullout. Additionally, the proposed model takes into account the following aspects that are either 

considered or ignored in the earlier models: 

• Dependence of the initial debonding stress on the embedded fiber length. 

• Radial dependence of the axial stress in the matrix. 

• Explicit inclusion of the interfacial properties such as the contact stress and the coefficient of 

friction. 

• Poisson's effect (in the event of a debonded fiber). 

5.1 The Proposed Progressive Debonding Model 

Consider a fiber of radius a and length L embedded at the center of the matrix coaxial cylinder 

with inner radius a and outer radius b, as shown in Figure 5.0.1. A cylindrical coordinate system 

is selected so that the z-axis corresponds to the fiber axial direction and the r-axis corresponds to 

the radial direction. The embedded end of the fiber is located at z=0, and the other end where 

the fiber exits the matrix is located at z=L. The exit-end of the fiber (i.e., at z=L) is subjected to 

the tensile stress, a0, as shown in Figure 5.0.1. Both fiber and matrix are assumed to be elastic. 

Transfer of stress between the fiber and the matrix is via interfacial shear stresses. The entire 

pullout process can be divided into three stages [106], as shown in Figure 5.1.1: 

i . Stage 1 - Fiber completely bonded along the length of the fiber: During stage 1, fiber and 

matrix displacements at the interface remain compatible, and the resistance to fiber 

pullout is derived from the adhesional shear stresses at the interface. At the end of stage 

1, debonding of the interface is initiated at the location where the fiber enters the matrix. 

i i . Stage 2 - Fiber partially bonded along its embedded length: During stage 2, progressive 

debonding of the interface is initiated at the location where the fiber exits the matrix. The 
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adhesional shear stresses at the bonded interface and the frictional shear stresses at the 

debonded interface resist the fiber pullout. At the end of stage 2, the fiber is completely 

debonded along its embedded length. 

i i i . Stage 3 - Fiber completely debonded over its embedded length and pulling out: At the 

end of stage 2, pullout of the fiber is initiated, and thereafter, the interfacial frictional 

shear stresses resist the pullout of fiber from the matrix. 

Analysis for these three stages of the pullout process is presented below. 

Perfect bond 

Debonding 

s///s/////////ss 

Perfect bond 

(i) Perfect bond 
(ii) Debonding 

mm 

^ M „ > j 

Debonded interface sVr'j 

(iii) Pull-out 

Figure 5.1.1: The principle of a single fiber pullout test - The three stages of pullout process (Stang and Shah [106]) 

5.1.1 Stage 1: Fiber Completely Bonded Along Its Entire Embedded Length 

Consider the case where the fiber is completely bonded to the matrix (i.e., fiber and matrix 

displacements remain compatible at the interface) over its entire embedded length as shown in 

Figure 5.1.2. G0 represents the fiber pullout stress applied at the emerging fiber end. The 

essence of the formulation presented below is similar to the one presented earlier by Hsueh 

[67,68] in light of the fact that the analysis takes into consideration the radial dependence of the 

axial stresses in the matrix. The models by Greszczuk [53], Lawrence [55], Takaku and Arridge 

[54], Nammur et al. [61] and Gopalaratnam and Shah [56] do not consider the radial dependence 

of the axial stress in the matrix. 
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Assuming that the shear force in the matrix decreases linearly in the radial direction with a 

maximum at the fiber-matrix interface (i.e., at r=a) and zero at the free surface of the coaxial 

cylinder (i.e., at r=b), the matrix shear stress, xm, at any radial distance, r, can be expressed as: 

—T a for r > b 5.1 
r 

b-r 

•a 

where xa represents the shear stress at the interface, i.e., at r=a. The above equation satisfies the 

equilibrium in the axial direction, approximately, when the fiber diameter, a, is small in 

comparison to the radial dimension, b and the axial stress gradient in the matrix is small. In the 

models by Gopalaratnam and Shah [56] and Hsueh [57], the formulation of the stress transfer 

problem is based on the assumption that the shear stress in the matrix varies inversely with the 

radial distance (with a maximum at the interface). In the model by Greszczuk [53], the problem 

formulation is based on the shear deformation of a thin layer of interface. Based on the earlier 

work by Cox [52], the models by Lawrence [55] and Takaku and Arridge [54] use a rather 

awakard scheme to define the shear deformation of the matrix material. 

a0 

matrix displacement 
Wb profile 

Tm=0 

Z=0 z=L -> z 

Figure 5.1.2: Fiber completely bonded over its embedded length 
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If wm represents the displacement of matrix in the axial direction, the corresponding shear stress 

in the matrix (ignoring the radial displacements) is given by: 

E dw 
f = - - 5.2 

m 2 (1+0 dr 

Combining Equations 5.1 and 5.2, and integrating: 

b wb 

a C(b-r) , Em t 
a- -dr = s dwn 

-a)} r 2(l + vm)J 

T 
IF-a) 

5.3 

where wa and Wb are the axial displacement in the matrix at r=a and r=b, respectively. Solving 

the above equation, the interfacial shear stress, Ta, can be written as: 

T„ = -
E m ( W b ~ W a ) 

2(l + vm)a 
(b-a) 

log 
\ a J 

-1 
5.4 

Combining 5.1 and 5.4, the shear stress in the matrix, zm, at any radial distance, r, is given by: 

Em(wb-wa)(b-r) 

2(l + um)r b\og -(b-a) 
5.5 

Combining Equations 5.2 and 5.5 and integrating, the axial displacement in the matrix, vvm, can 

be written as: 

w = w +-
m a 

wb-wa 

Mog (b\ 

\ a j 
-(b-a) 

felog 
\ a J 

+ a-r 5.6 
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Ignoring the Poisson's effect (i.e., treating the problem as one-dimensional), the axial stress in 

the matrix, am, (in the z direction) is given by: 

a =£, 
dw„ 

m m dz 
5.7 

Combining Equations 5.6 and 5.7, the axial stress in the matrix at any radial distance, r, is given 

by: 

CT"=i7CT'+ 

Mog -(b-a) 
b log + a-r 5.8 

The above equation describes the radial dependence of the axial stress in the matrix. As 

mentioned earlier, the models presented in the References 53, 55, 54, 61 56 do not consider the 

radial dependence of the axial stress in the matrix. 

The condition for mechanical equilibrium between the external applied stress, o"0, and the 

internal stress distribution at any section can be written as: 

b 

° f + — \ < J m r d r = °0 5.9 

Combining Equations 5.8 and 5.9, the axial stress in the matrix, am=b is obtained as: 

y + a-yqa 

m 5.10 

where, 
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a = 

a 

1 
a2 Mog -(b-a) 

^ l o g f ^ ^ - a 2 ) 
\ a J 

+ 
a(b2-a2) (b3-a3) 

Now, considering the equilibrium between the axial stress in the fiber and the interfacial shear 

stress: 

d<Jf = 2TA 

dz a 
5.11 

Combining Equations 5.4 and 5.11: 

dof 

~dz 
= -6 Em(wb-wa) 5.12 

where 

d = \a2(l + vm) 
(b-a) 

log 
- i i - i 

Differentiating the above equation: 

d2a 

dz 
T~--0 E m 

dwh dwn 

dz dz 5.13 
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From which we obtain: 

d2a 

dz7 

L = SE„ 5.14 

Substituting for Oi, from Equation 5.10 in Equation 5.14: 

d1a] 

~de 

Q 
— ( 7 + a - yqa) + ad 
m 

<?f - —<yn 

e_ 

ri 
5.15 

The above equation is a second order linear differential equation and it dictates the stress transfer 

between the fiber and the matrix for a bonded interface. 

5.1.1.1 Fiber Axial Stress Distribution, 07 

The solution to the above differential equation represents the axial stress distribution over the 

embedded fiber length (z ^L) prior to debonding and at initiation of debonding. With boundary 

conditions, oy= oQ at z=L and 07= 0 at z=0, the solution of the differential equation becomes: 

7 + a - yna + an 

,sinh(/fe) sinh[j3(L-z)] 
(a-yna + an) , ) H J - y — r ) T^ u + y 

sinh( pL) sinh(pL) 
5.16 

where, fl - 6_ 
yn 

(y + a-yqa)+ad 
1/2 

For any fiber pullout stress, <70, that is less than or equal to the initial fiber debonding stress, ad, 

Equation 5.16 represents the fiber axial stress distribution, 07. 

5.1.1.2 Interfacial Shear Stress Distribution, ra 

The interfacial shear stress, za distribution can be obtained by combining Equations 5.11 and 

5.16: 
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-apo0 

2 ( 7 + a - yncc + an) 
.cosh(pz) cosh[J8(L-z)] ' 

sinh(pX) sinh(pjL) 
5.17 

For any fiber pullout stress, rj c, that is less than or equal to the initial fiber debonding stress, Od, 

Equation 5.17 represents the interfacial shear stress distribution, xa along the embedded fiber 

length. 

5.1.1.3 Fiber Displacement, Ub 

Fiber displacements, Ub, when the fiber is completely bonded over its embedded length is 

obtained by integrating the strains along the fiber length: 

Ef(y + a- yna + afj) 

L 

JI 
, .sinh(jfe) s inh[p\L-z)] 
(a-yna + ar!) , , H „ r [ - y — r t t n T X

 J + 7 
sinh(pL) sinh(/JL) 

dz 5.18 

Solving: 

Ef(y + a- yna + an) 
(a - yna + an • 

. cosh( BL) -1 , 
•r) ^-—t— + %, 

/Jsinh(p7_) ' 
5.19 

For a two-sided pullout test, fiber displacement is given by: 

U„ 
2 o \ 

EAy + a-yna + an) 
. , cosh(pX)- l ., 
(a-yna + an-y) . V* ' +yL 

p sinh( pL) 
5.20 

where, the total fiber length is equal to 2L and embedded fiber length on each side of the pullout 

specimen is equal to L. 
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5.1.1.4 Debonding Criterion and Initial Debonding Stress, Od 

Using the maximum shear stress as the debonding criterion, the applied pullout stress, Od, 

required to initiate debonding can be obtained from Equation 5.17 by putting Ta=rs at z=L 

(Ts=shear strength of the interface). Thus, the debonding criterion can be written as: 

2rs (y + cc- yncc + an) (a - yncc + an) cosh(/?L) + y 
sinh(/?L) 

-1-1 

5.21 

Thus, Od, in the above equation represents the fiber pullout stress, o0, at which interfacial 

debonding initiates. The above equation also depicts dependence of the initial debonding stress 

on fiber length. On plotting Od as a function of L, it can be seen that with increase in the fiber 

length, the initial debonding stress increases and attains an asymptotic value at long fiber lengths. 

Some earlier works on the problem of fiber pullout [54,55,68,93,176] also demonstrate the 

dependence of the initial debonding stress on the embedded fiber length. 
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5.1.2 Stage 2: Fiber Partially Debonded Along Its Embedded Length 
Takaku and Arridge [54] assume fiber and matrix to be held together in a shrink-fit configuration 

[224] to derive a differential equation of stress transfer for a debonded interface. However, they 

reserve the application of this equation to the case of a completely debonded fiber (i.e., stage 3). 

In the following, the application of their analysis is extended to the case of a partially debonded 

fiber. 

After the inception of interfacial debonding, a debonded zone of length ld is created as shown in 

Figure 5.1.3. During partial debonding, fiber pullout is resisted by the adhesional shear stresses 

acting at the bonded interface of length L-ld, and the frictional shear stresses acting at the 

debonded interface of length ld. The interfacial frictional shear stress at the debonded zone is 

mobilized because of the existence of the interfacial contact pressure resulting due to matrix 

shrinkage [1,106]. The fiber axial stress, 07, at the junction of the bonded and the debonded zone 

is termed here as the progressive debonding stress, <yd, and as a first approximation, od for any 

debond length, ld, can be obtained by replacing L by L-ld in Equation 5.21. 

'o 'o 

Id 

z=0 z=L-ld z=L 

Figure 5.1.3: Fiber partially debonded along its embedded length 

07+ do/ 

Figure 5.1.4: Free body diagram for a fiber element of length dz 
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Over the debonded interface, transfer of stress between fiber and encapsulating matrix takes 

place through interfacial frictional shear stresses, Xf. Equilibrium between the fiber axial stress, 

07, and the interfacial frictional shear stress, X/, is given by (Figure 5.1.4):' 

da f f 
dz 

5.22 
a 

From Coulomb's Law, we obtain: 

da f f 2^o- cp 

dz 
5.23 

a a 

where fi is the interfacial coefficient of friction, and acp is the contact pressure between fiber and 

matrix at the interface after the fiber has undergone Poisson's contraction. 

In a shrink-fit configuration [224], the radial fiber-matrix misfit mobilizes radial contact pressure 

at the fiber-matrix interface. The fiber-matrix misfit is the difference between the fiber radius 

and the matrix hole radius after shrinkage in the absence of fiber. The fiber-matrix misfit is also 

equal to the sum of the increase in the inner radius of the matrix cylinder and the decrease in the 

radius of the fiber in the presence of radial contact pressure. For an unstressed fiber, the 

relationship between the interfacial contact pressure, ac, and the radial fiber-matrix misfit, 8r, can 

be written as [224]: 

Due to the Poisson's effect, the radial fiber-matrix misfit and the interfacial contact pressure 

decreases when fiber is stressed in the axial direction. For an axially stressed fiber, reduction in 

fiber-matrix misfit is given by: 

5.24 

5.25 
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where 07 is the fiber axial stress. The resultant contact pressure, <jcp, at the interface can be 

obtained by substituting Sr-Aa for 8r and a-Aa (=a) for a in the Equation 5.24: 

(Sr-Aa) 
cp 

a a2+b2 

b2-a7 
+ t>„ 

5.26 

Ef

 1 f i 

Substituting for Aa in the above equation: 

a 
E~ 

a2+b2 

b —a 

• + -
vfaf 

+ ^[l-vf) ?L 
Ef

 / J E„ 
a2+b2 

5.27 

+ 

Thus, when tensile stress in the fiber is 07, the resultant contact pressure, ocp, at the interface is 

given by: 

a =<7 + (0(7 , 
cp c / 

where co = 

5.28 

a2+b2 

0 —a 

Since Takaku and Arridge [54] developed their model for stiff fibers, the constant co was defined 

differently in their model. 

Substituting for ocp in the equation of stress transfer (Equation 5.23): 

da f _ 2/f 
dz a 

[ac+(oof] 5.29 
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Rearranging: 

1 +—COG, =• 
dz 

2H 
a 

5.30 

The above equation is a first order linear differential equation, and it dictates stress transfer 

between fiber and matrix over a debonded interface. This equation was first derived by Takaku 

and Arridge [54], and was applied to the case of a completely debonded fiber. In the following, 

the application of this equation is extended to the case of a partially debonded fiber. 

5.1.2.1 Fiber Axial Stress Distribution, 07 

The solution of the above differential equation represents the axial stress, 07 over the debonded 

fiber length (i.e., L > z > L-ld). With the boundary condition, Of=<7d at z-L-U, the solution is 

obtained as: 

' co CO 

2a>fi(L-ld) -lajiz 

e a. e a 5.31 

The fiber axial stress, 07, along the bonded region (z <L-U) can be obtained by replacing L by L-

ld and <y0 by in Equation 5.16. 

5.1.2.2 Interfacial Frictional Shear Stress Distribution, if 

From Coulomb's law, the distribution of interfacial frictional shear stress, T/over the debonded 

fiber length can be obtained as: 

rf =H<ycp=n((jc+CQCJf) 5.32 

The above equation depicts that the dependence of interfacial frictional shear stress, Tf, on fiber 

axial stress, 07. Substituting for 07, the interfacial frictional shear stress, 17 over the debonded 

region (L >z> L-ld) is obtained as: 
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T , = aco od +— e 
"I 2<QLl(L-ld) -2CQLtZ 

a e a 5.33 
CO 

The interfacial shear stress, xa, along the bonded region (z <L-ld) can be obtained by replacing L 
by L-ld and o0 by od in Equation 5.17. 

5.1.2.3 Pullout Stress versus Debond Length Relationship, a0 vs. U 

The relationship between the fiber pullout stress, a0, and the debond length, ld, is obtained by 

using Equation 5.31 at z=L: 

Note that the fiber pullout stress, a0, is equal to the initial debonding stress, Gd, when the debond 

length is equal to zero, i.e., 0"0=Cv when ld=0. 

5.1.2.4 Fiber Displacement versus Debond Length Relationship, UPd vs. U 

The total fiber displacement, Upd, can be obtained by integrating the fiber strains along the 

embedded fiber length: 

a. a 5.34 
co 

Ef (7 + a - yqcc + an) -7 
s inh[ /? (L- / , - z ) ] 

smh[fi(L-ld)] + y\dz 

- | 2a>n(L-ld) -2cofiz 

dz 5.35 
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Solving: 

uPd = 
Ef(y + a- yna + an) 

cosh[/3(L-/,)l-l 
(a-yna + an-y) ^ + r ( L - / . ) 

n Bsmh[j3(L-ld)] d ) 

a 
Efco 2Ef\ico 

°c_ 

CO 

-2/i<u/rf 

5.36 

and, for a two-sided pullout problem, the total fiber displacement, Upd, assuming debonding 

occurs symmetrically, can be derived as: 

2aA 

Ef(y + a- yna + an) 

cosh[fi(L-ld)]-l t T , ' 
(a-yna + an-y) n , ^ r _ ' ,J

 x 1 +y(L-ld) 
Bsmh[j3(L-ld)] 

2a °c_ 

co 
-1 5.37 

Efco 2Ef/icol 

where the total fiber length is equal to 2L, and the embedded length on each side of the pullout 

specimen is equal to L. 

5.1.2.5 Bond and Frictional Components of Pullout Stress, a0,bond and o0jric 

At any debond length Id, the fiber pullout stress, o0, is a summation of two components - the one 

arising due to the adhesional shear bond (o0ibond) and the other arising due to the frictional shear 

bond ((Jofric)- That is: 

a = a u J +cj f. 
o o,bond o,fnc 

5.38 

From the above solution, the two components of pullout stress are obtained as: 

® o.bond ~ ° d > o.fric -1 ° d + 
c 

CO 
5.39 
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5.1.2.6 Catastrophic Debonding 
The interfacial debonding process becomes catastrophic when the fiber pullout stress, a0 begins 

to drop with an increase in debond length, ld. Thus, the condition for catastrophic debonding can 

be written as: 

dld 

The above condition will be satisfied when the difference between the increase in the frictional 

component of the pullout stress (i.e., o"0/n-c) and the decrease in the adhesional component of the 

pullout stress (i.e., o0,bond) with increase in ld is equal to or less than zero. That is: 

dao,fric < 
dGo,bond 

dld dld 

5.41 

Let the debond length at which the debonding process turns catastrophic be represented by ldxat. 

With the mechanical properties of constituent materials, interfacial properties, fiber length and 

fiber radius all known, the length of debond zone, h, at which the debonding process will turn 

catastrophic can be obtained by satisfying the equality expressed by the Equation 5.40. 

Substituting for o0 in Equation 5.40, we obtain the slope of <y0 vs. ld curve as: 

d0p 

dh 
2/IGXC, /3bc4 + p\jc 3 1\iac 

5.42 
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where 

ap 

x2 =(a-yna + ari)cosh[P(L-ld)]+Y 

x3=(a- yna + ct77)sinh[/J(L - ld)] 

ap 

At the instant that catastrophic debonding occurs, the slope of the a0 vs. Id curve will be zero. 

Therefore, the debond length, ld,cat, at which debonding process becomes catastrophic can be 

obtained by equating the right hand side of the Equation 5.42 to zero. The peak pullout load and 

the fiber displacement corresponding to peak pullout load can be obtained by substituting the 

calculated value of catastrophic debond length, ld,cat, into Equation 5.34 and Equation 5.37, 

respectively. 

5.1.3 Stage 3: Fiber Completely Debonded and Pulling Out 
Consider the case when the fiber is completely debonded along its embedded length, and let pd 

be the rigid body displacement of the fiber as shown in Figure 5.1.5. In this case, transfer of 

stress between the fiber and the encapsulating matrix takes place entirely through the interfacial 

frictional shear bond. The governing differential equation of stress transfer for the pullout case 

has been derived by Takaku and Arridge [54]: 

daf 2// 2n 
—— H—— coo f =——oc 5.43 

dz a a 

Solving this equation, Takaku and Arridge [54] derived a solution for the fiber axial stress 

distribution, 07. However, their solution implicitly assumed that the coefficient of friction 

remain constant during the fiber pullout process (i.e., \i is independent of pd). This limitation is 
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relaxed in the analysis proposed below. Based on the energy considerations, a procedure to 

calibrate interfacial properties is proposed in the next section; this procedure effectively 

describes the dependence of the coefficient of friction, p on the fiber pullout distance, pd. 

The work of Takaku and Arridge [54] is further extended here and closed-form solutions are 

derived for the interfacial frictional shear stress distribution, T/, the fiber pullout stress, o~0, and 

the fiber displacement, U . 

z=L-pd 

Pullout distance 

Figure 5.1.5: Fiber completely debonded over its length and pulling out 

5.1.3.1 Fiber Axial Stress Distribution, 07 

The solution of the above differential equation (Equation 5.43) represents the axial stress along 

the embedded length of a completely debonded fiber. With the boundary condition, 07 = 0 at 

z=0, the solution is obtained as: 

where 0 < z ^L-pj. In the above equation note that ji is a function of pd. 
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5.1.3.2 Interfacial Frictional Shear Stress Distribution, Xf 

Following Coulomb's law, the interfacial frictional shear stress, Xf, over the embedded length can 

be obtained as follows: 

xf =iiocp=n{oc+coaf) 5.45 

Substituting for 07, the interfacial frictional shear stress, Xfis obtained as: 

H<Jce a 5.46 

where 0 < z ^L-pd-

In the above equation note that fi is a function of pd- This equation depicts that interfacial 

frictional shear stress varies along the embedded length of fiber, with a minimum at the exit fiber 

end and a maximum at the embedded fiber end. It can also be noted that during stage 2, when 

ld=L, Equation 5.33 reduces to Equation 5.46. 

5.1.3.3 Fiber Pullout Stress, a0 

The relationship between fiber pullout stress, a0, and pullout distance, pd, can be obtained from 

Equation 5.44: 

The fiber pullout stress, o0, at pd=0, termed here as the initial frictional pullout stress, <7if, can be 

written as: 

-2a)ii(L-pd) 

\-e a 5.47 

co 

-2cofiL 

1-e a 5.48 
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In the above equations note that \i is a function of pd. 

5.1.3.4 Fiber Displacement, U 

The total fiber displacement, UPd, is obtained by integrating the fiber strains along the total fiber 

length: 

U

Pd=P«- Efco 

-ICOfiZ 

l-e a dz--^- I I l - e 
Efco 

L-Pd 

L 

-2con(L-pd) 

dz 5.49 

Solving: 

U P d =Pd~ Efco 

-2/ico(L-pd) -2n<a(.L-pd) ' 

( i - p ' ) + ^ r ' _ 1 \ + p ' r e 
5.50 

For a two-sided pullout problem, the fiber displacement, U , is given by: 

UD =Pd~ 
2c, 
Efco 

f -2tm(L-pd) 1 f -2tio)(L-pd)" 

5.51 

where total fiber length is 2L and embedded length of fiber on each side of the pullout specimen 
is L. In the above equations note that ji is a function of pd-

5.1.4 Calibration of Interfacial Parameters - cc, \i and ts 

Interfacial contact stress, cc: When the fiber is axially loaded, the resultant contact stress, ccp, 

is given by Equation 5.28: 

ccp =cc+cocf 
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where 07 is the axial fiber stress, ac is the interfacial contact stress for an unloaded fiber, and co is 

a constant. This equation depicts that with an increase in axial fiber stress the interfacial contact 

stress decreases due to Poisson's effect (note that ac is negative). For fibers with long lengths, a 

critical value of fiber axial stress will be reached such that the contact between fiber and matrix 

will disappear and the resultant contact stress, <jcp, will become zero. When this happens, the 

interfacial debonding will continue without requiring any increase in the applied pullout stress. 

From the asymptotic value of fiber pullout stress, a0 = cr0,asymptotic, obtained from the peak pullout 

stress verses embedded fiber length plot, the interfacial contact stress, o~c, can be calculated as: 

Interfacial coefficient of friction, fi: During the process of fiber pullout, gradual abrasion and 

wear of the interface layer takes place. As a consequence, the interfacial coefficient of friction is 

expected to decrease with increase in the pullout displacement. Based on the energy 

considerations of the problem of fiber pullout, a method is proposed below to determine 

variation in coefficient of friction as a function of fiber pullout displacement. Work of fiber 

pullout, Wp, when fiber pullout displacement increases from pdl to pd2 can be written as: 

where oa is the fiber pullout stress given by Equation 5.47. Substituting for o0 in Equation 5.53 

we obtain: 

5.53 

Pdi 

5.54 

Pdi 
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Within a small displacement domain (pdl to pd2), the coefficient of friction, ji, can be assumed to 

remain constant, and the above equation can be solved as: 

7Z»2cr 

CO 

-2a>liL 

Pdl ~ Pdl 2copi 
, a _ e a 5.55 

To obtain Wp from the experimental pullout curve, the relationship between the total pullout 

displacement and the rigid body displacement of the fiber must be known. As a first 

approximation, the rigid body displacement of the fiber, pd is taken equal to A-Apeak, where, A is 

the total pullout displacement, and Apeak is the total pullout displacement corresponding to the 

peak pullout load. With Wp and ac known, the coefficient of friction, fi, can be calculated from 

the above non-linear equation. This equation depicts the dependence of coefficient of friction, fi, 

on the pullout displacement, pd. 

Adhesional bond strength, xs: For very small fiber lengths, the peak pullout stress is governed by 

the Equation 5.21. Differentiating Equation 5.21 with respect to fiber embedded length we 

obtain: 

dad _-2Ts(y + a-yncc + ari) \[(a-yna + ar])cosh(RL) + y]pcosh(i3L) 
dL af3 \ [(a-yr/a + arj)cosh(/?L)-i-y]2 

5.56 

P(a - yqa + ar]) sinh 2 (/3L) 
[(a - yna + ar]) cosh( f5L) + y] 2 

At L = 0 the above equation simplifies to: 

2T„ 

dL JL-O a 
5.57 

Rearranging the above equation we obtain: 

a dod 

dL 
5.58 

JL=0 
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Thus, substituting the initial slope of the experimental maximum pullout stress versus embedded 

fiber length plot in the above equation, the interfacial adhesional shear strength, xs, can be 

calculated. 

5.2 Conclusions 

• An analytical model for the problem of fiber pullout is proposed in this chapter. The 

proposed model is unique because of its ability to take into consideration the evolution of the 

interfacial properties during the pullout process. The proposed model captures the essential 

features of the pullout process, including the progressive interfacial debonding and the 

Poisson's effect in the event of a debonded fiber. Analysis is divided into three stages, and 

for the each stage, closed-form solutions are derived for the fiber axial load distribution, the 

interfacial shear stress distribution and the fiber displacement. Complete pullout response 

can be predicted using the proposed progressive debonding model. 

• During stage 1, fiber and matrix displacements at the interface remain compatible, and the 

resistance to fiber pullout is derived from the adhesional shear stresses mobilized at the 

interface. Closed-form solutions are derived for the fiber axial stress distribution and the 

interfacial shear stress distribution along the fiber length, the fiber displacement, and the 

initial debonding stress (i.e., the fiber pullout stress required to initiate interfacial debonding). 

The closed-form solution for the initial debonding stress is derived based on a maximum 

shear stress criterion. This solution indicates that, among other factors, the initial debonding 

stress depends upon fiber length and fiber elastic properties. At the end of stage 1, interfacial 

debonding initiates at the location where the fiber enters the matrix. 

• During stage 2, the fiber is partially bonded along its embedded length. The adhesional shear 

stresses at the bonded interface and the frictional shear stresses at the debonded interface 

resist the fiber pullout. The influence of Poisson's contraction of fiber is taken into 

consideration in the analysis. It is shown that for any debond length, the fiber pullout stress 

is a summation of two components - the one arising due to the adhesional shear bond and the 

other arising due to the frictional shear bond. Closed-form solutions are derived for fiber 

axial stress distribution over the bonded and the debonded interfaces, interfacial adhesional 

shear stress distribution over the bonded interface, interfacial frictional shear stress 
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distribution over the debonded interface, fiber pullout stress versus debond length 

relationship, and fiber displacement versus debond length relationship. 

It is demonstrated that debonding process becomes catastrophic at the instant when the fiber 

pullout stress begins to drop with increase in debond length. This condition is satisfied when 

the difference between change in the frictional component of pullout stress and the 

adhesional component of pullout stress resulting due to change in debond length becomes 

equal to zero. A closed-form solution is derived to calculate the catastrophic debond length, 

given the mechanical properties of constituent materials, the interfacial properties and the 

geometry of the pullout specimen. Closed-form solutions are also derived to calculate the 

peak pullout stress and the displacement corresponding to the peak pullout stress. 

During stage 3, the fiber is completely debonded along its embedded length and fiber pullout 

is initiated. Frictional shear stresses existing over the debonded interface resist pullout of 

fiber from the matrix. Closed-form solutions are derived for fiber axial stress distribution, 

interfacial frictional shear stress distribution, fiber pullout stress, and fiber displacement at 

different stages of pullout process. 

A procedure to calibrate interfacial properties is described in this chapter. It is shown that 

interfacial contact stress can be calculated using the asymptotic value of pullout stress on the 

peak pullout stress versus embedded length plot. It is recognized that the coefficient of 

friction may decrease with increase in pullout displacement. Based on the energy 

considerations, a method is proposed to calculate the coefficient of friction as a function of 

pullout displacement. The adhesional bond strength can be calculated from the initial slope 

of the peak pullout stress versus embedded fiber length plot. 
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Chapter 6 

Progressive Debonding Model for Fiber Pullout: Validation 

6.0 Introduction 

In the previous chapter, an analytical model to study progressive debonding of fiber-matrix 

interfaces and fiber pullout response was proposed. Validation of this model is achieved in the 

present chapter. For this purpose, experimental fiber pullout data from Chapter 4 are used. 

Theoretical predictions are also made for the pullout data found in the literature. 

6.1 Calibration of Interfacial Properties and Validation of Model 

In order to use the proposed model, calibration of three interfacial properties, namely, oc, ji and 

ts, is required. A procedure for calibrating interfacial properties was described in the previous 

chapter. Clearly, these parameters will depend upon the properties of the constituents involved. 

For instance, it can be expected that matrices with different shrinkage behavior will yield 

different values of <TC, and also that fibers having different surface roughness characteristics will 

yield different values of \i. In this regard, the experimental pullout curves presented in Chapter 4 

are meaningful, since fibers and matrices with different properties led to different pullout curves 

suggesting dependence of pullout response on interfacial properties. The pullout data of Chapter 

4 are used here to calibrate the interfacial properties and to validate the proposed Progressive 

Debonding Model. Validity of the proposed model is also confirmed by comparing the model 

predictions with the pullout data found in the literature. 

6.1.1 Source Code for Progressive Debonding Model 

To theoretically predict fiber pullout response using the proposed Progressive Debonding Model, 

a source code is written in C programming language. This source code is attached in Appendix 

C. 
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6.1.2 Straight-smooth, Stainless Steel Fiber Embedded in Normal Strength Matrix 
In Section 4.1.1, experimental pullout curves for straight-smooth, stainless steel fibers embedded 

in a normal strength matrix were presented. Here, those data are used to calibrate the interfacial 

properties. The elastic modulus of fiber and matrix are taken as 210 GPa and 30 GPa, 

respectively. The fiber radius, a and the outer radius of matrix cylinder, b are taken as 0.22 mm 

and 22 mm, respectively. 

Substituting the asymptotic value of pullout stress from the pullout stress versus embedded 

length plot in Equation 5.52, the magnitude of the interfacial contact stress, o~c, is obtained as 

-29.3 MPa. 

The coefficient of friction versus pullout distance relationship was calculated from Equation 

5.55. In this equation, the interval between pdl and pd2 was chosen as 0.5 mm, and the area under 

the pullout curve, Wp lying between pdi and pd2 was calculated as: 

(p +P ) 
Wp = Kp" 2

 PdJ*{pd,-Pdl) 6.1 

where Ppdi and Ppd2 are the pullout load values corresponding to the pullout distances pdi and pd2, 

respectively. Equation 5.55 is a non-linear equation, and it was solved for fi using the Mathcad 

PLUS 6.0 Professional Edition software. The coefficient of friction versus pullout distance 

curves obtained using Equation 5.55 for fibers of different lengths are plotted in Figure 6.1.1. In 

the figure, it can be noted the coefficient of friction, fl, decreases exponentially with increase in 

pullout distance. The evolution law for the coefficient of friction can be described by the 

following equation: 

fi = (fi..fije-cpd +fiss 6.2 

where, 

fit - initial coefficient of friction 

fiss - steady state value of coefficient of friction attained at large pullout distances 

c - a constant that governs the rate at which coefficient of friction decays with increase in 

pullout distance 

The following values of fit, fiss and c gave an appropriate data fit describing variation in 

coefficient of friction with increase in pullout distance: fit = 0.12, fiss - 0.035 and c = 0.7. 
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Figure 6.1.1: Coefficient of friction versus pullout displacement curves for straight-smooth, stainless steel fibers 

embedded in normal strength matrix 

Substituting these values in Equation 6.2, the evolution law for coefficient of friction, /! can thus 

be written as ji = 0.085 e~01p'1 +0.035. Note that the observed decrease in coefficient of friction 

is attributable to matrix wear and consequent smoothening of interface layer as the fiber pulls out 

of the matrix. It can be readily appreciated that the evolution law for coefficient of friction, ji, 

may take different forms depending upon the age of matrix, matrix porosity/air content, size of 

voids, and loading rate. 

On substituting the initial slope of maximum pullout stress versus fiber embedded length curve 

in Equation 5.58, the magnitude of adhesional bond strength, xs, is obtained as -2.4 MPa. It must 

be noted that a more precise prediction of adhesional bond strength can be obtained by testing 

fibers of even smaller embedded length. 

Using the above values of interfacial properties, the theoretical pullout response is predicted for a 

straight-smooth, stainless steel fiber with 30 mm embedded length (Section 4.1.1). Figure 6.1.2 

compares the experimental pullout curves with the theoretical. A good correspondence between 

the theoretical prediction and the experimental curves is noticeable in the figure. 
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Figure 6.1.2: Comparison of experimental and theoretical pullout response - straight-smooth, stainless steel fiber 

fiber (embedded length - 30 mm) embedded in normal strength matrix 

Theoretically predicted peak pullout load and the displacement corresponding to peak pullout 

load are compared with experimental values in the Table 6.1.1. Model predicted results agree 

well with the experimental ones. 

Table 6.1.1: Theoretical and experimental peak pullout load and displacement corresponding to peak pullout load 

for a straight-smooth, stainless steel fiber embedded in normal strength matrix 

Fiber 

Embedded 
Fiber 

Length 
(mm) 

Fiber 
Diameter 

(mm) 

Matrix 
PpeakW) Speak (mm) 

Fiber 

Embedded 
Fiber 

Length 
(mm) 

Fiber 
Diameter 

(mm) 

Matrix Experi­
mental Model Experi­

mental Model 

Straight-
smooth, 

stainless steel 
30 0.44 Normal 

strength 95.10 89.16 0.120 0.099 

Ppeak - Peak pullout load; 8peak- Displacement at peak pullout load 

6.1.3 Straight, Stainless Steel Fibers with Rough Surface Embedded in Normal Strength 

Matrix 

In Section 4.1.2, experimental pullout curves for straight, stainless steel fibers with a rough 

surface embedded in a normal strength matrix were presented. Here, those data are used to 

calibrate the interfacial properties. The elastic modulus of fiber and matrix are taken as 210 GPa 

and 30 GPa, respectively. The fiber radius, a and the outer radius of matrix cylinder, b are taken 

as 0.22 mm and 22 mm, respectively. Substituting the asymptotic value of pullout stress from 

the pullout stress versus embedded length plot in Equation 5.52, the magnitude of interfacial 

130 



contact stress, crc, is obtained as -29.5 MPa. Coefficient of friction versus pullout distance curves 

obtained using Equation 5.55 are plotted in Figure 6.1.3 for fibers of different lengths. The 

magnitudes of pt and pss are obtained as 0.26 and 0.068, respectively, thus indicating that even 

for rough steel fiber the coefficient of friction, fi, decreases with increase in pullout distance. 

However, for rough steel fiber, both the initial coefficient of friction, jii and the steady-state 

coefficient of friction, pss, are greater than those for straight-smooth, stainless steel fibers. The 

decay rate for coefficient of friction, characterized by the constant c, is found to be independent 

of a fiber's surface roughness. Substituting these values in Equation 6.2, the evolution law for 

coefficient of friction, fj,, can thus be written as p, = 0.192 e~01pd +0.068. Note that this 

evolution law is different than that obtained for smooth steel fiber, and this suggests the 

dependence of interfacial coefficient of friction on fiber surface roughness. Superior 

interlocking between fiber and matrix probably is responsible for greater values of the coefficient 

of friction in the case of rough steel fibers. 

c 
o 

o 
U 

• 15 mm 
30 mm 
60 mm 

+ 90 mm 
Trendline 

5 10 15 20 25 

Displacement, p d (mm) 

30 

Figure 6.1.3: Coefficient of friction versus pullout displacement curves for straight, stainless steel fibers with rough 

surface embedded in normal strength matrix 

Using these values of interfacial properties, the theoretical pullout response is predicted for a 

fiber with 30 mm embedded length (Section 4.1.2). Figure 6.1.4 compares the model prediction 

with the experimental pullout curves. A good correspondence between the model prediction and 

the experimental curves is distinctly noticeable in the figure. 
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Figure 6.1.4: Comparison of experimental and theoretical pullout response - straight, stainless steel fiber with rough 

surface (embedded length - 30 mm) embedded in normal strength matrix 

Model predictions for the peak pullout load and the displacement corresponding to peak pullout 

load are compared with the experimental values in Table 6.1.2. Model predicted values agree 

well with the experimental ones. 

Table 6.1.2: Theoretical and experimental peak pullout load and the displacement corresponding to peak pullout 

load for a steel fiber with rough surface embedded in normal strength matrix 

Fiber 

Embedded 
Fiber 

Length 
(mm) 

Fiber 
Diameter 

(mm) 

Matrix 
V ( N ) Speak (mm) 

Fiber 

Embedded 
Fiber 

Length 
(mm) 

Fiber 
Diameter 

(mm) 

Matrix Experi­
mental Model Experi­

mental Model 

Straight, 
stainless steel 

fiber with 
rough surface 

30 0.44 Normal 
strength 116.1 122.04 0.120 0.156 

Ppeak - Peak pullout load; 8peak- Displacement at peak pullout load 

6.1.4 Straight-smooth, Stainless Steel Fibers Embedded in Non-Shrink Grout Matrix 

In Section 4.1.3, experimental pullout curves for straight-smooth, stainless steel fibers embedded 

in non-shrink grout matrix were presented. Here, those data are used to calibrate the interfacial 

properties. The elastic modulus of fiber and matrix are taken as 210 GPa and 30 GPa, 

respectively. The fiber radius, a and the outer radius of matrix cylinder, b were taken as 0.22 

mm and 22 mm, respectively. Substituting the asymptotic value of pullout stress from the 

pullout stress versus embedded length plot in the Equation 5.52, the magnitude of interfacial 
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contact stress, o~c, is obtained as -11.7 MPa. Clearly, the magnitude of interfacial contact stress 

obtained with non-shrink grout matrix is much smaller than that obtained with normal strength 

matrix. This decrease is directly attributable to the reduced shrinkage of non-shrink grout 

matrix. Elastic modulus of fiber and matrix are taken as 210 GPa and 30 GPa, respectively. The 

fiber radius, a and the outer radius of matrix cylinder, b were taken as 0.22mm and 22 mm, 

respectively. Coefficient of friction versus pullout displacement curves obtained using Equation 

6.55 are plotted in the Figure 6.1.5 for fibers of different lengths. It can be noted that coefficient 

of friction, fi, decreases with increase in pullout distance, and that the evolution law for 

coefficient of friction can be described by the equation fi = 0.085 e~onpd +0.035. This evolution 

law for coefficient of friction, fi, is same as that obtained for a straight-smooth, stainless steel 

fiber embedded in a normal strength matrix. On substituting the initial slope of maximum 

pullout stress versus fiber embedded length curve in Equation 5.58, the magnitude of adhesional 

bond strength, ts, is obtained as -1.3 MPa. Using these values of interfacial properties, 

theoretical pullout response is predicted for a fiber with 30 mm embedded length (Section 4.1.3). 

Figure 6.1.6 compares the theoretical pullout curve with the experimental ones. A good 

correspondence between the theoretical prediction and the experimental curves is distinctly 

noticeable in the figure. 
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Figure 6.1.5: Coefficient of friction versus pullout displacement curves for straight-smooth, stainless steel fibers 

embedded in non-shrink grout matrix 

Model predictions for the peak pullout load and the displacement corresponding to peak pullout 

load are compared with the experimental values in Table 6.1.3. Model predicted values 

compared well with the experimental ones. 
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Figure 6.1.6: Comparison of experimental and theoretical pullout response - straight-smooth, stainless steel fiber 

(embedded length - 30 mm) embedded in non-shrink grout matrix 

Table 6.1.3: Theoretical and experimental peak pullout load and the displacement corresponding to peak pullout 

load for a straight-smooth, stainless steel fiber embedded in non-shrink grout matrix 

Fiber 

Embedded 
Fiber 

Length 
(mm) 

Fiber 
Diameter 

(mm) 

Matrix 
Ppeak (N) S p e a k (mm) 

Fiber 

Embedded 
Fiber 

Length 
(mm) 

Fiber 
Diameter 

(mm) 

Matrix Experi­
mental Model Experi­

mental Model 

Straight-
smooth, 

stainless steel 
30 0.44 

Non-
shrink 
Grout 

36.6 35.6 0.044 0.039 

Ppeak - Peak pullout load; Speak- Displacement at peak pullout load 
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6.1.5 Straight, Smooth Polypropylene Fibers Embedded in Normal Strength Matrix 
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Figure 6.1.7: Coefficient of friction versus pullout displacement curves for straight, smooth polypropylene fibers 

embedded in normal strength matrix 

In Section 4.1.6, experimental pullout curves for straight, smooth polypropylene fibers 

embedded in normal strength matrix were presented. Here, those experimental pullout data are 

used to calibrate the interfacial properties. The elastic modulus of fiber and matrix are taken as 

3.5 GPa and 30 GPa, respectively. The fiber radius, a and the outer radius of matrix cylinder, b 

are taken as 0.475 mm and 47.5 mm, respectively. Substituting the asymptotic value of pullout 

stress from the pullout stress versus embedded length plot in the Equation 5.52, the magnitude of 

interfacial contact stress, <7C, is obtained as -11.0 MPa. This value of interfacial contact stress, 

<7C, is smaller than that obtained for stainless steel fibers embedded in a similar type of matrix. 

Since interfacial frictional bond and interfacial contact stress, oc, are related by Equation 5.46, it 

can be concluded that magnitude of interfacial frictional bond will also be lower in the case of 

polypropylene fibers. The coefficient of friction versus pullout distance curves obtained using 

Equation 5.55 for fibers of different lengths are plotted in the Figure 6.1.7. It can be noted that 

the coefficient of friction, pt, decreases with increase in pullout distance, and that the evolution 

law for coefficient of friction can be described by the equation pi = 0.02 e~°iPd + 0.03 . Note that 

this evolution law is different than that obtained for steel fibers embedded in a similar type of 

matrix. On substituting the initial slope of the maximum pullout stress versus fiber embedded 

length curve in Equation 5.58, the magnitude of adhesional bond strength, Ts is obtained as -0.61 

MPa. Using these values of interfacial properties, theoretical pullout response is predicted for a 

fiber with 15 mm embedded length. Figure 6.1.8 compares the model prediction with the 
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experimental pullout curves, and it can be seen that model prediction agrees well with the 

experimental ones. 

Model predictions for the peak pullout load and the displacement corresponding to peak pullout 

load are compared with the experimental values in Table 6.1.4. The predicted peak pullout load 

agrees well with the experimental value, however, the experimental displacement at peak pullout 

load is much greater than the predicted value. 

Displacement (mm) 

Figure 6.1.8: Comparison of experimental and theoretical pullout response - straight, smooth polypropylene fiber 

(embedded length - 15 mm) embedded in normal strength matrix 

Table 6.1.4: Theoretical and experimental peak pullout load and the displacement corresponding to peak pullout 

load for a straight, smooth polypropylene fiber embedded in normal strength matrix 

Fiber 

Embedded 
Fiber 

Length 
(mm) 

Fiber 
Diameter 

(mm) 

Matrix 
Ppeak (N) Speak (mm) 

Fiber 

Embedded 
Fiber 

Length 
(mm) 

Fiber 
Diameter 

(mm) 

Matrix Experi­
mental Model Experi­

mental Model 

Straight-
smooth, 

polypropylene 
15 0.95 Normal 

strength 16.84 14.90 0.300 0.106 

Ppeak - Peak pullout load; 8peak- Displacement at peak pullout load 

6.1.6 Pullout Data Found in the Literature 

Naaman and Shah [ 142] 

Figure 6.1.9 compares the experimental fiber pullout response reported by Naaman and Shah 

[142] for a steel fiber and the theoretical prediction based on the proposed Progressive 
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Debonding Model. Length of fiber was 12.7 mm and diameter of fiber was 0.25 mm. The 

elastic modulus of fiber and matrix are taken as 210 GPa and 30 GPa, respectively. The outer 

radius of matrix cylinder, b is taken as 12.5 mm. Following interfacial properties are assumed to 

obtain the theoretical prediction: 

T, = -2.4 MPa 

Cv= -29.3 MPa 

fl = 0.085 e~°lpd + 0.035 (/i, = 0.12 and ^ s = 0.035) 

It can be seen that very good agreement between the theoretical prediction from the progressive 

debonding model and the experimental response is obtained. Note that, interfacial properties 

assumed here to make theoretical prediction are same as the ones used previously to predict 

pullout response of straight, smooth steel fibers embedded in normal strength matrix (Section 

6.1.2). For comparison, the predictions obtained from the other theoretical models are also 

shown in the same figure. 

30 

Disriacemert (rrrrj 

Figure 6.1.9: Comparison of experimental and theoretical pullout response for a straight, smooth steel fiber. 

Experimental curve is by Naaman and Shah [142] 
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Mallikarjuna, Fafard and Banihia [225] 

Table 6.1.5 compares the peak pullout loads predicted by the proposed Progressive Debonding 

Model and the Finite Element Analysis results obtained by Mallikarjuna et al. [225]. Theoretical 

predictions are obtained for fibers with three different diameters - 0.50, 0.75 and 1.00 mm. In all 

cases the embedded fiber length is 18 mm. The elastic modulus of fiber and matrix are taken as 

210 GPa and 30 GPa, respectively. The following interfacial properties are assumed to obtain 

theoretical predictions: 

T, = -2.4 MPa 

<Jc= -29.3 MPa 

ji = 0.085 e^7p" +0.035 (rx, = 0.12 and /4s = 0.035) 

Table 6.1.5: Comparison of peak pullout loads as predicted by (i) the proposed progressive debonding model, and 

(ii) finite element analysis, Mallikarjuna, et al. (225) 

Fiber 

Embedded 
Fiber 

Fiber 
Diameter 

Peak pullout load, Ppeak (N) 
Fiber 

Length 
(mm) (mm) 

Finite Element 
Analysis 

Proposed Progressive 
Debonding Model 

0.50 77.7 75.8 
Straight-

smooth, steel 18 0.75 119.5 124.0 

1.00 159.6 172.9 

Very good agreement is obtained between the two results. Agreement is better for smaller 

diameter fibers, and disparity between the two result decreases with decrease in fiber diameter. 

Wang, Li and Backer [69] 

Figure 6.1.10 compares the experimental fiber pullout response reported by Wang et al. [69] for 

a straight, smooth polypropylene fiber and the theoretical prediction based on the proposed 

Progressive Debonding Model. Length and diameter of fiber are 50 mm and 0.508 mm, 

respectively. The elastic modulus of fiber and matrix are taken as 3.5 GPa and 30 GPa, 

respectively. The outer radius of matrix cylinder, b is taken as 25 mm. The following interfacial 

properties are assumed to obtain theoretical prediction: 

ts = -0.61 MPa 

crc=-14.0 MPa 

ji = 0.02 e~°3pd + 0.03 (fr = 0.05 and ̂  = 0.03) 
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In the figure, a good agreement between the theoretical and the experimental response is 

noticeable. 

20 30 40 

Emplacement (mm) 

60 

Figure 6.1.10: Comparison of experimental and theoretical pullout response for a straight, smooth polypropylene 

fiber. Experimental curve is by Wang, Li and Backer [69] 

6.2 Conclusions 

• The main objective of this chapter was to validate the proposed Progressive Debonding 

Model. Theoretical predictions from the proposed model compare well with the 

experimental pullout data presented in Chapter 4 and the pullout data found in literature. 

Good agreement between the theoretical and the experimental results thus validates the 

proposed model. 

• The evolution law for the coefficient of friction indicates that coefficient of friction decays 

exponentially with increase in fiber pullout distance. This observation is found to be valid 

for both steel as well as polypropylene fibers. Smoothening of the interface (due to matrix 

wear) with increase in pullout distance appears to be responsible for this behavior. 

• A comparison between the evolution laws for the coefficient of friction for rough steel fiber 

and a smooth steel fiber indicates that the coefficient of friction values for the former are 

greater than for the latter. A superior interlocking mechanism between fiber and matrix in 

the case of rough steel fibers appears to be the reason for higher values of coefficient of 

friction in the case of rough steel fibers. This observation depicts the dependence of 

interfacial frictional bond on fiber's surface roughness. 
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A comparison between the evolution laws for the coefficient of friction for the smooth 

polypropylene fibers and the smooth steel fibers indicates that the coefficient of friction 

values for the former are smaller than for the latter. This may be attributable to the following 

two reasons: the smoother surface of the polypropylene fibers and the hydrophobic nature of 

polypropylene material. The hydrophobic property of polypropylene will prevent penetration 

of the matrix into the fine cavities on the fiber surface. As a result, a good interlocking 

mechanism between fiber and matrix will not be established, and the coefficient of friction 

will remain low. 

A comparison between the evolution laws for the coefficient of friction for the smooth 

polypropylene fibers and the smooth steel fibers indicates that the coefficient of friction 

decays from the initial value to a steady-state value at a faster rate for the steel fibers. 

The magnitude of the interfacial contact stress obtained with a Portland cement matrix (CSA 

Type 10) is found to be greater than that obtained with a non-shrink grout matrix. This 

observation depicts the dependence of interfacial contact stress and interfacial frictional bond 

on shrinkage properties of the matrix. 

For polypropylene fibers embedded in a normal strength matrix, the interfacial contact "stress 

is found to be smaller than that for steel fibers embedded in a similar type of matrix. This 

observation depicts the dependence of interfacial contact stress and interfacial frictional bond 

on the elastic properties of constituents. 
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Chapter 7 

Progressive Debonding Model for Fiber Pullout: Parametric Studies 

7.0 Introduction 

In the Chapter 4, it was experimentally observed that fiber pullout response depends upon 

various factors, such as fiber-matrix interfacial properties, mechanical properties of constituents 

and physical dimensions of the fiber. From the viewpoint of optimization of toughness/strength, 

it is critical to identify the relative importance of these factors, given the dependence of 

composite properties on fiber pullout response. Thus, the objective of this chapter is to 

systematically investigate influence of various factors on the progressive debonding behavior 

and fiber pullout response. This objective has been achieved by conducting parametric studies 

using the proposed Progressive Debonding Model. 

7.1 Parametric Studies 

The influence of the following factors on progressive debonding and pullout response has been 

investigated: 

• Adhesional bond strength, Ts 

• Interfacial contact stress, ac 

• Interfacial coefficient of friction, ix 

Important results obtained from parametric studies are reported below. 

7.1.1 Influence of Adhesional Bond Strength, xs 

The influence of adhesional bond strength, rs, on progressive debonding and fiber pullout 

response is investigated in this section. For this purpose, parametric studies are carried out on 

two fibers with different elastic moduli. The first fiber has an elastic modulus of 210 GPa and 

the same for the second fiber is 3.5 GPa. 

7.1.1.1 Fiber Elastic Modulus, Ef= 210 GPa 

Parametric studies are carried out for three different values of adhesional bond strength, Ts: -1 

MPa, -5 MPa and -10 MPa. Assumed values of the other interfacial properties are: oc = -15.0 
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MPa and /z = 0.065 e~°JPd +0.035 (/i t =0.1 and fiss =0.035). Mechanical properties of fiber are 

assumed as: £}=210 GPa (elastic modulus) and, V/=0.30 (Poisson's ratio), and the same for 

matrix are assumed as 30 GPa and 0.20, respectively. Total fiber length, L, is taken as 50 mm 

(i.e., one side embedded length=25 mm), and fiber diameter is taken as d=l.O mm. The assumed 

value of b (the outer radius of matrix cylinder) is 50 mm. Note that an elastic modulus of 210 

GPa corresponds to that of steel. 
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Figure 7.1.1a: Influence of adhesional bond strength on 

pullout response (£^=210 GPa) 

Figure 7.1.1a compares the fiber pullout response for three different values of adhesional bond 

strength, xs. The initial linear part of the pullout curves seen in the figure depicts elastic loading 

of fibers. In the linear region of the pullout curve, the maximum interfacial shear stress remains 

below the interfacial adhesional bond strength, Ts, therefore, the interface along the entire 

embedded length remains fully bonded. On further loading, the pullout load increases in a non­

linear fashion until the peak pullout load is attained. In this region interfacial debonding initiates 

and continues in a progressive fashion, i.e., pullout load increases with increase in debond 

length. Also, over the debonded interface, interfacial frictional shear stresses are mobilized. The 

pullout load during progressive debonding increases because the rate at which the frictional 

component of pullout load increases with change in debond length is greater than the 

corresponding rate at which adhesional component of the pullout load decreases, i.e., 

doo fric Idld > doobond Idld (Equation 5.41). At the peak pullout load, the rate of increase in the 

frictional component of pullout load becomes equal to the rate of decrease in adhesional 

component of the pullout load. 
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On further loading, the remaining intact portion of the interface debonds catastrophically, i.e., no 

increase in pullout load is required to further debond the interface. Thus, pullout load drops in 

this region, which is accompanied by decrease in pullout displacement. The pullout load in this 

region drops because the rate at which frictional component of pullout load increases due to 

change in debond length is smaller than the corresponding rate at which the adhesional 

component of the pullout load decreases. The theoretically predicted decrease in pullout 

displacement is not observed in the experiments since pullout tests are normally carried out at a 

constant rate of pullout displacement. In Figure 7.1.1a it can also be noticed that no catastrophic 

debonding occurs when TS = -1 MPa. 

In Figure 7.1.1b, the pullout load at initial debonding and the peak pullout load are plotted as a 

function of adhesional bond strength, TS. Both the pullout load at initial debonding and the peak 

pullout load increase with increase in adhesional bond strength. However, the rate of increase of 

the former is greater than that of the latter. In Figure 7.1.1c, pullout displacement at the peak 

pullout load is plotted as a function of adhesional bond strength, rs. In the figure it can be seen 

that pullout displacement at the peak pullout load increases with increase in adhesional bond 

strength, xs. 

After initial debonding, further debonding requires the applied pullout load to overcome the 

interfacial frictional shear stresses at the debonded interface and adhesional shear stresses at the 

bonded interface. As a result, the pullout load required to further debond the interface depends 

upon the extent of prior debonding. Figure 7.1.1d shows variation in pullout load as a function 

of debond length for the case when xs = -5 MPa. In the same figure, components of pullout load, 

(i.e., the adhesional and the frictional components) are also plotted. The following points can be 

noted in the figure: 

• Interfacial debonding initiates at the surface where the fiber enters the matrix. At initiation 

of debonding the fiber pullout load (i.e., the initial debonding load) is equal to the adhesional 

component of pullout load, since the frictional component of pullout load is equal to zero. 

• With increase in debond length, fiber pullout load continues to increase until debond length 

corresponding to the peak pullout load is attained. Upon further debonding, fiber pullout 

load begins to decrease; With increase in debond length, the adhesional component of 

pullout load decreases, on the other hand, the frictional component of pullout load increases. 
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The peak pullout load on the pullout load vs. debond length curve corresponds to the point 

when slope of the curve becomes zero. This condition is satisfied when slope of the 

adhesional component of pullout load vs. debond length curve is equal and opposite in sign 

to that of the frictional component of pullout load vs. debond length curve. The debond 

length corresponding to this point is termed the catastrophic debond length, ld,cat (Section 

5.1.2.6), since the debonding process turns catastrophic upon further debonding. 
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Figure 7. L i e shows pullout load and its components as a function of debond length at different 

values of adhesional bond strength, ts. From this figure, the following important observations 

can be made: 

• The pullout load corresponding to any given debond length increases with increase in 

adhesional bond strength, ts. However, at complete debonding, the magnitude of pullout 

load is independent of adhesional bond strength, Ts. 

• Prior to complete debonding, the adhesional component of pullout load increases with 

increase in adhesional bond strength; on the other hand, the frictional component of pullout 

load decreases with increase in adhesional bond strength. 

• Catastrophic debonding takes place at ts = -5.0 MPa and -10 MPa; on the other hand, atxs = -

1.0 MPa, the debonding process is completely stable, i.e., pullout load continues to increase 

until the fiber is completely debonded. 

• For a given fiber length, catastrophic debond length, ldiCaU decreases with increase in the 

adhesional bond strength, T .̂ 
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Figure 7.1.If shows the variation in axial load distribution in the fiber at initiation of debonding 

for different values of adhesional bond strength, xs. In the figure, it can be seen that fiber axial 

load increases with increase in adhesional bond strength, T 5 . It can also be noticed that fiber axial 

load is a maximum at the loaded end of the fiber. Axial load decreases hyperbolically towards 

the embedded end of fiber and it vanishes near the center of the embedded fiber length. A 

similar trend can be seen for the interfacial shear stress distribution along the embedded fiber 

length at initiation of debonding, Figure 7.1.1 g. 
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Figure 7.1.1h shows the variation in axial load distribution at completion of debonding for 

different values of adhesional bond strength, %. In the figure it can be seen that the axial load 

distribution along the fiber length is independent of adhesional bond strength, TS, at completion 

of interfacial debonding. It can also be noticed that fiber axial load is maximum at the loaded 

fiber end and it decreases almost linearly to a value of zero at the embedded fiber end. Figure 
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7.1.1i shows the interfacial shear stress distribution at completion of interfacial debonding. In 

this figure it can be seen that interfacial shear stress is maximum at the embedded fiber end, and 

it gradually decreases towards the exit fiber end. Poisson's contraction of the fiber is responsible 

for the observed interfacial shear stress distribution along the embedded length of fiber. 

Comparison of Figures 7.1.1g and 7.1.1i clearly depicts that the axial load distributions at 

initiation of debonding and at completion of debonding are very different. 

Axial position, z (mm) Axial position, z (mm) 

Figure 7.1.1h: Axial load distribution at completion of Figure 7.1.Ii: Interfacial shear stress distribution at 

debonding (̂ =210 GPa) completion of debonding (£/==210GPa) 

7.1.1.2 Fiber Elastic Modulus, E/= 3.5 GPa 

Parametric studies are carried out for three different values of adhesional bond strength, %: -1 

MPa, -5 MPa and -10 MPa. Assumed values of other interfacial properties are: cc = -15.0 MPa 

and ji = 0.02 e-0-3"' +0.03 Qit =0.05 and fiss =0.03). Mechanical properties of fiber are assumed 

as: Ef=3.5 GPa (elastic modulus) and, ty=0.35 (Poisson's ratio), and the same for matrix are 

assumed as 30 GPa and 0.20, respectively. Total fiber length, L, is taken as 50 mm (i.e., one side 

embedded length=25 mm), and fiber diameter is taken as d=l.O mm. The assumed value of b 

(the outer radius of matrix cylinder) is 50 mm. Note that an elastic modulus of 3.5 GPa 

corresponds to that of polypropylene. 

Figure 7.1.2a compares the pullout response of fibers with Ej- 3.5 GPa at three different values 

of adhesional bond strength, xs. In this figure, it can be seen that the difference between the 

pullout responses at three different values of adhesional strength, xs, is relatively insignificant. 

At Tj =-1 MPa the debonding process is completely stable. On the other hand, the debonding 

process turns catastrophic at T^=-5 MPa and -10 MPa; however, the load drop during 
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catastrophic debonding is very small and not noticeable in the figure. 
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In Figure 7.1.2b, the pullout load at initial debonding and the peak pullout load are plotted as a 

function of adhesional bond strength, T,. Both the pullout load at initial debonding and the peak 

pullout load increase with increase in adhesional bond strength; however, the rate of increase of 

the latter is smaller than that of the former. Comparing Figures 7.1.1b and 7.1.2b it can also be 

noted that for any given adhesional bond strength, the initial debonding load for low modulus 

fibers is much smaller than that for high modulus fibers. Moreover, disparity between the two 

increases with increase in adhesional bond strength. It can also be noted that when adhesional 

bond strength increases from -1 MPa to -10 MPa, peak pullout load increases by about 49% for 

high modulus fiber, on the other hand, peak pullout load increases only by about 7% for low 

modulus fibers. 
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In Figure 7.1.2c, displacement at the peak pullout load is plotted as a function of adhesional bond 

strength, T,. In the figure, it can be seen that the displacement at peak pullout load increase with 

increase in adhesional bond strength, rs. Comparing Figures 7.1.1c and 7.1.2c it can be noted 

that at any given adhesional bond strength, the displacement at peak pullout load for low 

modulus fibers is much greater than for high modulus fibers. 

Figure 7.1.2d shows variation in pullout load as a function of debond length for the case when % 

= -5 MPa. In the same figure, components of pullout load (i.e., the adhesional component and 

the frictional component) are also plotted. It can be noted that variation in the pullout load and 

its components with increase in debond length is similar to that for high modulus fibers. 

Figure 7.1.2e shows pullout load and its components as a function of debond length at different 

values of adhesional bond strength, TS. From this figure, the following important observations 

can be made: 

• Pullout load corresponding to any given debond length increases with increase in adhesional 

bond strength, xs. However, at complete debonding, magnitude of pullout load is 

independent of adhesional bond strength, xs. 

• Prior to complete debonding, the adhesional component of pullout load increases with 

increase in adhesional bond strength. On the other hand, the frictional component: of pullout 

load decreases with increase in adhesional bond strength. 

• In Figures 7.1.1e and 7.1.2e it can be seen that when adhesional bond strength is increased 

from -1 MPa to -10 MPa, the increase in the peak pullout load for high modulus fibers is 

about 49%. On the other hand, the same for low modulus fibers is only about 7%. The 

reason for this disparity is that for low modulus fibers, much of the increase in the 

adhesional component of pullout load obtained with increase in adhesional bond strength is 

compensated by the corresponding decrease in the frictional component of pullout load. 

From the viewpoint of optimization of interfacial properties, this observation is significant, 

since it demonstrates that efficiency of low modulus fibers cannot be improved substantially 

by solely increasing adhesional bond strength. 
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• Catastrophic debonding takes place at Ts = -5.0 MPa and -10 MPa. On the other hand, at Ts = 
-1.0 MPa the debonding process is completely stable, i.e., pullout load continues to increase 

until the fiber is completely debonded. 

• Other parameters remaining same, catastrophic debond length, ldiCat decreases with increase 

in the adhesional bond strength, Ts. Also, the catastrophic debond length is greater for low 

modulus fibers in comparison to its high modulus counterparts. 

Debond length, / dlAxial position, L-z (mm) Debond length, / d/Axial position, L-z (mm) 

Figure 7 .1 .2d: Variation in pullout load and pullout load • Figure 7 .1 .2e: Variation in pullout load and its components 

components as a function of debond length as a function of debond length at different 

CE/=3.5 GPa) values of adhesional bond strength, % 

(£/=3.5 GPa) 

Figure 7.1.2f shows the axial load distribution in the fiber at the initiation of debonding for 

different adhesional bond strengths, xs. In the figure, it can be seen that the fiber axial load 

increases with increase in adhesional bond strength, T̂ . It can also be noticed that axial load in 

the fiber is maximum at the loaded fiber end and it decreases very rapidly along the embedded 

fiber length. Thus, for low modulus fibers only a very small length of the fiber is mobilized in 

the stress transfer process prior to initiation of interfacial debonding. Comparing Figures 7.1.lf 

and 7.1.2f it can be seen that prior to initiation of interfacial debonding, the rate of decrease in 

axial load along the embedded fiber length for low modulus fibers is very rapid in comparison to 

that for high modulus fibers. This means that prior to initiation of interfacial debonding, the 

length of fiber mobilized in the stress transfer process is longer for high modulus fibers in 

comparison to that for low modulus fibers. Observations similar to those above can be made for 

the interfacial shear stress distribution along the embedded fiber length of low modulus fibers 

(Figure 7.1.2g). 
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Figure 7.1.2h shows the variation in axial load distribution at completion of debonding for 

different values of adhesional bond strength, Ts. In the figure, it can be seen that axial load 

distribution along the fiber length is independent of adhesional bond strength, xs (at completion 

of interfacial debonding). It can also be noticed that fiber axial load is a maximum at the loaded 

fiber end and it decreases to a value of zero at the embedded fiber end. Comparison of Figures 

7.1.2f and 7.1.2h clearly depicts that the axial load distributions at initiation of debonding and at 

completion of debonding are very different. In the former case only a part of the fiber is axially 

loaded, whereas in the latter case, the whole fiber is axially loaded. Figure 7.1.2i shows the 

interfacial shear stress distribution at completion of interfacial debonding. It can be seen that 

interfacial shear stress is a maximum at the embedded fiber end, and it decreases towards the exit 

fiber end. Poisson's contraction of the fiber is responsible for the observed variation in shear 

stress distribution along the embedded length of fiber. Comparing Figures 7.1.1i and 7.1.2i it 
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can also be seen that for low modulus fibers, the rate at which interfacial shear stress decays is 

more rapid in comparison to that for high modulus fibers. 

7.1.2 Influence of Interfacial Contact Stress, ac 

The influence of interfacial contact stress, o"c, on progressive debonding and fiber pullout 

response is investigated below. For this purpose, parametric studies are carried out on two fibers 

with different elastic moduli. The first fiber has an elastic modulus of 210 GPa and the same for 

the second fiber is 3.5 GPa. 

7.1.2.1 Fiber Elastic Modulus, Ef= 210 GPa 

Parametric studies are carried out for three different values of interfacial contact stress, cc: -5 

MPa, -15 MPa and -30 MPa. Assumed values of other interfacial properties are: Ts = -1.0 MPa 

and ix = 0.065 e~0JPd +0.035 (Lit =0.1 and LISS =0.035). Mechanical properties of fiber are 

assumed as: £/=210 GPa (elastic modulus) and, v/=0.30 (Poisson's ratio), and the same for 

matrix are assumed as 30 GPa and 0.20, respectively. Total fiber length, L, is taken as 50 mm 

(i.e., one side embedded length=25 mm), and fiber diameter is taken as <i=1.0 mm. The assumed 

value of b (the outer radius of matrix cylinder) is 50 mm. Note that an elastic modulus of 210 

GPa corresponds to that of steel. 
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The prepeak part of pullout curves and the complete pullout curves for different values of 

interfacial contact stress, ac are shown in Figures 7.1.3a and 7.1.3b, respectively. In the former 

figure it can be noticed that the prepeak pullout curves become nonlinear at very small values of 

pullout loads. It can also be noticed that both the peak pullout load and the displacement at peak 
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pullout load increase with increase in interfacial contact stress, oc. In the latter figure it can be 

noticed that the postpeak pullout response varies greatly at different values of interfacial contact 

stress, oc, and in general, postpeak pullout loads increase with increase in interfacial contact 

stress, oc. In other words, energy absorbed during the process of fiber pullout increases with an 

increase in interfacial contact stress, oc. 

240 

200 

S 160 

n 
o 
Z 120 
_o 

S. 80 

40 

0 

Ef =210 GPa Peak pullout load 
f ,=-1 MPa 
/J t =0.1 

Pullout load at initial debonding 

A 

0 5 10 15 20 25 30 35 40 

Normal contact stress, - o"c (MPa) 

Figure 7.1.3c: Influence of interfacial contact stress on 

pullout load at initial debonding and peak 

pullout load (£/=210 GPa) 

0.04 

3 3. 0.03 

I ! 
« o o.02 

• - Cu 

8- 0.01 

X 

X 
£ , = 2 1 0 GPa 
T , = - l MPa 

X ij,=0.1 

0 5 10 15 20 25 30 35 40 

Normal contact stress, -ae (MPa) 

Figure 7.1.3d: Influence of interfacial contact stress on 

pullout displacement at the peak pullout load 

(£/=210 GPa) 

In Figure 7.1.3c, the pullout load at initial debonding and the peak pullout load are plotted as a 

function of interfacial contact stress, oc. In this figure it can be seen that the peak pullout load 

increases and the pullout load at initial debonding remains unchanged with increase in interfacial 

contact stress, oc. In Figure 7.1.3d, displacement at the peak pullout load is plotted as a function 

of interfacial contact stress, oc. In the figure, it can be seen that pullout displacement at peak 

pullout load increases with increase in interfacial contact stress, oc. 

Given the dependence of pullout performance on interfacial contact stress, oc, two approaches 

can be used for improving fiber efficiency: 

• Using a matrix that shrinks more during curing, setting and hardening, so that a higher value 

of contact stress, oc, is generated at the interface. 

• Intelligently designing the fiber such that interfacial contact stress, oc, increases during the 

process of fiber pullout. 
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Figure 7.1.3e shows pullout load and its components as a function of debond length at different 

values of interfacial contact stress, oc. From this figure, the following important observations 

can be made: 

• Pullout load corresponding to any given debond length increases with increase in interfacial 

contact stress, oc. 

• Prior to complete debonding, the frictional component of pullout load increases with increase 

in interfacial contact stress, oc. On the other hand, the adhesional component of pullout load 

is not affected by change in interfacial contact stress, oc. 
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Figure 7.1.3f shows the variation in axial load distribution at completion of debonding for 

different values of interfacial contact stress, oc. In the figure, it can be seen that axial load along 

the embedded fiber length increases with increase in interfacial contact stress, oc. It can also be 
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noticed that the fiber axial load is maximum at the loaded fiber end and it decreases almost 

linearly to a value of zero at the embedded fiber end. Figure 7.1.3g shows the interfacial shear 

stress distribution at completion of interfacial debonding. From this figure two observations can 

be made. First, interfacial shear stress increases with increase in interfacial contact stress, o~c. 

Secondly, for any given value of interfacial contact stress, ac, the interfacial shear stress is 

maximum at the embedded fiber end and it gradually decreases towards the exit fiber end. 

Poisson's contraction of the fiber is responsible for the observed interfacial shear stress 

distribution along the embedded length of fiber. 

7.1.2.2 Elastic Modulus, Ef= 3.5 GPa 

Parametric studies are carried out for three different values of interfacial contact stress, <7C: -5 

MPa, -15 MPa and -30 MPa. Assumed values of other interfacial properties are: Ts = -1.0 MPa 

and Ll = 0.02 e~a3p" + 0.03 (/i t =0.05 and fiss =0.03). Mechanical properties of fiber are assumed 

as: Ef=3.5 GPa (elastic modulus) and v/=0.35 (Poisson's ratio), and the same for matrix are 

assumed as 30 GPa and 0.30, respectively. Total fiber length, L, is taken as 50 mm (one side 

embedded length=25 mm), and fiber diameter is taken as cf=1.0 mm. The assumed value of b 

(the outer radius of matrix cylinder) is 50 mm. Note that an elastic modulus of 3.5 GPa 

corresponds to that of polypropylene. 
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The prepeak part of pullout curves and the complete pullout curves for different values of 

interfacial contact stress, crc, are shown in Figures 7.1.4a and 7.1.4b, respectively. In the former 

figure, it can be noticed that the prepeak pullout curves become nonlinear at very small values of 

pullout loads. It can also be noticed that both the peak pullout load and the displacement at peak 
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pullout load increase with increase in interfacial contact stress, o~c. In the latter figure it can be 

noticed that the postpeak pullout response varies greatly at different values of interfacial contact 

stress, ac, and in general, postpeak pullout loads increase with increase in interfacial contact 

stress, ac. In other words, energy absorbed during the process of fiber pullout increases with 

increase in interfacial contact stress, Gc. 

Given the dependence of pullout performance on interfacial contact stress, ac, two approaches 

can be used for improving fiber efficiency as outlined in the previous sub-section (Section 

7.1.2.1). 
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In Figure 7.1.4c, the pullout load at initial debonding and the peak pullout load are plotted as a 

function of interfacial contact stress, crc. In this figure it can be seen that the peak pullout load 

increases and the pullout load at initial debonding remains unchanged with increase in interfacial 

contact stress, oc. In Figure 7.1.4d, displacement at the peak pullout load is plotted as a function 

of interfacial contact stress, oc. In this figure, it can be seen that the displacement at the peak 

pullout load increases with increase in interfacial contact stress, ac. Comparing Figures 7.1.3d 

and 7.1.4d it can be noticed that at any given interfacial contact stress, ac, the displacement at the 

peak pullout load for low modulus fibers is much greater than that for their high modulus 

counterparts. 
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Figure 7.1.4e: Variation in pullout load and its components 
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Figure 7.1.4e shows pullout load and its components as a function of debond length at different 

values of interfacial contact stress, ac. In the figure, it can be seen that the pullout load 

corresponding to any given debond length increases with increase in interfacial contact stress, oc. 

It can be also seen that the frictional component of pullout load increases with increase in 

interfacial contact stress, ac. On the other hand, the adhesional component of pullout load is not 

affected by change in interfacial contact stress, <7C. 

Axial position, z (mm) Axial position, z (mm) 

Figure 7.1.4f: Fiber axial load distribution at completion of Figure 7.1.4g: Interfacial shear stress distribution at 

debonding (£/=3.5 GPa) completion of debonding (£/=3.5 GPa) 

Figure 7.1.4f shows the variation in axial load distribution at completion of debonding for 

different values of interfacial contact stress, oc. In the figure, it can be seen that axial load along 

the embedded fiber length increases with increase in interfacial contact stress, oc. It can also be 

noticed that the fiber axial load is maximum at the loaded fiber end and it decreases to a value of 
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zero at the embedded fiber end. Figure 7.1.4g shows the interfacial shear stress distribution at 

completion of interfacial debonding. From this figure, two observations can be made. First, 

interfacial shear stress increases with increase in interfacial contact stress, <7C, and secondly, for 

any given value of interfacial contact stress, o~c, the interfacial shear stress is maximum at the 

embedded fiber end and it decreases towards the exit fiber end. Poisson's contraction of the 

fiber is responsible for the observed interfacial shear stress distribution along the embedded fiber 

length. Comparison of Figures 7.1.3g and 7.1.4g also indicates that for low modulus fibers the 

rate of decay of interfacial shear stress along the embedded length is more rapid in comparison to 

that for their high modulus counterparts. 

7.1.3 Influence of Interfacial Coefficient of Friction, fi 

The influence of the interfacial coefficient of friction, ji, on progressive debonding and fiber 

pullout response is investigated below. For this purpose parametric studies are carried out on 

two fibers with different elastic moduli. The first fiber has an elastic modulus of 210 GPa and 

the same for the second fiber is 3.5 GPa. 

7.1.3.1 Fiber Elastic Modulus, E/= 210 GPa 

Parametric studies are carried out by varying the initial coefficient of friction, The three 

chosen values of /x, are: 0.1, 0.25 and 0.50, and the corresponding evolution laws for the 

coefficients of friction selected are: /i = 0.065 e~°7Pd +0.035, /I = 0.215 e~°npd +0.035, and 

jl = 0.465 e~°7pd +0.035, respectively. Assumed values of the other interfacial properties were: 

Ts = -1.0 MPa and o~c = -15.0 MPa. Mechanical properties of the fiber are assumed as: £/=210 

GPa (elastic modulus), and, v/=0.30 (Poisson's ratio), and the same for the matrix are assumed as 

30 GPa and 0.20, respectively. Total fiber length, L, is taken as 50 mm (i.e., one side embedded 

length=25 mm), and fiber diameter is taken as <i=1.0 mm. The assumed value of b (the outer 

radius of matrix cylinder) is 50 mm. Note that an elastic modulus of 210 GPa corresponds to 

that of steel. 
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The prepeak part of the pullout curves and the complete pullout curves for different values of 

interfacial coefficient of friction, /z„ are shown in Figures 7.1.5a and 7.1.5b, respectively. In the 

former figure, it can be noticed that the prepeak pullout curves become nonlinear at very small 

values of pullout loads, and also that both the peak pullout load and the displacement at peak 

pullout load increase with increase in interfacial coefficient of friction, / i , . In the latter figure, it 

can be noticed that the postpeak pullout response varies greatly at different values of interfacial 

coefficient of friction, fxh and in general, postpeak pullout loads increase with increase in 

interfacial coefficient of friction. In other words, energy absorbed during the process of fiber 

pullout increases with increase in interfacial coefficient of friction. 
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In Figure 7.1.5c, the pullout load at initial debonding and the peak pullout load are plotted as a 

function of interfacial coefficient of friction, ju(. In this figure, it can be seen that the peak 

pullout load increases with increase in interfacial coefficient of friction, jU,. From the viewpoint 
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of optimization of interfacial properties, this observation is important, since it demonstrates that 

efficiency of high modulus fibers can be significantly improved by increasing the coefficient of 

friction. 

In the Figure 7.1.5d, the displacement at the peak pullout load is plotted as a function of 

interfacial coefficient of friction, zz,. In this figure it can be seen that the displacement at the 

peak pullout load increases with increase in the interfacial coefficient of friction, /z,. 
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Figure 7.1.5e: Variation in pullout load and its components 

as a function of debond length (£y=210 GPa) 

Figure 7.1.5e shows pullout load and its components as a function of debond length at different 

values of interfacial coefficient »of friction, rx,. From this figure, the following important 

observations can be made: 

• Pullout load corresponding to any given debond length increases with increase in interfacial 

coefficient of friction, zz,. 

• Prior to complete debonding, the frictional component of pullout load increases with increase 

in interfacial coefficient of friction, /z,. On the other hand, the adhesional component of 

pullout load is not affected by a change in interfacial coefficient of friction, zz,. 

Figure 7.1.5f shows the variation in axial load distribution at completion of debonding for 

different values of interfacial coefficient of friction, zz,. In the figure, it can be seen that the axial 

load along the embedded fiber length increases with increase in interfacial coefficient of friction, 

zz,-. It can also be noticed that the fiber axial load is maximum at the loaded fiber end and it 

decreases to a value of zero at the embedded fiber end. Figure 7.1.5g shows the interfacial shear 
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stress distribution at completion of interfacial debonding. In the figure it can be noticed that 

interfacial shear stress increases with increase in interfacial coefficient of friction, fxt. Also, for 

any given value of interfacial coefficient of friction, fit the interfacial shear stress is maximum at 

the embedded fiber end and it decreases towards the exit fiber end. It can also be noticed that the 

rate of decay of interfacial shear stress along the embedded fiber length increases with increase 

in interfacial coefficient of friction, Lij. Poisson's contraction of fiber is responsible for the 

observed interfacial shear stress distribution along the embedded length of fiber. 

Axial position, z (mm) Axial position, z (mm) 

Figure 7.1.5f: Fiber axial load distribution at completion of Figure 7.1.5g: Interfacial shear stress distribution at 

debonding (£/=210GPa) completion of debonding (£ y=210GPa) 

7.1.3.2 Fiber Elastic Modulus, Ef = 3.5 GPa 

Parametric studies are carried out by varying the initial coefficient of friction, Lit. The three 

chosen values of Lij are: 0.05, 0.25 and 0.50, and the corresponding evolution laws for 

coefficient of friction selected are: LL = 0.02e~° 3 p d +0.03, LL = 0.22e**v* +0.03, and 

Ll - 0.47 e~°3pd + 0.03, respectively. Assumed values of the other interfacial properties were: xs 

= -1.0 MPa and o~c = -15.0 MPa. Mechanical properties of the fiber are assumed as: E/=3.5 GPa 

(elastic modulus), and, V/=0.35 (Poisson's ratio), and the same for matrix are assumed as 30 GPa 

and 0.30, respectively. Total fiber length, L, is taken as 50 mm (i.e., one side embedded 

length=25 mm), and fiber diameter is taken as d=l.O mm. The assumed value of b (the outer 

radius of matrix cylinder) is 50 mm. Note that an elastic modulus of 3.5 GPa corresponds to that 

of polypropylene. 
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The prepeak part of pullout curves and the complete pullout curves for different values of 

interfacial coefficient of friction, (ii, are shown in Figures 7.1.6a and 7.1.6b, respectively. In the 

former figure, it can be noticed that the prepeak pullout curves become nonlinear at very small 

values of pullout loads. Also, increase in interfacial coefficient of friction, /i„ beyond a certain 

value does not produce any increase in peak pullout load. From Figure 7.1.6b, it can be observed 

that the total pullout energy does not increase significantly with increase in coefficient of 

friction. 
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In Figure 7.1.6c, the pullout load at initial debonding and the peak pullout load are plotted as a 

function of interfacial coefficient of friction, /i ,- . In this figure, it can be seen that the peak 

pullout load initially increases, and then it becomes constant with increase in interfacial 

coefficient of friction, //,. From the viewpoint of optimization of interfacial properties, this 

observation is important, since it demonstrates that the efficiency of low modulus fibers cannot 
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be significantly improved by solely increasing the coefficient of friction. In Figure 7.1.6d, 

displacement at the peak pullout load is plotted as a function of interfacial coefficient of friction, 

zz„ and it can be seen that the displacement at the peak pullout load increases at a decaying rate 

with increase in interfacial coefficient of friction, /z,. 
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Figure 7.1.6e shows pullout load and its components as a function of debond length at different 

values of interfacial coefficient of friction, zz*. In this figure, it can be seen that in the lower 

range of coefficient of friction, zz, (= 0.05 to 0.25), pullout load corresponding to any given 

debond length increases with increase in interfacial coefficient of friction, /Z;. On the other hand, 

in the higher range of coefficient of friction, zz, (= 0.25 to 0.50), pullout loads at smaller debond 

lengths {Id < 10 mm) increase with increase in coefficient of friction, zz„ while the difference 

between pullout loads due to increase in coefficient of friction vanishes at longer debond lengths. 
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Figure 7.1.6f shows variation in axial load distribution at completion of debonding for different 

values of interfacial coefficient of friction, It can be noticed that the fiber axial load is 

maximum at the loaded fiber end and it decreases to a value of zero at the embedded fiber end. 

In the figure, it can also be seen that at large values of interfacial coefficient of friction, Lit, axial 

load remains constant along the major portion of embedded fiber length. Figure 7.1.6g shows 

the interfacial shear stress distribution at completion of interfacial debonding for different values 

of interfacial coefficient of friction, /j,-. In this figure, it can be noticed that the peak value of 

interfacial shear stress increases with increase in interfacial coefficient of friction, Also, for 

any given value of interfacial coefficient of friction, Lit, the interfacial shear stress is maximum at 

the embedded fiber end and it decreases towards the exit fiber end. Moreover, the rate of 

decrease in shear stress increases with increase in the interfacial coefficient of friction, LLV 

Another very interesting feature that can be seen in this figure is that when /ij=0.5, the interfacial 

shear stress distribution along a major part of embedded fiber length is smaller than the same at 

jli = 0.05 and 0.25. Poisson's contraction of fiber is responsible for the observed interfacial shear 

stress distribution along the embedded fiber length. Comparison of Figures 7.1.5g and 7.1.6g 

also indicates that for low modulus fibers, the interfacial shear stress along the embedded length 

decays more rapidly in comparison to their high modulus counterparts. 

7.2 Conclusions 

• Prior to initial debonding pullout curve is linear and the stress transfer between fiber and 

matrix is purely elastic via adhesional shear stresses. 

• After initial debonding, further debonding (i.e., progressive debonding) requires the applied 

pullout load to overcome the interfacial frictional shear stresses at the debonded interface and 

adhesional shear stresses at the bonded interface. As a result, the pullout load required to 

further debond the interface depends upon the extent of prior debonding. During progressive 

interfacial debonding, the pullout curve becomes nonlinear. Pullout load during progressive 

debonding increases because the rate of increase in the frictional component of pullout load 

with increase in debond length is greater than the corresponding rate at which the adhesional 

component of the pullout load decreases. At the peak pullout load, the rate of increase in the 

frictional component of pullout load becomes equal to the rate of decrease in the bond 

component of the pullout load. Beyond the peak pullout load, the remaining bonded portion 

of interface debonds catastrophically. 
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Both the pullout load at initial debonding and the peak pullout load increase with increase in 

adhesional bond strength. For low modulus fibers (3.5 GPa) these increases are much 

smaller relative to high modulus fibers. This is because, for low modulus fibers much of the 

increase in the bond component of pullout load obtained with increase in adhesional bond 

strength is compensated by the corresponding decrease in the frictional component of pullout 

load. From the viewpoint of optimization of interfacial properties, this observation is 

important, since it demonstrates that efficiency of low modulus fibers cannot be improved 

significantly by solely increasing adhesional bond strength. 

Prior to complete debonding, the bond component of pullout load increases with increase in 

adhesional bond strength. On the other hand, the frictional component of pullout load 

decreases with increase in adhesional bond strength. 

Other parameters remaining the same, debond length at catastrophic debonding decreases 

with increase in adhesional bond strength. The interfacial debonding process is completely 

stable at very low values of adhesional bond strength for both the high modulus and the low 

modulus fibers. 

Prior to initiation of debonding, the rates of decrease in axial load and interfacial shear stress 

along the embedded fiber length for low modulus fibers are much more rapid in comparison 

to those for high modulus fibers. As a result, for low modulus fibers, only a very small 

embedded length of the fiber is mobilized in the stress transfer process prior to initiation of 

debonding. On the other hand, for high modulus fibers, a relatively longer fiber length is 

mobilized in the stress transfer process prior to initiation of debonding. 

For a given set of interfacial properties, catastrophic debond length decreases with increase in 

fiber elastic modulus, i.e., the higher the fiber modulus, the smaller is the catastrophic 

debond length. 

At completion of debonding and during fiber pullout interfacial shear stress is maximum at 

the embedded fiber end and it decreases towards the exit fiber end. Poisson's contraction of 

the fiber in the radial direction reduces the resultant contact stress at the interface and, hence, 

the interfacial shear stress. Because low modulus fibers undergo higher Poisson's 

contraction, interfacial shear stresses along the fiber length decrease at a faster rate in 

comparison to those for high modulus fibers. 

The peak pullout load increases with increase in interfacial contact stress, and this is because 

the frictional component of pullout load increases with increase in interfacial contact stress. 

Also, pullout loads on the post peak descending branch of the pullout curve increase with 
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increase in interfacial contact stress. Thus, the energy absorbed during the process of fiber 

pullout also increases with increase in interfacial contact stress. The above observations are 

valid for fibers of different modulus. 

The magnitude of interfacial shear stresses mobilized over the debonded interface increases 

with increase in interfacial contact stress. Also, for any given value of interfacial contact 

stress, the interfacial shear stress is maximum at the embedded fiber end and it decreases 

towards the exit fiber end. These observations are true for both high modulus as well as low 

modulus fibers. For a given set of interfacial properties, the rate of decrease of interfacial 

shear stress along the embedded length is greater for low modulus fiber. 

Given the dependence of pullout performance on interfacial contact stress, two approaches 

can be applied to improve fiber efficiency - i). using a matrix that shrinks more during 

curing, setting and hardening such that a higher value of interfacial contact stress is generated 

at the interface, and ii). intelligently designing fiber such that interfacial contact stress 

increases during the process of fiber pullout. 

The peak pullout load for high modulus fibers increases with increase in interfacial 

coefficient of friction. From the viewpoint of optimization of interfacial properties, this 

observation is important, since it demonstrates that efficiency of high modulus fibers can be 

significantly improved by increasing the coefficient of friction. On the other hand, for low 

modulus fibers, the peak pullout load initially increases and then it becomes constant with 

increase in interfacial coefficient of friction. Again, from the viewpoint of optimization of 

interfacial properties, this observation is important, since it demonstrates that efficiency of 

low modulus fibers cannot be significantly improved by solely increasing the coefficient of 

friction. 

The magnitude of interfacial shear stresses over the debonded interface increases with 

increase in interfacial coefficient of friction. For any given value of interfacial coefficient of 

friction, the interfacial shear stress is maximum at the embedded fiber end and it decreases 

towards the exit fiber end. The interfacial shear stress along the fiber length decreases more 

rapidly with increases in the interfacial coefficient of friction. These observations are true for 

both high modulus as well as low modulus fibers. 
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Chapter 8 

Conclusions 

Principal conclusions drawn from this research can be grouped into the following categories: 

Macromechanical Behavior of FRC & Toughness Characterization 

• Important material factors that influence post-cracking response (strengthening/toughness) of 

fiber reinforced concrete include fiber aspect ratio, fiber surface characteristics, fiber 

geometry, fiber volume content, shrinkage properties of matrix, and properties of mineral 

admixtures such as pozzolans. 

• The measured flexural load versus deflection response of fiber reinforced cement-based 

composites, particularly of the ones containing low fiber volume fractions of steel or 

synthetic fibers is greatly affected by the machine configuration. For machines with an open-

loop test configuration and low stiffness, the applied flexural load drops suddenly in an 

uncontrolled and unstable manner immediately following the peak load - the extent of this 

instability is a function of the machine stiffness and the rate of loading. Beyond the zone of 

instability, the flexural load versus deflection plot attains a stable softening level, during 

which loads are functions of the test machine characteristics. For the aforementioned 

reasons, the use of such load versus deflection curves to quantify toughness translates into 

meaningless toughness parameters. Unfortunately, the existing standards to characterize 

toughness (for example, A S T M C1018 [4] and JSCE SF4 [5]) allow the use of such flexural 

load versus deflection curves. 

• Assessment of a new toughness characterization technique termed the Residual Strength Test 

Method (RSTM) has been made. In this technique, a stable narrow crack is first created in 

the specimen by applying flexural load in parallel with a steel plate under controlled 

conditions. The plate is then removed, and the specimen is tested in a routine manner in 

flexure to obtain the post-crack load versus displacement response. Post-peak flexural 

response obtained using this technique correlates very well with those obtained with 

relatively stiffer test configurations such as closed-loop test machines. A good agreement 

between the flexural response obtained from the aforementioned methods seems to validate 
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the Residual Strength Test Method. The Residual Strength Test Method is simple, and can 

be carried out easily in any commercial laboratory equipped with a test machine with low 

stiffness. 

• The Residual Strength Test Method is seen to be effective in differentiating between different 

fiber types, fiber lengths, fiber configurations, fiber volume fractions, fiber geometries and 

fiber moduli. In particular, the technique is extremely useful for testing cement-based 

composites containing fibers at very low dosages (< 0.5% by volume). 

Bond-Slip Performance of Fibers Embedded in Cementitious Matrices 

• The maximum pullout load is influenced by the embedded fiber length. With increases in 

fiber length, the maximum pullout load increases, attaining an asymptote at long fiber 

lengths. The aforementioned observation is found to be valid for fibers with different elastic 

moduli. 

• For a given fiber length and diameter, the maximum pullout load increases with increase in 

fiber surface roughness. Additionally, for a fiber of a given length, the displacement 

corresponding to the maximum pullout load and the total energy absorption increase with 

increase in surface roughness. The disparity between the maximum pullout loads for a 

smooth steel fiber and a rough steel fiber decreases with increase in fiber length. In 

particular, the asymptotic value of maximum pullout load attained at long fiber lengths in the 

case of rough steel fibers is approximately similar to that for smooth steel fibers. 

• The maximum pullout load is also influenced by the shrinkage properties of the matrix - for 

a fiber of given length and diameter, the maximum pullout load with non-shrink grout matrix 

is substantially lower than that obtained with normal portland cement matrix. This 

observation is valid for fibers of different length, and therefore, the asymptotic value of 

pullout stress attained in the case of non-shrink grout matrix is much lower in comparison to 

that with normal portland cement matrix. 

• For a given type of matrix and fiber length, steel fibers attained a greater peak pullout load in 

comparison to polypropylene fibers. In addition, for polypropylene fibers, the asymptotic 

value of pullout stress is attained at much smaller fiber length in comparison to that with steel 

fibers. 
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Progressive Debonding Model for Fiber Pullout 
• To understand the mechanics of interaction between fibers and matrices, a shear-lag model is 

proposed to study the problem of fiber pullout. The proposed model is unique because of its 

ability to take into consideration the evolution of the interfacial properties during the pullout 

process. The analysis of the problem can be divided into three stages: 

During stage 1, the fiber remains completely bonded along its embedded length, and the 

displacements at the fiber-matrix interface are compatible. Analysis is based on the 

shear-lag theory with the maximum shear stress as the criterion for fiber-matrix 

interfacial debonding. During this stage, resistance to fiber pullout is derived through the 

interfacial adhesional shear stress. Closed-form solutions are derived for the fiber axial 

stress distribution, the interfacial shear stress distribution, the fiber displacement, and the 

initial debonding stress. The closed-form solution for the initial debonding stress depicts 

that the initial debonding stress primarily depends upon the elastic properties of the fiber 

and the fiber length. 

During stage 2, the fiber is partially bonded along its embedded length. The adhesional 

shear stresses at the bonded interface and the frictional shear stresses at the debonded 

interface resist the fiber pullout. Interfacial friction is modeled using the Coulomb's law 

and the Poisson's effect along the debonded interface is modeled by considering the fiber 

and the matrix to be held together in a shrink-fit configuration. It has been shown that for 

any interfacial debond length, the fiber pullout stress is a summation of the two 

components - the one arising due to the adhesional shear bond and the other arising due 

to the frictional shear bond. Closed-form solutions are derived for the fiber axial stress 

distribution, the interfacial shear stress distribution, the fiber pullout stress versus debond 

length relationship, and the fiber displacement versus debond length relationship. 

. The interfacial debonding process becomes catastrophic at the instant when the fiber 

pullout stress begins to drop with increase in debond length. This condition is satisfied 

when the difference between the change in the frictional component of pullout stress and 

the change in adhesional component of pullout stress occurring due to increase in debond 

length minimizes. Closed-form solutions are derived for the catastrophic debond length, 

the peak pullout stress and the displacement corresponding to peak pullout stress. 

. During stage 3, the fiber is completely debonded along its embedded length and fiber 

pullout is initiated. Frictional shear stresses existing over the debonded interface resist 
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pullout of the fiber from the matrix. Closed-form solutions are derived for the fiber axial 

stress distribution, the interfacial frictional shear stress distribution, the pullout stress and 

the fiber displacement. 

Using the proposed progressive debonding model it is possible to predict the complete 

pullout response. Theoretical predictions from the proposed model compare well with the 

experimental pullout data. 

A procedure to calibrate interfacial properties from experimental pullout data is established. 

It is shown that interfacial contact stress can be calculated using the asymptotic value of 

pullout stress on the peak pullout stress versus embedded length plot. The adhesional bond 

strength can be calculated from the initial slope of the peak pullout stress versus embedded 

length plot. Based on energy considerations, a method is proposed to calculate the 

coefficient of friction as a function of pullout distance. The evolution law for coefficient of 

friction depicts that interfacial coefficient of friction decays exponentially with increase in 

fiber pullout distance. This observation is found to be valid for fibers of different elastic 

modulus. Smoothening of the interface as a result of the matrix wear during fiber pullout 

appears to be the reason for this behavior. 

Prior to the initial debonding, the stress transfer between fiber and matrix is purely elastic 

(i.e., via adhesional shear stresses) and the corresponding pullout curve is linear. After the 

initial debonding, further debonding (i.e., progressive debonding) requires the applied pullout 

load to overcome the interfacial frictional shear stresses at the debonded interface and 

adhesional shear stresses at the bonded interface. As a result, the pullout load required to 

further debond the interface depends upon the extent of prior debonding. During progressive 

interfacial debonding, the pullout curve becomes nonlinear. Pullout load during progressive 

debonding increases because the rate of increase in the frictional component of the pullout 

load with increase in debond length is greater than the corresponding rate at which the 

adhesional component of the pullout load decreases. At the peak pullout load, the rate of 

increase in the frictional component of pullout load becomes equal to the rate of decrease in 

the bond component of the pullout load. Consequently, beyond the peak pullout load, the 

remaining bonded portion of interface debonds catastrophically. 

Both the pullout load at initial debonding and the peak pullout load increase with increase in 

adhesional bond strength. For the low modulus fibers (=3.5 GPa) these increases are not as 

significant relative to those obtained in the case of high modulus fibers. This is because for 
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low modulus fibers much of the increase in the bond component of the pullout load obtained 

with increase in the adhesional bond strength is compensated by the corresponding decrease 

in the frictional component of the pullout load. From the viewpoint of optimization of the 

interfacial properties, this observation is important, since it demonstrates that efficiency of 

low modulus fibers cannot be improved significantly solely by increasing the adhesional 

bond strength. 

For a given debond length, the bond component of pullout load increases and the frictional 

component of pullout load decreases with increase in adhesional bond strength. The other 

parameters remaining constant, the debond length at the occurrence of catastrophic 

debonding decreases with increase in the adhesional bond strength. 

Prior to initiation of debonding, the rates of decrease in axial load and interfacial shear stress 

along the embedded fiber length are greater for low modulus fibers in comparison to high 

modulus fibers. Consequently, for low modulus fibers, only a very small embedded fiber 

length is mobilized in the stress transfer process. On the other hand, for high modulus fibers, 

a relatively longer fiber length is mobilized in the stress transfer process. 

For a completely debonded interface, interfacial frictional shear stress is maximum at the 

embedded fiber end and it decreases towards the exit fiber end. Poisson's contraction of 

fiber in the radial direction reduces the resultant contact stress at the interface and the 

consequent interfacial frictional shear stress. Because the low modulus fibers undergo a 

higher Poisson's contraction, the interfacial frictional shear stresses along the fiber length 

decrease at a greater rate in comparison to those in the case of high modulus fibers. 

The peak pullout load increases with increase in interfacial contact stress. This is because the 

frictional component of pullout load increases with increase in interfacial contact stress. 

Also, pullout loads on the post-peak descending branch of the pullout curve increase with 

increase in interfacial contact stress. Energy absorbed during the process of fiber pullout also 

increases with increase in interfacial contact stress. The above observations are valid for 

fibers of different moduli. 

The magnitude of interfacial shear stresses mobilized over the debonded interface increases 

with an increase in interfacial contact stress. Also, for any given value of interfacial contact 

stress, the interfacial shear stress is maximum at the embedded fiber end and it decreases 

towards the exit fiber end. These observations are true for both high modulus as well as low 
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modulus fibers. For a given set of interfacial properties, the rate of decrease in interfacial 

shear stress along the embedded length is greater for low modulus fiber. 

• Given the dependence of pullout performance on interfacial contact stress, two approaches 

can be used to improve fiber efficiency - i). using a matrix that shrinks more during curing, 

setting and hardening such that a higher value of interfacial contact stress is generated at the 

interface, and ii). intelligently designing fiber such that interfacial contact stress increases 

during the process of fiber pullout. 

• The peak pullout load for high modulus fibers increases with increase in interfacial 

coefficient of friction. From the viewpoint of optimization of the interfacial properties this 

observation is important, since it demonstrates that efficiency of high modulus fibers can be 

significantly improved by increasing the coefficient of friction. However, the above is not 

the case with low modulus fibers. 

Recommendations for Future Studies 

• In the current research program, fiber pullout response under static loading was investigated. 

However, the micromechanical properties of the interface and the mechanical properties of 

the constituents, (i.e., fiber and matrix) may be expected to depend upon the rate of loading. 

In such a scenario, fiber pullout response will be a function of the rate of loading. It is 

recommended that studies be carried out to investigate the influence of loading rate on fiber 

pullout response. In this context, it will be worthwhile to examine: 

• The influence of matrix modification by mineral admixtures, such as silca-fume, fly-ash, 

high reactivity metakaoline, etc. 

• The influence of matrix modification by chemical admixtures, such as air entraining 

agents, high-range water-reducing admixtures, etc. 

• The influence of polymer viscoelasticity in the case of polymeric fibers. 

• Fiber-matrix interfacial properties are expected to change as a result of the treatment of fiber 

surface with chemical coatings such as Organo-functional silanes. It is recommended that 

studies be carried out to investigate the extent of dependence of fiber pullout response on 

different chemical coatings. 
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Fibers with extremely good interfacial bond with matrix may fracture during the pullout 

process. This appears to be the case with polyvinyl alcohol fibers (fiber PVA-1). Thus, for 

polyvinyl alcohol fibers, improved pullout efficiency may be expected with reduction in 

interfacial bond. This reduction can possibly be achieved either through the application of 

appropriate chemical coating on fiber surface or through a change in the chemical properties 

of the base polymer. Studies are recommended in this context. 

It is recommended that studies be carried out to understand the influence of fiber inclination 

and ductility of fiber material on the pullout response. Also there is need to model the 

pullout response for these scenarios. 

In the current research, sensitivity of fiber pullout response on the interfacial contact stress 

was observed. It was seen that the interfacial contact stress was dependent: upon the 

shrinkage properties of the matrix. However, the interfacial contact stress may also depend 

upon any external confining stress applied to the fiber reinforced cementitious composite. It 

is recommended that further studies be carried out to investigate and characterize the 

influence of external confining stresses on fiber pullout response. 

In addition to the initial water/cement ratio, the shrinkage behavior of cementitious matrix is 

highly dependent upon the environmental conditions existing during setting, hardening and 

curing of matrix. Since the fiber-matrix interfacial properties and the pullout response are 

strongly dependent upon the shrinkage behavior of cementitious matrix (as seen in this 

study), it becomes important to diligently control the environmental parameters while 

producing fiber reinforced cementitious composites. Now, what constitute optimal 

environmental conditions remains to be investigated. Detailed investigations are 

recommended to explore this aspect. 
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/ * SOURCE CODE FOR THE FIBER PULLOUT MODEL */ 
/* BY TAKAKU AND ARRIDGE [REFERENCE 54] */ 

ttinclude <stdio.h> 
#include <float.h> 
#include <math.h> 
#include <stdlib.h> 
#include <memory.h> 

\ 
#define TT 200 
#define N 3 

main () 
{ 
FILE *input_file; 
FILE *STRS_DISTR; 
FILE *STRS_DISTR2; 
FILE *PO_DISP; 
FILE *P0_DISP2; 
FILE *DEBLEN_DEBSTRSS; 
FILE *DEBLEN_DEBSTRSS2; 
FILE *PO_STRESSvsDL; 
FILE *P0_STRESSvsDL2; 
FILE *TEST; 
FILE *TESTIN; 

int L, d l , zz, parts, pdist; 

double a, b, Poss_m, Poss_f, Em, Ef, ABS, mu, contact_stress, 
Initial_debonding_stress, row, alpha, epsl, eps2, 
eps3, eps4, epsilon, thetal, theta2, theta, betal, beta, cnstntl , cnstnt2, 
mega, 
deb_len, deb_pos, Fiber_area, z, zzz, debond_length, omegal, LL, PDS, FD1, 
FD2, FAS1, FAS2, FAS3, pd, pullout_distance, FDP1, FDP2, FDP3, FASP1, FASP2, 
zero_stress, l_cata, l_catal , l_cata3, xxxx, yyyy, zzzz, wwww, 
alphaa_ta, alpha_ta, sigma_o_peak, U_d; 

float Pullout_Bond_component[TT] [N], Pullout_Friction_component[TT] [N], 
Fiber_disp_2sides[TT] [N], Pullout_Load[TT] [N], 
Fiber_axial_stress[TT] [N], Interfacial_shear_stress[TT] [N], 
Fiber_axial_load[TT] [N], Fiber_axl_load_bond_compo[TT] [N], • 
Fiber_axl_load_frictional_compo[TT] [N], ISS[TT], Fiber_displacement[TT], 
Fiber_displacement2[TT], Progressive_dbnd_stress[TT], 
Progressive_POstress[TT], P0_LD_Bond[TT], P0_LD_Fric[TT], 
Progressive_P01oad[TT]; 

input_file = fopen("inp","r"); 
STRS_DISTR = fopen("stress","w"); 
STRS_DISTR2 = fopen("stress2", "w"); 
PO_DISP = fopen("disp","w"); 
*/ 
P0_DISP2 = fopen("disp2", "w"); 
TESTIN = fopen("in", "w"); 

/* stress distr ibution in fiber */ 

/ * pullout stress and fiber displacement 
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* read the input f i l e */ / * ABS - Adhesional Bond Strength */ 
fscanf(input_file, "%lf %lf %lf %lf %lf %lf %d %lf %lf %lf ", &a, 
&b, &Poss_f, &Poss_m, &Em, &Ef, &L, &ABS, &mu, &contact_stress); 

/* _ */ 
/* Fiber completely bonded along i t s length */ 
/* _ */ 

fprintf(PO_DISP, "Deb Len Dbnd Strs PO Strs Fib Disp Progr PO Ld 
Bnd PO Ld Fric PO Ld\n"); 
fprintf(P0_DISP2, "Deb Len Dbnd Strs PO Strs Fib Disp2 Progr PO Ld 
Bnd PO Ld Fric PO Ld\n"); 
fprintf(STRS_DISTR ( "Dbnd Strs Deb Lt Deb Pos Axl Pos Axl Strs Shr 
Strs Axl Lod Bnd Ld Fric Ld \n"); 

omega=Poss_f*Em/(Ef*(l+Poss_m)); 
Fiber_area = 3.14*a*a; 
alphaa_ta=(2*3.14159*Em)/(a*Ef*(l+Poss_m)*log(b/a)); 
alpha_ta=sqrt(alphaa_ta); 
deb_len=0.0; 
deb_pos=0.0; 
dl=deb_len; 
zero_stress=0.0; 
Initial_debonding_stress=-2*ABS*tanh(alpha_ta*L)/(a*alpha_ta); 
Progressive_dbnd_stress[dl]=Initial_debonding_stress; 
Progressive_dbnd_stress[dl]=Initial_debonding_stress; 
Progressive_POstress[dl] = zero_stress; 
Progressive_P01oad[dl]=0.0; 
P0_LD_Bond[dl]=0.0; 
P0_LD_Fric[dl]=0.0; 
Fiber_displacement[dl]=zero_stress/(Ef*a*cosh(alpha_ta*L)); 
Fiber_displacement2[dl] = 2*Fiber_displacement[dl]; 
fprintf(P0_DISP, "%7.21f %7.21f %7.21f %7.51f %7.21f 
%7.21f %7.21f\n", deb_len, Progressive_dbnd_stress[dl], 
Progressive_POstress[dl], Fiber_displacement[dl], Progressive_P01oad[dl], 
P0_LD_Bond[dl], P0_LD_Fric[dl]); 
fprintf(P0_DISP2, "%7.21f %7.21f %7.21f %7.51f %7.21f . 
%7.21f %7.21f\n", deb_len, Progressive_dbnd_stress[dl], 
Progressive_POstress[dl], Fiber_displacement2[dl], Progressive_POload[dl], 
P0_LD_Bond[dl], P0_LD_Fric[dl]); 

deb_len=0.0; 
deb_pos=0.0; 
dl=deb_len; 
Initial_debonding_stress=-2*ABS*tanh(alpha_ta*L)/(a*alpha_ta); 
Progressive_dbnd_stress[dl]=Initial_debonding_stress; 
Progressive_POstress[dl] = Initial_debonding_stress; 
Progressive_P01oad[dl]=Progressive_POstress[dl]*Fiber_area; 
P0_LD_Bond[dl]=Progressive_dbnd_stress[dl]*Fiber_area; 
P0_LD_Fric[dl]=Progressive_P01oad[dl]-P0_LD_Bond[dl]; 
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Fiber_displacement[dl]=Initial_debonding_stress/(Ef*(row+alpha-
row*epsilon*alpha+alpha*epsilon))*((alpha-row*epsilon*alpha+alpha*epsilon 
row)*(cosh(beta*L)-1)/(beta*sinh(beta*L))+row*L); 
Fiber_displacement2[dl] = 2*Fiber_displacement[dl]; 
fprintf(PO_DISP, "%7.21f %7.21f %7.21f %7.51f %7.21f 
%7.21f %7.21f\n", deb_len, Progressive_dbnd_stress[dl], 
Progressive_POstress[dl], Fiber_displacement[dl], Progressive_P01oad[dl], 
PO_LD_Bond[ dl ] , PO_LD_Fric[dl]); 
fprintf(PO_DISP2, "%7.21f %7.21f %7.21f %7.51f %7.21f 
%7.21f %7.21f\n", deb_len, Progressive_dbnd_stress[dl], 
Progressive_POstress[dl], Fiber_displacement2[dl], Progressive_P01oad[dl] 
PO_LD_Bond[dl], PO_LD_Fric[dl]); 

/* */ 
/ * Fiber completely debonded along i t s length */ 
/* _ •__ */ 

parts=4; 
for(pdist=0; pdist<=parts*L; ++pdist) 
{ 
pullout_distance=pdist; 
pd=pullout_distance/parts; 

/ * L_new=L-pout_dist; */ 
Progressive_dbnd_stress[pdist]= 0.0; 

/* calculate progressive pullout stress and fiber displacement */ 
Progressive_POstress[pdist]=-contact_stress/omega*(1-exp(-2 *mu*omega*(L-
pd)/a)); 
Progressive_P01oad[pdist]=Progressive_POstress[pdist]*Fiber_area; 
PO_LD_Fric[pdist]=Progressive_P01oad[pdist]; 
PO_LD_Bond[pdist]= 0.0; 
FDPl=contact_stress/(Ef*omega); 
FDP2=a/(2*mu*omega)*(exp(-2*mu*omega*(L-pd)/a)-1); 
FDP3=pd*(l-exp(-2*mu*omega*(L-pd))); 
Fiber_displacement[pdist]=pd-FDPl*((L-pd)+FDP2+FDP3); 
Fiber_displacement2[pdist] = pd-FDPl*(2*(L-pd)+2*FDP2+FDP3); 
fprintf(PO_DISP, "%7.21f %7.21f %7.21f %7.51f %7.21f 
%7.21f %7.21f\n", pd, Progressive_dbnd_stress[pdist], 
Progressive_POstress[pdist], Fiber_displacement[pdist], 
Progressive_P01oad[pdist], PO_LD_Bond[pdist], PO_LD_Fric[pdist]); 
fprintf(PO_DISP2, "%7.21f %7.21f %7.21f %7.51f %7.21f 
%7.21f %7.21f\n", pd, Progressive_dbnd_stress[pdist], 
Progressive_POstress[pdist], Fiber_displacement2[pdist], 
Progressive_P01oad[pdist], PO_LD_Bond[pdist], PO_LD_Fric[pdist]); 

/* calculate fiber axial stress distribution & interfac ia l shear stress 
distribution over the debonded zone of the par t ia l l y debonded fiber 
*/ 

for(zz=0; zz<=parts*(L-pd); ++zz) 
{ 
zzz=zz; 
z=zzz/parts; 
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FASP1=contact_stress/omega; 
FASP2=exp(-2*omega*mu*z/a); 
Fiber_axial_stress[zz] [3]=-FASPl*(1-FASP2); 
Interfacial_shear_stress[zz] [3]=mu*contact_stress*FASP2; 
Fiber_axial_load[zz] [3] = Fiber_axial_stress[zz] [3] * Fiber_area 
Fiber_axl_load_bond_compo[zz] [3] = Progressive_dbnd_stress[pdist] 
Fiber_area; 
Fiber_axl_load_frictional_compo[zz] [3] = Fiber_axial_load[zz] [3] 
Fiber_axl_load_bond_compo[zz] [2]; 
fprintf(STRS_DISTR, "%7.21f %7.21f %7.21f %7.21f %7.21f %7.21 
%7.21f %7.21f %7.21f \n", Progressive_dbnd_stress[pdist], pd, z, 
Fiber_axial_stress[zz] [3], Interfac ial_shear_s tress[zz] [3], 
Fiber_axial_load[zz] [3], Fiber_axl_load_bond_compo[zz] [3], 
Fiber_axl_load_frictional_compo[zz] [3]); 

192 



Appendix B 

193 



/ * SOURCE CODE FOR THE PULLOUT MODEL BY HSUEH [REFERENCES 67 & 68] */ 

#include <stdio.h> 
#include <float.h> 
#include <math.h> 
#include <stdlib.h> 
#include <memory.h> 
ttinclude <malloc.h> 

#define TT 200 

main () 
{ 

FILE *input_file; 
FILE *STRS_DISTR; 
FILE *PO_DISP; 
FILE *DEBLEN_DEBSTRSS; 
FILE *PO_STRESSvsDL; 
FILE *TEST; 
FILE *TESTIN; 
FILE *AREA; 

int Debnd_stress, L, Counter, zz, d l , ITER, incr, steps, zx, zy, zzyy, zxpo, 
rad, bb; 

double a, b, Poss_m, Poss_f, Em, Ef, ISS, Alpha, z, LZ, DS_Num, DS_Numerator, 
DS_Denominator, Initial_debonding_stress, pullout_strs, 
Pullout_stress[200], Fiber_axial_stress[200], FAS1, FAS2, FAS3, 
Interfacial_shear_stress[200], IS3, ISS1, ISS2, ISS3, FD1, FD2, FD3, 
Difference, pullout_stress, Fiber_disp[2 00], alph, ppp, x, y, log_ba, 
increment, 
DST_Num, DST_Numerator, DST_Denominator, debond_stress_current [200], 
deb_len, b l , D, denom, A l , A2, A3[200], mu, stress_pout[200], stress_shrnk, 
A1A2, ml, m2, B[200], SP1, SP2a, SP2b, SP2c, SP2, SP3a, SP3b, SP3c, SP3 , xx, 
xy, xz, xxz, xxzz, mid, m2d, mlm2, mlm2d, ubl, ub2,ub2a, ub2b, ub2c, ub[200], 
LDEB1, LDEB2, US1, US2, US3, US4, US[200], USSS, A3a, A3b, mldexp, m2dexp, 
po_len, emb_len, debond_stress_current3, stress_pout3[200], 
USP1, USP2, USP3, USP4, USP[200], UP3[200], mlz, m2z, ASI, AS2, AS3, mmzl, 
mmz2, ISSS1, ISSS2, ISSS3, deb_pos, steer, zzz, debond_stress_current01, 
pullout_strs01, ISSbl, ISSb2, ISSb3, ISb3, EMBD_LEN, mlm2z, POS, embd_len_po, 
separation, deb_component, fric_component, Total_bond_load, 
shrnk_strss_net[200], mm2dexp, row, modulus_ratio, epsl, eps2, eps3, eps4, 
epsilon, thetal, theta2, theta, betal, beta, DSC1, DSC2, DSC3, DSC[200], 
matrix_stress_b, matrix_stress, radl , k; 

float Pullout_Bond_component[TT], Pullout_Friction_component[TT], 
Fiber_disp_2sides[TT], Fiber_area, Pullout_Load_Bond_component[200], 
Pullout_Load_Friction_component[200], Pullout_Load[TT], 
Fiber_axial_load[TT], Fiber_axl_load_bond_compo[TT], 
Fiber_axl_load_frictional_compo[TT], areal[TT]; 

input_file = fopen("inptl","r"); 
STRS_DISTR = fopen("stress","w"); / * stress d i s tr ibut ion' in fiber */ 
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PO_DISP = fopen("disp","w"); / * pullout stress and fiber displacement */ 
DEBLEN_DEBSTRSS = fopen("dbsdbl","w"); / * debond length versus debond stress 
*/ 
PO_STRESSvsDL = fopen("posdl","w"); / * pullout stess vs debond length */ 
TEST = fopen("testout", "w"); 
TESTIN = fopen("in", "w"); 
AREA- = fopen("area", "w"); 

/* read the input f i l e */ 
fscanf(input_file, "%lf %lf %lf %lf %lf %lf %d %lf %lf %lf ", &a, &b, 
&Poss_f, &Poss_m, &Em, &Ef, &L, &ISS, &mu, &stress_shrnk) ; 
fprintf(TESTIN, "%lf %lf %lf %lf %lf %lf %d %lf \n", a, b, Poss_f, 
Poss_m, Em, Ef, L , ISS, mu); 

/* fprintf(DEBLEN_DEBSTRSS, "Debond Length Debond Stress \n"); */ 
/ * fprintf(AREA, "pdist pd area \n"); */ 

row=a*a/(b*b-a*a); 
modulus_ratio=Em/Ef; 
epsl=2/(a*a* (b*log(b/a) - (b-a) ) )'; 
eps2=(0.5*b*b*b*log(b/a)-b*(b*b-a*a)/4); 
eps3=0.5*a*(b*b-a*a); 
eps4=(b*b-a*a)/3; 
epsilon=epsl*(eps2+eps3-eps4); 
thetal=a*a*(l+Poss_m); 
theta2=(b/(b-a))*log(b/a)-1; 
theta=l/(thetal*theta2); 
betal= (theta*(row+modulus_ratio-
row*epsilon*modulus_ratio)/(row*epsilon))+modulus_ratio*theta; 
beta=pow(betal,0.5); 

Fiber_area = 3.14*a*a; 

/ * calculate the i n i t i a l debonding stress (which is same as- the fiber p u l l -
out test) */ 
log_ba = log(b/a),• 
alph=(a*a*Ef+(b*b-a*a)*Em)/(Ef*(l+Poss_m)*(b*b*log_ba-(b*b-a*a))); 
Alpha = pow(alph,0.5)/a; 

/* fprintf(TEST, "%7.21f %7.21f \n",log_ba, alph); */ 
/ * fprintf(TEST, "%7.21f %7.21f %7.21f \n",log_ba, alph, Alpha); */ 

DS_Num = ((l+Poss_m)*(1+(b*b/(a*a)-1)*(Em/Ef))*(b*b*log_ba-(b*b-a*a)12) ); 
DS_Numerator = (2/a) * pow(DS_Num,0.5); 
DS_Denominator = (((b*b/(a*a)-1)*(Em/Ef))/tanh(Alpha*L))+ 2/(exp(Alpha*L)-
exp(-Alpha*L)); 
Initial_debonding_stress = -ISS * DS_Numerator/DS_Denominator; 
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/* 
*/ 
/ * FIBER COMPLETELY BONDED ALONG ITS ENTIRE LENGTH 
*/ 
/ * 
*/ 

/ * Calculate pullout stress vs displacement relationship when fiber is 
e las t ica l ly bonded to the matrix throughout the embedded fiber length */ 

/* NOTE: I n i t i a l debonding stress w i l l be same as the fiber pullout test 
*/ 
/ * Also calculate the axial stress distribution in fiber and the interfac ia l 
shear stress distribution for pullout load less than or equal to debonding 
load */ 
fprintf(STRS_DISTR, "CTR PO Strs Deb Lt Deb Pos Axl Pos Axl Strs 
Shr Strs Axl Ld Bnd Ld Fric Ld\n"); 

Counter=0; 
pullout_strs=0; 
incr=100; 
steps=(Initial_debonding_stress/100); 

for(ITER=l; ITER <= steps+2; ++ITER) 
{ 

dl=0; 
Counter=Counter+l; 
Pullout_stress[ITER] = pullout_strs; 
Pullout_Friction_component[dl]= 0.0; 
Pullout_Bond_component[dl]=Pullout_stress[ITER]; 
Pullout_Load[ITER] = Pullout_stress[ITER] * Fiber_area; 
Pullout_Load_Friction_component[dl] = 0.0; 
Pullout_Load_Bond_component[dl] = Pullout_Bond_component[dl] * Fiber_area; 

for(zz=0; zz<=2*L; ++zz) 
{ 

deb_len=0.0; 
deb_pos=0.0; 
z = 0 . 5 * z z ; 
LZ = L-z ; 
debond_stress_current[dl] = Initial_debonding_stress; 
/* calculate axial stress distribution in fiber */ 

FAS1 = (a*a*Ef*pullout_strs)/(a*a*Ef+(b*b-a*a)*Em); 
FAS2 = ((b*b/(a*a))-1) * (Em/Ef) * (exp(Alpha*z)-exp(-
Alpha*z))/(exp(Alpha*L)-exp(-Alpha*L)); 

FAS3 = (exp(-Alpha*(L-z)) - exp(Alpha*(L-z)))/(exp(Alpha*L) - exp(-
Alpha*L)); 
Fiber_axial_stress[zz] = FAS1*(1+FAS2+FAS3); 
Fiber_axial_load[zz] = Fiber_axial_stress[zz] * Fiber^area; 
Fiber_axl_load_bond_compo[zz]= Fiber_axial_load[zz]; 
Fiber_axl_load_frictional_compo[zz]=0.0; 

/* calculate interfac ia l shear stress distribution */ 
1551 = ((b*b/(a*a))-1) * (Em/Ef) * (exp(Alpha*z) + exp(-
Alpha*z))/(exp(Alpha*L)-exp(-Alpha*L)); 
1552 = (exp(-Alpha*(L-z)) + exp (Alpha*(L-z)))/(exp(Alpha*L) - exp(-
Alpha*L)); 
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IS3 = ((l+Poss_m)*(1+(b*b/(a*a)-1)*(Em/Ef))*(b*b*log_ba-(b*b-a*a)12)) ; 
ISS3 = (2/a)* pow(IS3, 0.5); 
Interfacial_shear_s'tress [zz] = -pullout_strs*((ISS1+ISS2)/ISS3); 
/ * fprintf(TEST, "ISS1=%7.llf ISS2=%7.21f ISS3=%7.21f 

ISS[z=%7.21f]=%7.21f\n", ISS1, ISS2, ISS3, z, 
Interfacial_shear_stress[zz][dl]); */ 

fprintf(STRS_DISTR, "%d %7.21f %7.21f %7.21f %7.21f %7.21f 
%7.21f %7.21f %7.21f %7.21f \n", Counter, pullout_strs, deb_len 
deb_pos, z, 

Fiber_axial_stress[zz], Interfacial_shear_stress[zz], Fiber_axial_load[zz] 
Fiber_axl_load_bond_compo[zz], Fiber_axl_load_frictional_compo[zz]); 

matrix_stress_b = pullout_strs/epsilon - (row+modulus_ratio-
row*epsilon*modulus_ratio)*Fiber_axial_stress[zz]/(row*epsilon); 

bb=b; 
for(rad=l; rad<=bb; ++rad) 
{ 
k=rad; 
radl=log(k/a); 
matrix_stress=modulus_ratio*Fiber_axial_stress[zz] + matrix_stress_b-

modulus_ratio*Fiber_axial_stress[zz]*(b*radl+a-rad)/(b*log(b/a)-(b-a)); 
fprintf(DEBLEN_DEBSTRSS, "PO STRS=%7.21f zz=%d rad=%d 

matrix_stress_b=%7.21f matrix_stress=%7.21f \n", pullout_strs, zz, rad, 
matrix_stress_b, matrix_stress); 
} 

} 

/ * calculate fiber displacement */ 
FD1 = (a*a*pullout_strs)/(a*a*Ef+(b*b-a*a)*Em); 
FD2 = (((b*b/(a*a))-1)*(Em/Ef)-1)/Alpha; 
FD3 = (exp(Alpha*L)+exp(-Alpha*L)-2)/(exp(Alpha*L)-exp(-Alpha*L)); 
Fiber_disp[ITER] = FD1 * (L + FD2*FD3); 
Fiber_disp_2sides[ITER] = 2*Fiber_disp[ITER]; 

/ * fprintf(P0_DISP, "%7.21f %7.21f %7.21f %7.21f \n", 
pullout_strs, FD1, FD2, FD3); */ 

/ * fprintf(P0_DISP, "FDl=%7.21f FD2=%7.21f FD3=%7.21f\n", FD1, 
FD2, FD3); */ 

fprintf(P0_DISP, "%d %7.21f %7.21f %9.61f %9.61f %7.21 
%7.21f %7.21f . %7.21f %7.21f %7.21f\n", ITER, deb_len, 
debond_stress_current[dl], Fiber_disp[ITER], Fiber_disp_2sides[ITER], 

Pullout_stress[ITER], Pullout_Bond_component[dl], 
Pullout_Friction_component[dl], Pullout_Load[ITER], 
Pullout_Load_Bond_component[dl], Pullout_Load_Friction_component[dl]); 

if(ITER<steps+l) 
pullout_strs = pullout_strs + incr; 

else 
pullout_strs = Initial_debonding_stress; 

/ * fprintf(P0_DISP,"ITR=%d \n", ITER); */ 

} 
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/* 
*/ 
/ * FIBER PARTIALLY DEBONDED ALONG ITS LENGTH 
*/ 
/* 
*/ 

/ * Calcualte pullout stress vs displacement relationship 
when fiber-matrix are par t ia l l y bonded */ 

/ * Calcualte debonding stress (debond_stress_current [dl] for each debond 
length */ 

for(dl=0; dl<=2*L; ++dl) 
{ 

i f ( d l < 2*L) 
{ 
deb_len = 0.5*dl; 
b l = L - deb_len; 

/ * Counter = Counter+1; * / 
DST_Num = ((l+Poss_m)*(1+(b*b/(a*a)-1)*(Em/Ef))*(b*b*log_ba-(b*b- • 

a*a)/2)); 
DST_Numerator = (2/a) * pow(DST_Num,0.5); 
DST_Denominator = (((b*b/(a*a)-1)*(Em/Ef))/tanh(Alpha*(L-deb_len)))+ 
2/ (exp(Alpha* (L-deb_len) ) -exp(-Alpha* (L-deb_len) ) ) ,-

debond_stress_current [dl] = -ISS * DST_Numerator/DST_Denominator; 

DSC[dl]=0.0; 
DSC1=2*(row+modulus_ratio-
row*epsilon*modulus_ratio+modulus_ratio*epsilon)/(a*beta); 
DSC2=(modulus_ratio-
row*epsilon*modulus_ratio+modulus_ratio*epsilon)/tanh(beta*(L-
deb_len)); 
DSC3= 2*row/(exp(beta*(L-deb_len))-exp(-beta*(L-deb_len))),-
DSC[dl]=-ISS*DSCl/(DSC2+DSC3); 

/ * fprintf(DEBLEN_DEBSTRSS, "%7.21f %7.21f %7.21f 
Alpha=%7.21f row=%7.21f beta=%7.21f epsilon=%7.21f \n", deb_len, 
debond_stress_current [dl], DSC[dl], Alpha, row, beta, epsilon); * / 

} 
else 
{ 

deb_len = 0.5*dl; 
b l = L - deb_len; 
debond_stress_current [dl] = 0.0; 
fprintf(DEBLEN_DEBSTRSS, "%7.21f %7.21f \n", deb_len, 

debond_stress_current [dl]); 
} 

} 

D = ( (b*b+a*a) / (b*b-a'*a) ) + Poss_m + (Em*(l-Poss_f)/Ef); 
denom = (l+Poss_m)* (b*b*log_ba - (b*b-a*a)12); 
Al = a*(l-b*b/(a*a))*D/(2*mu*Poss_m*denom); 
A2 = ((l-b*b/(a*a))*(Em*Poss_f/(Ef*Poss_m))-1)/denom;-
A1A2 = (A1*A1-4*A2); 
ml = (-A1 + pow(AlA2,0.5))12; 
m2 = (-A1 - pow(AlA2,0.5))/2; 
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fprintf(TEST, "D=%7.21f Al=%7.21f A2=%7.21f ml=%7.21f 
m2=%7.21f \n",D, A l , A2, ml, m2); 
fprintf(TEST, "deb_len ml m2 (ml+m2)*deb_len debond 
stress current SP1 SP2 
SP3 Pullout Stress\n"); */ 

/* Caluclate pullout stress (partial debond pullout stress) for various 
debond lengths */ 

fprintf(PO_STRESSvsDL, "Debond length Debond stress Pullout stress 
\n"); 
/ * fprintf(STP, "SP1, SP2a, SP2b SP2c, SP2, SP3a, SP3c, SP3 Pullout 
stress \n"); */ 

ITER=ITER-1; 
for(dl=0; dl<=2*L; ++dl) 
{ 
Counter=Counter+l; 
deb_len = 0.5*dl; 
mlm2 = ml+m2; 
mid = ml*deb_len; 
m2d = m2*deb_len; 
mlm2d = (ml+m2)* deb_len; 

SP1 = debond_stress_current[dl]*(ml-m2)*exp(mlm2d); 
/ * fprintf(TEST, "%7.21f %7.21f %7.21f %7.21f %7.21f 

%50.21f", deb_len, ml, m2, mlm2d, debond_stress_current [dl ] , SP1) ,- */ 
SP2a=(a*a-b*b)*D*Ef*(m2*exp(m2d)-ml*exp(mld)+(ml-m2)*exp(mlm2d)); 
SP2b=(a*a-b*b)*Em*Poss_f-a*a*Ef*Poss_m; 
SP2c=(2*mu/a)*(exp(mid)-exp(m2d)); 

SP2 = ((SP2a/SP2b)-SP2c)* stress_shrnk; 
SP3a= (a*a-b*b) *Em*Poss_f * (ml*exp (mid) -m2*exp (m2d) ) -a*a*Ef*Poss_m* (ml-

m2) *exp(mlm2d) ; 
SP3b=(a*a-b*b)*Em*Poss_f-a*a*Ef*Poss_m; 
SP3c=2*mu*Em*Poss_f*(exp(mid)-exp(m2d))/(a*D*Ef); 

SP3=((SP3a/SP3b)+SP3c); 
stress_pout[dl]= (SP1+SP2)/(SP3); /* stress_pout[dl] is part ia l 

debond pullout stress */ 

/* For the calculated fiber pullout stress, check i f separation of 
matrix-fiber interface has taken place in the debonded region */ 
if(stress_pout[dl] < debond_stress_current[dl]) 
{ 

/* means, separation of fiber and matrix has taken place in the 
debonded region & hence fr ic t iona l stress is zero in the debonded region 
*/ 

stress_pout[dl] = debond_stress_current[dl]; 
separation=l; 

} 
else 
{ 
separation=0; 
} 
Pullout_stress[ITER]=stress_pout[dl]; 
Pullout_Bond_component[dl] = debond_stress_current[dl]; 
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Pullout_Friction_component[dl] = Pullout_stress[ITER] -
Pullout_Bond_component[dl] ; 
Pullout_Load[ITER] = Pullout_stress[ITER] * Fiber_area; 
Pullout_Load_Friction_component[dl] = Pullout_Friction_component[dl] * 
Fiber_area; 
Pullout_Load_Bond_component[dl] = Pullout_Bond_component[dl] * 
Fiber_area; 

fprintf(PO_STRESSvsDL, "%7.21f %7.21f %7.21f 
\n", deb_len, debond_stress_current[dl], stress_pout[dl]); 
/* fprintf(STP, "%7.21f %7.21f %7.21f %7.21f %7.21f %7.21f 
%7.21f %7.21f %7.21f \n" , SP1, SP2a, SP2b, SP2c, SP2, SP3a, SP3c, SP3, 
Pullout_stress[ITER]) ; */ 

A3a=stress_pout[dl] ; 
A3b= (stress_shrnk/Poss_m)*(l-b*b/(a*a))*D; 

A3[dl] = -(A3a+A3b)/denom; 
if(dl>0) 
B[dl] = (stress_pout[dl]-debond_stress_current[dl]*exp(m2d)-
(A3[dl]/A2)*(1-exp(m2d)))/(exp(mid)-exp(m2d)); 
else 
B[dl]= 0; 
fprintf(PO_STRESSvsDL, "%7.21f %7.21f %7.21f 
\n", deb_len, debond_stress_current[dl], stress_pout[dl]); 

/ * fprintf(TEST, "%50.21f %50.21f %10.21f \n", SP2, SP3, 
stress_pout[dl]); */ 

/* fprintf(TEST, "A3[dl]=%20.21f B[dl]=%20.21f \n", A3[dl], B[dl]); 
*/ 

/ * Calculate fiber displacement for each part ia l debond pullout stress 

if(dl<2*L) 
{ 

/ * calculate fiber displacement for the bonded part */ 
LDEBl=Alpha*(L-deb_len); 
LDEB2 = - Alpha *(L-deb_len); 
mldexp = exp(mid); 
m2dexp = exp(m2d); 
ubl = (a*a*debond_stress_current[dl])/(a*a*Ef+(b*b-a*a)*Em); 
ub2a = (((b*b/(a*a))-1)*(Em/Ef)-1)/Alpha; 
ub2b = exp(LDEBl)+exp(LDEB2)-2; 
ub2c = exp(LDEB1)-exp(LDEB2); 
ub2 = ub2a*ub2b/ub2c; 
ub[dl] = ubl*((L-deb_len)+ ub2); 

/* Caculate fiber displacement for the debonded portion of the embedded 
length */ 

if(separation==0) / * That is interfac ia l f r i c t iona l exists on the 
interface */ 
{ 
US1=A3[dl]*deb_len/(A2*Ef); 

/ * fprintf(TEST," A3[%7.21f]=%7.21f A2=%7.21f m2=%7.21f 
m2dexp=%27.llf \n", deb_len, A3[dl], A2, m2, m2dexp); */ 
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TJS2=A3 [dl] * (l-m2dexp) / (A2*m2*Ef) ; 
US3=B[dl]*(((mldexp-1)/ml) - ((m2dexp-l)/m2))/Ef; 
US4=(m2dexp-l)*debond_stress_current[dl]/(m2*Ef); 
USSS=US4+US3+US2; 
US[dl] = (US1+US2+US3+US4); 

Fiber_disp[ITER] = ub[dl] + US[dl]; 
Fiber_disp_2sides[ITER] = 2*Fiber_disp[ITER]; 

fprintf(PO_DISP, "%d %7.21f %7.21f %9.61f ' %9.61f 
%7.21f %7.21f %7.21f %7.21f %7.21f %7.21f \n", 
ITER, deb_len, debond_stress_current[dl], Fiber_disp[ITER], 
Fiber_disp_2sides[ITER], Pullout_stress[ITER], 
Pullout_Bond_component[dl], Pullout_Friction_component[dl], 
Pullout_Load[ITER], Pullout_Load_Bond_component[dl], 
Pullout_Load_Friction_component[dl]); 

/* fprintf(TEST, "A3[%d]=%7.21f B[%d]=%7.21f DSC[%d]=%7.21f 
USl=%37.11f US2=%37.11f US3=%37.11f US4=%37.11f 
USSS=%37.11f\n", d l , A3[dl], d l , B[dl], d l , debond_stress_current[dl] 
US1, US2, -US3, US4, USSS); */ 
} 
else /* That is when interface is not in contact in the debonded 
region, separation==0 */ 
{ 
US[dl]= debond_stress_current[dl]*deb_len/Ef; / * that i s , fiber 
pullout stress equal to current debond stress */ 
Fiber_disp[ITER] = ub[dl] + US[dl]; 
Fiber_disp_2sides[ITER] = 2*Fiber_disp[ITER]; 
fprintf(PO_DISP, "%d %7.21f %7.21f %9.61f %9.61f 

%7.21f %7.21f %7.21f %7.21f %7.21f %7.21f \n", 
ITER, deb_len, debond_stress_current[dl], Fiber_disp[ITER], 
Fiber_disp_2sides[ITER], 

Pullout_stress[ITER], Pullout_Bond_component[dl], 
Pullout_Friction_component[dl], Pullout_Load[ITER], 
Pullout_Load_Bond_component[dl], Pullout_Load_Friction_component[dl]) 

) 
) 
else /* that is when dl=2*L (ie, debond length equal to fiber length 

*/ 
{ 

if(separation==0) /* that i s , when interface is in contact in the debonded 
region */ 
{ 
mldexp=exp(mid); 
m2dexp=exp(m2d); 
ub[dl]=0.0; 
US1=A3[dl]*deb_len/(A2*Ef); 
US2=A3[dl]*(l-m2dexp)/(A2*m2*Ef); 
US3=B[dl]*(((mldexp-1)/ml) - ((m2dexp-l)/m2))/Ef; 
US4=(m2dexp-l)*debond_stress_current[dl]/(m2*Ef); 
USSS=US4+US3+US2+US1; 
US[dl] = (US1+US2+US3+US4); 
Fiber_disp[ITER] = ub[dl] + US[dl]; 
Fiber_disp_2sides[ITER] = 2*Fiber_disp[ITER]; 
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fprintf (PO_DISP, "%d %7.21f %7.21f %9.61f %9..61f %7.21f 
%7.21f %7.21f %7.21f %7.21f %7.21f \n", ITER, deb_len, 
debond_stress_current[dl], Fiber_disp[ITER], Fiber_disp_2sides[ITER], 

Pullout_stress[ITER], Pullout_Bond_component[dl], 
Pullout_Friction_component[dl], Pullout_Load[ITER], 
Pullout_Load_Bond_component[dl], Pullout_Load_Friction_component[dl]); 

/* fprintf(TEST, "%7.61f %7.61f %7.61f %7.61f \n", US1,US2,US3,US4); 
*/ 

/ * fprintf(TEST, "A3[%d]=%7.21f B[%d]=%7.21f A2=%7.31f m2=%8.51f 
m2dexp=%8.51f,DSC[%d]=%7.21f USl=%37.11f US2=%37.11f US3=%37.11f US4=%37.11f 
USSS=%37.llf\n",dl,A3[dl],dl,B[dl],A2,m2,m2dexp,dl,debond_stress_current[dl], 
US1,US2, US3, US4, USSS); */ 

/ * fprintf(PO_DISP, "%d %7.21f %7.31f %7.21f %7.11f 
USP[dl]=%7.31f UP3=%7.31f\n", ITER, emb_len, Fiber_disp[ITER], 
Pullout_stress[ITER], debond_stress_current3, USPfdl], UP3[dl]); */ 

} 
else / * that is when interface is not in contact in. the debonded 

region */ 
{ 
ub[dl]=0.0; 
US[dl]= debond_stress_current[dl]*deb_len/Ef; / * that i s , fiber 
pullout stress equal to current debond stress */ 
Fiber_disp[ITER] = ub[dl] + US[dl]; 
Fiber_disp_2sides[ITER] = 2*Fiber_disp[ITER]; 
fprintf(PO_DISP, "%d %7.21f %7.21f %9.61f %9.61f 
%7.21f %7.21f %7.21f %7.21f %7.21f %7.21f \n", 
ITER, deb_len, debond_stress_current[dl], Fiber_disp[ITER], 
Fiber_disp_2sides[ITER], Pullout_stress[ITER], 
Pullout_Bond_component[dl], Pullout_Friction_component[dl], 
Pullout_Load[ITER], Pullout_Load_Bond_component[dl], 
Pullout_Load_Friction_component[dl]); 

/* fprintf(PO_DISP, "%d %7.21f %7.31f %7.21f %7.11f 
USP[dl]=%7.31f UP3[dl]=%7.31f\n", ITER, emb_len, Fiber_disp[ITER], 
Pullout_stress[ITER], debond_stress_current3, USP[dl], UP3[dl]); */ 

} 

/ * Calculate stress distribution in fiber and interface when fiber 
par t ia l ly debonded */ 

/* calculate stress distribution in the bonded region */ 
if(dl<2*L) 
{ 

for(zzyy=2*L-dl; zzyy>=0; --zzyy) 
{ 
zy=2 *L-dl-zzyy; 
deb_pos=0.0; 
z = 0 . 5 * zy; 
LZ = L-deb_len-z; 
pullout_strs = debond_stress_current[dl]; 
/ * calculate axial stress distribution in fiber */ 
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FAS1 = (a*a*Ef*pullout_strs)/(a*a*Ef+(b*b-a*a)*Em); 
FAS2 = ((b*b/(a*a))-1) * (Em/Ef) * (exp(Alpha*z)-exp(-
Alpha*z))/(exp(Alpha*(L-deb_len))-exp(-Alpha*(L-deb_len))); 
FAS3 = (exp(-Alpha*(L-deb_len-z)) - exp(Alpha*(L-deb_len-
z)))/(exp(Alpha*(L-deb_len)) - exp(-Alpha*(L-deb_len))); 
Fiber_axial_stress[zy] = FAS1*(1+FAS2+FAS3); 
Fiber_axial_load[zy] = Fiber_axial_stress[zy] * Fiber_area; 
Fiber_axl_load_bond_compo[zy]= Fiber_axial_load[zy]; 
Fiber_axl_load_frictional_compo[zy]= 0.0; 
Total_bond_load = Fiber_axl_load_bond_compo[zy]; 

/ * calculate interfac ia l shear stress distribution */ 
ISSbl = ((b*b/(a*a))-1) * (Em/Ef) * (exp(Alpha*z) + exp(-
Alpha*z))/(exp(Alpha*(L-deb_len))-exp(-Alpha*(L-deb_len))); 
ISSb2 = (exp(-Alpha*(L-deb_len-z)) + exp (Alpha*(L-deb_len-
z)))/(exp(Alpha*(L-deb_len)) - exp(-Alpha*(L-deb_len))); 
ISb3 = ((l+Poss_m)*(l+(b*b/(a*a)-1)*(Em/Ef))*(b*b*log_ba-(b*b-
a*a)12)) ; 
ISSb3 = (2/a)* pow(ISb3, 0.5); 
Interfacial_shear_stress[zy] = -pullout_strs*((ISSbl+ISSb2)/ISSb3) 
/* fprintf(TEST, "ISSl=%7.11f ISS2=%7.21f ISS3=%7.21f 
ISS[z=%7.21f]=%7.21f\n", ISS1, ISS2, ISS3, z, 
Interfacial_shear_stress[zz][dl]); */ 
fprintf(STRS_DISTR, "%d %7.21f %7.21f %7.21f %7.21f 
%7.21f %7.21f %7.21f %7.21f %7.21f \n", Counter, 
stress_pout[dl], deb_len, deb_pos, z, Fiber_axial_stress[zy], 
Interfacial_shear_stress[zy], Fiber_axial_load[zy], 
Fiber_axl_load_bond_compo[zy], Fiber_axl_load_frictional_compo[zy]; 
} 

} 
else 
{ 

/* fprintf(STRS_DISTR, "I am here \n"); */ A 

deb_pos=0.0; 
zy=0; 
z=0.05*zy; 
zzz=0.01; 
LZ = L-deb_len-z; 
DST_Num = ((l+Poss_m)*(1+(b*b/(a*a)-1)*(Em/Ef))*(b*b*log_ba-(b*b-
a*a)12)); 
DST_Numerator = (2/a) * pow(DST_Num,0.5); 
DST_Denominator = (((b*b/(a*a)-1)*(Em/Ef))/tanh(Alpha*(0.01)))+ 
21(exp(Alpha*(0.01))-exp(-Alpha*(0.01))); 
debond_stress_current01 = -ISS * DST_Numerator/DST_Denominator; 
pullout_strs01 = debond_stress_current01; 
pullout_strs = debond_stress_current[dl]; 

/ * calculate axial stress distribution in fiber */ 
FAS1 = (a*a*Ef*pullout_strs)/(a*a*Ef+(b*b-a*a)*Em); • 

/ * fprintf(STRS_DISTR, "but i moved s l ight ly l \n"); */ 
FAS2 = ((b*b/(a*a))-1) * (Em/Ef) * (exp(Alpha*z)-exp(-

Alpha*z))/(exp(Alpha*(L-deb_len+0.00000001))-exp(-Alpha*(L-
deb_len+0.00000001))) ; 

/ * fprintf(STRS_DISTR, "but i moved s l ight ly 2\n"); */ 
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FAS3 = (exp(-Alpha*(L-deb_len-z)) - exp(Alpha*(L-deb_len-
z)))/(exp(Alpha*(L-deb_len+0.00000001)) - exp(-Alpha*(L-
deb_len+0.00000001))); 

/* fprintf(STRS_DISTR, "but i moved s l ight ly \n"); */ 
Fiber_axial_stress[zy] = FAS1*(1+FAS2+FAS3); 

Fiber_axial_load[zy] = Fiber_axial_stress[zy] * Fiber_area; 
Fiber_axl_load_bond_compo[zy]= Fiber_axial_load[zy]; 
Fiber_axl_load_frictional_compo[zy]= 0.0; 
Total_bond_load = Fiber_axl_load_bond_compo[zy]; 

/ * fprintf(STRS_DISTR, "but i moved s l ight ly 3\n"); */ 

/ * calculate interfac ia l shear stress distribution */ 
ISSbl = ((b*b/(a*a))-1) * (Em/Ef) * (exp(Alpha*z) + exp(-
Alpha*z))/(exp(Alpha*(L-deb_len+0.01))-exp(-Alpha*(L-deb_len+0. 01))) ; 
ISSb2 = (exp(-Alpha*(L-deb_len-z)) + exp (Alpha*(L-deb_len-
z)))/(exp(Alpha*(L-deb_len+0.01)) - exp(-Alpha*(L-deb_len+0.01))); 
ISb3 = ((l+Poss_m)*(1+(b*b/(a*a)-1)*(Em/Ef))*(b*b*log_ba-(b*b-a*a)12)) ; 
ISSb3 = (2/a)* pow(ISb3, 0.5); 
Interfacial_shear_stress[zy] = -pullout_strs01*((ISSbl+ISSb2)/ISSb3); 
fprintf(STRS_DISTR, "%d %7.21f %7.21f %7.21f %7.21f %7.21f 
%7.21f %7.21f %7.21f %7.21f \n", Counter, stress_pout[dl], 
deb_len, deb_pos, z, Fiber_axial_stress[zy], Interfacial_shear_stress[zy], 
Fiber_axial_load[zy], Fiber_axl_load_bond_compo[zy], 
Fiber_axl_load_frictional_compo[zy]); 

} 

fprintf(STRS_DISTR, "debonded! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! \n") ; 

/* Calculate stress distribution in the debonded region */ 
fprintf(TEST, "separation=%7.21f \n", separation); 
for(zx=0; zx<=dl; ++zx) 
{ 
if(separation==0) / * that is when the interface is in contact in the 
debonded region */ 
{ 
z=0.5*zx; 
deb_pos=L-deb_len+z; 
mlz=ml*z; 
m2z=m2*z; 

/* axial stress distribution in fiber when fiber p a r t i a l l y debonded 
*/ 
Fiber_axial_stress[zx] = (A3[dl]/A2) * (1-exp(m2z)) + B[dl]*(exp(mlz) 
exp(m2z)) + debond_stress_current[dl]*exp(m2z); 
Fiber_axial_load[zx] = Fiber_axial_stress[zx] * Fiber_area; 
Fiber_axl_load_bond_compo[zx] = Total_bond_load; 
Fiber_axl_load_frictional_compo[zx]= Fiber_axial_load[zx] -
Total_bond_load; 

/* deb_component= debond_stress_current[dl]*exp(m2z); */ 
/ * fric_component= (A3[dl]/A2) * (l-exp(m2z)) + B[dl]*(exp(mlz) -
exp(m2 z)); */ 
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/ * f p r i n t f ( S T R S _ D I S T R , "deb comp = %7.21f f r i c corapo = %7.21f 
\ n " , deb_component , f r i c _ c o m p o n e n t ) ; * / 

/ * i n t e r f a c i a l s h e a r s t r e s s d i s t r i b u t i o n when f i b e r p a r t i a l l y debonded 
* / 
I n t e r f a c i a l _ s h e a r _ s t r e s s [ z x ] = - ( a / 2 ) * ( ( - A 3 [ d l ] / A 2 ) * m 2 * e x p ( m 2 z ) + 
B [ d l ] * ( m l * e x p ( m l z ) - m2*exp(m2z)) + 
d e b o n d _ s t r e s s _ c u r r e n t [ d l ] * m 2 * e x p ( m 2 z ) ) ; 

/ • c a l c u l a t e r e d u c t i o n i n r a d i a l c o m p r e s s i v e s t r e s s due t o p o i s s o n ' s 
c o n t r a c t i o n o f f i b e r * / 
s h r n k _ s t r s s _ n e t [ z x ] = s t r e s s _ s h r n k - ( I n t e r f a c i a l _ s h e a r _ s t r e s s [ z x ] / m u -
s t r e s s _ s h r n k ) ; 

f p r i n t f ( S T R S _ D I S T R , "%d %7.21f %7.21f %7.21f %7.21f 
%7.21f %7.21f %7.21f %7.21f %7.21f %7.21f \ n " , 
C o u n t e r , s t r e s s _ p o u t [ d l ] , d e b _ l e n , d e b _ p o s , z , 

F i b e r _ a x i a l _ s t r e s s [ z x ] , I n t e r f a c i a l _ s h e a r _ s t r e s s [ z x ] , 
F i b e r _ a x i a l _ l o a d [ z x ] , F i b e r _ a x l _ l o a d _ b o n d _ c o m p o [ z x ] , 
F i b e r _ a x l _ l o a d _ f r i c t i o n a l _ c o m p o [ z x ] , s h r n k _ s t r s s _ r e d u c t i o n [ z x ] ) ; 

} 
e l s e / * t h a t i s when t h e i n t e r f a c e s e p a r a t e d i n t h e debonded r e g i o n * / 
{ 

z = 0 . 5 * z x ; 
d e b _ p o s = L - d e b _ l e n + z ; 
m l z = m l * z ; 
m2z=m2*z; 

F i b e r _ a x i a l _ s t r e s s [ z x ] = d e b o n d _ s t r e s s _ c u r r e n t [ d l ] ; 
F i b e r _ a x i a l _ l o a d [ z x ] = F i b e r _ a x i a l _ s t r e s s [ z x ] * F i b e r _ a r e a ; 
F i b e r _ a x l _ l o a d _ b o n d _ c o m p o [ z x ] = T o t a l _ b o n d _ l o a d ; 
F i b e r _ a x l _ l o a d _ f r i c t i o n a l _ c o m p o [ z x ] = 0 . 0 ; 

I n t e r f a c i a l _ s h e a r _ s t r e s s [ z x ] = 0 ; 
s h r n k _ s t r s s _ n e t [ z x ] = s t r e s s _ s h r n k - ( I n t e r f a c i a l _ s h e a r _ s t r e s s [ z x ] / m u -
s t r e s s _ s h r n k ) ; 
} 

f p r i n t f ( S T R S _ D I S T R , "%d %7.21f %7.21f %7.21f %7.21f 
%7.21f %7.21f %7.21f %7.21f %7.21f %7.21f \ n " , 
C o u n t e r , s t r e s s _ p o u t [ d l ] , d e b _ l e n , d e b _ p o s , z , 

F i b e r _ a x i a l _ s t r e s s [ z x ] , I n t e r f a c i a l _ s h e a r _ s t r e s s [ z x ] , 
F i b e r _ a x i a l _ l o a d [ z x ] , F i b e r _ a x l _ l o a d _ b o n d _ c o m p o [ z x ] , 
F i b e r _ a x l _ l o a d _ f r i c t i o n a l _ c o m p o [ z x ] , s h r n k _ s t r s s _ . n e t [ z x ] ) ; 

/ * f p r i n t f ( S T R S _ D I S T R , "%d %7.21f %7.21f %7.21f %7.21f 
%7.21f %7.21f %7.21f %7.21f %7.21f \ n " , C o u n t e r , 
s t r e s s _ p o u t [ d l ] , d e b _ l e n , . d e b _ p o s , z , F i b e r _ a x i a l _ s t r e s s [ z x ] , 
I n t e r f a c i a l _ s h e a r _ s t r e s s [ z x ] , F i b e r _ a x i a l _ l o a d [ z x ] , 

F i b e r _ a x l _ l o a d _ b o n d _ c o m p o [ z x ] , F i b e r _ a x l _ l o a d _ f r i c t i o n a l _ c o m p o [ z x ] ) ; * / 

} 

ITER- ITER+1; 
} 

205 

http://shrnk_strss_.net


/* */ 
/ * FIBER COMPLETELY DEBONDED ALONG ITS LENGTH & IS BEING PULLED OUT */ 
/* */ 

/ * Calculate pullout stress (pullout case) for various pullout lengths 
*/ 

ITER=ITER-1; 
for(dl=0; dl<=2*L; ++dl) 
{ 

po_len = 0.5*dl; 
emb_len=L-po_len; 
EMBD_LEN= 2 * emb_len; 
mlm2 = ml+m2; 
mid = ml*emb_len; 
m2d = m2*emb_len; 
mlm2d = (ml+m2)* emb_len; 

SP1 =0.0; 
SP2a=(a*a-b*b)*D*Ef*(m2*exp(m2d)-ml*exp(mid) + (ml-m2)*exp(mlm2d) ); 
SP2b=(a*a-b*b)*Em*Poss_f-a*a*Ef*Poss_m; 
SP2c=(2*mu/a)*(exp(mid)-exp(m2d)); 

SP2 = ((SP2a/SP2b)-SP2c)* stress_shrnk; 
SP3a=(a*a-b*b)*Em*Poss_f*(ml*exp(mid)-m2*exp(m2d))-a*a*Ef*Poss_ra*(ml-
m2)*exp(mlm2d); 

SP3b=(a*a-b*b)*Em*Poss_f-a*a*Ef*Poss_m; 
SP3c=2*mu*Em*Poss_f*(exp(mid)-exp(m2d))/(a*D*Ef); 

SP3=(SP3a/SP3b)+SP3c; 
stress_pout3[dl]= (SP1+SP2)/SP3; /* stress_pout[dl] is part ia l 

debond pullout stress */ 
Pullout_stress[ITER]=stress_pout3[dl]; 
debond_stress_current3=0.0; 
debond_stress_current[dl]=0.0; 
Pullout_Bond_component[dl] = 0.0; 
Pullout_Friction_component[dl] = Pullout_stress[ITER]; 
Pullout_Load[ITER] = Pullout_stress[ITER] * Fiber_area; 
Pullout_Load_Friction_component[dl] = Pullout_Friction_component[dl] 
Fiber_area; Pullout_Load_Bond_component[dl] = 0.0; 

fprintf(PO_STRESSvsDL, "%7.21f %7.21f %7.21f \n" 
emb_len, debond_stress_current3, stress_pout3[dl]); 

/ * calculate A3[dl] and B[dl] for various pullout lengths */ 
A3a=stress_pout3[dl]; 
A3b= (stress_shrnk/Poss_m)*(l-b*b/(a*a))*D; 

A3[dl] = -(A3a+A3b)/denom; / * Infact, A3[dl] remains same for a l l 
pullout lengths */ 
if(dl<2*L) 

B[dl] = (stress_pout3[dl]-(A3[dl]/A2)*(l-exp(m2d)))/(exp(mld)-
exp(m2d)); /*B[dl] is zero for a l l pullout lengths */ 

else 
B[dl]= 0; 

/* calculate fiber displacement for the pullout case */ 
/* Caculate fiber displacement for the debonded portion of embedded length 

*/ 
USP1=A3[dl]*emb_len/(A2*Ef); 
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USP2=A3[dl]*(l-exp(m2d))/(A2*m2*Ef); 
USP3=B[dl]*(((exp(mld)-1)/ml) - ((exp(m2d)-1)/m2))/Ef; 
USP4=(exp(m2d)-1)*debond_stress_current3/(m2*Ef); 
USP[dl] = (USP1+USP2+TJSP3+USP4) ; 
mm2dexp=exp(m2d); 

/ * fprintf(TEST, "USPl=%7.61f USP2=%7.61f USP3=%7.61f 
A2 = %7.21f m2=%8.51f mm2dexp=%8 . 51f \n" , USP1, USP2̂ , USP3 , A2 , m2 , 
mm2dexp); */ 

/* fprintf(TEST, "A3[2*L]=%7.21f B[2*L]=%100.981f mldexp=%20.151f 
m2dexp=%20.151f ml=%20.151f m2=%20.151f Ef=%7.21f USP3=%7.21f\n", 
A3[2*L], B[2*L], mldexp, m2dexp, ml, m2, Ef, USP3); */ 
/* calculate fiber displacement for the pulled out portion of the fiber 
*/ 

UP3[dl]=0.5*dl*(l+stress_pout3[dl]/Ef); 

/* Add */ 
Fiber_disp[ITER] = USP[dl]+UP3[dl]; 
Fiber_disp_2sides[ITER] = 2*USP[dl] + 0.5*dl*(1+2 * 

stress_pout3[dl]/Ef); 
fprintf(PO_DISP, "%d %7.21f %7.21f %9.61f %9.61f 

%7.21f %7.21f %7.21f %7.21f %7.21f %7.21f \n", 
ITER, po_len, debond_stress_current[dl], Fiber_disp[ITER], 
Fiber_disp_2sides[ITER], 
Pullout_stress[ITER], Pullout_Bond_component[dl], 
Pullout_Friction_component[dl], Pullout_Load[ITER], 
Pullout_Load_Bond_component[dl], Pullout_Load_Friction_component[dl]); 

/ * find area under the pullout curve 
pd_previous=parts; 
pd_last=pd-l/pd_previous; 
area[pdist]=(PO_LD_Fric[pdist]+PO_LD_Fric[pdist-l])/(2*parts); */ 

areal[ITER]=(Pullout_stress[ITER]+Pullout_stress[ITER-1]) 
*(Fiber_disp[ITER]-Fiber_disp[ITER-1])12; 
fprintf (AREA, "%d %7.21f \n", d l , areal [ ITER].) ; 

/* Calculate stress distribution in fiber and interface when fiber being 
pulled out */ 

for(zxpo=0; zxpo<=EMBD_LEN; ++zxpo) 
{ 
z=0.5*zxpo; 
mlz =ml* z; 
m2 z =m2 * z; 
mlm2z=(ml+m2)*z; 

/* axial stress distribution in fiber when fiber p a r t i a l l y debonded */ 
/* note: A3[dl] same for a l l pullout lengths */ 
/* note: B[dl] same for a l l pullout lengths - infact equal to zero 

*/ 
Fiber_axial_stress[zxpo] = (A3[dl]/A2) * (l-exp(m2z)) + B[dl]*(exp(mlz) 
- exp(m2z)); 

Fiber_axial_load[zxpo] = Fiber_axial_stress[zxpo] * Fiber_area; 
Fiber_axl_load_bond_compo[zxpo]= 0.0; 
Fiber_axl_load_frictional_compo[zxpo]= Fiber_axial_load[zxpo]; 
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/ * i n t e r f a c i a l s h e a r s t r e s s d i s t r i b u t i o n when f i b e r p a r t i a l l y debonded 

I n t e r f a c i a l _ s h e a r _ s t r e s s [ z x p o ] = - ( a / 2 ) * ( ( - A 3 [ d l ] / A 2 ) * m 2 * e x p ( m 2 z ) + 
B [ d l ] * ( m l * e x p ( m l z ) - m 2 * e x p ( m 2 z ) ) ) ; 

f p r i n t f ( S T R S _ D I S T R , "%d %7.21f %7.21f %7.21f %7.21f 
%7.21f %7.21f %7.21f %7.21f %7.21f \ n " , C o u n t e r , 
s t r e s s _ p o u t 3 [ d l ] , p o _ l e n , e m b _ l e n , z , F i b e r _ a x i a l _ s t r e s s [ z x p o ] , 
I n t e r f a c i a l _ s h e a r _ s t r e s s [ z x p o ] , F i b e r _ a x i a l _ l o a d [ z x p o ] , 
F i b e r _ a x l _ l o a d _ b o n d _ c o m p o [ z x p o ] , F i b e r _ a x l _ l o a d _ f r i c t i o n a l _ c o m p o [ z x p o ] ) 

} 

ITER=ITER+1; 
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/ * Computer Program to Predict Pullout Load versus Displacement Response 
Using the Progressive Debonding Model */ 

#include <stdio.h> 
ttinclude <float.h> 
#include <math.h> 
ttinclude <stdlib.h> 
#include <memory.h> 
#include <malloc.h> 

#define TT 200 
#define N 3 

main () 
{ 
FILE *input_file; 
FILE *STRS_DISTR; 
FILE *STRS_DISTR2; 
FILE *PO_DISP; 
FILE *PO_DISP2; 
FILE *DEBLEN_DEBSTRSS; 
FILE *DEBLEN_DEBSTRSS2; 
FILE *PO_STRESSvsDL; 
FILE *PO_STRESSvsDL2; 
FILE *TEST; 
FILE *TESTIN; 
FILE *AREA; 

int L, d l , zz, parts, pdist; 

double a, b, Poss_m, Poss_f, Em, Ef, ABS, mu, contact_stress, 
Initial_debonding_stress, row, alpha, epsl, eps2, eps3, eps4, epsilon, 
thetal, theta2, theta, betal, beta, cnstntl , cnstnt2, omega, deb_len, 
deb_pos, Fiber_area, z, zzz, debond_length, omegal, LL, PDS, FD1, FD2, FAS1, 
FAS2, FAS3, pd, pullout_distance, FDP1, FDP2, FDP3, FASP1, FASP2, 
zero_stress, muinit ial , mufinal, C, pd_previous', pd_last; 

float Pullout_Bond_component[TT] [N], Pullout_Friction_component[TT] [N], 
Fiber_disp_2sides[TT] [N], Pullout_Load[TT] [N], 
Fiber_axial_stress[TT] [N],_Interfacial_shear_stress[TT] [N], 
Fiber_axial_load[TT] [N], Fiber_axl_load_bond_compo[TT] [N], 
Fiber_axl_load_.frictional_compo[TT] [N], ISS[TT], Fiber_displacement[TT], 
Fiber_displacement2[TT], Progressive_dbnd_stress[TT], 
Progressive_POstress[TT], P0_LD_Bond[TT], P0_LD_Fric[TT], 
Progressive_POload[TT], area[TT], areal[TT]; 

input_file = fopen("inpmu","r"); 
STRS_DISTR = fopen("stress","w"); /* stress distr ibution in fiber */ 
STRS_DISTR2 = fopen("stress2", "w"); 
P0_DISP = fopen("disp","w"); /* pullout stress and fiber displacement */ 
P0_DISP2 = fopen("disp2", "w"); 
DEBLEN_DEBSTRSS = fopen("dbsdbl","w"); /*debond length vs. debond stress */ 
DEBLEN_DEBSTRSS2 = fopen("dbsdbl2", "w"); 
PO_STRESSvsDL = fopen("posdl","w"); /* pullout stress vs. debond length */ 
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DEBLEN_DEBSTRSS2 = fopen("dbsdbl2", "w"); 
PO_STRESSvsDL = fopen("posdl","w"); / * pullout stress vs debond length 
P0_STRESSvsDL2 = fopen("posdl2", "w") ; 
TEST = fopen("testout", "w"); 
TESTIN = fopen("in", "w" ) ; 
AREA = fopen("area", "w") ; 

/* read the input f i l e */ 
fscanf(input_file ( "%lf %lf %lf %lf %lf %lf %d %lf %lf %lf %lf 

%lf", &a, &b, &Poss_f, &Poss_m, &Em, &Ef, &L, &ABS, &mu, &contact_stress, 
&mufinal, &C); 

fprintf(TESTIN, "%lf %lf %lf %lf %lf %lf %d %lf %lf \n", a, b, 
Poss_f, Poss_m, Em, Ef, L, ABS, mu); 

fprintf(DEBLEN_DEBSTRSS, "Debond Length Debond Stress \n"); 

/* ABS - Adhesional Bond Strength */ 
row=a*a/(b*b-a*a); 
alpha=Em/Ef; 
epsl=2/(a*a*(b*log(b/a)-(b-a))); 
eps2=(0.5*b*b*b*log(b/a)-b*(b*b-a*a)/4) ; 
eps3 = 0.5*a*(b*b-a*a) ; 
eps4=(b*b-a*a)/3 ; 
epsilon=epsl*(eps2+eps3-eps4); 
thetal=a*a*(l+Poss_m); 
theta2=(b/(b-a))*log(b/a)-1; 
theta=l/(thetal*theta2); 
betal= (theta*(row+alpha-row*epsilon*alpha)/(row*epsilon))+alpha*theta; 
beta=pow(betal,0.5); 
cnstntl=row+alpha-row*epsilon*alpha+alpha*epsilon; 
cnstnt2=alpha-row*epsilon*alpha+alpha*epsilon; 
omegal=(Ef/Em)*((a*a+b*b)/(b*b-a*a)+Poss_m)+(l-Poss_f); 
omega=Poss_f/omegal; 
Fiber_area = 3.14*a*a; 

fprintf(PO_DISP, "Deb Len Dbnd Strs PO Strs Fib Disp Progr PO Ld 
Bnd PO Ld Fric PO Ld\n"); 

fprintf(P0_DISP2, "Deb Len Dbnd Strs PO Strs Fib Disp2 Progr PO I 
Bnd PO Ld Fric PO Ld\n"); 

fprintf(STRS_DISTR, "Dbnd Strs Deb Lt Deb Pos Axl Pos Axl Strs Shr 
Strs Axl Lod Bnd Ld Fric Ld \n"); 

fprintf(PO_STRESSvsDL, "PO Strss Deb Len Prog Dbnd Strss \n"); 
fprintf(AREA, "pdist pd_previous pd area \n"); 
fprintf(TESTIN, "alpha=%10.51f beta=%10.51f row=%10.51f 

epsilon=%10.51f omega=%7.51f \n", alpha, beta, row, epsilon, omega); 
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/ * . _ * / 
/ * Fiber completely bonded along the entire embedded fiber length */ 
/* _ _ */ 

deb_len=0.0; 
deb_pos=0.0; 
dl=deb_len; 
zero_stress=0.0; 
Initial_debonding_stress=-2*ABS*(row+alpha-
row*epsilon*alpha+alpha*epsilon)*sinh(beta*L)/((a*beta)*((alpha-
row*epsilon*alpha+alpha*epsilon)*cosh(beta*L)+row)); 
Progressive_dbnd_stress[dl]=Initial_debonding_stress; 
Progressive_POstress[dl] = zero_stress; 
Progressive_P01oad[dl]= 0.0; 
PO_LD_Bond[dl]= 0.0; 
PO_LD_Fric [dl ] = 0 . 0 ; 
Fiber_displacement[dl]=zero_stress/(Ef*(row+alpha-
row*epsilon*alpha+alpha*epsilon))*((alpha-row*epsilon*alpha+alpha*epsilon-
row)*(cosh(beta*L)-1)/(beta*sinh(beta*L))+row*L); 
Fiber_displacement2[dl] = 2*Fiber_displacement[dl]; 
fprintf (PO_DISP, "%7.21f %7.21f %7.21f %7.5'lf %7.21f 
%7.21f %7.21f\n", deb_len, Progressive_dbnd_stress[dl], 
Progressive_POstress[dl], Fiber_displacement[dl], Progressive_P01oad[dl], 
PO_LD_Bond[dl], PO_LD_Fr i c[dl]); 
fprintf(PO_DISP2, "%7.21f %7.21f %7.21f %7.51f %7.21f 
%7.21f %7.21f\n", deb_len, Progressive_dbnd_stress[dl], 
Progressive_POstress[dl], Fiber_displacement2[dl], 
Progressive_P01oad[dl], PO_LD_Bond[dl], PO_LD_Fric[dl]); 

deb_len=0.0; 
deb_pos=0.0; 
dl=deb_len; 
Initial_debonding_stress=-2*ABS*(row+alpha-
row*epsilon*alpha+alpha*epsilon)*sinh(beta*L)/((a*beta)*((alpha-
row*epsilon*alpha+alpha*epsilon)*cosh(beta*L)+row)); 
Progressive_dbnd_stress[dl]=Initial_debonding_stress; 
Progressive_POstress[dl] = Initial_debonding_stress; 
Progressive_P01oad[dl]=Progressive_POstress[dl]*Fiber_area; 
PO_LD_Bond[dl]=Progressive_dbnd_stress[dl]*Fiber_area; 
PO_LD_Fric[dl]=Progressive_P01oad[dl]-PO_LD_Bond[dl]; 
Fiber_displacement[dl]=Initial_debonding_stress/(Ef*(row+alpha-
row*epsilon*alpha+alpha*epsilon))*((alpha-row*epsilon*alpha+alpha*epsilon-
row)*(cosh(beta*L)-1)/(beta*sinh(beta*L))+row*L); 
Fiber_displacement2[dl] = 2*Fiber_displacement[dl]; 
fprintf(PO_DISP, "%7.21f %7.21f %7.21f %7.51f %7.21f 
%7.21f %7.21f\n", deb_len, Progressive_dbnd_stress[dl], 
Progressive_POstress[dl], Fiber_displacement[dl], Progressive_P01oad[dl], 
PO_LD_Bond[dl], PO_LD_Fric[dl]); 
fprintf(PO_DISP2, "%7.21f %7.21f %7.21f %7.51f %7.21f 
%7.21f %7.21f\n", deb_len, Progressive_dbnd_stress[dl], 
Progressive_POstress[dl], Fiber_displacement2[dl], Progressive_P01oad[dl], 
PO_LD_Bond[dl], PO_LD_Fric[dl]); 
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/ * fprintf(PO_DISP, "%7.21f %7.21f %7.21f %7.51f \n", deb_len, 
Progressive_dbnd_stress[dl], Progressive_POstress[dl], 
Fiber_displacement[dl]); */ 

/* fprintf(P0_DISP2, "%7.21f %7.21f %7.21f %7.51f \n" , deb_len, 
Progressive_dbnd_stress[dl], Progressive_POstress[dl], 
Fiber_displacement2[dl]) ; */ 

fprintf(PO_STRESSvsDL, "%7.21f %7.21f %7.21f \n", 
Progressive_POstress[dl] , Fiber_displacement[dl], 
Progressive_dbnd_stress[dl]); 

parts=2; 
for(zz=0; zz<=parts*L; ++zz) 
{ 
deb_len=0.0; 
deb_pos=0.0; 
zzz=zz; 
z=zzz/parts; 

Fiber_axial_stress[zz] [1] -
(Initial_debonding_stress/cnstntl)*(cnstnt2*sinh(beta*z)/sinh(beta*L)-

row*sinh(beta*(L-z))/sinh(beta*L)+row); 
Interfacial_shear_stress[zz] [1] = 
(a*beta*Initial_debonding_stress/(2*cnstntl))*(cnstnt2*cosh(beta*z)/sinh(b 
eta*L)+row*cosh(beta*(L-z))/sinh(beta*L)); 
ISS[zz] = -
(a*beta*Initial_debonding_stress/(2*cnstntl))*(cnstnt2*cosh(beta*z)/sinh(b 
eta*L)+row*cosh(beta*(L-z))/sinh(beta*L)); 
Fiber_axial_load[zz] [1] = Fiber_axial_stress[zz] [1] * Fiber_area; 
Fiber_axl_load_bond_compo[zz] [1] = Fiber_axial_load[zz] [1]; 
Fiber_axl_load_frictional_compo[zz] [1] = 0.0; 
fprintf(TESTIN, "%lf %lf\n", Initial_debonding_stress, 
Fiber_displacement); 
fprintf(STRS_DISTR, "%7.21f %7.21f %7.21f %7.21f %7.21f %7.21f 
%7.21f %7.21f %7.21f \n", Initial_debonding_stress, deb_len, deb_pos, 
z, Fiber_axial_stress[zz] [1], Interfacial_shear_stress[zz] [1], 
Fiber_axial_load[zz] [1], Fiber_axl_load_bond_compo[zz] [1], 
Fiber_axl_load_frictional_compo[zz] [1]); 

/* */ 
/ * Fiber par t ia l l y bonded along i t s embedded length */ 
/* v 

for(dl=0; dl<=parts*L; ++dl) 
{ 
debond_length=dl; 
deb_len=debond_length/parts ; 
deb_pos=L-deb_len; 

LL=parts*L; 
if(dl<LL) 
/* calculate progressive debonding stress */ 
Progressive_dbnd_stress[dl]=-2*ABS*(row+alpha-

row*epsilon*alpha+alpha*epsilon)*sinh(beta*(L-deb_len))/((a*beta)*((alpha-
row*epsilon*alpha+alpha*epsilon)*cosh(beta*(L-deb_len))+row)); 
else 
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Progressive_dbnd_stress[dl]=0.0; 

/* calculate progressive pullout stress and fiber displacement */ 
Progressive_POstress[dl]=-
contact_stress/omega+(Progressive_dbnd_stress[dl]+contact_stress/omega)*exp 
(-2*mu*omega*deb_len/a); 
if(Progressive_POstress[dl]<Progressive_dbnd_stress[dl]) 

Progressive_POstress[dl]=Progressive_dbnd_stress[dl]; 
Progressive_P01oad[dl]=Progressive_POstress[dl]*Fiber_area; 
PO_LD_Bond[dl]=Progressive_dbnd_stress[dl]*Fiber_area; 
PO_LD_Fric[dl]=Progressive_P01oad[dl]-PO_LD_Bond[dl]; 

FDl=Progressive_dbnd_stress[dl]/(Ef*(row+alpha-
row*epsilon*alpha+alpha*epsilon))*((alpha-

row*epsilon*alpha+alpha*epsilon-row)*(cosh(beta*(L-deb_len))-
1)/(beta*sinh(beta*(L-deb_len+0.000000001)))+row*(L-deb_len)); 
FD2=-contact_stress*deb_len/(Ef*omega)-
a/(2*Ef*mu*omega)*(Progressive_dbnd_stress[dl]+contact_s tress/omega)*(exp(-
2*mu*omega*deb_len/a)-1); 
Fiber_displacement[dl]=FD1+FD2; 
Fiber_displacement2[dl] = 2*Fiber_displacement[dl]; 
fprintf(PO_DISP, "%7.21f %7.21f %7.21f %7.51f %7.21f 
%7.21f %7.21f\n", deb_len, Progressive_dbnd_stress[dl], 
Progressive_POstress[dl], Fiber_displacement[dl], Progressive_P01oad[dl], 
PO_LD_Bond[dl], PO_LD_Fric[dl]); 
fprintf(PO_DISP2, "%7.21f %7.21f %7.21f %7.51f . %7.21f 
%7.21f %7.21f\n", deb_len, Progressive_dbnd_stress[dl], 
Progressive_POstress[dl], Fiber_displacement2[dl], 
Progressive_P01oad[dl], PO_LD_Bond[dl], PO_LD_Fric[dl]); 
fprintf(PO_STRESSvsDL, "%7.21f %7.21f %7.21f \n", 

Progressive_POstress[dl], Fiber_displacement[dl], 
Progressive_dbnd_stress[dl]); 

/* calculate fiber axial stress distribution & interfac ia l shear stress 
distribution */ 

/* over the bonded zone of the par t ia l l y debonded fiber */ 
for(zz=0; zz<=parts*L-dl; ++zz) 
{ 
zzz=zz; 
z=zzz/parts; 

Fiber_axial_stress[zz] [2] = 
(Progressive_dbnd_stress[dl]/cnstntl)*(cnstnt2*sinh(beta*z)/sinh(beta*( 

L-deb_len))-row*sinh(beta*(L-deb_len-z))/sinh(beta*(L-deb_len))+row); 
Interfacial_shear_stress[zz] [2] = 
(a*beta*Progressive_dbnd_stress[dl]/(2*cnstntl))*(cnstnt2*cosh(beta*z)/sin 
h(beta*(L-deb_len+0.000001))+row*cosh(beta*(L-deb_len-z))/sinh(beta*(L-
deb_len+0.000001))); 
Fiber_axial_load[zz] [2] = Fiber_axial_stress[zz] [2] * Fiber_area; 
Fiber_axl_load_bond_compo[zz] [2] = Fiber_axial_load[zz] [2]; 
Fiber_axl_load_frictional_compo[zz] [2] = 0.0; 
/* fprintf(TESTIN, "%lf %lf\n", Initial_debonding_stress, 

Fiber_displacement); */ 
fprintf(STRS_DISTR, "%7.21f %7.21f %7.21f %7.21f %7.21f %7.21f 
%7.21f %7.21f %7.21f \n", Progressive_dbnd_stress[dl], deb_len, deb_pos, 
z, Fiber_axial_stress[zz] [2], Interfacial_shear_stress[zz] [2], 
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Fiber_axial_load[zz] [2], Fiber_axl_load_bond_compo[zz] [2], 
Fiber_axl_load_frictional_compo[zz] [2]); 

} 

/ * calculate fiber axial stress distribution & interfac ia l shear stress 
distribution */ 

/* over the debonded zone of the par t ia l ly debonded fiber */ 
for(zz=parts*L-dl; zz<=parts*L; ++zz) 
{ 
z z z = z z ; 
z=zzz/parts; 
FASl=contact_stress/omega; 
FAS2=Progressive_dbnd_stress[dl]+contact_stress/omega; 
FAS3=exp(2*omega*mu*(L-deb_len)/a)*exp(-2*omega*mu*z/a); 
Fiber_axial_stress[zz] [2]=-FASl+FAS2*FAS3; 
Interfacial_shear_stress[zz] [2]=mu*omega*FAS2*FAS3; 
Fiber_axial_load[zz] [2] = Fiber_axial_stress[zz] [2] * Fiber_area; 
Fiber_axl_load_bond_compo[zz] [2] = Progressive_dbnd_str'ess [dl] * 
Fiber_area; 
Fiber_axl_load_frictional_compo[zz] [2] = Fiber_axial_load[zz] [2] -

Fiber_axl_load_bond_compo[zz] [2]; 
/* fprintf(TESTIN, "%lf %lf\n", Initial_debonding_stress, 

Fiber_displacement); */ 
fprintf(STRS_DISTR, "%7.21f %7.21f %7.21f %7.21f %7.21f %7.21f 
%7.21f %7.21f %7.21f \n", Progressive_dbnd_stress[dl], deb_len, deb_pos 
z, Fiber_axial_stress[zz] [2], Interfacial_shear_stress[zz] [2], 
Fiber_axial_load[zz] [2], Fiber_axl_load_bond_compo[zz] [2], 
Fiber_axl_load_frictional_compo[zz] [2]); 

} 

} 

/ * * / 
/ * Fiber completely debonded along i t s length */ 
/* _ */ 

muinitial=mu; 
for(pdist=0; pdist<=parts*L; ++pdist) 
{ 
pullout_distance=pdist; 
pd=pullout_distance/parts; 

/ * L_new=L-pout_dist; */ 
Progressive_dbnd_stress[pdist]=0.0; 

/* calculate mu */ 
mu= (muinitial-muf inal) *exp (-C*pd) +muf inal ; 

/ * calculate progressive pullout stress and fiber displacement */ 
Progressive_POstress[pdist]=-contact_stress/omega*(l-exp(-2*mu*omegci*(L-

pd)/a)); 
Progressive_P01oad[pdist]=Progressive_POstress[pdist]*Fiber_area; 
PO_LD_Fric[pdist]=Progressive_P01oad[pdist]; 
P0_LD_Bond[pdist]=0.0; 
FDPl=contact_stress/(Ef*omega); 
FDP2=a/(2*mu*omega)*(exp(-2*mu*omega*(L-pd)/a)-1); 
FDP3=pd*(l-exp(-2*mu*omega*(L-pd))); 
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Fiber_displacement[pdist]=pd-FDPl*((L-pd)+FDP2+FDP3); 
Fiber_displacement2[pdist] = pd-FDPl*(2*(L-pd)+2*FDP2+FDP3); 
fprintf(PO_DISP, "%7.21f %7.21f %7.21f %7.51f %7.21f 
%7.21f %7.21f\n", pd, Progressive_dbnd_stress[pdist], 

Progressive_POstress[pdist], Fiber_displacement[pdist], 
Progressive_P01oad[pdist], PO_LD_Bond[pdist], PO_LD_Fric[pdist]); 

fprintf(P0_DISP2, "%7.21f %7.21f %7.21f %7.51f %7.21f 
%7.21f %7.21f\n", pd, Progressive_dbnd_stress[pdist], 

Progressive_POstress[pdist], Fiber_displacement2[pdist], 
Progressive_P01oad[pdist], PO_LD_Bond[pdist], PO_LD_Fric[pdist]); 

fprintf(PO_STRESSvsDL, "%7.21f %7.21f %7.21f \n", 
Progressive_POstress[pdist], Fiber_displacement[pdist], 
Progressive_dbnd_stress[pdist]); 

/ * find area under the pullout curve */ 
pd_previous=parts; 
pd_last=pd-l/pd_previous; 
area[pdist]=(PO_LD_Fric[pdist]+PO_LD_Fric[pdist-1])/(2*parts); 
areal[pdist]=(PO_LD_Fric[pdist]+PO_LD_Fric[pdist-
1])*(Fiber_displacement[pdist]-Fiber_displacement[pdist-1])12; 
fprintf(AREA, "%d %7.21f %7.21f %7.21f %7.21f\n", 
pdist, pd_last, pd, area[pdist], areal[pdist]); 

/ * calculate fiber axial stress distribution & interfac ia l shear stress 
distribution */ 

/ * over the debonded zone of the par t ia l ly debonded fiber */ 

for(zz=0; zz<=parts*(L-pd); ++zz) 
{ 
zzz=zz; 
z=zzz/parts; 
FASPl=contact_stress/omega; 
FASP2=exp(-2*omega*mu*z/a) ; 
Fiber_axial_stress[zz] [3]=-FASPl*(1-FASP2); 

. Interfacial_shear_stress[zz] [3]=mu*contact_stress*FASP2; 
Fiber_axial_load[zz] [3] = Fiber_axial_stress[zz] [3] * Fiber_area; 
Fiber_axl_load_bond_compo[zz] [3] = Progressive_dbnd_stress[pdist] * 

Fiber_area; 
Fiber_axl_load_frictional_compo[zz] [3] = Fiber_axial_load[zz] [3] -

Fiber_axl_load_bond_compo[zz] [2]; 
fprintf(STRS_DISTR, "%7.21f %7.21f %7.21f %7.21f %7.21f %7.21f 

%7.21f %7.21f %7.21f \n", Progressive_dbnd_stress[pdist], pd, z, z, 
Fiber_axial_stress[zz] [3], Interfacial_shear_stress[zz] [3], 
Fiber_axial_load[zz] [3], 
Fiber_axl_load_bond_compo[zz] [3], Fiber_axl_load_frictional_compo[zz] 
[3] ) ; 

} 

} 
} 
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