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ABSTRACT 

This thesis describes a time domain dynamic analysis of a proposed floating 

bridge on Okanagan Lake in Kelowna, British Columbia, Canada. The analysis begins 

with wave hindcasting using wind data collected at the bridge site and the nearby towns 

of Penticton and Kelowna. The influence of lake geometry and bathymetry on the design 

wave conditions is accounted for through the use of a numerical wave hindcasting model. 

The results of the wave hindcasting model are compared with wave data collected at the 

bridge site, and directional wave spectra based on the design wave conditions are then 

constructed for north and south storms. 

The next stage of the analysis is the calculation of wave loads on the bridge. A 

computer model based on two-dimensional linear wave diffraction theory is used to 

calculate the sectional hydrodynamic coefficients. Force time series are then computed 

by discretizing the directional wave spectra, and combining the regular wave components 

with the appropriate wave exciting force coefficients and random phases. Superposition 

of these forces provides the hydrodynamic forces on the bridge as a function of time. 

A structural analysis of the bridge based on the finite element method is then 

conducted for north and south storms. The results of the analysis include sway, heave 

and roll displacements, bending moments in the pontoons and mooring cable tensions. 

Additional topics that are investigated include the influence of slowly-varying wave drift 

forces on the response of the bridge, and the variability in response parameters between 

simulations. 

The south storm was found to provide the largest bridge response with maximum 

bending moments about the z and y axes of the pontoon string of 190,000 and 290,000 

ii 



kNm respectively, and a maximum cable tension of 1,670 kN. Variability between 

simulations was found to be considerable, with an average coefficient of variability of 

0.096 for all response parameters in 10 simulations. The slowly-varying wave drift force 

was found to be equivalent to a static wave drift force at the significant wave height. 
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1. I N T R O D U C T I O N 

1 

1.1 D Y N A M I C A N A L Y S I S O F F L O A T I N G B R I D G E S 

Floating bridges have been used in civil and military applications for centuries. 

Some of the advantages of floating bridges include ease of construction and 

comparatively low cost. Given these advantages, one might expect floating bridges to be 

an integral part of many countries' infrastructure. Today, however, few floating bridges 

exist in the world, with the greatest concentration of floating bridges found in the Pacific, 

Northwest of North America. The Okanagan Lake Floating Bridge in Kelowna, British 

Columbia, Canada, is one of five floating bridges in this region. 

Floating bridges have usually found modern application in situations where 

conventional bridge designs have proven unworkable. Because floating bridges derive 

vertical support from their own buoyancy, they can be used in locations were the body of 

water being crossed is too deep to economically construct bridge piers. Similarly, 

floating bridges can be used in locations where the soil conditions are unsuitable for 

bridge pier foundations. 

Most modern floating bridges use concrete or steel pontoons connected together 

to form the bridge deck. The roadway is either laid directly on the pontoons or is placed 

on an elevated structure founded on the pontoons. Two distinct methods have been used 

to give floating bridges lateral stability. One method is to moor the bridge with pre-

stressed cables attached to anchors on the seabed. Another method is to curve the bridge 

and gain lateral stability from arch action. The latter method is suitable only in locations 

where strong foundation material exists to provide support reactions. Examples of arched 

and moored floating bridges are presented in Figures 1 and 2. 
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Perhaps the greatest barrier to more widespread use of floating bridges is a lack of 

understanding of their behavior under environmental loads. The primary sources of 

environmental loading on a floating bridge are wind, ice and waves. The wind and ice 

loading problems are relatively well understood; however, the wave loading problem has 

only recently become tractable. 

Traditional analyses of floating structures consider the wave field to be random 

and unidirectional. In reality, a wind generated sea is composed of wave trains with 

numerous frequencies and directions. When superposed, these wave trains add and 

cancel, producing a wave field in which the wave crests are of random and finite length. 

This type of sea surface is termed a short-crested wave field. 

Modeling a wave field as random and unidirectional has proven acceptable for the 

analysis of structures whose dimensions are small compared to the wavelength of the 

incident waves. However, if one were to analyze the behavior of a long floating 

structure, such as a floating bridge, subject to infinite crested, random waves, 

unrealistically large loads and stresses would be predicted. These large loads and stresses 

are the result of the high degree of correlation of the forces along the bridge span. When 

the wave field is modeled as short-crested, the forces along the bridge span become 

uncorrelated, and the response of the bridge is reduced to levels more commonly 

observed in nature. As a result, the short-crestedness of the wave field, or what are 

termed directional wave effects must be considered for the safe, economical design of 

long floating structures. 

The dynamic response of floating bridges to wave action can be determined in 

either the frequency or time domain. In a frequency domain approach, the directional 
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wave spectrum is determined, the frequency dependent hydrodynamic coefficients are 

calculated, and then exciting force spectra are derived. A structural model of the bridge 

is then created, and response spectra for parameters of interest such as cable forces and 

bending moments are created. The exciting force spectra are then combined with the 

response spectra to produce spectra of cables forces and bending moments. Statistical 

methods are then applied to determine the maximum forces in the bridge, which are 

exceeded with some desired probability. 

In a time domain approach, time histories of wave force are synthesized from the 

directional wave spectrum and force coefficients. These force time histories are then 

applied to the structural model of the bridge and the response of the bridge is determined 

as a function of time. The maximum cable forces and bending moments that occur 

during the simulation are then determined by examining the response of the bridge at 

each time step. 

Both solution techniques have advantages and disadvantages. The frequency 

domain approach can only be used with linear systems, and although the maximum forces 

and displacements can be determined with confidence, one cannot easily obtain a 

coincident set of forces. This is a considerable disadvantage during structural design 

since the stresses within a member depend critically on the combination of axial load and 

vertical, horizontal and torsional moments applied. 

Time domain dynamic analysis can be applied to non-linear systems, and 

coincident forces are easily obtained from the time-history output. The major 

disadvantage of the time domain approach is that the results are variable. The forces and 

displacements obtained during a simulation depend critically on the set of random phases 
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selected when synthesizing the force time histories. As a result, the maximum forces 

obtained in each simulation will be different, and a single simulation may not provide a 

representative design value. This shortcoming can be overcome by performing several 

simulations with different random phases. The output of the simulations can then be 

treated as a set of samples from which the population statistics must be estimated. 

In this thesis, a time domain dynamic analysis of a proposed four-lane 

replacement for the Okanagan Lake Floating Bridge is conducted. The variability in the 

output results is examined, and a technique for estimating population statistics from the 

results of a series of time domain simulations is proposed. In addition, a slowly-varying 

wave drift force is included in the analysis, and its influence on the response of the bridge 

is investigated. 

1.2 L I T E R A T U R E R E V I E W 

1.2.1 EXTREME VALUE ESTIMATION 

Estimating the magnitude of extreme events is a common task in many branches 

of civil engineering. In coastal and ocean engineering, extreme value estimation is 

applied to wind and waves. Structures are generally designed to resist an event that has a 

specified probability of occurring over the life of the structure. Load and resistance 

safety factors are then applied in structural design to bring the probability of failure to an 

acceptable level. 

In most circumstances, wind and wave data is not available over a duration 

comparable with the design life of a structure, and therefore a suitable extrapolation is 

necessary. In addition, it is common that not enough data is available to obtain the parent 



5 

probability distribution of the wind or waves with accuracy, particularly for small 

probabilities of occurrence. 

Gumbel (1958) observed that the parent probability distributions of many 

variables tends to three asymptotic forms for large return period events. These limiting 

forms are a double exponential form and two single exponential forms. The double 

exponential form is known as both the Gumbel and Type I distribution, and was 

originally researched by Fisher and Tippett (1928). 

The Type I distribution is convenient to apply, and has been shown to provide 

reliable results in many applications ranging from flood prediction to extreme wind 

estimation. For this reason, the Type I distribution has been used for extreme wind 

estimation in this thesis. 

1.2.2 ESTIMATION OF WAVE STATISTICS 

Wave Statistics from Wind Data 

The estimation of wave statistics from wind data is termed wave hindcasting. 

Wave hindcasting is often necessary because long, statistically significant records of 

wave data are rarely available. Wave hindcasting procedures can generally be divided 

into two categories: 

• significant wave methods; 

• wind field methods. 

The significant wave method is the most widely applied technique for 

determining the characteristics of a wave field from wind data. Significant wave 

techniques were developed by Sverdrup and Munk (1947) and Bretschneider (1958). 
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These researchers related wind parameters such as speed, duration and fetch length to 

characteristic wave parameters (the significant wave height and peak period) and created 

empirical wave hindcasting curves for this purpose. Bretschneider (1961) also derived a 

wave spectrum that is defined in terms of the significant wave height and peak wave 

period. 

Wind field methods relate the wind velocity directly to the wave spectrum. 

Wave spectra that use this approach include the Pierson-Moscowitz Spectrum (1964) and 

the JONS WAP spectrum derived by Hasselmann et al. (1973). 

An important advance in wave hindcasting was the numerical implementation of 

wind field methods. Numerical models have been developed which can account for 

temporal and spatial variations in the wind field, limited fetch and duration, wave short-

crestedness, refraction, wave breaking and bottom friction. 

One of the first numerical wave hindcasting models was developed by Cardone, 

Pierson and Ward (1976). Their model was specifically designed to model duration 

limited hurricane generated waves, and was calibrated with historical data. Contributions 

to the development of computerized wave hindcasting models were also made by Barnett 

(1968), Inoue (1967), and Pierson et al. (1966). 

More recently, a numerical wind field method was developed by Holthuijsen, 

Booij and Herbers (1989). Their model is stationary, and determines the directional wave 

spectrum from the wind field at a series of grid locations based on a numerical integration 

of the wave action balance equation. The model accounts for wave generation by wind, 

energy losses due to wave breaking and bottom friction, refraction, and wave-current 

interaction. This model forms the basis of the MIKE 21 Nearshore Spectral Wind Wave 
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Program that has been used for wave hindcasting in this thesis. This computer program is 

distributed and developed by the Danish Hydraulic Institute in Denmark. 

The numerical wave hindcasting techniques described above rely upon a 

mathematical description of wave generation by wind. The mechanisms of wave 

generation by wind are not yet fully understood; however, two mechanisms for the 

transfer of energy from wind to waves have been identified and generally accepted. The 

first method, investigated by Phillips (1957) involves the resonant interaction of turbulent 

fluctuations in the air and the sea surface. The second method, investigated by Miles 

(1957-1962) involves energy transfer through shear between the air and the sea surface. 

These analytical descriptions of wave generation by wind are numerically demanding, 

and as a result the MIKE 21 numerical model uses a simplified, empirically derived 

formulation with source terms obtained from the Shore Protection Manual (1984). 

As previously mentioned, the M I K E 21 numerical model accounts for energy 

losses due to wave breaking and bottom friction. Energy losses due to these phenomena 

have not yet been described analytically; however, many semi-analytical procedures to 

estimate these parameters have been proposed and shown to be reasonably accurate. 

M I K E 21 uses a model for energy loss and set-up due to the breaking of random waves 

proposed by Battjes and Janssen (1978); the description of bottom friction is based on the 

research of Svendsen and Jonsson (1980). 

Wave Statistics from Wave Data 

Although it is possible to obtain wave data through wave hindcasting, it is often 

desirable to obtain wave data directly. Wave data is useful for calibrating wave 
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hindcasting models, and can be used to predict extreme wave events if the recording 

period is sufficiently long. Direct wave data is particularly useful since nearshore effects 

such as refraction, shoaling and diffraction are included. 

Frequently employed techniques for collecting wave data include recording the 

water surface elevation at a staff fixed to the seabed, recording the motions of a floating 

buoy, and recording pressure fluctuations in the water column. The net result of a wave 

data collection program is a set of traces of surface elevation with respect to time. From 

these traces, statistics such as the significant wave height and peak wave period are 

obtained to summarize the data. 

Prior to the 1960's, wave traces were analyzed manually, and the significant wave 

height and peak period were estimated from characteristic quantities. During the early 

1960's, random signal analysis techniques borrowed from the field of electrical 

engineering were applied to obtain statistics from wave traces. In particular, the Fast 

Fourier Transform algorithm developed by Cooley and Tukey (1965) allowed wave 

energy spectra to be obtained quickly and efficiently. The significant wave height and 

peak period are then obtained from the calculated wave spectra. Bendat and Piersol 

(1971) provide a detailed discussion of the Fast Fourier Transform algorithm and spectral 

analysis techniques. 

1.2.3 HYDRODYNAMICS OF FLOATING STRUCTURES 

The determination of wave forces on submerged and floating bodies has been the 

subject of extensive research within the field of naval architecture. A summary of this 

large area of study can be found in Newman (1977). Other important contributions in 
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this area include the work of Morison et al. (1950), who empirically derived an 

expression for the drag and inertia forces on a vertical cylinder, and MacCamy and Fuchs 

(1954), who used potential theory to solve the two-dimensional wave-structure 

interaction problem for a fixed vertical circular cylinder. 

Floating bridges are often idealized as long horizontal cylinders with a rectangular 

cross-section. The hydrodynamic analysis of long horizontal cylinders has often been 

simplified by reducing the three-dimensional problem to a two-dimensional problem in 

the vertical plane. The two-dimensional results are then extended to three-dimensions by 

discretizing the bridge into elements and applying the two-dimensional results to the 

nodes after suitable modification to account for directional wave effects. 

The two-dimensional diffraction problem for a horizontal cylinder was originally 

studied by Ursell (1949) for a circular section. Vugts (1968) conducted an experimental 

investigation of the hydrodynamic coefficients of cylinders with circular, triangular and 

rectangular cross-sections. The particular problem of oblique wave interaction with a 

cylinder of rectangular cross-section was studied by Garrison (1969), who used a Green's 

function procedure to solve the corresponding boundary value problem. Georgiadis and 

Hartz (1982) developed a boundary element program to obtain the hydrodynamic 

coefficients of a rectangular cylinder in water of arbitrary depth. More recently, Isaacson 

and Nwogu (1987) solved the diffraction problem of waves obliquely approaching a 

floating rectangular cylinder of finite length by means of a numerical procedure based on 

Green's theorem. The technique developed by Isaacson and Nwogu can be applied in 

deep and shallow water, and has been used in this thesis. 
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1.2.4 DIRECTIONAL WAVE EFFECTS ON FLOATING STRUCTURES 

Directional wave effects on long floating structures have been quantified through 

explicit representation of the short-crested wave field and through superposition of 

infinite-crested waves with numerous frequencies and directions of propagation. 

Hutchison (1984) has shown that both techniques are logically consistent. 

Hartz (1981) explicitly accounted for the short-crested behavior of a wave field by 

applying a frequency dependent reduction factor ("Spatial Correlation Factor") to the 

wave forces applied at the nodes of a time domain finite element analysis. The reduction 

factor was developed empirically through the analysis of field data. Some researchers 

have extended this technique by deriving coherency functions from the directional wave 

spectrum. These coherency functions describe the correlation of wave forces at different 

points along a structure. The coherency functions are used to generate covariance 

matrices for wave forces that are applied to frequency or time domain analyses. Langen 

and Sigbjornsson (1981), Hartz and Georgiadis (1982) and Hutchison (1984) have 

described this technique. 

Methods that quantify directional wave effects by superposing force contributions 

from infinite crested waves with numerous frequencies and directions of propagation 

have been described by Engel and Nachlinger (1982) and Isaacson and Nwogu (1987). 

Both of these "papers employ a frequency domain analysis. Isaacson et al. (1997) 

conducted a time domain analysis of a widened version of the Okanagan Lake Floating 

Bridge by superposing force contributions from infinite crested waves; the methodology 

described in this paper has been used in this thesis. 
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1.2.5 S L O W L Y - V A R Y I N G W A V E DRIFT FORCES 

Slowly-varying wave drift forces are a second order phenomenon, and are 

proportional to the square of the wave amplitude. Wave drift forces were originally 

studied for uni-directional monochromatic waves. Maruo (1960) showed that the wave 

drift force due to regular waves is steady, and can be derived from the first-order velocity 

potential. Further research in this area was conducted by Newman (1967), who derived a 

formulation for the wave drift moment, and Longuet-Higgins (1977), who derived a 

widely applied formulation for the steady wave drift force as a function of the reflection 

and transmission coefficients of a structure. 

The wave drift force due to irregular waves varies slowly with time, and a 

rigorous solution of the problem requires computation of the second-order velocity 

potential. Wave drift forces in uni-directional irregular seas were originally studied by 

Newman (1974). Newman developed a technique for calculating wave drift force time 

series that approximates the wave spectrum as narrow banded. As a result of this 

approximation, the problem can be solved in terms of the first-order velocity potential, 

and the computational effort is greatly reduced. Marthinsen (1983) studied wave drift 

forces in directional irregular waves. He showed that Newman's index approximation 

can be applied to both the frequency and directional distribution of wave energy. K im 

and Yue (1989) have also studied this topic, and their expression for slowly-varying wave 

drift force in directional seas has been applied in this thesis. 
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1.2.6 DYNAMIC ANALYSIS OF FLOATING STRUCTURES 

The dynamic analysis of floating structures is a multi-disciplinary problem that 

involves both hydrodynamics and structural dynamics. The first step in the dynamic 

analysis of a floating structure is the determination of hydrodynamic coefficients and 

hydrostatic stiffnesses. Next, the structural stiffness, mass and damping matrices must be 

assembled. Finally, the equations of motion of the structure must be solved by an 

appropriate numerical method. 

A literature review of the hydrodynamic analysis has already been presented in 

Section 1.2.3. The determination of hydrostatic stiffnesses of ships and floating 

structures has received much attention within the field of naval architecture, and the 

theory can be found in many texts, notably Goldberg (1988). 

A general discussion of the mass, damping and stiffness matrices of floating and 

offshore structures can be found in Sarpkaya and Isaacson (1981). Depending on the 

characteristics of the structure, the structure may be modeled by the stiffness method or 

an approximate method such as the finite element method. Readers are referred to texts 

by Hibbler (1995) and Bathe (1996) for further information on these methods. 

Once the mass, damping, and stiffness matrices of a structure have been 

assembled, a method must be chosen to solve the equations of motion. If the system is 

classically damped, a modal analysis can be used to uncouple the equations of motion, 

and these equations can be solved in closed form if the excitation is a simple function. If 

the system is non-classically damped, non-linear, or subject to complex excitation, the 

equations of motion must be solved numerically. Numerical techniques for solving linear 

systems include the central difference method and Newmark's method. The average 
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acceleration method and Wilson's method can be used to solve non-linear systems. 

Readers are referred to general texts on this subject by Humar (1990), Clough and 

Penzien (1993) and Chopra (1995). 

1.3 SCOPE OF T H E P R E S E N T W O R K 

The existing bridge across Okanagan Lake was designed by Swan Wooster and 

Partners of Vancouver, Canada in 1956. Wave loading was not considered in the design, 

and the bridge was constructed to resist only wind and ice loads. The bridge currently 

has three lanes for traffic, and one lane alters direction in rush hours to accommodate 

heavy traffic. Projected population growth in the region will make it necessary to widen 

the bridge to four lanes. 

This thesis describes a dynamic analysis of a four-lane floating bridge which was 

designed by Westmar Consultants Inc. of North Vancouver, Canada as a proposed 

replacement for the existing bridge. The original intent of this thesis was to model the 

existing bridge, calibrate the wave hindcasting procedure with wind and wave data 

collected at the site, and calibrate the structural model with mooring cable tension data. 

Unfortunately, no major storm events occurred prior to the writing of this thesis and 

therefore calibration of the structural model with cable tension data was not possible. As 

a result, it was decided that a dynamic analysis of the proposed bridge would be more 

useful since the results of this analysis could be referenced during final design of the 

bridge. 

A flow chart of the steps involved in the dynamic analysis is presented in Figure 

3. The analysis includes the calculation of design wind velocities, wave hindcasting, a 
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hydrodynamic analysis and a time domain dynamic analysis using the finite element 

method. A computer program developed by the Danish Hydraulic Institute called M I K E 

21 NSW (Nearshore Spectral Wave) was used for wave hindcasting. The wave 

hindcasting results were compared with field data collected at the bridge site. A program 

called H A F B (Hydrodynamic Analysis of a Floating Breakwater), written by Isaacson 

and Nwogu at the University of British Columbia was used for the hydrodynamic 

analysis. A program called FORCETIME, developed by the author was used to assemble 

the wave force time series. The dynamic analysis was performed using a commercial 

finite element program called COSMOS/M developed by the Structural Research and 

Analysis Corporation in the United States of America. 

With the exception of FORCETIME, none of the above mentioned computer 

programs were developed as a result of this research. As a result, the primary 

contribution of this thesis is to apply state-of-the-art theories and techniques to the 

analysis of a long floating structure and indicate their potential application within an 

engineering context. The primary objective of the research was to obtain maximum 

values of the following parameters during a 100-year storm: 

• sway, heave and roll displacements of the bridge; 

• bending moments within the pontoons; 

• mooring cable tensions. 

In addition, the variability in maximum responses was evaluated by performing several 

simulations and calculating sample statistics. The influence of slowly-varying wave drift 

forces on the response of the bridge was also investigated by conducting a simulation 

with a static drift force. 
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2. DESCRIPTION OF THE BRIDGE AND FIELD DATA 

2.1 BRIDGE LOCATION AND DIMENSIONS 

The Okanagan Lake Floating Bridge is located in Kelowna, British Columbia, 

Canada. The bridge forms part of Highway 97, an important north-south link in central 

British Columbia. A map of the region is presented in Figure 4. The proposed four-lane 

bridge will be moored 25 m to the north of the existing bridge, which will be 

decommissioned after the new bridge is operational. 

Okanagan Lake is approximately 340 m above sea level, and is situated in a 

valley between mountain ridges with heights reaching 1,500 m. The depth of water at the 

crossing for the proposed bridge varies from about 5 m at the east end of the floating 

section to 50 m at the center of the floating section. 

The floating bridge is located at a bend in the lake. The section of the lake to the 

north of the bridge has a north-south orientation, with an average width of 4 km and a 

length of approximately 40 km. The section of the lake to the south of the bridge has a 

southwest-northeast orientation with a length of approximately 25 km and an average 

width of 5 km. The physical geography of the region surrounding the bridge site tends to 

funnel wind down the length of the lake. 

The entire length of the proposed bridge is 1,075 m. Plan and elevation views of 

the bridge are shown in Figure 5. The proposed bridge consists of several sections: 

• a 278 m long approach span, at the west end of the bridge; 

• a 58 m long transition span between the west approach and the pontoon 

section; 
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• a 673 m long pontoon section, formed by 12 pontoon units rigidly connected 

together; 

• a 65 m long east transition span between the pontoon section and the shore. 

The west transition span is elevated 18 m above the lake surface to allow the passage of 

boats. The elevated transition span eliminates a lift span system on the existing bridge 

which periodically halts traffic flow. 

The majority of the pontoons are 60.93 m long and 22.28 m wide. The draft of 

these pontoons varies from 4.3 m at the east end of the floating section to 2.5 m at the 

centre of the floating section. The pontoon at the west end of the floating section is 17.75 

m long and 22.28 m wide, and has a maximum draft of 4.0 m. The increased draft of the 

pontoons at the ends of the floating section provides extra buoyancy to equilibrate the 

support reactions of the transition spans and elevated road deck. The pontoons will be 

constructed of reinforced concrete, and will be divided into cells and filled with 

styrofoam to minimize the likelihood of sinking. 

The pontoon section is given lateral stability by 24 cables, with 12 cables on each 

side of the bridge. It is given longitudinal stability by the east transition span that 

connects the floating section to a concrete caisson on the shore. The mooring cables are 

generally equally spaced, and are connected to plow-like anchors embedded in the lake 

bottom. The cables are all pre-tensioned to approximately the same load level (500 kN 

when the lake is at mean water level) and all have the same cross-sectional area and 

modulus of elasticity. The cables in shallower water are stiffer since they are shorter. 
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2.2 FIELD D A T A C O L L E C T I O N 

A field data collection program at the existing bridge was commenced by 

Westmar Consultants Inc. in February 1998. The program includes the collection of 

wind data, pressure in the water column (to allow the computation of wave heights), and 

cable tensions. Wind data at the bridge and nearby airports is also available from the 

Atmospheric Environment Service of Canada (AES). 

2.2.1 WIND DATA 

There is no long-term record of wind velocity at the bridge site. As a result, it 

was necessary to correlate the wind velocities measured at the bridge site with long term 

records collected at Kelowna and Penticton airports. A description of the wind records 

from these sources follows. 

Kelowna Airport 

Kelowna airport is located 13 km to the north-east of the Okanagan Lake Floating 

Bridge at an elevation of 430 m. It is not situated on Okanagan Lake, and consequently 

the wind conditions at the airport may not be used directly for wave hindcasting. The 

wind data at the airport has been collected by the AES, and is available in hourly and 

Model B formats. The Model B format is a summary of wind speed and direction over 

the entire recording history. The wind speed is the 2-minute mean wind speed recorded 

on the hour; wind direction is recorded on an 8-point compass. The record duration is 

approximately 30 years, and therefore this wind data is statistically reliable for extreme 

wind speed computation. 
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Penticton Airport 

The Penticton airport is located on Okanagan Lake 45 km to the south of the 

Okanagan Lake Floating Bridge (See Figure 4) at an elevation of 344 m. Although 

Penticton Airport is further away from the bridge site than the Kelowna airport, it is 

situated at the same elevation as the lake, and therefore the surrounding topography more 

closely resembles the bridge site. The wind data at the airport has been collected by the 

AES, and is available in hourly and Model B formats. The wind speed is the 2-minute 

mean wind speed recorded on the hour; wind direction is recorded on an 8-point 

compass. The record duration is approximately 45 years, and is the most statistically 

reliable source of wind data available for extreme wind speed computation. 

Floating Bridge Site 

Wind data has been collected at the bridge site for two periods. The first period 

was initiated by the AES and spans from June 1971 to August 1976. This data was 

collected by means of an anemometer attached to the top of the east span lift tower. The 

anemometer measured hourly average wind speed (km/hr) and wind direction on a 16-

point compass. 

The second period of wind data recording began on February 1998 and was 

initiated by Westmar Consultants Inc. This data is being collected by means of a RM 

Young 05103LK wind sensor mounted on top of a luminaire pole on the south sidewalk 

at the centre of the bridge. The wind sensor came pre-calibrated from the factory. Wind 

speed and direction are measured every five seconds, and at the end of each hour, 
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statistics are processed. The statistics include hourly average wind speeds, and 2-minute 

mean wind speeds measured on the hour. 

2.2.2 PRESSURE DATA 

One pressure transducer (Omega PX437-015GI) is mounted on both the north and 

the south anchor cables at the centre of the bridge. The north transducer is installed at a 

depth of approximately 4.1m, and the south transducer is installed at a depth of about 

3.7m. The total water depth at the transducer locations is approximately 50 m. The 

pressure transducers came with calibration curves from the factory. This calibration was 

checked by placing the transducers in various depths of water and checking the output 

signal. In addition, the transducers were placed in a wave flume at UBC's hydraulics 

laboratory, and the output was recorded to ensure the transducers could respond to 

rapidly varying dynamic wave pressure. 

Pressure data is continuously collected at a rate of 2 Hz, and is compiled into a 

mean and standard deviation every half-hour and recorded in a data file. Pressure data is 

also recorded when the 2-minute average wind speed exceeds a threshold value (25 

km/hr). When the threshold wind speed is exceeded, the pressure data is recorded for 5 

minutes at 0.5 second intervals and then data files are recorded two more times at 15 

minute intervals. If the 2-minute wind speed exceeds the threshold value 45 minutes 

after the original threshold exceedance, the process repeats. 
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3. DESIGN WAVE DETERMINATION METHODOLOGY 

3.1 DETERMINATION OF THE DESIGN WIND VELOCITIES 

As discussed in Chapter 2, wind data is available at the bridge site for a total of 

approximately 5 years. The short duration of this record makes it inadequate for 

calculating large return period wind speeds. As a consequence, longer wind records 

available at Kelowna and Penticton airports were used to determine the design 100-year 

return period wind velocities. 

The 100 year winds at Kelowna and Penticton airports corresponding to various 

directions and durations were determined by fitting a Type I asymptotic (Gumbel) 

distribution to AES Model B wind data. The equation for the Gumbel distribution is as 

follows: 

a(V-/3) = -ln[-\n(P(V))] (3.1) 

where V is the wind speed, P(V) is the cumulative probability of the wind speed and a 

and /? are scale parameters determined through linear regression. The exceedance 

probability, \-P(V) is equal to the recording interval divided by the return period. 

Once the design wind speeds at both airports were calculated, they were 

multiplied by scaling factors to produce the design wind velocities at the bridge site. The 

scaling factors were determined from the slope of a best-fit line fitted to scatter plots of 

hourly wind data recorded at the bridge and airports over the period from June 1971 to 

August 1976. 
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3.2 H I N D C A S T I N G T H E D I R E C T I O N A L W A V E S P E C T R U M 

3.2.1 DIRECTIONAL WAVE SPECTRA AND SPECTRAL ANALYSIS 

Basic linear wave theory predicts a sinusoidal water surface elevation. In nature, 

water surfaces are random and irregular, and the long-crested sinusoidal waves described 

by linear wave theory do not exist. The dynamic response of structures depends critically 

on the frequency of the excitation. As a result, it is necessary to quantitatively describe 

the random water surfaces that occur in nature. Coastal engineers use the theory of 

random signal analysis to accomplish this. 

Several fundamental assumptions are made in the mathematical description of an 

irregular water surface through random signal analysis. The first assumption is that the 

water surface elevation is stationary, homogeneous and ergodic. This means that the 

statistical properties of the water surface do not change in either time or space, and that a 

single measured realization of the water surface elevation is typical of any measured 

realization. 

The second assumption is that the random water surface elevation can be 

adequately described by superposing numerous linear waves with different frequencies, 

phases and directions of propagation. These assumptions allow one to describe the 

random water surface by means of Fourier series and power spectra. A brief review of 

Fourier series and power spectra is presented in the following paragraphs. 

Review of Fourier Series and Power Spectra 

Assume that x(t) is a measured realization of water surface elevation measured at 

N equally spaced points in time Â  apart in the range (0,7). The data values at each time 

step are: 
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x„ = x(nAt) for n = 0, 1, 2,..., AM (3-2) 

The wave elevation record xf() can be represented by superposing numerous sinusoidal 

waves with different frequencies and amplitudes in a Fourier series (in complex 

notation): 

* ( 0 = ixne-i2Kf"' (3.3) 
n = -co 

In this equation, X„ are the amplitudes and fn are the frequencies of each Fourier 

component. The amplitudes of the Fourier components are determined from the Fourier 

transform of the record: 

X(fn)= \x(t)e-'2"f"'dt (3-4) 
o 

However, since x(t) is sampled at discrete intervals, the Fourier components must be 

calculated at discrete frequencies. These frequencies are normally chosen at equal 

intervals defined by: 

• / - * _ = _ * _ for £ = 0,1, 2,..., AM (3-5) 
T NAt 

At these frequencies, the discrete version of equation (3.4) is as follows: 

2^77 JV-1 

X(fk) = AtYXn e X P 
n=0 

•I-
N 

for* = 0, 1,2,..., AM (3.6) 

The Fourier components, X(fk) are normally calculated by means of the highly efficient 

Fast Fourier Transform (FFT) algorithm. 
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The Fourier components can be used to create a power spectrum of the sea state. 

The power spectrum gives the relationship between wave frequency and spectral density, 

S(fk). The one-sided power spectrum is given by the following equation: 

S(fk) = -f-\X(fk)\2 for*=0,l,...,AV2 ( 3 ? ) 

A brief inspection of equation (3.7) reveals that spectral density is proportional to wave 

amplitude squared. The spectral density is therefore a measure of the energy present in 

the waves at that frequency. For this reason, power spectra of wave records are often 

called energy spectra. Typical wave energy spectra have low energy at low and high 

frequencies, and reach a maximum value at an intermediate frequency, known as the peak 

frequency. 

Directional Wave Energy Spectra 

Numerous researchers have measured sea states, and have proposed empirical 

formulae for wave energy spectra. Bretschneider (1961) proposed one of the most 

commonly used energy spectra. The Bretschneider spectrum is defined by the peak 

frequency,̂ , and significant wave height, Hsof the sea state and is given by the formula: 

S(f) = 
5H; f / T 

fp 
exp 

51 

4 

-4 

_f__ 

Jp) 
(3.8) 

The significant wave height is the average height of the highest 33% of the waves in a 

wave train. The Joint North Sea Wave Project (JONSWAP) spectrum is a modified 

version of the Bretschneider spectrum, and has a larger concentration of wave energy 
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about the peak frequency. An example of a JONSWAP spectrum is presented in Figure 6. 

The JONSWAP spectrum is based on extensive observations taken in fetch limited 

conditions in the North Sea and has been used in this thesis. The JONSWAP spectrum is 

given by the formula: 

S(f) = aH2JAf-s exp -1.25 JL 
\fp j 

exp-

r 
1 12a' 

a = 

cr = 

0.0624 
0.230 + 0.0336/-0.185(1.9 + ry] 

{va:f<fA 
Wb-f>fP] 

(3.9) 

with a a=0.07 

a b=0.09 

Y = 3.3 

The spectra discussed above describe only the distribution of wave energy with 

frequency. When determining the response of long floating structures to waves, 

directional wave effects, or wave short-crestedness must also be considered. The 

directional wave spectrum, S(f,Q) describes the relationship between wave energy and 

wave frequency and direction. An example of a directional wave spectrum is shown in 

Figure 7. 

Directional wave spectra are often expressed as the product of a one-dimensional 

spectrum and a directional spreading function: 

S(f,6>) = S(f)G(f,8) (3.10) 

where G(f,Q) is the directional spreading function. Further simplification is achieved by 

assuming that wave direction is independent of frequency and therefore G(f,Q) becomes 

G(9). The directional spreading function has the property: 
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JG(0)d0 = 1 (3.11) 

As a result, the directional spreading function does not amplify the total energy present in 

the one-dimensional spectrum. 

Numerous directional spreading function formulations have been proposed. One 

of the most commonly used directional spreading functions is the cosine power function 

proposed by Longuet-Higgins et al. (1961). The cosine power formulation is as follows: 

where 9 is measured from the mean direction of wave propagation and the directional 

spreading index, s controls the dispersion of wave energy in the 9 direction. As the 

directional spreading index becomes larger, the waves approach uni-directionality. The 

normalizing coefficient C(s) is chosen such that equation (3.11) is satisfied. 

Borgman (1969) proposed an alternative formulation for the cosine power 

directional spreading function: 

where 9 is measured from the mean direction of wave propagation and the directional 

spreading index, s controls the dispersion of wave energy in the 9 direction. Again, the 

normalizing coefficient C'(s) is chosen such that equation (3.11) is satisfied. This 

formulation of the cosine power directional spreading function is shown in Figure 8 for 

various values of the directional spreading index. 

G(9) = C(s)cos2x(9) (3.12) 

otherwise 

for |0| < TC/2 (3.13) 



26 

The spreading function formulations discussed above are an approximation to 

those observed in nature. The appeal of the cosine power formulations rests largely with 

their simplicity. Numerical wave hindcasting programs such as MIKE 21 can calculate 

direction spreading functions of arbitrary form based on the wind field and bathymetry in 

the area of interest. 

3.2.2 DIRECTIONAL WAVE HINDCASTING 

As previously mentioned, the MIKE 21 NSW computer program has been used 

for wave hindcasting in this thesis. MIKE 21 is a stationary numerical model that 

determines the directional wave spectrum from the wind field at a series of grid locations 

based on a numerical integration of the wave action balance equation. The model 

accounts for wave generation by wind, energy losses due to wave breaking and bottom 

dissipation, refraction, and wave-current interaction. 

The program uses an Eulerian approach, and solves the directional action balance 

equation on a rectangular grid in x,y,# space. The wave action balance equation 

generally states that the rate of change of wave energy at a location equals the energy 

being convected to and from the location plus the local transfer of energy between the 

wind field and the waves. 

Wave energy is represented in the frequency domain by the two-dimensional 

wave action spectrum, A((o,Q;x,y,f). The wave action spectrum is related to the wave 

energy spectrum by the following equation: 

A(co,0;x,y,t) = S((O,0;x,y,t)/a 
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where A((o,Q;x,y,t) and S((Q,Q-jc,y,f) are the directional wave action and energy spectra 

respectively and the relative frequency, a is defined as: 

(j = co-k-V_ (3.15) 

In this equation, k is the wave number vector, co = 27i/is the angular frequency and V is 

the current velocity vector. The action balance equation is used as opposed to the more 

common energy balance equation to account for the possible presence of currents. The 

complete action balance equation can be written as follows: 

dA d . d , .. d , >N d , .. _, 
-z- + — ic aA) + — (cxA) + — (CyA) + — (ceA) = E (3.16) 
ot da> dx o9 

where E is the energy source term and cx, cy and CQ are the energy propagation speeds in 

the x,y and 9 directions. The propagation speeds are components of the group velocity c, 

given by linear wave theory as: 

dco k 

" = ̂ I (3-17) 

Solving the complete version of the action balance equation requires considerable 

computational effort. As a result, the complexity of the problem has been reduced by 

making several simplifications. The first simplification is achieved by making the model 

stationary (independent of time). As a result, the first and second terms in equation (3.16) 

become zero, and the model produces only fetch-limited solutions. 
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The complexity of the problem is further reduced by parameterizing the action 

balance equation in terms of the zero-th and first moments of the action spectrum. The 

nth moment of the action spectrum is defined as follows: 

oo 
m„(0) = jco" A(co,0)dco (3.18) 

o 

For the purposes of calculating the spectral moments, the action spectrum is assumed to 

be derived from a standard JONSWAP energy spectrum. Further simplification is 

obtained by taking the group velocity (and therefore the propagation speeds) equal to 

their corresponding speeds at the mean frequency, co0. The group velocity is therefore 

written: 

do)n kQ 

— dkn k„ (3.19) 

The equations resulting from the parametrization and the above mentioned 

simplifications are as follows: 

( cl™o) + ̂  (cly m o ) + -~ (clem») = E o (3.20) 

-^-( c

( *>i) + ^ - ( ^ > i ) + ^ ( ^ > i ) = ^ (3.21) 
ox oy 00 

where c*ox, c^and c*^ in equation (3.20) and c**ox, c**oy and C**0Q in equation (3.21) 

are the energy propagation speeds through x,y,Q space of mo and mi respectively. Eo and 

Ei are the parameterized source functions for m̂ and mi respectively. 

As previously mentioned, the MIKE 21 computer program accounts for energy 

losses due to wave breaking and bottom friction. The program uses a model for energy 
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loss and set-up due to the breaking of random waves proposed by Battjes and Janssen 

(1978). The description of bottom friction is based on the research of Svendsen and 

Jonsson (1980). Readers are referred to these sources for further information. 

The partial differential equations (3.20) and (3.21) are solved numerically. A 

finite-difference technique is applied for discretization of the differential equation in 

x,y,Q space. Rectangular grid spacing is used, and the system of equations is solved 

using a once-through marching procedure in the x-direction. The output of MIKE 21 

includes the significant wave height, mean spectral period, mean wave direction and 

directional standard deviation of the directional spreading function at each grid point in 

the model domain. The directional standard deviation can be related to the spreading 

index, s in the cosine squared directional spreading function formulation. 

Design wave conditions were calculated for north and south storms with a return 

period of 100 years. This was accomplished by applying the design wind velocities to 

MIKE 21 models of the north and south sections of Okanagan Lake. The digitized 

bathymetries of the north and south fetches are shown in Figures 9 and 10. Results from 

the MIKE 21 model of the southern portion of the lake were compared with field data. 

3.3 C A L I B R A T I O N OF T H E H I N D C A S T SEA S T A T E W I T H F I E L D D A T A 

When modeling complex phenomena such as wave generation by wind, it is 

desirable to compare the model results with field data. As discussed in Section 2.2, a 

field data collection program is in place at the bridge site. The wind velocities and wave 

statistics collected in this program have been compared with output from the MIKE 21 
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wave hindcasting computer program. At the time of writing, field data was available for 

approximately one year, and several minor storm events were recorded. 

Wave statistics were recorded by means of two pressure transducers, one mounted 

on the north and south anchor cables at the centre of the bridge. The records of pressure 

as a function of time were converted to pressure spectra by means of the Fast Fourier 

Transform algorithm described in Section 3.2.1. A cosine squared (Hanning) filter was 

first applied to the time-series data to reduce side lobe leakage and thereby increase the 

accuracy of the spectral estimate. The pressure spectra were converted to wave energy 

spectra by means of a linear transfer function: 

where Hpn(f) is the linear transfer function and Sp(f) and S„(f) are the pressure and wave 

energy spectra respectively. The transfer function for conversion from pressure spectra 

to wave energy spectra (assuming deep water) is as follows: 

Hpn(f) = ekz ( 3 - 2 3 ) 

where k is the wave number and z is the depth of the pressure transducer below the still 

water level. 

The pressure transducers are located approximately 20 m from the pontoon walls. 

As a result, the pressure records include both incident and reflected waves. The incident 

and reflected wave spectra were separated by means of a linear transfer function: 

The reflection coefficient of the bridge, Kr at each frequency was calculated using 

diffraction theory. The resulting incident wave energy spectra were smoothed over 

Sn(f) = (Hpn(f))2Sp(f) (3.22) 

Sni(f)=(Kr)2Sn(f) (3.24) 
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frequency to reduce the standard error of the spectral estimate. The significant wave 

height and peak period of the spectra were then calculated. 

The sensitivity of the pressure transducers prevents them from measuring waves 

with a period less then 2.5 s. This restriction greatly limits the number of measured wave 

energy spectra available for comparison. In fact, examination of the field data reveals 

that only 14 recorded wave spectra are suitable for comparison. The maximum hourly 

average wind velocity recorded in these storms is 40 km/hr. 

The MIKE 21 wave hindcasting program was run for the wind speed and 

directions recorded during each of the 14 storm events. The significant wave height and 

peak period calculated by MIKE 21 were compared to the measured values, and the 

results are presented in Table 1. Energy dissipation due to bottom friction and wave 

breaking were not included in the MIKE 21 simulations, and therefore upper bound 

solutions for wave height and period were obtained. 

The predicted and measured significant wave heights differ by a maximum of 

31% and a minimum of -11%, with an average difference of 9 %. The predicted and 

measured peak wave periods differ by a maximum of -6 % and a minimum of -25%, 

with an average difference of -17%. This comparison suggests that MIKE 21 provides on 

average, a small overestimate of the significant wave height, but consistently 

underestimates the peak period of the waves. The wave height results suggest that 

energy-dissipating phenomena such as bottom friction and wave breaking should be 

included in the model, however the wave period results suggest an opposite approach. 

Some error can be expected in the measured wave parameters since long-term 

statistics are being estimated by a relatively short sample. This source of error is 



common to most spectral analyses. However, the difference in measured and calculated 

wave parameters can also be attributed to other sources of error including the following: 

• inaccuracy in the calculated reflection coefficients of the bridge; 

• the presence of radiated waves due to bridge motion; 

• the motion of the mooring cables to which the pressure transducers have been 

attached; 

• inaccuracy in the measured wind speed due to boundary layer effects; 

• variability in the wind velocity over the lake due to topography and the finite 

size of the weather systems. 

Despite these numerous sources of error, the MIKE 21 program provides on 

average, a reasonable estimate of the wave conditions. As a result, increased confidence 

has been ascribed to the wave hindcasting results for the 100-year storm, but detailed 

calibration with the limited field data available has not been performed. 
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4. W A V E L O A D D E T E R M I N A T I O N 

4.1 D E V E L O P M E N T OF T H E R A N D O M , M U L T I - D I R E C T I O N A L SEA 

The random, multi-directional wave field at the bridge is completely defined by 

the directional wave spectrum. This directional wave spectrum can be used to create a 

synthetic record of wave elevation as a function of time at any point along the bridge. 

The wave elevation record can in turn be combined with the force coefficients and phases 

determined in the hydrodynamic analysis to produce a record of force as a function of 

time at any point along the bridge for any degree of freedom. 

For a single wave train, the water surface elevation rj as a function of time t and 

distance x in the direction of wave travel is given by linear wave theory as: 

r/(x, t) = a cos(fcc + cot - </)) (4.1) 

where a, k, a>, <f> are the wave amplitude, wave number, angular frequency and phase of 

the wave train. The wave number is related to the angular frequency at a water depth d 

through the linear dispersion relation: 

where g is the acceleration due to gravity. This expression must be solved iteratively 

since k appears on both sides of the equation. 

A random, unidirectional wave field can be obtained by superposing waves with 

numerous amplitudes, frequencies and phases; this wave field is given by the expression: 

gtanh(fc/) (4.2) 

(4.3) 
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whe r e ax, k\, Oj, are the w a v e amp l i t u de , w a v e n umbe r , a n g u l a r f r e q u e n c y a n d p h a s e 

o f e a c h c om p o n e n t o f the w a v e t ra i n a n d the i n d e x / refer s to e a c h w a v e f r e q u e n c y . 

W h e n c r ea t i n g a syn thet i c r a n d o m w a v e r e c o r d that c o n f o r m s to a pa r t i c u l a r w a v e 

s pe c t r um , the s p e c t r um is d i s c r e t i z e d into a n u m b e r o f f r e q u e n c y i n terva l s , A / J . T h e w a v e 

amp l i t u d e at e a c h i n te r va l is g i v e n b y the equa t i o n : 

a, = pS(f,Wi (4-4) 

T h e pha se o f the w a v e t ra i n at e a c h f r e q u e n c y is u s u a l l y a s s um e d to be a r a n d o m n um b e r 

u n i f o r m l y d i s t r i b u t ed b e t w e e n 0 a n d 2n. 

E q u a t i o n (4.3) d e s c r i b e s w a v e s w i t h a n i n f i n i t e crest l ength. A s p r e v i o u s l y 

me n t i o n e d , th i s m o d e l is i n a pp r op r i a t e w h e n d e t e rm i n i n g the f o r c e s o n l o n g structures, 

a n d c o n s e q ue n t l y , w a v e short-crestedness m u s t be t a k e n into accoun t . A r a n d om , mu l t i 

d i r e c t i o n a l w a v e r e c o r d c a n be c r ea t ed b y s u p e r p o s i n g w a v e s w i t h n um e r o u s f r e q u e n c i e s 

a n d d i r e c t i o n s o f p r o p a ga t i o n . T h e wa t e r s u r f a c e e l e v a t i o n at a n y p o i n t x, y o n a 

h o r i z o n t a l p l a ne a n d at a n y t ime instant t is g i v e n b y the ex p r e s s i o n : 

n m 

i(x, ^, 0 = X Z av
 C 0 S ( M c o s

 ej + Kysin Gj +a>tt- fiij) (4.5) 
1=1 y=i 

whe r e G is the d i r e c t i o n o f w a v e p r o p a g a t i o n , the s ub s c r i p t j c o r r e s p o n d s to e a c h w a v e 

d i r e c t i o n a n d the s ub s c r i p t / c o r r e s p o n d s to e a c h w a v e f r e q u e n c y . A th ree-d imen s i o n a l 

wa te r s u r f a c e e l e v a t i o n p r o f i l e gene ra ted b y th i s e q u a t i o n is s h o w n i n F i g u r e 11. 

W h e n c r ea t i n g a syn thet i c r a n d o m w a v e r e c o r d that c o n f o r m s to a pa r t i c u l a r w a v e 

s p e c t r um , the s p e c t r um is d i s c r e t i z e d i n to a n u m b e r o f f r e q u e n c y i n terva l s , Aft a n d w a v e 
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directions Afy. This procedure yields nf x regular wave components. The wave 

amplitude at each frequency and direction is given by the equation: 

The phase of the wave train at each frequency and direction is usually assumed to be a 

random number uniformly distributed between 0 and 2n. 

Two methods are commonly used to discretize the wave spectrum in frequency: 

the equal frequency method and the equal energy method. A complete review of both of 

these techniques is provided in Goda (1985). In the equal frequency method, the 

spectrum is divided such that each frequency interval, A/J is equal. In the equal energy 

method, the spectrum is discretized such that each frequency interval contains the same 

amount of energy. In both methods, the frequency corresponding to each interval is 

selected as the average of the interval's lower and upper bounds. 

The equal energy method was used in this thesis and is preferable because the 

regular wave components at each frequency are less likely to form harmonics. As a 

result, the repetition time of a wave record synthesized by the equal energy method is 

larger. Angle intervals are usually specified as constant since there is no danger of 

harmonic formation. 

4.2 DEVELOPMENT OF THE FORCE TIME SERIES 

The force time series are created by combining each regular wave component in 

the random, multi-directional sea with appropriate hydrodynamic coefficients. The force 

exerted by a regular wave component on a structure segment of length A can be written: 

(4.6) 
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F(x,t) = aCRAcos(kxcos9 + a>t-<p-s) (4.7) 

where s is the phase difference between the wave elevation and the force and C is the 

force or moment per unit wave amplitude: 

c = ^ = C / ( ^ ) 0 . 5 ^ 
0.5/7 0.5/Y f 

The force coefficient Cf{a>, 6) is obtained from the hydrodynamic analysis as described in 

Section 4.3. This coefficient varies with frequency and wave direction and is calculated 

for each degree of freedom (sway, heave and roll). In the above expression, F is the total 

force on the structure segment, H is the wave height, p is the density of water and b is a 

characteristic dimension of the structure. The structure is assumed to lie on the x-axis 

(y=0) and the angle 9 is measured counterclockwise from the positive x-axis. 

The variable R in equation (4.7) is a reduction factor that quantifies the reduction 

in wave force due to oblique wave approach. This reduction factor is obtained by 

calculating the force caused by a wave approaching a structure segment at an oblique 

angle and then finding the maximum value of the force over one wave period. This result 

is then non-dimensionalized by dividing by the force caused by a wave approaching the 

structure normally. The reduction factor is a function of wavelength, wave direction and 

structure segment length, and is given by the expression: 

„ sin(£A / 2 cos 9) 
R= (4.9) 

kA 12 cos 9 
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This reduction factor is plotted as a function of kA for various values of incident wave 

angle, 0 in Figure 12. 

The total force on a structure segment of length Ak in degree of freedom q is 

obtained by summing the contributions from regular wave components in frequency and 

direction: 

n m 

Fkq(0 = A A . £ Z V > A ; cos(£,xcos0, +a),t-hj-eiJq) (4.io) 
1=1 V=l 

The force time series for each structure segment and degree of freedom were 

calculated by means of a computer program called FORCETIME, which was developed 

by the author. FORCETIME takes the dimensional spectrum, number of frequencies, 

number of directions, mean wave direction and directional spreading index as input 

parameters. The desired record length, time-step, bridge model geometry and water 

depth at each node are also input parameters. The program performs a bi-linear 

interpolation on the output of the hydrodynamic analysis program to obtain the force 

coefficients and phases for each wave frequency, direction and degree of freedom. 

4.3 HYDRODYNAMIC ANALYSIS 

A wave diffraction program written by Isaacson and Nwogu (1987) called HAFB 

(Hydrodynamic Analysis of a Floating Breakwater) was used to obtain the hydrodynamic 

coefficients. The hydrodynamic coefficients include the force coefficients and phases 

used to create the force time series and the added masses and damping coefficients that 

are components of the finite element model of the bridge. 
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In general, rigid floating bodies can have motions with six degrees of freedom. 

These degrees of freedom correspond to three translational motions (surge, sway and 

heave) and three rotational motions (yaw, pitch and roll). The Okanagan Lake Floating 

Bridge has been idealized as an infinite semi-immersed horizontal cylinder with a 

rectangular cross-section. Motions in the surge, pitch and yaw degrees of freedom are 

small, and are therefore neglected. 

Numerous simplifying assumptions are made during the hydrodynamic analysis. 

Firstly, flow separation is neglected, and the effects of viscosity are assumed to be 

confined to a thin boundary layer on the body surface. Furthermore, the fluid is assumed 

to be incompressible, and the flow irrotational. As a result of these assumptions, 

potential theory can be used to describe the motion of the bridge. Further simplification 

is achieved by assuming the cylinder is flexible, and the deflection of the cylinder is 

periodic along its length. As a result, the three-dimensional problem can be reduced to 

two-dimensions. 

If the incident wave height and the oscillatory motions of the bridge are small, the 

problem is linear, and superposition can be used to separate the wave-structure 

interaction problem into two parts: 

• wave diffraction due to waves incident on a fixed infinite cylinder; 

• an infinite cylinder oscillating in sway, heave and roll generating waves in 

otherwise still water. 

The first problem is commonly called the wave diffraction problem, and the solution of 

this problem provides the diffraction potential. The second problem is called the forced 
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motion problem; solution of this problem provides the forced motion potentials for sway, 

heave and roll. 

The boundary value problems for the diffraction potential and the forced motion 

potentials are solved by a boundary integral method based on Green's identity. Green's 

identity relates the values of the potentials within the fluid region to the values of the 

potentials on the boundary and their normal derivative. The boundary is defined by the 

immersed body surface, the mean position of the free surface, the radiation surfaces and 

the seabed. 

Once the velocity potentials have been determined, the exciting forces, phases, 

added masses and damping coefficients can be calculated. The dimensionless exciting 

force coefficients and phases can be obtained from the incident and diffracted potentials. 

The non-dimensional added mass and damping coefficients in sway, heave and roll are 

obtained from the forced motion potentials. The HAFB program also calculates 

reflection, transmission and wave drift coefficients by evaluating the asymptotic wave 

amplitude of the scattered waves at the appropriate radiation surfaces. 

In order to calculate the hydrodynamic properties needed for the dynamic 

analysis, HAFB was run repeatedly with different frequency and direction waves. The 

force coefficients, phases and wave drift coefficients were then obtained at each 

frequency and direction. These coefficients and phases were then used as input for 

FORCETIME, the program that assembles the wave force time series and the slowly-

varying wave drift force time series. The added mass and hydrodynamic damping 

coefficients were included in the structural model of the bridge, and were calculated only 

at the peak frequency of the incident wave spectrum. 
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4.4 SLOWLY-VARYING WAVE DRIFT FORCES 

In Section 4.2, wave force time series were derived by superposing force 

contributions from numerous linear waves. This force acts at a frequency approximately 

equal to the peak frequency of the incident wave spectrum. Field observations have 

shown that wave induced forces can also occur at frequencies much lower and higher 

than the peak frequency of the incident wave spectrum. These forces are non-linear, and 

are termed difference and sum-frequency excitations. Difference-frequency excitations 

are also called wave drift forces, and are of particular importance because they can excite 

a low frequency resonance in a floating structure's mooring system. 

Drift forces were originally studied for uni-directional, regular waves. In this 

situation, the waves have a single frequency, and the drift force is steady and independent 

of time. Researchers such as Maruo (1960), Newman (1967) and Longuet-Higgins 

(1977) showed that the steady wave drift force can be derived in terms of the first order 

velocity potential. Longuet-Higgins derived the following formula for the steady wave 

drift force for normally incident waves on an infinitely long horizontal cylinder: 

r, 1 2kd 
1 + -sinh(2kd) 

(\ + Kr

2-Kt

2)H* (4.11) 

In this equation, Kr and K, are the reflection and transmission coefficients discussed in 

Section 4.3 of this paper, and Hj is the incident wave height. Note that this force is 

quadratic with respect to wave height. 

The total second order force caused by uni-directional irregular waves can be 

written as the sum of two terms, Fi(t) and F2(t), the first and second order wave forces 

respectively: 



41 

F,(0 + F 2 (0 = R e 5 > , C ( + (4.12) 

R e E Z 

In this equation, a, and a,- are the wave amplitudes and * denotes the complex conjugate 

of a quantity. 

The first term in equation (4.12) is the first order force discussed in Section 4.2 

and Ct is the force coefficient discussed in Section 4.3. This force coefficient is the linear 

transfer function between wave amplitude and force. The second term in equation (4.12) 

is the second order sum-frequency force, and Sy is a quadratic transfer function which is 

the sum-frequency force caused by two unit amplitude waves with frequencies co, and co,. 

The third term in this equation is of more interest, and is the difference-frequency force 

or slowly-varying wave drift force. The term Dy is the difference-frequency quadratic 

transfer function which is the drift force caused by two waves with unit-amplitude and 

frequencies co, and co,. 

The quadratic transfer functions, Sy and Dy can be obtained only from a second 

order solution of the velocity potential. Solution of the second order potential problem is 

laborious and generally impractical in an engineering context. However, Newman (1974) 

developed a useful approximation that allows slowly-varying wave drift force time series 

to be calculated in terms of the first order velocity potential. If the wave energy spectrum 

is assumed to be narrow-banded, then the difference between the frequencies co, and co, 

will be small. As a consequence, the quadratic transfer function of the off-diagonal 

elements, Dy can be approximated by the values on the diagonal Dih which do not depend 

on the second order problem. The transfer function Dih can be interpreted physically as 
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the second order steady force acting on a structure in regular waves of unit-amplitude and 

frequency co, and is derived in a manner analogous to equation (4.11). The expression for 

the slowly-varying wave drift force becomes: 

FCOsReXE^VV^-'* (4.13) 
• j 

Newman states that the quantitative accuracy of the approximation may vary from 

one case to another, and cannot be rigorously established without some knowledge of the 

off-diagonal second order forces. However, Newman qualifies this statement by 

recognizing that knowledge of the off-diagonal elements is lacking in many situations of 

engineering interest, and therefore the index approximation approach offers the only 

possibility for quantifying slowly-varying wave drift forces. 

The expression for the slowly-varying wave drift force in directional irregular 

seas can be written as follows: 

< j k i (4-14> 

where the subscripts / and j refer to summation over frequency and the subscripts k and / 

refer to summation over direction. The term £),#/ is the difference-frequency quadratic 

transfer function which is the drift force caused by two waves with unit-amplitude and 

frequencies co, and co, and directions 0* and 0/. Marthinsen (1983) has shown that 

Newman's index approximation can be applied to both the wave energy spectrum and the 

directional spreading function. As a result, the quadratic transfer function, Dyu can be 

simplified to Dm- A slowly-varying wave drift force time series for random, directional 

waves can therefore be written as: 
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(4.15) 
i j k I 

The wave drift force coefficients, Dm, were obtained for each frequency and 

direction from the computer program HAFB described in Section 4.3. The slowly-

varying force time series were then calculated by the program FORCETIME, and were 

applied only in the sway degree of freedom. 

4.5 STRUCTURAL ANALYSIS 

The final step in the dynamic analysis is to apply the wave force time series to a 

structural model of the bridge and determine its response. The equation of motion of the 

bridge is: 

where m is the mass matrix, c is the damping matrix, k is the stiffness matrix and u is the 

displacement vector. The dot and double-dot superscripts represent first and second 

derivatives with respect to time. 

The mass matrix, m includes both the mass of the bridge and the hydrodynamic 

added mass. Likewise, the damping matrix, c includes both structural and hydrodynamic 

damping. The stiffness matrix, k includes both the structural stiffness and the hydrostatic 

stiffness. The forcing function vector, F(t) is composed of the wave force time histories 

for each node and degree of freedom. In addition, a steady force due to wind is included 

at the appropriate nodes. 

mii + cii + ku = F(t) (4.16) 
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The bridge was modeled using a commercial finite element program called 

COSMOS/M. The program can accept up to 100 different force time series as input, and 

each force time history can have a maximum of 5,000 time steps. 

Isometric and cross-sectional views of the finite element model of the Okanagan 

Lake Bridge are shown in Figures 13 and 14. The pontoon string is parallel to the x-axis, 

and the y-axis is oriented vertically. The model has a total of 660 degrees of freedom. 

The pontoon string is modeled as a 3-dimensional "spine" beam located at the 

vertical and horizontal centre of gravity of the pontoons. The spine beam is divided into 

24 three-dimensional beam elements, and nodes are placed at anchor cable locations and 

midpoints. The typical length of the beam elements is 30.48 m. Rigid beams link the 

spine beam to the following locations: 

• the centre of buoyancy of each pontoon element; 

• the centre of gravity of the elevated roadway deck; 

• the points of attachment of the anchor cables; 

• the still water level. 

In addition, rigid beam elements located at each end of the floating section link the spine 

beam to the centre of gravity of the transition spans. 

The mass, and mass moment of inertia of each pontoon section are applied to the 

corresponding 3-dimensional beam element. The elevated roadway and transition spans 

are modeled as point masses with appropriate masses and mass moments of inertia. The 

hydrodynamic added mass and damping are modeled as point masses and concentrated 

dampers located at the still water level. The added mass and damping are approximated 
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as constant, and equal to their respective values at the peak frequency of the wave energy 

spectrum. 

The hydrostatic heave stiffness of the bridge is modeled by translational springs at 

the centre of buoyancy of each of the pontoon segments. The equation for the heave 

buoyancy stiffness of a pontoon segment of length A is as follows: 

khi:me=pgBA (4.17) 

where B is the beam of the pontoon segment. The hydrostatic roll stiffness is modeled by 

rotational springs at the centre of buoyancy of each of the pontoon segments. The 

equation for the roll buoyancy stiffness of a pontoon segment of length A is as follows: 

kro„ = Pg4(S 1 A)+ Z B - ZG ]A (4.18) 

where A is the volume of water displaced by the pontoon per unit length, ZB is the vertical 

coordinate of the centre of buoyancy and ZQ is the vertical coordinate of the centre of 

gravity. The moment of inertia of the submerged cross-section of the pontoon, S is given 

(for a rectangular section) by: 

(4.19) 

When a floating body rolls, the centre of buoyancy shifts from its' original 

position as shown in Figure 15. The metacentre of the body is located at the intersection 

of a vertical line through the shifted centre of buoyancy and the floating bodies' 

centreline. The metacentric height of the pontoon, (S/A+ZB) is the distance between the 

centre of gravity and the metacentre, and is a critical quantity that determines the stability 
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of the pontoon in roll. If the metacentre is located lower than the centre of gravity, the 

floating body is unstable and will capsize. 

The stiffnesses of the mooring cables were determined by catenary equations. 

Catenary equations must be used because the self-weight of the cables creates a non

linear force-deflection curve. A brief review of catenary equations can be found in 

Appendix A. 

In order to reduce the motions of the bridge, the mooring cables are subject to a 

large pre-tension. This pre-tension varies with lake level, and is approximately equal to 

500 kN when the lake is at its' the mean water level. As a result of this pre-tension, the 

cables have a linear force-deflection curve in the range of motion of the bridge, and can 

be modeled as linear springs. 

The wave force time series, F(t) are applied at the still water level nodes. In 

addition, static wind loads are applied to the pontoons and the elevated road deck. 

Because the system is linear, the total forces and moments in the bridge can be obtained 

by superposing two load cases: 

• the pre-tensioned system with no external loads; 

• the unpre-tensioned system subject to wind and dynamic wave loads. 

The natural frequencies and mode shapes of the bridge were obtained from the 

DSTAR module of the COSMOS/M program. The time domain dynamic analysis was 

performed using the ASTAR module of the program. Results of the analysis include the 

sway, heave and roll displacement of every node in the model, the load in the mooring 

cables and the bending moments about the y and z axes of the spine beam. 
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5. RESULTS AND DISCUSSION 

5.1 DESIGN WIND AND WAVE CONDITIONS 

5.1.1 DESIGN WIND SPEEDS 

Wind scale factors were determined for winds from all directions and southerly 

and northerly winds for both Kelowna and Penticton Airports. These scale factors can be 

found in Table 2. The scale factors for Penticton airport were found to be lower than 

those for Kelowna airport. This is likely due to the fact that Penticton airport is situated 

close to Okanagan Lake whereas the Kelowna Airport is on a plateau above the lake. As 

a result, the geography and meteorology at Penticton airport more closely resembles the 

bridge site. 

Scaled wind velocities at the bridge obtained from the Penticton airport wind 

record were found to be slightly larger than scaled velocities obtained from the Kelowna 

airport wind record. Consequently, the results obtained from the Penticton airport record 

have been used as design wind velocities. The 100-year design wind speeds at the 

Okanagan Lake Bridge corresponding to different directions and a 1-hour duration are 

presented in Table 3. The design wind velocity from the south is greater than the design 

wind velocity from the north. 

5.1.2 DESIGN WAVE CONDITIONS 

Design wave conditions were calculated for north and south storms with a return 

period of 100 years. This was accomplished by inputting the design wind velocities into 

MIKE 21 models of the north and south sections of Okanagan Lake. The winds were 

applied at 10° direction intervals, and the storm durations were reduced to the minimum 
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required to produce fetch-limited conditions for each run. Energy dissipation due to 

bottom dissipation and wave breaking were not included and therefore an upper bound on 

wave height was calculated. The wave hindcasting results for north and south storms are 

presented in Tables 4 and 5 respectively. The largest wave heights and periods were 

obtained for the south storm, with a maximum significant wave height of 1.36 m and a 

corresponding peak period of 4.0 s. The maximum significant wave height obtained for 

the north storm was 0.83 m with a corresponding peak period of 3.2 s. The magnitude of 

the wave height calculated for the north storm suggests that waves are generated in the 5 

km fetch immediately north of the bridge (See Figure 10). 

Directional spreading indices for the north and south storms range from 3 to 4. A 

typical directional spreading index for an open body of water is 2, while an index value 

of 6 has been reported for narrow bodies of water (Hutchison and Symonds, 1986). The 

spreading index values calculated for Okanagan Lake appear reasonable, since the 

effective fetches to the north and south of the bridge are relatively broad, but not 

unrestricted. 

5.2 S T R U C T U R A L A N D H Y D R O D Y N A M I C C H A R A C T E R I S T I C S OF T H E 
B R I D G E 

5.2.1 HYDRODYNAMIC COEFFICIENTS 

The wave diffraction program HAFB was used to obtain the hydrodynamic 

coefficients. The hydrodynamic coefficients include the force coefficients and phases 

used to create the force time series, the wave drift coefficients used to create the slowly-

varying wave drift force time series, and the added masses and damping coefficients that 

are components of the finite element model of the bridge. 
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In order to calculate the hydrodynamic properties for the dynamic analysis, the 

program was run repeatedly with different frequency and direction waves. The force 

coefficients, phases and wave drift coefficients were then obtained at each frequency and 

direction. Added mass and hydrodynamic damping coefficients were calculated only at 

the peak frequency of the wave spectrum for the north and south storms. Hydrodynamic 

coefficients were calculated for several different pontoon geometries since the draft 

varies along the length of the bridge. Selected hydrodynamic coefficients for the north 

and south storms are presented in Tables 6 and 7 respectively. 

5.2.2 NATURAL FREQUENCIES AND MODE SHAPES 

The bridge is a multi-degree of freedom system, therefore numerous natural 

frequencies and mode shapes exist. These properties were determined through a free-

vibration analysis of the bridge performed by the DSTAR module of the COSMOS/M 

finite element program. The analysis was performed twice since the added mass of the 

bridge differs for the north and south storms. Analysis of the results of the free vibration 

analyses reveal that the first 15 frequencies and mode shapes out of a total of 660 

contribute significantly to the response of the bridge; however, 20 frequencies were 

included in the analysis to increase the accuracy of the results. The 20 lowest natural 

frequencies of the bridge are given in Tables 8 and 9 for the north and south storms 

respectively. 

The natural periods of the bridge range from 1.37s to 15.2s for the north storm 

and 1.34s to 15.0s for the south storm. The north storm natural periods are greater than 
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the south storm natural periods due to the larger heave and roll added masses for the 

north storm. 

5.3 BRIDGE RESPONSE F O R T H E DESIGN W A V E CONDITIONS 

The dynamic analysis was performed in the time domain using the ASTAR 

module of the COSMOS/M finite element program. The program solves the equations of 

motion of the bridge at each time step using Newmark's method. The time step was 

selected as 0.25s, or one-tenth of the period of the last mode shape that contributes 

significantly to the bridge response. The total number of time steps used was 5,000, 

which provides a simulation time of approximately 21 minutes. 

The loads applied to the model included the wave force time series, slowly 

varying wave drift force time series and a constant wind force. The wave force time 

series were applied in sway, heave and roll; the slowly-varying wave drift force time 

series were applied only in sway. The force time series contained 250 component 

frequencies and 31 component directions for a total of 7,750 regular wave components. 

Force time series for sway, heave and roll for a 30.48 m section of the bridge in the south 

storm are shown in Figure 16. Force time series in sway for three adjacent sections of the 

bridge in the south storm are shown in Figure 17. This figure demonstrates that the wave 

forces on adjacent sections of the bridge are uncorrelated as expected. The slowly-

varying wave drift force on a 30.48 m section of the bridge in the south storm is shown in 

Figure 18. This figure shows that the dynamic drift force is composed of higher 

frequency forces superposed on a slowly varying force, and the mean drift force is non

zero. 
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The COSMOS/M model was run for both north and south storms to determine the 

maximum response of the bridge. One wave direction was selected for the north storm 

and four wave directions were selected for the south storm since it was impossible to tell 

a priori which wave direction and height would produce the greatest bridge response. 

Results of the analysis included the sway, heave and roll displacement of every 

node in the model, the cable tensions, and the bending moments about the y and z axes of 

the pontoon string. These results were obtained at every time-step of the simulation. 

The maximum response of the bridge for the north and south storms for the 

response quantities listed above are presented in Figures 19 through 24. The 

displacement responses are provided at the centre of gravity of the spine beam at discrete 

locations along the length of the bridge. The south storm simulations provided the 

greatest bridge response for all response parameters. 

The greatest sway and roll motions were found to occur at the east end of the 

bridge. The largest heave motion was found to occur near the west end of the bridge. 

The largest bending moment about the z-axis occurred at the east end of the bridge. As 

one would expect, the greatest bending moment about the y-axis was found to occur close 

to the centre of the bridge. 

The greatest cable tensions occurred at the ends of the bridge. This is thought to 

be due to the fact that the shorter, and therefore stiffer cables are located at the ends of 

the bridge. These cables tend to carry a larger proportion of the load due their greater 

stiffness. The shortest south-side cable is found in the shallow water at the east end of 

the bridge. This cable experienced loads 28 % greater that any other cable. It may be 
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possible to create a more even distribution of cable loading by reducing the cross-

sectional area and hence the stiffness of this cable. 

5.4 B R I D G E R E S P O N S E F O R D I F F E R E N T R E A L I Z A T I O N S 

Time domain dynamic analysis is a sampling technique, and as a result, one can 

expect variability in the results. In order to ascertain the magnitude of this variability, the 

dynamic analysis was run 10 times for a single wave height, period and direction, with 

different random phases used to construct the wave force time series. The wave 

hindcasting results for a wave direction of 165° were selected for the input parameters. 

Maximum values of the sway, heave and roll displacements, and the maximum 

bending moments and cable tensions obtained in each simulation are presented in Table 

10; relevant statistics are presented in Table 11. The greatest variability in the results was 

found to occur for roll motions, with a coefficient of variation of 0.12 and a maximum 

difference in output parameters of 30%. The least variable results were obtained for 

cable tensions; however, this is largely due to the 500 kN static pre-tension in the cables. 

In general, the results of the investigation indicate that maximum responses cannot be 

obtained with confidence in a single simulation. 

A potential solution to this problem is to treat the response output as a set of 

samples from which the population statistics must be estimated. In order to accomplish 

this, confidence intervals for the mean and standard deviation of the maximum responses 

can be constructed. The upper bound of these confidence intervals are the mean 

maximum response and standard deviation that are exceeded with some desired 

probability. Once the mean maximum responses and standard deviations have been 

calculated, design responses corresponding to a prescribed exceedance probability can be 



53 

derived. A detailed discussion of interval estimation theory can be found in many 

elementary statistics texts such as Devore (1990). 

In order to construct a confidence interval for the mean of a response quantity, a 

set of n simulations would be performed, and the maximum of the response quantity in 

each simulation would be determined. The mean, x and the standard deviation, s of the 

maximums would then be calculated. These statistics could be calculated for the bridge 

as a whole or for a single node or element. If the population is assumed to be normally 

distributed, which is often reasonable, a confidence interval for the population mean p., 

with n-\ degrees of freedom can be constructed. The 100(l-a)% confidence interval for 

p is: 

where ta/2,„-i is the t distribution with n-\ degrees of freedom. The t distribution is a 

family of bell-shaped curves that are more spread out than the standard normal curve. 

As the number of simulations, n increases the difference between the sample 

mean and standard deviation and the population mean and standard deviation generally 

becomes smaller. As a result, the confidence interval becomes narrower, and the upper 

bound of the interval becomes smaller. This phenomenon creates a trade-off between the 

number of simulations conducted, and the magnitude of the design response. As a result, 

computational effort and expense must be weighed against increased construction cost 

due to overestimated design forces. 

A confidence interval for the standard deviation, s and variance, s of a response 

quantity is obtained in a manner analogous to the confidence interval for the mean. The 

(5-1) 
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only difference is that the chi-squared distribution is used in place of the t distribution. A 

100(l-a)% confidence interval for the population variance, cr2 can be written as follows: 

((n-lV (n-\)s2 ) 

yZ a/2,n-l Z l-«/2,n-l J 

where n is the number of simulations, and %2 i-a/2,n-i is the chi-squared distribution with n-

1 degrees of freedom. The level of confidence for both the mean and standard deviation 

can be set at any desired level, however, for engineering design the value would likely be 

99% or greater. 

Given the assumption of normality for the response output, the design response 

corresponding to a prescribed exceedance probability can be easily derived. The (100/?)th 

percentile design response, where (1-p) is the exceedance probability of the response, 

can be written as follows: 

(100p)th percentile = p. + ((100p)th percentile for the standard normal)a (5-3) 

where p and cr are the upper bounds of confidence intervals for the population mean and 

standard deviation respectively. The (100p)th percentile value for the standard normal 

distribution can be obtained from tables. 

The technique described above was applied to the set of 10 simulations and 99% 

confidence intervals for the mean and standard deviation of the maximum responses were 

constructed. These results are presented in Tables 12 and 13. Design maximum 

responses corresponding to the 99th percentile are presented in Table 14; the annual 

probability of exceedance of these responses is 10"4. The Canadian Offshore Structures 

Code, CAN/CSA-S471-92 requires an annual exceedance probability of 10"2 for loads 
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resulting from frequent environmental processes such as waves. As a consequence, the 

mean maximum responses presented in Table 12 are more suitable design values. 

Due to the enormous computational effort involved, confidence intervals and 

design responses were not calculated for the simulations described in Section 5.3. As a 

result, decreased confidence must be ascribed to these results. 

5.5 B R I D G E R E S P O N S E W I T H O U T S L O W L Y - V A R Y I N G W A V E D R I F T 
F O R C E 

As previously mentioned, a slowly-varying wave drift force was applied to the 

bridge in the sway degree of freedom. In order to investigate the influence of the slowly-

varying drift force, a simulation was performed with a static wave drift force. The static 

wave drift force was included at the significant wave height as is common in engineering 

practice. The random wave phases used in the simulation were identical to those used in 

a previous simulation. This technique effectively isolated the effect of the slowly-

varying wave drift force by eliminating the random variability between runs. 

The results of this simulation are presented in Table 15 along with the results of 

the simulation including the dynamic drift force. The simulation with the static drift 

force resulted in a slightly greater response for all response quantities except for bending 

moment about the z-axis. This is likely due to the fact that the bridge does not have low 

frequency natural periods in sway that may be excited by a slowly-varying force. 

However, the simulation does suggest that when no dynamic amplification of forces is 

present, a static wave drift force corresponding to the significant wave height and a 

slowly-varying wave drift force provide consistent results. 
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6. C O N C L U S I O N S A N D R E C O M M E N D A T I O N S 

6.1 C O N C L U S I O N S 

The proposed four-lane floating bridge crossing Okanagan Lake is situated in an 

exposed location, and is subject to large wind and wave forces. The greatest wind 

velocities and largest waves were found to result from south storms. The south storm 

was also found to produce the largest displacements, cable tensions and bending 

moments in the pontoon string. 

A non-negligible amount of variability was found to occur between simulations. 

As a consequence, a technique based on interval estimation was proposed to determine 

the maximum response. This technique involves performing several simulations, 

calculating sample statistics of the response quantities, and creating confidence intervals 

for the mean and standard deviation of the maximum responses. It was noted that with 

this technique, the magnitude of the maximum response generally becomes smaller as the 

number of simulations increases, and therefore an optimization problem involving 

computational effort and expense, and construction costs arises. 

The influence of the slowly-varying wave drift force on the response of the bridge 

was investigated. It was determined that the slowly-varying wave drift force provided 

approximately the same response as a static wave drift force at the significant wave 

height. This result is thought to be due to the fact that the bridge does not have low 

frequency natural periods in sway. It is therefore recognized that a static wave drift force 

could be applied in order to reduce the computational effort. 

State-of-the-art numerical techniques were applied to obtain the design wave 

conditions and perform the time domain dynamic analysis. The MIKE 21 wave 

hindcasting program was found to produce results generally consistent with wave data 
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collected at the bridge site. It is interesting to note that the wave heights and periods 

calculated by MIKE 21 are much lower than those obtained from less sophisticated 

techniques presented in the Shore Protection Manual (1984). As a result, a considerable 

reduction in construction costs may be realized through the use of numerical wave 

hindcasting techniques. 

The entire numerical analysis was performed on a desktop personal computer. 

Computation times for numerical wave hindcasting and finite element analyses were on 

the order of ten minutes, while force time series generation required approximately 24 

hours of processor time per simulation. Consequently, the need to perform numerous 

simulations may make a frequency domain approach more economical. 

Perhaps the greatest advantage of the dynamic analysis technique described in this 

thesis is its conceptual simplicity. Creating a random, short-crested sea surface by 

superposing regular wave trains is more intuitive than methods based on cross-spectral 

densities and coherency. In addition, time domain analyses tend to be more accessible 

than frequency domain analyses since they are conducted in terms of tangible quantities 

such as forces and displacements, rather than force and response spectra. These 

reductions in complexity can be of considerable benefit when conducting a 

computationally intensive, multi-stage analysis. 

6.2 R E C O M M E N D A T I O N S F O R F U R T H E R S T U D Y 

There are several areas in which investigations could be made to better understand 

the behavior and accuracy of the solution technique described in this thesis. Firstly, the 

duration of the wind speeds used for wave hindcasting were 1 hour, while the simulation 
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time of the dynamic analysis was limited to 21 minutes due to constraints inherent in the 

software. Longer simulation times would likely result in higher maximum responses. It 

is therefore recommended that longer simulations be conducted with different structural 

analysis software, and that the maximum responses obtained be compared with the results 

of the present analysis. In addition, it is recommended that the feasibility of extrapolating 

the results of a 21-minute simulation to a 1-hour duration using extreme value estimation 

be investigated. 

As discussed in Section 4.5, the frequency dependence of the hydrodynamic 

added mass and damping were ignored by approximating them as constant, and equal to 

their respective values at the peak frequency of the incident wave spectrum. This 

approximation was necessary since the structural analysis software could not model 

frequency dependent masses and dampers. The influence of this approximation on the 

results could be investigated by conducting a frequency domain dynamic analysis of the 

bridge and comparing the results with those obtained during this research. 

Finally, the original intent of this thesis was to model the existing bridge, and 

calibrate the wave hindcasting and structural analysis results with field data collected at 

the bridge site. As previously mentioned, no major storm events occurred prior to the 

writing of the thesis and therefore calibration of the structural model with cable tension 

data was not possible. Furthermore, the wind and wave records collected were not of 

sufficient severity to permit accurate calibration of the wave hindcasting model. As a 

result, it is recommended that the dynamic analysis be repeated and calibrated once the 

ongoing field data collection program has recorded sufficient data. 
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N O M E N C L A T U R E 

a = wave amplitude 

A = volume of water displaced by pontoon per unit length 

A(a>, 0) = 2-dimensional action spectrum 

b = characteristic dimension of a structure 

B = beam of pontoon segment 

c, c = group velocity, group velocity vector 

c = damping matrix 

C = force coefficient 

Cfs) = normalizing coefficient for directional spreading function 

d = water depth 

D = difference-frequency quadratic transfer function 

E, Eo, Ei = energy source terms for action balance equation 

/ = frequency 

fp = frequency of peak of wave spectrum 

F, FD = force exerted by a wave, wave drift force 

F = force vector 

g = acceleration due to gravity 

G(f,6), G(0) — directional spreading function 

H, Hi = wave height, incident wave height 

Hs = significant wave height, average height of the highest 33% of waves in 
a wave train 

H(f) = linear transfer function 
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K k = wave number, k = IJIIL where L is the wave length, stiffness, wave 
number vector 

k = stiffness matrix 

Kr, Kt = reflection coefficient, transmission coefficient 

m„(6) = nth moment of the action spectrum 

m = mass matrix 

n = number of simulations 

p = probability 

R = force reduction factor 

s = directional spreading index, sample standard deviation 

S = sum-frequency quadratic transfer function, moment of inertia of 
submerged pontoon cross section 

S(f) = 1-dimensional power spectrum, wave spectrum, energy spectrum 

S(f, 6), S(co,6) = 2-dimensional power spectrum, wave spectrum, energy spectrum 

t = time, t distribution 

u = displacement vector 

V, V = wind speed, current velocity vector 

x = horizontal coordinate 

x - sample mean 

x(t) = measured realization of water surface elevation 

X(f) = amplitude of Fourier component 

y = horizontal coordinate 

z = vertical coordinate 

a = parameter in JONS WAP wave spectrum, parameter in t distribution 
and chi-squared distribution, scale parameter in Gumbel distribution 
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P = scale parameter in Gumbel distribution 

% = chi-squared distribution 

A = length of structure segment 

s = phase between force or moment and wave elevation 

0 = phase of wave train 

Y = parameter in JONSWAP wave spectrum 

rj = water surface elevation 

p = population mean 

0 = wave direction 

p = density of water 

cr = parameter in JONSWAP wave spectrum, relative frequency for action 
spectrum, population standard deviation 

co = angular frequency, co = 2nf 
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APPENDIX A 

CATENARY EQUATIONS 

The following review of catenary equations is from Dean (1962). Consider an 
( A l ) 

element of perfectly flexible cable with length ds as shown in ̂  IA. The cable is 

subject to a horizontal force H, and has unit weight q. A sumr of vertical forces 

yields the differential equation of the cable curve: 

(A2) 

(A3) 

This differential equation can be solved to yield the fol solution and integration 

constant: 

(A4) 

(A5) 

where r = qlllH. The cable tension, T at any poin ven by the following equation: 

A key relation which relates the total cable length, L to the other variables is as 

follows: 
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Thus, if the geometry of the cable endpoints and the horizontal force in the cable are 

known, the length of the cable can be calculated. When this quantity is known, the 

horizontal force in the cable can be calculated for different endpoint geometries. In this 

manner, a force deflection curve for the cable can be created. 

The equations presented above can be further refined by accounting for the elastic 

stretch of the cable through integration over the cable length. 

Figure IA. Definition sketch of hanging cable and element (Dean, 1962). 
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Table 1. Comparison of measured wave heights and wave periods and those calculated 
by the MIKE 21 wave hindcasting computer program for south storms (July 1998 to 
March 1999). 

Measured M I K E 21 Percent E Hfference 
Wind Speed 

(km/hr) 
Direction 
(degrees) H s(m) TP(s) H s(m) TP(s) H s(m) TP(s) 

39.0 207 0.28 3.1 0.41 2.7 31.4 -13.4 
39.0 207 0.29 2.9 0.41 2.7 29.5 -6.0 
35.2 190 0.34 2.9 0.37 2.6 8.1 -11.1 
35.2 190 0.38 2.9 0.37 2.6 -5.0 -11.1 
35.2 190 0.41 3.1 0.37 2.6 -11.2 -18.8 
38.8 233 0.30 2.9 0.35 2.5 14.0 -16.7 
38.8 233 0.34 3.0 0.35 2.5 5.0 -20.7 
38.8 233 0.34 3.0 0.35 2.5 5.0 -20.7 
37.2 232 0.34 2.9 0.33 2.5 -1.7 -16.7 
37.2 232 0.34 3.1 0.33 2.5 -3.1 -24.7 
42.1 228 0.28 3.1 0.4 2.6 29.3 -18.8 
42.1 228 0.32 3.1 0.4 2.6 20.9 -18.8 
33.5 221 0.33 2.9 0.32 2.5 -1.8 -16.7 
33.5 221 0.30 3.0 0.32 2.5 6.2 -20.7 

Table 2. Wind speed scaling factors for Penticton and Kelowna airports. 

Direction 
Scaling Factor 

Direction 
Penticton Airport Kelowna Airport 

A l l 1.11 1.39 

Northerly 1.18 1.20 

Southerly 1.09 1.50 
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Table 3. Design 100-year wind speeds for a 1-hour duration storm. 

Direction 100 Year Wind 
(km/hr) 

A l l 112.7 

Northerly 86.7 

Southerly 105.3 

Table 4. Wave hindcasting results for the 100-year south storm. 

Wind Direction 
(degrees) 

Wind Speed 
(m/s) H s (m) T P (s) 

Spreading 
Index, s 

215 28.5 1.29 3.9 3.5 

205 28.8 1.35 4.0 4.0 

195 28.8 1.36 4.0 4.0 

185 29.2 1.36 4.0 4.0 

175 29.2 1.33 4.0 4.0 

165 29.2 1.29 4.0 4.0 

Table 5. Wave hindcasting results for the 100-year north storm. 

Wind Direction 
(degrees) 

Wind Speed 
(m/s) H s (m) T P (s) 

Spreading 
Index, s 

350 24.1 0.83 3.2 4.0 

0 22.8 0.75 3.1 4.0 

10 22.8 0.72 3.1 4.0 

20 22.8 0.64 2.9 3.0 
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Table 6. Selected hydrodynamic coefficients for the south storm. 

Hydrodynamic 
Coefficient 

Degree of Freedom Hydrodynamic 
Coefficient Sway Heave Roll 

Force 0.368 0.523 0.186 
Phase 189.9° 193.4° 189.6° 

Added Mass 0.048 1.812 0.313 
Damping 0.139 0.299 0.037 

Drift Force 0.484 0.0 0.0 

Table 7. Selected hydrodynamic coefficients for the north storm. 

Hydrodynamic 
Coefficient 

Degree of Freedom Hydrodynamic 
Coefficient Sway Heave Roll 

Force 0.324 0.312 0.102 
Phase 104.3° 100.6° 105.4° 

Added Mass 0.022 1.980 0.327 
Damping 0.103 0.118 0.012 

Drift Force 0.497 0.0 0.0 

Notes: 

1) Hydrodynamic coefficients presented are for a pontoon with a 2.5 m draft at the centre of the bridge. 
2) The force coefficients are for waves approaching the bridge at 90° to the bridge axis. 
3) The force coefficients are defined as: 

Sway, Heave: (Force per unit length)/(a*p*g*6) 
Roll: (Moment per unit length)/(a*p*g*62) 
Drift: (Force per unit length)/(a*a*p*g) 

4) The added mass coefficients are defined as: 
Sway, Heave: (Added mass per unit length)/(p*£ 2 ) 
Roll: (Added mass per unit length)/(p*&4) 

5) The damping coefficients are defined as: 
Sway, Heave: (Damping per unit length)/(p*co*Z)2) 
Roll: (Damping per unit length)/(p*(Q*Z>4) 

6) In the preceding definitions, a is the wave amplitude, p is the density of water, g is the acceleration due 
to gravity, b is a characteristic length set at 10 m, and co is the peak period of the storm in radians/second. 
7) ca is equal to 1.57 radians/second for the south storm and 1.96 radians/second for the north storm. 



Table 8. Natural frequencies and periods of the bridge for the south storm. 

Frequency 
Number Frequency (Hz) Period (s) 

1 0.067 15.0 
2 0.127 7.84 
3 0.131 7.61 
4 0.145 6.89 
5 0.151 6.62 
6 0.154 6.48 
7 0.171 5.84 
8 0.187 5.35 
9 0.210 4.77 
10 0.220 4.54 
11 0.268 3.73 
12 0.330 3.03 
13 0.344 2.90 
14 0.367 2.73 
15 0.434 2.30 
16 0.549 1.82 
17 0.639 1.56 
18 0.653 1.53 
19 0.694 1.44 
20 0.744 1.34 



Table 9. Natural frequencies and periods of the bridge for the north storm. 

Frequency 
Number Frequency (Hz) Period (s) 

1 0.066 15.2 
2 0.123 8.14 
3 0.131 7.66 
4 0.141 7.07 
5 0.149 6.72 
6 0.153 6.52 
7 0.166 6.02 
8 0.189 5.29 
9 0.204 4.91 
10 0.222 4.51 
11 0.261 3.83 
12 0.328 3.04 
13 0.335 2.98 
14 0.370 2.70 
15 0.422 2.37 
16 0.534 1.87 
17 0.639 1.56 
18 0.645 1.55 
19 0.692 1.44 
20 0.731 1.37 
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Table 10. Summary of results of 10 simulations of a south storm. 

Simulation 
Number Heave(m) Sway (m) Roll 

(degrees) 

Y-axis 
Bending 
Moment 
(kNm) 

Z-axis 
Bending 
Moment 
(kNm) 

Cable 
Tension 

(kN) 

1 0.193 0.304 0.507 216000 177600 1318 
2 0.244 0.362 0.498 245900 179600 1520 
3 0.182 0.264 0.460 183500 162000 1257 
4 0.178 0.348 0.490 216900 175800 1488 
5 0.199 0.321 0.605 201700 163200 1367 
6 0.186 0.338 0.509 217200 173900 1507 
7 0.216 0.344 0.659 256900 198900 1396 
8 0.196 0.345 0.523 217600 197400 1543 
9 0.201 0.329 0.463 225600 206900 1436 
10 0.195 0.289 0.509 209300 161400 1255 

Table 11. Statistics obtained from 10 simulations of a south storm. 

Response 
Quantity Average Standard 

Deviation 
Coefficient 

of Variation Maximum Minimum 
Maximum 
Percentage 
Difference 

Heave (m) 0.199 0.0191 0.096 0.244 0.178 27.1 
Sway (m) 0.324 0.0304 0.095 0.361 0.264 27.1 

Roll 
(degrees) 

0.522 0.0624 0.12 0.659 0.460 30.3 

Y-axis 
Bending 
Moment 
(kNm) 

219069 20746 0.095 256900 183533 28.6 

Z-axis 
Bending 
Moment 
(kNm) 

179672 16313 0.091 206900 161400 22.0 

Cable 
Tension 

(kN) 
1409 107 0.076 1543 1255 18.7 
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Table 12. Upper and lower bounds of 99% confidence intervals for the mean maximum 
response of the bridge. 

Response Quantity Lower Bound Upper Bound 
Heave (m) 0.179 • 0.219 
Sway (m) 0.293 0.355 

Roll (degrees) 0.458 0.586 
Y-axis Bending Moment 197747 240391 

(kNm) 
Z-axis Bending Moment 162906 196437 

(kNm) 
Cable Tension (kN) 1298 1519 

Table 13. Upper and lower bounds of 99% confidence intervals for the standard deviation 
of the maximum response of the bridge. 

Response Quantity Lower Bound Upper Bound 
Heave (m) 0.012 0.043 
Sway (m) 0.019 0.069 

Roll (degrees) 0.039 0.142 
Y-axis Bending Moment 12815 47251 

(kNm) 
Z-axis Bending Moment 10076 37154 

(kNm) 
Cable Tension (kN) 66.4 244 

Table 14. Design values for the maximum response of the bridge with an annual 
exceedance probability of 10"4. 

Response Quantity Design Response 
Heave (m) 0.320 
Sway (m) 0.517 

Roll (degrees) 0.917 
Y-axis Bending Moment 350487 

(kNm) 
Z-axis Bending Moment 283009 

(kNm) 
Cable Tension (kN) 2090 
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Table 15. Comparison of results obtained with static and dynamic wave drift forces 
applied to the bridge. 

Response Quantity Dynamic Drift 
Force 

Static Drift Force 
Percentage 
Difference 

Heave (m) 0.193 0.194 -0.35 
Sway (m) 0.304 0.309 -1.68 

Roll (degrees) 0.507 0.543 -7.02 
Y-axis Bending Moment 

(kNm) 
216049 222400 -2.94 

Z-axis Bending Moment 
(kNm) 

177560 177500 0.03 

Cable Tension (kN) 1318 1328 -1.17 



Figure 1. The Bergsoysundet Floating Bridge in Norway. An example of 
an arched floating bridge. 

Figure 2. The First and Third Lake Washington Floating Bridges in Seattle, 
Washington, USA. An example of floating bridges given lateral support by 
mooring cables. 
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Figure 3 . Flow chart for the dynamic analysis of the Okanagan Lake Floating Bridge. 
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Figure 4. Location of the Okanagan Lake Floating Bridge, in Kelowna, British 
Columbia, Canada. 
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Figure 7. 
1981). 

An example of a directional wave spectrum (Sarpkaya and Isaacson, 
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©(degrees) 

Figure 8. A cosine power directional spreading function for various values of the 
directional spreading index, s (Sarpkaya and Isaacson, 1981). 



8 3 

Bridge 

Figure 9. 3-Dimensional view of the bathymetry of Okanagan Lake to the south of the 
bridge site used in the M I K E 21 numerical wave hindcasting model. 

Figure 10. 3-Dimensional view of the bathymetry of Okanagan Lake to the north 
of the bridge site used in the M I K E 21 numerical wave hindcasting model. 



Figure 12. The square of the force reduction factor, R as a function of kA for various 
values of incident wave angle, 0. 
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Figure 13. Isometric view of the COSMOS/M finite element model of the bridge. 

Centre of Gravity of Elevated Deck: 
•Mass and Mass Moment of Inertia 

•Hydrostatic Stiffness Anchor Cable 

Figure 14. Cross-sectional view of the COSMOS/M finite element model of the 
bridge showing mass, spring and damper locations. 



Figure 15. Shift of the centre of buoyancy, B and location of the metacentre of a 
rolling floating body. 

Figure 16. Sway and heave force, and roll moment applied to a 30.48 m section 
of the bridge during a south storm. 
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Figure 17. Sway force applied to three adjacent 30.48 m sections of the bridge 
during a south storm. 
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Figure 18. Slowly-varying wave drift force applied to a 30.48 m section of the 
bridge during a south storm. 
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Figure 19. Maximum sway, heave and roll displacements along the bridge span 
during the north storm. 

Figure 20. Maximum cable tensions (including static pre-stress) along the bridge span 
during the north storm. 
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Figure 21. Maximum bending moments about the y and z axes of the pontoon string 
during the north storm. 
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Figure 22. Maximum sway, heave and roll displacements along the bridge span 
during the south storm. 
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Figure 23. Maximum cable tensions (including static pre-stress) along the bridge 
span during the south storm. 
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Figure 24. Maximum bending moments about the y and z axes of the pontoon string 
during the south storm. 


