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Abstract 

This thesis describes an investigation of the influence of multiple base motion 

components and hydrodynamic damping on the hydrodynamic loads and fluid surface 

elevation in a fluid filled reservoir subjected to base excitation. The investigation is 

carried out for two configurations: rectangular and circular cylindrical reservoirs. The 

multiple motions are horizontal and rocking excitations and the hydrodynamic damping is 

due to boundary layers along the reservoir walls and baffles in the reservoir. Initially, the 

boundary value problem for the case of an inviscid fluid and a harmonic base motion is 

solved on the basis of linearized potential flow theory. The case of energy dissipation of 

a real fluid is then treated by a extension to this, which involves an assumption of 

dissipation at the free surface and a corresponding modification to the free surface 

boundary condition. In order to treat earthquake-induced motions, this solution is then 

extended to a simplified method of estimating maximum forces using a modal analysis 

and involving earthquake response spectra. The estimation of hydrodynamic damping is 

also discussed. The combined effect of the two component excitations on the overall 

fluid elevation and hydrodynamic forces are calculated using superposition. 

An experimental investigation for liquid filled rectangular tanks has been carried out. 

The tanks were subjected to component motions (horizontal and rocking) and combined 

motions, both for harmonic and earthquake motions. The important parameters are the 

size of the tank, depth of fluid, frequency of excitation, and amplitude of the base motion. 

The resulting parameters of interest include the maximum fluid surface elevation, the 

maximum horizontal force and the maximum overturning moment at the base of the tank. 

The experiments were extended to investigate the effects of damping, whereby the 

experiments were repeated with baffles in the rectangular reservoir. The theoretical 

results are compared with existing solutions and experimental results. The effects of 

additional degrees of freedom motions and of hydrodynamic damping on the 

hydrodynamic loading and fluid elevations are discussed in detail. The effects of 
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damping on hydrodynamic loading and the fluid surface elevation are also discussed. 

Finally, conclusions are given including the effect of multi-degree-of-freedom base 

motion, the effect of hydrodynamic damping and the effectiveness of various baffle 

configurations. 
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1 Introduction 

Chapter 1 Introduction 

1.1 Introduction 

The description of liquid sloshing in accelerated containers is a difficult problem which is 

of considerable practical importance in marine, aerospace and civil engineering. In a civil 

engineering context, the forces due to earthquake-induced sloshing in fluid-filled tanks 

and reservoirs are important considerations in the design of such structures. Thus, 

seismic safety of ground-based and elevated liquid-filled containers is of great concern 

because of the potential adverse economic and environmental impacts associated with 

failure of the container and liquid spillage on the surrounding area. The hazardous effect 

of liquid sloshing and the extensive damage sustained by liquid-filled tanks were evident 

in past seismic events such as the 1964 Alaska, 1979 Imperial Valley and 1983 Coalinga 

earthquakes, and more recently, the 1989 Loma Prieta, 1994 Northridge and 1996 Kobe 

earthquakes. As a result, a considerable amount of research effort has been devoted to a 

better determination of the seismic behaviour of liquid tanks and reservoirs and the 

improvement of associated design codes. In spite of this, there have been relatively few 

studies on the influence of simultaneous vertical, horizontal and rocking excitations with 

respect to the hydrodynamic problem of liquid sloshing. 

The traditional approach to estimating earthquake-induced hydrodynamic loads has been 

outlined, for example, by Housner (1957), the U .S. Atomic Energy Commission (1963) 

and in the A W W A (1984) and API (1993) standards. The method involves the use of an 

impulsive, or high frequency, effective fluid mass which accelerates with the container, 

together with an additional effective fluid mass which undergoes resonant motions at the 

lowest natural frequency of sloshing. The traditional approach is based on a number of 

assumptions which may not be applicable to the general case, and a variety of additional 

factors may require consideration in particular situations. Such factors include fluid 

compressibility, rigidity of the reservoir walls, reservoirs with sloping sides, reservoirs 
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Chapter 1 Introduction 

with irregular planforms, the direction of base motion, base motions with several degrees 

of freedom and hydrodynamic damping. Of these, multi-degree-of-freedom motions and 

hydrodynamic damping are the focus of the present study. 

1.2 Literature Review 

1.2.1 Horizontal Excitation 

1.2.1.1 Rigid Tanks 

An early solution for the impulsive pressure on harmonically excited, rigid vertical dams 

was developed by Westergaard (1933). Hoskins and Jacobsen (1934) subsequently 

reported on analytical and experimental observations of rigid rectangular and cylindrical 

tanks under a simulated horizontal earthquake excitation. Jacobsen (1949) and Jacobsen 

and Ayre (1950) provided the first approximate solution for a rigid cylindrical tank on the 

basis of a closed-form solution of the Laplace equation that satisfies specified boundary 

conditions. 

Housner (1957, 1959) described an approximate solution for rectangular and circular 

reservoirs based on the assumption that the forces are made up of an impulsive 

component, corresponding to high frequency oscillations of the container, and a 

convective component corresponding to the lowest mode of liquid sloshing. That is, the 

influence of the higher modes of sloshing was ignored. Furthermore, the analysis is based 

on the assumption that there is no transverse fluid motion (which may be questionable for 

the case of a circular reservoir). 

Isaacson and Subbiah (1991) outlined the complete solution for rigid circular and 

rectangular tanks under harmonic and irregular base motion. The boundary value 

problem for the case of an inviscid fluid and a harmonic base motion is solved on the 
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Chapter 1 Introduction 

basis of linearized potential flow theory. Isaacson and Ryu (1998 a) described the 

hydrodynamic loads and fluid surface elevations for a rectangular reservoir for base 

motions in an oblique direction, based on an appropriate superposition of solutions for a 

uni-directional motion parallel to a pair of sides. They found that earthquake-induced 

motions in a direction of motion parallel to the shorter pair of sides always give the 

highest loads and surface elevations. 

1.2.1.2 Flexible Tanks 

The overview given so far is based on the assumption that the tank walls are rigid. 

However, during strong earthquakes, tank walls may be deformed significantly, and so 

cause loads which are significantly different from those of geometrically identical rigid 

tanks. Therefore the flexibility of tank walls may need to be accounted for in earthquake-

induced loads on tanks. 

Veletsos (1974) and Veletsos and Yang (1976, 1977) presented solutions for the dynamic 

pressure and the impulsive mass under the assumption of certain deformations patterns of 

the tank wall. A comprehensive overview of the hydrodynamic forces on tanks under 

assumed wall deformation patterns, the vibrational behavior of empty tanks, and the 

application of those results to fluid-tank systems subjected to lateral excitation has been 

given by Yang (1976). 

Clough (1978) and Clough and Niwa (1979) have shown through experimental 

investigation on a flexible cylindrical tank that imperfections in the tank geometry give 

rise to significant cross-sectional distortion of a circular tank, even though the primary 

seismic loads tend to induce only translation of the circular section. Hydrodynamic 

pressures predicted by linear theory for rigid tanks show good agreement with 

experimental results only when tank wall displacements are small. 
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Chanter 1 Introduction 

Haroun and Housner (1981, 1982) have also analyzed liquid sloshing in flexible, 

cylindrical tanks for the case of a horizontal base excitation using the boundary element 

and finite element methods. Haroun (1983) subsequently confirmed that the coupling 

between liquid sloshing modes and the shell vibrational modes is weak, and consequently 

the convective pressure can be evaluated with reasonable accuracy by considering the 

tank walls to be rigid, while the impulsive pressure can be determined by analyzing the 

liquid-shell system and neglecting the sloshing motion. 

Aslam (1981) used a finite element method to predict the sloshing displacements and 

hydrodynamic pressures in liquid-filled tanks subjected to earthquake ground motions. 

Finite element equations were derived using the Galerkin formulation, and the predicted 

results were checked against test data. 

1.2.1.3 Nonlinear Sloshing 

Traditionally, small-amplitude or linear wave theory has been used as the basis for 

evaluating the seismic performance of liquid-filled containers. However, the use of linear 

theory has limited the simulation of the actual behaviour of sloshing, possibly leading to 

the underestimation of hydrodynamic pressures and fluid surface elevations. Various 

attempts to account for nonlinear sloshing behaviour have been made using perturbation 

methods, finite element methods and boundary element methods. 

Nakayama and Washizu (1981) analyzed the two-dimensional nonlinear sloshing problem 

using the boundary element method for forced horizontal, vertical or pitching motions of 

a rectangular container. The mathematical problem was formulated as a nonlinear initial-

value boundary-value problem based on the Laplace equation with suitable boundary 

conditions, assuming the fluid to be inviscid and incompressible and the flow to be 

irrotational. The governing equations, except for the dynamic free surface boundary 

condition, were transformed into an integral equation by applying Green's formula, while 
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the dynamic free surface condition was reduced to a weighted residual equation by 

employing the Galerkin method. 

Hwang et al. (1992) carried out a three-dimensional numerical nonlinear analysis of 

liquid sloshing in dynamically excited spherical containers. The panel method was 

applied based on the boundary integral technique. The effects of sloshing were followed 

in the time domain using an incremental multi-step scheme that ensures numerical 

stability. 

Chen et al. (1996) developed a numerical method to simulate nonlinear finite-amplitude 

liquid sloshing in two-dimensional rectangular containers. The method employs a 

curvilinear mesh system to transform the nonlinear sloshing problem from the physical 

domain with an irregular free-surface boundary into a computational domain with 

rectangular grids which can be analyzed by the finite difference method. 

Nonlinear sloshing effects are apparent in the fluid surface elevations which are higher 

than linear theory predictions. It has generally been found that linear theory is often non-

conservative with respect to predicting the fluid surface elevation but is reasonably 

accurate in predicting peak hydrodynamic forces. 

1.2.2 Vertical Excitation 

Earthquake-induced motions are three-dimensional and recent observations of recorded 

ground motions have shown that the maximum amplitude of the vertical component of 

ground acceleration can exceed the peak horizontal amplitude, especially near the 

epicenter. Because of the inherent stiffness of typical structures in the vertical direction, 

the effect of the vertical component of ground acceleration has often been ignored. 

However, in a liquid-filled tank, vertical accelerations can be transmitted into horizontal 

hydrodynamic loads. For a rigid tank, vertical motions do not give rise to a resultant 

5 



Chapter 1 Introduction 

horizontal force, therefore responses due to vertical excitation for a rigid tank wi l l not be 

discussed further. However, it is noted that fluid surface elevations and hydrodynamic 

pressures are affected. 

For flexible tanks, Yang (1976) presented an analytical study of the dynamic behaviour of 

a fluid-tank system under vertical accelerations. Luft (1984) described an approximate 

normal mode solution for a flexible cylindrical tank filled with an inviscid and 

incompressible liquid and subjected to vertical accelerations. The solution, in the form of 

uncoupled single-degree-of-freedom oscillator equations, gives both the periods of 

vibration and the load participation factors for each mode. 

Haroun and Tayel (1985) presented a method for analyzing the earthquake response of 

flexible, cylindrical liquid storage tanks under vertical excitation. The method is based 

on the superposition of the free axisymmetrical vibrational modes obtained numerically 

by the finite element method. Both fixed and partly fixed tanks were considered in order 

to evaluate the effect of base fixation on tank behaviour. Tank responses under the 

simultaneous action of both vertical and lateral excitations were calculated in order to 

evaluate the relative importance of the vertical component of ground acceleration. 

Veletsos and Tang (1986) presented a method for evaluating the dynamic response of an 

upright circular cylindrical liquid storage tank to a vertical component of ground shaking, 

considering the flexibility of the supporting medium. The tank was presumed to be 

supported through a rigid circular mat at the surface of a homogeneous elastic half-

surface, and it was analyzed approximately by the application of Galerkin's method. 

K i m et al (1995) developed an analytical method to evaluate the dynamic response 

characteristics of partially filled two-dimensional and three-dimensional flexible 

rectangular fluid containers under horizontal and vertical ground excitation. The 

rectangular container is assumed to be symmetric, with four side-walls and a rigid base 
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slab fixed to the ground. The side-walls are modeled as rectangular plates of uniform 

thickness. The equation of motion of the coupled system is obtained by applying the 

Raleigh-Ritz method using the assumed vibration modes as an admissible function. 

1.2.3 Rocking Excitation 

Analysis of the sloshing problems of liquid containing tanks to horizontal ground shaking 

are normally carried out on the assumption that the tank base moves horizontally without 

any rotation. In reality, because of the flexibility of the supporting soil, the tank base 

experiences a rocking component of motion even under a purely translational free-field 

ground motion. Therefore, an understanding of the rocking response of the liquid-tank 

system is important. 

Haroun and Ellaithy (1985) developed an analytical model for flexible cylindrical tanks 

taking into consideration the effect of rigid base rocking motion. Explicit analytical 

expressions for the parameters of the model were given, and numerical values of these 

parameters were displayed in charts. This model can be used to evaluate the maximum 

dynamic response of rigid and flexible cylindrical tanks subjected to earthquake loading. 

Veletsos and Yang (1987) analyzed the dynamic response of circular cylindrical tanks to 

a rocking base motion with an arbitrary temporal variation. Both rigid and flexible tanks 

were examined. Critical response quantities for rigid tanks were evaluated. The inter­

relationship of the responses of the system to rocking and lateral base motions of the 

same temporal records was established, and it was shown that some of the effects of base 

rocking may be determined from available data concerning the response of laterally 

excited tanks. 
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1.2.4 Effects of Energy Dissipation 

The motion of a real fluid gives rise to damping which may be associated with various 

forms of energy dissipation. These include viscous effects associated with boundary 

layers on the tank wall; flow separation effects as the fluid oscillates past baffles or other 

obstacles in the container; and free surface effects associated with breaking waves. The 

damping coefficient due to boundary layers may be estimated, but typically, a value of 

0.5% is assumed in design (e.g. ASCE, 1984). 

Case and Parkinson (1958) calculated the damping of small amplitude surface waves in a 

circular tank. Viscous dissipation in laminar boundary layers was taken to be the primary 

cause of damping. Experimental results were obtained to describe the logarithmic 

decrement of damping as a function of the ratio of liquid height to cylinder radius. 

Miles (1958) carried out an approximate analysis of the effect of viscous damping in an 

annular ring on the sloshing oscillations of liquid in a cylindrical tank. For moderate 

amplitudes, the logarithmic decrement of damping was predicted to be proportional to the 

square root of the amplitude and the three-halves power of the ring area. 

Faltinsen (1978) presented a numerical method for studying nonlinear sloshing in 

rectangular tanks, and modelled the hydrodynamic damping by assuming this to occur at 

the free surface as through the free surface boundary conditions. Using Faltinsen's 

approach, Isaacson (1991) obtained closed form solutions for a rigid circular reservoir 

both for no energy dissipation as well as some level of energy dissipation corresponding 

to a specified damping coefficient. The solutions provide a description of the 

corresponding fluid motion, and thereby provide the resultant pressure and force on the 

reservoir walls. 



1.3 Objectives 

Chapter 1 Introduction 

In spite of the wide range of studies relating to fluid sloshing that have been indicated 

above, there remains a need for a better understanding of various additional factors that 

affect the hydrodynamic response of tanks and reservoirs subjected to base excitation. 

Additional factors that need to be considered include fluid compressibility, rigidity of the 

reservoir wall, reservoirs with sloping sides, reservoirs with irregular planforms, the 

direction of base motion, multi-degree-of-freedom base motions, hydrodynamic damping, 

and differences with full time-domain simulations. In this context, the primary objectives 

of the present research are to investigate two such effects for which a better understanding 

is required in order to improve design procedures: 

1. the influence of multiple degrees of freedom of base motions on hydrodynamic loads 

on and fluid surface elevations in reservoirs. 

2. the effects of damping on liquid sloshing in reservoirs. 

With regard to the first of these (multiple motions), although authors such as Housner, 

Veletsos and Haroun have examined the sloshing response of reservoirs for various 

component motions, there remains a need to provide a solution for multiple base motions 

based on superposition and to compare this with experiments. With respect to the second 

item (damping), while previous authors have examined damping due to laminar boundary 

layers, there is a need to develop theoretical predictions of turbulent boundary layer 

damping and baffle damping, and to compare these with experiments. These represent 

the original contribution of this thesis. Thus, the original contributions of this thesis are 

to outline and verify experimentally linear superposition for multiple motions, and to 

develop and outline theoretical predictions for turbulent boundary layer damping and for 

baffle damping and to compare these with experiments. 
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The investigation is carried out for both harmonic excitation and earthquake-induced 

excitation; and for horizontal and rocking motions considered separately and together; 

and for a rectangular tank (Fig. 1(a)) and a circular tank (Fig. 1(b)), although experiments 

have been carried out for a rectangular tank alone. 
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2 Analytical Solution For Harmonic Excitation 

2.1 Rectangular Reservoir 

Initially, the closed-form solution for the hydrodynamic loads, overturning moments and 

fluid surface elevation for a rigid rectangular tank subjected to a harmonic motion parallel 

to a pair of sides is outlined. The system considered is shown in Fig. 1(a). The tank has a 

length 2a in the x direction, a width 2b in the y direction, and is filled with an 

incompressible fluid to a depth d. Thus the total fluid mass m in the tank is given as 

m = 4pabd , where p is the fluid density. A fixed Cartesian coordinate system (x, y, z) as 

indicated in Fig. 1(a) is used. The vertical coordinate z is measured upwards from the 

bottom of the tank, and the x-axis is parallel to a pair of sides. 

The solution is obtained on the basis of assumptions that the reservoir is rigid, the fluid is 

inviscid, the flow is irrotational, and the oscillation amplitude is small (such that the 

corresponding boundary value problem is linearized). Thus the flow can be described by 

a velocity potential <E> which satisfies the Laplace equation within the fluid region, and is 

also subject to linearized dynamic and kinematic conditions at the free surface, and to 

kinematic conditions at the bottom and sides of the tank. 

2.1.1 Horizontal Motion 

The following derivations are based on Isaacson and Subbiah (1990). Initially, the 

closed-form solution for the hydrodynamic loads and fluid surface elevation in a 

rectangular tank subjected to a harmonic motion parallel to a pair of sides is summarized. 

The reservoir undergoes a sinusoidal base motion in a direction parallel to the x-axis and 

with velocity u(t) given in complex notation as: 
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u(t) = Uexp(-icot) (2.1) 

in which U is the velocity amplitude, co is the angular frequency, t is time and i = V-1 . 

An expression for O may be developed in terms of a set of eigenvalues k n corresponding 

to each mode of liquid sloshing in the tank in the form: 

O = U^x-2a£ 
n=l 

(k na) 2 

cos h(k nz)' 
cosh(knd) 

sin(kn x )G " (ico) \ exp(- icot) (2.2) 

The eigenvalues k n correspond to cos(kna)=0, and thus are given as: 

_ K 3K 5K for n = 1, 2, 3, (2.3) 

G n (ico) is a frequency dependent function given as: 

Gn

H(ico) : 

CO' 

2 2 

co -co: 
(2.4) 

Here con is the natural frequency corresponding to the n-th sloshing mode, and may be 

obtained from equation: 

co2, =gk n tanh(k n d) (2.5) 

where g is the gravitational constant. 

The maximum free surface elevation T| at the tank walls is given as: 
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T1 = i^{l-£ E l l G|:(icD)fexp(-i( B t) 
g l n=i 

(2.6) 

where 

E„ = 
" (kna)2 

(2.7) 

It may readily be shown that Eq. 2.6 leads to r\ —> 0 in the high frequency limit. 

The pressure on the container walls may be obtained in terms of the velocity potential 

from the unsteady Bernoulli equation, and the force F on the reservoir may then be 

obtained by a suitable integration of the pressure. In fact, the force F may be expressed in 

terms of a set of modal masses m n associated with the various modes of sloshing as: 

F = itoUra l - £ h n G ? ( i c o ) exp(-icot) 
n=l 

(2.8) 

where h n are the modal masses given in dimensionless form as: 

m 

tanh(knd) 
(kna)2 L knd _ (2.9) 

and m n are the corresponding modal masses. 

At high frequencies, the force given by Eq. 2.8 may be expressed as: 

F = icoUm0 exp(-icot) (2.10) 
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such that the high frequency effective mass mo is given in terms of the modal masses as: 

m n - m - > m„ (2.11) 

The corresponding overturning moment M about the base of the tank, excluding the 

component due to the pressure distribution over the base of the tank, denoted M , is 

obtained by an appropriately weighted integration of the sectional force over depth, and is 

thereby given by 

M = i a ) U m d | ^ - £ g n G ^ ( i c o ) | e x p ( i c o t ) (2.12) 

where 

g n = 
(k n d)sinh(k n d)-cosh(k n d)+l 

(k nd) 2cosh(k nd) 
(2.13) 

An additional moment A M due to the pressure distribution over the base of the tank is 

given by: 

A M = icoUmd l f a ^ 
- I 

n=i(k na) 2 (k nd) 2cosh(k nd) G n

H M exp(-icot) (2.14) 

Thus, the overturning moment M ' about the base of the tank is given by M ' = M + A M : 

M ' - icoUmd 
1 1 

—I— 
2 3 

(* A 
£g ' „G^( ico) 
n=l 

exp(-icot) (2.15) 
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where 

, 2 (k nd)sinh(k nd)-cosh(k nd)+2 
§ n > n a ) 2 (k nd) 2cosh(k nd) 

(2.16) 

2.1.2 Rocking Motion 

Initially, the closed-form solution for the hydrodynamic loads and fluid surface elevation 

in a rectangular tank subjected to a harmonic rocking motion is summarized. This 

solution is derived here following the approach used for circular cylinder by Veletsos and 

Tang (1987). The tank undergoes a harmonic rocking base motion about the y axis and 

with angular velocity \|/(t) given in complex notation as: 

\|/(t)= ^ e x p ( - icot) (2.17) 

in which *F is the angular velocity amplitude. An expression for O may be developed in 

terms of a set of eigenvalues k n corresponding to each mode of liquid sloshing in the tank 

in the form: 

0 = Y ](z-d)x + £ 
m=i a r 

(amd) 
sinh(amx) 
cosh(ama) cos (amz) 

+ ad I ^ ^ Y n ^ | ^ s m ( k n x ) G« (ico)} exp(-icot) 
n=i (k„a) cosh(knd) 

(2.18) 

The eigenvalues k n correspond to cos(k na)=0 as before, and thus are again given as: 

_K 3K 5K 
k n a — ; — , — . 

2 2 2 
for n = 1, 2, 3, . . . (2.19) 
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Also a md = (2m-l)— (2.20) 

G * (ico) is a frequency dependent function given as before: 

co: 
2 2 

co -co: 
(2.21) 

Here con is the natural frequency corresponding to the n-th sloshing mode, and may be 

obtained from equation: 

CO2 = g k n t a n h ( k n d ) (2.22) 

and 

Yn = 
(k nd)sinh(k nd)-cosh(k nd)+2 

(k nd)sinh(k nd) 
(2.23) 

The free surface elevation r| at the tank walls is given as: 

T V 
icoWa 

g 
XE n G*( ia>) exp(-icot) (2.24) 

where 

E = 
" (k n a) : 

"Yn (2.25) 

Again, it may readily be shown that Eq. 2.24 leads to r| -> 0 in the high frequency limit. 
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The pressure on the container walls may be obtained in terms of the velocity potential 

from the unsteady Bernoulli equation, and the force F on the reservoir may then be 

obtained by a suitable integration of the pressure. In fact, the force F may be expressed in 

terms of a set of modal masses m n associated with the various modes of sloshing as: 

F = icoWm -Ih£>-ih^G»(ia>) 
2, m=l n=l 

exp(-icot) (2.26) 

where 

h!>1}=2 
d 1 

( « m d ) 3 

2 ( - l ) m + 

( « m d ) 
— 1 tanh(ama) (2.27) 

m 
(2.28) 

At high frequencies, the force given by Eq. 2.26 may be expressed as: 

F =ico v Fdm 0 exp(-icot) (2.29) 

with the high frequency mass m 0 given as: 

o ^ m 
m 2 m=l 

(2.30) 

Thus, the force equation can be expressed in terms of the high frequency effective mass 

and the modal masses as: 

F = ico vFd m 0 - £ m n G^(ico) exp(-icot) 
n=l 

(2.31) 
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The corresponding overturning moment M about the base of the tank is obtained by an 

appropriately weighted integration of sectional force over depth, and is thereby given as: 

M = icoWmd{I- £ g ^ - J g ^ G*(ico)}exp(-icot) 
[6 m=l 

(2.32) 
n=l 

where 

g ( r l )=2-
o m 

3(-ir(qmd)-(qmd)2-2 
(amd) 5 

tanh(ama) (2.33) 

(2.34) 

The additional moment AM due to the pressure distribution over the tank base is 

expressed by 

AM = icoTdmd - 2 
V a 7 

I 
m=l| 

+ £ - ? I 
n=i(kna)2 (knd)2cosh(knd) 

2-(-ir'(amd) 
(amd)5 

YnG«(ico) 

(ama)cosh(ama)-sinh(ama) 
cosh (a m a) 

exp(-icot) 

(2.35) 

Thus, the total overturning moment M ' = M + AM at the base is given by 

M ' = ico vFdnKH-+-
6 3 
1 l f a^ 2 

vdy m=l n=l 
Z g g ^ - I g g r G ^ i f f l ) exp(-icot) (2.36) 
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where 

gg 
(A \ 4(-ir(qmd)-(qmd)2-4 

(a m d) 5 

tanh(ama)-2 
( - i r + l ( q m d ) - 2 

( « m d ) 4 

(2.37) 

n Yn % n (2.38) 

2.2 Circular Reservoir 

The preceding analysis for a rectangular reservoir is now repeated for a circular reservoir. 

The system considered is shown in Fig. 1(b). The tank is filled to a level d with a fluid of 

density p. Fixed Cartesian and cylindrical coordinate systems, (x, y, z) and (r, 6, z) 

respectively, as indicated in Fig. 1(b), are used. The vertical coordinate z coincides with 

the axis of the container in the equilibrium position and is measured upwards from the 

bottom of the container; x is in the direction of the base motion; r is measured radially 

from the z axis; and 6 is measured from the positive x axis. 

The identical assumptions are made as before: thus the fluid is assumed to be invisid, the 

flow is irrotational, and the amplitude of the base motion and the resulting free surface 

elevation r\ in the container are assumed to be sufficiently small for a linearization of the 

free surface conditions to be justified, and for the kinematic condition at the container 

wall to be applied at the equilibrium position. 

2.2.1 Horizontal Motion 

The following derivations are based on Isaacson and Subbiah (1991). The tank undergoes 

a sinusoidal base motion with velocity u(t) given in complex notation as 
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u(t)=Uexp(-icot) (2.39) 

in which U is the velocity amplitude, co is the angular frequency, t is time, and i = v - 1. 

An expression for O may be developed in term of a set of eigenvalues k n corresponding 

to each mode of liquid sloshing in the tank in the form: 

<D = U^ r - 2 a £ 
n=l 

G H(ico)r J ' ^ k f ^ c o s h ( k „ z ) 
. n V ; [(k n a) 2 - l] j , (k n a)cosh(k n d) 

•cosO exp(-icot) (2.40) 

where J] is the Bessel function of the first kind of order 1, and 

G n

H M = co 
2 2 

co -co: 
(2.41) 

=gk ntanh(k nd) (2.42) 

The k n values are obtained from the successive roots of the equation 

j ; (k n a)=0 (2.43) 

where the prime denotes a derivative with respect to the argument. The first five values 

of k n a are indicated in Table 1. 

The maximum free surface elevation r| at the tank wall can be expressed as 

^ = i®Ua ^ i _ £ E B G» (ico)|- exp(-icot) 
g 

(2.44) 
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E„ = 
" ( k n a ) 2 - l 

(2.45) 

The total horizontal force F on the tank is given by 

F = icoU j m - £ m n G " (ico)| exp(-icot) 

or 

F - icoUm l - £ h n G n

H ( i c o ) exp(-icot) 
n=l 

(2.46) 

(2.47) 

where m = p7ia2d is the mass of fluid in the tank, and 

h n = ^ = 2 
m (k n a) 2 -l 

tanh(knd) 
k„d 

(2.48) 

The corresponding overturning moment about the base of the tank, excluding the 

component due to the pressure distribution over the base of the tank, denoted M, is 

obtained by an appropriately weighted integration of the sectional force over depth, and is 

thereby given by: 

M = icoUmd £ g n G"(ico)|exp(icot) (2.49) 

where 
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2 (k nd)sinh(k nd)-cosh(k nd)+l 

" [ (k n a) 2 - l ] (k nd) 2cosh(k nd) 
(2.50) 

An additional moment A M due to the pressure distribution over the base of the tank is 

given by: 

AM=icoUmd - I 
n=l (kna)2-l (k nd) 2cosh(k nd) 

exp(-icot) (2.51) 

Thus the total overturning moment M ' about the base is given by M ' = M + A M : 

M'=icoUmd 
1 1 
- + — 
2 4 

- £ g ' n G n

H ( i C 0 ) 
n=l 

exp(-icot) (2.52) 

where 

gn 
(kna) 2-l 

(k nd)sinh(k nd)-cosh(k nd)+2 

(k nd) 2cosh(k nd) 
(2.53) 

2.2.2 Rocking Motion 

The following derivations are based on Veletsos and Tang (1987). The tank undergoes a 

harmonic base motion with angular velocity \|/(t) denoted by 

V|/(t)= vPexp(-icot) (2.54) 
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in which *F is the angular velocity amplitude, CO is the angular frequency, t is time, and 

i=V-I • An expression for O may be developed in terms of a set of eigenvalues k n 

corresponding to each mode of liquid sloshing in the tank in the form: 

0 = T J (z-d)x+ £ 
m=i a ; (amd) 

I,(amr) 
i ;(a m a) cos (amz) 

+ a d 1 V^T^y»
 C0Stt^tnZ\ G" H coseexpC-itot) n=i [(kna) - l j cosh(k nd)J,(k na) 

(2.55) 

where Ii is the modified Bessel function of the first kind, and 

Yn 
(k nd)sinh(k nd)-cosh(k nd)+2 

(k nd)sinh(k nd) 
(2.56) 

The k n values are obtained from the successive roots of the equation 

j;(k n a)=0 (2.57) 

And a m d = ( 2 m - l ) | (2.58) 

The maximum fluid surface elevation r\ at the tank wall can be expressed as 

ico^J/ad 

g 
£ E n G ^ ( i c o ) exp(-icot) 
n=l 

(2.59) 

where 
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( k n a ) 2 " l 
(2.60) 

The pressure on the container walls may be obtained in terms of the velocity potential 

from the unsteady Bernoulli equation, and the force F on the reservoir may then be 

obtained by a suitable integration of the pressure. In fact, the force F may be expressed in 

terms of a set of modal mass m n associated with the various modes of sloshing as: 

F - icoWm i - I h ^ - f h ^ G ^ i c o ) 
m=l n=l 

exp(-icot) (2.61) 

where 

h ^ = 2 
d 1 

( « m d ) 3 

2(-l) m+1 

( « m d ) 
! i(a m a) (2.62) 

m 
(2.63) 

At high frequencies, the force given by Eq. 2.61 may be expressed as: 

F =ico v Fdm 0 exp(-icot) (2.64) 

Such that the high frequency mass m 0 is given as: 

m I m=l 
(2.65) 
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Thus, the force equation can be expressed as in terms of high frequency effective mass 

and the modal masses as: 

F = ico vPd m 0-£mnGnM exp(-icot) (2.66) 

The corresponding overturning moment M about the base of the tank is obtained by an 

appropriately weighted integration of sectional force over depth, and is thereby given by: 

1 M = i c o ¥ d m d - S g £ ) _ Z g ( r 2 ) G R ( i ( D ) exp(-icot) 
O m=l n=l 

(2.67) 

where 

fern 3(-ir (amd)-(amd)2-2 
( « m d ) 5 J I, (ama) 

^(ttma) (2.68) 

(2.69) 

_ 2 (k nd)sinh(k nd)-cosh(k nd)+l 

" [(k na) 2-l] (k nd) 2cosh(k nd) 
(2.70) 

The additional moment A M due to the pressure distribution over the tank base is given 

by: 

AM=icovFdmd^ -
4 

- 2 I 
=i(cxmd)3 L(ocmd) 

I 2 (a m a) 

!|(am

a) 

•X 
n=l (k„a) 2 - l 

(2.71) 
Yn 

(k nd) 2cosh(k nd) 
G*(ico) exp(-icot) 
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Thus, the total overturning moment M ' = M + A M at the base is given by: 

M'=ico4 'dmd]-+-
[6 4 

' a * 
£ g g £ ° - £ g g i r 2 ) G * M exp(-icot) (2.72) 

m=l n=l 

where 

f A \ 4(-ir(amd)-(amd)2-4 
(«md)5 I,(ama) 

i;(ama) 

(-ir(qmd)-2 
(«md)4 

(2.73) 

^(ama) 

gg n Yn gn (2.74) 

2.3 Harmonic Excitation with Energy Dissipation 

The motion of a real fluid gives rise to hydrodynamic damping which may be associated 

with various forms of energy dissipation. These include viscous effects associated with 

boundary layers on the tank walls; flow separation effects as the fluid oscillates past 

baffles or other obstacles in the container; and free surface effects associated with 

breaking waves. Attention is now focussed on an extension to the preceding solution for 

an inviscid fluid in order to account for such energy dissipation in a real fluid. As an 

approximation which enables the potential solution to be utilized directly, the dissipation 

is assumed to occur only at the free surface and is introduced through a modification to 

the dynamic free surface boundary condition in the manner indicated by Faltinsen (1978) 

and Isaacson and Subbiah (1991). Although this may be considered somewhat artificial, 

it does provide a convenient means of developing a solution which readily enables the 

conventional dynamic theory of damped multi-degree-of-freedom systems to be directly 

exploited. 
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As an extension, the linearized dynamic free surface boundary condition is taken as 

— + gn + u<I>=0 atz = d (2.75) 
at 

where p is an effective viscous coefficient;.and the Bernoulli constant has been taken as 

zero, since all other terms are harmonic with time. The term (iO gives rise to the energy 

dissipation and may be developed by taking the pressure at the free surface to be 

proportional to the free surface velocity, corresponding to a linear damping force. This 

leads to a combined free surface condition in terms of <J>, which is given as: 

92<D 3$ a$ n 

— T + [l— + g — = 0 atz = d (2.76) 
dt dt dz 

2.3.1 Horizontal Excitation 

When damping is introduced in the manner described above, G"(ico), used in section 

2.1.1 and 2 .2 .1 , is now complex and is given as: 

„Hf- \ CO +1C0LI 
Gn

H(ico)= — ^ (2.77) 
CO +1C0U-C0„ 

where p: is the damping parameter introduced in Eq. 2.75. 

The force F may be expressed in terms of a set of modal mass m n associated with the 

various modes of sloshing as before: 

F = i c o u j m -£m n G*(ico) jexp(- icot) (2.78) 
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And the maximum free surface elevation is now given as: 

icoUa f iu.^ 

v 0 3
 J 

l - £ E n G * ( i c o ) exp(-icot) 
n=l 

(2.79) 

2.3.2 Rocking Excitation 

Once more, the preceding solutions for rocking excitation with zero damping, as given in 

section 2.1.2 and 2.3.2 may be extended in the same way so that G * (ico) is now complex: 

G«(ico)= co: 
co2+ico|a,-co2 

(2.80) 

The force F may be expressed in terms of a set of modal mass m n associated with the 

various modes of sloshing in the same form as before: 

F = icovfdm l - i h ^ - i h ^ G ^ i c o ) 
Z m=l n=l 

ex p(-icot) (2.81) 

And the maximum fluid surface elevation at the tank walls is now given as: 

i c o ^ a d f ^ i u ^ 

v 0 3
 J 

I E n Y„ G^(ico) exp(-icot) (2.82) 
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2.4 Added Mass 

2.4.1 Added Mass without Damping 

It is convenient to express the total force F in terms of an effective mass of fluid 

m e =m+m a , where m a is an added mass, by taking 

where a dot denotes a derivative with respect to time. The term involving m corresponds 

to the component of the fluid force on tank walls which would act if the fluid moves at 

the container velocity without sloshing; and that involving the added mass m a , which may 

be positive or negative, accounts for the additional force associated with the sloshing. 

Since energy dissipation is assumed not to occur for the present, the force is in phase with 

acceleration, so that there is no corresponding damping coefficient, and Eq. 2.83, with m a 

real, adequately represents the force. 

Upon comparing Eqs. (2.8) and (2.83), an expression for the added mass is readily 

obtained. In suitable dimensionless form, a corresponding added mass coefficient C a can 

be expressed for the case of horizontal excitation as 

In similar manner, a corresponding added mass coefficient C a can be expressed for 

rocking excitation as 

F = - m e u = - ( m + m a )u 
(2.83) 

C = ^ = - £ h n G » ( i c o ) (2.84) 
m n=l 
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= - i + I h ^ + i h r G ^ i c o ) (2.85) 
m=l n=l 

2.4.2 A d d e d Mass with Damping 

When energy dissipation is assumed to occur, the fluid force is no longer in phase with 

acceleration and thus Eq. 2.83 may no longer be used to represent F. Instead, the fluid 

force F is now expressed in terms of components in phase with the velocity and the 

acceleration of the container, so that Eq. 2.83 is extended to: 

F = - [(m+ma) u + A,u] (2.86) 

where X is a dimensional damping coefficient, and m a and X are both taken as real. 

Equations 2.1 and 2.8 may now be used to substitute for u and F respectively into Eq. 

2.86 in order to provide explicit expressions for the added mass coefficient C a and a 

dimensionless damping coefficient C X • These are given respectively as: 

where Re[] and Im[] denote the real and imaginary parts respectively, and for horizontal 

excitation Q. can be expressed as: 

C a = ^ = R e ( Q ) (2.87) 
m 

(2.88) 

= - I h n G r ( i c o ) (2.89) 
n=l 
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In similar manner, Q. can be expressed for rocking excitation as: 

Q = -
L m=l n=l 

(2.90) 

Although the dimensional damping coefficient X has been related to the damping 

parameter jx, it is convenient to introduce a more easily recognizable measure of 

damping in place of u.. For convenience, this is taken as the fraction of critical damping 

for first mode free oscillations that would correspond to the same level of damping. This 

is denoted by ^ . An expression relating £ t to | i may be developed by taking U = 0 or 

= 0 in the preceding development, and recognizing that time-dependent terms now occur 

only in Eq. 2.76. This readily yields 

f ——!—— L C2Q\\ 
2co, 2A/gk,tanh(k,d) 

For small values of the logarithmic decrement of damping, \> = 2itC>l, may also be 

used. 

2.5 Combined Motion 

Since the preceding closed-form solutions are based on a linearization of the 

corresponding boundary value problem, the case of combined motion effects may be 

determined from an appropriate superposition of the closed-form solutions corresponding 

to the two different base motions. 

Therefore the resulting force is given in terms of the force due to a horizontal motion 

alone, denoted F H and the force due to rocking motion alone, denoted FR, simply as: 
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F = F +F 
1 H R 

(2.92) 

Substituting Eqns (2.8) or (2.47) and (2.22) or (2.61), one obtains 

F= icoHUm l-XhBG»K) exp(-icoHt) 

+ ico R Wm 
m=l n=l 

(2.93) 

exp(-icoRt) 

where co H and coR are exciting frequencies for horizontal and rocking motions 

respectively. 

Similarly, the overturning moment at the tank base and fluid surface elevation at the tank 

wall are given as respectively 

M = icoHUmd exp(-icoHt) 

+i(0 R

vFdmd 
1 -Ig^-Ig^G^K) 

m=l n=l 
exp ( - i co R t ) 

(2.94) 

M ' = i c o H U m d 

- r - i c o R ^ d r n d 

1 
- + K -Ig ' n G ^ K ) exp(- ico H t ) 

1 
- + K 
6 m=l n=l 

exp(-icoRt) 

(2.95) 

11 = 
i c o H U a 

1+ 
_tU_ 

V J 

i c o R ^ d a 
1 + -

1LI 

C0 o 

l - l E n G : ( i c o H ) e x p ( - i c o H t ) 

e x p ( - i c o R t ) 

(2.96) 
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3 Earthquake-Induced Motion 

Although the preceding solution for harmonic excitation provides insight into the general 

problem, its extension to a random base excitation is needed so as to account more 

realistically for earthquake-induced sloshing. The solution indicated in preceding 

sections is analogous to that of a multi-degree-of-freedom system subjected to harmonic 

excitation and this analogy may be exploited to extend the solution so as to treat the 

random motion case. Such extensions to a specified base acceleration record, and to the 

estimation of maximum hydrodynamic forces, maximum base overturning moments and 

maximum fluid surface elevations using a modal analysis involving earthquake response 

spectra are now indicated in the manner described by Isaacson and Subbiah (1991). 

3.1 Time-Domain Solution 

The base acceleration u(t) and the hydrodynamic force F(t) may be considered the input 

and the output respectively of a linear system with known characteristics. For the case of 

harmonic excitation 

u(t)=Aexp(-icot) (3.1) 

F(t)=Gp"exp(-icot) (3.2) 

with the complex amplitudes d^and A related by 

= H(ico)A (3.3) 

where H(ico) is the frequency response function. On the basis of Eq. 2.8, and for the case 

of the horizontal excitation of a circular reservoir, H(ico) is given as: 
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H(ico)=-m l - £ h n G ^ ( i c o ) (3.4) 

The frequency response function may be used to obtain the corresponding impulsive 

response function, which may subsequently be applied to Duhamel's integral in order to 

develop a time history of the force. Thus, the time domain solution for the force F(t) may 

be related to the known acceleration record u(t) as: 

F(t)=}u(-c)h(t-T)dT 
o 

(3.5) 
t 

= Ju(t-x)h(x)dT 
0 

where h(t) is the impulsive response function. This is related to the frequency transfer 

function H(ico) as 

h(t)=2^{H(s)} (3.6) 

where S" 1 denotes the inverse Laplace transform and s is a subsidiary complex variable 

which defines the Laplace domain. By applying the known expression for H(ico) given by 

Eq. 3.4, an expression for the impulsive response function h(t) may be developed as: 

h( t )=-m 0 8 ( t ) -£^exp( -C n co n t ) s in ( co i d ) t ) (3.7) 
n=i CO: ' 

where 8 is the Dirac delta function, m 0 is the high-frequency effective mass and m n is the 
-th n modal mass given by Eqs. 2.11 and 2.9. Also, 
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JL 
2co„ 

(3.8) 

coi d )=co nVK[ (3.9) 

The time-domain solution for force F(t) may then be written as 

F(t) = - m 0 u d ( t ) + ] T m n 

n=l 
} u d (T) exp[- ]i(t - T)/2] s i n f c ^ t - x)]dx 

n 0 

(3.10) 

In most cases, the damping ratio is small so that coj,d) ~ con for all n, and a corresponding 

simplification to Eq. 3.10 may be made: 

F ( t )=-m 0 u d ( t )+ ] T m n 

n=l 
°>N J u d W e x p [ - H ( t " T)/2]sin[con (t - x)]dx (3.11) 

The first term in the above expression corresponds to the force associated with a constant, 

frequency-independent mass mo, while successive terms in the series correspond to the 

force associated with each mode of sloshing. 

Similarly, the overturning moment at the base and the fluid surface elevation at the tank 

walls are given respectively as 

M ( t ) = - m 0 d 0 u d ( t ) + ] T m n d n ®n Ju d (T) exp[- u,(t - T)/2] sin[con (t - x)]dx (3.12) 

M'( t )=-m 0 d; U d ( t )+;f> n d ' n 

n=l 
con Ju d (x) exp[- n(t - x)/2] sin[con (t - x)]dx (3.13) 
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n J u d (x) exp[- |i(t - x )/2] sin [con (t - x)] dx 
o 

(3.14) 

where u d (t) is the acceleration at water level in the reservoir. 

3.2 Earthquake Spectrum 

In the case of a reservoir motion due to an earthquake, the motion is generally described 

by a specified response spectrum. This enables one to adopt a simplified procedure for 

estimating maximum loads in design, as commonly carried out in estimating the response 

of single and multi-degree of freedom structural systems (e.g. National Building Code of 

Canada, 1995). 

For the case of a single-degree of freedom system with small damping ratio C, and a 

natural frequency co n, the spectral displacement Sj is defined as (e.g. Clough and 

Penzien, 1975): 

where t is time. This provides the maximum displacement occuring in such a system as a 

result of an earthquake record defined by u(t). Related to this, the corresponding pseudo 

spectral velocity S v and pseudo spectral acceleration S a are defined as: 

s d K £)=I — Ju(T)exp[- Ccon (t - x)]sin[co^ (t-x)]dx I maximum with 
respect to time 

(3.15) 

S v(con,0=co nS d(co n,C) (3.16) 

Sa(con,C)=con

2Sd(con,C) (3.17) 
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For a lightly damped system, these correspond to the maximum velocity and acceleration 

arising in the system. The variations of each of these with natural frequency co n , or 

natural period Tn=27r,/con , for specified values of damping ratio £ are of particular 

interest. Because of their inter-relationship, they are commonly shown as a single curve 

on four-way log paper as given in the National Building Code (1985). In fact, the 

National Building Code of Canada (1985) gives this curve as a set of straight lines, such 

that the spectral acceleration for a maximum ground acceleration of l.Og (where g is the 

gravitational constant) is expressed in the form: 

where cti, 0C2, and 0C3, are constants which depend on the damping ratio C,. For other 

values of peak ground acceleration, the spectral acceleration is scaled linearly. 

3.3 Modal Superposition 

For the case of a multi-degree of freedom system, the maximum response due to a base 

motion corresponding to each mode may be evaluated by applying the earthquake 

response spectrum at the natural frequency corresponding to each mode, so that the 

maximum displacement corresponding to the n-th mode is simply S d (con Xn) • By direct 

analogy, the maximum force associated with the n-th mode sloshing is taken as 

F n = m n S a (con Xn) • However, an additional force component corresponding to the high 

frequency effective mass m 0 and denoted F 0 is also present. In a similar manner, a series 

of overturning moment components M n will also be present. Thus one can consider a 

series of force components F n and moment components M n acting simultaneously and 

defined as: 

S.(TB,C)= rx 2 /T n 

a forT n<(3, 
f o r p , < T n < b \ 
for T n > p\ 

(3.18) 
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I m 0 u m for n=0 
F n = | m n S a ( c o n , C n ) for n>l ( 3 " 1 9 ) 

| m 0 d 0 u m for n = 0 
M"=Kd; s: (con,cj 

M'=hd°K f ° r n = ° (3 21) 

where u m is the maximum ground acceleration for horizontal base motion and the 

maximum acceleration at fluid level for rocking base motion and d n and d'n are the 

effective elevation above the reservoir base. In the case of the free surface elevation r | 0 = 

0 and the corresponding modal elevation amplitudes r\n are given simply as 

T|n = E„S a (co n ,C n ) for n>l (3.22) 

where 

E . -

(kna)2 

2 

(kna)2 

2 

(k n a ) 2 - l 
2 

l ( k n a ) 2 - l 

for horizontal excitation- rectangular reservoir 

y n for rocking excitation - rectangular reservoir 

for horizontal excitation- circular reservoir 

y n for rocking excitation - circular reservoir 

(3.23) 
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The high frequency effective mass mo and its effective elevations d 0 and d' 0 may be 

obtained from: 

m n 

m 1 °° 
(") 

for horizontal excitation 

for rocking excitation 
(3.24) 

n=l 

/ . m 
m=l 

for horizontal excitation 

for rocking excitation 

(3.25) 

d'n 

- + K 
n=l 

- + K S§ m 
m=l 

m 
m=l 

for horizontal excitation 

for rocking excitation 

(3.26) 

where K = 1/3 for rectangular tank and K = 1/4 for circular tank. 
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The modal masses and corresponding effective elevation above the reservoir base are 

given respectively as: 

m | h n for horizontal excitation — H (3-27) 
m lnn Yn f ° r rocking excitation 

d n (k nd)sinh(k nd)-cosh(k nd)+l 
—= / ? / h-2-*-— for horizontal and rocking excitation (3.28) 
d (k nd)sinh(k nd) 

d'n (knd)sinh(knd)-cosh(knd)+2 p , . 
-T-= < \ , )rJLj-— for horizontal and rocking excitation (3.29) 
d (k nd)sinh(k nd) 

The overall maximum force or moment or fluid surface elevation cannot be obtained 

directly from these components because of phase differences between the response at 

each mode. However, as an upper bound, overall maximum force F m a x may be taken as 

the sum of the individual maxima, so that: 

Fmax=SFn (3.30) 
n=0 

On the other hand, a more common practice to estimating the overall maximum is based 

on the root of the sum of the squares of the maximum modal responses. That is: 

F -
max l ^ 2 

,n=0 

1/2 

(3.31) 

In particular, when only first mode excitation is considered, Eq. 3.31 is simplified to: 

Fmax ={Ku m ] 2 +[m 1 S a (co 1 , i ; i ) ] 2 } / 2 (3.32) 
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Thus, in Eq. 3.31 the force is estimated by the use of the high frequency fluid mass m 0 

which accelerates in unison with the reservoir, together with an additional modal mass mi 

which undergoes resonant motions at the lowest mode of sloshing frequency. A similar 

approach may be taken to estimating the maximum overturning moment M m a x . Thus 

moment components M n , given by Eq. 3.20 and 3.21 , are used in place of the force 

components F n in either Eq. 3.30 or Eq.3.31. 

3.3.1 Combined Motion 

The resultant maximum horizontal force due to horizontal and rocking excitation may be 

written as an extension to Eq. 3.32 using superposition as follows: 

Similarly, the resultant maximum overturning moment at the base and resultant 

maximum fluid surface elevation at the tank wall are given respectively as 

1/2 

(3.33) 

M m a x = (m0

Hd0

Hu»)2

+ Sm»d»Sa

H(con,Cn) 
n=l 

1/2 (3.34) 

+ k R d 0

R u m ) 2

+ I m X s a > n , c ; n ) 
n=l 

1/2 

max 
g 

lEn

HS» (cOn,Cn) + IXSa>n,0 (3.35) 
J n=l n=l 

41 



Chapter 4 Hydrodynamic Damping 

4 Hydrodynamic Damping 

There are three kinds of damping which may influence the behaviour of a fluid filled 

reservoir: (a) structural damping, (b) material damping, and (c) fluid damping. Structural 

damping is generated by friction, impacting and rubbing between parts of a structure. 

Material damping is associated with internal energy dissipation of materials. Fluid 

damping is the result of energy dissipation within the fluid, as the fluid moves relative to 

the boundaries of the oscillating structure. Hydrodynamic damping of a system may be 

associated with various forms of energy dissipation. These include viscous effects 

associated with boundary layers on the tank walls and flow separation effects as the fluid 

oscillates past the baffles or perforated bulkheads in the tank. 

The preceding formulations are based on the use of a specified level of hydrodynamic 

damping, and a suitable approach to estimating this is now considered. This involves an 

assessment of, firstly, the total energy of the oscillation, which is known from the 

available potential flow solution, and, secondly, the average rate of energy dissipation 

arising in the fluid, either through the boundary layers along the tank floor and walls or by 

flow separation around obstacles in the flow. 

4.1 Methodology 

A general methodology to estimating the damping level is now summarized. The decay 

of energy in a oscillating motion may be conveniently expressed by the logarithmic 

decrement x> which is defined as follows 

f l 
ln f—' u = - ln 

) An 
(4.1) 
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where A 0 is an initial fluid surface elevation and A is the fluid surface elevation after n 

oscillations. For small oscillations, the energy E in the system is proportional to the 

square of the fluid surface elevation. Therefore: 

In 
( E 

= 21n { A 1 = 21n 
) 

(4.2) 

where E 0 is an initial energy level and E is energy after n oscillations. Substituting Eq. 

4.2 into Eq. 4.1: 

E = E 0 exp(-u cot/71) (4.3) 

The above analysis is based on an assumption that the dissipation is due to a resistive 

force proportional to the velocity. 

The corresponding energy dissipation rate D can be written as 

D = -
dE 
dt 

(4.4) 

Equations 4.3 and 4.4 can be combined to yield: 

v = 
V MA E o j 

(4.5) 

Using -u = 2 7 C ^ , the damping ratio £ can thus be written as: 

c = ' J _ Y _ P _ ^ 
v 2 o 4 E o j 

(4.6) 
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In order to use Eq. 4.6, both the energy dissipation rate D and the energy E need to be 

estimated. Approaches to estimating D are indicated later in this chapter. The energy E 

may be estimated by considering separately the kinetic and potential components of E. 

The average kinetic energy of the motion per unit horizontal area, denoted K and often 

termed simply the kinetic energy, may be developed by considering the kinetic energy of 

a fluid element of height dz, length dx and unit width, and carrying out appropriate 

integration over the fluid column. In this way K is given as 

d+ri i 

K = J - p 

o r 
^ 2 

+ dz 

\2 

dz (4.7) 

where the overbar denotes an average over a oscillation period. 

The average potential energy of the system per unit horizontal area, denoted V and termed 

the potential energy, may be considered in a similar way, except that the potential energy 

of the undisturbed fluid is non-zero and must be subtracted from the total potential energy 

in the presence of motion. Thus 

d+r| 

V = Jpgzdz - j"pgzdz = Jpgzdz (4.8) 

The average energy density E, that is the average energy (kinetic and potential) per unit 

horizontal area is simply the sum of the two expressions in Eqs. 4.7 and 4.8. That is 

E = K + V (4.9) 

44 



Chapter 4 Hydrodynamic Damning 

4.1.1 Energy Dissipation due to Boundary Layers 

Two kinds of approximations are generally made in the development of a hydrodynamic 

damping theory associated with gravitational waves: one concerns the smallness of the 

fluid surface elevation such that higher order terms involving a fluid surface elevation 

perturbation parameter are neglected; the other concerns a boundary layer approximation 

in which the energy dissipation occurs principally within the bottom and side wall 

boundary layers. The latter may be considered as the first successive approximations 

involving powers of k8 which is a dimensionless boundary layer thickness, where k is the 

wave number and 8 is the boundary layer thickness defined by: 

The general theoretical method employed is to calculate the rate of energy dissipation 

within the fluid, which is given for two-dimensional motion in terms of the Rayleigh 

dissipation function as 

where u\ is the dynamic viscosity of the fluid, and the integral is taken over the region 

occupied by the fluid. The corresponding function for three-dimensional motion is given 

in Lamb (1945). The average rate of energy dissipation per unit length in the x direction 

(and per unit width in the two-dimensional case) can be expressed in terms of F and is 

simply 

(4.10) 

(4.11) 

L (4.12) 
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A knowledge of the flow field in the boundary layers will enable D to be evaluated. 

Alternatively D may be expressed in terms of the shear stress acting at the fluid 

boundaries. For a two-dimensional oscillatory motion over a flat boundary, the average 

rate of energy dissipation is given as 

where x is the shear stress at the boundary, u is the fluid velocity at the outer edge of the 

boundary layer and the overbar denotes a temporal mean. This representation is 

particularly useful for the case of a turbulent boundary layer. 

4.1.2 Energy Dissipation due to Baffles 

When baffles or perforated bulkheads are present in the container, flow separation effects 

are expected to dominate, and boundary layer effects are expected to be relatively small. 

The corresponding damping coefficient may be estimated by considering first the drag 

force due to an oscillatory flow past a flat plate oriented perpendicular to the flow. This 

may be expressed as: 

where p is the mass density of the fluid, A is a suitable area of the plate, C d is an 

empirical drag coefficient and u r is the velocity of the flow relative to the plate. As a 

suitable approximation, Eq. 4.14 may be linearized as: 

D=xu (4 .13) 

F = - p A C d u r u r (4.14) 

(4.15) 
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where U r is the amplitude of ur. The corresponding contribution to the average rate of 

energy dissipation is then 

D = Fu r (4.16) 

The contributions from all the obstacles in the flow may thereby be obtained, with 

suitable approximations used for effective area A and the velocity amplitude U r . The 

inertia force on the plate has been omitted since it does not contribute to the energy 

dissipation. This may be demonstrated by noting that the inertia force and the relative 

velocity applied to Eq. 4.16 would be out of phase. 

4.2 Determination of Hydrodynamic Damping for 
Rectangular Tank 

The preceding method is applied to a rectangular tank which has a length 2a in the x 

direction, width 2b in the y direction, and is filled with an incompressible fluid to a depth 

d. First, the hydrodynamic damping due to the boundary layers is evaluated and then 

damping due to baffles in the tank is considered. 

The velocity potential of the flow for first mode free oscillations in the tank is given by 

^ t T T 1 Vosh(kz) gjja 
cosh(kd) 

sin(kx)exp(-icot) (4.17) 

where co2 =gktanh(kd), ka = 7t/2 , and T|a is the amplitude of sloshing. 
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The total energy of the motion of undamped oscillations per unit horizontal area can be 

expressed in terms of the amplitude of fluid surface elevation as: 

C 1 2 
E o ^ P g T l a (4.18) 

4.2.1 Laminar Boundary Layer 

The velocity profile in the oscillating boundary layer on a flat boundary can be expressed 

in complex form as: 

u (z , t )=U v 

f \ 
1-exp - [ l - i ] 

V V2v7« J 
exp(-icot) (4.19) 

where U w is the fluid velocity at the outer edge of the boundary layer. The shear stress at 

the wall is given by 

au 

v d z j 
(4.20) 

z = 0 

Substituting Eq . 4.19 into Eq . 4.20, one obtains: 

x w =pVvcoU w exp[-i(cot + 7t/4)] (4.21) 

The average rate of energy dissipation D is given by Eq. 4.13, and can thus be expressed 

as 

(4.22) 
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The average energy dissipation due to bottom and the individual walls in the tank can be 

calculated using the appropriate velocities. The bottom wall velocity and average energy 

dissipation are thus given respectively as: 

U w b =gTl a 

k cos(kx) 
co cosh(kd) 

(4.23) 

D w b = p g a b W 2 ^ - i k _ (4.24) 

Likewise, the velocity at the two walls x = ± a and the corresponding average energy 

dissipation are calculated respectively as: 

^ws,a S'Ha 
k sinh(kz) 
co cosh(kd) 

(4.25) 

Dws,a=PgbdkV2vco -
sinh(2kd) 

sin h(2kd) ' 
2kd 

(4.26) 

Similarly, the average energy dissipation due to the side walls at y = ± b is given as 

„ VCO 2 
D w s , b = P g a ^ — ri a

2 (4.27) 

The total energy dissipation due to the boundary layers on the bottom and the four walls 

is given by 

D - D w b + D w s , a + D w s , b (4.28) 
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Substituting from Eq. 4.6, the damping ratio is eventually given as: 

L 2 

( 
1- a J If a^ 

1+-
v b , sinh(2kd) 2(ka)[ 

substitute for ka = 7c/2 which corresponds to first mode sloshing 

(4.29) 

L 2 
LV a + sinh(2kd) TC 

1+- (4.30) 

where 5 is boundary layer thickness, defined by 8=A/2v/co . 

It is noted that the ratio of total damping to the damping due to the bottom is: 

1— 
a 

+ -
U 
71 

1 + - sinh(2kd) (4.31) 

It should be noted that the preceding analysis is based on steady state sinusoidal 

oscillations, whereas the onset of motions from rest will lead to transient effects not 

described by the above formulation. In order to consider such effects, consider an 

impulsive change of velocity at time t = 0 from zero to a steady value. A boundary layer 

is created whose thickness is of order Vvt. As time progresses, the boundary layer 

increases in thickness and gradually distorts the flow until the steady state boundary layer 

is fully developed. It follows that, because the boundary layer starts as being very thin 

and increases in thickness, the shear stress at first rises to a large value and then decays to 

its steady value. In earthquakes, the boundary layer does not reach the steady state 

condition, so the boundary layer is thinner than predicted by the steady state sinusoidal 

approximation and the corresponding shear stress and associated damping are 

consequently higher. Therefore the above method is expected to underpredict damping 
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with respect to earthquakes. On the other hand, in free vibration tests the steady state 

boundary layer is developed and damping is predicted well. 

4.2.2 Turbulent Boundary Layers 

The preceding section concerns laminar boundary layers. When the boundary layers are 

turbulent, the rate of energy dissipation and therefore the hydrodynamic damping will 

differ appreciably and the following approach may be used. 

The shear stress at a wall due to a turbulent boundary layer can be written in terms of a 

friction coefficient fw as: 

where u is the instantaneous fluid velocity outside the boundary layer and is given by: 

Note that the Eq. 4.32 contains the assumption that the shear stress is in phase with the 

velocity, although in a more complete treatment any phase difference between these must 

be accounted for as described, for example, by Kajiura (1968). The friction coefficient fw 

is expected to depend on the Reynolds number and the wall roughness, although it should 

be relatively insensitive to the Reynolds number in turbulent flow conditions. It is 

assumed that these conditions exist and therefore that fw is a constant for a particular 

situation. 

For reference, in the case of a laminar boundary layer, fw = 2 -Jl /Re, where the Reynolds 

Number Re = U w8/v. 

(4.32) 

u = U w b cos(cot) (4.33) 
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For a turbulent boundary layer flow, different relations are available to describe the 

friction coefficient fw for flow over smooth and rough beds. For smooth beds, the friction 

coefficient proposed by Jonnson (1967) may be adopted 

f w s = 0 . 0 9 R E -0.02 (4.34) 

where RE is a local Reynolds number based on the local amplitude A of fluid 

displacement just outside the boundary layer and defined by: 

(4.35) 

For rough beds, the friction factor fw r depends on the ratio A/k s , where k s is the Nikuradse 

roughness of the surface. Swart (1976) proposed the following form for the rough bed 

turbulent flow region: 

f = 
wr 

0.00251 exp 

0.3 

5.21 for —>1.57 

for —<1.57 

(4.36) 

The average energy dissipation in the turbulent boundary layer can be written from Eq. 

4.13 as 

D = | - p f w Ju3

wdA (4.37) 

Substituting Eq. 4.23 into Eq. 4.37, D may be expressed as: 
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f 8 
D = 

9TC 
Pf v 

'g*la ^ 
CO cosh3(kd) 

(4.38) 

Similar to the laminar boundary layer case, the damping coefficient due to turbulent 

boundary layers can thus be obtained as: 

9TC v a
 J sinh2(kd)cosh(kd) 

(4.37) 

The above equation can be organized as follows 

'16 \ ^ a Yd^ 
9TC v a

 y sinh ̂
TCd^ 

v2a, 
sinh ' d^ 

TC — 
(4.38) 

The condition of transition to a turbulent boundary layer may be expressed in terms of a 

Reynolds number Re = U w5/v, which is based on the oscillatory boundary layer thickness 

and the velocity amplitude just outside the boundary layer. Values of 566 obtained by L i 

(1954) and 500 obtained by Sergeer (1966) are probably reasonably reliable indications of 

a transition Reynolds number, although transition may be expected to take place over a 

range of Reynolds numbers rather than at one specific value. In particular, Hino, 

Sawamoto and Takasu (1976) have considered the problem of boundary layer transition 

in an oscillatory pipe flow, as indicated by experiments employing hot-wire anemometer 

to observe velocity fluctuations. The flow is found to be intermittently turbulent over a 

wide range of conditions, and they distinguish between varying degrees of turbulent flow 

which they describe as weakly turbulent, conditionally turbulent and fully turbulent. 
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4.2.3 Damping due to Baffles 

The preceding section considered the estimation of hydrodynamic damping due to the 

boundary layers on the tank walls. Attention is now given to the hydrodynamic damping 

due to flow separation effects as the fluid oscillates past baffles. Two types of baffles as 

shown in Figs. 7(a) and 7(b) are considered here. These correspond, respectively, to two 

horizontal baffles perpendicular to the side walls and a vertical baffle perpendicular to the 

bottom of the tank. 

Case I: Horizontal Baffles (Figure 7(a)) 

The average rate of energy dissipation due to the baffles present in the tank is 

and a =l/a is defined as relative baffle length corresponds to tank half length a and baffle 
length/. 

The velocity perpendicular to the horizontal baffle at an elevation h above the base is 

given as 

(4.39) 

where: 

A=2aab (4.40) 

Ur=gn. a 
k sinh(kh) 
co cosh(kd) 

(4 .41) 
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Substituting Eq 4.41 into Eq 4.40 and applying Eq 4.6, the hydrodynamic damping 

coefficient due to horizontal baffles is given as: 

V A J 

sinh3(kh) 
sinh(2kd)sinh(kd) 

(4.42) 

Rearranging the above equation: 

' 2kY d ' 
K

 d JU J 

sintr 
^ T t h ^ 

2 a 

sinh f sinh 
(4.43) 

Case II: Vertical Baffle (Figure 7(b)) 

In this case, the average energy dissipation is expressed as 

D=Apb C dju?dz 
37t o 

(4.44) 

where 

U r =gr) a 

k cosh(kz) 
co cosh(kd) 

(4.45) 

Again, substituting Eq. 4.45 into Eq. 4.44 and applying Eq. 4.6, the hydrodynamic 

damping due to vertical baffle can be expressed as 

9% v a
 j 

sinh(2|3kd)cosh((3kd)+4sinh([3kd)" 
sinh(2kd)sinh(kd) 

(4.46) 
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C v = ^ C d 

9K v d A a
 J 

sinh TC|3- cosh fe-
2 a 

+ 4 sinh 

sinh T C - sinh T C c H 

2 a 

TC d 
2 a 

(4.47) 

where (3 =^/d is defined as relative baffle length corresponds to water depth d and baffle 

length/. 

The drag coefficient of a flat plate in an oscillating fluid depends strongly on the 

Keulegan-Carpenter Number K = UT/l, where U is the maximum velocity in a cycle, T is 

the period of oscillation, and I is length of the baffle. The case of a wall-bounded plate 

has been measured experimentally by Sarpkaya and O'Keefe (1996) and Fig. 8 shows the 

measured values of C d as a function of Keulegan-Carpenter number. This indicates that 

the drag coefficient for a wall-bounded plate exhibits a relatively steep variation of C d 

with K, and that the effect of the wall is to increase C d by as much as 50 % in the range 1 

< K < 30, relative to the free-plate case. This indicates that drag coefficients obtained 

from free-plate tests are not particularly applicable to wall-bounded plates, and that wall-

bounded plates provide a high degree of damping, particularly at small amplitudes of 

oscillation. 

It is also noted that application of Eqs. 4.38, 4.43 and 4.47 above requires an estimate of 

the elevation amplitude, r)a. The r] a itself may range up to maximum levels associated 

with wave breaking (though near the breaking limit the assumptions required for the 

application of linear wave theory are no longer valid). 
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Small scale physical models of structures provide a convenient means of predicting full-

scale performance. Model tests are particularly invaluable when analytical prediction 

methods are inadequate or unavailable, as in some separated flow and dynamic response 

problems within the general area of fluid-structure interaction. Such model tests relating 

to the problem at hand have been carried out using the shake-table of the Earthquake 

Engineering Laboratory of the Department of Civil Engineering at the University of 

British Columbia. The following sections describe the equipment and methods used in 

the experiments. The techniques of signal conditioning and data analysis used to derive 

pertinent information from measurements are also discussed. 

5.1 Dimensional Analysis 

In planning model tests and the presentation of results, it is useful to carry out a 

dimensional analysis of the problem in order to identify the governing parameters so that 

controlled variables in the model can be suitably varied. 

A reservoir is subjected to a harmonic uni-directional horizontal base acceleration is 

considered. Variables defining the system may be taken as: 

a reservoir dimension 

d liquid depth 

p density of the liquid 

|LL viscosity of the liquid 

g gravitational acceleration 

U amplitude of base velocity 

co exciting frequency 

57 



4 damping coefficient 

Chapter 5 Experimental Study 

A number of dependent variables defining the response of the system are of interest: 

r\ free surface elevation at a specified location 

F hydrodynamic force acting on the reservoir 

u)n sloshing frequency 

On the basis of a dimensional analysis and assuming a linear response, the dimensionless 

elevation amplitude, dimensionless force amplitude and dimensionless sloshing 

frequency may be expressed in the form: 

_gJl 
coUa 

=f, 
d co a pUa 

a ' g ' H 
(5.1) 

pa dcoU 
d co2a pUa 

g M-
(5.2) 

co? a 
—=f 
g 

d co2a pUa 

ta' g ' \i ,4 (5.3) 

d/a is a ratio of characteristic reservoir size to fluid depth; co2a/g is a frequency parameter 

indicative of the reservoir size to wave length ratio, and pUa/(i is a Reynolds number 

which accounts for viscous effects. 
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5.2 Test Facilities 

5.2.1 Shake-Table 

The shake-table is a 3 m by 3 m (10 ft by 10 ft) cellular structure fabricated from 

aluminum and weighing 2,100 kg (4,600 lbs). The table motions are produced by five 

hydraulic actuators, each of which has a maximum displacement ±7.6 cm ( ± 3 inches). 

The actuator used to produce the horizontal longitudinal motions can generate up to 156 

kN (35,000 lbs) of force. The remaining four actuators are used to produce either vertical 

or rocking motions and can each generate up to 67 kN (15,000 lbs) of force. Figure 2 

shows the ground motion direction components. The actuators are mounted in an isolated 

concrete pit foundation weighing approximately 226,800 kg (500,000 lbs). Test 

specimens are attached to the table through a system of threaded anchors on a 53.3 cm 

(21 in) square grid. A block diagram of the shake-table facility is shown in Fig. 3. 

5.2.2 Signal Generation and Data Acquisition 

The facility incorporates a digital computer control system to allow maximum flexibility 

in designing and performing tests. The shake-table motions are controlled by a 

specialized state-of-the-art Multi Exciter Vibration Control software package. This 

software performs a closed-loop control of the shakers and is capable of reproducing 

recorded earthquake motions with high accuracy. 

The laboratory is equipped with several data acquisition systems for data collection and 

analysis. A 32 channel data acquisition system is generally used for instrumentation of 

specimens tested on the shake-table. A l l channels are conditioned by variable cut-off 

filters to provide optimal control over signal levels and noise reduction. 
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The control commands for the table are generated by a 10 MHz AST (IBM/AT 

compatible) computer with 40 M B hard drive and 640 K of R A M . Ground motion 

records are stored digitally on hard disk which is used to generate table commands during 

testing. Two Metrabyte DAS boards are installed in the computer to provide 32 A /D 

channels for data acquisition. The software is capable of acquiring data from all 32 

channels at a rate of 500 Hz per channel (16 kHz total), as well as controlling the shake-

table simultaneously. The functional block diagram shown in Fig. 3 indicates the 

relationship between the data acquisition, processing and simulator control systems. 

5.2.3 Tank Model and Fixtures 

A sketch of the tank model and associated fixtures is given in Fig. 4. The rectangular 

tank model was constructed of plexi-glass. The dimensions of the tank are 0.5 m long, 

and 0.5 m wide and 0.5 m high. The tank base was fixed with a steel plate to limit 

flexibility in the vertical direction. The top and bottom of the load cell were attached to 

circular steel plates, each with 20 threaded bolts. The top plate was fixed to the tank 

bottom with bolts; and the bottom plate was fixed to a U beam, which in turn is bolted to 

the shake-table. This fixture prevents uplift motion. Figure 5 shows two side views of 

the tank model in the shake-table. 

5.2.4 Instrumentation 

Multi-Component Transducer 

A multi-component transducer, manufactured by Advanced Mechanical Technology, Inc. 

(AMTI), was used to measure the base shear force and overturning moment at the base of 

the tank. This transducer has six channels of output, i.e., F x , F Y , F z , and M x , M Y , M z . 

The coordinate system axes are shown in Fig. 6. The top and bottom surfaces of this 

instrument are 5 inches in diameter and are made of high strength anodized aluminum. 
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Eight l/4"-20 threaded inserts on a 4 inch bolt circle diameter are provided on each 

surface. The transducer uses strain gages to perform the force and moment 

measurements. An elastic member inside the transducer is gaged such that the three 

forces and three moments applied to the unit may be isolated with minimum crosstalk. 

The gages are configured in four-arm bridges to provide high thermal stability. 

In general the transducer's sensitivities are of the order of 1 uV/lbf for force and 1 uV/in-

lbf for moment, so that amplification is necessary to provide sufficiently high levels of 

output signals for data logging purposes. The following equation is used to determine the 

required amplifier gain: 

V e x S x F S L 

where G is gain, V 0 is the desired full-scale output voltage, V e is the bridge excitation 

voltage, S is the dynamometer sensitivity, and FSL is the expected full-scale load. It is 

often desirable to use different gains for different channels depending on the expected 

full-scale loads for those axes. 

Wave Probe 

The wave probe used is based on a design of the Hydraulics Laboratory of the National 

Research Council, Canada. It is a capacitance-type 'bow-string' sensor consisting of a 

loop of wire stretched on one side of a metal frame. The wire loop sensor is connected to 

an amplifier designed to convert the change of capacitance to a measurable change in 

voltage. This device has a linearity better than 98.5% and a resolution better than 1 mm, 

the latter being limited by meniscus, and under wave action, by the run-up. A single 

wave probe was used near the tank wall as shown in Fig. 4. 
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The purpose of the experimental study was to measure the hydrodynamic characteristics 

of the tank due to the sloshing motion. The hydrodynamic characteristics of interest are 

the fluid surface elevation, the horizontal force on the tank, the overturning moment at the 

base of the tank and the hydrodynamic damping. It was expected that the parameters that 

would have the greatest influence on the performance of the tank would be the fluid depth 

d, the tank size characterized by the dimension a, the exciting frequency for harmonic 

motion co, the dimensions of the baffles in the tank and the location of the baffles. The 

tank dimensions were kept constant while the fluid depth and exciting frequency were 

varied. The following series of tests were carried out: 

1. Horizontal harmonic motion 

2. Rocking harmonic motion 

3. Horizontal earthquake-induced motion 

4. Simultaneous horizontal and rocking harmonic motions 

As well, tests with baffles were carried out for a horizontal harmonic base motion with a 

constant fluid depth corresponding to d/a = 1.0. 

Harmonic Excitations 

The horizontal harmonic excitation tests were carried out for two fluid depths 

corresponding to d/a = 0.5 and 1.0. The tests for rocking and simultaneous horizontal and 

rocking harmonic motions were carried out for one depth, d/a = 1.0. The excitation 

frequency was varied from 0.50 to 2.20 Hz, and the amplitude of excitation was 

sufficiently small to satisfy the linear condition. Tables 2-5 shows the test cases for 

horizontal, rocking and combined horizontal and rocking motions. 
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Harmonic Excitation with Baffles 

Two types of baffles, denoted horizontal and vertical baffles shown in Fig. 7 were used. 

Horizontal baffles are oriented perpendicular to the side-walls. The length of the baffles 

was kept constant at / = 4 cm and three baffle elevations were used: h/d = 0.6, 0.7 and 

0.8, where h is the baffle elevation above the base of the tank. The vertical baffle was 

oriented perpendicular to the bottom and located at the middle of the base. The lengths of 

the baffles were varied as l/d = 0.1, 0.2 and 0.3, where I is the baffle length above the 

base of the tank. 

Earthquake Excitation 

For the laboratory tests, the Mexico 1979 earthquake record has been used as the basis for 

simulating the earthquake excitation. In the present study, the maximum acceleration is 

scaled to O.lg without time scale change, so that the velocity and displacement maxima 

differ from the full-scale condition. The frequency is 0.5 - 12 Hz and overall duration is 

about 50 s. 

5.4 Data Analysis 

This section describes the techniques used to analyze the base motion record and the 

corresponding time domain records of the fluid surface elevation, horizontal force and 

overturning moment, both for harmonic and earthquake excitation. 

System Characteristics and Damping Tests 

An initial step in the parameter estimation of the test structure is to measure the natural 

frequencies of the sloshing motion. The natural frequencies of the sloshing motion are 

determined experimentally by first exciting the tank-fluid system with a very high 

frequency harmonic base motion and then suddenly stopping the base excitation. At this 
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point, the fluid surface elevation decay is recorded for a sufficient duration by the wave 

probe and a standard Fast Fourier Transform program is used to convert this record into a 

Fourier Amplitude Spectrum. The natural frequencies of the sloshing motion correspond 

to the frequencies defining the maximum spectral values of the Fourier Amplitude 

Spectrum. 

Hydrodynamic damping ratios £ for a single-degree-of-freedom system may be 

determined experimentally by one of two methods which are based on linear system 

theory: the half-power (bandwidth) method, and the logarithmic decrement method. 

The second method was utilized in this study. Free vibration tests were carried out to 

determine the damping ratio of the system. A sample record of the fluid surface elevation 

near a tank wall from free vibration tests is shown in Fig. 9. If the fluid surface elevation 

at time t = tj is denoted by r|j and the elevation at time t = 11 +27r,r/cod is denoted by r\l+r 

where r is the cycle increment and cod is the damped natural frequency equal to (n-yJl-C,2 , 

then it can be shown that 

(5.4) 

Expanding coa and eliminating the exponential leads to 

In i+r 27TX (5.5) 

For a lightly damped system (i.e. £ < 0.20), this may be approximated as: 

64 



Chapter 5 Experimental Study 

In ^ i ± L =-2ra-; (5.6) 

from which 

2m 
JL (5.7) 

5.4.1 Noise Filtering Techniques 

Most analyses of experimental data provided as time histories usually involve filtering the 

data to remove unwanted noise which can affect the results. This is a fairly simple 

procedure which can either be implemented in the form of analog filtering by dedicated 

circuits during the data collection stage, or by using digital filtering algorithms after the 

data has been digitized and stored. The treatment of correct noise removal is especially 

important in this study since the response of tank - liquid system may have frequency 

information which is in the same range as electric noise. Any filtering technique used for 

treating such data must ensure that valid signal information is not removed along with the 

interfering noise. 

A variety of sources can produce noise. The power supply lines that run through the 

laboratory generate electromagnetic noise which shows as a 60 Hz signal mixed with the 

main signal. Electromagnetic noise is also generated from other devices (e.g. motors) 

within the laboratory. Thermal noise of a random nature and spread over a range of 

frequencies is generated within the transducers and circuitry of the amplifiers. Load cell 

which is relatively sensitive may pick up mechanical noise from the shake-table. In 

addition, quantization noise is introduced during the analog-to-digital conversion process, 

but this can be mitigated to a large extent by using the full range of the A/D converter for 

a given signal. 
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Digital filtering of time series data can be done in two ways. A non-recursive filtering 

technique using an FFT-based algorithm provides low-pass, high-pass, band-pass or 

band-stop filtering capabilities. The other method, known as polynomial filtering is 

recursive and is based on simple interpolating polynomials which act as low-pass filters. 

In the present study, the commercial program DADisp is used to filter the data obtained 

from the experiments. DADisp filters allow one to quickly design, analyze and process 

both FIR (Finite Impulse Response) and ITR (Infinite Impulse Response) digital filters. 

The FIR module creates lowpass, highpass, bandpass, bandstop, multiband filters, and 

Hilbert transformers and differentiators using the Parks-McClellan/Remez Exchange 

optimal design algorithm. The ITR module supports Butterworth, Chebchev I, Chebychev 

II and Elliptic designs for lowpass, highpass, bandpass and bandstop recursive filters. 

The FIR lowpass filter is used in order to remove high frequency noise in the data. The 

following parameters are needed to design the lowpass filter: the sampling rate, cutoff 

frequency, passband ripple, stopband attenuation and stopband frequency. The cutoff 

frequency is obtained from a spectrum analysis of the unfiltered data. The stopband 

frequency is less than half of the sampling rate. 

5.4.2 Analysis of Elevation and Force Records 

Figure 10 shows a comparison of shake-table acceleration and tank top acceleration 

conditions. The shake-table and tank top acceleration values agree with each other rather 

well and confirm the assumption of a rigid tank. The experiments were carried out both 

with fluid in the tank and without fluid in the tank. When the tank is without fluid, the 

force is due to the inertia of the tank together with any attached masses, but when the tank 

is filled with fluid, the force is in part due to the inertia of the fluid and sloshing in the 

tank. By comparing the load cell records with fluid and without fluid, the forces due to 

sloshing can be obtained. 
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The horizontal force and base overturning moment records were filtered using the 

DADdisp software program. Figure 11 shows a sample record from the load cell before 

and after filtering. The signals generated by the capacitance type wave probe were free 

from noise and never filtered. The maximum value from each record except for water 

surface elevation was then recorded with fluid and without fluid. From these values, the 

relevant dimensionless parameters representing the fluid surface elevation at the tank 

wall, the horizontal force on the tank, and the overturning moment at the base can be 

calculated. 
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6 Results and Discussion 

This chapter summarizes results obtained from the analytical solutions and the 

experiments, as described in Chapters 2 - 4 , including a comparison with reported results 

from previous studies. First, analytical results relating to the dimensionless 

hydrodynamic coefficients are presented. The estimation of the maximum force, 

maximum overturning moment and maximum fluid surface elevation due to earthquake-

induced sloshing are presented using both time-domain solution as well as a modal 

analysis. Also, analytical results for damping coefficients due to boundary layers and 

baffles are presented. Finally, experimental results relating to maximum hydrodynamic 

coefficients and damping coefficients from free vibration tests are presented and 

compared with analytical results. 

6.1 Theoretical Results 

6.1.1 Harmonic Excitation 

The solution obtained for harmonic excitation indicates that for the case of a real fluid the 

dimensionless amplitude of the free surface elevation at a particular location, the 

dimensionless force amplitude, the dimensionless overturning moment amplitude, the 

dimensionless added mass C a , and the dimensionless damping coefficient Cx are all 

functions only of the frequency parameter co2a/g, the relative depth d/a, and the damping 

ratio £|. Selected results illustrating the above relationships are now presented. 

Figures 12 and 13 show the dimensionless amplitude of the free surface elevation at the 

wall, dimensionless force amplitude and dimensionless overturning moment amplitude as 

functions of the frequency parameter co2a/g for d/a = 1.0 for damping values ^ = 0, 0.05, 

and 0.10, for both horizontal and rocking base motion and for a rectangular reservoir. 
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Figures 14 and 15 show the corresponding results for a circular reservoir. The expected 

large amplitudes near the resonant frequencies C0n are indicated, with an increase in the 

degree of damping giving rise to a significant decrease in the amplitudes near these 

frequencies. On the other hand, as the frequency approaches zero, the dimensionless 

amplitudes approach constant values independent of the magnitude of damping and given 

by following expressions: 

For horizontal excitation: 

coUa 
•=1 

coUm 
•=1 

(6.1) 

(6.2) 

M _ 1 
coUmd 2 

M ' 1 f a ^ 
hK 

coUmd 2 

For rocking excitation: 

co^da =2*. 

(6.3) 

(6.4) 

(6.5) 

TT 1 OO CO 

co^Fdm 2 £f m ^ n 

n=l 

(6.6) 
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M 
(6.7) 

coYdmd 6 m 
m=l n=l 

M ' 1 f a 
- + K — 
6 d 

(6.8) 
co^dmd n 

where K = 1/3 for rectangular tank and K = 1/4 for circular tank 

The above relationships indicate that the dimensionless hydrodynamic coefficients except 

for dimensionless base moment (considered to include the effects of base pressure) are 

constant for horizontal excitation for any configuration of tank. On the other hand, for 

rocking excitation, the dimensionless hydrodynamic coefficients are functions of d/a, but 

are constant for a particular tank configuration. 

Figures 16 and 17 show the added mass, the damping coefficient, and the force 

amplitude, expressed in suitable dimensionless forms, as functions of the frequency 

parameter for three different values of damping ratio, £i = 0, 0.05, and 0.10, for 

rectangular tank and for horizontal and rocking excitations respectively. Figures 16(a) and 

17(a) show that, for the case of zero damping, the effect of the resonant frequencies is 

marked by large increases in added mass, with a sign reversal in added mass occurring 

near each resonant frequency. When C a < 1, the added mass becomes negative (m e < m), 

corresponding to a sloshing-induced force which is out of phase with the reservoir 

displacement, thus leading to a force reduction from that if sloshing were absent. The 

added mass is seen to approach zero as co2a/g—>0, as sloshing effects diminish and the 

hydrodynamic force becomes associated with true mass m of the fluid. On the other 

hand, as c o 2 a / g — a n d the damping is non-zero, C a tends to a constant value 

corresponding to the high-frequency effective mass m 0: C a —>(m 0/m)-l. As expected, 

an increase in the degree of damping is seen to reduce significantly the extreme values of 

added mass in the vicinity of the resonant frequencies, such that the effect of any 
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resonance is virtually indiscernible at third and higher mode resonances. This is typical 

of the influence of damping on multi-degree-of-freedom systems where magnification at 

higher mode resonances becomes small. 

Figures 16(b) and 17(b) show the corresponding results for the dimensionless damping 

coefficient Cx. The coefficient exhibits a noticeable peak near co = CO], with smaller peaks 

at the higher resonant frequencies. These peaks become higher but narrower as the 

damping ratio is reduced. Figures 16(c) and 17(c) show the corresponding results for the 

dimensionless force amplitude. As before, the force amplitude is largest close to the 

lowest resonant frequency and reduces as the degree of damping is increased. For the 

case of zero damping, the dimensionless force amplitude corresponds to | l + C a | , whereas 

when the damping coefficient is nonzero the force amplitude corresponds to an 

appropriate combination of C a and Cx: 

for horizontal excitation (6.9) 

for rocking excitation (6.10) 

Figures 18 and 19 show results similiar to Figs. 16 and 17, but corresponding related to 

circular tanks. These figures indicate that the results for circular tanks have the same 

trend as for rectangular tanks. 

Figures 20 and 21 show the dimensionless amplitude of the free surface elevation, 

dimensionless force amplitude and dimensionless moment amplitude as a function of d/a 

for damping values £i = 0.01, 0.05 and 0.10 for a rectangular tank for horizontal and 

rocking excitations respectively. In the case of the surface elevation for horizontal 

excitation, the maximum elevation is virtually unaffected by changes in d/a for a given 

coUm =V(i+ca)2+c 

co^dm =V(i+ca)2+c 
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value of £ 1 , and varies only with the degree of damping. This may be revealed by an 

examination of Eq. 2.6, and 2.44: d/a influences the dimensionless elevation amplitude 

only through (On, and at co = C0i the dominant term n = 1 corresponds to coi appearing only 

through the ratio uVcoi (see Eq. 2.91), which is constant for a given value of C,\. This can 

be observed from Fig. 20(a). As expected, the figure indicates how the maximum 

amplitude decreases as the damping parameter is increased. On the other hand, the fluid 

surface elevation due to rocking base motion depends on as well as d/a. This trend is 

clearly shown in Fig. 21(a). For a given value of £ i , the maximum fluid surface elevation 

amplitude initially decreases with increasing values of d/a, and then becomes a constant 

at sufficiently high values of d/a. This may be revealed by examination of Eq. 2.24: d/a 

influences the dimensionless elevation amplitude through y n. 

Figures 20(b) and 21(b) show the dimensionless force amplitude as a function of d/a for 

various values of C\. This is arising on account of the term tanh(knd)/knd appearing in h n 

given in Eq. 2.8 for horizontal excitation and h ^ given in Eq. 2.28 for rocking 

excitation. The figure indicates how the dimensionless force amplitude decreases with 

increasing values of damping ratio ^ . For a given value of £ i , the force amplitude 

initially decreases with increasing values of d/a, and then becomes a constant at 

sufficiently high values of d/a. The dimensionless moment amplitudes exhibits the same 

trend as the dimensionless force amplitude as shown in Figs. 20(c) and 21(c). 

6.1.2 Earthquake Excitation 

The results presented so far have related to harmonic excitation, and results for irregular 

base motions are now considered. The solutions are based on the time-domain and modal 

analysis approaches that have been indicated. In this section, the modal analysis results 

for horizontal, rocking and combined base motions are discussed. The time-domain 

solutions for past earthquake records are also discussed. 
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6.1.2.1 Modal masses and elevations 

Chapter 6 Results and Discussion 

The more usual procedure for estimating the maximum force and the maximum 

overturning moment is based on a modal analysis involving use of earthquake response 

spectra, modal masses and effective elevations. This section discusses these. 

The full solutions for rectangular and circular reservoirs indicate that the relative masses 

m0/m, rri|/m and m 2/m and the corresponding relative elevations do/d, d|/d and d2/d each 

depend, in either case, only on the relative size parameter d/a. Figures 22-30 provide 

comparisons of alternative predictions of these relationships and are now considered. 

The high-frequency effective mass mo is of particular interest, since this directly provides 

the force due to high-frequency excitation for which sloshing resonances do not occur. 

The comparison of high-frequency mass ratio, m 0/m with d/a for circular and rectangular 

reservoirs for horizontal base motions is shown in Fig. 22(a). The full solutions for the 

rectangular and circular reservoirs for horizontal base motion are close to each other, both 

showing an increase with d/a and reaching a constant value at sufficiently high values of 

d/a. For values of d/a less than about 1, the relationship is nearly linear and for horizontal 

base motion is given approximately as: 

m ^ a . 

^ = 0 . 5 3 ^ 
m ^ a , 

for circular reservoir (6.11) 

for rectangular reservoir (6.12) 

Figure 23(a), which shows m 0/m for rocking base motion indicates that the full solutions 

for the rectangular and circular reservoirs are again close to each other. The m 0/m values 

decrease approximately linearly for values of d/a less than about 1.0, and then slowly 

increase with d/a and reaching constant values at sufficiently high values of d/a. 
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The effective fluid mass mi, corresponding to the lowest natural frequency of sloshing, is 

also a important parameter in the analysis of earthquake-induced sloshing. Figure 22(b) 

shows a comparison of the first mode sloshing mass for rectangular and circular 

reservoirs with horizontal base motions. These are close to each other and decrease with 

increasing d/a values, reaching constant values at sufficiently high values of d/a. Figure 

23(b) for rocking base motions shows that the results for circular and rectangular-

reservoirs are again close to each other, and the nii/m values decrease with d/a. The 

mi/m values are very high for smaller values of d/a. This is in contrast to the case of 

horizontal base motions. 

The results for the second mode sloshing mass for circular and rectangular reservoirs are 

shown by Fig. 22(c) and again are close to each other for horizontal base motion. The 

m 2/m values decreases with d/a, reaching constant values at sufficiently high values of 

d/a. Figure 23(c) for rocking base motion exhibits the same trend as for horizontal base 

motion except that the m 2/m values are very high at smaller values of d/a. 

Figure 24 shows a comparison of the high frequency mass ratio m 0/m and the modal 

masses ratio mi/m and m 2/m for horizontal and rocking base motions for a rectangular 

reservoir. The high frequency mass ratio for horizontal and rocking base motions exhibit 

opposite trends to each other, i.e. m 0/m increases with d/a for a horizontal base motion, 

and decreases with d/a for a rocking base motion. When d/a = 0.9, the m 0/m value is the 

same for both horizontal and rocking base motions. 

The mi/m values for horizontal and rocking base motions decrease with d/a, and are close 

to each other when d/a > 4.0. When d/a = 0.9, the m{/m value is the same for both 

horizontal and rocking base motions. The m 2/m values decreases with d/a and are close 

to each other when d/a > 1.0. The m 2/m value for rocking base motions is much higher 

than that of horizontal base motions at smaller d/a values. 
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Figure 25 shows the variation of effective elevations ratio as a function of d/a for circular 

and rectangular reservoirs for horizontal base motion. The effective elevations ratio for 

circular and rectangular reservoirs are close to each other and increase with d/a reaching 

constant values at sufficiently high values of d/a. 

Figure 26 shows the variation of effective elevations ratio as a function of d/a for circular 

and rectangular reservoirs for rocking base motion. The effective elevations ratio for 

circular and rectangular reservoirs are again close to each other and increases with d/a 

reaching constant values at sufficiently high values of d/a. 

Figure 27 shows the comparison of effective elevations ratio for horizontal and rocking 

base motions for a rectangular reservoir. The d0/d values for rocking base motion is less 

than that of horizontal base motion. The d\/d and d2/d values for horizontal and rocking 

base motions are the same. 

Figure 28 shows the comparison of effective elevations ratio for circular and rectangular 

reservoirs for horizontal base motion when base pressure is considered. Again the 

effective elevations for circular and rectangular reservoirs are close to each other and 

decreases with d/a. They reach a constant value when d/a is approximately greater than 1 

and have very high values at smaller d/a values. The same trend is observed for rocking 

base motion as shown in Fig. 29. 

Figure 30 shows the comparison of effective elevations for horizontal and rocking base 

motions for a rectangular tank as function of d/a. The d'0/d for horizontal and rocking 

base motions are close to each other and d'0/d values for horizontal base motion are less 

than that of rocking base motion. The dVd and d'2/d values are the same for both rocking 

and horizontal base motions. 
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6.1.2.2 Comparison with Housner's solution 

Housner (1957, 1963) described an approximate method of solution for rectangular and 

circular reservoirs based on the assumption that the force is made up of an impulsive 

component, corresponding to mo, and a convective component corresponding to the 

modal mass of the lowest sloshing mode, m.\. That is, the influence of the higher modal 

masses is ignored. The analysis gives the following expressions for the masses m 0 and 

mi, their corresponding elevations do and dj, and the lowest mode frequency CO] for 

rectangular and circular reservoirs: 

For a rectangular reservoir: 

m 0 _ tanh(V3(a/d)) 
m V3(a/d) 

(6.13) 

JL=o.527(a/d)tanh[l.58(d/a)] 
m 

(6.14) 

1+a m 
m, 

-1 (6.15) 

1 m(a^ 
3 m, 

+ 0 . 6 3 B - 0.28 
d 1 ' 

f \ 2 

' m a N 

m, d 
-1 (6.16) 

co2 =1.58(g/a)tanh[l.58(d/a)] (6.17) 
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For a circular reservoir: 
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m 0 _ tanh(v

/3(a/d)) 

m V3(a/d) 
(6.18) 

m, 
m 

=0.386 (a/d)tanh[l.84 (d/a)] (6.19) 

d ^ = 3 
d 8 

1+cx m 
m, 

1-0.185 m 
m. 

+0.56(3-
' m a^ 

3 m, d 
-1 

(6.20) 

(6.21) 

co2 =1.84(g/a)tanh[l.84(d/a)] (6.22) 

If the elevations do and d, are determined on the basis of the dynamic fluid pressures 

exerted on the floor of the tank, the following values should be used for both rectangular 

and circular reservoirs: a = 1.33, (3 = 2.0, otherwise a = 0, (3 = 1.0. 

Figures 31(a) and 32(a), which show mo/m for rectangular and circular reservoirs 

respectively, indicate that Housner's solution generally agrees closely with the full 

solutions (but less so for d/a > 0.5). 

Figures 31(b) and 32(b), which shows mi/m for rectangular and circular reservoirs 

respectively, indicate that Housner's solution for a rectangular reservoir also agrees 

closely with the full solution. However, Housner's result for a circular reservoir is 

significantly lower than the predictions based on the full solution, and thus appears to be 

in error. 
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Figures 33(a) and 34(a), which show d0/d for rectangular and circular reservoirs 

respectively, indicate that Housner's solution, which predicts do/d = 0.375 for d/a > 0.67, 

underpredicts somewhat the full solution over the entire range of d/a. In fact, the higher 

limit d/a —>oo corresponds to do/d = 0.5, but this is not predicted by the Housner 

solutions. 

Figures 33(b) and 34(b), which shows dj/d for rectangular and circular reservoirs 

respectively, indicates that Housner's solution given in Eqs.6.15 and 6.20 agrees 

resonably well with the full solution except when d/a < 0.5. 

Figures 35(a) and 36(a), which show d'o/d for a rectangular and circular reservoirs when 

base pressure is considered, indicate that Housner's solution underpredicts the full 

solution when d/a > 1.5 and overpredicts the full solution when d/a < 1.5 for rectangular 

reservoir. For circular reservoir, the Housner's solution underpredicts the full solution 

when d/a > 3 and overpredicts d/a < 3. 

Figures 35(b) and 36(b), which show d'i/d for rectangular and circular reservoirs when 

base pressure is considered, indicate that Housner's solutions agree well with the full 

solution. 

6.1.2.3 Comparison of force estimates with Housner 

Modal analysis 

In certain situations, the modal masses m 0 and mi and elevations do and d| are 

incorporated into a full structural analysis, and are not used alone to obtain the maximum 

hydrodynamic force directly. In such cases, the comparison given above in the previous 

section should be sufficient to provide guidance on the values of these parameters to be 

used. However, it is generally also of interest to consider a comparison of the overall 

force estimates based on the alternative methods of prediction. Differences in force 
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estimates may arise, in part, because of differences in predictions of m 0 , mi, do and d], as 

indicated in the previous section; because other higher modal masses are ignored in 

Housner formulation; and because alternative versions of an earthquake response 

spectrum and associated damping levels may be employed. 

In order to carry out a comparison of overall force estimates, it is necessary to adopt an 

assumed representation of an earthquake response spectrum, and to select an associated 

level of damping. The earthquake response spectrum given by the National Building 

Code of Canada (1985) with an assumed damping ratio 0.5% is used. Accordingly, the 

spectral acceleration is assumed to be given by Eq.3.18 with the following parameters: 

0Ci = 5, 0C2 = 2.11, 0C3 = 9.72, P i = 0.36 sec, P2 = 4.69 sec. Also, the maximum ground 

acceleration u m has been taken as O.lg. 

First, the influence of the higher sloshing modes contained in the full solution is 

considered and selections of corresponding results are indicated in Table 6. Such results 

are shown for a rectangular reservoir with a = 150 m, b = 75 m and d = 10 m. Thus, the 

fluid mass is taken as m = 450 x 106 Kg. The table shows the modal masses and 

elevations for a series of sloshing modes, the corresponding force and moment 

components defined by Eqs.3.19, 3.20 and 3.21, and the overall maximum force and 

moment obtained by Eq.3.32. The calculation involves the following procedure: the 

lower resonant periods are obtained from Eqs. 2.3 and 2.5, the spectral acceleration S a is 

obtained from the earthquake response spectrum for each value of T n by Eq. 3.18, scaled 

by a factor of 0.1; the ratios mn/m, dn/d and d'n/d are obtained from Eqs. 3.27, 3.28, and 

3.29 respectively; the high frequency mass mo and corresponding elevations d 0 and d'o are 

obtained from Eqs. 3.24, 3.25 and 3.26; the modal forces F n are obtained from Eq. 3.19; 

and the calculated values of F n are applied to Eq. 3.31 to obtain the overall maximum 

force F m a x . A similar procedure is applied to obtain the maximum overturning moment 

M m a x , except that the elevations d n are included in the calculation as indicated in Eqs. 

3.28 and 3.29. 
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The table illustrates how second and higher mode resonances contribute to a decreasing 

extent to the overall force maximum. Thus the table indicates that the force F 0 , Fi and F 2 

are estimated to be 36.170, 1.822 and 1.777 M N respectively. The resulting force 

maximum based on the use of Eq. 3.31 applied in turn to Fo alone, and to Fo and Fi are 

36.170 and 36.219 M N respectively, while the complete solution (based on the first 10 

sloshing modes) gives F m a x = 36.376 M N . Likewise, the moment components M 0 , Mj 

and M 2 are estimated to be 158.733, 9.417 and 8.960 M N m respectively. The resulting 

moment maximum based on the use of Eq. 3.31 applied in turn to M 0 alone, and to M 0 

and M , are 158.733 and 159.012 M N m respectively, while the complete solution (based 

on the first 10 sloshing modes) gives M m a x = 160.256 MNm. A similar procedure is 

applied to M ' m a x . These results suggest that the masses m 0 and mi should generally be 

sufficient to estimate the overall force and moment maxima (in this particular case to 

within about 1% of the full solution). However, more generally such a conclusion would 

depend on the reservoir size d/a, and on the significant frequency range of the earthquake 

response spectrum in relation to the lower modal frequencies. 

Table 7 shows a more general comparison between the full solution for a rectangular 

reservoir and the method of Housner for four cases with different values of a 

corresponding to d/a ratios ranging from 0.1 to 2 for horizontal base motion. The table 

includes the alternative predictions of the overall maximum force and moment, F m a x , 

M m a x and M ' m a x . The table also includes results for the full solution based on the use of 

the first sloshing mode only (denoted n < l , and containing terms mo and mi terms only), 

and the full solution with many modes of sloshing. The results generally indicate how the 

full solution based on the first sloshing mode only is always reasonably close (within 2%) 

of the more complete solution; and the Housner formulation is also generally in 

agreement with the full solution, although to a lesser extent. In fact, the Housner 

formulation overpredicts the maximum force based on the full solution by 6% for case B 

(d/a = 0.5), and by 10% for case D (d/a = 2). On the other hand, the Housner formulation 

underpredicts the maximum moment above the base based on the full solution by 12% for 
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case A (d/a = 0.1) and by 5% for case D (d/a = 2.0). The Housner formulation 

overpredicts the maximum moment at the base based on the full solution by 559% for 

case A (d/a =0.1) and by 22% for case D(d/a = 2.0). This large difference may be due to 

the error in d'o/d values in Housner's formulation. 

Table 8 shows the modal analysis results for a rectangular reservoir with rocking base 

motion with different values of a corresponding to d/a ratios ranging from 0.1 to 2.0. The 

table includes the alternative predictions of the overall maximum force and moments. 

The results generally indicate how the full solution based on the first mode only is always 

reasonably close (within 1%) of the more complete solution. 

It is of interest to compare the results from horizontal and rocking base motion from 

Table 7 and Table 8 since both experience the same maximum horizontal acceleration of 

0.1 g at the fluid level. The maximum forces from horizontal base motion are less than 

that of rocking base motion for cases A and B. The maximum forces from the horizontal 

base motion are greater than that of rocking base motion for cases C and D. 

Fluid surface elevation 

The traditional approach to estimating maximum forces is based on the assumption that 

only the first sloshing mode is significant. Using this assumption, the maximum 

elevation n i is given by: 

i l , =0.811a Sa(T,,C) (6.23) 

However, for a relatively large reservoir, the spectral acceleration may be quite low at the 

first mode natural period so that the effect of second and higher sloshing modes may not 

be negligible. This differs from the case of force predictions, since there is now no term 
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analogous to the impulsive force component. In this case, several modes should be 

considered simultaneously, and a common practice to estimating the overall maximum 

elevation T)M is based on the root of the squares of the maximum modal responses: 

N 11/2 
, 2 In! 

. n=l 

(6.24) 

where r] n is given by Eq. 3.22, and N is sufficiently large for convergence to occur. 

Housner (U.S. Atomic Energy Commission, 1963) has described an approximate method 

of solution for rectangular and circular reservoirs, in which the influence of the second 

and higher sloshing modes is ignored. His analysis gives the following expression for 

maximum sloshing height in a rectangular reservoir: 

0.527 a 
Tl«= 7 x (6.25) 

tanh[l.58(d/a)] -1 
v co 2 0a J 

where 0 can be expressed as 0 = (uM/g)Sa(T,,̂ ). It is noted that, although Housner's 

solution fails for high values of 0 and does not predict r\u to be proportional to base 

acceleration, for the practical case of low 0 values the expression for r | H may be 

approximated by Eq. 6.23, but with the factor 0.811 replaced by 0.833. Thus, Housner's 

formulae then gives predictions which are 3% higher than the closed-form solution for 

first mode sloshing. 

For the case of earthquake motions, it is of interest to compare the complete closed-form 

solution with that for first mode sloshing and with Housner's solution. The comparison 

between Housner's solution, denoted r i H , and the closed-form solution for first mode 

sloshing, rii, is conveniently presented as T | H /TJI . This depends on the reservoir size a, 
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the relative depth d/a, the damping ratio C,, and the maximum ground acceleration ii M Ig. 

In all cases a damping ratio £ = 0.005 is assumed. Figure 37 shows this ratio for various 

values of d/a and with u M /g = 0.1 (Fig. 37a), and for various values of u M Ig and with d/a 

= 1.0 (Fig. 37b). The figure indicates how Housner's solution becomes inaccurate relative 

to the first order solution for smaller reservoirs and for higher values of base acceleration. 

Figure 38 provides a comparison of the full closed-form solution and the closed-form 

solution for first mode sloshing. The ratio TIM/II , is shown as a function of reservoir size 

a for various values of d/a and for u M /g = 0.1. As expected, the figure indicates that the 

first-mode result underpredicts the results of the complete solution most significantly for 

larger reservoir sizes. This is most pronounced for relatively shallow large reservoirs. In 

particular, for the case d/a = 0.2 and for reservoir lengths 2a > 60 m, the maximum 

elevation based on the complete solution is 50% higher than that based on first mode 

sloshing. 

6.1.2.4 Combined motion 

This section discusses the overall maximum fluid surface elevation, maximum force and 

maximum overturning moment due to simultaneous horizontal and rocking motions. The 

resultant maximum fluid surface elevation, r)T, due to both horizontal and rocking base 

motions can be estimated using Eq. 3.35. In a similar way the resultant maximum force 

and overturning moments, denoted F T , M T and M ' T , can be estimated using Eqs. 3.33 and 

3.34. It is of interest to compare the resultant maximum variables for combined motion 

with those for individual motions. The comparison between combined base motion 

solution and the horizontal base motion solution is conveniently presented as r | T / r | H , 

F T / F H , M T / M H and M ' T / M ' H . The comparison between the combined base motion 

solution and the rocking base motion solution is presented as TIT/TIR, F T / F R , M T / M r and 

M ' T / M ' R . These ratios depend on the reservoir size a, the relative depth d/a, the damping 

ratio C, and the maximum relative rocking parameter (^Fd)^ / U m a x which is defined by 
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maximum acceleration at fluid level due to the base motions. In all cases a damping ratio 

C, = 0.005 is assumed. 

Figure 39 shows the ratio for fluid surface elevation as a function of maximum relative 

rocking parameter (w)^ / U m a x for d/a = 0.5 and a = 100m. The figure indicates that 

the horizontal base motion influences the overall fluid surface elevation when the relative 

rocking parameter becomes smaller, and the rocking base motion influences the overall 

fluid surface elevation when the relative rocking parameter becomes larger. In between, 

the overall fluid surface elevation is influenced by both horizontal and rocking base 

motions. 

Figure 40 shows the ratio for fluid surface elevation as a function of d/a for a maximum 

relative rocking parameter ( ^ d ) ^ / U m a x = 0.1 and a = 100 m. The overall fluid surface 

elevation is influenced by both horizontal and rocking base motions for smaller d/a 

values. For larger values of d/a, the overall fluid surface elevation is influenced mainly 

by horizontal base motions. 

Figures 41, 43 and 45 show the variation of ratios for forces and moments as a function of 

the maximum relative rocking parameter (*Fd)max / U m a x for a relative depth d/a = 0.5 and 

a = 100 m. These figures indicate the same trend as that of the fluid surface elevation. 

Figures 42, 44 and 46 show the variation of ratios for forces and moments as a function of 

d/a for a maximum relative rocking parameter (w) m a x /U m a x = 0.1 and a = 100 m. 

Again, these figures indicate the same trend as that of the fluid surface elevation. 

6.1.2.5 Time-domain solution 

It is also possible to develop a numerical time-domain solution in order to predict the 

force time history corresponding to a specified earthquake record. This approach is not 
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useful for routine design, but may be used to assess the suitability of Eqs. 3.30 and 3.31. 

The time-domain solution is based on Eq. 3.11. Three different earthquake records 

corresponding to Alaska (Adak naval base, 1971), Loma Prieta (Gilroy sewage plant, 

1989) and Northridge (Pacoma dam-downstream, 1994) earthquakes are used. The 

maximum horizontal accelerations are 0.12g, 0.54g and 0.43g, the maximum vertical 

accelerations are 0.06g, 0.37g and 0.18g for the Alaska, Loma Prieta and Northridge 

earthquakes respectively. For rocking excitation, the vertical component of the records is 

also used. The horizontal acceleration records are scaled to O.lg, and rocking 

acceleration record was scaled to 0.05g. 

Table 9 shows comparisons of results between the time-domain solution and the modal 

analysis for the Alaska, Loma Prieta, and Northridge earthquake motions for a rectangular 

reservoir with a = 25 m, b = 10 m and d = 12.5 m. The modal analysis prediction based 

on the N B C response spectrum for forces is 4 % higher than that based on the complete 

time-domain solution; and the modal analysis prediction for base moments is about 10 % 

higher than that based on the complete time-domain solution. The modal analysis 

predictions based on the actual response spectrum is about 1% higher than that based on 

the complete time-domain solution for the Alaska and Northridge records and about 2% 

less than for Loma Prieta records. 

Table 10 shows the comparisons between the time-domain solution and the modal 

analysis solution for the Alaska, Loma Prieta and Northridge earthquake rocking motions 

for a rectangular reservoir with a = 25 m, b = 10 m and d = 12.5 m. Comparing the 

different predictions, it is seen that the modal analysis prediction based on N B C response 

spectrum is about 5 % higher than that based on the complete time-domain solution. The 

predictions based on the actual response spectrum is about 3% less than that based on the 

complete time-domain solution for the Alaska and Loma Prieta records and about 1% 

higher for the Nortridge record. 
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The frequency range for the lowest 10 sloshing modes for the above mentioned 

configuration is 0.1 - 0.5 Hz, while the significant frequency range of the earthquake 

response spectrum is 1.0 - 10.0 Hz. Therefore, the excitation is at a relatively high 

frequency, and the response corresponds to the use of high frequency parameters. That is, 

the solutions are particularly influenced by the high frequency mass mo. and hence the 

difference between time-domain solution and modal analysis is relatively small. 

Finally, Table 11 shows a comparison of the time-domain solution with modal analysis 

solution for combined motion. The modal analysis predictions based on the N B C 

response spectrum are about 20 % less, 45% less and 20 % more than those based on the 

complete time-domain solution for the Alaska, Northridge records, Loma Prieta records 

respectively. The modal analysis prediction based on the actual response spectrum is 

about 20% less, 20 % more and 30 % more than those based on the complete time-

domain solution for the Alaska, Loma Prieta and Northridge records respectively. 

6.1.3 Hydrodynamic Damping 

6.1.3.1 Laminar boundary layers 

The damping ratio due to energy dissipation in laminar boundary layers is a function of 

relative water depth d/a, relative size b/a and boundary layer thickness which depends on 

viscosity and frequency of the motion. Figure 47 shows the variation of damping ratio 

due to laminar boundary layers as a functions of relative water depth d/a for different 

values of reservoir length a for an infinity long reservoir (b/a = It is seen that the 

damping ratio increases as the size of the tank decreases. Figure 48 shows the variation 

of damping ratio due to laminar boundary layers as a function of relative water depth d/a 

for different values of relative reservoir size b/a and for a = 100m. The damping ratio 

decreases with both relative water depth d/a and relative reservoir size b/a. It can be 
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observed from Figs. 47 and 48 that the damping ratio reaches a constant value when d/a is 

greater than about 1.5. 

Figure 49 shows how the damping ratio decreases with increasing d/a and increasing a as 

expected. Superimposed on the figure is shown the line corresponding to a Reynolds 

Number of 500, which might be viewed as a transition between laminar and turbulent 

boundary layers. The zone to the lower left corresponds to high Reynolds Numbers so 

that the laminar boundary layer results are not particularly valid in this region. 

The ratio of the damping ratio due to all the boundaries to that due to the bottom only is 

shown in Fig. 50 as a function of d/a for a/b = 1.0 and a = 0.25 m. The damping ratio is 

seen to increase with d/a as expected. Figure 51 shows the variation of the damping ratio 

due to the various tank boundaries. The damping ratio due to the bottom decreases with 

increasing d/a; the damping ratio due to the front and back wall increases with d/a and 

reaches a constant value when d/a > 1.0; and the damping ratio due to side walls 

decreases slowly with d/a and reaches a constant value when d/a > 1.0. 

6.1.3.2 Turbulent boundary layers 

For a linear system, the damping ratio remains constant irrespective of the oscillation 

amplitude. However, the linearized shear stress results in a damping ratio which is 

generally dependent on the oscillation amplitude. This can be seen from Eq. 4.38. When 

deriving the equation for the damping due to a turbulent boundary layer, only the bottom 

wall is considered for simplicity. The solution obtained for damping due to a turbulent 

boundary layer is a function of relative water depth d/a, relative water surface elevation 

T | a /d and friction coefficient fw. The friction coefficient fw itself depends on the ratio A / K s 

as shown in Eq. 4.36. (K s is the Nikuradse roughness of the surface and A is the local 

amplitude of fluid displacement just outside the boundary layer.) Figure 52 shows the 

variation of the turbulent damping ratio as a function of d/a for different values of A / K s 
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0.1. Hydrodynamic damping due to turbulence decreases with increasing 

This clearly shows that damping ratio increases with the roughness of the 

6.1.3.3 B a f f l e s 

The damping due to horizontal baffles is a function of relative water depth d/a, relative 

baffle elevation h/d, relative water surface elevation n a/d, drag coefficient Q and relative 

baffle length a; and for a vertical baffle it is a function of relative water depth d/a, relative 

water surface elevation r)a/d, drag coefficient C d and relative baffle length (3. Figure 53 

shows the variation of baffle damping due to horizontal baffles as function of relative 

water depth d/a for various values of relative baffle elevations h/d and for relative baffle 

length a = 0.1 and relative water surface elevation r\Jd = 0.1. The damping ratio due to 

horizontal baffles increases with relative water depth d/a to a maximum value and then 

decreases with the relative water depth d/a. The damping ratio increases with relative 

baffle elevation h/d. The relative water depth d/a for maximum damping varies with 

relative baffle elevation h/d. Figure 54 shows the variation of baffle damping due to 

horizontal baffles as functions of relative water depth d/a for various values of relative 

baffle length a and relative baffle elevation h/d = 0.9 and for relative water surface 

elevation Tia/d = 0.1. The damping ratio increases with relative water depth d/a to a 

maximum value and then decreases with relative water depth d/a. As expected, the 

damping ratio increases with relative baffle length a. 

Figure 55 shows variation of damping due to vertical baffle as functions of relative water 

depth d/a for various values of relative water surface elevation r)a/d and for relative baffle 

length (3 = 0.05. The damping ratio increases with relative depth d/a to a maximum value 

and then decreases with relative water depth d/a. As expected, the damping ratio 

increases with relative water surface elevation r| a/d. Figure 56 shows the variations of 

damping due to a vertical baffle as a function of relative water depth d/a for various 
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values of relative baffle length (3 and for r\Jd = 0.1. The damping ratio increases with 

relative water depth d/a to a maximum value and then decreases. As expected, the 

damping increases with relative baffle length (3. It is seen that the damping is negligible 

when relative water depth d/a is greater than 2.5. 

A key assumption of the damping predictions for baffles is that the incident velocity is 

uniform along the length of the baffle. It is appropriate to examine the limitations of this 

assumption. Figure 57 shows a variation of Au/u with relative baffle length a for 

horizontal baffles, where Au is velocity variation across the baffle and u is the mean 

velocity across the plate. The velocity variation across the plate increases with relative 

baffle length a. The figure indicates that the relative baffle length a should be less than 

0.28 for the flow variation across the plate to be less than 10% of the mean velocity. 

Figure 58 shows a variation of Au/u with relative baffle length (3 for various values of 

relative water depth d/a for a vertical baffle. The velocity variation across the plate 

increases with relative baffle length (3 and relative water depth d/a. It is seen that the 

relative baffle length (3 should be less than 0.29 for the flow variation across the plate to 

be less than 10% of the mean velocity across the baffle for the case of d/a = 1.0. 

6.2 Comparison of Theoretical and Experimental 

Results 

6.2.1 Free Vibration Tests 

Free vibration tests were carried out both with and without baffles in order to determine 

the hydrodynamic damping associated with the presence of the baffles. Figure 59 shows 

the variation of fluid surface elevation at the tank wall during the free vibration tests for 

two relative water depths: d/a = 0.5 and 1.0. Corresponding results for tests with baffles 
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were obtained but are not shown here. The corresponding damping coefficients were 

estimated using Eq. 5.7. The damping coefficients without baffles are 0.44 % and 0.28 % 

for d/a = 0.5 and 1.0 respectively; the damping coefficients with horizontal baffles are 1.4 

%, 1.7 % and 2.4 % for h/d = 0.6, 0.7 and 0.8 respectively; and the damping coefficients 

with vertical baffle are 0.4 %, 1.0 % and 2.0 % fori/d = 0.1, 0.2 and 0.3 respectively. It 

can be seen that the high damping coefficient for baffles; the damping coefficient 

increases with h/d for horizontal baffles and increases with baffle length for vertical 

baffle. 

6.2.2 Harmonic Excitation 

Figure 60 and 61 show a comparison of experimental and theoretical results for 

horizontal harmonic excitation for d/a = 0.5 and 1.0 respectively. The dimensionless free 

surface amplitude, force amplitude, and moment amplitude are shown as functions of the 

frequency parameter co2a/g. The damping coefficients used in the analytical results are 

0.44 % and 0.28 % for d/a = 0.5 and 1.0 respectively and were obtained from the free 

vibration tests. The experimental results are seen to be in good agreement with the 

theoretical results. Figures indicate that dimensionless values are large near the first 

resonant frequency as expected. 

Figure 62 shows a comparison of theoretical and experimental results for a rectangular 

tank under rocking harmonic motion for d/a = 1.0. The dimensionless surface elevation, 

force amplitude, and moment amplitude are shown as function of frequency parameter 

co2a/g. The damping coefficient used in the theoretical calculation is 0.44 % which was 

obtained from the corresponding free vibration test. The experimental results are in 

reasonable agreement with theoretical results except for a few scattered points. 

Figure 63 shows a similar comparison under simultaneous horizontal and rocking 

harmonic motion, with the relative rocking parameter Y d / U = 0.2. The theoretical result 
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was obtained from superposition of component motions using the following equation, 

which is derived from Eq. 2.96 for component motions with the same phase and 

frequency: 

F T F H 

max ma? 
coUm coUm 

+ 
Y d 

U 
\ F R 

max 
, co^dm 

(6.26) 

Similar equations apply to the surface elevation amplitude and the overturning moment. 

Again, the experimental results are seen to be in fairly good agreement with the analytical 

results. 

6 . 2 . 3 E a r t h q u a k e E x c i t a t i o n 

This section compares the time-domain solution estimated using Eqs. 3.11-3.14 with 

experimental time series results for the case of a horizontal base excitation corresponding 

to a specified earthquake record. Figure 64 shows a comparison of analytical results and 

experimental results for the Mexico '79 earthquake record for d/a = 1.0. The acceleration 

record is scaled to correspond to a maximum of O.lg to carry out the tests. In all 

analytical calculations, a damping coefficient 1 % is used. 

Figures 64 (a), (b) and (c) show respectively the fluid surface elevation at the tank wall, 

horizontal force on the tank and the overturning moment at the tank base. The analytical 

result slightly underpredicts the maximum fluid surface elevation; slightly overpredicts 

the maximum horizontal force on the tank. Overall, the analytical results are in good 

agreement with experimental results. But there is a phase difference in all three estimates 

between the 30 - 40 s time interval. 

Table 12 shows a comparison of the experimental results with various theoretical 

predictions. A damping ratio of 1% is assumed in the time-domain and actual spectrum 
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analysis, whereas the N B C response spectrum solution is based on a damping ratio of 0.5 

%. The modal analysis results based on the actual response spectrum overpredict the 

maximum force and moment by 50% and underpredict the maximum water surface 

elevation by 30%. The results based on the N B C response spectrum overpredict the 

results by 150% for the maximum force and moment and 50% for maximum water 

surface elevation. The lowest 10 sloshing frequency range for the experimental condition 

is 1 . 2 - 5 Hz. The dominant frequency range of the Mexico earthquake response 

spectrum is 1.0 - 10 Hz. Therefore the response corresponds to both high frequency and 

modal parameters. 

It is noted that harmonic excitation of a short duration (relative to natural sloshing 

periods) will not result in steady state conditions. Therefore the duration of earthquake 

excitation relative to the sloshing period is an important parameter influencing the 

maximum response. This may be quantified by the strong motion duration to the first 

mode natural period Ts/T\. 

6.2.4 Tests with Baffles 

This section discusses the results from the tests with baffles in the rectangular tank for the 

case of horizontal harmonic motion. Two types of baffles, denoted horizontal and 

vertical baffles, shown in Fig. 6 were used. Horizontal baffles are oriented perpendicular 

to front and back walls of the rectangular tank and three different baffle elevations were 

used in the tests. The vertical baffle is oriented perpendicular to the bottom and located 

at the middle of the base. Three baffle lengths of vertical baffle were used in the tests. 

The damping coefficient for each baffle configuration is estimated from the 

corresponding free vibration tests using Eq. 5.7 as indicated in Section 6.2.1. These 

damping coefficients are used to estimate the analytical results. 
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Figures 65 - 67 show a comparison of experimental and theoretical results for horizontal 

baffles for h/d = 0.6,0.7 and 0.8 respectively and Figs. 68 - 70 show a comparison for 

vertical baffle with lengths i /d = 0.1, 0.2 and 0.3 respectively. For both horizontal and 

vertical baffles, the theoretical results are generally in good agreement with theoretical 

results. 

Table 13 shows the variation of experimental dimensionless hydrodynamic coefficients at 

various baffle elevations for horizontal baffles for coi/co = 1.0 and 1.2. The table 

illustrates how the dimensionless hydrodynamic coefficients decrease with h/d value near 

the first natural frequency of the system. The dimensionless fluid surface elevation 

amplitude, dimensionless force amplitude and dimensionless moment amplitude are 

reduced by 60 %, 64 % and 65 % respectively for the baffle location h/d = 0.8 near 

resonance condition. The changes in the dimensionless hydrodynamic coefficients are 

negligible at co/coi = 1.2. 

Table 14 shows the variation of experimental dimensionless hydrodynamic coefficients 

for various baffle lengths for vertical baffle for co/coi = 1.0 and 1.2. In this case, the table 

illustrates how the dimensionless hydrodynamic coefficients decrease with//d values near 

the first natural frequency of the system. The dimensionless fluid surface elevation 

amplitude, dimensionless force amplitude and dimensionless moment amplitude are 

reduced by 24 %, 56 % and 44 % respectively for the baffle length l/d = 0.3 at near 

resonance condition. 

Baffles should be placed in locations which show high velocities in the unbaffled 

condition. For example, consider the fundamental mode in a rectangular tank undergoing 

oscillations. The highest vertical velocities of the fluid occur at the ends of tank in the 

free surface, and the highest horizontal velocities occur at the center of the tank in the free 

surface. Baffles are most effective in these locations. 
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Figure 71 shows a comparison of analytical and experimental hydrodynamic damping 

coefficients with d/a for the laminar regime. The experimental hydrodynamic damping 

coefficients were obtained from free vibration tests. The experimental hydrodynamic 

damping coefficients are seen to be greater than the analytical values. 

Energy dissipation due to the boundary layers at the free surface and due to surface 

tension is not considered in the theoretical model. Contamination of the wall surface also 

increases the damping. These are contributory factors for the discrepancies between 

predicted and experimental results. 

Figures 72 shows a comparison of analytical and experimental hydrodynamic damping 

with relative baffle elevation h/d for horizontal baffles. Figure 73 shows a comparison of 

analytical and experimental hydrodynamic damping with relative baffle length lid for a 

vertical baffle. The drag coefficient was estimated from measured values given by 

Sarpakaya and O'Keefe (1996) as shown in Fig. 8. The Keulegan-Carpenter number 

varies between 1.3 to 4.0 for the experiments, so that the drag coefficient used varies 

between 15.6 to 9.8. The experimental hydrodynamic damping seems to be in good 

agreement with the analytical values. The predicted hydrodynamic damping for 

horizontal baffles is slightly higher than the experimental values for relative baffle 

elevations h/d = 0.7 and 0.8. This may be due to effects of the free surface on the drag 

coefficient. 

6.3 Example Application 

Methods of calculating the water surface elevation, the horizontal force on the tank and 

the overturning moment at the base of the tank due to harmonic and earthquake 

excitations for both rectangular and circular tanks have been presented in Chapters 2-3. 
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The estimation of hydrodynamic damping due to boundary layers and baffles for 

rectangular tank has been given in Chapter 4. It is now appropriate to summarize 

limitations in applying these methods to engineering situations, and to illustrate a typical 

earthquake engineering application of these solutions. 

Initially though, a brief assessment is made of various additional factors which may 

require consideration, including the possible influence of fluid compressibility; the 

vertical distribution of modal masses; the effects of the rigidity of the reservoir walls; 

reservoirs with complex planforms; and the influence of the direction of motion. 

6.3.1 Additional Factors 

Water Compressibility 

The possible effects of fluid compressibility may be assessed by considering the 

corresponding modifications to analytical solutions that are available. In the case of 

storage tanks, Fisher (1979) has compared solutions for the hydrodynamic pressure for 

compressible and incompressible liquids. Differences were found to be negligible for 

actual tanks. In the case of reservoirs, reference is made to Westergaard's solution for the 

high frequency mass mo for an infinitely long reservoir. Westergaard's complete solution 

included the effects of compressibility which may be assessed through a coefficient K 

given as: 

where T is the period of motion and c is the speed of sound in water. The approximation 

of an incompressible fluid is obtained by taking K = 1. Since the speed of sound in water 

is approximately c = 1480 m/sec, the approximation corresponds to the assumption T » 

d/370, where d is in m and T in sec. Thus for depths up to about 15 m, periods should be 

(6.27) 
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larger than about 0.05 sec. This indicates that compressibility can generally be neglected 

in the present context. However, in the case of large reservoirs with much larger depths, 

the effects of compressibility may well become important. 

Effects of wall rigidity 

The traditional approaches of Housner (1957, 1963) and the API (1993) and A W W A 

(1984) design standards are based on the assumption that the reservoir walls can be 

assumed to be completely rigid and thus experience the same motion as the ground. 

However, for flexible tanks the accelerations of the container walls are generally different 

from the maximum ground accelerations, so that the impulsive components of the 

response can be affected significantly (Veletsos, 1984). Because the characteristic 

frequencies of the sloshing response are much lower than the characteristic frequencies of 

the inertial response, the coupling between convective and impulsive components of the 

hydrodynamic forces is weak (e.g. Fisher, 1979). It is also known that the natural 

frequencies of the sloshing are not affected by the flexibility of the walls in practice 

(Parkus, 1982). Thus the assumption of rigid tank walls remains valid for predicting the 

convective components of the force associated with sloshing, and in practice the effects 

of the flexibility of the walls need to be considered only for the impulsive components of 

the response (e.g. Haroun and Housner, 1981; and Balendra et al, 1982). In general, the 

hydrodynamic effects induced by earthquake ground motions may be appreciably greater 

than those in rigid tanks (Rammerstorfer et al, 1990). A design procedure for cylindrical 

tanks with flexible walls was described by Veletsos (1984). More recent results for 

rectangular tanks have been given by Kim et al. (1996). 

Vertical distribution of mass 

The masses m 0 and mi are commonly considered to be concentrated at the elevations d 0 

and di above the base of the reservoir, whereas in fact they each correspond to a mass 
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distribution over depth. In certain circumstances, a description of these distributions may 

be required. In fact, they can be obtained from the full solutions that are available for 

both the circular and rectangular reservoirs that have been referred to earlier. For a 

rectangular reservoir, the distributions of these masses, expressed in dimensionless form, 

are thereby found to be given by the following expressions: 

For all cases (For both rectangular and circular reservoirs for both horizontal and rocking 

base motions) 

£ ( z ) ^ m n ( Z ) ^ ( k n d ) C O s h ( k n Z ) 

m„ /d sinh(knd) 
(6.28) 

For a rectangular tank under horizontal excitation 

S o ( z ) = 
m 
m 0 / d 

1 
1 2S 

n=.(kna)2 

cosh(k nz) 
cosh(knd) 

1 
1 21 

n=.(kna)2 

tanh(knd) 

L M ) J 
(6.29) 

For a rectangular tank under rocking excitation 

d - z (A \ 

So(z)= 
m 'o(z) 

-2| 
m=l ( « m d ) 2 («»d) 

-(-l)n 
t a n h ( a m a ) c o s ( o c m z ) 
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- 2 
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(amd) 
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(6.30) 
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For a circular tank under horizontal excitation 

m o ( z ) : 

m 0 / d 
n=l 

n=l 

cosh(knz) 

(k n a) 2 -lLcosh(k n d)_ 

1 rtanh(knd)l 

( k n a ) 2 - l [ (k nd) _ 

(6.31) 

For a circular tank under rocking excitation 

d - z 

m 0 (z ) ; 

m 0 / d 

- 2 
m=l ( « m d ) 2 ( « m d ) 

I i ( « m a ) cos(amz) 

— 2| 
m=l ( « m d ) 3 

2 ( - l ) m + 

( « m d ) 
— 1 I.(ama) 

Ii(ama) 

(6.32) 

where m'n(z) and m^z) denote the n-th modal mass and the high frequency mass 

respectively, both per unit height, at an elevation z above the reservoir base. Plots of 

these distributions for the case of rectangular and circular reservoirs with a = 100 m and d 

= 30 m are shown in Figs. 74 and 75 for horizontal and rocking excitations. The figure 

indicates that the modal mass mi has virtually a uniform distribution with elevation, 

whereas the high frequency mass mo varies strongly with elevation, ranging from zero at 

the water surface to a maximum at the reservoir base. The variation of high frequency 

mass mo varies linearly with elevation for rocking excitation. 

Sloping sides 

In many practical applications a reservoir may have sloping sides and the assumptions of 

a vertical wall must be modified. The solution of Westergaard (1939) for an infinitely 

long reservoir bounded by a vertical wall which undergoes a horizontal motion has been 

extended by Chwang and Housner (1978) and Chwang (1978) to a dam with sloping 

sides. The horizontal component of the force on the dam decreases as the slope of the 
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face of the dam decreases, while the normal force on the dam remains practically constant 

for all angles of inclination. 

In the case of rectangular or circular reservoirs, Isaacson and Ryu (1999) have used 

numerical results from the boundary element method applied to a reservoir with sloping 

sides to develop an approximate method based on the traditional approaches described 

above. In fact, various configurations of sloping sides may be possible and some degree 

of judgement needs to be applied when treating specific situations. 

Irregular planform 

When a reservoir has an irregular planform that cannot readily be approximated as 

circular or rectangular, the numerical method described by Isaacson and Ryu (1998 b) 

may be adopted. This has been developed to predict hydrodynamic loads for an irregular 

shaped reservoir. The approach used is based on an eigenfunction expansion of the 

velocity potential with respect to the vertical direction combined with two-dimensional 

boundary element method with respect to the horizontal plane in which the planform of 

the reservoir is descretized into a number of short segments. However, such an approach 

need only be considered when the reservoir planform differs significantly from a 

rectangular or circular profile. 

Effects of direction 

In certain cases, it may be necessary to consider a reservoir motion which is uni­

directional but not parallel to a pair of sides. In the case of a circular reservoir, the 

hydrodynamic loads act in the direction of motion, and because of symmetry the force 

magnitude does not vary with direction of motion. In the case of a rectangular reservoir, 

a direction of motion which is oblique can be analyzed by an appropriate superposition of 

two component motions parallel to the two pairs of sides. This enables the known 

closed-form solution to be extended to the case of an oblique direction, or even to the 
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case of a horizontal motion which is not uni-directional. Results for the case of an 

oblique direction given by Isaacson and Ryu (1998) indicate that for earthquake motion, a 

direction of motion parallel to the shorter pair of sides always gives the highest loads and 

surface elevations. Therefore, in engineering design the common assumption that the 

earthquake motion may act in a direction parallel to either pair of sides is appropriate. 

6.3.2 Example 

In order to illustrate the present approach in the context of a typical earthquake 

engineering application, consideration is given to a case of a rectangular storage tank. A 

liquid container with a length of 20 m and a height of 10 m is filled with water to a depth 

5 m. The tank is considered to be excited at its base by two earthquakes ground motions: 

the 1940 E l Centro and 1995 Mexico City records. The maximum accelerations are 0.2lg 

and 0.17g for the E l Centro and Mexico earthquake records respectively. For each of the 

ground motions, two cases are considered. In the first case, the corresponding 

hydrodynamic forces and water surface elevation are calculated using the high frequency 

component and first mode sloshing in the complete solution; and the second case involves 

the high frequency component and the first ten sloshing modes in the complete solution. 

The damping ratio is assumed to be a value of 0.5 %. 

The corresponding results are shown in Table 15 for the maximum water surface 

elevation, the maximum horizontal force on the tank and the maximum overturning 

moment. The table also shows the deviation of results from the first 10-mode solution. It 

can be inferred that the results for Mexico City earthquake are influenced significantly by 

the higher modes. This is due to severe sloshing corresponding to base excitation with 

predominant long period components in the Mexico City earthquake record. 

Table 16 shows a comparison of results for the longitudinal and the transverse directions 

for the Mexico City earthquake records. The results indicate that for this case the loads 
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for the transverse direction are significantly higher than for the longitudinal direction. 

This differences arise largely because the high frequency mass mo is much larger than the 

sloshing masses m n for this case, and because the higher reservoir size ratio d/a for the 

transverse direction causes a significant increase in mo and only a slight reduction in m n . 

In physical terms, this can be explained as follows: in the limit of very high d/a ratio (a 

short, deep reservoir, representing the transverse case limit), most of the fluid moves with 

the container so that mjm is close to unity, and free surface effects (which cause a 

reduction in mo/m) do not penetrate the fluid to the same relative extent. On the other 

hand, for a very low d/a ratio (a long, shallow reservoir, representing the longitudinal case 

limit), the reduction in effective mass is more pronounced as the free surface effects now 

extend more fully to the bottom. A second reason for the difference is that the first mode 

natural period Ti is lower for the shorter transverse length than for the longer longitudinal 

length, and this implies that the spectral acceleration is then higher. 

Now consideration is given to the presence of baffles in the tank. The water surface 

elevation and drag coefficient are needed in order to calculate the damping ratio from 

Eqs. 4.43 and 4.47 for horizontal and vertical baffles respectively. The above equations 

are based on harmonic oscillatory motion. The following steps explain how the water 

elevation and corresponding drag coefficient can be estimated for a particular earthquake. 

The water surface elevation can be estimated using the root of the sum of the squares of 

the maximum modal responses. The drag coefficient is strongly dependent on Keulegan-

Carpenter number. The Keulegan-Carpenter number can be expressed in terms of fluid 

acceleration as: 

T r a T 2 

K ~ ( 6 . 3 3 ) 
In I 
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where a is the fluid acceleration amplitude, T is the oscillation period, and I is the length 

of baffle. 

For an earthquake excitation, acceleration a and oscillation period T are taken as: 

a = a n 

T = T n 

(6.34) 

(6.35) 

where a m a x is the maximum fluid acceleration and T p is the peak period of the record. 

The fluid acceleration perpendicular to vertical baffles at the bottom of the tank can be 

expressed as 

t v(t) = 
oo OO 

1 - I C n u(t)-Ic n 

n=l n=l 
c o n } u ( x ) e x p [ - C n c o n ( t - x ) ] s i n [ c o n ( t - x ) ] d x 

0 

(6.36) 

where 

(k na) cosh(knd) 
(6.37) 

The maximum fluid acceleration can be obtained from the following: 

a„„„ — 4 
f co \ 

n=l 

n2 

'max 
V 

n=l 

1/2 

(6.38) 

Similarly, the maximum acceleration perpendicular to horizontal baffles at the tank wall 

can be expressed as: 
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2 r 2 
1/2 

amax | max + IcJsa(con,c;n) (6.39) 
,n=l 

where 

1 sinh(k n^) 
(k na)cosh(k nd) 

(6.40) 

Now consideration is given to a pair horizontal baffles located 4 m above the tank base. 

The relative elevation of the baffles h/d is 0.8. The length of the horizontal baffle is 1.5 

m so that relative baffle length a = 0.15. The relative free surface elevation is estimated 

as T | a /d = 0.156 from the previous example without baffles in the tank. Also, for the 

Mexico earthquake the maximum fluid acceleration normal to the baffle at the tank wall 

is 1.95 m/s2. The peak period T p is 2 s. The Keleugan-Carpenter number from Eq. 7.9 is 

found to be 0.8, so that corresponding drag coefficient is 16 (see Fig. 8). The 

hydrodynamic damping is then found from the Eq. 4.43 to be 4 %. 

Table 17 shows a comparison of the maximum water elevation, the maximum horizontal 

force and the maximum overturning moment with and without horizontal baffles. The 

above comparisons are based on the solution using the first 10 sloshing modes. The 

maximum water surface elevation, the maximum horizontal forces and the maximum 

overturning moment at the base of the tank are reduced by 29 %, 7 % and 12 % 

respectively. 

For the case of transverse motions, the corresponding damping is approximately 10 % if 

the baffle is located perpendicular to the transverse wall. 
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7 Conclusions And Recommendations 

7.1 Summary 

This thesis describes an investigation of the influence of multiple motion components and 

hydrodynamic damping on the hydrodynamic loads and fluid surface elevation in a fluid 

filled reservoir subjected to base excitation. The investigation is carried out for two 

configurations: rectangular and circular cylindrical reservoirs; the multiple motions are 

horizontal and rocking excitations; and the hydrodynamic damping is due to boundary 

layers along the reservoir walls and baffles along the reservoir bottom or sides. Initially, 

the boundary value problem for the case of an inviscid fluid and a harmonic base motion 

on the basis of linearized potential flow theory is summarized. The case of energy 

dissipation of a real fluid is then treated by a extension to this, which involves an 

assumption of dissipation at the free surface and a corresponding modification to the free 

surface boundary condition. In order to treat earthquake-induced motions, this solution is 

then extended to a simplified method of estimating maximum forces using a modal 

analysis and involving earthquake response spectra. The combined effect of the two 

component excitations on the overall fluid elevation and hydrodynamic forces are 

calculated using superposition. Theoretical models for prediction of hydrodynamic 

damping are also outlined. This involves an assessment of, firstly, the total energy of the 

oscillation, which is known from the available potential flow solution, and, secondly, the 

average rate of energy dissipation arising in the fluid, either through the boundary layers 

along the tank floor and walls or by flow separation around obstacles in the flow. 

An experimental investigation for liquid-filled rectangular tanks was carried out. The 

tanks were subjected to component horizontal and rocking motions for both harmonic and 

earthquake motions as well as combined motions for both harmonic and earthquake 

motions. The experiments were extended to investigate the effects of damping, whereby 

the experiments were repeated with baffles in the rectangular reservoir. 
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The original contributions of this study include: 

(a) the derivation of a theoretical solution for sloshing in a rectangular reservoir 

undergoing rocking base motion; 

(b) the experimental verification of linear superposition as a simplified method to 

calculate effects of combined base motion from component motions; 

(c) the development of a hydrodynamic model for predicting the damping due to 

turbulent boundary layers and due to baffles, for a rectangular reservoir; and 

(d) the detailed experimental investigation of sloshing in a rectangular reservoir with and 

without baffles, and a comparison of these results with theoretical predictions. 

7.2 Conclusions 

The high frequency mass, modal masses and corresponding effective elevations, required 

to estimate the earthquake-induced hydrodynamic loads, overturning moments and fluid 

surface elevations are obtained from the analytical results. The full solutions for 

rectangular and circular reservoirs indicate that the relative masses and the corresponding 

relative elevations each depend on the relative depth. The relative elevations 

corresponding to modal masses are the same for both horizontal and rocking base 

motions, whereas the relative high frequency mass and corresponding relative elevation 

are different for horizontal and rocking base motions. The relative masses and 

corresponding relative elevations are similar for both rectangular and circular reservoirs. 

Comparisons with Housner's solution 

For the lower values of relative depth, the relative high frequency masses based on 

Housner's solution generally agrees closely with those based on the full solution for both 

rectangular and circular reservoirs. The relative modal mass corresponding to the first 

mode sloshing based on Housner's solution agrees closely with the full solution for a 
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rectangular reservoir, but is lower than predictions based on the full solution for a circular 

reservoir. The relative elevation corresponding to high frequency mass based on 

Housner's solution underpredicts the full solution over the entire range of the relative 

depth, while the relative elevation corresponding to the first modal masses based on 

Housner's solution agrees reasonably well with the full solution, except for lower values 

of relative depth. 

Modal analysis 

The modal analysis results suggest that the high frequency mass and modal mass 

corresponding to first mode sloshing should generally be sufficient to estimate the overall 

force and moment maxima. However, more generally such a conclusion depends on the 

relative depth and on the significant frequency range of the earthquake response spectrum 

in relation to the lower modal frequencies. It is shown that the reliable estimation of the 

maximum surface elevation in a large reservoir requires the influence of higher sloshing 

modes to be taken into account. And, as expected, Housner's predictions of fluid surface 

elevation correspond closely to those based on the closed-form solution for first mode 

excitation, but give predictions which are slightly higher than the full solution. The 

estimation based on the modal analysis is higher than that based on the complete time-

domain solution. Results from earthquake excitation indicate that the maximum fluid 

surface elevation, the maximum horizontal force on the tank and the maximum 

overturning moment depend on the frequency range of the earthquake spectrum in 

relation to the lower modal frequencies. The modal analysis results for combined 

horizontal and rocking base motion suggest that the overall maximum force is influenced 

by rocking motion alone when the rocking parameter is relatively high. It is also noted 

that the overall maximum force is influenced by horizontal base motion for higher values 

of relative depth. 
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Damping due to boundary layers 

The damping coefficient due to energy dissipation in laminar boundary layers depends on 

the relative depth, the relative reservoir size and the boundary layer thickness. The 

damping coefficient increases with decreasing size of reservoir. On the other hand, the 

hydrodynamic damping due to turbulent boundary layers is a function of relative depth, 

relative fluid surface elevation and relative roughness of the reservoir walls. The 

hydrodynamic damping increases with the relative roughness of the wall. 

Damping due to baffles 

Hydrodynamic damping due to horizontal baffles on the tank sides is a function of 

relative depth, relative baffle elevation, relative fluid surface elevation, and relative 

length of the baffle. The damping coefficient increases with relative baffle elevation and 

relative baffle length, and its variation with relative depth exhibits a maximum. 

Hydrodynamic damping due to a vertical baffle on the tank base is a function of relative 

depth, relative baffle length, and relative fluid surface elevation. The damping coefficient 

increases with relative baffle length and its variation with relative depth exhibits a 

maximum. It has been found that the horizontal baffles are effective in damping the 

liquid motions for taller tanks whereas vertical baffles are effective for shallower tanks. 

It is recognized that the hydrodynamic damping model assumes that the relative baffle 

length is small as discussed elsewhere in this thesis and therefore the relative baffle 

length is a limiting parameter of the model. 

Experiments without baffles 

Experimental results for the component horizontal and rocking base motions are in good 

agreement with the respective theoretical results, and such results for combined motions 

suggest that superposition can be used to evaluate the response of multiple-degree-of-
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freedom base motions from the component responses. The measured time-domain results 

agree reasonably well with predicted time-domain solutions. 

Experiments with baffles 

Free vibration tests for two relative depths confirm that the hydrodynamic damping due to 

boundary layers increase with decreasing size of reservoir. Experimental results for 

baffles suggest that baffles can be used efficiently to damp liquid motions near resonance 

conditions, whereas the baffles are not effective in damping the liquid motions at non-

resonance conditions. The baffle closer to the free surface gives higher damping than 

other positions. The measured damping for baffles is in good agreement with the 

predicted results. The measured damping without baffles exhibits the predicted trends in 

a somewhat general manner only because of broad assumptions made in the analysis of 

hydrodynamic damping model. 

7.3 Recommendations for further study 

In this thesis, the problem of determining hydrodynamic loads and water surface 

elevations for rectangular and circular tanks for component motions (horizontal and 

rocking) and combined motions, both for harmonic and earthquake motions has been 

addressed. The estimation of hydrodynamic damping is also discussed. 

The experiments have been carried out for horizontal harmonic motion, rocking harmonic 

motion, horizontal earthquake motion and simultaneous horizontal and rocking harmonic 

motions. These studies confirmed that superposition could be used to evaluate the 

response of multiple-degree-of-freedom harmonic base motions from the component 

responses. Additional experimental studies are needed to investigate the simultaneous 

horizontal and rocking earthquake excitations. 
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Chapter 7 Conclusions and Recommendations 

The present experimental and theoretical studies have provided some information 

regarding the effective baffle elevations for side baffles and baffle heights for vertical 

baffle. Further experimental studies are necessary in order to establish the effect of baffle 

size and shape and applicability of the hydrodynamic model. Experimental studies are 

needed to validate the hydrodynamic damping model due to turbulent boundary layer with 

rough reservoir walls. 

In the present study the case of two different types of baffles are considered, whereas it is 

of interest to consider the different configurations of baffles such as a permeable thin 

vertical barrier or more barriers spaced in the tank. Effects of draft depth, barrier spacing 

and porosity on the hydrodynamic forces and water surface elevation would also be of 

interest. Finally, it would be desirable to conduct a prototype study in which damping 

coefficients are measured for with and without baffles of various configurations. 
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Appendix 

Solution for rocking motion in a rectangular tank 

The following outlines the solution for fluid motions in a rectangular tank undergoing 

rocking, motions, without hydrodynamic damping. The tank-liquid system investigated is 

shown in Fig. 1(a). It is a rectangular tank of length 2a and width 2b, which is filled to a 

height d and is excited by an angular or rocking base motion about horizontal axis. The 

sinusoidal base motion with angular velocity \|/(t) is given as 

\|/(t)=Yexp(-ia>t) (A.l) 

In which *F is the angular velocity amplitude. Fixed Cartesian coordinate system (x, y, 

z), as indicated in Fig. 1(a), is used. The fluid within the container is assumed to be 

invisid and the flow is irrotational, so that the flow can be described by a velocity 

potential O . Laplace equation which satisfies the potential O within the fluid region can 

be expressed as 

V20> = 0 (A.2) 

The solution of Eq. A.2 must satisfy the following boundary conditions: 

The vertical velocity of the liquid along the tank base must equal the corresponding 

velocity of the ground. 

d® / \ 
— = \|f(t)x atz=0 (A.3) 
dz 

The velocity along the tank wall and the velocity of the tank wall must be the same. 
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— = -V|/(t)z at x = ± a (A.4) 
dx 

O must satisfy the linearized free surface boundary condition since the amplitude of the 

base motion and the resulting free surface elevation in the container are assumed to be 

sufficiently small for linearization of the free surface boundary conditions. 

— r + g — = 0 atz = d (A.5) 

The solution for <D> can be expressed in the form 

0(x,z,t)=[(|)i(x,z)+<|)c(x,z)]exp(-iQ)t) (A.6) 

The impulsive component of the solution satisfies the actual boundary conditions along 

the wall and bottom and the condition of zero hydrodynamic pressure at the free surface, 

whereas the convective component fy corrects for the difference between actual boundary 

condition at the free surface and the one considered in the development of impulsive 

solution. 

Impulsive Solution 

The solution for may be expressed in the form 

fy=Y(z-d)x + <\>0 (A.7) 

in which (j>0 must satisfy 

V 2 ^ 0 = 0 ( A . 8 ) 
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and the boundary conditions 

d4>0 

dz 
= 0 at z = 0 (A.9) 

dx 
= ¥ (d - 2z) at x = ± a (A. 10) 

^o = 0 at z = d (A.11) 

The velocity potential <j)o can be obtained by solving Eq. A.8 using the method of 

separation variables and satisfying Eqs. A.9 and A. 11 

<t>0 = S A m cos(amZ)sinh(amx) 
m=l 

(A. 12) 

in which a m =( 2 n ^ ^ d a n d A m m a y d e t e r r m n e c i f r o m E q . A. 10. The Eq. A. 10 is first 

multiplied by cos(aiz), then integrated with respect to z over the appropriate domain of z 

(i.e. from z = 0 to d). This gives the equation for A m as: 

OC 
-(-I) 1 m+1 

m L m 
cosh(araa) 

(A.13) 

Convective Solution 

The velocity potential ())c must satisfy 

V \ = 0 (A. 14) 

along with boundary conditions 
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dz 
• 0 atz = 0 (A.15) 

3$c 
dx 

= 0 at x = ± a (A.16) 

2 x 
•co 2 <t) c +g^ = - g ^ 

dz dz 
at z = d (A. 17) 

The solution for (j)c can be obtained in a manner similar to the impulsive solution. 

oo 
0c = I B n cosh(k nz)sin(k nx) 

n=l 
(A.18) 

in which k n = ^ n and B n must be determined from Eq. A. 17. The Eq. A. 17 can 

be expressed as after substitution of <))) and <\>c 

J T - B n cosh(k nd)sin(k nx)[co 2-co 2]= Y x - g £ A m a m s i n ( a m d ) s i n h ( a m x ) (A.19) 
n=l m=l 

where 

co 2 =gk n tanh(knd) (A.20) 

The Eq. A.19 is first multiplied by sin(k,x), then integrated with respect to x over an 

appropriate domain of x ( x = -a to a ). This gives an equation for B n : 

B n = 2 g Y 
1 1 
acosh(k nd)(co 2-co^) k 2 

1 ( - i r v ( - i ) n 

^a 2 +k 2 
m=l 

2 ( - l ) m + l " 
(A.21) 
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The above equation can be rearranged as follows 

_2 ( - i r>a 2 , , 
( k „a) 

(k nd)sinh(k nd)-cosh(k nd)+2' 
sinh(knd)cosh(knd) 

(A.22) 

The following identity was used in deriving the above equation 

I 2 2 ( - l ) m + 

( « m d ) 
— 1 = 2[l-sech(k nd)]-(k nd)tanh(k nd) (A.23) 

Substituting B n into Eq. A. 18 

^ - - d | g J Y „ o „ ( 1 C o ) £ * ] s l „ ( k „ x ) (A.24) 

where 

_(k n d)sinh(k n d)-cosh(k n d)+2 
(k nd)sinh(k nd) 

(A.25) 

Finally, the velocity potential O can be expressed as 

0 = x F { ( z - d ) x + £ 
( « m d ) 

sinh(amx) 
cosh(ama) 

cos(amz) 

+adsSrT-^Msin(k"x)G"H}exp(" ,Mt) 

(A.26) 

The free surface elevation can now be obtained by substituting the expressions for O 

given by Eq. A.6 into the following equation 
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1 
r| = — 

"ao" 
at Jz=d 

( A . 2 7 ) 

This gives 

2ioyFad £ ^ - y n G n

R ( i c o ) s i n ( k n x ) 
n=i (k na) 

ex p(-icot) ( A . 2 8 ) 

The free surface elevation at tank wall is given as: 

ri = -
icoWa 

."=' (k„a) 3 

' Yn G n (id)) exp(-icot) ( A . 2 9 ) 

The hydrodynamic pressure p within the fluid is given by the linearized Bernoulli 

equation as 

P = - p ao 
at 

( A . 3 0 ) 

Substituting for O, one will get 

P=ico vFp{(z-d)x + 2 £ 
m=lOC„ 

+ 2adX 
- ( k n a ) 2 

y(k nd)GR(ico) 

-(-!)" 
sinh(amx) 

cos ( « n z ) 

cosh(knd) 

cosh(ama) 

sin(k nx) }exp(-icot) 

( A . 3 1 ) 

The total horizontal force F on the tank is obtained by integrating above equation at 

x = ±a over a depth d. 
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F = 2 b } [ P x = a - P x = _ J d z (A.32) 

The total force is given by 

F = ico vFdm i - i h ^ - i h i ^ M 
L m=l n=l 

exp(-icot) (A.33) 

where 

h ^ = 2 
d 1 

( « m d ) 3 

2(- l) n + ! 

(«»d) 
-1 tanh(a m a) (A.34) 

m 
(A.35) 

The overturning moment about the base of the tank, excluding the component due to the 

pressure distribution over the base of the tank, M is obtained by 

M = 2 b { [ P x = a - P x = _ J z d z (A.36) 

Substituting for pressure variations 

M = i c o W m d { l - Z g ^ - f g ^ G ^ M l e x p C - i c B t ) 
m=l n=l J 

(A.37) 

where 
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g 
( r l ) _ 2 £ 
m ~~ ^ a 

3 ( - i r ( a m d ) - ( q m d ) 2 - 2 
(a m d) 5 

tanh(ama) (A.38) 

§ n T n § n (A.39) 

An additional moment A M due to the pressure distribution over the base of the tank is 

given by 

A M = 2b J P Z = 0 xdx (A.40) 

Substituting for pressure variation into Eq. A.80, the additional moment can be expressed 

as 

AM=icovFdmd 
f A \ 

m=l| 

+ 1 
n=i(k n a) 2 (k nd) 2cosh(k nd) 

2 - ( - i r 1 ( a m d ) 

(a m d) 5 

Y n G R ( ico) 

(ama)cosh(ama)-sinh(ama) 
cosh(ama) 

exp(-icot) 

(A.41) 

Thus, the total overturning moment M ' = M + A M at the base is given by 

M'=icoWmd \ - + -
6 3 

r»\2 

- Igg^- Igg^ G ^ M ^ e x p C - i c o t ) ( r 2 ) n R i (A.42) 
m=l n=l 

where 

gg (rl)_0 
(A \ 4 ( - i r l ( a m d ) - ( q m d ) 2 - 4 -

(a m d) 5 
tanh(ama)-2 (-ir(qmd)-2' 

(amd)4 
(A.43) 
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n Yn § n (A.44) 
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Tables 

Mode k na Mode 
Rectangular Reservoir Circular Reservoir 

1 1.571 1.841 
2 4.712 5.331 
3 7.854 8.536 
4 10.996 11.706 
5 14.814 14.864 

Table 1. Values of k na for the five lowest sloshing modes for rectangular and circular 
reservoirs. 

Excitation Frequency (Hz) Excitation Amplitude (mm) 

0.50 63 
0.64 31 
0.80 14 
0.95 6 
1.00 6 
1.11 3 
1.19 2 
1.27 2 
1.35 3 
1.43 4 
1.59 7 
2.08 3 
2.13 2 
2.20 1 

Table 2 . Test program for horizontal harmonic excitation for d/a = 1.0. 
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Excitation Frequency (Hz) Excitation Amplitude (mm) 

0.50 40 
0.64 20 
0.80 10 
0.95 3 
1.00 2 
1.02 2 
1.05 1 
1.11 2 
1.19 2 
1.35 6 
1.43 12 
2.08 3 
2.12 2 
2.22 1 

Table 3. Test program for horizontal harmonic excitation for d/a = 0.5. 

Excitation Frequency (Hz) Excitation Amplitude 
(rad/sec) 

0.95 0.10 
1.00 0.10 
1.11 0.03 
1.19 0.01 
1.27 0.01 
1.35 0.02 
2.15 0.02 

Table 4. Test program for rocking harmonic motion for d/a = 1.0. 

Excitation Frequency Horizontal Excitation Rocking Excitation 
(Hz) Amplitude (mm) Amplitude (rad/s) 
0.95 8 0.05 
1.00 6 0.04 
1.11 3 0.02 
1.19 1 0.005 
1.27 1 0.01 
1.35 1 0.01 
2.15 1 0.01 

Table 5. Test program for combined horizontal and rocking motion for d/a = 
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Case a(m) d/a Fmax(MN) Mmax(MNm) M ' m a x ( M N m ) 

A 100 0.1 Full (n=l) 3.40 14.40 311.27 A 100 0.1 
Full (n=2) 3.40 14.47 311.50 

A 100 0.1 

Full 3.42 14.61 311.53 

A 100 0.1 

Housner 3.41 12.83 2051.57 
B 20 0.5 Full (n=l) 3.34 13.87 5.6.24 B 20 0.5 

Full (n=2) 3.35 14.81 56.26 
B 20 0.5 

Full 3.35 14.89 56.26 

B 20 0.5 

Housner 3.54 13.81 95.45 
C 10 1.0 Full (n=l) 3.10 13.20 25.25 C 10 1.0 

Full (n=2) 3.10 14.35 25.26 
C 10 1.0 

Full 3.10 14.37 25.26 

C 10 1.0 

Housner 3.34 13.32 30.19 
D 5 2.0 Full (n=l) 2.19 9.54 11.72 D 5 2.0 

Full (n=2) 2.19 10.05 11.72 
D 5 2.0 

Full 2.19 10.05 11.72 

D 5 2.0 

Housner 2.42 9.50 9.03 

Table 7. Comparison of alternative predictions of maximum loads for rectangular 
reservoirs for d = 10 m, b = 15 m and U m /g=0.1 for horizontal excitation. 

Case a(m) d/a Fmax(MN) M m a x ( M N m ) M ' m a x ( M N m ) 

A 100 0.1 Full (n=l) 30.98 112.98 20,173.06 A 100 0.1 

Full (n=2) 31.01 113.15 20,173.15 

A 100 0.1 

Full 31.01 113.17 20,173.15 

B 20 0.5 Full (n=l) 5.62 21.56 166.54 B 20 0.5 

Full (n=2) 5.62 21.59 166.54 

B 20 0.5 

Full 5.62 21.59 166.54 

C 10 1.0 Full (n=l) 2.52 10.53 25.36 C 10 1.0 

Full (n=2) 2.52 10.55 25.37 

C 10 1.0 

Full 2.52 10.55 25.37 

D 5 2.0 Full (n=l) 1.17 5.69 6.96 D 5 2.0 

Full (n=2) 1.17 5.70 6.96 

D 5 2.0 

Full 1.17 5.70 6.96 

Table 8. Comparison of alternative predictions of maximum loads for rectangular 
reservoirs for d = 10 m, b = 15 m and *Fmd/g=0.1 for rocking excitation. 
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Alaska Earthquake 

Solution Methods F m a x (MN) (MNm) M ' m a x (MNm) 

Time Domain Solution 3.31 16.64 67.98 
N B C Spectrum 3.43 18.49 76.61 
Actual Response Spectrum 3.33 16.75 68.60 

Loma Prieta Earthquake 

Solution Methods F m a x (MN) M m a x (MNm) M ' m a x (MNm) 

Time Domain Solution 3.38 17.12 69.67 
N B C Spectrum 3.43 18.49 76.61 

Actual Response Spectrum 3.32 16.74 68.58 
Northridge Eart lquake 

Solution Methods F m a x (MN) M m a x (MNm) M ' m a x (MNm) 

Time Domain Solution 3.32 16.64 68.64 
N B C Spectrum 3.43 18.49 76.61 
Actual Response Spectrum 3.32 16.74 68.58 

Table 9. Comparison of time domain analysis and modal analysis results for horizontal 
excitation for the Alaska, Loma Prieta and Northridge earthquakes. 

128 



Alaska Earthquake 

Solution Methods F m a x (MN) M m a x (MNm) M ' m a x (MNm) 

Time Domain Solution 2.80 12.75 106.83 
N B C Spectrum 2.86 13.46 107.34 
Actual Response Spectrum 2.74 12.35 105.43 

Loma Prieta Earthquake 

Solution Methods F m a x (MN) M m a x (MNm) M ' m a x (MNm) 

Time Domain Solution 2.79 12.67 106.75 
N B C Spectrum 2.86 13.46 107.34 
Actual Response Spectrum 2.74 12.32 105.37 

Northridge Earthquake 

Solution Methods F m a x (MN) M m a x (MNm) M ' m a x (MNm) 

Time Domain Solution 2.72 12.41 105.57 
N B C Spectrum 2.86 13.46 107.34 
Actual Response Spectrum 2.74 12.32 105.38 

Table 10. Comparison of time domain analysis and modal analysis results for rocking 
excitation for the Alaska, Loma Prieta and Northridge earthquakes. 

129 



Alaska Earthquake 

Solution Methods F m a x (MN) Mmax (MNm) M'max (MNm) 

Time Domain Solution 5.35 25.75 152.84 

N B C Spectrum 4.47 22.87 129.03 

Actual Response Spectrum 4.31 20.82 125.78 

Loma Prieta Earthquake 

Solution Methods F m a x (MN) M m a x (MNm) M ' m a x (MNm) 

Time Domain Solution 3.97 19.51 104.54 

N B C Spectrum 4.47 22.87 129.03 

Actual Response Spectrum 4.31 20.79 125.72 

Northridge Eart lquake 

Solution Methods Fmax (MN) M m a x (MNm) M ' m a x (MNm) 

Time Domain Solution 3.32 15.76 106.65 

N B C Spectrum 4.47 22.87 129.03 

Actual Response Spectrum 4.31 20.79 125.73 

Table 11. Comparison of time domain analysis and modal analysis results for combined 
horizontal and rocking excitations for the Alaska, Loma Prieta and Northridge 
earthquakes. 

r|max (mm) F m a x (N) M ' m a x (Nm) 

Experiment 43.0 41.6 8.0 
Time Domain Solution 29.0 57.0 7.6 
N B C Spectrum 66.6 101.1 21.5 
Actual Response Spectrum 31.0 58.5 12.2 

Table 12. Comparison of experimental results with theoretical results for Mexico 79 
Earthquake for horizontal excitation. 
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h/d gr|/coUa F/coUm M/coUmd h/d 
co/ CO] = 1.0 co/co, = 1.2 co/co, = 1.0 co/co, = 1.2 co/coi = 1.0 oVcoi = 1.2 

0 25.0 1.4 22.0 2.8 9.2 1.4 
0.6 16.7 1.3 9.4 2.8 5.8 1.3 
0.7 10.8 1.6 9.5 2.8 4.6 1.6 
0.8 9.7 1.5 8.0 2.8 3.2 1.5 

Table 13. Variation of experimental dimensionless hydrodynamic coefficients with 
horizontal baffles. 

m gri/coUa F/coUm M/coUmd m 
co/co, = 1.0 co/co, = 1.2 co/co, = 1.0 co/coi = 1.2 co/co, = 1.0 co/co, = 1.2 

0 25.0 2.6 22.0 2.8 9.2 1.4 
0.1 24.7 2.4 17.6 2.6 7.6 1.2 
0.2 23.6 2.4 13.5 2.4 6.5 1.4 
0.3 19.3 2.5 • 9.7 2.3 5.4 1.4 

Table 14. Variation of experimental dimensionless hydrodynamic coefficients with 
vertical baffle. 
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Maximum Water Surface Elevation 

Earthquake 1 mode 10 mode A % 

El Centro 0.697 0.732 5 

Mexico 0.332 0.781 57 

Maximum Horizontal Force 

Earthquake 1 mode 10 mode A % 

El Centro 798.7 802.7 0.5 

Mexico 527.7 573.6 8 

Maximum Overturning Moment 

Earthquake 1 mode 10 mode A % 

El Centro 1.872 2.412 22 

Mexico 1.157 1.562 26 

Table 15. Comparison between 1 sloshing mode solution and 10 sloshing mode solution 

for the maximum water surface elevation, maximum force on the tank and maximum 

overturning moment at the tank base. 
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Longitudinal Direction Transverse Direction 

T l m a x (m) 0.781 1.483 

F m a x (MN) 0.573 1.326 

M m a x (MNm) 1.562 4.530 

Table 16. Comparison of alternative predictions of maximum water surface elevation and 

loads. 

No Baffles Horizontal Baffles A ( % ) 

T l m a x (m) 0.781 0.554 29 

Fmax (KN) 573.6 533.9 7 

M m a x (KNm) 1.562 1.369 12 

Table 17. Comparison of the maximum water surface elevation and the maximum 
hydrodynamic forces with and without horizontal baffles for Mexico earthquake. 
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ure 1. Definition sketch of tank. 
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Vertical 

Figure 2. Definition of ground motion direction components. 
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Figure 4. Experimental set-up. 
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(a) Viewed normal to direction of motion. 



All dimensions are in mm 

Figure 6. Load cell. 
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(a) Horizontal baffles 

(b) Vertical baffle 

Figure 7. Definition sketch showing baffle configurations 
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Figure 9. A sample record from free vibration test. 
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Figure 12. Dimensionless hydrodynamic coefficients as functions of co2a/g for d/a = 1.0 
and for various values of damping ratio - rectangular tank with a horizontal excitation, (a) 
free surface elevation, (b) horizontal force, (c) overturning moment. 
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Figure 13. Dimensionless hydrodynamic coefficients as functions of cfl2a/g for d/a =1.0 
and for various values of damping ratio - rectangular tank with a rocking excitation, (a) 
free surface elevation, (b) horizontal force, (c) overturning moment. 
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Figure 14. Dimensionless hydrodynamic coefficients as functions of co2a/g for d/a = 1.0 
and for various values of damping ratio - circular tank with a horizontal excitation, (a) 
free surface elevation, (b) horizontal force, (c) overturning moment. 
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Figure 15. Dimensionless hydrodynamic coefficients as functions of co2a/g for d/a = 1.0 
and for various values of damping ratio - circular tank with a rocking excitation, (a) free 
surface elevation, (b) horizontal force, (c) overturning moment. 
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Figure 16. Dimensionless hydrodynamic coefficients as functions of co2a/g for d/a = 1.0 
for rectangular tank for horizontal excitation, (a) added mass, (b) damping coefficient (c) 
force. 
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Figure 17. Dimensionless hydrodynamic coefficients as functions of co2a/g for d/a =1.0 
for rectangular tank for rocking excitation, (a) added mass, (b) damping coefficient (c) 
force. 
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Figure 18. Dimensionless hydrodynamic coefficients as functions of co2a/g for d/a = 1.0 
for circular tank for horizontal excitation, (a) added mass, (b) damping coefficient (c) 
force. 
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Figure 19. Dimensionless hydrodynamic coefficients as functions of of a/g for d/a = 1.0 
for circular tank for rocking excitation, (a) added mass, (b) damping coefficient (c) force. 
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Figure 20. Variation of dimensionless hydrodynamic coefficients as functions of d/a for 
various values of damping ratio, for a rectangular tank with horizontal excitation, (a) free 
surface elevation, (b) horizontal force, (c) overturning moment. 
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Figure 21. Variation of dimensionless hydrodynamic coefficients as functions of d/a for 
various values of damping ratio, for a rectangular tank with rocking excitation, (a) free 
surface elevation, (b) horizontal force, (c) overturning moment. 
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Figure 22. Comparison of hydrodynamic masses as functions of d/a for rectangular and a 
circular tanks for horizontal excitation, (a) high frequency mass, (b) first mode sloshing 
mass, (c) second mode sloshing mass. 
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Figure 23. Comparison of hydrodynamic masses as function of d/a for rectangular and 
circular tanks for rocking excitation, (a) high frequency mass, (b) first mode sloshing 
mass, (c) second mode sloshing mass. 
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Figure 24. Comparison of hydrodynamic masses as functions of d/a for horizontal and 
rocking excitations for a rectangular tank, (a) high frequency mass, (b) first mode 
sloshing mass, (c) second mode sloshing mass. 
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Figure 25. Comparison of effective elevations as functions of d/a for rectangular and 
circular tanks for horizontal excitation. 
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Figure 26. Comparison of effective elevations as function of d/a for rectangular and 
circular tanks for rocking excitation. 
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Figure 28. Comparison of effective elevations as functions of d/a for rectangular and 
circular tanks for horizontal excitation. 
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Figure 29. Comparison of effective elevations as functions of d/a for rectangular and 
circular tanks for rocking excitation. 
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Figure 30. Comparison of effective elevations as functions of d/a for horizontal and 
rocking excitations for rectangular tank. 
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Figure 31. Comparison of Housner's solution and complete solution for hydrodynamic 
masses as function of d/a for horizontal excitation for a rectangular tank, (a) high 
frequency mass, (b) first mode sloshing mass. 
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Figure 32. Comparison of Housner's solution and complete solution for hydrodynamic 
masses as functions of d/a for horizontal excitation for a circular tank, (a) high frequency 
mass, (b) first mode sloshing mass. 
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Figure 33. Comparison of Housner's solution and complete solution for effective 
elevation as functions of d/a for horizontal excitation for a rectangular tank. 
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Figure 34. Comparison of Housner's solution and complete solution for effective 
elevation as functions of d/a for horizontal excitation for a circular tank. 
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Figure 35. Comparison of Housner's solution and complete solution for effective 
elevation as functions of d/a for horizontal excitation for a rectangular tank. 
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Figure 36. Comparison of Housner's solution and complete solution for effective 
elevation as functions of d/a for horizontal excitation for a circular tank. 
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Figure 39. Variation of r|T/r|H and y\j/r\R with relative rocking parameter (*Fd) m a x /U r 
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170 



7 

Figure 41. Variation of F T / F H and F T / F R with relative rocking parameter ( ^ F d ^ / U 
for d/a = 0.5 and a = 100 m. 

Figure 42. Variation of F T / F H and F T / F R with d/a for a relative rocking parameter 
( x J / d) m a x /U m a x =0.1anda=100m. 
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Figure 43. Variation of M T / M H and M T / M R with relative rocking parameter 
N ) m a x / U ™ for d/a = 0.5 and a = 100 m. 
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Figure 44. Variation of M T / M H and M T / M R with d/a for a relative rocking parameter 
(w)_ /U m a x =0.1anda=100m. 
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Figure 46. Variation of M ' T / M ' H and M ' T / M ' R with d/a for a relative rocking parameter 
N ) m a x / U m a x = 0 . 1 a n d a = 1 0 0 m . 
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Figure 50. Variation of total damping to bottom boundary damping in laminar regime. 
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Figure 51. Variation of damping due to different components of the tank due to laminar 
boundary layer. 
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Figure 53. Damping due to horizontal baffles for different values of h/d and for a - 0.1 
and r| a/d = 0.1. 
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Figure 54. Damping due to horizontal baffles for different values of a and for h/d = 0.9 
and r)a/d = 0.1. 
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Figure 55. Damping due to a vertical baffle for different value of r| a/d values and 
(3 = 0.05. 
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Figure 56. Damping due to vertical baffle for different values of (3 and rja/d = 0.1. 
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Figure 57. Variation of Au/u with relative baffle length a for horizontal baffles. 

Figure 58. Variation of Au/u with relative baffle length (3 for vertical baffle. 
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Figure 59. Free vibration test for (a) d/a = 1.0, and (b) d/a = 0.5 
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Figure 60. Comparison of theoretical and experimental values for rectangular tank under 
horizontal harmonic base motion for d/a = 0.5. (a) Free surface elevation, (b) Horizontal 
force on the tank, (c) Overturning moment at the base. 
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Figure 61. Comparison of the theoretical and experimental values for rectangular tank 
under horizontal harmonic base motion for d/a = 1.0. (a) Free surface elevation, (b) 
Horizontal force on the tank, (c) Overturning moment at the base. 
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Figure 62. Comparison of theoretical and experimental values of rectangular tank under 
rocking motion for d/a = 1.0. (a) free surface elevation, (b) horizontal force on the tank, 
(c) overturning moment at the base. 
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Figure 63. Comparison of theoretical and experimental values for rectangular tank with 
simultaneous horizontal and rocking motion with relative rocking parameter, v|/d/U = 0.2, 
for d/a = 1.0. (a) free surface elevation, (b) horizontal force on the tank, (c) overturning 
moment at the base. 
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Figure 65. Comparison of theoretical and experimental values for rectangular tank with 
horizontal baffles under horizontal harmonic base motion for d/a = 1.0 and h/d = 0.8. (a) 
free surface elevation, (b) horizontal force on the tank, (c) overturning moment at the 
base. 
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Figure 66. Comparison of theoretical and experimental values for rectangular tank with 
horizontal baffles under horizontal harmonic base motion for d/a = 1.0 and h/d = 0.7. (a) 
free surface elevation, (b) horizontal force on the tank, (c) overturning moment at the 
base. 
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Figure 67. Comparison of theoretical and experimental values of rectangular tank with 
horizontal baffles under horizontal harmonic base motion for d/a = 1.0 and h/d = 0.6. (a) 
free surface elevation, (b) horizontal force on the tank, (c) overturning moment at the 
base. 
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Figure 68. Comparison of theoretical and experimental values for rectangular tank with 
vertical baffle under horizontal harmonic base motion for d/a = 1.0 and^/d = 0.1. (a) free 
surface elevation, (b) horizontal force on the tank, (c) overturning moment at the base. 
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Figure 69. Comparison of theoretical and experimental values for rectangular tank with 
vertical baffle under horizontal harmonic base motion for d/a = 1.0 and#d = 0.2. (a) free 
surface elevation, (b) horizontal force on the tank, (c) overturning moment at the base. 
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Figure 70. Comparison of theoretical and experimental values for rectangular tank with 
vertical baffle under horizontal harmonic base motion for d/a = 1.0 and//d = 0.3. (a) free 
surface elevation, (b) horizontal force on the tank, (c) overturning moment at the base. 
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Figure 71. Comparison of theoretical and experimental damping coefficient. 
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Figure 72. Comparison of theoretical and experimental damping coefficient in the 
presence of horizontal baffles. 
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Figure 73. Comparison of theoretical and experimental damping coefficient in the 
presence of a vertical baffle. 
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Figure 74. Distribution of dimensionless masses m0/m and m\/m with elevation for 
rectangular tank with a = 100m and d = 30m. 

Figure 75. Distribution of dimensionless masses m0/m and nii/m with elevation for 
circular tank with a = 100m and d = 30m. 

194 


