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A B S T R A C T 

Despite the many advances in highway design, traffic engineering, automobile 

manufacturing, and police enforcement technologies, many countries around the world 

still suffer from an ever-increasing problem of traffic accidents. Therefore, there has been 

a keen interest throughout the world in developing Road Safety Improvement Programs 

(RSIPs) aimed at: 1) identifying accident-prone locations; 2) diagnosing their problems; 

and 3) suggesting proper countermeasures. While the success of these programs has 

varied considerably from one jurisdiction to another, the overall performance of these 

programs has been less than satisfactory in terms of number of accidents eliminated. The 

main reason for that is believed to relate to the inadequacy of procedures adopted in the 

execution of these programs. Most importantly, the faulty identification of accident-prone 

locations (i.e., identification of locations that are not really accident-prone) seems to be 

the primary reason behind the lack of success of these programs. 

This thesis discusses the problems encountered in developing and implementing RSIPs 

from an engineering perspective. It also describes the efforts in developing new 

techniques to make these programs more effective in identifying and treating accident-

prone locations. Sayed (1995) has described two new techniques for the identification 

process. The first one is the Modified RSIP that alters the definition of accident-prone 

locations and introduces the concept of correctable accidents. The second one is the 

Countermeasure-Based RSIP that starts by identifying prevailing accident patterns and 

then suggest proper engineering countermeasures, thus effectively reversing the normal 

flow of procedures in traditional RSIPs. This thesis introduces further refinements to 
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these new techniques. The classification process of accidents in the first method is refined 

using artificial neural networks and neuro-fuzzy models. Accident prediction models are 

used to identify over-represented accident patterns in the second method. These 

refinements significantly improve the results of the two methods. Examples of real-life 

applications are given and their results are discussed. 
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Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

There has been a serious concern about traffic safety since the start of the automobile age, 

approximately eleven decades ago. In spite of this concern, traffic safety problems have 

prevailed over the past century causing enormous economic and social costs. In 1995, 

there were 534 fatalities, about 50,000 injuries and 180,000 property damage only 

accidents. The direct annual cost to the province exceeded 2.0 billion dollars (ICBC 1995 

Annual report, Vancouver, B.C.). Recognizing these safety problems and the need to 

reduce the social and economic costs associated with them, road safety authorities have 

established Road Safety Improvement Programs (RSIPs). The objective of these 

programs is to monitor traffic conditions, collect and analyze accident data, locate trouble 

spots with abnormally high accident frequencies and implement appropriate and effective 

countermeasures in order to improve the safety potential of these sites. The RSIPs adopt 

a procedure which has the following three phases: 

Detection: identification of accident-prone locations; 

Diagnosis: assessment of the causes of the safety problems at the accident prone 

locations; and 

Remedy: recommendation of the most effective countermeasure(s) to alleviate 

the safety problems at the identified locations. 
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Introduction 

While the success of these programs has varied considerably from one jurisdiction to 

another, the overall performance of these programs has been less than satisfactory in 

terms of number of accidents eliminated. The main reason for that is believed to related 

to the inadequacy of procedure adopted in the execution of these programs. Most 

importantly, the faulty identification of accident-prone locations (i.e., identification of 

locations that are not really accident-prone) seems to be the primary reason behind the 

lack of success of these programs. 

In traditional RSIPs programs locations are identified as accident-prone on the basis of 

the total number of accidents. Traditionally, locations that exhibit a higher accident 

occurrence than an established "norm" are deemed to be hazardous. However, this 

criterion provides no consideration of the factors contributing to the accidents and 

provides little or no insight into whether the safety at these locations can be enhanced by 

road improvements. These traditional methods may result in the identification of 

locations that are not truly hazardous from a road safety authority perspective, and 

consequently, may lead to misapplication of safety improvement funds. Sayed (1995) 

proposed two alternative approaches to identify hazardous locations. 

The first is the "modified black spot program" which is implemented to identify 

hazardous locations on the basis of their contributing factors and causes. This approach 

uses a fuzzy pattern recognition algorithm to classify accidents, according to their 

contributing factors and causes, into one or a combination of the three main highway 

system elements: the driver, the vehicle and the road. Statistical techniques such as the 

Empirical Bayes approach are then used to identify hazardous locations from a road, 

driver or vehicle point of view (Sayed, Abdelwahab and Navin, 1995). This thesis will 

2 



Introduction 

introduce a further refinement to the classification process: artificial neural networks and 

neuro-fuzzy models. A comparative evaluation of the classifiers is carried out and their 

relative advantages are discussed. 

The second approach is "the countermeasure-based program" which argues that a 

location with a given number of accidents with well-defined patterns can be treated more 

effectively than a location with a larger number of accidents with poorly defined patterns. 

Traditional approaches start with a problem (high accident occurrence) and attempt to 

find solutions (countermeasures). The countermeasure-based program reverses the 

traditional process by first identifying main accident patterns that can be targeted by 

specific countermeasures and then searching for locations which have over-representation 

of these patterns. Sayed (1995) assessed the over representation of accident patterns by 

the likelihood that the ratio of the number of accidents of a particular pattern to the total 

number of accidents at the location is higher than usual. This thesis will introduce a 

further refinement to the identification process using accident prediction models. The 

advantages of using these models will be discussed and their usefulness demonstrated 

using case studies. 

1.2 Thesis Structure 

This thesis is divided into seven chapters. Chapter One provides an overview of the thesis 

and its structure. Chapter Two summarizes previous work on identifying hazardous 

locations and briefly discusses the two new identification approaches suggested by Sayed 

(1995): the Modified RSIP and the Countermeasure-Based RSIP. Chapter Three 

3 
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introduces a refinement to accident classification in the Modified RSIP using artificial 

neural networks. The advantages of using artificial neural networks in accident 

classification are discussed. Chapter Four presents a further improvement to the 

classification process using neuro fuzzy techniques. A comparative evaluation of 

artificial neural networks and the neuro fuzzy techniques is carried out and the results 

discussed. Chapter Five describes the application of the classification process for the 

identification of accident-prone locations from a broader perspective than the engineering 

improvement. Chapter Six deals with using accident prediction models to improve the 

identification of treatable locations in the countermeasure-based program. Chapter Seven 

provides suggestions for further research and the summary and conclusion of the thesis. 



Literature Review 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

As mentioned earlier, recognizing the importance of reducing the social and economic 

costs of road accidents, the majority of road authorities have established Road Safety 

Improvement Programs (RSIPs). The main goal of these programs is to identify locations 

that may have safety problems "hazardous locations1" and establish countermeasures to 

correct them. In broad terms, the development of RSIPs involves the following functions: 

• Location identification, or detection (i.e. which locations are considered hazardous), 

• Problem identification, or diagnosis (i.e. what causes the identified locations to be 

hazardous) and 

• Solution identification, or remedy (i.e. given these locations and their problems, what 

countermeasures are effective to alleviate the problem) 

The first phase (detection) defines the scope and the size of the safety problem. The 

following is a description of it. 

The terms: hazardous, accident-prone, black spot are used interchangeably in road safety analysis. 
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2.2 B l a c k Spot Programs 

Programs to identify hazardous locations are usually called "Black Spot Programs". The 

basic assumption of these programs is that the road design plays a contributory role in the 

occurrence of many road accidents. Therefore, improving the engineering elements of 

hazardous locations can avert a significant proportion of accidents. Problem locations 

may be defined as specific sites (intersections or short road sections) or they may have 

broader definitions such as routes and areas, the latter is normally reserved for residential 

areas. These locations are usually considered in subcategories of the road system. 

Different categorization criteria are often used which include, whether the location in an 

urban or rural area, and the road class( e.g. freeway, arterial, collector, etc.). 

In black spot programs, a hazardous location is defined as any location (section or 

intersection) that exhibits a higher potential for accidents than an established "norm". The 

higher potential for accidents can be expressed in terms of any accident measure such as 

accident frequency, rate, severity or a combination thereof. The following are a 

description of the measures most commonly used to identify hazardous locations. 

2.2.1 The Frequency Measure 

The accident frequency measure (AF) is defined as the number of accidents per location 

during a specific time period. If the observed AF meets or exceeds a predefined value, the 

location is considered hazardous. Several different section lengths and/or years of data 

are often used. The predefined frequency criterion usually varies by area type 

(urban/rural) or other variables such as highway class. 
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The use of an accident pin map has been one of the earliest methods of identifying 

hazardous locations. Each accident is represented by a pin on the map. Different pin 

colors and sizes can be used to indicate accident types and severity. From the map, 

locations that have clusters (high frequency) of accidents can be easily identified. Also, 

the use of two pin maps (one for the current year and the other for the preceding year) can 

be useful for comparison purposes. This process can be automated using geographical 

information system (GIS) software. 

Proponents of using the frequency measure to identify hazardous locations argue that 

locations identified by this method have a high number of accidents and consequently 

have a higher potential for accident reduction. The problem with using the frequency 

method, however, is that it does not account for the effect of traffic exposure. For 

example, 10 accidents per km may be considered "high" for a section that carries 15,000 

veh/day, and "low" for another section that carries 40,000 veh/day. 

2.2.2 The Rate Measure 

The accident rate measure (AR) is defined as accidents per million-vehicle-kilometers 

(mvk) for sections, and accidents per million-entering-vehicle (mev) for intersections: 

Sections: 

AX- N X I ° 6 (2.1) 
LxAADTxtx365 

Intersections: 
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AR= 
Nx\06 

(2.2) 
AADTxtx365 

where 

= Number of accidents observed during period t, 

L = Segment length (km), 

AADT = Average Annual Daily Traffic volume (veh/day), counting all approaches in the 

case of intersection, and, 

The calculation of accident rates requires the availability of a traffic volume file. The 

volume file should be formatted by a compatible location reference method as the 

accident file. Locations that meet or exceed a predefined accident rate are then identified 

as hazardous. 

The advantage of using accident rates is that it allows comparisons to be made between 

sites with similar characteristics but with different levels of exposure. However, although 

the use of AR addresses the exposure effect, it introduces another bias in the identification 

of hazardous locations when applied to lower volume roads. 

For example, two accidents per year may be considered low from a frequency point of 

view. However, on a low volume road, it may result in a high accident rate, i.e., for 1 km 

section and 1 year period, 2 accidents will result in AR greater than 2.0 if the traffic 

T = observation period (years). 
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volume is less than 2700 veh/day. Therefore, identifying hazardous locations based solely 

on accident rates can be misleading. 

2.2.3 The Frequency Rate Method 

To address the weakness of using either the rate or the frequency measures, several 

researchers such as Zegeer and Deen (1977) suggested using both AF and AR to identify 

hazardous locations. Usually, locations that meet the frequency criteria are first selected 

and then ranked using the rate criteria. However, some agencies use the rate to select 

locations and the frequency for ranking. Other agencies define a double criterion where a 

location must meet both predefined accident frequency and rate. 

2.2.4 The Severity Method 

The severity method uses the Accident Severity Index (AST), defined as the weighted sum 

of fatal (F), injury (I), and property-damage-only (PDO) accidents. 

ASI= \00xF+l0xI+PDO (2.3) 

Because all accidents are weighted against the PDO accident, the ASR is also known as 

Equivalent PDO (EPDO). For example, if the portion of F, I, and PDO accidents at 

some location is 1%, 33% and 66%, the ASR value would be equal to 4.96. 

Various jurisdictions use different weights than the 100, 10, and 1 shown above. 

However, the ASR is an arbitrary ratio that relates the proportions of accidents with 

various severity levels at a given location and any convenient weighting will do. 
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Locations are ranked by their EPDO and those that meet or exceed a certain threshold 

value are selected. In some jurisdictions an EPDO rate is calculated by dividing the 

EPDO by the traffic volume to account for exposure. 

2.2.5 Issues in Hazardous Locations Identification 

2.2.5.1 Time Period and Section Length 

Selecting the section length and the time period for which accident data are accumulated 

to calculate accident measures is a controversial issue. For example, as the length of road 

gets very small, the probability of zero or one accident tends toward unity. As the length 

of road gets very large, the effect of isolated hazards will be submerged and lost. Zegeer 

(1982) states that "accident rates in accidents per million vehicle miles become unstable 

and of questionable value for highway segments of short length (i.e. less than 0.3 miles) 

even when several years of accidents and volume data are used." Nicholson (1980) 

recommended the avoidance of sections shorter than one kilometer. 

The choice of time is also controversial. The shorter the time period, the greater the 

probability of quickly detecting sudden changes in the accident occurrence. However, 

statistical reliability considerations indicate that a longer time period is required, while 

longer periods would prevent the quick detection of changes in accident rates. A time 

period of one to three years is commonly used in most road jurisdictions (Zegeer, 1982). 

2.2.5.2 Observed and Expected Accidents 

The accident frequency or rate at a particular location is a random variable whose true 

value can not be predicted with absolute accuracy. This causes the process of identifying 

10 
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hazardous locations based on the accident history to be subject to uncertainty. Therefore, 

accident measures should be calculated based on the expected number of accidents at a 

location. The problem, however, is that this expected number is generally not known, and 

statistical techniques should be utilized for its estimation. 

2.2.6 Classical Statistical Techniques to Identify Hazardous Locations 

High frequency of accidents may not necessarily mean that a particular location is truly 

hazardous. This high frequency may be solely caused by random variations of accident 

occurrence. An optimal identification technique would only identify locations that are 

truly hazardous and would not identify any non-hazardous locations. To address this 

concern, many classical statistical techniques have been developed and used to identify 

accident-prone locations based on historical accident data. Typically, a location will be 

identified as hazardous i f its observed accident measure exceeds some critical level. The 

following is a discussion of some statistical techniques for identifying hazardous 

locations. 

2.2.6.1 The Confidence Interval Technique 

The simplest statistical technique to identify hazardous locations is the confidence 

interval technique that is based on the assumption that the observed accident frequency or 

rates are normally distributed. The technique involves calculating a critical threshold that 

is equal to the sample mean frequency or rate plus a multiple of the sample standard 

deviation. The multiple coefficients depend on the degree of confidence desired. 

A location is considered hazardous if: 

11 
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Ct > (X + k<7 (2. 4) 

where Ci is the accident frequency or rate at the location, // is the mean frequency or 

rate of the population of similar locations, cr is the standard deviation of the population 

and k is obtained from the normal distribution function (k = 1.645 for 95% confidence 

level.) The reliability of this technique has been questioned since it is apparently very 

sensitive to the sample mean and standard deviation of the population accident 

frequencies or rates. Another problem with this technique is the normal distribution 

assumption that does not account for the special nature of accidents as rare and random 

events. 

2.2.6.2 The Statistical Quality Control Technique 

The rate quality control technique (Nordon 1956), which is based on statistical quality 

control procedures seems to be the most widely used statistical technique among highway 

agencies to identify hazardous locations. The technique defines a location as hazardous if 

the observed number of accidents exceeds a critical number or if the observed accident 

rate exceeds a critical accident rate. The main assumption of the technique is that the 

number of accidents occurring at a given location during a given time period can be 

approximated by the Poisson distribution. This assumption is widely accepted among 

safety researchers and has been investigated many times and turns out to be supported by 

a vast body of empirical evidence (Oppe 1982; 1992). 

Based on the Poisson assumption, then we can write: 

P(n) = e a (a)" In\ (2.5) 
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where 

P(n) = probability that n accidents will occur at a given location during the given time 

period, and 

a = expected number of accidents at the given location during the given time period. 

Equation (5) can also be written as: 

P(n) = eXm(Am)n ln\ (2.6) 

where 

X = expected accident rate in accidents per million vehicle kilometers and 

m = number of vehicle kilometers in million. 

The value for a and A are taken to be the average number/rate across all similar locations 

in a specified region. Based on Equation (2.6), an upper control limit U can be calculated 

such that: 

Probability (X>U) = P (2.7) 

where 

X = the observed number of accidents, 

P = predefined probability limit. 

The upper control limit (the critical limit) can then be calculated using a table of Poisson 

distribution. However, calculating the upper control limit from these tables involves 

13 
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double interpolation (for a and for X). Nordon (1956) obtained satisfactory 

approximations to determine the critical rate or number by using: 

CN=a+ky[a+0.5 (2.8) 

CR = A + kjA/m + — 
2m 

where A: is a constant related to the Level of Significance as follows: 

Level of Significance K 

0.01% 3.719 

0.05% 3.290 

0.1% 3.090 

0.5% 2.576 

1% 2.326 

5% 1.645 

(2.9) 

Locations that have a higher accident number or accident rate than the CN or the CR are 

considered to be accident-prone since their deviations from their expected means can not 

be reasonably attributed to the random fluctuation in accident occurrence. 

Given the value of X for a group of similar locations (e.g. signalized intersections), a 

graph can be plotted relating the critical accident number or rate to the traffic exposure at 

these locations. This graph can then be used to identify hazardous locations. For example, 

Figure 2-1 shows the critical accident rate curve for the urban signalized intersections 
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category based on three years of accident data (1989-1991) from the B.C. Ministry of 

Transportation and Highways. 

10 20 30 40 
Total AADT (veh/day) Thousands 

50 

Figure 2-1 Critical Accident Rates for Urban Signalized Intersections in B.C. 

2.2.7 Selection of the Identification Method 

Most jurisdictions utilize more than one method to identify hazardous locations. It is 

common to use the rate quality control method in conjunction with the accident 

frequency method. Although the accident frequency method does not account for 

exposure, it is useful to exclude locations with low numbers of accidents before applying 

the rate quality control method and calculating critical rates. It is also important to use the 

accident severity method as a supplemental method (Zegeer and Deen, 1977) since the 

existence of severe accidents (injury and fatal) should justify a further analysis of 

locations than property damage only accidents. 
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A treble-measure criteria which combines the accident frequency, rate and severity and 

their critical values was developed by Abdelwahab and Sayed, (1993). The measure 

identifies a location as hazardous if: 

((AR>RC or ASI >SC) and AF>FC) (2.10) 

where Rc, Sc, and Fc are the critical values for AR, ASR, and AF respectively. 

2.3 Bayesian Identification of Accident-prone Locations 

The number of accidents at a location is a random variable that fluctuates around some 

unknown mean. This randomness is the reason that historical accident data at a location 

does not always accurately reflect its long-term accident characteristics. For example, a 

location that has low accident frequency during long periods of time may have had high 

accident rates during portions of this period and vice versa (Higle and Witkowski, 1988). 

The regression to the mean effect is also inherent in ratio data. Because of this 

phenomenon, a higher than normal number of accidents at a location may be followed by 

a lower than normal number during a similar succeeding period even if no changes are 

introduced on the sites (and vice-versa). One type of analysis suggested to account for 

these random variations is the Empirical Bayes approach (Higle and Witkowski, 1988; 

Brude 1988). The advantage of Empirical Bayes analysis is that it regards the accident 

count at any location as a random variable. The technique combines regional accident 

characteristics (for a group of similar locations) with the location-specific accident 

history to estimate the probability that the location is accident-prone. 
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The technique is based on Bayes' theorem which can be mathematically described as: 

where 0 is a parameter such as the number of accidents at a location, P(<f) is the prior 

0 which represents the resolution of the prior distribution given the observations. 

Typically, the observation distribution will be assumed to be a Poisson or binomial 

distribution and the prior distribution will be a gamma or beta distribution. The main 

issue then is how to estimate the parameters of the prior distribution. In a pure Bayesian 

analysis, these parameters are usually assumed based on engineering judgment and past 

experience. While in the Empirical approach, the parameters are estimated using a sample 

of observations from population of similar locations (the same kind as the one being 

investigated). 

Higle and Witkowski (Higle and Witkowski, 1988) have described an Empirical Bayes 

procedure to identify accident-prone locations. The procedure is based on the following 

two assumptions: 

1) the actual number of accidents at any given location (JV,) follows a Poisson 

distribution such that at any given location, where the accident rate is known (A, = X), 

and the expected value is given by AVt, then the observation probability distribution is 

given by the following: 

(2.11) 

distribution of <p, P(x\</>) represents the probability of making x observations for a 

specific value of 0 (observation distribution), and P(<t\x) is the posterior distribution of 
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P[Ni = nAi=A,Vi] = (2.12) 

where: Ai = accident rate at location / (treated as a random variable). 

Vi = number of vehicles passing through location /' during specific time period. 

2) the probability distribution of the regional accident rate (the prior distribution), 

fR(A), follows a gamma distribution. Then the prior distribution can be given by the 

following: 

fR (A) = probability density function associated with the accident rate across the region 

(the prior distribution), 

a,B = parameters of the gamma distribution. 

The parameters a and (3 of the prior distribution are estimated using the method of 

moments estimates (MME), where a and P are chosen so that the mean and variance 

associated with the gamma distribution are equal to the mean (x) and variance (s2) of the 

sample. 

Consequently, in the MME method the a and p parameters can be selected according to 

the following: 

(2.13) 
Y(a) 

where: 
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B=x/s2 (2.14) 

a=Bx (2.15) 

Morris (1988) showed that estimating a and (3 parameters based on equations (2.14) and 

(2.15) will lead to biased and inefficient estimation. He suggested using the following 

equation instead of equation (2.14): 

fi = !'2
X _ (2.16) 

V s -x 

where: 

V* = the harmonic mean of (V^ ) 

The next step is to combine the regional probability distribution (the prior distribution) 

with the location specific accident rate to obtain the location specific probability density 

function or the posterior distribution / .(A|jV ( . ,^) . According to Berger (1985), the 

resulting probability distribution / (A\Nl,Vi) is a gamma distribution with the following 

parameters: 

a^a+N, (2.17) 

B,=B+V, (2.18) 

And thus, the probability density function associated with the accident rate at location / is 

given by: 
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f,(AN„V,) = Pi' 
T(a,) 

•AaHe~ (2.19) 

Finally, location i will be identified as accident-prone if there is a significant probability 

that the location's accident rate, A:, exceeds the observed regional accident rate, XR. 

Thus, location i is identified as accident-prone if: 

P { A , > X J A ^ } >8 (2.20) 

or equivalently if: 

\ - f ^ — A a ^ e - ^ d A 
o T(at) 

>8 (2.21) 

where Jrepresents the confidence level desired, such as 0.95, or 0.99 and XR= 
2ZN, 
1=1 
m 
2ZVt 

i=i 

Sayed (1995) has added a small modification to Higle and Witkowski's method. Instead 

of using Equation 2.21 to calculate whether a location is accident-prone, a critical 

accident rate for each location, Ac, which corresponds to a 8 probability that the location 

accident rate, At, exceeds the reference group accident rate, XR, will be calculated by 

solving the following equation for A (substituting a + A^V, for or, in Equation 2.21): 
i 

1- I 1 

o r(a + AV) 
Aia+Xc'v'-X) e(-p'X) dA = 8 (2.22) 
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2.4 New Techniques to Identify Accident-prone Locations 

In the traditional identification methods discussed previously, sites are identified for 

treatment based on their accident occurrence being greater than some norm. Accident 

correctability and targeted accident patterns are usually not considered. There are three 

components of the highway system: the driver, the vehicle and the road environment. 

Accidents occur due to a failure in any of these components or a combination of them as 

shown in Figure 2-2. The identification of potential treatment sites should be based on the 

factors which contributed to their accidents. For example, accidents which occur due to 

adverse road design should have greater influence for highway departments in identifying 

accident-prone locations than those which occur due to impaired driving. Similarly, if an 

accident could have been avoided by timely advice then technologies from a caring 

highway should be considered. 

Sayed (1995) has presented two other methods to identifying potential treatment sites. 

The first is the "modified black spot program" which considers accident correctability 

and the degree of highway forgiveness. The second is the "countermeasure-based-

program" which primarily considers locations that have well defined accident patterns 

that can be targeted by specific countermeasures. The following is a brief description of 

the two methods. However, they will be described in detail in Chapters Three, and Six. 

2.4.1 The Modified Black Spot Program 

The modified black spot program identifies potential treatment sites based on the 

assessment of accident contributing factors as described by Sayed et al (1995). The basic 
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idea is to classify accidents according to their patterns and contributing factors into one or 

a combination of the three components of the highway system (the driver, the vehicle and 

the road). The method utilized fuzzy pattern classification. The advantage of fuzzy set 

theory is that a degree of membership in a set can be specified. This is very important in 

pattern recognition where the membership of an element in a certain group is usually not 

clear. The output from the classification process is three membership values for each 

accident, one value for each of the three highway system components. Each membership 

ranges from 0 to 1 and they sum to one. For example, a certain accident can have 

membership values of 0.6 in the driver component, 0.3 in the road environment 

component, and 0.1 in the vehicle component. These memberships will be used to modify 

the method of calculating accident measures. 

Road 
Environmei t 

Road 
User 

Vehicle 

Single factor 

Double factor 

Treble factor 

Double factor 

Total percentage for each factor (overlapping) 

30 93 10 

Total accidents 

Figure 2-2 Accident Contributing Factors 

An important application of the method is investigating the effects of the "caring 

highway" concept on accidents. For example, rumble strip with adequate area to provide 

recovery space for run-off the road vehicles can eliminate some of the single-vehicle off-
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road accidents, even though these crashes involved some driver error. As shown in Figure 

2-2, highway agencies should devote their attention and spending on correcting accidents 

that belong to category 3. Accidents that belong to categories 5 and 7 are "somewhat 

correctable" by road improvements but perhaps are correctable using the concept of 

"caring highways". The degree of "caring" can be assessed by the degree (W,) with 

which accidents belong to the driver group. 

2.4.2 The Countermeasure-based Program 

The countermeasure-based method first identifies the main accident patterns that can be 

targeted by specific countermeasures and then searching for locations which have over-

representations of these patterns. In the countermeasure-based approach, a location is 

identified as accident-prone if it has over-representation of a particular accident type in 

the total number of accidents. 

To illustrate, consider, for example, a signalized intersection with a total of 35 accidents 

in three years. Similar signalized intersections with the same operating environment 

(reference group) have an average of 50 accidents in three years. Traditional black spot 

programs as accident-prone will not identify this intersection. However, if it is known 

that 25 out of the 35 accidents involved left turn collisions, then implementing a single 

countermeasure (e.g., addition of a left-turn lane, phasing, etc.) can be very cost effective. 
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2.5 Accident Prediction Models 

Developing accident prediction models, which provide reliable safety estimates of road 

segments and intersections can enhance the success of RSIPs. These safety estimates can 

be used in identifying accident-prone locations and evaluating the effectiveness of 

remedial measures. The models examine the traffic and road-related factors that appear to 

underlie the occurrence of accidents and explain, in statistical sense, the occurrence of 

accidents as a function of these factors. 

When estimating the model parameters using regression, there are two main options: the 

conventional linear regression approach assuming a Normal distribution error structure 

and the generalized linear modeling (GLIM) approach assuming a non-Normal error 

structure (usually Poisson or negative binomial). Several researchers (e.g. Jovanis and 

Chang, 1986, Saccomanno and Buyco 1988, Miaou and Lum 1993) have shown that 

conventional linear regression models lack the distributional property to adequately describe 

random, discrete, non-negative, and typically sporadic events which are all characteristics of 

traffic accidents. Recognizing these limitations, it was decided to use the GLIM approach. 

2.5.1 Generalized Linear Regression Models (GLIM) 

Assuming that 7 is a random variable which describes the number of accidents at an 

intersection (or segment) in a specific time period, and y is the observation of this 

variable during a period of time. The mean of Y is A which can also be regarded as a 

random variable. Then for A = A , Yis Poisson distributed with parameter A : 
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P(Y=y A= X) =—^T> E(Y\A = X) = 1; Var(y]A = A) = A (2.23) 

Hauer et al. (1988) have shown that A follows a gamma distribution (with parameters K 

and K/U), where K is the shape parameter and |j, is the mean of the distribution: 

r(K) 

with an expected value and a variance of 

E(A) = <u; Var(A) = — (2.25) 
K 

Kulmala (1995) has also shown that the point probability function of Y based on (2.24) 

and (2.25) is given by the negative binomial distribution: 

P(Y = y>^A—y i-^-r (2-26) 
r(K)y\ K + ju K + jU 

with an expected value and variance of: 

M2 

E(Y)=ju; Var(Y)=/^+— (2.27) 
K 

As shown in equation (2.27), the variance of the observed number of accidents is generally 

larger than its expected value. The only exception is when K —> oo, where the distribution of 

A is concentrated at a point and the negative binomial distribution is identical to the Poisson 

distribution (Kulmala, 1995). 
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As described earlier, for the GLIM approach, the error structure is usually assumed to be 

Poisson or negative binomial. The main advantage of the Poisson error structure is the 

simplicity of the calculations (the mean and the variance are equal). However, this 

advantage is also a limitation. It has been shown (Kulmala and Roine 1988, and Kulmala, 

1995) that most accident data will likely be overdispersed (the variance is greater than the 

mean) which indicates that the negative binomial distribution is the more realistic 

assumption. The only problem with the negative binomial assumption is in the 

determination of the value of K. Several methods to calculate K have been proposed 

(Hauer, 1988; Kulmala, 1995). The most of these methods is the maximum likelihood 

estimate (NAG, 1996). 

2.6 Conclusion 

Highway Safety Improvement programs involve three main processes: the identification 

of accident prone locations; the analysis of the causes and contributing factors of the 

safety problem and the selection of appropriate countermeasures. The identification 

process is undertaken using different statistical techniques (classical and Bayesian) to 

identify locations which have higher potential for accidents than an established "norm". 

This traditional criterion provides no consideration of the factors contributing to the 

accidents and provides little or no insight into whether the safety at thes locations can be 

enhanced by road improvements. Accident contributing factors and causes are not 

considered in the identification process. These traditional methods may result in the 

identification of locations that are not truly hazardous from a road safety authority 

perspective, and consequently, may lead to misapplication of safety improvement funds. 
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Sayed (1995) proposed two alternative approaches to identify hazardous locations. The 

first is the "modified black spot program" which is implemented to identify hazardous 

locations on the basis of their contributing factors and causes. This approach uses a fuzzy 

pattern recognition algorithm to classify accidents, according to their contributing factors 

and causes, into one or a combination of the three main highway system elements: the 

driver, the vehicle and the road. Statistical techniques such as the Empirical Bayes 

approach are then used to identify hazardous locations from a road, driver or vehicle 

point of view. The second approach is "the countermeasure-based program" which argues 

that a location with a given number of accidents with well-defined patterns can be treated 

more effectively than a location with a larger number of accidents with poorly defined 

patterns. Traditional approaches start with a problem (high accident occurrence) and 

attempt to find solutions (countermeasures). The countermeasure-based program reverses 

the traditional process by first identifying main accident patterns that can be targeted by 

specific countermeasures and then searching for locations which have over-representation 

of these patterns. Finally, accident prediction models were developed to provide reliable 

safety estimates of road segments and intersections. 
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CHAPTER 3 

ACCIDENT CLASSIFICATION USING ARTIFICIAL NEURAL 

NETWORKS 

3.1 Background: Accident Classification 

As described earlier, a hazardous location is defined as any location that exhibits a higher 

potential for accidents than an established "norm". The higher potential for accidents is 

usually expressed in terms of any accident measure such as accident frequency, rate, 

severity or a combination thereof. In traditional Black Spot programs, these accident 

measures are calculated from the total population of accidents. No consideration is given 

to whether these accidents were caused by road deficiencies or can be treated by road 

improvements. Results of these traditional improvement programs can, therefore, be 

disappointing and may lead to misallocation of safety funds. To overcome these 

deficiencies, an alternative approach was suggested by Sayed (1995). The approach, 

labeled modified black spot program, identifies accident-prone locations based on an 

assessment of accident contributing factors. The basic idea is to classify accidents 

according to their patterns and causes into one or a combination of the three road system 

components: the driver, the vehicle and the road environment as shown in Figure 2-2. For 

example, to identify road related accident-prone locations, more emphasis should be 

given to accidents which belong to category 3, followed by accidents which belong to 

categories 5, 6 and 7. 
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The classification process was carried out using a fuzzy K-nearest neighbors algorithm. 

The classification results were compared to those of two experts and were shown to 

produce satisfactory results (Sayed, 1995). The present thesis introduces further 

refinement to the classification process: using artificial neural networks. A comparative 

evaluation of the fuzzy k-nearest neighbors and a multilayer feed-forward back-

propagation neural network classifier is carried out. The theoretical backgrounds of both 

classifiers are presented and their relative advantages are discussed. 

3.2 Pattern Recognition and Fuzzy Sets 

Pattern Recognition can be generally defined as the allocation of objects to classes so that 

individual objects in one class are as similar as possible to each other and as different as 

possible to objects in other classes. The classification process can be performed with or 

without labeled data (data of known classification). If labeled data is available the process 

is usually referred to as supervised learning. In this process, the algorithm is given a set 

of patterns with known classification (i.e. labels) and is required to classify an unknown 

object based on the information acquired from the labeled data. In the case of 

unsupervised learning (also called cluster analysis), prior information about classes are 

not available and the clustering has to be based on an established similarity criteria 

(Bezdek and Pal, 1992). The results of this process are greatly influenced by the choice of 

both the number of clusters (c) and the similarity criterion. 

The theory of fuzzy sets was introduced by Zadeh (1965). It is based on the simple idea 

of introducing a degree of belonging of an element to a specific set. The theory deals with 
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a subset A of the universe of discourse U, where the transition between membership and 

non-membership is gradual rather than sharp. A fuzzy subset A of a universe of 

discourse U is characterized by a membership function uA(x), which associates each 

element x eU a membership uA(x) in the interval [0, 1] that represents the grade of 

membership in A. 

The relationship between fuzzy sets and classification is based on the fact that most real-

world classes are fuzzy in nature. Thus, given an object p and a cluster C , the basic 

question is not whether p is a member of C , but the degree to which p belongs to C , i.e. 

grade of membership of p in C (Kandel, 1982). In conventional classification techniques 

an object is assigned to one and only one of the classes, with a degree of membership 

equal to one, assuming well defined boundaries between classes, while in fuzzy pattern 

recognition an observation can belong to more than one class with different degrees. 

This is very important in pattern recognition where the membership of an element in a 

certain group is usually not clear. 

3.2.1 The Fuzzy K-Nearest Neighbor Algorithm 

The fuzzy K-Nearest Neighbor algorithm is considered one of the most accurate 

algorithms in pattern recognition (Keller et al., 1985; Bezdek et al., 1986). The classical 

(crisp) AT-NN algorithm classification rule assigns an input sample vector y, which is of 

unknown classification to the class which is represented by a majority amongst its K-

nearest neighbors (Duda and Hart, 1973). The ^-nearest neighbors are chosen from a 

labeled data sample (data of known classification). The fuzzy AT-NN algorithm assigns 

30 



Accident Classification Using Artificial Neural Networks 

class membership to a sample observation based on the observation distance from its K-

nearest neighbors and their memberships (Keller et al., 1985). 

If -{xx,x2,...,xn} is the set of n labeled samples and is the membership of they'th 

labeled data in the /'th class, then the fuzzy £-NN algorithm is simply described as 

follows (Keller et al., 1985): 

BEGIN 

Input y, of unknown classification. 

Set K,\<K<n. 

Initialize i = 1. 

DO UNTIL (^-nearest neighbors found) 

Compute distance from y to xt 

IF (/ < K) THEN 

Include x, in the set of ^-nearest neighbors 

ELSE IF (x, is closer to y than any previous nearest neighbor) THEN 

Delete farthest in the set of ^-nearest neighbors. 

Include xt in the set of A -̂nearest neighbors 

END IF 
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Increment i. 

END DO UNTIL 

Initialize /' = 1 

DO UNTIL (y assigned membership in all classes) 

K 2/(m-l) 
» y ( l / y-Xj ) 

Compute ut(y) = ^ ——— (3.1) 
I O / ^ - ' J ) 
7=1 

Increment i. 

END DO UNTIL 

END 

As shown in equation (3.1), the assigned memberships of observations are influenced by 

the class memberships of the AT-nearest neighbors and the inverse of the distance to the 

A!-nearest neighbors. The best value of the integer K is usually data dependent. For the 

results shown in this paper, a K value of 10 was found to give the best results. The 

memberships of the labeled sample can be assigned in several ways such as using fuzzy 

cluster analysis or based on expert opinions. The distance between observations can be 

represented by any distance measure (||*||) such as the Euclidean distance, defined as 

(Bezdek, 1981): 

dy,, = ZCVv -*,v)2 = (y-xty(y-x,) (3.2) 
v=l 
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where p is the number of variables for observation With this distance, the variables are 

given equal weights. Another form of distance measure is the Mahalanobis' distance in 

which the correlation between variables are taken into account (Bezdek, 1981): 

d n =(y-x,yZ~\y-xi) (3.3) 

where £ is the sample covariance matrix of x. The Euclidean distance is usually used 

when the variables are statistically independent, while the Mahalanobis' distance 

mitigates the effects of statistical dependence between pairs of variables. The variable m 

in equation (3.1) defines how heavily the distance is weighted when calculating each 

neighbor's contribution to the membership value (Keller et al., 1985). When m=2, the 

contribution of neighbors is weighted by the reciprocal of its distance from the point 

being classified. As m increases the contribution of each neighbors is more evenly 

weighted. Usually, practitioners use m = 2. 

3.3 Artificial Neural Networks 

An Artificial Neural Network (ANN) attempts to mimic, in a very simplified way, the 

human mental neural structure and functions (Hsieh, 1993). It can be characterized as a 

massively parallel interconnection of simple neurons that function as a collective system. 

The network topology consists of a set of nodes (neurons) connected by links and is 

usually organized in a number of layers. Each node in a layer receives and processes 

weighted input from nodes in the previous layer and transmits its output to nodes in the 

following layer through links. Each link is assigned a weight that is a numerical estimate 

of the connection strength. The weighted summation of inputs to a node is converted to 
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an output according to a transfer function (typically a sigmoid function). Most ANNs 

have three layers or more: an input layer, which is used to present data to the network; an 

output layer, which is used to produce an appropriate response to the given input; and one 

or more intermediate layers, which are used to act as a collection of feature detectors. 

The ability of a neural network to process information is obtained through a learning 

process which is the adaptation of link weights so that the network can produce an 

appropriate output. In general, the learning process of an ANN will reward a correct 

response of the system to input by increasing the strength of the current matrix of nodal 

weights. Therefore, the likelihood of producing similar output when the same inputs are 

entered in the future will increase. An incorrect response from the system is discouraged 

by adjusting the nodal weights so that the system will respond differently when it 

encounters similar inputs in the future (Hsieh, 1993). The learning process may be 

supervised or unsupervised based on the availability of target output. In the supervised 

learning inputs proceed through the network and produce an output. The difference 

between this output and the target output represents an error that is then propagated back 

through the network to "train" it. In unsupervised learning, the network automatically 

detects important features and organizes the input data into classes based on these 

features. More information about neural networks can be found in Lawrence (1991). 

There are several neural network models which can be used in pattern recognition (both 

supervised and unsupervised). For supervised pattern recognition, the most commonly 

used ANN is the feed-forward network trained using the back-propagation algorithm 

(Rumelhart and McClelland, 1986; Jones and Hoskins, 1987) which is adopted in the 
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present study. The back-propagation algorithm can be described in three equations. First, 

weight connections are changed in each learning step (k) with: 

Awf/1 = Tji^.Slf .x\s-l]+m.Aw];] (3.4) 
U (A) / v > PJ • >J (fc-l) v ' 

Second, for output nodes it holds that: 

6™=(d]-oJ).f>(lf) (3.5) 

and third, for the remaining nodes it holds that: 

4 , I =/ ; ( 7 5 ' I ) -Z«5r , I - w r (3-6) 
k 

where 

x[.] = actual output of node j in layer s 

w\p = weight of the connection between node i at layer (s-\) and node j at layer (s) 

S[

pj] = measure for the actual error of node j 

= weighted sum of the inputs of node j in layer s 

r/(t) = time dependent learning rate 

/ 0 = transfer function 

m = momentum factor (between 0 and 1) 
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dj ,Oj = desired and actual activity of node j (for output nodes only) 

3.4 The Accident Data 

The data for this investigation came from the provincial accident database files consisting 

of all police reported accidents in the Province of British Columbia. The data sample 

consisted of 994 accidents, each assigned a membership into the three classes defined as: 

the driver, the vehicle and the road. The assignment of memberships was made by two 

safety experts from the British Columbia Ministry of Transportation and Highways, and 

was made based on an examination of the accident records and the apparent contributing 

factors associated with each accident. During the selection of the labeled data, every 

effort was made to include as many different accident types as possible. Each input 

vector included 21 variables. The first 15 variables and their levels are described in Table 

3-1. In addition to the variables listed in the figure, another six variables describing 

accident contributing factors as assigned by the police officers investigating the accident 

were also included. The first three contributing factors were associated with the first 

vehicle in the crash and the other three with the second vehicle (for multi-vehicle 

accidents). The contributing factors range from driver related, such as alcohol 

involvement and driving without due care, to vehicle related such as engine or brake 

failure, to road related, such as road obstructions and pavement surface deficiencies. 

These contributing factors are listed in Table 3-2. 
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Table 3-1 Selected Variables and Their Levels 

Variable Levels Variable Levels 
1. Degree of 
curvature 

1. Straight 
2. Single Curve 
3. Sharp Curve 

9. Accident location 1. At intersection 
2. Not at intersection 

2. Road grade 1. Flat 
2. Some grade 
3. Steep grade 
4. Hillcrest/Sag 

10. Accident type 1. Single vehicle-fixed 
object 
2. Single vehicle-other 
3. Multiple vehicle-head 
on 
4. Multiple vehicle-
side/angle 
5. Multiple vehicle-rear-
end 
6. Pedestrian 
7. Animal 

1. Single vehicle-fixed 
object 
2. Single vehicle-other 
3. Multiple vehicle-head 
on 
4. Multiple vehicle-
side/angle 
5. Multiple vehicle-rear-
end 
6. Pedestrian 
7. Animal 

3. Speed limit 1. 50-60 kph 
2. 70-80 kph 
3. 90-110 kph 

11. Severity 1. Property damage only 
2. Injury 
3. Fatal 

4. Surface 
condition 

1. Dry 
2. Wet 
3. Ice/Snow 

12. Traffic control 
device 

1. Exist 
2. None 

5. Weather 
condition 

1. Clear/Cloudy 
2. Raining 
3. Smog/Fog 
4. Ice/Snow 

13. Use of a 
restraint device 

1. Device used 
2. Vehicle equipped but 
device not used 
3. Vehicle not equipped 

6. Lighting 
conditions 

1. Daylight 
2. Dark/Full 
illumination 
3. Dark/Some 
illumination 
4. Dark/No 
illumination 

14. 
Volume/capacity 
ratio 

- Value 

7. Land use 1. 
Undeveloped/ Agricultu 
re Area 
2. Rural residential area 
3. Urban residential 
4. Central Business 
District 

15. Vehicle type 1. Passenger cars only 
2. At least one van or 
pickup 
3. At least one truck or 
bus 

8. Accident time 1. Non-rush hour 
2. Rush hour 
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Table 3-2 Apparent Contributing Factors 

1. Alcohol involvement 20. Cutting in 63. headlights defective 

2. Driver inexperience 21. Driving on wrong side of 
road 

64. Turn Signal defective 

3. Drugs 22. Improper turning 65. Oversize vehicle 

4. Extreme fatigue 23. Failing to yield right of 
way 

66. Steering failure 

5. Fell asleep 24. Ignoring traffic control 
device 

67. Tires failure inadequate 

6. Illness 25. Pedestrian error confusion 68. Two hitch failure 

7. Sudden loss of 
consciousness 

40. Obstruction on Road 69. Driverless vehicle 

8. Pre-existing physical 
disability 

41. pavement surface 
defective 

70. Windshield defective 

9. Prescribed medication 42. Road 
maintenance/construction 

71. Engine failure 

10. Attempted suicide 43. Sign obstruction 72. Suspension defect 

11. Driving without due care 44. Insufficient traffic control 73. restraint system 

12. Failing to signal 45. Road/intersection design 74. Insecure load 

13. Ignoring officer 46. Roadside/hazard 75. Dangerous good 

14. Previous traffic accident 47. Wild animal 76. Vehicle modification 

15. Following too closely 48. Weather 77. Glare artificial 

16. Improper passing 49. Visibility impaired 78. Glare sunlight 

17. Unsafe speed 60. Accelerator defective 79. Domestic animal 

18. Avoiding vehicle/ 
pedestrian/ cycle 

61. Brakes defective 99. Others 

19. Backing unsafely 62. Brake lights out 
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The data was standardized using the following function (Romesburg , 1984): 

x — c 
ij I 

min j (3.7) 
max j < — c. min j 

where cmaxJ and cminj are the maximum and minimum of the jth variable in all 

observations. The main reason for standardizing the data matrix is that the variables are 

usually measured in different units. By standardizing the variables and recasting them in 

dimensionless units, the arbitrary effects of similarities between objects are removed. 

3.5 The Neural Network Model 

In general, the development process of a feed-forward back-propagation neural network 

involves the following steps (Lawrence, 1991): 

1. Defining the network architecture (number of layers and nodes in each layer). The 

input layer for the network consisted of 21 nodes representing the input variables with 

their levels as described in Table 3-1 (15 input variables plus 6 input variables 

representing contributing factors). The output Layer had three nodes representing the 

membership of an accident into the three highway system components: the road, the 

vehicle and the road environment. After several trials, it was found that one hidden 

layer with five nodes gives the best results. (Figure 3-1) 

2. Training the network. Two-thirds of the labeled data (600 input vectors with their 

memberships) was presented to the network. After experimenting with different 

transfer functions, learning and momentum rates, the following parameters were 
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selected: a sigmoid transfer function, a learning rate of 0.2 and a momentum rate of 

0.8. The threshold error was set at 0.05. The network training stopped after 

approximately 3400 epochs (an epoch is one complete pass through a set of input and 

target patterns while training the network). The error graph is shown in Figure 3-2. 

3. Testing the network. The trained network was used to run a test data (300 new, 

untrained input vectors). The outcomes (three membership's) were compared with the 

memberships assigned by the experts. The three memberships produced by the 

network did not necessarily add to one as in the case of the experts and the fuzzy K -

NN algorithm. Therefore the results were scaled to add to one. 

A misclassification measure between the network output and the expert's was defined as: 

(3.8) 

where: 

E = a measure of classification error, c = the number of classes (3 in this case), uik = is 

the membership value of the kth observation in the ith class as assigned by the experts , 

and uik = the membership value of the kth observation in the ith class as estimated by the 

network. 

A value of E equal to zero indicates identical experts and network membership values, 

while a value of 1.41 indicates a complete disagreement. 
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Output (Driver,Road,and Vehicle Membership Grades) 

Input Layer 

Input 

Figure 3-1 Feed-forward Back-propagation Neural Network Accident Classification Model 
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Figure 3-2 The Training Error Graph 
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3.5.1 Applications and Results 

To allow for comparison between the Fuzzy K-NN and the ANN methods, results are 

presented to show the difference in the magnitude of classification error compared to 

expert classification. The classification error was calculated by the Euclidean distance 

formula of equation (3.8). Table 3-3 shows the results of the comparison. In general, the 

ANN classifier performed slightly better and produced more consistent results than the 

fuzzy K-NN classifier. The average classification error was 0.107 in the case of the ANN 

classifier compared to 0.142 in the case of the fuzzy K-NN classifier. The standard 

deviation was 0.165 in the case of the ANN classifier compared to 0.224 for the fuzzy K-

NN classifier, which indicates higher consistency of the ANN classification. The 25, 50, 

and 75 percentile of error were smaller in the case of ANN classifier compared to the 

fuzzy K-NN classifier. 

To further check the consistency of the classifier results, the kappa statistics (Cohen 

1960; Fleiss 1971) was employed. Each accident was classified into one of the seven 

categories shown in Figure 2-2, using the memberships assigned by the experts and the 

two classifiers. An ct-cut operator of 0.15 was applied to the membership values 

produced by the classifiers (observations with memberships less than 0.15 in any class 

were assigned zero membership in that class). The ct-cut value of 0.15 was selected based 

on the minimum membership value (greater than zero) assigned by the experts to any 
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accident in the three classes. Table 3-4 shows the agreement and disagreement between 

the expert classification and the ANN classifier results. 
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Table 3-3 Distribution of Classification Error for ANN and Fuzzy K-NN Classifiers 

Classifier Average 
classification 
error 

Standard 
deviation of the 
classification 
error 

25 percentile 
classification 
error 

50 percentile 
classification 
error 

75 percentile 
classification 
error 

ANN 0.107 0.165 0.024 0.048 0.120 
Fuzzy K-
NN 

0.142 0.224 0.037 0.079 0.145 

Table 3-4 Agreement Between the Experts Classification and the ANN Classifier Results 

ANN Classifier 
Experts Category 

1 
Category 
2 

Category 
3 

Category 
4 

Category 
5 

Category 
6 

Category 
7 

Total 

Category 1 168 0 0 1 14 0 0 183 
Category 2 0 7 0 2 0 1 0 10 
Category 3 0 0 2 0 4 0 0 6 
Category 4 7 1 0 2 0 0 0 10 
Category 5 32 0 0 0 48 0 2 82 
Category 6 0 0 0 0 0 1 0 1 
Category 7 0 0 0 0 1 0 7 8 
Total 207 8 2 5 67 2 9 300 
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As shown in Table 3-4, the number of accidents assigned by experts and ANN classifier 

to category 1 is 168, the number of accidents assigned by the experts to category 1 and by 

the ANN classifier to category 5 is 14 and so on. The kappa statistic is defined as: 

kappa=^—^- (3.9) 
e 

where: 

P is the overall percent agreement; 

Pe is the overall percent agreement expected by chance. 

A positive value for kappa indicates agreement, a value of zero indicates an agreement 

that can be expected by chance, and a negative value indicates disagreement. For the data 

in Table 3-4, P is calculated by the sum along the diagonal divided by the total number 

of cases. Thus, P =235/300=0.783. The overall percent agreement expected by chance 

may be calculated from the percentage of assignment of each expert to the seven 

categories, i.e. 

_ 207 183 8 10 2 6 5 10 67 82 2 1 9 8 
P = x + x + x + x + x +—— x — — + — — X 300 300 300 300 300 300 300 300 300 300 300 300 300 300 

= 0.484 (3.10) 

Therefore, using Equation 3.9, kappa = 0.58. The variance of kappa is calculated using 

(Fleiss, 1971): 
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. Zpj-iZpj)2 

1 ^ j j Var( kappa) = — xJ V ^ " (3.11) 
N (\-2Zp])2 

j 

where: 

N is the total number of cases; 

j = 1,..., k is the seven categories of classification; 

Pj is the proportion of all assignments of the y'th category 

For example, p} =0.5(207 / 300 +183 / 300) = 0.65. And therefore, using Equation 3.11, 

Var(kappa) = 0.003. Under the hypothesis of no agreement beyond chance and using the 

central limit theorem, the value kappa I ^Var (kappa) may be approximately distributed 

as a standard normal variant (Fleiss, 1971). Therefore, 

kappa I ̂ JVar(kappa) = .552 / V.003 = 10.31, which greatly exceeds the critical Z value of 

2.32 at the 99% significance level, indicating strong agreement between the experts and 

the ANN classifier results. A similar comparison between the experts results and the 

fuzzy K-NN classifier results produced a value of 0.54 for kappa , and a value of 9.80 

for kappa I ^JN ax (kappa) which also indicate a strong agreement with the experts 

results. 

3.5.2 Discussion 

As shown from the comparison of results, the ANN classifier overall performance is 

slightly better than the K-NN classifier. The results of both classifiers, however, are 
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considered good. One of the most important attributes of both classifiers is their ability to 

spot patterns in data that classical pattern recognition systems may not be able to detect. 

Therefore, both classifiers are recognized as ideal tools for dealing with environments 

that are highly unstructured and that may involve incomplete or noisy data (such as the 

case of traffic accident data). 

Table 3-5 provides a comparison of the relative advantages of both classifiers. The results 

have indicated that both classifiers are efficient and produce good results. However, the 

ANN classifier produces slightly better results and has a greater computational efficiency 

as compared to the fuzzy K-NN classifier. 
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Table 3-5 Comparison of ANN and Fuzzy K-NN Classifiers 

Comparison Criteria ANN Classifier Fuzzy K-NN Classifier 
Selection of parameters To achieve good classification 

results, several parameters such 
as the learning rate, the 
momentum rate and the number 
of nodes in hidden layers have to 
be carefully selected. 

Only one parameter has to be 
carefully selected (the parameter 
K). 

Optimality (with regard 
to classification error) 

Higher than the fuzzy K-NN 
classifier. 

Slightly lower than the ANN 
classifier. 

Computational 
Efficiency 

Very efficient. Once the network 
is trained, the classification is 
completed very fast. 

Less efficient. Al l the labeled data 
has to be permanently stored. So 
that for each input classification, a 
comparison of this input to all of 
the labeled data is carried out. 

Fault tolerance (ability 
to deal with incomplete 
or corrupt data) 

High High 

Ability to deal with 
highly unstructured 
problems 

High High 

Adaptivity (the ability 
to adjust when given 
new data) 

Adaptive through retraining Highly adaptive. The K-NN will 
adapt to the new data as soon as it 
is stored, (no training is required) 
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3.6 Conclusion 

Traditional methods of identifying accident prone locations, or black spots do not account 

for accident contributing factors or causes. This leads to the identification of locations 

which may not be truly hazardous or accident prone from a road environment 

perspective. This Chapter described an alternative approach suggested by Sayed (1995). 

The approach labeled modified black spot program, identifies accident prone locations 

based on accident contributing factors. Two classification processes (Fuzzy K-nearest 

neighbors algorithm, Artificial Neural Networks) was carried out and the results were 

compared. The results showed that Artificial Neural Networks have inherent advantages 

that make them slightly superior to fuzzy K-nearest neighbors algorithm classification 

techniques. These advantages related to the computational efficiency and, for the 

investigation presented in this Chapter, a higher classification accuracy of ANNs 

compared with fuzzy classifiers. These advantages increase their applicability to the field 

of accident data analysis. Better accident data classification allows for more accurate 

detection of safety deficiencies, which, in turn, leads to more effective allocation of 

safety funds. 
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CHAPTER 4 

ACCIDENT CLASSIFICATION USING NEURO-FUZZY MODELS 

4.1 Background 

In Chapter 3, it was shown that Artificial Neural Networks (ANNs) could be successfully 

used for accident classification. ANNs produced higher predictive accuracy of accident 

classification compared with the K-NN algorithm. In addition, ANNs were believed to 

have higher computational efficiency than the fuzzy K-NN algorithm. 

However, despite the flexibility and the good performance of ANNs in modeling 

nonlinear relationships, they have often been criticized for acting as "black boxes". The 

knowledge contained in the ANN model is kept in the form of a weight matrix that is 

hard to interpret and can be misleading at times. 

The efficiency of ANN models is also another point of concern. Since it is not always 

possible to determine the significance of the input variables in advance, any potential 

candidate may be included in the model. It is therefore important to identify and exclude 

those input variables that do not have a significant contribution. This would lead to a 

more efficient model. This is particularly important in cases where a large number of 

potential input variables exist but only a subset of them would actually affect the output. 

Conventional techniques of variables selection such as stepwise modeling (Masters, 

1993) may not produce optimal results (Masters, 1993; Abdelwahab and Sayed, 1998). 

It is therefore desired to develop efficient models that are able to correctly simulate the 

input/output relationship using a minimal set of input variables while providing insight 
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into the decision-making process. The models should also adopt approaches that use as 

few constraining assumptions as possible so that they can be successfully used for a wide 

variety of applications. It is also beneficial to have the ability to insert any available 

knowledge or expertise into the model if necessary. 

In this Chapter, the merits of adopting the neuro-fuzzy approach will be discussed. It will 

be shown that the proposed approach has the potential to provide similar or better 

accuracy compared with ANNs while overcoming their shortcomings. 

4.2 The Neuro-Fuzzy Approach 

4.2.1 Fuzzy Logic and Fuzzy Sets 

Fuzzy logic is another area of AI that has been successfully applied to an increasing 

number of applications. The concept of fuzzy logic was introduced by Zadeh (1965). 

Basically, it is a superset of conventional (Boolean) logic that has been extended to 

handle imprecise data and the concept of partial truth. In fuzzy logic, variables are 

"fuzzified" through use of so called "membership functions" that define the membership 

degree to fuzzy sets, or as they are often called "linguistic variables" (e.g., inexpensive). 

A fuzzy subset A of a universe of discourse U is characterized by a membership function 

uA(x), which associates each element JC e(7 a membership uA(x) in the interval [0,1] 

that represents the grade of membership in A. 

To each variable, a small number of fuzzy sets (linguistic variables) are assigned whose 

membership functions overlap and cover the necessary range of variation for that 
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variable. Consequently, statements that contain linguistic variables (e.g., Transit fare is 

inexpensive) may take "truth values" of other than "true" or "false", represented by a 

number in. the range [0,1]. This provides an opportunity to define logical operators such 

as "AND" or "OR". 

One way of representing fuzzy sets is by using B-spline functions. B-spline functions 

(Figure 4-1) are piecewise polynomials of order k which have been widely used in 

surface fitting applications. The order of the functions determines their smoothness. They 

can be used to implement crisp fuzzy sets (k=\) or the standard triangular fuzzy 

membership functions (&=2) or other smoother representations. A univariate B-spline 

function of order k is non-zero only over k intervals, which are generated by a (k+1), 

knots. A Multivariate B-spline function can be formed by taking the tensor product of n 

univariate functions (Brown and Harris, 1995). 

Piecewise constant Piecewise linear Piecewise Iquadratic 

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

Input knots Input knots Input knots 

Figure 4-1 B-spline Fuzzy Membership Functions 
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4.2.2 Fuzzy Systems 

Fuzzy systems use fuzzy implications or "IF THEN rules" to process information. One 

such rule may look like this: 

IF " T r a n s i t Fare" i s INEXPENSIVE and " T r a n s i t Waiting P e r i o d " i s 

Short 

THEN " P r e f e r r e d Mode of Trans p o r t a t i o n " i s Transit 

The part of the rule between the " i f and "then" is the rule's premise or antecedent. This is 

a fuzzy logic expression that describes to what degree the rule is applicable. The part of 

the rule following the "then" is the rule's conclusion or consequent. The consequent part 

of the rules may result in a fuzzy or crisp variable. In cases where the consequent is in 

fuzzy form but a crisp number is desired, an inverse operation called "defuzzification" 

needs to be done. Fuzzy systems are defined by a number of fuzzy rules, a number of 

membership functions, and mechanisms to apply logical operators. There are numerous 

successful applications of fuzzy systems in control and modeling. They are most suitable 

for situations where an exact model of a process is either impractical or very costly to 

build but an imprecise model based on the existing human expertise can do the job. In 

such cases, fuzzy systems are considered the best alternative, though they do not perform 

optimally. 

4.3 Neuro-Fuzzy Models 

The knowledge contained in fuzzy systems are transparent to the user but can not be 

acquired directly from data. ANNs on the other hand, have the ability to learn the 
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knowledge from a set of data, but the knowledge gained is hidden from the user. The 

concept of neuro-fuzzy systems has emerged in recent years as researchers have tried to 

combine the transparent, linguistic representation of a fuzzy system with the learning 

ability of an ANN (Brown & Harris, 1994). A neuro-fuzzy system uses an artificial 

neural network learning algorithm to determine its parameters (i.e. fuzzy sets and fuzzy 

rules) by processing data samples. Therefore it can be trained to perform an input/output 

mapping, just as with an ANN, but with the additional benefit of being able to provide the 

set of rules on which the model is based. This gives further insight into the process being 

modeled. 

Several merger types of ANNs and fuzzy systems have been reported in the literature. 

They include various representations and architectures and therefore are suitable for 

different applications. Methods proposed by Kosko (1992) and Jang (1993) are among 

many variations that combine neural networks and fuzzy system. While the former uses 

competitive networks to generate rules for fuzzy systems, the latter proposes a hybrid 

back-propagation/least square learning method to tune the parameters of a so called 

adaptive network-based fuzzy inference system (ANFIS). However, these methods suffer 

from what is often referred to as the "curse of dimensionality" (Brown and Harris, 1994). 

To illustrate this "curse", one may consider a fuzzy system with N input variables each 

of which having M membership functions. In such a system, as many as MN 

combinations (or potential fuzzy rules) would exist. This exponential growth of fuzzy 

rules with number of inputs makes it impractical .to use most existing architectures for 

problems of high dimensionality (such as the problem in this study). In reality, many of 
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these rules would be redundant for modeling purpose, and therefore a suitable technique 

should start from a simple architecture and build on it as necessary. 

One such approach uses ANalysis Of VAriance (ANOVA) (Brown and Harris, 1995) for 

decomposition of the output function of dimension n as; 

f(x)=f0+ifi(x)+i:ifi(xl,x?+---+f]2jx) 

in which /„ represents a constant (the function bias) and other terms represent univariate, 

bivariate, and other subfunctions respectively. In many cases a majority of the terms, 

particularly those of higher dimensions, are zero or negligible. For such cases, the 

ANOVA representation allows the input/output mapping to be approximated using a 

limited number of, as they are often called, "subnetworks" of much lower dimensions. An 

example of this decomposition is shown in Figure 4-2, where a five-dimensional function 

is decomposed into a one-dimensional and two two-dimensional sub-networks. 
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Figure 4-2 An Additive ANOVA Decomposition of A Neuro-fuzzy Rule Base (Brown 

and Harris 1995) 
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A fuzzy rule within each sub-network may have the form: 

IF (x; is large AND %2 is small) THEN (y is small) with confidence c, 

Where c is the rule confidence or weight. A rule confidence of zero indicates that the rule 

is not contributing to the output while a rule confidence of one indicates that the rule is 

completely true. Values between zero and one allow the rules to partially fire. The 

number of fuzzy rules used in each sub-network depends on the number of membership 

functions that are used to fuzzify the inputs of that sub-network. In the above example, 

assuming that five membership functions are used for each variable, the first, second and 

third sub-network consist of 5, 25 and 25 fuzzy rules respectively. The consequent part of 

all the rules will be ORed (i.e., summed in this case) together. 

ASMOD or adaptive spline modeling of observation data (Kavli, 1994) is an algorithm 

that uses the above decomposition to calculate parameters for a spline representation of 

an n-dimensional function. Denoting a B-spline sub-model by su (.) and its associated 

input vector xu, u-\,...U, the overall network output is given by: 

X*) = 5>„(* . ) (4-2) 

And if wu denotes the weight coefficient vector for each submodel and w = \Ju

u=] wu, and 

for the basis function output vectors a - [ju
u=] au, the network output is then given by: 
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y(x) = fjal(x)w, (4.3) 
1=1 

In its most general form, the B-splines could be o f any dimension. For the above 

example, the first five splines wi l l be one-dimensional while the rest of them wi l l be two-

dimensional. The membership functions for the first variable are equivalent to the one-

dimensional splines but the membership functions for the second and third variables are 

equivalent o f one-dimensional splines whose tensor product has produced the mentioned 

two-dimensional splines. The elements in the weight vector represent the rule 

confidences. It should also be noticed that the output function is linear with respect to the 

weight vector and thus can be solved easily. In this representation, algebraic product is 

used for fuzzy A N D and sum is used for fuzzy OR. 

In A S M O D algorithm, for any model structure (i.e., specific combination of subnetworks, 

the number and location of splines), one can use the training data to calculate the mean 

square error (MSE) of the output. The algorithm starts from the simplest structure (e.g., 

only first variable in one subnetwork with two triangular splines) and iteratively refines 

its structure until some stop criteria is satisfied. In each step among a number o f potential 

(single) changes to the structure, the one with the best performance is selected and the 

process continues. Addit ion of a new input, combining an existing input to a subnetwork, 

splitting a subnetwork, and deleting an input are all possible changes to the structure. 

Adding splines in the middle of existing ones, deleting splines, and changing the order of 

splines are also some other changes that are considered by the algorithm. Some measure 

o f statistical significance is used as stopping criteria. Among many such measures, 
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Bossley et al. (1995) state that, for noisy data, the Bayesian statistical significance 

measure appears to perform well and therefore is used in this study. The Bayesian 

statistical significance measure is given by (Brown and Harris, 1994): 

K = L\n(J) + p\n(L) (4.4) 

where K is the performance measure, p is the size of current model, J is the MSE and L is 

the number of data pairs used to train the network. 

4.4 Results 

To compare the training results between ANN and the neuro-fuzzy model, the same 

training data (as described in Chapter 3) is used. A misclassification measure between the 

ANN or neural-fuzzy output and the expert's was define as: 

£=(Z(%-";*) 2) 0 5 (4.5) 
; = 1 

Where: 

E = a measure of classification error 

c = the number of classes (3 in this case) 

Utk = is the membership value of the Ath observation in the /'th class as assigned by 

the experts 

U'ik t̂he membership value of the Ath observation in the /th class as estimated by the 

network. 
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A value of E equal to zero indicates identical experts and ANN or neural-fuzzy model 

memberships, while a value of 1.41 indicates a complete disagreement. Table 5-1 shows 

the results of the comparison. In general, the neuro-fuzzy classifier performed slightly 

better and produced more consistent results than the ANN classifier. The average 

classification error was 0.032 in the case of the neuro-fuzzy classifier compared to 0.107 

in the case of the ANN classifier. The standard deviation was 0.055 in the case of the 

neuro-fuzzy classifier compared to 0.165 for the ANN classifier that indicates higher 

consistency of the neuro-fuzzy classification. The 25, 50, and 75 percentile of error were 

smaller in the case of neuro-fuzzy classifier compared to the ANN classifier. 

Table 4-1 Membership Classification Error with the Expert Rating 

ANN classification Neural-fuzzy 
classification 

Average error 0.107 0.032 
Standard deviation 0.165 0.055 
25% error 0.024 0.011 

75%o error 0.12 0.03 

Among the 21 variables, the neural-fuzzy model selected only 7 variables. The variables 

selected are Road curve, weather, road surface, contributing factor C l 1, C12, C13 and 

C21. Contributing factors'Cl 1, C12 and C13 are the three contributing factors assigned to 

vehicle 1. The police usually designate the driver of vehicle 1 as the driver in fault. C21 

is the first contributing factor associated with vehicle 2. In many cases these two 

contributing factors will be left blank as the driver in vehicle two is assumed not to be in 
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fault. The road curve, weather and road surface are important factors which define the 

contribution of the road environment to the accident. 

4.5 Discussion 

A comparison of the prediction results of ANN and Neuro-fuzzy models shows that the 

performance of the neuro-fuzzy approach is slightly better than ANN. In addition, the 

neuro-fuzzy approach uses the smallest number of input variables to obtain the slightly 

better performance. Therefore, it could be considered as the most efficient among the two 

approaches. The transparency of the knowledge gained by the neuro-fuzzy approach is 

also an advantage. The use of linguistic variables makes it relatively easy to interpret the 

rules and if necessary change them. Table 4-2 provides a comparison of the two 

approaches. 
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Table 4-2 C o m p a r i s o n o f the T w o A p p r o a c h e s 

C o m p a r i s o n C r i t e r i a A N N 

N e u r o -

f u z z y 

C o n s t r a i n i n g assumptions present no no 

A b i l i t y to m o d e l nonl ineari ty yes yes 

A b i l i t y to m o d e l m u l t i v a r i a b i l i t y yes yes 

A u t o m a t i c e x c l u s i o n o f irrelevant inputs no yes 

Transparency o f T h e m o d e l not transparent very good 

A b i l i t y to insert expert k n o w l e d g e i n the 

m o d e l 

no yes 
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4.6 Conclusion 

Despite the flexibility and the good performance of ANNs in modeling nonlinear 

relationships, they have often been criticized for acting as "black boxes". The knowledge 

contained in the ANN model is kept in the form of a weight matrix that is hard to 

interpret and can be misleading at times. The efficiency of ANN models is also another 

point of concern. Since it is not always possible to determine the significance of the input 

variables in advance, any potential candidate may be included in the model. It is therefore 

important to identify and exclude those input variables that do not have a significant 

contribution. This would lead to a more efficient model—Neuro-fuzzy model. It is shown 

that the neuro-fuzzy approach has the potential to provide similar or better accuracy 

compared with ANNs while overcoming their shortcomings. A comparison of the 

prediction results of ANN and Neuro-fuzzy models shows that the performance of the 

neuro-fuzzy approach is slightly better than ANN. In addition, the neuro-fuzzy approach 

uses the smallest number of input variables to obtain the slightly better performance. 
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CHAPTER 5 

USING ACCIDENT CORRECTABILITY TO IDENTIFY ACCIDETN-

PRONE LOCATIONS 

5.1 Background 

In the previous two chapters three methods were described that utilize the knowledge of 

safety experts in classifying accidents into one or a combination of the three highway 

system components: the driver, the vehicle and the road. This chapter describes the 

application of the classification process for the identification of accident-prone locations 

from a broader perspective than the engineering improvement. 

5.2 Application of the Method to the Identification of APLs 

In traditional black spot programs, locations are identified as accident-prone if they 

exhibit significant number of accidents above an established norm. Accident causes are 

not considered. The concept of "accident correctability" considers the factors which 

contributed to the accident (i.e. road-related, driver-related, or vehicle-related). In order 

to be identified as accident-prone, locations must exhibit a significant number of 

correctable accidents. In the following sections, the APLs will be identified as road-

related, driver-related and vehicle-related respectively. 
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5.2.1 Redefining Accident Frequency and Rate 

The identification of accident-prone locations involves a comparison of a certain accident 

measure, usually the accident rate, with an established norm. Traditionally, the total 

number of accidents is used to calculate this accident measure. The classification process 

described in the previous two chapters will be used to modify the method of calculating 

accident measures. As previously described, the output of the classification process is 

three membership values (one representing each component of the road system). Each 

value ranges between zero and one. For example, from a road improvement (engineering 

countermeasures) perspective, the accident frequency and accident rate can be calculated 

as follows: 

N 

Accident Frequency = ̂  Wi (5-1) 
/=i 

N 

Accident Rate= — (5.2) 
Exposure Measure 

where: 

Wi = the degree with which the ith accident belongs to the road environment group 

(ranges between 0 and 1). 

N = the total number of accidents at the location during a certain time period. 

Exposure is usually measured in million vehicle kilometers for road sections and million 

entering vehicles for road intersections. 
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5.2.2 Examples 

To illustrate the application of the modified black spot program, the method was applied 

to the South Coast Region of the Province of British Columbia, Canada. The South Coast 

Region is one of six regions of the provincial highway system. There are approximately 

3000 kms of primary highways (two lanes, multi-lane, and freeways), and 275 signalized 

intersections in this region. Using police reported accident data from 1989 through 1991, 

accident-prone locations were identified by both the traditional black spot method and the 

modified method proposed in this thesis. Results from the two methods were compared 

and presented below. Figure 5-1 and Figure 5-2 show the results of applying the two 

methods to identify accident-prone locations for the signalized intersection category. As 

discussed above, and as a result of weighting accidents by their road correctability, the 

number of accident-prone locations using the modified method was reduced. In addition 

to increasing the potential effectiveness of safety improvement projects, limiting the list 

of accident-prone locations by the Modified method eliminates the frustration of 

diagnosing the nature and causes of the problem at the identified accident-prone 

locations. A traditional accident-prone location is not guaranteed to exhibit a 

recognizable pattern of accidents for which a solution can be readily found. An accident-

prone location identified by the modified method, on the other hand, has a higher chance 

of showing some pattern of accidents for which some engineering countermeasures can 

be proposed. 

As indicated in the introduction to this section, the modified method not only reduces the 

total number of accident-prone locations (as discussed above), but also alters their 
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ranking. This is very important in situations when the road authority has resources to 

address only a limited number of black spots, it is important to focus on those with the 

highest potential of accident reduction. It is logical that the more a location deviates from 

the typical (i.e., norm or average) accident rate, the higher the potential for accident 

reduction. 

To illustrate this point, Table 5-1 shows a list of accident-prone signalized intersections 

in the South Coast Region ranked by the traditional method (showing only the top 19 to 

economize on space). For comparison purposes, the corresponding ranking using the 

proposed (modified) is also given along with the difference between the two ranks. The 

criteria used for ranking accident-prone locations is the ratio of observed accident rate to 

the critical accident rate. In the modified method, the observed accident rate was adjusted 

by the algorithm as explained before. The difference in rank between the two methods 

seems to increase as the one approaches the bottom of the list. Another important point is 

that many of the intersections that ranked highly in the traditional method were not 

accident-prone in the modified method. 
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Table 5-1 Accident-prone Intersections Using the Traditional Method 

(showing top 19 only) 

Intersection number Traditional 

Rank 

Modified 

Rank 

Difference 

(Trad-Mod) Segment No. Kilometer Mark 

Traditional 

Rank 

Modified 

Rank 

Difference 

(Trad-Mod) 

3183 6.1 1 2 -1 
2510 18.9 2 1 1 

770 3.7 3 3 0 
3183 4.5 4 4 0 

770 13.4 5 7 -2 
2730 0.6 6 6 0 

2510 12.0 7 5 2 
3183 3.1 8 8 0 
2710 12.7 9 9 0 
2510 14.0 10 10 0 

3183 7.7 1 1 * * 23 -12 

2730 12.8 12 11 1 

2510 15.6 13 19 -6 

2510 17.2 14 16 -2 

770 15.4 15 12 3 

2714 16.3 16 13 3 

770 0.9 24 -7 

770 0.0 18** 27 -9 

2510 20.5 19** 34 -15 

** Indicates intersection is not accident-prone by the modified method. 

69 



Using Accident Correctability to Identify Accident-prone locations 

5.000 -j 

4.500 • I 
• Observed Rate Critical Rate 

4.000 

3.500 -

• 

0.00 10.00 20.00 30.00 40.00 50.00 60.00 

AADT (veh/day) Thousands 

Figure 5-1 APLs for Signalized Intersections Using traditional Method (#APLs=55) 
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Figure 5-2 APLs for Signalized Intersections Using ANN Classification Output 

(#APLs=19) 

71 



Using Accident Correctability to Identify Accident-prone locations 

5.2.3 Driver-Related Accident-prone Locations 

Another goal of this study is trying to find driver-related factors involved in the accident 

and identifying driver-related accident-prone locations. By applying the ANN technique, 

the three-road system membership values were generated and this gave the opportunity to 

identify the driver-related accident-prone locations. The number of driver-related 

accident-prone locations that provided by the ANN rating technique is 48, and it's shown 

in Figure 5-3. 
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• ObservedRate -Critical Rate 
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Figure 5-3 APLs for Signalized Intersections Using ANN Rating (#APLs=48) 
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Compared to the traditional method, not only the number of accident-prone locations was 

different, but also the rankings were different, the results were listed in Table 5-2. 
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Interseciton Traditional 
Rank 

ANN 
Rank 

Difference 
(Trad-ANN) Seg no kilo Mark 

Traditional 
Rank 

ANN 
Rank 

Difference 
(Trad-ANN) 

3183 6.1 1 1 0 
2510 18.9 2 3 -1 

770 3.7 3 2 1 
3183 4.5 4 4 0 

770 13.4 5 6 -1 
2730 0.6 6 8 -2 
2510 12 7 5 2 
3183 3.1 8 11 -3 
2710 12.7 9 10 -1 
2510 14 10 12 -2 
3183 7.7 11 7 4 
2730 12.8 12 14 -2 
2510 15.6 13 13 0 
2510 17.2 14 15 -1 

770 15.4 15 19 -4 
2714 16.3 16 9 7 

770 0.9 17 17 0 
770 0 18 20 -2 

2510 20.5 19 16 3 
3120 3.2 20 22 -2 
2714 13.4 21 18 3 
3190 0 22 23 -1 

720 26.3 23 21 2 
770 2.8 24 27 -3 
770 14.8 25 30 -5 

2730 14.6 26 24 2 
3110 6.7 27 41 -14 
2710 20.2 28 26 2 
3190 2.3 29 31 -2 
3184 13.1 30 40 -10 
2710 11.9 31 36 -5 
3183 5.3 32 28 4 

770 9.5 33 25 8 
3184 3.2 34 38 -4 

720 25.1 35 29 6 
3172 11.6 36 44 -8 

770 4.4 37 33. 4 
3183 7 38 32 6 
2710 0 39 48 -9 

720 23.1 40 39 1 
3120 4.7 41 37 4 
3120 5.2 42 34 8 
3184 12.3 43 43 0 
3183 1.5 45 35 10 
2510 7.2 47 47 0 

770 29.5 49 45 4 
2510 5.000 50 46 4 

Table 5-2 APLs Ranking Difference in Both Method 
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5.3 Conclusion 

I n t r a d i t i o n a l b l a c k spo t p r o g r a m s , l o c a t i o n s are i d e n t i f i e d as a c c i d e n t p r o n e i f t h e y 

e x h i b i t s i g n i f i c a n t n u m b e r o f a c c i d e n t s a b o v e a n e s t a b l i s h e d n o r m . A c c i d e n t c a u s e s are 

n o t c o n s i d e r e d . T h e c o n c e p t o f " a c c i d e n t c o r r e c t a b i l i t y " c o n s i d e r s the f a c t o r s w h i c h 

c o n t r i b u t e d to the a c c i d e n t ( i .e . r o a d - r e l a t e d , d r i v e r - r e l a t e d , o r v e h i c l e re la ted) . I n o r d e r to 

b e i d e n t i f i e d as a c c i d e n t p r o n e l o c a t i o n s , l o c a t i o n s m u s t e x h i b i t s i g n i f i c a n t n u m b e r o f 

correctable a c c i d e n t s . T h e A P L s s h o u l d b e i d e n t i f i e d as r o a d - r e l a t e d , d r i v e r - r e l a t e d a n d 

v e h i c l e - r e l a t e d r e s p e c t i v e l y . T h e n e w a p p r o a c h r e d e f i n e s a c c i d e n t f r e q u e n c y a n d rate to 

re f l e c t a c c i d e n t s c o r r e c t a b i l i t y a n d t h e n uses A N N s c l a s s i f i c a t i o n a n d E m p i r i c a l B a y e s 

t e c h n i q u e to i d e n t i f y A P L s . T h e m e t h o d w a s a p p l i e d to i d e n t i f y a c c i d e n t p r o n e l o c a t i o n s 

i n the S o u t h C o a s t R e g i o n o f the P r o v i n c e o f B r i t i s h C o l u m b i a a n d the resu l t s w e r e 

c o m p a r e d w i t h the t r a d i t i o n a l a p p r o a c h . T h e re su l t s i n d i c a t e d that t h e n e w a p p r o a c h h a s 

t w o m a i n b e n e f i t s o v e r the t r a d i t i o n a l a p p r o a c h . F i r s t , a c c i d e n t s are c o n s i d e r e d as r o a d 

r e l a t e d , d r i v e r - r e l a t e d , o r v e h i c l e r e l a t e d , r e s u l t i n g i n f e w e r n u m b e r o f a c c i d e n t p r o n e 

l o c a t i o n s . S e c o n d l y , th i s n e w t e c h n i q u e e l i m i n a t e s l o c a t i o n s w h i c h are n o t c o r r e c t a b l e 

f r o m a r o a d a u t h o r i t y p e r s p e c t i v e , a n d it a l s o i d e n t i f i e s l o c a t i o n s w h i c h are m o s t l i k e l y 

c o r r e c t a b l e f r o m e n f o r c e m e n t a n d d r i v e r e d u c a t i o n , a n d t h u s i n c r e a s i n g the p o t e n t i a l 

e f f e c t i v e n e s s o f r o a d sa fe ty i m p r o v e m e n t p r o g r a m s . 
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CHAPTER 6 

CONTERMEASURE-BASED APPROACH USING ACCIDENT 

PREDICTION MODELS 

6.1 Introduction 

In traditional black spot programs, for a location to be identified as accident-prone, it 

must exhibit a higher accident occurrence than an established "norm". However, a 

problem that arises when analyzing accident-prone locations identified by the traditional 

Black Spot program is that many of these locations do not have well-defined accident 

patterns for which countermeasures can be developed. And consequently, treating these 

locations may not be cost effective. To address this problem, Sayed (1995) described 

another approach for the identification process which is based on identifying locations 

that have over-representation of particular accident patterns. This facilitates the selection 

of countermeasures and identifies locations that are good candidates to be cost effectively 

treated. 

Traditional Black Spot programs start with a problem (high accident occurrence) and 

attempt to find solutions (countermeasures), but many of these locations identified by this 

method may not have well-defined accident patterns for which countermeasures can be 

developed. Consequently, treating these locations may not be cost effective. The 

countermeasure-based approach reverses the traditional process of linking problems with 

solutions by first identifying main accident patterns that can be targeted by specific 

countermeasures and then searching for locations which have over-representation of these 
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patterns. Sayed (1995) assessed the over-representation of a particular accident type in 

the total number of accidents using the ratio of the accident pattern to the total number of 

accidents. This chapter describes an alternative approach using accident prediction 

models. Two types of accident predictions model are used and the results are compared. 

6.2 The Countermeasure-based Approach Using APMs 

There are two methods can be applied to identify accident-prone locations using accident 

prediction models. Both methods use accident prediction models to calculate the 

predicted accident frequency (mean) and its variance, method one uses EB refinement, 

and method two does not use EB refinement. Only the first method will be discussed in 

this thesis. 

6.2.1 The Accident Prediction Models 

Accident prediction models can provide reliable safety estimates of road segments and 

intersections and can be used in identifying accident-prone locations. The recently 

developed accident prediction models (Sayed et al., 1998) for urban signalized 

intersections in the Greater Vancouver Regional District (GVRD) utilize the generalized 

linear regression modeling (GLIM) approach (as described in Chapter 2, section 2.5.1), 

which addresses and overcomes the shortcomings associated with the conventional linear 

regression approach. 

The accident prediction models use sample accident, traffic and intersection design data 

corresponding to urban signalized intersections located in Greater Vancouver. The data 
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set contained a total of 139 intersections from the City of Vancouver and the City of 

Richmond. The source of the data is the MV104 accident reporting form, the British 

Columbia's accident police report. The data set included a total of 12,325 accidents 

occurred during the 1993-1995 period. 

Model for the Total Number of Accidents (equation 6.1) and Model for Specific Accident 

Type (Left Turn Accident, equation 6.2) are described below: 

Model for the Total Number of Accidents: 

Accidents I year = 1.8718 x 
AADT, Major road 

1000 
AADT, . 0.4669 

Minor road 

1000 
(6.1) 

where k = 9.823 

Model for the Left Turn Accidents: 

Accidents I year = 0.2879 x 
AADT, , 0.4568 

Major road 

1000 
AADT, . 0.5685 

Minor road 

1000 
(6.2) 

where k = 3.42 

6.2.2 Empirical Bayes (EB) Approach 

There are two clues to the safety of a location: its traffic and road characteristics, and its 

historical accident data (Hauer, 1992, Brude and Larsson, 1988). The Empirical Bayes 

(EB) approach makes use of both kinds of clues. The EB approach is used to refine the 

estimate of the expected number of accidents at a location by combining the observed 
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number of accidents at the location with the predicted number of accidents obtained from 

the GLIM model to yield a more accurate, location-specific safety estimated. The EB 

estimated number of accidents for any intersection can be calculated using (Hauer 1992): 

EB safety estimate = a • pred + (l - a) • count, where a = 1 
var(pred) 

1 + 
pred 

(6.3) 

where 

count = observed number of accidents at the location 

pred = predicted number of accidents as estimated from the GLIM model 

var(pred) the variance of the GLIM estimates 

(pred)2 

Since var(pred) = — — (Sayed et al., 1998), equation 6.3 can be rearranged as: K 

EB safety estimate -
K 

K + pred 
pred + 

^ pred ^ 

K + pred) 
count (6.4) 

In addition, the variance of the EB estimate can be calculated using (Kulmala, 1995): 

2 f \^ 
var (EB safety estimate) = K Pre<^ + j —wed_— count 

(K + pred) yK + pred, 
(6.5) 

As showed in equation 6.4, the EB approach combines both the individual accident 

history of the location and GLIM model prediction. In addition to combining the two 

safety clues and providing site-specific safety estimates, it has also been shown that the 
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EB method significantly reduces the regression to the mean effects that are inherent in 

observed accidents count (Brude and Larsson, 1988). Regression to the mean is a 

statistical phenomenon that refers to the tendency of extreme events (high number of 

accidents) to be followed by less extreme values ( a lower number of accidents) event if 

no change has occurred that in the underlying mechanism which generates the process. 

6.2.3 Identification of Accident-prone Locations 

Accident-prone locations (APLs) are defined as the locations that exhibit a significant 

number of accidents compared to a specific norm. Because of the randomness inherent in 

accident occurrence, statistical techniques that account for this randomness should be 

used when identifying APLs. The EB refinement method can be used to identify APLs 

according to the following process (Belanger, 1994): 

Estimate the predicted number of accidents and its variance for the intersection using the 

appropriate accident model. This follows a gamma distribution (the prior distribution) 

with parameters ai and (3i, where: 

Determine the appropriate point of comparison base on the mean and variance values 

obtained in step (1). Usually the 50th percentile, P 5 0 is used as a point of comparison. P 5 0 

is calculated such that: 

E(A) 
andax = Bx • E(A) = rc (6.6) Var(A) E(A) 

(6.7) 
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Calculate the EB safety estimate and its variance from equations (6.4) and (6.5) 

respectively. This is also a gamma distribution (posterior distribution) with parameters ct2 

and pV 

EB K 

Var(EB) E(A) 
+ \anda2 = /?2 • EB = K + count (6.8) 

Then, the probability density function of the posterior distribution is: 

fEM)= 
(>c/E(A)+\f+c»»"')^"-'e-Wg(AK 

F(K + count) 

\)x 

(6.9) 

Identify the location as accident-prone if there is a significant probability that the 

intersection's safety estimate exceeds the P50 value. Thus, the location is identified as 

accident-prone if: 

' 50 

1-J. 
Qr/£(A) + i ) ( ™ ' > ; r ^ " ' - y 

T(K + count) 

KiE(\y\)k 

-dA > 8 (6.10) 

where 8 represents the confidence level desired (usually 0.95). 

To illustrate, consider a signalized intersection No. 28 with observed accident rate of 39.7 

acc/yr, applying the model for the total number of accidents, the expected value is 20.17 

acc/yr with a variance of 41.40 (acc/yr)2. The P50 value for the Gamma distribution can 

be calculated as 19.49 acc/yr. The EB safety and its variance calculated from equations 

5.3 and 5.4 are 33.28 acc/yr and 22.38 (acc/yr)2 respectively. The posterior distribution is 

also shown in Figure 6-1. From the figure, it can be shown that the probability of having 

accidents less than P50 is 0.03 percent. This means that there is a significant probability 
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(99.7%) of exceeding the P50 value and the intersection can be considered accident-prone. 

For the same intersection, the observed left turn accident rate is 8.33 acc/yr, the expected 

accident rate is 5.53 acc/yr with a variance of 8.95 (acc/yr)2. The P 5 0 value is 5.00 acc/yr, 

the EB safety and its variance are 7.26 acc/yr and 4.49 (acc/yr)2 respectively. The 

posterior distribution is shown in Figure 6-2. From the figure, it can be shown that the 

probability of having accidents less than P 5 0 value is 14 percent. This means this 

intersection will not be considered as left turn accident-prone location, so adding a left 

turn lane or applying other left turn related engineering improvements may not be cost 

effective to reduce the number of accident. 
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Figure 6-1 Identification of APL for Intersection No.28 (Total Accident) 
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Figure 6-2 Identification of APL for Intersection No.28 (Left-turn Accident) 
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On the other hand, consider another signalized intersection NO. 82 with an observed total 

accident rate 35.3 acc/yr and left turn accident rate 14.67 acc/yr. By applying the same 

method, it was found that this intersection is not accident-prone in terms of total accident 

number. But it is accident-prone in terms of left turn accident. So adding a left turn lane 

or applying other left turn related engineering improvement will likely be cost effective 

to reduce the number of accident. 

To investigate the effectiveness of the this method, it is applied to the set of 139 

signalized intersections from the City of Vancouver and the City of Richmond using 

accident data from 1993 to 1995. As an illustration, left turn accidents are considered. 

Table 6-1 shows intersections that identified by black spot program and intersections that 

identified by countermeasure-based program. There are 15 intersection identified as 

accident-prone locations by traditional black spot program and 15 intersection identified 

as accident-prone locations by countermeasure-based program (left turn accidents). 

As shown in Table 6-1, seven out of the 15 intersections that exhibited over-

representation of left turn accidents are not identified as accident-prone by the traditional 

black spot program, the ranking of the accident-prone location is different too. The 

ranking criterion used in this table is to calculate the difference between the EB estimated 

and the predicted frequency (as obtained from the accident prediction model) for the 

accident-prone locations identified by this method. 
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Table 6-1 Comparison between the Traditional Black Spot and the Countermeasure-

Based Programs (Left Turn Accident) 

Intersection 
Number 

Countermeasure-Based Program 
(Left Turn Accident) Black Spot Program Intersection 

Number 
EB-Pred* Rank Left-turn 

accident-prone EB-Pred* Rank Accident-prone 
location 

36 5.27 1 Yes 8.55 6 Yes 
112 5.21 2 Yes 8.39 9 Yes 
121 5.21 3 Yes 7.02 12 Yes 
82 4.38 4 Yes No 
132 4.37 5 Yes 8.42 8 Yes 
7 4.24 6 Yes 12.72 2 Yes 
18 3.88 7 Yes 8.62 5 Yes 
27 3.72 8 Yes 11.97 3 Yes 
64 3.63 9 Yes No 
99 3.11 10 Yes No 
79 2.93 11 Yes No 
69 2.80 12 Yes No 
76 2.33 13 Yes No 
86 2.26 14 Yes No 
128 1.76 15 Yes No 
28 No 13.11 1 Yes 
46 No 11.06 4 Yes 
52 No 8.45 7 Yes 
129 No 7.95 10 Yes 
15 No 7.42 11 Yes 
53 No 5.00 14 Yes 
5 No 3.79 15 Yes 
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6.3 Conclusion 

This chapter described the alternative technique for identifying accident-prone locations 

by applying the accident prediction model and the countermeasure-based approach. The 

countermeasure-based approach reverses the traditional process of linking problems with 

solutions by first identifying main accident patterns that can be targeted by specific 

countermeasures and then searching for locations which have over-representation of these 

patterns. The techniques were applied to identify accident-prone location of 139 

signalized intersections in Vancouver and Richmond. The results indicated that many 

locations identified in the countermeasure-based approach because of their well-defined 

accident patterns are not identified as accident-prone locations according to the 

traditional approach. The application of this technique should facilitate the selection of 

countermeasures and improve chances of getting better return for the money spent in 

highway safety improvement program. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATION 

7.1 Conclusions 

Given the increasing cost of road accidents, many road authorities have established road 

safety improvement programs. While the success of these programs has varied 

considerably from one jurisdiction to another, the overall performance of these programs 

has been less than satisfactory in terms of number of accidents eliminated. The main 

reason for that is believed to related to the inadequacy of procedure adopted in the 

execution of these programs. Most importantly, the faulty identification of accident-prone 

locations (i.e., identification of locations that are not really accident-prone) seems to be 

the primary reason behind the lack of success of these programs. 

This thesis has reviewed the traditional concepts of Road Safety Improvement Programs 

and proposed two new concepts and ideas for enhancing the performance of these 

programs. First, the definition of an accident prone location has been altered to the causes 

and the factors that contributed to the accidents. This required the development of 

sophisticated mathematical procedures that are believed to be currently viable and will 

become more viable with the advancement in the technologies of high-speed computing. 

Using the artificial neural network and neuro-fuzzy approaches, a correctable accident 

was defined as a real number between zero and one that reflects the degree with which 

the road component (or other components) has contributed to the occurrence of this 

accident. It is believed that a RSIP based on the newly-defined accident prone location 
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list will not only be more successful, but also more cost-effective than traditional RSIPs. 

Second, for jurisdictions where these concepts cannot be implemented for any reason, an 

alternative approach for identifying candidate safety improvement projects was 

introduced. The Countermeasure-Based approach relies on the selection of sites with 

recognizable patterns of accidents for which engineering treatments can be easily found. 

Finally, it is believed that a primitive condition for the successful application of any RSIP 

is the establishment of a reliable traffic accident data collection program at the national 

level. Of particular importance to this effort is the establishment of a road location 

referencing system (preferably GIS-based) whereby accidents can be accurately related to 

the characteristics of the location where they occur. 

7.2 Recommendations for Further Research 

This section presents a series of improvements, which can enhance and strengthen the 

methodologies described in this thesis. 

7.2.1 The Obstacles Associated with Road Safety Data 

The variables used in the classification process and the countermeasure-based approach 

come from the provincial accident database. Accident data in the province has been 

degrading in recent years. The main reason for the degradation in data is a reduction in 

resources and shifting priorities within provincial enforcement agencies. The reliability of 

accident data that is required to evaluate road safety management programs is often 

suspected. Even the highest level of accident reporting data (that data collected by 

enforcement officials) has at times, been found to be unreliable. The sources of 
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unreliability in the data are many, but the principle sources of errors are the mistakes 

made by officials at the scene, either by a mis-interpretation or a simple coding error. 

Errors in judgment and recollection are also made in the self-reporting of accidents 

(reported by those involved in the crash). More problems are introduced when the data is 

entered into the data warehouse by clerical staff. Still another problem with the collision 

data in British Columbia is the accuracy of the data. There are numerous data fields that 

are required to be completed and many are either subjective or difficult to determine with 

great accuracy. 

A much-needed research would be to develop a new approach which utilizes the 

supplemental safety data to evaluate road safety performance. A risk index, based on 

supplemental data, can be developed and demonstrated in the assessment of road safety 

and to support planning and design decisions. A comparison with the results from the 

classical approaches should be performed and guidelines on when this approach should 

be undertaken should be established. 

7.2.2 Proactive Road Safety 

The techniques provided in this thesis are part of a reactive approach to road safety. 

There is an inherent obstacle in delivering road safety in a reactive manner. To be 

effective, significant road safety problems, evidenced by a high frequency of accidents, 

must exist before hazardous locations can be identified and remedial actions taken to 

improve safety performance. Allowing an accident problem to develop and then reacting 

to that problem is costly compared to an approach that attempts to prevent accidents 
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before a facility is opened. Thus, a proactive approach to delivering road safety is 

expected to overcome this obstacle. 

In recent years, attention to the management of road safety has surfaced in the area of 

road planning. Planning initiatives often operate within a road authority's capital 

program, in contrast to the black-spot program that normally operates within a 

rehabilitation program. The intention of introducing a focus on road safety early in the 

planning process is to prevent accidents from occurring once a new facility is opened. 

Consequently, this is a proactive approach to road safety. 

In the past, road safety was only considered in an implicit manner, such that if the road 

design standards were met, then it was assumed that all safety concerns were satisfied. 

Unfortunately, without explicit and focused attention to road safety issues, the selection 

of minimum design standards will often occur, resulting in a less than satisfactory level 

of safety for a new facility. 

However, one obstacle associated with the delivery of proactive road safety measures is 

the lack of process and opportunity to explicitly consider road safety issues. There is also 

a lack of the necessary tools to evaluate road safety in a proactive manner. A research 

that targets these areas is surely needed. 
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