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A B S T R A C T 

In this study, an optimization and search technique, based on the genetic algorithms 

(GAs) approach, is successfully used to develop an automatic model calibrator for the 

U B C Watershed Model. Unlike the existing random search calibration procedure, which 

limits the number of simultaneously calibrated modeling parameters to groups of about 

three to six at a time, the new GA-based calibrator allows all modeling parameters to be 

simultaneously evaluated. Because of the non-linear interactions between the modeling 

parameters, the simultaneous evaluation of all modeling parameters is demonstrated to 

achieve a good model calibration efficiently and quickly. The fundamental components 

of GAs as inspired by the Darwinian principle of natural selection are explained in detail 

in order to develop a complete GA-based model calibrator. A flow chart is used to 

illustrate the computational implementation of the G A procedures. Why GAs can work 

efficiently in finding an optimal set of modeling parameter values is explained by the 

schema theory with mathematical proofs provided. To test the soundness of the G A code 

developed for the automatic calibrator of the U B C Watershed Model, two well-studied 

watersheds in the Province of British Columbia, Campbell River and Illecillewaet River, 

are used. The effects of genetic operators (crossover, niching and elitism) on G A search 

efficiency are individually demonstrated. To objectively determine the performance of a 

calibrated watershed model, the- difference between the observed and simulated 

streamflows is statistically measured. Four statistical measures are evaluated: coefficient 

of linear correlation (or coefficient of determination), Nash & Sutcliffe coefficient of 

efficiency (el), least squares objective function and least absolute difference objective 

function are introduced. G A computational experiments show that the Nash & Sutcliffe 

coefficient of efficiency (el) exhibits the most consistently decreasing trend of 

streamflow volume error (dV/V) as the coefficient value increases. A fifth statistical 

measure, the modified Nash & Sutcliffe coefficient (eopt!), is also used to quantify the 

difference between the observed and simulated streamflow data, and ensures the optimal 

or near-optimal set of model parameter values found at the end of a G A search achieves 

both high el and low dV/V at the same time. 
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1.0 INTRODUCTION 

Watershed modeling is a key part of watershed management for the purposes of flood 

prevention, hydropower generation and preparation for possible water shortage in 

drought years. Detailed model calibration is often required to ascertain the usefulness 

and reliability of a model as a tool in forecasting streamflow. Traditional manual model 

calibration is laborious and non-systematic. It usually involves visual inspection and 

modelers have no means to see the whole picture of the model calibration process. 

Although random automatic model calibration frees modelers from repeatedly adjusting 

the model parameter values, it depends too much on "luck" and may not reach an 

optimal, or near optimal, set of model parameter values. For both manual calibration and 

automatic random calibration, limitations amplify as the number of modeling parameters 

and the complexity of watershed model structure increases. 

Genetic algorithms (GAs) are heuristic search algorithms used as an optimization 

technique in single and multi-objective problems. The technique was inspired by the 

Darwinian theory of the survival of the fittest. The algorithm mechanisms mimic the 

natural selection and evolutionary process, improving the survivable characteristics of the 

species. Genetic algorithms differ from other conventional gradient-based optimization 

techniques, because no full or partial derivative of any order is required. 

Since the 1990s, advances in genetic algorithms, coupled with high-speed personal 

computers, provide means to optimize the fitness (resemblance) between the simulated 

and the observed streamflow data of a watershed. Several researchers have reported 

their success in applying GAs in various model calibrations (MW Soft Inc. 1999 & 

Solomatine 1998). In the context of civil and water resource engineering, GAs have 

been applied in calibrating water distribution networks (H20NET), sanitary sewer 

systems (SWMM in progress), river hydraulics (Mike 11) and watershed modeling. 
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1.1 Objectives 

This thesis is concerned about the application and applicability of genetic algorithms in 

the systematic calibration of a computational model, particularly in the context of 

watershed modeling. The U B C Watershed Model was chosen as an interactive testing 

vehicle to first verify the soundness of the genetic algorithm code programmed by the 

author, and secondly, to demonstrate the strength and capability df genetic algorithms in 

model calibration. 

The thesis is not a comparative study of the U B C Watershed Model and its applications. 

No attempts were made to investigate the model structure and thus no improvement was 

recommended. 

1.2 Scope of Study 

In order to meet the thesis objectives, the following tasks were performed: 

• Review of conventional manual model calibration and of automatic random 

search model calibration. 

• Review of common statistical measures used to evaluate model performance and 

soundness of calibration. 

• Investigate and review the applicability of genetic algorithms as an optimizer, or a 

model calibrator, in engineering literature. 

• Investigate the components of genetic algorithms and usage of major genetic 

operators. 

• Outline the computational procedure for genetic algorithm implementation 

• Research the theory of GAs and why GAs work. 

• Implement the computation of the genetic algorithms in Fortran and customize the 

code in Visual Basic to interface directly with the U B C Watershed Model. 
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• Apply GAs for the calibration of two watersheds previously studied using the 

UBC Watershed Model, and report on the G A techniques used to improve search 

efficiency. 

• Evaluate the G A calibration results and discuss their implications with respect to 

applicability of G A techniques. 

• Summarize the findings of the study and recommend future work on G A model 

calibration for use with the UBC Watershed Model. 

1.3 UBC Watershed Model 

Development of the U B C Watershed Model was started in the late 1960s by Quick and 

e Pipes (1977), and has undergone continuous development since that time by the U B C 

Civil Engineering Mountain Hydrology Group. It utilizes daily maximum and minimum 

temperatures and precipitation as input data and generates daily watershed outflow as the 

main output (UBC Mountain Hydrology Group 1995). Because the calculation of the 

watershed outflow requires and depends on the values of snowmelt, soil moisture budget, 

soil and groundwater, the model estimates these values individually in a given sequence 

before the watershed outflow is generated. Thus the model also provides the value of 

related hydrologic parameters. The watershed model was designed for short-term 

forecasting of the streamflow of the river that drains the watershed. It has been 

extensively used for flood forecasting and reservoir inflow prediction. 

The input of the UBC Watershed Model consists of two major components. Besides the 

meteorological input data required, the user or modeler must also specify a set of 

modeling parameters, which quantitatively characterize the watershed and its response 

behavior. While some of these parameters are geographical data obtainable through 

surveying or gauging, some parameters must be estimated or back calculated. Although . 

the unobtainable parameters can be estimated, back calculation is often required based on 

observed records to confirm the validity of the initial estimate values. Thus the U B C 

Watershed Model, similar to other models, must undergo the process of model .calibration 
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for each specific watershed. This calibration process requires measured streamflow data, 

which are used to evaluate the model estimates of watershed outflow. 

' Under the existing structure, the UBC Watershed Model contains an optimization module 

specifically designed for model calibration. Within the module, the calibration process 

applies the concept of a constrained random search to find a set of model parameter 

values to characterize the watershed and maximize the resemblance of the watershed 

model to the real watershed. However, direct search of the values of all modeling 

parameters is not possible with the present model calibration framework. The 

simultaneous evaluation of all modeling parameters could be very useful because of the 

non-linear interactions between the various parameters. Until now, the number of 

modeling parameter values to be searched simultaneously is often limited to groups of 

about three to six at a time, and the users then proceed through further groups of 

parameters, moving from the more sensitive parameters to the less sensitive ones, and 

then repeating the process to refine the parameter values. 

The intention is to use the genetic algorithm in parallel with this existing calibration 

module. This will provide the opportunity and the environment for genetic algorithms to 

be tested for their applicability as an optimization technique for model calibration. In 

particular, the genetic algorithm will be used to evaluate the values of all chosen model 

parameters concurrently. 

1.4 Thesis Layout 

This thesis consists of seven chapters in total. Chapter 2 offers a literature review on 

manual model calibration, objective calibration measure for model conformance, and 

automatic model random calibration. Chapter 3 offers a literature review on genetic 

algorithms as an optimization technique and its application in computational model 

calibration and many other fields. Chapter 4 discusses the basic genetic algorithm 

principles and fundamental genetic operators used to search for the optimal solution. It 
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also provides a summary of GAs' computational procedures. Chapter 5 explains and 

mathematically proves why genetic algorithms can be successfully used as an 

optimization technique. Chapter 6 investigates how well the existing G A code can 

automatically and systematically calibrate a watershed, based on certain statistical 

conformance measures. Two case studies are used to show which genetic technique, or 

combination of techniques, is most efficient in GA search. Three statistical measures are 

compared to determine which is the most consistent measure of model performance. The 

conclusion and the findings are summarized in Chapter 7. 

5 



2.0 L ITERATURE REV IEW OF MODEL CAL IBRAT ION METHODS 

In this chapter, the need for model calibration is discussed. Literature reviews are 

presented for manual model calibration procedures, for objective calibration measures of 

model performance, and for automatic model random calibration. 

2.1 Model Calibration 

A model is a conceptual representation of the understanding of physical phenomena and 

processes. A watershed (hydrologic) model is a model that describes the governing 

processes of how precipitation in the form of snow and rain gradually flows over surface 

and/or through soil and leaves the watershed as streamflow. The reliability and the 

accuracy of the modeling results depend on the appropriateness of assumptions made on 

physical processes, quality of input data and estimated values of modeling parameters 

(Sorooshian and Gupta 1995). In watershed modeling, the input data include 

precipitation, both rain and snow, temperature, snowpack depth and many others. The 

data quality depends on how representative the field measurement data are for the entire 

watershed. The estimation of modeling parameter values, on the other hand, is less 

straightforward. In general, the modeling parameters can be classified into two types 

(Sorooshian and Gupta 1995). 

1. Physical Parameters: parameters which represent physically measurable 
i 

properties of the watershed. 

2. Process Parameters: parameters which represent the implicit characteristics of the 

watershed. These are often not directly measurable. 

Examples of physical parameters are the areas of different watershed elevation bands and 

the percentage of forested and vegetated area. Examples of process parameters include 

the rainfall fast runoff time constant and the snowmelt fast runoff time constant. Some 

parameters may be measurable, such as the impervious ratio of land surface area, or the 
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effective depth of maximum subsurface storage, or they may have to be estimated as part 

of the calibration process and deemed as process parameters rather than the physical 

parameters. Because the physical parameters are directly measurable, representative 

values can be derived from field data with reasonable accuracy, whereas the process 

parameters are difficult to estimate and their estimation relies heavily on the modeler's 

knowledge of the watershed and past modeling experience. Often the estimation of 

process parameter values is the part of computational modeling that requires the most 

attention in calibration. Therefore, model calibration can be defined as the process of 

selecting a set of process parameter values so that the resulting model closely simulates 

the physical process under scrutiny. 

2.2 Manual Model Calibration 

J 

Traditionally, the calibration process is more an art than a science. A modeler, based on 

his/her experience, long-term observation and knowledge, makes a first estimate of the 

values of process modeling parameters. He or she then initiates the model with these 

estimated parameter values, and then compares the model output with the observed data. 

If the model output does not visually resemble the observed data, the modeling parameter 

values are then re-adjusted again and again until a higher degree of similarity is achieved. 

This trial and error iterative process of parameter value fine-tuning is called manual 

model calibration. It is often repetitive, time consuming and may be frustrating, yet it is 

the most common calibration process followed by modelers in the past three decades. 

The manual calibration process is practiced in watershed modeling because certain 

parameters control streamflow volume and some control specific aspects of hydrograph 

shape, etc. These distinct characteristics determine the need for the various parameters 

and make calibration possible. Calibration can be carried out using sub-groups of 

parameters, and by constraining the range of values as the process proceeds - a 

constrained search. However, the most profound weakness of manual model calibration 
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is the fact that it is very subjective because a modeler simply eyeballs the simulated data 

graphed over the observed data and determines whether they are similar visually. 

In the context of the calibration of watershed models (including U B C Watershed Model), 

a hydrograph of the streamflow leaving the watershed is typically used as the calibration 

measure. Despite the fact that a modeler can make reasonable estimate of the values of 

modeling parameters, some degree of calibration is still required. Theoretically, the 

manual model calibration process should persist until the modeler feels that the calculated 

streamflow hydrograph visually resembles the observed hydrograph. Due to the 

complexity involved in a watershed model, it is not unusual that tens of modeling 

parameters must be manually adjusted repeatedly. The multi-dimensionality of the 

watershed model may cause serious difficulty for the modeler in manual model 

calibration. This is why the manual calibration process is also humorously called the 

"Guess-Try-Swear" process. Nonetheless, knowledge about the characteristics and 

behavior of the watershed is definitely an asset to the modeler in knowing what 

parameters to adjust and what values to set. 

2.3 Objective Model Calibration Measures ' ^ ' . 

Because the manual model calibration involves a great deal of subjective judgment and 

eyeballing, two modelers may obtain two very different sets of modeling parameter 

values with no direct means available to measure and determine which one is superior to 

the other. Hence an objective and standardized way of measuring the degree of 

conformance between the observed and the simulated data should be developed for both 

the manual and automatic model calibration. Intuitively, modelers turn to the statistical 

usage of the coefficients of linear correlation (directly related to the coefficient of 

determination) and efficiency, which mathematically quantify the numerical 

discrepancies between the observed and the simulated data. In addition, drawing from 

regression and curve fitting theory, various forms of the least squares method can also be 

used (Sorooshian and Gupta 1995). The following discusses the application of statistical 
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principles in devising objective measures for fitness of model calibration. Their 

advantages and limitations will also be briefly mentioned. 

2.3.1 Coefficients of Linear Correlation and Determination 

The coefficient of linear correlation is a statistical strength measure of the relationship 

between two sets of interval scaled data, in this case, the observed and the simulated data. 

It can assume any value from -1 to +1 inclusive. If the two sets of interval scaled data 

are positively proportional to each other or exactly the same as each other, the coefficient 

is +1, which indicates a perfect positive correlation. If the two sets of data are inversely 

related, the coefficient is -1, which indicates a perfect negative correlation. A coefficient 

value of zero means that the two sets of data are not linearly related at all.. The 

coefficient of linear correlation can be expressed as 

where r is the coefficient of linear correlation. Qobs and Qsim are the values of the \ 

observed and the simulated data at a particular time interval, n is the total number of time 

intervals and / is the time interval index. 

The coefficient of linear correlation offers a useful tool to measure the conformance of 

the shapes of the two plotted data curves. In the context of watershed model calibration, 

if the observed and the simulated hydrographs have very similar shapes, the correlation 

coefficient approaches positive unity. Therefore, one may say that a correlation 

coefficient of 0.9 or higher indicates very close fit of the shape of streamflow 

hydrographs. Figure 2-1 gives an example of two perfectly linear correlated hydrographs 

with a coefficient of +1. The figure, however, also clearly reveals the significant 

n n n 

r — (Equation 2-1) 
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discrepancy in flow magnitude and total streamflow volumes (areas under curves) despite 

a perfect positive linear correlation of +1. Therefore even though correlation coefficient 

measures the shape fitness of the two plotted data curves, its inability to measure the 

numerical discrepancy between two data shows that the use of correlation coefficient 

alone is not an adequate measure of good model calibration. 

The coefficient of determination, r , by definition is simply the direct square of the 
r 

coefficient of linear correlation. It can assume any value between 0 and 1. Similar to the 

coefficient of linear correlation, it only relates to the shape conformance of the observed 

and simulated hydrographs, and is independent of discrepancy in total streamflow volume 

(UBC Mountain Hydrology Group 1995). Thus, coefficient of determination alone is not 

an adequate measure of good model calibration either. 

Hence, if the coefficients of linear correlation and determination are to be used as part of 

the model performance measure in the calibration process, they should be jointly used 

with other statistical measures in order to emphasize the streamflow volume. 

Figure 2-1: An Example of Two Sets of Perfectly Linear Correlated Data 

O b s e r v e d H y d r o g r a p h v s . S i m u l a t e d H y d r o g r a p h 

7 
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Figure 2-2: Perfect Linear Correlation between Two Data Sets Yields a Correlation 
Coefficient'of +1 

Observed Streamflow vs. Simulated Streamflow 

1 2 3 4 5 6 

Observed Streamflow 

2.3.2 Nash & Sutcliffe Coefficient of Efficiency 

Another model calibration measure is the coefficient of efficiency originally suggested by 

Nash & Sutcliffe (1970). The coefficient of efficiency is evaluated based on the shape 

and magnitude difference between two plotted data series. In the context of watershed 

model calibration, the coefficient of efficiency measures how well the simulated 

streamflow hydrograph is predicted, compared to the observed streamflow hydrograph in 

both hydrograph shape and streamflow magnitude. Thus, the Nash & Sutcliffe 

coefficient of efficiency is superior to correlation coefficient as an objective model 

calibration measure. Similar to the correlation coefficient, the efficiency coefficient is 

dimensionless but it can assume any value between negative infinity and +1. The 

coefficient of efficiency, el, can be expressed as: 

. . 1=1 , , , residual variance A. „ 
e\ = 1 = 1 (Equation 2-2) 

\rn -n \ 2 total variance 
(=1 • ..,„„„ 
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where el is the coefficient of efficiency and Qobs is the time average of the observed 
mean 

flow, QHbs. 

Because the coefficient of efficiency accounts for both the shape and total flow volume 

differences between the observed and the simulated hydrographs, an efficiency value of 

+1 indicates a perfect match in both shape and in flow magnitude and therefore the two 

hydrographs are identical (UBC Mountain Hydrology Group 1995). Although the 

coefficient of efficiency is a better model calibration measure than the coefficients of 

correlation and determination, it suffers a shortcoming that is often unnoticed. The 

shortcoming is that the coefficient of efficiency biases towards data sets with large total 

variances. Using the watershed model calibration as an example, if the observed 

kQobs-Qobs)2 

hydrograph has many large flow peaks, which directly leads to a large ' ' ' m e m 

hQobs-Qsim)2 

term, then the numerical discrepancy term, ' ' ' is relatively small and may 

easily be overlooked by the modelers. 

Table 2-1 shows the computational procedures o f the coefficient of efficiency for the 

example given in Figure 2-1. It has a negative value even though the two hydrographs 

have identical shapes. A negative value is already anticipated because the large 

difference in flow magnitude results in a total flow volume difference of 28%. 
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Table 2-1: Example of Efficiency Coefficient Calculation 

Time Q obs Q sim (Q obs-Q sim)2 (Q obs-Q obs mean)2 

1 3 4 1 0.391 
2 5 6 1 1.891 
3 4 5 1 • 0.141 
4 3 4 1 0.391 
5 4 5 1 0.141 
6 5 6 1 1.891 
7 3 4 1 0.391 
8 2 3 1 2.641 

Total Volume 29 37 
Q obs mean = 3.625 

Z (Q obs-Q sim)2= 8 

£ (Q obs-Q obs mean) 2 = 7.875 
coefficient of efficiency = -0.016 

Both the Watflood Model developed by Kouwen of the University of Waterloo (Kouwen 

1997) and the U B C Watershed Model by Quick (UBC Mountain Hydrology Group 1995) 

apply the Nash-Sutcliffe model efficiency to evaluate the fitness of simulated results. To 

further emphasize the importance of the streamflow conservation principle, the total areas 

under observed and simulated hydrographs should be the same. Therefore, the U B C 

Watershed Model also adopts a slightly modified coefficient of efficiency, eopt!, as the 

objective model calibration measure to select the best of the 10 highest efficiency results. 

The modified coefficient of efficiency, eopt!, is expressed as: 

eopt\- e\-abs 1 

2 (0*) 
1=1 

abs\ ^total ^7total 
observed estimated 

total 
observed 

(Equation 2-3) 

where Vtoml is the total observed streamflow volume integrated over the duration of total 
observed 

model simulation period, and Vtoml is the total estimated streamflow volume integrated 
estimated 

over the duration of the same model simulation period. 
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By using eopt! as a model calibration measure, the calibration process places equal 

weight on achieving high hydrograph shape conformance and minimizing streamflow 

volume discrepancy. It ensures that after calibration the simulated results are as similar 

to the observed data as possible. 

2.3.3 Objective Calibration Measure Based on Least Squares Method 

One other objective model calibration measure is the sum of the squares of the numerical 

differences between the observed and the simulated data sets. It is often used as a fitness 

measure in regression analysis such as curve fitting and derivation of an unknown 

relationship. Unlike the coefficients of correlation and efficiency, which are to be 

maximized, the sum of the squares of difference is to be minimized in order to achieve 

best possible conformance between the two data sets. Hence the technique is commonly 

referred as the least squares method. 

In the context of watershed modeling, using the sum of the squares differences as a 

measure transforms model calibration into a minimization process. The dimensional 

form of the objective function can be expressed as: 

where z is the objective function to be minimized. The summation term of Equation 2-4, 

in statistics, known as the residual variance, is used as part of the numerator in the Nash-

Sutcliffe coefficient of efficiency. The dimensionless form of the least squares objective 

function can be expressed as: 

n 

Minimize z = Z(Qobs -Qsim)2 (Equation 2-4) 

j— ]^ Qobs ^ 

Minimize z = (Equation 2-5) 
n 
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The dimensionless form is preferred over the dimensional form because it can assume 

any value between 0 and +1 for Qsjm < 2Qobs. In addition, by using the dimensionless 

form, the sum of squares differences is averaged over the total number of intervals used 

in the observed data and is less affected by the interval size. 

It is important to note that even though the sum of the squares differences bears high 

similarity to the coefficient of efficiency, it formulates the calibration process into a 

minimization problem instead of a maximization problem. However, through a minor 

modification, the objective function in Equation 2-5 can be readily transformed into a 

maximization problem for G A search, i.e. 

n a,„, 
,_1 \£obs 

Maximize z = 1 1 (Equation 2-6) 
n 

For simplicity, the objective function, z, in equation 2-6 from now on will be referred as 

the least squares difference objective function in this thesis. 

2.3.4 Objective Calibration Measure Based on Least Absolute Difference 

If the least squares objective function is used as a model calibration measure, larger flow 

differences can be over-emphasized and mislead the calibration process because the 

numerical difference is squared at every data interval. For example, if a set of observed 

streamflow data contains a portion of false readings (which is not identifiable) and the 

portion happens to be the only section that cannot be closely matched by the simulated 

data, then using the sum of the squares differences may easily deviate the modeler from 

obtaining the best set of modeling parameter values. Thus, for observed data with low 

reliability, the sum of the squares differences cannot be used as an effective calibration 

measure. Alternatively, the sum of simple absolute differences may be used as a model 

calibration measure. The least absolute difference objective function can be expressed as 
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n 

Minimize z = 2 abs(Qobs - Qsim) (Equation 2-7) 

or 

n U,i„, a 

Minimize z = (Equation 2-8) 

To apply the genetic algorithms, which requires a minimization to be transformed into a 

maximization problem, equation 2-8 can be modified as follows: 

It is important to note the choice of turning the calibration process into either a 

minimization or a maximization problem depends on the type of optimization technique 

to be used and the convenience of computer programming. For genetic algorithms which 

are the optimization techniques proposed to be. used in UBC Watershed Model 

calibration, a maximization of the objective function is preferred and considered to be 

much easier to deal with. More details will be discussed in later chapters. 

2.4 Automatic Random Search Model Calibration 

Because calibration is important for the reliability and the applicability of a model, 

modelers' quests for faster and more efficient calibration process continue. Early work 

led to the creation of automatic calibration which randomly searches within a specified 

range of reasonable values for the best set of modeling parameter values that would 

produce the best fit to the observed data (i.e. optimize the pertinent calibration measure). 

This is a constrained random search, which ensures that parameters are within physically 

reasonable limits. 

*Labs(l-f-) 
Maximize z = 1 - (Equation 2-9) 

n 
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These calibration methods depend on the following: 

1. Advances in computer technology so that programs can be written to instruct 

the computer to run the model repeatedly without human intervention until a 

better agreement with the observed data is achieved. 

2. Random number generation that is used to produce parameter values at 

random within the upper and lower limits. A well-designed random generator 

should produce different values uniformly. 

3. Statistical measures such as the coefficient of efficiency, or the sum of squares 

differences are used as the objective function to be optimized. The objective 

function value indicates the degree of conformance between the observed and 

the simulated data, and can also be used as a stopping criterion to terminate 

the calibration process. 

j 

These steps, when integrated, form an automatic model calibrator with random search 

capability. 

Although the automatic random search model calibration is designed to free modelers 

from strenuous manual calibration process, the random search technique it implements is 

not systematic and efficient. 

In a search space of only three dimensions, for example, the random search may have the 

"luck" to approach the areas (schemata) of high objective function values. But if the 

search space is in the order of tens of dimensions, say 20 for example, random search for 

the best set of modeling parameter values can be as inefficient as the enumerative search 

scheme in which all possible combinations of parameter values are to be listed. 

Conservatively speaking, if a parameter dimension has 20 possible values, a 20-

dimensional search space would require an enumeration of 20 2 0 = 1.05* 10 2 6 

combinations. This implies that the random search scheme must test at least a significant 

portion of the 1.05*1026 combinations before an optimal or near optimal candidate 

solution can be confidently declared. 
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The limitations of random search in automatic model calibration leads to the application 

of genetic algorithms, which dramatically reduces the number of search points (candidate 

solutions with different combinations of parameter values) required to be tested before an 

optimal or near optimal candidate solution is found and a winner declared. 
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3.0 L I TERATURE REVIEW OF GENET IC ALGORITHMS 

Genetic algorithms are heuristic search algorithms used as an optimization technique. 

Because the development of genetic algorithms was inspired by the Darwinian theory of 

the survival of the fittest, its mechanisms bear great similarity to the natural selection and 

evolutionary process of a survivable species. In addition, many terms used in genetic 

algorithms are directly borrowed from the field of biology. 

The genetic algorithms used in practice in solving single or multi-objective optimization 

problems are indeed a simplified version of the natural history of a particular species, in 

which the candidate solutions are the various members of the species with different 

genetic features. Thanks to modern advances in computing technology, the evolutionary 

process of a species, which could have taken thousands to millions of years or 

generations to achieve, can now be virtually simulated in the matter of minutes or hours. 

In every generation of the evolutionary process, only the candidate solutions achieving 

better objective function values will survive and be used to create new sets of candidate 

solutions. The best-of-generation candidate solution found at the end of the evolutionary 

process is then deemed as the optimal solution to the optimization problem. 

In the context of watershed model calibration, candidate solutions are sets of model 

parameter values tested in the model calibration process. Only the sets of model 

parameter values with high calibration performance measure, can be used 

combinatorially to create the next improved set of model parameter values and ultimately 

achieve the best possible agreement between the observed and the model-simulated data. 

Thus the core feature of genetic algorithms as an optimization tool is built on its 

evolutionary process, which favorably biases towards high-performance candidate 

solutions and purges the poor-performance solutions. 

It is generally recognized in the genetic algorithms community that genetic algorithms 

were invented by John Holland in the 1970s, marked by the publication of his book 

"Adaptation in Natural and Artificial Systems" in 1975 (Obitko 1998). His students and 
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colleagues further expanded his ideas and applied them in various fields of study. They 

are discussed in the next two sections. Goldberg, a former Ph.D. student of Holland 

conducted extensive research in GAs and summarized his findings and notable advances 

of GAs in his book "Genetic Algorithms in Search, Optimization and Machine Learning". 

As indicated in his book, genetic algorithms are finding applications in business, 

sciences, and engineering. They are gaining popularity and wide acceptance because the 

algorithms are "computationally simple, yet powerful in search for improvement". 

(Goldberg 1989) 

Presently, the study of genetic algorithms is considered as part of evolutionary computing 

which is a growing area of artificial intelligence (Obitko 1998) 

3.1 Advantages of Genetic Algorithms 

Because of genetic algorithms' simple formulation and flexibility in stipulating parameter 

constraints, the technique can be applied in almost all optimization problems. It is 

extremely useful in searching the optimal or at least the near-optimal solution, in single 

objective optimization problems. Unlike the traditional gradient-based search techniques, 

which usually fail to find an optimal solution due to the non-continuity, non-linearity and 

multi-modality of the objective function, the genetic algorithms are affected by none of 

these difficulties. The genetic algorithms require neither the linearization of the objective 

function nor calculation of partial derivatives. 

In Holland's own words, "GAs offer robust procedures that can exploit massively parallel 

architectures and provide a new route toward an understanding of intelligence and 

adaptation." The parallel architectures, which enable GAs to search a multi-dimensional 

solution space efficiently, will be discussed in Chapter 5. 
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3.2 Genetic Algorithms' General Applications and Usage in Civi l and Water 

Resources Engineering 

The name genetic usually causes the first-time reader to link GAs with biology. 

However, genetic algorithms have been extensively used in economics, psychology, 

linguistics, image enhancing, computer science, and all aspects of engineering. 

For example, John Deere has been using genetic algorithms to optimize its production 

scheduling of 90 seed planter models to select from about 1.5 million possibilities. The 

application of genetic algorithms reduces the planning time for a weekly production 

scheduling from one day to "literally a zap of screen". To design a computer chip on the 

smallest piece of silicon possible, Texas Instruments used genetic algorithms to reduce 

the computer chip size by 18%. General Electric has also used genetic algorithms to 

increase efficiency for gas turbine design which later became the engine for the Boeing 

777. US West uses GAs to design fiber-optic cable network and reduce the design time 

from two months to two days. Genetic algorithms have also been used for positioning 

cellular telephone towers that provide the maximum coverage with minimal or no overlap 

(Begley 1995; Frey 1995). 

Genetic algorithms have also been found extremely applicable in civil and water 

resources engineering. Goldberg and Kuo (1987) applied the concept of genetic 

algorithms in designing a gas transmission pipe at minimum capital cost while meeting 

all the demand and operational requirements. Tolson (2000) reported that GAs have been 

applied to almost every type of optimization problem encountered in water resources. In 

the field of water distribution, genetic algorithms are applied for optimal pipe design, 

rehabilitation and least-cost pump scheduling. Savic and Watler (1997) developed a G A 

integrated computer model, GANET to design a least cost pipe network with a complete 

fulfillment of pressure and demand requirements. Wu et al (2000) applied a competent 

variation of genetic algorithms, called fast messy genetic algorithms (fmGA) in a 

decision support system to identify least cost design, rehabilitation, and expansion 

options for water distribution systems. Karney (2000) used GAs to back-calculate the 
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frictional factor and elasticity modulus of pressured pipes in water hammering analysis. 

He called his approach "The Inverse Model Calibration Method". 

In water resources management, King, Fahmy and Wentzel (1997) applied a genetic 

algorithm to the problem of optimizing the operation of a river/reservoir system for 

maximum economic returns. Tolson (2000) applied GAs to minimize the cost of 

wastewater treatment for known point source of pollution along the Williamette River in 

Oregon while maximizing the water quality performance indicators. 

3.3 Genetic Algorithms as an Optimizer for Watershed Model Calibration 

Currently, the author is not aware of any well-established watershed (hydrological) 

models using G A techniques in the model calibrating process. Nevertheless, genetic 

algorithms can be suitably used as the optimization technique in search of the best set of 

modeling parameters so that the model yields accurate prediction. Thus it is the goal of 

this thesis to use genetic-algorithms as the basis for an automatic calibrator for the U B C 

Watershed Model. 

James (personal communication) has indicated that a genetic-algorithms based model 

calibrator for the Storm Water Management Model (SWMM) is being developed. This 

demonstrates that more watershed (hydrologic) modelers are beginning to take advantage 

of the efficient G A search and implement the techniques for their model calibration. 
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4.0 FUNDAMENTALS OF GENETIC ALGORITHMS AND THE IR 

OPERATIONS 

The basic genetic algorithm principles were inspired by the mechanism of natural 

selection in a competing environment where the stronger or the "fitter" individuals of a 

species are more likely to survive and produce offspring which survive generation after 

generation. The weaker or the "less fit" individuals, on the contrary, either die off and 

become extinct or are forced to evolve and adapt to the non-stationary, competing 

environment. As observed in nature, by continuous evolution, the weaker individuals do 

stand a chance to become stronger and therefore may be granted the rights to 

continuously exist in the population. Usually, as commonly seen in the animal kingdom, 

a weaker individual can become more adaptive, resilient and stronger through mating and 

mutation. These genetic operations are the fundamental key components that successful 

genetic algorithms possess, except in a much-simplified fashion. To develop a genetic-

algorithm based optimizer or calibrator, one must understand some of the not-so-simple 

genetic-algorithm terminology and use the procedures discussed in the following 

sections. A glossary of common genetic-algorithm terminology is provided in section 1. 

4.1 Brief Glossary of Genetic Algorithms Terminology 

Coding: A system used to compactly store a set of model input parameter values. In most 

cases, coding implies the binary coding which is commonly used for genetic algorithms. 

Crossover. One of the three major types of genetic operation in which a selected parent 

string mates with another selected parent string and they exchange genetic information at 

certain gene locations to form one or two offspring. 

Elitism: One type of genetic operation in which the best one or two of the candidate 

strings of a generation are by default automatically reproduced for the next generation. 
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Fitness: The evaluation of a complete set of parameter values in the objective function of 

an optimization problem. 

Gene: A coding bit which is the smallest unit of a substring or a string. If binary coding 

is used, a bit is either 0 or 1. 

Generation: This term can be used in two ways. Firstly, as a noun, it collectively means a 

population of sets of model input parameter values in the evolutionary process. 

Secondly, as a verb, it is a time step in the evolutionary cycle in which every complete set 

of model input parameter values, coded as a string, may be genetically altered in order to 

improve fitness. 

Genetic Algorithms: Search procedure based on the mechanics of natural selection and 

natural genetics (Goldberg 1989). 

Mutation: One of the three major types of genetic operation in which every gene of a 

selected parent string is assigned a uniform probability to randomly alter the bit value. 

The parent string with randomly altered genes becomes the new offspring. 

Niching: One type of genetic operation used to prevent a large number of strings from 

simultaneously searching a high-fitness region of the search space. By preventing the 

clustering of G A search points, it forces other unexplored regions to be searched. 

Population: A user-assigned (fixed) number of sets of model input parameter values in 

every cycle of the evolution process. 

Reproduction: One of the three major types of genetic operation in which the offspring 

produced is simply the.duplicate of the parent string with identical genetic information. 

Scaling: One type of genetic operation in which the fitness of high performance strings is 

under-emphasized to prevent rapid loss of gene diversity in the string population. It is 
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also used to over-emphasize the difference between strings of similar fitness so that an 

optimal string can be identified quickly. 

String: A complete coded set of input parameter values for a model, also known as a 

candidate solution. It is called a string because the set of parameters is (binary) coded 

and resembles a D N A string. 

Substring: A coded input parameter value, which forms the basic building block of a 

string. 

4.2 Brief Outline of the Genetic Algorithm Search Process 

The following provides a rudimentary overview of how a modeler can apply GAs in 

model calibration to achieve high model agreement. 

1. Randomly generate sets of model parameters, called strings, which become the 

initial population. The string may contain genes and substrings that are 

potentially useful in creating the optimal string (best candidate solution). 

2. Calibrate a model by optimizing its agreement with the observed data, run the 

computational model, in this case the U B C Watershed Model, and the statistical 

measure module to determine the model performance for each set of parameters. 

The statistical measure values are the fitness values. 

3. Based on the fitness values, the fitter (better) sets of parameter values (strings) are 

retained via several possible selection schemes for creation of other sets of 

parameter values - population of the next generation. The fitter strings selected 

are called the parent string. 

4. A new generation of strings is then created from parent strings using various 

mating and mutation techniques in genetics. Pairs of selected parent strings 

exchange genes that form new substrings and create new strings with some 

inherent genetic characteristics and diversity. 
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5. Now return to Step 2, and the process continues until one of the prescribed 

termination criteria is met. The iterative process allows genetic algorithms to 

search for an optimal or a near optimal string (set of model parameters). 

4.3 Choosing A Coding Representation 

Because an optimization problem, such as a computational model, can possesses 

descriptive model parameters in the order of tens or even hundreds, there must be an 

efficient and compact way to represent the real values of all these parameters. This.is 

especially true when using genetic algorithms for optimal solution search and model 

calibration, because the iterative process requires the values of these parameters to be 

tracked for generation after generation. The difficulty and complexity of tracking unique 

genetic information for each string in a large population for many generations requires a 

convenient coding system to be designed and implemented. 

The first step in the development of genetic algorithms is to choose a coding system to 

represent each possible set of model parameters, often referred to as a string or a 

candidate solution. Depending on the coding system used, sets of parameter values may 

be conveniently and efficiently transformed into strings of bits of particular lengths, 

where the string length is measured in numbers of bits. In GAs, a string often consists of 

many substrings, which individually represent values of their corresponding parameters. 

For example, a string coded to represent a set of 10 model parameters will have 10 

substrings to individually represent each model parameter. The position of a substring 

within a finite-length string determines which parameter it is assigned to represent. 

Mathematically, a G A coding string is exactly the same as a multi-dimensional vector 

that can possess components of various magnitudes in different directions of a search 

space. Hence, a substring's relative position in a string is best viewed as a component of 

a vector in a specific direction. 
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For example, a coded string consisting of three substrings can represent a 3-dimensional 

vector where substring 1, substring 2, and substring 3 respectively represent the vector's 

magnitudes in i , j , and k axes of the conventional Cartesian coordinate system. By using 

a coding representation, one allows GAs to treat a set of parameter values as a mapped 

point in a multi-dimensional search space and store it concisely as a string of finite 

length. 

The most commonly used coding system in GAs is binary coding because of its 

simplicity and tracibility. As suggested by its name, binary coding only allows two 

genotypes in a bit which is either 0 or 1. Therefore, a binary string of / bits in length 

offers 2l possible 0/1 combinations and can be used to represent a total of 2l real values. 

For example, if / = 3, then there exist a maximum of eight combinatory ways to arrange 

the 3-bit string. The eight possible combinations and the real values they represent are 

listed in Table 4-1. 

Table 4-1: Eight Possible Combinations of a 3-Bit Binary String and Corresponding 
Decoded Real Values 

Combination ID Binary Code Decoded Real Value 
1 000 0 
2 001 1 
3 010 2 
4 011 3 
5 100 4 
6 101 5 
7 110 6 
8 .111 7 

But how is a string used to represent a parameter value and what value does it represent? 

As shown in Table 4-1, a 3-bit substring can have 8 possible combinations and each of 

them can be conveniently utilized to represent a real number between 0 and 7. To obtain 

the implicitly assigned real number, a binary decoding equation is used to convert a string 

into a real value. For a string S/.;, S/.2, S/.j, S/.̂  and So, where S/.y and S/.2, are the 

binary values of bit 1 and bit 2 of the string, the decoded real value can be written as: 
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l-i 
Decoded Real Value = ̂ 2 ' 5, 

i=0 

(Equation 4-1) 

Table 4-1 also lists the decoded real .values represented by the 8 combinations of a 3-bit 

string. 

Mathematically, a binary decoding equation is a series carrying I terms, where / is again 

the length of a sub-string. The design length of a binary code string is simply derived 

based on the number of the substrings (parameters) it has to represent and the desirable 

accuracy of the represented parameter values. Hence individually, the length of a 

substring required to represent a parameter depends only upon the individual degree of 

accuracy desired. The accuracy of a parameter is calculated as: 

Coding Accuracy = * m i n ) (Equation 4-2) 

where Xmax = the upper bound of the feasible range of parameter X , 

Xm,-„ = the lower bound of the feasible range of parameter X , 

/ = sub-string length in number of binary bits 

For a substring length of 3-bits, the accuracy of the specific parameter is equal to {Xmax -

Xmin) II. Equation 4-2 can also be rearranged to calculate the substring length, lsubstring, 

needed to achieve a specified accuracy. 

( (Y —X ) ^ 
V max min J 

v CodingAccuracy 
^°SQ-substring) ~ T /ns 

Log (2) 

+ 1 
— (Equation 4-3) 

For example, if a modeling parameter is feasible between 0 and 1000 and one would like 

to know what substring length is required to achieve a parameter accuracy of 1 or less, 

then equation 4-3 can be used. It can be easily shown that the substring length should be 
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at least of 10 bits in order to obtain 1,024 possible combination of a 10-bit string and 
achieve a corresponding accuracy of 0.976, which is within the accuracy desired. 

Once a string is decoded into a real value and the related accuracy calculated, the true 
parameter value can then be calculated as: 

X -Xmi„ + Decoded Real Value x Coding Accuracy (Equation 4-4) 

Reusing the 3-bit string as an example, one can see that string 000 (or any arbitrary-
length binary string containing genotype 0 only) would always yield a decoded value of 
zero and thus is equal to X„„„ by default. In contrast, the string 111 (or any arbitrary-
length binary string containing genotype 1 only) would always yield a decoded value of 
2 ' - 1 (which can be proven with some mathematical manipulation). Thus, the string 111 
or other entirely genotype-1 strings are automatically equal to Xmax values. The 
remaining six 3-bit strings vary their true parameter values linearly based on their 
decoded real values as shown in Table 4-1. This rule applies to strings of any length (any 
number of bits). 

To illustrate the above discussion, assume that the eight 3-bit strings in Table 4-1 are 
used to represent eight possible evenly spaced parameter values between 1 and 10. 
Clearly, string 000 has a true parameter value of 1 while string 111 has a true parameter 
value of 10. From equation 4-2, the accuracy is calculated as 9/7 and the true parameter 
values of remaining six strings may be computed from equation 4-4. They are 
summarized in Table 4-2. 
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Table 4-2: Eight Possible Combinations of a 3-Bit Binary String and Corresponding 
Parameter Values 

Combination ID Binary Code Decoded Real Value True Parameter Values 
1 000 0 1.0 
2 001 1 2.3 
3 " 010 2 3.6 
4 011 3 4.9 
5 100 4 6.1 
6 101 5 7.4 
7 110 6 8.7 
8 111 7 10.0 

The inherent limitation of the binary coding and any other form of coding system is that 

mathematically their coding strings can only represent a family of evenly spaced discrete 

values between the lower and the upper bounds of each parameter in the search space. 

Therefore, the coding strings at their best only form a discrete function rather than a 

continuous function over the domain of the feasible search space. Hence, the size of the 

even spacing between the discrete values is apparently the coding accuracy calculated in 

equation 4-2. 

This limitation of a coding system creates difficulty when one would like to code for a 

random value in between two discrete values, say 9.35 using a simple 3-bit binary string. 

From Table 4-2, one can see that 9.35 is the midpoint between the discrete values 8.7 

(string 110) and 10 (string 111), and it is not possible to generate another 3-bit string to 

accurately represent the value of 9.35. To resolve this difficulty, one will commonly 

increase the string length to reduce the even spacing between the discrete values 

represented by a family of coding strings in order to reduce the inevitable round off error. 

In this case, if a family of 4-bit string is used, then the coding accuracy will increase by a 

factor of 2.2 from 1.3 to 0.6 and consequently the value of 9.35 can be more closely 

represented by a 4-bit string 1110 which gives a parameter value of 9.4. Therefore, for 

the degree of accuracy required by the modeling parameters needed in an optimization 

problem and model calibration, it is possible to satisfy the coding accuracy and error 

requirement by increasing string length. Nonetheless, for optimization problems that 

involve only decision variables, the usage of coding string is appropriate and incurs no 

errors because the variables are exactly represented through coding. 
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Table 4-3 lists the 16 possible combinations of a 4-bit binary coded string. The value of 

9.35 can be represented by string 1110 which indeed represents an exact value of 9.4. 

However, if the discrepancy of 0.05 between 9.35 and 9.4 cannot be tolerated, the length 

of coding strings can be further increased to 5 to minimize the error. 

Table 4-3: 16 Possible Combinations of a 4-Bit Binary String and Corresponding 
Parameter Values 

Combination ID Binary Code Decoded Real Value True Parameter Values 
1 0000 0 1.0 
2 0001 1 1.6 
3 0010 2 2.2 
4 0011 3 2.8 
5 0100 4 3.4 
6 0101 5 4.0 
7 0110 6 4.6 
8 0111 7 5.2 
9 1000 8 5.8 
10 1001 9 6.4 
11 1010 10 7.0 
12 1011 11 7.6 
13 1100 12 8.2 
14 1101 13 8.8 
15 1110 14 9.4 
16 1111 15 10.0 

Other coding systems such as tertiary and Gary coding may be used to achieve high 

coding accuracy without carrying long string length. But they are more complicated and 

add unnecessary complication to the computer implementation of genetic algorithms. 

Hollstein (1971) investigated the use of Gary code in GAs and found that it works 

slightly more efficiently than the conventional binary coding. In the present thesis, only 

the binary code representation will be discussed because of its wide acceptance among 

practitioners of GAs and the established theory on G A operations: Schema Theory is 

developed based on binary code structure. 

It is worth noting that binary coding is extremely efficient at representing decision 

variables in the optimization of a decision model. A decision variable can be simply 
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represented by one bit with 1 for "yes" and 0 for "no" in the decision making process. In 
fact, this is exactly the way GAs are used in designing optimal low-cost natural gas 
transmission or water distribution networks as mentioned in Chapter 3. In GAs, a binary 
string of 100 bits can represent the decision variable of 100 water supply pipes in the 
network. If a decision variable is represented by a 0 in the optimal solution, then the pipe 
is redundant. However, if a decision variable is represented by a 1, then the pipe must be 
constructed to meet the conveyance criteria. 

4.4 Initialization of Genetic Algorithms 

The initialization of genetic algorithms involves the random creation of the initial string 
population, setting of population size, number of generations to evolve, and termination 
criteria for the GA search to terminate. The following sections provide the details. 

4.4.1 Random Creation of Initial String Population 

Once a coding system is chosen to represent sets of model parameter values in strings, an 
initial population of strings must be randomly generated in coded form before any genetic 
evolution can take place. The reason why the strings are randomly generated is two-fold. 
Firstly, unless specific information exists, strings (candidate solutions) freely created by a 
random generator are no worse than any other guesses. Secondly, by randomly creating 
each string's genetic information for the entire initial population, maximum genetic 
diversity is achieved in the gene pool. A diverse gene pool is more likely to contain the 
key genetic information blocks needed to form some high fitness strings and, ultimately, 
the optimal string. 
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4.4.2 Choosing GA Population Size and Number of Generations 

The concept of genetic diversity leads to the two most frequently asked questions about 

genetic algorithms: 

1. What is the population size needed to maintain sufficient genetic diversity among 

candidate solutions in order to achieve an optimal, or at least near optimal, 

solution efficiently, without carrying the burden of long computational time? 

2. How many generations of genetic evolution are needed to allow strings (candidate 

solutions) to mate, mutate and subsequently produce an optimal or at least near 

optimal solution in relatively short computational time? 

There is no absolute rule about choosing the right population size and number of 

generations to run in GAs. However, some guidelines can be found in the literature. In 

most cases, the G A user must determine what to use through a trial and error process. 

Goldberg (1989) suggests that population size is commonly between 30 and 100, 

depending on the complexity of the objective function in terms of the degree of non-

linearity. However, he also points out that the population required is case specific, and he 

make no recommendations on the number of generations to run. Carrol (1999) suggests 

that using a population which is an exponential of two, i.e. 2N (where N is any integer 

greater than 1), can enhance GAs ' efficiency in finding the optimal solution. 

In most GAs reported, the number of strings in the population is almost always fixed for 

the simplicity of coding and programming. However, there is no written rule that 

prohibits the use of varying population size in different generations. In fact, the 

population of a species in nature would vary in every generation, based on the species' 

performance in a hostile environment. Thus, it is logical to think that if a candidate 

solution's performance is poor and below a filtering criterion, then it could die without a 

chance to produce offspring and the population declines. But to the best knowledge of 

the author, there is no conclusive research reported that shows varying population size 

33 



after each generation will help the GA solver to approach an optimal solution more 

efficiently. 

The second dilemma faced in G A initialization is the setting of the number of generations 

to run. The number of generations in simple terms is the number of evolution cycles 

required to improve string fitness (optimality) and eventually reach the optimal solution. 

If the number of generations assigned is small, then a sub-optimal solution near the 

global optimal solution is more likely to be found instead of the global optimal solution 

itself. On the contrary if the number of the generations is too large, then the following 

two problems may be encountered: 

1. The computational time may be so consuming that GAs become less practical 

against other optimization techniques. . 

2. Genetic diversity of the candidate solutions may be lost and the search zeros in on 

a single false or non-optimal solution. Fortunately, this problem can be avoided 

by using techniques that will be explained later. 

Hence, in order to avoid unnecessary searching and reduce computational time, a set of 

termination (stopping) criteria should be used to end the G A search. 

4.4.3 Termination (Stopping) Criteria of GA Search 

Typically, the first termination criterion is to stop the iterative GA search after the 

maximum number of generations prescribed in advance is reached. The prescribed value 

is usually weighted by the upper limit of the acceptable computation time desired. The 

limitation of this type of termination criterion is that it takes no consideration of whether 

a near-optimal solution is found or not. 
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The second termination criterion is to stop the G A search if the optimal solution has 

apparently converged. But how does one know whether a convergence has been reached 

and an optimal solution found? 

Under some special circumstances, the upper limit of the objective function of an 

optimization problem is known. For example, in the U B C Watershed Model, the 

theoretical upper limit of a possible objective function for model performance, el, is +1. 

Thus, the second termination criterion can be stipulated to stop the G A search if the best 

performing candidate solution of the continuously evolved population achieves a fitness 

value close to +1, say 0.95, for example. If an el value of 0.95 is not obtainable in the 

model calibration, then the second criterion is not satisfied. The G A search will go on 

until the first criterion is satisfied. 

However, under most circumstances the optimal objective function value is not known 

and needs to be explored. Therefore, the GA search may be set to stop if temporal 

convergence is reached. The term "temporal convergence" means that the best objective 

function value achieved by a continuously evolved population of candidate solutions 

ceases to improve significantly generation after generation. For example, the G A search 

can be stopped if the best fitness value achieved by a population does not improve 

significantly for ten consecutive generations. 

It is important to emphasize that when a temporal convergence is reached; the candidate 

solution found may not necessarily be trie optimal. The cruel reality G A developers and 

users have to face is the fact that in a non-continuous, discrete, multi-modal search space 

of multi-dimensionality, no solution can be analytically proven as the global optimal 

solution. 

Figure 4-1 is a simple example of GAs performance in finding the maximum height (the 

objective function value) of a hemisphere. One can see that the curve D achieves the 

ultimate convergence at 99.98% of the known maximum height while curve C reaches a 

temporal convergence at 99.88% and consequently outputs a non-optimal solution (if the 
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number of generations simulated is limited to 29 or less). This example will be discussed 

in the next section. 

Figure 4-1: An Example of Temporal Convergence, Curve C in Searching the 
Maximum Height of a Hemisphere 
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In summary, two sets of termination criteria should be used in the initialization process of 

GAs. Whenever one of the termination criteria is satisfied, the G A search will be ended 

and the candidate solution with the highest objective function (fitness) is deemed to be 

the optimal solution. 

Due to the sheer number of strings used in the population of GAs and the number of 

generations that are required, it is not difficult to understand why GAs were only 

implemented since the 1970s after the computer became the main computational tool in 
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research. Without the high speed of current state of art personal computer, the research 

boom in genetic algorithms would not have been possible. 

4.5 Designation and Evaluation of Fitness (Objective Function) 

Once an initial population of candidate solutions in the form of genetic strings is 

randomly generated, each string is then decoded to real parameter values and its fitness 

value evaluated against the designated objective function. The formulation of the 

objective function can be direct or indirect depending on how easily it can be calculated. 

In a simple single-objective optimization problem, the objective function can be an 

explicit and concise formula; thus it can be embedded into the G A program code as a 

subroutine. However, in cases in which GAs are used to calibrate models, the objective 

function used to statistically measure the model performance can be complicated and 

should be treated as a separate module, independent from the G A program code. In the 

G A calibration process of the U B C Watershed Model, the G A program code repeatedly 

calls the U B C Watershed Model to generate a set of simulated streamflow and calculates 

the respective statistics such as el for every string to find out its corresponding fitness. 

The resulting fitness value of a genetic string is important because it determines whether 

this candidate solution can be selected as a parent to produce offspring in the immediate 

next generation. Typically, the string with a higher fitness will have a higher probability 

of being selected and thus more likely to produce offspring while the lower fitness strings 

will have low probability. 

4.6 Selection of Parent Strings (to Produce Offspring) 

The two most commonly used selection methods to choose parent strings for the creation 

of the offspring in the next generation are the weighted roulette wheel and tournament 

selection methods. 
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4.6.1 Weighted Roulette Wheel (Fitness Proportionate) Selection 

In this method, a biased roulette wheel is virtually created using a computer algorithm to 

artificially implement the concept of survival of the fittest. In mimicking what is 

observed in the natural realm, high performance strings accordingly have high probability 

of producing one or more offspring with their genetic traits. 

Mathematically, the circumference (or the total area) of the roulette wheel represents the 

sum of fitness measures of the entire string population whereas the arc-length (or the 

sector area) of each slot in the wheel represents the individual string fitness. In other 

words, the size of each slot of the wheel is allocated proportionately to individual string 

fitness, and the number of slots is equal to the population of the strings. Therefore, the 

higher fitness value a string has, the bigger slot it occupies on the roulette wheel, and thus 

the more likely it is to be selected. Statistically, the most likely number (AO of offspring a 

parent string would contribute to create is: 

N = n . findmduai = /individual (Equation 4-5) 
^ f average 

where n is the number of strings in a population of candidate solutions 

/ i n d i v i d u a l is the fitness of a parent string 

fi=i w Pop. is the fitness of every string in the population 

/average is the average fitness of the entire string population 

f 
Note that ™ d m d u a l is the probability of a string to be selected for mating; it is therefore 

If, 
1=1 

always less than 1. 
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4.6.2 Tournament Selection 

This method requires two parent strings to be selected at random regardless of their 

respective fitness. Once selected, the two strings are then compared on their fitness and 

the higher performance string becomes the parent string for the production of offspring in 

next generation. Thus, to select two parent strings for mating, four random selections 

must be conducted. Although this method is biased towards high fitness parent strings, it 

does not dictate the production of offspring based on the ratio of individual string fitness 

to total fitness of string population. 

4.7 Genetic Operations 

Upon the selection of the parent strings, they are used to produce offspring via genetic 

operation. The conventional genetic algorithms consist of three operators mimicking the 

evolutionary processes observed in nature. They are reproduction, crossover and 

mutation. More advanced operators have also been used with success, but the three main 

operators are efficient for searching for near optimal solutions in a multi-dimensional 

space. Because these genetic operators are probabilistically selected for use, each of 

them is assigned a respective probability. The probabilities of reproduction (Pr), 

crossover (Pc) and mutation (P,„) are usually assigned based on empirical results. Again, 

there are no absolute rules, but only guidelines in setting the probabilities of genetic 

operators. 

4.7.1 Reproduction 

The reproduction operator allows a parent string to produce a duplicate offspring with 

identical genetic information. Although this operator appears to be too simple and 

redundant, the key importance of this operator in GAs'is to preserve the incumbent high 

performance strings for mating in future generations rather than in the immediate next 

generation. Without this operator, the incumbent high performance string may be 
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completely destroyed by other genetic operators such as crossover (to be discussed) and 

denied the chance to mate with strings of the future generations, yet to be born. 

The probability of a selected parent string to reproduce itself for the immediate next 

generation, Pr, is often decided by the G A user. Depending on the complexity and nature 

of the optimization problem or calibration process involved, the importance of the 

reproduction operator's role in creating new offspring may vary. Pr is often between 

about 0.1 and 1/3. While higher Pr values will slow the G A search efficiency because the 

offspring are identically the same as the parents, low Pr values will also prolong the 

required search time because of the destruction of high fitness strings. In common GA 

program code, Pr is usually not set explicitly because Pr is equal to 1-Pc-Pm once the Pc 

and Pm values are agreed upon. 

Based on the chosen Pr value, a portion of the selected parent string (using the roulette 

wheel scheme) will be given the reproduction operation. Thus, probabilistically the 

approximate number of genetic strings to remain totally unchanged in a generation of 

genetic operation is 

N reproduction =Population *Pr (Equation 4-6) 

Since reproduction does not change a string's fitness at all, tournament selection can be 

imposed to further increase the average fitness of strings reproduced for next generation. 

This is achieved by selecting two strings using the roulette wheel selection method first 

and then only admitting the string of higher fitness to the population of the next 

generation. Because the fitness of every string has been already evaluated and stored in a 

numeric array, the fitness of the two strings selected for tournament can be directly 

compared without calling the objective function subroutine or rerunning the 

computational model for fitness. 

Figure 4-1 compares the use of the reproduction operator with and without tournament 

selection in terms of search efficiency. A reproduction operation without tournament 
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selection (Curve B) performs better than a reproduction scheme with additional 

tournament selection (Curve A) when a single crossover operator is also used. However, 

the opposite is true when a uniform crossover operator is used. The definition of a 

crossover operator and its various types are the subject of the next section. 

4.7.2 Crossover 

The crossover operator allows a selected parent string to mate with another selected 

parent string and exchange genetic information at one or more gene location(s) of the 

binary strings to form one or two offspring. Regardless of the number of the offspring 

formed, the offspring strings should inherit a portion of genetic information from each 

parent. The intent of using a crossover operator in genetic algorithms is to divide genetic 

information into building blocks or even as small as genes (bits) and hope a systematic 

recombination of the building blocks will lead to higher fitness strings or candidate 

solutions. 

Typically, crossover operation can be categorized as one of three types: 

1. Single point crossover 

2. Multi-point crossover 

3. Uniform crossover 

A gap in between any two gene-positions about which the genetic information of two 

parent strings can exchange is called a cutoff point. The number of cutoff points used in 

the crossover operation determines the crossover type. In a single point crossover, a 

cutoff point is usually randomly chosen along the full string length and the genetic 

information of two parent strings is exchanged about this cutoff point. An example of 

single point crossover is provided in Figure 4-2. For a string length with L bits, there are 

L-l bit-linkages that can become cutoff points. Thus the probability of a binary linkage 

to be selected as a cutoff point is 1/(L-1). Depending on the G A user's preference, the 
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random cutoff locations may also be limited only to the linkages of substrings, with each 

substring representing the value of each parameter in the optimization problem or model 

calibration. 

Figure 4-2: Single-Point Crossover of Two Selected Parent Strings 

Two Parents 
1 1 0 0 1 1 0 1 

T 1 0 •11 1 1 1 

Two Of 'spring 
1 1 0 0 1 1 1 

1 1 1 0 1 1 0 1 

A multi-point crossover or uniform crossover often replaces the single-point crossover 

when the string length becomes too long for a single point crossover to efficiently explore 

large numbers of recombination of the parents string to obtain better offspring. Similar to 

the single point crossover, cutoff points are also randomly selected in multi-point 

crossover and the two parent strings alternatively exchange their genetic information 

about these cutoff points. An example of multi-point crossover is provided in Figure 4-3. 

Figure 4-3: Three (Multi)-Point Crossover of Two Selected Parent Strings 

Two Parents 
1 1 0 0 1 1 0 1 

1 1 1 0 1. 1< 
- V 111 1 

Two Offspring 
1 1 1 0 . 1 1 0 1 

1 1 0 0 1 "1Sc 1 1 
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In the uniform crossover, every binary bit is given a significant probability (usually 0.5) 

to switch genetic information with its position-based counterpart of the mating parent 

string. Therefore, every binary bit linkage can be a cutoff point for crossover. The 

maximum number of cutoff points that may take place concurrently to a binary string of 

length L in uniform crossover is L-l. However, whether or not the two selected parents 

strings switch genetic information at a particular binary bit position is probabilistic and 

can be decided by flipping a coin L times, or by applying a random binary integer 

generator with 1 indicating yes and 0 indicating no. The blueprint for which bits to 

exchange or not to exchange is referred as the crossover mask. If a probability of 0.5 is 

used, then the average number of bits to be switched in uniform crossover operation is 

L/2. Figure 4-4 is an example of uniform crossover for a given crossover mask. Notice 

that in bit positions 1 and 6, the genetic information exchanged is identical; thus the 

crossover at these two positions has no overall effect in differing the fitness of offspring 

from the parent strings. Therefore, in this example, without an additional exchange of the 

binary bit in position 3, the offspring produced in this uniform crossover operation will 

be identical to the two parents. 

Figure 4-4: Uniform Crossover of Two Selected Parent Strings with a Randomly 
Generated Crossover Mask 

Two Parent String with A Crossover Mask 
1 1 0 0 1 1 0 1 

Y N Y N N Y N N 

1 1 1 0 1 1 1 1 

Two Offspring 
1 1 1 0 1 1 0 1 

1 
i l l 

0 o 1 1 1 1 

Despite the fact that the effect of crossover sometimes may not be very pronounced due 

to very similar parents strings, most of the time the crossover operator creates new 

offspring with profound implications. The creation of new offspring implies that two 

additional points in the solution space are to be searched and tested. Thus an effective 
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usage of the crossover operator will greatly enhance the search efficiency of GAs. This 

leads to the discussion on setting values for Pc, the probability of crossover. 

The mixture of genetic information from both parents through crossover creates offspring 

that may out-perform or under-perform both parents. In general, the values for Pc should 

be between 0.6 and 0.8. Goldberg (1989) suggested a Pc value between 0.6 and 1. An 

increase in Pc would positively increase the number of recombinations of genetic 

building blocks and enhance the chance of finding the optimal string (solution), but it 

inevitably destructs the reasonably good strings already in existence. This is especially 

true if the Pc is relatively high. If a Pc value of 1 is used, it is doubtful that the chance of 

finding a better near optimal string will outweigh the impact of losing the best solution 

found so far. In order to preserve a good string, the reproduction operator and advance 

operators, such as elitism, should be used. The elitism operator will be discussed in a 

, later section. 

The choice of types of crossover operators to use is less controversial. In general, the 

more crossover cutoff points that are available, the better the G A search efficiency. For 

example, Figure 4-1 in section 4.4.3 shows that a uniform crossover operator tends to 

outperform a single-point crossover operator. For the calibration of two watersheds using 

the U B C Watershed Model, experiments conducted for the present thesis show that the 

uniform crossover tends to converge the fastest and generate the best results. 

4.7.3 Mutation 

Mutation is one of the three major types of genetic operation in which every gene of a 

parent string is assigned a uniform probability to randomly alter the bit value. The 

probability of mutation is usually small as observed in nature. The parent string with 

randomly altered genes then becomes the new offspring. If strings are binary coded, a 

mutation operator will change bit value of a gene from 1 to 0 or vice versa. The mutation 
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process is deliberately given a small probability so only a limited number of genes are 

altered. Otherwise, given higher probability, the process can turn into a random search. 

Mutation can be implemented implicitly or explicitly. In the implicit scheme, the 

mutation operator is embedded in the reproduction and crossover operation. After an 

offspring string is created via reproduction or crossover, a small uniform bit-wise 

mutation probability is assigned to each gene of the string. The typical bit-wise mutation 

probability, Pm used is between 0.01 and 0.02 (Carroll 1996). Note that the apostrophe 

indicates the mutation probability is bit-wise. Thus for a string with a length of 20 bits, 

the probability of having at least one gene mutation along the full string length is between 

0.2 and 0.4. As the string length increases (say to a length of 100 bits), bit-wise mutation 

will almost certainly occur. 

In the explicit mutation scheme, the mutation operator is probabilistically selected for use 

just like reproduction and crossover operators. For example, to create offspring from 

selected parent strings, the probabilities for reproduction (Pr), crossover (P c) and 

mutation (Pm) can be assigned as 0.3, 0.6 and 0.1, respectively, thus the mutation operator 

will be used about 10% of the time. When the explicit mutation scheme is used, the sum 

of Pr, Pc, Pm should add up to 1. To clearly differ from the reproduction operator, the G A 

code is arranged so that at least one bit mutation will occur somewhere in the string. For 

example, if a 100-bit string is selected for explicit mutation instead of reproduction or 

crossover, each gene will have a bit-wise mutation probability of 0.01 (the reciprocal of 

100). Users can also specify the number of bit mutations to occur depending on their 

preference. Nonetheless, allowing a large number of bit-wise mutations can turn the G A 

search into a random search. The value of Pm for the-explicit scheme ranges from 0.2 to 

0.4 depending on the parent string selection method used. The advantage of having a 

high Pm in both mutation schemes is to reintroduce genetic diversity that is lost when a 

selection method such as the roulette wheel scheme purges the strings with low fitness. 

However, the disadvantage is that a high Pm value will easily transform the G A search 

into a random search by altering the parameter (substring) values at random. 
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Because the alteration of a gene is probabilistic, in the implicit mutation scheme there is 

not a concrete rule preventing the change of more than one bit. The position of a 

mutation in a string is randomly chosen based on a uniform probability distribution along 

the full string length. In the explicit mutation scheme, one or two bit mutations are 

usually pre-specified, and a random generator is applied to determine the position of bit 

mutation in a string. Thus, in both mutation schemes the offspring created through 

mutation often bears close resemblance to the original parent strings. The intent of 

mutation is, therefore, to allow small-scale genetic information alteration (compared to 

large-scale alteration in crossover) in the hope that high performance strings (candidate 

solutions) can be found through local and minor genetic improvement. For example, at a 

particular position of a string, the current value is 0 and this value needs to be changed to 

1 to form the optimal string (i.e. string which would achieve optimal objective function), 

mutation is the best means to change. Neither reproduction nor any form of crossover 

operators can accomplish the change from 0 to 1 without the risk of disturbing any of the 

existing genetic information in other positions of the string. 

In addition to finding a possible optimal solution through local gene change, mutation is 

used to continuously insert changes into candidate strings to maintain a high level of 

diversity in the gene pool. It is important to emphasize that because the roulette wheel 

selection method chooses parent strings according to their fitness, the gene pool diversity 

is gradually reduced as less fit strings die out and become extinct. So mutation is useful 

in maintaining genetic diversity in the population. 

4.7.4 More Notes on Choosing Probabilities of Genetic Operators 

In the process of genetic operation, the question arises of how these genetic operators are 

probabilistically selected for use. The reproduction probability is usually set to about 0.1 

to 1/3. The crossover probability is usually set to about 0.6 to 0.8 or even to 1. The 

mutation probability normally ranges from 0.2 to 0.4 in explicit scheme and 0.01 to 0.02 

for bit-wise mutation in implicit scheme. If only the reproduction, crossover and explicit 
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mutation operators are used, the sum of their respective probabilities should be 1. If the 

implicit mutation scheme is used, the sum of Pr and Pc should be 1. 

The choice of Pr, Pc and Pm (or Pm') is problem specific and their assigned values depend 

upon the complexity of the objective function of the optimization problem or the measure 

the model performance. Thus, to achieve high G A search efficiency the choice of Pr, Pc 

and Pm (or Pm') may require several sensitivity analyses. In practice, the probability 

values are often initially set based on some guidelines suggested in the literature and then 

they are fine-tuned by trial and error from empirical G A search efficiency results. The 

distribution of the probabilistic weights among the three major operators is a subject that 

remains inconclusive and needs to be further investigated by GA researchers. 

4.7.5 Elitism 

Elitism is a genetic operation in which the best one or two of the candidate strings of a 

generation are by default automatically reproduced for the immediate next generation 

without using any parent string selection method. The intent of using the elitism operator 

is to preserve the. solution that ranks high in terms of fitness and prevent crossover and 

mutation operators from accidentally destroying the best solution found so far in a search. 

If elitism is used, the best-of-generation fitness will always be equal or greater than the 

fitness value of the previous generation because the best string always survives. 

De Jong (1975) found that the elitism operator improves the average fitness of strings for 

a uni-modal objective function, but decreases the performance of strings for a multi

modal objective function. However, in the G A calibration of the U B C Watershed Model 

conducted for the present thesis, elitism was found to greatly increase average fitness of 

strings despite that the objective function to be optimized in model calibration is indeed 

multi-modal. 
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4.7.6 Scaling 

Scaling is a genetic operation in which the fitness of high performance strings is under-

emphasized to prevent rapid loss of gene diversity in population. It is also used to over

emphasize the difference between strings of similar fitness so that an optimal one can be 

identified quickly. In GAs where the roulette wheel selection method is used in choosing 

parent strings for the creation of offspring, it is possible that a few very high performance 

strings are overly selected as parent strings due to their high fitness. These very fit 

strings crossover with each other, and may produce offspring identical to the, parents, 

which severely reduces the diversity of gene pool of the population. This phenomenon is 

known as premature convergence because the identical offspring produced due to lack of 

gene diversity can easily mislead the G A users to believe that a converged solution near 

the global optimal has been achieved. To prevent the premature convergence in G A 

search, a scaling operator is used to reduce the weight of high performance strings rather 

than allocating the weights directly proportional to their fitness. An example of simple 

linear scaling transformation of raw fitness values is shown below: 

where/is the fitness of a particular string to be scaled 

/ average is the average fitness of the entire population 

/ ' is the scaled fitness 

a =a scaling parameter which is usually less than 1. 

Applying equation 4-7 with values of a < 1, strings with high fitness will be assigned 

smaller fitness and allocated smaller slots in the roulette wheel selection. Table 4-5 

summarizes the scaled fitness of the five strings listed in Table 4-4 using a scaling 

parameter of 0.7. 

(Equation 4-7) 
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Table 4-4: Fitness without Scaling 

String ID Raw Fitness No. of times selected after 
100 roulette wheel turns 

A 1.5 13 
B 2.0 17 
C 1.0 9 
D 5.0 43 
E 2.0 17 

Table 4-5: Scaled Fitness 

String ID Scaled Fitness No. of times selected after 
100 roulette wheel turns 

A 1.7 15 
B 2.1 18 
C 1.4 12 
D 4.2 36 
E 2.1 18 

At the first glance, the changes may appear small and insignificant. However, as the 

number of generations increases, the accumulative effect of scaling will become 

significant and pronounced. Note that it can be proven that the value of /average remains 

unchanged in the linear scaling transformation. 

The scaling operator is also useful in facilitating the search of the optimal from a group of 

near-optimal solutions when premature convergence is not a concern. For example, if the 

fitness of all strings is very close in magnitude, then each parent string would-be selected 

a roughly equal number of times and the roulette wheel selection would lose its bias 

towards the better strings. Under these circumstances, it is necessary to emphasize the 

superiority of one string over another by using the scaling operator. This can be easily 

achieved by applying equation 4-7 with a coefficient a > 1 to magnify the fitness 

differences among parent strings. 
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4.7.7 Niching 

Niching is a genetic operation in which the clustering of a large number of strings in a 

high fitness region of the search space is intentionally prevented. A G A optimizer which 

uses the major genetic operators discussed until now is sufficient if the optimization 

problem is single-objective and the objective function is uni-modal, or the objective 

function is multi-modal but only the global maxima (minima) is of interest. However, 

sometimes it is important to know the values of all maxima (both the global and local 

ones) and their corresponding parameter values (locations in multi-dimensional search 

space). Or sometimes, the single-objective function may be multi-modal but with peaks 

of equal magnitude which need to be simultaneously identified. Under these 

circumstances, the G A optimizer must be further improved with a niching operator. 

For example, if the objective function of a single-objective problem can be approximated 

as a sine function with five equal peaks, applying genetic-algorithms search technique 

without a built-in niching operator will yield the location of only one of five equal peaks 

and indicate nothing about the presence of the remaining four peaks. This phenomenon 

is known as the "genetic drift" caused by the intended bias in the weighted roulette 

selection of the fitter parent string. The "genetic drift" occurs when only one of the equal 

peaks or near equal peaks is first found during the search and the peak receives 

overwhelming weight in the roulette selection process. In other words, as soon as a 

relatively high peak or an enclave of high fitness is found, the strings (candidate 

solutions) in other sub-domains where other equal peaks can be found will die off to 

make room for new-born offspring of the newly found peak. Therefore, without niching, 

after running GAs for a number of generations, the entire string population would tend to 

cluster at one location rather than scattering at various locations. 

Figure 4-5 provides the G A search results for a simple sine function y=10*sin(x) without 

a niching operator. Of the thirty candidates created to search, twenty-five candidate 

solutions landed near the first peak (x=3.14) while only three landed near the fifth peak 
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(x=26.70). Therefore, although two equal-magnitude peaks were identified without 

niching, the fifth peak could have been easily overlooked by GA search without niching. 

Figure 4-5: Genetic Search without a Niche Operator for a Simple Sine Function 

Genetic Search without a Niche Operator (Pop.=30, Generation=30) 
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Hence, the niching operator can be viewed as a fitness sharing function which 

discourages the clustering of candidate solutions near an already found optimum or a 

particular sub-domain of high fitness, and encourages the continuous search of other 

possible peaks that may be present as well. The niching operator used in the G A code of 

this thesis is a sharing function which reduces the individual objective function based on 

the number of candidate solutions clustered within a nearby small sub-domain. The 

sharing function in one-dimensional form can be expressed as: 

(Equation 4-8) 

where f r a w is the evaluated fitness of a particular string before niching 

fmching is the modified fitness of the particular string after niching 

Xmax = the upper bound of the feasible range of the one-dimensional parameter X , 

niching 
n=pop. 

7=1 

fn 

x _ -X 
max mm 
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Xmi„ = the lower bound of the feasible range of the one-dimensional parameter X , 

X = the value of parameter X for the particular string, 

Xj = the value of parameter X for all other strings in the population. 

Equation 4-8 forces a broader search away from the known high fitness region. 

Therefore, based on equation 4-8, a candidate solution with a lower fitness (objective 

function), but with no other candidate solution nearby will have a higher chance of 

survival than a candidate solution with a high fitness (objective) and many candidate 

solutions nearby. By using the niching operator, the GA search is armed to prevent 

undesirable premature genetic clustering, referred to as genetic drift in GA terminology, 

which may mislead users to a sub-optimal solution. However, the niching operator by no 

means implies that no candidate solution is allowed to stay near the already found peak. 

In conclusion, one may say that the word "niche" used in GAs means that stable numbers 

of sub-populations of strings (candidate solutions) should search various sub-domains of 

the objective functions and stay there even if the maxima found by them are local ones, 

regardless of additional higher maxima being found somewhere else in the domain of the 

objective function. 

Figure 4-6 provides the G A search results for a simple sine function y=10*sin(x) with a 

niching operator. Three peaks (first, second and fifth) were clearly identified and the 

remaining two peaks would be identified if additional generations of simulation were 

given. Candidate solutions were also less clustered compared to the ones in Figure 4-5. 

Therefore, the niche operator has served its purpose of identifying almost all the equal-

magnitude peaks. 

One interesting observation worth noting is that the G A experimental results show that 

when using a niching scheme, the average non-niched fitness of the entire string 

population is usually less than the average fitness of the strings obtained without niching. 

The slower search efficiency is a trade-off for the added ability to map the behavior of the 

objective function in more detail. 
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Figure 4-6: Genetic Search with a Niche Operator for a Simple Sine Function 

Genetic Search with a Niche Operator (Pop.=30, Generation=30) 

x value 

4.7.8 Other Operators 

Besides the fundamental genetic operators mentioned, several other GA operators have 

been devised, based on observed genetic processes in nature, with the hope of improving 

the robustness of G A search. However, the success of these operators remains relatively 

limited and tends to be case specific. Two of the better-known operators that fall into this 

category are dominance and inversion. 

Until now, every candidate solution discussed is coded in one single string as the single-

stranded chromosome of uncomplicated forms of life observed in nature, (Goldberg 

1989). But what if one attempted to code a candidate solution with two strings similar to 

a double-stranded chromosome found in more complicated life forms in nature? What 

advantage in G A search efficiency can be achieved by using a two-string system to 

represent a candidate solution? Under the two-string (double-stranded) system, each 

string of a candidate solution contains both dominant and recessive genes (genotypes). 

To determine what model parameter values the coded candidate solution actually 

represents, a third string is implicitly created by comparing the two strings bit-by-bit 

based on their gene position. For every gene position, only the dominant gene is 

admitted to the same gene position of the third string. The recessive gene is admitted 
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only when there is no dominant gene in the same position of both strings. The third 

string created is the phenotype of the candidate solution that can then be decoded as a 

single-string coded candidate solution. The process of creating the decodable third string 

is the so-called dominance operation. Thus in brief, dominance is the mapping of the 

genotypes (two parallel strings with both dominant and recessive genes) into the 

phenotype (a finalized single string decodable to mathematically represent a solution in 

search space). It is believed (Goldberg 1989) that a candidate solution of two coded 

strings shields recessive genes for future use and may positively affect the search 

efficiency. No conclusive finding can be found in the literature. 

Inversion in genetics is a reordering operator which reverses the genes of a coded string 

about some given switch locations. Thus, inversion operation can be seen as the reverse 

shuffling of bits in a coded string. The inversion operator can be applied on both single-

string and double-string candidate solutions. How inversion can improve G A search 

efficiency is beyond the scope of this thesis and will not be discussed. 

4.8 Computer Procedures of Genetic Algorithms 

After providing an overview of how GAs can be used in model calibration and explaining 

the essential components of a genetic-algorithms based optimizer and model calibrator, 

let us summarize the detailed computational procedures both in writing and in a flow 

chart with proper G A terminology. 

The conventional genetic algorithms usually follow the steps below: 

• Start by asking the users to input the string population size and maximum number 

of generations to evolve. As mentioned before, there are no simple rules to 

determine the optimal population size and maximum number of generations. The 

binary type of coding representation of genetic strings is recommended because it 

can be decoded and programmed conveniently. 

54 



• Allow the users to choose the appropriate genetic operators. The users should 

have some fundamental understanding of the operators and their effects on search 

efficiency. Usually, for any practical application, one needs the three basic 

genetic operators at least; namely reproduction, crossover and mutation. 

• Allow the users to decide the probability of reproduction, crossover, and mutation 

operators. Again there is no simple rule to decide their values though some 

guidelines were provided in the literature. The selection of probabilities is usually 

done through some experiments on GA search efficiency on a trial and error basis. 

For a rough start, try a crossover probability of 0.65, a reproduction probability of 

0.35 and a bit-wise mutation of 0.02. 

• Prescribe the number of dependent or model parameters to be estimated and 

assign their upper and lower bounds. Use the string length measured in bits to 

obtain the desirable level of accuracy for each parameter value. Use equation 4.3 

in section 4.3 to determine the required string length. 

• Assign G A termination criteria. Usually the users are asked to specify the 

maximum allowable generation number to run (criterion 1) and the degree of 

convergence to achieve by the best candidate solution (criterion 2). Note that 

only one of two criteria is needed to terminate the G A process. 

• Create the initial string population at random to achieve high diversity in the gene, 

pool. This requires the G A code to have a population do-loop that will assign 

genetic characteristics of all modeling parameters for every single string 

(candidate solution) of the population. 

• For a simple optimization exercise, go to the objective function subroutine of the 

G A code and write the objective function of interest directly in the programming 

language used. The fitness of each string can then be evaluated directly by calling 

the subroutine repeatedly. For a model calibration exercise, choose an 

appropriate statistic measure as the objective function to optimize and for each 

string call for the computational model (for example, U B C Watershed Model) to 

produce the value of the fitness measure. Note that the measure chosen as the 

objective function should be able to statistically describe the agreement of the 

calibrated model results with the observed data. 
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• Select the parent string for mating based on the fitness of candidate solutions 

(strings). The weighted roulette wheel and tournament selection methods are 

often applied. 

• Probabilistically choose one of the three major genetic operators to create 

offspring strings from the selected parent strings of high fitness. 

• Evaluate the fitness of each newly created offspring string by calling the objective 

function subroutine or computational model. 

• If the new offspring strings satisfy one of the two termination criteria, the G A 

code will stop the loop of continuous mating process and output the best 

candidate string and the near-best strings. These strings are then decoded to 

return the sets of modeling parameter values they represent. They are the best and 

near-best solutions. 

• If none of the termination criteria is satisfied, restart the parent string selection 

and produce new offspring for the next generation. The loop of string mating 

continues until at least one termination criterion is satisfied. 

The implementation of computational procedures of genetic algorithms as an optimizer or 

as a model calibrator can be best illustrated in a flow chart as shown in Figure 4-7. 

Goldberg (1989) provides several simple examples demonstrating the manual 

computational process of GAs. 
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Figure 4-7: Implementation Flowchart of the Genetic Algorithms 
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5.0 F U N D A M E N T A L T H E O R E M OF GENETIC ALGORITHMS: W H Y 

GENETIC A LGOR ITHMS W O R K 

At first glance, one might see genetic algorithms as a technique similar to random search 

algorithm with an additional capability to preserve one, or a few, best solutions. 

Fortunately, GAs offer more than a search procedure that uses random choice as a tool to 

guide a search of the solution space. The high probability of survival granted to fitter 

solutions implicitly steers the GA search systematically towards the regions (schemata) 

of high objective function value in the multi-dimensional search space. As discussed in 

an earlier example, for a search space of 20 dimensions, random search can be as 

inefficient as having to explore a large portion of all possible 20 combinations of 

parameter values as the parameter value step size is 1/20 of the feasible range of each 

parameter. 

5.1 Schemata: Genetic Building Blocks 

To analytically demonstrate why genetic algorithms work, it is imperative to discuss the 

concept of schemata, which are the fundamental basis of genetic algorithms. A schema, 

as defined by Holland (1975), is a similarity template describing a subset of strings with 

similarity at certain positions of strings. For example, the two 7-bit strings below: 

1001000 
1001101 

belong to the same schema 1001*0*, where * (asterisk) means the coded gene value is 

not fixed; it can be either 0 or 1. Because the schema 1001*0* contains asterisks in two 

positions, in total the schema should contain a subset of four strings. They are: 

1001000 
1001101 
1001001 
1001100 
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Thus the number of strings in a binary-coded schema can be expressed as: 

Nss = 2X (Equation 5-1) 

where x is the number of asterisks, the non-defined gene value in a schema. 

For visualization, a schema may be assumed as a plane with a number of search points (a 

subset of strings) on its surface in a solution space. It is therefore possible that a newly 

created offspring string remains in the same schema as one of its parent strings if the new 

offspring happens to be on the same surface plane. In other words, an offspring string 

does not have to be identical to any of the parent strings, yet belongs to the same schema 

family as one parent string (but must be partially identical in some genes). For example, 

a parent string 1001001 can produce an offspring string 1001100 by mutation (at fifth and 

seventh gene positions). But both strings still belong to the same schema family 

1001*0*. On the other hand, if an offspring string 0001001 is created by mutation at the 

first fixed-value gene, then the new string is no longer considered a member of schema 

family 1001*0*. 

With the basic understanding of a schema, the mystery of why genetic algorithms work 

well in systematically finding an optimal solution can begin to be unraveled. The essence 

of GAs is that if a schema contains strings of high fitness such that the schema's average 

string fitness is higher than other schemata, then this schema (plane) will be searched for 

an optimal solution in more detail than the others (to be proven mathematically in the 

next section). This is achieved by producing more offspring strings belonging to this 

specific schema of high fitness. Therefore, unlike an individual string (candidate 

solution) whose survival depends solely on the individual string fitness, the survival of a 

schema in genetic operation depends on the average fitness of all strings belonging to the 

schema. If a schema contains fitter strings, then the number of strings that belong to this 

schema will grow and the schema will survive. On the contrary, if a schema contains 

poor fitness strings, the number of strings that belong to this schema will decline and the 

schema will not survive. 
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Hence, all schemata are not created equal (Goldberg 1989). Comparing the schema 

1001*0* with schema 100****, how do their genetic differences affect their chance of 

survival as schemata? The inherent differences in schemata prompt the use of two 

schema measures, namely the schema order and schema defining length. These two 

schema measures allow us to determine the possibility for an offspring string to have the 

same schema as its parent string and thereafter quantify the possibility for a schema to 

survive generations of genetic operations. Mathematical proofs of the Fundamental 

Theorem of Genetic Algorithms will be provided one step at a time in the following 

sections with the aides of schema order and schema defining length. 

5.1.1 Order of Schema 

The order of a (binary coded) schema is the number of bit positions with a fixed gene 

value rather than an * (asterisk) which denotes it can be either 0 or 1. The schema 

1001*0* therefore has an order of five whereas the schema 100**** has an order of 

three. The order of a schema is important because it measures how vulnerable a string 

and a schema are to mutation. Clearly, the higher the order of a schema, the more fixed-

value genes it has, and consequently, the easier the schema can be destroyed. On the 

contrary, the lower the order of a schema, the fewer fixed-value genes it has, and 

consequently, the less likely the schema can be destroyed. Thus, the survival probability 

of a string's schema in mutation, which in other words is the probability of a parent string 

from schema H to create an offspring belonging to the same schema H, is: 

(Equation 5-2) 

where H = a specific schema to which the parent string of interest belongs 

o(H) = the order of the schema H 

Pm - bit-wise mutation probability 
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Because the survival of a schema is measured by the number of member strings in the 

schema family, the equation above is also the schema's survival probability in mutation. 

Conversely, the destruction probability of a string's schema, which is the probability of a 

parent string from schema H to create an offspring not belonging to the same schema H, 

can be approximated as directly proportional to the schema order provided the bit-wise 

mutation probability is small. 

Pdes,rua,nn (H) = l-Psunival(H) = o(H) • Pm (Equation 5-3) 

For example, a parent string from schema 1001*0* (order 5) has a probability of (1-Pm'f 

to create a offspring in the same schema 1001*0*. This is analogous to the chance of 

having a 100-year return period storm in five consecutive years, which can be expressed 

as 
( i V ( i ^ 
1—— =1-5-

vioo 

5.1.2 Defining Length of Schema 

The defining length of a (binary coded) schema is the number of bit linkages between the 

first and the last fixed-value genes. It is similar to the number of possible cutoff points 

for crossover discussed in section 4.7.2, except only the cutoff points in between.the first 

and the last fixed-value genes are considered and counted. For instance, the schema 

1001*0* has a defining length of 6-1=5 whereas the schema 100**** has a defining 

length of 3-1= 2 bits. 

The schema defining length is important because it measures how vulnerable a schema is 

to crossover. Quantitatively, it determines the destruction probability of a string's 

inherent schema when the string undergoes a crossover operation. The longer the 

defining length, the greater possibility a string's schema can be destroyed in crossover 

and create a new offspring not belonging to the same schema. In schema 1001*0* (a 
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defining length of 5), if the crossover occurs at any of the first five cutoff points, the 

crossover operator will potentially destroy the schema. However, if the crossover occurs 

at the sixth cutoff point (in between the sixth and seventh bits), then crossover cannot 

possibly destroy the schema because the seventh bit can be an arbitrary gene value. 

Thus, if only the crossover operator takes place in genetic operation, the probability of a 

parent string to lose its associated schema in a crossover operation is: 

P^ruaon (H) = ̂  (Equation 5-4) 

where d(H) = the defining length of schema, H. 

Conversely, the probability of a string to maintain its schema in a crossover operation is: 

P ^ A m ^ - P ^ a ^ H ) ^ - ^ (Equation 5-5) 

When other genetic operators are used in conjunction with the crossover operator in 

mating and the roulette wheel selection method is used, the survival probability of a 

schema for a given crossover probability of Pc is: -> 

Psl,mva,(H)>l-Pe-^ (Equation 5-6) 

A greater-than-or-equal sign is used because even if a crossover takes place within the 

defining length of a string, it is still- possible that a string crosses over and mates with a 

string of similar or identical genetic information to form an offspring of the same schema. 

Comparing the schema 1001*0* with schema 100****, it is now clear that their 

probabilities of survival through crossover operation are very different. The schema 
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100**** is much more likely to survive crossover because it has a short defining length 

of 2 whereas the schema 1001*0* contain has a long defining length of 5. 

5.2 Effects of Genetic Operations on Schemata 

When a G A run is conducted, the genetic operators process the selected parent strings for 

mating and create a population of mostly new strings. However, implicitly, the genetic 

operations may not necessarily lead to a population of new schemata. As discussed 

earlier, a schema which contains fitter strings will grow and survive by producing more 

numbers of strings that belong to the same schema while a schema that contains poor 

fitness strings will decline by producing fewer and fewer numbers of strings that belong 

to the schema and eventually become extinct. Hence, in order to validate the above 

statement it is important to observe the effects of different genetic operations on a schema 

and its member strings. 

Goldberg (1987) provided the mathematical proofs on how reproduction, crossover and 

mutation (the three major genetic operators) individually and in-combination affect the 

survival of a schema. These mathematical proofs are presented in the following sections. 

The effects of mutation and crossover have already been considered separately in the 

previous sections during the introduction of schema order and schema defining length. 

5.2.1 Effect of Reproduction 

When a reproduction operation takes place, a selected parent string simply duplicates 

itself to create an identical offspring string and the offspring string will always belong to 

same schema as the parent. Thus the survival of a schema undergoing reproduction, 

unlikely crossover or mutation, is totally independent of its schema order and defining 

length. Indeed, the survival of a schema undergoing reproduction depends solely on the 

average fitness of the string members in the schema family. 
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To prove this statement, recall from Section 4.6.1, statistically the expected number (N) 

of offspring that a parent string would contribute to produce depends on the parent 

string's individual fitness and the average population fitness as follows: 

findividual findividual 

Pop. 

y J average 

• N = n . J individual = J individual (Equation 4-9) 
f 

J i 

[=1 

If the roulette wheel selection method is again used for reproduction, then the expected 

number of strings belonging to schema H, in the immediate next generation of the 

population can be analogously approximated as: 

m(H,t + l) = m(H,t) • n . f ( H ^ ' = m{H,t) • = n . ^ (Equation 5-7) 
favemse ztf 

where n = the number of strings in a population of candidate solutions 

m(H,t) = m number of strings within schema H in the population of generation t 

f(H) = fitness of a particular string with schema H 

/ = fitness of a string in population 

Therefore, in reproduction alone, a schema grows or decays in size based on the ratio of 

the schema's average fitness to the general population's average fitness. If the schema's 

average string fitness is greater than the general population's average string fitness, then 

this schema will grow, otherwise it will decay. 

5.2.2 Effect of Crossover 

On the other hand, if only the crossover operator takes place in genetic operation, as 

discussed in section 5.1.2, the schema experiences a probability of destruction 
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proportional to the schema defining length. The probability of a string to lose its 

associated schema can be expressed as: 

^destruction (^0 
d(H) 
l-l 

(Equation 5-4) 

When other genetic operators are used in conjunction with the crossover operator in 

mating, for a given crossover probability of PCt the combined probability for a string to 

undergo crossover and also lose its associated schema in the respective crossover 

operation is: 

destruction (H) = Pc 

d(H) 
l-l 

(Equation 5-8) 

Thus, with the combined effect of reproduction and crossover operations considered, the 

expected number of strings belonging to schema, H, in the next generation of the 

population can then be calculated as: 

m(H,t + l)>m(H,t)- f'(-^0average 
f 

J a\ 

1 - /1 
d(H) 
l-l 

(Equation 5-9) 

5.2.3 Effect of Mutation 

Lastly, if only the mutation operator takes place in genetic operation, as discussed in 

section 5.1.1, the schema experiences a probability of schema destruction approximately 

proportional to the schema order. Thus, the probability of a string to lose its associated 

schema in a mutation operation is: 

Pdestrucuon (H) = o(H) • Pm (Equation 5-3) 
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Therefore, after considering the combined effect of all three major genetic operators, 

reproduction, crossover and mutation, the expected number of schema, H , in the next 

generation of the population can be calculated as: 

m(H,t + l)>m(H,t) f(H) average 

f 
J a\ 

(Equation 5-10) 

The equation derived above mathematically demonstrates the possible growth or the 

decay of a schema, i.e. the number of member strings belonging to the schema, when 

only the three major genetic operators are used. 

Hence the schema growth-decay factor in generation t+1 is: 

m(H,t) faven 

(Equation 5-11) 

From Equation 5-11, one may conclude that the number string in schema, H , in the 

subsequent generation grows or decays depending on the ratio of schema's average 

fitness to the general population's average fitness, schema order and defining length. 

Thus, above-average fitness, short defining length and few order schemata will receive 

exponentially growing numbers of strings of the same schemata in future generations. 

This leads to exponentially increasing search opportunities in fitter schemata with 

potential to reach the optimal solution. This conclusion is so important to genetic 

algorithm that it is called the Schema Theorem or the Fundamental Theorem of Genetic 

Algorithms (Goldberg 1989). 

Goldberg (1989) pointed out that the growth or decay of every schema is carried out in 

parallel because a string (candidate solution) can be a member of several schemata 

concurrently. This type of implicit parallelism is unique in GAs and crucial for GAs ' 

ability in obtaining an optimal solution. 
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Lastly, it is important to understand that although the Schema Theorem mathematically 

proves how G A search is steered towards high-fitness regions (schemata) of the search 

space, it falls short in predicting the number of strings and generations needed to find an 

optimum and in assigning the probabilities of various genetic operations for most 

efficient GA search results. Experimental work is required to determine a reasonable set 

of probabilities for various genetic operations to achieve an efficient search. Although 

the above equations are not directly applicable, they clearly show that the G A search 

process is superior to random search process. 
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6.0 CASE STUDIES: GENETIC ALGORITHMS APPL ICAT ION IN 

WATERSHED MODEL ING 

To test the usefulness of genetic algorithms in watershed model calibration, the UBC 
Watershed Model is used to verify the soundness of the genetic algorithms code 
programmed by the author, and to demonstrate the strength and capability of genetic 
algorithms in facilitating the model calibration process. This was achieved by integrating 
the stand-alone genetic algorithms code initially written in Fortran with the UBC 
Watershed Model written in Visual Basic. 

This chapter is organized into six sections. In section 1, background information of the 
two watersheds used as case studies is provided. In section 2, a list of modeling 
parameters incorporated in the GA-based model calibrator is provided and the physical 
meanings of these parameters are briefly explained. In section 3, concerns regarding how 
the meteorological data are used in preparing the input file for the UBC watershed will be 
addressed. In section 4, the results of GA calibration will be summarized and compared 
with the findings from the previous study of the two watersheds under scrutiny. In 
section 5, the search efficiency of genetic algorithms equipped with various genetic 
operators is further investigated. In section 6, the aforementioned three statistical 
measures used as objective functions and indicators of model performance are compared 
for their ability to accurately reflect the degree of conformance between the observed and 
simulated streamflow. 

6.1 Short Description of Campbell River and Illecillewaet River Watersheds 

Two well-studied watersheds in the Province of British Columbia were used as the case 
studies throughout this chapter, so that comparison could be made with earlier calibration 
work. They are: 

1. Campbell River Watershed 
2. Illecillewaet River Watershed 
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The two watersheds will first be used to investigate how capably the existing G A code 

calibrates the watersheds, and whether it achieves good model agreement based on the 

chosen objective model performance measures. The two case studies will also be used to 

determine which genetic technique or combination of techniques is most efficient for 

finding an optimal set of watershed modeling parameters. Lastly, the two watersheds 

will then be used to show which statistical measure is the most consistent measure of the 

agreement between the model simulated data and the observed data. The following are 

brief descriptions of the two watersheds. 

6.1.1 Campbell River Watershed 

The Campbell River Watershed is located in the middle part of Vancouver Island. It 

drains an area upstream of a B.C. Hydro dam which forms Upper Campbell Lake. The 

main part of this watershed is actually within the Stratchona Provincial Park. It is 

bounded by the Vancouver Island mountain ranges on the east and the Stratchona 

Provincial Park mountain ranges on the south and west. The watershed covers an area of 

1194 km and 72% is covered with forest. It has a northern orientation with elevation 

ranges from 215 to 2065 m (Micovic 1998). Daily meteorological information for the 

watershed is provided by the two local AES (Canadian Atmospheric and Environmental 

Services) weather stations. The stations are located at an elevation of 370 and 1490 m, 

respectively. In modeling the watershed, it was divided into seven elevation bands. The 

mid-elevations and areas of the seven bands are summarized in the table below. 

Table 6-1: Brief Summary of Campbell River Watershed 

Elevation Band ID 1 2 3 4 5 6 7 
Mid-elevation of 

the band (m) 223 406 721 983 1238 1485 1939 

Area (km 2) 66.7 218.4 218.4 218.4 218.4 218.4 34.8 
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6.1.2 Illecillewaet River Watershed 

Illecillewaet River is an eastern tributary to the Columbia River at Revelstoke. The 

Illecillewaet River watershed is located in the Selkirk Mountains and the watershed is 

bounded by high glaciers and icefields, the most significant being Albert Glacier on the 

south, Illecillwaet Glacier on the east and Dismal and Durrand Glaciers on the northwest. 

This is a rugged, mountainous watershed with a drainage area of 1150 km 2, 74% of 

which is covered with forest. It has a southwestern orientation with elevation ranges 

from 520 to 3260 m (Micovic 1998). Daily meteorological information for the watershed 

is provided by Fidelity Mountain, Roger's Pass, and Revelstoke AES stations. These 

three local stations are located at the elevation of 1875, 1330 and 440 m, respectively. In 

modeling the watershed, it was divided into eight elevation bands. The mid-elevations 

and areas of the eight bands are summarized in the table below. 

Table 6-2: Brief Summary of Illecillewaet River Watershed 

Elevation Band ID 1 2 3 4 5 6 7 8 
Mid-elevation of 

the band (m) 1000 1360 1540 1650 1790 1915 2085 2250 

Area (km2) 230 115 115 115 115 115 115 230 

6.2 Description of UBC Watershed Model Input and Calibration Parameters 

The U B C Watershed Model consists of more than 60 modeling parameters. These 

parameters are separately stored in groups in the .WATfile and they physically describe a 

watershed model and govern the model execution. The number of parameters for each 

watershed is a constant but the number of elevation bands varies, depending on the 

modeler's experience and preference. 

Under most circumstances, many model parameters can be either physically determined 

(physical model parameters) or have been previously calibrated for general use in all 

watersheds (including some of the process model parameters). The remaining parameters 

are the process parameters to be calibrated for each watershed. As discussed earlier in 
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Chapter 2, the process parameters must be estimated and refined to achieve the best 

model performance possible while the physical parameters remain unchanged in the 

calibration process. For. simplicity, the parameters accepted by the GA-based model 

calibrator of the UBC Watershed Model are limited to the following: 

• POGRADL: Precipitation gradient factor for the elevations below EOLMID 

• POGRADM: Precipitation gradient factor for the elevations below EOLHI 

• POGRADU: Precipitation gradient factor for the elevations above EOLHI 

• EOLMID: Elevation above which the precipitation gradient P R O G R A M applies. 

Usually set at approximately 1/2 barrier height. 

• EOLHI: Elevation above which the precipitation gradient P R O G R A U applies. 

Usually set at approximately 2/3 barrier height. 

• POAGEN: Impermeable area modification factor. It is compared with how much 

moisture has satisfied the soil demands and used in an exponential decay function. 

• POPERC: Ground water percolation. (Maximum capacity of sub-surface storage. 

Excess runoff goes to interflow). 

• . PODZSH: Deep zone share (lower fraction) of groundwater 

• VOFLAX: Maximum flash runoff 

• VOFLAS: Flash flood threshold 

• POFRTK: Rainfall fast runoff time constant 

• POFSTK: Snow melt fast runoff time constant 

• POGLTK: Glacial melt fast runoff time constant 

• POERTK: Rainfall interflow component runoff time constant 

• POISTK: Snow melt interflow component runoff time constant 

• POUGTK: Upper groundwater runoff time constant 

• PODZTK: Deep zone share (lower groundwater) runoff time constant 

• COEVIPA (array for each elevation band): Fraction of impermeable area for the 

elevation band 

• POSREP (array for each AES station): adjustment factor for snowfall data 

• PORREP (array for each AES station): adjustment factor for rainfall data 
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Thus, all of the above can be considered as process parameters in model calibration. For 

a brief explanation of these watershed parameters, the reader is referred to the appendix 

of the U B C Watershed Model manual (UBC Mountain Hydrology Group 1995). 

In addition, in the GA-based model calibration, the process model parameters of a real 

watershed should be constrained by the upper and lower bounds provided by the U B C 

watershed users' manual. By imposing limits on parameter values, the time required for 

G A search will be reduced and the optimal solution will always be found in the pre

determined feasible range. The parameter limits were either derived theoretically or 

based on years of field experiments and experience; they may be deemed as very reliable. 

A summary of the limits of parameter values will be provided in section 6.4, in 

conjunction with the modeling results for the two case studies. 

Micovic (1998) found that the precipitation gradient factors and the fraction of 

impermeable area are the two most important modeling parameters that decide the 

agreement of model results with the observed results a modeler can achieve in 

calibration. Due to the orographic effect, the precipitation in the mountainous area tends 

to increase as the elevation rises. Hence in order to increase model accuracy, 

precipitation gradient factors are generally used as modeling parameters in the calibration 

process,of the UBC Watershed Model to simulate the increasing precipitation from the 

bottom to the top of the watershed. The second parameter, fraction of impermeable area 

(COIMPA), is also crucial to the model accuracy in the calibration process. Theoretically, 

a COIMPA value should be assigned for each elevation band of the watershed. However, 

because the COIMPA value tends to increase as the elevation of band area increases, the 

GA-based model calibrator assumed a base COIMPA value for the lowest elevation band 

and the COIMPA value increases linearly by a delta COIMPA value for each band. The 

linear approximation is a simplification made to reduce the number of process parameters 

to be calibrated. 
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6.3 Preparation of Meteorological Component of Input File 

Some of the meteorological stations are remotely controlled and may register false 

meteorological data, which are then unknowingly used for calibration. Thus, to obtain a 

sense of how reliable the meteorological data are at least several combinations of input 

meteorological data should be arranged and tested. To designate the appropriate AES 

stations for temperature and precipitation in different elevation bands, IOTSTA and 

IOPSTA parameters should be used in the input file of U B C Watershed Model. 

6.3.1 Campbell River Watershed 

There are two sets of meteorological data available for the watershed, one located at 

Elksterc (370 m above sea level) and the second at Wolf Creek (1490 m above sea level). 

The input file for the watershed model should make use of both sets of meteorological 

data with a specific weighting on various elevation bands. Intuitively, one may designate 

the data collected from AES station 1 to be representative for bands 1, 2 and 3, which are 

located at lower altitudes (with mid-elevations ranging from 223 m to 721 m), and data 

from AES station 2 for bands 4, 5, 6 and 7 at high altitudes (with mid-elevations ranging 

from 983 m to 1939 m). However, because both of these two AES stations are remotely 

controlled, the reliability of the two may be doubtful. It is possible that one station may 

break-down, or for some other reason not record the meteorological data properly. Thus, 

sometimes it may be useful for the model calibration process to include only one set of 

the meteorological data at a time to see whether the simulation and calibration results are 

reasonable. Sometimes, it is very possible that a modeler can encounter difficulty in the 

calibration of a watershed model without realizing that the source of error lies in the 

meteorological data, rather than in the estimates of the modeling parameters. Table 6-3 

lists the combinations of meteorological data used for model simulation and calibration. 

The Campbell River Watershed is simulated from October 1983 to September 1990 in 

this thesis. For simplicity, only one precipitation gradient (POGRADL) will be used in 
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the calibration process of combinations 1 to 5 with an exception for combination 6 in 

which two precipitation gradients (POGRADL and POGRADM) will be used. 

Table 6-3: Several Arrangements of Meteorological Data for Campbell River 

Elevation Band ID Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 
Combination 1 1 1 1 2 2 2 2 
Combination 2 1 1 1 1 1 1 1 
Combination 3 2 2 2 2 2 2 2 
Combination 4 1 1 2 2 2 2 2 
Combination 5 1 1 1 1 2 2 2 
Combination 6* 1 1 1 2 2 2 2. 
•"Both precipitation gradients (POGRADL and •OGRADM) are used 

6.3.2 Illecillewaet River Watershed 

There are three AES stations in the Illecillewaet River Watershed: Fidelity Mountain 

(1875 m), Roger's Pass (1330 m) and Revelstoke (440 m). Thus, similar to Campbell 

River watershed, the meteorological component of the watershed input file should 

attempt to make a combinatory use of the three data sets available with some degree of 

elevation-based weighting criteria. For example, because the elevation of Roger's Pass 

station is 1330 m, it should be at least representative and useful for elevation bands 1 to 4 

(with mid-elevations ranging from 1000 m to 1650 m). On the other hand, Fidelity 

Mountain, located at an elevation of 1875 m, should be at least representative for bands 5 

to 8 (with mid-elevations ranging from 1790 m to 2250 m). Because the lowest elevation 

band (band 1) has a mean band elevation of 1000 m, it appears that data collected from 

Revelstoke station (440 m) may not be needed due to its low elevation. Nevertheless, it 

was decided that the data from Revelstoke station should be kept and used with a less 

emphasis. Table 6-4 lists the combination of meteorological data used for the model 

simulation. Despite Revelstoke station's low altitude, combinations 1 and 2 assume that 

data collected from Revelstoke station are representative for both bands 1 & 2 and for 

band 1 only, respectively. To test the representativeness of each individual station, each 

station is used on its own. Combination 3 uses only the Revelstoke station. Combination 

4 uses only Roger's Pass, and combination 5 uses only Fidelity Mountain. Combination 
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6 distributes the meteorological data to all eight elevation bands based on their mid-

elevations, however, only the Fidelity Mountain and Roger's Pass data are used. 

The Illecillewaet River Watershed was simulated from October 1981 to September 1989 

in this thesis. Similar to Campbell River watershed only one precipitation gradient 

(POGRADL) will be used in the calibration process in combinations 1 to 6. 

Combinations 3, 4, and 5 have exactly the same meteorological data arrangement as 

combinations 7, 8, and 9 except that two precipitation gradients (POGRADL and 

POGRADM) will be used in the later combinations. 

Table 6-4: Several Arrangements of Meteorological Data for Illecillewaet River 

Elevation Band ID Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 
Combination 1 3 3 2 2 1 1 1 1 
Combination 2 3 2 2 2 1 1 1 1 
Combination 3 3 3 3 3 3 3 3 3 
Combination 4 2 2 2 2 2 2 2 2 
Combination 5 1 1 1 1 1 1 1 1 
Combination 6 2 2 2 2 1 1 1 1 
Combination 7* 3 3 3 3 3 3 3 , 3 
Combination 8* 2 2 2 2 2 2 2 2 
Combination 9* 1 1 1 1 1 1 1 1 

^Both precipitation gradients (POGRADL and POGRADM) are used 

6.4 Evaluation of GA Model Calibration 

The automatic G A calibrator developed for the U B C Watershed Model was used to 

calibrate the Campbell River and Illecillewaet River watersheds, which were both studied 

by Micovic (1998). In this section, the G A calibration results, in the form of model 

parameter values and overall model performance measures, are compared with Micovic's 

calibration results. 
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6.4.1 Campbell River Watershed 

Based on the meteorological data arrangements presented in Table 6-3 and the 

assumption that one to two precipitation gradient factors are sufficient in depicting the 

orographic effect of precipitation, the G A calibrator is used to generate the following 

calibration results for the Campbell River watershed in Table 6-5. For comparison, the 

upper and lower bounds of the modeling parameters are also summarized in Table 6-5. 

These values are provided in the U B C Watershed Model manual. For every 

meteorological data combination, only two top candidate solutions are presented, 

although the population size was set at 20 in the G A search. In combinations 1 to 5, the 

value of EOLMID and EOLHI are purposely raised to an elevation (of about 2400 m) 

above the entire watershed so that parameters POGRADM and POGRADU cannot affect 

the precipitation within the watershed. As mentioned earlier, the precipitation gradient 

factors are generally used in the UBC Watershed Model to simulate the increasing 

precipitation from the bottom to the top of the watershed as a result of the orographic 

effect. 

After examining the resulting statistical measures of the model performance: el, dV/V and 

eopt! in Table 6-5, one can see that the meteorological data arrangements, which follow 

the principle of assigning data to elevation bands based on their elevation proximity as in 

combinations 1 and 6, yields the best calibrated model performance in both el and eopt!. 

The values achieved by the automatic G A calibration are 0.720 and 0.716, respectively, 

for the best candidate solution in combination 1 and similar values of 0.718 and 0.709 for 

combination 6. If only the meteorological data from AES station 1 is used as in 

combination 2, the values of el and eopt! decrease significantly to 0.602 and 0.602 (the 

same), respectively. Similarly, if only the meteorological data from AES station 2 is used 

as in combination 3, the values of el and eoptl also decrease significantly to 0.633 and 

0.633 (the same), respectively: However, it is worth mentioning that despite the low e! 

and eopt! values achieved, the dV/V values are zero in both combinations 2 and 3. In 

combinations 4 and 5 which have meteorological data arrangements similar to 

combination 1 based on the vertical proximity between AES stations and elevation bands, 
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the calibration results are still satisfactory though not as high as the model performance 

measures obtained from combinations 1 and 6. 

Table 6-5: GA Calibrated Model Parameter Values for Various Combinations of 
Campbell River Watershed 

Parameter Lower 
Bound 

Upper 
Bound 

Comb. 
1 A 

Comb. 
1 B 

Comb. 
2 A 

Comb. 
2 B 

Comb. 
3 A 

Comb. 
3 B 

Comb. 
4 A 

Comb. 
4 B 

Comb. 
5 A 

Comb. 
5 B 

Comb. 
6 A 

Comb. 
6 B 

POGRADL 0 20 5.02 15.06 17.33 17.33 15.06 15.06 18.82 18.90 7.53 5.02 5.02 5.02 

POGRADM 0 20 - - - - - - - - - - 8.31 8.31 

POGRADU 0 20 - - - ' - - - - - - - 7.14 7.14 

EOLMID 2400* 2401* 2401 2401 2401 2401 2400 2400 2401 2400 2400 2401 1991 1991 

EOLHI 2401 2402 2402 2402 2402 2402 2402 2402 2402 2402 2401 2402 2401 2401 

POAGEN 80 120 109.49 109.49 100.86 100.86 109.49 109.80 108.39 88.31 99.14 119.53 99.45 99.45 

POPERC 10 50 21.29 21.29 43.73 41.06 31.65 31.65 43.73 43.57 21.29 21.61 21.45 21.45 

PODZSH 0 1 0.40 0.40 0.56 0.60 0.44 0.44 0.18 0.06 0.77 0.77 0.91 0.91 

VOFLAX 1700 1900 1724 1724 1850 1837 1818 1818 1881 1812 1846 1844 1724 1724 

VOFLAS 20 60 25.02 27.53 40.39 40.39 27.69 27.69 28.47 28.47 45.88 48.55 25.65-' 25.65 

POFRTK 0 2 0.64 0.51 0.49 0.49 0.62 0.62 0.57 0.51 0.51 0.56 0.51 0.51 

POFSTK 0 2 1.62 0.87 0.05 0.05 0.87 0.87 1.04 0.53 0.49 0.31 1.62 1.62 

POGLTK 0 2 1.85 0.82 0.35 0.35 0.78 0.79 0.86 0.86 1.41 1.41 1.85 1.85 

POIRTK 3 10 7.23 3.71 5.00 •5.00 9.59 9.59 8.16 6.08 6.38 4.84 3.99 3.99 

POISTK 3 10 8.35 9.23 6.65 6.65 8.46 5.17 7.04 3.19 4.98 8.27 8.44 8.44 

POUGTK 10 50 46.55 49.69 36.20 35.57 38.86 38.86 25.22 20.20 27.41 12.35 36.98 36.98 

PODZTK 100 300 121.96 121.96 296.08 270.98 220.78 170.59 170.59 270.98 290.59 240.39 120.39 120.39 

C0IMPA1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

C0IMPA2 0 0.3 0.22 0.21 0.22 0.22 0.19 0.19 0.19 0.22 0.20 0.17 0.21 0.21 

A COIMPA 0 0.14 0.11 0.11 0.08 0.08 0.07 0.07 0.06 0.06 0.12 0.12 0.11 0.11 

POSREP1 -1 .! 0.37 0.37 -0.85 -0.85 0.00 0.00 -0.49 -0.93 -0.65 -0.52 -0.54 -0.66 

P0SREP2 -1 1 -0.47 -0.48 0.00 0.00 -0.33 -0.33 -0.43 -0.43 -0.33 -0.33 -0.36 -0.36 

PORREP1 -1 ! -0.11 -0.11 0.19 0.19 0.71 0.72 -0.12 -0.12 -0.08 -0.08 

P0RREP2 -1 1 0.14 0.17 . 0.22 0.22 0.09 0.09 0.44 0.43 0.17 0.17 

e! -infinity 0.720 0.716 0.602 0.603 0.633 0.633 0.692 0.689 0.709 0.701 0.720 0.720 

dV/V 0 1 0.004 0.001 0.000 0.001 0.000 0.003 0.001 0.002 0.005 0.005 0.003 0.011 

eopt! 0 : 0.716 0.715 0.602 0.602 0.633 0.630 0.690 0.687 0.704 0.696 0.718 0.709 

Rank 1 20 1 2 1 2 1 2 1 2 1 2 1 2 

*For combination 6 in which two precipitation gradient factors are used, the lower and 
upper bound of EOLMID parameter are set at 1200 m and 2000 m. 

Micovic (1998) calibrated the Campbell River watershed through a trial-and-error 

procedure, which included a certain degree of manual calibration and automatic random 

model calibration. As noted previously, under the existing model framework, direct 
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search of the values of all modeling parameters is not possible, and.the number of 

modeling parameter values calibrated simultaneously is often limited to groups of about 

three to six at a time. The resulting parameter values from Micovic's (1998) best 

calibrated Campbell River (in terms of eopt!) is given in Table 6-6 together with the 

parameter values from the best GA-based model calibration. 

Table 6-6: Resulting Parameter Values from Micovic's Best Model Calibration of 
Campbell River Watershed 

Parameter Lower 
Bound 

Upper 
Bound 

Micovic's 
calibrated 

value 
Comb. 

1 A 
Comb. 

2 A 
Comb. 

3 A 
Comb. 

4 A 
Comb. 

5 A 
Comb. 

6 A 

POGRADL 0 20 2 5.02 17.33 15.06 18.82 7.53 5.02 
POGRADM 0 20 2 - - - - - 8.31 
POGRADU 0 20 0 - - - - 7.14 

EOLMID 2400* 2401* 963 2401 2401 2400 2401 2400 1991 
EOLHI 2401 2402 2000 2402 2402 2402 2402 2401 2401 

POAGEN 80 120 100 109.49 100.86 109.49 108.39 99.14 99.45 
POPERC 10 50 18 21.29 43.73 31.65 43.73 21.29 21.45 
PODZSH 0 1 0.46 0.40 0.56 0.44 0.18 0.77 0.91 
VOFLAX 1700 1900 1800 1724 1850 1818 1881 1846 1724 

VOFLAS 20 60 33 25.02 40.39 27.69 28.47 45.88 25.65 
POFRTK 0 2 0.38 0.64 0.49 0.62 0.57 0.51 .0.51 
POFSTK 0 2 0.4 1.62 0.05 0.87 .1.04 0.49 1.62 
POGLTK 0 2 1.0 1.85 0.35 0.78 0.86 1.41 1.85 
POIRTK 3 10 2.0 7.23 5.00 9.59 8.16 6.38 3.99 
POISTK 3 10 2.0 8.35 6.65 8.46 7.04 4.98 8.44 

POUGTK 10 50 22 46.55 36.20 . 38.86 25.22 27.41 36.98 
PODZTK 100 300 72 121.96 296.08 220.78 170.59 290.59 120.39 
C0IMPA1 1 1 1 1 ' 1 1 1 1 1 
C0IMPA2 0 0.3 0.10 0.22 0.22 0.19 0.19 0.20 0.21 

A COIMPA 0 0.14 varies** 0.11 0.08 0.07 0.06 0.12 0.11 

P0SREP1 -1 ' 1 0.25 0.37 -0.85 0.00 -0.49 -0.65 -0.54 

P0SREP2 -1 1 0.27 -0.47 0.00 -0.33 -0.43 -0.33 -0.36 

P0RREP1 -1 1 0.07 -0.11 0.19 - 0.71 -0.12 -0.08 

P0RREP2 -1 1 0.08 0.14 - 0.22 0.09 0.44 0.17 

e! -infinity 1 0.723 0.720 0.602 0.633 0.692 0.709 0.720 
dV/V 0 1 0.002 0.004 0.000 0.000 0.001 0.005 0.003 
eopt! 0 1 0.720 0.716 0.602 0.633 0.690 0.704 0.718 
Rank 1 20 - 1 1 1 1 1 1 

*For combination 6 in which two precipitation gradient factors are used, the 
upper bound of EOLMID parameter are set at 1200 m and 2000 m. 

lower and 

**The values of COIMPA for bands 1 to 7 are 1.00, 0.10, 0.10, 0.10, 0.30, 0.50 and 0.75. 
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To determine whether the GA-based calibrated Campbell River watershed model can 

achieve as high model performance as Micovic's in terms of statistical measures, e! and 

eopt!, the model statistic module of the UBC Watershed Model is run on the G A 

calibration results. The statistical summary of GA-calibrated combination 1 results by 

water year is given in Table 6-7. The summaries of other GA-calibrated combinations of 

Campbell River Watershed with high el and eopt! values are given in the appendix. 

Statistical summaries for combinations with low e! and eopt! values are not provided. 

Table 6-8 is a summary of the model performance statistics from the best calibrated 

Campbell River Watershed as provided by Micovic (1998). Unfortunately, because 

Micovic used a slightly different meteorological input file in.his calibration work, the 

resulting overall el and eopt! values for the whole simulation period cannot be directly 

compared. However, in an effort to provide some equal-comparison basis, G A 

calibration results were re-run in the U B C Watershed Model to provide the el values for 

each water year. The overall e! and eopt! value are found to be 0.722 and 0.720, 

respectively from Micovic's results and 0.720 and 0.716, respectively from GA 

calibration results. It should be noted that Micovic's calibration uses interpolation of the 

meteorological data, using the two AES stations, Elksterc and Wolf Creek, as opposed to 

the gradient algorithm used in the present work. 
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Table 6-7: Statistics of Model Performance for Combination 1 of Campbell River 
Watershed after GA Calibration 

STATISTICS FOR THE OCT 1, 1983 - SEP 30, 1990 WATER YEARS 

Mean Q o b s Mean Q e s t Tot Q o b s Tot Qest Tot Q o b s Coeff.of Coeff.of 
(cms/d) (cms/d) (cms) (cms) -Tot Qest Eff Det 

YEAR (831001-840930) 
YEAR 75.49 76.78 27631.09 28100.67 -469.58 0.68 0.69 
YEAR (841001-850930) 
YEAR 59.65 58.47 21773.00 21340.08 432.92 0.71 0.77 
YEAR (851001-860930) 
YEAR 75.47 68.35 27546.70 24946.18 2600.52 0.8 0.84 
YEAR (861001-870930) 
YEAR 89.59 84.38 32701.29 30799.69 1901.59 0.65 0.66 
YEAR (871001-880930) 
YEAR 70.23 68.35 25705.90 25015.31 690.60 0.72 0.73 
YEAR (881001-890930) 
YEAR 63.57 65.86 23203.41 24039.11 -835.70 0.74 0.76 
YEAR (891001-900930) 
YEAR 65.46 75.5 23893.69 27556.45 -3662.75 0.74 0.77 

WHOLE PERIOD (831001-900930) 
PERIOD 71.36 71.1 182455.20 181797.40 657.81 0.72 0.72 

Table 6-8: Statistics of Model Performance from Best Calibration of Campbell 
River Watershed (Micovic 1998) 

STATISTICS FOR THE OCT 1, 1983 - SEP 30, 1990 WATER YEARS 

Mean Q o b s Mean Q e s t Tot Q o b s Tot Q e s t Tot Q o b s Coeff.of Coeff.of 
cms/d cms/d cms cms -Tot Q e s t Eff Det 

YEAR (831001-840930) 
YEAR 75.5 79.2 27631.09 28998.6 -1367.6 0.6745 0.6812 
YEAR (841001-850930) 
YEAR 59.7 55.6 21773.00 20284.1 1488.9 0.7220 0.8002 
YEAR (851001-860930) 
YEAR 75.5 70.6 27546.70 25779.7 1767.0 0.8216 0.8262 
YEAR (861001-870930) 
YEAR 89.6 92.5 32701.29 33765.3 -1064.0 0.7262 0.7307 
YEAR (871001-880930) 

' YEAR 70.2 69.0 25705.90 25249.3 456.6 0.5603 0.6117 
YEAR (881001-890930) 
YEAR 63.6 64.5 23203.41 23551.8 -348.7 0.6600 0.6602 
YEAR (891001-900930) 
YEAR 65.5 66.9 23893.69 24418.1 -524.4 0.7526 0.7855 

WHOLE PERIOD (831001-900930) 
PERIOD 71.4 71.2 182455.20 182046.9 408.2 0.7226 0.7331 
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Including the Campbell River watershed, Micovic (1998) studied twelve B.C. watersheds 

with different drainage area, climate, topology, soil type, vegetation, geology and 

hydrologic regimes using the UBC Watershed Model. One of his findings is that despite 

the physical difference in watershed characteristics, the watersheds studied revealed there 

was a relatively consistent set of modeling parameter values for all watersheds except the 

precipitation gradients (POGRADL, POGRADM and POGRADU) and fraction of 

impermeable area (COIMPA). Micovic concluded that parameters which affect the time 

distribution of runoff along with groundwater percolation and deep zone share showed 

relatively low variability in the twelve studied watersheds. and may be assumed as 

constant values. Table 6-9 summarizes.the constant values of the modeling parameters 

with low variability suggested by Micovic. For comparison, the calibrated values of 

these parameters from GA search are presented together. From the table, one may see 

that the calibrated modeling parameters values from the G A are usually close to the 

suggested constant parameter values with the exception of POISTK (Snow melt interflow 

component runoff time constant) and POUGTK (Upper groundwater runoff time 

constant). 

Table 6-9: Suggested Constant Values for Modeling Parameters with Low 
Variability vs. GA Calibrated Parameter Values of Campbell River Watershed 

Parameter Description of Modeling 
Parameter 

Lower 
Bound 

Upper 
Bound 

Constant 
Value Unit 

Comb. 
1 A 

Comb. 
1 B 

Comb. 
6 A 

Comb. 
6 B 

POPERC 

Ground water percolation. 
(Maximum capacity of sub
surface storage. Excess 
runoff goes to interflow.) 

10 50 25 mm 21.29 21.29 21.45 21.45 

PODZSH Deep zone share (lower 
fraction) of groundwater 

0 1 0.3 unitless 0.40 0.40 0.91 0.91 

POFRTK Rainfall fast runoff time 
constant ; 0 2 0.6 day 0.64 0.51 0.51 0.51 

POFSTK Snow melt fast runoff time 
constant 

0 2 1 day 1.62 0.87 1.62 1.62 

POIRTK Rainfall interflow component 
runoff time constant 

3 10 3 day 7.23 3.71 3.99 3.99 

POISTK 
Snow melt interflow 
component runoff time 
constant 

3 10 4 day 8.35 9.23 8.44 8.44 

POUGTK Upper groundwater runoff 
time constant 

10 50 20 day 46.55 49.69 36.98 36.98 

PODZTK 
Deep zone share (lower 
groundwater) runoff time 
constant 

100 300 150 day 121.96 121.96 120.39 120.39 
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6.4.2 Illecillewaet River Watershed 

In the G A calibration process of the Illecillewaet River Watershed, it is again assumed 

that one to two precipitation gradient factors are sufficient to depict the orographic effect 

of precipitation. The simulations are based on the meteorological data arrangements 

presented in Table 6-4. The G A model calibrator yields the results in Table 6-10 and 

Table 6-11. Table 6-11 is just a continuation of Table 6-10. For every meteorological 

data combination, only the top two candidate solutions are presented, although the 

population is still set at 20. In combinations 1 to 6, the value of EOLMID and EOLFU are 

again purposely raised to about 2400 m, which is above the entire watershed, so that 

parameters POGRADM and P0GRADU cannot affect the precipitation within the 

watershed in any way. In combinations 7, 8, and 9, because two precipitation gradients 

are to be used, the value of EOLMID is allowed to range freely from 1600 m to 2400 m 

while EOLHI is still fixed to about 2400 m. This means that gradient factor POGRADL is 

effective to adjust the precipitation data assigned to elevation bands between the lowest 

band and the calibrated value of EOLMID. The gradient factor POGRADM is effective 

above EOLMID while P0GRADU remains ineffective. 

In combination 1 where Revelstoke AES station (station 3) is used to represent the 

meteorological conditions in both elevation bands 1 and 2 (mid-elevations of 1000 m and 

1360 m), despite the station's low elevation of 440m, the calibrated model performance 

turned out to be surprisingly high, with an e! of 0.924 and an eopt! of 0.914. In 

combination 2 where Revelstoke AES station (station 3) is used to represent the 

meteorological condition only in elevation band 1, the calibrated model performance 

turned out to be lower than the results in combination 1, with an el of 0.909 and an eopt! 

of 0.908. The calibration result from combination 2 is not originally anticipated because 

combination 2 is closer than combination 1 in following the principle of assigning 

meteorological data to elevation bands based on their elevation proximity. It begins to 

appear that the meteorological data from Roger's Pass (station 2) may not be 

representative of the areas with similar altitudes. This presumption is verified in 

combination 4, which using data from Roger's Pass alone, yields extremely poor model 
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performance of 0.688 for el and 0.673 for eoptl, respectively. To reconfirm the finding, 

combination 4 is re-calibrated (now called combination 8) with the aide of two 

precipitation gradients, but once again poor model performance is generated. It is 

concluded that meteorological data from Roger's Pass are problematic. 

Table 6-10: GA Calibrated Model Parameter Values for Various Combinations of 
Illecillewaet River Watershed 

Parameter Lower 
Bound 

Upper 
Bound 

Comb. 
1 A 

Comb. 
1 B 

Comb. 
2 A 

Comb. 
2 B 

Comb. 
3 A 

Comb. 
3B 

Comb. 
4 A 

Comb. 
4B 

Comb. 
5 A 

Comb. 
5 B 

Comb. 
6 A 

Comb. 
6B 

POGRADL 0 20 8.63 8.63 8.71 8.71 5.10 8.08 1.02 1.02 8.63 6.12 11.77 11.77 
POGRADM 0 20 - - - - - - - - - - - • -

POGRADU 0 20 - - - - - - - - - - - -

EOLMID 2400 2401 2401 2401 2401 2401 2401 2401 2400 2401 2401 2401 2401 2401 
EOLHI 2401 2402 2401 2401 2401 2401 2401 2401 2402 2402 2401 2401 2401 2401 

POAGEN 80 120 100.86 100.86 110.90 110.90 102.59 113.88 104.47 104.47 117.18 117.18 95.22 95.06 
POPERC 10 50 38.39 38.39 18.94 18.00 40.75 40.75 33.37 33.37 37.77 32.59 11.88 21.29 
PODZSH 0 1 0.70 0.95 0.76 0.64 0.78 0.78 0.25 0.18 0.64 0.64 0.58 0.64 
VOFLAX 1700 1900 1779 1779 1778 1767 1850 1848 1817 1710 1780 1727 1764 1865 
VOFLAS 20 60 51.84 51.84 60.00 52.47 23.61 23.61 47.77 47.77 34.59 59.69 57.02 50.75 
POFRTK 0 2 1.14 1.14 1.39 1.39 1.67 1.67' 1.65 1.52 1.46 1.91 0.59 0.09 
POFSTK 0 2 0.78 0.78 0.54 0.79 1.48 1.41 1.37 1.37 0.79 0.79 0.99 0.93 
POGLTK 0 2 1.33 1.33 0.21 0.21 1.40 0.97 1.47 0.46 0.76 0.35 0.01 
POIRTK 3 10 6.84 6.84 7.50 3.99 4.10 3.33 3.91 3.91 6.90 7.72 6.57 6.57 
POISTK 3 10 4.10 4.10 7.83 8.05 6.76 6.76 5.00 5.00 7.28 9.04 5.11 3.33 

POUGTK 10 50 20.67 20.67 17.37 11.10 43.26 30.71 13.77 33.84 21.14 23.65 36.98 39.80 
PODZTK 100 300 109.41 109.41 184.71 184.71 269.41 272.55 224.71 224.71 134.51 135.29 294.51 295.29 
COIMPA 0 0.3 0.27 0.27 0.05 0.05 0.04 0.03 0.06 0.07 0.12 0.27 0.12 0.08 

A COIMPA . 0 0.1 0.09 0.09 0.10 0.07 0.09 0.10 0.08 0.08 0.09 0.07 0.06 0.09 
P0SREP1 . -1 1 -0.26 -0.26 -0.28 -0.28 - - - -0.27 -0.26 -0.33 -0.16 
P0SREP2 -1 1 0.21 0.21 -0.80 0.33 - - 0.15 0.15 - - 0.01 0.14 
P0SREP3 -1 1 -0.10 -0.10 0.97 0.97 -0.15 -0.47 - - - - - -

P0RREP1 -1 1 -0.98 -0.98 0.30 0.06 - - - i " 0.05 0.02 -0.57 -0.76 
P0RREP2 -1 1 -0.08 -0.08 -0.08 -0.58 - - 0.22 0.22 - - 0.83 0.33 
P0RREP3 -T 1 0.91 0.91 0.53 -0.98 0.85 0.85 - - - - - -

e! - infinity 1 0.924 0.926 0.909 0.885 0.861 0.855 0.688 0.681 0.919 0.918 0.891 0.854 
dV/V 0 1 0.011 0.013 0.001 0.002 0.004 0.002 0.015 0.012 0.002 0.027 0.010 0.001 
eopt! 0 1 0.914 0.912 0.908 0.883 0.857 0.853 0.673 0.669 0.917 0.891 0.881 0.854 
Rank 1 20 1 2 1 2 1 2 1 2 1 2 1 2 
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Table 6-11 GA Calibrated Model Parameter Values for Various Combinations of 
Illecillewaet River Watershed (Continuation of Table 6-10) 

Parameter Lower 
Bound 

Upper 
Bound 

Comb. 
7 A 

Comb. 
7 B 

Comb. 
8 A 

Comb. 
8 B 

Comb. 
9 A 

Comb. 
9 B 

POGRADL 0 20 6.67 6.67 0.86 0.86 8.63 8.63 
POGRADM 0 20 13.80 13.80 12.39 12.39 2.98 13.02 
POGRADU 0 20 - - - - -

EOLMID 1600 2400 2011 2011 2372 1970 2344 1942 
EOLHI 2401 ,2402 2401 2401 2402 2401 2401 2401 

POAGEN 80 120 100.08 102.59 104.47 104.47 102.12 112.16 
POPERC 10 50 31.96 31.96 43.73 48.43 47.80 47.80 
PODZSH 0 . 1 0.59 0.53 0.31 0.50 0.70 0.70 
VOFLAX 1700 1900 1728 1829 1847 1748 1777 1777 
VOFLAS 20 60 23.45 23.45 23.92 47.77 54.04 33.96 
POFRTK 0 2 1.01 1.51 1.62 1.57 1.96 1.96 
POFSTK 0 2 1.73 1.23 0.87 0.80 0.78 0.78 
POGLTK 0 2 0.42 1.43 0.34 0.46 0.01 0.01 
POIRTK 3 10 4.26 4.21 4.57 4.57 7.45 7.39 
POISTK 3 10 3.25 3.25 5.06 5.06 7.17 7.17 

POUGTK 10 50 33.22 33.22 34.47 34.47 21.14 21.14 
PODZTK 100 300 219.22 169.02 207.45 257.65 109.41 110.20 
COIMPA 0 0.3 0.05 0.05 0.06 0.06 0.14 0.12 

A COIMPA 0 0.1 0.08 0.09 0.09 0.08 0.09 0.09 
P0SREP1 -1 1 0.00 0.00 - -0.28 -0.28 
P0SREP2 -1 1 - - 0.24 0.21 - -

P0SREP3 -1 1 -0.34 -0.34 - - 0.00 0.00 
PORREP1 -1 1 - - - - 0.05 0.04 
P0RREP2 -1 1 - - 0.11 0.10 - -

P0RREP3 -1 1 0.79 0.79 0.00 0.00 0.00 0.00 
e! - infinity 1 0.870 0.855 0.698 0.689 0.917 0.915 

dV/V 0 ' 1 0.002 0.017 0.005 0.009 0.002 0.006 
eopt! 0 1 0.869 0.837 0.693 0.680 0.914 0.910 
Rank 1 20 1 2 1 2 1 2 

In combination 3, Revelstoke AES station (station 3) alone is used to represent the 

meteorological condition of the entire watershed. Although this arrangement is contrary 

to the principle of assigning meteorological data to elevation bands based on their 

elevation proximity, the satisfactory model performance of 0.861 for el and 0.857 for 

eopt! are only slightly lower than results of combinations 1 and 2, yet much better than 

the results of combination 4. 

In combination 5, Fidelity Mountain AES station (station 1) alone is used to represent the 

meteorological condition of the entire watershed. Although bands 1, 2, and 3 are 
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considered quite far below the station, the model performance achieved is as high as 

0.919 for el and 0.917 for eopt! after calibration. This implies that a good set of 

meteorological data, with reasonable fine-tuning of the parameters such as precipitation 

gradient factors or AES adjustment factors for precipitation (PORREP and POSREP), can 

still yield high model accuracy without strictly following the principle of assigning 

meteorological data to elevation bands based on their elevation proximity. This finding is 

useful because in remote watersheds where no meteorological station is available for 

modeling purposes, the modeler can "borrow" meteorological data from an adjacent 

watershed (relative speaking) with a meteorological station. 

Of all 9 meteorological data combinations listed in Table 6-4, combination 6 is the 

closest in following the principle of assigning meteorological data to elevation bands 

based on their elevation proximity. However the resulting model performance of 0.891 

for el and 0.881 for eopt! is not the highest among the nine combinations arranged. 

Combination 6's low model performance is attributed to the suspected problems with the 

meteorological data from Roger's Pass station. 

Combinations 7 and 8 are almost identical to combinations 3 and 4, except that two 

precipitation gradients are used in calibration rather than one, and this results in slightly 

higher model performance. The better results are anticipated because one additional 

precipitation gradient means one additional modeling parameter to calibrate and more 

flexibility in a larger search space. However, the above statement is only true if the extra 

parameter gives a better description of the physical distribution of precipitation. 

Similar to Campbell River model, Micovic (1998) also calibrated Illecillewaet River 

through a trial-and-error procedure. The resulting parameter values from the best 

calibrated Illecillewaet River (in terms of eopt!) are given in Table 6-12 together with the 

parameter values from the GA-based model calibration. 
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A statistic summary of the G A calibration results for combination 1A by water year is 

given in Table 6-13. The corresponding model performance measured in e! and eopt! for 

the whole simulation period are 0.924 and 0.914. 

Table 6-14 is a statistic summary of the model performance for the best calibrated 

Illecillewaet River watershed provided by Micovic (1998). The el and eopt! values 

obtained for the whole simulation period are 0.909 and 0.875. The statistical summary of 

G A results for some other combinations of Illecillewaet River Watershed with high el 

and eopt! values are given in the appendix. The statistical summaries of G A results for 

combinations with low el and eopt! values are not provided. It should be noted that 

Micovic's calibration uses interpolation of the meteorological data, using just two of the 

three stations, Revelstoke and Fidelity Mountain. 

To reconfirm Micovic's finding of low variability in eight modeling parameters of time 

distribution constants of runoff, groundwater percolation and deep zone share, the G A 

calibrated parameter values are compared with the suggested constant parameter values. 

Table 6-15 summarizes the calibrated values of modeling parameters against the 

suggested constant values from Micovic. Because Micovic's best calibrated Illecillewaet 

River model achieves high el value each water year, for fairness, only G A calibrated 

results from combinations with el values > 0.90 are considered (combinations 1A, 2A, 

5A, and 9A are the only ones > 0.90). 
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Table 6-12: Resulting Parameter Values from Micovic's Best Model Calibration of 
Illecillewaet River Watershed (Micovic 1998) 

Parameter Lower 
Bound 

Upper 
Bound 

Micovic's 
calibrated 

value 

Comb. 
1 A 

Comb. 
2 A 

Comb. 
3 A 

Comb. 
4 A 

Comb. 
5 A 

Comb. 
6 A 

Comb. 
7 A 

Comb. 
8 A 

Comb. 
9 A 

POGRADL 0 20 4 8.63 8.71 5.10 1.02 8.63 11.77 6.67 0.86 8.63 
POGRADM 0 20 2 - - - - - - 13.80 12.39 2.98 
POGRADU 0 20 0 - - - - - - • - - -

EOLMID varies varies 1009 2401 2401 2401 2400 2401 2401 2011 2372 2344 
EOLHI 2401 2402 2481 2401 2401 2401 2402 2401 2401 2401 2402 2401 

POAGEN 80 120 100 100.86 110.90 102.59 104.47 117.18 95.22 100.08 104.47 102.12 
POPERC 10 50 31 38.39 18.94 40.75 33.37 37.77 11.88 31.96 43.73 47.80 
PODZSH 0 1 0.25 0.70 0.76 0.78 0.25 0.64 0.58 0.59 0.31 0.70 
VOFLAX 1700 1900 1800 1779 1778 1850 1817 1780 1764 1728 1847 1777 
VOFLAS 20 60 36 51.84 60.00 23.61 47.77 34.59 57.02 23.45 23.92 54.04 
POFRTK 0 2 0.78 1.14 1.39 1.67 1.65 1.46 0.59 1.01 1.62 1.96 
POFSTK 0 2 1.0 0.78 0.54 1.48 1.37 0.79 0.99 1.73 0.87 0.78 
POGLTK 0 2 1.7 1.33 0.21 1.40 1.47 0.76 0.42 0.34 0.01 
POIRTK 3 10 2 6.84 7.50 4.10 3.91 6.90 6.57 4.26 4.57 7.45 
POISTK 3 10 3 4.10 7.83 6.76 5.00 7.28 5.11 3.25 5.06 7.17 

POUGTK 10 50 17 20.67 17.37 43.26 13.77 21.14 36.98 33.22 34.47 21.14 
PODZTK 100 300 168 109.41 184.71 269.41 224.71 134.51 294.51 219.22 207.45 109.41 
COIMPA 0 0.3 0.1 0.27 0.05 0.04 0.06 0.12 0.12 0.05 0.06 0.14 

A COIMPA 0 0.1 varies* 0.09 0.10 0.09 0.08 0.09 0.06 0.08 0.09 0.09 
POSREP1 -1 1 -0.22 -0.26 -0.28 - - • -0.27 -0.33 0.00 - -0.28 
P0SREP2 -1 1 -0.10 0.21 -0.80 - 0.15 - 0.01 - 0.24 -

P0SREP3 -1 1 -0.11 -0.10 0.97 -0.15 - . -0.34 - 0.00 
P0RREP1 -1 1 -0.14 -0.98 0.30 - - 0.05 -0.57 - - 0.05 
P0RREP2 -1 1 -0.17 -0.08 -0.08 - 0.22 0.83 - 0.11 -

P0RREP3 -1 1 -0.11 0.91 0.53 0.85 - . . 0.79 0.00 0.00 
e! - infinity 1 0.909 0.924 0.909 0.861 0.688 0.919 0.891 0.870 0.698 0.917 

dV/V 0 1 0.034 0.011 0.001 0.004 0.015 0.002 0.010 0.002 0.005 0.002 
eopt! 0 1 0.875 0.914 0.908 0.857 0.673 0.917 0.881 0.869 0.693 0.914 
Rank 1 20 - 1 1 1 1 1 1 1 1 1 

*The values of COIMPA for bands 1 to 8 are 0.10, 0.10, 0.10, 0.10, 0.10, 0.40, 0.45, and 
0.50. 
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Table 6-13: Statistics of Model Performance for Combination 1 of Illecillewaet 
River Watershed after G A Calibration 

STATISTICS FOR THE OCT 1, 1981 - SEP 30,1989 WATER YEARS 

Mean Q o b s Mean Q e s t Jot Q o b s Tot Q e s t Tot Q o b s Coeff.of Coeff.of 
(cms/d) (cms/d) (cms/d) (cms/d) -Tot Q e s , Eff Det 

YEAR (811001-820930) 
YEAR 56.95 56.11 20787.69 20479.49 308.20 0.94 0.95 
YEAR (821001-830930) 
YEAR 52.28 48.89 19083.01 17846.49 1236.52 0.84 0.85 
YEAR (831001-840930) 
YEAR 52.94 48.89 19376.00 17895.16 1480.85 0.93 0.93 
YEAR (841001-850930) 
YEAR 49.44 50.56 18045.53 18453.25 -407.72 0.94 0.95 
YEAR (851001-860930) 
YEAR 54.26 53.09 19804.49 19379.42 425.07 0.94 0.94 
YEAR (861001-870930) 
YEAR 51.87 50.51 18934.20 18437.21 496.98 0.94 0.95 
YEAR (871001-880930) 
YEAR 49.36 52.05 18065.39 19052.11 -986.72 0.94 0.96 
YEAR (881001-890930) 
YEAR 47.28 50.07 17255.66 18274.75 -1019.09 0.90 0.94 

WHOLE PERIOD (811001-890930) 
PERIOD 51.8 51.27 151352.00 149817.90 1534.09 0.92 0.93 

To reconfirm Micovic's finding of low variability in eight modeling parameters of time 

distribution constants of runoff, groundwater percolation and deep zone share, the G A 

calibrated parameter values are compared with the suggested constant parameter values. 

Table 6-15 summarizes the calibrated values of modeling parameters against the 

suggested constant values from Micovic. Because Micovic's best calibrated Illecillewaet 

River model achieves high el value each water year, for fairness, only G A calibrated 

results from combinations with el values > 0.90 are considered (combinations 1A, 2A, 

5A, and 9A are the only ones > 0.90). 
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Table 6-14: Statistics of Model Performance from Best Calibration of Illecillewaet 
River Watershed (Micovic 1998) 

STATISTICS FOR THE OCT 1 , 1981 - SEP 30 , 1989 WATER YEARS 

Mean Q o b s Mean Q e s , Tot Q o b s Tot Q e s t Tot Q o b s Coeff.of Coeff.of 
(cms/d) (cms/d) (cms/d). (cms/d) -Tot Q e s t Eff Det 

YEAR 
YEAR 

(811001-820930) 
57.0 53.6 20787.69 19579.3 1208.39 0.9124 0.9227 

YEAR 
YEAR 

(821001-830930) 
52.3 49.2 19083.01 17960.6 1122.41 0.9200 0.9228 

YEAR 
YEAR 

(831001-840930) 
52.9 45.3 19376.00 16561.5 2814.5 0.8948 0.9131 

YEAR 
YEAR 

(841001-850930) 
49.4 47.9 18045.53 17490.7 554.83 0.9429 0.9554 

YEAR 
YEAR 

(851001-860930) 
54.3 49.1 19804.49 17924.7 1879.79 0.9172 0.9246 

YEAR 
YEAR 

(861001-870930) 
51.9 52.2 18934.20 19045.2 -111 0.9125 0.9173 

YEAR 
YEAR 

(871001-880930) 
49.4 52.6 18065.39 19255.2 -1189.81 0.8940 0.9089 

YEAR 
YEAR 

(881001-890930) 
47.3 50.6 17255.66 18451.2 -1195.54 0.9003 0.9354 

WHOLE 
PERIOD 

PERIOD (811001-890930) 
51.8 50.0 151352.00 149817.90 5083.57 0.9087 0.9147 

Table 6-15: Suggested Constant Values for Modeling Parameters with Low 

Parameter Lower 
Bound 

Upper 
Bound 

Suggested 
Constant 

Value 

Micovic's 
Calibrated 

Value 
Comb. 1 A Comb. 2 A Comb. 5 A Comb. 9 A 

POPERC 10 50 25 31 38.39 18.94 37.77 47.80 
PODZSH , 0 1 0.3 0.25 0.70 0.76 0.64 0.70 

P0FRTK 0 2 0.6 0.78 1.14 1.39 1.46 1.96 
P0FSTK 0 2 1 1 0.78 0.54 0.79 0.78 
P0IRTK 3 10 3 2 6.84 7.50 6.90 7.45 

POISTK 3 10 4 3 4.10 7.83 7.28 7.17 
POUGTK 10 50 20 17 20.67 17.37 ' 21.14 21.14 

P0DZTK 100 300 150 168 109.41 184.71 134.51 109.41 

Unlike the similarity observed between the suggested constant value and the G A 

calibrated parameter values in the Campbell River watershed, the results in Illecillewaet 

River Watershed are relatively different from the suggested constant parameter values. 

The parameters showing some difference in values are POPERC, PODZSH, P0FRTK, 

POISTK and P0IRTK although POISTK and P0IRTK are low sensitivity parameters 

89 



which have little influence on the overall model performance. The largest difference is in 

PODZSH. No reasonable explanation can be offered. It is possible that Illecillewaet 

River is one of the very few watersheds which exhibit high variability in parameters of 

time distribution constants of runoff, groundwater percolation and deep zone share, while 

the majority of 12 studied watersheds exhibit low variability. 

6.5 Evaluation of Search Efficiency for Various Genetic Algorithms Techniques 

In Chapter 4, types of major genetic operators and their alternative forms were discussed. 

The effect of these operators in enhancing the G A search efficiency and facilitating the 

calibration process will be demonstrated in this section. Although six operators were 

introduced in Chapter 4, only three operators: crossover, elitism and niching will be 

demonstrated. 

6.5.1 Comparison of Crossover Operators 

In Figure 4-1, it was shown that the uniform crossover operator tends to outperform the 

single crossover operator in a simple single-objective optimization problem. To 

demonstrate how the type of crossover operator chosen can seriously affect the G A 

search efficiency in model calibration, combination 1 of the Campbell River watershed is 

used as a test. As shown in Figure 6-1, because the initial string population and all the 

genetic operators used for the calibration of Campbell River watershed are identical, 

except for the type of crossover operator, the initial eopt! values obtained were the same 

for the first generation. As more generations of search elapse, the eopt! values begin to 

depart from each other significantly. The calibration run with the uniform crossover 

operator is clearly the winner with an eopt! value of 0.716 at the end of 20-generation 

search while the run with the single-point crossover operator only achieves an eopt! value 

of 0.603 after 20 generations and remains unchanged despite that an additional five-

generation search was carried out in the hope that the search efficiency would soon 

improve. Based on this observation, one may therefore conclude that the uniform 
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crossover operator should be used by the automatic G A calibrator to improve the G A 

search efficiency in the calibration process of a U B C Watershed Model. Note that in the 

two calibration runs, both elitism and niching operators were implicitly used. 

Figure 6-1: Comparison of GA Search Efficiency using Single-Point and Uniform 
Crossover 
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6.5.2 With and Without Niching Operator 

The advantage of using the niching operator in genetic algorithms has been discussed in 

section 4.7.7. To demonstrate how the niching operator can be used to improve the G A 

search efficiency in the calibration process, combination 5 of the Illecillewaet River 

watershed is used. In the non-niching option, the niching operator is temporarily disabled 

in the G A search. The two slightly differently coded G A calibrators were then used to 

commence the search to find the best set of parameters with the maximal model 

performance, which is selected to be eopt!. As shown in Figure 6-2, the search 

performance seems to be identical until the 10 th generation when the non-niching option 

begins to take the lead. However, the niching option quickly catches up and reaches an 

eopt! of 0.917 at the end of the 20 generation search while the non-niching option only 

reaches an eopt! of 0.909, a difference of about 1%. Although an improvement of 1% 
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appears to be negligible superficially, this improvement is actually quite difficult to 

achieve if the trial-and-error calibration procedure is used. Thus, the niching operator 

will be used by the automatic G A calibrator to improve the GA search efficiency in the 

calibration process of the UBC Watershed Model. 

Figure 6-2: Comparison of GA Search Efficiency with and without Niching 

Comparison of GA Search Efficiency With and Without Niching 
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6.5.3 With and Without Elitism Operator 

The elitism operator, as discussed in section 4.7.5, is used to preserve the solutions that 

achieve high fitness. The intent of using the elitism operator is to prevent genetic 

operations from accidentally destroying the best solution found so far. When the elitism 

operator is activated in the G A calibrator, it automatically preserves the best candidate 

solution of every generation. Only one candidate solution is allowed in this G A 

calibrator because De Jong (1975) reportedly found preserving more candidate solutions 

decreases the search performance of multi-modal objective functions. 

Combination 1 of the Campbell River watershed is again used to exemplify the role of 

elitism in improving the G A search efficiency. The choice of using or not using the 

niching operator in conjunction with the elitism operator has been noted in this study to 
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have a profound impact, so much so that elitism may actually slow down the GA search 
process. It is warranted to discuss the combined effect of the niching and elitism 
operators interactively. 

To investigate, assume all other genetic operators remain unchanged except the niching 
and elitism operators. Therefore, when niching is used without elitism in GA calibration, 
the objective function of the GA search is simply a sharing function, which helps to break 
the clustering of candidate solutions rather than an objective function capable of 
measuring model performance in terms of el or eopt!. As a result, the sharing function 
will not be able to steer the GA search towards finding higher e! and eopt!. This 
understanding is confirmed in the GA calibration of Campbell River watershed as shown 
in Figure 6-3 when the resulting GA search for the combinatorial use of niching and non-
elitism exhibits little or no steady trend of improved performance. On the other hand, if 
niching is not used, then without using elitism, the GA search could still gradually 
improve model performance and achieve high e! and eopt! values (as shown in Figure 
6-3). 

Figure 6-3 compares the GA search efficiency for the following elitism and niching 
usage: 

• without elitism, with niching 
• without elitism, without niching 
• with elitism, with niching 
• with elitism, without niching 

Based on the empirical observation from Figure 6-3, one may conclude that if niching is 
used, then elitism should always be enabled in the GA calibration, otherwise the search 
efficiency will be relatively low. 
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Figure 6-3: Comparison of GA Search Efficiency with and without Elitism and 
Niching 
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* Uniform crossover is used in all four G A searches. 

6.5.4 Summary of Default Genetic Algorithm Techniques and Parameters used for 

Model Calibration 

Based on these findings on search efficiency, the following default genetic operator 

options were programmed in the GA model calibrator. It is believed that this 

combination of genetic operators will yield the best G A search efficiency and ensure that 

a global-optimal or at least a near global-optimal solution is found. However, the users 

still have the flexibility to change the default whenever necessary. The default genetic 

operator options are: 

• Use random selection rather than tournament selection in reproduction, 

• Use uniform type of crossover operator, 

• Use elitism to preserve the best solution of each generation of G A search; 

• Use niching to prevent clustering of candidate solutions. 
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6.5.5 Calibration Time 

For consistency, all the G A calibration runs for the Campbell River and Illecillewaet 

River Watersheds use a population of 20 strings and an evolution of 20 generations 

unless specified otherwise. This requires the GA-based model calibrator to call the U B C 

Watershed Model 400 times in every run. On an Intel Celeron 533MHz M M X system, 

each calibration takes about 45 to 55 minutes to complete. 

6.6 Comparison of Three Statistical Measures used as the Objective-Functions in 

GA Model Calibration 

Three commonly used model performance measures have already been discussed earlier 

in Chapter 2. They will be tested in this section to see if they can be effectively used as 

objective functions in minimizing the differences between the observed and simulated 

data and maximizing the model performance in the calibration of the U B C Watershed 

Model. These three objective statistical measures are: 

1. Nash-Sutcliffe Coefficient of Efficiency 

n 

^^Qobs Qsim^) /=1 residual var iance 
= 1- (Equation 6-1) n total variance 

^(Qobs-Qobs )2 

i mean 

2. Least Squares Difference Objective Function 

(=1 V-obs 

least 
squares 

= 1- (Equation 2-6) 
n 
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3. Least Absolute Difference Objective Function 

n G,/„, 
2 abs(l - jf—) 

^absolute
 = 1 — (Equation 2-9) 

difference fl 

The testing procedures are follows: 

• Allow a total string population of 20 and an evolution of 20 generations. The number 
of the population and the evolution are chosen arbitrarily though they are a 
compromise between long GA computational search time and a thorough search of 
the multi-dimensional solution space. Run the genetic algorithms model calibrator 
for the Illecillewaet River Watershed three times: 

• For the first run, use the Nash-Sutcliffe coefficient of efficiency alone as the 
objective function to indicate model performance and guide the GA search. 
However, upon the completion of a 20 generation-search, the surviving candidate 
solutions (strings) of the 20th generation will have their corresponding least 
squares difference and least absolute difference objective function values 
implicitly calculated. 

• For the second run, use the least squares difference objective alone as the 
objective function to indicate model performance and guide the GA search. Upon 
the completion of a 20 generation-search, the surviving candidate solutions will 
have their corresponding Nash-Sutcliffe and least absolute difference objective 
function values implicitly calculated. 

• For the third run, use the least absolute difference objective alone as the objective 
function to indicate model performance and guide the GA search. Upon the 
completion of a 20 generation-search, the surviving candidate solutions will have 
their corresponding Nash-Sutcliffe and least squares difference objective function 
values implicitly calculated. 
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• Upon the completion of all three GA runs, graphically plot the corresponding 

streamflow volume discrepancy, dV/V against the three model performance measures 

(objective functions) respectively. The three statistical measures are then ranked 

based on how consistently the streamflow volume discrepancy decreases with 

increasing objective function values. 

The streamflow volume discrepancy, dV/V used is non-dimensionalized with the total 

observed streamflow volume and is defined as: 

dV 
V 

abs\ V, total 
observed 

V, total 
estimated 

V. 
= abs\ 

total 
observed 

1 — 
<=1 

1=1 

(Equation 6-2) 

where Vlolal is the total observed streamflow volume integrated over the duration of the 
observed 

i 
model simulation period, 

Vwtai ^ s t n e t o t a l estimated streamflow volume integrated over the duration of the 
estimated < 

same model simulation period. 

Clearly, if one objective function is to be named a good model performance indicator in 

calibration, then the higher the value it is, the smaller the streamflow volume discrepancy 

(dV/V) should be. The inverse relationship is essential for an objective statistical measure 

to qualify as a good model performance indicator. Thus, the test devised for comparison 

in this section can fairly determine which objective statistical measure is a better and 

more consistent indicator of a well calibrated model, and allows the G A user to clearly 

see the strength or limitations of the three objective statistical measures for model 

performance. 
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For the first G A run, using the Nash-Sutcliffe as the objective function for GA search and 

calculating the corresponding least squares difference and least absolute difference 

objective functions, the relationships between dV/V and the three objective functions are 

graphically represented in Figure 6-4, Figure 6-5, and Figure 6-6. 

Figure 6-4: Discrepancy of Streamflow Volume vs. Nash-Sutcliffe Coefficient of 
Efficiency (Run 1) 

I 
co > . 
<D CO 

~ 5 
m <o 8 2 
cu o 
c .2 
O TJ 
'</> O 

II 
.5 o 
Q > 

0.5 

Volume Discrepancy vs. Nash-Sutcliffe Coefficient of Efficiency 
(results of 20 strings after 20 generations for lllec. Watershed model) 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00 

• 

* 
• • 

v = -o.; 698x + 0.778 
• ^^^^ * 

R2 = 0.5746 • 

* 
0.6 0.7 0.8 

Nash-Sutcliffe Coefficient of Efficiency, e! 

0.9 

Figure 6-5: Discrepancy of Streamflow Volume vs. Least Squares Difference 
Objective Function (Run 1) 
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Figure 6-6: Discrepancy of Streamflow Volume vs. Least Absolute Difference 
Objective Function (Run 1) 
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As anticipated, the trend observed from Figure 6-4, Figure 6-5 and Figure 6-6 is that the 

discrepancy in streamflow volume generally decreases as the values of the three objective 

functions increase. In particular, the desirable inverse relationship between the 

discrepancy in streamflow volume and the objective functions for calibration is the 

strongest when the Nash-Sutcliffe coefficient of efficiency is used, although some 

inconsistency still remains. Ideally, a perfect model performance indicator in GA-based 

model calibration is an objective function in which the discrepancy in streamflow volume 

would always decrease as the value of chosen objective function increases. 

In addition, as shown in Figure 6-4 the values of the Nash-Sutcliffe coefficient on X-axis 

is quite high because it is the objective function used to guide G A search. On the 

contrary, the ranges of the least squares and least absolute difference objective functions 

on the X-axis in Figures 5.2 and 5.3 tend to be much lower because they are not the 

guiding objective function in the G A search. Because the niching operator is used, the 

Nash-Sutcliffe coefficient values have a wide range on X-axis. If the niching operator 

were not used, the Nash-Sutcliffe coefficient values of all candidate solution would 

cluster tightly together near x= 0.93. 
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For the second G A run, the least squares difference is used as the objective function to 

guide the GA search and the corresponding Nash-Sutcliffe coefficient of efficiency and 

least absolute difference objective function are then implicitly calculated. The 

relationships between the dimensionless volume discrepancy and the three objective 

functions are graphically represented in Figure 6-7, Figure 6-8, and Figure 6-9. 

From Figure 6-7 and Figure 6-9, one can again observe that dV/V generally decreases as 

the values of the two objective functions increases. The trend is particularly strong 

between dVN and the Nash-Sutcliffe coefficient. However, in Figure 6-8, no apparent 

trend can be determined between dVN and the least squares difference objective function 

despite the fact that the least squares difference objective function is the chosen objective 

function to guide the G A search. Thus under this circumstance, the least squares 

difference objective function fails to be a good indicator of the model performance in the 

calibration process while the Nash-Sutcliffe coefficient and the least absolute difference 

objective function behave reasonably well as good performance indicators. However, 

similar to the results of run 1, it appears in run 2 that the Nash-Sutcliffe coefficient 

behaves most consistently with a decreasing trend of dV/V, as desired. 

Figure 6-7: Discrepancy of Streamflow Volume vs. Nash-Sutcliffe Coefficient of 
Efficiency (Run 2) 
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Figure 6-8: Discrepancy of Streamflow Volume vs. Least Squares Difference 
Objective Function (Run 2) 
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Figure 6-9: Discrepancy of Streamflow Volume vs. Least Absolute Difference 
Objective Function (Run 2) 
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For the third GA run, using least absolute difference as the objective function to guide 

G A search and then calculating the corresponding Nash-Sutcliffe coefficient of efficiency 

and least squares difference objective function, the relationships between the 
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dimensionless volume discrepancy and the three objective functions are then graphically 

represented in Figure 6-10, Figure 6-11, and Figure 6-12. 

Figure 6-10: Discrepancy of Streamflow Volume vs. Nash-Sutcliffe Coefficient of 
Efficiency (Run 3) 
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Figure 6-11: Discrepancy of Streamflow Volume vs. Least Squares Difference 
Objective Function (Run 3) 
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(results of 20 strings after 20 generations for lllec. Watershed model) 
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Figure 6-12: Discrepancy of Streamflow Volume vs. Least Absolute Difference 
Objective Function (Run 3) 
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From Figure 6-10, as anticipated, one can again observe that dV/V generally decreases as 

the value of Nash-Sutcliffe coefficient increases. The inverse trend remains reasonably 

strong. However, against what is anticipated, Figure 6-11 and Figure 6-12 show that 

dV/V values do not decrease inversely as the values of least squares and least absolute 

difference objective functions increase, despite the fact that the least absolute difference 

objective function is the chosen objective function to guide the G A search. Thus, under 

this circumstance, both least squares and least absolute difference objective functions fail 

to behave as good model performance indicators in minimizing streamflow volume 

discrepancy. However, the Nash-Sutcliffe coefficient, unlike the other two objective 

functions, continues to behave reasonably well as a model performance indicator, so that 

dV/V decreases consistently as the Nash-Sutcliffe coefficient increases. 

Based on the observation of the results from three GA runs, one may conclude that of the 

three objective statistical measure discussed in the thesis, the Nash-Sutcliffe coefficient 

behaves most consistently with a strong decreasing trend of dV/V- as the value of the 

Nash-Sutcliffe coefficient increases. However from Figure 6-4, Figure 6-7 and Figure 

6-10, one can clearly observe that the value of dV/V does not always decrease with an 

increasing Nash-Sutcliffe coefficient. To overcome this inherent limitation of the Nash-
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Sutcliffe coefficient, a new statistical measure based on a combination of the Nash-

Sutcliffe coefficient and dV/V is therefore used. 

The modified statistical measure, which is briefly mentioned in Chapter 2 (Equation 2-3), 

places equal weights on both the Nash-Sutcliffe coefficient of efficiency and the 

agreement in total streamflow volume. The resulting combinatory statistical measure is 

already used as a modification of the Nash-Sutcliffe coefficient in the existing U B C 

Watershed Model calibration, and can be written as: 

eopt\= e\-abs i— 
5(0*,) 

= e\-abs\ 
KV J 

(Equation 6-3) 

It emphasizes that for a model to be considered to be well calibrated, the observed and 

simulated streamflow data should concurrently achieve a high Nash-Sutcliffe coefficient 

of efficiency and small discrepancy in streamflow volume. 

j 
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7.0 CONCLUSIONS 

The usefulness of a watershed model or any model in general depends on how well it is 

calibrated, namely, how closely it actually predicts the physical behavior of the modeled 

system. Under the existing U B C Watershed Model structure, an automatic random 

search capability is provided in the calibration module. The calibration module limits the 

number of simultaneously calibrated modeling parameters to groups of about three to six 

at a time. The user then proceeds through further groups of parameters, moving from the 

more sensitive parameters to the less sensitive ones, to refine the parameter values. 

Therefore, in this thesis, the aim was to develop a calibration method based on the 

genetic algorithm approach. This approach would permit the simultaneous evaluation of 

all modeling parameters, which could be very useful because of the non-linear 

interactions between the parameters. Although the best solution found in the G A search 

cannot be analytically proven as the optimal solution, by designing the GAs to maintain 

sufficient diversity, the search should adequately cover the entire solution space. 

Therefore, there should be no other superior results within the permissible variable 

ranges. 

This thesis describes the use of genetic algorithms in the development of a non-' 

conventional optimization and search technique, which is used to develop an automatic 

model calibrator for the U B C Watershed Model. 

The calibrator allows all modeling parameters to be simultaneously evaluated. Using this 

G A calibrator, two well-studied watersheds in British Columbia: Campbell River and 

Illecillewaet River watersheds were successfully calibrated. The best model performance 

of the G A calibrated Campbell River and Illecillewaet River watersheds achieves eopt! 

values of 0.718 and 0.914, respectively for the entire duration of the simulated water 

years whilst Micovic (1998) reported best eopt! values of 0.720 and 0.875, obtained using 

the existing U B C random search procedure. This may appear to be only a marginal 
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improvement, but the main difference is the reduced time and effort required to achieve a 

reasonable calibration. 

Because the types of genetic operators jointly used in a G A search can affect the search 

efficiency, several computational experiments were conducted to investigate the impact 

crossover, elitism, and niching operators. The experimental results in the GA calibration 

of the Campbell River and Illecillewaet River watersheds show the following: 

1. The uniform crossover operator tends to out-perform the single crossover operator 

in search efficiency. 

2. In presence of an elitism operator, the G A calibrator equipped with a niching 

operator performs slightly better than the one without a niching operator. Even 

though the small improvement appears to be negligible, experienced modelers 

may often find the improvement, quite difficult to achieve through a random trial -

and-error calibration procedure. 

3. The choice of using or not using an niching operator in conjunction with the 

elitism operator has been noted in this study to have a profound impact on the 

elicited advantage of using an elitism operator, so much so that elitism may 

actually slow down the G A search process. 

4. If niching is used, then an elitism operator should also be concurrently in the G A 

calibration, otherwise the search efficiency will be relatively low. 

To objectively determine the performance of a calibrated watershed model, the difference 

between the observed and the simulated streamflow has to be statistically measured. The 

five statistical measures introduced in this study are: 

1. Coefficients of Linear Correlation and Determination, r and r 

2. Nash & Sutcliffe Coefficient of Efficiency, el 

3. Least Squares Objective Function 

4. Least Absolute Difference Objective Function 

5. Modified Nash & Sutcliffe Coefficient of Efficiency, eopt! 
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The coefficients of linear correlation and determination were shown to measure only 

shape similarity between the observed and simulated streamflow hydrographs and fail to 

acknowledge the discrepancy error in streamflow volume. Thus, they were quickly 

discarded and not used any further. To fairly compare the Nash & Sutcliffe coefficient of 

efficiency, least squares and least absolute difference objective functions as model 

performance indicators, the relationships between the streamflow volume discrepancy 

(dV/V) and the values of the three statistical measures were experimentally obtained and 

graphically plotted. Experiment results obtained in the GA calibration of the Campbell 

River River watershed show that the Nash & Sutcliffe coefficient of efficiency exhibits 

the most consistently decreasing trend of dV/V as the value of e! increases. For a 

statistical measure to be named a good model performance indicator in calibration, there 

must exist an inverse relationship, i.e. the higher the statistical measure value is, the 

smaller the streamflow volume discrepancy should be. Thus, the Nash & Sutcliffe 

coefficient best indicates the agreement between the observed and simulated streamflow 

hydrographs. However, because the value of dV/V does not always decrease with an 

increasing Nash-Sutcliffe coefficient, a modified coefficient was suggested. The 

modified coefficient places equal weights on both the Nash-Sutcliffe coefficient of 

efficiency and the streamflow volume discrepancy. It ensures the optimal or near-

optimal set of model parameter values found at the end of a G A search achieves both 

high el and low dV/V at the same time. 

In calibrating the Illecillewaet River watershed, it is found that meteorological data 

collected from a low-elevation station can be adjusted through precipitation gradient 

factors and AES precipitation factors to successfully represent the condition in a high-

elevation watershed and achieve high model performance in terms of el and eopt!. This 

implies that a good set of meteorological data can still yield high model accuracy without 

strictly following the principle of assigning meteorological data to elevation bands of a 

watershed based on their elevation proximity. The finding is useful because in some 

remote watersheds where there is no meteorological station and no data available for 
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modeling purposes, the modeler can "borrow" meteorological data from adjacent 

watershed (relatively speaking) with a station. 

In addition, it was found in the G A computational experiments that within the multi

dimensional feasible solution region, bounded by the modeling parameter constraints, 

objective function such as eopt! can often be multi-modal with the values of sub-optimal 

solutions very close to the value of the optimal solution found. Under these 

circumstances, the GA user is cautioned because the minor difference in objective 

function values can be well within the error range of the observed streamflow data used. 

For consistency, all the G A calibration runs for the Campbell River and Illecillewaet 

River Watersheds use a population of 20 strings and an evolution of 20 generations 

unless specified otherwise. This requires the GA-based model calibrator to call the UBC 

Watershed Model 400 times in every run. Thus the computational efficiency in UBC 

Watershed Model should be re-examined to see if further coding improvement can be 

made in reducing the overall G A search time. On an Intel Celeron 533MHz M M X 

system, each calibration takes about 45 to 55 minutes to complete. 
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9.0 APPENDIX 

The following model performance statistics are generated based on the best-calibrated set 

of model parameter values from each combination of the respective watershed. Only the 

combinations with high el and eopt! values are given in the appendix. The statistical 

summaries of G A results for combinations with low el and eopt! values are not provided. 

Table: 9-1 Statistics of Model Performance for Combination 4 of Campbell River 
Watershed after GA Calibration 

STATISTICS FOR THE OCT 1, 1983 - SEP 30, 1990 WATER YEARS 

Mean Q o b s Mean Q e s t Tot Q o b s Tot Q e s t Tot Q o b s Coeff.of Coeff.of 
(cms/d) (cms/d) (cms/d) (cms/d) -Tot Q e s t Eff Det 

YEAR 
YEAR 

(831001-840930) 
75.49 72.24 27631.09 26441.55 •1189.54 0.61 0.61 

YEAR 
YEAR 

(841001-850930) 
59.65 - 56.73 21773 20704.92 1068.08 0.59 0.72 

YEAR 
YEAR 

(851001-860930) 
75.47 70.23 27546.7 25635.55 1911.15 0.78 0.85 

YEAR 
YEAR 

(861001-870930) 
89.59 87.77 32701.29 32036.22 665.07 0.66 0.67 

YEAR 
YEAR 

(871001-880930) 
70.23 74.49 25705.9 27263.96 -1558.06 0.65 0.67 

YEAR 
YEAR 

(881001-890930) 
63.57 71.07 23203.41 25940.29 -2736.88 0.68 0.7 

YEAR 
YEAR 

(891001-900930) 
65.46 67.85 23893.69 24763.46 -869.77 0.82 0.82 

WHOLE 
PERIOD 

PERIOD (831001-900930) 
71.36 71.48 182455.2 182786 -330.78 0.69 0.69 
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Table 9-2: Statistics of Model Performance for Combination 5 of Campbell River 
Watershed after GA Calibration 

STATISTICS FOR THE OCT 1, 1983 - SEP 30, 1990 WATER YEARS 

Mean Q o b s Mean Q e s t Tot Q o b s Tot Q e s t Tot Q o b s Coeff.of Coeff.of 
(cms/d) (cms/d) (cms/d) (cms/d) -Tot Q e s t Eff Det 

YEAR 
YEAR 

(831001-840930) 
75.49 69.33 27631.09 25374.31 2256.78 0.63 0.64 

YEAR 
YEAR 

(841001-850930) 
59.65 57.66 21773 21044.68 728.31 0.73 0.79 

YEAR 
YEAR 

(851001-860930) 
75.47 69.41 27546.7 25334.63 2212.08 0.8 0.83 

YEAR 
YEAR 

(861001-870930) 
89.59 88.35 32701.29 32249.3 451.99 0.66 0.67 

YEAR 
YEAR 

(871001-880930) 
70.23 72.82 25705.9 26653.55 -947.65 0.67 0.67 

YEAR 
YEAR 

(881001-890930) 
63.57 69.35 23203.41 25311.6 -2108.19 0.69 0.71 

YEAR 
YEAR 

(891001-900930) 
65.46 70.53 23893.69 25743.13 -1849.44 0.76 0.78 

WHOLE 
PERIOD 

PERIOD (831001-900930) 
71.36 71.06 182455.2 181711.3 743.92 0.71 0.71 
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Table 9-3: Statistics of Model Performance for Combination 6 of Campbell River 
Watershed after GA Calibration 

STATISTICS FOR THE OCT 1, 1983 - SEP 30, 1990 WATER YEARS 

Mean Q o b s Mean Q e s t Tot Q o b s Tot Q e s t Tot Q o b s Coeff.of Coeff.of 
(cms/d) (cms/d) (cms/d} (cms/d) -Tot Q e s t Eff Det 

YEAR 
YEAR 

(831001-840930) 
75.49 72.35 27631.09 26481.24 1149.85 0.68 0.68 

YEAR 
YEAR 

(841001-850930) 
59.65 57.5 21773 20986.78 786.21 0.65 0.77 

YEAR 
YEAR 

(851001-860930) 
75.47 68.63 27546.7 25048.95 2497.75 0.81 0.83 

YEAR 
YEAR 

(861001-870930) 
89.59 86.8 32701.29 31680.69 1020.6 0.68 0.68 

YEAR 
YEAR 

(871001-880930) 
70.23 72.92 25705.9 26689.6 -983.69 0.63 0.66 

YEAR 
YEAR 

(881001-890930) 
63.57 69.87 23203.41 25504.27 -2300.86 0.72 0.73 

YEAR 
YEAR 

(891001-900930) 
65.46 70.58 23893.69 25763.12 -1869.43 0.8 0.82 

WHOLE 
PERIOD 

PERIOD (831001-900930) 
71.36 71.24 182455.2 182155 300.19 0.72 0.72 
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Table 9-4: Statistics of Model Performance for Combination 2 of Illecillewaet River 
Watershed after GA Calibration 

STATISTICS FOR THE OCT 1, 1981 - SEP 30, 1989 WATER YEARS 

Mean Q o b s Mean Q e s t Tot Q o b s Tot Qest Tot Q o b s Coeff.of Coeff.of 
(cms/d) (cms/d) (cms/d) (cms/d) -Tot Q e s t . Eff Det 

YEAR 
YEAR 

(811001-820930) 
56.95 53.39 20787.69 19487.56 1300.13 0.89 0.90 

YEAR 
YEAR 

(821001-830930) 
52.28 54.23 19083.01 19792.51 -709.5 0.92 0.92 

YEAR 
YEAR 

(831001-840930) 
52.94 48.89 19376.00 17895.16 1480.85 0.93 0.93 

YEAR 
YEAR 

(841001-850930) 
49.44 47.26 18045.53 17249.23 796.3 0.91 0.91 

YEAR 
YEAR 

(851001-860930) 
54.26 49.84 19804.49 18190.78 1613.71 0.92 0.92 

YEAR 
. YEAR 

(861001-870930) 
51.87 54.38 18934.2 19847.91 -913.71 0.92 0.92 

YEAR 
YEAR 

(871001-880930) 
49.36 53.94 18065.39 19742.17 -1676.78 0.93 0.94 

YEAR 
YEAR 

(881001-890930) 
47.28 52.67 17255.66 19223.66 -1968 0.89 0.92 

WHOLE 
PERIOD 

PERIOD (811001-890930) 
51.8 51.77 151352 151279.6 72.39 0.91 0.91 
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Table 9-5: Statistics of Model Performance for Combination 5 of Illecillewaet River 
Watershed after GA Calibration 

STATISTICS FOR THE OCT 1, 1981 - SEP 30, 1989 WATER YEARS 

Mean Q o b s Mean Q e s t Tot Q o b s Tot Q e s t Tot Q o b s Coeff.of Coeff.of 
(cms/d) (cms/d) (cms/d) (cms/d) -Tot Q e s t Eff Det 

YEAR 
YEAR 

(811001-820930) 
56.95 52.84 20787.69 19286 1501.69 0.95 0.95 

YEAR 
YEAR 

(821001-830930) 
52.28 52.4 19083.01 19127.8 -44.79 0.92 0.92 

YEAR 
YEAR 

(831001-840930) 
52.94 45.64 19376 16704.22 2671.79 0.86 0.88 

YEAR 
YEAR 

(841001-850930) 
49.44 47.56 18045.53 17359.05 686.48 0.94 0.94 

YEAR 
YEAR 

(851001-860930) 
54.26 49.95 19804.49 18232.97 1571.52 0.92 0.93 

YEAR 
YEAR 

(861001-870930) 
51.87 55.57 18934.2 20284.32 -1350.12 0.93 0.94 

YEAR 
YEAR 

(871001-880930) 
49.36 55.17 18065.39 20192.52 -2127.13 0.92 0.94 

YEAR 
YEAR 

(881001-890930) 
47.28 54.44 17255.66 19871.84 -2616.17 0.88 0.93 

WHOLE 
PERIOD 

PERIOD (811001-890930) 
51.8 51.7 151352 151058.8 293.19 0.92 0.92 
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Table 9-6: Statistics of Model Performance for Combination 9 of Illecillewaet River 
Watershed after GA Calibration 

STATISTICS FOR THE OCT 1, 1981 - SEP 30,1989 WATER YEARS 

Mean Q o b s Mean Q e s , Tot Q o b s Tot Q e s t Tot Q o b s Coeff.of Coeff.of 
(cms/d) (cms/d) (cms/d) (cms/d) -Tot Q e s t Eff Det 

YEAR 
YEAR 

(811001-820930) 
56.95 53.02 20787.69 19353.97 1433.72 0.95 0.95 

YEAR 
YEAR 

(821001-830930) 
52.28 52.4 19083.01 19127.23 -44.22 0.9 0.91 

YEAR 
YEAR 

(831001-840930) 
52.94 45.35 19376 16599.43 2776.57 0.86 0.88 

YEAR 
YEAR 

(841001-850930) 
49.44 47.8 18045.53 17445.98 599.55 0.94 0.95 

YEAR 
YEAR 

(851001-860930) 
54.26 49.89 19804.49 18210.96 1593.53 0.92 0.94 

YEAR 
YEAR 

(861001-870930) 
51.87 55.55 18934.2 20275.71 -1341.51 0.93 0.94 

YEAR 
YEAR 

(871001-880930) 
49.36 55.12 18065.39 20174.93 -2109.54 0.93 0.94 

YEAR 
YEAR 

(881001-890930) 
47.28 54.57 17255.66 19919.46 -2663.79 0.88 0.92 

WHOLE 
PERIOD 

PERIOD (811001-890930) 
51.8 51.71 151352 151107.7 244.3 0.92 0.92 
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