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ABSTRACT

In this study, an optimization and search technique, based on the genetic algorithms
(GAs) approach, is successfully used to develop an automatic model calibrator for the
UBC Watershed Model. Unlike the existing random search calibration procedure, which
limits the number of simultaneously calibrated modeling parameters to groups of about
three‘ to six at a time, the new GA-based calibrator allows all modeling parameters t0 be
simultaneously evaluated. Because.of the non-linear interactions befween the modeling
parameters, the simultaneous evaluation of all modeling parameters is demonstrated to
achieve a good model caiibration efficiently and quickly. The fundamental components
of GAs as inspired by the Darwinian principle of natural selection are explained in detail
in order to de\}elop a complete GA-based model calibrator. A flow chart is used to
illustrate the computational implementation of the GA procedures. Why GAs can work
efficiently in finding an optimal set of modeling parameter values is explained by the
schema theory with mathematical proofs provided. To test the soundness of the GA code

developed for the automatic calibrator of the UBC Watershed Model, two well-studied

Vwatersheds in the Province of British Columbia, Campbell River and Tllecillewaet River,

are used. The effects of genetic operators (crossover, niching and elitism) on GA search
efficiency are individually demonstrated. To objectively determine the pérformance ofa
calibrated watershed model, the. difference between the observed and simulated .
streamflows is statistically measured. Four statistical measures are evaluated: coefficient
of linear correlation (or coefficient of determination), Nash & Sutcliffe coefficient of

efficiency (e!), least squares objective function and least absolute difference objective

~ function are introduced. GA computational experiments show that the Nash & Sutcliffe
coefficient of efficiency (e!/) exhibits the most consistently decreasing trend of

streamflow volume error (dV/V) as the coefficient value increases. A fifth statistical

measure, the modified Nash & Sutcliffe coefficient (eopt!), is also used to quantify the
difference between the observed and simulated streamflow data, and ensures the optimal
or near-optimal set of model parameter values found at the end of a GA search achieves

both high e/ and low dV/V at the same time.
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1.0 INTRODUCTION

Watershed modeling is a key part of watershed management for the purposes of flood
preventioﬁ, hydropower generation and preparation for possible water shortage in
drought years. Detailed model calibration is often required to ascertain the usefulness
and reliability of a model as a tool in forecasting streamflow. Traditional manual model
calibration is laborious and non-systematic. It usually involves visual inspection and
modelers have no means to see the whole picture of the model calibration process.
Although random automatic model calibration frees modelers from repeatedly adjusting
the model parameter values, it depends too much on “luck” and may not reach an
optimél, or near optimal, set of model parameter values. For both manual calibration and
automatic random calibration, limitations amplify as the number of modeling parameters

and the complexity of watershed model structure increases.

Genetic algorithms (GAs) are heuristic search algorithms used as an optimization
technique in single and multi-objective problems. The technique was inspired by the
Darwinian theory of fhe survival of the fittest. The algorithrp mechanisms mimic the
natural selection and evolutionary process, improving the survivable characteristics of the
species. Genetic algorithms differ from other conventional gradient-based optimization

techniques, because no full or partial derivative of any order is required.

Since the 1990s, advances in genetic algorithms, coupled with high-speed personal
computers, provide means to optimize the fitness (resemblance) between the simulated
and the observed streamflow data of a watershed. Several researchers have reported »
their success in applying GAs in varidus, model calibrations (MW Soft Inc. 1999 &
Solomatiné 1998). In the context of civil and water resource engineering, GAs Have

been applied in calibrating water distribution networks (H20NET), sanitary sewer

systems (SWMM in progress), river hydraulics (Mike 11) and watershed modeling.




1.1 Objectives

This thesis is concerned about the épplication and applicability of genetic algorithmé in
the systematic -calibration of a computational model, particularly in the context .of
watershed modeling. The UBC Watershed Model was chosen as an interactive testing
vehicle to first verify the soundness of the genetic algorithm code programmed by the
author, and secondly, to demonstrate the strength and capability of genetic aigorithms in

model calibration:

The thesis is not a comparative study of the UBC Watershed Model and its applications.
No attempts were made to investigate the model structure and thus no improvement was

recommended.

1.2 Scope of Study

In order to meet the thesis objectives, the following tasks were performed:

e Review of conventional manual model calibration and of automatic random
search model calibration.

e Review of common statistical measures used to evaluate model performance and
soundness of calibration. |

e Investigate and revie\;v the applicability of genetic algorithms és an optimizer, or a
model calibrator, in engineering literature. ‘

. ’Investigate the components of genetic algorithms and usage of major genetic
operators.

¢ Outline the computational procedure for genetic algorithm implementation

e Research the theory of GAs and why GAé work.

e Implement the computation of the genetic algorithms in Fortran and customize the

code in Visual Basic to interface directly with the UBC Watershed Model.

Ty



e Apply GAs for the calibration of‘ two watersheds previously studied using the
UBC Watershed Model, and report on the GA techniques used to improve search
efficiency. ‘

e Evaluate the GA calibration results and discuss their implications with respect to
applicability of GA féchniques. | 4

e Summarize the findings of the study and recommend future work on GA model

calibration for use with the UBC Watershed Model.

1.3 UBC Watershed Model

Development of the UBC Watershed Model was started in the late 1960s by Quick and

Pipes (1977), and has undefgone continuous development since that time by the UBC

Civil Engineering Mountain Hydrology Group. It utilizes daily maximum and minimum
temperatures and precipitation as input data and generates daily watershed outflow as the
main output (UBC Mountain Hydrology Group 1995). Because the calculation of the
watershed outflow requires and depends on the values of snowmelt, soil moisture budget,

soil and groundwater, the model estimates these values individually in a given sequence

before the watershed outflow is generated. Thus the model also provides the value of

related hydrologic parameters. The watershed model was desigﬁed for short-term

- forecasting of the streamflow of the river that drains the watershed. It has been

extensively used for flood forecasting and reservoir inflow prediction.

The input of the UBC Watershed Model consists of two major components. Besides the
meteorological input data required, the user or modeler must also specify a set of
modeling p'arametersl,, which quantitatively characterize the watershed and its responsé
behavior. . While some of these parameters are geographical data obtainable through
surveying or gauging, some parameters must}be estimated or back calculated. Although
the unobtainable parameters can be estimated, back calculation is often required bésed on
observed records to confirm the validity of the initial estimate values. Thus the UBC

Watershed. Model, similar to othef models, must undergo the pfbcess of model calibration



for each specific watershed. This calibration process requires measured streamflow data,

which are used to evaluate the model estimates of watershed outflow.

Under the existing structuré, the UBC Watershed Model contains an optimization module -
specifically desig;led for model calibration. Within the module, the calibration process
applies the.concept of a constrained random search to find a set of model parameter
values to characterize the watershed and maximize the resemblance of the watershed
model to the real watershed. Héwever, direct search of the values of all modeling
» ' parameters is not possible with the present model calibration framework. The
simultaneous evaluation of all modeling parameters could be very useful because of the
non-linear interactions between the various parameters. Until now, the number of
modeling parameter values to be searched simultaneously is often limited to groups of
about three to six at a time, and the users then proceed through further groups of
parameters, moving from the more sensitive parameters to the less sensitive ones, and

'~ then repeating the process to refine the parameter values.

The intention is to use the genetic algorithm in parallel with this existing calibration
module. | This will provide the opportunity and the environment for genetic algoﬁthms to
be tested for their applicability as an optimization technique for model calibration. In
particular, the genetic algorithm will be used to evaluate the values of all chosen model

parameters concurrently.

1.4 Thesis Layout

This thesis consists of seven chapters in total. Chapter 2 offers a literature review on
manual model calibration, objective calibration rﬁeasure' for model conformance, and
-automatic model random calibration. Chapter 3 offers a literature review on genetic
algorithms as an optimization technique and its application in computational model

calibration and many other fields. Chapter 4 discusses the basic genetic algorithm

principles and fundamental genetic operators used to search for the optimal solution. It




also'provideé a.summary of GAs’ cdmputational procedures. Chapter 5 explains and "
mathematically proves why’ genetic algorithms can be successfully used as. an
optimization technique. Chapter 6 investigates how well the ekisting GA code can
automatically and systematically calibrate a. watershed, based dn certain statistical
conformance measures. Two case studies are used to show which genetic technique, or
combination of techniques, is most efficient in GA search. Three statistical méasure’s are

compared to determine which is the most consistent measure of model performance. The

conclusion and the findings are summarized in Chapter 7.




2.0 LITERATURE REVIEW OF MODEL CALIBRATION METHODS

In this chapter, the need for model calibration is discussed. Literature reviews are
presented for manual model calibration procedures, for objective calibration measures of

model performance, and for automatic model random calibration.

2.1 Model Calibration

A model is a conceptual representation of the understanding of physical phenomena and
processes. A watershed (hydrologic) model is a model that describes the governing
processes of how precipitation in the form of snow and rain gradually flows over surface
and/or through soil and leaves the watershed as streamflow. The reliability and the
accuracy of the modeling results depend on the appropriateness of assumptions made on
physical processes, quality of input data and estimated values of modeling parameters
(Sorooshian and Gupta- 1995). In watershed modeling, the input data include
precipitation, both rain and snow, temperature, snowpack depth and many others. The
data quality depends on how representative the field measurement dafa are for the entire
watershed. The estimation of modeling parameter values, on the other hand, is less
straightforward. In general, the modeling parameters can be classified into two types

(Sorooshian and Gupta 1995).

1. Physical Parameters: parameters which represent physically measurable
j . :
properties of the watershed.
2. Process Parameters: parameters which represent the implicit characteristics of the

watershed. These are often not directly measurable.

Examples of physical parameters are the areas of different watershed elevation bands and
the percentage of forested and vegetated area. Examples of process parameters include
the rainfall fast runoff time constant and the snowmelt fast runoff time constant. Some

parameters may be measurable, such as the impervious ratio of land surface area, or the




effective depth of maximum subsurface storage, or they may have to be estimated as part
of the calibration process and deemed as process parameters rather than the physical
parameters. Because the physical parameters are directly measurable, representative
values can be derived from field data with reasonable accuracy, whereas the process
parameters are difficult to estimate and their estimation relies heavily on the modeler’s
knowledge of the watershed and past modeling experience. Often the estimation of
process parameter values is the part of computational modeling that requires the most
attention in calibration. Therefore, model calibration can be defined as the process of
selecting a set of process parameter values so that the resulting model closely simulates

the physical process under scrutiny.

2.2 Manual Model Calibration

J

Traditionally, the calibration process is more an art than a science. A modeler, based on
his/her experience, long-term observation and knowledge, makes a first estimate of the
values of process modeling parameters. He or she then initiates the model with these
estimated parameter values, and then compares the model output with the observed data.
If the mddel output does not visually resemble the observed data, the modeling parameter
values are then re-adjusted again and again until a higher degree of similarity is achieved.
This trial and error iterative process of parameter value fine-tuning is called manual
model calibration. It is often repetitive, time consuming and may be frustrating, yet it is

the most common calibration process followed by modelers in the past three decades. -

The manual calibration process is practiced in watershed modeling because certain
parameters control streamflow volume and some control specific aspects of hydrograph
shape, etc. These distinct characterisﬁcs determine the need for the various parameters
and make calibration possible. "Calibration can be carried out using sub-groups of
parameters, and by constraining the range of values as the process proceeds — a

constrained search. However, the most profound weakness of manual model calibration



is the fact that it is very subjective because a modeler simply eyeballs the simulated data |

graphed over the observed data and determines whether they are similar visually.

In the context of the calibration of watershed models (including UBC Watershed Model),
a hydrograph of the streamflow leaving the watershed is typically used as the calibration
measure. Despite the fact that a modeler can make reasonable estimate of the values of
modeling parameters, some’ degree of calibration is still required. Theoretically, the
manual model calibration process should persist until the modeler feels that the calculated
streamflow hydrograph visually resembles the observed hydrograph. Due to the
compiexity involved in a watershed model, it is not unusual that tens of modeling
parameters must be manually adjusted repeatedly. The multi-dimensionality of the
watershed model may cause serious ‘difficulty for the modeler in manual model
calibration. This is why the manual calibration process is also humorously called the
“Guess-Try-Swear” process. Nonetheless, knowledge about the characteristics and
behavior of the watershed is definitely an asset to the modeler in knowing what

parameters to adjust and what values to set.

2.3 Objective Model Calibration Measures L

Because the manual model calibration involves a great deal of subjective judgment and
eyeballing, two modelers may obtain two very different sets of modeling parameter
values with no direct means available to measure and determine which one is superior to
the other. Hence an objective and standardized way of measuring the degree of
conformance between the observed and the simulated data should be d/eveloped for both
the manual and automatic model calibration. Intuitively, modelers turn to the statistical
us-age of the coefficients of linear correlaﬁon (directly related to the coefficient of
determination) and efficiency, which mathematically quantify the numerical
discrepancies between the observed and the simulated data. In addition, drawing frém

regression and curve fitting theory, various forms of the least squares method can also be

used (Sorooshian and Gupta 1995). The following discusses the application of statistical




principles in devising objective measures for fitness of model calibration. Their

advantages and limitations will also be briefly mentioned.

2.3.1 Coefficients of Linear Correlation and Determination

The coefficient of linear correlation is a statistical strength measure of the relationship
between two sets of interval scaled data, in this case, the observed aﬁd the simulated data.
It can assume any value from —1 to +1 inclusive. If the two sets of interval scaled data
are positively proportional to each other or éxactly the same as each other, the coefficient
is +1, which indicates a perfect positive correlation: If the two sets of data are inversely |
related, the coefficient is -1, which indicates a pérfect. negative correlation. A coefficient
value of zero means that the two sets of data are not linearly related at all. The

coefficient of linear correlation can be expressed as

A(E Qs Q) ~ (Z0,, (Z0,0)
r= d ! : - (Equation 2-1)

\/[n(z Q)= (z Qs )}{n@ Qi )= (z Q;,.,,,f}

where 7 is the coefficient of linear correlation. Q,.andQ_ are the values of the

i !
observed and the simulated data at a particular time interval. n is the total number of time

intervals and { is the time interval index.

The coefficient of linear correlation offers a useful tool to measure the conformance of
the shapes of the two plotted data curves. In the context of watershed model calibration,
if the observed and the simulated hydrographs have very similar shapes, the correlation
coefficient approaches positive unity. Therefore, one may say that a correlation
coefficient of 0.9 or higher indicates very close fit of the shape of streamflow

hydrographs. Figure 2-1 gives an example of two perfectly linear correlated hydrographs

with a coefficient of +1. The figure, however, also clearly reveals the significant




discrepancy in flow magnitude and total streamflow volumes (areas under curves) despite
a perfect positive linear correlation of +1. Therefore even though correlation coefficient
measures the shape fitness of the two plotted data curves, its inability to measure the
numerical discrepancy between two data shows that the u'seA of correlation coefficient

alone is'not an adequate measure of good model calibration.

The coefficient of determination, r°, by definition is simply the direct square of the
coefficient of linear correlation. It can assume any vralue between 0 and 1. Similar to the
coefficient of linear correlation, it only relates to the shape conformance of the observed
and simulated hydrographs,' and is independent of discrepancy in total streamflow volume
(UBC Mountain Hydrology Group 1995). Thus, coefficient of determination alone is not

an adequate measure of good model calibration either.

Hence, if the coefficients of linear correlation and determination are to be used as part of
the model performance measure in the calibration process, they should be jointly used

with other statistical measures in order to emphasize the streamflow volume.

~

. Figure 2-1: An Example of Two Sets of Perfectly Linear Correlated Data

Observed Hydrograph vs. Simulated Hydrograph
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Figure 2-2: Perfect Linear Correlation between Two Data Sets Yields a Correlation
Coefficient of +1

Observed Streamflow vs. Simulated Streamflow

Simulated Streamflow
N w £ [6)] (0)] ~

R 2 3 4 5 6

Observed Streamflow

2.3.2 Nash & Sutcliffe Coefficient of Efficiency

Another model calibration measure is the coefficient of efficiency originally suggested by
Nash & Sutcliffe (1970). The coefficient of efficiency is evaluated based on the shape
and magnitude difference between two plotted data series. In the context of watershed
model calibration, the coefficient of efficiency measures how well the simulated
stréamﬂbw hydrograph is bredicted, compared to the observed streamflow hydrograph in
both hydrograph shape and streamflow magnitude. Thus, the Nash & Sutcliffe
coefficient of efficiency is superior to correlation coefficient as an objective model
calibration measure. Similar to the correlation coefficient, the efficiency coefficient is
dimensionless but it can assume any value between negative infinity and +1. The

coefficient of efficiency, e/, can be expressed as:

E(Qf""" B Q-'-“"” )y residual variance '
el=1- : : =1- (Equation 2-2)

¢ ' 2 total variance
E(Q‘.)bx - Qabs )
1

niean
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is the time average of the observed

obs
mean

where e/ is the coefficient of efficiency and Q

flow, Q

obs *

Because the coefficient of efficiency accounts for both the shape and total flow volume
differences between the observed and the simulated hydrographs, an efficiency value of
+1 indicates a perfect match in both shape and in flow magnitude and therefore the two
hydrographs are identical (UBC Mountain Hydrology Group 1995). Although the
coefficient of efficiency is a better model calibration measﬁre than the coefficients of
correlation and determination, it suffers a shortcoming that is often unnoticed. The
shortcoming is that the coefficient Qf efficiency biases towards data sets with large total
variances. Using the watershed model calibration as an example, if the observed

. E(Qobs - Qobs )2
hydrograph has many large flow peaks, which directly leads to a large ~— ' mean

E:I(Qobs _Qsim)2
term, then the numerical discrepancy term,  ° i is relatively small and ma
pancy y _ y

- easily be overlooked by the modelers.

Table 2-1 shows the computational procedures of-the coefficient of efficiency for the
example given in Figure 2-1. It has a negative value even though the two hydrographs
have identical shapes. A negative value is already anticipated because the large

difference in flow mégnitude results in a total flow volume difference of 28%.
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Table 2-1: -Examplé of Efficiency Coefficient Calculation

Time Qobs | Qsim [(Q obs-Q sim)®| (Q obs-Q obs mean)’
1 3 4 1 : 0.391 \
2 5 6 1 ' 1.891
3 4 5 1 0.141
4 3 4 1 0.391
5 4 5 1 0.141
6. 5 6 1 1.891
7 3 4 1 0.391
8 2 3 1 2.641
Total Volume 29 37
Qobs mean=  3.625
= (Q obs-Q sim)*= 8
¥ (Q obs-Q obs mean)’=  7.875
“coefficient of efficiency =  -0.016

Both the Watflood Model developed by Kouwen of the University of Waterloo (Kouwen
1997) and the UBC Watershed Model by Quick (UBC Mountain Hydrology Group 1995)
apply the Nash-Sutcliffe model efficiency to evaluate the fitness of simulated results. To
further emphasize the importanée of the streamflow conservation principle, the total areas’
under observed aﬁd simulated hydrographs should be the same. Therefore, the UBC
Watershed Model also Adopts a slightly modified coefficient of efficiency, éopt/, as the
objective mode] calibration measure to select the best of the 10 highest efficiency results.

The modified coefficient of efficiency, eopt!, is expressed as:

g‘l(Qsim ) abS[ ‘/taml - mel ]

i ' observed estimated
=€.—

'Z::l (qu.c ) ‘ . ‘/toml

eopt\= el—absj 1 — (Equation 2-3)

observed

where V, is the total observed streamflow volume integrated over the duration of

total
observed

model simulation period, and V, is the total estimated streamflow volume integrated

total
estimated

over the duration of the same model simulation period.
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By using eopt! as a model calibration measure, the calibration process places equal
weight on achieving high hydrograph shape conformance and minimizing streamflow
volume discrepancy. It ensures that after calibration the simulated results are as similar

to the observed data as possible.

233 Ob jectivé Calibration Measure Based on Least Squares Method

One other objective model calibfatioh measure is the sum of the squares of the numerical
differences between the observed and the simulated data sets. It is often used as a fitness
measure in regression analysis such as curve fitting and derivation of an unknown
relationship. Unlike the coefficients of correlation and efficiency, which are to be
maximized, the sum of the squares of difference is to be minimized in order to achieve
best possible conformance between the two data sets. Hence the technique is commonly

referred as the least squares method.

In the context of watershed modeling, using the sum of the squares differences as a
measure transforms model calibration into a minimization process. The dimensional

form of the objective function can be expressed as:

Minimize z = %(Qobs ~0,)° (Equation 2-4)

1

where z is the objective function to be minimized. The summation term of Equation 2-4,
in statistics, known as the residual variance, is used as part of the numerator in the Nash-
Sutcliffe coefficient of efficiency. The dimensionless form of the least squares objective

function can be expressed as:

Q.u'm

n : 2
20-g,)

Minimize z = —— ' (Equation 2-5)
n
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The dimensionless form is preferred over the dimensional form because it can assume

. any value between 0 and +1 for Q;, <20, . In addition, by using the dimensionless

1 !
form, the sum of squares differences is averaged over the total number of intervals used -

in the observed data and is less affected by the interval size.

It is important to note that even though the sum of the squares differences bears high
similarity to the coefficient of efficiency, it formulates the calibration process into a
minimization problem instead of a maximization problem. However, through a minor
modification, the objective function in E(juation 2-5 can be readily transformed into a

maximization problem for GA search, i.e.

Maximize z =1-————— - | (Equation 2-6)

For simplicity, the objective function, z, in equation 2-6 from now on will be referred as

the least squares difference objective function in this thesis. .

2.3.4 Objective Calibration Measure Based on Least Absolute Difference

If the least squares objective function is used as a model calibration measure, larger flow
differences can be over-emphasized and mislead the calibration process because the
numerical difference is squared at every data interval. For example, if a set of observed
streamflow data contains a portion of false readings (which is not identifiable) and the
portion happens to be the only section that cannot be closely matched by the simulated
data, then using the sum of the squares differences may easily deviate the modeler from
obtaining the best set of modeling parameter values. Thus, for observed data with low
reliability, the sum of the squares differences cannot be used as ah effective calibration
measuré. Alternatively, the sum of simple absolute differences may be used as a model

calibration measure. The least absolute difference objective function can be expressed as

15




Minimize z = éabs(Qob‘Y ~Q...) - (Equation 2-7)

or

Qsim

% abs(1- 42) | |
Minimize 7 = ——— ‘ (Equation 2-8)
n

To apply the genetic algorithms, which requires a minimization to be transformed into a

maximization problem, equation 2-8 can be modified as follows:

Qun

i§l abs(1- o )

~Maximize z=1-———— A (Equation 2-9)
n

It is important to note the choice of turning the calibration process into either a
minimization or a maximization problem depends on the type of optimization technique
to be used and the convenience of computer programming. For genetic algorithms which
are the . optimization techniques proposed to be used in UBC Watershed Model
calibration, a maximization of the objective function is preferred and considered to be

- much easier to deal with. More details will be discussed in later chapters.

2.4 Automatic Random Search Model Calibration

Because calibration is important for the reliability and the applicability of a model,
modelers’ quests for faster and more efficient calibration process continue. Early work
led to the creation of automatic calibration which randomly searches within a specified
range of reasonable values for the best set of modeling parameter values that would
produce the best fit to the observed data (i.e. optimize the pertinent calibration measure).
This is a constrained random search, which ensures that parameters are within physically

reasonable limits.
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- These calibration methods depend on the following:

1. Advances in computer technology so that programs can be written to instruct
the computer to run the model repeatedly without human intervention until a
better agreement with the observed data is achieved. o

2. Random number generation that is used to produce parameter values at
random within the upper and lower limits. A well-designed random generator
should produce different values uniformly.

3. Statistical measures such as the coefficient of efficiency, or the sum of squares
differences are used as the objective function to be optimized. The objective
function value indicates the degree of conformance between the observed and
the simulated data, and can also be used as a stopping criterion to terminate
the calibration process.

: j
‘These steps, when integfated, form an automatic model calibrator with random search
capability. |
Although the automatic random search model célibration is designed to free modelers
from strenuous manual calibration process, the random search technicjue it implements is

hot_ systematic and efficient.

In a search space of only'three dimensions, for example, the random search may have the
“luck” to approach the areas (schemata) of high objective function values. But if the
search space is in the order of tens of dimensions, say 20 for example, random search for -
the best set of modeling parameter values can be as inefficient as the enumerative search
scheme in which all possible combinations of parameter values are to be listed.
Conservatively speaking, if a parameter dimension has 20 possible values, a 20-
dimensional search spacé would require an enumeration of 20%° = 1.05%10%
combinations. This implies that the random search scheme must test at least a significant
portion of the 1.05%10% combinations before an optimal or near optimal candidate

solution can be confidently declared.
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The limitations of random search in automatic model calibration leads to the application
of genetic algorithms, which dramatically reduces the number of search points (candidate

solutions with different combinations of parameter values) required to be tested before an

optimal or near optimal candidate solution is found and a winner declared.




3.0 LITERATURE REVIEW OF GENETIC ALGORITHMS

Genetic algorithms are heuristic- search algorithms used as an optimization technique.
Because the development of genetic algorithms was inspired by the Darwinian theory of
the survival of the fittest, its mechanisms bear great similarity to the natural selection and
evolutionary process of a survivable species. In addition, many terms used in genetic

algorithms are directly borrowed from the field of biology.

The genetlc algonthms used in practlce in solving single or multi-objective optimization
problems are indeed a simplified version of the natural history of a particular species, in
which the candidate solutions are the various members of the species with different
genetic features. Thanks to modern advances in computing technology, the evolutionary
process of a species, which could have taken thousands to millions of years or
" generations to achieve, can now be virtually simulated in the matter of minutes or hours.
In every generation of the evolutionary process, only the candidate solutions achieving
better Ob_]eCthG function values will survive and be used to create new sets of candidate
solutions. The best-of-generation candidate solution found at the end of the evolutionary
process is then deemed as the optimal solution to the optimization problem.

In the context of watershed model calibration, candidate solutions are sets of model
parameter values tested in the model calibration process. Only the sets of model

parameter values with high calibration performance measure, can be used

combinatorially to create the next improved set of model parameter values and ultimately

achieve the best possible agreement between the observed and the model-simulated data.
Thus the core feature of genetic algorithms as an optimization tool is built on its
evolutionary process, which favorably biases towards high-performance candidate

solutions and purges the poor-performance solutions.

It is generally recbgnized in the genetic algorithms community that genetic algorithnﬁs

- were invented by John Holland in the 1970s, marked by the publication of his book

“Adaptation_in Natural and Artificial Systems” in 1975 (Obitko 1998). His students and




colleagues further expanded his ideas and applied them in various fields of study. They .
are discussed in the next two sections. Goldberg, a former Ph.D. student of Holland
coﬁducted extensive research in GAs and summarized his findings and notable advances
of GAs in his book “Genetic Algorithms in Search, Optimization and Machine Learning”.
As indicated in his book, genetic algorithms are finding applications in business,
sciences, and engineering. They are gaining popularity and wide acceptance because the

. algorithms are “computationally simple, yet powerful in search for improvement”.

(Goldberg 1989)

Presently, the study of genetic algorithms is considered as part of evolutionary computing

which is a growing area of artificial intelligence (Obitko 1998)

3.1 Advantages of Genetic Algorithms

Because of genetic algorithms’ simple formulation and flexibility in stipulating parameter
constraints, the techniqué can be applied in almost all optimization problems. It is
extremely useful in searching the optimal or at least the near-optimal solution, in single
objective optimization problefns. Unlike the traditional gradient-based search techniques,
- which usually fail to find an optimal solution due to the non-continuity, non-linearity and
multi-modality of the objective function, the genetic algorithms are affected by none of
these difficulties. The genetic algorithms require neither the linearization of the objective

function nor calculation of partial derivatives.

In Holland’s own words, “GAs offer robust procedures that can exploit massively parallel
architectures and ...... provide a new route toward an understanding of intelligence and
adaptation.” The parallel architectures, which enable GAs to search a multi-dimensional

‘solution space efficiently, will be discussed in Chapter 5.
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3.2 Genetic Algorithms’ General Applications and Usage in Civil and Water

Resources Engineering

The name genetic usually causes the first-time reader to link GAs with biology.
However, genetic algorithms have been extensively used in economics, psychology;

linguistics, image enhancing, computer science, and all aspects of engineering.

For example, John Deere has been using genetic algorithms -to optimize its production
scheduling of 90 seed planter models to select from about 1.5 million possibilities. The
application of genetic algorithms reduces the planning time for a weekly production
scheduling from one day to “literally a zap of screen”. To design a computer chip on the
smallest piece of silicon possible, Texas Instruments used genetic algorithms to reduce
the computer chip size by 18%. General Electric has also used genetic algorithms to
increase efficiency for gas turbine desi gﬁ which nlater became the engine for the Boeing
777. US West uses GAs to design fiber-optic cable nefWork and reduce the desi gn time
from two months to two days. Genetic algorithms have also been used for positioning
cellular telephone towers that provide the maximum coverage with minimal or no overlap

(Begley 1995; Frey 1995).

Genetic. algorithms have also been found extremely épplicable in civil and water
resources engineering. Goldberg and Kuo (1987) applied the concept of genetic
algorithms in designing a gas transmission pipe at minimum capital cost while meeting
all the demand and operational rthirements. Tolson (2000) reported that GAs have been
applied to almost every type of optimization problem encountered in water resources. In
the.field of water distribution, genetic algorithms are applied for optimal pipe design,
rehabilitation and least-cost pump scheduling. Savic and Watler (1997) developed a GA
integrated computer model, GANET to design a least cost pipe network with a complete

fulfillment of pressure and demand requirements. Wu et al (2000) applied a competent

- variation of genetic algorithms, called fast messy genetic algorithms (fmGA) in a

decision support system to identify least cost design, rehabilitation, and expansion

options for water distribution systems. Karney (2000) used GAs to back-calculate the
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frictional factor and elasticity modulus of pressured pipes in water hammering analysis.

He called his approach “The Inverse Model Calibration Method”.

In water resources management, King, Fahmy and Wentzel (1997) applied a genetic
algorithm to the problem of optimizing the operation of a river/reservoir system for
maximum economic returns. Tolson (2000) applied GAs to minimize the cost of
wastewater treatment for known point source of pollution along the Williamette River in

Oregon while maximizing the water quality performance indicators.

3.3 Genetic Algorithms as an Optimizer for Watershed Model Calibration

Currently, the author is not aware of any well-established watershed (hydrological)
models using GA techniques in the model calibrating process. Nevertheless, genetic
algorithms can be suitably used as the optimization technique in search of the best set of
modeling parameters so that the model yields accurate prediction. Thus it is the goal of
this thesis to use genetic-algorithms as the basis for an automatic calibrator for the UBC

Watershed Model.

James (personal communication) has indicated that a genetic-algorithms based model
calibrator for the Storm Water Management Model (SWMM) is being developed. This
demonstrates that more watershed (hydrologic) modelers are beginning to take advantage

of the efficient GA search and implement the techniques for their model calibration.
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4.0 FUNDAMENTALS OF GENETIC ALGORITHMS AND THEIR
OPERATIONS ' '

The basic genetic algorithm principles were inspired by the mechanism of “natural
selection in a competing environment where the stronger or the “fitter” individuals of a
species are more likely to survive and produce offspring which survive generation after
generation. The weaker or the “less fit” individuals, on the contrary, either die off and
become extinct or are forced to evolve and adapt to the non-stationary, competing
environnient. As observed in nature, by continuous evolution, the weakér individuals do
stand a chance to become stronger and thérefore may be granted the rights to
continuously exist in the population. Usually, as commonly seen in the animal kingdom,
a weaker individual can become more adaptive, resilient and stronger through mating and
mutation. These genetic operations are the fundamental key components that successful
genetic algorithms possess, except in a much-simplified fashion. To develop a genetic-
algorithm based optimizer or calibrator, one must understand some of the not-so-simple
genetic-algorithm terminology and use the procedures discussed in the following

~sections. A glossary of common genetic-algorithm terminology is provided in section 1.

4.1 Brief Glossary of Genetic Algorithms Terminology

Coding: A system used to compactly store a set of model input parameter values. In most

cases, coding implies the binary coding which is commonly used for genetic algorithms. |

Crossover. One of the three major types of genetic operation in which. a selected parent
string mates with another selected parent string and they exchange genetic information at

certain gene locations to form one or two offspring.

Elitism: One type of genetic operation in which the best one or two of the candidate

strings of a generation are by default automatically reproduced for the next generation.
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Fimess: The evaluation of a complete set of parameter values in the objective function of

an optimization problem.

Gene: A coding bit which is the smallest unit of a substring or a string. If binary coding

is used, a bit is either O or 1.

Generation: This term can be used in two ways. Firstly, as a noun, it collectively means a
population\ of sets of model input parameter values in the evolutionary process.
Secondly, as a verb, it is a time step in the evolutionary cycle in which every complete set
of model input parameter values, coded as a string, may be genetically altered in order to

improve fitness.

Genetic Algorithms: Search procedure based on the mechanics of natural selection and

natural genetics (Goldberg 1989).

Mutation: One of the three major types of genetic operation in which every gene of a
selected parent string is assigned a uniform probability to randomly alter the bit value.

The parent string with randomly altered genes becomes the new offspring.

Niching: One type of genetic operation used to prevent a large number of strings from
simultaneously searching a high-fitness region of the search space. By preventing the

clustering of GA search points, it forces other unexplored regions to be searched.

Population: A user-assigned (fixed) number of sets of model input parameter values in

every cycle of the evolution process.

Reproduction: One of the three major types of genetic operation in which the offspring
produced is simply the duplicate of the parent string with identical genetic information.

¢

Scaling: One type of genetic operation in which the fitness of high performance strings is

under-emphasized to prevent rapid loss of gene diversity in the string population. It is




also used to over-emphasize the difference between strings of similar fitness so that an

optimal string can be identified quickly.

String: A complete coded set of input parameter values for a model, also known as a
candidate solution. It is called a string because the set of parameters is (binary) coded

and resembles a DNA string.

Substring: A coded input parameter value, which forms the basic building block of a

string.

4.2 Brief Outline of the Genetic Algorithm Search Process

The following provides a rudimentary overview of how a modeler can apply GAs in

model calibration to achieve high model agreement.

1. Randomly generate sets of model parameters, called stringsy, which become the
initial population.  The string may contain genes and substrings that are
potentially useful in creating the optirﬁal string (best candidate solution).

2. Calibrate a model by optimizing its agreement with the observed data, run the
computational model, in this case the UBC Watershed Model, and the statistical
measure module to determine the model performance for each set of parameters.
The statistical measure values are the fitness values.

3. Base_d on the fitness values, the fitter (better) sets of parameter values (strings) are
retained via several possible selection schemes for creation of other sets of
parameter values - population of the next generation. The fitter strings selected
are called the parent string.

4. A new géneration of strings is then created from parent strings using various
mating and mutation techniques in genetics. Pairs of selected parent strings
exchange genes that form new substrings and create new strings with some

inherent genetic characteristics and diversity.
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5. Now return to Step 2, and the process continues until one of the prescribed
termination criteria is met. The iterative process allows genetic algorithms to

search for an optimal or a near optimal string (set of model parameters).

4.3 Choosing A Coding Representation

Because an optimization problem, such as a computational model, can possesses
descriptive model parameters in the order of tens or even hundreds, there must be an
effictent and compact way to represent the real values of all these parameters. This is
especially true when using genetic algorithms for optimal solution search and model
calibration, because the iterative process requires the values of these parameters to be
tracked for generation after generation. The difficulty and complexity of tracking unique
_genetic information for each string in a large pbpulation for many generations requires a

convenient coding system to be designed and implemented.

The first step in the development of genetic algorithms is to choose a coding system to
represent each possible set of model parameters, often referred to as a string or a
candidate solution. Depending on the coding system used, sets of parameter values may
be conveniently and efficiently transformed into strings of bits of particular lengths,
where the string length is measured in numbers of bits. In GAs, a string often consists of
many substrings, which individually represent values of their corresponding paraméters.
For example, a string coded to represent a set of 10 model parameters will have 10
substrings to individually represent each model parameter. The position of a substring
within a finite-length string determines which parameter it is assigned to represent.
Mathematically, a GA coding string is exactly the same as a multi-dimensional vector
that can possess components of various magnitudes in different directions of a search
space. Hence, a substring’s relative position in a string is best viewed as a component of

a vector in a specific direction.
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For example, a coded string consisting of three substrings can represent a 3-dimensional

~ vector where substring 1, substring 2, and substring 3 respectively represent the vector’s

magnitudes in i, j, and k axes of the conventional Cartesian coordinate system. By using
a coding representation, one allows GAs to treat a set of parameter values as a mapped
point in a multi-dimensional search space and store it concisely as a string of finite

length.

The most commonly used coding systemA in GAs is binary coding because of its
simplicity and tfacibility. As suggested by its name, binary coding only allows two
genotypes in a Bit which is either 0 or 1. Therefore, a binary string of [ bits in length
offers 2' possible 0/1 combinations and can be used to represent a total of 2’ real values.
For example, if [ = 3, then there exist a maximum of eight combinatory ways to arrange
the 3-bit string. The eight possible combinations and the real values they represent are

listed in Table 4-1.

Table 4-1: Eight Possible Combinations of a 3-Bit Binary String and Corresponding
Decoded Real Values

Combination ID|Binary Code| Decoded Real Value
1 000 0
2 001 1
3 010 2
4 011 3
5 100 4
6 101 5
-7 110 6
8 211 7

But how is a étring used to represent a parameter value and what value does it represent?
As shown in Table 4-1, a 3-bit substring can have 8 possible combinations and each of
them can be conveniently utilized to represent a real number between 0 and 7. To obtain
the implicitly éssigned real number, a binary decoding equation is used to convert a string -
into é real value. For a string S..;, Si2 Si3 Siq, ..., and So, where S;.; and S;.,, are the

binary values of bit 1 and bit-2 of the string, the decoded real value can be written as:
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' g . ’ ’
-Decoded Real Value = 22[5,, v - . (Equation 4-1)

i=0

Table 4-1 also lists the decoded real values represented by the 8 combinations of a 3-bit

“string.

Mathematically, a binary decoding equation is a series carrying ! terms, where [ is again
the length of a sub-string. The design length of a binary code string is simply derived
~ based on the number of the substfiﬁgs (parameters) it has to represent and the desirable
accuracy of the represented parameter values. Hence iﬁdividually, the length of a
substring required to represenrt a parameter depends only upon the individual degree of

accuracy desired. The accuracy of a parameter is calculated as:

(Xmax _Xmin)

Coding Accuracy =
g y 21

(Equation 4-2)

where X, = the upper bound of the feasible range of parameter X,
Xnin = the lower bound of the feasibie range of par‘a'rneter X,

[ = sub-string length in number of binary bits

For a substring length of 3-bits, the accuracy of the specific parameter is equal to (X -
Xmin) /7. Equation 4-2 can also be rearranged to calculate the substring length, Lusgring,

needed to achieve a specified accuracy.

(Xmux._ Xmm) +1
CodingAccuracy

b Equation 4-3
substrmg) LOg(2) ( q ; )

‘ Log(l

For example, if a modeling parameter is feasible between 0 and 1000 and one would like
to know what substring length is required to achieve a parameter accuracy of 1 or less,

then equation 4-3 can be used. It can be easily shown that the substring length should be
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at least of 10 bits in order to obtain 1,024 possible combination of a 10-bit string and

achieve a corresponding accuracy of 0.976, which is within the accuracy desired.

Once a string is decoded into a real value and the related accuracy calculated, the true

parameter value can then be calculated as:

X =X,in + Decoded Real Value x deing Accuracy ‘ (Equation 4-4)

Reusing the 3-bit string as an example, one can see that string 000 (or any arbitrary-
length binary string containing genotype 0 only) would always yield a decoded value of
zero and thus is equal to Xy, by default. In contrast, the string 111 (or any arbitrary-
length binary string containing genotype 1 only) would always yield a decoded value of

2'— 1 (which can be proven with some mathematical manipulation). Thus, the string 111
or other entirely genotype-1 strings are automatically equal to X, values. The
remaining six 3-bit strings vary their true parameter values linearly based on their
decoded real values as shown in Table 4-1. This rule applies to strings of any length (any

number of bits).

To illustrate the above discussion, assume that the eight 3-bit strings in Table 4-1 are
used to represent eight possible evenly spaced parameter values between 1 and 10.
Clearly, string 000 has a true parameter value of 1 while stfing 111 has a true parameter
~ value of 10. From equation 4-2, the accuracy is calculated as 9/7 and tyhevtrue parameter
values of remaining six strings may be cofnputed from equation 4-4. They are

summarized in Table 4-2.
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Table 4-2: Eight Possible Combinations of a 3-Bit Binary String and Corresponding
Parameter Values

Combination ID|Binary Code| Decoded Real Value [True Parameter Values

1 000 0 1.0
2 001 ' 1 2.3
3 - 010 2 3.6
4 011 3 4.9

5 100 4 6.1

6 - 101 5 7.4
7 110 6 8.7
8 111 7 10.0

The inherent limitation of the binary coding and any other form of coding system is that
mathematically their coding strings can only represent a family of evenly spaced discrete
values between the lower and the upper bounds of each parameter in the search space.
Therefore, the coding strings at their best only form a discrete function rather than a
continuous funcﬁon over the domain of the feasible search space. Hence, the size of the
even spacing between the discrete values is apparently the coding accuracy calculated in

equation 4-2.

This limitation of a coding system creates difficulty when one would like to code for a
random value in between two discrete values, say 9.35 using a simple 3-bit binary string.
From Table 4-2, one can see that 9.35 is the midpoint between the discrete values 8.7
(string 110) and 10 (string 111), and it is not possible to generate another 3-bit string to
accurately represent the value of 9.35. To resolve this difficulty, one will commonly
increase thé string length to réduce the even spacing between the discrete values
represented by a family of coding strings in order to reduce the inevitable round off error.
In this case, if a family of 4-bit string is used, then the coding accuracy will increase by a
factor of 2.2 from 1.3 to 0.6 and consequently the value of 9.35 can be more closely
represented by a 4-bit string 1110 which gives a parameter value of 9.4. Therefore, for
the degree of accuracy required by the modeling parameters needed in an optimization
problem and model calibration, it is possible to satisfy the coding accuracy and error
requirement by increasing string length. - Nonetheless, for optimization problems that
involve only decision variables, the usage of coding string is appropriate and incurs no

errors because the variables are exactly represented through coding.
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Table 4-3 lists the 16 possible combinations of a 4-bit binary coded string. The value of
9.35 can be represented by string 1110 which indeed represents an exact value of 9.4.
However, if the discrepancy of 0.05 between 9.35 and 9.4 cannot.be tolerated, the length

of coding strings can be further increased to 5 to minimize the error.

Table 4-3: 16 Possible Combinations of a 4-Bit Binary String and Corresponding
Parameter Values ‘

Combination ID ~__Binary Code Decoded Real Value | True Parameter Values
1 0000 ' 0 1.0
2 0001 1 1.6
3 0010 2 - 2.2
4 0011 3 2.8
5 0100 4 3.4
6 0101 5 4.0
7 0110 6 - 46 -
8 0111 7 5.2
9 1000 8 5.8
10 1001 9 6.4
11 1010 10 7.0
12 1011 11 7.6
13 1100 12 8.2
14 : ' 1101 13 8.8
15 1110 14 9.4
16 1111 15 10.0

Other coding systems such as tertiary and Gary codiﬁg may be used to achieve high
coding accuracy without carrying long string length. Bvut they are more complicated and
add unnecessary complication to the computer implementation of genetic algorithms.
Hollstein (1971) investigated the use of Gary code in GAs and found that it works
slightly more efficiently than the conventional binary coding. In the present thesis, only
the binary code représentation will be discussed because of its wide acceptance among
practitioners of GAs and the established theory on GA operations: Schema Theory is

-developed based on binary code structure.

It is worth noting that binary coding is extremely efficient at representing decision

variables in the optimization of a decision model. A decision variable can be simply
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represented by one bit with 1 for “yes” and O for “no” in the decision making process. In
fact, this 1s exactly the way GAs are used in designing optimal low-cost natural gas
transmission or water distribution networks as mentioned in Chapter 3. In GAs, a. binary
string of 100 bits can represent the decision variable of 100 water supply pipes in the
network. If a decision variable is represented by a O in the bptimal solution, then the pipe
is redundant. However, if a decision variable is represented by a 1, then the pipe must be

constructed to meet the conveyance criteria.

4.4 Initialization of Genetic Algorithms

The initialization of genetic algorithms involves the random creation of the initial string
population, setting of population size, number of generations to evolve, and termination

criteria for the GA search to terminate. The following sect‘ions' provide the details.

i

4.4.1 Random Creation of Initial String Population

Once a coding system is chosen to represent sets of model parameter values in strings, an
initial population of strings must be randomly generated in coded form before any genetic
evolution can take place. The reason why the strings are randomly generated is two-fold.
Firstly, unless specific information exists, strings (candidate solutions) freely created by a
random generator are no worse than any other guesses. Secondly, by randomly creating
each string’s genetic information for the entire initial population, maximum genetic
diversity is achieved in the gene pool. A diverse gene pool is more likely to contain the
key genetic information blocks needed to form some high fitness strings and, ultimately,

the optimal string.
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4.42 Choosing GA Population Size and Number of Generations

The concept of genetic diversity leads to the two most frequently asked questions about

genetic algorithms:

1. What is the population size needed to maintain sufficient genetic diversity among
candidate solutions in order tp achieve an optimal, or at least near optimal,
solution efficiently, without carrying the burden of long computational time?

2. How many generations of genetic evolution are needed to allow strings (candidate
solutions) to mate, mutate and subsequently produce an optimal or at least near

optimal solution in relatively short computational time?

There is no absolute rule about choosing the right population size and number of
generations to run in GAs. However, some guidelines can be found in the literature. In

most cases, the GA user must determine what to use through a trial and error process.

Goldberg (1989) suggests that population size is commonly between 30 and 100,
depending'on the complexity of the objective function in terms of the degree of non-
linearity. However, hé also points out that the population required is case specific, and he
make no recommendations on the number of generations to run. Carrol (1999) suggests
that using a population which is an exponential of two, i.e. 2" (where N is any integer

greater than 1), can enhance GAs’ efficiency in finding the optimal solution.

In most GAs reported, the number of strings in the population is almost always fixed for
the simplicity of coding and programming. However, there is no written rule that
prohibits the use of varying population size in different generations. In fact, the
population of a species in nature would vary in every generation, based on the species’
performance in a hostile environment. Thus, it is logical to think that if a candidate
‘solution’s performance is poor and below a filtering criterion, then it could die without a
chance to produce offspring and the population declines. But to the best knowledge of

the author, there is no conclusive research reported that shows varying population size
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after each generation will help the GA solver to approach an optimal solution more

efficiently.

The second dilemma faced in GA initialization is the setting of the number of generations

to run. The number of generations in simple terms is the number of evolution cycles

_required to improve string fitness (optimality) and eventually reach the optimal solution.

If the number of generations assigned is small, then a sub-optimal solution near the
global optimal solution is more likely to be found instead of the global optimal solution
itself. On the contrary if the number of the generations 1s too large, then the following

two problems may be encountered:

1. The éomputational time may be so consuming that GAs become less practical
against other optimization techniques.

2. Genetic diversity of the candidate solutions may be lost and the search zeros in on
a single false or non-optimal solution. Fortunately, this problem can be avoided

by using techniques that will be explained later.

Hence, in order to avoid unnecessary searching and reduce computational time, a set of

termination (stopping) criteria should be used to end the GA search.

4.4.3 Termination (Stopping) Criteria of GA Search

Typically, the first termination criterion is to stop the -iterative GA search after the
maximum number of generations prescribed in advance is reached. The prescribed value
is usually weighted by the upper limit of the acceptable computation time desired. The

limitation of this type of termination criterion is that it takes no consideration of whether

a near-optimal solution is found or not.




The second termination criterion is to stop the GA search if the optimal solution has
apparently converged. But how does one know whether a convergence has been reached -

and an optimal solution found?

Under some special circumstances, the upper limit of the objective function of an .
optimization problém is known. For example, in the UBC Watershed Model, the
theoretical upper limit of a possible objective function for model performance, e/, is +1.
Thus, the second termination criferion can be stipulated to stop the GA search if the best
performing candidate solution of the continuously evolved population achieves a fitness
value close to +1, say 0.95, for example. If an e/ value of 0.95 is not obtainable in the
model calibration, then the second criterion is not satisfied. The GA search will go on

until the first criterion is satisfied.

However, under most circumstances the optimal objective function value is not known
and needs to be explored. Therefore, the GA search may be set to stop if temporal
convergence is reached. The term “tempofal convergence” means that the best objective
function value achieved by a continuously evolved population of candidate .so]utions
ceases to improve significantly generation after generation. For example, the GA search
can be stopped if the best fitness value achieved by a population does not improve

significantly for ten consecutive generations.

It 1s important to emphasize that when a temporal convergence is reached; the candidate
solution found may not necessarily be tkfe optimal. The cruel reality GA developers and
users have to face is the fact that in a non-continuous, discrete, multi-modal search space
of multi-dimensionality, no solution can be analytically proven as the global optimal

solution.

Figure 4-1 is a simple example of GAs performance in finding the maximum height (the
objective function value) of a hemisphere. One can see that the curve D achieves the
ultimate convergence at 99.98% of the known maximum height while curve C reaches a

temporal convergence at 99.88% and consequently outputs a non-optimal solution (if the l




number of genefations simulated is limited to 29 or less). This example will be discussed

in the next section.

’Figure 4-1: An Example of Temporal Convergence, Curve C in Searching the
Maximum Height of a Hemisphere

Searching the Maximum Height of a Hemisphere
(Pop size=30, No. of generations=30)
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In summary, two sets of termination criteria should be used in the initialization process of
GAs. Whenever one of the termination criteria is satisfied, the GA search will be ended
and the candidate solution with the highest objective function (fitness) is deemed to be

the optimal solution.
Due to the sheer number of strings used in the population of GAs and the number of

- generations that are. required, it is not difficult to understand why GAs were only

implemented since the 1970s after the computer became the main computational tool in
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research. Without the high speed of current state of art personal computer, the research

boom in genetic algorithms would not have been poééible.

4.5 Designation and Evaluation of Fitness (Objecﬁve Function)

Once an initial population of candidate solutions in the form of genetic strings is
randomly generated, each string is then decoded to real parameter values and its fitness
value evaluated against the designated objective function. The formulation of the
. objective function can be direct or indirect depending on how easily it can be calculated.
In a simple single-objective optimization problem, the objective function can be an
explicit and concise formula; thus it can be embedded into the GA program code as a
subroutine. However, in cases in which GAs are used to calibrate models, the objective
function used to statistically measure the model performance can be complicated and
should be treated as a separate module, independént from the GA progr.’arn‘code. In the
GA calibration process of the UBC Watershed Model, the GA program code repeatedly
calls the UBC Watershed Model to generate a set of simulated streamflow and calculates
the respective statistics such as e/ for every string to find out its corresponding fitness.
The resulting fitness value of a genetic string is important because it determines whether
this candidate solution can be selected as a parent to produce offspring in the immediate
next generation. Typically, the string with a higher fitness will have a higher probability
of being selectéd and thus more likely to produce offspring while the lower fitness strings

will have low probability.

4.6 Selection of Parent Strings (to Produce Offspring)

The two most commonly used selection methods to choose parent strings for the creation
of the offspring in the next generation are the weighted roulette wheel and tournament

selection methods.
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4.6.1 Weighted Roulette Wheel (Fitness Proportionate) Selection

(

In this method, a biased roulette wheel is virtually created using a computer algorithm to
artificially implement the concept of survival of the fittest. In mimicking what is
observed in the natural realm, high performance strings accordingly have high probability

of producing one or more offspring with their genetic traits.

Mathematically, the circumference (or the total area) of the roulette wheel represents the
sum of fitness m)eésures of the entire string population whereas the arc-length (or the
sector area) of each slot in the wheel represents the individual string fitness. In other
words, the size of each slot of the wheel is allocated proportionately to individual string
fitness, and the number of slots is equal to the population of the strings. Therefore, the
ﬁi gher fitness value a string has, the bigger slot it occupies on the roulette wheel, and thus
the more likely it is to be selected. Statistically, the most likely number (N) of offspring a

parent string would contribute to create is:

N=n- fz:ij\'zidunl — f‘individual (Equation 4-5)
2 f fnvemge
i
i=1

where n is the number of strings in a population of candidate solutions
f individual 18 the fitness of a parent string
fi=1 wpop. 1s the fitness of every string in the population

S average 15 the average fitness of the entire string population

Note that% is the probability of a string to be selected for mating; it is therefore

>

always less than 1.
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4.6.2 Tournament Selection

This method requires two parent strings to be selected at random regardless of their

respective fitness. Once selected, the two strings are then compared on their fitness and

the higher performance string becomes the parent string for the prod\uction of offspring in
next generation. Thus, to select two parent strings for mating, four random selections
must be conducted. Although this method is biased towards high fitness parent strings, it
does not dictate the production of offspring based on the ratio of individual string fitness

to total fitness of string population.

4.7 Genetic Operations

Upon the selection of the parent strings, they are used to produce offspring via genetic
operation. The conventional genetic algorithms consist of three operators mimicking the
evolutionary processes observed in nature. They are feproduction, crossover and
mutation. More advanced operators have also been used with success, but the three main
operators are efficient for searching for near optimal solutions in a multi-dimensional
space. Because these genetic operators are probabilistically selected for use, each of
them is assigned a respective probability. The probabilities of reproduction (P,),
crossover (P,.) and mutation (P,,) are usually assigned based on empirical results. Again,
there are no absolute rules, but only guidelines in setting the probabilities of genetic

operators.

4.7.1 Reproduction

The reproduction operator allows a parent string to produce a duplicate offspring with
identical genetic information. Although this operator appears to be too simple and
redundant, the key importance of this operator in GAs'is to preserve the incumbent high
performance strings for mating in future generations rather than in the immediate next

generation. Without this operator, the incumbent high performance string may be

39



completely destroyed by other genetic operators such as crossover'(to be discussed) and

denied the chance to mate with strings of the future generations, yet to be born.

The probability of a selected parent string to reproduce itself for the immediate next
generatibn, P,, is often deéided by the GA user. Depending on the complexity and nature
of the optimization problem or calibration process involved, the importance of the
reproduction operator’s role in creating new offspring may vary. P, is often between
about 0.1 and 1/3. While higher P, values will slow the GA search efficiency because the
offspring are identically the same as the parents, low P, values will also prolong the
required search time because of the destruction of high fitness strings. In common GA
program code, P, is usually not set explicitly because P, is equal to I-P.-P,, once the P,

and P,, values are agreed upon.

Based on the chosen P, value, a portion of the selected parent string (using the roulette
wheel scheme) will be given the reproduction operation. Thus, probabilistically the
approximate number of genefic strings to remain totally unchanged in a generation of

genetic operation is

N reproduction =Population P, ] (Equation 4-6)

Since reproduction does not change a string’s fitness at all, tournament selection can be
imposed to further increase the average fitness of strings reproduced‘ for next generation.
This is achieved by selectiﬁg two strings using the roulette wheel selection method first
and then only admitting the string of higher fitness to the population of the next
generatioﬁ. Because the fitness of every string has been already evaluated and stored in a
numeric array, the fitness of the two strings selected for tournament can be directly
compared without calling the objective’ function subroutine or rerunning the

computational model for fitness.

Figure 4-1 compares the use of the reproduction operator with and without tournament

selection in terms of search efficiency. A reproduction operation without tournament

'

40




selection (Curve B) performs better than a reproduction scheme with additional
~ tournament selection (Curve A) when a single crossover operator is also used. However,
the opposite is true when a uniform crossover operator is used. The definition of a

crossover operator and its various types are the subject of the next section.

4.7.2 Crossover

The crossover operator allows a selected parent string to mate with another selected
parent string and exchange genetic information at one or more gene location(s) of the
binary strings to form one or two offspring. ‘Regardlesstof the number of the offspring
formed, the offspring strings should inherit a portion of genetic information from each
parent. The intent of using a crossover operator in genetic algorithms is to divide genetic
information into building blocks or even as small as genes (bits) and hope a systematic
recombination of ‘the building blocks will lead to higher fitness strings or candidate

solutions.
Typically, crossover operation can be categorized as one of three types: '

1. Single point crossover
2. Multi-point crossover

3. Uniform crossover

A gap in between any two gene-positions about which the genetic information of two
parent strings can exchange is called a cutoff point. The number of cutoff points used in
the crossover operation determines the crossover type. In a single point crossover, a
cutoff point is usually randomly chosen along the full string le’ngth and the genetic
information of two parent strings is exchanged about this cutoff point. An example of
single point crossover is provided in Figure 4-2. For a string length with L bits, there are
L-1 bit-linkages that can become cutoff points. Thus the probability of a binary linkage

to be selected as a cutoff point is 1/L-1). Depending on the GA user’s preference, the
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random cutoff locations may also be limited only to the linkages of substrings, with each
substring representing the value of each parameter in the optimization problem or model

calibration.

Figure 4-2: Single-Point Crossover of Two Selected Parent Strings

Two Parents
111 010} 1 1 0|1

Two Offspring
1111010

A multi-point crossover or uniform crossover often replaces the single-point crossover
when the string length becomes too long for a single point crossover to efficiently explore
| large numbers of recombination of the parents string to obtain better offspring. Similar to
. the single point crossover, cutoff points are also randomly selected in multi-point
crossover and the two parent strings alternatively exchange their genetic information

about these cutoff points. An example of multi-point crossover is provided in Figure 4-3.

Figure 4-3: Three (Multi)-Point Crossover of Two Selected Parent Strings‘

Two Parents
1 1 001 1{0]1
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In the uniform crossover, every binary bit is given a significant probability (usually 0.5)
to switch genetic information with its position-based counterpart of the mating parent
string. Therefore, every binary bit linkage can be a cutoff point for crossover. The
maximum number of cutoff points that may take place concurrently to a binary string of
length L in uniform crossover is L-1. However, whether or not the two selected parents
strings switch genetic information at a particular binary bit position is probabilistic and
can be decided by flipping a coin L times, or by applying a random binary integer
generator with 1 indicating yes and O indicating no. The blueprint for which bits to
exchange or not to exchange is referred as the crossover mask. If a probability of 0.5 is
used, then the average number of bits to be switched in uniform crossover operation is
L/2. Figure 4-4 is an example of uniform crossover for a given crossover mask. Notice
that in bit positions 1 and 6, the genetic information exchanged is identical; thus the
crossover at these two positions has no overall effect in differing the fitness of offspring
from the parent strings. Therefore, in this example, without an additional exchange of the
binary bit in position 3, the offspring produced in this uniform crossover operation will

be identical to the two parents.

Figure 4-4: Uniform Crossover of Two Selected Parent Strings with a Randomly
Generated Crossover Mask

‘Two Parent String with A Crossover Mask
t{1]1]0(0] 11101

Y N Y N N Y N N

R = ; 1

Two Offspring

Despite the fact that the effect of crossover sometimes may not be very pronounced due
to very similar parents strings, most of the time the crossover operator creates new
offspring with profound implications. The creation of new offspring implies that two

additional points in the solution space are to be searched and tested. Thus an effective
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usage of the crossover dperator will greatly enhance the search efficiency of GAs. This

leads to the discussion on setting values for P,, the probability of crossover.

The mixture of genetic information from both parents through crossover creates offspring
that may out-perform or under-perform both parents. In general, the values for P, should
be between 0.6 and 0.8. Goldberg (1989) suggested a P, value between 0.6 and 1. An
increase in P, would positively increase the number of recombinations of genetic
building blocks and enhance the chance of finding the optimal stﬁng (solution)’; but it
inevitably destructs fhe reasonably good strings already in existence. This is especially
true if the P, is relatively high. If a P, value of 1 is used, it is doubtful that the chance of
finding a better near optimal string will outweigh the impact of losing the best solution
found so far. In order to preserve a good string, the reproduction operator and advance
operators, such as elitism, should be used. The elitism operator will be discussed in a

later section.

The choice of types of crossover operators to use is less controversial. In general, the
more crossover cutoff pbints that are available, the better the GA search efficiehcy. For
example, Figure 4-1 in section 4.4.3 shows that a uniform crossover operator tends to
outperform a single-point crossover operator. For the calibration of two watersheds using
the UBC Watershed Model, experiments conducted for the present thesis show that the

uniform crossover tends to converge the fastest and generate the best results.

4.7.3 Mutation

Mutation is one of the three major types of génetic operation in which every gene of a
parent string is assigned a uniform probability to randomly alter the bit value. The
probability of mutation is usually small as observed in nature. The parent string with

randomly altered genes then becomes the new offspring. If strings are binary coded, a

mutation operator will change bit value of a gene from 1 to 0 or vice versa. The mutation




process is deliberately given a small probability so only a limited number of genes are

altered. Otherwise, given higher probability, the process can turn into a random search.

Mutation can be implemented implicitly or explicitly. In the implicit scheme, the
mutation operator is embedded in the reproduction and crossover operation. After an
offspring string is created via reproduction or crossover, a small uniform bit-wise
mutation probability is assigned to each gene of the string. The typical bit-wise mutation
probability, P,, used is between 0.01 and 0.02 (Carroll 1996). Note that the apostrophe
indicates the mutation probability is bit-wise. Thus for a string with a length of 20 bits,
the probability of having at least one gene mutation along the full string length is between
0.2 and 0.4. As the string length increases (say to a length of 100 bits), bit-wise mutation

will almost-ceftainly ocCur.

In the explicit mutation scheme, the mutation operator is probabilistically selected for use
just like reproduction and crossover operators. For example, to create offspring from
selected parent strings, the probabilities for reproduction (P,), crossover (P.) and
mutation (P,,) can be assi ghed as 0.3, 0.6 and 0.1, respectively, thus the mutation operator
will be used about 10% of the time. When the explicit mutation scheme is used, the sum
of P, P, P, should add up to 1. To clearly differ from the reproduction operator, the GA
code is arranged so that at least one bit mutation will occur somewhere in the string. For
example, if a 100-bit string is selected for explicit mutation instead of reproduction or
crossover, each gene will have a bit-wise mutation probability of 0.01 (the reciprocal of
100). Users can also specify the number of bit mutations to occur depending on their
preference. Nonetheless, allowing a large number of bit-wise mutations can turn the GA
search into a random search. The value of P, for the.explicit scheme ranges from 0.2 to
0.4 depending on the parent string selection method used. The advantage of having a
high P, in both mutation schemes is to reintroduce genetic diversity that is lost when a
selection method such as the roulette wheel scheme purges the strings with low fitness.
However, the disadvantage is that a high P,, value will easily transform the GA search

into a random search by altering the parameter (éubstring) values at random.
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Because the alteration of a gene is probabilistic, in the implicit mutation scheme there is
not a concrete rule preventing the change of more than one bit. The position of a
mutation in a string is randomly chosen based on a uniform probability distribution along
_ the full string length. In the explicit mutation scheme, one or two bit mutations are
usually pre-specified, and a random generator is applied to determine the position of bit
mutation in a string. Thus, in both mutation schemes the offspring‘ created through
mutation often bears close resemblance to the original parent strings. Thé intent of
mutation is, therefore, to allow small-scale genetic information alteration (compared to
large-scale alteration in crossover) in the hope that high performance strings (candidate
solutions) can be found through local and minor genetic improvement. For example, at a
particular position of a string, the current value is 0 and this value needs to be changed to
1 to form the optimal string (i.e. string which would achieve optimal objective function),
mutation is the best means to change. - Neither reproduction nor any form of crossover
operators can accomplish the change from O to 1 without the risk of disturbing any of the

existing genetic information in other positions of the string.

In addition to finding a possible optimal solution through local gene change, mutatidn is
used to continuously insert changes into candidate strings to maintain a high level of |
diversity in the gene pool. It is important to emphasize that because the roulette wheel
selection method chooses parent strings according to their fitness, the gene pool diversity
. 1s gradually reduced as less fit strings die out and become extinct. So mutation is useful

in maintaining genetic diversity in the population.

4.7.4 More Notes on Choosing Probabilities of Genetic Operators

In the process of genetic operation, the question arises of how these genetic operators are
probabilistically selected for use. The reproduction probability is usually set to about O.i
to 1/3. The crossover probability is usually set to about Q.6 to 0.8 or even to 1. The
mutation probability normally ranges from 0.2 to 0.4 in explicit scheme and 0.01 to 0.02

for bit-wise mutation in implicit scheme. If only the reproduction, crossover and explicit
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mutation operators are used, the sum of their respective probabilities should be 1. If the

implicit mutation scheme is used, the sum of P, and P, should be 1.

The choice of P,, P. and P, (or P,,") is problem specific and their assigned values depend
upon the complexity of the objective function of the optimization problem or the measure
the model performance. ‘Thus, to achieve high GA search efficiency the choice of P,, P,
and P,, (or P,’) may require several sensitivity analyses. In practice, the probability
values are often initially set based on some guidelines suggested in the literature and then
they are fine-tuned by trial and error from empirical GA search efficiency results. The
distribution of the probabilistic weights among the three major operators is a subject that

remains inconclusive and needs to be further investigated by GA researchers.

4.7.5 Elitism

Elitism 1s a genetic operation in which the best one or two of the candidate strings of a
generation are by default automatically reproduced for the immediate next generation
without using any parent string selection method. The intent of using the elitism operator
is to preserve the solution that ranks high in terms of fitness and prevent crossover and
mutation operators from accidentally destroying the best solution found so far in a search.
If elitism is used, the best-of-generation fitness will always be equal or greater than the

fitness value of the previous generation because the best string always survives. ’

De Jong (1975) found that the elitisrﬁ operator improves the average fitness of strings for
a uni-modal objective function, but decreases the performance of strings for a multi—
modal objective functioﬁ. However, in the GA calibration of the UBC Watershed Model
conducted for the present thesis, elitism was found to greatly increase average fitness of
strings despite that the objective function to be optimized in model calibration is indeéd

multi-modal.
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4.7.6 Scaling

Scaling is a genetic operation in which the fitness of high performance strings is under-
emphasized to prevent rapid loss of gene diversity in population. It is also used to over-
emphasize the difference between strings of similar fitness so that an optimal one can be
‘identified quickly. In GAs where the roulette wheel selection method is used in éhoosing
parent strings for the creation of offspring, it is possible that a few very high performance
strings are overly selected as parent strings due to their high fitness. = These very fit
strings crossover with each other, and may produce offspring identical to the parents,
which severely reduces the diversity of gene pool of the population. This phenomenon is
known as premature convergence because the identical offspring produced due to lack of
gene diVersity can easily mislead the GA users to believe that a converged solution near
the global optimal has been achieved. To prevent the premature convergence in GA
search, a scaling operator is used to reduce the weight of high performance strings rather
than allocating the weights directly proportional to ‘their fitness. An example of simple

linear scaling transformation of raw fitness values is shown below:

F=a-(f = Frrage )t Fovernce (Equation 4-7)

where f'is the fitness of a particular string to be scaled
f average 18 the average fitness of the entire population
[ is the scaled fitness |

a =a scaling parameter which is usually less than 1.

Applying equation 4-7 with values of a < 1, strings with high fitness will be assigned
smaller fitness and allocated smaller slots in the roulette wheel selection. Table 4-5
summarizes the scaled fitness of the five strings listed in Table 4-4 using a scaling

parameter of 0.7.
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Table 4-4: Fitness without Scaling

. . No. of times selected after
String ID| Raw Fitness 100 roulette wheel turns

A 1.5 : 13

B 2.0 .17

C 1.0 9

D 5.0 43

E 2.0 17

Table 4-5: Scaled Fitness

. . No. of times selected after
‘Strlng ID |Scaled Fitness 100 roulette wheel turns

A 1.7 15

B 241 - 18

C 1.4 12

D 4.2 36

E 2.1 18

At the first glance, the changes may appear small and insignificant. However, as the
number of generations increases, the accumulative effect of scaling will become
significant and pronounced. Note that it can be proven that the value of fuyerqge remains

unchanged in the linear scaling transformation.

The scaling operator is also useful in facilitating the search of the optimal from a group of
near-optimal solutions when premature convergence is not a concern. For example, if the
fitness of all strings is very close in magnitude, then each parent string would-be selected
‘a roughly equal number of times and the roulette wheel selection would lose its bias
towards the better strings. Under these circumstances, it is necessary to emphasize the
superiority of one string over another by using the scaling opérator. This can be easily
achieved by applying equation 4-7 with a coefficient a > 1 to magnify the fitness

differences among parent strings.
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4.7.7 Niching

Niching is a genetic operation in which the clustering of a large number of strings in a
high fitness region of the search space is intentionally prevented. A GA optimizer which
uses the major genetic operators discussedAuntil now is sufficient if the optimization
problem is single-objective and the objective function is uni-modal, or the objective
function is mlulti—modal but only the glob'al maxima (minima)‘ié of interest. However,
sometimes it is important to know the values of all maxima (both the global and local
ones) and their corresponding parameter values (locations in multi-dimensional search
space). Or sometimes, the single-objective functipn may be multi-modal but with peaks
of equal magnitude which need to be simultaneously identified. - Under .these

circumstances, the GA optimizer must be further improved with a niching operator.

For example, if the objective function of a single-objective problem can be approximated
as a sine function with five equal peaks, applying genetic-algorithms search technique
without a built-in niching operator will yield the location of only one of five eq‘ual peaks
and indicate hothing about the presence of the remaining four péaks. This phenomenon
is known as the “genetic drift” caused by the intended bias in the weighted roulette
selection of the fitter parent string. The “genetic drift” occurs when only one of the equal
| peaks or near equal peaks is first found during the search and the peak receives
overwhelming weight in the roulette selection process. In other words, as soon as a
relatively high peak or an enclave of high fitness is found, the strings (candidate
solutions) in other sub-domains where other equal peaks can be found will die off to
make room for new-born offspring of the newly found peak. Therefore, without niching,
after running GAs for a number of generations, the entire string populatlon would tend to

cluster at one location rather than scattermg at various 1ocat10ns

Figure 4-5 provides the GA search results for a simple sine function y=10*sin(x) without

a niching operator. Of the thirty candidates created to search, twenty-five candidate

solutions landed near the first peak (x=3.14) while only three landed near the fifth peak




(x=26.70). Therefore, although two equal-magnitude peaks were identified without

niching, the fifth peak could have been easily overlooked by GA search without niching.

Figure 4-5: Genetic Search without a Niche Operator for a Simple Sine Function

Genetic Search without a Niche Operator (Pop.=30, Generation=30)

objective function, y

X value

Hence, the niching operator can be. viéwed as a fitness sharing function which
discourages the clustering of candidate solutions near an already found optimum or a
particular sub-domain of high fitness, and encourages the continuous search of other
possible peaks that may be present as well. The niching operator used in the GA code of
this thesis is a sharing function which reduces the individual objective function based on
the number of candidate solutions clustered within a nearby small sub-domain. The

sharing function in one-dimensional form can be expressed as:

fniching = fm"’ ‘ (Equation 4-8)

2
n=§prjp. Xmax B Xmin :

J

where f,,, is the evaluated fitness of a particular string before niching
Jriching 1 the modified fitness of the particular string after niching

Xonax = the upper bound of the feasible range of the one-dimensional parameter X,
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Xomin = the lower bound of the feasible range of the one-dimensional parameter X,
X = the value of parameter X for the particular string,

X; = the value of parameter X for all other strings in the population.

Equation 4-8 forces a broader search away from the known high fitness region;
Therefore, based on equation 4-8, a candidate solution with a lower fitness (objective
function), but with no other candidate solution nearby will have a higher chance of
survival than a candidate solution with a high fitness (objective) and many candidate
solutions nearby. By using the niching operator, the GA search is armed to prevent
undesirable premature genetic clustering, referred to as genetic drift in GA terminology,
which may mislead users to a sub-optimal solution. However, the niching operator by no
means implies that no candidate solution is allowed to stay near the already found peak.
In conclusion, one may say that the word “niche” used in GAs means that stable numbers
of sub-populations of strings (candidate solutions) should search various sub-domains of
the objective functions and stay there even if the maxima found by them are local ones,
regardless of additional higher maxima being found somewhere else in the domain of the

objective function.

Fig.ure 4-6 provides the GA search results for a simple Sine function y=10*sin(x) with a
niching operator. Three peaks (first, second and fifth) were clearly identified and the
remaining two peaks would be identified if additional generations of simulation were
given. Candidate solutions were also less clustered compared to the ones in Figure 4-5.
Therefore, the niche operator has served its purpose of identifying almost all the equal-

magnitude peaks.

One interesting 6bservation worth noting 1s that the GA experimental results éhow that
when using a niching scheme, the average non-niched fitness of the entire string
population is usually less than the average fitness of the strings obtained without niching.
The slower search efficiency is a trade-off for the added ability to map the behavior of the

objective function in more detail.
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Figure 4-6: Genetic Search with a Niche Operator for a Simple Sine Function

Genetic Search with a Niche Operator (Pop.=30; Generation=30)

Ia

objective function, y

4.7.8 Other Operators

Besides the fundamental genetic operators mentioned, several other GA operators have
been devised, based on observed genetic processes in nature, with the hope of improving
the robustness of GA search. However, the success of these operators remains relatively
limited and tends to be case specific. Two of the better-known operators that fall into this

category are dominance and inversion.

Until now, every caﬁdidate solution discussed is coded in one single string as the single-
stranded chromosome of uncomplicated forms of life observed in nature, (Goldberg
1989). But what if one attempted to code a candidate solution with two strings similar to
a double-stranded chromosome found in more complicated life forms in nature? What
advantage in GA search efficiency can be achieved by using a two-string system to
represent a candidate solution? Under the two-string (double-stranded) system, each
string of a candidate solution contains both dominant and recessive genes (genotypes).
To determine what model parameter values the coded candidate solution actually
represents, a third string is implicitly created by -comparing the two strings bit-by-bit
based on their gene position. For every gene position, only the dominar{t gene is

admitted to the same gene position of the third string. The recessive gene is admitted
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only when there is no dominant gene in the same position of both strings. The third
string created is the phenotype of the candidate solution that can then be decoded as a
single-string coded candidate solution. The process of creating the decodable third string
is the so-called dominance operation. Thus in brief, dominance is the mapping of the
genotypes (two parallel strings with both dominant and recessive genes) into the
phenotype (a finalized single string decodable to mathematically represent a solution in
search space). It is believed (Goldberg 1989) that a candidate solution of two coded
strings shields recessive genes for future use and may positively affect the search

efficiency. No conclusive finding can be found in the literature.

Inversion in genetics is a reordering operator Which reverses the genes of a coded string
about some given switch locations. Thus, inversion operation can be seen as the reverse
shuffling of bits in a coded string. The inversion operator can be applied on both single-
string and double-string candidate solutions. How inversion can improve GA search

efficiency is beyond the scopé of this thesis and will not be discussed.

4.8 Computer Procedures of Genetic Algorithms

After providing an overview of how GAs can be used in model calibration and explaining
the essential components of a genetic-algorithms based optimizer and model calibrator,
let us summarize the detailed computational procedures both in writing and in a flow

chart with propef GA terminology.
The conventional genetic algorithms usually follow the steps below:

e Start by asking the users to input the string population size and maximum number
of generations to evolve. As mentioned before, there are no simple rules to
determine the optimal population size and maximum number of generations. The
binary type of coding representation of genetic strings is recommended because it

1

can be decoded and programmed conveniently.
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. Allow the users to choose the appropriate genetic operators. The users should
have some fundamental understanding of the operators and their effects on search
efficiency. Usually, for any practical application, one needs the three basic
genetic operators at least; namely reproduction, crossover and mutation.

. Allow the users to decide the probability of reproduction, crossover, and mutation
operators. Again there is no simple rule to.decide their values though some
guidelines were provided in the literature. The selection of probabilities is usually
done through some experiments on GA search efficiency oh a trial and error basis.
For a rough start, try a crossover probabi‘lity of 0.65, a reproduction probability of
0.35 and a bit-wise mutation of 0.02.

e Prescribe the number of dependent or model parameters to be estimated and
assign their upper and lower bounds. Use the string length measured in bits to
obtain the desirable level of accuracy for each parameter value. Use equation 4.3
in section 4.3 to determine the required string length. |

e Assign GA termination criteria. Usually the users are asked to specify the
maximum allowable generation number to run (criterion 1) and the degree of
convergence to achieve by the best candidate solution (criterion 2). Note that
only one of two criteria is needed to terminate the GA process.

e Create fhe initial string population at random to achieve high diversity in the gene.
pool. This requires the GA code to have a population do-loop that will assign
genetic characteristics of all modeling pararrieters for every single string
(candidate solution) of the population.

e For a simple optimization exercise, go to the objective function subroutine of the
GA code and write the objective function of interest directly in the programming
language used. The fitness of each string can then be evaluated directly by calling
the subroutine repeatedly. For a model calibration exercise, choose an
appropriate statistic measure as the objective function to optimize and for each
string call for the computational model (for example, UBC Watershed Model) to
produce the value of the fitness measure. Note.that the measure chosen as the

objective function should be able to statistically describe the agreement of the

calibrated model results with the observed data.




e Select the parent string for mating based on the fitness of candidate solutions
(strings). The weighted roulette wheel and tournament selection methods are
often applied.

e Probabilistically choose one of the three major genetic operators to create
offspring strings from the selected parent strings of high fitness.

e Evaluate the fitness of each newly created offspring string by calling the objective
function subroutine or computational model.

e If the new offspring stfings satisfy one of the two termination criteria, the GA
code will stop the loop of continuous mating process and output the best
candidate string and the near-best strings. These strings are then decoded to
return the sets of modeling parameter values they represent. They are the best and
near-best solutions.

e If none of the termination criteria is satisfied, restart the parent string selection
and produce new offspring for the next generation. The loop of string mating

continues until at least one termination criterion is satisfied.

The implementation of computational procedures of genetic algorithms as an optimizer or

as a model calibrator can be best illustrated in a flow chart as shown in Figure 4-7.

Goldberg (1989) provides several simple examples demonstrating the manual

computational process of GAs.
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Figure 4-7: Implementation Flowchart of the Genetic Algorithms
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5.0 FUNDAMENTAL THEOREM OF GENETIC ALGORITHMS: WHY
GENETIC ALGORITHMS WORK

At first glance, one might see genetic algorithms as a technique similar to random search
élgorithm with an additional capability to preserve one, or a few, best solutions.
Fortunately, GAs offer mbre than a search procedure that uses random choice as a tool to
guide a search of the solution space. The high probability of survival granted to fitter
solutions implicitly steers the GA search systematically towards the regions (schemata)
of high objective function value in the multi-dimensional search space. As discussed in
an earlier example, for a search space of 20 dimensions, random search can be as
inefficient as having to explore a large portion of all possible 20% combinations of
parameter values as the parameter value step size is 1/20 of the feasible range of each

parameter.

5.1 Schemata: Genetic Building Blocks

To analytically demonstrate why genetic algorithms work, it is imperative to discuss the
concept of schemata, which are the fundamental basis of genetic algorithms. A schema,
as defined by Holland (1975), is a similarity template describing a subset of strings with

similarity at certain positions of strings. For example, the two 7-bit strings below:

1001000
1001101

belong to the same schema 1001*0*, where * (asterisk) means the coded gene value is
not fixed; it can be either 0 or 1. Because the schema 1001*0* contains asterisks in two

positions, in total the schema should contain a subset of four strings. They are:

1001000
1001101
1001001
1001100
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Thus the number of strings in a binary-coded schema can be expressed as:

N, =2" . (Equation 5-1)
where x is the number of asterisks, the non-defined gene value in a schema.

For visualizatioﬁ, a schema may be assumed as a plane with a-number of search points (a
subset of strings) on its surface in a solution space. It is therefore possible that a newly
created offspring string remains in the same schema as one of its parent strings if the new
offspring happens to be on the same surface plane. In other words, an offspring string
does not have to be identical to any of the parent strings, yet belongs to the same schema
family as one parent string (but must be partially identical in some genes). For example,
a parent string /001001 can produce an offspring string 1001100 by mufation (at fifth and
seventh gene positions). But both strings still belong to the same schema family
1001%0*. On the other hand, if an offspring string 0001001 is created by mutation at the
first fixed-value gene, then the new string is no longer considered a member of schema

family 1001 *0*.

With the basic understanding of a schema, the mystery of why genetic algoﬁthms work
well in systematically finding an optimal solution can begin to be unraveled. The essence
of GAs is that if a schema contains strings of high fitness such that the schema’s average
string fitness is higher than other schemata, then this schema (plane) will be searched for
an optimal solution in more detail than the others (to be proven mathematically in the
next section). This is achieved by producing more offspring strings belonging to this
specific schema of high fitness. Therefore, unlike an individual string (candidate
solution) whose survival depends solely on the individual string fitness, the survival of a
schema in genetic operation depends on the average fitness of all strings belonging to the
schema. If a schema contains fitter strings, then the number of strings that belong to this-
schema will gfow and the schema will survive. On the contrary, if a schema contains

poor fitness strings, the number of strings that belong to this schema will decline and the

schema will not survive.




Hence, all schemata are not created equal (Goldberg 1989). Comparing the schema
1001*%0* with schema 100**** how do their genetic differences affect their chance of
survival as schemata? The inherent differences in schemata prompt the use of two
schema measures, namely the schema order and schema defining length. These two
schema measures allow us to determine the possibility for an offspring string to have the
-same schema as. its parent string and thereafter quantify the possibility for a schema to
survive generat'ions of genetic operations. Mathematical proofs of the Fundamental
Theorem of Genetic Algorithms will be provided one step at a time in the following

sections with the aides of schema order and schema defining length.

5.1.1 Order of Schema

The order of a (binary coded) schema is the number of bit positions with a fixed gene
value rather than an * (asterisk) which denotes it can be either 0 or 1. The schema
1001*0* therefore has an order of five whereas the schema /00**** has an order of
three. The order of a schema is important because it measures how vulnerable a string
and a schema are to mutation. Clearly, the higher the order of a schema, the more fixed-
value genes it has, and consequently, the easier the schema can be destroyed. On the
contrary, the lower the order of a 'schema, the fewer fixed-value genes it has, and
consequently, the less likely the schema can be destroyed. Thus, the survival probability
of a string’s schema in mutation, which in other wordé is the probability of a parent string

from schema H to create an offspring belonging to the same schema H, is:

P == " =1-0(H)-P, | (Equation 5-2)

where H = a specific schema to which the parent string of interest belongs

o(H) = the order of the schema H

P,, = bit-wise mutation probability




Because the survival of a schema is measured by the number of member strings in the

schema family, the equation above is also the schema’s survival probability in mutation.

Conversely, the destruction probability of a string’s schema, which is the probability of a -
parent string from schema H to create an offspring not belonging to the same schema H,

can be approximated as directly proportional to the schema order provided the bit-wise

mutation probability is small.
P(ies/ruciion (H) = 1 - P.mrvivul (H) = O(H) * I)mY (Equation 5'3)

For example, a parent string from schema 1001 *0* (order 5) has a probability of (1-P,,’ )5
to create a offspring in the same schema 1001*0* This is analogous to the chance of

having a 100-year return period storm in five consecutive years, which can be expressed
5
as 1—L =1-5*% L .
100 100

 5.1.2 Defining Length of Schema

The defining length of a (binary coded) schema is the number of bit linkages between the
first and the last fixed-value genes. It is similar to the number 6f possible cutoff points
for crossover discussed in section 4.7.2, except only the cutoff points in between the first
and the last fixed-value genes are considered and counted. For instance, the schema
1001*0* has a-defining length of 6-1=5 whereas the schema 100**** has a defining
. length of 3-1= 2 bits.

The schema defining length is important because it measures how vulnerable a schema is
to crossover. Quantitatively, it determines the destruction probability of a string’s
inherent schema when the string undergoes a crossover operation. The longer the
defining length, the greatef possibility a string’s schema can be destroyed in crossover

and create a new offspring not belonging to the same schema. In schema 1001*0* (a
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defining length of 5), if the crossover occurs at any of the first five cutoff points, the
crossover operator will potentially destroy the schema. However, if the crossover occurs
at the sixth cutoff point (in between the sixth and seventh bits), then crossover cannot

possibly destroy the schema because the seventh bit can be an arbitrary gene value.

Thus, if only the crossover operator takes place in genetic operation, the probability of a

parent string to lose its associated schema in a crossover operation is:

Pdestruction (H) = _C_i_(_ﬂl?. (Equation 5'4)

where d(H) = the defining length of schema, H.

Conversely, the probability of a string to maintain its schema in a crossover operation is:

Psurv[vnl (H) = 1 - Pd (H) = 1_ @ : (Equation 5'5)

estruction l _ 1

When other genetic operators are used in conjunction with the crossover operator in
mating and the roulette wheel selection method is used, the survival probability of a

schema for a given crossover probability of P, is: -

}).mrvivnl (H) 21- Pr ) @ (Equation 5-6)

A greater-than-or-equal sign is used because even if a crossover takes place within the
defining length of a string, it is still possible that a string crosses over and mates with a

string of similar or identical genetic information to form an offspring of the same schema.

Comparing the schema 1001*0* with schema 100**** it is now clear that their

probabilities of survival through crossover operation are very different. Thé schema
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100**** is much more likely to survive crossover because it has a short defining length

of 2 whereas the schema 1001 *0* contain has a long defining length of 5.

5.2 Effects of Genetic Operations on Schemata

When a GA run is conducted, the genetic operators process the selected parent strings for
mating and create a population of mostly new strings. However, implicitly, the genetic
operations may not necessarily lead to a population of new schemata. As discussed
earlier, a schema which contains fitter strings will grow and survive by pfoducing more
numbers of strings that belong to the same schema while a schema that contains poor
fitness strings will decline by producing fewer and fewer numbers of strings that belong
to the schema and eventually become extinct. Hence, in order to validate the above
statement it is important to observe the effects of different genetic operations on a schema

and its member strings.

Goldberg (1987) provided the mathematical proofs on how reproduction, crossover and
mutation (the three major genetic operators) individually and in-combination affect the
survival of a schema. These mathematical proofs are presented in the following sections.
The effects of mutation and crossover have already been considered separately in the

previous sections during the introduction of schema order and schema defining length.

5.2.1 Effect of Reproduction

When a reproduction operation takes place, a selected parent string simply duplicates
itself to create an identical offspring string and the offspring string will always belong to
same schema as the parent. Thus the survival of a schema undergoing reproduction,
unlikely crossover or mutation, is totally independent of its schema order and defining

length. Indeed, the survival of a schema undergoing reproduction depends solely on the

average fitness of the string members in the schema family.




To prove this statement, recall from Section 4.6.1, statistically the expected number (N)
of offspring that a parent string would contribute to produce depends on the parent
string’s individual fitness and the avérage population fitness as follows:

e

N -n- f;’iz(jiividual — findivirlual A (Equation 4_9)
2 f fnvemgc
i
i=]

If the roulette wheel selection method is again used for reproduction, then the expected
number of strings belonging to schema H, in the immediate next generation of the -

population can be analogously approximated as:

m(H,t)

P e 27D

H H oL
M =m(H,1)- =n-———— (Equation 5-7)

2 f f average 2 f

m(H t+1) = m(H 1) n-

where n = the number of strings in a population of candidate solutions

m(H ,t) = m number of strings within schema H in the population of generation ¢
f(H) = fitness of a particular string with schema H

f = fitness of a string in population

Therefore, in reproduction alone, a schema grows or decays in size based on the ratio of
the schema’s average fitness to the general population’s average fitness. If the schema’s
average string fitness is greater than the general population’s average string fitness, then

this schema will grow, otherwise it will decay.

5.2.2 Effect of Crossover

On the other hand, if only the crossover operator takes place in genetic operation, as

discussed in section 5.1.2, the schema experiences a probability of destruction




proportional to the schema defining length. The probability of a string to lose its

associated schema can be expressed as:

_d(H)
-1

P

destruction ( )

(Equation 5-4)

When other genetic operators are used in conjunction with the crossover operator in
mating, for a given crossover probability of P, the combined probability for a string to
undergo crossover and also lose its associated schema in the respective crossover

operation is:

Pdestruction (H) = Pc ’ % ’ (Equation 5-8)

'Thus, with the combined effect of reproduction and crossover operations considered, the
expected number of strings belonging to schema, H, in the next generation of the

population can then be calculated as:

m(H,t+1)2m(H,t)-

f(H)avemge |:1_ P d(H)i| (Equation 5-9)

-1

average

5.2.3 Effect of Mutation

Lastly, if only the mutation operator takes place in genetic operation, as discussed in
section 5.1.1, the schema experiences a probability of schema destruction approximately
proportional to the schema order. Thus, the probability of a string to lose its associated

schema in a mutation operation is:

P destruction

(H)=zo(H)- P, : (Equation 5-3)




Therefore, after considering the combined effect of all three major genetic operators,
reproduction, crossover and mutation, the expected number of schema, H, in the next

generation of the population can be calculated as:

m(H,t+1)2m(H,;).@M[l_ d(H)

P T —o(H)- Pm} (Equation 5-10)

average

The equation derived above mathematically demonstrates the possible growth or the
decay of a schema, i.e. the number of member strings belonging to the schema, when

only the three major genetic operators are used. -

Hence the schema growth-decay factor in generation t+1 is:

o(Hr ez MULIED SH) rerage {1—}; d(H)

m(H D) e 1 —-o(H )-Pm } (E‘quatlon 5-11)
From Equation 5-11, one may conclude that the number string in schema, H, in the
subsequent generation grows or decays depending on the ratio of schema’s average
fitness to the general population’s average fitness, schema order and defining length.
Thus, above-average fitness, short defining length and few order schemata will receive
exponentially growing numbers of strings of the same schemata in future generations.
This leads to exponentially increasing search opportunities in fitter schemata with
potential to reach the optimal solution. This conclusion is so important to genetic
algorithm that it is called the Schema Theorem or the Fundamental Theorem of Genetic

Algorithms (Goldberg 1989).

Géldberg (1989) pointed out that the growth or decay of every schema is carried out in
parallel because a string (candidate solution) can be a member of several schemata
concurrently. This type of implicit parallelism is unique in GAs and crucial for GAs’

ability in obtaining an optimal solution.
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Lastly, it is important to understand that although the Schema Theorem mathematically
proves how GA search is steered towards high-fitness regions (schemata) of the search
space, it falls short in predicting the number of strings and generations needed to find an
optimum and in assigning the probabilities of various genetic operations for most
efficient GA search results. Experimental work is required to determine a reasonable set
of Iprobabilities for various vgenetic "operations to achieve an efficient search. Although

the above equations are not directly applicable, they clearly show that the GA search

process is superior to random search process.




6.0 CASE STUDIES: GENETIC ALGORITHMS APPLICATION IN
WATERSHED MODELING

To test the usefulness of genetic algorithms in watershed fnodel calibration, the( UBC
Watershed Model is used to verify the soundness of the genetic algorithms code
programmed by the author, and to demonstrate the strength and capability of genetic -
algorithms in facilitating the model calibration process. This was achieved by integrating
the stand-alone genetic algorithms code initially written in Fortran with the UBC

Watershed Model written in Visual Basic.

This chapter is organized into six sections. In section 1, background information of the
two watersheds used as case studies is provided. In section 2, a list of modeling
parameters incorporated in the GA-based model calibrator is provided and tﬁe physical
meanings of these parameters are briefly explained. In section 3, concerns regarding how
the meteorological data are used in preparing the input file for the UBC watershed will be
addressed. In section 4, the results of GA cﬁlibration will be summarized and compared
with the findings from the previous study of the two watersheds under scrutiny. In
section 5, the search efficiency of genetic algorithms equipped with various genetic
operators is further investigated. In section 6, the aforementioned three statistical
measures used as objective functions and indicators of model performance are compared
for their ability to accurately reflect the degree of conformance between the observed and

simulated streamflow.

6.1 Short Description of Campbell River and Illecillewaet River Watersheds

Two well-studied watersheds in the Province of British Columbia were used as the case
studies throughout this chapter, so that comparison could be made with earlier calibration

work. They are:

1. Campbell River Watershed

2. Illecillewaet River Watershed
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The two watersheds will first be used to investigate how capably the existing GA code
calibrates the watersheds, and whether it achieves good model agreement based on the
chosen objective model performance measures. The two case studies will also be used to
determine which genetic technique or combination of techniques is most efficient for
finding an optimal set of watershed modeling parameters. Lastly, the two watersheds
will then be used to show which statistical measure is the most consistent measure of the
agreement between the model simulated data and the observed data. The following are

brief descriptions of the two watersheds.

- 6.1.1 Campbell River Watershed

The Campbell River Watershed is located in the middle part of Vancouver Island. It
drains an area upstream of a B.C. Hydro dam which forms Upper Campbell Lake. The
main part of this watershed is actually within the Stratchona Provincial Park. It is
bounded by the Vancouver Island mountain ranges on the east and the Stratchona
Provincial Park mountain ranges on the south and west. The watershed covers an area of
1194 km? and 72% is covered with forest. It has a northern orientation with elevation
ranges from 215 to 2065 m (Micovic 1998). Daily meteorological information for the
watershed is provided by the two local AES (Canadian Atmospheric and Environmental
Services) weather stations. _ The stations are located at an elevation of 370 and 1490 m,
respectively. In modeling the watershed, it was divided into seven elevation bands. The

mid-elevations and areas of the seven bands are summarized in the table below.

Table 6-1: Brief Summary of Campbell River Watershed

Elevation Band ID 1 2 3 4 5 6 7

Mid-elevation of

the band (m) 223 406 721 983 1238 1485 - | 1939
Area (km?) 66.7 2184 | 218.4 | 2184 | 2184 | 218.4 34.8
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6.1.2 Illecillewaet River Watershed

Illecillewaet River is an eastern tributary to the Columbia River at Revelstoke. The
Illecillewaet River watershed is located in the Selkirk Mountains and the watershed is
bounded by high glaciers and icefields, the most significant being Albert Glacier on the
south, Illecillwaet Glacier on the east and Dismal and Durrand Glaciers on the northwest.
This is a rugged, mountainous watershed with a drainage area of 1150 km?, 74% of
which is covered with forest. It has a southwestern orientation with elevation ranges
from 520 to 3260 m (Micovic 1998). Daily meteorological information for the watershed
is provided by Fidelity Mountaih, Roger’s Pass, and Revelstoke AES stations. These
~ three local stations are located at the elevation of 1875, 1330 and 440 m, respectively. In
modeling the watershed, it was divided into eight elevation bands. The mid-elevations

and areas of the ei ght bands are summarized in the table below.

Table 6-2: Brief Summary of Illecillewaet River Watershed

Elevation Band ID 1 2 3 4 5 6 7 8

Mid-elevation of
the band (m) 1000 | 1360 1540 1650 1790 | 1915 | 2085 | 2250

Area (km?) 230 115 115 115 115 115 115 230

6.2 Description of UBC Watershed Model Input and Calibration Parameters

The UBC Watershed Model consists of more than 60 modeling parameters. These
parameters are separately stored in groups in the . WAT file and they physically describe a
watershed model and goverﬁ the model execution. The number of parameters for each
watershed is a constant but the number of elevation bands varies, depending on the

modeler’s experience and preference.

Under most circumstances, many model parameters can be either physically determined
(physical model parameters) or have been previously calibrated for general use in all
watersheds (including some of the process model parameters). The remaining parameters

are the process parameters to be calibrated for each watershed. As discussed earlier in
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Chapter 2, the process parametebrs must be estimated and refined to achieve the best
model performance possible while the physical parameters remain unchanged in the
calibration process. For. simplicity, the parameters accepted by the GA-based model

calibrator of the UBC Watershed Model are limited to the following:

e POGRADL: Precipitation gradient factor for the elevations below EOLMID

e POGRADM: Precipitation gradient factor for the elevations below EOLHI

e POGRADU: Precipitation gradient factor for the elevations above EOLHI

e EOLMID: Elevation above which the precipitation gradient PROGRAM applies.
Usually set at approximately 1/2 barrier height.

e EOLHI: Elevation above which the precipitation gradient PROGRAU applies.
Usually set at approximately 2/3 barrier height.

e POAGEN: Impermeable area modification factor. It 'is compared with how much
moisture has satisfied the soil demands and used in an exponential decay function.

e POPERC: Ground water percolation. (Maximum capacity of lsub-surface storage.
Excess runoff goes to interflow).

e  PODZSH: Deep zone share (lower fraction) of groundwater

e VOFLAX: Maximum flash runoff

e VOFLAS: Flash flood threshold _

e POFRTK: Rainfall fast runoff time constant

e POFSTK: Snow melt fast runoff time constant

e POGLTK: Glacial melt fast runoff time constant

e POIRTK: Rainfall interflow component runoff time constant

e POISTK: Snow melt interflow component runoff time constant

+ o POUGTK: Upper groundwater runoff time constant

e PODZTK: Deep zone share (lower groundwater) runoff time constant

e COIMPA (array for each elevation band): Fraction of impqrmeable area for the
elevation band .

e POSRERP (array for each AES station): adjustment factor for snowfall data

e PORREDP (array for each AES station): adjustment factor for rainfall data




Thus, all of the above can be considered as process parameters in model calibration. For
a brief explanation of these watershed parameters, the reader is referred to the appendix

of the UBC Watershed Model manual (UBC Mountain Hydrology Group 1995).

In addition, in the GA—basgd model calibration, the process model parameters of a real
watershed should be constrained by the upper and lower bounds provided by the UBC
watershed users’ manual. By imposing limits on parameter values, the time required for
GA search will be reduced and the optimal solution will always be found in the pre-
determined feasible range. The parameter limits were either derived theoretically or
based on years of field experiments and experience; they may be deemed as very reliable.
A summary of the limits of parameter values will be provided in section 6.4, in

conjunction with the modeling results for the two case studies.

Micovic (1998) found that the precipitation gradient factors and the fraction of
impermeable area are the two most important modeling parameters that decide the
agreement of model results with the observed results a modeler can achieve in
calibration. Due to the orographic effect, the pre.cipitation in the mountainous area tends

to increase as the elevation rises. Hence in order to increase model accuracy,

- precipitation gradient factors are generally used as modeling parameters in the calibration

process, of the UBC Watershed Model to simulate the increasing precipitation from the
bottom to the top of the watershed. The second parameter, fraction of impermeable area
(COIMPA), is also crucial to the model accuracy in the calibration process. Theoretically,

a COIMPA value should be assigned for each elevation band of the watershed. However, |

. because the COIMPA value tends to increase as the elevation of band area increases, the

GA-b‘ased model calibrator assumed a base COIMPA value for the lowest elevation band
and the COIMPA value increases linearly by a delta COIMPA value for each band. The

linear approximation is a simplification made to reduce the number of process parameters

to Be calibrated.




6.3 Preparation of Meteorological Component of Input File

Some of the meteorological stations are remotely controlled and may register false
"meteorological data, which are ‘then Lmknowingly used for calibration. Thus, to obtain a
sense of how reliable the meteorological data are at least several'cqrmbinations of input
meteorological data should be arranged and tested. To designate the appropriate AES
stations for temperature and precipitation in different elevatioﬁ bands, IOTSTA and

IOPSTA parameters should be used in the input file of UBC Watershed Model.

6.3.1 Campbell River Watershed

There are two sets of meteorological data available for the watershed, one located at
Elksterc (370 m above sea level) and the second at Wolf Creek (1490 m above sea level).
The input file for the watershed model should make use of both sets of meteorological
data with a specific weighting on various elevation bands. Intuitively, one may designate
the data collected from AES station 1 to be representative for bands 1, 2 and 3, which are
- located at lower altitudes (with mid-elevations ranging from 223 m to 721 m), and data
from AES station 2 for bands 4, 5, 6 and 7 at high altitudes (with mid-elevations ranging
from 983 m to 1939 m). However, because both of these two AES stations are remotely
controlled, the reliability of the two may be doubtful. It is possible that one station may
break-down, or for some other reason not record the meteorological data properly. Thus,
sometimes it may be useful for the model calibration process to include only one set of
the meteorological data at a time to see whether the simulation and calibration results are -
reasonable. ‘Sometimes, it is very possible that a modeler can encounter difficulty in the
calibration of a watershed model without realizing that the source of error lies in the
meteorological data, rather than in the estimates of the modeling parameters. Table 6-3

lists the combinations of meteorological data used for model simulation and calibration.

The Campbell River Watershed is simulated from October 1983 to September 1990 in

this thesis. For simplicity, only one precipitation gradient (POGRADL) will be used in




the calibration process of combinations 1 to 5 with an exception for combination 6 in

which two precipitation gradients (POGRADL and POGRADM) will be used.

Table 6-3: Several Arrangements of Meteorological Data for Campbell River

Elevation BandID | Band1 | Band2 | Band3 | Band4 | Band5 | Band 6 | Band 7
Combination 1 1 1 1 2 2 2 2
Combination 2 1 1 1 1 1 1 1
Combination 3 2 2 2 2 2 2 2
Combination 4 1 1 2 2 2 2 2
Combination 5 1 1 1 1 2 2 2
Combination 6* | 1 1 1 2 2 2 2,

*Both precipitation gradients (POGRADL and POGRADM) are used

N

6.3.2 Illecillewaet River Watershed

There are three AES stations in the Illecillewaet River Watershed: Fidelity Mountain
(1875 m), Roger’s Pass (1330 m) and Revelstoke (440 m). Thus, similar to Campbell
River watershed, the meteorological component of the watershed input file should
attempt to make a combinatory use of the three data sets available with some degree of
elevation-based weighting criteria. For example, because the elevation of Roger’s Pass
station 1s 1330 m, it should be at least representative and useful for elevation bands 1 to 4

(with mid-elevations ranging from 1000 m to 1650 m). On the other hand, Fidelity

‘Mountain, located at an elevation of 1875 m, should be at least representative for bands 5

to 8 (with mid-elevations ranging from 1790 m to 2250 m). Because the lowest elevation
band (band 1) has a mean band elevation of 1000 m, it appears that data collected from
Revelstoke station (440 m) may not be needed due to its low elevation. Nevertheless, it
was decided that the data from Revelstoke station should be kept and used with a less
emphasis. Table 6-4 lists the combinatidn of meteorological data used for the model
simulation. Despite Revelstoke station’s low altitude, combinations 1 and 2 assume that
data collected from Revelstoke station are representative for both bands 1 & 2 and for
band 1 only, respectively. To test the representativeness of each individual station, each |
station is used on its own. Combination 3 uses only the Revelstoke station. Combination

4 uses only Roger’s Pass, and combination 5 uses only Fidelity Mountain. Combination
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6 distributes the meteorological data to all eight elevation bands based on their mid-

elevations, however, only the Fidelity Mountain and Roger’s Pass data are used.

The Illecillewaet River Watershed was simulated from October 1981 to September 1989

in this thesis. Similar to Campbell River watershed only one precipitation gradient

(POGRADL) will be used in the calibration process in combinations 1 to 6.

Combinations 3, 4, and 5 have exactly the same meteorological data arrangement as

“combinations 7, 8, and 9 except that two precipitation gradients (POGRADL and

POGRADM) will be used in the later combinations.

Table 6-4: Several Arrangements of Meteorological Data for Illecillewaet River

Elevation BandID | Band1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 | Band 8
Combination 1 3 3 2 2 1 1 1 1
Combination 2

Combination 3

Combination 4

Combination 5

Combination 6

Combination 7*

N W [N [—= N W W
N[ [N =[N |N
N W [N [=INW N
NW|= =2 [N[(wW|—
N W [—= [N | —=

" Combination 8*

= IN [N [=NWIN
% N | |=— =N |—
= IN[W[= 2N [W]|—=

Combination 9* 1 1 1 1 1

*Both precipitation gradients (POGRADL and POGRADM) are used

6.4 Evaluation of GA Model Calibration

The automatic GA calibrator developed for the UBC Watershed Model was used to

calibrate the Campbell River and Illecillewaet River ‘watersheds, which were both studied

by Micovic (1998). In this section, the GA calibration results, in the form of model
parameter values and overall model performance measures, are compared with Micovic’s

calibration results.
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6.4.1 Campbell River Watershed

Based on the meteorological data arrangements presented in Table 6-3 and the
assumption that one to two precipitation gradient factors are sufficient in depicting the
orographic effect of precipitation, the GA calibrator is used to generate thé following
_calibration results for the Campbell River watershed in Table 6-5. For comparison, the
upper and lower bounds of the modeling parameters are also summarized in Table 6-5.
These values are provided in the UBC Watershed Model manual. For every
meteorological data combination, 6n1y two top candidate solutions are presented,
although the population size was set at 20 in the GA search. In combinations 1 to 5, the
value of EOLMID and EOLHI are purposely raised to an elevation (of about 2400 m)
above the entire watershed so that parameters POGRADM and POGRADU cannot affect
the precipitation within the \‘/vatershed. As mentioned earlier, the precipitation gradient
factors are generally used in the UBC Watershed Model to simulate the increasing
precipitation from the bottom to the top of the watershed as a result of the orographic

' effect.

After examining the resulting statistical measures of the model performance: e/, dV/V and
eopt! in Table 6-5, one can see that the meteorological datg arrangements, which follow -
the principle of assigning data to elevation bands based on their elevation proximity as in
combinations 1 and 6, yields the best calibrated model performance in both e/ and eopz"! .
The values achieved by the automatic GA caiibration are 0.720 and 0.716, respectively,
for the best candidate solution in combination 1 and similar values of 0.718 and 0.709 for
combination 6. If only the meteorological data from AES station 1 is used as in
combination 2., the values of e/ and eopt! decrease significantly to 0.602 and 0.602 (the
same), respectively. Similarly, if only the meteorological data from AES station 2 is used
as'in combination 3, the values of e! and eopt! also decrease significantly to 0.633 and
0.633 (the same), respectively. However, it is worth mentioning that despite the low e/
and eopt! values achieved, the dV/V values are zero in both combinations 2 and 3. In
combinations 4 and 5 which have meteorological data arrangements similar to

combination 1 based on the vertical proximity between AES stations and elevation bands,
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the calibration results are still satisfactory though not as high as the model performance

measures obtained from combinations 1 and 6.

Table 6-5: GA Callbrated Model Parameter Values for Various Combinations of
Campbell River Watershed

Parameter| Lower | Upper|Comb.|Comb.|Comb.|Comb.|Comb.|Comb.; Comb.} Comb.|Comb.| Comb. | Comb. | Comb.
Bound|Bound| 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6 A 6B

POGRADL| © 20 5.02 {15.06 | 17.33 17.33 15.06 | 15.06 { 18.82 | 18.90 | 7.53 | 502 | 5.02 | 5.02
POGRADM} 0 20 3 3 3 ) ) ) . . 3 N 8.31 8.31
POGRADU| © 20 3 - T ) ) N ' . ' - 714 | 714
EOLMID | 2400 | 2401* | 2401 | 2401 | 2401 | 2401 [ 2400 [ 2400 | 2401 | 2400 | 2400 | 2401 | 1991 | 1991
EOLHI | 2401 | 2402 | 2402 | 2402 | 2402 | 2402 | 2402 | 2402 | 2402 | 2402 | 2401 | 2402 | 2401 | 2401
POAGEN | 80 120 1109.491109.49/100.86|100.86|109.49|109.80| 108.39| 88.31 | 99.14 | 119.53| 99.45 | 99.45
POPERC 10 50 121.29]21.29|43.73 | 41.06 | 31.65 [ 31.65 | 43.73 | 43.57 | 21.29 | 21.61 [ 21.45 | 21.45
PODZSH 0 1 0.40 | 040 | 056 | 060 | 0.44 | 0.44 | 0.18 | 006 | 0.77 | 0.77 | 0.91 0.91
VOFLAX | 1700 | 1900 | 1724 | 1724 | 1850 | 1837 | 1818 | 1818 | 1881 [ 1812 1846 1844 | 1724 | 1724
VOFLAS 20 60 | 25.02 | 27.53 | 40.39 | 40.39 | 27.69 | 27.69 | 28.47 | 28.47 | 45.88 | 48.55 | 25.657] 25.65
POFRTK 0 2 064 | 051 | 049 | 049 | 062 | 0.62 | 057 [ 051 | 051 [ 0.56 | 0.51 0.51
POFSTK 0 2 162 | 0.87 | 0.05 | 0.05 | 0.87 | 0.87 | 1.04 | 053 | 0.49 | 0.31 1.62 | 1.62
POGLTK 0 2 185 | 0.82 | 035 | 0.35 | 0.78 | 0.79 | 0.86 | 0.86 | 1.41 1.41 1.85 | 1.85
POIRTK 3 10 7.23 | 3.71 | 5.00 |'5.00 [ 959 | 9.59 | -8.16 | 6.08 | 6.38 | 484 | 3.99 | 3.99
POISTK 3 10 8.35 | 923 | 6.65 | 6.65 | 846 | 517 | 7.04 | 319 | 498 | 8.27 | 8.44 | 8.44
POUGTK | 10 50 | 46.55 | 49.69 | 36.20 | 35.57 | 38.86 | 38.86 | 25.22 | 20.20 | 27.41 | 12.35 | 36.98 | 36.98
PODZTK | 100 | 300 |121.96{121.961296.08)|270.98|220.78(170.59{170.59|270.98|290.59|240.39|120.39| 120.39
COIMPA1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
COIMPA2 0 0.3 022 | 021 [ 022 | 022 | 019 | 019 | 019 | 0.22 | 0.20 | 0.17 | 0.21 0.21

ACOIMPA| O 0.14 | 011 | 0.11 | 0.08 | 0.08 | 0.07 | 0.07 | 0.06 | 006 | 0.12 | 0.12 | 0.11 0.11

POSREP1| -1 1 0.37 | 0.37 [ -0.85 | -0.85 | 0.00 | 0.00 | -0.49 | -0.93 | -0.65 | -0.52 | -0.54 | -0.66
POSREP2 .-1 . 1 -0.47 | -0.48 | 0.00 | 0.00 | -0.33 | -0.33 | -0.43 ) -0.43 | -0.33 | -0.33 | -0.36 | -0.36
PORREP1| -1 1 011 [ -0.11 [ 0.19 [ 0.19 - - 071 | 072 | -0.12 | -0.12 | -0.08 | -0.08
PORREP2| -1 1 0.14 | 017 - - 022 | 022 | 0.09 | 009 | 0.44 | 043 | 0.17 | 0.17

el -infinity] 1 b.720 0.716 | 0.602 | 0.603 | 0.633 | 0.633 | 0.692 | 0.689 | 0.709 | 0.701 | 0.720 | 0.720

dv/iv 0 1 0.004 | 0.001 | 0.000 | 0.001 | 0.000 | 0.003 | 0.001 | 0.002 | 0.005 | 0.005 | 0.003 | 0.011
eopt! 0 1 0.716 | 0.715 | 0.602 | 0.602 | 0.633 | 0.630 | 0.690 | 0.687 | 0.704 | 0.696 | 0.718 | 0.709

Rank 1 20 1 2 1 2 1 2 1 2 1 2 1 2

*For combination 6 in which two precipitation gradient factors are used, the lower and
upper bound of EOLMID parameter are set at 1200 m and 2000 m.

Micovic (1998) “calibrated the Campbell River watershed through a trial-and-error
procedure, which included a certain degree of manual calibration and automatic random

model calibration. As noted previously, under the existing model framework, direct
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search of the values of all modeling pararheters is not possible, and the number of
modeling parameter values calibrated simultaneously is often limited to groups of about
three to six at a time. The resulting parameter values from Micovic’s (1998) best
calibrated Campbell River (in terms of eopt!) is given in Table 6-6 together with the

parameter values from the best GA-based model calibration.

Table 6-6: Resulting Parameter Values from Micovic’s Best Model Calibration of
Campbell River Watershed

1
i n —
; parameter | Lo | VPR | caleaiog | Comb | Camb | Camb. | Cemb. | camb. | can.
POGRADL 0 20 2 5.02 17.33 15.06 18.82 7.53 5.02
POGRADM 0 20 T2 - - : - - 8.31
POGRADU 0 20 0 - - - - - 714
EOLMID 2400* | 2401* 963 2401 | 2401 2400 - 2401 2400 1991
| EOLHI 2401 | 2402 2000 - 2402 2402 2402 2402 2401 2401
' POAGEN 80 120 100 109.49 | 100.86 | 109.49 | 108.39 | 99.14 99.45
POPERC 10 50 18 21.29 43.73 31.65 43.73 21.29 21.45
‘PODZSH 0 1 0.46 0.40 0.56 0.44 0.18 0.77 0.91
VOFLAX 1700 | 1900 1800 1724 1850 1818 1881 | 1846 1724
VOFLAS 20 80 | 33 25.02 40.39 27.69 28.47 45.88 25.65
POFRTK 0 2 0.38 0.64 0.49 " 0.62 0.57 0.51 0.51
POFSTK 0 2 0.4 1.62 0.05 0.87 1.04 0.49 1.62
POGLTK 0 2 1.0 1.85 0.35 0.78 0.86 1.41 1.85
POIRTK 3 10 2.0 7.23 5.00 9.59 8.16 6.38 3.99
POISTK 3 10 2.0 8.35 6.65 8.46 7.04 4.98 8.44
| POUGTK 10 50 22 46.55 3620 | .38.86 2522 27.41 36.98
PODZTK 100 300 72 121.96 | 296.08 | 220.78 | 170.59 | 290.59 | 120.39
COIMPA1 1 1 1 1 1 1 1 1 1
COIMPA2 0 0.3 0.10 0.22 0.22 0.19 0.19 0.20 0.21
A COIMPA 0 0.14 varies* 0.11 0.08 0.07 0.06 0.12 0.11
POSREP1 -1 " 025 | 037 -0.85 0.00 -0.49 -0.65 -0.54
POSREP2 -1 1 0.27 0.47 0.00 -0.33 -0.43 -0.33 -0.36
PORREP1 -1 1 0.07 -0.11 0.19 - 0.71 -0.12 -0.08
PORREP2 -1 1 0.08 0.14 - 0.22 0.09 0.44 0.17
e! -infinity 1 0.723 0.720 | 0.602 0.633 0.692 0709 | 0.720
dviv 0 1 0.002 0.004 0.000 0.000 0.001 0.005 0.003
eopt! 0 1 0.720 0.716 0.602 0.633 0.690 0.704 0.718
Rank 1 20 - 1 1 1 1 1 1

*For combination 6 in which two precipitation gradient factors are used, the lower and
upper bound of EOLMID parameter are set at 1200 m and 2000 m.
**The values of COIMPA for bands 1 to 7 are 1.00, 0.10, 0.10, 0.10, 0.30, 0.50 and 0.75.
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To determine whether the GA-based calibrated Campbell River watershed model can
achieve as high model performance as Micovic’s in terms of statistical measures, ¢/ and Y.
eopt!, the model statistic module of the UBCV Watershed Model is run on the GA
calibration results. The statistical summary of GA-calibrated combination 1 results by
water year is given in Table 6-7. The summaries of other GA-calibrated combinations of
Campbell River Watershed with high e! and eopt! values are given in the appendix.

Statistical summaries for combinations with low e/ and eopt! values are not provided.

Table 6-8 is a summary of the model performance statistics from the best calibrated
. Campbell River Watershed as provided by Micovic (1998). Unfortunately, because
vMicovic used a slightly -different meteorological input file in his calibratibn work, the
resulting overall e/ and eopt! values for the whole simulation period cannot be directly
compared.\ However, in an effort to provide some equal-comparison basis, GA
calibration results were re-run in the UBC Watershed Model to provide the e/ value§ for
each water year. The overall e/ and eopt! value are found to be 0.722 and 0.720;
respectively from Micovic’s results and 0.720 and 0;716, respectively from GA
calibration results. It should be noted that Micovic’s calibration uses interpol'ati(')n‘of thé
meteorological data, using the two AES stations, Elksterc and Wolf Creek, as opposed to

the gradient algorithm used in the present work.
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Table 6-7: Statistics of Model Performance for Combination 1 of Campbell River
Watershed after GA Calibration -

STATISTICS FOR THE OCT 1, 1983 - SEP 30, 1990 WATER YEARS

Mean Qs Mean Qg Tot Qeps Tot Que TotQus Coeff.of Coeff.of

(cms/d) (cms/d) (cms) (cms) -Tot Qeat Eff Det \
YEAR (831001-840930) .
YEAR 75.49 76.78 27631.09  28100.67 -469.58 068  0.69
YEAR {841001-850930) '
YEAR 59.65 58.47 21773.00 21340.08 432.92 0.71 0.77
YEAR (851001-860930)
YEAR 75.47 68.35 27546.70  24946.18 2600.52 0.8 0.84
YEAR {861001-870930)
YEAR 89.59 84.38 32701.29 30799.69 1901.59 0.65 0.66
YEAR {871001-880930) S
YEAR 70.23 68.35 25705.90  25015.31 690.60 0.72 0.73
YEAR (881001-890930)
YEAR 63.57 65.86 23203.41 24039.11 -835.70 0.74 0.76
YEAR (891001-900930)
YEAR 65.46 75.5 23893.69 27556.45 -3662.75 0.74 0.77
WHOLE PERIOD *(831001-900930)
PERIOD 71.36 714 182455.20 181797.40 657.81 0.72 0.72

Table 6-8: Statistics of Model Performance from Best Calibration of Campbell
River Watershed (Micovic 1998)

STATISTICS FOR THE OCT 1, 1983 - SEP 30, 1990 WATER YEARS

Mean Qqs  Mean Qg Tot Qqps TotQeq  TotQqs Coeff.of Coeff.of

cms/d cms/d cms cms -Tot Qeq Eff Det
YEAR (831001-840930)
YEAR . 75.5 79.2 -27631.09 - 28998.6 -1367.6 0.6745 0.6812
| YEAR (841001-850930)
YEAR 59.7 55.6 21773.00 202841 1488.9 0.7220 0.8002
| YEAR (851001-860930) B
| YEAR 75.5 70.6 27546.70 25779.7 1767.0 0.8216  0.8262
| YEAR (861001-870930)
‘ YEAR 89.6 92.5 32701.29 33765.3 -1064.0 0.7262 0.7307
\ YEAR (871001-880930) ,
| “YEAR 70.2 69.0 25705.90 25249.3 456.6 0.5603 0.6117
YEAR (881001-890930) .
YEAR 63.6 64.5 23203.41 23551.8 -348.7 0.6600 0.6602
YEAR (891001-900930)
YEAR - 65.5 . 66.9 23893.69 244181 -524.4 0.7526 0.7855
WHOLE PERIOD {831001-900930) :

PERIOD 71.4 71.2 182455.20 182046.9 408.2 0.7226 0.7331




Including thé Campbell River watershed, Micovic (1998) studied twelve B.C. watersheds

with different drainage area, climate, topology, soil type, vegetation, geology and

hydrologic regimes using the UBC Watershed Model. One of his findings is that despite

the physical difference in watershed charaéteristics, the watersheds studied revealed there |
was a relatively consistent set of modeling parameter values for all watersheds except the
precipitation gradients (POGRADL, POGRADM and POGRADU) and fraction of
impermeable area (COIMPA). Micovic concluded that parameters which affect the time
distribution of runoff along with groundwater percolation and deep zone sharé showed
relatively low variability in the twelve studied watersheds .and may be assumed as
constant values. Table 6-9 summarizes.the constant values of the modeling parameters
with low variability suggested by Micovic. For comparison, the calibrated values of
these parameters from GA search are presented together. From the table, one may see
that the calibrated modeling parameters values from the GA are usually. close to the
suggested constant parameter values with the exception of POISTK (Snow melt interflow
ccomponent runoff time constant) and POUGTK (Upper groundwater runoff time

constant).

Table 6-9: Suggested Constant Values for Modeling Parameters with Low
Variability vs. GA Calibrated Parameter Values of Campbell River Watershed

Description of Modeling | Lower | Upper |Constant .. |Comb.|Comb.|Comb.|Comb.

Parameter Parameter Bound |Bound| Value | Y™ | 1A | 1B | 6A | 6B
Ground water percolation.

poPERC [(Maximum capacity of suby 4, | g 25 | mm | 2120 | 21.20 | 21.45 | 21.45
surface storage.  Excess
runoff goes to interflow.)

popzsu [D8eP zone share (lowen 1 0.3 |unitless| 0.40 | 0.40 | 091 | 0.91
fraction) of groundwater '

porkrk [ 2nfall fast runoff time 0 2 0.6 day | 0.64 | 051 | 051 | 0.51
constant - : :

porsTK [ONOW melt fast runoff time 2 1 day | 162 | 087 | 162 | 162
constant ‘

rorrTk |ainfall interflow component 4 10 3 day | 7.23 | 371 | 399 | 3.99
runoff time constant
Snow .melt interflow

POISTK |component  runoff  time 3 10 4 day | 835 | 923 | 844 | 844
constant

poucTk [UPPEr groundwater runoff 44 | 54 20 | day | 4655 | 49.69 | 36.98 | 36.98
time constant
Deep zone share (lower

PODZTK groundwater) runoff timel 100 | 300 150 day |121.96|121.96 | 120.39|120.39 |
constant
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- 6.4.2 Tllecillewaet River Watershed

In the GA calibration process of the Illecillewaet River Watershed, it is again assumed
that one to two precipitation gradient factors are sufficient to depict the orographic effect
of precipitation. The simulations are based on the meteorological data arrangements
presented in Table 6-4. The GA model calibrator yields the results in Table 6-10 and
Table 6-11. Table 6-11 is just a continuation of Table 6-10. For every meteorological
data combination, only the top two candidate solutions are presented, although the
population is still set at 20. In combinations 1 to 6, the value of EOLMID and EOLHI are
again purposely raised to about 2400 m, which is above the entire watershed, so that
parameters POGRADM and POGRADU cannot affect the precipitation within the
watershéd in any way. In combinations 7, 8, and 9, because two precipitation gradients
are to be used, the value of EOLMID is allowed to range freely from 1600 m to 2400 m
while EOLHI is still fixed to about 2400 m. This means that gradient factor POGRADL is
effective to adjust the precipitation data assigned to elevation bandé between the lowest
band and the calibrated value of EOLMID. The gradient factor POGRADM is effective
above EOLMID while POGRADU remains ineffective.

In combination .1 where Revelstoke AES station (station 3) is used to represent the
meteorological conditions in both elevation bands 1 and 2 (mid-elevations of 1000 m and
1360 m), despite the station’s low elevation of 440m, the calibrated model performance
turned out to be surprisingly high, with an e/ of 0.924 and an eopt! of 0.914. In
combination 2 where Revelstoke AES station (station 3) is used to represent the
| meteorological condition only in elevation band 1, the calibrated model performance
turned out to be lower than the results in combination 1, with an e/ of .0.90‘9 and an eopt!
of 0.908. The calibration result from combination 2 is not originally anticipated because
combination 2 is closer than combination 1 in following the principle of assigning
meteorological data to elevation bands based on their elevation proximity. It begins to
‘appear that the meteorological data from Roger’s Pass (station 2) may not be _
representative of the areas with similar altitudes. This presumption is verified in

combination 4, which using data from Rogér’s Pass alone, yields extremely poor model
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performance of 0.688 for e/ and 0.673 for eopt!, respectively. To reconfirm the finding,
combination 4 is re-calibrated (now called combination 8) with the aide of two
precipitation gradients, but once again poor model performance is generated. It is

concluded that meteorological data from Roger’s Pass are problematic.

Table 6-10: GA Calibrated Model Parameter Values for Various Combinations of
Illecillewaet River Watershed

Parameter| Lower | Upper | Comb. | Comb. | Comb. | Comb. | Comb. | Comb. | Comb. | Comb. | Comb. | Comb.|Comb. | Comb.
Bound |Bound| 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
POGRADL| © 20 863 | 863 | 8.71 8.71 510 | 808 | 1.02 | 102 | 863 | 6.12 | 11.77 | 11.77
POGRADM| © 20 - - - - - - - - - - - -
POGRADU| © 20 - - - - - - - - - - - -
EOLMID | 2400 | 2401 | 2401 | 2401 | 2401 | 2401 | 2401 | 2401 | 2400 | 2401 | 2401 2401 | 2401 | 2401
EOLHI | 2401 | 2402 | 2401 | 2401 | 2401 | 2401 | 2401 | 2401 | 2402 | 2402 | 2401 | 2401 | 2401 | 2401
POAGEN | 80 120 |[100.86{100.86]110.90|110.90| 102.59113.88|104.47104.47|117.18(117.18| 95.22 | 95.06
POPERC 10 50 38.39 | 38.39 | 18.94 | 18.00 | 40.75 | 40.75 | 33.37 | 33.37 | 37.77 | 3259 | 11.88 | 21.29
PODZSH 0 1 070 | 095 | 0.76 | 0.64 | 0.78 | 0.78 | 025 | 0.18 | 0.64 | 0.64 | 0.58 | 0.64
VOFLAX | 1700 { 1900 | 1779 | 1779 | 1778 | 1767 | 1850 | 1848 | 1817 | 1710 | 1780 | 1727 | 1764 | 1865
VOFLAS 20 60 | 51.84 | 51.84 | 60.00 | 52.47 | 23.61 | 23.61 | 47.77 | 47.77 | 34.59 | 59.69 | 57.02 | 50.75
POFRTK 0 2 114 | 114 | 139 | 139 | 167 | 167 | 165 | 152 | 146 | 191 | 059 | 0.09
POFSTK 0 2 078 | 0.78 | 0.54 | 0.79 | 148 | 141 | 137 | 137 | 0.79 | 0.79 | 099 | 0.93
POGLTK 0 2 133 | 1.33 | 0.21 | 0.21 140 | 097 | 147 | 046 | 0.76 | 0.35 . 0.01
’ POIRTK 3 10 6.84 6.84 7.50 3.99 4.10 3.33 3.91 3.91 6.90 7.72 6.57 6.57
POISTK 3 10 410 | 410 | 783 | 805 | 676 | 6.76 | 500 | 5.00 | 7.28 | 9.04 | 5.11 3.33
POUGTK | 10 50 20.67 | 20.67 | 17.37 | 11.10 | 43.26 | 30.71 | 13.77 | 33.84 | 21.14 | 23.65 | 36.98 | 39.80 |
PODZTK | 100 300 |109.41]|109.41|184.71|184.71(269.41|272.55(224.71|224.71 | 134.511135.29|294.51 | 295.29
COIMPA 0 0.3 027 | 027 | 0.05 | 0.05 | 0.04 | 0.03 | 0.06 | 007 | 012 | 027 | 0.12 | 0.08
ACOIMPA|. O 0.1 0.09 | 009 | 0.10 | 007 | 0.09 | 0.10 { 0.08 | 0.08 | 0.09 | 0.07 | 0.06 | 0.09
POSREP1| = -1 1 -0.26 | -0.26 | -0.28 | -0.28 - - - - -0.27 | -0.26 | -0.33 | -0.16
POSREP2| -1 1 021 | 0.21 | -0.80 | 0.33 - - 0.15 | 0.15 - - 0.01 | 0.14
POSREP3; -1 1 -0.10 | -0.10 | 0.97 | 0.97 | -0.15 | -047 - - - - - -
PORREP1| -1 1 -0.98 | -0.98 | 0.30 | 0.06 - - - - 0.05 | 0.02 | -0.57 | -0.76
.|PORREP2| -1 1 -0.08 | -0.08 | -0.08 | -0.58 - - 022 | 0.22 - - 0.83 | 0.33
PORREP3| -1 1 091 | 091 | 053 | -0.98 | 0.85 | 0.85 - - - - - -
e! -infinity] 1 0.924 | 0.926 | 0.909 | 0.885 | 0.861 | 0.855 | 0.688 | 0.681 | 0.919 | 0.918 | 0.891 | 0.854
dviv 0 1 0.011 | 0.013 | 0.001 | 0.002 | 0.004 | 0.002 | 0.015 | 0.012 | 0.002 | 0.027 | 0.010 | 0.001
eopt! 0 1 0.914 | 0.912 | 0.908 | 0.883 | 0.857 | 0.853 | 0.673 | 0.669 | 0.917 | 0.891 | 0.881 | 0.854
Rank 1 20 1 2 1 2 1 2 1 2 1 2 1 2
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Table 6-11 GA Calibrated Model Parameter Values for Various Combinations of
Illecillewaet River Watershed (Continuation of Table 6-10)

Lower | Upper | Comb. | Comb. | Comb. | Comb. | Comb. | Comb.

Parameter| g und|Bound| 7A | 7B | 8A | 8B | 9A | 9B

POGRADL| © 20 | 6.67 | 6.67 | 0.86 | 0.86 | 8.63 | 8.63
POGRADM| 0 20 | 13.80 | 13.80-| 12.39 | 12.39 | 2.98 | 13.02
POGRADU| 0 20 - - - - . -

EOLMID | 1600 | 2400 | 2011 | 2011 | 2372 | 1970 | 2344 | 1942
EOLHI 2401 | 2402 | 2401 | 2401 | 2402 |.2401 | 2401 | 2401
POAGEN 80 120 [100.08[102.59|104.47|104.47|102.12|112.16
POPERC 10 50 31.96 | 31.96 | 43.73 | 48.43 | 47.80 | 47.80
PODZSH 0. 1 0.59 | 053 | 0.31 0.50 [ 0.70 | 0.70
VOFLAX | 1700 | 1900 | 1728 | 1829 | 1847 | 1748 | 1777 | 1777
VOFLAS 20 60 23.45 | 23.45 | 23.92 | 47.77 | 54.04 | 33.96
POFRTK 0 ‘ 1.01 1.51 1.62 1.57 1.96 | 1.96
POFSTK 0 1.73 | 123 | 0.87 | 0.80 | 0.78 | 0.78
POGLTK 0 2 0.42 | 1.43 | 034 | 0.46 | 0.01 | 0.01
3
3

POIRTK 10 426 | 4.21 457 | 457 | 745 | 7.39
POISTK 10 325 | 325 | 506 | 5.06 | 717 | 7.17
POUGTK 10 50 33.22 | 33.22 | 34.47 | 3447 | 21.14 | 21.14

PODZTK | 100 300 [219.22|169.02|207.45 | 257.65 [ 109.41|110.20

COIMPA 0 0.3 005 | 0.05 | 0.06 | 0.06 | 0.14 | 0.12
A COIMPA| O 0.1 0.08 | 0.09 | 0.09 | 0.08 | 0.09 | 0.09
POSREP1 -1 1 0.00 | 0.00 - - -0.28 | -0.28
POSREP2| -1 1 - - 024 ; 021 | - -

» POSREP3| -1 1 -0.34 | -0.34 - - 0.00 | 0.00
"|PORREP1| -1 1 - - - - 0.05 | 0.04
PORREP2| -1 1 - - 0.1 0.10 - -
PORREP3| -1 1 0.79 | 0.79 | 0.00 | 0.00 | 0.00 | 0.00

el -infinity| 1 0.870 | 0.855 | 0.698 | 0.689 | 0.917 | 0.915
dviv 0 K 0.002 | 0.017 |0.005 | 0.009 | 0.002 | 0.006
eopt! 0 1 0.869 | 0.837 | 0.693 | 0.680 | 0.914 | 0.910

Rank 1 20 1 2 1 2 1 2

In combination 3, Revelstoke AES station (station 3) alone is used to represent the
meteorological condition of the entire watershed. Although this arrangement is contrary
to the principle of assigning meteorological data to elevation bands based on their
elevation proximity, the satisfactory model performance of 0.861 for e/ and 0.857 for
eopt! are only slightly lower than results of combinations 1 and 2, yet much better than

the results of combination 4.

In combination 5, Fidelity Mountain AES station (station 1) alone is used to represent the

meteorological condition of the entire watershed. Although bands 1, 2, and 3 are
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considered quite far below the station, the model performance achieved is as high as
0.919 for e/ and 6.917 for eopt! after calibration. This implies that a good set of
meteorological data, with reasonable fine-tuning of the parameters such as precipitation
gradient factors or AES adjustment factors for precipitation (PORREP and POSREP), can
still yield high model accuracy without strictly following the principle of assigning
“meteorological data to elevation bands based on their elevation proximity. This finding is
useful because in remote watersheds where no meteorological station is available for
modeling purposes, the modeler can “borrow” meteorological data from an adjacent

watershed (relative speaking) with a meteorological station.

Of all 9 meteorological data combinations listed in Table 6-4, combination 6 is the
closest in following the principle of assigning meteorologicalb data to elevation bands
based on their elevation proximity. However the resulting model performance of 6.891
for e/ and 0.881 for eopt! is not the highest among the nine combinations arranged.
Combination 6’s low model performance is attributed to the suspected problems with the

meteorological data from Roger’s Pass station.

Combinations 7 and 8 are almost identical to combinations 3 and 4, except that two
precipitation gradients are used in calibration rather than one, and this results in slightly
higher model performance. The better results are anticipated because one additional
precipitation gradieﬁt means one additional modeling parameter to calibrate and more
flexibility in a larger search space. However, the above statement is only true if the extra

parameter gives a better description of the physical distribution of precipitation.

Similar to Campbell River model, Micovic (1998) also calibrated Illecillewaet River
through a trial-and-error procedure. The resulting parameter values from the best
calibrated Illecillewaet River (in terms of eopt!) are given in Table 6-12 together with the

parameter values from the GA-based model calibration.
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A statistic summary of the GA calibration results for combination 1A by water year is
given in Table 6-13. The corresponding model performance measured in e/ and eopt! for

the whole simulation period are 0.924 and 0.914.

Table 6-14 is a statistic summary of the model performance for the best calibrated
Illecillewaet River watershed provided by Micovic (1998). The e/ and eopt! values
obtéined for the whole simulation period are 0.909 and 0.875. The statistical summary of
GA results for some other combinations of Illecillewaet River Watershed with high e/
and eopt! values are given in the appendix. The statistical summaries of GA results for
combinations with low e/ and eopt/ values are not proQided. It should be noted that
Micovic’s calibration uses interpolation of the meteorological data, using just two of the

three stations, Revelstoke and Fidelity Mountain.

T6 reconfirm Micovic’s finding of low variability in eight modeling parameters of time
distribution constants of runoff, groundwater percolation and deep zone share, the GA
calibrated parameter values are compared with the suggested constant parameter values.
Table 6-15 summarizes the calibrated values 6f modeling parameters against the
suggested constant values from Micovic. Because Micovic’s best calibrated Illecillewaet
River model achieves high e/ value each water year, for fairness, only GA calibrated
results from combinations with e/ values > 0.90 are considered (combinations 1A, 2A,

5A, and 9A are the only ones > 0.90).
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Table 6-12: Resulting Parameter Values from Micovic’s Best Model Calibration of
Illecillewaet River Watershed (Micovic 1998)

paramete| S| 9509 cliaiod O3 | O | O3 | Comb-| . | Com- | Comb. | G | Corm
POGRADL| 0 | 20 4 863 | 871 | 510 | 1.02 | 863 | 11.77 | 667 | 0.86 | 863
POGRADM| 0 20 2 - - - | - - - | 1380 | 12.39 | 2.08
POGRADU| © 20 0 - - - - - - - - -
EOLMID | varies | varies | 1009 | 2401 | 2401 | 2401 | 2400 | 2401 | 2401 | 2011 | 2372 | 2344
EOLHI 2401 2402 2481 2401 2401 2401 2402 2401 2401 2401 2402 2401
POAGEN | 80 | 120 | 100 | 100.86|110.90 | 102.59 | 104.47 | 117.18 | 95.22 | 100.08 | 104.47 | 102.12
POPERC | 10 | 50 31 | 3839 | 1894 | 4075 | 33.37 | 37.77 | 11.88 | 31.96 | 4373 | 47.80
PODZSH | © 1 025 | 070 | 076 | 078 | 025 | 064 | 058 | 059 | 0.31 | 070
VOFLAX 1700 1900 1800 1779 1778 1850 1817 1780 1764 1728 1847 1777
VOFLAS 20 60 36 51.84 60.00 23.61 47.77 | 34.59 57.02 23.45 23.92 54.04
POFRTK 0 2 0.78 1.14 1.39 1.67 1.65 1.46 0.59 1.01 1.62 1.96
POFSTK | 0 2 1.0 | 078 | 054 | 148 | 137 | 079 | 099 | 173 | 087 | 078
POGLTK | 0 2 17 | 133 | 021 | 140 | 147 | 076 | . | o042 | 034 | 0.01
PORTK | 3 | 10 2 6.84 | 750 | 410 | 391 | 690 | 657 | 426 | 457 | 7.45
poISTK | 3 | 10 3 410 | 783 | 676 | 5.00 | 728 | 511 | 325 | 506 | 7.17
POUGTK | 10 | 50 17 | 2067 | 17.37 | 43.26 | 13.77 | 21.14 | 36.98 | 3322 | 34.47 | 21.14
PODZTK .| 100 300 168 109.41 | 184.71 | 269.41 | 224,71 | 134.51 | 294.51 | 219.22 | 207.45 1'09.41
comPAa | o | 03 | o1 027 | 005 | 004 | 006 | 012 | 012 | 005 | 006 | 014
ACOIMPA| 0 | 041 | varies* | 009 | 010 | 009 | 008 | 009 | 006 | 008 | 0.09 | 0.09
POSREP1 | -1 1 022 | 026 | -028 | - .| 027|033 000 - | -028
POSREP2 | -1 1 010 | 021 | 080 | - |ois | - | oo1 - | o2s | -
POSREP3 | -1 1 011 | 010 | 097 | 015 | - . - l-034| - | ooo
PORREP1 | -1 1 014 | 098 | 030 | - - | oos | 057 | - - | oos
PORREP2 | -1 1 017 | 008 | 008 | - |o22 | - loss | - | o1 ]
PORREP3| -1 1 011 | 091 | 053 | 085 | - . - | o079 | 000 | 000
el |-infinity| 1 0.909 | 0.924 | 0.909 | 0.861 | 0.688 | 0.919 | 0.891 | 0.870 | 0.698 | 0.917
dvIv 0 1 0.034 | 0.011 | 0.001 | 0.004 | 0.015 | 0.002 | 0.010 | 0.002 | 0.005 | 0.002
eopt! 0 1 0.875 | 0.914 | 0.908 | 0.857 | 0.673 | 0.917 | 0.881 | 0.869 | 0.693 | 0.914
Rank | 1 20 - 1 1 1 1 1 1 1 1 1

*The values of COIMPA for bands 1 to 8 are 0.10, 0.10,0.10, 0.10, 0.10, 0.40, 0.45, and
0.50. '




Table 6-13: Statistics of Model Performance for Combmatlon 1 of Illecillewaet
River Watershed after GA Calibration

STATISTICS FOR THE OCT 1, 1981 - SEP 30, 1989 WATER YEARS

Mean Qs Mean Qqt Tot Qgps Tot Qest Tot Qs Coeff.of Coeff.of

(cms/d) (cms/d) (cms/d) (cms/d) -Tot Qe Eff Det
YEAR (811001-820930)
YEAR 56.95 56.11 20787.69  20479.49 308.20 0.94 0.95
YEAR (821001-830930)
YEAR 52.28 48.89 19083.01 17846.49 1236.52 0.84 0.85
YEAR (831001-840930)
YEAR 52.94 48.89 19376.00 17895.16  1480.85 0.93 0.93
YEAR (841001-850930)
YEAR 49.44 50.56 . 18045.53 18453.25  -407.72 0.94 0.95
YEAR (851001-860930) .
YEAR 54.26 53.09 19804.49 19379.42 425.07 0.94 0.94
YEAR (861001-870930) ,
YEAR 51.87 50.51 18934.20 18437.21 496.98 0.94 0.95
YEAR (871001-880930) :
YEAR 49.36 52.05 18065.39 19052.11 -986.72 0.94 0.96
YEAR (881001-890930)
YEAR 47.28 50.07 17255.66 18274.75 -1019.09 0.90 0.94
WHOLE PERIOD (811001-890930)
PERIOD 51.8 51.27 151352.00 149817.90 1534.09 0.92 0.93

To reconfirm Micovic’s finding of low variability in eight modeling parameters of time
distribution constants of runoff, groundwater percolation and deep zone shére, the GA
calibrated parameter values are compared with the suggested constant parameter values.
Table 6-15 summarizes the calibrated values 9f modeling parameters against the
suggested constant values from Micovic. Because Micovic’s best calibrated Illecillewaet
River model achieves high e/ value each water year, for fairness, only GA calibrated
results from combinations with e/ values > 0.90. are considered (combinations 1A, 2A,

5A, and 9A are the only ones > 0.90).
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Table 6-14: Sfatistics of Model Performance from Best Calibration of Illecillewaet
River Watershed (Micovic 1998)

STATISTICS FOR THE OCT 1, 1981 - SEP 30, 1989 WATER YEARS

Mean Qs Mean Qe Tot Qups Tot Qeq Tot Qs Coeff.of Coeff.of
(cms/d) (cms/d) (cms/d). (cms/d) -Tot Qgq Eff Det
YEAR (811001-820930) ' _
YEAR 57.0 53.6 20787.69 19579.3 1208.39 0.9124 0.9227
YEAR (821001-830930)
YEAR 52.3 49.2 19083.01 17960.6 1122.41 0.9200 0.9228
YEAR (831001-840930)
YEAR 52.9 453 19376.00 16561.5 28145 0.8948 0.9131
YEAR (841001-850930) : .
YEAR 49.4 47.9 18045.53 17490.7 554.83 0.9429 0.9554
YEAR - (851001-860930)
YEAR | 54.3 491 19804.49 17924.7 1879.79 0.9172 0.9246
YEAR (861001-870930) :
YEAR 51.9 52.2 18934.20 19045.2 -111 0.9125 0.9173
YEAR (871001-880930)
YEAR 49.4 52.6 18065.39 19255.2 -1189.81 0.8940 0.9089
YEAR (881001-890930) . ‘
YEAR 47.3 50.6 17255.66 18451.2 = -119554 0.9003 0.9354
WHOLE PERIOD (811001-890930)
50.0 151352.00 0.9087 0.9147

PERIOD - 51.8 149817.90 5083.57
Table 6-15: Suggested Constant Values for Modeling Parameters with Low

Variability vs. GA Calibrated Parameter Values of Illecillewaet River Watershed

Lower | Upper Suggested | Micovic’s
Parameter pp Constant | Calibrated |Comb. 1 AlComb. 2 A|lComb. 5 AComb. 9 A
Bound | Bound
Value Value

POPERC 10 50 25 31 38.39 18.94 37.77 47.80
PODZSH | O 1 0.3 0.25 0.70 0.76 0.64 0.70
POFRTK 0 2 0.6 0.78 1.14 1.39 1.46 1.96
POFSTK 0 2 1 1 0.78 0.54 0.79 0.78
POIRTK 3 10 3 2 6.84 7.50 6.90 7.45
POISTK 3 10 4 3 4.10 7.83 7.28 7.17
POUGTK 10 50 20 17 20.67 17.37 | 21.14 21.14
PODZTK 100 300 150 168 109.41 184.71 134.51 109.41

Unlike the similarity observed between the suggested constant value and the GA
calibrated parameter values in the Campbell River watershed, the resﬁlts in Illecillewaet
River Watershed are relatively different from the suggested constant parameter values.
The parameters showing some difference in values are POPERC, PODZSH, POFRTK,

POISTK and POIRTK although POISTK and POIRTK are low sensitivity parameters
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- which have little influence on the overall model performance. The largest difference is in
PODZSH. No reasonable explanation can be offered. It is possible that Illecillewaet
River is one of the very few watersheds which exhibit high variability in parameters of
time distribution constants of runoff, groundwater percolation and deep zone share, while

the majority of 12 studied watersheds exhibit low variability.

6.5 Evaluation of Search Efficiency for Various Genetic Algorithms Techniques

In Chapter 4, types of major genetic operators and their alternative forms were discussed.
The effect of these operators inbenhancin'g the GA search efficiency and facilitating the
calibration process will be demonstrated in this section. Although six operators were
introduced in Chapter 4, only three operators: crossover, elitism and niching will be

demonstrated.

6.5.1 Comparison of Crossover Operators

"In Figure 4-1, it was shown that the uniform crossover operator tends to outperform the
single crossover operator in a simple single-objective optimization problerﬁ. To
demonstrate how the type of crossover operator chosen can seriously affect the GA
search efficiency in model calibration, combination 1 of the Campbell River watershed is
used as a test. As shown in Figure 6-1, because the initial string population and all the
genetic operators used for the calibration of Campbell River watershed are identical,
except. for the type of crossover operator, the initial eopt! values obtained were the same
for the first generation. As more generations of search elapse, the eopt/ values begin to
depart from each other significantly. The calibration run with the uniform crossover

* operator is clearly the winner with an eopt! value of 0.716 at the end of 20-generation

search while the run with the single-point crossover operator onl;/ achieves an eopt! value

of 0.603 after 20 generations and remains unchanged despite that an additional five-
generation search was carried out in the hope that the search efficiency would soon

improve. Based on this observation, one may therefore conclude that the uniform
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crossover operator should be used by the automatic GA calibrator to improve the GA
search efficiency in the calibration process of a UBC Watershed Model. Note that in the

two calibration runs, both elitism and niching operators were implicitly used.

Figure 6-1: Comparison of GA Search Efficiency using Single-Point and Uniform
Crossover '
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6.5.2 With and Without Niching Operator

The advantage of using the niching operator in genetic algorithms has been discussed in
section 4.7.7. To demonstrate how the niching operator can be used to improve the GA
searc‘h efficiency in the calibration process, combination 5 of the Illecillewaet River
watershed is used. In the non-niching option, the niching operator is temporarily disabled
in the GA search. The two slightly differently coded GA calibrators were then used to
commence the search to find the best set of parameters with the maximal model
performance, which is selected to be eopt!. As shown in Figure 6-2, the search
performance seems to be identical until the 10" generation when the non-niching option
begins to take the lead. However, the niching option quickly catches up and reaches an
eopt! of 0.917 at the end of the 20 generation search while the non-niching option only

reaches an eopt! of 0.909, a difference of about 1%. Although an improvement of 1%
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appears to be negligible superficially, this improvement is actually quite difficult to
achieve if the trial-and-error calibration procedure is used. Thus, the niching operator
will be used by the automatic GA calibrator to improve the GA search efficiency in the

calibration process of the UBC Watershed Model.

Figure 6-2: Comparison of GA Search Efficiency with and without Niching
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6.5.3 With and Without Elitism Operator

The elitism operatof, as discussed in section 4.7.5, is used to preserve the solutions that
achieve high fitness. The intent of using the elitism operator is to prevent genetic
operations from accidentally destroying the best solution found so far. When the elitism
operator is activated in the GA calibrator, it automatically preserves the best candidate
solution of every generation. Only one candidate solution is allowed in this GA
calibrator because De Jong (1975) reportedly found preserving more candidate solutions

‘decreases the search performance of multi-modal objective functions.

Combination 1 of the Campbell River watershed is again used to exemplify the role of
elitism in improving the GA search efficiency. The choice of using or not using the
niching operator in conjunction with the elitism operator has been noted in this study to

-
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have a profound impact, so much so that elitism may actually slow down the GA search
process. It is warranted to discuss the combined effect of the niching and elitism

operators interactively.

To investigate, assume all other genetic operators remain unchanged except the niching
and elitism operators. Therefore, when niching is used without elitism in GA calibraﬁon,
the objective function of the GA search is simply a sharing function, which helps to break
the clustering of candidate solutions rather than an objective function capable of
meésuring model performance in terms of e/ or eopt!. As a result, the sharing function
will not be able to steer the GA search towards finding higher e/ and eopt!. This
understanding is confirmed in the GA calibration of Campbell River watershed as shown
in Figure 6-3 when the resulting GA search for the combinatorial use of niching and non-
elitism exhibits little or no steady trend of improved performance. /On the other hand, if
niching is not used, then without using elitism, the GA search could still gradually
improve model performance and achieve high e/ and eopt! values (as shown in Figure

6-3).

Figure 6-3 compares the GA search efficiency for the following elitism and niching

usage:

e without elitism, with niching
e without elitism, without niching
e with elitism, with niching

e with elitism, without niching

Based on the empirical observation from Figure 6-3, one may conclude that if niching is ~
used, then elitism should always be enabled in the GA calibration, otherwise the search

efficiency will be relatively low.
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Figure 6-3: Comparison of GA Search Efficiency with and without Elitism and
Niching '
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* Uniform crossover is used in all four GA searches.

6.5.4 Summary of Default Genetic Algorithm Techniques and Parameters used for

Model Calibration

Based on these findings on search efficiency, the following default genetic operator
options were programmed in the GA model calibrator. It is believed that this
combination of genetic operators will yield the best GA search efficiency and ensure that
a global-optimal or at least a near global-optimal solution is found. However, the users
still have the flexibility to change the default whenever necessary. The default genetic

operator options are:

e Use random selection rather than tournament selection in reproduction,
e Use yniform type of crossover operator,
* Use elitism to preserve the best solution of each generation of GA search;

e Use niching to prevent clustering of candidate solutions.
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6.5.5 Calibration Time

For consistency, all the GA calibration runs for the Campbell River and Illecillewaet
River Watersheds use a population of 20 strings and an evolution of 20 generations
unless specified otherwise. This requires the GA-based model calibrator to call the UBC
Watershed Model 400 times in every run. On an Intel Celeron 533MHz MMX system,

each calibration takes about 45 to 55 minutes to complete.

6.6 Comparison of Three Statistical Measures used as the Objective-Functions in

GA Model Calibration

Three commonly used model performance measures have already been discussed earlier
in Chapter 2. They will be tested in this section to see if they can be effectively used as

objective functions in minimizing the differences between the observed and simulated

~data and maximizing the model performance in the calibration of the UBC Watershed

Model. These three objective statistical measures are:

1. Nash-Sutcliffe Coefficient of Efficiency

IE(QQbs - Q;im )2
=l =l
_ 2 total variance
E(Qab: Qobs ) .

i mean

residual variance

(Equation 6-1)

2. Least thares Difference Objective Function

)2

n 0
fa-

sim
i
Qobs

Loy =1—————— (Equation 2-6)

squares n




3. Least Absolute Difference Objective Function

z absolute
difference

n Cim
1§1 abs(l - ﬂ)

=]l-— (Equation 2-9)

n

The testing procedures are follows:

e Allow a total string population of 20 and an evolution of 20 generations. The number

of the population and the evolution are chosen arbitrarily though they are a |

compromise between long GA computational search time and a thorough search of

the multi-dimensional solution space. Run the genetic algorithms model calibrator

for the Illecillewaet River Watershed three times:

For the first run, use the Nash-Sutcliffe coefficient of efficiency alone as the
objective function to indicate model performance and guide the‘ GA search.

However, upon the completion of a 20 generation-search, the surviving candidate

- solutions (strings) of the 20™ generation will have their corresponding least

squares difference and least absolute difference objective function values
implicitly calculated.

For the second fun, use the least squares difference objective alone as the
objective function to indicate model performance and guide the GA search. Upon
the completion of a 20 generation-search, the surviving candidate solutions will
have their corresponding Nash-Sutcliffe and least absolute difference objective
function values implicitly calculated. )

For the third run, use the least absolute difference objectivé alone as the objective
function to indicate model performance and guide the GA search. Upon the
completion of a 20 generation-search, the surviving candidate solutions will have

their corresponding Nash-Sutcliffe and least squares difference objective function

values implicitly calculated.
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e Upon the completion of all three GA runs, graphically plot the corresponding
streamflow volume discrepancy, dV/V againist the three model performance measures
(objective functions) respectively. The three statistical measures are then ranked
based on how consistently the streamflow volume discrepancy decreases with

increasing objective function values.

The streamflow volume discrepancy, dV/V used is non-dimensionalized with the total

observed streamflow volume and is defined as:

v abS( Vi~ V’”f‘?’ ) EI(Q?"'" )
_ observed estimated :'abs - _n_____l__ (Equation 6'2) .
\% ' Vmbml " % (QubY )
observe =1

where V

total
observed

is the total observed streamflow volume integrated over the duration of the

model simulation period,

Vv

total
_estimated

is the total estimated streamflow volume integrated over the duration of the

same model simulation period.

Clearly, if one objective function is to be named a good model performance indicator in
calibration, then the higher the value it is, the smaller the streamflow volume discrepancy
(dV/V) should be. The inverse relationship is essential for an objective statistical measure
to qualify as a good model performance indicator. Thus, the test devised for comparisoﬁ
in this section can fairly determine which objective statistical measure is a better and
more coﬁsistent indicator of a well calibrated model, and allows the GA user to clearly
see the strength or limitations of the three 6bjective statistical measures for model

performance.
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 For the first GA run, using the Nash-Sutcliffe as the objective function for GA search and
calculating the corresponding least squares difference and least absolute difference
objective functions, the relationships between dV/V and the three objective functions are

graphically represented in Figure 6-4, Figure 6-5, and Figure 6-6.

Figure 6-4: Discrepancy of Streamflow Volume vs. Nash-Sutcliffe Coefficient of
Efficiency (Run 1)
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Figure 6-5: Discrepancy of Streamflow Volume vs. Least Squares Difference
Objective Function (Run 1)
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Figure 6-6: Discrepancy of Streamflow Volume vs. Least Absolute Difference
‘Objective Function (Run 1)
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As anticipated, the trend observed from' Figure 6-4, Figure 6-5 and Figure 6-6 is that the
discrepancy in streamflow volume generally decreases as the values of the three objective
functions increase. In particular, the desirable inverse relationship between. the
discrepancy in streamflow volume and the objective functions for calibration is the
strongest when the Nash-Sutcliffe coefficient of efficiency is used, although some
inconsistency still remains. Ideally, a perfect model performance indicator in GA-based
model calibration is an objective function in which the discrepancy in streamflow volume

would always decrease as the value of chosen objective function increases.

In addition, as shown in Figure 6-4 the values of the Nash-Sutcliffe coefficient on X-axis
~is quite high because it is the objective function used to guide GA search.- On the
contrary, the ranges of the least squares and least absolute difference objective functions
on the X-axis in Figures 5.2 and 5.3 tend to be much lowér because they are not the
guiding objective function in the GA search. Because the niching operator is used, the
Nash-Sutcliffe coefficient values have a wide range on X-axis. If the niching operator
were not used, the Nash-Sutcliffe coefficient values of all candidate solution would

cluster tightly together near x=0.93.
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For the second GA run, the least squares difference is used as the objective function to
guide the GA search and the corresponding Nash-Sutcliffe coefficient of efficiency and
least absolute difference objective function are then implicitly calculated. The
relationships between the dimensionless volume discrepancy and the three objective

functions are graphically represented in Figure 6-7, Figure 6-8, and Figure 6-9.

From Figure 6-7 and Figure 6-9, one can again observe that dV/V generally decreases as
the values of the two objective functions increases. - The trend is particularly strong
between dV/V and the Nash-Sutcliffe coefficient. However, in Figure 6-8, no apparent
trend can be determined between dV/V and the least squares difference objective function
despite the fact that the least sduares difference objective function is the chosen objective
function to guide the GA search. Thus under this circumstance, the least squares
difference objective function fails to be a good indicator of the model performance in the
calibration process while the Nash-Sutcliffe coefficient and the least absolute difference
objective function behave reasonably well as good performance indicators. However,
similar to the results of run 1, it appears in run 2 that the Nash—Sutcliffe coefficient

"behaves most consistently with a decreasing trend of dV/V, as desired.

Figure 6-7: Discrepancy of Streamflow Volume vs. Nash-Sutcliffe Coefficient of
Efficiency (Run 2) :
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Figure 6-8: Discrepancy of Streamflow Volume vs. Least Squares Difference
Objective Function (Run 2)
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Figure 6-9: Discrepancy of Streamflow Volume vs. Least Absolute Difference
Objective Function (Run 2)
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For the third GA run, using least absolute difference as the objective function to guide
N ;
GA search and then calculating the corresponding Nash-Sutcliffe coefficient of efficiency

and least squares difference objective function, the relationships between the
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dimensionless volume discrepancy and the three objective functions are then graphically

represented in Figure 6-10, Figure 6-11, and Figure 6-12.

Figure 6-10: Discrepancy of Streamflow Volume vs. Nash-Sutcliffe Coefficient of

Efficiency (Run 3)
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Figure 6-11: Discrepancy of Streamflow Volume vs. Least Squares Difference
- Objective Function (Run 3)
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Figure 6-12: Discrepancy of Streamflow Volume vs. Least Absolute Difference
Objective Function (Run 3)
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From Figure 6-10, as anticipated, one can again observe that dv/iv generally decreases as
the value of Nash-Sutcliffe coefficient increases. The invefse trend remains reasonably
strong. However, against what is anticipated, Figure 6-11 and Figure 6-12 show that
dV/V values do not decrease inversely as the values of least squares and least absolute
difference objéctive functions increase, despite the fact that the least absolute difference
objective function is the chosen objective function to guide the GA search. Thus, under
this circumstance, both least squares and least absolute difference objective functions fail
to behave as good model performance indicators in minimizing streamflow volume
discrepancy. However, the Nash—Sutcliffe coefficient, unlike the other two objective
functions, continues to behave reasonably well as a mode!l performance indicator, so that

dV/V decreases consistently as the Nash-Sutcliffe coefficient increases.

Based on the observation of the results from three GA runs, one may conclude that of the
three objective statistical measure discussed in the thesis, the Nash-Sutcliffe coefficient
behaves most consistently with a strong decreasing trend of dVv/V‘~ as the value of the
Nash-Sutcliffe coefficient increases. However from Figure 6-4, Figure 6-7 and Figure
6-10, one can clearly observe that the value of dV/V does not always decrease with an

increasing Nash-Sutcliffe coefficient. 'To overcome this inherent limitation of the Nash-
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Sutcliffe coefficient, a new statistical measure based on a combination of the Nash-

Sutcliffe coefficient and dV/V is therefore used.

The modified statistical measﬁre, which is briefly mentioned in Chapter 2 (Equation 2-3),
places equal weights on both the Nash-Sutcliffe coefficient of effiéiency and the
agreement in total streamflow volume. The resulting combinatory statistical measure is
already used as a modification of the Nash-Sutcliffe coefficient in the existing UBC

. Watershed Model calibration, and can be written as:

eopt!=el—abs| 1 - ' = e!—abs(vj (Equation 6-3)

n

2(Q,)

It emphasizes that for a model to be considered to be well calibrated, the observed and
simulated streamflow data should concurrently achieve a high Nash-Sutcliffe coefficient

of efficiency and small discrepancy in streamflow volume.
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7.0 CONCLUSIONS
The usefulnees of a watershed model or any model in general depends on how well it is
calibrated, namely, howx closely it actually predicts the physical behavior of the modeled
system. Under the existing UBC Watershed Model structure, an automatic random
search capability is provided in the calibration module. The calibration module limits the
number of simultaneously caliBrated modeling parameters to groups of about three to six
at a time. The user then proceeds through further groups of parameters, moving from the

more sensitive parameters to the less sensitive ones, to refine the parameter values.

Therefore, in this thesis, the aim was to develop a calibration method 'based .on the
- genetic algorithm approach. This approach would permit the simultaneous evaluation of
all modeling parameters, which could be very useful because of the non-linear
. interactions between the parameters. Although the best solution found in the GA search
cannot be analytically proven as the optimal solution, by designing the GAs to maintain
sufficient diversity, the search should adequately cover the entire solution space.
Therefore, there should be no other superier results within the permissible variable

ranges.

This‘ thesis describes the use of genetic algorithms in the development of a non- .
conventional optimization and search technique, which is used to develop an automatie
model calibrator for the UBC Watershe_d Model. (

The calibrator allows all modeling parameters to be simultaneously evaluated. Using this
GA caiibrator, two well-studied watersheds in British Columbia: Campbell River and
‘Il_lec_illewaet River watersheds were successfully calibrated. The best model perf_ormance
of the GA calibrated Campbell River and Tllecillewaet River watersheds achieves eopt/
'Vélues of 0.718 and 0.914, respectively for the entire duration of the simulated water ‘

- years whilst Micovic (1998) reported best eopt! values of 0.720 and 0.875, obtained using

the existing UBC random search procedure. This may -appear to be only a marginal




improvement, but the main difference is the reduced time and effort required to achieve a

reasonable calibration.

Because the types of genetic operators jointly used in a GA search can affect the search

efficiency, several computational expertments were conducted to investigate the impact

crossover, elitism, and niching operators. The experimental results in the GA calibration

of the Campbell River and Illecillewaet River watersheds show the following: |

The uniform crossover operator tends to out-perform the single crossover operator
in search efficiency.

In presence of an elitism operator, the GA calibrator equipped with a niching
operator performs slightly better than the one without a niching operator. Even
though the small improvement appears to be negligible, experienced modelers
may often find the improvementqhite difficult to achieve through a random trial-
and-error calibration procedure. |

The choice of using or not using an niching operator in conjunction with the
elitism operatof has been noted in this study to have a profound impact on the
elicited advantage of using an elitism operator, so much so that elitism may
actually slow down the GA search process.

If niching is used, then an elitism operator should also be concurrently in the GA

calibration, otherwise the search efficiency will be relatively low.

To objectively determine the performance of a calibrated watershed model, the difference

between the observed and the simulated streamflow has to be statistically measured. The

five statistical measures introduced in this study are:

A

Coefficients of Linear Correlation and Determinatioﬁ, rand 7
Nash & Sutcliffe Coefficient of Efficiency, e/

Least Squares Objective Function

Least Absolute Difference Objective Function

Modified Nash & Sutcliffe Coefficient of Efficiency, eopt!




i

The coefficients of linear correlation and determination were shown to measure only
shape similarity between the observed and simulated streamflow hydrographs and fail to
acknowledge the discrepancy error in streamflow volume. Thus, they were quickly
discarded and not used any further. To fairly compare the Nash & Sutcliffe coefficient of
efficiency, least squares and least absolute difference objective functions as model
performance indicators, the relationships between the streamflow volume discrepancy
(dV/V) and the values of the three statistical measures were experimentally obtained and
graphically plotted. .Experiment results obtained in the GA calibration of the Campbell
River River watershed show that the Nash & Sutcliffe coefficient of efficiency exhibits
the most consistently decreasing trend of dV/V as the value of e/ increases. For a
statistical measure to be named a good model performance indicator in calibration, there
must exist an inverse relationship, i.e. the higher the statistical measure value is, the
smaller the streamflow volume discrepancy should be. Thus, the Nash & Sutcliffe
coefficient best indicates the agreement betwéen the observed and simulated streamflow
hydrographs. However, because the value of dV/V does not always decrease with an
increasing Nash-Sutcliffe coefficient, a modifiéd coefficient was suggested. The
modified coefficient places equal weights on both the Nash-Sutcliffe coefficient -of
efficiency and the streamflow volume discrepancy. It ensures the optimal or near-
optimal set of model parameter values found at the end of a GA search achieves both

high e/ and low dV/V at the same time.

In calibrating the Illecillewaet River watershed, it 1s found that meteorological -data
collected from a low-elevation station can be adjusted through precipitation gradient
factors and AES precipitation factors to‘successfully represent the condition in a high-
elevation watershed and achieve high model performance in terms of e/ and eopt/. This
implies that a good set of meteorological data can still yield high model accuracy without
strictly following the pri1/1ciple of assigning meteorological data to elevation bands of a
watershed based on their elevation proximity. The finding is useful because in some

remote watersheds where there is no meteorological station and no data available for
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modeling purposes, the modeler can “borrow” meteorological data from adjacent

watershed (relatively speaking) with a station.

In addition, it was found in the GA computational experiments that within the multi-
dimensional feasible solution region, bounded by the modeling parameter constraints,
objective function such as eopt! can often be multi-modal with the values of sub-optimal
solutions very close to the value of the optimal solution found. Under these
circumstances, the GA user is cautioned because the minor difference in objective

function values can be well within the error range of the Qbsefved streamflow data used.

For consistency, all the GA calibration runs for the Campbell River and Illecillewaet '
River Watersheds use a population of 20 strings and an evolution of 20 generations
unless specified otherwise. This requires the GA-based model calibrator to call the UBC
Watershed Model 400 times in every run. Thus the computational efficiency ‘in UBC
Watershed Model should be re-examined to see if further coding improvement can be
made in reducing the overall GA search time. On an Intel Celeron 533MHz MMX

system, each calibration takes about 45 to 55 minutes to complete.
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9.0 APPENDIX

The following model performance statistics are generated based on the best-calibrated set
of model parameter values from each combination of the respective watershed. Only the .
combinations with high e/ and eopt! values are given in the appendix. The statistical

summaries of GA results for combinations with low e/ and eopt! values are not provided.

Table: 9-1 Statistics of Model Performance for Combination 4 of Campbéll River
Watershed after GA Calibration :

STATISTICS FOR THE OCT 1, 1983 - SEP 30, 1990 WATER YEARS

Mean Qus Mean Qo Tot Qgps Tot Qe  TotQus Coeff.of Coeff.of

(cms/d) {cms/d) (cms/d) (cms/d)  -Tot Qe Eff Det

YEAR (831001-840930)

YEAR 75.49 72.24 27631.09 26441.55 -1189.54 = 0.61 0.61

YEAR (841001-850930)

YEAR 59.65 - 56.73 21773 20704.92 1068.08 0.59 0.72

YEAR (851001-860930)

YEAR 75.47 70.23 27546.7  25635.55 1911.15 0.78 0.85

YEAR. (861001-870930) .

YEAR 89.59 87.77 32701.29 32036.22  665.07 0.66 0.67

YEAR (871001-880930)

YEAR 70.23 74.49 257059 27263.96 -1558.06 0.65 0.67

YEAR (881001-890930)

YEAR 63.57 71.07 23203.41 25940.29 -2736.88 0.68 0.7

YEAR (891001-900930) :

YEAR 65.46 67.85 23893.69 24763.46  -869.77 0.82 0.82
WHOLE PERIOD (831001-900930) : ’
PERIOD 71.36 71.48 182455.2 182786 -330.78 0.69 0.69
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Table 9-2: Statistics of Model Performance for Combination 5 of Campbell River
Watershed after GA Calibration

STATISTICS FOR THE OCT 1, 1983 - SEP 30, 1990 WATER YEARS

Mean Qg Mean Qo ToOt Qqps TotQeq  TotQus Coeff.of Coeff.of

(cms/d) (cms/d) (cms/d) (cms/d)  -Tot Qe Eff Det

YEAR (831001-840930)

YEAR 75.49 69.33 27631.09 25374.31 2256.78 0.63 0.64

YEAR (841001-850930)

YEAR 59.65 57.66 21773 21044.68  728.31 0.73 0.79

YEAR (851001-860930)

YEAR 75.47 69.41 27546.7  25334.63 2212.08 0.8 0.83

YEAR (861001-870930) '

YEAR 89.59 88.35 32701.29  32249.3 451.99 0.66 0.67

YEAR (871001-880930)

YEAR 70.23 72.82 25705.9  26653.55  -947.65 0.67 0.67

YEAR (881001-890930) '

YEAR 63.57 69.35 = 23203.41 253116 -2108.19 0.69 0.71

YEAR (891001-900930) '

YEAR 65.46 70.53 23893.69 25743.13 -1849.44 0.76 0.78
WHOLE PERIOD (831001-900930) :
PERIOD 71.36 71.06 182455.2  181711.3 - 743.92 0.71 0.71
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Table 9-3: Statistics of Model Performance for Combmatlon 6 of Campbell River
Watershed after GA Calibration

STATISTICS FOR THE OCT 1, 1983 - SEP 30, 1990 WATER YEARS

Mean Qg  Mean Qge - Tot Qgps Tot Qegt Tot Qus Coeff.of  Coeff.of

(cms/d) (cms/d) (cms/d) (cms/d)  -Tot Qea Eff Det
YEAR (831001-840930) ‘
YEAR 75.49 72.35 27631.09 26481.24 1149.85 0.68 - 0.68
YEAR (841001-850930) _
YEAR 59.65 57.5 21773 20986.78  786.21 0.65 0.77
YEAR (851001-860930) )
YEAR 75.47 68.63 27546.7 25048.95 2497.75 0.81 0.83
YEAR (861001-870930) .
YEAR 89.59 86.8 32701.29 31680.69 1020.6 0.68 0.68
YEAR (871001-880930)
YEAR 70.23 72.92 25705.9 26689.6 -983.69 0.63 0.66
YEAR (881001-890930)
YEAR 63.57 69.87 23203.41 25504.27 -2300.86 0.72 0.73
YEAR (891001-900930) '
YEAR 65.46 70.58 23893.69 25763.12 -1869.43 0.8 0.82

WHOLE PERIOD (831001-900930)

PERIOD 71.36 71.24 182455.2 182155 300.19  0.72 0.72
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Table 9-4: Statistics of Model Performance for Combination 2 of Illecillewaet River
Watershed after GA Calibration '

STATISTICS FOR THE OCT 1, 1981 - SEP 30, 1989 WATER YEARS

Mean Qs Mean Qe Tot Qups Tot Qe  TotQus Coeff.of Coeff.of
(cms/d) (cms/d) (cms/d) (cms/d)  -Tot Qe Eff Det
YEAR (811001-820930)
YEAR 56.95 53.39 20787.69 19487.56  1300.13 0.89 0.90
YEAR (821001-830930)
YEAR 52.28 54.23 19083.01  19792.51 -709.5 0.92 0.92
YEAR (831001-840930) '
YEAR 52.94 48.89 19376.00 17895.16  1480.85 0.93 0.93
YEAR (841001-850930)
YEAR 49.44 47.26 18045.53 17249.23 796.3 0.9 0.91
YEAR (851001-860930) : :
YEAR 54.26 49.84 19804.49 18190.78 1613.71 0.92 0.92
YEAR (861001-870930) ~
- YEAR 51.87 '54.38 18934.2  19847.91 -913.71 0.92 0.92
-YEAR (871001-880930)
YEAR 49.36 53.94 18065.39 19742.17 -1676.78 0.93 0.94
YEAR (881001-890930)
YEAR 47.28 52.67 17255.66 19223.66 -1968 0.89 0.92
WHOLE PERIOD {811001-890930)
PERIOD 51.8 5177 151352 151279.6 72.39 0.91 0.91
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Table 9-5: Statistics of Model Performance for Combination 5 of Illecillewaet River
Watershed after GA Calibration

STATISTICS FOR THE OCT 1, 1981 - SEP 30, 1989 WATER YEARS

Mean Qg Mean Qe Tot Qups Tot Qe  TotQus - Coeff.of Coeff.of

(cms/d) (cms/d) (cms/d) (cms/d) ~ -Tot Qeg Eff Det
YEAR (811001-820930)
YEAR 56.95 52.84 20787.69 19286 1501.69 0.95 0.95
YEAR (821001-830930)
YEAR 52.28 52.4 19083.01 19127.8 -44.79 0.92 0.92
YEAR (831001-840930)
YEAR 52.94 45.64 19376 16704.22  2671.79 0.86 0.88
YEAR (841001-850930) :
YEAR 49.44 47.56 18045.53 17359.05 686.48 0.94 0.94
YEAR (851001-860930)
YEAR 54.26 49.95 19804.49 18232.97 1571.52 0.92 0.93
YEAR (861001-870930) -
YEAR 51.87 55.57 18934.2 20284.32 -1350.12 0.93 0.94
YEAR (871001-880930) )
YEAR 49.36 55.17 18065.39 2019252 -2127.13 0.92 0.94
YEAR (881001-890930)
YEAR 47.28 54.44 17255.66 19871.84 -2616.17 0.88 0.93
WHOLE PERIOD (811001-890930) )
PERIOD 51.8 51.7 151352  151058.8  293.19 0.92 0.92
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Table 9-6: Statistics of Model Performance for Combination 9 of Illecillewaet Rfver
Watershed after GA Calibration

STATISTICS FOR THE OCT 1, 1981 - SEP 30, 1989 WATER YEARS

Mean Qs Mean Qg Tot Qgps Tot Qe Tot Qus Coeff.of Coeff.of

(cms/d) (cms/d) (cms/d) (cms/d)  -Tot Qe Eff Det
YEAR (811001-820930) _
YEAR 56.95 53.02 20787.69 19353.97 1433.72 0.95 0.95
YEAR (821001-830930) .
YEAR 52.28 52.4 19083.01  19127.23 -44.22 0.9 0.91
YEAR (831001-840930)
YEAR 52.94 45.35 19376 16599.43 2776.57 0.86 0.88
YEAR (841001-850930) o
YEAR 49.44 47.8 18045.53 1744598 599.55 0.94 0.95
YEAR (851001-860930) '
YEAR 54.26 49.89 19804.49 18210.96 1593.53 0.92 0.94
YEAR (861001-870930)
YEAR 51.87 55.55 18934.2 20275.71 -1341.51 0.93 0.94
YEAR (871001-880930)
YEAR 49.36 55.12 18065.39 20174.93 -2109.54 0.93 0.94
YEAR (881001-890930) ‘
YEAR 47.28 54.57 17255.66 19919.46 -2663.79 0.88 0.92

WHOLE PERIOD (811001-890930) o '
"PERIOD 51.8 51.71 151352 151107.7 244.3 0.92 0.92
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