FINITE ELEMENT MODEL
FOR CYCLIC LOADING OF CONCRETE FILLED STEEL TUBE PILE

by
MIN YOUNG PARK
B.Eng., CHUNG-ANG UNIVERSITY, 1993
M.Eng., CHUNG-ANG UNIVERSITY, 1995

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE
 in
 THE FACULTY OF GRADUATE STUDIES
 Department of Civil Engineering

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
April 2001
© Min Young Park, 2001

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Civil Engineering
The University of British Columbia
Vancouver, Canada
Date April. 25. 2001

Abstract

A non-linear finite element analysis is presented to predict the lateral response of a concrete-filled steel tube (CFT) pile subjected to cyclic loading. The computer program CFTPILE was developed as a part of this study. The pile is modeled as a beam element on a non-linear soil medium, which is able to resist compression only. Information on the soil-pile interaction and the stress-strain relationships for concrete and steel is required in order to calculate the response of the pile. The soil-pile interaction is assumed to follow a P-y curve proposed by Yan and Byrne. The formation of gaps between pile and soil is taken into account in the analysis. Tomii and Sakino's confined concrete model is adopted to determine the stress-strain relationship for the concrete inside steel tube. Steel is assumed to be elasto-perfectly plastic. Numerical examples are presented for a CFT and a Hollow section pile.

Variability of pile capacity caused by the uncertainty in soil properties is investigated using the computer program RELAN and a response surface involving six random variables. The cumulative distribution function for maximum pile capacity is calculated for cases with and without correlation between the soil variables.

TABLE OF CONTENTS

ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF TABLES iv
LIST OF FIGURES v
ACKNOWLEDGEMENTS vi
1 INTRODUCTION 1
2 ANALYSIS MODEL 3
2.1 The finite element model 3
2.2 Modeling of the soil. 9
2.3 Modeling of the concrete 13
2.4 Modeling of the steel 17
3 NUMERICAL EXAMPLES 19
4 UNCERTAINTY IN SOIL PROPERTIES AND ITS INFLUENCE ON VARIABILITY OF MAXIMUM LOAD 24
5 CONCLUSIONS AND FUTURE RESEARCH. 30
REFERENCES 32
APPENDIX A. 35
APPENDIX B 39

LIST OF TABLES

Table 1. Random variables and their related statistics....................................... 25
Table 2. Correlation Coefficients.. 27

LIST OF FIGURES

Fig. 1 Beam element model 3
Fig. 2 Pile cross-section. 7
Fig. 3 Normalized P-y curve 9
Fig. 4 Load-displacement relationship for soil. 11
Fig. 5 Tomii and Sakino's confined concrete model 14
Fig. 6 Stress-strain relationship for the concrete model 16
Fig.7. Behaviour of concrete micro-cube 16
Fig. 8 The stress-strain relationship for steel 18
Fig. 9 Maximum soil Young's modulus $\mathrm{E}_{\max }$ 19
Fig. 10 Displacement history 20
Fig. 11 Comparison between CFT and Hollow section (thickness $=30 \mathrm{~mm}$) 21
Fig. 12 Force-displacement curve for CFT pile (thickness=10mm). 21
Fig. 13 Force-displacement curve for Hollow pile (thickness=10mm) 22
Fig. 14 Lateral displacement along the CFT pile (thickness $=10 \mathrm{~mm}$) 23
Fig. 15 Cumulative distribution function (CFT, thickness $=30 \mathrm{~mm}$) 27
Fig. 16 Variability in maximum soil Young's modulus. 28
Fig. 17 Cumulative distribution function (CFT, thickness=10mm) 29
Fig. 18 Cumulative distribution function (Hollow, thickness $=10 \mathrm{~mm}$). 29
Fig. 19 Horizontal forces acting on mass 31

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the guidance of my supervisor, Dr. Ricardo O. Foschi. I could not have completed this thesis without his support, which have broaden my understanding of structural engineering.

Also, I would like to express my appreciation to Dr. Helmut G.L. Prion for his helpful suggestions.

I wish to thank my wife for her patience and encourgement.

- 1 INTRODUCTION

A pile using a concrete filled steel tube (CFT) has many advantages when compared to a hollow steel tube or a reinforced concrete member. For example, a hollow steel tube section has to meet certain limitation of diameter-thickness ratio (D/t) in order to have enough rotation capacity without triggering local bucking. On the other hand, the CFT member shows a significant yielding plateau in the load-deflection curve as a beam member. A test reported by Prion and Boehme (1994) shows a ductile behaviour of CFT members indicating the fact that neither concrete nor steel tubes are individually able to absorb significant amounts of energy under cyclic loading. The concrete inside the steel tube keeps it from buckling locally and the external steel casing prevents premature spalling and crushing of the concrete, providing a ductile behaviour that is superior to a hollow steel tube.

Research has been done with regard to the behaviour of hollow steel tube piles under earthquake load. When the pile is subjected to an earthquake excitation, it is required to have high-energy absorption capacity in order to resist the earthquake load in a ductile manner. This is provided by filling the steel tube pile with concrete.

The objective of this work is to present a non-linear finite element analysis to determine the lateral response of a CFT pile subjected to static cyclic loading. The model presented in this study is based on the analysis program HYST (Foschi, 2000), which was developed to calculate hysteresis loops of shear connectors in a non-linear medium, namely wood. Using the model, a CFT pile analysis program called CFTPILE (Appendix B), was developed as part of this work. The pile response to lateral cyclic head loading
has a non-linearity, which is caused by the elasto-plastic properties of the steel tube, the non-linear concrete behaviour, the non-linear soil-pile interaction and the formation of gaps between soil and pile.

Stress-strain relationships for steel and concrete were defined in this analysis to calculate stresses at each point over the cross-section and along the member. The soil-pile interaction was determined using P-y curves developed by Yan and Byrne (1992).

The analysis required the calculation of the tangent stiffness matrix at each step of loading. This was done numerically using a beam finite element.

2 ANALYSIS MODEL

2.1 THE FINITE ELEMENT MODEL

To find the lateral response of a CFT pile subjected to cycling loading, the lateral load associated with a given displacement of the pile cap is obtained by a non-linear finite element analysis.

A beam element model is shown in Fig1.

Fig. 1 Beam element model

Each node at the ends of the element has five degrees of freedom: w, w', w", u and u '. u is the axial displacement in the x -direction at the centroid of the cross section, and w is the lateral displacement in the y-direction. w', w' and u' are their derivatives with respect to x . The displacement $\mathrm{u}(\mathrm{x})$ and $\mathrm{w}(\mathrm{x})$ are assumed to be, respectively, a cubic polynomial and a fifth-order polynomial. These functions can be written in matrix form using the vectors of shape functions and their derivatives, and the degrees-of-freedom vectors \mathbf{a} :

$$
\begin{aligned}
& \mathrm{u}(\mathrm{x})=\mathbf{N}_{\mathbf{0}}{ }^{\mathbf{T}} \mathbf{a} \\
& \mathbf{u}^{\prime}(\mathrm{x})=\mathbf{N}_{\mathbf{1}}{ }^{\mathbf{T}} \mathbf{a} \\
& \mathrm{w}(\mathrm{x})=\mathbf{M}_{\mathbf{0}}{ }^{\mathbf{T} \mathbf{a}} \\
& \mathrm{w}^{\prime}(\mathrm{x})=\mathbf{M}_{1}{ }^{\mathbf{T}} \mathbf{a} \\
& \mathrm{w}^{\prime \prime}(\mathrm{x})=\mathbf{M}_{\mathbf{2}}{ }^{\mathbf{T}} \mathbf{a}
\end{aligned}
$$

Eq. 1
$\left\{\begin{array}{c}a 1 \\ a 2 \\ a 3 \\ a 4 \\ a 5 \\ a 6 \\ a 7 \\ a 8 \\ a 9 \\ a 10\end{array}\right\}$

Eq. 2
where $a 1 \sim a 5$: Degrees-of-freedom at i node ($\left.w_{i}, w_{i}{ }^{\prime}, w_{i}^{\prime \prime}, u_{i}, u_{i}^{\prime}\right)$
$a 6 \sim a 10$: Degrees-of-freedom at j node $\left(w_{j}, w_{j}{ }^{\prime}, w^{\prime \prime}{ }_{j}, u_{j}, u_{j}{ }_{j}\right)$
$n 4 \sim n 10, m 1 \sim m 8:$ Shape functions. These are presented in Appendix A.

Using the assumption of plane section remaining plane, the strain ε along the element can be expressed as

$$
\begin{equation*}
\varepsilon=\frac{\partial u}{\partial x}-y \cdot \frac{\partial^{2} w}{\partial x^{2}}+\frac{1}{2}\left(\frac{\partial w}{\partial x}\right)^{2} \tag{Eq. 3}
\end{equation*}
$$

where y is a distance from the centroid to the point at which the strain is determined. In order to formulate the equilibrium equation the principle of virtual work is adopted.

$$
\begin{equation*}
\delta W=\delta W_{i}-\delta W_{e}=0 \tag{Eq. 4}
\end{equation*}
$$

where the internal work is

$$
\begin{align*}
\delta W_{i} & =\int_{V_{s}} \sigma_{s}(\varepsilon) \cdot \delta \varepsilon \cdot d V+\int_{V_{c}} \sigma_{c}(\varepsilon) \cdot \delta \varepsilon \cdot d V \\
& =\int_{V_{s}} \sigma_{s}(\varepsilon) \cdot \delta \mathbf{a}^{\mathbf{T}}\left[\left(\mathbf{N}_{1}-\mathbf{y} \mathbf{M}_{2}\right)+\mathbf{M}_{1} \mathbf{M}_{\mathbf{1}}^{\mathbf{T}} \mathbf{a}\right] d V \\
& +\int_{V_{c}} \sigma_{s}(\varepsilon) \cdot \delta \mathbf{a}^{\mathbf{T}}\left[\left(\mathbf{N}_{1}-\mathbf{y} \mathbf{M}_{\mathbf{2}}\right)+\mathbf{M}_{\mathbf{1}} \mathbf{M}_{1}^{\mathbf{T}} \mathbf{a}\right] d V \tag{Eq. 5}
\end{align*}
$$

Here, $\sigma_{s}(\varepsilon):$ Steel stress in the member
$\sigma_{c}(\varepsilon):$ Concrete stress in the member
Vs : Volume of steel tube only
Vc : Volume of concrete only

The external work is, on the other hand,

$\delta W_{e}=-\int_{0}^{L} p(|w|) \cdot\left(\frac{w}{|w|}\right) \cdot \delta \mathbf{a}^{\mathrm{T}} \mathbf{M}_{0} \cdot d x+F \cdot \delta \mathbf{a}^{\mathbf{T}} \mathbf{M}_{0(\mathrm{x}=\mathrm{L})}+P \cdot \delta \mathbf{a}^{\mathrm{T}} \mathbf{N}_{\mathbf{0 (x}=\mathrm{L})}$

Here, $\quad F \quad$ Lateral load applied at $\mathrm{x}=\mathrm{L}$ in the y -direction
$P \quad:$ Axial load applied at $\mathrm{x}=\mathrm{L}$ in the x -direction
$p \quad:$ Soil reaction
L : Pile length

Since $\delta \mathbf{a}$ is arbitrary, the principle of virtual work results in a system of non-linear equations equivalent to a vector ψ being zero at the solution \mathbf{a}.

$$
\begin{align*}
\psi & =\int_{V_{s}} \sigma_{s}(\varepsilon) \cdot\left[\left(\mathbf{N}_{\mathbf{1}}-\mathrm{y} \mathbf{M}_{\mathbf{2}}\right)+\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{1}}^{\mathbf{T}} \mathbf{a}\right] d V \\
& +\int_{V_{c}} \sigma_{c}(\varepsilon) \cdot\left[\left(\mathbf{N}_{\mathbf{1}}-\mathrm{y} \mathbf{M}_{\mathbf{2}}\right)+\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{1}}^{\mathbf{T}} \mathbf{a}\right] d V \\
& +\int_{0}^{L} p(|w|) \cdot\left(\frac{w}{|w|}\right) \cdot \mathbf{M}_{\mathbf{0}} \cdot d x-F \cdot \mathbf{M}_{\mathbf{0}(\mathrm{x}=\mathrm{L})}-P \cdot \mathbf{N}_{\mathbf{0}(\mathrm{x}=\mathrm{L})}=0 \tag{Eq. 7}
\end{align*}
$$

To find the solution, an iteration procedure using the Newton-Raphson method is applied to make the vector ψ approach zero with an allowable tolerance.

Using the Newton-Raphson method the solution vector \mathbf{a} is obtained by

$$
\begin{equation*}
\mathbf{a}=\mathbf{a}^{*}+\left[\nabla \psi^{*}\right]^{-1} \cdot\left\{-\psi^{*}\right\} \tag{Eq. 8}
\end{equation*}
$$

where $\left[\nabla \psi{ }^{*}\right]$ is the tangent stiffness matrix.

In detail,

$$
\begin{aligned}
\left\{\psi_{i}\right\}= & \int_{0}^{L} \int_{-R}^{R} \sigma_{s}(\varepsilon) \cdot\left[\mathbf{N}_{\mathbf{1}}-y \cdot \mathbf{M}_{\mathbf{2}}+\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{1}}^{\mathbf{T}} \mathbf{a}\right]_{i} \cdot b_{s}(y) \cdot d y \cdot d x \\
& +\int_{0}^{L} \int_{-r}^{r} \sigma_{c}(\varepsilon) \cdot\left[\mathbf{N}_{\mathbf{1}}-y \cdot \mathbf{M}_{\mathbf{2}}+\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{1}}^{\mathbf{T}} \mathbf{a}\right]_{i} \cdot b_{c}(y) \cdot d y \cdot d x \\
& +\int_{0}^{L} p(|w|) \cdot\left(\frac{w}{|w|}\right) \mathbf{M}_{\mathbf{0} i} \cdot d x-F \cdot \mathbf{M}_{\mathbf{0}} \boldsymbol{i}(\mathrm{x}=\mathrm{L})-P \cdot \mathbf{N}_{\mathbf{0}} i(\mathrm{x}=\mathrm{L})
\end{aligned}
$$

Eq. 9
$R, r, b_{s}(y)$ and $b_{c}(y)$ are shown in Fig.2.

Fig. 2 Pile cross-section

The element of the matrix $[\nabla \psi]$ in the i th row and j th column is represented by

$$
\begin{aligned}
\nabla \Psi_{i j}= & K_{i j}=\int_{0}^{L} \int_{-R}^{R} b_{s}(y) \cdot \frac{d \sigma_{s}}{d \varepsilon} \cdot\left[\mathbf{N}_{1}-y \cdot \mathbf{M}_{\mathbf{2}}+\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{1}}{ }^{\mathrm{T}} \mathbf{a}\right]_{i} \cdot\left[\mathbf{N}_{\mathbf{1}}-y \cdot \mathbf{M}_{\mathbf{2}}+\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{1}}{ }^{\mathbf{T}} \mathbf{a}\right]_{j}^{\mathrm{T}} \cdot d y \cdot d x \\
& +\int_{0}^{L} \int_{-R}^{R} b_{s}(y) \cdot \sigma_{s}(\varepsilon) \cdot \mathbf{M}_{1 i} \cdot \mathbf{M}_{\mathbf{1}}^{\mathbf{T}} j \cdot d y \cdot d x \\
& +\int_{0}^{L} \int_{-r}^{r} b_{c}(y) \cdot \frac{d \sigma_{c}}{d \varepsilon} \cdot\left[\mathbf{N}_{\mathbf{1}}-y \cdot \mathbf{M}_{\mathbf{2}}+\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{1}}^{\mathbf{T}} \mathbf{a}\right]_{i} \cdot\left[\mathbf{N}_{\mathbf{1}}-y \cdot \mathbf{M}_{\mathbf{2}}+\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{1}}{ }^{\mathbf{T}} \mathbf{a}\right]^{\mathrm{T}} \cdot d y \cdot d x \\
& +\int_{0}^{L} \int_{-r}^{r} b_{c}(y) \cdot \sigma_{c}(\varepsilon) \cdot \mathbf{M}_{1 i} \cdot \mathbf{M}_{\mathbf{1}}{ }^{\mathbf{T}} j \cdot d y \cdot d x \\
& +\int_{0}^{L} \frac{d p}{d|w|} \cdot \mathbf{M}_{\mathbf{0} i} \cdot \mathbf{M}_{\mathbf{0}} j \cdot d x
\end{aligned}
$$

Then Eq. 8 is solved to find a new vector a for each step of displacements.
Convergence is achieved when Eq. 11 and Eq. 12 are satisfied.

For the residual force vector $\{\psi\}$,

$$
\begin{equation*}
\sum_{i=1}^{N E Q} \psi_{i}{ }^{2} \leq T o l 1 \tag{Eq. 11}
\end{equation*}
$$

For the displacement correction vector $\left\{a-a^{*}\right\}$,

$$
\sum_{i=1}^{N E Q}\left(a_{i}-a_{i}^{*}\right)^{2} \leq \operatorname{Tol} 2
$$

Eq. 12
where NEQ is the number of equations and * indicates the values at the previous iteration.

Tol 1 and Tol 2 are specified tolerances.
Integrations are conducted by a Gaussian integration scheme involving a coordinate transformation from x, y to normalized coordinates ξ and η. These have a range from -1 to 1 .

2.2 MODELLING OF THE SOIL

Soil-pile interaction is represented using a P-y curve which was proposed by Yan and Byrne(1992) in order to predict pile response to lateral pile head loading. This curve has a nonlinear relationship shown in Fig.3.

Fig. 3 Normalized P-y curve

The relationship is given by

$$
\frac{P}{E_{\max } \cdot D}=\alpha \cdot\left(\frac{y}{D}\right)^{\beta}
$$

Eq. 13
where

P: Soil reaction (force/unit length)

D: Pile diameter
y : Lateral pile deflection
$\mathrm{E}_{\text {max }}$: Soil maximum Young's modulus
β : Value of about 0.5
$\mathrm{P} /\left(\mathrm{E}_{\max } \mathrm{D}\right)$ and y / D are percentages.
α is a function of soil relative density and can be expressed as

$$
\alpha=5 \cdot\left(D_{r}\right)^{-0.8}
$$

Eq. 14
where D_{r} is the relative density in percentage.

The normalized P-y curve has an initial linear portion with a slope of 45°. The intersecting point $\left(\mathrm{X}_{0}, \mathrm{Y}_{0}\right)$ with the power function from Eq. 13 can be found by

$$
\begin{equation*}
X_{0}=Y_{0}=\frac{y}{D}(\%)=\alpha \cdot\left(\frac{1}{1-\beta}\right) \tag{Eq. 15}
\end{equation*}
$$

This is required to avoid the infinite slope which Eq. 13 implies at $\mathrm{y}=0$. In Eq. $13, \mathrm{E}_{\max }$ increases with soil depth.

When the pile head displacement is reversed during cyclic loading, a gap between the pile and the soil is formed. This gap is a function of depth. It is assumed that the soil is not able to take any tensile load in order to model the soil gapping. Fig. 4 shows the load-displacement relationship for soil used in the program CFTPILE.

Fig. 4 Load-displacement relationship for soil

In the numerical procedure, the program keeps track of a previous state soil displacement, D_{0} (shown in Fig.4), at each side of the pile. D_{0} is associated with the maximum displacement, w_{0}, achieved along the backbone curve. With an initial slope, $\mathrm{K}, \mathrm{D}_{0}$ is defined as

$$
\begin{equation*}
D_{0}=w_{0}-p_{0} / K \tag{Eq. 16}
\end{equation*}
$$

Note that the initial slope K is equal to the maximum Young's modulus of soil, $\mathrm{E}_{\text {max }}$.

The following algorithm can find a soil reaction $p(w)$ for a new w.

$$
\begin{align*}
& \text { if }\left(w \leq D_{0}\right) \rightarrow p=0 \\
& \text { if }\left(w>D_{0}\right) \rightarrow p=\min \text { of }\left[p_{1}=K\left(w-D_{0}\right), p_{2}=p(w)\right. \\
& \text { if }\left(p=p_{2}\right) \rightarrow \text { update } D_{0}: D_{0}=w-p / K \tag{Eq. 17}\\
& \text { if }(p=0) \text { or }\left(p=p_{1}\right) \rightarrow D_{0} \text { unchanged }
\end{align*}
$$

The displacement D_{0}, at either side of the pile and as a function of depth, gives the magnitude of the gap along the pile.

2.3 MODELLING OF THE CONCRETE

Confined concrete can be defined as that which is restrained in the directions at right angle to the applied stress. If the compression zone of a concrete beam or column is confined by closely spaced steel stirrup ties or steel casing, the ductility of the concrete is enhanced and large ultimate curvatures may be reached (Kent and Park, 1971). When
concrete is subjected to cyclic compressive loading it has been assumed that an "envelope" curve exists and that this envelope curve is approximately the same as the complete stress-strain curve obtained under monotonically increasing strain. This assumption was shown to be true for confined concrete, as well as for plain, unconfined concrete (Shah, Fafitis and Arnold, 1983). It was also shown that the similarity of monotonic and cyclic stress-strain envelopes indicated that the specimens subjected to unloading and reloading cycles experienced very little or no strength degradation due to cycling.

When it comes to the degradation of elastic modulus in concrete subjected to cyclic load, concrete shows a gradual decrease of its elastic modulus after it reaches its peak stress, but it is not significant when compared to the one for unconfined concrete. It is known that the degradation is a direct consequence of volumetric expansion. Confining pressure to concrete gives a lower amount of expansion and this results in a lower amount of stiffness degradation during unloading.

In a CFT pile the tube confines the concrete inside the steel tube. However, the behaviour is somewhat different from that for the concrete confined by closely spaced steel stirrup ties. The steel tube undergoes axial loads and bending moments, as well as providing confinement, while steel stirrup ties in a reinforced concrete member mainly provides confining pressure. In order to take these differences into account, Tomii and Sakino (1979) proposed a model to determine the stress-strain relationship for the concrete in CFT.

In this paper the model proposed by Tomii and Sakino, which is shown in Fig.5, is adopted to calculate the stresses in the concrete.

Fig. 5 Tomii and Sakino's confined concrete model

A parabolic part of the curve (A-B) was represented by Eq.18,

$$
\begin{equation*}
\frac{\sigma_{c}}{f_{c}^{\prime}}=2 \cdot\left(\frac{\varepsilon_{c}}{\varepsilon_{c b 1}}\right)-\left(\frac{\varepsilon_{c}}{\varepsilon_{c b 1}}\right)^{2} \tag{Eq. 18}
\end{equation*}
$$

where
$\varepsilon_{c b 1}=0.012354165 \times \sqrt{f_{c}^{\prime}}$
f_{c}^{\prime} : Compressive strength of concrete core in GPa
σ_{c} : Concrete stress at given strain ε_{c} in GPa
$\varepsilon_{c b 1}$: The strain when the stress in concrete reaches $\mathrm{f}^{\prime} \mathrm{c}$

After reaching the maximum stress f^{\prime}, the stresses are assumed to decrease following a multi-linear function, shown in Fig.5, to a minimum σ_{1}. This minimum, for confined concrete, depends on the ratio D/t according to Eq.19.

$$
\begin{equation*}
\sigma_{1}=(1.6-0.025 \times D / t) \cdot f_{c}^{\prime} \tag{Eq. 19}
\end{equation*}
$$

where
σ_{1} : The stress at the strain, $\varepsilon_{c b 3}$

D: Diameter of the CFT pile
t : Thickness of the pile tube

In Fig.5, $\varepsilon_{c b 2}$ and $\varepsilon_{c b 3}$ are constant values. $\left(\varepsilon_{c b 2}=0.005, \varepsilon_{c b 3}=0.015\right)$

The bond between the steel section and the concrete is assumed to be perfect. Tensile stresses in concrete are ignored. Therefore, the concrete stress is present only when the strain is compressive. In order to calculate the stress in concrete during unloading and reloading, the assumption is made that the unloading and reloading response is linear with a slope equal to the initial tangent modulus.

Fig. 6 shows the stress-strain relationship for concrete, which is used in the program CFTPILE. Let us assume that, at a point along the member, the strain is ε_{1} for the first time as shown in Fig.6. If we cut out a micro-cube at that point, as shown in Fig 7, the original cube is compressed by the amount of ε_{1} as shown in Fig 6 and Fig 7.

Fig. 6 Stress-strain relationship for the concrete model

Fig.7. Behaviour of concrete micro-cube

Now let us assume that unloading starts and the current strain arrives at the value of ε_{2} at which there is no stress in the concrete. As shown in Fig. 6 the elastic strain recovery is $\varepsilon_{1}-\varepsilon_{2}$ and ε_{2} can be referred to as the residual strain when the load is removed. From the point of ε_{2}, if the strain follows the path $\varepsilon_{2} \rightarrow \mathrm{O}$, the concrete starts to undergo tension and it develops cracks as soon as the strain becomes smaller than ε_{2}, in order to agree with the assumption that the tensile stress in concrete is ignored. Then the stress in the concrete will be zero through the path $\mathrm{O} \rightarrow \varepsilon_{3} \rightarrow \mathrm{O} \rightarrow$ until the strain reaches ε_{2} again where the cracks are closed. Now reloading starts as the strain becomes greater than ε_{2}. Let us assume that we reach the point ε_{4}. After unloading, we reach the point ε_{5}, which is the new residual strain. If the loading is reversed, again, the cracks which have existed since the first load reversal was made will open again and the concrete can not take any load. The whole loop will be repeated for subsequent strain cycles.

2.4 MODELLING OF THE STEEL

The stress-strain relationship in steel tube is assumed to be elasto-perfectly plastic. The relationship is shown in Fig.8, in which E is the modulus of elasticity and σ_{y} is the yield stress. Knowing the previous state of stress σ_{0} at ε_{0}, the new stress, $\sigma(\varepsilon)$, in the steel tube is obtained by the following algorithm.

$$
\begin{aligned}
& F(\varepsilon)=\sigma_{0}+E \cdot\left(\varepsilon-\varepsilon_{0}\right) \\
& i f|F(\varepsilon)| \leq \sigma_{y} \rightarrow \sigma(\varepsilon)=F(\varepsilon) \\
& i f|F(\varepsilon)|>\sigma_{y} \rightarrow \sigma(\varepsilon)=\sigma_{y} \cdot \frac{F(\varepsilon)}{|F(\varepsilon)|}
\end{aligned}
$$

Fig. 8 The stress-strain relationship for steel

3 NUMERICAL EXAMPLES

A pile with a length of $30,000 \mathrm{~mm}$ and an outside diameter of 1500 mm is considered for an example. The surrounding soil is assumed to be dense sand having a relative density of 75%. $\mathrm{E}_{\text {max }}$ of the soil is assumed to be 0.12 GPa at the depth of 4,000 $\mathrm{mm}, 0.2 \mathrm{GPa}$ at the depth of $10,000 \mathrm{~mm}, 0.28 \mathrm{GPa}$ at the depth of $20,000 \mathrm{~mm}$. These values are based on the fitted curve for $\mathrm{E}_{\text {max }}$ shown in the Yan and Byrne (1992) reference. A linear interpolation is used for values of $\mathrm{E}_{\max }$ at depths other than those mentioned above. The values of $\mathrm{E}_{\text {max }}$ at different depths are illustrated in Fig.9.

Fig. 9 Maximum soil Young's modulus $\mathrm{E}_{\max }$

For the material properties of concrete and steel, the steel is assumed to have an elastic modulus of 200 GPa with a yield stress $\sigma_{y}=0.25 \mathrm{GPa}$, and the concrete to have an initial tangent stiffness of 30.18 GPa with a compressive strength of 0.03 GPa . A cyclic displacement with a maximum value of 15 mm is enforced to the pile cap. The displacement history is shown in Fig. 10.

Time Step
Fig. 10 Displacement history

The displacements were divided in 640 individual steps. No axial load was applied and tolerances for the residual force vector and displacement correction vector were 1×10^{-3}. Numerical integration is conducted using 5 Gaussian points in the x-direction and 16 in the y-direction. Fig.11, 12 and 13 show the results of calculation for different conditions. These figures show calculated hysteresis loops for the pile-soil system. Maximum forcedisplacement curves for a CFT and a Hollow section with the thickness of 30 mm are illustrated in Fig. 11.

Fig. 11 Comparison between CFT and Hollow section (thickness=30mm)

Fig. 12 Force-displacement curve for CFT pile (thickness $=10 \mathrm{~mm}$)

Fig. 13 Force-displacement curve for Hollow pile (thickness=10mm)

Fig. 12 and Fig 13 show a maximum force-displacement curve for either a CFT or a Hollow section with a wall thickness of 10 mm .

It is observed that the pile shown in Fig.11, with wall thickness of 30 mm , mainly remains in the elastic region, while the one with thickness of 10 mm (Fig.12,13) goes far beyond the elastic limit, resulting in the presence of a lateral force at a displacement of zero. In other words, it can be explained that the pile in Fig. 12 has a residual displacement although the lateral force is removed. Also, this accounts for the curves in Fig. 11 showing that the last loading cycle follows the same force-displacement path as the previous one, resulting in overlapping. The maximum force increases up to 8% when the pile with a 30 mm tube is filled with concrete, while there is a 23% increment for the pile with 10 mm wall thickness. Because of the small strains developed in the section of
the 30 mm pile, the pile remains mainly elastic and the contribution of the concrete is smaller than in the case of the thinner tube. Fig. 14 shows the lateral displacements along the CFT pile with the 10 mm tube when the displacement history reaches the maximum value of 15 mm .

Fig. 14 Lateral displacement along the CFT pile (thickness $=10 \mathrm{~mm}$)

It is seen that only the upper third of the pile undergoes deformations, with largest curvatures and moments about 10 m below the ground line.

1 UNCERTAINTY IN SOIL PROPERTIES AND ITS INFLUENCE ON VARIABILITY OF MAXIMUM LOAD

In this work an attempt was made to investigate how the uncertainty in soil properties can influence the variability in maximum load. For a specific displacement history, there are many factors that determine the maximum lateral force, such as pile material properties, pile size, and soil properties. These factors are considered to be uncertain, which plays a role in the reliability of the structure. Good quality control in fabrication will yield a small coefficient of variation, such as 0.05 ; for the geometric parameters of the structure, and 0.1 for the material (Geschwindner, 1994). On the other hand, the variation in soil properties is considered to be relatively large. Also, soil shows a larger effect on the maximum force than the other variables such as material properties of the steel and the concrete.

In order to discuss the variability of maximum load applied to the pile cap, during the deformation history shown in Fig.10, a performance function is defined as

$$
G=F_{\max }-F
$$

where
$\mathrm{F}_{\text {max }}$ is the maximum force, a random variable, obtained from CFTPILE for specific values of the soil and pile properties.

F is any load level.

Entering different levels of F, the performance function can be used to calculate the probability of $\mathrm{G}<0$ or $F_{\max }<F$. These probabilities are the coordinates of the cumulative distribution function for $\mathrm{F}_{\text {max }}$.

For the purpose of an example, let us assume that the soil properties are the only random variables to be taken into account, having a coefficient of variation (COV) of 0.25 for the soil maximum Young's modulus $\mathrm{E}_{\max }$ and $\mathrm{COV}=0.1$ for the depth at which the $\mathrm{E}_{\text {max }}$ is taken. The same cyclic displacement shown in Fig. 10 is applied to the pile cap. Using the same pile and soil properties (See Fig.9) used in the previous numerical example, the soil properties are given as follows.

$$
\begin{aligned}
& E_{1 \mathrm{~m}}=0.12 \mathrm{GPa} \text { at the depth of } Z_{\mathrm{m} 1}=4,000 \mathrm{~mm} \\
& \mathrm{E}_{2 \mathrm{~m}}=0.2 \mathrm{GPa} \text { at the depth of } Z_{\mathrm{m} 2}=10,000 \mathrm{~mm} \\
& E_{3 \mathrm{~m}}=0.28 \mathrm{GPa} \text { at the depth of } Z_{m 3}=20,000 \mathrm{~mm}
\end{aligned}
$$

Where the subscript m indicates the variable mean value. All variables are assumed to have a Normal distribution. These variables and their related statistics are summarized in

Table 1.

Variable No.	Variables	Mean Value	COV	Mean $+2 \sigma$	Mean-2 σ
1	$\mathrm{E}_{\max } 1$	0.12	0.25	0.18	0.06
2	$\mathrm{E}_{\max } 2$	0.2	0.25	0.3	0.1
3	$\mathrm{E}_{\max } 3$	0.28	0.25	0.375	0.125
4	Z 1	4,000	0.1	4,800	3,200
5	Z 2	10,000	0.1	12,000	8,000
6	Z 3	20,000	0.1	24,000	16,000

Table 1. Random variables and their related statistics.

Using these $\mathrm{N}=6$ random variables, a response surface for the maximum force $\mathrm{F}_{\max }$ is constructed by

$$
\begin{align*}
F_{\max }= & a_{1}+a_{2} \cdot E_{1}+a_{3} \cdot E_{1}^{2}+a_{4} \cdot E_{2}+a_{5} \cdot E_{2}^{2}+a_{6} \cdot E_{3}+a_{7} \cdot E_{3}^{2} \\
& +a_{8} \cdot Z_{1}+a_{9} \cdot Z_{1}^{2}+a_{10} \cdot Z_{2}+a_{11} \cdot Z_{2}^{2}+a_{12} \cdot Z_{3}+a_{13} \cdot Z_{3}^{2} \tag{Eq. 1}
\end{align*}
$$

In order to find the constants, $a_{1} \sim a_{13}, 13$ numerical analyses were conducted changing the variables, using the mean and mean $\pm 2 \cdot \sigma$ values for each of those six variables. First, an analysis was done using the variable means, and then each variable, in turn, was changed to mean $+2 \sigma$ and then to mean -2σ. This generated $2 \mathrm{~N}+1$ data sets, or 13 in this case. Since the six variables were assumed to have a Normal distribution, about 95% of the population fell within two standard deviations on either side of the mean. As a result of the 13 analyses, 13 values of $F_{\max }$ were obtained, which are $F_{\max 1} \sim F_{\max 13}$, allowing calculation of the response surface coefficients $a_{1} \sim a_{13}$.

Using the response surface for $\mathrm{F}_{\text {max }}$, a cumulative distribution function was constructed by the software RELAN (2001).

The calculated cumulative distribution functions for $\mathrm{F}_{\max }$ are shown in Fig. 15 ~ 17. In each figure, two curves are drawn for different conditions. One is for the case that there is no correlation between the variables $\mathrm{E}_{\text {max }}$. The other is for the case that there are certain correlations between those. These correlations are expressed using a Correlation Coefficient ρ and, for the example, they were assumed as shown in the following Table 2.

Related Variables	Correlation Coefficient
1 and $2\left(\rho_{12}\right)$	0.8
2 and $3\left(\rho_{23}\right)$	0.8
1 and $3\left(\rho_{13}\right)$	0.7

- Variable 1, 2 and 3 are referred to in Table 1

Table 2. Correlation Coefficients
Fig. 15 shows the cumulative distribution function for the CFT pile with 30 mm of thickness.

Fig. 15 Cumulative distribution function (CFT, thickness $=30 \mathrm{~mm}$)

Since the pile mainly remains in the elastic region, as explained previously, the variation in the soil properties plays the main role in the variability of maximum lateral force.

Fig. 16 shows how the correlation between the variables influences the soil Young's modulus.

(1) :THE CASE THAT THE VARIABLES HAVE THEIR MIN. AT THE SAME TIME
(2) :THE CASE THAT THE VARIABLES HAVE THEIR MEAN VALUES
(3) :UNLIKELY TO HAPPEN WITH CORRELATION COEFF. APPROACHING I
(4) :THE CASE THAT THE VARIABLES HAVE THEIR MAX. AT THE SAME TIME

Fig. 16 Variability in maximum soil Young's modulus

Due to the correlation between the variables, it is more likely to happen that the variables 1,2 and 3 have their maximum or minimum values at the same time. This accounts for the curve with correlations in Fig. 15 showing lower probabilities at higher levels of force and higher probabilities at lower levels of force. However, this trend does not appear for the thinner wall tube (Fig. 17 and 18).

Fig. 17 and 18 show, respectively, the cumulative distribution function for the CFT pile with 10 mm thickness and for the Hollow section with 10 mm thickness.

Fig. 17 Cumulative distribution function (CFT, thickness $=10 \mathrm{~mm}$)

Fig. 18 Cumulative distribution function (Hollow, thickness=10mm)

The maximum force-displacement relationship for the piles shown in Fig. 17 and 18 involve some plastic behaviour as we have seen previously. Not only the soil property variation but also the plastic behaviour in the pile influence, in this case, the variability in maximum load.

It may be concluded that variability in soil properties has a substantial effect on the variability of the maximum load, but that correlations of soil properties with depth of the pile may not be important to the same extent.

5 CONCLUSIONS AND FUTURE RESEARCH

A non-linear finite element analysis, CFTPILE, has been presented for the calculation of CFT pile response with application of static cyclic loading to the pile cap. It was also investigated how the maximum force is influenced by the uncertainty in soil properties using the computer program RELAN.

Although only static cyclic loading was dealt with in this paper, the approach can also be used to find the pile structure response under dynamic excitation such as an earthquake. Fig. 19 shows a pile subjected to an earthquake with ground acceleration $a(t)$.

Fig. 19 Horizontal forces acting on mass

If a structure is assumed to have a mass M at the pile cap and a displacement Δ caused by earthquake with acceleration $a(t)$ at the base, the equation of motion will be

$$
\begin{equation*}
M \cdot \ddot{\Delta}+F(\Delta)=-M \cdot a(t) \tag{Eq. 17}
\end{equation*}
$$

This approach can be used only if the free-field soil displacement is assumed to be uniform or independent of depth, an assumption which may have to be corrected for long piles. This may be a topic for future research. However, this thesis has made a contribution to the calculation of the force $F(\Delta)$, which changes with the earthquake demand Δ.

REFERENCES

Alder, H.L., Roessler, E.B. (1977) Introduction to Probability and Statistics, W. H. Freeman and Company

Attard, M.M., Setunge,S. (1996) "Stress-Strain Relationship of Confined and Unconfined Concrete" ACI Material Journal, V.93, No.5, Sep.-Oct.

Benjamin, Jack R., Cornell, C. Allin, (1970) Probability, Statistics, and Decision for Civil Engineers, McGraw-Hill

Chandrupatla, T.R., Belegundu,A.D.,(1997) Introduction to Finite Elements in Engineering, Prentice-Hall, $2^{\text {nd }}$ Edition.

Eisley, J. G.,(1989) Mechanics of Elastic Structures, Classical and Finite Element Methods., Prentice-Hall, Inc.

Foschi, R.O, Folz, B., Yao, F., Li, H., Baldwin, J. (2001). RELAN: Reliability Analysis Software. Department of Civil Engineering, University of British Columbia, Vancouver, B.C.

Foschi, R.O (2000). "Modeling Hysteretic Response For Reliability-Based Design in Earthquake Engineering"

Geschwindner, L.F., Disque, R.O., Bjorhovde, R.(1994) Load and Resistance Factor
Design of Steel Structures, Prentice Hall

Hajjar,J.F., Gourley, B.C.,(1997) "A Cyclic Nonlinear Model for Concrete-Filled Tubes. I: Formulation",ASCE, J.of Structural Engineering, Vol.123, No.6, June

Imran, I., Pantazopoulou,S.J.,(1996) "Experimental Study of Plain Concrete under Triaxial Stress", ACI Material Journal, V.93, No.6, Nov.-Dec.

Kent, D.C., Park, R. (1971).' ${ }^{\text {Flexural members with confined concrete" J. Structural }}$ Division. ASCE. No.ST7, July.1971.pp1969-1989

Prion, H.G.L, Boehme, J.,(1994) "Beam-column behaviour of steel tubes filled with high strength concrete" Can. J. Civ. Eng. 21, 207-218

Roeder, Charles W., Cameron,B.,Brown,C.B.(1999) "Composite Action in Concrete Filled Tubes" ASCE, J.of Structural Engineering, Vol. 125, No. 5, May

Shah, S. P., Fafitis, A., Arnold, R. (1983) " Cyclic Loading of Spirally Reinforced Concrete" J. Structural Engineering, Vol. 109, No. 7, July.

Tomii, M., Sakino, K. (1979). "Elasto-Plastic Behavior of Concrete Filled Square Steel Tubular Beam-Columns" Trans. of A.I.J. No.280, June.

Uy Brian (2000) "Strength of Concrete Filled Steel Box Columns Incorporating Local Buckling", ASCE, J.of Structural Engineering, Vol.126, No.3, March

Wright, H.D.(1995) "Local Stability of Filled and Encased Steel Section", ASCE, J.of Structural Engineering, Vol. 121, No. 10, Oct.

Yang, T.Y.(1986) Finite Element Analysis, Prentice-Hall

Yankelevsky, D.Z., Reinhardt, H.W.(1987) "Response of Plain Concrete to Cyclic Tension", ACI Materials Journal, Sep.- Oct.

Yan, L., and Byrne, P.M. (1992). "Lateral pile response to monotonic pile head loading" Canadian Geotechnical Journal, 29:955-970

Zhang Weizi, Shahrooz, B.M.(1999), "Strength of Short and Long Concrete-Filled Tubular Columns", ACI Structural Journal, V.96, No.2, March-April

APPENDIX A

Beam Finite Element Shape Functions

Shape functions for w

$$
\begin{aligned}
& M_{0}(1, \xi)=\left(8-15 \xi+10 \xi^{3}-3 \xi^{5}\right) / 16 \\
& M_{0}(2, \xi)=\left(5-7 \xi-6 \xi^{2}+10 \xi^{3}+\xi^{4}-3 \xi^{5}\right)(\Delta / 32) \\
& M_{0}(3, \xi)=\left(1-\xi-2 \xi^{2}+2 \xi^{3}+\xi^{4}-\xi^{5}\right)\left(\Delta^{2} / 64\right) \\
& M_{0}(4, \xi)=0 \\
& M_{0}(5, \xi)=0 \\
& M_{0}(6, \xi)=\left(8+15 \xi-10 \xi^{3}+3 \xi^{5}\right) / 16 \\
& M_{0}(7, \xi)=\left(-5-7 \xi+6 \xi^{2}+10 \xi^{3}-\xi^{4}-3 \xi^{5}\right)(\Delta / 32) \\
& M_{0}(8, \xi)=\left(1+\xi-2 \xi^{2}-2 \xi^{3}+\xi^{4}+\xi^{5}\right)\left(\Delta^{2} / 64\right) \\
& M_{0}(9, \xi)=0 \\
& M_{0}(10, \xi)=0
\end{aligned}
$$

Shape functions for w'

$$
\begin{aligned}
& M_{1}(1, \xi)=\left(-15+30 \xi^{2}-15 \xi^{4}\right)(2 / 16 \Delta) \\
& M_{1}(2, \xi)=\left(-7-12 \xi+30 \xi^{2}+4 \xi^{3}-15 \xi^{4}\right) / 16 \\
& M_{1}(3, \xi)=\left(-1-4 \xi+6 \xi^{2}+4 \xi^{3}-5 \xi^{4}\right)(\Delta / 32) \\
& M_{1}(4, \xi)=0 \\
& M_{1}(5, \xi)=0 \\
& M_{1}(6, \xi)=\left(15-30 \xi^{2}+15 \xi^{4}\right)(2 / 16 \Delta) \\
& M_{1}(7, \xi)=\left(-7+12 \xi+30 \xi^{2}-4 \xi^{3}-15 \xi^{4}\right) / 16 \\
& M_{1}(8, \xi)=\left(1-4 \xi-6 \xi^{2}+4 \xi^{3}+5 \xi^{4}\right)(\Delta / 32)
\end{aligned}
$$

$$
\begin{aligned}
& M_{1}(9, \xi)=0 \\
& M_{1}(10, \xi)=0
\end{aligned}
$$

Shape functions for w"

$$
\begin{aligned}
& M_{2}(1, \xi)=\left(60 \xi-60 \xi^{3}\right) /\left(4 / 16 \Delta^{2}\right) \\
& M_{2}(2, \xi)=\left(-12+60 \xi+12 \xi^{2}-60 \xi^{3}\right)(2 / 16 \Delta) \\
& M_{2}(3, \xi)=\left(-4+12 \xi+12 \xi^{2}-20 \xi^{3}\right) / 16 \\
& M_{2}(4, \xi)=0 \\
& M_{2}(5, \xi)=0 \\
& M_{2}(6, \xi)=\left(-60 \xi+60 \xi^{3}\right) /\left(4 / 16 \Delta^{2}\right) \\
& M_{2}(7, \xi)=\left(12+60 \xi-12 \xi^{2}-60 \xi^{3}\right)(2 / 16 \Delta) \\
& M_{2}(8, \xi)=\left(-4-12 \xi+12 \xi^{2}+20 \xi^{3}\right) / 16 \\
& M_{2}(9, \xi)=0 \\
& M_{2}(10, \xi)=0
\end{aligned}
$$

Shape functions for u

$$
\begin{aligned}
& N_{0}(1, \xi)=0 \\
& N_{0}(2, \xi)=0 \\
& N_{0}(3, \xi)=0 \\
& N_{0}(4, \xi)=\left(2-3 \xi+\xi^{3}\right) / 4 \\
& N_{0}(5, \xi)=\left(1-\xi-\xi^{2}+\xi^{3}\right) /(\Delta / 8)
\end{aligned}
$$

$$
\begin{aligned}
& N_{0}(6, \xi)=0 \\
& N_{0}(7, \xi)=0 \\
& N_{0}(8, \xi)=0 \\
& N_{0}(9, \xi)=\left(2+3 \xi-\xi^{3}\right) / 4 \\
& N_{0}(10, \xi)=\left(-1-\xi+\xi^{2}+\xi^{3}\right) /(\Delta / 8)
\end{aligned}
$$

Shape functions for u '

$$
\begin{aligned}
& N_{1}(1, \xi)=0 \\
& N_{1}(2, \xi)=0 \\
& N_{1}(3, \xi)=0 \\
& N_{1}(4, \xi)=\left(-3+3 \xi^{2}\right) /(2 \Delta) \\
& N_{1}(5, \xi)=\left(-1-2 \xi+3 \xi^{2}\right) / 4 \\
& N_{1}(6, \xi)=0 \\
& N_{1}(7, \xi)=0
\end{aligned}
$$

$$
N_{1}(8, \xi)=0
$$

$$
N_{1}(9, \xi)=\left(3-3 \xi^{2}\right) /(2 \Delta)
$$

$$
N_{1}(10, \xi)=\left(-1+2 \xi+3 \xi^{2}\right) / 4
$$

APPENDIX B

CFTPILE

Source Code

DIMENSION A(10000)

INPUT

```
UNIT FOR GEOMETRIC VARIABLES AND MATERIAL PROPERTIES : MM,GPA
```

SP:BEAM SPAN
NCROSS: BEAM CROSS-SECTION TYPE
IF CROSSS-SECTION IS RECTANGULAR ENTER 0
IF CROSS-SECTION IS CIRCULAR ENTER 1
IF CROSS-SECTION IS ANNULAR ENTER 2
if cross-section is circular tube with concrete
inside enter 3
D: DIAMETER
DIN:INSIDE DEAMETER
E:STEEL YOUNG'S MODULUS
SY:STEEL YIELD STRESS
CNT:CONCRETE COMPRESSIVE STRENGTH
NLAYER: NO. OF ILAYER
NPLAY: THE NO.OF LAYERS WITH DIFFERENT PROPERTIES
NEMAX: SOIL MAX. YOUNG'S MODULUS
DPT: SOIL DEPTH WHERE THE NEMAX IS TAKEN
ITYP: LAYER TYPE
IBEG: THE NO. OF THE FIRST ELEMENT IN THE LAYER
IFIN: THE NO. OF THE LAST ELEMENT IN THE LAYER
TL: THE LAYER THICKNESS
NGX:THE NO. OF GAUSS POINT IN THE X-DIRECTION
NGY:THE NO. OF GAUSS POINT IN THE Y-DIRECTION
FX:AXIALLY APPLIED LOAD
NNBC:THE NO. OF NODES WITH SUPPORT CONDITIONS
NBC : THE NODE NO.
KBC:NO. OF SUPPORT CONDITION AT THE NODE
IBC: CODES FOR THE SPECIFIED SUPPORT CONDITION
FOR $W=1$
FOR $W^{\prime}=2$
FOR $W^{\prime \prime}=3$
FOR U=4
FOR $U^{\prime}=5$
NSPF:THE NODE NO. WITH THE SPECIFIED DISPL.
TOLF: TOLERANCE FOR THE OUT-OF-BALANCE VECTOR
TOLX:TOLERANCE FOR THE LENGTH OF THE CHANGE IN DEFORMATION VECTOR
OPEN (UNIT=2,FILE=NAME, STATUS='OLD')
READ (2,40) TITLE
$\operatorname{READ}(2, *) \mathrm{SP}$
$\operatorname{READ}(2, *)$ NCROSS
IF (NCROSS.EQ.0) READ (2,*) D, BO
IF (NCROSS.EQ.1) READ $(2, \star) \operatorname{D}$
IF (NCROSS.EQ.2) READ (2,*) D, DIN
IF (NCROSS.EQ.3) READ $(2, *) \mathrm{D}, \mathrm{DIN}$
if (ncross.eq.3) read (2,*) d,din
$\operatorname{READ}(2, *) \operatorname{E}, S Y$
if (ncross.eq.3) read (2,*) cnt
read $(2, *)$ medium
$\operatorname{READ}(2, *)$ NLAYER,NPLAY
read $(2, *)$ alpha,beta, nemax
do $451 \quad i=1$, nemax
read(2,*) emax(i),dpt(i)
451 continue
NELEM=0
DO $460 \mathrm{I}=1$, NLAYER
$\operatorname{READ}(2, *) \operatorname{ITYP}(I), \operatorname{IBEG}(I), \operatorname{IFIN}(I), T L(I)$
NELEM1=IFIN(I)-IBEG(I) +1
NELEM=NELEM+NELEM1
DELTA (I) =TL (I)/NELEMI
CONTINUE

```
    READ (2,*) NGX,NGY
    CALI GAUSS (NGX, EGX, HGX, IERR)
    CALL GAUSS (NGY, EGY, HGY, IERR)
    READ (2,*) FX
    READ (2,*) NNBC
    IF (NNBC.EQ.0) GO TO 480
    DO 470 I= 1,NNBC
        READ (2,*) NBC(I), KBC(I),(IBC(I,J),J=1, KBC(I))
    CONTINUE
    READ (2,*) NLDIS
    IF (NLDIS.EQ.0) READ (2,*) NSPF
    IF (NLDIS.GT.0) READ (2,*) (ILAY(I), I=1,NLDIS)
    READ (2,*) TOLX, TOLF
    CLOSE (2)
490 WRITE (*,500)
500 FORMAT(/' ENTER NAME OF FILE WITH INPUT DISPLACEMENT HISTORY'/)
    READ (*,40) NAME1
    OPEN (UNIT=3,FILE=NAME1,STATUS='OLD')
    READ (3,*) NSTEP
    READ (3,*) (A (I),I=1,NSTEP)
    CLOSE (3)
    WRITE (*,510)
    FORMAT(/' ENTER STEP NUMBER AT WHICH TO SHOW SHAPE'/)
    READ (*,*) NSTP
    WRITE (*,520)
520 FORMAT(/' ENTER 1 TO SHOW COMPREHENSIVE INTERMEDIATE RESULTS'/
    1 , ENTER 0 TO SKIP'/)
    READ (*,*) NSCRC
    WRITE (*,521)
521 FORMAT(/' ENTER 1 TO SHOW SUMMARY OF INTERMEDIATE RESULTS'/
    1 , ENTER 0 TO SKIP'/)
    READ (*,*) NSCR
    DO 530 I=1,NLAYER
        DO 530 J=IBEG(I),IFIN(I)
        IDISP (J)=0
    IF (NLDIS.EQ.0) GO TO 550
    DO 540 I=1,NLDIS
        DO 540 J=IBEG(ILAY(I)),IFIN(ILAY(I))
540 (1DISP(J)=1
    IF (NCROSS.EQ.0) B (I)=B0
        IF (NCROSS.EQ.1) B(I)=D*DSQRT (1.0D0-EGY(I)**2)
        IF (NCROSS.EQ.2) GO TO 560
        if (ncross.eq.3) go to 560
        GO TO 580
        RATD=DIN/D
        IF (DABS(EGY(I)).GE.RATD) GO TO 570
        B(I)=D* (DSQRT (1.ODO-EGY(I)**2)-DSQRT (RATD**2-EGY(I)**2))
        if (ncross.eq.3) bc(i)=din*(dsqrt(1-egy(i)**2))
        GO TO 580
        B(I)=D*DSQRT(1.0D0-EGY(I)**2)
    CONTINUE
    WRITE (*,590)
590 FORMAT (/' ENTER NAME OF OUTPUT FILE'/)
    READ (*,40) NAME2
    WRITE (*,600)
600 FORMAT(/' ENTER MULTIPLICATION FACTOR FOR CALCULATED LOADS'/)
    READ (*,*) FLOAD
    OPEN (UNIT=4,FILE=NAME2,STATUS='UNKNOWN')
    P1 = 0.0D0
    WRITE(4,130) P1, P1
C
    * MAIN PROGRAM, SIZE OF VECTORS
```

```
    NEQ=(NELEM+1)*5
    LHB=10
    NA=NEQ*LHB
C
C
    DO 610 I=1,NEQ
        R(I)=0.ODO
        XOC(I) =0.0D0
    R(NEQ-1)=FX
    DO 650 II=1,NLAYER
        DO 640 I=IBEG(II),IFIN(II)
                DO }630\mathrm{ IX=1,NGX
                    DOPC (I,IX)=0.0DO
                DONC (I,IX)=0.ODO
                DO 620 IY=1,NGY
                    SOC (I,IX,IY) = . ODO
                    EPSOC(I,IX,IY)=0.0DO
                    rc(i,ix,iy)=0.0d0
                CONTINUE
                CONTINUE
        CONTINUE
    CONTINUE
C
C * OBTAINS SHAPE FUNCTIONS AT INTEGRATION POINTS
    DO 670 II=1,NLAYER
        CALL SHAPES (NOL, N1L, M0L, M1L, M2L, NGX, EGX, DELTA(II))
        DO 660 I=1,10
            DO }660\textrm{J}=1,\textrm{NGX
            N1(II,I,J)=N1L(I,J)
            M0(II,I,J)=MOL(I,J)
            M1 (II,I,J)=M1L (I,J)
            M2(II,I,J)=M2L(I,J)
        CONTINUE
    CONTINUE
C
    IF (NIDIS.EQ.0) KA=(NSPF-1)*5+1
        OPEN (UNIT=8,FILE='SHAPEP',STATUS='UNKNOWN')
        OPEN (UNIT=9,FILE='SHAPEN',STATUS='UNKNOWN')
        OPEN (UNIT=7,FILE='SHAPEW',STATUS='UNKNOWN')
c
C * STARTS SOLUTION FOR EACH STEP
C
        IF (NSCRC.EQ.0) WRITE (*,680)
    680 FORMAT(/' ENTER STEP AT WHICH SWITCHING TO SHOWING'/
        1 ' COMPREHENSIVE INTERMEDIATE RESULTS'/)
        IF (NSCRC.EQ.0) READ (*,*) NSTPR
C
        DELTAX = 0.ODO
        DELTAF = 0.ODO
        A0=0.0D0
        cs = 0.0d0
        cs2 = 0.0d0
        dcsdep = 0.0d0
        rO = 0.0d0
        DO 1490 NST=1,NSTEP
            IF (NSCRC.EQ.O.AND.NST.EQ.NSTPR) NSCRC=1
            NSINT=1
            A1=A(NST)
            AA=A1
C
C STARTS ITERATIONS WITHIN THE STEP AO TO AA
```

```
C Sets vectors to the initial values for the step, starting from
C the last converged values
    NITER=0
    IF (NSCRC.EQ.1) WRITE (*,700) NST,NDE,A0,A1,AA
    FORMAT(' DATA=',I4,' NDE=',I3/
    1 ' AO=',F8.3,' A1=',F8.3,' AA =',F8.3/)
        DO }710\mathrm{ I=1,NEQ
        XO(I) = XOC (I)
    CONTINUE
    DO }740\mathrm{ JL=1,NLAYER
        DO 730 IE=IBEG(JL),IFIN(JL)
            DO }720 IX=1,NG
                DOP(IE,IX)=DOPC (IE,IX)
                    DON(IE,IX)=DONC (IE,IX)
                CONTINUE
        CONTINUE
    CONTINUE
7 3 0
740
C
C OBTAIN THE REACTION FORCES AND STRESSES FOR THE CURRENT VECTOR {XO}
C
    750 DO }810\mathrm{ JL=1,NLAYER
        QOO=QO(ITYP(JL))
        Q10=Q1 (ITYP(JL))
        Q40=Q4(ITYP(JL))
        DMAXO=DMAX (ITYP (JL))
        XK0=XK(ITYP(JL))
        PMAX0=PMAX (ITYP (JL))
        z1=0.0d0
        if(jl.eq.1) go to }75
        do 751 i=1,jl-1
        zl=zl+tl(i)
    7 5 1 ~ c o n t i n u e ~
    752 continue
        DO 800 IE=IBEG(JL),IFIN (JL)
            DO }760\textrm{I}=1,1
                JE=(IE-1)*5+I
                XE (I) =X0(JE)
        DO }790\mathrm{ IX=1,NGX
                    W=0.ODO
                EPS1=0.0D0
                EPS2=0.0D0
                EPS3 (IE,IX)=0.0D0
c xie : the depth under consideration. measured from the bottom
        xie=zl+(ie-ibeg(jl)+1)*delta(jl)-(1.0tegx(ix))*delta(jl)/2.0d0
c interpolate to find Emax along the pile
    dpt (0) =0.0d0
    emax (0) =0.0d0
    temax=0.0d0
    dpt (nemax+1)=sp
    emax (nemax+1)=emax(nemax)
    xie=sp-xie
    do 761 i=0, nemax
    if(dpt(i).eq.dpt(i+1)) then
    write(*,*)' INPUT DATA ERROR. DPT(I) MUST BE DIFFERENT FROM DPT
    1(I+1)
    pause
    else
    end if
    if(xie.eq.dpt(i)) then
    temax=emax(i)
    go to }76
    else
    end if
    if(xie.gt.dpt(i).and.xie.lt.dpt(i+1)) then
```

```
    slop=(emax(i+1)-emax(i))/(dpt(i+1)-dpt(i))
    temax=emax(i)+(xie-dpt(i))*slop
    go to }76
    else
    end if
C
continue
            DO 770 K=1,10
                    W=W+MO (JL, K,IX)*XE (K)
                    EPS1=EPS1+N1 (JL,K,IX)*XE (K)
                    EPS2=EPS2+M2 (JL,K,IX) *XE (K)
                    EPS3 (IE,IX)=EPS3 (IE,IX) +M1 (JL, K,IX)*XE (K)
IF (IDISP(IE).EQ.0) WT=W
IF (IDISP(TE).EQ.1) WT=W-AA
AW=DABS (WT)
IF (WT.GE.0.ODO) D0=DOPC(IE,IX)
IF (WT.LT.O.ODO) DOFDONC(IE,IX)
IF (WT.GE.0.ODO) SWO(IE,IX)=1.0DO
IF (WT.LT.0.0DO) SWO(IE,IX)=-1.ODO
CALL PYSOIL(AW,ALPHA, BETA,D,TEMAX,DO,P,DPDW)
```

* FOR EACH ELEMENT, CONSTRUCT TANGENT STIFFNESS MATRIX AND RIGHT HAND SIDE, AND ADD TO GLOBALS

DO $820 \mathrm{I}=1$,NA $C(I)=0.0 D 0$
CONTINUE
DO $900 \mathrm{JL}=1$, NLAYER
DO 890 IE=IBEG(JL), IFIN(JL)
DO $860 \mathrm{I}=1,10$
DO $850 \mathrm{~J}=1$, I
$\operatorname{CE}(I, J)=0.0 D 0$
DO 840 IX=1,NGX
DPDW=DPDWO (IE, IX)
$C E(I, J)=C E(I, J)+H G X(I X) * D P D W * M O(J L, I, I X) * M O(J L, J, I X) *$
1

```
                    DELTA(JL)/2.OD0
                    FACI=N1 (JL,I,IX)+M1 (JL,I,IX)*EPS3(IE,IX)
                        FACJ=N1 (JL,J,IX) +M1 (JL,J,IX)*EPS3 (IE,IX)
                    DO 830 IY=1,NGY
                            Y=EGY(IY)*D/2.0D0
```

c
C
C
C

```
```

```
                    DSDEPS=DSDEO(IE,IX,IY)
```

```
                    DSDEPS=DSDEO(IE,IX,IY)
                    S=SO(IE,IX,IY)
                    S=SO(IE,IX,IY)
                    dcsdep = dcsde0(ie,ix,iy)
                    dcsdep = dcsde0(ie,ix,iy)
                    FAC1=FACJ-Y*M2 (JL,J,IX)
                    FAC1=FACJ-Y*M2 (JL,J,IX)
                    FAC2=FACI-Y*M2 (JI,I,IX)
                    FAC2=FACI-Y*M2 (JI,I,IX)
                    CE (I,J) =CE (I,J) +HGX(IX) *HGY (IY) * (DSDEPS*FAC1*FAC2*
                    CE (I,J) =CE (I,J) +HGX(IX) *HGY (IY) * (DSDEPS*FAC1*FAC2*
                        B (IY) +S*M1 (JL,I,IX) *M1 (JL,J,IX) *B (IY)) * (DELTA (JL) *
                        B (IY) +S*M1 (JL,I,IX) *M1 (JL,J,IX) *B (IY)) * (DELTA (JL) *
                        D)/4.000
                        D)/4.000
                        + hgx(ix)*hgy(iy)*(dcsdep*facl*fac2*bo(iy) +cs0(ie,
                        + hgx(ix)*hgy(iy)*(dcsdep*facl*fac2*bo(iy) +cs0(ie,
                        ix,iy)*ml(jl,i,ix)*ml(jl,j,ix)*bc(iy))*(delta(jl)
                        ix,iy)*ml(jl,i,ix)*ml(jl,j,ix)*bc(iy))*(delta(jl)
                        *din/4.0d0)
                        *din/4.0d0)
                CONTINUE
                CONTINUE
                CONTINUE
                CONTINUE
            CONTINUE
            CONTINUE
        CONTINUE
        CONTINUE
        DO 880 I=1,10
        DO 880 I=1,10
            II= (IE-1)*5+I
            II= (IE-1)*5+I
            DO 870 J=1,I
            DO 870 J=1,I
                    JJ=(IE-1)*5+J
                    JJ=(IE-1)*5+J
                    IJ=(JJ-1)*(IHB-1)+II
                    IJ=(JJ-1)*(IHB-1)+II
                    IJ=(JJ-1)* LIHB-1)+II
                    IJ=(JJ-1)* LIHB-1)+II
            CONTINUE
            CONTINUE
        CONTINUE
        CONTINUE
        CONTINUE
        CONTINUE
    DO 910 I=1,NEQ
    DO 910 I=1,NEQ
        PSI (I) =0.0DO
        PSI (I) =0.0DO
        DO 970 JL=1,NLAYER
        DO 970 JL=1,NLAYER
            DO 960 IE=IBEG(JL),IFIN(JL)
            DO 960 IE=IBEG(JL),IFIN(JL)
            DO }940\textrm{I}=1,1
            DO }940\textrm{I}=1,1
                PSIE (I)=0.0DO
                PSIE (I)=0.0DO
                DO 930 IX=1,NGX
                DO 930 IX=1,NGX
                    SW=SWO (IE,IX)
                    SW=SWO (IE,IX)
                P=PO(IE,IX)
                P=PO(IE,IX)
                PSIE (I)=PSIE (I) +HGX(IX)*P*SW*MO (JL,I,IX)*DELTA(JL)/
                PSIE (I)=PSIE (I) +HGX(IX)*P*SW*MO (JL,I,IX)*DELTA(JL)/
                2.0DO
                2.0DO
                FACI=N1 (JL,I,IX) +M1 (JL,I,IX)*EPS3 (IE,IX)
                FACI=N1 (JL,I,IX) +M1 (JL,I,IX)*EPS3 (IE,IX)
                DO 920 IY=1,NGY
                DO 920 IY=1,NGY
                    Y=EGY(IY)*D/2.0DO
                    Y=EGY(IY)*D/2.0DO
                    S=SO(IE,IX,IY)
                    S=SO(IE,IX,IY)
                    FAC2=FACI -Y*M2 (JL,I,IX)
                    FAC2=FACI -Y*M2 (JL,I,IX)
                    PSIE(I)=PSIE (I) +HGX(IX)*HGY(IY) *S*FAC2*B (IY)*
                    PSIE(I)=PSIE (I) +HGX(IX)*HGY(IY) *S*FAC2*B (IY)*
                    (DELTA(JL)*D)/4.0DO
                    (DELTA(JL)*D)/4.0DO
                    +hgx(ix)*hgy(iy)*cs0(ie,ix,iy)*fac2*bc(iy)*
                    +hgx(ix)*hgy(iy)*cs0(ie,ix,iy)*fac2*bc(iy)*
                            (delta(jl)*din)/4.0d0
                            (delta(jl)*din)/4.0d0
                CONTINUE
                CONTINUE
            CONTINUE
            CONTINUE
        CONTINUE
        CONTINUE
        DO 950 I=1,10
        DO 950 I=1,10
                II= (IE-1)*5+I
                II= (IE-1)*5+I
                PSI(II)=PSI(II)+PSIE(I)
                PSI(II)=PSI(II)+PSIE(I)
        CONTINUE
        CONTINUE
        CONTINUE
        CONTINUE
    CONTINUE
    CONTINUE
        DO 980 I=1,NEQ
        DO 980 I=1,NEQ
        980 I=1,NEQ
        980 I=1,NEQ
    CONTINUE
    CONTINUE
```

 * Enforces W displacement and then introduces support conditions
    ```
    * Enforces W displacement and then introduces support conditions
        IF (NLDIS.GT.0) GO TO }103
        IF (NLDIS.GT.0) GO TO }103
        IF (KA.EQ.1) GO TO 1000
        IF (KA.EQ.1) GO TO 1000
        K1=KA-LHB+1
```

 K1=KA-LHB+1
    ```
```

 K2=KA-1
 IF (K1.LE.0) Kl=1
 DO 990 J=K1,K2
 II=(J-1)* (LHB-1) +KA
 RM(J)=RM(J)-C(II)* (AA-X0(KA))
 C(II) =0.ODO
 IF (KA.EQ.NEQ) GO TO 1020
 K1=KA+1
 K2=KA+LHB}-
 IF (K2.GT.NEQ) K2=NEQ
 DO 1010 I=K1,K2
 II=(KA-1)* (LHB-1)+I
 RM(I) =RM(I)-C(II)* (AA-X0(KA))
 C(II)=0.ODO
 KK= (KA-1) * (LHB-1) +KA
 C (KK) =1.0D0
 RM(KA)=AA-X0(KA)
 C
1030 IF (NNBC.EQ.0) GO TO 1100
DO }1090\mathrm{ IB=1,NNBC
DO 1080 J=1,KBC(IB)
K=(NBC (IB) - 1)*5+IBC (IB,J)
IF (K.EQ.1) GO TO 1050
K1=K-LHB+1
K2=K-1
IF (Kl.LE.0) Kl=1
DO 1040 I=K1,K2
II=(I-1)* (LHB-1) +K
RM(I)=RM(I)+C(II)*X0(K)
C(II) =0.0D0
IF (K.EQ.NEQ) GO TO 1070
K1=K+1
K2=K+LHB-1
IF (K2.GT.NEQ) K2=NEQ
DO }1060\textrm{I}=\textrm{K}1,\textrm{K}
II=(K-1)* (LHB-1)+I
RM(I)=RM(I)+C(II)* XO(K)
C(II) =0.0D0
KK=(K-1)* (LHB-1) +K
C (KK) =1.0D0
RM(K)=-XO(K)
CONTINUE
CONTINUE
CONTINUE
100
C Computes magnitudes of the out-of-balance vector,
C and checks convergence if NITER > 0
C
RMC=0.0DO
DO 1110 I = 1, NEQ
RMC=RMC+RM(I)**2
1 1 1 0
CONTINUE
IF (NITER.EQ.O) then
RMP = RMC
ncount=0
rmcp=rmc
endif
IF (NITER.EQ.O) GO TO 1113
C
C * Checks convergence
if(rmcp.lt.rmc) then
ncount=ncount+1
c pause
endif
KF=0

```
```

 KM=0
 IF (RMC.LT.TOLF) KF = 1
 IF (RMAX.LT.TOLX) KM = 1
 IF (NSCRC.EQ.1) WRITE(*,1150) NST,NSINT,NDE,NITER,
 1
 1
 RMP, RMC, KF,
 1 RMAX, KM
 1150 FORMAT(/' DATA =',I5,' INTERMEDIATE STEP=',I4,' NDE=',I4,
 1 ' NITER =',I3/' INIT. BAL. VECTOR=',E12.5,
 1 ' CURRENT BAL. VECTOR=',E12.5,' KF=',I2/
 1 ' CURRENT DELTA(X)=',E12.5,' KM=',I2)
 C IF (NSCRC.EQ.1) PAUSE
IF (KF.EQ.1.AND.KM.EQ.1) GO TO 1190
C
1113 CALL DECOMP (NEQ, LHB, C, IERROR)
IF (IERROR.EQ.1) THEN
IF (NSCRC.EQ.1) WRITE (*,1130)
1130 FORMAT(/' DECOMPOSITION FAILED'/)
C
GO TO }117
END IF
CALL SOLV (NEQ, LHB, C, RM)
C
C * Finds length of displacement correction vector
C
RMAX=0.ODO
DO 1140 JL=1,NLAYER
DO }1140\mathrm{ IE=IBEG(JL),IFIN(JL)
JA= (IE-1)*5+1
RMAX = RMAX + RM(JA)**2
IF (IE.EQ.IFIN(NLAYER)) THEN
JA = IE*5 + 1
RMAX = RMAX + RM(JA)**2
END IF
1140 CONTINUE
C
NITER = NITER + I
DO }1160\mathrm{ I=1,NEQ
XO(I) = X0(I) +RM(I)
1160 CONTINUE
c IF (NITER.EQ.1000) GO TO 1170
if(ncount.eq.10) go to 1170
rmcp=rmc
GO TO 750
C
1170 AA= (AO+AA)/2.0D0
NDE=NDE+1
C
IF (NDE.GT.11) THEN
WRITE (*,1180) NST,NSINT,NDE-1,NITER,A0,AA
1180 FORMAT (/', CANNOT FIND SOLUTION AT STEP NST=',I4/
1 , AO= ',E12.5,' AA= ',E12.5)
GO TO 1495
END IF
GO TO 690
C
1190 IF (AA.EQ.A1) GO TO 1260
IF (AA.NE.A1) GO TO 1200
C
C * Convergence is achieved at AA not equal to A1
C * NSINT is a counter for the number of intermediate, converged steps
C
1200 DO 1210 I=1,NEQ
1210 X0C(I)=X0(I)

```
```

 DO }1250\mathrm{ II=1,NLAYER
 DO 1240 IE=IBEG(II),IFIN(II)
 DO }1230\mathrm{ IX=1,NGX
 DOPC (IE,IX)=DOP(IE,IX)
 DONC(IE,IX)=DON(IE,IX)
 DO 1220 IY=1,NGY
 SOC(IE,IX,IY)=SO(IE,IX,IY)
 EPSOC(IE,IX,IY)=EPSO(IE,IX,IY)
 rc(ie,ix,iy) = rr(ie,ix,iy)
 CONTINUE
 CONTINUE
 CONTINUE
 CONTINUE
 A0}=\textrm{A}
 AA= A1
 NSINT=NSINT+1
 if(nsint.eq. 20) go to 1490
 IF (RMAX.GT.DEITAX) DELTAX = RMAX
 IF (RMC.GT.DELTAF) DELTAF = RMC
 NDE=0
 flag=0.0d0
 GO TO 690
 C l
C N *
C l
C l
1280
1290
1300
1310
C
C *
C
1320
1330
1340
C
1350
AO=AA
DO 1270 I=1,NEQ
XOC (I) =X0(I)
DO 1310 II=1,NLAYER
DO 1300 IE=IBEG(II),IFIN(II)
DO 1290 IX=1,NGX
DOPC (IE,IX)=DOP(IE,IX)
DONC (IE,IX)=DON(IE,IX)
DO 1280 IY=1,NGY
SOC (IE,IX,IY) =SO(IE,IX,IY)
EPSOC(IE,IX,IY)=EPSO(IE,IX,IY)
rc(ie,ix,iy) = rr(ie,ix,iy)
CONTINUE
CONTINUE
CONTINUE
CONTINUE
IF (RMAX.GT.DELTAX) DELTAX = RMAX
IF (RMC.GT.DELTAF) DELTAF = RMC
C
C C *

```
```

Convergence has been achieved at AA = A1

```

```

 IF (NLDIS.GT.0) GO TO 1350
 FYO=0.ODO
 DO 1340 JL=1,NLAYER
 DO 1330 IE=IBEG(JL),IFIN(JL)
 DO }1320 IX=1,NGX
 FYO=FYO+HGX (IX)*PO (IE,IX)*SWO (IE,IX)*DELTA(JL)/2.0D0
 CONTINUE
 CONTINUE
 CONTINUE
 GO TO 1390
 FY1=0.0D0
 FYO=0.0DO
 DO }1380\textrm{JL=1,NLAYER
 DO 1370 IE=IBEG(JL),IFIN(JL)
 DO 1360 IX=1,NGX
 IF (IDISP(IE).EQ.1) FY1=FY1+HGX(IX)*P0(IE,IX)*SW0(IE,IX)*
 DELTA(JL)/2.0DO
 IF (IDISP(IE).EQ.0) FYO=FYO+HGX(IX)*PO(IE,IX)*SWO (IE,IX)*
    ```
```

 DELTA(JI)/2.OD0
 CONTINUE
 CONTINUE
 CONTINUE
 C
1390 IF (NLDIS.EQ.0) WRITE (4,130) AA,FYO*FLOAD
IF (NLDIS.GT.0) WRITE (4,130) AA, FYO*FLOAD
IF (NSCR.EQ.1) WRITE (*,1400) NST,NSINT,NITER, RMAX,KM, RMC, KF
140
FORMAT(' FINISHED DATA NO. ',I5,' TOTAL STEPS =',I4,
1 ' NITER L.AST STEP =',I3/
1 ' DELTA(X)=',E12.5,' KM=',I2,' DELTA(F)=',E12.5,' KF=',I2)
IF (NLDIS.GT.0) WRITE (*,1420) NST,AA,FYO*FLOAD,FYI*FLOAD
IF (NLDIS.EQ.0) WRITE (*,1410) NST,AA,FYO*FLOAD
1410 FORMAT(' DATA =',I5,' A=',E14.6,' F=',E14.6/)
1420 FORMAT(' DATA =',I5,' A=',E14.6,' FO=',E14.6,' F1=',E14.6/)
C
C Store shape if the step is as specified
C
IF (NST.NE.NSTP) GO TO }149
DO 1480 JL=1,NLAYER
ZL=0.0D0
IF (JL.EQ.1) GO TO 1440
DO 1430 I=1,JL-1
ZL=ZL+TL(I)
1430 CONTINUE
1440 CONTINUE
DO 1470 IE=IBEG(JL),IFIN(JL)
DO 1450 IX=1,NGX
XIE=ZL+(IE-IBEG(JL)+1)*DELTA(JL) - (1.0+EGX(IX))*DELTA(JL)/
1 2.0DO
WRITE (8,130) DOPC(IE,(NGX+1-IX)),XIE
WRITE (9,130) -DONC(IE,(NGX+1-IX)),XIE
CONTINUE
IEE=(IE-1)*5+1
XIEE=ZL+(IE-IBEG(JL))*DELTA(JL)
WRITE (7,130) X0(IEE),XIEE
IF (JL.EQ.NLAYER.AND.IE.EQ.IFIN(JL)) GO TO 1460
GO TO 1470
1460 XIEE=ZL+(IE+1-IBEG(JL))*DELTA(JL)
IF (JL.EQ.NLAYYER.AND.IE.EQ.IFIN(JL)) IEE=IE*5+1
IF (JL.EQ.NLAYER.AND.IE.EQ.IFIN(JL)) WRITE (7,130) XO(IEE),
XIEE
1470 CONTINUE
1480 CONTINUE
1490 CONTINUE
WRITE (*, 1491) DELTAX, DELTAF
1491 FORMAT(' MAXIMUM DELTA(X)=',E12.5,' MAXIMUM DELTA(F)=',E12.5/)
C
1495 continue
CLOSE (4)
CLOSE (8)
CLOSE (9)
CLOSE (7)
STOP
END
C
SUBROUTINE SHÁPES (N0, N1, M0, M1, M2, NG, EG, DELTA)
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 M0, M1, M2, N0, N1
DIMENSION EG(9), MO (10,9), M1 (10,9), M2 (10,9)
DIMENSION NO (10,9), N1 (10,9)
DO 10 I=1,NG
X=EG(I)
X2=X**2
X3=X** 3

```
```

 X4=X**4
 C
C

```
SHAPES FOR W(X)
```

SHAPES FOR W(X)
MO (1,I) = (8.0D0-15.0DO*X+10.0D0*X3-3.0DO*X5)/16.0DO
MO (2,I) = (5.0D0-7.0D0*X-6.0D0*X2+10.0D0*X3+X4-3.0DO*X5)*(DELTA/
1 32.0DO)
M0 (3,I) = (1.0D0-X-2.0D0*X2+2.0D0*X3+X4-X5)*(DELTA**2)/64.0D0
MO (4,I) = 0.0D0
M0 (5,I) =0.0D0
M0 (6,I) = (8.0D0+15.0DO*X-10.0D0*X3+3.0DO*X5)/16.0D0
MO (7,I) = (-5.0D0-7.0D0*X+6.0D0* X2+10.0D0**3 -X4-3.0D0*X5)*(DELTA/
1
32.0D0)
MO (8,I) = (1.0DO+X-2.ODO*X2-2.0D0*X3+X4+X5)*(DELTA**2)/64.ODO
M0 (9,I) =0.0D0
M0 (10,I) =0. ODO
SHAPES FOR W'(X)
M1 (1,I) = (-15.0D0+30.0D0*X2-15.0D0*X4)*2.0D0/(16.0DO*DELTA)
M1 (2,I) = (-7.0D0-12.0D0*X+30.0D0*X2+4.0D0*X3-15.0D0*X4)/16.0D0
M1 (3,I) = (-1.0D0-4.0D0*X+6.0D0*X2+4.0D0*X3-5.0D0*X4)*DELTA/
1
32.0D0
M1 (4,I) =0.0D0
M1 (5,I) =0.0D0
M1 (6,I) = (15.0DO-30.0DO*X2+15.0DO*X4)*2.ODO/(16.0D0*DELTA)
M1 (7,I) = (-7.0D0+12.0D0*X+30.0D0*X2-4.0D0*X3-15.0DO*X4)/16.0D0
M1 (8,I) =(1.0D0-4.0D0*X-6.0D0*X2+4.0D0*X3+5.0D0*X4)*DELTA/32.0DO
M1 (9,I) =0.0D0
M1 (10,I)=0.0D0
SHAPES FOR W"(X)
M2 (1,I) =(60.0D0*X-60.0DO*X3)*4.0D0/(16.0D0*(DELTA**2))
M2 (2,I) = (-12.0D0+60.0D0*X+12.0D0*X2-60.0DO*X3)*2.ODO/(16.0DO*
DELTA)
M2 (3,I) = (-4.0DO+12.0DO*X+12.0D0*X2-20.0D0*X3)/16.0DO
M2 (4,I) =0.0D0
M2 (5,I) =0.0D0
M2 (6,I) = (-60.0D0*X+60.0D0*X3)*4.0D0/(16.0D0* (DELTA**2))
M2 (7,I) = (12.0D0+60.0D0*X-12.0D0*X2-60.0D0*X3) *2.0D0/(16.0D0*
DELTA)
M2 (8,I) = (-4.0D0-12.0D0*X+12.0D0*X2+20.0D0*X3)/16.0D0
M2 (9,I) =0.0D0
M2 (10,I)=0.0D0
SHAPES FOR U(X)
NO (1,I) = O.ODO
NO (2,I) =0.ODO
NO (3,I) =0.0DO
NO (4,I) = (2.0DO-3.0DO*X+X3)/4.ODO
NO (5,I) = (1.0DO-X-X2+X3)*DELTA/8.0DO
N0 (6,I) =0.0D0
NO (7,I) = O. ODO
NO (8,I) = O.ODO
NO (9,I) = (2.0D0+3.0D0*X-X3)/4.ODO
NO(10,I)=(-1.0D0-X+X2+X3)*DELTA/8.0D0
SHAPES FOR U'(X)
N1 (1,I) =0.0D0
N1 (2,I) =0.0D0
N1 (3,I) =0.0D0
N1 (4,I) = (-3.0D0+3.0D0*X2)/(2.0D0*DELTA)

```
```

 N1 (5,I) = (-1.0DO-2.0D0*X+3.0DO*X2)/4.0D0
 N1 (6,I) =0.0D0
 N1 (7,I) =0.0D0
 N1 (8,I)=0.0D0
 N1 (9,I) = (3.ODO-3.ODO*X2)/(2.0D0*DELTA)
 N1(10,I)=(-1.ODO+2.0DO*X+3.0DO*X2)/4.0DO
 CONTINUE
 RETURN
 END
 C
C
SUBROUTINE STRESS (STO, EPO, EPS, E, SY, S, DSDEPS)
IMPLICIT REAL*8(A-H,O-Z)
S=STO+E*(EPS-EPO)
DSDEPS=E
S1=SY+0.001D0*E*EPS
S2=-SY+0.001D0*E*EPS
IF (S.GE.S1) DSDEPS =0.001D0*E
IF (S.GE.S1) S=S1
IF (S.LE.S2) DSDEPS=0.001DO*E
IF (S.IE.S2) S=S2
RETURN
END
C
subroutine conct(NCROSS,d,din,r0, eps, cnt,cs, dcsdep)
implicit real*8(a-h,o-z)
DT=D/T
IF(DT.LT.64.0D0) DT=64.0D0
IF(NCROSS.EQ.3) THEN
t=(d-din)/2.0d0
cnt=-cnt
ceb1=-0.012354165d0*dsqrt(-cnt)
ec=2.0D0*cnt/cebl
if(eps.gt.0.0d0) then
cs=0.0d0
dcsdep=0.0d0
endif
if (eps.le.r0) go to 11
cs=0.0d0
dcsdep = 0.0d0
go to }1
11 if (eps.lt.r0) go to 12
cs = 0.0d0
dcsdep = ec
go to }1
12 cs = ec* (eps-r0)
dcscep = ec
if(eps.ge.ceb1.and.eps.le.0.0d0) then
cs2=2.0DO*(cnt*eps)/ceb1-(cnt/ceb1**2)*eps**2
endif
if(eps.gt. -0.005d0. and.eps.lt.ceb1) cs2=cnt
if(eps.ge.-0.015d0.and.eps.le.-0.005d0) then
cs1=(1.6d0-0.025d0*DT)*cnt
cs2=cs1+((cnt-cs1)/(-0.015d0+0.005d0))*(eps+0.005)
endif
if(eps.lt.-0.015d0) then
cs2=(1.6d0-0.025d0*DT)*cnt
endif
if(eps.gt.0.0d0) cs2=0.0d0
if (cs.gt.cs2) go to 13
cs = cs2
r0 = eps-cs/ec
if(eps.le.0.0d0.and.eps.ge.cebl) then
dcsdep = 2.0d0*cnt/ceb1-2.0d0*(cnt/ceb1**2)*eps

```
```

 endif
 if(eps.ge.-0.005d0.and.eps.lt.cebl) dcsdep=0.0d0
 if(eps.gt.-0.015d0.and.eps.lt.-0.005d0) then
 dcsdep=(-cnt+cs1)/(-0.015+0.005)
 endif
 if(eps.lt.-0.005) dcsdep=0.0d0
 13 cnt=-cnt
 endif
 return
 end
 C
c
C
SUBROUTINE PYSOIL (AW, ALPHA, BETA,D,TEMAX,DO, P, DPDW)
IMPLICIT REAL*8(A-H,O-Z)
IF (AW.GE.DO) GO TO 763
P=0.0D0
DPDW=0.ODO
GO TO }77
763 IF(AW.GT.DO) GO TO 764
P=0.0D0
DPDW=TEMAX
GO TO 771
764 P=TEMAX* (AW-DO)
dpdw=temax
x=(d/100.0d0)*alpha**(1.0d0/(1.0d0-beta))
if(aw.ge.x) then
pub=(temax*d*alpha*((1.0d0/d)**beta)*aw**beta)/10.0d0
else
pub=temax*aw
end if
if(p.lt.pub) go to 771
p=pub
if(aw.lt.x) then
dpdw=temax
else
dpdw=0.1d0*temax*d*alpha*((1.0d0/d)**beta)*beta*aw**(beta-1.0d0)
endif
dO=aw-p/temax
771 return
end
C
SUBROUTINE DECOMP (N, LHB, A, IERROR)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(2550)
IERROR=0
KB=LHB-1
TEMP=A(1)
IF (TEMP.IE.O.OD0) IERROR=1
IF (IERROR.EQ.1) RETURN
TEMP=DSQRT (TEMP)
A(1)=TEMP
DO 10 I=2,LHB
A(I) =A (I)/TEMP
CONTINUE
DO 60 J=2,N
J1=J-1
IJD=LHB*J-KB
SUM=A(IJD)
KO=1
IF (J.GT.LHB) KO=J-KB
DO 20 K=KO,J1
JK=KB* K+J-KB
TEMP=A (JK)
SUM=SUM-(TEMP**2)

```
ONTINUE
CONTINUE
RETURN
END
SUBROUTINE SOLV ( \(\mathrm{N}, \mathrm{LHB}, \mathrm{A}, \mathrm{B}\) )
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION \(\mathrm{A}(2550), \mathrm{B}(255)\)
\(\mathrm{N} 1=\mathrm{N}-1\)
\(\mathrm{LB}=\mathrm{LHB}{ }^{*} \mathrm{~N}-\mathrm{KB}\)
TEMP \(=A(L B)\)
\(B(N)=B(N) / T E M P\)
DO \(40 \mathrm{I}=1, \mathrm{~N} 1\)
\(\mathrm{I} 1=\mathrm{N}-\mathrm{I}+1\)
\(\mathrm{NI}=\mathrm{N}-\mathrm{I}\)
\(\mathrm{KO}=\mathrm{N}\)
IF (I.GT.KB) \(\mathrm{KO}=\mathrm{NI}+\mathrm{KB}\)
\(S U M=B(N I)\)
\(I I=L H B * N I-K B\)
DO \(30 \mathrm{~K}=\mathrm{II}\), KO \(I K=K B * N I+K \rightarrow K B\) TEMP=A (IK) SUM=SUM-TEMP*B (K)
CONTINUE
\(B(N I)=S U M / A(I I)\)
```

CONTINUE RETURN END
SUBROUTINE GAUSS (N, E, H, IERR)
REAL*8 E(32), H(32)
$\mathrm{M}=(\mathrm{N}-2) *(\mathrm{~N}-3) *(\mathrm{~N}-4) *(\mathrm{~N}-5) *(\mathrm{~N}-6) *(\mathrm{~N}-7) *(\mathrm{~N}-8)$
$M=M *(N-9) *(N-10) *(N-11) *(N-12) *(N-15) *(N-16) *(N-32)$
IF (M.NE.0) GO TO 260
$I E R R=0$
IF (N.EQ.32) GO TO 240
IF (N.EQ.16) GO TO 220
IF (N.EQ.15) GO TO 200
IF (N.EQ.12) GO TO 180
IF (N.EQ.I1) GO TO 160
IF (N.EQ.10) GO TO 140
IF (N.EQ.9) GO TO 120
IF (N.EQ.8) GO TO 100
IF (N.EQ.7) GO TO 80
IF (N.EQ.6) GO TO 60
IF (N.EQ.5) GO TO 40
IF (N.EQ.4) GO TO 20
IF (N.EQ.3) GO TO 10
$\mathrm{E}(1)=0.577350269189626 \mathrm{D} 0$
$E(2)=-E(1)$
$\mathrm{H}(1)=1$. 0 D 0
$\mathrm{H}(2)=\mathrm{H}(1)$
RETURN
$10 \quad E(1)=0.774596669241483 D 0$
$E(2)=0.0 \mathrm{DO}$
$E(3)=-E(1)$
$\mathrm{H}(1)=0.555555555555556 \mathrm{DO}$
$\mathrm{H}(2)=0.888888888888889 \mathrm{DO}$
$\mathrm{H}(3)=\mathrm{H}(1)$
RETURN
$20 \quad \mathrm{E}(1)=0.861136311594053 \mathrm{D} 0$
$\mathrm{E}(2)=0.339981043584856 \mathrm{D} 0$
$\mathrm{H}(1)=0.347854845137454 \mathrm{DO}$
$\mathrm{H}(2)=0.652145154862546 \mathrm{D} 0$
DO $30 I=1,2$
$E(5-I)=-E(I)$
$H(5-I)=H(I)$
RETURN
$\mathrm{E}(1)=0.906179845938664 \mathrm{DO}$
$E(2)=0.538469310105683 D 0$
$E(3)=0.0 \mathrm{DO}$
$\mathrm{H}(1)=0.236926885056189 \mathrm{D} 0$
$\mathrm{H}(2)=0.478628670499366 \mathrm{DO}$
$\mathrm{H}(3)=0.568888888888889 \mathrm{D} 0$
DO $50 \mathrm{I}=1,2$
$E(6-I)=-E(I)$
$\mathrm{H}(6-\mathrm{I})=\mathrm{H}(\mathrm{I})$
RETURN
$60 \quad E(1)=0.932469514203152 \mathrm{DO}$
$E(2)=0.661209386466265 D 0$
$E(3)=0.238619186083197 \mathrm{DO}$
$\mathrm{H}(1)=0.171324492379170 \mathrm{DO}$
$\mathrm{H}(2)=0.360761573048139 \mathrm{D} 0$
$\mathrm{H}(3)=0.467913934572691 \mathrm{DO}$
DO $70 \mathrm{I}=1,3$
$E(7-I)=-E(I)$
$\mathrm{H}(7-\mathrm{I})=\mathrm{H}(\mathrm{I})$
RETURN
$80 \quad E(1)=0.949107912342759 D 0$
$\mathrm{E}(2)=0.741531185599394 \mathrm{D} 0$

```
    E (3)=0.405845151377397D0
    E(4)=0.0DO
    H(1) =0.129484966168870D0
    H(2) =0.279705391489277D0
    H(3) =0.381830050505119D0
    H(4)=0.417959183673469D0
    DO 90 I=1,3
        E(8-I)=-E (I)
        H(8-I)=H(I)
    RETURN
100 E (1)=0.960289856497536D0
    E (2) =0.796666477413627D0
    E (3)=0.525532409916329D0
    E (4)=0.183434642495650D0
    H(1) =0.101228536290376D0
    H(2) =0.222381034453374D0
    H(3)=0.313706645877887D0
    H(4)=0.362683783378362D0
    DO 110 I=1,4
        E(9-I)=-E (I)
        H(9-I)=H(I)
        RETURN
120 E (1)=0.968160239507626D0
    E (2) =0.836031107326636D0
    E (3) =0.613371432700590D0
    E (4)=0.324253423403809D0
    E(5)=0.0D0
    H(1) =0.081274388361574D0
    H(2)=0.180648160694857D0
    H(3) =0.260610696402935D0
    H(4)=0.312347077040003D0
    H(5)=0.330239355001260D0
    DO 130 I=1,4
        E(10-I)=-E(I)
        H(10-I) =H(I)
    RETURN
140 E (1)=0.973906528517172D0
    E (2) =0.865063366688985D0
    E (3) =0.679409568299024D0
    E (4) =0.433395394129247D0
    E (5) =0.148874338981631D0
    H}(1)=0.066671344308688D
    H(2) =0.149451349150581D0
    H(3) =0.219086362515982D0
    H(4)=0.269266719309996D0
    H(5) =0.295524224714753D0
    DO 150 I=1,5
        E(11-I)=-E (I)
        H(11-I)=H(I)
    RETURN
160 E(1)=0.978228658146057D0
    E (2) =0.887062599768095D0
    E (3) =0.730152005574049D0
    E (4) =0.519096129206812D0
    E (5) =0.269543155952345D0
    E(6)=0.000
    H(1) =0.055668567116174DO
    H(2) =0.125580369464905DO
    H(3) =0.186290210927734D0
    H(4)=0.233193764591990D0
    H(5)=0.262804544510247D0
    H(6)=0.272925086777901D0
    DO 170 I=1,5
        E(12-I)=-E (I)
        H(12-I)=H(I)
        RETURN
```

```
180 E (1)=0.981560634246719D0
    E (2) =0.904117256370475D0
    E(3)=0.769902674194305D0
    E(4)=0.587317954286617D0
    E(5)=0.367831498998180D0
    E(6)=0.125233408511469D0
    H(1) =0.0471.75336386512D0
    H(2) =0.106939325995318D0
    H(3) =0.160078328543346D0
    H(4)=0.203167426723066D0
    H(5)=0.233492536538355D0
    H(6)=0.249147045813403D0
    DO 190 I=1,6
        E(13-I)=-E(I)
        H(13-I)=H(I)
    RETURN
200 E(1)=0.987992518020485D0
    E (2) =0.937273392400706D0
    E (3) =0.848206583410427DO
    E(4)=0.724417731360170D0
    E(5) =0.570972172608539D0
    E (6) =0.394151347077563D0
    E(7) =0.201194093997435D0
    E(8)=0.0D0
    H(1) =0.030753241996117D0
    H(2) =0.070366047488108D0
    H(3) =0.107159220467172D0
    H(4) =0.139570677926154D0
    H(5) =0.166269205816994D0
    H(6) =0.186161000015562D0
    H(7) =0.198431485327112D0
    H(8) =0.202578241925561D0
    DO 210 I=1,7
    E(16-I)=-E (I)
    H(16-I) =H(I)
        RETURN
220 E(1)=0.989400934991650DO
        E (2) =0.944575023073233D0
        E (3) =0.865631202387832D0
        E (4) =0.755404408355003D0
        E (5) =0.617876244402644D0
        E (6)=0.458016777657227D0
        E(7) =0.281603550779259D0
        E (8)=0.095012509837637D0
        H(1) =0.027152459411754D0
        H(2) =0.062253523938648D0
        H(3) =0.095158511682493D0
        H(4)=0.124628971255534D0
        H(5) =0.149595988816577D0
        H(6) =0.169156519395003D0
        H(7) =0.182603415044924D0
        H(8)=0.189450610455068D0
        DO 230 I=1,8
            E(17-I)=-E (I)
            H(17-I)=H(I)
        RETURN
240 E (1)=0.997263861849482D0
    E (2)=0.985611511545268D0
    E(3)=0.964762255587506D0
    E (4) =0.934906075937740D0
    E (5)=0.896321155766052D0
    E (6)=0.849367613732570D0
    E(7)=0.794483795967942D0
    E (8) =0.732182118740290D0
    E(9)=0.663044266930215D0
    E (10)=0.587715757240762D0
```

```
    E (11)=0.506899908932229D0
    E(12)=0.421351276130635D0
    E(13)=0.331868602282128D0
    E(14)=0.239287362252137D0
    E(15)=0.144471961582796D0
    E(16)=0.048307665687738D0
    H(1)=0.007018610009471D0
    H(2) =0.016274394730906D0
    H(3)=0.025392065309262D0
    H(4)=0.034273862913021D0
    H(5)=0.042835898022227D0
    H(6) =0.050998059262376D0
    H(7) =0.058684093478536D0
    H(8)=0.065822222776362D0
    H(9) =0.072345794108849D0
    H(10)=0.078193895787070D0
    H(11) =0.083311924226947D0
    H(12)=0.087652093004404D0
    H(13) =0.091173878695764D0
    H(14)=0.093844399080805D0
    H(15)=0.095638720079275D0
    H(16)=0.096540088514728D0
    DO 250 I=1,16
        E(33-I)=-E (I)
250 H(33-I)=H(I)
    RETURN
260 WRITE (*,270)
270 FORMAT(' WRONG CHOICE FOR NUMBER OF GAUSS INTEGRATION POINTS'/)
    IERR=1
    RETURN
    END
```

口

