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ABSTRACT 

The evaluation of seismic reliability of building structures is a complex and 

computationally expensive process since it requires, at the most fundamental level, the 

evaluation of the probabilistic dynamic response of a given structure to the stochastic 

dynamic action of an earthquake. Because of the difficulty of determining the response 

of a structure in a statistical sense, past estimates of the seismic reliability of existing 

structures, and typical structural systems, have been largely qualitative in nature. With 

the movement of many national building codes towards more performance-based design 

measures, a need was identified for a more quantitative method of evaluating structural 

reliability under seismic loading. 

To meet this need, a new software application called PSResponse was developed 

that gives engineers and researchers the ability to rigorously evaluate the probable effect 

of a wide range of ground motion characteristics and structural model parameters, each 

with their own random nature, on the dynamic response of a structure. The mathematical 

modeling methods forming the foundation of the software architecture were selected 

following a comprehensive review of random vibration methods and numerical 

procedures that assessed their suitability for analyzing the probabilistic seismic response 

of civil engineering structures. That review determined that the frequency-domain based 

random vibration methods are too restrictive in their inherent assumptions to confidently 

apply their results to real structures experiencing realistic earthquakes. Instead, a 

numerical time-history approach incorporating the Monte Carlo method provides a 

robust, accurate and straightforward means of evaluating the probabilistic response of a 

structure without regard to the degree of non-linearity in the restoring force, complexity 

of the structural system, nature of the variability in structural properties or nature of the 

random excitation process. 

As part of the software development process, a new algorithm for parameter 

identification of the well-known BWBN, or Bouc-Wen, hysteresis model was 

developed, which included a modification to the function controlling pinching behaviour 
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to simplify the parameter identification process. The number of pinching parameters was 

reduced from six to three, which has the added benefit that the role of each of the three 

new parameters is more easily understood than the relationship between the six 

parameters of the original pinching function. 

Following development of the beta version of PSResponse, two case studies were 

completed that demonstrated the capabilities of the software as a research and analysis 

tool. These case studies provided for the first time a probabilistic analysis of the 

importance of the hysteresis assumption in inelastic analysis, the accuracy of the well-

known equal displacement observation in structural dynamics and the relative effect of 

random structural properties on elastic dynamic response. Results showed that the 

hysteretic behaviour of a structure needs to be accurately modeled, particularly in shorter 

natural period structures, to provide an accurate probabilistic description of response and 

hence a good estimate of seismic structural reliability. Also, the equal displacement 

principle is valid in the sense that elastic peak displacement provides a generally 

conservative first approximation of inelastic peak displacement, which in turn results in a 

generally conservative prediction of reliability. Finally, case study results showed that 

the characteristics and randomness of ground motion records has a much larger influence 

than structural randomness on the probabilistic dynamic response of a structure. 

Therefore, once a suitable seed record has been selected, the peak response probability 

distributions for a given structural model could be applied to a real structure with 

reasonable confidence since the assumed level of uncertainty in the structural parameters 

needs to be only approximately correct. However, for strength related limit state 

evaluations related to peak response, structural variability still has an important effect. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

The field of earthquake engineering has existed since the Middle Ages when 

many European, Chinese and Japanese structures were constructed with post and beam 

systems employing complex joinery and/or diagonal bracing for lateral load resistance. 

These construction methods, as well as lightweight timber materials, structural 

redundancy and even passive control devices, allowed structures to sustain large 

deformations under earthquake loading and effectively dissipate the input seismic energy. 

Using these techniques, some churches and temples that were constructed as much as 

1000 years ago still stand today (Popovski 2000). 

The successful seismic performance of these ancient structures is more a 

testament to the craftsmanship ofthe original builders and generations of experience than 

to a fundamental understanding of seismic loading on soils and structures. The field o f 

earthquake engineering, as we know it today, really began developing in the latter half o f 

the 20th century as seen from the first inclusion of seismic loading provisions in the main 

text ofthe National Building Code of Canada (NBCC) in 1953. These provisions, which 

specify both the seismic design forces and the design and detailing requirements for 

lateral load resisting structural systems, have been updated approximately every five 

years since 1965 resulting in the current 1995 version of the NBCC. 

In the current version of the NBCC the seismic design provisions provide 

estimates of peak ground acceleration and peak ground velocity for various regions o f the 

country resulting from an earthquake that has a 10 percent probability of exceedence in 

50 years. These ground motion parameters are then used in conjunction with simple 
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formulae to determine a distribution of static lateral forces for which the structure should 

be designed. The resulting forces are considered equivalent to the dynamic forces of an 

earthquake and any structure designed to resist these forces should be able to resist minor 

levels of earthquake ground motion without damage, resist moderate levels of earthquake 

ground motion without structural damage but possibly with some non-structural damage, 

and resist major levels of earthquake ground motion without collapse but with some 

structural as well as non-structural damage. These qualitative levels of performance are 

contingent on the design allowing for stress reversals, providing adequate member 

ductility and providing connections with adequate strength and resilience. Included in 

the various formulae used to determine the design lateral forces are the use of several 

factors to account for; inelastic behaviour (R), relative importance of the structure (I), and 

site soil effects (F). 

The prescriptive procedures and various factors outlined in the 1995 NBCC are 

based on years of past proven experience and are easy to apply. As it concerns a matter 

of life safety, this approach has been justified on the grounds that any major change in 

building practice can lead to unexpected risks. It was this view that led to the 

introduction of a calibration factor, the so-called 'over-strength' factor (U = 0.6), in the 

1990 N B C C to maintain the same seismic design forces when a new formulation for base 

shear was adopted. The drawback of a prescriptive procedure is that it oversimplifies a 

very complex problem and it does not allow the reliability of a design to be quantified. 

In 1992, the Canadian National Committee on Earthquake Engineering 

(CANCEE), which has the responsibility of preparing and recommending the seismic 

loading provisions of the NBCC, recognized that major changes would be necessary for 

the 2000 NBCC. A resolution was approved which stated (Heidebrecht et al. 1995): 

"that C A N C E E place a very high priority on a major redevelopment of the seismic 

loading provisions of the 2000 edition of NBCC, with particular emphasis on: 
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1. Developing a format suitable for utilizing seismic hazard expressed as uniform 

hazard spectra, 

2. Evaluating the appropriateness of the level of protection (expressed as the 

minimum lateral seismic force) by comparison with that used in various U.S. 

codes (UBC, SEAOC and NEHRP), including comparisons of seismic hazard 

determined at points along the Canada-U.S. border. 

and that C A N C E E maintain close linkages with various U.S. code development projects 

in order to benefit from their experience". 

To implement this resolution, C A N C E E established the NBCC 2000 Task Force 

to generate a redevelopment plan and coordinate code development work. In 1993, the 

task force published a list of six major issues that needed to be addressed: 

1. Seismic loading format suitable for utilizing spectral ordinates determined from 

seismic hazard analysis, 

2. Evaluation of the current level of protection, 

3. Role of different design (or performance) levels in the code, 

4. Development of direct site spectra to recognize different site soil conditions, 

5. Development of design requirements for low to moderate seismic hazard zones, 

6. Explicit or implicit recognition of over-strength in seismic design. 

In recognizing these issues, C A N C E E is clearly moving the NBCC towards a 

performance-based design code, perhaps with the intent of establishing specific 

probabilistic performance targets for a code designed structure in a seismic event. To 

enable the evaluation of structural performance, the current design objectives of: no 

damage, moderate structural damage and prevention of collapse in the event of minor, 

moderate and major levels of earthquake ground motion, respectively, need to be 

expressed as limits on quantitative terms such as: a damage index, overall lateral 

deflection or inter-storey drift. In addition, the evaluation of performance, and 
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specifically the level of protection, implies the use of reliability-based methods to 

express the risk of non-performance (i.e. exceedence of limits) in probabilistic terms. 

1.2 O B J E C T I V E S 

Evaluating the reliability or risk of non-performance of a structural system under 

seismic loading requires, at the most fundamental level, a method to evaluate the 

probabilistic dynamic response of a given structure to the stochastic dynamic action of an 

earthquake. Once the response of the structure is known in a statistical sense, the task of 

determining structural reliability is a matter of using the statistical description of 

structural response to determine the probability of exceeding the chosen limits on the 

quantitative terms being used to assess structural performance. 

Evaluation of the probabilistic response of a structure to stochastic dynamic 

loading is a complex and computationally expensive process. For this reason past 

estimates of the seismic reliability of existing structures, and typical structural systems, 

have been largely qualitative in nature. With the movement towards more performance-

based design codes a need exists for a more rigorous and convenient method of 

evaluating structural reliability under seismic loading. This need is the basis for the 

present research project, which has the following objectives: 

1. Evaluate the various analytical and numerical methods that have been developed 

to predict the response of linear and non-linear systems under stochastic dynamic 

actions. 

2. Identify a method suitable for probabilistic analysis of the seismic response of 

civil engineering structures. 

3. Develop software to enable application of the chosen probabilistic analysis 

method for use by engineers and researchers in evaluating structural reliability 

under seismic loading. 
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1.3 SCOPE 

Since the objectives of this study relate to the evaluation of structural reliability 

under seismic loading, it is given that the study and related software development focus 

on probabilistic dynamic response of structures to earthquake-induced ground 

acceleration events. Dynamic loading in the form of wind-induced vibration, blast 

loading or impact loading is not considered, although the mathematical descriptions of 

the structural response to those types of loading are very similar. In addition, the type of 

structures that are considered in this study are those that may be represented by typical 

lumped mass models consisting of shear walls or frames as the lateral load resisting 

elements. Irregular structures consisting of complex geometry with significant 

distributed mass are outside the scope of this investigation. 

1.4 ORGANIZATION 

This thesis contains six chapters that are divided as follows; Chapter 2 contains a 

literature review of the research related to different aspects of modeling the response of 

linear and non-linear systems to stochastic dynamic loading. Mathematical modelling 

techniques are subdivided into the frequency domain based analytical methods and time 

domain based numerical methods and each is reviewed for its merits and limitations. 

Following the description of the numerical methods, which require sample functions of 

the input stochastic process (i.e. earthquake) and a hysteresis model to describe the 

inelastic restoring force in the dynamic equation of motion, earthquake ground motion 

models and hysteresis models are reviewed. Chapter 2 concludes with a summary of past 

seismic structural response and reliability studies. Chapter 3 summarizes the reasons for 

choosing the numerical approach in modeling the probabilistic response of structural 

systems and details the development of the required numerical algorithms. 

Computational issues associated with time-history analysis, hysteresis modeling, 

earthquake generation and filtering, random number generation and solution of the 

structural dynamics eigenvalue problem are discussed. Chapter 4 outlines the basic 

framework ofthe software application that was developed, tentatively titled PSResponse, 
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along with a description of the structure of the user interface overlaying the 

computational framework. Following the description of the overall architecture of the 

software, each of the key features available to the user and the appearance of the user 

interface are illustrated with screen captures taken from each type of dynamic analysis. 

The screen captures are accompanied in most cases by an explanation of the required and 

optional user inputs. Chapter 5 summarizes the verification process that was carried out 

to establish the accuracy of the software and presents two case studies that were done to 

demonstrate the capabilities of the program as a research and analysis tool. Finally, 

Chapter 6 summarizes the development of PSResponse, summarizes the conclusions that 

were drawn from the case studies of Chapter 5 and discusses possible future 

developments for the software. 



Chapter 2 Literature Review 7 

CHAPTER 2 

L I T E R A T U R E R E V I E W 

2.1 I N T R O D U C T I O N 

The application of probabilistic methods in the field of structural dynamics has 

followed from the original engineering application of these methods in the aerospace 

industry for the study of random phenomena such as; engine noise related acoustic 

fatigue failure, fluctuating airframe stresses associated with wind gusts, and landing gear 

stresses (Lin 1967). Probabilistic methods and their underlying theory originated in the 

initial work of physicists on the theory of Brownian motion, which was developed in the 

early years of the 20th century. Since that time, researchers in the fields of physics, 

engineering and mathematics have expanded the theory and application of probabilistic 

methods into a vast field of its own that crosses back and forth over traditional discipline 

boundaries. 

Section 2.2 of this chapter summarizes the key research related to the 

mathematical modelling of probabilistic structural behaviour that has been carried out 

over the past 50 years. A complete listing of all relevant research was not attempted due 

to the sheer volume of work that has been done on the subject. Rather, attention was 

focused on highlighting the work that most directly formed the background for further 

research in each area up to the present time. 

Sections 2.3 and 2.4 summarize the models that have been developed by 

researchers for the generation of artificial ground motion time-histories and 

representation of a non-linear, hysteretic restoring force in the dynamic equation of 

motion. These models are not included in Section 2.2 since they are not probabilistic 
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methods per se, instead they are a necessary component of the numerical methods 

detailed in Section 2.2. 

The final section of this chapter briefly reviews past seismic structural response 

and reliability studies that have utilized one or several of the mathematical modeling 

techniques summarized in Sections 2.2 - 2.4. 

2.2 MATHEMATICAL MODELLING OF STRUCTURAL BEHAVIOUR 

The unpredictable nature of earthquakes in their arrival time, magnitude, duration 

and frequency content means that the dynamic loading on a structure cannot be described 

by a deterministic function of time. Seismic loading can only be defined in a statistical 

sense, a so-called random excitation, and the resulting structural response to this loading 

is also a random function of time. The analysis of structural response to random 

vibration is termed stochastic dynamic analysis, or more commonly, random vibration 

analysis. 

In the event that seismic structural response stays within the linear-elastic range, 

as in the case of small earthquakes, the structural restoring force is easy to model and the 

response statistics or probability densities can be obtained by well-developed linear 

random vibration methods in the frequency domain. However, to study the performance 

of structures under severe ground motion, where inelastic response behaviour occurs as a 

result of plastic deformation of structural elements and connections, linear random 

vibration methods no longer apply and the changing nature of the structural restoring 

force needs to be taken into consideration. It is well known that when a structure 

becomes inelastic the restoring force becomes highly non-linear and hysteretic whereby 

it depends on the prior history of motion of the system and whether the deformation is 

increasing or decreasing. In addition, the restoring force may deteriorate in strength or 

stiffness, or both, as the random vibration progresses. With this reality in mind, the 

modeling of the restoring force and the subsequent response analysis of an inelastic 
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structure to random vibration is a difficult problem for which very few exact solutions, in 

the probabilistic sense, exist. 

The various analytical and numerical methods that have been developed to predict 

the response of non-linear systems under stochastic dynamic loading are reviewed in the 

following sections. The merits and limitations of each method are included for the 

purpose of identifying which one may best suit the modeling of civil engineering 

structures. 

2.2.1 Analytical Methods 

Analytical procedures are all termed random vibration methods. As in the case of 

linear elastic systems, the analysis is carried out in the frequency domain, which, at least 

in principle, yields the complete response statistics to a random loading. 

2.2.1.1 Markov Methods Based on the Fokker-PIanck-Kolmogorov Equation 

2.2.1.1.1 General Random Vibration Theory and Markov Process Theory 

A Markov stochastic process is termed a one-step-memory random process since 

it has the property that its present state is only dependent on its immediate past state (Lin 

1967). For a discrete random process X(t), this property is expressed in the following 

relationship between the conditional probability functions: 

p(x„, t„\x„-i, tn-ll X2, t2i Xj, ti) = p(xn, t„\xn.j, t„-i)t„>t„-l> t2>ti [1] 

The conditional probability function appearing on the right-hand side of [1] is called the 

transition probability function ofthe Markov process X(t). A discrete Markov process, 

usually called a Markov chain, is completely defined by its first probability function p(x/, 

t/) and the transition probability function. If the initial state of a Markov process is 

known, p(Xo = xo) - 1, which is a common situation in many practical applications, the 

process is then completely characterized by its transition probability. 
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In the case of structural dynamics, where random processes are continuously 

valued, the transition probability function is called the transition probability density and 

analogous to the discrete case, a continuous Markov process, which is sometimes called a 

diffusion process, is specified in any one of three equivalent ways: 

1. by the first probability density p(xi, tj) and the transition probability density p(x2, 

t2\Xl, tj) 

2. by the second probability densityp(x/, tp, X2, t2) = p(x/, t/) p(x2, t2\x\, t\) 

3. by the transition probability density if the initial value of the random process is 

known at least with probability 1. 

The transition probability density of a Markov process is governed by an integral 

equation that is given as follows. For an arbitrary continuous scalar random process, 

However, if X(t) is Markovian and the transition probability density is denoted by qx, Eq. 

[2] reduces to: 

Equation [3] is known as the Chapman-Kolmogorov-Smoluchowski equation for a one-

dimensional random process and it is readily extended to a vector random process. 

Solutions to this integral equation, whether scalar or vector-valued, are frequently 

obtained by solving an equivalent partial differential equation called the Fokker-Planck-

Kolmogorov (FPK) equation that describes the evolution of the transition probability 

density function. For a one-dimensional Markov process this equation is given by: 

p(xi, t2\xi, ti) = fp(x2, t2; x, t\xi, ti) dx 

= fp(x, t\xi, ti) p(x2, t2\x, t; x,, ti) dx [2] 

qx(x2, t2|xi, ti)= 1 qx(x, t|xh tj) qx(x2, t2|x, t) dx [3] 



Chapter 2 Literature Review 11 

- ^ + - ( ^ J - 1 ^ ( ^ J + i - ^ r ( Q j - - - ^ ( / J ^ ) + = 0 [4] 
dt x dxK x' 2\dx2K x ! 3\dx3K x ! 4! dx" V x 

where the coefficients A, B, C, D etc. are called the derivative moments, which give the 

rates of various moments of the increment in X(t) conditional on X(t) = x. The derivative 

moments can be written as: 

A = A(x,t) = lim — E[x{t + At)- X{t)\ X{t) = x] 
A<-0 A? 

B = B(x,t)= lim — E{x(t + At)-X(t)]2 \X(t) = x 
Ar->0 

C = C{x,t) = lim — E\x(t + At)- X{t)J \ X(t) = x) 
[5] 

A(->0 

D = D(x,t) = lun-^Elx(t + At)-X(t)]4 \ X(t) = x) 

The FPK equation for the transition probability density of a Markov vector 

random process is identical except that each scalar transition probability density qx is 

replaced by the vector transition probability density qfxj with the number of dimensions 

equal to the number of state variables in the underlying stochastic process. The FPK 

equation is also known as the Kolmogorov forward equation where the adjective 

'forward' refers to the fact that the time derivative in the equation is a derivative with 

respect to the later time. There is a corresponding Kolmogorov backward equation, 

which is the adjoint of the forward equation, where the time derivative is with respect to 

the earlier time. 

It has been shown (Lin 1967) that the response vector of a non-linear system, 

whether single degree of freedom or multi-degree of freedom, under the excitation of a 

shot-noise or a filtered shot-noise is a Markov vector process. A shot-noise S(t) is a 

random process in which the mean and auto-covariance functions are given by: 
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Ms(t) = E[s{t)]=0 

>^fe>0=^fe) 

*SS fe ,t2)=*2 [S(*X I S(t2 )] = £ M , )- M s fe )\S(t2 ) - fls fe )]} 

KSS fe, f 2 ) = Rss fe, r 2) - fe )ps fe) 
* K ( f p r 2 ) = £[s(r)s(f + r)] 

[6] 

where K2 is the second cumulant function, which is equivalent to the second central 
moment function, Rss is the auto-correlation function which in the case of a zero mean 
process such as a shot-noise is equivalent to the auto-covariance function, I(t) is the 
intensity function of the shot-noise and 6(x) is the Dirac delta function. In the case of a 
weakly stationary shot-noise, which by definition has a mean function that is 
independent of time and a correlation function that is dependent only on the time 
difference r = ti - t2, the intensity function is time invariant and therefore constant which 
results in the auto-correlation function being an impulse at time t - 1. The spectral 
density of the weakly stationary shot-noise, which by the well-known Wiener-
Khintchine theorem is the Fourier transform of the auto-correlation function RSS(T), is 
then given by: 

Therefore, the spectral density is constant. A weakly stationary random process with a 
constant spectral density is called a white-noise. The physical interpretation of a 
constant spectral density is that the energy content in the random process is uniformly 
distributed over the entire frequency range. The mean-square value of a random process, 
which is a measure of the average energy content, is given by: 

[7] 
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E\x2(t)\=x2 =lim- \x2dt = R 
0 

also 

R-xx (T) = 2 faxx {a>)cos(o)r)dco 
[8] 0 

CO 

Rxx(0) = 2\<!>xx(a))da> 
0 

and 

a2 =x2-(xj 

Therefore, the mean-square value of a white-noise, which is the area under the spectral 

density curve Oxx(o), is equivalent to the variance of the zero mean process and is 

unbounded. Since a physically realizable random process cannot have an infinite average 

energy the white-noise process is a mathematical idealization. Similarly, non-stationary 

shot-noise and filtered shot-noise, which is shot-noise passed through an appropriate 

linear filter, are also mathematical idealizations and, strictly speaking, physically 

impossible. However, response analysis in which the excitation is modeled as non-

stationary shot-noise, filtered shot-noise or white-noise, leading to a Markovian 

response vector {Z, Z}, which represents the random displacement Z(t) and random 

velocity Z(t) of each degree of freedom, can give meaningful results. 

To determine whether or not the mean-square output of a system computed by 

approximating an actual excitation spectral density by a white-noise spectral density is a 

good approximation to the actual mean-square output, a single-degree-of-freedom linear 

structure will be considered. Classical linear random vibration theory states: 

SY (a>) = H{CO)H'{CO)-Sx (CO) = \H(af • SX {a) [9] 

where Sy(a>) is the output spectral density, Sx(co) is the input spectral density and \H(a>)\2 

is the system transfer function or transmittancy function or frequency response function. 

In the case of an SDOF system, the system transfer function is given by: 
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l"M2 = 
m2 ( 2 2 y , v ' [ 1 0 ] 

(ffl0 -co ) +{2£co0(o) 

For a white-noise input, where the spectral density is a constant = So, the mean-square 

output is then given by: 

E[Y2}= ]sAco]dco=\\H(cofsx{co)dcA^RYr{0) = - ^ T [11] 

Therefore, the mean-square output of a damped system (£, > 0) is finite even when the 

mean-square input is infinite as is the case for an ideal white-noise. Also, for a lightly 

damped system, which is applicable to most practical civil engineering structures, the 

transfer function is sharply peaked at the undamped natural frequency, ©o, of the 

structure and the system acts like a narrow-band filter. Therefore, the major contribution 

to the integral in Eq. [11] is obtained in the vicinity of the natural frequency of the 

structure and the value of the input spectral density, Sx(co), outside that vicinity is 

unimportant. Assuming the spectral density of the actual excitation is slowly varying in 

the vicinity of the structure's natural frequency, it may be reasonably approximated by a 

white-noise spectral density (see Fig. 2.1). 

System Response 
Actual Excitation 
White Noise 

Frequency 

Figure 2.1: System Response and White Noise Approximation 
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For the assumption of a non-stationary shot noise as an approximation to the 

actual excitation it is not possible to state in mathematical terms the conditions under 

which the approximation is acceptable, as was done in the case of the white-noise 

idealization. The case of a non-stationary shot-noise, however, is relevant particularly in 

seismic response analysis since earthquake ground motions are non-stationary random 

processes. The non-stationary nature of earthquakes is clearly evident in a typical 

acceleration-time record, which shows a general trend of first increasing and then 

decreasing in intensity with time. Also, the correlation in the ground motion for two time 

instants, say, one second apart is clearly not constant throughout the record. A stationary 

process by definition has an auto-correlation function which is constant for a given time 

separation x. If the non-stationary shot-noise excitation is modeled as a sequence of 

random impulses with independent arrival times (i.e. Poisson distributed with a non 

stationary arrival rate) and independent amplitudes, then the characteristics of the 

structure determine whether it will respond in the same manner to the random impulses as 

under a real earthquake. The effect would be approximately the same if the average time 

spacing between independent impulses substituting for the actual earthquake record were 

'short' as sensed by the structure. The response of a single-degree-of-freedom structure 

to an impulse has the form of damped free vibration, so a useful measure of the 

'shortness' of the average time spacing between independent impulses is to compare that 

spacing with the damped natural period of vibration ofthe structure. The assumption that 

a real earthquake can be modeled as non-stationary shot noise will be valid if the damped 

natural period is, say, an order of magnitude longer than the average time spacing 

between impulses. 

When the damped natural period of a structure is not much longer than the time 

separation for which the earthquake record is essentially uncorrelated, a model more 

general than non-stationary shot-noise is required to model the earthquake ground 

motion. In this case, however, the response of the structure to the excitation is no longer 

a Markov vector process. With this understanding, the superposition of random pulses 

with an assumed pulse shape and independent arrival times and amplitudes can be used in 

this situation and the general theory of random pulses can then be applied. It should be 
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noted that shot-noise is simply a special case of the superposition of random pulses in 

which the pulse shape is given by the impulse function 5(t - x). More detail regarding the 

modeling of earthquake ground motions using random pulses is given in Section 2.3. 

Using random pulse theory, the variance function of a random pulse train with a sine-

wave pulse shape is shown to increase with time to a maximum and then decrease with 

time to zero. This shows that the average energy in the simulated excitation increases 

and then decreases with time in the same manner as a typical earthquake record. From 

this evidence it is concluded that random pulse trains can be used to model earthquakes in 

the event that non-stationary shot-noise is not a suitable model due to the short damped 

natural period of a given structure. In this case, however, the response of the structure is 

no longer Markovian. 

Given that an actual excitation can reasonably be modeled as a shot-noise, either 

stationary or non-stationary, the response of a non-linear system is a Markov vector 

process, as was noted previously. In the case of a single degree of freedom non-linear 

system, the governing differential equation is given by: 

where g is a non-linear function of the displacement Z and velocity Z. Let Z = Yj and Z 

= Y2, the differential equation of motion is then equivalent to two first-order equations 

given by: 

where the shot-noise S(t) has replaced F(t). If S(t) is Gaussian, then the FPK equation 

governing the transition probability density q{Y}(Y, t|Yo, to) is given by: 

[12] 

Y]=Y2 

Y2=-g(Y„Y2)+S{t) 
[13] 

= 0 [14] 
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where I(t) is the intensity function of the shot-noise. A Gaussian or normal process is a 

random process whose probability distribution is completely defined by its mean 

function, px(t), and its covariance function, KXx(t). Equivalently, a Gaussian random 

process may be defined as one in which the cumulant functions higher than second order 

are equal to zero. With this property, a weakly stationary Gaussian process is also 

strongly stationary since all moments higher than second order are zero. The assumption 

of a Gaussian random process is frequently used in random vibration analysis since many 

real phenomena can be satisfactorily modeled using that assumption. This is a 

consequence of the Central Limit Theorem, which states that when a random process is 

the sum of a large number of independent random processes, it approaches a normal 

process, regardless of the distribution of the individual constituents, as the number of 

independent constituents increases without limit. In the case of a shot-noise, the process 

tends to a Gaussian distribution as the arrival rate of the impulses tends to infinity. 

Unfortunately, even with the assumption of a Gaussian process, which is further limited 

to the assumption of a white-noise process, no exact solution has been found for the FPK 

equation, Eq. [14]. 

2.2.1.1.2 Solution Methods for the Fokker-Planck-Kolmogorov Equation 

A number of solution techniques have been developed to approximate the 

transition probability density function in the FPK equation. The assumption of a 

stationary response, in which the first term in the equation is neglected, was initially used 

(Caughey 1963) to develop an analytical solution for the joint probability density 

between the stationary displacement and velocity of a single-degree-of-freedom system. 

However, this method relied on a non-hysteretic assumption for the non-linear stiffness 

function and the stationary assumption was too restrictive in scope for short-term 

transient processes. For this reason, a number of more general numerical methods were 

developed to solve the FPK equation, some of which are briefly summarized below. 
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2.2.1.1.2.1 Galerkin Based Methods 

The Galerkin method is one of the weighted residual methods that are used for 

approximating the solution to a differential equation governing the behaviour of a 

continuous system (Bathe 1996). The Galerkin method uses trial functions that are 

identical with the weighting functions and the integral of the product of the weighting 

functions and the residual is set to zero to determine the coefficients for each trial 

function. Stratonovitch (1964) and Atkinson (1973) used eigenfunctions of the FPK 

equation of a linear system as trial functions while Bhandari and Sherrer (1968) used 

Hermite polynomials as trial functions to represent the transition probability density 

function under a white-noise excitation. In each case the solution assumed a stationary 

response for a weakly non-linear one or two-degree-of-freedom system, for which the 

associated FPK equation is of two and four dimensions respectively. Wen (1975) 

extended these results using Hermite polynomial trial functions to include the transient 

response using a filtered Gaussian shot-noise to take the non-stationarity and spectral 

content ofthe excitation into consideration. Later Wen (1976) extended his results to 

hysteretic systems using a smooth differential equation model for hysteresis first 

proposed by Bouc (1963) that was compatible with the Markov-Galerkin formulation of 

the FPK equation (see Sec. 2.4). 

The disadvantage of the Galerkin based approach is the low rate of convergence 

for highly non-linear systems and the complexity of the integrals involved in cases where 

the non-linearities do not take the form of polynomials. To improve the convergence 

rate for this type of solution of the FPK equation, Soize (1988) proposed a method that 

allowed for the steady-state solution of systems of higher order, say, 10 to 20. 

2.2.1.1.2.2 Finite Element Method 

The Finite Element Method can be regarded as an extension of the classical 

weighted residual methods. Using a Finite Element solution method for the stationary 

FPK equation, Langley (1985) and Langtangen (1991) integrated the weighted residual 
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statement for the problem to produce the weak form of the FPK equations and then chose 

weighting (or shape) functions defined for finite regions (or elements) of the problem 

domain. In this way, a set of linear equations was constructed in which the unknowns are 

the values of the joint probability density function at a number of points (or nodes) in the 

domain. These equations are then solved by standard matrix methods to yield the 

stationary transition probability density function of the response process. 

Spencer and Bergman (1985) developed a Finite Element algorithm to solve the 

FPK equation for smooth hysteretic stationary systems and then later applied the 

algorithm to the transient FPK equation and obtained a solution for the evolution of the 

transition probability density function for two classical non-linear second order 

oscillators, the Duffing Oscillator and the Van der Pol Oscillator, subjected to an additive 

white-noise excitation (Bergman and Spencer 1991). An external excitation, which in 

general is represented by g(Z, Z) -F(t), is characterized as additive if the accompanying 

coefficient g(Z, Z) is just a constant, whereas a multiplicative excitation is displacement 

and/or velocity dependent resulting in a non-constant coefficient g(Z, Z). 

The drawback of the Finite Element solution method is that in practice it is 

limited to single-degree-of-freedom systems due to the high computational effort 

required for systems of higher than two dimensions. Also, as with all FPK equation 

based solution methods, the excitation is assumed to be a stationary Gaussian process (i.e. 

white-noise). 

2.2.1.1.2.3 Closure Techniques 

The problem of closure arises frequently when analyzing the response of a non­

linear system to random excitation. The differential equations that describe certain 

moments of the non-stationary response contain higher moments and when additional 

equations for the higher moments are derived they contain even higher moments. A 

closure technique refers to a procedure by which the infinite hierarchy of differential 

equations governing the statistical moments of a random vibration response process is 
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truncated at some order. The higher order terms in the remaining lower order moments 

are then expressed in terms of the lower order moments. In the case of a stationary 

response, the differential equations reduce to a set of algebraic equations. 

The derivation of the infinite hierarchy of differential equations for moments or 

cumulants of the response process utilizes the FPK equation in terms of the Ito type 

equation. Ito (1951) showed that a Markov diffusion process X(t) is governed by a 

stochastic differential equation given by: 

where p and a are the drift and diffusion coefficients of the process and W(t) is a unit 

Wiener process describing Brownian motion, which is a Gaussian random unit (a = 1) 

process with stationary independent increments and is therefore a Markov process. 

Equation [15] describes the motion of a mechanical system under random (white-noise) 

excitation and leads directly to the FPK equation through the use of the time derivative of 

the moment generating function of the response process X(t) (Solnes 1997). The 

associated infinite hierarchy of differential equations governing the statistical cumulants 

ofX(t), are given by (Wu 1987): 

dX(t)= ju(x,t)dt + cr(x,t)dW(t) [15] 

= 2E[(x - Kx )ju(x, t)] + E[CT2 (X, t)] 

= 3E[ju(x,t)[{x - K 2 ) 2 - K2\+ 3E[(x - AT, > 7 2 (x,t)] 

dK4(t) _ 

[16] 

dt 

As stated previously, in the case of a stationary response, dicnldt = 0, and Eqs. [16] 

reduces to a set of algebraic equations. 
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The simplest closure scheme for solving Eq. [16] is Gaussian Closure in which 

the expressions of the order > 2 are expressed in terms of the first two cumulants and then 

the first two equations are solved. Iyengar (1978) used Gaussian Closure to study the 

response of a hysteretic system with a smooth restoring force. To improve this closure 

scheme, non-Gaussian properties have been considered either in terms of approximating 

the unknown probability density with a truncated Gram-Charlier or Edgeworth series 

(Crandall 1980), which are general purpose probability distributions, or by including 

addition cumulants of higher order than 2 (Wu and Lin 1984). Suzuki and Minai (1987) 

utilized a non-Gaussian closure technique to thoroughly analyze the response 

characteristics of inelastic systems including displacement, velocity, maximum response, 

cumulative plastic deformation and low cycle fatigue damage factor. Their procedure 

used a series expansion of the joint probability density function of the response state 

vector in terms of a product of normal gamma density and orthogonal polynomials. The 

state vector included specified quantities concerned with the white-noise shaping filter 

for seismic excitation, the hysteretic structure and also with measures of structural 

damage. 

Although closure techniques apply to transient non-stationary response processes 

and also to systems with multiple degrees of freedom, the major shortcoming of this 

method is the significant increase in computational effort required for a modest increase 

in the number of degrees of freedom of the system as well as the restriction of the 

excitation to a white-noise process. 

2.2.1.1.2.4 Stochastic Averaging 

The principle of Stochastic Averaging is to simplify the equations describing 

slowly fluctuating response quantities by time-averaging the rapidly fluctuating response 

quantities. This principle is a non-trivial extension of the Krylov-Bogoliubov averaging 

method for deterministic excitations since it involves accounting for the averaged effect 

of a random excitation multiplied by a correlated response (Zhu 1988). Stochastic 

Averaging Methods in random vibration analysis can be viewed as a combination of this 
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Stochastic Averaging principle and the FPK equation method. By averaging certain 

response quantities, the FPK equation is simplified or even reduced in dimension, which 

reduces the difficulties in solving it. 

There are three methods of Stochastic Averaging, namely, the Standard Stochastic 

Averaging Method, the averaging method of coefficients in the FPK equation, and the 

Generalized Stochastic Averaging Method. The standard method was developed first by 

Stratonovitch (1964) and it applies to narrow-band responses, which are represented as 

sinusoidal oscillations with slowly varying amplitude and phase. Approximate equations 

for the slowly varying quantities are obtained by time-averaging the rapid fluctuations. 

In the second method, developed by Khasminskii (1963), the drift and diffusion 

coefficients in the FPK equation are averaged with respect to time. In the third method, 

also developed by Stratonovitch (1964) and alternatively known as the Stochastic 

Averaging Method of the energy envelope, the response variables are divided into rapidly 

varying quantities and slowly varying quantities and approximate equations for the latter 

are obtained by averaging the rapid fluctuations of the former. For a single-degree-of-

freedom system the rapidly varying quantity is the displacement and the slowly varying 

quantity is the energy envelope. 

The application of the Stochastic Averaging Methods, which were first developed 

to analyze non-linear phenomena in radio engineering, to mechanical and structural 

systems began in the late 1970's for predicting the response, deciding the stability and 

estimating the reliability of non-linear systems subject to random external and parametric 

excitation. A parametrically excited system is one in which the effective stiffness and/or 

damping parameters are forced to vary with time. The most important property of such 

systems is that for periodic parametric excitation there are ranges of excitation amplitude 

and frequency for which the response remains bounded (stable) and ranges for which the 

response grows without limit (unstable). This type of excitation, however, is not relevant 

to the analysis of civil engineering structures and will not be considered further. In the 

case of externally excited structures, the central idea of the Stochastic Averaging 

Methods is that if the typical structural response time is much longer than the excitation 
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correlation time, the excitation in effect acts as independent pulses and the response of 

the system can be described in terms of a scalar quantity, usually the energy content of 

the system, which is approximately a one-dimensional Markov process. Therefore, the 

dimension of the problem is greatly reduced and the solution of the FPK equations 

becomes much simpler. For a single-degree-of-freedom narrow-band (lightly damped) 

structural system subjected to a wide-band excitation, the Standard Stochastic Averaging 

Method may be used to transform the state vector {Z, Z} to a pair of slowly varying 

processes expressed in terms of the amplitude a(t) and phase angle (p(t) as follows: 

Z{t) = a(t)cos(cot+ <p(a,t)) 

Z(t) = -coa(t)sm(cot + (p(a,t)) 

By time-averaging over the period of oscillation the phase angle cp can be eliminated i.e. 

uncoupled from the FPK equation, which results in a(t) being a one dimensional Markov 

process. Therefore, as stated previously, the dimension of the problem is reduced and the 

solution of the FPK equation becomes much simpler. 

Iwan and Lutes (1968) applied Stochastic Averaging Methods to non-linear 

systems with bilinear hysteresis and showed that it gives inaccurate results for systems 

with large non-linearities. However, it was later shown that the Krylov-Bogoliubov 

technique, which forms the basis of the Stochastic Averaging Method, may seriously 

overestimate the energy dissipation capacity of elasto-plastic or nearly elasto-plastic 

systems (Wen 1980). This results in a large underestimation of the root-mean-square 

(RMS) response of the system in a certain response range. Later, Roberts (1978) came to 

the conclusion that Stochastic Averaging was applicable to an oscillator with a bilinear 

restoring force-displacement characteristic. Extending that work, Roberts and Spanos 

(1986) applied Stochastic Averaging Methods to smooth hysteretic systems and obtained 

good results for narrow-band systems. Cai and Lin (1988) used a similar approach, 

which was applicable to either bilinear or smooth hysteretic systems, without the 

restriction that the response be a narrow-band process. In this approach, which was 

termed Equivalent Non-linearization, the original system that cannot be solved exactly is 
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replaced by a substitute non-linear system for which an exact solution is known. To find 

the best non-linear approximation, the mean-square error is minimized. The application 

of this procedure is quite restricted since exact analytical solutions exist only for a very 

limited class of problems, most of which are not applicable to practical engineering cases. 

Further developments in applying averaging techniques to randomly excited 

systems have been given by several authors using both Stochastic Averaging and Quasi-

Conservative Averaging Methods. Quasi-conservative averaging was originally 

developed by Landa and Stratonovitch (1962) and Khasminskii (1964) in which the 

equation of motion of a system is replaced two first-order equations for energy and 

displacement. The original method, which was only applicable under Gaussian white-

noise, was extended by Roberts (1982) and others to include non-white additive 

excitation and then further extended by Cai (1995) using Roberts' scheme to include 

multiplicative excitations. Lin and Cai (2000) recently addressed the problem of 

multiple-degree-of-freedom systems with both high and low damping modes, and/or 

strongly non-linear stiffness under non-white stochastic additive and multiplicative 

excitation. 

2.2.1.1.2.5 Numerical Diffusion Techniques 

Numerical Diffusion Techniques, also known as Cell Mapping Methods, were 

developed from the theory of point-to-point mapping of dynamic systems attributed to 

Poincare in the 19th century. For a dynamic system governed by: 

z(t) = F(t,z{t)) [ 1 8 ] 

where z is a real-valued ^-dimensional vector and F is a real-valued vector function that 

is explicitly periodic in t, the governing equation may be integrated over one period to 

relate the state of the system at the end of one period to the state at the end of the next 

period. Viewed in this manner, the governing equation for the system takes on the form: 
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z(n + l)=G(z(n)) [19] 

in which a point z(n) in the state space, or phase plane {Z, Z), is mapped by G after one 

period into a point z(n+l). Such a point-to-point mapping dynamic system is called a 

point map or a Poincare map in the mathematical literature. A Poincare map is a 

mathematical idealization of the dynamic system since, considering physical limitations 

on measurement accuracy and the inherent round-off error in numerical evaluation, there 

is a limit beyond which two values of a state variable cannot be differentiated and 

therefore must be treated as the same. For this reason the state variables must be treated 

as having discrete values which leads to the idea of considering the state space not as a 

continuum of points but rather as a collection of very small intervals or cells. The theory 

of point-to-point mapping then becomes one of cell-to-cell mapping, which can be used 

to study the global behaviour of real non-linear dynamic systems governed by ordinary 

differential equations. Cell Mapping Methods, in the context of analyzing dynamic 

systems through discretization, may be viewed as discretizing the dependent state 

variables, whereas classical stepwise time integration is a procedure to discretize the 

independent time variable and Finite Element analysis is a procedure to discretize the 

independent spatial variables. 

Hsu (1980) and Hsu and Guttalu (1980) developed an algorithm for analyzing the 

behaviour of non-linear dynamic systems using cell-to-cell mapping, which was termed 

simple cell mapping, since each cell could only be mapped to one other cell, called an 

image cell, during each iteration of the algorithm. This work was later extended to a 

generalized cell mapping (GCM) algorithm (Hsu 1981, Hsu et al. 1982) which allowed 

for the mapping of a cell to multiple image cells, each image cell possessing a fraction of 

the total probability of occurrence. The probabilities Py of mapping cell i to cell j in one 

mapping step are contained in a transition probability matrix P, which completely 

controls the evolution process of the dynamic system. Using the theory of discrete 

Markov chains and knowing the initial state ofthe dynamic system, the probability ofthe 

system being in a given future state (cell) after n mapping steps is completely determined. 
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This can be shown by using the discrete form of the Chapman-Kolmogorov-

Smoluchowski equation, Eq. [3], which is given by: 

PU"=ZZPH-KJ 0<m<n ? [20] 
k 

where the «-step transition probability P"^ is defined as the probability of being in cell k 

after n steps starting from cell j. Given in the form of function mapping, Eq. [20] is re­

written as: 

Pi(n)=fjPijPj(n-l),^n = l,2... [21] 
7=1 

where Pi(n) represents the probability of the system being in the rth cell at time nx and Py 

the probability of the system being in the rth cell at time x when the system is initially in 

the y'th cell with probability one. Unfortunately, for non-linear stochastic systems, the 

one-step transition probability matrix Py involving all i's and fs is rarely available and 

simulation methods are normally required to determine the conditional probability 

density function of the response process. Hsu and Chiu (1986) used Monte Carlo 

simulation to construct a histogram estimator of Py by generating a large number of 

sample trajectories of time duration T out of each cell in the phase plane. However, when 

a large number of cells are used and a large number of sample trajectories are simulated 

out of each cell, the Monte Carlo method becomes quite computationally intensive. To 

avoid the time-consuming simulation of Py, Sun and Hsu (1990) proposed a Gaussian 

approximation for the conditional probability density function of moving from y'th cell to 

the rth cell when the time x is sufficiently small. This Gaussian approximation was 

allowed to vary in shape with the initial starting point (cell j) to properly capture the 

global non-linear system behaviour. 

The Generalized Cell Mapping Method is widely applicable to many types of 

systems that are either weakly or strongly non-linear and either lightly or heavily 
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damped. It can provide both transient and steady-state solutions of system response and 

may even be applied to stochastic systems which don't necessarily admit the FPK 

equation. The restriction on the GCM method is the assumption of a discrete Markov 

chain of mapping steps, which is based on the system excitation being a white-noise 

process. Also, the applicability of GCM to degrading hysteretic systems is not known. 

2.2.1.1.3 First-Passage Problem Solution Methods 

For structural reliability calculations the probability distribution of the time to 

first-passage (exit) of a safe domain for the response process is of considerable interest. 

This type of problem is commonly referred to as a. first-passage problem. There are 

three different types of safe domains that are commonly used to characterize the first-

passage problem (see Fig. 2.2). In the first case, the safe domain is characterized by a 

single barrier or threshold level z = b, called a type-B barrier, which is typically 

described quantitatively in terms of the RMS response level. The second case is similar 

to the first except that the safe domain is characterized by the double barrier z = ±b, 

called a type-D barrier. In the third case, a passage level.for the envelope process A(t) 

rather than the process Z(t) itself is considered. An envelope-passage level is called a 

type-E barrier. 

For a damped dynamic system subject to random excitation an exact solution to 

the first-passage problem remains to be found for any of the barrier types and 

approximate solution methods must be used. There are two analytical solution strategies 

that are used to obtain approximate statistics for the time to first-passage. The first 

strategy relies on the special nature of independent random events with exponential 

distributions while the second strategy employs Markov theory and does not require the 

assumption of independent events. 
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Figure 2.2: First-Passage Time and Domain Barriers in the Phase Plane 

2.2.1.1.3.1 Assumption of Independent Events 

The assumption of independent events leads to various expressions for the first 

crossing density, p\{T), which is the density function describing the probability that the 

response process surpasses a given threshold for the first time (since t = 0) during the 

interval T < t < T + dT. The form of each expression, assuming a reasonably high 

threshold, is given by (Crandall 1970): 

Pi{T) = ae-aT [22] 

where a is called the limiting decay rate of the first crossing density, which depends on 

which type of event is assumed to occur independently. The possible choices are; 

independent threshold crossings, independent peaks, independent envelope crossings, and 

independent envelope peaks. 
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The simplest approximation to the first crossing density is obtained by assuming 

independent threshold crossings of type-B or type-D barriers. This is equivalent to 

assuming that the arrival of failures (i.e. threshold crossings) is rare enough that they can 

be considered independent events. In this case, the number of failures n within the time 

interval [0, t] is a Poisson process, which is described by: 

PM=M^- [ 2 3 ] 

where v is the mean threshold crossing rate. The mean crossing rate for a type-D barrier 

is simply twice the mean crossing rate for a type-B barrier. The probability of no failures 

{n = 0) in the time interval [0,t] is given by: 

P[0,t]=e-v' [24] 

The probability of failure in the time interval [0,t] is then given by: 

PF[0,t] = l-P[0,t] = l-e-" [25] 

This result may be interpreted as the probability that the first-passage time is equal to or 

less than t, which is the cumulative distribution function (CDF) of T. The first crossing 

density then follows from differentiation of Eq. [25]: 

P ,(r) = u f w [26] 

Equation [26] can be used to compute the statistical properties of the first-passage time 

T. In particular, the mean and variance of the time until first crossing are given by: 
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co 1 
E[T]= J(p,(0* 

v o 

[27] 

*>(Th\(t-E[TfPl(t)dt 
o 

The threshold crossing rate v is determined from the well known Rice's formula, which 

for a type-B barrier, is given by: 

where z = b is the threshold level and fzz is the joint density function of z and z. When 

information about threshold crossings only from below (v+) is required, termed the 

upcrossing rate, the lower limit of integration in Eq. [28] is changed to zero and v + = '/2 

v. Again, for a type-D barrier the threshold crossing rate and upcrossing rate is simply 

twice that for a type-B barrier. 

In the special case of a stationary Gaussian process with zero mean, the upcrossing rate of 

threshold z = b is given by: 

[28] 

+ 1 uz v = -exp -
2n o-z y 

[29] 

When the threshold b is zero, the problem is known as the zero-crossing problem, which 

counts the number of loading cycles. For a stationary normal zero mean process, the 

expected of rate of zero crossings from below is given by: 
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The assumption of independence of threshold crossings is not well suited to 

narrow-band processes such as the response of lightly damped dynamic systems. Once a 

sample function of a narrow-band random process crosses a given threshold level b or \b\, 

the probability is high that the following excursion will produce another crossing. 

T̂herefore, for every threshold crossing of an envelope A(t), there may be several 

threshold crossings of the narrow-band process Z(t), which is enclosed by the envelope, 

and consequently, independence of the narrow-band crossings is lost. This phenomenon 

is referred to as clumping. The importance of taking clumping into consideration is 

measured by the average clump size for which expressions have been derived by Lyon 

(1961) and Racicot (1969). 

With the clumping phenomenon present, an improved estimate for the first 

crossing density of a narrow-band random process can be obtained by considering the 

envelope A(t) and assuming that the envelope crossings of the type-E barrier are 

independent (Lin 1967). When there are many excursions in each clump, the time of an 

envelope threshold crossing, which must precede the first crossing in each clump, is 

nearly the same as the time ofthe first crossing ofthe clump. For this reason there is 

little difference between the results for type-D and type-E barriers. Using the expected 

rate of threshold crossings of the envelope process, expressions analogous to Eq. [26] and 

Eqs. [27] are obtained for first crossing density and first-passage time T of the envelope 

process. For a stationary Gaussian random process, the expected type-E barrier 

upcrossing rate ofthe envelope process is given by: 

bo ( b + [31] exp|̂ -
J 

where 
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cr2 =cr z

2 = J O Z Z (co)dco 

[32] 

OZZ(OJ) is the spectral density and com is a representative mid-band frequency of the 

narrow-band random response process (i.e. natural frequency). 

Apart from the time to first-passage, the probability distribution of the peaks of 

the random process is also of interest. A peak value in a sample function z(t) of a 

continuously valued random process Z(t), which is also continuous with respect to time, 

occurs when z(t) = 0. Therefore, analysis of the peak distribution is a zero-crossing 

problem of the first derivative z(t). For a stationary zero mean Gaussian process, the 

probability density of the peaks is given by: 

/ x V l - a 2 j 
Pp\a) = — ^ e x P v 

Oz yflTT [ [2(7Z
2 (l - a) 

ba 
2<r, 

l + erf 

V a 

exp 
2(7 z ) 

[33] 

For a narrow-band random process, a = 1 and the probability density for the peak 

magnitude reduces to: 

Pp(b) = — F e x P 
v 2 o V j 

[34] 

Equation [34] represents the Rayleigh distribution, which is a special case of the Extreme 

Value Type III distribution known as the Weibull distribution. This same result for a 

narrow-band process is obtained by considering that the proportion of cycles for which Z 
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> b is simply v /v 0 , where v is the upcrossing rate given by Eq. [29] and v 0 is the rate 

at which cycles occur given by Eq. [30]. The ratio is equivalent to 1 - FP(b) and 

therefore by differentiation p?(b) in Eq. [34] is obtained. 

2.2.1.1.3.2 Markov Process Theory 

Under the assumption of a Markov response process a number of researchers have 

proposed approximate solutions to the first-passage problem. Among these, for a 

discrete random process, the random walk model (Toland and Yang 1971) is well known. 

For the continuous case, first-passage problem solutions are based on the FPK equation 

governing the evolution of the transition probability density function in the phase plane. 

For first-passage problems, the transition probability density function, which describes 

the instantaneous joint distribution of z and z over the phase plane, is called the 

probability mass. This term is derived from visualizing the joint distribution as a 

distribution of mass over the phase plane. During the evolution of a random process 

beginning at t = 0, the probability mass spreads out from the initial starting distribution 

and its centre advances along a clockwise spiral trajectory in the phase plane. The rate at 

which probability mass crosses an absorbing boundary (type-B, type-D or type-E) and is 

lost defines the first-passage probability density. 

There are two approaches for determining the rate of loss of probability mass, one 

is based on the Numerical Diffusion Technique (Sec. 2.2.1.1.2.5) and the other uses the 

Finite Element Method (Sec. 2.2.1.1.2.2). The application of Numerical Diffusion to the 

first-passage problem was pioneered by Crandall et al. (1966) and later extended by Sun 

and Hsu (1988) using their Generalized Cell Mapping Algorithm. The Finite Element 

solution of the first-passage problem was initially developed using a Petrov-Galerkin 

method to solve the backward Kolmogorov equation, which is the formal adjoint of the 

forward Kolmogorov equation or FPK equation (Bergman and Spencer 1983, Spencer 

1986). A solution for the first-passage problem was later developed directly from the 

solution of the FPK equation using a Bubnov-Galerkin method (Spencer and Bergman 

1991). 
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Results from the Numerical Diffusion and Finite Element studies of the first-

passage problem indicate that the general form of the first-crossing density given by Eq. 

[22], which is based on the assumption of independent events, is valid for both linear and 

non-linear systems. 

2.2.1.2 Perturbation Method 

This method may be applied to any continuous or discrete multiple-degree-of-

freedom system having small non-linearities such that the governing equations of the 

system may be expressed in a solvable linear form. Specifically, the solution to a non­

linear set of equations is expanded in terms of a small scaling parameter e that 

characterizes the magnitude of the non-linear terms involved. Perturbation theory has 

been used for deterministic vibration analysis for many years and was generalized to the 

case of stochastic excitation, in particular non-linear systems, by Crandall (1963). 

In the case of a single-degree-of-freedom system having small non-linearities r\, 

the equation of motion may be written as: 

z + ]d + a>0z + sr/(z,z) = F(t) [35] 

where y, ©o, and s are constants and s « 1. If the perturbations are of the order s or 

smaller then the response may be written as a power series in s as follows: 

z(t)= z0{t)+ezx{t) + e2 z2(t)+ • • • [36] 

Taking derivatives of the above series expansion, the resulting expressions for z, z and z 

may be substituted into the equation of motion of the non-linear system, Eq. [35]. 

Equating terms of the same order in e results in a set of linear equations of motion for zo, 

zi, z2 One could write as many equations as desired for higher orders of 8. Clearly, 
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the accuracy of the power series expansion of the response depends on the number of 

terms retained in the series. However, the mathematical problems and uncertain 

convergence criteria associated with finding solutions including higher than first-order 

terms are usually too complicated to be of practical use. Therefore, typically, the 

Perturbation Method is limited to first-order perturbation in which only terms of the 

order s are included. 

The solution for the displacement responses z0(t), zj(t), z2(t) , which are 

summed to yield the complete solution, are obtained with the use of the convolution 

integral, which gives the response of a linear dynamic system to a series of impulses. 

Infinitesimally short impulses are used to represent the arbitrarily varying force F(t) since 

the system response to a unit impulse is known and superposition may be used on the 

linearized system to determine the response to a series of impulses. Taking an example 

from Branstetter et al. (1988), if r\(z, z) - zz in Eq. [35], then the resulting linear 

equations for terms of order zero and one in s are: 

The solution for the first of Eqs. [37] is given by the convolution integral as follows: 

where h() is the impulse response function of the linear system. For a single-degree-of-

freedom system, the convolution integral, of course, specializes to Duhamel's integral. 

Knowing zo(t) from Eq. [38], the second of Eqs. [37] is solved using the following 

convolution: 

z0 + yza.+ co0z0 = F(t) 
z\ +yzx+ co0zx = -z0z0 

[37] 

[38] 
— CO 

00 

z,(r)= \h(t- r ) ( - z 0 ( r ) i 0 ( r ) ) / r [39] 
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In this way, as many terms as desired in the series expansion for z(t) may be evaluated, 

however, as stated previously, typically only first-order order terms in s are considered. 

If z(t) is stochastic, then the mean function and the auto-correlation function for 

the response of the example system are determined from the expected value of each 

convolution as follows (Lin 1967): 

E[z(t)] = E[Z0(t)] + ^[zAt)] 
co co 

E[z(t)] = \E[F(t)\i(t - r]dr - e $E[ZQ (r)z 0 (r)]ft(f -r]dr 

E[z(t + r)z(t)] = E[Z0 (t + T)Z0 (f)] + EE\ 

Rzz fe) = * z 0 z 0 fe) + ARz* fe)+ * z , z 0 fe). 
Z0(t + T)zAt)]+£E[Z0(t)Z}{t + T)] 

[40] 

Although the Perturbation Method is applicable to multiple-degree-of-freedom 

systems and is not confined to a white-noise assumption for the excitation, it is limited to 

weakly non-linear systems and as such is not applicable to ductile, hysteretic systems. 

2.2.1.3 Equivalent Linearization Method 

The method of Equivalent Linearization was originated in the 1930's for the 

treatment of non-linear systems under deterministic excitations. It was first extended to 

the case of random excitation independently by Botoon (1954) and Caughey (1960) and 

later generalized for multiple-degree-of-freedom systems by Iwan (1973). In this 

method, the stochastic equation governing a non-linear system is replaced by an 

'equivalent' linearized version which introduces a random error between the true non­

linear and linearized systems. This error is minimized, usually in a mean-square sense, 

by setting to zero the partial derivatives of the expected value of the squared error with 

respect to the coefficients appearing in the linearized equation. These partial derivatives 

define a set of equations, which are then solved for the required coefficients. 
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In the case of a single-degree-of-freedom stochastic system, the governing non­

linear differential equation is given by: 

z + h(z,z)=G(t) [41] 

Assuming the function h(z, z) containing non-linear terms related to the system damping 

and stiffness may be approximately written as the sum of two linear components, one 

pertaining to damping and the other to stiffness, the governing differential equation is 

linearized to: 

z + az + J3z = G(t) [42] 

The error introduced by the linearization is then the difference between the non-linear h 

function and the two linear components: 

e = h{z,z)-az-pz [43] 

This error is a random process and must be minimized for the best prediction of system 

response. The usual means of minimizing the error is to minimize the mean-square error, 

which is accomplished by requiring that: 

dp L J 

Substituting the error equation, Eq. [43], into the partial derivatives of Eqs. [44], the 

coefficients a and P which minimize s are given by (Lin 1967): 
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a = 
E[z2 ]ff [Z • h(z,z)]- E[ZZ]E[Z • h(z,z)] 

E[z2]E[z2]-(E[zzf 
[45] 

P = 
E[Z2]E[Z • h(z,z)]-E[ZZ]E[Z • h(z,z) 

E[z2]E[z2]-(E[zzf 

Note that Eqs. [45] are not explicit expressions for a and P since the expectations 

appearing on the right-hand sides depend on a and p. Evaluation of a and p is 

simplified if the excitation G(t) is assumed to be stationary and Gaussian with a zero 

expectation and the non-linearities in stiffness and damping are separable, i.e.: 

However, these conditions are not essential for determining a and (3. In general, the 

linearized system coefficients are functions of the unknown, usually non-Gaussian, 

response statistics and other statistics involving the restoring force. For this reason an 

iterative solution procedure is generally required to determine a and p. 

The first application of Equivalent Linearization techniques to hysteretic systems 

subjected to random excitation was given by Caughey (1960) who modelled a bilinear 

system using the Krylov-Bogoliubov (K-B) assumption of slowly varying parameters. 

However, similar to the results of Iwan and Lutes (1968), the K - B assumption may lead 

to serious underestimates in the RMS response of the system (see Sec. 2.2.1.1.2.4). To 

eliminate reliance on the K - B assumption, Wen (1980) and Baber and Wen (1981) 

incorporated Bouc's (1967) smooth hysteresis model, which models a hysteretic, 

deteriorating system with non-linear differential equations, to obtain a solution for the 

system linearization coefficients. Their solution for the response statistics of both 

stationary and non-stationary hysteretic degrading systems utilized a convenient 

procedure suggested by Atalik and Utku (1976) to estimate the linearization coefficients 

in multiple-degree-of-freedom systems. The modelling and solution procedure 

developed by Wen was later extended to systems under non-zero mean excitation (Baber 

h{z,z) = fXz) + f2(z) [46] 
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1984) and also to systems exhibiting pinching of the hysteresis loops (Baber and Noori 

1985) . With these improvements, the Equivalent Linearization Method utilizing the 

smooth hysteresis model has been successfully applied to response and damage 

prediction of a variety of structural systems under seismic excitation. 

The accuracy of the Equivalent Linearization Method, as measured against exact 

FPK solutions of certain systems and Monte Carlo simulation, is generally very good 

with an error of less than 20 percent considered representative (Branstetter et al. 1988). 

Furthermore, unlike most approximate analytical methods, the accuracy of Equivalent 

Linearization is relatively independent of the severity of the non-linearity, be it of 

geometric or material source. The error in mean-square response remains quite small 

even for large non-linearities (Roberts 1981). Caution is necessary, however, when the 

excitation spectral content is such that the power spectral density function vanishes 

rapidly as the frequency goes to zero. In this case, which is typical of earthquake 

excitation, the method tends to underestimate the displacement response. The error 

depends largely on the characteristics of the system restoring force and the excitation in 

the low frequency range. It is negligible when the power spectral density function is 

non-zero at zero frequency but for an earthquake excitation model with a power spectral 

density which goes to zero at zero frequency, the RMS response could be underestimated 

by 2 0 - 3 0 % (Wen 1989). 

In addition to the caution necessary when using Equivalent Linearization for 

seismic response analysis, it should be noted that the assumption of a Gaussian input 

results in an assumed Gaussian response of the linearized non-linear system. This 

assumption is not correct for a non-linear system, which is known to have a non-

Gaussian response to a Gaussian input. The result of an assumed Gaussian response is 

that it may significantly misrepresent the frequency of high response levels to extreme 

loads, which contribute most to first-passage and fatigue failures. Instead of assuming a 

Gaussian distribution for the response variables, the accuracy of the method may be 

improved by including higher order non-Gaussian effects. Full probability distributions 

have been estimated from non-linear response moments with Gram-Charlier and 
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Edgeworth series (Crandall 1980), however, these series can behave erratically yielding 

negative probability densities and crossing rates for significantly non-linear systems. To 

alleviate this problem, Winterstein (1988) proposed a Hermite moment model in which 

response moments (skewness, kurtosis etc.) are used to form non-Gaussian response 

contributions made orthogonal through a Hermite series to minimize mean-square error. 

The Hermite moment model predicts full probability distributions of the response and its 

extremes as well as crossing rates and fatigue damage rate. If used with observed 

moments from a response time history, the model corrects for non-linearity without the 

need to fully specify or analyze a precise non-linear model. In analytical studies, the 

Hermite moment model can be combined with various moment estimation techniques 

such as Moment Closure (see Sec. 2.2.1.1.2.3). 

2.2.1.4 Functional Series Representation 

The Functional Series Representation Method is similar to the Perturbation 

Method in that it is limited to systems in which the non-linearities are small. Given that 

the response of a linear system may be expressed in the form of a convolution as given in 

Eq. [38], it has been shown (Wiener 1958) that the convolution may be generalized to a 

Volterra series expression when the system is non-linear: 

Z W = £]••• J*. fe .'2 • )• F(* ~ ' i )• -F(t- K Yh-dtn [47] 
«=1 _oo -co 

The function hn may be regarded as the rath degree impulse response function. Bedrosian 

and Rice (1971) later obtained the rath degree frequency response function Hn in terms of 

system parameters using a system with harmonic input of the form: 

[48] 
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Using this input and substituting into the Volterra series expression and then into the 

equation of motion, the «th degree frequency response function Hn is obtained. Once Hn 

is determined, h„ in Eq. [47] is evaluated using the Fourier transform pair relationship 

given by the following: 

[49] 

//>„...,con) = J - jA.fr,,...,/.)-^-"—-'-^, . . .A. 
- O O —CO 

Once h„ is evaluated the response of the Volterra series expression, and therefore the 

non-linear system response, is completely determined. This method may also be used to 

evaluate the response statistics of weakly non-linear systems. 

2.2.1.5 Decomposition Method 

This method is an operator-based technique originally proposed by Adomian 

(1983) and later extended by Benaroya (1984) to analyze non-linear problems in 

structural dynamics. This method, which has received limited attention in the literature, 

does not require any of the assumptions concerning the characteristics of the forcing 

function and/or system non-linearity which are used in the Fokker-Planck, Equivalent 

Linearization, Perturbation and Functional Series Methods. It is particularly suited to 

systems with random properties, for example, systems in which stiffness is a random 

function of time. As summarized by Branstetter et al. (1988), consider the following 

linear system where the stiffness k(t) is a function of time only, and is therefore not 

dependent on the load: 

mz(t)+ cz(t) + k{t)z{t)= F{t) [50] 

where m and c are constants and k(t) is a random process. Define the linear operator L as: 
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d2 d 
L = m—2- + c— + k(t) [51] 

dt dt 

Then the equation of motion in operator form is: 

L[z(t)] = F(t) [52] 

The system stiffness may be written as the sum of deterministic and random parts where 

the deterministic part is the mean value of k(t), given by E[k(t)], and the random part, 

denoted by K(t), is the random fluctuation about the mean: 

k(t)=E[k(t)]+K(t) [53] 

Similarly, the operator L may be separated into a deterministic part D and random part R 

resulting in L = D + R, where: 

D = m^T + c— + E[k{t)] 
dt2 dt 1 W J [54] 

R = K(t) 

Substituting L=D + R into the operator form of the equation of motion results in: 

z = D-]F-D~'Rz [55] 

Now, let z be written as the sum of a series: 

z(t)=±Zi(t) [56] 
1=0 

Substituting Eq. [56] into Eq. [55], the equation of motion becomes: 
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z^D'xF-D~xR(z0+z,+..) [57] 

The series expression for z(t), Eq. [56], may be regrouped as follows: 

z0{t) = D'xF 

z,(t) = -D-'Rz0 = -D'xRD~xF 

z2(t) = -D~xRz, =D'XRD'XRD-XF 
[58] 

Therefore, Eq. [56] may be re-written as: 

z(t)=±{-iy(D-xR)D-xF [59] 
1=0 

In practice, of course, this series expression for the solution of the non-linear system will 

be truncated to a finite number of terms, which introduces some error. Finally, the 

deterministic operator D has to be inverted to allow computation of the response 

statistics. If the inverse D'x exists and has a corresponding Green's function git,x), 

sometimes called the weighting function, then Eq. [59] may be written in integral form as: 

where z\(t) and zj(t) solve the homogeneous equation L[z] = 0 and A\ and Ai are 

determined by initial conditions. Statistics of the response may be computed using Eq. 

[60], which was derived without using any assumptions on the nature of the forcing 

function. 

z(t) = \g(t,T)F{r)dT- \g{t,T)K(T)z(r)dT + Axzx(t)+ A2z2(t) [60] 
0 0 
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2.2.2 Numerical Methods 

In contrast to the analytical random vibration methods described in Section 2.2.1, 

which apply in the frequency domain, numerical methods are time domain based. The 

time-history approach to finding the response statistics of a dynamic system is generally 

more accurate and robust than any of the random vibration methods described previously. 

The inherent assumptions in each of the analytical procedures, for instance the white-

noise assumption of the Markov based methods or the assumption of weak non-linearity 

in the Perturbation and Decomposition Methods, are not required to obtain response 

statistics using time domain based numerical methods. In the context of civil engineering 

structures, dynamic analysis of a structure subjected to a simulated load time-history, 

using a numerical integration scheme, will yield a response time-history. An ensemble 

of these can be used to estimate the response statistics of the system at any time in the 

response process without regard to the nature of the restoring force (i.e. degree of non-

linearity), complexity of the structural system (i.e. number of degrees of freedom) or 

nature of the random excitation process. This generality is the reason that numerical 

methods are frequently used to verify results obtained using other analytical random 

vibration methods. 

The greatest drawback to the numerical approach is the computational cost. One 

time-history calculation corresponds to a single sample of response, whereas the more 

efficient random vibration methods yield, at least in principle, the complete statistical 

response of the system in their solution. Also, for structural reliability problems, 

computation of the response statistics is only the first step in a two-step process. The 

second step, which makes use of the response statistics, is the approximation of the 

probability of failure using any of a variety or combination of methods: distribution 

fitting of response statistics, a response surface approach, FORM/SORM, Direct Monte 

Carlo simulation, and Selective Monte Carlo simulation using variance reduction 

techniques. The computational cost of generating time-history response statistics is 

dependent on the reliability analysis method used to solve for the probability of failure. 

With this in mind, the origin of the numerical approach to solving complex stochastic 
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non-linear dynamic systems is summarized below followed by a brief description of the 

techniques that were subsequently developed to reduce computation time. 

2.2.2.1 Direct Monte Carlo Simulation 

The principle of Monte Carlo simulation seems to have originated with Buffon's 

Needle Experiment in the 18 t h century. Buffon's original experiment was to drop a 

needle of length L at random on a grid of parallel lines of spacing D where D > L from 

which the value of n could be inferred by observing the number of intersections between 

needle and lines. The approximation of n is given by: 

[6,] 
RD 1 i 

where N is the number of needle drops and R is the number of intersections. 

Buffon's Needle Experiment and a few other applications of random sampling 

pre-date the naming and systematic development of the Monte Carlo Method, which 

began in about 1944. The name is taken from Monte Carlo, Monaco where the Roulette 

wheel, which is a simple random number generator, is synonymous with the city. The 

development of Monte Carlo simulation as a research tool stems from work on the atomic 

bomb during the Second World War by mathematicians John von Neumann and 

Stanislaw Ulam. This work involved a direct simulation of the probabilistic problems 

concerned with random neutron diffusion in fissile material. Since that time Monte Carlo 

simulation has been applied to a wide variety of mathematical problems involving 

stochastic and dynamic systems in fields ranging from economics to the natural sciences 

to engineering. 

Although Monte Carlo methods quite often offer the only available solution to a 

complex stochastic system, Direct Monte Carlo simulation is not well adapted to solving 

dynamic reliability problems. The reason for this is that the probability of failure being 
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estimated governs the number of sample responses or realizations that are required. 

Assuming a binomial distribution for the quantity being estimated, the relative error in a 

Monte Carlo estimate is given by (Melchers 1999): 

where k is the standard normal variable associated with a given confidence interval, n is 

the number of realizations and p is the expected probability of occurrence. Note that Eq. 

freedom in the structural system). Since, typically, dynamic systems under service must 

be very reliable, failures or malfunctions are rare events and therefore, from Eq. [62], the 

number of realizations required for an accurate estimate of a small probability of failure 

is very large. Assuming that the observed value of the probability of failure of a system 

is required to be within 5% of the true value with 95% confidence, then for a system with 

an expected probability of failure of 10"6, 1.54 x 109 realizations would be required. 

Clearly, without the use of supercomputers and parallel processing (Johnson et al. 1997) 

it is impractical to generate this many samples for realistic problems where each response 

computation may require dynamic analysis of a non-linear structural system. 

2.2.2.2 Selective Monte Carlo Simulation 

The slow convergence of the Direct Monte Carlo estimate, where the error 

decreases in proportion to riv\ has led directly to the so-called 'variance reduction' 

techniques used in Selective Monte Carlo simulation to reduce the computational cost of 

estimating low probability events. A number of techniques such as: Antithetic Variates 

(Ayyab and Haldar 1984), Conditional Expectation (Ayyub and Chia 1991) and 

Importance Sampling (Kahn 1956) were developed for static reliability problems but are 

not well suited to dynamic systems. This may be illustrated by considering the case of 

Importance Sampling in which an importance sampling probability density function h(x) 

is located on the limit state surface at the point of maximum likelihood (or the design 

[62] 

[62] does not depend on the dimension of the state space (i.e. the number of degrees of 
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point) o f the joint probability density function^*) of the random variables in standard 

normal space. Parenthetically, the design point is usually not known prior to the 

reliability analysis and must be located by application of numerical maximization 

techniques, a search algorithm or more recently by application of a neural network. Once 

positioned, the sampling density is used to increase the number of random samples that 

fall into the failure domain in the standard normal space thereby reducing the variance of 

the Monte Carlo estimate of the failure probability for a given number o f trials. Note that 

to offset the expected distortion of the original joint density function by the sampling 

distribution, the weight of each sample must be modified by \lh(x). The difficulty in 

applying this technique to a dynamic system is two-fold. Firstly, unlike the static case, 

the joint density function of the random variables is not known, instead there is only a 

finite sample of realizations. Second, the application of Importance Sampling to a 

dynamic system would require a description ofthe sampling density function with respect 

to time, which greatly increases the problem complexity. 

To handle dynamic reliability problems, two variance reduction techniques have 

been developed that model the flow of probability into the low probability region of the 

phase plane. 

2.2.2.2.1 Double and Clump 

Since the flow of probability into the low probability region is of paramount 

interest in reliability analysis, Pradlwarter et al. (1994) developed a procedure they 

named 'Double and Clump' ( D & C ) which provides a means to increase the sample size 

of important realizations falling in the failure domain. The basic idea is that in the event 

that a sample realization is identified as important at a given time step, based on specific 

energy and weight criteria, the state vector in the phase plane is doubled. Doubling of a 

realization at a certain time step x simply means that an identical copy of the state vector 

is made and its weight is halved. The effect of doubling can only be observed at a time t 

> x since starting at t = x, the loading increments are assumed to be independent in both 

doubled state vectors. Hence, two different random paths in the state space wi l l be 
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observed due to the differences in loading for t > T. In order to preserve the total number 

of realizations, those trajectories that do not meet the energy and weight criteria for 

doubling are clumped together and the weight of each realization is combined. The 

varying magnitude of the weights of all realizations, which change discontinuously in 

time, represents a generalization of Direct Monte Carlo simulation in which all weights 

are equal (- \lri) and constant in time. In Importance Sampling, weight can be 

interpreted as the ratio between the joint density and the sampling density (f[x)/h(x)), 

which changes with position in the standard normal space but not as a function of time. 

To ensure accuracy of the Double and Clump procedure it is important that the 

statistics of the samples are not significantly affected. Doubling has no effect on the 

sample statistics but clumping does since it is impossible to maintain the same amount of 

information with fewer samples. Clumping to the mean value of two state vectors 

ensures identical first moments before and after clumping, however, higher moments are 

generally slightly underestimated after clumping. The distortion of higher moments 

depends mainly on the distance in the phase plane between the realizations to be 

clumped. Therefore, in order to minimize distortion, only realizations close to each other 

are permitted to clump. This proximity requirement, however, increases the 

computational cost of D & C since all realizations, which are simulated simultaneously, 

must be searched repeatedly during the time stepping procedure for a sufficiently close 

partner to clump with. 

2.2.2.2.2 Russian Roulette and Splitting 

To alleviate the problem of searching all realizations for a clumping partner in 

D&C, Pradlwarter and Schueller (1997) proposed a similar Selective Monte Carlo 

method called 'Russian Roulette and Splitting' (RR&S) which was an adaptation for 

stochastic dynamic systems of a method first developed and applied for estimating low 

probability events in neutron shielding problems. In RR&S, instead of searching for two 

close realizations suitable for clumping, an 'unimportant' realization is simply killed off 

and the weights of all other realizations are normalized with respect to the probability of 
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survival of each realization before the killing of the unimportant sample. To ensure 

preferential survival of important realizations, which are those that enter an important 

region in the phase plane, a higher survival probability is associated with them. The 

name Russian Roulette is derived from this probabilistic method of determining which 

realizations are killed, while Splitting was used to describe the doubling of important 

particles in the original neutron shielding problems. 

In a general complex stochastic dynamic system it may be difficult to determine a 

measure to distinguish between important and unimportant regions. For this reason, 

Pradlwarter and Schueller (1999) proposed 'Distance Controlled' Monte Carlo 

simulation, which combines RR&S with an evolutionary technique to determine the 

realization selection criterion. This evolutionary technique is somewhat different from 

the use of Genetic Algorithms, which was proposed by Johnson et al. (1996). The 

proposed method is shown to predict extremely low probability events as well as the 

ability to analyze complex dynamic systems for which other methods do not appear to be 

suitable. 

2.2.2.2.3 Latin Hypercube Sampling 

Latin Hypercube Sampling is a technique that provides a constrained sampling 

scheme, instead of the purely random sampling of Direct Monte Carlo simulation, to 

reduce the variance of a Monte Carlo estimator for a given number of random samples 

(Imam and Conover 1980, Ayyub and Lai 1989). For this reason, Latin Hypercube 

Sampling is called a selective sampling scheme. 

In traditional random sampling, random numbers between 0 and 1 are generated 

and these are then used to generate random variables according to the prescribed 

distribution function for each variable. Typically, the inverse transformation method is 

used with the cumulative distribution function (CDF) to map the random numbers to the 

generated random variables. Other procedures for generating random variates include the 

Composition Method and the Acceptance-Rejection Method attributed to von Neumann 
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(Rubinstein 1981). In Latin Hypercube Sampling, the density function or CDF of each 

variable is divided into n non-overlapping intervals of equal probability, where n is the 

number of random values that have been chosen for Monte Carlo simulation. A 

representative value from each interval is then chosen for each variable and randomly 

matched without replacement to a value for each of the other random variables. In this 

way, the entire range of each random variable is represented in the set of variables to be 

used in a Monte Carlo simulation. For example, if 10 Monte Carlo simulations were used 

to estimate the mean value of a performance function that contained 5 random variables, 

then the density function of each random variable would be divided into 10 intervals and 

10 sets of 5 values would be generated. Each set is obtained by randomly matching one 

interval value from each of the 5 variables together. 

A proposed variant of Latin Hypercube Sampling called Updated Latin 

Hypercube Sampling, which further reduces the variance in Monte Carlo estimates of 

commonly used statistical parameters such as mean, standard deviation, coefficient of 

variation and CDF, was developed by Florian (1992). This was followed by the work of 

Huntington and Lyrintzis (1998) who proposed two techniques to even further improve 

the performance of Latin Hypercube Sampling, at the cost of significantly longer 

computation time. 

2.2.2.3 Response Surface Method 

Response surface methodology (RSM) is a collection of statistical analysis 

methods that examines the relationship between experimental response and variations in 

the values of the input variables. Developed by research scientists performing 

experiments in biology and agriculture, it is intended to create and analyze statistical 

models of processes that are difficult to study directly for reasons of complexity, or 

because the underlying mechanism controlling the process is not well understood or the 

response data is expensive to produce (Myers 1976). In the context of structural 

reliability analysis, the functional relationship between the structural response and the 

input variables is approximated by a response surface model, which is then used in a 
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conventional reliability analysis method such as FORM/SORM or Monte Carlo 

simulation. 

Using RSM to study the influence of variables on an outcome or process consists 

of two phases, response surface design followed by the analysis phase. Response surface 

design is the process of deciding on an experimental strategy that determines the number 

of variables and what combination of variable levels should be used in an experiment to 

generate an outcome. Each outcome, which is then used to fit the surface, involves a 

certain cost or computation time, therefore, the response surface design should be as 

efficient as possible at fitting the surface in the area of interest. Since the actual form and 

degree of the surface are not known ahead of time, only discrete experimental outcomes 

are known, there is little guidance in the selection of the approximating surface, however, 

a second-order polynomial is typically used. The general form of a second order 

approximating function is given by: 

1=1 1=1 1=1 7=1 

where E(y) is the expected value of the response, k is the number of independent 

variables, p,- and Py are the regression coefficients and x, is the ith variable. Box and 

Wilson (1951) introduced an efficient class of designs for fitting second-order surfaces 

called central composite designs, which consists of a 2k factorial design, with each 

variable at the two normalized levels of-1 and +1, augmented by 2k axial points and n2 

center points for a total of 2k +2k + n2- N points. This design results in a significantly 

reduced number of experimental points from a 3* design, with each variable at three 

levels, which would normally be required to fit a second-order surface. 

Once the N design points have been chosen, the regression coefficients p, and p y 

are determined using the method of least squares, which minimizes the total error 

between the predicted response from Eq. [63] and the actual experimental outcome. The 

total error resulting from the use of the fitted response surface is comprised of two 
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elements, pure error and lack-of-fit error. Pure error comes from the intrinsic 

randomness of the system and cannot be eliminated, while lack-of-fit error is the result 

of the inability of the response surface model to represent the true response with a simple 

polynomial expression. For the response surface model to be considered an accurate 

representation of the true response, it is required that the lack-of-fit error can be 

neglected. The means of measuring lack-of-fit error, so that a decision criterion for 

accepting a response surface model may be established, is provided by the analysis of 

variance technique (ANOVA). Using A N O V A , Faravelli (1989) suggested an 

expression involving the pure error and lack-of-fit error for evaluating the goodness-of-

fit of a response surface. Bohm and Bruckner-Foit (1992) proposed the use of two 

alternative criteria based on the lack-of-fit error to validate a response surface, stating 

that the measure suggested by Faravelli had no theoretical justification. The increased 

computational effort required by the Bohm and Bruckner-Foit criteria led Yao and Wen 

(1996) to propose an empirical measure based on Faravelli's expression that reduced 

computation time. 

The analysis phase of RSM involves the use of techniques such as: canonical 

analysis, method of steepest ascent and method of ridge analysis to analyze the 

experimental information in the second order response model and draw conclusions 

regarding the influence of variables and the predicted outcome as the input variables 

change. 
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2.3 E A R T H Q U A K E G R O U N D M O T I O N M O D E L S 

The use of any of the numerical methods of Section 2.2.2 requires sample 

functions of the stochastic process, field or wave that is to be used as input to the system 

being analyzed. The generated sample functions. must accurately describe the 

probabilistic characteristics of the corresponding stochastic process, field or wave which 

may be either stationary or non-stationary, homogeneous or non-homogeneous, one 

dimensional or multi-dimensional, uni-variate or multi-variate, and Gaussian or non-

Gaussian. For purposes of definition, a stochastic process is an infinite population or 

ensemble whose samples are functions of time only, together with information 

concerning relative probabilities of sample values. A stochastic field is similar to a 

stochastic process except that the samples are functions of space rather than time, 

whereas a stochastic wave model incorporates probabilistic information regarding both 

time and space to generate sample functions. In the case where there is uniformity in the 

random process, field or wave, it is described by the designations stationary in time and 

homogeneous in space. A stationary process is one whose probability distributions across 

the ensemble are invariant with respect to translations in the origin of time. Similarly, a 

random field is homogeneous with respect to a particular spatial coordinate if its 

probability distributions are invariant with respect to translations of the origin along the 

axis of that coordinate. 

A stationary or homogeneous random process or field can be described in terms 

of its spectral density, which is related to its auto-correlation function through the well-

known Wiener-Khintchine theorem (see Sec. 2.2.1.1.1). Spectral decomposition of a 

random process is extremely useful because the auto-correlation and spectral density 

functions provide average amplitude and frequency information about sample processes 

and, in the case of a linear time-invariant system, they provide the corresponding 

statistics of the stochastic dynamic response. Non-stationary random processes and 

fields, however, are more difficult to model since the concept of spectral density does not 

apply due to the fact that the auto-correlation function is no longer a function of the 

time-shift (T = t\ - t{) only, but depends on two independent time arguments t\ and t2. 
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Several techniques have been developed to approximate a non-stationary process 

including: (1) the use of a generalized spectral density, defined by a double Fourier 

transform (Lin 1967), (2) the use of an evolutionary power spectrum (Priestley 1965, 

1967), which may be used to describe relatively slow changes in frequency content of a 

non-stationary process, (3) modeling the non-stationary random process as a non-

stationary shot-noise (Lin 1967), or (4) modeling the non-stationary random process as 

an 'equivalent' stationary random process modulated by a deterministic amplitude 

variation (Bolotin 1960). 

In the fields of earthquake engineering and seismology, a large number of 

stochastic models for generating artificial ground acceleration records have been 

proposed. These models may be roughly divided into five categories, which are listed in 

order of earliest to most recent: (1) filtered white-noise and filtered Poisson process 

models, (2) spectral representation method, (3) stochastic wave theory, (4) auto-

regressive and moving average (ARMA) models, and (5) wavelet models. Selected 

references from a review of the first three catergories by Shinozuka and Deodatis (1988) 

and a review of A R M A models by Kozin (1988) are given in the following summary of 

each category. 

2.3.1 Filtered White-Noise and Filtered Poisson Process Models 

The first ground motion models (Housner 1947, Bycroft 1960) were stationary 

white-noise processes, which have a constant Fourier amplitude spectrum (or power 

spectral density). Later, it was recognized from analyses of strong-motion records that 

the energy content of ground motion is not uniformly distributed over all frequencies, but 

is concentrated in certain frequency regions. To incorporate this, Tajimi (1960), using 

the work of Kanai (1957), proposed the filtered white-noise model, which accounted for 

local site properties and a dominant frequency in the ground motion. The Kanai-Tajimi 

filter model, which has been used extensively in the past to describe strong ground 

motion, was later modified by Clough and Penzien (1975) to remove the inconsistency of 

unbounded ground velocity and displacement at zero frequency. This modified version 
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of the non-white Kanai-Tajimi model is given by the following equation for the power 

spectral density of the ground acceleration (see Fig. 2.3): 

1 + 4 Ĝ 

sM=s0-
1-

K^Gj 

2\ 

f CO ^ 

K^H J 

2\ 
[64] 

CO 

where the first bracket represents the low-pass Kanai-Tajimi filter and the second 

bracket represents the high-pass Clough-Penzien filter. So is the constant white-noise 

spectrum scaled to the energy of the ground motion, is the predominant frequency of 

the ground motion, which is indicative of the geological character of the local subsoil, COG 

is the equivalent damping based on the hardness of the subsoil, and cô  are empirical 

parameters that are determined by matching actual ground motion recordings from the 

site to ensure the correct frequency content of the artificial earthquake. More recently, 

seismologists have developed a wide variety of theoretical Fourier amplitude spectrum 

models that are based on the physical parameters of the earthquake source and medium 

such as: magnitude, distance, fault dimension, attenuation parameters, shear-wave 

velocity, wave propagation velocity etc. (Solnes 1997). These models are highly 

specialized and, as such, outside the scope of this study and therefore, will not be 

reviewed further. 
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Figure 2.3: Filtered White-Noise Power Spectrum 
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Following the work of Kanai and Tajimi, a variety of time-modulating functions 

were introduced to produce non-stationary ground motion models that reflected the time 

varying intensity (or amplitude non-stationarity) typical of real earthquake ground 

motion accelerograms. Since an earthquake motion is essentially an evolutionary 

process, the filtered output sample functions have to be amplitude modulated to resemble 

the time evolution of the real motion, that is, show a build-up phase, a strong motion 

phase and an attenuating tail (see Fig. 2.4). The proposed time-modulating models 

include: time-modulated harmonics (Bogdanoff et al. 1961), filtered modulated white-

noise (Bolotin 1960, Housner and Jennings 1964, Amin and Ang 1968, Iyengar and 

Iyengar 1969, Ruiz and Penzien 1971) and the fdtered modulated Poisson process 

(Cornell 1960, Shinozuka and Sato 1967, Lin 1963, 1965). In each model there are 

typically a number of constants that completely define the time-modulating envelope 

function, including the total duration of the earthquake. These constants depend on the 

magnitude of the earthquake, the distance from the causative fault and the focal depth. 

0 -K , , , 1 
0 5 10 15 20 

Time (sec) 

Figure 2.4: Example Amplitude Modulating Function (Amin and Ang 1968) 

From a physical interpretation standpoint, the filtered Poisson process model is 

closer to representing an actual earthquake than the filtered white-noise model since it 

consists of the sum of a series of independent impulses arriving at Poisson distributed 

times. The two models can be made identical up to the second moment, however, by 

imposing an impulse arrival rate v that is a certain function of the white-noise spectral 
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amplitude. Also, it can be shown that the white-noise models are Gaussian due to the 

Central Limit Theorem and the filtered Poisson process models, although in general non-

Gaussian, are asymptotically Gaussian as the impulse arrival v - » oo (Lin 1967). This 

non-Gaussian property can be used in applications where earthquake records indicate a 

significant deviation from Gaussian behavior. 

2.3.2 Spectral Representation Method 

The Spectral Representation Method is perhaps the most widely used approach to 

generate sample functions of a stochastic process, field or wave. Although the concept of 

the method has existed for some time (Rice 1944, 1945), it was Shinozuka and Jan (1972) 

and Shinozuka (1972) who first applied it for simulation purposes including multi­

dimensional, multi-variate and non-stationary cases. In its simplest form, spectral 

representation simulates a 1D-1V (one-dimensional and uni-variate) stationary 

stochastic process, which corresponds to seismic ground motion with a single horizontal 

component, using the following series: 

where Sxx((£>) is the known one-sided power spectral density of the stochastic process, 

Aco is the frequency interval used to discretize the power spectrum and are independent 

random phase angles uniformly distributed over the range 0 - » 2TT. An upper cut-off 

frequency coM = A/Aoo is implied in Eq. [65] beyond which Sxxi®) may be assumed to be 

zero for mathematical or physical reasons. Using this series, the auto-correlation 

function and expected value of the simulated process converge to those of Sxx(u>), and the 

process becomes asymptotically Gaussian by virtue of the Central Limit Theorem, as the 

number of terms N increases. In addition, the simulated process is ergodic, at least to the 

second moment, regardless of the size of N. This makes the method directly applicable to 

time-domain analysis in which the ensemble average can be evaluated in terms of the 

temporal average. It should be noted that the sample functions generated using Eq. [65] 

[65] 
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will be periodic with the sampling period T = 27T/ACO. This periodicity may be eliminated 

by randomizing the frequencies co, either by adding a small random frequency 8co, 

(Shinozuka and Jan 1972) or by considering the frequencies co, to be random variables 

with a probability density modeled after the spectral density of the process (Solnes 1997). 

The latter technique automatically concentrates the random frequencies around the peaks 

in the spectral density of the stochastic process. 

The extension of the 1D-1V stationary case to a non-stationary stochastic 

process, to more realistically simulate seismic ground motion, may be accomplished by 

using the evolutionary power spectrum developed by Priestley (1965, 1967). In this case, 

the spectral representation series becomes: 

f(t) = 42 -f,pA2 (f,©,.)5** (coj )Aco • cos(<V + ̂ ) [66] 
7=1 

where A(t,(Oj) is the evolutionary modulating function and all other terms are the same as 

the stationary case given by Eq. [65]. Similar to the stationary case, the simulated 

process converges to the target evolutionary power spectrum and is asymptotically 

Gaussian as N —> co. The process, however, is no longer ergodic since by definition only 

a stationary process can be ergodic. Also, it should be noted that the Fast Fourier 

Transform (FFT) technique developed by Cooley and Tukey (1965), which is used to 

determine the spectral amplitudes Sxxity) ° f the target process (Yang 1972), no longer 

applies when using an evolutionary power spectrum. However, for the special case when 

A(t,(Oj) ~ A(t), i.e. the modulating function is independent of frequency, the non-

stationary stochastic process becomes a uniformly modulated non-stationary stochastic 

process and the FFT technique again applies. This situation is equivalent to modeling the 

non-stationary random process as a stationary random process modulated by a 

deterministic amplitude variation function as discussed previously. A more direct use of 

the FFT technique to generate sample functions of Gaussian random processes was 

proposed by Wittig and Sinha (1975), which substantially reduces computation time in 

comparison with using Eqs. [65] or [66]. In this method, discrete frequency functions 



Chapter 2 Literature Review 59 

that correspond to the Fourier transform of the target process are generated. Sample 

functions are then obtained by taking the inverse Fourier transform of the discrete 

frequency functions using the FFT technique. 

The more complex cases of simulating an n D - l V non-homogeneous stochastic 

field and an nD-mV homogeneous stochastic field were also developed by Shinozuka 

and Jan (1972). A multi-variate stochastic field may be used, for example, to simulate 

different seismic ground motions at various locations in a large-scale structure (Kareem 

et al. 1997). The relationship between the stochastic processes at each location, which 

may be separately modulated, is defined by a coherence function, which is the 

frequency-domain equivalent of the time-domain based correlation function. Various 

researchers have extended the simulation of multi-variate stochastic fields to include 

among other things: non-Gaussian properties (Yamazaki and Shinozuka 1988), 

simulation of non-stationary vector processes using an FFT-based approach (Li and 

Kareem 1991), spatially incoherent ground motions (Ramadan and Novak 1993), and 

simulation of ground motion time-histories compatible with prescribed response spectra 

(Hao et al. 1989, Abrahamson 1993, Deodatis 1996, Zhang and Shinozuka 1996). 

Even more complex non-stationary stochastic process models have been 

developed to simultaneously represent the amplitude and frequency non-stationarity of 

seismic ground motion. Frequency non-stationarity is due to the different arrival times 

of the P (primary or push) waves, S (secondary or shear) waves and surface (Rayleigh 

and Love) waves that propagate at different velocities through the earth's crust. Several 

studies have shown that non-stationarity in frequency content can have a significant 

effect on the response of both linear and non-linear structures (Yeh and Wen 1990, 

Papadimitriou 1990, Conte 1992). To account for this effect, a number of filtered white-

noise process based models, filtered Poisson process based models, and spectral 

representation based models have been proposed (Kubo and Penzien 1979, Safak and 

Boore 1986, Lin and Yong 1987, Grigoriu et al. 1988, Fan and Ahmadi 1990, 

Papadimitriou 1990, Yeh and Wen 1990, Conte and Peng 1997, Nakayama and Fujiwara 

1997). 
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2.3.3 Stochastic Wave Theory 

Stochastic wave theory, which was developed by Deodatis and Shinozuka (1989), 

is an extension of the Spectral Representation Method. This technique attempts to more 

realistically simulate seismic ground motion by describing it as a stochastic wave arising 

from a propagating seismic wave. It is intended for seismic response analysis of large-

scale structures extending over a wide spatial area such as water and gas transmission 

systems and large-span bridges (Deodatis et al. 1990, Zhang et al. 1991). 

2.3.4 A R M A Models 

Auto-regressive moving average models are one of a family of stationary time 

series models that includes: auto-regressive (AR), moving average (MA), and mixed 

auto-regressive and moving average models (ARMA), as well as their extension to a 

particular class of non-stationary random processes, the auto-regressive integrated 

moving average model (ARTMA). A time series model is one in which a sequence of 

values are generated representing possible observations of a random process at discrete 

values of time. The model parameters are then estimated on the basis of a comparison of 

estimated statistics of the generated sequence and the statistics of the actual observations 

of the random process, which are treated as sample functions drawn out of an ensemble 

of infinite possibilities. This procedure is very similar to the filtered white-noise model 

in that the time series is generated by passing a discrete white-noise, which provides the 

required sequence of values from a random process, through a linear filter. The general 

form of a linear time series is given by (Nigam and Narayanan 1994): 

xt= fj, + at+y/xat_x+y/2at_2+... [67] 

where p and are fixed parameters. The series (...a,-\, ah a,+\, ...) is the white-noise 

sequence of identically distributed and independent random shocks with zero mean and 

constant variance aa

2. In this form, the series x, is represented as the weighted sum of the 
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current and past disturbances. Equation [67] may be rearranged, however, to express the 

time series in terms of the current disturbance and all previous observations of the 

process xt: 

X, = 7txXt_x + 7T2

Xt-2 +••• + « , + S [68] 

where the weights 7t, are functions of the v|/,- weights and 5 is a constant which is a 

function of p and The general linear process of Eq. [68] has an infinite number of 

terms but, for practical purposes, only a finite number of weighting terms are given a 

non-zero value. The auto-regressive (AR) model is given by Eq. [68] with TT, = 0 for i > 

p. The moving average (MA) model is given by Eq. [67] with v|/, = 0 for / > q. The 

mixed auto-regressive moving average (ARMA) model of order p, q, denoted by A R M A 

(p,q) is the sum of the AR and M A models given by: 

x, = nxxt„x +... + 7Tpx,_p +a,+S- i//,a,_, - . . . - y/qa,_q [69] 

where the negative sign in Eq. [69] is introduced by convention. The inclusion of both 

auto-regressive and moving average terms typically results in a model that has fewer 

terms than would be necessary for a model of pure AR or pure M A form. The variables 

in Eq. [69] are all scalar variables, which corresponds to a so-called single input-single 

output linear model. A R M A models may also be extended to multiple input-multiple 

output linear systems, in which case the observations xt and the random terms a, become 

vectors and the coefficients 7t, and VJ/,- become matrices. 

The basic problem of modeling an observed time series xt by the A R M A model is 

the estimation of the coefficients (ft,, \|/,) and determining the best model order (p, q) to fit 

the observed data. The estimation of parameters is usually based upon least squares or 

maximum likelihood methods (see Box and Jenkins 1970), while determination of the 

best choice for model order is commonly based on two criteria developed by Akaike 

(1979); the 'final prediction error' criterion (FPE) and the 'Akaike information criterion' 
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(AIC). The application of A R M A models to simulate the observed time series of seismic 

ground accelerations, which are treated as single input-single output systems, was first 

developed by Liu (1970). Since that time a considerable volume of literature has been 

devoted to earthquake modeling using A R M A models, see for example Polhemus and 

Cakmak (1981), Chang et al. (1982), Safak (1989), and a review article by Kozin (1988). 

The main advantage of A R M A models over the use of filtered white-noise 

process, filtered Poisson process or spectral representation models is the reduced 

computation time and computer memory requirements. The digital generation of sample 

functions of a random process is accomplished by recursively obtaining its sample values 

at discrete times once the model coefficients (TC,, VJ/,) are estimated. The model requires 

only the generation of a sequence of independent Gaussian random variates at. For the 

simulation of structural response to the sample ground motion, only the storage of the 

appropriate model coefficients in the computer memory, the generation of the white-

noise sequence and the recursive computation of the time series is required. Another 

advantage of the method is that the time series can be generated in real time, which can 

be used in random vibration experiments. 

2.3.5 Wavelet Models 

The most recent development with applications to simulation of non-stationary 

multi-variate processes is the use of wavelet functions, which were initially developed 

for analyzing seismic data in oil exploration studies. For engineering purposes, Newland 

(1994a, 1994b) applied Daubechies' wavelet (Daubechies 1992) for analyzing vibration 

signals and developed Discrete Wavelet Transform (DWT) and Fast Wavelet Transform 

(FWT) computational algorithms, which have emerged as powerful tools to analyze the 

temporal variations in frequency content of non-stationary processes. 

For purposes of modeling seismic ground acceleration, the wavelet representation 

of a zero mean process^) with non-stationary characteristics is summarized as follows 

(Basu and Gupta 1997, 1998): 



Chapter 2 Literature Review 63 

1 
CO CO 

f{t) = ̂  \\—Wj{a,b)wa,b(t)dadb 
if/ - C O - C O 

1 (t-b} 
a\ \ a ) 

2 

[70] 

<2n _i 

where the parameter b has the physical significance of localizing the wavelet basis 

function \\i(t) at t = b and the parameter a captures the local frequency content. For 

numerical evaluation of the integrals in Eq. [70], discretization parameters a and Ab are 

used, resulting in cij = a j and bj = (j ~ The step changes at a = Uj and b = bj are 

defined as: 

{bM - b , ) + ( b i - b i J 
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[71] 

The discretized version of the time-history of the ground acceleration is then given by: 

' J AJ 

[72] 
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The choice o f the wavelet basis function \y(t) that should be used to model f[t) in 

the above equations primarily depends on how suitable a given basis function is for the 

dynamic system. The referenced papers (Basu and Gupta 1997, 1998) used a slightly 

modified form of the Littlewood-Paley ( L - P ) basis function given by: 

/ \ 1 sino7zr-sin;# ' r , nn= i ; [73] 

The application of wavelet-based functions can be extended to a wavelet-based 

random vibration theory to predict the stochastic dynamic response statistics of a linear 

time-invariant system. This is exactly analogous to the well-developed linear random 

vibration methods in the frequency domain. 
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2.4 HYSTERESIS M O D E L S 

Response analysis of any dynamic system, whether linear and deterministic or 

non-linear and stochastic, requires a model that governs the relationship between input 

and response. For dynamic mechanical and structural systems undergoing inelastic 

deformation, this relationship is given by the equation of motion, which includes a term 

expressing the hysteretic restoring force as a function of system displacement. This 

hysteretic restoring force depends not only on the instantaneous displacement of the 

system, but also on the time history of the response and it may deteriorate in strength, 

stiffness or both as dynamic oscillation progresses. Models describing this hysteretic, 

time-dependent behaviour of yielding dynamic systems are classified as either 

phenomenological or mechanics-based. Phenomenological models describe the nature of 

the load-deformation relationship based on observations but do not necessarily explain 

the behaviour, while mechanics-based models are based on the properties of the 

individual elements that comprise the system. Mechanics-based models provide better 

insight into how material properties affect system response but they are inconvenient to 

use in inelastic dynamic analysis of complete structural systems made up of multiple 

members (Foliente et al. 1998). 

2.4.1 General Hysteresis Models 

Early hysteresis models to describe inelastic structural behaviour were 

phenomenological and typically bilinear, including the well-known elastoplastic model 

and the Ramberg-Osgood model. The Ramberg-Osgood (1943) model describes the 

force-displacement curve envelope curve (or backbone curve or skeleton curve) by a 

three-parameter polynomial, and allows smooth transition from the elastic to the plastic 

region and some freedom in the shape of the hysteresis. However, as in the case of the 

bilinear model, it was difficult to include system deterioration in the model. Later models 

proposed by Clough and Johnston (1966), Takeda et al. (1976) and others, extended the 

basic bilinear system to include deterioration by using a set of empirical rules. The use of 

piece-wise linear models of the force-displacement relationship, governed by a set of 
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empirical stiffness rules related to displacement, is well-suited for time-history analysis 

of structural response by means of step-by-step numerical integration. This has resulted 

in a wide variety of models being developed for various materials and types of loading 

(see, for example, the 3-D non-linear dynamic structural analysis program CANNY 99 

(Li 1996), which has twenty uni-axial hysteresis models). However, for analytical 

treatment of system response to random vibration, the use of empirical rules is difficult to 

put in a mathematically tractable form and, therefore, non-linear differential equations 

are used to model the force-displacement relationship. 

Differential equation models are still phenomenological in nature but they are 

given in a mathematically explicit form so that an analytical solution of the system 

response may be obtained. The first smooth hysteretic restoring force model was 

proposed by Bouc (1967) and later generalized by Wen (1976), however, this model did 

not include the pinching and degradation behaviour exhibited by many hysteretic systems 

that sustain damage under large deformation. For this reason, extensions to the model 

were proposed by Baber and Wen (1981) who incorporated stiffness and/or strength 

degradation as a function of hysteretic energy dissipation, and Baber and Noori (1986) 

who incorporated pinching behaviour using a 'slip-lock' element. This model, which has 

since become known as the Bouc-Wen-Baber-Noori (BWBN) hysteresis model, 

introduces a state variable z and separates the restoring force into non-hysteretic and 

hysteretic components. For a single-degree-of-freedom (SDOF) non-linear system, the 

equation of motion in standard form is then given by: 

u + 2^co0u + ao)0

2u + (l-a)a)0

2z = f(t) [74] 

where £, is the system damping ratio, coo is the natural frequency, a is the ratio of post-

yielding to pre-yielding stiffness, j\t) is the mass normalized forcing function, typically 

assumed to be zero mean, and z is the 'hysteretic force', which is described by the non­

linear differential equation: 
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z = h(z)-
yu z 

[75] 
V 

The parameters A, P y and « are the hysteresis shape parameters (if n = oo, the bilinear 

elastoplastic case is obtained), v and r| are the strength and stiffness degradation 

parameters, and h(z) is the pinching function introduced by Baber and Noori (1986). 

Note that for systems in which the loading fluctuates in such a manner that the 

• displacement is cyclic but does not change sign, there is a tendency of the BWBN model 

to introduce some artificial drift into the system response. This problem can be corrected 

by adding two more terms to the governing equation (Casciati 1987) but it is not 

particularly important for systems undergoing random excitation (Wen 1989). 

The SDOF system response model given by Eqs. [74] and [75] states that the rate 

of increase of the restoring force depends on the state of the system (in terms of u and z) 

as well as whether it is in a loading or unloading stage, due to the absolute value signs. 

Also, for a given time-history of displacement, the restoring force is completely specified 

by the differential equation i.e. there are no empirical rules. However, the model also 

forces pinching to occur at zero load, which doesn't necessarily reflect the true behaviour 

of all structural systems, some of which pinch at a residual force level. To generalize the 

BWBN model, Foliente (1995) added an additional constant parameter q that sets the 

pinching level as a fraction of the ultimate value of z. This model is referred to as the 

modified BWBN model and is given by the following: 

h(z) = l - £ , exp -(zsgn(u)-qzu) [76] 

where sgn() is the signum function, and zu is the ultimate value of z given by: 

1 [77] 
V(P+Y). 
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and the parameters that control the severity and rate of pinching, respectively, are: 

£ = 6 0[ l-exp(-/wr)] 

[78] 

Strength and stiffness degradation are modeled, respectively, by: 

v = 1 + Sus 

[79] 
rj = l + Sne 

Finally, strength and stiffness degradation, as well as pinching, are controlled by the 

hysteretic energy dissipation given by the following: 

'/ 
e = (l - a)a>0

2 jziidt [80] 

The modified B W B N model, which has been extended to bi-axial hysteretic 

systems (Park et al. 1986), is very flexible and can produce a wide variety of hysteresis 

shapes to model the behaviour of hysteretic degrading systems. In addition, standard 

damping ratios for linear systems can be used for response analysis since the B W B N 

model simply adds a hysteretic element to a mechanical model that contains linear 

viscous damping and a linear spring. Once the parameters of the hysteresis model are 

identified, dissipated energy can be obtained from the hysteresis trace of the response. 

The identification or estimation of suitable model parameters for a particular set of 

system materials and configurations is known as a system identification problem. A 

simple technique to determine the parameters from test or field data, which is based on 

least square minimization, was developed for the uni-axial and bi-axial B W B N model by 

Wen and Ang (1987) and Sues et al. (1988). Other common methods, which were cited 
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by Foliente et al. (1998), include: sequential regression analysis (Masri and Caughey 

1979, Masri et al. 1982, Masri et al. 1987), spectral method (Roberts et al. 1995), 

Newton's method, Gauss' method, and the extended Kalman filtering technique. The 

general theoretical aspects of hysteretic system identification have been reviewed by 

Mina i and Suzuki (1987). 

Recently, Dobson et al. (1998) presented a Boolean model for mechanical 

hysteretic systems that uses a set of Boolean statements to provide a piece-wise non­

linear representation of the loading and unloading curves over an arbitrary number of 

sub-intervals. B y significantly increasing the number of sub-intervals, the modeling of 

hysteresis can be accomplished by using a database of arrays, which eliminates the need 

for system identification when the hysteresis loop is constructed from experimentally 

sampled static or dynamic data. 
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2.5 SEISMIC S T R U C T U R A L RESPONSE AND R E L I A B I L I T Y STUDIES 

The assessment of structural response under dynamic loading has received 

considerable attention in the literature over the past 30 years. With the advent of 

increasingly powerful personal computers, researchers are now able to conveniently 

analyze complex analytical random vibration models or quickly perform time-history 

analysis, which has led to a wealth of literature relating to structural response under 

dynamic loading. Considering only those studies that relate to non-linear structural 

response under seismic loading, a very brief review of some past work that has utilized 

one or several of the analytical or numerical techniques summarized in Sections 2.2 - 2.4 

is given below. This review does not list those studies that include a structural response 

analysis to illustrate the use of a proposed analytical or numerical technique. Those 

studies have already been cited in the relevant section describing the technique. 

A large majority of the literature deals with seismic response analysis of steel and 

concrete structures, some of which were considered deterministic and others that were 

treated as having variable mechanical properties. These studies are listed in order of the 

type of analysis that was used beginning with the Monte Carlo method, which seems to 

be the most popular non-linear stochastic dynamic analysis technique. Liu (1969) used 

fifty artificial earthquake records based on the 1940 El Centro earthquake and elasto-

plastic and bilinear degrading hysteresis loops to collect SDOF earthquake response 

statistics; Meskouris and Kratzig (1987) used three records and a Takeda-type hysteretic 

law to investigate a five-storey concrete frame; O'Connor and Ellingwood (1987) used 

20 California earthquake records in a Latin Hypercube Sampling scheme and an elasto-

plastic hysteresis loop to determine SDOF steel frame reliability indices based on limit 

states defined by displacement ductility and a low-cycle fatigue damage index; Conte et 

al. (1991) used two sets of 100 A R M A model records and several piece-wise linear 

hysteresis models to evaluate SDOF response statistics and perform a sensitivity study on 

structural parameters; Seya et al. (1993) used eighteen artificial records in a Latin 

Hypercube Sampling scheme and a bilinear hysteresis loop to generate fragility curves 

for five displacement ductility-based limit states for a hypothetical five-storey steel 
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building; Bolotin (1993) used twenty artificial records to investigate the effect of random 

peak ground accelerations and spectral characteristics as well as random structural 

parameters on the response of a sixteen-story building; Lee (1996) used six California 

records and a bilinear hysteresis loop to investigate the significance of peak ground 

acceleration to peak ground velocity ratio on the displacement ductility demand of a ten-

storey frame structure; Collins et al. (1996) used a uniform hazard spectra approach 

based on 1292 artificial records generated for the Los Angeles area to evaluate structural 

performance of SDOF frames using displacement ductility-based limit states. This work 

included a proposed reliability-based seismic design procedure using displacement-

based performance criteria and an equivalent system methodology for application to 

MDOF structures; Han and Wen (1997) used 88 records recorded around the world and a 

proposed 'equivalent non-linear system' approach to evaluate the performance of seven 

multi-storey structures; Marek et al. (1997) performed a sensitivity analysis on structural 

random variables using 100 artificial records in a Latin Hypercube Sampling scheme; 

Bagchi (1999) used four records generated by the Geological Survey of Canada from 

uniform hazard spectra to evaluate the performance of concrete frame structures in 

Victoria and Montreal. 

The other methods of analysis have not been used nearly as frequently as the 

Monte Carlo technique. Suzuki and Araki (1997) used the Response Surface Method to 

evaluate the reliability of a two-storey frame structure with random structural properties 

using the 1940 El Centro and 1995 Kobe earthquake records and a bilinear hysteresis 

loop; Casciati and Faravelli (1985) also used the Response Surface Method to generate 

seismic fragility curves for a four-storey frame structure with random structural 

properties. Several other authors have used the analytical Equivalent Linearization 

Method to evaluate structural performance: Sues et al. (1985) analyzed a four-storey 

steel frame building and a seven-storey concrete building using the BWBN hysteresis 

model and random structural properties; Wen and Eliopoulos (1994) analyzed a five-

storey frame to determine the response statistics and then used the statistics to calculate 

probabilities of exceeding certain inter-storey drift limits given a certain seismic hazard; 

Foliente et al. (1996) evaluated the accuracy of Equivalent Linearization incorporating 
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the modified BWBN model against 200 Monte Carlo response samples and then analyzed 

the sensitivity of the response to changes in structural properties and hysteresis shape 

parameters. Finally, a number of authors have used stochastic finite element solutions to 

determine the reliability of structures under dynamic loads (Langley 1985, Mahadevan 

and Mehta 1991, Faravelli 1992, Bucher and Brenner 1992, Brenner and Bucher 1996). 

Research on the seismic performance of timber structural systems has not 

received the same attention in the literature as that for steel and concrete structures. This 

may be due to its less common usage in large-scale structures and perhaps because of the 

difficulty in characterizing timber structural behaviour, which besides being non-linear 

may also be influenced by the rate and duration of loading. Of the research that has been 

done, some of the recent work is summarized below. 

Chui and Ni (1995) investigated the effect of the moment-rotation characteristics 

of circular bolted timber connections on the seismic performance of a timber frame. 

Using a DRAIN-2D moment-rotation hysteresis model, the frame response to the 1940 

El Centro and 1971 Orion Blvd. earthquakes for a range of hysteresis model parameters 

was determined. The study showed that very stiff connections likely result in brittle 

failure of the timber members, while normally stiff connections would result in a 

connection failure at large displacement. The shape of the hysteresis loop was also 

shown to influence response levels, with highly pinched loops resulting in larger 

displacement responses. Latendresse et al. (1995) used a mechanics-based finite-

element approach to model multiple dowel connections using the analogy of a beam on a 

deformable foundation. Experimental hysteresis loops under cyclic loading were shown 

to match well with the analytical model. Yasumura (1996) performed a series of cyclic 

lateral load tests on wood framed shear walls, glulam braced frames, glulam moment 

resisting frames and glulam arched frames to determine a 'behaviour' factor q, which is a 

function of the displacement ductility. It appears that the behaviour factor is identical to 

the well-known force reduction factor R in the 1995 NBCC, since it is the same function 

of ductility as that proposed by Newmark and Hall (1973) i.e. q = R = V(2p-1). Using the 

behaviour factor, a timber structural system of each type was designed and tested using 
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the 1940 El Centra, 1952 Taft and 1995 Kobe earthquakes to evaluate its seismic 

performance. Results showed that the maximum displacement response was usually 

within the collapse limit of each structure. Frenette et al. (1996) tested a two-storey 

Parallam® moment resisting frame using six consecutive earthquake records, which were 

taken from the 1992 Landers earthquake and scaled to different peak ground 

accelerations. The purpose was to assess the elastic characteristics of the frame and then 

observe its performance during a major earthquake, an aftershock and subsequent major 

earthquakes. Experimental results compared well with analytical predictions using 

DRAIN-2DX and DPSA, a material properties based non-linear finite element program. 

Foliente et al. (1998) summarized the system identification process for estimating the 

parameters in the modified BWBN hysteresis model and then used experimental data 

from shear wall pseudo-dynamic tests in Japan to estimate the parameters. Using the 

1989 Loma Prieta and 1995 Kobe earthquakes, a comparison was made between the time 

history response using a non-degrading, non-pinching hysteresis model and the time-

history response using the modified BWBN model. It showed that displacement response 

might be severely underestimated if a non-degrading, non-pinching hysteresis model is 

used. Ceccotti and Karacabeyli (1998) evaluated the required 'Action Reduction Factor' 

for moment resisting timber frames, which is analogous to the force reduction factor R in 

the 1995 NBCC. Using eight earthquake records mainly from Italy, it was determined 

that an ARF of 2 is appropriate for one-storey buildings with timber moment resisting 

frames. Hockey et al. (1999) summarized several techniques for the reinforcement of 

timber connections to increase ductility for earthquake resistance. These techniques 

included: fibreglass reinforcement, glued plywood reinforcement, application of a truss 

connector plate, and the insertion of glued-in or threaded rods transverse to the wood 

grain. Popovski et al. (1999) evaluated the dynamic response of braced timber frames 

with various brace connections. Using DRAIN-2DX, with a hysteresis model based on 

experimental shake table tests, a time-history analysis was done using five earthquake 

records from around the world. From these analyses, the influence of different 

connection details on the seismic response of braced timber frames was determined. In 

addition, a conservative force reduction factor R of 1.5 was suggested for bolted 

connections, while for glulam riveted connections an R value of 2.0 was suggested. 
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Finally, Karacabeyli and Ceccotti (1999) evaluated the dynamic performance of a four-

storey wood shear wall structure using 28 earthquake records, six of which were real 

records and the remaining 22 were records that had been modified to fit the Vancouver 

area design spectrum. Results showed that the current 1995 N B C C force modification 

factor R = 3 for plywood nailed shear walls is appropriate. 
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CHAPTER 3 

NUMERICAL ALGORITHM DEVELOPMENT 

3.1 INTRODUCTION 

The development of a software application to enable more rigorous structural 

reliability analysis under seismic loading began by selecting a suitable probabilistic 

analysis method from among the available methods outlined in Chapter 2. Once the 

decision was made to use the numerical analysis approach, the task of outlining the basic 

structure of the software and deciding what functionality should be included was the next 

step in the process of creating and integrating the required algorithms. Chapter 3 begins 

with a brief summary of the reasons for adopting the numerical analysis approach 

followed by several sections that detail key numerical components, existing model 

modifications and solution methods that form the foundation of the chosen structure and 

functionality of PSResponse. In each section, relevant computational issues such as; 

running time, error control, convergence, proper numerical estimation and random 

number generation are discussed. 

It should be noted that the details and discussion in each of the following sections, 

and the sections themselves, are not intended to be a complete description of the 

algorithmic structure of PSResponse (see Chapter 4). The intent of this chapter is to 

provide the important technical details behind the algorithms that form the software. 

3.2 SELECTION OF ANALYSIS METHOD 

The decision regarding which probabilistic analysis method should be used to 

determine the statistical dynamic response of structures undergoing earthquake induced 

excitation was based on the key requirements of robustness and flexibility. The chosen 
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analysis method had to allow for significant complexity in the structural system for 

analysis of multi-storey structures, while also allowing for a large degree of non-

linearity in system restoring forces to accommodate the hysteretic nature of inelastic 

structural seismic response. In addition, the stochastic input excitation, in the form of 

earthquake induced ground acceleration, should reflect the true nature of the random 

excitation process, rather than a mathematically tractable idealization. These 

requirements tended to eliminate all the frequency domain based analytical methods, with 

the exception of the Equivalent Linearization Method, due to their various serious 

limitations regarding the nature of the restoring force, structural complexity or type of 

random excitation process. 

The Markov based methods each required that the input excitation be a stationary 

Gaussian process (i.e. white noise), which is a poor representation of a real earthquake 

spectrum, and most of the methods (Galerkin Method, Finite Element Method, Closure 

Technique) have the disadvantage of slow convergence or large computational 

requirements for highly non-linear or multiple-degree-of-freedom systems. In the case 

of the Numerical Diffusion Method, the applicability of Generalized Cell Mapping 

(GCM) to degrading hysteretic systems, which characterizes most structural systems, is 

not known. 

Other analytical methods of determining the statistical response of structures to 

stochastic excitation, such as the Perturbation Method and the Functional Series 

Representation Method, are not confined to a white-noise assumption for the excitation 

and are even applicable to multiple-degree-of-freedom systems. However, each of these 

methods are limited to weakly non-linear systems and as such are not applicable to 

ductile, hysteretic structural systems. 

The Equivalent Linearization Method has been successfully applied to response 

and damage prediction of a variety of highly non-linear structural systems under seismic 

excitation. However, response results may tend to be underestimated using this method 

when the excitation spectral content is such that the power spectral density function 
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vanishes rapidly as the frequency goes to zero, which is typical of earthquake excitation. 

In addition, the assumption of a Gaussian input excitation results in an assumed Gaussian 

response of the linearized non-linear system. This assumption is not correct for a non­

linear system, which is known to have a non-Gaussian response to a Gaussian input. The 

result of an assumed Gaussian response is that it may significantly misrepresent the 

frequency of high response levels to extreme loads, which contribute most to first-

passage and fatigue failures. 

With these limitations in mind, the decision to forego the frequency domain based 

methods in favour of a time-domain based approach was made. The time-history 

approach to finding the response statistics of a dynamic system is generally more 

accurate and robust than any of the analytical random vibration methods since there are 

no limitations or assumptions required to obtain response statistics using time domain 

based numerical methods. This generality is the reason that numerical methods are 

frequently used to verify results obtained using other analytical random vibration 

methods. 

3.3 N U M E R I C A L M O D E L S A N D S O L U T I O N M E T H O D S 

Having chosen to use a time-history approach for probabilistic dynamic response 

analysis, the development of algorithms to solve the general differential equation of 

motion for random earthquake loading required numerical models and solution methods 

in four major areas: earthquake generation, hysteresis modeling, structural modeling and 

an overall numerical time-stepping method. The noteworthy technical details in each 

major area are summarized in the following. 

3.3.1 Numer ica l Time-Stepping Method 

Since analytical solution of the equation of motion is not possible for arbitrarily 

varying excitations and non-linear systems, a numerical time-stepping method is 

required to integrate the differential equation, or system of equations, governing the 
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response of the system. There are a number of types of time-stepping procedures 

applicable to both linear and non-linear systems that are categorized by the assumption 

made in interpolating the system response and their inherent stability. The stability of a 

numerical procedure refers to its ability to return a bounded solution for a given time-

step length. Procedures that "blow up" in the presence of numerical round-off and return 

meaningless results if the time-step is longer than some stability limit are conditionally 

stable, while those that lead to bounded solutions regardless of the time-step length are 

unconditionally stable. 

For response analysis of single-degree-of-freedom (SDOF) systems, whether 

linear or non-linear, the stability criterion does not usually control the choice of time-

stepping procedure since the time-step required for numerical accuracy is considerably 

smaller than the stability limits of the conditionally stable procedures. However, for 

response analysis of multiple-degree-of-freedom (MDOF) systems, unconditionally 

stable procedures are generally necessary to avoid the excessive computational demands 

of conditionally stable procedures, which require an extremely short time-step to remain 

within the stability limit of higher modes of response. Since MDOF analysis capability 

was a definite requirement of the software application, an unconditionally stable time-

stepping procedure was needed. Selection of which procedure to use for algorithm 

development was based on a review of time-stepping procedures (Chopra 1995) that 

compared the solution results for a linear system using two procedures; Newmark's 

Average Acceleration Method and Wilson's Method. That review showed that Wilson's 

Method introduces numerical damping into the dynamic system, whereby the system 

displacement amplitude decays with time even in the absence of system damping. No 

amplitude decay is introduced by Newmark's Average Acceleration Method. Also, the 

tendency for numerical methods to elongate or shorten the natural period of response is 

reduced in the Newmark Method as compared to Wilson's Method, both of which induce 

a period elongation. In addition, a second Newmark procedure called the Linear 

Acceleration Method, which is conditionally stable, induces an even smaller period 

elongation than the Average Acceleration Method and is, therefore, more accurate than 

its unconditionally stable counterpart. For this reason, using the Linear Acceleration 
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Method is preferred over the other methods in situations where a conditionally stable 

procedure is allowable. 

With these properties in mind, both Newmark methods were selected for response 

analysis. This was done because there is no difference in the time-stepping algorithm 

between the two methods except for the value of two constants, y and B. Therefore, the 

superior accuracy of the Linear Acceleration Method could be utilized and provision 

made to switch to the Average Acceleration Method when required for stability reasons. 

3.3.2 Time—Stepping Overshoot Problem 

Integration of system response in a time-stepping procedure can give rise to 

significant error when the transitions in the force-deformation relationship associated 

with velocity sign changes are not followed closely. When the calculated response 

velocity Vj+i at time z+1 changes sign with respect to velocity V j this indicates that at some 

point during the time-step the response displacement either started increasing or 

decreasing. If the point at which the velocity went to zero during the time-step is not 

identified in the numerical procedure then the step-by-step path of the force-deformation 

relationship will "overshoot" the true path and the calculated displacement at the end of 

time-step z'+l will be either too large or too small. These departures from the exact path 

will occur at each reversal of velocity, leading to errors in the numerical results. 

To minimize the overshoot problem, the Newmark time-stepping algorithm uses a 

variable time-step when velocity sign changes are detected. The sign of the velocity is 

tested after each time-step and in the event of a sign change the integration is reset back 

to the beginning of the time-step. The time-step is then repeatedly bisected until the 

absolute value of the response velocity at the end of the reduced time-step is less than a 

preset fraction of the peak response velocity. The peak response velocity is assumed to 

be 10% ofthe peak ground velocity, which is conservative except for extremely short and 

extremely long natural period structures, based on a typical response spectrum. 

Assuming a peak response velocity based on peak ground velocity, rather than actually 
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calculating it, is done to eliminate the need to determine the peak response velocity from 

an initial guess of an appropriate minimum velocity and then iteratively adjusting the 

minimum velocity to be a fraction of the updated value of peak response velocity. 

3.3.3 Structural Model 

The type of structures that the software application is intended to model are those 

that may be represented as typical lumped mass idealizations consisting of shear walls or 

frames as the lateral load resisting elements. These idealized structures are further 

simplified to lateral-degree-of-freedom only models prior to response analysis to 

facilitate rapid calculation of the response time-history. Also, calculation of the 

displacement time-history is based solely on integration of the governing differential 

equation of motion, consequently, the second-order effect on lateral displacement 

produced by the vertical load acting on the structure in its displaced configuration is not 

considered in the displacement calculation. 

The mathematical representation of any type of structure is contained in its mass 

and stiffness matrices. For both types of structures considered in the software 

application, categorized as shear and frame, the mass matrix is diagonal owing to the 

assumption of lumped floor masses. Shear structures are considered to have rigid 

horizontal beams, slabs or diaphragms, which eliminates all rotational degrees of freedom 

and renders the stiffness matrix a lateral stiffness matrix automatically. Frame structures 

retain the rotational degrees of freedom at the intersection of horizontal and vertical 

elements since the horizontal elements are not considered rigid. The stiffness matrix is 

then reduced to a lateral stiffness matrix by eliminating the rotational degrees-of-

freedom through static condensation since it is assumed that no mass is associated with 

the rotational degrees-of-freedom. The static condensation process employs an L U 

decomposition and back-substitution procedure for the required matrix inversions. 
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For modal analysis and information purposes, the natural frequencies of the 

structure are determined by solving the structural dynamics eigenvalue problem given by 

the following: 

k<z) = cy 2 m^ [1] 

The eigensystem in Eq. [1] is solved by first transforming it into the standard eigenvalue 

problem by pre-multiplying by m"1. This gives: 

A<(> = 44> [2] 

1 2 

where A = m" k and X = co . In general, A is not symmetric although m and k are both 

symmetric matrices. The eigensystem is then solved using a Jacobi procedure that 

requires that A be a symmetric matrix, which is achieved by 

Ay = Ay [3] 

where A = m~ / 2 km / z and y = m"'/2<t> and X = co2. 

The mode shapes (§ n ) associated with the natural frequencies (con = VA.n) are 

determined by pre-multiplying the eigenvector matrix (yn) by mv\ The resulting mode 

shapes are normalized such that the generalized modal masses M n are 1. Re-

normalization of the mode shapes to 1 is straightforward. 

The distribution of damping in the structural model is determined by whether the 

system is linear or non-linear. Classical damping is assumed for linear systems to allow 

for modal analysis. For non-linear systems, damping may be specified as Rayleigh 

damping or as a multiple of a single baseline damping value for each storey. 
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3.3.4 Hysteresis M o d e l 

Modeling of the hysteretic restoring force in the equation of motion is done using 

the Bouc-Wen-Baber-Noori (BWBN) hysteresis model (Sec. 2.4.1), which was 

modified to reduce the number of parameters that need to be identified (see Sec. 3.3.4.4). 

The BWBN model is used because it is able to produce a wide variety of hysteresis 

shapes, including the pinching and degradation behaviour exhibited by many hysteretic 

systems, without the use of piece-wise linear equations governed by numerous empirical 

rules relating stiffness to displacement. 

3.3.4.1 Modif ica t ion to the B W B N model 

The BWBN hysteresis model introduces a state variable z into the equation of 

motion and separates the restoring force into non-hysteretic and hysteretic components. 

For an SDOF system, the equation of motion in standard form is then given by: 

ii + 2<^co0u + aco0

2u + (l - a)co2z = f(t) [4] 

where £, is the system damping ratio, coo is the natural frequency, a is the ratio of post-

yielding to pre-yielding stiffness,/^) is the mass normalized forcing function and z is the 

hysteretic displacement, which is described by the non-linear differential equation: 

where the parameters A, p y and n are the hysteresis shape parameters, v and r\ are the 

strength and stiffness degradation parameters, and h(z) is the pinching function given by 

the following: 

[5] 
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h(z)= l-<f, exp (zsgnfc) -qzu)2 

ti 
[6] 

where sgn() is the signum function, q is a constant parameter that sets the pinching level 
as a fraction of the ultimate value of z, and zu is the ultimate value of z. The parameters 
that control the severity and rate of pinching, respectively, are: 

£ = £ „ [ l - e x p ( - / > f f ) ] 

#2 =(^0+VX^ + ^ l ) 
[7] 

Finally, strength and stiffness degradation are modeled, respectively, by: 

v = 1 + £ u £ 

/7 = 1 + 5ne 
[8] 

where s is the dissipated hysteretic energy. 

In total there are thirteen separate parameters in the BWBN model that must be 
identified, although two of the parameters, A and n, are typically set to 1. The 
identification or estimation of suitable model parameters for a given structural 
configuration and material type is known as a system identification problem, which 
rapidly increases in difficulty as the number of parameters increases. To simplify the 
system identification problem the existing pinching function, which utilizes six 
parameters, was modified to have only three parameters. The remaining non-unity 
parameters; a, (5, y, 8V and Sn are more fundamental and were not altered. The revised 
pinching function is given by: 

h(u,z) = f 
f 

[(/? + /)• z]2 +u-[\ + sgnfc)- sgn(ti)] - [l - / ] • [lO - [fi + y)-u}2 [9] 
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where / = exp(-^ • s) and sgn( ) is the signum function as before. In this modified 

pinching function the role of each of the three new parameters; <p, ju and v, is more easily 

understood than the relationship between the six parameters of the original pinching 

function. The parameter (p controls the overall rate of increase in pinching as damage 

cycles progress, the parameter ju controls the rate of stiffness recovery throughout the 

loading phases of each cycle and the parameter v controls the rate of stiffness recovery 

during the increasing displacement portion of each loading phase. 

In modifying the pinching function the assumption was made that pinching occurs 

at zero restoring force, which is equivalent to the assumption that q = 0 in the original 

pinching function. Therefore, in effect, the pinching function has been reduced from a 

five parameter model to a three parameter model in its modified form. The assumption 

that pinching occurs at or very near zero restoring force was based on the observation that 

significant hysteretic pinching in overall cyclic structural behaviour is largely the result 

of structural damage associated with localized failures such as cracking and connection 

degradation due to material crushing. This structural damage decreases the initial 

stiffness at the very beginning of each loading cycle, until increasing displacement closes 

the cracks and connection gaps at which point stiffness begins to increase. Individual 

fasteners and reinforcement within the structure may continue to exhibit typical yielding 

behaviour where stiffness at the beginning of each loading cycle is equivalent to the 

elastic stiffness until yield is reached; however, the overall behaviour of a structure 

includes the cumulative effect of damage throughout the entire structure, which degrades 

initial stiffness at the outset of each loading cycle. 

Figure 3.1 shows a comparison of the original and modified pinching functions in 

the BWBN model for three types of cyclic behaviour corresponding to a structure 

subjected to an increasing amplitude sinusoidal displacement. The first two cases assume 

that pinching occurs at zero restoring force, with subsequent stiffness recovery or no 

stiffness recovery (Fig. 3.1, top and middle), while the third case illustrates pinching at a 

non-zero restoring force (Fig. 3.1, bottom). The hysteretic data was generated by 
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selecting the original parameters of the BWBN model such that the structure undergoing 

the sinusoidal displacement exhibited significant yielding and stiffness degradation 

behaviour and then the modified pinching function parameters were fitted to that 

hysteresis loop. From Figure 3.1 it can be seen that the modified pinching function 

provides a good fit to the original data when pinching occurs at zero restoring force, 

however, as expected, it increasingly underestimates the hysteretic force at the beginning 

of a loading cycle as the cycles progress when pinching occurs at a non-zero restoring 

force. Therefore, response displacement may tend to be overestimated using the 

modified pinching function in applications that exhibit pinching behaviour at a significant 

force. 

3.3.4.2 Numerical Solution of Hysteresis Model 

Determining the hysteretic displacement z in the differential equation of motion at 

each time-step in the Newmark procedure requires solution of Eq.[5], which is a first-

order, non-linear ordinary differential equation for which no exact solution exists. 

Therefore, a numerical solution method was required, which had to be incorporated into 

the Newton-Raphson iteration scheme in the Newmark Method. 

Initially, a fourth-order Runge-Kutta algorithm (Burden and Faires 1985) was 

developed and tested against the exact solution for hysteretic displacement z as a function 

of displacement u that exists for the non-degrading, non-pinching BWBN hysteresis 

model. Without the pinching and stiffness degradation terms in the model, the equation 

becomes a linear ordinary differential equation that has a piece-wise continuous exact 

solution defined by four equations that depend on the sign of velocity and displacement. 

Testing indicated that the numerical solution provided a very good approximation of the 

exact solution. Figure 3.2 shows a typical non-pinching, non-degrading hysteresis loop, 

with the associated exact equations, for one cycle of a sinusoidal input displacement. 
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Figure 3.1: BWBN Model Pinching Function Comparison 
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z = [A/((3+Y)][1-exp(((3+Y)(-u))] 

z = [A/(p+Y)][exp((P+Y)(u-u2))-1] 

Figure 3.2: Exact Solution of Non-Pinching, Non-Degrading BWBN Model 

The Runge-Kutta scheme is not usually the most computationally efficient 

method for solving non-linear ordinary differential equations but it was the starting point 

for developing a solution method because it succeeds in virtually all applications. The 

RK scheme is a one-step method where the approximation for zi+\ involves information 

from the previous step z, only, solution methods that use information from several 

previous steps are termed multi-step predictor-corrector methods. Predictor-corrector 

methods are more computationally efficient than Runge-Kutta for many smooth systems 

but they are more difficult to start-up because of the need for more past information. A 

predictor-corrector solution scheme called the Adams Fourth-Order Predictor-

Corrector Method (Burden and Faires 1985) was tested against the Runge-Kutta scheme 

and found to give the same accuracy (-0.01% - 0.02% difference) for the final value of z 

for the same number of sub-steps / within each time-step of a cyclic motion record. The 
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Adams Method has the added advantage that it runs approximately 25% faster. In this 

method, the fourth-order Runge-Kutta scheme is used to obtain starting values for the 

four-step Adams-Bashforth predictor method, which is then corrected by one iteration of 

the three-step Adams-Moulton method. The number of predictor-corrector steps 

following start-up depends on the level of accuracy required of the numerical solution. 

Implementation of the Adams Fourth-Order Method within the Newton-Raphson 

iterative process of the Newmark Method was initially completed using 100 predictor-

corrector steps within each Newton-Raphson iteration. This number of steps was 

selected as a good balance between accuracy and run-time following a comparison of 

numerical hysteretic displacement results with the exact solution for a non-pinching, 

non-degrading system undergoing cyclic oscillation. Displacement error varied from 

0.04% using 1000 predictor-corrector steps to 1.43% using five steps. The error for 100 

steps was 0.32%. 

Following testing of the completed Newmark algorithm using real earthquake 

time-histories as the input excitation, it was determined that response analysis time could 

be improved significantly if the number of steps in the Adams Method solution algorithm 

could be reduced, while maintaining accuracy. Therefore, a new Adams Method 

algorithm was developed that uses adaptive step sizes for solving the ODE describing the 

hysteresis loop. Step size is adjusted according to the error estimate determined by 

comparing the predicted and corrected values of the dependent variable (i.e. z) after each 

cycle of the predictor-corrector process. Step size is iteratively reduced by a factor of 

one-half until the error is within the prescribed tolerance and iteratively increased by a 

factor of two when the error is less than 1% ofthe prescribed tolerance. 

3.3.4.3 Consideration of Degrading Natura l Frequency 

Degradation in stiffness as the structural system response reaches the inelastic 

range has the effect of increasing the natural period of the structure, which affects the 

way the structure responds to subsequent excitation. The feasibility of modeling the 
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degradation of natural frequency during non-linear response was assessed by calculating 

the dynamic response of systems in which the original, undamaged natural frequency was 

multiplied by the square-root of the stiffness ratio at the beginning of each time-step. 

The stiffness ratio was defined as the ratio of current hysteretic stiffness to original 

hysteretic stiffness. Initial attempts to update the natural frequency after each iteration of 

the Newton-Raphson procedure resulted in convergence problems and instability in the 

response calculation. 

Assessment of the degrading natural frequency model showed that a minimum 

allowable stiffness ratio was required to prevent convergence problems associated with 

large displacements during time-steps where hysteretic stiffness approached zero. This 

situation, which may arise at response velocity sign changes or in the pinched region of 

the hysteresis loop, causes the stiffness ratio to approach zero and, consequently, natural 

frequency goes to zero. In this event, post-yield stiffness, given by the third term in Eq. 

[4], also approaches zero and extremely large deflections are incurred resulting in model 

convergence problems and instability. 

Limiting the reduction in natural frequency by adding a minimum allowable 

stiffness ratio to the dynamic analysis algorithm tended to eliminate the convergence 

problem but added an unwanted additional parameter to the hysteresis model. In fact, 

from a system identification perspective, updating the natural frequency throughout a 

non-linear dynamic analysis effectively adds two parameters to the hysteresis model; the 

minimum stiffness ratio and an implicit parameter that is similar to the stiffness 

degradation parameter (Sn). Consequently, the system identification process for the 

degrading natural frequency model will identify values of; a, /?, y, 8V, 8n, q>, JU and v that 

differ from those that would be identified without consideration of natural frequency 

degradation. However, the end result is the same, a phenomenological hysteresis model 

that provides a close match between model response and an input real response record or 

input pseudo-static test data. This implies that there is no need to include natural 

frequency degradation in the dynamic analysis algorithm since inclusion only alters the 
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hysteresis model parameters to match the given input at the cost of an additional 

hysteresis parameter and possible convergence problems. 

It should be noted that accounting for the inelastic response phenomena of natural 

period elongation within the phenomenological hysteresis model may increase the risk of 

model error when hysteresis parameters are estimated from pseudo-static test data. In a 

pseudo-static test there is little or no dynamic effect present in the response, therefore, 

the true impact of a degrading natural frequency is not reflected in the input data used for 

hysteresis parameter identification. This may in turn cause the pseudo-static model 

parameters to underestimate the true dynamic displacement response which now includes 

the actual consequence of a degrading natural frequency. This risk of underestimating 

the response displacement is not really the fault of accounting for period elongation 

within the hysteresis model, nor the fault of the system identification procedure itself, 

which only seeks to duplicate the input data, rather it is an unavoidable consequence of 

using pseudo-static data to calibrate a dynamic model. 

3.3.4.4 Parameter Identification 

As stated in Sec. 3.3.4.1, the determination of appropriate values for the modified 

hysteresis model parameters; a, ft, y 8V, 8n, cp, ju and v contained in Eqs.[4, 5, 8, 9] is 

known as a system identification problem, or more accurately, as a parameter estimation 

problem. System identification is the general name given to a wide field that seeks to 

infer a mathematical or algorithmic model of a dynamic system based on observed data 

from the system. Parameter estimation is the second stage of the two-stage system 

identification process that determines the numerical values of all the parameterized 

elements of the mathematical model identified in the first stage. In the present 

application, the model from the first stage of the system identification process is the 

newly modified version of the BWBN hysteresis model, which may be called a gray-box 

within the overall system framework governed by the equation of motion. The term 

gray-box is used to describe a model in which the adjustable parameters have a physical 

interpretation such as the stiffness degradation parameter in the BWBN model. A model 
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in which the parameters are simply vehicles for adjusting the fit to the available data and 

do not reflect physical considerations in the system is referred to as a black-box. 

There are two common approaches to minimizing the error between a predictive 

model and the observed data on which it is based (Ljung 1999). The first approach, 

termed the prediction-error approach, is to form a scalar-valued norm or criterion 

function that measures the size of the prediction error and then choose the parameters that 

minimize the norm or function. This approach contains several well-known procedures 

such as the Least Squares Method and the Maximum Likelihood Method. The other 

approach, termed the correlation approach, is to require that the prediction error be 

uncorrelated with a given data sequence. In other words, the model parameters must be 

chosen such that the prediction error at every step in the sequence of observed data is 

independent of the previous steps. This approach is the basis for various instrument-

variable methods, which are most suited to auto-regression type (ARX) system models 

that describe the relationship between input and output using a linear difference equation 

containing previous values of the output variable. Using this type of model is equivalent 

to treating the entire system as a black-box, which by definition casts the parameter 

identification problem completely in the observation space, in terms of the observed input 

and output, without any reference to the underlying mechanics of the system. 

Given that the parameters to be identified apply only to the gray-box hysteresis 

model and not an overall black-box system, the prediction-error approach was adopted 

for developing an algorithm to identify hysteresis parameters from input data. For 

reasons of simplicity, the quadratic norm of the Least Squares Method was chosen over 

the likelihood function of the Maximum Likelihood Method to measure the size of the 

prediction error associated with a given trial parameter vector 6. Therefore, the 

generalized error norm is given by: 

[10] 
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where l(.) is the quadratic norm, 1(e) = 'A e2, ZN is the observed dataset and the prediction 

error sequence e is given by: 

For predictor models that are a linear function of the parameters to be identified, the 

prediction error sequence becomes: 

and the resulting least-squares norm, given by substitution into Eq. [10], becomes a 

quadratic function in 6 that can be minimized analytically to determine the optimal 

parameter set. In general, however, Eq. [10] cannot be minimized analytically, as is the 

case for the gray-box hysteresis model, therefore, the minimum has to be found by 

iterative numerical techniques. 

Numerical minimization methods can be divided into three groups; (i) methods 

using values of the function VN only, (ii) methods using values of the function VN and its 

gradient, and (iii) methods using values of the function VN, its gradient and its Hessian, 

which is the second derivative matrix or curvature matrix. For the special case of the 

Least Squares Method, the gradient of the criterion function is given by: 

where y/(t,6) is the dxp gradient matrix ofy(t\6) with respect to 0. This leads to a family 

of search routines given by: 

[11] 

s{t,9)=y{t)-<pT{t)-e [12] 

[13] 

[14] 
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where Rjl) is a d x d matrix that modifies the search direction and jUf/l) is the step size. If 

RN® is defined as the identity matrix, Eq. [14] becomes the steepest-descent method, 

which corresponds to the second group of methods listed previously. This method has 

the drawback that it is fairly inefficient close to the minimum of Eq. [10], which is the 

reason the Hessian is used in the third group of methods, to improve efficiency. The 

Hessian for the Least Squares Method is given by: 

where y/'(t,6) is the d x d Hessian of e(t,6). The third group of methods utilizes the 

Hessian as the search direction matrix R, which then makes Eq. [14] a Newton method. 

It is quite costly, however, to compute all the terms of \|/' so the second term in Eq. [15] is 

typically ignored, which is equivalent to replacing the Newton-Raphson method with the 

modified Newton-Raphson method. This is permissible since a good estimate of the 

Hessian is only required in the vicinity of the minimum for a Newton method and the 

term multiplying the second derivative in Eq. [15] is the random error e(t,d), which can 

have either sign and should in general be uncorrelated with the model. Therefore, the 

second derivative terms tend to cancel out when summed from t — 1...N. The actual 

implementation of a search scheme using the Hessian is commonly done using a method 

called the Levenberg-Marquardt procedure that smoothly varies between the two 

extremes of Eq. [14], the steepest descent method and the inverse-Hessian method. In 

this procedure, the step-size is set equal to unity {jiN

(i> = 1) and the search direction 

matrix, R, is modified by adding a parameter to the Hessian as follows: 

*i? W = II A'W )• V ' )+ M [16] 

where A, is a positive scalar that is used to control the convergence in the iterative scheme. 

In a search region far from the minimum value of the norm, A, is set to a large value, 

which effectively reduces the step-size and turns the search direction towards the 
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gradient as in the steepest-descent method. As the minimum is approached, X is 

iteratively reduced to zero, which smoothly switches the procedure to the inverse-

Hessian method. 

While the notion of using a parameter estimation method that identifies the 

optimal model parameter vector 6 through an automated search for the minimum of the 

least-squares norm is appealing, there is a practical difficulty in implementing such a 

scheme. To use the formulas given previously, the gradient of the prediction, y/(t,6), 

must be calculated at each step of the input data sequence. There are a number of 

methods for doing so, the choice of which depends on the model structure, but for each 

method the computational effort required to compute the gradient can be significant. The 

only alternative to expending that computational effort is to implement a Group 1 

method, which uses values of the function F^only, in conjunction with a specific search 

pattern. Since the gray-box hysteresis model contains eight parameters to be estimated, 

resulting in an eight-dimensional gradient for a Group 2 or Group 3 method, the Group 1 

method, combined with a directed search, was used to develop an algorithm for 

estimating the hysteresis model parameters. 

It is an inherent feature of iterative search routines that only convergence to a 

local solution is guaranteed, in this case the local minimum of VN (0, ZN). To find the 

global minimum, which gives the optimal parameter vector 6, there is no other way than 

to start the iterative minimization routine at different feasible initial values and compare 

the results. For a physically parameterized model, such as the gray-box hysteresis 

model, feasible initial values and an associated search pattern may be determined from 

physical insight into the model structure. Consideration of the physical meaning of each 

of the modified BWBN hysteresis parameters showed that the dominant parameters are 

the post-yield stiffness parameter, a, and the two parameters that control the non-

degrading shape of the hysteresis loop, /? and y. From that starting point, a three-stage 

algorithm was developed that begins by evaluating combinations of those three 

parameters that satisfy both Eq. [ 4 ] , the differential equation of motion, and Eq. [5], the 

differential equation of hysteretic displacement, for a given input data record. The input 
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data is taken from either a pseudo-static cyclic displacement test or an acceleration 

response time-history of the structure for which the hysteresis parameters are to be 

identified. The actual number of parameter combinations that satisfy both differential 

equations depends on the yield displacement of the structure but the upper limit on the 

possible number of combinations evaluated for least-squares error is set at 3,960,000. 

This covers values of a that range from 0.01 to 0.99 and values of B and y that 

correspond to a yield displacement range of 0.007 - 2.000 m. 

Once the least-squares error combination of the three dominant parameters is 

roughly determined, the second stage of the algorithm evaluates trial values of the 

pinching parameters, cp, pi and v, while refining the precision of a, B and y. As many as 

69,300 parameter combinations are evaluated for least-squares error, depending on the 

initial values of a, B and y identified in the first stage. The decision to identify the 

pinching parameters before the stiffness degradation parameter, 8n, which overlap in their 

physical role in the hysteresis model, was made following comparisons of model fits with 

each parameter type identified first. Identifying pinching parameters before the stiffness 

degradation parameter is perhaps intuitive since the stiffness reduction associated with 

pinching is considerably larger, but localized to a portion of each loading phase, than the 

stiffness reduction associated with the stiffness degradation parameter, which applies 

throughout the hysteresis cycle. Therefore, attempting to fit the stiffness degradation 

parameter before the pinching parameters results in identifying a range of possible values 

with similar and relatively large least-squares errors that adequately model the stiffness 

reduction in a certain portion of the loading phase but do a poor job in the remainder of 

the loading phase. 

The third stage of the parameter estimation algorithm finalizes the hysteresis 

model parameter vector by evaluating the least-squares error for 289 trial values of the 

strength and stiffness degradation parameters, 8V and 8n, in combination with the other 

parameters identified in the second stage. 
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3.3.4.5 Parameter Adjustment for M D O F Structures 

For non-linear dynamic analysis of a multiple-degree-of-freedom structure, the 

hysteresis model parameters, which are identified from structural test data corresponding 

to a certain stiffness and yield strength, must be adjusted for each different storey 

stiffness and yield strength. This adjustment is straightforward for the parameters related 

to yield strength, y and /?, which are simply modified by the ratios of storey stiffness to 

test structure stiffness and storey yield strength to test structure yield strength to maintain 

the proper storey yield displacement. The post-yield stiffness parameter, a, is assumed 

to remain constant. The remaining hysteresis parameters control pinching behaviour and 

strength and stiffness degradation as a function of the dissipated energy, which is 

calculated as the area of the hysteresis loop. The assumption that is made in adjusting 

these parameters is that a similar structural system with a different stiffness and/or yield 

strength that experiences a similar level of energy dissipation, normalized with respect to 

the calculated yield energy, will exhibit a similar degree of pinching and strength and 

stiffness degradation as the response history progresses. Using this assumption, the 

energy-related hysteresis parameters for each storey are adjusted such that the product of 

the parameter and the constant terms multiplying the normalized dissipated energy is 

constant (see Eqs. [8] and [9]). 

3.3.5 Fourier Analysis and Power Spectrum Estimation 

Generation of artificial earthquakes for Monte Carlo analysis of structural 

dynamic response requires a frequency spectrum source that contains the spectral 

characteristics of the type of earthquake being studied for its impact on structural 

response. This frequency spectrum source may be a white-noise Gaussian process that is 

filtered to give the required spectral shape or, alternatively, it may be determined from an 

actual earthquake record. When using an actual record the power spectral density, which 

describes the contribution of the individual harmonic components in a random signal, 

must be determined from a Fourier transform analysis of the discretely sampled ground 

acceleration data. This analysis is typically performed by the well-known fast Fourier 
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transform or FFT algorithm. The salient details of the FFT algorithm and an associated 

spectral analysis algorithm that were adapted for use in the software application being 

developed in this project are summarized in the following. 

3.3.5.1 F F T Algorithm 

The FFT algorithm, first developed by Cooley and Tukey in 1965, is based on a 

recursive application of the Danielson-Lanczos Lemma, which was developed in 1942. 

The Danielson-Lanczos Lemma divides the discrete Fourier transform of a function 

consisting of N discretely sampled points into the sum of two discrete Fourier transforms, 

each of length TV/2. Each individual transform is made up of the even-numbered and 

odd-numbered points in the original N, respectively. Through recursive application of 

the Danielson-Lanczos Lemma, the original Fourier transform is repeatedly subdivided 

in half until transforms of unit length are obtained, assuming the original N is an integer 

power of two. If the length of the original dataset is not a power of two, it must be 

padded with zeroes up to the next power of two. With the input data subdivided down to 

transforms of unit length, the Fourier transform of the single data point is simply the 

identity operation, in other words, the transform of the point is the point itself. The 

computational efficiency of the FFT algorithm over the slow Fourier transform comes 

from a data indexing system that is based on recording the pattern of even and odd data 

points during recursive application of the Danielson-Lanczos Lemma as a binary 

number. Using a bit reversal procedure, the original data is rearranged into bit-reversed 

order that allows for a highly efficient method of recombining the one-point transforms 

into two-point transforms, the two-point transforms into four-point transforms and so on 

until the final transform is obtained. 

The efficiency of the FFT algorithm reduces the computational effort required to 

estimate a Fourier transform of length N from an 0(N2) process using the slow Fourier 

transform algorithm to an 0(N log2 A7) process. This difference is best understood when 

illustrated by the example of a function with TV = 10 6 discrete points. The computational 

effort involved in using the slow algorithm is 50,000 times greater than that using the 
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FFT, which in terms of computation time translates to one second versus 14 hours. For 

an earthquake acceleration record with 7V = 1500 discrete points, the computational effort 

in estimating the Fourier transform is decreased by a factor of 142 when using the FFT 

algorithm. 

It is worth noting that other classes of FFT algorithms exist, such as those that 

subdivide the initial dataset of length N to some small power of two, rather than to the 

trivial transform of unit length. These are called base-4 FFT's or base-8 FFT's. There 

are also FFT algorithms for datasets of length /V that are not a power of two. They work 

by using relations analogous to the Danielson-Lanczos Lemma that subdivide the initial 

problem into successively smaller problems, not by factors of two, but by whatever small 

prime factors happen to divide N. The larger the largest prime factor of N is, the slower 

this method becomes until it reverts to the slow Fourier transform when N is prime and 

no subdivision is possible. One example of this method is the Winograd Fourier 

transform class of algorithms that, for some values of N, may be up to twice as fast as the 

simpler FFT algorithms based on dataset lengths of an integer power of two. This 

advantage in speed, however, is offset by considerably more complicated data indexing 

and the fact that the operation cannot be done in-place, where.the original dataset is 

replaced by its Fourier transform. 

3.3.5.2 Power Spectrum Algorithm 

Following computation of the Fourier transform of a function or dataset, the 

estimation of the associated power spectral density (PSD) depends on the type of 

normalization applied to one of several possible descriptions of the functions total power. 

For a function c(t) sampled at Appoints to produce values CQ, C\...CN-\, total power may 

be described by: 

[17] 
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I j k O f d - l t W 2 [18] 
1 0 7 V 7=0 

])c(0| 2^« AXK-|2 [19] 
0 7=0 

These descriptions of total power are termed the sum squared amplitude, mean squared 

amplitude and time-integral squared amplitude, respectively. If the estimation of the 

power spectral density of c(t) is done using a periodogram estimator of the power 

spectrum, then the estimate is defined at NI2 + 1 frequencies as: 

/ ,(o)= Jp(/o)=T | T |c 0r 
N 

1 |2 \„ |2 
/ ? ( A ) = ^ r R l + IC"-*I J (*=1,2. . .M2-1) [20] 

^(/e) = W w , 2 ) = ^ r | c w / 2 r 

where Ck is the discrete Fourier transform of the function c(t) given by: 

»Z\ 2mjk/ 

Ck=YuCie
 (* = 0, 1..JV-1) [21] 

7=0 

a n d i s defined only for the zero and positive frequencies as follows: 

f^^ = 2^Tr (7t = 0,l.../V/2) [22] /VA /V 

The normalization associated with the periodogram estimate of the power spectral density 

is such that the sum of the NI2 + 1 values of P is equal to the mean squared amplitude of 

the function c(t). This can be seen by comparing Eq. [18] with Parseval's theorem, which 

is given by: 
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A M 1 A M 

k=0 l y n=0 

[ 2 3 ] 

As seen from Eqs. [20], the PSD is defined over the frequency range from zero to 

the Nyquist critical frequency, fc = 1/(2A) where A is the sampling time interval. 

Integration of the PSD beyond the Nyquist frequency is unnecessary since, according to 

the sampling theorem, any power outside of the Nyquist interval will be aliased into the 

interval by the act of discrete sampling. In other words, the frequency components of a 

function that is not bandwidth limited to less than the Nyquist frequency are aliased, or 

falsely translated, into the interval (-fc, fc) automatically by discrete sampling. This is a 

result of the fact that estimation of the Fourier spectrum from the sampled data, which is 

taken from a continuous analogue signal, results in an estimated spectrum that is periodic 

with period 1/A and symmetric about the zero frequency position. Any frequencies 

higher than fc in the original signal distort the calculated spectrum by aliasing towards 

higher frequencies, which distorts the Fourier coefficients for frequencies below the 

Nyquist frequency. However, if a continuous function h(t) that is sampled at an interval 

A happens to be bandwidth limited to frequencies smaller in magnitude than fc, then the 

function h(t) is completely determined by its samples, h„. In fact, h(t) is given explicitly 

by the formula: 

The spectrum distortion associated with aliasing can only be dealt with prior to 

sampling, once the signal has been discretely sampled there is little that can be done to 

remove aliased power. Therefore, to overcome aliasing, provision must be made ahead 

of time to sample the signal at a rate that gives at least two points per cycle of the highest 

frequency present, which is either known ahead of time from the natural bandwidth limit 

of the signal or else enforced by analog filtering of the continuous signal with a lowpass 

linear filter prior to sampling. Following data collection it is a simple matter to determine 

[24 ] 
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if the signal has been properly sampled, if the Fourier transform does not approach zero 

as the frequency approaches fc from below then it is likely that frequency components 

outside the Nyquist range have been translated into the critical range. In this event, the 

Fourier transform cannot be assumed to be zero beyond the Nyquist frequency. 

From the perspective of earthquake spectrum estimation and dynamic structural 

response analysis, the issue of aliasing is not particularly worrisome since a lightly 

damped structure, which is applicable to most practical civil engineering structures, acts 

like a narrow-band filter resulting in a sharply peaked response at the undamped natural 

frequencies of the structure. This means that the major contribution of the power spectral 

density to the dynamic response is obtained in the vicinity of the natural frequencies of 

the structure and the value of the power spectral density outside that vicinity does not 

significantly affect the response (see Eq. 2.11 and Fig. 2.1). Therefore, under the 

assumption that the earthquake ground acceleration has been sampled to capture 

frequencies up to perhaps 25 Hz, the spectrum distortion associated with aliasing will 

have little if any effect on even the higher modes of response, which will typically have 

natural frequencies much less than 25 Hz. 

Of more concern in calculating the periodogram estimator of a power spectrum 

are the issues of accuracy in the face of frequency leakage and minimizing the variance 

of the estimator. The first issue of frequency leakage between the discrete frequency 

components in the periodogram is a consequence of the values of P(fk) in the 

periodogram estimate not being exactly equal to the continuous P(f) at frequency k since 

fk is supposed to be representative of a whole frequency bin extending from halfway from 

the preceding discrete frequency to halfway to the next one. This problem is addressed 

by data windowing in which the original data is multiplied by a window function Wj that 

changes smoothly from zero to a maximum and then back to zero as j ranges from 0 to N. 

A smooth window function merely improves on the square window function inherent in 

any finite sample length N that has been obtained, in effect, by multiplying an infinite 

record by zero except during the total sampling time, T = NA, when it is multiplied by 1. 

Thus the square window is in essence an ideal lowpass filter with a stopband or cutoff 
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frequency equal to \IT. By the convolution theorem, the Fourier transform of the product 

of the data and the window function is equal to the convolution of the data's Fourier 

transform with the window's Fourier transform. Without data windowing, the Fourier 

transform of the inherent square window, which has large side lobes beyond the cutoff 

frequency due to the abrupt changes in window amplitude between zero and 1, results in 

a convolved Fourier transform with substantial components beyond the cutoff frequency. 

This in turn leads to leakage in the calculated power spectrum. Using a smooth window 

function counteracts frequency leakage by reducing the side lobes of the convolved 

Fourier transform (see Fig. 3.3). The window function that has been incorporated into 

the power spectrum algorithm of the software application is known as the Bartlett 

window, which has a triangular form given by the following: 

Figure 3.3: Square Window, Bartlett Window and Fourier Transforms 
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The second issue in calculating the periodogram estimator of a power spectrum, 

which is minimizing the variance of the estimate, is achieved by a frequency averaging 

technique that segments the data into K segments of 2M data points that are separately 

FFT'd to produce K individual periodogram estimates. These K periodograms are then 

averaged to obtain a PSD estimate at M + 1 frequencies between zero and the Nyquist 

frequency (fc). This averaging process reduces the variance of the PSD estimate by a 

factor that depends on how the data in each segment is overlapped with adjacent 

segments. The best method of overlapping depends on whether variance reduction is 

being done to obtain the smallest spectral variance from a fixed amount of computation 

or whether variance reduction is being done to obtain the smallest spectral variance per 

data point. In the first case it is best to segment the data without any overlapping, which 

requires 2KM data points, and results in variance reduction by a factor K. In the second 

case, which minimizes variance from a fixed number of available sampled data points, 

the segments should be overlapped by one half of their length resulting in variance 

reduction by a factor of approximately 9KI\ 1 for (K + \)M points. 

Since the spectral analysis algorithm is intended to calculate the power spectrum 

of earthquake ground acceleration data that has already been recorded, the second method 

of variance reduction using overlapping segments of 2M data points was the one that was 

incorporated into the calculation of the periodogram estimator. The value of M, which 

determines the number of frequency values between zero and fc, is set within the 

algorithm based on the time-step of the input ground acceleration record. Table 3.1 lists 

the power spectrum frequency resolution for different input time-steps. 

Table 3.1: Power Spectrum Frequency Resolution 

I lmc Step ibjc) 

>0.04 512 

> 0.02 1024 

> 0.01 2048 

<0.01 4096 
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The number of data segments, K, is determined from the frequency resolution, M, and the 

number of data points in the acceleration record, which is doubled in length prior to 

determining K. The acceleration record is then padded with zeroes to provide a total of 

(K+ \)Mpoints for spectrum estimation. 

3.3.6 Acceleration Record Filtering 

An algorithm to frequency-filter the input earthquake record, as well as any 

generated earthquake records, was developed to allow for the removal of a chosen 

number of high frequency and low frequency components in the record(s). This filtering 

option was included in the software application to ensure that the ground acceleration 

record being used for structural dynamic response analysis is truly representative of a real 

earthquake. The ground displacement in a real earthquake, for example, typically 

oscillates around a zero mean and comes to rest with a small or zero final displacement. 

For certain records that contain low frequency components, however, the calculated 

ground displacement may oscillate around a dominant low frequency or exhibit 

significant drift over the duration of the earthquake, resulting in a final displacement that 

is seriously in error. 

The filter that is used for removing unwanted frequencies from the acceleration 

record is a cosine-type window that transitions between 0 and 1 as follows: 

window(f ) = 

y = -

y ~ 9 + V Jlow_\)' r r 
J low-. 2 J low 1 

n 
y = 2 

y = ^ + ( f - f h i g h j ) - - — -

1 + sin(y) 

r> v J high _ 1 / r r 
^ Jhighjl ~ Jhighl 

f^flaw.i OV f^fl high_2 

flow 1 < f < fl low 2 

flow 2 — f — fhu high_\ [26] 

fhigh 1 < f < fh high _ 2 
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where fiowj, fiowj., fhighj and fhighj. are the window transition frequencies. Using this 

window, the structure of the filtering algorithm is based on a visual inspection of the 

calculated ground displacement over the time-history of the acceleration record. The 

unfiltered ground displacement time-history is displayed onscreen in the software user 

interface and the user then adjusts the low frequency and high frequency window 

transitions until the resulting ground displacement time-history, which overlays the 

unfiltered time-history, is deemed acceptable. To aid in determining the effect of 

removing high and low frequency acceleration components; the minimum, maximum, 

average and final ground velocities and displacements are summarized in the visual 

display of the displacement time-history. This allows the user to, for example, adjust the 

cosine window transitions to filter the acceleration record such that the final ground 

velocity is close to the physically required value of zero. The calculation of the ground 

velocity and ground displacement time-histories from which the minimum, maximum, 

average and final values are determined is done in the frequency domain to reduce the 

accumulation of error inherent in the double integration procedure required in the time 

domain. 

3.3.7 Random Number Generation 

A reliable source of random numbers is essential for any sort of stochastic 

modeling or Monte Carlo analysis to ensure that a random quantity is as close to truly 

random as possible within the confines of a deterministic computer. An informal 

definition of randomness in the context of computer-generated sequences is that the 

deterministic algorithm that produces a random sequence should be different from, and in 

all measurable respects statistically uncorrelated with, the computer program that uses its 

output. The computational issues related to generating reliable random sequences are 

summarized in the following along with a description of the algorithms that were 

incorporated into the software application for use in randomizing structural properties 

and generating artificial earthquake time-histories. 
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The simplest method of generating random numbers for use in a computer 

program is to use the routine that has likely been provided in the language the program is 

written in. While this is a convenient means of generating random numbers it can lead to 

serious violations of the assumption of uncorrelated random sequences when a large 

number of random numbers is required. System-supplied random number generators are 

typically linear congruential generators, which generate a sequence of integers I\, h, h, 

each between 0 and m - 1, by the recurrence relation: 

where m is the modulus and a and c are positive integers called the multiplier and the 

increment, respectively. The recurrence given by Eq. [27] will eventually repeat itself 

with a period that has a maximum length m for properly chosen values of m, a and c. 

Improperly chosen values of the modulus, multiplier and increment will result in a 

considerably shorter period length. This then leads to two shortcomings of using a 

system-supplied random number generator, firstly, some computer manufacturers have 

made exceedingly poor choices for m, a and c (Press et al. 1999), thereby seriously 

shortening the repeat period. Second, the value of m, which is the largest possible 

random number, is often not very large on many computers. The American National 

Standards Institute (ANSI) standard for the C language, which was used to develop the 

software application, requires only that the system-supplied routine rand() return an 

integer that is at least 32,767'. This number is far too small for the random number 

intensive process of generating earthquake time-histories for Monte Carlo analysis. For 

example, generating a single Poisson process type earthquake similar to the 116 second 

Chile Llollelo event, sampled at 200 Hz, requires approximately 70,000 random numbers, 

which means that the entire random number table would be used more than twice for 

each artificial record that was generated. Clearly, the records are then highly correlated 

and not close to being truly random as required in a Monte Carlo analysis that may use 

thousands of earthquake records. 

= al j + c (mod m) [27] 
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To eliminate the potential problems associated with system-supplied random 

number generators and machine specific choices for the recurrence equation parameters, 

a number of portable random number generators that can be implemented in various 

programming languages on various machines have been developed. The generator that 

was implemented in the software application is based on a multiplicative congruential 

algorithm given by: 

IJ+l = aij (mod m) [28] 

Using this simple recurrence relation, Park and Miller (1988) developed a Minimal 

Standard generator that is based on the choices: 

a = 75 =16807 m = 2 3 1 -1 = 2147483647 [29] 

This Minimal Standard generator, first proposed in 1969, has a period of 2 3 1 - 2 ~ 2.1 x 

109 and has passed all theoretical statistical tests since its inception. The portability of 

this generator to essentially any programming language on essentially any machine is due 

to its ability to work with numbers generated by Eqs. [28, 29] that exceed the maximum 

value for a 32-bit integer, which is the limit for a high-level language. Using a 64-bit 

product register in Assembly language would allow the equations to be used directly but 

the implementation would not be portable between machines. 

The implementation of the Park and Miller Minimal Standard random number 

generator in the software application returns a uniform random deviate between 0.0 and 

1.0, exclusive of the endpoint values. A small improvement on the basic Minimal 

Standard algorithm, called the Bays-Durham shuffle, is included in the generator to 

remove subtle low-order serial correlations present in the basic generator. This shuffling 

algorithm shuffles the output such that the y'fh value in the sequence, Ij, is output not on 

the y'fh call, but rather on a randomized later call, which occurs at j + 32 on average. This 

generator has been shown to pass all statistical tests up to the point where the number of 

calls starts to become on the order of 5% ofthe period m. Therefore, for applications that 
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require less than approximately 100,000,000 random numbers in a single calculation this 

generator has no known flaw. Clearly, this is well within the maximum demand imposed 

by the sort of Monte Carlo analysis mentioned previously. As an aside, there are other 

well-accepted random number generators with much longer periods that could have been 

incorporated into the software application, however, their relative execution times are 

significantly longer. These generators, which have periods of ~ 2.3 x 1018 and beyond, 

provide random number sequences that are, for all practical purposes, impossible to 

repeat on existing computers. These types of random number generators are used in 

cryptographic systems. 

Since the randomization of structural properties requires random deviates that 

follow distributions other than the uniform distribution, provision was made to generate 

random numbers that also follow the normal, lognormal, Gumbel, Frechet and Weibull 

distributions. Random sequences with each of these distributions are generated from a 

sequence of random numbers uniformly distributed between 0.0 and 1.0 using the well-

known inverse transformation method. This method uses the inverse of the cumulative 

distribution function (CDF) of a variable to map the uniform random numbers to values 

that follow the required distribution. 
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CHAPTER 4 

S O F T W A R E F R A M E W O R K AND U S E R - I N T E R F A C E 

4.1 I N T R O D U C T I O N 

Following development of the key solution algorithms and numerical components 

that form the foundation of PSResponse, which was outlined in Chapter 3, the overall 

architecture of the software that links all the sub-components together with the user 

interface was constructed. Chapter 4 summarizes that architecture beginning with a 

flow-chart description of the core computational framework in Section 4.2. In Section 

4.3, the structure of the user-interface that overlays the computational framework is 

briefly described followed by a more detailed look at the user-interface in Section 4.4. In 

this more detailed look, the key software features available to the user are illustrated 

using screen captures taken from various types of dynamic analysis. 

4.2 C O M P U T A T I O N A L F R A M E W O R K 

The calculating engine of PSResponse consists of approximately 79 algorithms 

linked together in an object-oriented framework that can be loosely divided into six 

groupings for illustrative purposes. These six groupings are shown in Figure 4.1 to 

Figure 4.6. With the exception of the User Input box in Figure 4.1 and the Store Results 

box in Figure 4.5, each box in each figure corresponds to a separate algorithm that is 

linked or called by other algorithms in the manner shown. For purposes of simplicity and 

clarity, some algorithms are shown in more than one figure to avoid too many cross-links 

between figures. 

It should be clear that the computational framework illustrated in Figure 4.1 to 

Figure 4.6 shows all the algorithms and associated links to provide the entire 
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functionality of PSResponse. The actual logical path that a particular PSResponse 

analysis would follow depends, of course, on the options selected and type of dynamic 

analysis performed. 
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4.3 U S E R - I N T E R F A C E S T R U C T U R E 

The user-interface that overlays the computational framework is based on a 

wizard manager architecture that guides the user through a series of Windows-driven 

input and output dialog boxes. The wizard manager algorithm, which acts as the link 
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between the dialog boxes and the computational framework, determines the dialog box 

sequence, passes information between dialog boxes, passes input data to computational 

algorithms and stores both input data and output arrays. The basic structure of the 

algorithm, in terms of the general order in which user input is collected, is outlined by the 

simplified flow-chart in Figure 4.7. Although not shown, there are a total of 36 separate 

paths through the flow-chart in which the flow-chart boxes typically represent a single 

dialog box in the user-interface. In some instances, however, several dialog boxes are 

associated with a single flow-chart box. 
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4.4 S O F T W A R E F E A T U R E S 

The user-interface, outlined schematically in Figure 4.7, is best illustrated using 

screen captures of the dialog boxes and onscreen plots available to the user as well as 

sample printouts of dynamic analysis results. These screen captures along with 

explanatory notes, which are shown in the following sections without further comment, 

will serve to present the key features of the dialog boxes and the analysis options 

available. 
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4.4.1 General Input Parameters Dialog Box 
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Figure 4.8: General Input Parameters Dialog Box 

Option Notes 

Oscillation Response Input motion is specified as a superposition of sine waves for 
structural and connection test protocols. 

Single Earthquake Response Detailed response analysis of a single earthquake including 
response spectra option and onscreen response time4iistory plots. 

Multiple Earthquake Response Summary level response results for multiple earthquakes. 
S ingle-Degree-of-Freedom 1-D structure with fixed base. 

Multiple-Degree-of-Freedom 
(Shear) 

2-D structure with rigid floor diaphragms. 

Multiple-Degree-of-Freedom 
(Frame) 

2-D structure with flexible floor beams. 

Elastic Response Elastic response is assumed regardless of displacement. 
Inelastic Response Inelastic response is modeled using input hysteretic data. 

Newmark Average Acceleration 
Method 

Unconditionally stable numerical solution method. This method 
is automatically selected for inelastic MDOF analysis. 

Newmark Linear Acceleration 
Method 

Default numerical solution method. 

Tolerance Tolerance relative to encoded default values. This field is used to 
multiply the default values. 



Chapter 4 Software Framework and User Interface 117 

4.4.2 Multiple Earthquake Analysis Parameters Dialog Box 
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Figure 4.9: Multiple Earthquake Analysis Parameters Dialog Box 

Option Notes 

Inverse FFT 
Earthquakes are generated using an inverse Fast Fourier Transform 
process where the components of the input earthquake frequency 
spectrum are randomized with uniform random numbers. 

Filtered Poisson Process 

Generated earthquakes are modeled as the sum of a series of 
independent impulses arriving at Poisson distributed times. The 
independent pulses have random frequencies with a probability 
density based on the spectral density of the input earthquake record. 
Phase angles of the independent pulses are uniformly randomly 
distributed from 0 — » 2n. 

Random Phases 

Earthquakes are generated using the Spectral Representation 
method with harmonic frequency phases uniformly randomly 
distributed from 0 —* 2n. All generated earthquakes have an 
autocorrelation function that matches the input earthquake record. 

Random Phases and Frequencies 

Same as above except the harmonic frequencies are also random 
variables with a probability density based on the spectral density of 
the input earthquake record. This tends to concentrate random 
frequencies around the peak of the input power spectrum. 

Filtered Gaussian White-Noise 
The input spectral density for generating earthquakes is constructed 
by shaping a constant white-noise spectrum with a low-pass 
Kanai-Tajimi filter and high-pass Clough-Penzien filter. 

Earthquake Record The input spectral density for generating earthquakes is taken from 
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the calculated power spectrum of an input earthquake record. 
Deterministic A l l structural properties and damping values are constant. 

Random 
Structural properties and damping values are random variables 
following a selected probability distribution. A random structure is 
generated for each earthquake response analysis. 

4.4.3 Single—Degree—of-Freedom Properties Dialog Box 

Natural Frequency™-• 

(" Specify Directly 

** Specify Mass and Stiffness 

Mass J0.00 

Stiffness JO tSO 

Calculate Frequency 

(kN/m) 

Frequency jO.OO (Hz) 

Structural Damping 

Value 000 IX critical) 

Cancel Next > 

Figure 4.10: Single-Degree-of-Freedom Properties Dialog Box 

Option Notes 

Specify Directly The natural frequency of the structure is input directly. This option will 
disable the Mass and Stiffness fields and Calculate Frequency button. 

Specify Mass and Stiffness 
The natural frequency of the structure is determined from input values 
for mass and stiffness. The Calculate Frequency button updates the 
natural frequency. 
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4.4.4 Mul t ip le -Degree-of -Freedom Shear Structure Properties Dialog Box 

• Shear Structure Geometry-

Number of Storeys (2-20) 

•BaseBne Values -

Storey Mass 

Storey Lateral Stiffness 

Storey Height 

0.00 

0.00 

0.00 

(kg) 

(kN/m) 

N 

t- Baseline Multiples -

Baseline values ate multiplied by the following specified 
factors to give the mass, storey stiffness and storey height 
distribution of the shear structure. 

If mote than one shear wal is present on a given storey, the 
multiplication factor should account for the total lateral 
stiffness. 

Yield multiples are the relative yield strength ratios. Baseline 
yield strength is determined later from input data. 

Storey Mass Stiffness Height Yield 

1 1.00 1.00 1.00 1.00 
2 1.00 1.00 1.00 1.00 
3 1.00 1.00 1.00 1.00 
4 1.00 1.00 1.00 1.00 

Cancel Next > 

Figure 4.11: Multiple-Degree-of-Freedom Shear Structure Properties Dialog Box 

Field Notes 

Baseline Values 
Baseline values for storey mass, storey lateral stiffness and storey height are used 
to allow a regular structure to be quickly specified as a pattern of baseline 
multiples. 

Baseline Multiples 

Baseline values are multiplied by the specified baseline multiples that default to 
1.00. Yield multiples are the relative yield strengths of each storey in which the 
baseline yield strength is determined later from input hysteretic data. The Yield 
column is disabled for elastic analysis. 
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4.4.5 Multiple-Degree-of-Freedom Frame Structure Properties Dialog Boxes 

'tilt®? Qa^l^i^fomS&tiS) 

Frame Geometry 

fit 

Numbe< ol Storeys Y> 

Hatha of Beys W 

n 2oj 
(1-5) 

Baseline Values ~™ ~ 

The following baseline values wi be rnuOipted by 
usei-specified (actors to give the mass, stiffness, 
storey height and bay length distribution of the frame 
structure. 

Storey Mass 

Beam Stiffness 

Column Stiffness 

Stcwey Height 

Bay Length 

000 

000 

(0.00 

fooo™ 

000 

(kg) 

(El - kN'mZ) 

(El • kfTm2) 

M 

M 

IM 2 

[ H i 

M 1 

EICT 

KB 

E l c s 

LkH 

Cancel Next> 

Baseline Frame Properties -

i Storey Mass Beam Stiffness 

; Storeys Bays (kg) (El - kN'm2) 

i 2 2 5000. 100. 

Column SSfness Storey Height 

(El - kN~m2) (m| 

100. 3. 

Bay Length 

(m) 

5. 

• Baseline Multiples 

The baseline frame properties will be multiplied by the following factors to give the mass, stiffness, storey height 
and bay length distribution of the frame structure. Yield multiples are the relative yield strength ratios. Baseline 
yield strength is d? 

If more than one frame is present, the mutWcation factor for each beam and column stiffness should account 
for the total stjfness of each storey and bay. 

1.00 ji.00 
Mass2|l.00 

Haght2|l.00 |l.00 |l.00 jl.00 
Yield 2|1.00 |1.00 h.oo 

jl.00 

Mass1|l.00 

Height 1 (1.00 I'.oo 

Yield 1 h 00 
Length 1 (Too™ Length 2 fuJ0~ 

Cancel Ne«t> 

Figure 4.12: Multiple-Degree-of-Freedom Frame Structure Properties Dialog Boxes 
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Field Notes 

Baseline Values 
Baseline values for storey mass, beam stiffness, column stiffness, storey height 
and bay length are used to allow a regular structure to be quickly specified as a 
pattern of baseline multiples. 

Baseline Multiples 

Baseline values are multiplied by the specified baseline multiples that default to 
1.00. To simplify the specification of baseline multiples, the input fields are 
arranged within a schematic of the frame structure. Yield multiples are the 
relative yield strengths of each storey in which the baseline yield strength is 
determined later from input hysteretic data. The Yield fields are disabled for 
elastic analysis. 

4.4.6 Probabi l i ty Dis t r ibut ion Example Dialog Box 

Probability Distributions 

*• Normal 

*~ Lognormal 

Uniform 

f* Gumbel (Extreme Type I) 

C Ftechet (Extreme Type II) 

<" Weibull (Extreme Type III) 

<~ None 

-Distribution Parameters-
Enter parameters relative to deterministic 
value of NATURAL FREQUENCY. 

Standard deviation 

Parameter 2 

Parameter 3 

0.00 

Cancel Next > 

Figure 4.13: Probability Distribution Example Dialog Box 

Option Notes 

Probability Distributions 

A Probability Distribution dialog box will appear for each structural 
parameter that applies to the current analysis. For example, it will appear 
twice for a SDOF system that is specified by natural frequency, once for the 
natural frequency and once for the specified damping. 

Distribution Parameters 

The parameter fields specify the shape characteristics of the chosen 
probability distribution. Values should be entered with respect to the 
baseline structural properties entered previously, in the chosen unit system. 
In the case of modal damping, parameter values are entered with respect to 
the lowest selected mode of response. The mean value of the distribution is 
taken as the baseline value. 



Chapter 4 Software Framework and User Interface 122 

4.4.7 Hysteresis Parameter Identification Dialog Boxes 

110/"^^ •4*1 

Inelastic Response Data Types 

C Quasi-Static Force vs. Displacement 
C Acceleration Response 
* Use Default Hysteresis Parameters 

Post Yield Stiffness p§15 [X) 

Yield Displacement 13.00 (in) 

Cancel Next> 

Force vs Displacement T est Types 
<• S tand-Alone T ension/Compression Connection T est 
C' Full-Scale Frame/Shear Structure Test 
Hysteresis data must be stored in a text file containing 
the displacement data in one column and the 
corresponding force data in a second column. The 
columns must be space or tab seperated. 
Filename 

Data Sampling Frequency 
Representative Storey Number \ 
Data Units System: 

kN vs. m C kips vs. in 
Connection Application 

Brace Fuse Connection 
Brace End Connection 

Brace Angle (o 00 • (deg. from horia.) Cancel Next > 

Figure 4.14: Hysteresis Parameter Identification Dialog Box (Quasi-Static Data) 

Option/Field Notes 

Quasi-Static Force vs. Displacement 
Hysteresis parameter identification is based on pseudo-static 
cyclic displacement test data of an SDOF structural system or 
connection. 

Acceleration Response 
Hysteresis parameter identification is based on acceleration 
response data taken from a shake-table test of an SDOF 
structure. 
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Use Default Hysteresis Parameters 

Post-yield stiffness is specified as a percentage of initial 
stiffness. Yield displacement may be specified as any value 
greater than zero. A yield displacement equivalent to the peak 
elastic displacement response will result in a slightly different 
dynamic response, as compared to the elastic response, due to 
the continuous nonlinear nature of the smooth hysteresis model. 
Hysteresis loops are assumed to remain undamaged with no 
pinching and no progressive strength or stiffness degradation. 
For MDOF structures, the specified yield displacement applies 
to the first storey. 

Stand-Alone Tension/Compression 
Test 

The dialog box with this option will appear if the Quasi-
Static... option is selected from the previous dialog box. It is 
assumed that the specified cyclic displacement data is taken 
from a connection test in which the brace-type connection is 
subjected to cyclic tension and compression forces. Choosing 
this option will enable the Connection Application options at the 
bottom of the dialog box. 

Full-Scale Frame/Shear Structure 
Test 

It is assumed that the specified cyclic displacement test data 
corresponds to the lateral displacement of the top of a full-scale 
frame or shear wall. Choosing this option will disable the 
Connection Application options at the bottom of the dialog box. 

Filename 

Test data must be stored as a text file with displacement data in 
one column and the corresponding force data in a second 
column. Columns must be space or tab seperated. Maximum 
column width is 12 characters and data may be specified in 
exponential format. 

Data Sampling Frequency Number of pseudo-static force vs. displacement data points 
recorded per second. 

Representative Storey Number 

This field is enabled when an MDOF structure has been 
specified for dynamic analyses. The representative storey 
number indicates which frame or shear wall stiffness and yield 
strength multiple to associate with the identified hysteresis 
parameters. The hysteresis parameters for the other storeys are 
adjusted according to the storey stiffnesses and yield strength 
multiples specified for the other storeys. 

Data Units System Units system of the input hysteretic.data. 

Brace Fuse Connection 

Brace with a single yielding element or connection, typically at 
mid-brace. All inelastic deformation is concentrated at this one 
point. Lateral displacement of the top of the frame and the 
corresponding lateral force are determined by adjusting the 
input data according to the input brace angle. 

Brace End Connection 

Same as above except the brace has yielding end connections. 
Therefore, lateral displacement is calculated as twice the 
adjusted input displacement to account for two yielding 
connections. 

Brace Angle Angle of brace in degrees from horizontal. 
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I 
B see Acrelerahon Rer crd 

I he base acceleration record must be a text hie containing the 
time-history of base acceleration in a single data column. 

Record Name: 

j — : " y | Browse... J 

Time-Step (sec) 

Acceleration Units: 

(~~ (taction olg 

<• m/s/s 

<" mm/s/s 

f"° cm/s/s 

<~ in/s/s 

r it/s/s 

• Response Acceleration Record- - - -

The response acceleration record must be a text file with the 
time-history data in a single column. Data must be taken from an 
SDOF structure with the same properties specified previous^ or 
representative of one storey in an MDOF structure. 

RecordName: 

Browse... ) 

Data Sampling Frequency j 

Test Damping | 

Test Mass (~~ 

Representative Storey Number j 

Acceleration Units: 

r fraction of g <~ mm/s/s 

& m/s/s (~ cm/s/s 

(Hz) 

[X critical) 

(kg) 

C in/s/s 

c ft/s/s 

V \/\/ \ / S 

\ N \ \ \ N \ \ \ N \ 

<Bxi. Cancel Next> 1 

Figure 4.15: Hysteresis Parameter Identification Dialog Box (Acceleration Data) 

Option/Field Notes 

Base Acceleration Record 

The dialog box with this option will appear if the Acceleration 
Response option is selected from the previous dialog box. The base 
acceleration record must be stored as a text file containing the time-
history data in a single column. Maximum column width is 1 2 
characters and data may be specified in exponential format. 

Time-Step 
Time span between base acceleration time-history data points. The 
inverse of the time-step must be an integer multiple of the response 
acceleration data sampling frequency. 

Acceleration Units Unit system of input base acceleration record. 

Response Acceleration Record 

The response acceleration record must be stored as a text file 
containing the time-history data in a single column. Data must be 
taken from an SDOF structure with the properties specified earlier or 
representative of one storey in an MDOF structure. Maximum 
column width is 12 characters and data may be specified in 
exponential format. 

Data Sampling Frequency Number of response acceleration time-history data points recorded 
per second. The data sampling frequency must be an integer multiple 
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of the inverse of the base acceleration time-step. 

Test Damping 
Estimated damping of the SDOF test structure. This damping level 
does not have to match the modal or storey damping level(s) 
specified for the structural system being modeled with the identified 
hysteresis parameters. 

Test Mass 

This field is enabled when an MDOF structure has been specified for 
dynamic analyses. The test mass is defined as the gravity load placed 
on the SDOF test structure for shake-table testing. It is used to 
determine the natural frequency of the test structure for response 
analysis in the hysteresis parameter identification process. 

Representative Storey Number 

This field is enabled when an MDOF structure has been specified for 
dynamic analyses. The representative storey number indicates which 
frame or shear wall stiffness and yield strength multiple to associate 
with the identified hysteresis parameters. The hysteresis parameters 
for the other storeys are adjusted according to the storey stiffnesses 
and yield strength multiples specified for the other storeys. 

Acceleration Units Unit system of input response acceleration record. 

4.4.8 Modal Damping Parameters Dialog Box 

CalculatedNatuia) Frequencies 

The following are the deterministic natural 
frequencies of the structure (Hz): 

Mode Freq 

1 0.50 
2 1.46 
3 2.30 

Modal Properties 

- Modal Damping----

The distribution of structural damping is assumed to 
allow for modal analysis (classical damping). Any 
combination of modes from 1 to 5 may be selected. 

Modal Damping Ratios: 

P Model Damping JO00 

R? Mode 2 Damping pOO0™~~ {%) 

W Mode 3 Damping foOO (*) 

—xs&sxr-

i YZ//777777777777777777777777/?7'n 

Cancel J Next > 

Figure 4.16: Modal Damping Parameters Dialog Box 
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Field Notes 

Calculated Natural Frequencies 

Calculated natural frequencies for translational modes only. 
These frequencies, which are given in Hz, are determined from 
the baseline structural properties and baseline multiples that were 
specified previously. 

Modal Properties Button 
Generates a pop-up dialog box that displays mode shape data, 
modal expansion of floor masses, effective modal masses and 
effective modal heights. See Figure 4.17. 

Modal Damping Ratios 

Modes to be included in the elastic response analysis are selected 
from a scroll box along with a corresponding damping level for 
each selected mode. If structural properties have been specified 
as random, a Probability Distribution dialog box will follow this 
dialog box. The parameters for the selected damping probability 
distribution should be entered relative to the lowest selected 
mode. 

Mode shapes normalized lo unity: 
(Modes in columns ordered horn top storey to bottom storey) 

1.0000 -0.9190 0.7635 -0.5462 0.2846 
0.9190 -0.2846 -0.5462 1.0000 -0.7635 
0.7635 0.5462 -0.9190 -0.2846 1.0000 
0,5462 1 0000 0.2846 -0.7635 -0.9190 
0.2846 0.7635 1.0000 0.9190 0.5462 

Mode shapes normalized to give unit generalized modal masses: 
(Modes in columns ordered from top storey to bottom stoiey) 

0.0028 0.0026 -0.0021 -0.0015 0,0008 
0.0026 0.0008 0.0015 0.0028 -0.0021 
0.0021 -0.0015 0.0026 -0.0008 0.0028 
0.0015 -0.0028 -0.0008 -0.0021 -0.0026 
0.0008 -0.0021 -0.0028 0.0026 0.0015 

Modal expansion of floor masses (kips/g): 
(Modes in columns ordered from top stoiey to bottom stoiey) 

125.17 -36.21 15.86 -6.32 1.50 
115.03 -11.22 -11.34 11.57 -4.03 
95.57 21.52 -19.09 -3.29 5.28 
68.37 33.41 5.91 -8.83 -4.86 
35.63 30.09 20.77 1 0.63 2.89 

Effective modal masses (kips/g): 439.76 43.5912.11 3.750.78 

Effective modal heights (ft): 42.16-14.44 9.16-7.13 6.25 

OK 

Figure 4.17: Modal Properties Pop-Up Dialog Box 
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4.4.9 M D O F Damping Parameters Dialog Box 

Calculated Natural Frequencies 

The following are the deterministic natural 
frequencies of the stiucture (H2): 

Mode Freq 

1 0.50 
2 1.46 

Damping Parameters 

Rayleigh Damping 

Mode X Critical Mode % Critical 

F 0.00 0.00 
Update Ratios 

Mode % Critical 

1 0.00 H 
2 0.00 

C Damping Distribution 

\w/,y//////. 

Cancel Next > 

Figure 4.18: MDOF Damping Parameters Dialog Box 

Field/Option Notes 

Calculated Natural 
Frequencies 

Calculated natural frequencies for translational modes only. These frequencies are 
determined from the baseline structural properties and baseline multiples that 
were specified previously. 

Rayleigh Damping 

Inelastic dynamic analysis precludes modal analysis, which results in the need to 
specify the damping matrix. Rayleigh damping is used to construct a classical 
damping matrix from modal damping ratios. Two modal damping ratios must be 
specified, which then determines the damping ratios for the remaining modes. 
The Update Ratios button calculates the damping ratios for each non-specified 
mode. If structural properties have been specified as random, a Probability 
Distribution dialog box will follow this dialog box. The parameters for the 
selected damping probability distribution should be entered relative to the lowest 
specified mode. 

Damping 
Distribution 

A non-classical damping matrix is constructed from the specified damping for 
each storey. If structural properties have been specified as random, the 
parameters for the selected damping probability distribution should be entered 
relative to the specified baseline value. 
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4.4.10 Oscillation Motion Parameters Dialog Box 

-Peak Amplitude Types-

<"* Acceleration (g) 

& Displacement (m) 

- Oscillation Parameters—- — 

The input oscillation motion is a periodic function formed 
by the superposition of individual sine waves 

Isec) 

Number of Sine Waves y 

Input M otion Duration [ll 

Sine Wave Description 

Each sine wave is described by a peak amplitude (m), 
frequency (He), rise time to peak amplitude and 
subsidence time to zero amplitude. 

Wave Ampl Freq Rise Sub 

1 1 1 3 3 

-Oscillation Motion Plot-

4 H 4 4 

22 4 4 66 88 11.0 
Time 

Update Rot 

< 8acK Cancel Next> 

Figure 4.19: Oscillation Motion Parameters Dialog Box 

Field/Option Notes 

Acceleration 
Base motion is specified as a time-history of acceleration given in 
terms of g. 

Displacement Base motion is specified as a time-history of displacement. 

Number of Sine Waves 
The input oscillation motion is formed by the superposition of up to 
nine sine waves. 

Input Motion Duration Duration must be a multiple of 0.01 sec. Maximum duration is 99 
seconds. 

Ampl 
Amplitude of sine wave. This is specified in the chosen unit system 
(m, in. or g) 

Freq Frequency of sine wave in Hz. 

Rise 
Time when peak amplitude is reached. Default is zero, indicating no 
rise time. 

Sub 
Duration of interval during which amplitude decreases from 
maximum to zero at the end of the motion. Default is zero, indicating 
no subsidence time. 

Update Plot Updates and displays the calculated superposition of sine waves. 
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4.4.11 Single Ground Motion Parameters Dialog Box 

• Ground Motion Record 

The input ground motion may be selected from a list of available 
records or specified by a file containing ground motion 
acceleration data. 
Earthquake Record: 

Browse... 

Time-Step JO.OO 

Acceleration Units: 

(sec) 

f fraction of g <~ mm/s/s 

ft m/s/s cm/s/s 

Motion Properties 

C in/s/s 

<r ft/s/s 

•Record Options 

P" Fiter Record (Cosine Window) 

Low Frequency Window Transition (0.00 to [0,01 (Hz) 

High Frequency Window Transition 1100.00 to II 00.01 (Hz) 

W Calculate Response Spectra 

Damping Levels J3 
Level X Critical 

1 0.00 
2 0.00 
3 0.00 

Cancel Next> 

Figure 4.20: Single Ground Motion Parameters Dialog Box 

Field/Option Notes 

Earthquake Record" 

A single ground motion record is used for response analysis and 
subsequent onscreen plotting of results. The earthquake record must 
be stored as a text file containing the time-history data in a single 
column. Maximum column width is 12 characters and data may be 
specified in exponential format. 

Time-Step Time span between earthquake time-history data points. 
Acceleration Units Unit system of earthquake acceleration record. 

Motion Properties Button 

Generates a pop-up dialog box that displays summary statistics and a 
time-history plot of the unfiltered ground motion as well as the 
filtered ground motion if the Filter Record option is chosen. See 
Figure 4.21. This dialog box may be opened and closed repeatedly to 
display the results of adjusting filter window transitions. 

Filter Record This option enables a cosine-type window filter for removal of high 
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and low frequency content in the earthquake record to ensure that the 
ground acceleration record being used for structural dynamic 
response analysis is truly representative of a real earthquake. 

Low Frequency Window 
Transition 

Specifies the frequency range in which the cosine-window varies 
from 0 to 1. Frequencies below the lower limit are removed and 
frequencies above the upper limit are unaltered. 

High Frequency Window 
Transition 

Specifies the frequency range in which the cosine-window varies 
from 1 to 0. Frequencies above the upper limit are removed and 
frequencies below the lower limit are unaltered. 

Calculate Response Spectra 

This option enables the calculation of the response spectra for the 
specified earthquake record at up to nine damping levels. The 
spectra are formed from the maximum elastic response at 351 natural 
periods between 0.01 sec and 50 sec. The periods are evenly 
distributed in three full decades and a truncated fourth decade defined 
as follows: 0.01-0.1 sec, 0.11-1.0 sec, 1.1-10 sec, 10-50 sec. The 
spectra are displayed onscreen following response analysis. See 
Figure 4.31. 

Unfiltered Ground Motion Statistics 

Minimum ground velocity: -7.243 in/s 
Maximum ground velocity: 3.203 in/s 
Average ground velocity: -1.136 in/s 
Final ground velocity: 0.147 in/s 

Minimum ground displacement: -22.563 in 
Maximum ground displacement: 1.473 in 
Average ground displacement: -9.254 in 
Final ground displacement: -22.031 in 

Unliltered-
. Filtered-

KERNN21E Ground D i s p l a c e m e n t 
226e+001r 

,1'.50e*001 

7.52e+000 

O.OOe+000 

5 10 15 20 25 30 35 40 45 50 55 
. „ .Time (*), „ 

cm 

Figure 4.21: Ground Motion Statistics Pop-Up Dialog Box 
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4.4.12 G r o u n d Motion Generation Parameters Dialog Box - Filtered Spectrum 

Basic Ground Motion Parameters 

Record Length 

Number of Records 1000 

(sec) Max Acceleration [0.3 

Number of Saved Records EF~ 

Generated Record Sequence 

Random Seed j 12345 
Non-Repeatable 

- Frequency Options 

Use Upper Cut-off Frequency Maximum Frequency 

P Fier Records (Cosine Window) Low Frequency WindowTransWon rggj""" 

High Frequency Window Transition JirjorjO 

to jo.01 
to hoocn 

(Hz) 

(Hz) 

Amplitude Modulation Parameters 

Modulation isbased on a second-order increasing 
function and exponential decreasing function 

Time to Peak Acceleration 

Peak Acceleration Period 

(sec) 

(sec) 

Set the exponential decay rate with an acceleration 
value following the peak acceleration period 

White-Noise Filter Parameters 

The power spectrum for white-noise records is based 
on fiering the white-noise with a highpass and ground 
motion (lowpass) Tier 

Lowpass (Ground Motion) Fitter: 

Fundamental Frequency 
(firm ground • 2.5 Hz) 
Damping Ratio 
(firm ground «= 80S) 

2.50 

FractionofMaxAcceleration j0.1 (0:001-1) 

Occurrence Time J20 (sec) 

Update Plot j 

Highpass Filter: 
Fundamental Frequency 
(firm ground « 0,65 Hz) 
Damping Ratio 
(firm ground « 50%) 

[60,00 

... 

(Hz) 

{% critical) 

(Hz) 

[X critical) 

Update Plot 

12.0 18.0 
Time (s) 

30.0 10 15 
Freq (Hz) 

Cancel Next > 

Figure 4.22: Ground Motion Generation Parameters Dialog Box - Filtered Spectrum 

Field/Option Notes 
Record Length Duration of earthquake. 

Maximum Acceleration Specifies the peak amplitude in the acceleration time-history. 
Number of Records Number of generated earthquakes. 

Number of Saved Records Specifies the number of random earthquake time-histories to be 
saved in a text file. Maximum number is 50. 

Generated Record Sequence 
This option specifies the random nature of the generated earthquake 
records. The three types of record sequences are as follows: 
Identical : the same earthquake time-history is used for each 
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dynamic analysis. This permits evaluation of the probabilistic 
response of structures in which randomness is limited to structural 
properties only. 
Repeatable : for a given random seed, the same sequence of 
earthquake time-histories will be generated each time a multiple 
record analysis is done, assuming the same Basic Ground Motion, 
Amplitude Modulation and White—Noise Filter parameters are 
specified. If structural properties have been specified to be random, 
the sequence of random structures is not repeated. This permits 
comparison of the relative effect on probabilistic structural response 
of earthquake record randomness vs. various degrees of structural 
property randomness. 
Non-Rep eatable : the sequence of generated earthquake time-
histories and the possible sequence of random structural properties 
are not repeatable. Specifying this truly random type of multiple 
record analysis allows results to be combined with analyses 
performed at different times and/or on different computers. 

Use Upper Cut-off Frequency 

This option truncates the input frequency spectrum at the specified 
frequency to reduce computation time in generating earthquake 
records using the Spectral Representation method or Filtered 
Poisson method. This option is disabled when earthquakes are 
generated using the inverse Fast Fourier Transform process. 

Filter Records 

This option enables a cosine-type window filter for removal of 
high and low frequency content in the earthquake record to ensure 
that the ground acceleration record being used for structural 
dynamic response analysis is truly representative of a real 
earthquake. 

Low Frequency Window 
Transition 

Specifies the frequency range in which the cosine-window varies 
from 0 to 1. Frequencies below the lower limit are removed and 
frequencies above the upper limit are unaltered. 

High Frequency Window 
Transition 

Specifies the frequency range in which the cosine-window varies 
from 1 to 0. Frequencies above the upper limit are removed and 
frequencies below the lower limit are unaltered. 

Time to Peak Acceleration 

Temporal amplitude modulation of the generated ground 
acceleration record is based on a second-order increasing function 
followed by a period of constant maximum acceleration and then an 
exponentially decreasing function. The parameters specifying the 
temporal amplitude modulation are treated as deterministic and 
therefore are not randomized for each record generated. The 
constant maximum acceleration is normalized to unity by the 
specified peak acceleration. The time when peak acceleration 
amplitude is reached determines the second-order increasing 
function. 

Peak Acceleration Period Specifies the duration of the constant maximum acceleration period 
in the generated earthquake record. 

Fraction of Max Acceleration 

The exponential decay rate in acceleration amplitude is determined 
by a single point following the peak acceleration period. The 
specified fraction of maximum acceleration sets the amplitude 
(ordinate) of the single point relative to the normalized maximum 
value of unity. 

Occurrence Time Sets the time (abscicca) of the single point determining the 
exponential decay rate. 

White-Noise Filter Parameters 
The fundamental frequencies and damping ratios of the highpass 
and lowpass filters can be adjusted to shape the input frequency 
spectrum to the desired frequency content. 
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4.4.13 Ground Motion Generation Parameters Dialog Boxes - Real Spectrum 

3 
• Ground Motion Spectrum Source 

Artificial records wl be generated using the spectrum of the 
input ground motion This motion may be selected from a list 
of available lecords or specified by a text file contatnrng (he 
time-history of ground acceleration in a single data column. 

Earthquake Record: 

]C: \Quakes\elcentio.txt 

Time-Step JoT6 
~3 Browse... 

(sec) 

Acceleration Units: 

I* fraction of g C mm/s/s inA/s 

i~ m/s/s f cm/Vs ft/s/s 

Generation Parameters -

Number of Artificial Records pOD 

Number of Saved Records |b" ~~~ (50 Max.) 

(~ Identical Record Sequence 

* Repeatable Record Sequence Seed 11234567 

<~ Non-Repeatabte Record Sequence 

R Filer Records (Cosine Window) 

Low Fieq Window Transition 0.00 to 0.01 (Hz) 

High Freq Window Transition h 00.00 ,c> il 00.01 (Hz) 

Cancel Next> 

Frequency Truncation Option 

The maximum possible frequency in the generated records 
is 25 Hz. 

(7 Use an upper cut-off frequency of |12 (Hz) 

•Duration Truncation Option - — 

The maximum acceleration in the record is 3.12867 m/s/s 
at t - 2.04 sec 

W Truncate ground motion at jTiT" (sec) 

Cancel Next> 

Figure 4.23: Ground Motion Generation Parameters Dialog Boxes - Real Spectrum 

file:///Quakes/elcentio.txt
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Field/Option 

Notes 

Earthquake Record 

The input spectral density for generating earthquakes is taken 
from the calculated power spectrum of the specified earthquake 
record. A deterministic envelope function describing the 
temporal amplitude modulation of the record is also calculated 
and used for each generated record. The earthquake record 
must be stored as a text file containing the time-history data in a 
single column. Maximum column width is 12 characters and 
data may be specified in exponential format. 

Time-Step Time span between earthquake time-history data points. 
Acceleration Units Unit system of earthquake acceleration record. 

Number of Artificial Records Number of generated earthquakes. 

Number of Saved Records Specifies the number of random earthquake time-histories to be 
saved in a text file. Maximum number is 50. 

Identical Record Sequence 

The input earthquake time-history is used for each dynamic 
analysis. This permits evaluation of the probabilistic response 
of structures in which randomness is limited to structural 
properties only. 

Repeatable Record Sequence 

For a given random seed value, the same sequence of 
earthquake time-histories will be generated each time a multiple 
record analysis is done. If structural properties have been 
specified to be random, the sequence of random structures is not 
repeated. This permits comparison of the relative effect on 
probabilistic structural response of earthquake record 
randomness vs. various degrees of structural property 
randomness. 

Non-Repeatable Record Sequence 

The sequence of generated earthquake time-histories and the 
possible sequence of random structural properties are not 
repeatable. Specifying this truly random type of multiple record 
analysis allows results to be combined with analyses performed 
at different times and/or on different computers. 

Filter Records 

This option enables a cosine-type window filter for removal of 
high and low frequency content in the earthquake record to 
ensure that the ground acceleration record being used for 
structural dynamic response analysis is truly representative of a 
real earthquake. 

High Frequency Window Transition 
Specifies the frequency range in which the cosine-window 
varies from 1 to 0. Frequencies above the upper limit are 
removed and frequencies below the lower limit are unaltered. 

Low Frequency Window Transition 
Specifies the frequency range in which the cosine-window 
varies from 0 to 1. Frequencies below the lower limit are 
removed and frequencies above the upper limit are unaltered. 

Frequency Truncation Option 

This option truncates the calculated power spectrum of the 
earthquake at the specified frequency to reduce computation 
time in generating earthquake records using the Spectral 
Representation method or Filtered Poisson method. This option 
is disabled when earthquakes are generated using the inverse 
Fast Fourier Transform process. 

Duration Truncation Option 

This option truncates all generated acceleration time-histories at 
the specified time to reduce dynamic response computation 
time. The occurrence time of maximum acceleration in the 
record is provided to aid in setting a truncation time. 
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4.4.14 Elastic Responses Dialog Box 

Response Quantities 

Storey Displacement P Stoiey Relative Velocity 

F Storey Relative Acceleration f~ Storey Total Acceleration 

(~ Base Shear T~ Stotey Shear 

V Base Moment T~ Storey Moment 

r Storey Drift 

Response Quantity Summary Types— 

ff Peak Value (RHA 8, RSA) 

V* Time to Threshold Value 

P Response at Selected Time(s) 

Selected Times 

0.00 
0.00 
0.00 
0.00 

Cancel Newt> 

Figure 4.24: Elastic Responses Dialog Box 

Field/Option Notes 

Response Quantities 

Any combination of response quantities may be selected. Each 
selection may have a different combination of specified storeys. Once 
all elastic response quantities have been selected, a Storey Selection 

Dialog Box will appear for each response quantity. See Figure 4.25. 

Peak Value 

This option is enabled for multiple record analysis only. The peak 
value of each selected elastic response quantity for each selected storey 
for each earthquake time-history analysis will be included in an output 
file. See Figure 4.45. Peak values are determined from the response 
history analysis (RHA) as well as a response spectrum analysis (RSA), 
which combines maximum modal values using the absolute sum 

(ABSSUM), square-root-of-sum—of-squares (SRSS) and complete 

quadratic combination (CQC) modal combination rules. 

Time to Threshold Value 

This option is enabled for multiple record analysis only. Selecting this 
option allows a threshold value for each selected response quantity to 
be specified for each selected storey in the Storey Selection Dialog 

Box. See Figure 4.25. The time of the first crossing of the specified 
threshold is recorded for each earthquake response analysis. If the 
threshold is not reached, the threshold time is recorded as 0.0. The 
recorded times are included in an output file. See Figure 4.45. 

Response at Selected Time(s) 

This option is enabled for multiple record analysis only. Selecting this 
option turns on a scroll box where a maximum of 20 response times 
may be entered. The value of each selected response quantity for each 
selected storey at the specified times will be recorded. The recorded 
values are included in an output file. See Figure 4.45. 
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W Storey 1 Threshold Value J1.0 (in) 

r Storey 2 Threshold Value j " fin) 

r Storey3 Threshold Vai» f ~ ~ ~ ~ 

T~ Storey 4 

W Storey 5 Threshold Value [2,0 (in) 

Cancel Next> 

Figure 4.25: Storey Selection Example Dialog Box 

4.4.15 SDOF Inelastic Responses Dialog Box 

•vr9jfVlirj'5jr>:lHj/!:!ni;-Ji -1 

-Response Quantities 

fi- Displacement 

f~ Relative Velocity • 

J - Relative Acceleration 

V Hysteretic Displacement 

f~ Hysteretic Energy (per kg) 

r* Damping Force (per kg) 

V Linear Restoiing Force (per kg) 

f" Hysteretic Restoring Force (per kg) 

F~ Total Restoring Force (per kg) 

V 'Hyaerelic Dwgtam 

f Response Quantity Summary Types -

I Peak Value 

j fv Time to Threshold Value 

P? Response at Selected Time(s) 

Selected Times 

0.00 

0.00 
0.00 

< B a c k Cancel Next> 

Figure 4.26: SDOF Inelastic Responses Dialog Box 

Field/Option Notes 

Response Quantities 

Any combination of response quantities may be selected. The force and energy 
response quantities are expressed per unit mass since a single-degree-of-
freedom structure may be specified by natural frequency only, in which case 
mass is not known. The response quantities are defined as follows: 
Displacement: lateral displacement of lumped mass with respect to the ground. 
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Hysteretic Displacement: displacement z in Equation [3.4]. 
Relative Velocity : velocity of lumped mass with respect to the ground. 
Relative Acceleration : acceleration of lumped mass with respect to the ground. 
Damping Force : product of damping and relative velocity. 
Linear Restoring Force : product of initial stiffness per unit mass, displacement 
and post-yield stiffness. See Equation [3.4]. 
Hysteretic Restoring Force : product of initial stiffness per unit mass, hysteretic 
displacement and (1 - post-yield stiffness). See Equation [3.4]. 
Total Restoring Force : sum of linear restoring force and hysteretic restoring 
force. 
Hysteretic Energy : Summed product of hysteretic restoring force and 
displacement. 
Hysteretic Diagram : this option enables an onscreen plot of the response 
hysteresis loop for a single earthquake analysis. This option is disabled for 
multiple record analysis. 

Peak Value 
See Section 4.4.14. Since the dynamic structural response to each earthquake 
time-history is assumed to be inelastic, the peak value of each selected elastic 
response quantity for each selected storey is determined from the response 
history analysis (RHA) only. Response spectrum analysis does not apply. 

Time to Threshold 
Value 

See Section 4.4.14. Although an SDOF structure is by definition a single storey 
structure, when this option is selected a Storey Selection Dialog Box will appear 
for each selected response quantity to permit threshold values to be specified. 
See Figure 4.25. 

Response at Selected 
Time(s) 

See Section 4.4.14. 

4.4.16 M D O F Inelastic Responses Dialog Box 

r Response Quantises 

r~ Displacement 

r Diift 

r Relative Velocity 

f~ Relative Acceleration 

f" Hysteretic Displacement 

r Total Shear 

I"" Hystetetie Energy 

I - Inertia Force 

F~ Damping Force 

f~ Linear Restoring Force 

P Hysterelic Resloring Force 

P Total Restoring Force 

r Total Moment 

Response Quantity Summary Types 

P Peak Value 

P Time to Threshold Value 

P Response at Selected Timels) 

Selected Times 

0.00 
0.00 
0.00 
0.00 &4 

Cancel Next) 

Figure 4.27: MDOF Inelastic Responses Dialog Box 
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Field/Option Notes 

Response Quantities 

See Section 4.4.15 for definitions of response quantities. For 
multiple-degree-of-freedom structures, with known storey masses, 
the force and energy response quantities are expressed as total force 
and total energy. 

Peak Value See Section 4.4.15. 
Time to Threshold Value See Section 4.4.14. 

Response at Selected Time(s) See Section 4.4.14. 

4.4.17 Plot Modal Results Dialog Box 

IjipriH-i' — 

Input Motion Trme-History 

Full Record Window 
r 252 FuD Record Window 

Input Motion Spectrum 

<• Full Spectium Window 
<*" 252 FuJ Spectrum Window 

Response Spectra 

Full Spectrum Window 
<"* One Decade Window 

Response Time Histories 

Full Record Window C 25* Full Record Window 

Storey Displacement Ptot | 

i i Rot | 

Plot 

Rot 

Cancel Next > 

Figure 4.28: Plot Modal Results Dialog Box 
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Button/Option Notes 

Input Motion 
Time-History 

The Plot Modal Results dialog box is displayed only if the Oscillation Response 
option or Single Earthquake Response option was chosen along with the Elastic 
Analysis option from the initial General Input Parameters dialog box. This 
button activates a pop-up dialog box that displays the time-history of the input 
ground acceleration, calculated velocity and calculated displacement. The Full 
Record Window option displays the time-history in a scale that fits the entire 
record across the width of the pop-up dialog box. For a more detailed display, 
select the expanded scale given by the 25% Full Record Window option. Once 
the pop-up dialog box has been displayed, it may be closed and re-opened 
repeatedly with either time-scale. See Figure 4.29. 

Input Motion 
Spectrum 

Displays the power spectrum of the input earthquake motion. The power scale is 
normalized to the maximum power value in the record. This button is disabled if 
the Oscillation Response option was selected in the General Input Parameters 
dialog box. See Figure 4.30. 

Response Spectra 

Displays the response spectra for displacement, pseudo-velocity, pseudo-
acceleration, ratio of pseudo-velocity to relative velocity and ratio of pseudo-
acceleration to relative acceleration for each damping level specified previously. 
This button is disabled if the Calculate Response Spectra option was not checked 
in the Single Ground Motion Parameters dialog box. See Figure 4.31. 

Response Time-
Histories 

Displays a separate pop-up dialog box for each storey that was selected for a 
given response quantity. The pop-up dialog box displays the individual modal 
responses as well as the total response. See Figure 4.32. 

3.19e001 

1 59e-001 

0 OOe+000 

•1 59e-GTJ1 

-3l9e-001 

1.42e+001 
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OiOOe+000 

711e+000 

1 42e+001 

8 32e-000i 

4lEetOOO! 

0 00e+000 

•4.16e+000 

•8 32e+000 

Ground Acceleration (al 

10 15 
Time (s) 

20 25 30 35 

Ground Velocity Iin/s| 

15 20 
Time (s) 

Ground .Displacement (inl 

25 30 35 

Figure 4.29: Input Motion Time-History Pop-Up Dialog Box 
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Power Spectrum 
10r 

j , os- . -

IliiJiillJllliiSiS IIIISMlf lilljIIJIftl̂ SllflllllJSJaŜ  

! _ 06-

! 05- - ' ' . i 

04 

25 5 0 7 5 1 00 1 25 1 50 1 7 5 20.0 22.5 25 0 ' 
, Frequency {Hz| 

Figure 4.30: Input Spectrum Pop-Up Dialog Box 
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002 — 
2.0 2 — 
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8 016*001 

5 34e*001 

2 S7ei-001 

Pseudo-Velocity fin/sl 
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f 'QOZ _ 
202 — 
502 
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944e-001 
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Figure 4.31: Response Spectra Pop-Up Dialog Box 
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Mode 1 

15 20 
. Time (») , 

M o d e 2 

I 6 ?8e*000 
1 3 39e»000 

I aooe»ooo 
-3 39e*000 

•6 78e»000 
10 15 , 20 

Time (s) 

Total Response 

25 30 35 

25 30 35 

25 . 30 35 

Figure 4.32: Modal Response Time-History Example Pop-Up Dialog Box 

4.4.18 Plot SDOF Results Dialog Box 

General - ~ - - -

Input Motion T*n«-H*sto»j< 

Fu8 Record Window 

<""' 25X Fut! Record Window 

Input Motion Spectrum 

FuS Spectrum Window 
*~ 25X Full Spectnim Window 

H y t t « * Patwarter identification Plot 

•• Response Time Histories 

<* FiM Record Window 2SS Fua Record Wr*dow 

Displacement 

Hytteretic Displacement 

Plot 

Hysteretic Eneigry Eper kfl) Plot 

Hytteietic Diagiam Plot 

• :;>. I Cenc^el | Next > 

Figure 4.33: Plot SDOF Results Dialog Box 
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Button/Option Notes 

Input Motion Time-History 
The Plot SDOF Results dialog box is displayed only if the Oscillation 
Response option or Single Earthquake Response option was chosen 
along with the Inelastic Analysis option from the initial General 
Input Parameters dialog box. See Section 4.4.17. 

Input Motion Spectrum See Section 4.4.17. 

Hysteresis Parameter . 
Identification 

Displays a comparison of the input hysteresis data with the model 
hysteretic response for the same displacement or acceleration time-
history. If the Quasi-Static Force vs. Displacement option was 
specified for input hysteresis data, only the input and model 
hysteresis loops are displayed. If the Acceleration Response option 
was specified for input hysteresis data, the input and model 
acceleration response time-histories are displayed along with the 
associated model hysteresis loop. The Hysteresis Parameter 
Identification button is disabled if the Use Default Hysteresis 
Parameters option was selected in the initial Hysteresis Parameter 
Identification dialog box. See Figure 4.34 and Figure 4.35. 

Response Time-Histories Displays the response time-history for the selected response quantity. 
See Section 4.4.19. 

Input— 1 20e-003 
Model— 

9 01e-004 

Force per unit mass fkN/kql vs. Displacement [m| 

6 01e-004 

3.00e-004 

-3.00e-004 

-6.01 e-004: 

-3 01e-004 

•1 20e-003 
•0.16' -0 1 2 -0 08 -0 04 0 0 0 04 0 08 0 1 2 0.16 

Displacement 

Figure 4.34: Hysteresis Parameter Identification Dialog Box (Quasi-Static Data) 
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Input— 4 74-tOOO, 
Model— 

Response Acceleration Time History fmVs/sl, 

50 100 15 0 20 0 250 
Tims (*) 

Force per unit mass fkN/kql vs. Displacement fml 

Sit 9 e-003 
•008 -0 002 00 

Displacement 

300 350 

Figure 4.35: Hysteresis Parameter Identification Dialog Box (Acceleration Data) 

4.4.19 Plot M D O F Results Dialog Box 

•Generai-
Input, Motion Tana-History 

ti- FJRecordWindDw 
<" 25XFul Record Window 

Input Motion Spectrum 
FuJ Spectrum Window 

*~ 25£ FuS Spectrin Widow 

Response Tm-jts HtjJories 

** Fufi Record Window <~ 25* Full Record Window 

Displacement Ptot j 

Shew FVxc© 

Moment 

Hystorefc Energy 

HysteceXic Diagram 

j Cancel 

Figure 4.36: Plot MDOF Results Dialog Box 
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Button/Option Notes 

Input Motion Time-History 

The Plot MDOF Results dialog box is displayed only if the 
Oscillation Response option or Single Earthquake Response 
option was chosen along with the Inelastic Analysis option 
from the initial General Input Parameters dialog box. See 
Section 4.4.17. 

Input Motion Spectrum See Section 4.4.17. 
Hysteresis Parameter Identification See Section 4.4.18. 

Response Time-Histories 
Displays the response time-history of each selected storey 
for a given response quantity on a single pop-up dialog box. 
See Figure 4.37, Figure 4.38 and Figure 4.39. 

3 69e-001 

' 1 85e-001 

0 QOe+000 

1 s-i-urji 
3G9e001 

( 7 26e-001 
3.63e-001 

0 OOe+000 
3 63e001 

7 2Ee 001 

I1.06e+000 

! 5.30e-001 

! O.OOe+000 
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Figure 4 . 3 7 : MDOF Response Time-History Example Pop-Up Dialog Box (Displacement) 
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> 4 78e+002 

3 58e+002 

2 33e*002: 

1 19e+002 

Sloiev 1 

10 •"15 
Time (s) 

Storev 2 

20 

15 20 
Time (SE] 

Storev 3 

25 

...n.M 

35 

Figure 4.38: MDOF Response Time-History Example Pop-Up Dialog Box (Energy) 

Storev 3 

02 05 08 1 0 

Storev 4 

•07 -03 0.0 
Displacement 

Storey.S „„ 

08 ' 1 7 2.5 34 

Figure 4.39: MDOF Response Time-History Example Pop-Up Dialog Box (Hysteresis) 
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4.4.20 Print Results Dialog Box 

'•" General - - -

M Anafeisis Summary 

f~ Time-History of Input Motion 

I"* Frequency Spectrum of Input Motion 

F " Hytrteesfe Parameter idmtiiisaiicn Oamtii'avt 

)~ Random Natural Frequency Array 

r 

;•- Multiple Earthquake Response— -

f? Multiple Record Analysis Results 

f>7 Generated Records 

r < - - M • ' . 

Figure 4.40: Print Results Dialog Box 

Option Notes 
Analysis Summary Summarizes all input data. See Figure 4.41. 

Time-History of Input Motion Base motion acceleration, velocity and displacement time-
history data. 

Frequency Spectrum of Input Motion 
Calculated power spectrum data from input earthquake 
motion. This option is disabled if Oscillation Response 
was selected in the General Input Parameters dialog box. 

Hysteresis Parameter Identification 
Comparison 

Hysteresis model comparison data used in the onscreen 
plots of Section 4.4.18 and Section 4.4.19. This option is 
disabled if the Elastic Analysis option was selected in the 
General Input Parameters dialog box or the Use Default 
Hysteresis Parameters option was selected in the initial 
Hysteresis Parameter Identification dialog box. 

Random Natural Frequency Array 

Calculated modal frequencies for each random structure 
generated in a multiple record analysis. This option is 
disabled if the Oscillation Response option or Single 
Earthquake Response option was selected in the General 
Input Parameters dialog box or structural properties were 
specified as deterministic in the Multiple Earthquake 
Analysis Parameters dialog box. See Figure 4.42. 

Time-History of Response(s) Time-history data used in the onscreen plots of Section 
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4.4.17, Section 4.4.18 and Section 4.4.19. If the Elastic 
Analysis option was selected in the General Input 
Parameters dialog box, the data is saved in a separate text 
file for each selected storey of each selected response 
quantity. See Figure 4.43. If the Inelastic Analysis option 
was selected, the data for each selected storey of a given 
response quantity is saved in one text file. This Time-
History of Response(s) option is disabled if the Multiple 
Earthquake Response option was selected in the General 
Input Parameters dialog box. 

Response Spectra Data 

Response spectra data used in the onscreen plots of 
Section 4.4.17. This option is disabled if the Multiple 
Earthquake Response option or the Inelastic Analysis 
option was selected in the General Input Parameters 
dialog box or the Calculate Response Spectra option was 
not checked in the Single Ground Motion Parameters 
dialog box. See Figure 4.44. 

Multiple Record Analysis Results 

Peak values, threshold times and response values at 
selected times for each selected response quantity for each 
earthquake time-history analysis. This option is disabled if 
the Oscillation Response option or Single Earthquake 
Response option was selected in the General Input 
Parameters dialog box. See Figure 4.45. 

Generated Records 

Time-history acceleration data and frequency spectrum 
data for the specified number of saved artificial earthquake 
records. This option is disabled if the Oscillation 
Response option or Single Earthquake Response option 
was selected in the General Input Parameters dialog box 
or the number of saved records was set at zero in the 
Ground Motion Generation Parameters dialog box. 

Input Amplitude Modulation Data 

Temporal amplitude modulation data corresponding to the 
onscreen plot in the Ground Motion Generation 
Parameters (Filtered Spectrum) dialog box. This option is 
disabled if the Oscillation Response option or Single 
Earthquake Response option was selected in the General 
Input Parameters dialog box or the Earthquake Record 
input spectrum option was selected in the Multiple 
Earthquake Record Analysis Parameters dialog box. 

Input Filtered White-Noise Spectrum Data 

Input frequency spectrum data corresponding to the 
onscreen plot in the Ground Motion Generation 
Parameters (Filtered Spectrum) dialog box. This option is 
disabled if the Oscillation Response option or Single 
Earthquake Response option was selected in the General 
Input Parameters dialog box or the Earthquake Record 
input spectrum option was selected in the Multiple 
Earthquake Record Analysis Parameters dialog box. 
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File Ecft View Insert Format Help 

p c» H a rit is, % j 

R E S P O N S E - S t o c h a s t i c D y n a m i c A n a l y s i s S u m m a r y R e p o r t ^ 

G e n e r a l I n p u t P a r a m e t e r s ', ,| 
: ; . | 

S t r u c t u r e t y p e : H u l t i p l e - D e g r e e - o f - F r e e d o m s y s t e m [ h 
D y n a m i c a n a l y s i s t y p e : E l a s t i c j 
N u m e r i c a l s o l u t i o n m e t h o d : L i n e a r a c c e l e r a t i o n =,> 
S o l u t i o n t o l e r a n c e m u l t i p l i e r : 1 . 0 0 
U n i t s s y s t e m c h o s e n : I m p e r i a l 

S t r u c t u r a l P r o p e r t i e s 

MDOF s y s t e m m o d e l l e d a s : S h e a r s t r u c t u r e 
N u m b e r o f s t o r e y s : S 
S t r u c t u r a l p a r a m e t e r ( s ) d i s t r i b u t i o n : D e t e r m i n i s t i c 

B a s e l i n e f l o o r m a s s ( k i p s / g ) : 1 0 0 . 0 0 0 
B a s e l i n e s t o r e y l a t e r a l s t i f f n e s s ( k i p s / i n ) : 3 1 . 5 4 0 
B a s e l i n e s t o r e y h e i g h t ( f t ) : 1 2 , 0 0 0 

B a s e l i n e s t o r e y m a s s m u l t i p l e s : 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 
B a s e l i n e s t o r e y s t i f f n e s s m u l t i p l e s : 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 
B a s e l i n e s t o r e y h e i g h t m u l t i p l e s : 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 

D e t e r m i n i s t i c n a t u r a l f r e q u e n c i e s (Hz ) : 0 . S O O 1 . 4 5 9 2 . 3 0 0 2 . 9 S 5 3 . 3 7 0 

H o d e s h a p e s n o r m a l i z e d t o u n i t y : 
( H o d e s i n c o l u m n s o r d e r e d f r o m t o p s t o r e y t o b o t t o m s t o r e y ) 

1 . 0 0 0 0 - 0 . 9 1 9 0 0 . 7 6 3 S - 0 . 5 4 6 2 0 . 2 8 4 6 
0 . 9 1 9 0 - 0 . 2 8 4 6 - 0 . S 4 6 2 1 . 0 0 0 0 - 0 . 7 6 3 5 
0 . 7 6 3 5 0 . 5 4 6 2 - 0 . 9 1 9 0 - 0 . 2 8 4 6 1 . 0 0 0 0 
0 . S 4 6 2 1 . 0 0 0 0 0 . 2 8 4 6 - 0 . 7 6 3 5 - 0 . 9 1 9 0 
0 . 2 8 4 6 0 . 7 6 3 5 1 . 0 0 0 0 0 . 9 1 9 0 0 . 5 4 6 2 

H o d e s h a p e s n o r m a l i z e d t o g i v e u n i t g e n e r a l i z e d m o d a l m a s s e s 
( M o d e s i n c o l u m n s o r d e r e d f r o m t o p s t o r e y t o b o t t o m s t o r e y ) 

For Help^pressFl_ 

Figure 4.41: Analysis Summary Report 
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File Edit View Insert Format 

Natural frequency unit • Hz 

R e c o r d Hode 1 Hode 2 Hode 3 Hode 4 Hode 5 
1 0 . 1 8 6 6 1 1 34421 2 14333 2 75378 3 35925 
2 0 . S 0 0 2 S 1 48418 2 38466 3 01480 3 37318 
3 0 . 4 9 5 2 9 1 46078 • 2 2 4797 2 80518 3 38426 

. 4 0 . 5 3 507 1 51690 2 43447 3 04032 3 39290 
5 0 . 4 6 9 9 7 1 41316 2 19707 2 87995 3 39887 
6 0 . 5 0 5 0 0 1 53320 2 37374 2 97304 3 3 6897 
7 0 . 5 0 2 8 9 1 51469 2 45742 2 99141 3 47517 
6 0 . 5 1 2 2 3 1 46880 2 42199 2 98649 3 54023 
9 0 . 4 9 4 9 1 1 38339 2 15615 2 85615 3 18944 

10 0 . 5 2 1 0 0 1 43408 2 30652 2 92850 3 48821 
11 0 . S 0 4 9 6 1 45617 2 26181 2 95716 3 37419 
12 0 . 4 7 0 5 1 1 39245 2 26113 3 09155 3 51494 

For Help, press Ft. 

Figure 4.42: Random Natural Frequency Array Printed Output 

H 9 
File Edit View Insert Format Help 

Output r e s p o n s e u n i t s : i n 

Time (s) Hode 1 Hode 2 Hode 3 T o t a l 
0 . 000e+000 0. 000000e+000 0. 000000e+000 0 .000000e+000 0 .OOOOOOe+OOO 
2. OOOe -002 - 3 . 020394e -004 8. 623271e- 005 -3 .711178e- 005 -2 .S29185e -004 
4. OOOe -002 - 1 . 377908e -003 3 . 89B698e- 004 -1 .6S6512e- 004 -1 .153 689e -003 
6.OOOe -002 - 3 . 133410e -003 8. 72 6570e- 004 -3 .622326e- 004 -2 .622986e -003 
8. OOOe -002 - S . 327846e -003 1. 449877e- 003 - 5 .808864e- 004 -4 .458856e -003 
1. OOOe -001 - 8 . 293011e -003 2 . 198727e- 003 -8 .45S147e- 004 - 6 .939798e -003 
1. 200e -001 - 1 . 264193e -002 3. 271097e- 003 -1 .21082Se- 003 -1 .058166e -002 
1. 400e -001 - 1 . 862458e -002 4. 704439e- 003 -1 .678402e- 003 -1 .5S9855e -002 
1. 600e -001 - 2 . S 7 7 5 8 9 e -002 6. 321739e- 003 -2 .1546S6e- 003 -2 .1608816 -002 
1. 800e -001 - 3 . 327581e -002 7 . 842227s- 003 -2 .5045006- 003 -2 .793808e -002 
2 . OOOe -001 - 4 . 074166e -002 9 . 117189e- 003 -2 . 660099e- 003 -3 .428457a -002 
2 . 200e -001 - 4 . 8660S7e -002 1. 0 2 5 6 3 l e - 002 -2 .666443e- 003 -4 .107070e -002 
2. 400e -001 - S . 794847e -002 1. 149S60e- 002 -2 .622 278e- 003 -4 .9075156 -002 
2 . 600e -001 - 6 . 896677e -002 1. 290834e- 002 -2 .5862756- 003 - S . 8 6 4 4 7 0 e -002 
2 . OOOe -001 - 8 . 098102e -002 1. 425050e- 002 -2 .506699c- 003 - 6 . 92372 le -002 
3. OOOe -001 - 9 . 317560e -002 1. 52 6140e- 002 -2 .297541e- 003 - 8 .021174e -002 
3 . 200e -001 - 1 . 0540976 -001 1. S88742e- 002 -1 .968026e- 003 -9 . 149034e -002 
3 . 400e -001 - 1 . 174991e -001 1. 607881e- 002 -1 .S31394e- 003 -1 .029516e -001 
3 . 600e -001 - 1 . 293071e -001 1. SSSSSSe- 002 -1 .014835e- 003 -1 .144664e -001 
3 . 800e -001 - 1 . 412986e -001 1. 5379676- 002 - 5 .248515e- 004 -1 .264438e -001 
4. OOOe -001 - 1 . 542 344e -001 1. 485375e- 002 -1 .996721c- 004 -1 .395804e -001 
4. 200e -001 - 1 . 688670e -001 1. 452709e- 002 -1 .545134e- 004 -1 .54494Se -001 
4 . 400e -001 - 1 . 847443e -001 1. 429725e- 002 -3 .1091036- 004 -1 .707S80e -001 
4. 600e -001 - 1 . 990253e -001 1 .337904B- 002 -3 .446192e- 004 -1 .8599096 -001 
4 flfino - n m -•> - n m 1 11 >*QT « ; » - nn? - 1 11?Q1 «;<•- nn<t - 1 - n m 

For Help, press Fi 

Figure 4.43: Example Response Time-History Printed Output (Elastic Analysis) 
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" - """" " • I C G 
File Edit View Insert Format Help 

ft - ta % j 

S p e c t r a l A n a l y s i s 1 o f 3 
D a m p i n g L e v e l = O.OOe+OOO % 

P e r i o d Hax D i s p S p e c - V e l P s e u d o - V e l S p e c - A c c e l P s e u d o - A c c e l 
(s) ( in ) ( i n / s ) ( i n / s ) ( i n / s / s ) ( i n / s / s ) 

l . O O e - 0 0 2 3 7 8 2 e - 0 0 4 4 . 9 4 2 e - 0 0 2 2 . 3 7 6 e - 0 0 1 1 . 493e+002 1 .493e+002 
1 . 1 0 e - 0 0 2 4 7 7 9 e - 0 0 4 6 . 5 2 5 e - 0 0 2 2 . 7 3 0 e - 0 0 1 l .S59e+002 1 .SS9e+002 
1 . 2 0 e - O O Z S 0 6 5 e - 0 0 4 8 . 2 9 8 e - 0 0 2 3 . 1 7 S e - 0 0 1 1 .663e+002 1 .663e+002 
1 . 3 0 e - 0 0 2 7 4 0 0 e - 0 0 4 1 . 0 4 7 e - 0 0 1 3 . S 7 7 e - 0 0 1 1 .729e+002 1 .729e+002 
1 . 4 0 e - 0 0 2 8 4 6 9 e - 0 0 4 1 . 2 4 1 e - 0 0 1 3 . 8 0 1 e - 0 0 1 1 .706e+002 1 .7O6e+002 
1 . S O e - 0 0 2 1 0 7 2 e - 0 0 3 1 . 5 9 5 e - 0 0 1 4 . 4 9 1 6 - 0 0 1 1 .e81e+002 1 .8816+002 
1 . 6 0 e - 0 0 2 1 2 4 3 e - 0 0 3 1 . 8 8 4 e - 0 0 1 4 . 8 8 2 e - 0 0 1 1 .917e+002 1 .917e+002 
1 . 7 0 e - 0 0 Z 1 5 0 7 e - 0 0 3 2 . 3 2 8 e - 0 0 1 5 . 5 6 9 e - 0 0 1 2 .0S8e+002 2 .058e+002 
1 . 8 0 e - 0 0 2 1 664e -003 2 . 6 0 4 e - 0 0 1 5 . 8 0 8 e - 0 0 1 2 .027e+002 2 .027e+002 
1 . 9 0 e - 0 0 2 1 9 7 3 e - 0 0 3 3 . 1 4 8 e - 0 0 1 6. S 2 S e - 0 0 1 2 . l S 8 e + 0 0 2 2 .158e+002 
2 . O O e - 0 0 2 2 2 5 0 e - 0 0 3 3 . 6 0 1 e - 0 0 1 7 . 0 6 7 6 - 0 0 1 2 .220e+002 2 .220e+002 
2 . 1 0 e - 0 0 2 2 5 3 2 e - 0 0 3 4 . 0 8 6 e - 0 0 1 7 . 5 7 4 e - 0 0 1 2 . 2 66e+002 2 .2 66e+002 
2 . 2 0 e - 0 0 2 2 8 5 2 e - 0 0 3 4 . 6 1 2 e - 0 0 1 e. 145e -001 2 . 32 6e+002 2 . 32 6e+002 
2 . 3 0 e - 0 0 2 3 169e -003 5 . 1 4 1 e - 0 0 1 8 . 6 5 8 e - 0 0 1 2 . 36Se+002 2 .3 65e+002 
2 . 4 0 e - 0 0 2 3 S O S e - 0 0 3 S . 7 0 6 e - 0 0 1 9 . 1 8 S e - 0 0 1 2 .40Se+002 2 .40Se+002 
2 . S O e - 0 0 2 3 8 4 8 e - 0 0 3 6 . 2 S 8 e - 0 0 1 9 . 6 7 1 e - 0 0 1 2 .431e+002 2 . 43 le+002 v.i 

For Help, press Fl „„„ . . . , — , — , • , _ „ , « . ..,_>,.,,..„. 

Figure 4.44: Response Spectra Data Printed Output 

File Eat View Insert Format Help 

• y a ! » @, 
[Elastic Analysis Results A! 

Range 1 - Storey 1 Displacement (in) : Threshold Value • I.000 
Range 2 » Storey S Displacement (in) : Threshold Value - 2.000 

Record Range I 

Threshold 
RHA SRSS COC ABSSUH Time T - 1.000 s r - 5 . 0 0 0 

1 -2 SS73e+000 2 6457e+OQ0 2 6S42e+000 3 6297e+000 2. 1200e+000 -2 3041e -001 -9 7960e-001 
2 1 7644e+000 1 74S9e+000 1 7S12e+000 2 4S67e+O00 2. 2000e+000 - 3 1204e -001 -8 .13446-002 
3 -a 0699e+000 2 1217e+000 2 1184e+000 3 02776+000 2. 3000e+000 -4 971Se -002 -1 <311e-001 
4 2 8424e+000 2 6921e+000 2 701Se+000 3 S807e+000 2.0800e+000 -1 6406e -001 -1 758Se+000 
S -2 1777e+000 2 0123e+000 1 9997e+000 3 1099e+000 S. 9400e+000 6 0393e -002 -2 4762e-001 
6 2 0890e+000 1 9971e+000 1 9937e+000 3 0134e+000 2. 3000e+000 2 4784e -002 8 22Sle-001 
7 1 2441e+0OD 1 2907E+000 1 293Se+000 2 0il9e+000 2. 6000e+000 -9 2714e -002 1 .6194e-001 
8 3 128Se+OO0 2 89S4e+000 2 8948e+000 3 8420e+000 2. OSOOe+000 -2 4409e -001 3 4169e-001 
9 2 0963e+000 2 3380e+000 2 3270e+O00 3 389le+000 2.8200e+000 3 9301e -002 3 1070e-001 

10 -2 S907e+000 2 2386e+O00 2 2373e+000 3 2810e+000 2. 6600e+000 -2 0272e -001 2 .9164e-001 
11 2 0493e+000 2 0848e+OO0 2 O964e+O00 3 0224e+000 2.4000e+000 1 0304e -001 6 .4S46e-001 
12 2 OlS3e+000 2 0563e+000 2 0499C+000 2 9084e+000 2. lBOOe+000 -B SS3Be -002 8 .0695e-001 
13 2 8108e+000 2 6300e+000 2 6246e+O0O 3 S69Se+O00 2. 7000e+000 -9 321Se -002 2 07S6e+000 
14 4 2074e+000 4 0034e+000 3 9983e+000 S 2717e+000 1. 8800e+000 7 3997e -002 2 .1496e+000 
IS -2 4643e+000 2 2941e+000 2 2874e+000 3 48S5e+000 4. S000e+000 3 9S02e -001 9 .lS72e-002 
16 3 7700e+000 4 0S18e+000 4 0461e+000 4 9900e+000 1. 9400e+000 -2 3177e -001 -6 .3898e-001 
17 -1 4437e+000 1 4718e+000 1 4649C+000 2 4077e+000 3. lBOOe+000 -9 8886e -002 1 .1904e+000 
18 -2 5912e+O00 2 7029e+000 2 7018e+000 3 989Se+O0O 2 . 1600e+000 1 553 6e -001 8 .0433C-001 
19 2 6152e+000 2.0861e+000 2 0813e+000 3 032Se+000 1. S600e+000 3 7601e -001 -1 .06S4e+000 

|Fw,H«lp, .pressf )„_.. 

Figure 4.45: Example Multiple Record Analysis Data Printed Output (Elastic Analysis) 
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CHAPTER 5 

S O F T W A R E V E R I F I C A T I O N A N D C A S E S T U D I E S 

5.1 I N T R O D U C T I O N 

The final stage in any software development process is, of course, verification of 

the efficacy of the software application. In the case of numerical software, this requires 

that the calculated output match, to within some subjective tolerance, the corresponding 

output from an accepted benchmark, which may be a theoretical result, experimental data 

or results from a similar software model. Once a suitable benchmark has been 

established and the software has been verified to adequately match that benchmark, it 

may be released for use as a beta version with the expectation that user testing will 

identify useful upgrades and problems not identified in initial testing. 

The issues related to selecting a suitable benchmark for evaluating structural 

dynamic analysis results are discussed at the beginning of Section 5.2 followed by several 

subsections that then use the chosen benchmarks to evaluate various elastic and inelastic 

PSResponse analysis results. Section 5.3 then summarizes two case studies that were 

completed as the first application of the beta release of PSResponse. The first case study 

analyzes the effect of random properties on the dynamic response of a five-storey elastic 

structure while the second case study analyzes the well-known equal displacement 

observation in structural dynamics as well as the effect of hysteresis model properties on 

displacement response. 

5.2 S O F T W A R E V E R I F I C A T I O N 

Verification of numerical software requires that an accepted benchmark be 

established against which calculated results may be compared. In the case of structural 
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dynamic analysis, particularly non-linear time-history analysis, establishing a benchmark 

must typically rely on experimental data or reasonable agreement between independent 

software applications, rather than on theoretical results. This is because a complete 

theoretical structural dynamic response over the time-history of an excitation is not 

available per se in circumstances involving a non-linear force-deformation relationship 

and/or response velocity sign reversals. In these situations, the theoretical response 

assumes perfect conformity to the true force-deformation curve, which requires perfect 

convergence in the iterative residual force process of each time-step, and perfect 

identification of response velocity sign reversal points. Clearly, a certain accepted level 

of numerical error will always be present at every time-step and will tend to accumulate 

over the duration of a time-history analysis due to the recursive nature of time-stepping 

methods. Therefore, since the theoretical dynamic response of a structure cannot be 

separated from the inherent calculation error, software verification must be based on 

comparison with experimental data or similar software models. 

Of the two remaining verification options, the next best choice would typically be 

verification against experimental data since comparing two software models is subject to 

compounding of each individual model error. This may result in a situation where the 

difference between two models is deemed acceptable while the real error in the subject 

software, as compared to a nominally theoretical result, is the unacceptable sum of the 

individual model errors. Verification against experimental data avoids the problem of 

error compounding and is the ultimate test of any mathematical model. However, for this 

software, comparison of a calculated acceleration response time-history against shake-

table data would largely be an exercise in evaluating the efficiency of the built-in system 

identification algorithm. This is because for a given experimental acceleration response 

time-history, the software will fit the parameters of the smooth hysteresis model such 

that the calculated acceleration response time-history matches the input as closely as 

possible (Sec. 3.3.4.4). While a close match validates the fundamental algorithmic 

structure and shows that a certain combination of hysteresis parameters was able to match 

the input acceleration record, it does not necessarily verify that for a different set of 

structural hysteresis parameters, which may be entered directly to model a desired yield 
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displacement, the calculated dynamic response is correct. Of course, one may identify 

the hysteresis parameters from experimental data collected using a selected base motion 

history and then compare the calculated and experimental response of a nominally 

identical structure using the same hysteresis parameters and a different base motion 

history. This, however, will inevitably result in differences that can be attributed to one 

or several of the following causes: (i) the nominally identical structure was not identical 

and, therefore, was modeled with a mismatched set of hysteresis parameters; (ii) the 

structure was identical but the identified hysteresis parameters are not valid for a different 

base motion history; (iii) the software model is flawed. The first possible error source is 

likely not significant and may be quantified by comparing the experimental response of 

several nominally identical structures using the same base motion history as was used for 

hysteresis parameter identification. This allows the effect of small structural differences 

on dynamic response to be evaluated independently of a software flaw or the effect of a 

different base motion history. The second and third possible error sources are much more 

likely to be responsible for any observed differences between an experimental response 

and the calculated response, unfortunately, it is impossible to separate the two. Even if a 

new set of hysteresis parameters is identified from the experimental response using the 

different base motion history, it is unclear whether the difference in the hysteresis 

parameter sets is strictly due to an inherent need to adjust the parameters for each 

different base motion history or there is a flaw in the software. Therefore, the only way 

to verify the accuracy of PSResponse is to directly enter a set of basic hysteresis 

parameters corresponding to a specific yield displacement and compare results with a 

similar software application and other published results. While this approach is subject to 

the aforementioned error compounding problem, as well as difficulties in setting up 

identical dynamic analyses using different software models, the intent is simply to 

perform a so-called "sanity check" to verify that PSResponse provides dynamic analysis 

results that are reasonably similar to an accepted industry standard software package. 

Following the decision to use the results of a similar software package as the 

verification benchmark, an accepted industry standard software package needed to be 

chosen from a list of possible candidates including; SAP, ETABS, DRAIN, CANNY, and 
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RAUMOKO among others. Based on consideration of the industry acceptance of each 

candidate as well as preliminary attempts to use each software package, SAP2000 

Nonlinear 8.1.2 (Computers & Structures Inc. 2003) was chosen as the software 

benchmark. It is the most recent version of a widely-used engineering analysis and 

design package, first developed in 1975, which is capable of performing highly 

sophisticated non-linear time-history analysis. 

Finally, as a further verification check, results from each software application 

were checked against results published by Chopra (1995). All results, which were 

obtained from both elastic and inelastic dynamic analysis of single-degree-of-freedom 

(SDOF) and multiple-degree-of-freedom (MDOF) structures, are summarized in the 

following sections. 

5.2.1 Elastic Analysis 

Verification of elastic dynamic analysis results is a relatively straightforward 

process, as compared to inelastic dynamic analysis results, since elastic analysis does not 

involve an iterative residual force process and does not depend on the assumed hysteretic 

behaviour of the structure. Without those sources of discrepancy, elastic analysis results 

should be almost identical amongst all software applications. 

5.2.1.1 Single-Degree-of-Freedom Elastic Systems 

Beginning with SDOF systems, Figure 5.1 and Table 5.1 show the PSResponse 

and SAP2000 calculated deformation response of several natural frequency and damping 

combinations to the north-south component of the 1940 Imperial Valley, California 

earthquake recorded at El Centro, hereafter referred to as the El Centra ground motion. 

Included in Table 5.1 are Chopra's peak deformation values taken from results given as 

Figure 6.4.1. There is very good agreement between all results, with SAP2000 and 

Chopra being virtually identical while PSResponse gave slightly different peak 

deformations. The difference is likely due to the way in which the overshoot problem 
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(Sec. 3.3.2) is dealt with in each set of results. It appears that the SAP2000 and Chopra 

results do not reflect a subdivision of time-steps to determine the point of zero velocity 

when a velocity sign reversal occurs. 
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Figure 5.1: Elastic Deformation Response of SDOF Systems - PSResponse vs. SAP2000 
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When this feature of PSResponse was disabled, all three sets of results were virtually 

identical. 

Table 5.1: Comparison of Peak Deformation Responses of SDOF Systems (in.) 

Swtiin PSResponse .s\i '2inm Chopra 

T = 0.5 sec, C, = 2% -2.70 -2.67 -2.67 

T = 1 sec, C = 2% -5.72 -5.97 -5.97 

T = 2 sec, £ = 2% -7.06 -7.47 -7.47 

T = 2 sec, <; = 0% 9.29 9.92 9.91 

T = 2 sec, C, = 5% 5.43 5.37 5.37 

5.2.1.2 Multiple-Degree-of-Freedom Elastic System 

To verify elastic analysis results for MDOF systems, the five-storey shear frame 

shown in Figure 5.2 was analyzed to allow comparison with detailed results given by 

Chopra as Example 13.2.6 and Example 13.8.2. Figure 5.3 and Table 5.2 illustrate the 

close agreement between each set of software results and Chopra's published results for 

several selected response quantities related to the El Centra ground motion. 

C, = 5% for all natural modes 

m = 100 kips/g 

m 

m 

m 

m 

rigid beams 

h = 12 ft. 
k = 31.54 kips/in. 

h, k 

h, k 

h, k 

h, k 

Figure 5.2: Five-Storey Elastic Shear Frame 
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Figure 5.3: Elastic Responses of Five-Storey Shear Frame - PSResponse vs. SAP2000 
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Table 5.2: Comparison of Elastic Peak Responses of Five-Storey Shear Frame 

Mode MIHI.II 
( (iinhinaliiiii 

Result 

Source 

Base 

Slieiir 

(kips) 

Base Moment 

(kip*fi) 

Storey 5 
Shear (kips) 

Store> 5 
Displacement (in.) 

Mode 1 
PSResponse 61.021 2572.637 17.368 6.797 

Mode 1 
Chopra 60.469 2549.400 17.211 6.731 

Mode 2 
PSResponse 24.174 -349.153 -20.084 -0.922 

Mode 2 
Chopia 24.533 -354.330 -20.382 -0.936 

Mode 3 
PSResponse -9.864 -90.370 -12.919 -0.239 

Mode 3 
Chopra -9.867 -90.402 -12.923 -0.239 

Mode 4 
PSResponse -2.908 20.739 4.892 0 055 

Mode 4 
Chopia -2.943 20.986 -4.951 0.055 

Mode 5 
PSResponse -0.553 -3.460 -1.U02 -0.009 

Mode 5 
Chopra -0.595 -3.718 -1.141 -0.010 

\ M ^ I M 
PSResponse 98.601 3037 9 56 404 S 026 

\ M ^ I M 
Chopra 98 407 3018.8 56 608 "7.9̂ 1 

SRSS 
PSResponse 66.470 2598.7 29.985 6.866 

SRSS 
Chopra 66.066 2575.6 30.074 6.800 

PSResponse 66.396 2596.8 30.701 6.S61 

Chopra 66 5<P 2572.2. 29.338 6."93 

RHA 

PSResponse 74.030 2587.5 34.970 6.836 

RHA Chopra 73.278 2593.2 35.217 6.847 RHA 

SAP2000 74.376 -2517.6 33.716 -6.806 

The preceding elastic dynamic analysis results given in Table 5.1, Figure 5.1, 

Table 5.2 and Figure 5.3 indicate that there is very good agreement between each 

independent set of results for both single-degree-of-freedom elastic systems and a 

multiple-degree-of-freedom elastic system. This is taken as evidence that PSResponse 

results meet an acceptable standard of accuracy for elastic dynamic analysis of structures. 
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5.2.2 Inelastic Analysis 

Unlike elastic dynamic analysis, inelastic dynamic analysis depends on the 

assumed hysteretic behaviour of the structure, assumed post-yield behaviour and 

convergence of an iterative residual force process at each time-step. To allow a 

comparison of results with SAP2000 and results published by Chopra (1995), 

PSResponse hysteretic behaviour for each time-history analysis was constrained to 

remain undamaged with no pinching and no progressive strength or stiffness degradation. 

Yield displacement or drift, which must be specified in PSResponse when the default 

non-degrading, non-pinching behaviour is selected, was determined for each analysis 

from the non-linear dynamic analysis examples given by Chopra, which serve as 

PSResponse verification cases. In SAP2000, yielding behaviour is based on a user-

specified yield stress for each structural element such as a beam or column. These yield 

stresses were adjusted in each analysis to limit all shear forces to the elastoplastic limits 

imposed in the Chopra examples. 

5.2.2.1 Single-Degree-of-Freedom Inelastic Systems 

Beginning again with SDOF systems, Figure 5.4, Figure 5.5, Figure 5.6 and Table 

5.3 show the PSResponse and SAP2000 calculated responses of systems with identical 

elastic properties but different normalized yield strengths to the El Centro ground motion, 

where the normalized yield strength is equivalent to the ratio of yield displacement to 

peak elastic displacement. Included in Table 5.3 are Chopra's peak values taken from 

results given in Section 7.4.1. Note that SAP2000 results are not given for the case in 

which normalized yield strength = 0.125 because the software indicated that the system 

had collapsed under the El Centro ground motion. To illustrate the relative hysteretic 

behaviour of each system, Figure 5.7 shows the calculated energy dissipation for each 

normalized yield strength, which is the cumulative area of the associated hysteresis loop. 

Results are presented for PSResponse only since the corresponding results from 

SAP2000 were not available. 



Figure 5.4: Inelastic Deformation Response of SDOF Systems - PSResponse vs. SAP2000 
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Figure 5.5: Inelastic Shear Response of SDOF Systems - PSResponse vs. SAP2000 
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Figure 5.6: Hysteresis Loops of SDOF Systems - PSResponse vs. SAP2000 
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Table 5.3: Comparison of Inelastic Peak Responses of SDOF Systems (T = 0.5 sec, Damp = 5%) 

Norm Yield = 1 Norm Yield = 0.5 Norm Yield = 0.25 Norm Yield = 0.125 
Displ 

(in.) 

Slu-iir 

(kips) 

Displ 

(in.) 

Shear 

(kips) 

Displ 

(in.) 

Shear 

(kips) 

Displ 

(in.) 

Shiiir 

(kips) 

PSResponse -2.25 -13.45 -1.48 5.84 -1.54 -3.37 -2.09 -1 ~4 

Chopra -2.25 -13.45 1.62 6.73 1.75 3.36 2.07 1.68 

SAP2000 -2.24 -13.38 1.63 6.64 -1.90 3.32 - -

As expected, the preceding inelastic dynamic analysis results in Table 5.3, Figure 

5.4, Figure 5.5 and Figure 5.6 show greater differences between software applications 

than the elastic analysis results presented previously (Sec. 5.2.1.1) due to the increased 

number of assumptions and sources of numerical error inherent in inelastic dynamic 

analysis. The primary difference between PSResponse and SAP2000, other than the 

overshoot issue identified previously, is in the "sharpness" of the yield point, which is 

clearly illustrated in Figure 5.6. The SAP2000 shear forces exhibit classic elastoplastic 

behaviour, which was also used by Chopra, while the PSResponse shear forces follow 

smooth curves and do not have well-defined yield points. This is because the default 

hysteresis parameters in PSResponse were selected to reflect the yield behaviour of most 

structures, which tends to follow a smooth, continuous curve without abrupt changes in 

stiffness. For structures that do have a well-defined yield point, such as certain SDOF 

steel structures, the sharpness of the yield point could be increased in PSResponse with a 

minor change to the default hysteresis parameters. 

In spite of the difference in yield behaviour between models, there is still 

reasonably good agreement between PSResponse, SAP2000 and the published results of 

Chopra. Since the intent was simply to perform a "sanity check" to verify that 

PSResponse provides inelastic dynamic analysis results that are similar to a standard 

software package, the reasonably good agreement between calculated responses is again 

taken as evidence that PSResponse results meet an acceptable standard of accuracy for 

single-degree-of-freedom inelastic structures. 
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Figure 5.7: Dissipated Energy of SDOF Systems - PSResponse 

5.2.2.2 Multiple-Degree—of-Freedom Inelastic System 

The final stage in the PSResponse software verification process was the 

simulation of a multiple-degree-of-freedom structure undergoing inelastic deformation. 

To verify inelastic dynamic analysis results for MDOF systems, a five-storey shear 

frame, shown in Figure 5.8, was again analyzed to allow comparison with results given 

by Chopra in Section 19.1.2 and Section 19.1.3. Table 5.4, Figure 5.9, Figure 5.10 and 

Figure 5.11 show the PSResponse and SAP2000 calculated storey deformation and shear 

responses of the frame structure to the El Centro ground motion. To again illustrate 

relative hysteretic behaviour, Figure 5.12 shows the energy dissipation at each storey 
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level for PSResponse only, since the corresponding results from SAP2000 were again not 

available. 

h= 12 ft. 

£ = 5% Rayleigh damping in first two natural modes 

m = 100 kips/g 

m 

m 

m 

m 

L rigid beams 

k = 87.08 kips/in. 
yield = 26.05 kips 

k = 146.2 kips/in. 
yield = 43.60 kips 

k = 190.6 kips/in. 
yield = 57.15 kips 

k = 220.2 kips/in. 
yield = 66.80 kips 

k = 234.9 kips/in. 
yield = 72.55 kips 
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Figure 5.8: Five-Storey Inelastic Shear Frame 

Table 5.4: Comparison of Inelastic Peak Responses of Five-Storey Shear Frame 

Storey OlMlltll\ PSResponse SAP2000 Chopra 

Displacement (in.) -0.-8 -1.05 -1.20 

1 Drift (in.) -0.78 -1.05 -1.20 

Shear (kips) 69.56 72.02 72.55 

Displacement (in.) -1 38 -2.28 -2.05 

Drift (in.) -0.71 -1.23 

Shear (kips) 60.92 65 79 66.80 

Displacement (in.) -2 12 -2.60 -2.40 

3 Drift (in.) -0.80 1.05 -

Shear (kips) 52.60 57.69 57.15 

Displacement (m) -2 63 -2 50 -2.40 

I)iill i in < -0.59 1 1 1 

Shear (kips) 40 28 44 46 43.60 

Displacement (in.) -3 08 -3.48 -3 :u 

5 Drift (in.) 0.68 -1.02 -0.81 

Shear (kips) 25.30 25.67 26.05 



Figure 5.9: Inelastic Deformation Response of Five-Storey Shear Frame - PSResponse vs. SAP2000 



Figure 5.10: Inelastic Shear Response of Five-Storey Shear Frame - PSResponse vs. SAP2000 



Figure 5.11: Hysteresis Loops of Five-Storey Shear Frame - PSResponse vs. SAP2000 



Figure 5.12: Dissipated Energy of Five-Storey Shear Frame - PSResponse 
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Similar to SDOF systems, the preceding inelastic dynamic analysis results for a 

five-storey shear structure subjected to the El Centro ground motion show greater 

differences between software applications than the elastic analysis results of a similar 

structure (Sec. 5.2.1.2). This is again due to the additional sources of numerical error and 

increased number of assumptions inherent in inelastic dynamic analysis as compared to 

elastic analysis. Differing assumptions regarding yield behaviour and the overshoot 

problem, which were identified previously (Sec. 5.2.2.1), as well as systemic differences 

in setting up a dynamic analysis between SAP2000 and PSResponse mean that the 

analyses will never be exactly comparable. Nevertheless, each independent set of 

dynamic analysis results for a multiple-degree-of-freedom inelastic structure, and the 

published results of Chopra, are in reasonably close agreement. This standard of 

accuracy is considered acceptable for the intended purpose of PSResponse, which is to 

provide fast, summary-level dynamic analysis results for determining the probabilistic 

response of linear and non-linear systems under stochastic dynamic loading. To that end, 

it is worth noting that PSResponse was two orders of magnitude faster than SAP2000 in 

calculating the inelastic dynamic response of the five-storey shear structure subjected to 

the El Centro ground motion. Calculation time for PSResponse was less than one second 

on a 1.5 GHz Pentium 4 computer with 256 MB R D R A M while SAP2000, with its much 

more detailed finite-element basis, took approximately 83 seconds. 

5.3 C A S E STUDIES 

The first application ofthe beta release oi PSResponse was the completion of two 

case studies that were selected from the myriad possibilities in structural dynamics 

largely to demonstrate the capabilities of the program as a research and analysis tool. 

These case studies analyzed, from a probabilistic point of view, three general questions 

pertinent to structural dynamics and earthquake engineering; the relative effect of random 

structural properties on the dynamic response of a structure, the appropriateness of the 

well-known equal displacement observation in structural dynamics and the effect of 

hysteresis model properties on displacement response. Results from the case studies 

provide answers to those questions for the chosen structural models, input variable ranges 
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and output response quantities without attempting to be completely general in nature. 

Also, comparison of certain results with some of the seismic structural response and 

reliability studies cited in Section 2.5 was left as future work. 

5.3.1 Case Study #1 

To assess the relative effect of structural property variability on the random 

response of a structure subjected to random earthquake ground motions, the five-storey 

elastic structure used for model verification in Section 5.2.1.2, and shown in Figure 5.2, 

was subjected to a sequence of 1000 generated records, using the El Centro ground 

motion as the seed, at five different levels of variability in the storey mass, storey 

stiffness, storey height and modal damping. To ensure that the frequency content of the 

generated records did not result in unrealistic ground displacements, the peak elastic 

displacement of a long period SDOF structure (T = 12.0 seconds) was determined for 

each record in the sequence using; no filtering, filtering with a low frequency window 

transition of 0.05-0.075 Hz and filtering with a low frequency window transition of 0.1-

0.15 Hz. In each case there was no significant difference in the statistics describing the 

distribution of the peak displacements. The variability levels of the structural properties 

were characterized by Normal distributions with a coefficient of variation (COV) of 0.0, 

0.1, 0.2, 0.3 and 0.4 in each of the structural parameters with the exception of storey 

height where the COV's were set at 0.0, 0.007, 0.014, 0.021 and 0.028, corresponding to 

standard deviations of 1 to 4 inches in the 12 foot storey height. The dynamic responses 

that were chosen for probabilistic analysis were limited to; peak base shear, peak base 

moment and peak fifth storey displacement. 

Table 5.5 lists the basic statistics for each set of peak results that were generated 

using the same earthquake sequence as well as statistics for the peak results of the 

deterministic structure (COV = 0.0) subjected to a second sequence of 1000 earthquakes. 

The second earthquake sequence was used to verify that the probability distribution of 

each response quantity was not affected by a particular random sequence of earthquakes. 

For reference purposes, the peak elastic responses of the five-storey structure to the El 
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Centro ground motion are bracketed in Table 5.5 below each response quantity in column 

one. 

The actual frequency distributions corresponding to each set of calculated 

statistics in Table 5.5 are given as histogram plots in Figure 5.13 - Figure 5.15. These 

plots are overlaid with the associated Gumbel distribution, given as a solid line, and 

Normal distribution, given as a dashed line, to illustrate the fit of each type of distribution 

to the data. Note that the discontinuity in some of the Normal distributions is the result of 

lumping together all responses below the point ofthe discontinuity. 

Table 5.5: Peak Response Statistics of a Five-̂ Storey Elastic Shear Frame 

Response 
Quantity Statistic Scq. #1 

cov - 0.0 
Seq. #2 

COV -0.0 
Seq. #1 

COV = 0.1 
Seq. #1 

COV-0.2 
Seq. #1 

COV = 0.3 
Scq. #1 

COV = 0.4 
Base Min. 27.40 28.16 31.96 27.99 19.79 13.67 
Shear Max. 155.35 185.68 173.67 193.67 169.14 290.82 
(kips) Avg. 73.33 74.37 73.41 73.92 73.92 76.30 
(74.03) Stdev. 20.58 22.31 21.25 22.36 24.07 29.35 
Base Mm. 994 03 1153 60 988 00 945 33 832 28 493 37 
Moment Max 6X29 30 7128 50 6705 30 7882.40 6643.50 12248 00 
(kip'ft) Avg. 2843.27 2878 58 2851 44 2819 01 277" 07 2̂ 18 96 
(258"'.53) Stdev. 877.92 915.03 902 10 933 67 973.03 1 m.05 
Storey 5 Min. 2.63 3.05 2.66 2.75 2.69 2.59 
Displ. Max. 18.04 18.83 19.21 21.11 28.70 37.46 
(in.) Avg. 7.51 7.61 7.61 7.77 8.32 8.83 
(6.84) Stdev. 2.32 2.42 2.42 2.57 3.25 3.89 

From Figure 5.13, Figure 5.14 and Figure 5.15 it is apparent that the Gumbel 

distribution is a better description of the peak response data in each case than the Normal 

distribution, as expected, since the Gumbel distribution is an Extreme Value-Type I 

distribution. Therefore, using the Gumbel distribution as a basis for comparison, Figure 

5.16 summarizes the individual distributions for each set of results to illustrate the effect 

of increasing variability in structural parameters on the probability distribution of the 

chosen elastic response quantities. 
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Figure 5.13: Base Shear Response Histograms 
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Figure 5.14: Base Moment Response Histograms 
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To assess whether the individual distributions are statistically equivalent or 

significantly different, several statistical tests were performed to compare each set of 

peak results with those of the deterministic structure (COV = 0.0). These tests evaluate 

whether two distributions possess the same mean {Student's t-test), and the same 

variance (F-test) and, more generally, whether two distributions are equivalent based on 

the maximum difference between the cumulative distribution functions (Kolmogorov-

Smirnov test). Table 5.6 lists the statistics comparing the response distribution for each 

level of structural variability with that of the deterministic structure, including the 

statistics comparing the response distributions of the deterministic structure using the two 

different generated record sequences. 

Table 5.6: Elastic Peak Response Distribution Comparison Statistics 

Response 

Quantity 
Slalistir 

Seq.#2 

(ON 0.0 

Seq. #1 

( <>\ -0.1 

Seq. #1 

CON' = 0.2 

Seq. #1 

( <)\ -0.3 

Seq. #1 

( ON 0.4 

Base Shear 

(kips) 

F 1.1751 1.0659 1.1803 1.3681 2.0333 Base Shear 

(kips) 
t -1.0834 -0.0890 -0.6113 -0.5891 -2.5671 

Base Shear 

(kips) 
Q K S 0.6785 0.6406 0.8840 0.0809 0.0003 

Base 

Moment 

(kip*ft) 

1 1.0863 '" •'• 1.0559 1.1311 1.2284 1 . 6657 
Base 

Moment 

(kip*ft) 

t -0.8805 -0.2051 0 5 9 8 8 1 5939 2 6h29 

Base 

Moment 

(kip*ft) Q K S 0 7 1 6 1 0.S840 0.3344 0.0089 0.0000 
Storey 5 

Displ. 

(in.) 

F 1.0863 1.0917 1.2236 1.9620 2.8190 Storey 5 

Displ. 

(in.) 

t -0.8804 -0.8978 -2.3359 -6.4176 -9.0789 

Storey 5 

Displ. 

(in.) Q K S 0.7161 0.7888 0.0525 0.0000 0.0000 

Comparing the statistics of Table 5.6 with the critical values of F (0.8496, 1.1771) 

and t (-2.57823, 2.5783) at the 1% level of significance, it appears that a coefficient of 

variation of 10% in the storey mass, storey stiffness, storey height and modal damping 

does not significantly affect the elastic response distribution of peak base shear, peak 

base moment or peak fifth storey displacement for a random sequence of El Centro type 

earthquakes. At the COV = 20% level of variability, the peak fifth storey displacement 

distribution was marginally affected while the peak base shear and peak base moment 

distributions remain unaffected. At the COV = 30% level of variability, the peak fifth 

storey displacement distribution and the peak base shear distribution were both 
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significantly affected while the peak base moment distribution was only marginally 

affected, however, this may be a result of the smaller variability used for storey height. 

At the COV = 40% level of variability, all response distributions were significantly 

affected. These observations are supported by the Kolmogorov-Smirnoff test statistic 

QKS for each set of peak responses, which may be interpreted as the probability that the 

underlying distribution of the peak responses is the same as that of the deterministic 

structure. In each case where the response distribution appears to be affected at a certain 

level of parameter variability, there is a corresponding sharp decrease in the QKS statistic 

indicating that it is highly unlikely that the underlying distributions are equivalent. Lastly 

from Table 5.6, the distribution comparison statistics for the deterministic structure using 

the two different sequences of random earthquakes indicate that there is no significant 

difference in the distributions of any of the three types of peak responses. This suggests 

that the assumption that the probability distribution of each response quantity is not 

affected by a particular random sequence of earthquakes is valid. 

Keeping in mind that only one particular type of earthquake and one basic pattern 

of storey mass, storey stiffness, storey height and modal damping were modeled, the 

foregoing results seem to indicate that the randomness of the generated ground motions 

accounts for the majority of the observed range in a given peak response while structural 

randomness has a relatively minor effect. This then suggests, or perhaps confirms the 

prevailing opinion, that careful attention needs to be paid to the characteristics of the 

ground motion records used when analyzing the dynamic response behaviour of a 

structure. Once a suitable seed record or suite of seed records has been selected, 

however, the peak response probability distributions for a given structural model could be 

applied to a real structure with reasonable confidence since the assumed level of 

uncertainty in the structural parameters needs to be only approximately correct. 

Finally, to assess the accuracy of determining peak responses for a multiple-

degree-of-freedom system from a response spectrum analysis (RSA) procedure, the peak 

time-history (RHA) responses in each set of results were compared with modal 

combinations using three common modal combination rules; the absolute sum 
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(ABSSUM) rule, the square-root-of-sum-of-squares (SRSS) rule and the complete 

quadratic combination (CQC) rule. Table 5.7 lists the basic statistics for each 

distribution of percentage differences between the RHA peak response and the 

corresponding RSA peak responses. For reference purposes, the percentage differences 

between the RHA and RSA results for the El Centro ground motion are bracketed in 

Table 5.7 below each modal combination type in column two. 

Table 5.7: Statistics for the Percentage Difference between RHA & RSA Results 

Response 
Modal 

Combo. 

Statistic 

(% Diff) 

Scq. #1 

( o\ 
0.(1 

Seq. #2 

COV 

0.0 

Seq. #1 

COV 

0.1 

Seq. #1 

COV 

0.2 

Seq. #1 

COV 

0.3 

Seq. #1 

( o\ 
11.4 

Min -28.32 -27.42 ' -29.63 -27.90 -31.15 -30.17 
SRSS Max 31.11 34.20 30.64 38.27 30.34 49.16 

(-10.21%) Avg -1.54 -1.49 -1.33 -2.31 -2.66 -3.40 
Stdev 9.78 9.79 9.70 9.46 9.71 9.81 
Min -28.90 -27.46 -30.21 -27.99 -33.65 -31.73 

Base Shear 
CQC Max 30.97 33.94 29.77 37.51 29.62 48.74 

(-10.31%) Avg -1.54 -1.49 -1.33 -2.29 -2.59 -3.34 
Stdev 9.79 9.79 9.69 9.48 9.73 9.85 
Min 11.39 9.16 5.09 4.47 1.42 1.19 

ABSSUM Max 111.54 106.78 125.70 111.22 129.86 126.06 
(33.19%) Avg 43.03 42.69 43.26 41.08 40.48 37.11 

Stdev 16.25 17.20 16.81 17.24 19.57 19.73 
Min -17.95 -17.21 -20.05 -15.25 -25.96 -25.84 
Max 23.10 16.62 20.80 16.19 19.43 20.12 
Avg -1.03 -0.94 -1.13 -0.78 -1.45 -1.53 
Stdev 5.19 5.10 5.01 4.67 5.04 5.43 
Min \ . -17.72 -17.04 -19.83 -15.23 -23.76 -26.36 

Base CQC Max 23.37 16.77 20.85 16.10 19.27 19.90 
Moment (0.36%) 

ijiliiil llî ^^^Bil 
Avg -1.03 -0.94 -1.13 -0.78 -1.45 -1.53 
Stdev 5.19 5.11 5.02 4.68 5.02 5.46 
"Min • 2.24 1.92 1.27 1.61 0.32 1.27 

\ ABSSUM Max 54.09 48.28 52.37 54.81 71.34 69.73 
Avg 15.52 15.37 15.14 15.06 14.97 16.14 
Stdev 8.05 7.79 7.93' 8.02 9.05 11.16 
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Response 
Modal 

Combo. 

Statistic 

("'„ ttifO 

Seq.#l 

COV 

0.0 

Seq. #2 
COV 

Seq. #1 

COV 

0.1 

Seq. #1 

COV 

0.2 

Seq. #1 

COV 

0.3 

Seq. #1 

< o\ 
0.4 

Min -17.95 -17.21 -18.06 -20.86 -22.49 -18.88 
SRSS Max 23.11 16.62 21.04 16.22 16.66 18.48 

(0.44%) Avg -1.03 -0.94 -1.11 -0.92 -1.12 -0.91 
Stdev 5.19 5.10 5.01 4.81 4.72 4.66 
Min -17.72 -17.04 -17.87 -21.06 -22.01 -18.68 

Storey 5 CQC Max 23.37 16.77 21.11 16.09 16.39 18.16 
Displ. (0.37%) Avg -1.03 -0.94 -1.11 -0.92 -1.12 -0.91 

Stdev 5.19 5.11 5.01 4.83 4.71 4.65 
Min 2.24 1.92 1.20 2.24 0.84 0.87 

ABSSUM Max 54.09 48.28 55.12 48.39 53.13 54.43 
(17.41%) Avg 15.52 15.37 15.22 14.78 13.60 12.91 

Stdev 8.05 7.79 7.84 7.62 7.87 8.46 

Comparing any distribution statistic in Table 5.7 across a row shows that the 

statistic remains approximately constant at each level of structural variability. This was 

not unexpected since the modal combination rules are not direct functions of any type of 

uncertainty in the structural parameters, rather they are functions of individual peak 

modal responses, and in the case of the CQC rule, a correlation coefficient that depends 

only on modal frequencies and damping. Therefore, given a random structure, the 

associated natural frequencies and random damping determine both the peak RHA 

response and RSA results for a given earthquake motion without regard to the structural 

variability that generated the random structure. Although not directly influenced by 

structural variability, the accuracy of each set of RSA results is certainly affected by the 

variation in each random structure but in a manner that is difficult to predict. Each 

unique set of natural frequencies and modal damping results in a different relationship 

between the magnitudes of the peak modal responses and, therefore, a different level of 

influence of the higher modes of response, which in turn has a direct effect on the 

accuracy of the RSA results. For a certain random structural realization in which the 

fundamental mode dominates the total response, the RSA results will tend to be quite 

accurate whereas another structural realization with more significant higher modes of 



Chapter 5 Software Verification and Case Studies 181 

response will tend to show larger errors in the RSA results. The difficulty in predicting 

the effect of a certain level of structural randomness on RSA accuracy is due to the 

jagged nature of the response spectrum of a single earthquake. Individual modal 

responses may be negligibly or significantly affected by large or small random variations 

in modal frequencies and damping, particularly at certain periods, which results in an 

unpredictable effect on the modal combination and hence an unpredictable effect on RSA 

accuracy. Furthermore, the relationship between the accuracy of the CQC results as 

compared to the SRSS and ABSSUM results is influenced by the degree of separation 

between the natural frequencies for a given structure. Structures with well-separated 

natural frequencies will exhibit little or no difference between CQC and SRSS peak 

responses with the SRSS peak response becoming relatively less accurate for more 

closely spaced natural frequencies. 

The observed distribution statistics in Table 5.7 for the ABSSUM results, which 

are an upper-bound on the peak response, show an average overestimation of the peak 

base shear of approximately 42%, and an average overestimation of the peak base 

moment and peak fifth storey displacement of approximately 15%. Clearly, the 

ABSSUM modal combination rule gives a very conservative estimate of peak response. 

The SRSS and CQC results for each response type across the range of structural 

variability were virtually identical, which indicates that the natural frequencies of the 

five-storey shear frame were well-separated at each level of variability. The average 

error for the peak base shear was in the range of -1.3% to -3.4%, the average error for 

the peak base moment was in the range of -0.8% to -1.5%, and the average error for the 

peak fifth storey displacement was in the range of-0.9% to -1.1%. The error is largest 

for the peak base shear because the higher mode responses are likely more significant 

relative to the first mode as compared to the peak base moment and peak fifth storey 

displacement (see Table 5.2). Although the SRSS and CQC peak responses consistently 

underestimated the RHA peak responses in this limited study, this is not a general trend 

for response spectrum analysis. The variance in each set of errors was observed, as noted 

previously, to be approximately constant across the range of structural variability in 

Table 5.7, therefore, it is well represented for each response quantity by the results for the 
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deterministic structure. Figure 5.17 shows the histogram plots for the SRSS and CQC 

errors in peak base shear, peak base moment and peak fifth storey displacement. 

Included with the histogram plots are the associated Normal distributions to illustrate the 

close agreement with the observed error distribution. 

Using the Normal distributions in Figure 5.17 to represent the SRSS and CQC 

error distribution, the variance or standard deviation for each response quantity is a 

measure of the level of confidence that may be applied to an estimate of the accuracy of 

each modal combination rule. From the basic properties of a Normal distribution, 68.3% 

of the area is contained within one standard deviation of the mean, which indicates that 

approximately % of observed results should be no more or no less than one standard 

deviation different from the average value. Using this property, approximate rules-of-

thumb can be established for the accuracy of the CQC and SRSS modal combination 

rules for peak base shear, peak base moment and peak fifth storey displacement. Taking 

the mean errors in Table 5.7 to be approximately zero, the observed standard deviations 

indicate that 2A of the time the CQC and SRSS results for peak base shear will be within 

10% of the RHA result, while peak base moment and peak fifth storey displacement will 

be within 5% of the RHA result. 

The preceding approximate rules-of-thumb and observations regarding the 

relative effect of structural variability on peak response distribution were, of course, 

derived from a very limited study using only one particular type of earthquake and one 

basic pattern of storey mass, storey stiffness, storey height and modal damping. 

However, they serve as an example of the type of analysis that may be done using 

PSResponse to provide fast, summary-level dynamic analysis results for determining the 

probabilistic response of a structure under stochastic dynamic loading. 
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Figure 5.17: Error Distribution for CQC & SRSS vs. RHA Peak Responses 
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5.3.2 Case Study #2 

To assess the appropriateness of the well-known equal displacement observation 

in structural dynamics and the effect of hysteresis model properties on displacement 

response, a group of single-degree-of-freedom structures with eight different natural 

periods and 2% damping were subjected to a sequence of 1000 generated records, again 

using the El Centro ground motion as the seed, using six different hysteresis models. The 

natural periods of the structures were selected from the deformation and acceleration 

spectra for the El Centro earthquake to cover a reasonably wide range of periods that 

might be encountered in an actual structure. The periods that were selected were; 0.1, 

0.2, 0.4, 0.5, 0.6, 1.0, 3.0 and 8.0 seconds, which are shown on the response spectra in 

Figure 5.18. The hysteresis models were derived from experimental data taken from a 

cyclic lateral displacement-controlled test of a Parallam® column, which was connected 

to a rigid base with special hollow steel tubes acting as dowels (Ruxton 2003). The 

cyclic test data was analyzed using the hysteresis parameter identification feature of 

PSResponse, which identifies the best hysteresis parameter set based on a least-squares 

error algorithm. The displacement and force time-histories of the cyclic test as well as 

the experimental hysteresis loop and corresponding best-fit model are shown in Figure 

5.19. 

Figure 5.18: El Centro Response Spectra 
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Note from Figure 5.19 that the best-fit model is a compromise between two 

regions of pinching and stiffness recovery in one direction of loading for the large 

amplitude displacement cycles. The large displacement cycles begin as usual with a 
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pinched region at the beginning of the loading cycle followed by stiffness recovery and a 

stiffness plateau but this is followed by another region of increasing stiffness in the same 

half-cycle of loading. This unusual behaviour does not fit well with the behaviour of the 

modified BWBN hysteresis model that was incorporated into PSResponse, therefore, the 

hysteresis parameter identification algorithm identified the best-fit compromise between 

the two regions of stiffness recovery. 

The hysteresis models that were derived from the best-fit model of Figure 5.19 

are listed in Table 5.8. These models were chosen to represent a broad range of possible 

inelastic behaviour exhibited by structures with different yield strengths and rates of 

structural deterioration. The different characteristics of each model were achieved by 

simply altering the appropriate best-fit hysteresis parameters that had been identified by 

PSResponse. To illustrate the behaviour of each hysteresis model, Figure 5.20 shows the 

first five seconds of deformation response to the El Centro ground motion for a single-

degree-of-freedom structure with T = 8.0 seconds and 2% damping for each of the six 

models. 

Table 5.8: Hysteresis Model Descriptions 

Model 
Yield 

Displacement 
(in) 

A Best-fit hysteresis model from test data. 0.060 

B Best-fit hysteresis model with degradation parameters doubled. 0.060 

C Best-fit hysteresis model with degradation parameters quadrupled. 0.060 

D No degradation - 100% yield strength of Model A. 0.060 

E No degradation - 50% yield strength of Model A. 0.030 

F No degradation - 25% yield strength of Model A. 0.015 

Having established a number of hysteresis models to simulate a range of inelastic 

behaviour, the deformation response of a single-degree-of-freedom structure was 

determined at the eight natural periods noted previously using the same sequence of 1000 

generated earthquake records for each period and hysteresis model combination. Table 
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5.9 lists the basic statistics for each set of peak deformation results as well as the statistics 

for the peak deformation of an elastic structure at each period. 
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Figure 5.20: Hysteretic Response of SDOF Structure with T = 8.0 sec, Damping = 2% 

Table 5.9: SDOF Peak Deformation Response Statistics (m) 

lllB Statistic Elastic Hyst A Hyst B Ihstt Hyst D Hvst E Hyst F 

Min. 0.00083 0.00082 0.00082 0.00082 0.00082 0.00084 0.00082 
0.1 Max. 0.00236 0.00225 0.00225 0.00227 0.00222 0.00223 0.00220 
sec. Avg. 0.00141 0.00140 0.00140 0.00140 0.00140 0.00140 0.00140 

Stdev. 0.00024 0.00023 0.00023 0.00023 0.00023 0.00023 0.00023 
Min. ," 0.00457 0.00461 0.00461 0.00462 0.00460 0.00160 0 00127 

0.2 Max. 0.02312 0.01526 0.01557 0.01434 001656 001447 0.01469 
sec. Avg. 0.01012 0.00883 000877 000864 0.00894 0.00841 000-96 

Sldev. 0.00252 0 00176 0.00174 0.00169 000181 0 00158 0 00142 
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T Statistic 1 las tic Hyst A ll\sl 1$ Hyst C Hyst D Hyst E Hyst V 

Min. 0.01784 0.01439 0.01438 0.01400 0.01468 0.01324 0.01206 
0.4 Max. 0.08166 0.05231 0.05515 0.05547 0.05180 0.04943 0.06213 
sec. Avg. 0.03709 0.02910 0.02910 0.02932 0.02919 0.02842 0.03114 

Stdev. 0.00928 0.00539 0.00544 0.00556 0.00540 0.00529 0.00722 
Mm 0 02416 0 02116 0 02100 0 02033 0.02116 0.01919 0.01882 

0 5 Max 0 11331 0 06816 0 068?2 0 07154 0.06709 0.07387 0.09819 
set. \ \ » 0 05788 0 04141 0 041 *8 004151 0.04149 0.04033 0.04548 

Stde\ 0 01540 0 00772 0 00783 0 O0S24 0.00758 0.00814 0.01251 
Min. 0.03165 0.02344 0.02300 0.02343 0.02462 0.02462 0.02226 

0.6 Max. 0.15964 0.09256 0.09318 0.10498 0.09295 0.10506 0.13715 
sec. Avg. 0.07457 0.05124 0.05121 0.05153 0.05128 0.05090 0.05841 

Stdev. 0.02054 0.01039 0.01063 0.01136 0.01023 0.01238 0.01824 
Mm 003881 0 03608 0.0 MA\ 0.03541 0 03559 003524 0 03503 

1.0 Max 0.25019 015670 0.16267 0 17988 0.15322 0.21269 0 340~4 
sec A\g. 0 11296 0 07759 0 0̂ 748 0.07848 0 07799 0 08316 0.10252 

Stdev. 0.03412 0.01984 0 02001 0.02139 0 01994 0.02628 0.03952 
Min. 0.06733 0.05492 0.05501 0.05435 0.05706 0.06479 0.07339 

3.0 Max. 1.11230 0.81400 0.82257 0.82161 0.82328 1.05070 1.28130 
sec. Avg. 0.34202 0.21224 0.21426 0.22266 0.21450 0.25422 0.30196 

Stdev. n 153̂ 0 0.09276 0.09787 0.10225 0.09410 0.12333 0.15232 
Mm. 0 09298 0.07416 0.07930 0.07801 0.07947 0.08089 0.07906 

8.0 Max 1.30990 2.53050 2.53110 3.04320 2.51870 3.24960 3.7210O 
sec. 

• i i i i i i i B 
A vn 
• - 0 42480 0.43666 0.45300 0.50538 0.43297 0.56794 0.71517 

;-\ Stdev.' ' ' 0.2018" 0.28548 0.30441 0.34712 0.28002 0.39477 0.50414 

The actual frequency distributions corresponding to each set of calculated 

statistics in Table 5.9 are given as histogram plots in Figure 5.21 - Figure 5.28. These 

plots are once again overlaid with the associated Gumbel distribution, given as a solid 

line, and Normal distribution, given as a dashed line, to illustrate the fit of each type of 

distribution to the data. Again note that the discontinuity in some of the Normal 

distributions is the result of lumping together all responses below the point of the 

discontinuity. 
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Figure 5.21: Displacement Response Histograms, T = 0.1 sec, Damping = 2% 
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Figure 5.22: Displacement Response Histograms, T = 0.2 sec, Damping = 2% 
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Figure 5.23: Displacement Response Histograms, T = 0.4 sec, Damping = 2% 
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Figure 5.24: Displacement Response Histograms, T = 0.5 sec, Damping = 2% 
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Figure 5.25: Displacement Response Histograms, T = 0.6 sec, Damping = 2% 
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Figure 5.26: Displacement Response Histograms, T = 1.0 sec, Damping = 2% 
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Figure 5.27: Displacement Response Histograms, T = 3.0 sec, Damping = 2% 
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Figure 5.28: Displacement Response Histograms, T = 8.0 sec, Damping = 2% 
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From Figure 5.21 - Figure 5.28 it is apparent that the Gumbel distribution is again 

a better description of the peak deformation data in each case than the Normal 

distribution. Therefore, using the Gumbel distribution as a basis for comparison, Figure 

5.29 summarizes the individual distributions at each period, including the distribution of 

peak elastic deformations, to illustrate the effect of the different hysteresis models and 

their agreement with the elastic distribution across the range of natural periods. 

Beginning with the question of the effect of hysteresis model properties on peak 

displacement response, a number of observations can be made from Figure 5.29 and 

Table 5.10, which lists the dispersion parameter and mode describing the Gumbel 

distribution for each set of results. Note that the dispersion parameter is analogous to the 

variance of a Normal distribution while the mode is the location of the peak in the 

distribution. Comparing only the hysteresis models with each other, the modes of each 

distribution are located at essentially the same peak displacement for a given natural 

period. There was a tendency for the modes of the lower yield strength models, 

Hysteresis E and Hysteresis F, to occur at slightly higher peak displacements, especially 

at the longer natural periods with their larger peak displacements, but this tendency was 

relatively small. At natural periods of 0.1 seconds and 0.2 seconds there was negligible 

difference between the hysteresis models because the peak displacements did not reach 

yield for any of the models. With increasing peak displacements at the longer natural 

periods, the dispersion of the distributions for the lower yield strength models and 

Hysteresis C, with degradation parameters quadrupled, was increased with respect to the 

other models, particularly for Hysteresis F with 25% yield strength. This tendency was 

not particularly significant for Hysteresis C but there were definite differences from 

Hysteresis A and B, which had smaller degradation parameters. Only at the large peak 

displacements of T = 3.0 seconds and T = 8.0 seconds did the distribution of Hysteresis 

B, with degradation parameters doubled, become noticeably different from Hysteresis A. 

At all natural periods, the distributions of Hysteresis A and D, which represented 100% 

yield strength with and without degradation parameters, were negligibly different. 
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T=0 2sec 

Figure 5.29: Hysteresis Model Comparison of Peak Deformation Distributions 
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Table 5.10: Gumbel Distribution Parameters for Peak Deformation 

HPfli Statistic Hist \ Ihs l K H>st ( Hyst D II>sl F. Hyst F 

0.1 sec. 
Dispersion 5479.1890 5501.9051 5460.1337 5531.1127 5603.9804 5623.0013 

Mode 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 

0 2 sec. 
Dispcision 728.5579 737.2292 •'60 2819 708.0143 812.1206 905.2658 

Mode 0.0080 0.0080 0.0079 0.0081 0.0077 0.0073 

0.4 sec. 
Dispersion 238.0663 235.7321 230.5929 237.6564 242.4594 177.7142 

Mode 0.0267 0.0266 0.0268 0.0268 0.0260 0.0279 

0 5 sec. 
Dispersion 166.0894 163.7728 155.7097 169.1176 157.5203 102.520.5 

Mode 0.0379 0.0379 0.0378 0.0381 0.0367 0.0398 

0.6 sec. 
Dispersion 123.4556 120.6492 112.9021 125.3194 103.6185 70.3339 

Mode 0.0466 0.0464 0.0464 0.0467 0.0453 0.0502 

1 0 set. 
Dispersion 64 6310 64 lO." 59 9523 64.3189 48 7978 32 4550 

Mode 0 008" 0 068 5 0 0689 0 0690 0 0~13 0 0S4-7 

3.0 sec. 
Dispersion 13.8265 13.1043 12.5436 13.6291 10.3990 8.4201 

Mode 0.1705 0.1702 0.1766 0.1721 0.1987 0.2334 

8 0 set-
' i l 'Hl 4 4926 4 2133 3 6948 4.5802 '•'.3.2489 2.5440 " 

Mode 0.3082 0.3160 0J492 0.̂ 069 0.391)3 0.4883 

To enable a quantitative comparison of the effect of each hysteresis model on the 

distribution of peak deformation response at each natural period, the fitted Gumbel 

distributions of Figure 5.29 were used to evaluate the reliability index (3 of each 

hysteresis model associated with structural drift limits of; 0.5%, 1%, 2% and 4%, 

respectively. This type of analysis is an example of the intended purpose of PSResponse, 

which is to enable the evaluation of structural reliability under earthquake loading. 

The displacement limits corresponding to the chosen drift limits were determined 

from a structural height that was calculated by assuming that the experimental lateral 

stiffness data of Figure 5.19 was taken from a rigid beam portal frame structure with 0.2 

m x 0.2 m timber columns. The resulting frame height of 5.34 m gives displacement 
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limits of; 0.027 m, 0.053 m, 0.107 m and 0.214 m, respectively, for the chosen drift 

limits. The performance function for this reliability analysis may then be expressed as: 

G = X-x [1] 

where X is the displacement limit and x is the peak displacement random variable. The 

probability of failure and the associated reliability index may then be simply determined 

as: 

pf =P{G<o)=p(x>x) [2] 

/? = - « » - , ( p / ) [3] 

Evaluation of the exceedence probability in Eq. [2] was done using the cumulative 

distribution function of the Gumbel distribution given by: 

Fx (x) = exp[- exp(- a(x - b))] [4] 

where a is the dispersion of the distribution and b is the mode of the distribution. Table 

5.11 lists the calculated probabilities of exceeding each displacement (drift) limit for each 

hysteresis model at each natural period and Table 5.12 shows the reliability indices 

associated with the calculated exceedence probabilities. 

Table 5.11: Displacement (Drift) Limit Exceedence Probabilities 

r 1 iinit Elastic Hyst A ll\st Ii l lw( Hyst D Hyst fc Hyst F 

0.027 m 0 0 0 0 0 0 0 

0.1 sec 
0.053 m 0 0 0 0 0 0 0 

0.1 sec 
0.107 m 0 0 0 0 0 0 0 

0.214 m 0 0 0 0 0 0 0 

n.iij- in 0.0001 0 0 0 0 0 0 

0.2 sec 
0 053 m 0 0 ' o . * 0 0 . 0 0 

0.2 sec 
0.107 m 0 0 0 0 0 0 0 

0 214m 0 0 0 (( 0 0 0 
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T 1 imil 1 lasln. II\st \ Hyst It ll\st( Il\sl 1) II\sl 1 Hyst F 
0.027 m 0.8960 0.6035 0.6015 0.6167 0.6111 0.5474 0.6902 

0.4 sec 
0.053 m 0.0604 0.0019 0.0020 0.0024 0.0020 0.0014 0.0115 
0.107 m 0 0 0 0 0 0 0 
0.214 m 0 0 0 0 0 0 0 
0.027 m 0.9994 0 9979 0.9973 0 9954 0 99S5 0 9898 0.9761 

0.5 sec 
0 053 m 0.5697 0J0787 0 0803 0.0895 OWO 0.0735 0.2287 0.5 sec 
n le- m 0 0094 . . 0 0 0 •0 0 0.0010 
0 214m " 0 0 0 0 HBBI 
0.027 m 1 1 1 0.9999 1 0.9987 0.9940 

0.6 sec 
0.053 m 0.8846 0.3634 0.3639 0.3786 0.3642 0.3634 0.5601 
0.107 m 0.0714 0.0006 0.0007 0.0011 0.0005 0.0017 0.0182 
0.214 m 0.0001 0 0 0 0 0 0 
0.027 m 1 1 1 0.9998 0.9985 

1.0 sec 
0 053 in 0.9952 0 9361 0 9326 0 9248 0.9393 0.9134 0.9393 
i'.I""" m 0 5046 0.0805 0.0812 0.0966 0 0832 0.1609 0.3846 
0214m 0 0125 0 0001 0 0001 0.0002 0.0001 0.0009 0.0150 
0.027 m 0.9996 0.9993 0.9985 0.9985 0.9993 0.9974 0.9966 

3.0 sec 
0.053 m 0.9982 0.9938 0.9904 0.9911 0.9937 0.9894 0.9896 3.0 sec 
0.107 m 0.9822 0.9098 0.8987 0.9089 0.9120 0.9254 0.9449 
0.214 m 0.8064 0.4219 0.4307 0.4652 0.4318 0.5739 0.6920 

in 0 9991 0.9709 0.9659 0.9627 0.9728 0 9614 0.9606 

8.0 sec 
0 053 m 0.9974 0.9570 0 9516 0.9496 0.9592 0.9498 0.9515 8.0 sec 
0.107 m 0 9854 0.9153 0.9104 0.9134 0 9T8 0̂ 9187 0.9285 
0 214m 0.8826 0.7828 0 7850 0.8075 0.7836 0.8302 0.8659 

Table 5.12: Displacement (Drift) Limit Reliability Indices 

T Limit 1 IjstlL Hssl \ Hsst Ii H \ s K Uyst D Hyst E Hvst F 

0.027 m 8 8 8 8 8 8 8 

0.1 sec 
0.053 m 8 8 8 8 8 8 8 0.1 sec 
0.107 m 8 8 8 8 8 8 8 
0.214 m 8 8 8 8 8 8 8 
0.027 m 3 7086 4.7531 4.7946 4 S966 4.6621 5.1166 5.5062 

0.2 sec 
0 053 m 6.2656 7.7 161 7 7706 8 rf#59,16 ; *f"8 8 0.2 sec 
0.107 m 8 8 8 8 s 8 8 
0 214m 8 8 8 8 8 8 S 
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1 Limit 1.Instil1 H\sl \ ll\st Ii H\st( ll\st 1) H>st K Hyst h 

0.027 m -1.2590 -0.2625 -0.2573 -0.2969 -0.2821 -0.1192 -0.4964 

0.4 sec 
0.053 m 1.5515 2.8951 2.8777 2.8222 2.8853 2.9784 2.2743 
0.107 m 3.9710 5.7328 5.7020 5.6243 5.7238 5.8180 4.8026 
0.214 m 6.6620 8 8 8 8 8 7.7571 
0.027 m -3.2187 -2.8584 -2.7823 -2 6016 -2.9094 -2.3180 -1.9785 

0.5 sec 
0.053 m -0 P56 1.4139 1.4031 1 3439 1.4255 1.4505 0.7433 
0.107 m 2.3511 -4.2555 4.2227 4.0973 4.2970 4.1672 3.0835 
M.'14 111 4.7051 7.2567 7.2032 7 0082 7 3254 7.0775 5.5136 
U.U27 m -4.1384 -4.1923 -4.0139 -3.6553 -4.3232 -3.0221 -2.5111 

0.6 sec 
0.053 m -1.1985 0.3493 0.3481 0.3091 0.3474 0.3494 -0.1513 
0.107 m 1.4652 3.2512 3.2074 3.0701 3.2790 2.9334 2.0915 
0.214 m 3.7377 5.9899 5.9157 5.6982 6.0381 5.4469 4.2668 
0.027 m -4.8320 -4.9423 -4.8473 -4.43"1 -4.9719 -3.5885 -2.9712 

1.0 sec 
0.053 ni -2.5923 -1.5230 -1.4956 -1.4380 -1 5489 -1.3621 -1.5486 
0.107 m -0.0115 1.4019 1.3974 1.3012 1.3836 0.9906 0.2934 
0.214 m 2 2412 3. ̂ 652 3.7489 3.5886 3.7480 3.1064 2.1713 
0.027 m -3.3665 -3.1968 -2.9769 -2.9777 -3.1846 -2.7980 -2.7072 

3.0 sec 
0.053 m -2.9149 -2.4980 -2.3416 -2.3677 -2.4968 -2.3058 -2.3124 
0.107 m -2.1006 -1.3396 -1.2741 -1.3339 -1.3529 -1.4422 -1.5975 
0.214 m -0.8647 0.1971 0.1745 0.0873 0.1718 -0.1862 -0.5014 
0 027 m -3.1261 -I 8941 -1.8240 -1 7826 -1.9236 -1.7674 -1.7574 

8.0 sec 
0.053 m -2.7965 -1.7171 -1.6607 -1.6406 -1 7419 -1.6428 -1.6597 
0.107 m -2.1814 -1.3743 ' -1.3432 -1.3621 -1.3905 -1.3966 -1.4646 
0.214 m -1.1883 -0.7815 -0.7890 -0.8688 -0.7844 -0.9549 -1.10"3 

Examining the reliability indices of Table 5.12 reveals three key trends in the drift 

exceedence probabilities. Firstly, for each drift limit at each natural period the elastic 

response gives a conservative estimate of drift reliability as evidenced by the smaller p 

value compared to each of the six hysteresis models. Secondly, the P values for the 

hysteresis models vary significantly at a given natural period and drift limit. Thirdly, the 

range of variability in the p values for the hysteresis models is dependent on the natural 

period and chosen drift limit. For example, the reliability index for T = 1.0 seconds and 
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1% drift (0.053 m) ranged between -1.3621 and -1.5489, while for 2% drift (0.107 m) at 

the same natural period, the reliability index ranged between 1.4019 and 0.2934. 

The latter two key observations indicate that the characteristics of a hysteresis 

model have a significant effect on the calculated seismic reliability of a structure, with 

the effect being more or less pronounced depending on the capacity limit that is used to 

assess seismic reliability. Taken together, these observations show that the hysteretic 

behaviour of a structure needs to be accurately modeled, particularly in shorter natural 

period structures, to provide an accurate probabilistic description of response and hence a 

good estimate of seismic structural reliability. The natural period dependence of the 

relative importance of an accurate hysteresis model can be seen in the basic equation of 

motion for a structure, which can be written as follows: 

.. . F{x) .. 
m 

[5] 

From that form of the equation of motion it is clear that the relative importance of the 

restoring force F(x) is reduced with increasing mass for a given structural stiffness. 

Therefore, the shape of the hysteresis loop for longer period structures is relatively less 

important when determining the probabilistic response of the structure. 

Turning to the question of the appropriateness of the equal displacement 

observation in structural dynamics, it is clear from Figure 5.29 that the distributions of 

elastic peak displacement differ from the inelastic distributions for all natural periods 

exhibiting a significant response. In general, the modes of the inelastic distributions are 

located at a lower peak displacement than the modes of the corresponding elastic 

distributions, which were close to the spectral displacement for the E l Centro ground 

motion at each period (see Fig. 5.18). This observed trend suggests that the elastic 

response of a structure tends to give a conservative estimate of peak inelastic 

displacement, which was noted previously in the analysis of drift reliability. To enable 

evaluation of this observed conservativeness and identify how it changes with natural 
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period and relative yield strength, the percentage difference between the elastic and 

inelastic peak displacement for each record in the sequence of 1000 generated ground 

motions was determined at each natural period using three hysteresis models; Hysteresis 

D, Hysteresis E and Hysteresis F. These represent non-degrading hysteretic behaviour 

with 100% yield strength, 50% yield strength and 25% yield strength, respectively. 

Determining the probabilistic description of the percentage difference between peak 

elastic and peak inelastic displacement then allows for a reliability analysis of the 

conservativeness of the equal displacement principle. 

Table 5.13 lists the basic statistics for the distribution of each set of percentage 

difference results and Figure 5.30 shows the histogram plots of the actual frequency 

distribution of the results for two natural periods. These plots are once again overlaid 

with the associated Gumbel distribution, given as a solid line, and Normal distribution, 

given as a dashed line, to illustrate the fit of each type of distribution to the data. 

Table 5.13: Percentage Difference Statistics for Inelastic vs. Elastic Peak Deformation 

Period Statistic Hyst D HystE Hyst I 

0.1 sec. 

Min. -25.64 -25.23 -28.60 

0.1 sec. 
Max. 20.45 33.41 34.40 0.1 sec. 
Avg. -0.46 -0.42 -0.33 

0.1 sec. 

Stdev. 4.91 6.34 7.84 

0.2 sec. 

Min. -33.56 -44.89 -55.61 

0.2 sec. 
Max. 16.75 22.40 31.25 0.2 sec. 
Avg. -10.58 -15.28 -19.14 

0.2 sec. 

Stdev. 7.40 10.24 13.50 

0.4 sec. 

Min. -52.25 -58.31 -60.70 

0.4 sec. 
Max. 31.69 53.06 123.04 0.4 sec. 
Avg. -19.17 -20.45 -12.08 

0.4 sec. 

Stdev. 13.35 17.88 26.25 

0.5 sec. 

Min. -59.69 -67.54 -70.91 

0.5 sec. 
Max: 23.38 66.37 114.47 0.5 sec. 
Avg. -25.62 -27.02 -17.11 

0.5 sec. 

Stdev. 14.60 18.71 28.47 
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Period Statistic Hyst I) HystE Hyst F 

Min. -65.73 -68.49 -68." 

0.6 sec. 
Max. 43.85 54.51 140.59 0.6 sec. 
Avg. -28.39 -28.49 -17.57 
Stdev. 15.48 19.82 29.18 
Min. -62.40 V-69.41 -69.26 

1.0 sec. 
Max. 44.25 82.71 224.70 1.0 sec. 
Avg. -28.06 -22.80 -4.36 
Stdev. . 17.06 25.06 38.82 
Min. -79.88 -76.08 -80.76 

3.0 sec. 
Max. 162.25 269.27 451.71 3.0 sec. 
Avg. -31.63 -17.62 -0.34 
Stdev. 28.61 42.79 58.15 
Min. -67.94 -64.75 -73.19 

8.0 sec. 
Max. 211.63 384.39 430.45 8.0 sec. 
Avg. • 1.55 _ 32.84 68.16 
Stdev. 37.10 58.93 80.80 

From Figure 5.30, the Gumbel distribution once again appears to be a better 

description of the percentage difference data than the Normal distribution, therefore, 

using the Gumbel distribution as a basis for comparison, Figure 5.31 summarizes the 

individual distributions of each set of percentage difference results for each hysteresis 

model at each natural period. Also, Table 5.14 lists the dispersion parameter and mode 

describing the Gumbel distribution for each set of results. 

Table 5.14: Gumbel Distribution Parameters for Percentage Difference Results 

Period Statistic Hyst 1) Hyst E Hyst F 

0.1 sec. 
Dispersion 0.26 0.20 0.16 0.1 sec. 

Mode -2.67 -3.27 -3.86 

0.2 sec. 
Dispersion 0.17 0.13 0.09 0.2 sec. 

Mode -13.91 -19.89 -25.22 

0.4 sec. 
Dispersion 0.10 0.07 0.05 

0.4 sec. 
Mode -25.18 -28.49 -23.89 
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Period Statistic H>stD Hyst £ HystF 

0.5 sec. 
Dispersion 0.09 0.07 0.05 0.5 sec. 

Mode -32.19 -35.45 -29.92 

0.6 sec. 
Dispersion o.os 0.06 0.04 0.6 sec. 

Mode -35.36 -37.41 -30.70 

1.0 sec. 
Dispersion 0.08 (J.U5 0.03 1.0 sec. 

Mode -35.74 -34.08 -21.83 

3.0 sec. 
[ > l - . p i T < I U I I 0.04 0.03 0.02 3.0 sec. 

Mode -44.50 -36.88 -26.51 

8.0 sec. 
Dispersion 0.03 0.02 0.02 8.0 sec. 

Mode -15.15 6.32 31.79 

Using the fitted Gumbel distributions of Figure 5.31, the probability that the 

percentage difference between peak inelastic and peak elastic displacement exceeded 0% 

was evaluated for each hysteresis model (i.e. yield level) at each natural period. This 

then allows for a reliability estimate of the conservativeness of the equal displacement 

principle. Note that a negative percentage difference indicates that the peak elastic 

displacement exceeded the peak inelastic displacement, thereby giving a conservative 

estimate of peak displacement. Table 5.15 lists the calculated exceedence probabilities 

for each hysteresis model at each natural period. 

Table 5.15: Zero Percent Difference Exceedence Probabilities 

1-0. L s 1=0.2 s 1=0.4 s T=0.5 s 1=0.6 s 1=1.0 s 1=3.0 s 1=8.0 s 

HystD 0.3924 0.0858 0.0853 0.0575 0.0520 0.0659 0.1272 0.4469 
HystE 0.4029 0.0795 0.1215 0.0843 0.0850 0.1603 0.2818 0.6826 
HystF 0.4127 0.0871 0.2674 0.2287 0.2285 0.3850 0.4272 0.8092 
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Figure 5.30: Percentage Difference Histograms for Inelastic vs. Elastic Peak Deformation 



Chapter 5 Software Verification and Case Studies 208 

Figure 5.31: Percentage Difference Distributions for Inelastic vs. Elastic Peak Deformation 
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Examining the Gumbel distributions of Figure 5.31 and the associated reliability 

indices of Table 5.16 it is clear that the peak elastic displacement of a structure generally 

gave a conservative estimate of peak inelastic displacement (elastic > inelastic). This 

trend was consistent except for the longer natural period structures (T = 3.0 sec, T = 8.0 

sec) with reduced yield strength (Hyst E, Hyst F) where very large peak displacements, 

which exceeded peak ground displacement by a factor of 2 to 3, were commonly 

observed (see Fig. 5.18 and Fig. 5.29). Also, for a given natural period the probability 

that peak elastic displacement gave a conservative estimate of peak inelastic 

displacement (elastic > inelastic) was reduced as yield strength decreased. This is clearly 

evident from the increasing dispersion in the percentage difference distributions as yield 

strength decreased from 100% to 50% to 25% in Hysteresis D, Hysteresis E and 

Hysteresis F, respectively. The degree of dispersion consistently increased with 

increasing peak displacements as natural period increased. 

While it is difficult to make definitive statements regarding the accuracy of the 

equal displacement principle owing to the wide spread in percentage difference results in 

Figure 5.31, the preceding observations indicate that the equal displacement principle is 

generally valid in the sense that elastic peak displacement provides a useful, conservative 

first approximation of inelastic peak displacement. 
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CHAPTER 6 

S U M M A R Y , CONCLUSIONS AND R E C O M M E N D A T I O N S 

6.1 S U M M A R Y 

The evaluation of seismic reliability of building structures is a complex and 

computationally expensive process since it requires, at the most fundamental level, the 

evaluation of the probabilistic dynamic response of a given structure to the stochastic 

dynamic action of an earthquake. Because of the difficulty of determining the response 

of a structure in a statistical sense, past estimates of the seismic reliability of existing 

structures, and typical structural systems, have been largely qualitative in nature. With 

the movement of many national building codes towards more performance-based design 

measures, a need was identified for a more quantitative method of evaluating structural 

reliability under seismic loading. 

The overall objective of this study was then to develop a simple, useable software 

application for probabilistic analysis of the dynamic response of civil engineering 

structures to random ground motions. Knowing the probabilistic response of a structure, 

an accurate assessment of a specific reliability measure can be made from the probability 

of exceeding a chosen threshold. Using this approach, the aim was to provide a tool for 

engineers and researchers that could be used to evaluate the probable effect of a wide 

range of ground motion characteristics and structural model parameters, each with their 

own random nature, on the dynamic response of a structure. 

To begin the process of developing the software application, a comprehensive 

review of random vibration methods and numerical procedures was carried out to identify 

a suitable method of analyzing the probabilistic seismic response of civil engineering 

structures. This review, which included all key research related to the mathematical 



Chapter 6 Summary, Conclusions and Recommendations 211 

modelling of probabilistic structural behaviour done over the past 50 years, assessed the 

limitations of each method with regard to the level of complexity in the structural model, 

degree of non-linearity in system restoring forces and nature of the random excitation 

process. To provide an accurate, robust and practical means of evaluating structural 

reliability under seismic loading, the chosen procedure had to allow for highly non-linear 

response behaviour, realistic stochastic structural models with multiple degrees of 

freedom, and realistic earthquake motions. These requirements tended to eliminate all 

the frequency-domain based analytical random vibration methods, with the exception of 

the Equivalent Linearization method, because they are too restrictive in their inherent 

assumptions to confidently apply their results to real structures experiencing realistic 

earthquakes. 

The Markov-based methods assume a white noise excitation, which is a poor 

representation of a real earthquake spectrum, and most of them (Galerkin method, Finite 

Element method, and the Closure Technique) have the disadvantage of slow convergence 

or large computational requirements for highly non-linear or multiple-degree-of-

freedom systems. In the case of the Numerical Diffusion method, the applicability of 

Generalized Cell Mapping (GCM) to degrading hysteretic systems, which characterizes 

most structures, is not known. 

The Perturbation method and the Functional Series Representation method are not 

confined to a white-noise assumption for the excitation and are even applicable to 

multiple-degree-of-freedom systems. However, these methods are limited to weakly 

non-linear systems and as such are not applicable to ductile, hysteretic structural systems. 

The Equivalent Linearization method has been successfully applied to response 

and damage prediction of a variety of highly non-linear structural systems under seismic 

excitation. However, response results may tend to be underestimated using this method 

when the excitation spectral content is such that the power spectral density function 

vanishes rapidly as the frequency goes to zero, which is typical of earthquake excitation. 

In addition, the assumption of a Gaussian input excitation results in an assumed Gaussian 
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response of the linearized non-linear system. This assumption is not correct for a non­

linear system, which is known to have a non-Gaussian response to a Gaussian input. The 

result of an assumed Gaussian response is that it may significantly misrepresent the 

frequency of high response levels to extreme loads, which contribute most to first-

passage and fatigue failures. 

With these limitations in mind, the decision was made to forego the efficiency of 

the frequency-domain based methods in favour of a robust numerical time-history 

approach incorporating the Monte Carlo method. This approach, while more 

computationally demanding than the analytical procedures, allows the probabilistic 

response of a structure to be evaluated without regard to the degree of non-linearity in 

the restoring force, complexity of the structural system, nature of the variability in 

structural properties or nature of the random excitation process. 

The decision to adopt a Monte Carlo, time-history approach for determining the 

probabilistic seismic response of a structure required that several types of component 

models be incorporated into the overall architecture of the software, which was named 

PSResponse. Models for generating and modulating artificial ground motion time-

histories, structural models along with a means of simulating a non-linear, hysteretic 

restoring force, as well as an overall numerical time-stepping method to solve the 

differential equation of motion were linked together to form the computational 

foundation of the software. In addition, the overall framework of PSResponse required 

algorithms for Fourier analysis and power spectrum estimation, a frequency filtering 

algorithm to ensure that input ground accelerations were truly representative of a real 

earthquake, a long period random number generator to ensure a reliable source of random 

numbers essential for Monte Carlo analysis, and algorithms for solving the eigensystem 

representing the natural frequencies and mode shapes of a multiple-degree-of-freedom 

structure. In total, the computational engine of PSResponse consists of approximately 79 

algorithms linked together in an object-oriented framework. 
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The ground motion models that were incorporated into PSResponse are well-

known methods that reproduce the probabilistic characteristics of a specified frequency 

spectrum while the hysteresis model is a version of the well-known BWBN, or Bouc-

Wen, hysteresis model that was specifically modified for this software application. The 

BWBN model, which uses a smooth differential equation to represent the non-linear 

component of the restoring force in the equation of motion, was chosen over the use of 

piece-wise linear equations because it is able to reproduce a wide variety of hysteresis 

shapes, including pinching and degradation behaviour, without the use of numerous 

empirical rules governing the relationship of stiffness to displacement. It also allowed for 

the development of an algorithm within the software that identifies the parameters 

governing hysteretic behaviour from experimental data provided by the user. Thirteen 

separate parameters must be identified in the original BWBN model, although two of the 

parameters are typically set to unity, which is a computationally demanding process since 

system identification problems rapidly increase in difficulty as the number of parameters 

increases. To simplify the process, the BWBN model was modified to reduce the number 

of parameters controlling pinching behaviour from six to three using the assumption that 

overall structural hysteretic pinching begins at or very near zero restoring.force in each 

loading cycle. With this modified pinching function, the role of each of the three new 

parameters is more easily understood than the relationship between the six parameters of 

the original pinching function. One parameter controls the overall rate of increase in 

pinching as damage cycles progress, a second parameter controls the rate of stiffness 

recovery throughout the loading phases of each cycle and a third parameter controls the 

rate of stiffness recovery during the increasing displacement portion of each loading 

phase. Incorporation of the modified BWBN hysteresis model into the numerical,time-

stepping procedure required that a separate numerical solution algorithm be linked with 

the Newton-Raphson iteration scheme in the Newmark Method since the first-order, 

non-linear ordinary differential equation of the BWBN model has no exact solution. 

Following development of the solution algorithms and numerical components that 

form the computational engine of PSResponse, a Windows user-interface was developed 

to provide easy access to the software and ensure the integrity of the input data prior to 
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analysis. The user-interface is based on a wizard manager architecture that guides the 

user through a sequence of input and output dialog boxes that depends on the type of 

analysis selected. A wizard manager algorithm, which acts as the link between the dialog 

boxes and the computational framework, determines which of the 26 dialog boxes are 

required, passes information between dialog boxes, passes input data to the 

computational algorithms and stores both input data and output arrays. 

The final phase in the development of PSResponse was verification of the 

accuracy of a calculated dynamic response against a reliable benchmark, which was 

chosen to be SAP2000 Nonlinear 8.1.2 (Computers & Structures Inc. 2003) because it is 

an accepted industry standard software package capable of performing highly 

sophisticated non-linear time-history analysis. As a further verification check, elastic 

and inelastic analysis results from each software application for both single-degree-of-

freedom and multiple-degree-of-freedom structures were compared with corresponding 

results published by Chopra (1995). This comparison showed good agreement between 

each set of calculated responses for each type of analysis, which was taken as 

confirmation that PSResponse results meet an acceptable standard of accuracy for the 

intended purpose of the software. This purpose is to provide fast, summary-level 

dynamic analysis results for determining the probabilistic response of linear and non­

linear systems under stochastic dynamic loading. To that end, it is worth noting that 

PSResponse was two orders of magnitude faster than SAP2000 in calculating the 

inelastic dynamic response ofthe five-storey shear structure subjected to the El Centro 

ground motion. Calculation time for PSResponse was less than one second on a 1.5 GHz 

Pentium 4 computer with 256 M B R D R A M while SAP2000, with its much more detailed 

finite-element basis, took approximately 83 seconds. 

Finally, as a first application of the beta release of PSResponse, two case studies 

were done to demonstrate the capabilities ofthe program as a research and analysis tool. 

These case studies analyzed, from a probabilistic point of view, three general questions 

pertinent to structural dynamics and earthquake engineering; the relative effect of random 

structural properties on the dynamic response of a structure, the appropriateness of the 
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well-known equal displacement observation and the effect of hysteresis model properties 

on displacement response. 

The first case study analyzed the effect of random properties on the dynamic 

response of a structure by evaluating the probable peak base shear, peak base moment 

and peak fifth storey displacement of a five-storey elastic structure using a sequence of 

1000 generated records and five levels of variability in the storey mass, storey stiffness, 

storey height and modal damping. As well, the probable accuracy of the Response 

Spectrum Analysis (RSA) procedure for determining the peak responses of a multiple-

degree-of-freedom system using the absolute sum (ABSSUM), square-root-of-sum-of-

squares (SRSS) and complete quadratic combination (CQC) modal combination rules 

was evaluated. 

Results from the first case study showed that peak elastic response data is well 

described by the Gumbel distribution, which was then used as the basis for comparison in 

evaluating the effect of increasing structural parameter variability on the probability 

distribution of the chosen peak elastic responses. Using a number of statistical tests, the 

distribution of each peak response was compared at each level of structural variability 

with the distribution associated with a deterministic structure. From that analysis it was 

determined that the randomness of the generated ground motions accounts for the 

majority of the observed range in a given peak response while structural randomness had 

a relatively minor effect. This then suggests that careful attention needs to be paid to the 

characteristics of the ground motion records used when analyzing the dynamic response 

behaviour of a structure. Once a suitable seed record or suite of seed records has been 

selected, however, the peak response probability distributions for a given structural 

model could be applied to a real structure with reasonable confidence since a coefficient 

of variation in the structural parameters of between 0.2 and 0.3 was required before any 

significant affect on the peak elastic response distributions was observed. Finally, results 

from the analysis of the accuracy of the RSA procedure showed, as expected, that the 

ABSSUM modal combination rule gives a very conservative estimate of peak response 

and that the SRSS and CQC error distribution is well represented by the Normal 
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distribution. Using the properties of the Normal distribution, approximate rules-of-

thumb were established for the accuracy of the CQC and SRSS modal combination rules 

for peak base shear, peak base moment and peak fifth storey displacement. The observed 

standard deviations in the distributions of the peak responses indicated that; % of the time 

the CQC and SRSS results for peak base shear will be within 10% of the RHA result, 

while peak base moment and peak fifth storey displacement will be within 5% of the 

RHA result. 

The second case study analyzed the equal displacement observation in structural 

dynamics as well as the effect of hysteresis model properties on displacement response 

using a group of single-degree-of-freedom structures with eight different natural periods 

and 2% damping subjected to a sequence of 1000 generated records using six different 

hysteresis models. The hysteresis models for the structures were derived from 

experimental data taken from a cyclic lateral displacement-controlled test of a Parallam® 

column, which was analyzed using the hysteresis parameter identification feature of 

PSResponse. Dynamic analysis results showed that the Gumbel distribution is again a 

good description of the random behaviour of peak displacement response and, therefore, 

it was used as the basis for comparison in evaluating the effect of the different hysteresis 

models as well as the agreement between peak elastic and peak inelastic displacement. 

To quantify the effect of different hysteresis models on peak inelastic 

displacement response, the reliability index [3 of each hysteresis model associated with 

structural drift limits of; 0.5%, 1%, 2% and 4%, was calculated for each of the eight 

natural periods. This type of analysis is an example of the intended purpose of 

PSResponse, which is to enable the evaluation of structural reliability under earthquake 

loading. The calculated reliability indices showed three key trends in the drift 

exceedence probabilities. Firstly, for each drift limit at each natural period the elastic 

response gives a conservative estimate of drift reliability as evidenced by the smaller (3 

value compared to each of the six hysteresis models. Secondly, the (3 values for the 

hysteresis models vary significantly at a given natural period and drift limit. Thirdly, the 
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range of variability in the P values for the hysteresis models is dependent on the natural 

period and chosen drift limit. 

The latter two key observations indicate that the characteristics of a hysteresis 

model have a significant effect on the calculated seismic reliability of a structure, with 

the effect being more or less pronounced depending on the capacity limit that is used to 

assess seismic reliability. Taken together, these observations show that the hysteretic 

behaviour of a structure needs to be accurately modeled, particularly in shorter natural 

period structures, to provide an accurate probabilistic description of response and hence a 

good estimate of seismic structural reliability. The natural period dependence of the 

relative importance of an accurate hysteresis model is a consequence of the decreasing 

importance of the restoring force F(x) in the equation of motion as structural mass 

increases for a given structural stiffness. Therefore, the shape of the hysteresis loop for 

longer period structures is relatively less important when determining the probabilistic 

response of the structure. 

Results from the analysis of the equal displacement observation showed that the 

distribution of elastic peak displacements differed from the inelastic distribution for each 

hysteresis model for all natural periods exhibiting a significant response. In general, the 

modes of the inelastic distributions were located at a lower peak displacement than the 

mode of the corresponding elastic distribution. This observed trend suggests that the 

elastic response of a structure tends to give a conservative estimate of peak inelastic 

displacement. To enable evaluation of this observed conservativeness and identify how it 

changes with natural period and relative yield strength, the distribution of percentage 

difference between the elastic and inelastic peak displacement was determined for each 

natural period using three hysteresis models; Hysteresis D, Hysteresis E and Hysteresis F, 

which represent non-degrading hysteretic behaviour with 100% yield strength, 50% yield 

strength and 25% yield strength, respectively. 

Using Gumbel distributions to describe the distribution of percentage difference 

results, the probability that the percentage difference between peak inelastic and peak 
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elastic displacement exceeded 0% was evaluated for each hysteresis model (i.e. yield 

level) at each natural period. This then allowed reliability indices to be calculated for the 

conservativeness of the equal displacement principle. Note that a negative percentage 

difference indicates that the peak elastic displacement exceeded the peak inelastic 

displacement, thereby giving a conservative estimate of peak displacement. 

The calculated reliability indices for the conservativeness of the equal 

displacement principle showed that peak elastic displacement is generally a conservative 

estimate of peak inelastic displacement (elastic > inelastic) except for longer natural 

period structures with reduced yield strength. Also, for a given natural period the 

probability that peak elastic displacement will give a conservative estimate of peak 

inelastic displacement (elastic > inelastic) is reduced as yield strength decreases. 

While it is difficult to make definitive statements regarding the accuracy of the 

equal displacement principle owing to the wide spread in percentage difference results for 

each hysteresis model at each natural period, the preceding observations indicate that the 

equal displacement principle is valid in the sense that elastic peak displacement provides 

a useful, generally conservative first approximation of inelastic peak displacement. 

6.2 CONCLUSIONS 

Developing a software application for evaluating the probabilistic response of a 

structural system to the stochastic dynamic action of an earthquake is a challenging 

process that depends on the successful integration of a number of mathematical modeling 

techniques that have been developed over the last several decades. Conclusions 

regarding the merits of the modeling methods and program functionality that were 

integrated into PSResponse as well as the contributions that have been made in the 

development of this research and analysis tool can be summarized with respect to the 

objectives that were set out at the beginning of this project. These objectives were: 
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1. Evaluate the various analytical and numerical methods that have been developed to 

predict the response of linear and non-linear systems under stochastic dynamic 

actions. 

2. Identify a method suitable for probabilistic analysis of the seismic response of civil 

engineering structures. 

3. Develop software to enable application of the chosen probabilistic analysis method 

for use by engineers and researchers in evaluating structural reliability under 

seismic loading. 

The first two objectives were met through a comprehensive review of the random 

vibration methods and numerical procedures that have been developed since the first 

application of probabilistic methods in the field of structural dynamics several decades 

ago. The theory and application of probabilistic methods is a vast field that crosses back 

and forth over traditional discipline boundaries between engineering, physics, and 

mathematics and every effort was made to identify and assess all available methods for 

their suitability in analyzing the probabilistic seismic response of civil engineering 

structures. That review now serves as a reasonably current state-of-the-art summary of 

probabilistic methods and the component models required in numerical procedures. 

From the review it was determined that the frequency-domain based random vibration 

methods are too restrictive in their inherent assumptions to confidently apply their results 

to real structures experiencing realistic earthquakes. Instead, a numerical time-history 

approach incorporating the Monte Carlo method provides a robust, accurate and 

straightforward means of evaluating the probabilistic response of a structure without 

regard to the degree of non-linearity in the restoring force, complexity of the structural 

system, nature of the variability in structural properties or nature of the random excitation 

process. 

The third objective was met by developing a user-friendly, intuitive software tool 

that successfully integrates all the elements required in stochastic numerical modeling 

into what is believed to be the first software application of its kind. Engineers and 

researchers now have at their disposal a software application that can rigorously evaluate 
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the probable effect of a wide range of ground motion characteristics and structural model 

parameters, each with their own random nature, on the dynamic response of a structure. 

This required that an entirely new, standalone application be developed to provide the 

computational speed necessary for Monte Carlo dynamic analysis of elastic and inelastic 

structures as well as the convenience of a Windows user-interface for easy access to the 

software. 

To provide researchers the ability to evaluate the probabilistic response behaviour 

of experimental structural systems and connections, a new algorithm for parameter 

identification of the well-known BWBN, or Bouc-Wen, hysteresis model was developed 

for use with experimental data. This algorithm, and the non-linear analysis algorithms in 

general, also incorporated a modification to the BWBN model that was specifically made 

for this software application to simplify the parameter identification process. The 

number of parameters controlling pinching behaviour in the BWBN model was reduced 

from six to three, which has the added benefit that the role of each of the three new 

parameters is more easily understood than the relationship between the six parameters of 

the original pinching function. 

For engineering design and analysis purposes, the probabilistic seismic response 

behaviour of a particular structure or structural system may be evaluated simply using the 

calculated lateral yield displacement of the structure and a specified post-yield relative 

stiffness. This allows the approximate probability distribution of seismic response 

behaviour to be determined without having experimental data available to fit the BWBN 

hysteresis model. The accuracy of this approximate distribution, which is based on an 

estimated yield strength and does not include the effect of degrading hysteretic 

behaviour, was investigated in a case study that is summarized shortly. Changes to a 

design affecting either the dynamic behaviour of the structure or the random distributions 

of the structural properties would currently require a new probabilistic analysis of the 

response behaviour, however, future development of PSResponse could incorporate a 

neural network or response surface application to reduce the requirement for new 

probabilistic analyses as design changes are made. 
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Following the successful completion of the objectives of this project, a further 

contribution was made to the fields of structural dynamics and earthquake engineering 

through the completion of two case studies that also demonstrated the capabilities of 

PSResponse as a research and analysis tool. These case studies provided for the first 

time a probabilistic analysis of the importance of the hysteresis assumption in inelastic 

dynamic analysis, the accuracy of the equal displacement observation and the relative 

effect of random structural properties on elastic dynamic response. The general 

conclusions that were drawn within the context of the scope of the case studies were as 

follows: 

1. The hysteretic behaviour of a structure needs to be accurately modeled, particularly 

in shorter natural period structures, to provide an accurate probabilistic description 

of response and hence a good estimate of seismic structural reliability. 

2. The equal displacement principle is valid in the sense that elastic peak displacement 

provides a generally conservative first approximation of inelastic peak 

displacement, which in turn results in a generally conservative prediction of 

reliability. 

3. The characteristics and randomness of ground motion records has a much larger 

influence than structural randomness on the probabilistic dynamic response of a 

structure. Therefore, once a suitable seed record has been selected, the peak 

response probability distributions for a given structural model could be applied to a 

real structure with reasonable confidence since the assumed level of uncertainty in 

the structural parameters needs to be only approximately correct. However, for 

strength related limit state evaluations related to peak response, structural 

variability still has an important effect. 
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6.3 R E C O M M E N D A T I O N S F O R F U R T H E R R E S E A R C H 

There are a virtually unlimited number of studies that could be carried out to 

evaluate the probable response of a wide range of structural models with various 

combinations of structural properties possessing different random distributions. These 

studies could include evaluations of; base isolation systems, optimal mass and damping 

distributions, first-passage probabilities and the temporal evolution of probabilistic 

response distributions. These types of analysis are possible with PSResponse but were 

not included in the case studies done as part of this project. 

Future development of PSResponse could include the addition of several post­

processing features that would automate the statistical analysis of dynamic response 

results as well as link the results to a neural network or response surface application for 

structural optimization and design that conforms to specific performance measures. 
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