A GREENHOUSE GAS ANALYSIS OF SOLID WASTE MANAGEMENT IN THE GREATER VANCOUVER REGIONAL DISTRICT

by

PHILIP K. BARTON B.A.Sc., The University of British Columbia, 1996

A THESIS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES (Department of Civil Engineering)

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA August, 2000 © Philip K. Barton, 2000 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of CIVIL ENGINEERING

The University of British Columbia Vancouver, Canada

Date AUgust 21,2000

ABSTRACT

A GREENHOUSE GAS ANALYSIS OF SOLID WASTE MANAGEMENT IN THE GREATER VANCOUVER REGIONAL DISTRICT

by Philip K. Barton

A greenhouse gas analysis of the Greater Vancouver Regional District's (GVRD's) solid waste management system is presented in this thesis. This investigation quantifies the greenhouse gas (GHG) emissions resulting from the GVRD's current system of landfilling, incinerating, composting and recycling of the municipal solid waste generated within its boundaries and provides recommendations for future management. The definition of municipal solid waste (MSW) in this thesis is the sum total of all waste generated from residential, industrial, commercial and institutional sources, and excludes the typically categorized demolition and land-clearing (DLC) waste. The waste components newsprint, office paper, ferrous metal, glass, high-density polyethylene, lowdensity polyethylene, food scraps and yard trimmings are investigated individually while the remaining waste is analyzed as a whole. This research finds that the GVRD solid waste system in 1998, instead of causing greenhouse gas emissions, actually prevented the release of 180,000 tonnes of carbon dioxide equivalent (tCO₂e). The existing waste management system created GHG benefits largely from landfill carbon sequestration and by allowing recyclables to offset virgin manufacturing by industry. Energy generation during incineration and at landfills also provided some GHG benefits. These benefits are accounted for as negative emissions and more than compensate for the important GHG emissions identified by this research such as landfill CH₄, CO₂ released during the combustion of diesel fuel and plastics and N₂O emissions. Modelling of this waste system into a spreadsheet program allowed the demonstration of the GHG response to future management changes. Several scenarios were programmed into the Model which illustrate the critical importance future management changes can have on the overall GVRD emissions; of particular relevance when analyzed from the perspective of emissions trading. Major conclusions derived from the scenarios are: the difference between pursuing improvements in landfill gas (LFG) collection and doing nothing could be almost 300,000 tCO₂e/yr, the initiation of electricity generation could reduce emissions by 55,000 tCO₂e/yr, considering incineration as a replacement for landfill disposal could bring in credits of 140,000 tCO₂e/yr when electricity generation is provided, the future methane liability of landfilling requires extensive consideration since modelling ultimate decomposition calculates an emissions increase of over 300,000 tCO₂e/yr. Each of these projects have emissions trading opportunities and at an assumed \$5/tCO₂e, significant revenue could be generated in this manner. A number of recommendations complete this thesis. The most important are: to strongly encourage the GVRD to begin actively participating in emissions trading or to bank credits for future regulatory requirements, to investigate improving the LFG collection system at the Cache Creek Landfill, to investigate electricity generation at the Burnaby Incinerator and to encourage greater recycling of metal, glass and plastic.

TABLE OF CONTENTS: CONDENSED

INT	RODUCTION	1
1.1	BACKGROUND	2
1.2	GREENHOUSE GASES & CLIMATE CHANGE	5
1.3	SOLID WASTE MANAGEMENT	7
	RECENT POLICY DEVELOPMENTS	13
	RESEARCH OBJECTIVES	15
1.6	THESIS OVERVIEW	16
ME	THODOLOGY	18
	INTRODUCTION	18
	GLOBAL WARMING POTENTIAL	19
	BIOMASS DECOMPOSITION/COMBUSTION	20
	LANDFILL CARBON SEQUESTRATION	22
	NITROUS OXIDE EMISSIONS	29
	RECYCLING ANALYSIS	44
	UNCERTAINTY WITH THE ESTIMATES	70
	SPREADSHEET PROGRAM	70
	WASTE MASS ESTIMATES REMAINING WASTES	78 85
	GHG EMISSIONS NOT INVESTIGATED	83 89
	STANDARDS	89 90
2.12	STANDARDS	90
RE	SULTS & DISCUSSION	91
3.1		91
3.2	SCENARIOS	. 100
CO	NCLUSIONS & RECOMMENDATIONS	105
BIB	SLIOGRAPHY	108
	REFERENCES	108
5.2	PERSONAL COMMUNICATIONS	114
AP	PENDICES	115

TABLE OF CONTENTS: DETAILED

ABSTRACT	ii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ACRONYMS	ix
ACKNOWLEDGMENTS	х
INTRODUCTION	1
1.1 BACKGROUND1.2 GREENHOUSE GASES & CLIMATE CHANGE	2 5
1.3 SOLID WASTE MANAGEMENT	7
1.3.1 Landfill Disposal	. 9
1.3.2 Incineration	10
1.3.3 Backyard & Centralized Composting	11
1.3.4 Recycling	12
1.4 RECENT POLICY DEVELOPMENTS 1.5 RESEARCH OBJECTIVES	13 15
1.6 THESIS OVERVIEW	16
METHODOLOGY	18
2.1 INTRODUCTION	18
2.2 GLOBAL WARMING POTENTIAL	19
2.3 BIOMASS DECOMPOSITION/COMBUSTION2.4 LANDFILL CARBON SEQUESTRATION	20 22
2.4.1 Introduction	22
2.4.2 Literature Review	24
2.4.3 Application to GVRD Landfills	26
2.5 NITROUS OXIDE EMISSIONS	29
2.5.1 Global Nitrogen Cycle	29
2.5.2 Global Nitrous Oxide Cycle	30
2.5.3 Anthropogenic Interference with the Global Nitrogen Cycle	32 33
2.5.4 Anthropogenic Interference with the Global Nitrous Oxide Cycle 2.5.5 Implications for Waste Management	33 34
2.5.5.1 Landfill Disposal	35
•	

2.5.5.2 Composting	41	
2.5.5.3 Incineration	42	
2.5.6 Summary	44	
2.6 RECYCLING ANALYSIS	44	
. 2.6.1 Newsprint	45	
2.6.1.1 Literature Review	46	
2.6.1.2 Local Situation	50	
2.6.2 Office Paper	56	
2.6.3 Ferrous Metal	59	
2.6.4 Glass	61	
2.6.5 High-Density Polyethylene	63	
2.6.6 Low-Density Polyethylene	65	
2.6.7 Forest Carbon Sequestration	66	
2.7 UNCERTAINTY WITH THE ESTIMATES	70	
2.8 SPREADSHEET PROGRAM	70	
2.8.1 Explanation	71	
2.8.2 Examples	73	
2.8.3 Modelling Scenarios	77	
2.9 WASTE MASS ESTIMATES	78	
2.10 REMAINING WASTES	85	
2.11 GHG EMISSIONS NOT INVESTIGATED	89	
2.12 STANDARDS	90	
· · · · · · · · · · · · · · · · ·		
RESULTS & DISCUSSION	91	
3.1 EXISTING SYSTEM	91	
3.2 SCENARIOS	100	
CONCLUSIONS & RECOMMENDATIONS	105	
BIBLIOGRAPHY	108	
5.1 REFERENCES	108	
5.2 PERSONAL COMMUNICATIONS	114	
Annendiz A. Concept Coloulations	115	
Appendix A: General Calculations		
Appendix B: Municipality Calculations	129	
B.1 CITY OF ABBOTSFORD	131	
B.2 CITY OF BURNABY	131	
B.3 CITY OF COQUITLAM	132	
B.4 CORPORATION OF DELTA	132	
B.5 CITY OF LANGLEY	134	
B.6 TOWNSHIP OF LANGLEY	134	
v		

.

B.7	DISTRICT (OF MAPLE RIDGE	135
B.8	CITY OF N	EW WESTMINSTER	135
B.9	CITY OF NO	ORTH VANCOUVER	136
B.10	DISTRICT (OF NORTH VANCOUVER	137
B.11		OF PITT MEADOWS	138
B.12		DRT COQUITLAM	139
B.13		DRT MOODY	139
B.14	CITY OF RI	CHMOND	140
B.15	CITY OF SU		140
B.16		ANCOUVER	141
B.17	DISTRICT (OF WEST VANCOUVER	142
B.18		HITE ROCK	143
B.19		AL AREA A (U.B.C. & U.E.L.)	143
B.20	ELECTORA	AL AREA C (BOWEN ISLAND & HOWE SOUND)	143
Appe	ndix C:	Newsprint Waste Management	145
Appe	ndix D:	Office Paper Waste Management	160
	ndix E:	Ferrous Metal Waste Management	165
	ndix F:	Glass Waste Management	166
	ndix G:	High-Density Polyethylene Waste Managem	
* *	ndix H:	Low-Density Polyethylene Waste Manageme	
	ndix II:	Food Waste Management	173
		6	188
	ndix J:	Yard Trimmings Waste Management	
* *	ndix K:	Remainder Waste Management	203
Appe	ndix L:	Spreadsheet Program	210
Appen	dix: Referenc	es	260

.

.

.

Appendix: Personal Communications	263

LIST OF TABLES

Table 2-1:	First-Order Decay Rate Constants	29
Table 2-2:	Global Reactive Nitrogen Sources	32
Table 2-3:	Global N ₂ O Budget	33
Table 2-4:	Review of Nitrous Oxide Emissions from Composting	41
Table 2-5:	Review of Nitrous Oxide Emissions from Incineration	42
Table 2-6:	List of Worksheets	72
Table 2-7:	Incineration of Food Waste from District of North Vancouver	74
Table 2-8:	Centralized Composting of Yard Waste from City of Vancouver	75
Table 2-9:	Correction for Mixed Recyclables	82
Table 2-10:	City of Burnaby Waste Generation, Recycling & Disposal	83
Table 2-11:	Waste Percentages	85
Table 2-12:	Waste Estimates by CH2M Hill Engineering	86
Table 2-13:	Components of the Remainder	87
Table 3-1:	Waste Mass Estimates for the City of Vancouver	92
Table 3-2:	GHG Emission Factors for the City of Vancouver	93
Table 3-3:	GHG Emissions for the City of Vancouver	98
Table 3-4:	GHG Emissions for the GVRD	99

LIST OF FIGURES

Figure 1-1:	Important GHGs from Waste Management Operations	3
Figure 2-1:	Nitrification & Denitrification Pathways	31
Figure 2-2:	Potential N ₂ O Emissions from Waste Management	35
Figure 3-1:	Relative Importance of Emissions to Newsprint Disposal	96
Figure 3-2:	Relative Importance of Emissions to Food Waste Disposal	96

LIST OF ACRONYMS

AAC	allowable annual cut
BI	Burnaby Incinerator
BNF	biological nitrogen fixation
CAAD	carbon available for anaerobic decomposition
CCLF	Cache Creek Landfill
CPL	Crown Packaging Limited - Paper Mill Division
CSF	carbon storage factor
DLC	demolition and land-clearing (waste)
GERT	Greenhouse Gas Emission Reduction Trading Pilot Program
GHG	greenhouse gas
GVRD	Greater Vancouver Regional District
GWP	Global Warming Potential
HDPE	high-density polyethylene
ICI	insitutional, commercial, industrial (waste)
IPCC	Intergovernmental Panel on Climate Change
LDPE	low-density polyethylene
LFG	landfill gas
MSW	municipal solid waste
MTCE	metric tonnes of carbon equivalent
MWP	mixed waste paper
OCC	old corrugated cardboard
RDO	residential dropoff
TMP	thermo-mechanical pulp
TS	transfer station
USEPA	United States Environmental Protection Agency
VCR	Voluntary Challenge & Registry (Federal Government)
VLF	Vancouver Landfill
WS	worksheet (in spreadsheet Model)

ACKNOWLEDGEMENTS

Without the support (and prodding) of my advisor, Professor Jim Atwater, the quality and depth of this investigation would not have been possible. The funding by the GVRD and Stantec Environmental (Calgary) was greatly appreciated and provided the resources necessary to make this research a reality. The assistance of John Paul of Transform Compost Systems and Neil Bird of Woodrising Consulting is also appreciated. The substantial proofreading effort of Margaret Wojtarowicz, Kevin Frankowski and Daniel Walker helped the timely completion of this thesis. Lastly, the extraordinary patience of the significant other of this author, Dara Hendren, must be acknowledged. If she ever has to listen to further ponderings about global climate change, emissions trading or nitrous oxide emissions she will probably be sick.

Readers wishing to contact this author in the future with questions or comments should send e-mail to pkbarton@hotmail.com or to jatwater@civil.ubc.ca.

Chapter 1

INTRODUCTION

A greenhouse gas analysis of the Greater Vancouver Regional District's (GVRD's) solid waste management system is presented in this thesis. This investigation quantifies the greenhouse gas (GHG) emissions resulting from the GVRD's current system of landfilling, incinerating, composting and recycling of the municipal solid waste generated within its boundaries and provides recommendations for future management. The definition of municipal solid waste (MSW) in this thesis is the sum total of all waste generated from residential, industrial, commercial and institutional sources, and excludes the typically categorized demolition and land-clearing (DLC) waste. The waste components newsprint, office paper, ferrous metal, glass, high-density polyethylene, lowdensity polyethylene, food scraps and yard trimmings are investigated individually while the remaining waste is analyzed as a whole. Waste management is important from a greenhouse gas (GHG) perspective since it contributes to the observed increases in the atmospheric concentrations of all three of the most significant greenhouse gases, carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O). Large quantities of carbon and nitrogen are contained in the municipal solid waste stream and thus there is the potential for significant atmospheric releases of CO₂, CH₄ and N₂O. It is these three greenhouse gases which this research investigates.

As a result of the 1997 *Kyoto Protocol to the United Nations Framework Convention on Climate Change*, Canada is committed to reduce GHG emissions. Though it is still unclear in which manner our Federal government will elect to successfully reach its emissions target (an approximate per capita reduction of 30% over the next 10 years), it is quite likely that in the next decade either GHG emissions trading, GHG emissions taxing or direct legislation (or a combination of all three) will be implemented to force reductions in all sectors, waste management included. This research assists the GVRD's assessment of any opportunities which may exist in a future GHG emissions trading environment and/or its assessment of any liabilities which may exist in a future GHG emissions taxing environment. The intent of this research is to provide an important planning tool to assist in determining the future direction of waste management in the GVRD.

This thesis estimates the greenhouse gas emissions resulting from the existing system of landfilling, incinerating, composting (backyard and centralized) and recycling of newsprint, office paper, ferrous metal, glass, plastic (high-density and low-density polyethylene), food scraps and yard trimmings. The remaining waste is grouped together, defined as the Remainder, and is also analyzed. These eight main components of the municipal waste stream were investigated individually so that the current participation in source-separation can be more effectively directed at "greenhouse gas reducing" activities. In addition, the member municipalities were investigated separately to more accurately model the existing system. In order for this analysis to serve as a

planning tool, the GVRD requires an assessment of the existing system – a baseline against which any proposed changes can be compared. For this reason, in addition to this report, an adaptable spreadsheet program has been developed to model the response of GHG emissions to changes in waste tonnages and other improvements made by the program user.

This Introduction chapter consists of 6 parts. The first section, *Background* (1.1), provides a framework of the scope and intent of the research. *Greenhouse Gases & Climate Change* (1.2), the second section, explains the international scientific consensus which is concerned with the increasing atmospheric concentrations of greenhouse gases. The third section, *Solid Waste Management* (1.3), introduces the GVRD's existing system of *Landfilling* (1.3.1), *Incineration* (1.3.2), *Backyard & Centralized Composting* (1.3.3) and *Recycling* (1.3.4). These respective sections briefly discuss the important greenhouse gas implications of these activities. In the fifth section, *Recent Policy Developments* (1.4), new policies with potential to affect waste management in the future are discussed. *Research Objectives* (1.5), the fifth section, present the goals of this investigation. The last section, *Thesis Overview* (1.6), presents an overview of the thesis to assist readers in understanding the analysis performed.

1.1 BACKGROUND

The planning of municipal solid waste management is largely influenced by economic and environmental considerations. Current waste management systems, which include various activities such as landfill disposal, incineration, composting and recycling, have occurred as a result of these two main considerations. For example, the relatively recent interest in recycling (starting in the late 1980's) was initiated largely because of increasing awareness in environmental issues and possibly because of economic factors. Landfilling continues to be one of the most popular methods for disposal because the economics are attractive and it satisfies the present environmental (i.e. regulatory) considerations. These systems, which evolved out of the driving factors thus far, could potentially be faced with many changes in the future as a new consideration gains importance.

A new consideration could be the strong international effort to reduce the emissions of greenhouse gases to the atmosphere. There is now an international scientific consensus that human-induced increases in the atmospheric concentrations of greenhouse gases have great potential to raise the surface temperature of the planet. The climatic change which is believed to result could raise global sea levels, increase the intensity of severe weather conditions and increase the frequency of heat waves and droughts. Reducing the emissions of these greenhouse gases will likely be one of the most challenging endeavors of the entire international community in the 21st Century.

Briefly, the main greenhouse gas implications of waste management are:

- Emissions of CO₂ from the combustion of diesel fuel during curbside collection, processing at transfer stations and subsequent transportation to landfills, incinerators, recycling or composting facilities.
- Emissions of CH₄ from the anaerobic decomposition in landfills or from anaerobic zones of inadequately aerated compost piles.
- Emissions of N₂O from the nitrification and denitrification of nitrogen present in organic wastes. This can occur at landfills (predominantly from landfill leachate) or during composting and there can also be thermal formation during incineration.
- Emissions of CO₂ from fossil fuel energy required in the processing of recyclable materials such as paper, metal, glass and plastics into new products.
- The prevention of CO₂ emissions from fossil fuels when energy is produced in the form of steam at incinerators or in the form of recovered and utilized methane at landfills. This energy can prevent the consumption of fossil fuels which would otherwise be necessary.
- The prevention of CO₂ emissions when carbon storage or carbon sequestration occurs. This is the capture and secure storage of carbon that would otherwise be emitted to the atmosphere. This occurs with wastes that resist decomposition in the anaerobic conditions of landfills.
- The prevention of CO₂ emissions by substituting recycled materials for virgin materials. This prevention would be the result of reduced fossil fuel energy consumption when using recycled rather than virgin materials for the manufacture of similar items.

The following matrix illustrates many of these emissions in a waste management context:

	Figure 1-1	: Important	GHGs from	Waste Management	Opera	tions
្រា					<u> </u>	

	Fossil Fuel-CO ₂	CH4	N ₂ O	Energy Generation*	Carbon Storage*	Recycled vs Primary - CO ₂ *
Collection	++					
Transportation	++					
Landfill Disposal		++	++	+	++	
Incineration	+		++	++		
Centralized Composting	+	+	++		+	
Backyard Composting		+	++		+	
Recycling	++					++

++ major importance

+ minor importance

* GHG prevention activity (negative emission)

For greenhouse gas emissions to be a new consideration in solid waste planning, it is necessary to have an extensive understanding of the implications presented above. Furthermore, there is tremendous variation among the greenhouse gas emission response of the five main components of the GVRD waste management system: landfill disposal, incineration, recycling, backyard composting and centralized composting. The need to possess this understanding has fostered the interest in this research.

Three reports and five research papers (of which this author is aware) have also compared the greenhouse gas emissions from waste management processes. However, the rapidly evolving science of greenhouse gas emissions and the importance of localized conditions makes this thesis necessary. As an example of the evolving science, the United States Environmental Protection Agency (USEPA 1998) report did not consider that nitrous oxide is emitted during the composting or landfilling of waste and did not consider that N₂O emissions from incinerators are a function of the waste nitrogen content. These issues are discussed in Section 2.5 and are quantitatively important for nitrogencontaining wastes such as food scraps and vard trimmings. In fact, none of the reviewed research adequately assesses nitrous oxide emissions. While these limitations do exist in the work by the USEPA, it is important to mention that that report is the most extensive and valuable research available so far; indeed, the provocative questions raised in that work conceived this very thesis. The second report, Environment Canada (1995), was completed before the Intergovernmental Panel on Climate Change (IPCC) developed methodology in which the carbon emissions from the decomposition of sustainable biomass can be considered as "GHG neutral" and need not be counted as an emission. As a result, the Environment Canada report considers composting and waste incineration as sources of CO₂ emissions. In addition, that report does not consider landfill carbon sequestration or the potential for nitrous oxide emissions from waste management. All of these shortcomings also occur in new life-cycle analysis work by the industry groups, Corporations Supporting Recycling and the Environment and Plastics Industry Council (CSR 1999). These industry groups, together with Environment Canada, have developed a spreadsheet program which neglects nitrous oxide emissions, neglects landfill carbon sequestration and ignores the GHG neutrality of biomass carbon emissions.

Five journal papers were located and are reviewed. The paper by Hunt (1995) only analyzed the difference between the landfilling or incinerating of paper and plastic – and is thus incomplete for use here. The papers by Eschenroeder (1999), Aumonier (1996) and Pipatti & Savolainen (1996), while valuable, all compared the impact of landfilling or incinerating municipal solid waste as a whole – they did not investigate any waste components individually. Thus these three studies suffer from inaccuracies resulting from the very local question – *What is municipal solid waste?* A comprehensive methodology for modeling the GHG benefits of landfilling the biodegradable fraction of municipal solid waste versus composting this fraction has been developed at the University of Calgary (Hettiaratchi et al. 1998). This useful model compares landfilling in Edmonton against the new Edmonton Co-Composting facility and determines significant GHG benefits by the management alternative. However, this study assumes zero landfill gas collection for flaring or energy utilization over the next 30 years. As a result, this research gives composting GHG benefits which may be largely undeserved, at least in jurisdictions other than Edmonton.

For readers unfamiliar with the science of greenhouse gases and their inter-relationship with climate change the next section provides an introduction to this important issue.

1.2 GREENHOUSE GASES & CLIMATE CHANGE

Greenhouse gases, the most important of which are water vapor, carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), allow the atmosphere to act like a greenhouse window – letting in much of the sun's energy while simultaneously only allowing a portion of it to escape immediately back to space. This occurs by permitting the entry of solar energy, which the Earth absorbs and then re-emits in the form of infrared radiation. While some of this infrared radiation escapes immediately back into space, most is temporarily trapped by greenhouse gases. This warms the lower atmosphere and the Earth's surface to a much greater extent than would otherwise have occurred. If it were not for this natural greenhouse effect, the Earth would be 33°C colder than the average temperature of 15°C (Environment Canada 1997b). This would result in a chilly mean temperature of -18°C on Earth and life would be profoundly different.

Unfortunately, as a result of human activity, in particular the burning of fossil fuels and deforestation, the atmospheric concentrations of the greenhouse gases CO_2 , CH_4 and N_2O and others have been rising. For several thousand years before the Industrial Revolution began in the mid-1700's, a steady balance was maintained in which the atmospheric concentration of CO_2 , as measured from ice cores, remained within 10 parts per million (ppm) of an average level of 280 ppm (Houghton 1997). However, since the Industrial Revolution this concentration has increased almost 30%, from 280 ppm to over 360 ppm, and continues to increase at an average rate of 1.5 ppm every year (ibid). In addition, the atmospheric concentration of CH_4 (a greenhouse gas estimated to be 21 times more effective in the trapping of infrared radiation then CO_2) has increased by 145% since pre-industrial times, from a level of 700 parts per billion (ppb) to that of 1721 ppb in 1994 IPCC 1995a). The third most important greenhouse gas, N_2O – estimated to be 310 times more effective at absorbing infrared radiation then CO_2 - has increased from a pre-industrial level of 275 ppb to a level of 311 ppb in 1992, an increase of 13% (ibid).

It was in 1827, when a French scientist, Jean Baptiste Fourier, first recognized the warming effect of greenhouse gases in the atmosphere. He also noted the similarity between greenhouse gases in the atmosphere trapping infrared radiation and in the glass of a greenhouse, which led to the phrase "greenhouse effect" (Houghton 1997). In 1896, the Swedish chemist, Svante Arrhenius, calculated what would be the effect of increasing the concentrations of greenhouse gases. He estimated that doubling the concentration of CO_2 would increase the global average temperature by 5 to 6 C – an estimate not far from the present understanding (ibid). Nearly 50 years transpired before an amateur British scientist, Guy Stewart Callendar, calculated the warming due to the increasing atmospheric concentration of carbon dioxide from the burning of fossil fuels, and discovered supporting evidence correlating the effect of carbon dioxide on global temperatures (ibid). It was in 1957 that Roger Revelle and Hans Suess of the Scripps Institution of Oceanography in California first raised concern about the implications of fossil fuel-related CO₂ emissions on global climate change. These scientists published a paper pointing out that with the build-up of carbon dioxide in the atmosphere, human beings were carrying out a large-scale geophysical experiment. "Within a few centuries we are returning to the atmosphere and oceans the concentrated organic carbon stored in

sedimentary rocks over hundreds of millions of years." (Revelle and Suess 1957; Houghton 1997) Since then, a great deal of scientific investigation has occurred looking into the mechanisms and interactions of greenhouse gases with climate and climate change.

The understanding of atmospheric science has advanced to such a level today that several position statements of international scientific consensus have recently been distributed. The Intergovernmental Panel on Climate Change (IPCC), a scientific body of leading atmospheric scientists established in 1988 by the United Nations Environment Programme and the World Meteorological Organization, stated in 1995 that:

"Global mean surface temperatures has increased by between 0.3 and 0.6 °C since the late 19th century, a change that is unlikely to be entirely natural in origin. The balance of evidence, from changes in global mean surface air temperature and from changes in geographical, seasonal and vertical patterns of atmospheric temperature, suggests a discernible human influence on global climate....Global sea level has risen by between 10 and 25 centimeters over the past 100 years and much of the rise may be related to the increase in global mean temperatures." (IPCC 1995b)

This has been followed by the American Geophysical Union, a prominent scientific body of 35,000 earth and planetary scientists, stating in a January 1999 position statement that: "There is no known geologic precedent for the transfer of carbon from the Earth's crust to atmospheric carbon dioxide, in quantities comparable to the burning of fossil fuels, without simultaneous changes in other parts of the carbon cycle and climate system. This close coupling between atmospheric carbon dioxide and climate suggests that a change in one would in all likelihood be accompanied by a change in the other." (American Geophysical Union 1999; Dunn 1999)

From this international scientific consensus, 160 nations agreed to the Kyoto Protocol to the United Nations Framework Convention on Climate Change in 1997. In this Protocol, the 38 developed countries of the world committed themselves to stabilize and ultimately reduce, their atmospheric emissions of greenhouse gases. Developing countries agreed to monitor their emissions and are encouraged to voluntarily reduce emissions but are not subject to binding commitments. Canada signed this convention and is committed to reducing greenhouse gas emissions. Between the commitment period of 2008 to 2012, Canada is required to reduce to a level 6% below what the national emissions were in 1990. Unfortunately, our national emissions were 601 million tonnes of CO_2 equivalent in 1990 (this includes CO₂, but also CH₄ and N₂O converted into units of CO₂), but have increased to 682 millions tonnes in 1997, and are predicted to reach annual emissions of 750 million tonnes by 2010 (Environment Canada 1999). Not only is energy consumption expected to increase in the coming decade, but the population is expected to increase as well. The per capita reductions necessary to reach Canada's Kyoto commitment, national emissions of only 565 million tonnes per year, will be an enormous undertaking. It will likely represent a decrease of the per capita emissions by 20 to 30%.

The national emissions in 1997, the 682 million tonnes of carbon dioxide equivalents, break down into 76% as carbon dioxide, 13% as methane, 9% as nitrous oxide with various trace gases completing the total (ibid).

Reversing the increase and continuing downwards to satisfy Canada's international commitment will require a strong and determined effort by government and industry. It is also important to recognize that Kyoto is only the beginning. The Kyoto Protocol is inadequate and it is commonly recognized that this agreement will not by itself, significantly reduce the rate of climate change. While it represents a necessary first step towards emission reductions it is only the beginning in a long series of conventions to reduce global emissions (Rolfe 1998). Dutch researchers have estimated that in order to avoid extreme changes in climate (defined as sea level increases of no more then 20 centimetres and global temperature increases of no more than 1°C over the next century), greenhouse gas emissions will need to be reduced to 37% below 1990 levels by 2050 and to 64% below by 2100 (Alcamo and Kreileman 1996). As the reductions to prevent extreme climate change are much greater than the average 5.2% reductions committed by the vast majority of developed countries, the Kyoto Protocol is not expected (by itself) to successfully stop Global Climate Change. Therefore much greater and deeper emission reductions will undoubtedly be required in the future.

Though there is a tremendous amount of uncertainty regarding how our country will actually decrease the national emissions in the coming years, it is likely that reductions will be required by all sectors. Waste management will probably be called upon to decrease its contribution to climate change along with all other sectors, be it industry, government or the general population. Not only will emission reductions to satisfy the Kyoto Protocol be expected from waste management in the next decade but even deeper cuts will be likely in the long-term future.

The next section presents an overview of the GVRD's existing system of solid waste management and discusses the important greenhouse gas implications of these activities. The concepts in the next section represent the opportunities for the participation of waste management in reducing emissions in a carbon-constrained environment.

1.3 SOLID WASTE MANAGEMENT

The solid waste management system of the Greater Vancouver Regional District serves the population of the 1.98 million residents in the 20 municipalities and two electoral areas that make up the metropolitan area of Greater Vancouver. One Fraser Valley municipality, Abbotsford, outside the GVRD boundaries, also participates in this waste management system. For simplicity, Anmore and Belcarra have been included with the City of Port Moody and the Village of Lions Bay has been included with Electoral Area C in this report. As a result, this report will refer to the GVRD as consisting of 23 member municipalities but only 20 municipal entities are investigated. There are five main components to this waste management system: landfill disposal, incineration, recycling, backyard composting and centralized composting. In 1998, this system managed 1,120,000 tonnes of general waste and 681,910 tonnes of recyclables and composted organics from all the various residential, industrial, commercial and institutional sources represented in these municipalities (GVRD 1999). Two landfills are currently in use by the GVRD, the Cache Creek Landfill and the Vancouver Landfill (at Burns Bog), while one incinerator, the Burnaby Incinerator, is also owned by the GVRD. In 1998, the Cache Creek Landfill provided disposal for 474,873 tonnes of waste, the Vancouver Landfill disposed of 379,554 tonnes and the Burnaby Incinerator combusted 247,078 tonnes (ibid). Recyclables in the GVRD collected curbside and by other means are delivered to a number of depots in the Lower Mainland for processing and subsequent marketing to various industries for reuse. The recycling depots operated by ETL Recycling Services, International Paper Industries and Browning Ferris Industries are just three examples of these.

In addition to recycling, many of the member municipalities have been actively encouraging backyard composting for residents to manage their own food scraps and yard trimmings. In some jurisdictions, backyard composters have been distributed to more than 30% of the population of ground-level (single-family) residences (Pers. comm. Al Lynch 1999). It is estimated that each composter annually diverts 250 kg of food scraps and yard trimmings from collection (Pers. comm. Bev Weber). In order to keep yard trimmings out of the waste stream, a separate curbside collection of yard trimmings has been initiated in many municipalities. Other jurisdictions have elected to provide residential drop-off (RDO) locations. Many of the municipalities have contracted with Fraser Richmond Bio-Cycle (FRBC) to manage the collected yard trimmings. FRBC provides centralized composting of yard wastes by turned windrows and then subsequently markets the finished compost. The City of Vancouver operates its own composting facility at the Vancouver Landfill, and while the RDO of yard trimmings has been in existence for quite some time, they recently initiated curbside collection of yard trimmings.

To serve the flows of this large quantity of waste from the member municipalities, several transfer stations (TSs) exist in the GVRD. In total, six transfer stations, the Coquitlam TS, the Vancouver TS, the North Shore TS, the Matsqui TS, the Langley TS and the Maple Ridge TS, facilitate the flow of waste from collection vehicles to disposal sites. In terms of 1998 masses, the Coquitlam TS with 316,360 tonnes, the Vancouver TS with 273,377 tonnes and the North Shore TS with 194,683 tonnes were by far the three most important transfer stations (GVRD 1999).

It is important to recognize that all these operations require fossil energy, predominantly in the form of diesel fuel, a fossil fuel. The curbside collection of wastes, the processing of wastes at transfer stations and the transportation of wastes to disposal facilities all require the combustion of diesel fuel. This combustion directly results in a greenhouse gas emission of approximately 2.8 kg of CO_2 equivalent (includes CO_2 , but also CH_4 and N_2O converted into units of CO_2) per L of diesel fuel (Environment Canada 1997a). The remainder of this section will discuss the greenhouse gas issues associated with the five waste management methods employed in the GVRD: landfill disposal, incineration, recycling and backyard and centralized composting. While discussed in a general manner, the following discussion is particularly suited to the local situation in the GVRD.

1.3.1 Landfill Disposal

Landfills are well known to be emitters of methane to the atmosphere. In 1997, landfills in Canada were estimated to have emitted 1 million tonnes of CH_4 or 21.0 million tonnes of CO_2 equivalent. This represents 3.1% of Canada's estimated national GHG emissions of 682 million tonnes in 1997 (Environment Canada 1999). If organic wastes are landfilled the resulting anaerobic decomposition will emit nearly equal parts of CH_4 and CO_2 . The anaerobic decomposition of a simple six carbon sugar is:

$C_6H_{12}O_6 \rightarrow 3CO_2 + 3CH_4$

The methane represents a strong greenhouse gas emission because it is 21 times more effective as a greenhouse gas than carbon dioxide. However, the CO_2 emission, while being a greenhouse gas, does not have to be considered a greenhouse gas emission. These organic materials were originally formed when photosynthesis fixed the inorganic carbon of CO_2 to organic carbon. The decomposition of these organic materials liberates the same carbon that was originally removed and is therefore completing the cycle. As a result, the CO_2 emission during anaerobic decomposition at landfills is "GHG neutral" and can be ignored as an emission.

The logical extension of this is that if the landfill methane produced can be collected and combusted to CO₂, then no GHG emission would result. This is indeed what occurs at many active and inactive landfills – methane is collected and flared. However, not all of the methane is collected; while at some sites a large portion is managed in this manner, at other sites much of the methane escapes collection systems - or there is no collection system - and it is emitted to the atmosphere. There is also the potential for microorganisms in the cover material of the landfill to cause the oxidation of CH_4 to CO_2 . Research conducted in the U.S. suggests that about 10% of the methane which had escaped collection was oxidized (Czepiel et al. 1996). Of even greater benefit than collecting all the methane and flaring it, is to collect all the methane and utilize it for energy purposes - to essentially use the landfill methane to replace natural gas, a fossil fuel. By using a GHG neutral bioenergy source like landfill methane to avoid the consumption of a fossil fuel, greenhouse gas benefits are realized. These benefits are the prevented CO₂ emissions from the combustion of natural gas. It is important to recognize that when the carbon in fossil fuels is released to the atmosphere as CO₂, it is considered to be a greenhouse gas emission. But this carbon was also originally photosynthesized from carbon in the atmosphere. However, the time scale of millions of years necessary to create geological formations of fossil fuels is appropriate for climate change concerns while the months, years or decades time scale for the closed carbon cycle of food or paper is not the carbon of concern. Assessing the CO₂ emissions from composting food waste, carbon which was only fixed 6 months previous, as a greenhouse gas emission would be putting a "red-herring" in front of efforts attempting to reduce emissions from fossil fuels – the main contributor to Global Climate Change.

There are two important remaining issues with landfill disposal: landfill carbon sequestration and nitrous oxide emissions. Landfill carbon sequestration is the capture and secure storage of carbon that would otherwise be emitted to the atmosphere. This can occur when organic waste is disposed in landfills but resists decomposition in the anaerobic conditions. Because this photosynthesized carbon from atmospheric-carbon becomes stored in landfills it reduces the atmospheric concentration of CO₂. This concept is thoroughly discussed in Chapter 2 – Methodology. For the introduction here it will suffice to state that different waste materials greatly vary in providing landfill carbon sequestration. While newsprint and branches, with their high lignin content, largely resist anaerobic decomposition, office paper and food scraps readily decompose in landfills and provide more methane than carbon sequestration. It needs to be recognized that the disposal of plastics in landfills cannot be considered a sequestration activity. The removal of petroleum products from geological reservoirs, their manufacture into plastics and their disposal in landfills at the end of their useful life is just substituting one sequestration for another (remember that the time scale is again relevant). There is no net difference to the atmosphere and as such must be ignored from the perspective of sequestration.

Much of the nitrogen contained in the food and yard waste components of MSW can be traced back to chemical fertilizers applied onto agricultural lands or onto backyard residences. When these organic wastes are disposed in landfills, the resulting anaerobic decomposition will release the nitrogen as ammonia (NH_3) or ammonium (NH_4^+) . Due to the low pH from the presence of volatile fatty acids in the fill, the vast amount of nitrogen will be in the ammonium form. The nitrification of the ammonium to nitrate (NO_3) is greatly restricted because of the lack of suitable electron acceptors in the anaerobic conditions. Furthermore, with nitrification restricted, denitrification is also restricted. Thus there is little potential for N_2O to be emitted with the vented landfill gas. However, water percolating through the fill can entrain the ammonium and remove it as landfill leachate. Leachate is typically transferred to wastewater facilities for treatment. From this point forward, the nitrogen is free to nitrify and denitrify (in fact, depending on the treatment plant, the nitrogen may be encouraged to nitrify and denitrify) and N₂O emissions are a strong possibility. As much of this nitrogen was originally created by human activity, any subsequent emission as N₂O is an important GHG emission. This is discussed in greater detail in Section 2.5.

1.3.2 Incineration

The GVRD utilizes one incinerator for waste disposal purposes, the Burnaby Incinerator. During 1998, this Incinerator combusted 247,075 tonnes of MSW which resulted in 820,000 tonnes of steam being generated. Over half of this steam was transferred to the adjacent Crown Packaging Limited (CPL) facility for the pulping of cardboard. Were it not for the steam from the Incinerator, CPL would be using natural gas-fired boilers, fossil energy, to produce the necessary steam. Consequently, a definite greenhouse gas benefit from the avoided natural gas consumption is realized by the transfer of steam to CPL. The combustion of municipal solid waste at the Burnaby Incinerator is supported by the chemical energy inherent in the wastes. With the exception of metals, glass and ceramics, all the other components are organic and will burn. As the oxidation of organic wastes must release CO₂, it is necessary to once again discuss the origins of the emitted carbon. When biomass wastes such as paper products, food scraps and yard trimmings are combusted, they will be releasing the same carbon previously photosynthesized; they can be considered GHG neutral and thus ignored. In contrast, plastics contain fossil-carbon (as these materials are manufactured from petroleum products). This is carbon that was also photosynthesized but it occurred millions of years ago. Combusting plastics in an incinerator is identical to burning fossil fuels for energy; both contain the carbon of concern in human-induced climate change. While paper, food and yard waste can be considered bioenergy upon combustion, plastics must be considered a source of greenhouse gas emissions. Fortunately, the combustion of plastics generates steam which is used by another industry and thus eliminates the need for the combustion of natural gas (another source of fossil-carbon).

Also of importance with respect to waste incineration is the potential for nitrous oxide emissions. The formation of nitrous oxide can result from five separate pathways:

- thermal conversion of N₂ gas in air to N₂O during combustion (immediate emis.),
- thermal conversion of N in fuel (wastes) to N₂O (immediate emission),
- thermal conversion of ammonia (NH₃) injected in the flue gases (immediate emis.),
- microbial N_2O conversion of NO_X emitted and later denitrified (future emission) and
- microbial N₂O conversion of NH₃ injected but unreacted (future emission).

All of these pathways will be thoroughly discussed in Section 2.5.5.3. For this introduction it should be noted that the thermal conversion of the nitrogen in food waste is likely the greatest source of nitrous oxide emissions during incineration.

1.3.3 Backyard and Centralized Composting

The greenhouse gas implications of the backyard or centralized composting of food scraps and yard trimmings are virtually identical. The greatest exception would be the diesel fuel necessary for the curbside collection vehicles and windrow equipment to perform centralized composting. Both waste materials are biological in origin and thus any CO_2 from decomposition is GHG neutral and can be ignored. By diverting these organic wastes from landfill disposal and composting them, the prevention of any future methane emissions at the landfill is achieved. However, by composting there is also no opportunity for energy generation in the form of steam at the incinerator or collected methane at the landfill.

Also of concern in the composting process, is the potential for nitrous oxide and methane emissions. As with the N₂O emitted from landfill leachate, N₂O can result during the microbial leakage associated with the nitrification and denitrification of the nitrogen in the organic wastes. Several research papers have been obtained which report the existence of these emissions. A greater discussion of this issue is provided in Section 2.5.5.2. There is also an opportunity for methane gas to be emitted from composts which are inadequately aerated. This has been observed to occur with passively aerated static piles (composts which are turned infrequently) and is assessed in Appendices I and J.

1.3.4 Recycling

Recycling is a critical component of integrated solid waste management. In fact, the mass of waste currently recycled in the GVRD nearly equals the mass which is landfilled and is almost three times that which is incinerated. For this reason, any waste analysis neglecting recycling would be largely inaccurate. As to be discussed, recycling has important greenhouse gas repercussions. However, complicating the *emissions-from-recycling* issue is that many of these repercussions are outside the jurisdictional authority of the GVRD. Nevertheless, they require discussion here.

Recycling requires the expenditure of energy. As most of this energy is derived from fossil fuels, it therefore contributes greenhouse gas emissions to the atmosphere. Recyclables require curbside collection, processing at recycling depots and subsequent transportation to the factories or mills where they will be manufactured into new products. In addition, the manufacturing of new products from recycled materials also requires fossil energy consumption. However, this consumption of energy and the associated greenhouse gas emissions are not the only considerations. There is great potential for large savings in the energy requirements of making Widget A from recycled materials (wholly or in part) as opposed to making Widget A entirely from virgin materials. When recycled materials are substituted for virgin materials and the energy consumption is decreased there is a consequent reduction of greenhouse gas emissions. Extensive research by various organizations have observed decreased energy requirements and decreased GHG emissions by substituting recycled materials for primary materials. However, the converse can also be true; several researchers have questioned the recycling of paper – while it is more energy efficient to make recycled paper than virgin paper, it may actually increase the consumption of fossil energy. In contrast, virgin paper production typically utilizes wood waste as its energy source (wood waste being a form of GHG neutral bioenergy). This research is reviewed in Section 2.6 -Recycling Analysis.

The utilization of energy by industry (and the associated GHG emissions) for the manufacture of products used by society is outside the interest of planners in waste management. However, the greenhouse gas implications of landfill disposed or incinerated waste products which could have been recycled require assessment. By disposing or combusting paper products which would otherwise have been recycled, a municipality is preventing the substitution of recycled fibre for virgin fibre at a pulp and paper mill. If there is a GHG benefit to substituting recycled feedstocks for virgin feedstocks, this issue has to be addressed when, disposing or incinerating of recyclables. For example, increasing waste incineration of paper products to generate bioenergy may result in greater GHG emissions at the pulp mill. As a result, the GHG emissions of recycling newsprint, office paper, ferrous metal, glass and plastic (high-density and low-density polyethylene) is investigated in this thesis. It is important to note, however, that the recycling investigation was restricted to comparing the emissions from taking recycled and virgin materials to an identical intermediate product. This is not the same as

manufacturing the final product for it is only following the respective materials until they converge, defined by one consultant as the "Energy Convergence Point" (Tellus 1994). For example, the recycling of ferrous metal is only analyzed until steel ingots have been produced but not a final product. From this analysis it is possible to assess the GHG implications of substituting recycled materials for virgin materials.

Lastly, this thesis presents research into the potential for carbon storage in forests in Canada to be affected by increased paper recycling reducing the demand for the harvesting of primary timber.

It is important to recognize that many of the energy (and thus greenhouse gas) ramifications of virgin vs. recycled manufacturing are outside the authority of waste planners at the GVRD and could cause complications in future emissions trading; not the least of which being "Who owns the emissions credit?". If the GVRD endeavors to reduce the GHG emissions under its responsibility but resulted in increasing the emissions of a manufacturing organization there would be no net benefit to the atmosphere. Full life-cycle impacts need to be taken into account when attempting to reduce emissions trading where the action has to result in a "net reduction" – the credit cannot be invalidated by indirect emissions leaking from other sources.

Developments in the national and international policy to reduce emissions will be important to the greenhouse gas implications of waste management discussed in this section. The emissions of CO_2 , CH_4 or N_2O from GVRD's waste management could be reduced in the future and traded for revenue or taxed in the future to force reductions to be implemented. This is the focus of the next section.

1.4 RECENT POLICY DEVELOPMENTS

How can the international effort to reduce emissions of greenhouse gases affect waste management? As previously discussed, in the 1997 Kyoto Protocol Canada committed to reduce emissions to 6% below the 1990 level between the years 2008 and 2012. Considering that with the population growth during this time, the cuts will represent per capita reductions between 20 and 30%, a monumental undertaking. For the successful attainment of this target, it is very likely that the emissions trading of GHG credits, the taxation of GHG emissions or direct legislation to reduce emissions (or a combination of these three) will be implemented in the next decade. These mechanisms could greatly impact the current economics of waste management. For example, if one activity is demonstrated to result in lower emissions than another, such as using composting to divert organic waste away from landfill disposal (thereby preventing future methane emissions), there is a real GHG benefit translated into an economic motivator in the following ways. In an emissions trading program, composting projects could claim credits for the resulting GHG benefit. These credits could be sold to another party, such as an energy company, which is being forced by regulations to reduce its emissions. The revenue generated by trading credits could then be used to finance the composting

project. Under a taxation system, the methane emissions from a landfill could be taxed as a GHG emission, potentially making composting a more economically attractive activity to pursue instead of landfilling. Both of these systems could profoundly change the current economics of waste management.

Trading is fueled by the government legislating an emissions cap which can only be exceeded by possessing an equivalent amount of emissions credits. A typical GHG emission reduction trade occurs when a buyer with high cost options for emission reductions purchases a lower cost option from a seller and enters into a contract to transfer ownership of the emission reduction credit (ERC) (GERT 1998). To qualify as a greenhouse gas reduction, the activity must result in the atmosphere experiencing a net reduction in greenhouse gas emissions. These reductions are measured against a baseline which is determined by the emission reductions become credits when "i) the action has been implemented, ii) the action generates a reduction, and iii) the reduction has been verified." (IISD 1998) These emission reduction credits may be traded within a future legally binding emission trading system or may be accumulated and used against possible future compliance requirements.

Emissions trading is already occurring. A landfill gas utilization project initiated by Norseman Engineering for the Port Mann Landfill will prevent an estimated emission of 210,000 tonnes of carbon dioxide equivalent (tCO₂e) over the next 14 years (through the upgrade of the LFG collection system). The GHG credits were purchased by a consortium of Canadian energy companies, the Greenhouse Emissions Management Consortium (GEMCo), for 1 per tCO_2 and thus the project will be implemented. The resulting \$210,000 payable over the next 14 years as the GHG emission reductions are realized will finance the project. Another example is a proposed composting project in Southern Ontario which is estimated to prevent 31,422 tCO₂e of future methane emissions over the next 12 years. This will be achieved by diverting 111,000 tonnes of vard waste away from landfill disposal. While up for sale, the GHG credits from this project have not been purchased at this time. Both of these credit trading projects are part of the Greenhouse Gas Emission Reduction Trading Pilot Program (GERT) which is a combined effort between the Federal Government, several provincial environment ministries and a number of industry and non-profit groups (GERT 1998). This pilot program was initiated in June 1998 and will continue as a learning exercise until Dec 2001. The lessons learned in this pilot program will likely prove invaluable to the fullscale implementation of emission trading.

Internationally, carbon taxation is also occurring. Finland is the first country in the world to introduce a CO_2 tax. In September, 1998, this carbon tax on heat and transportation fuels was raised to US\$19.2 per tCO₂. Also in Scandinavia, the Norwegian government is proposing a carbon tax of US\$13.3 per tCO₂, and in the United Kingdom, the potential is also strong for instituting a carbon tax (Hanisch 1998).

Though it is not clear in which manner our Federal government will elect to successfully reach its target in the Kyoto Protocol, it appears that every organization at all levels of the

.

government and each industrial sector will have to reduce emissions. Personal lifestyle changes by Canadians will also be necessary to reduce emissions. These governmental agencies and private companies will likely have to undertake meaningful reductions or purchase the credits, from another party's meaningful reductions. This is part and parcel with the emissions trading option. In contrast, under carbon taxation, meaningful reductions will also occur, but out of brute necessity – it will become too costly to continue emitting. Discussing trading or taxing is all speculative since the required reductions or the price of carbon, either traded or taxed, is yet to be determined. A carbon-constrained environment has yet to be developed and at the GERT pilot program, the carbon credits in the nine projects available for trading as of May 17, 1999, ranged in value from \$1.00 to \$14.00 per tonne of CO_2 equivalent (t CO_2e) (GERT 1999). BC Hydro has committed over \$2 million for the purchase of GHG offsets over the 2000-2001 time frame (BC Hydro 2000).

The impact that these new policies could have on future waste management are sufficient to warrant this analysis. The next section explains in detail the objectives of this research.

1.5 RESEARCH OBJECTIVES

There are two main objectives to this study: (1) to perform a greenhouse gas emissions analysis of the GVRD's existing solid waste management system and (2), to develop a planning tool which can evaluate the positive and negative GHG impacts of changes to this waste management system. Before attempting to include greenhouse gases in future waste management it is necessary to have a critical understanding of the existing system. This research analyzes the current system and then enables, with a spreadsheet program, changes in waste management to be assessed from the perspective of greenhouse gas emissions. In this spreadsheet program the mass flows of waste into various management processes are variables that can be changed. In addition, parameters important in calculating greenhouse gas emissions, such as the effectiveness of landfill gas collection systems or the energy efficiency of waste incineration, are also variables subject to change by the user. This thesis, together with the spreadsheet program, enables planners to evaluate opportunities which may exist in a future GHG emissions trading program or liabilities which may present themselves in a future GHG emissions taxing system.

This thesis estimates the greenhouse gas emissions resulting from the existing system of landfilling, incinerating, composting (backyard and centralized) and recycling of newsprint, office paper, ferrous metal, glass, plastic (high-density and low-density polyethylene), food scraps and yard trimmings. The remaining waste is grouped together, defined as the Remainder, and is also analyzed. These eight main components of the municipal waste stream were investigated individually so that the current participation in source-separation can be more effectively directed at "greenhouse gas reducing" activities. In addition, the 23 member municipalities were investigated separately to more accurately model the GVRD.

By using the results of this research with the currently debated price of carbon (either traded or taxed), it is possible to assess changes in waste management from the perspective of financial incentives. Any future changes which are performed voluntarily in order to reduce GHG emissions can be claimed for credits. When traded, these credits assist in financing the proposed project. However, if the changes to future operation are required by legislation, their implementation is no longer voluntary and would be ineligible for crediting. The importance of emissions trading in future waste management cannot be understated. However, in order to assess changes it is necessary to have a baseline upon which to improve. This baseline is the existing waste management system.

1.6 THESIS OVERVIEW

The end of the first chapter is an opportune moment to present an overview of this thesis. This chapter has introduced the concern with greenhouse gases emissions and the recent developments in policy-making to mitigate global climate change. Together with an explanation of solid waste management in the GVRD, the inter-relationships between emissions and policy are discussed. It is the importance of these inter-relationships which necessitates this research and provides the impetus for Section 1.5 - Research *Objectives*.

The next chapter, Chapter 2 - Methodology, explains the calculations which are used to estimate the GHG emissions. This chapter consists of 12 major sections :

- Methodology Introduction
- Global Warming Potential
- Biomass Decomposition/Combustion
- Landfill Carbon Sequestration
- Nitrous Oxide Emissions
- Recycling Analysis
- Uncertainty with the Estimates
- Spreadsheet Program
- Waste Mass Estimates
- Remaining Wastes
- GHG Emissions not Investigated
- Standards

These methods represent the current state of the knowledge on these issues and were developed from an extensive review of available literature. These sections lay out the methods utilized in the 12 appendices. However, the fine details which are necessary to actually calculate greenhouse gas emissions are included in the appropriate appendices for that issue. It is the intent of this thesis that readers learn a specific concept in the next chapter and then refer to the appropriate appendix to learn how it is actually implemented "for number crunching." As a result, readers should feel comfortable in jumping back and forth to learn the principles used to assess GHG emissions.

The results and discussion of this thesis are presented in Chapter 3. This is followed by Chapter 4 – *Conclusions & Recommendations*.

The 12 appendices after the *Bibliography* constitute a major portion of this thesis. These appendices present all of the calculations which are used in the spreadsheet program to model emissions. These calculations serve as *sample calculations* to provide readers with an understanding of the numbers and equations contained in the accompanying spreadsheet. Many of these appendices are presented as independent modules which are developed separately. Because of this lack of interdependency, a degree of repetition results for readers. However, in instances of excessive repetition, such as transportation issues after the North Shore Transfer Station for the three North Shore municipalities. only one complete version is provided. The first appendix, Appendix A – General *Calculations*, contains general parameters and calculations which are not specific to either a single municipality or a waste component. This is followed by Appendix B – *Municipality Calculations*, which presents all the diesel fuel consumption data necessary for curbside collection, processing at transfer stations and subsequent transportation to disposal, recycling or composting facilities. This also includes the estimates of the masses of different waste components which are disposed or recycled. It was necessary to estimate waste masses specific to individual municipalities because of the highly variable contribution of wastes from ICI sources which is independent of the residential population of that jurisdiction. This appendix (and the entire report) assumes that waste from Anmore and Belcarra are essentially from the City of Port Moody and that waste from the Village of Lions Bay can be included with Electoral Area C. The next 9 appendices are specific to the 9 waste components analyzed in this thesis. They provide the calculations used to estimate the GHG emissions to be expected from landfilling, incinerating, composting or recycling of newsprint, office paper, metal, glass, plastic, food and yard waste, and remainder. The important results derived in Appendix A through K are the emission factors required to calculate emissions from various management methods. When these emission factors are multiplied by the tonnage of waste managed in this manner, the estimated GHG emission will result. Appendix L -Spreadsheet Program, is the last appendix and contains the greenhouse gas Model of the GVRD's existing waste management system.

Chapter 2

METHODOLOGY

The calculations in the appendices are based on the methodology developed in this chapter. An extensive review of previous research and the available guidelines for estimating greenhouse gas emissions is performed for this thesis. In addition, a number of individuals involved in waste management in the Lower Mainland were contacted to acquire data for this investigation. These personal communications with representatives of organizations such as the GVRD, City of Vancouver, Wastech Services, North Shore Recycling Program and Montenay proved invaluable to this work. Much of this collected data is directly used in the calculations in the appendices.

2.1 INTRODUCTION

This chapter explains the important concepts used to develop the methodology for this investigation. Twelve sections are required in this methodology to describe these principles. However, the fine details which are necessary to actually calculate greenhouse gas emissions are included in the associated appendices. For example, the GHG neutrality of combusting newsprint for energy is discussed in Section 2.3 - Biomass *Decomposition/Combustion* but the actual calculations for this energy are developed in Appendix C – *Newsprint Waste Management*. In fact, all the calculations conducted for this study are included in the appendices. It is these calculations that are used to program the spreadsheet.

With the great utility of this spreadsheet program accredited in no small part to the fact that mass inputs and parameters can be changed to calculate new emissions, the calculations provided in the appendices become essentially *sample calculations*. The methodology section, together with the sample calculations in the appendices, serve to provide the reader with valuable information so that changes can be made to the spreadsheet in the future.

Of critical importance to the methodology used throughout this report are the guidelines developed by the Intergovernmental Panel on Climate Change (IPCC) to calculate GHG emissions. Canada and the other 160 signatory parties to the United Nations Framework Convention on Climate Change have agreed to develop inventories of GHGs for the purposes of developing mitigation strategies and monitoring the progress of those strategies (USEPA 1998). These national inventories are estimated using guidelines developed by the IPCC. These guidelines are the three volumes of the *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC 1997). While throughout this investigation an attempt has been made to remain consistent with the IPCC guidelines, in several instances it has been necessary to make changes. This resulted from a careful evaluation of the subject. Most notable is the concept of landfill carbon sequestration (already included in a recent USEPA (1998) report) and the

potential for nitrous oxide emissions. All changes are documented throughout this report. It is my opinion that these changes were necessary to refine the GHG estimates and it is hoped that future IPCC methodology will reflect these changes.

This chapter consists of 12 major sections. The first, Section 2.1 – Introduction, provides an overview of this chapter and introduces the methodology used in this report. Global Warming Potential (2.2) is the second section and explains the internationally accepted convention by which different greenhouse gases are converted into a common unit based on each gases relative ability to trap infrared radiation. The next section, *Biomass* Decomposition/Combustion (2.3), describes guidelines by the Intergovernmental Panel on Climate Change which draws clear distinctions between CO₂ released from fossil fuel combustion and CO₂ released during the decomposition of biomass. This has important ramifications in this thesis as waste management contributes substantial emissions of both. Section 2.4 – Landfill Carbon Sequestration, reviews the available literature on this emerging issue. To properly assess landfill disposal from a greenhouse gas perspective, it is necessary to quantify not only the CH₄ emissions but also the ability of landfills to store the carbon from biomass which resists anaerobic decomposition. The next section, Nitrous Oxide Emissions (2.5), presents an extensive review of the current understanding of this important issue. N₂O can leak from the cells of microorganisms during nitrification and denitrification. Because of the high nitrogen content of food and yard components of MSW, the potential emissions during the management of these wastes is of particular importance. Section 2.6 – *Recycling Analysis*, discusses the methods employed in this study to estimate the emissions associated with recyclables. Uncertainty with the Estimates (2.7), presents the uncertainty that is always associated with estimating data. While much of the data in this thesis contains minimal uncertainty, many parameters are highly uncertain and require separate discussion in this section. The next section, Spreadsheet Program (2.8), illustrates the workings of the spreadsheet to educate users in its operation. *Waste Mass Estimates* (2.9) provides the methodology utilized to estimate the masses of the 8 waste components analyzed in the 23 member municipalities in the GVRD. Each municipality is analyzed individually because of the large differences between the fractions of waste from residential or ICI sources. After the 8 investigated waste components are removed from MSW there will be still be a remainder. This remainder is discussed in Section 2.10 – *Remaining Wastes* from the perspective of GHG implications. GHG Emissions not Investigated (2.11) draws a boundary around the focus of this research, thereby excluding the thousands of direct & indirect sources of emissions which could be included in this study as a result of our energy intensive society. The last section, Standards (2.12), provides readers with the units and other conventions used throughout this thesis.

2.2 GLOBAL WARMING POTENTIAL

The three greenhouse gases evaluated in this report, CO_2 , CH_4 and N_2O , greatly vary in their relative contribution to global warming. Each of these gases has different radiative forcings (the capacity to absorb infrared radiation) and different atmospheric lifetimes. To complicate matters further, there are direct radiative forcing effects or indirect

radiative forcing effects. Direct radiative forcing is when the gas itself is a greenhouse gas. Indirect radiative forcing effects occur when the chemical transformation of the original gas produces a gas or gases that are greenhouse gases, or when a gas influences the atmospheric lifetimes of other greenhouse gases (Environment Canada 1997a). The radiative forcing of CO₂ is estimated to be 0.018 W/m²•ppm while that of CH₄ is 0.37 W/m²•ppm or 20.6 times greater and N₂O is 3.7 W/m²•ppm or 206 times greater. The atmospheric lifetime of CH₄, N₂O and CO₂, is estimated to be 12.2 years, 120 years, and variable based upon the carbon cycle (IPCC 1995).

With all this variation, the concept of Global Warming Potential (GWP) was developed to allow for the comparison of the relative ability of each greenhouse gas to trap heat in the atmosphere. The GWP is defined as:

"the time-integrated change in radiative forcing due to the instantaneous release of 1 kg of a trace gas expressed relative to the radiative forcing from the release of 1 kg of CO_2 ...The GWP of a greenhouse gas takes into account both the instantaneous radiative forcing due to an incremental concentration increase and the lifetime of the gas." (Environment Canada 1997a)

A 100 year reference period is recommended by the IPCC when dealing with global warming potentials (IPCC 1995). The latest information from the IPCC has estimated the 100 year time-frame GWP of CH_4 to be 21 and the GWP of N_2O to be 310 (relative to CO_2 on a mass basis) (ibid). The GWP for CH_4 also takes into account the indirect contributions due to tropospheric ozone and stratospheric water vapour production. These are the Global Warming Potential values that are used in this report.

2.3 BIOMASS DECOMPOSITION/COMBUSTION

This section presents the internationally accepted guidelines which draw a clear distinction between the CO_2 emitted during the combustion of fossil fuels and the CO_2 emitted during the decomposition or combustion of biomass. The CO_2 from the consumption of fossil fuel results from human activities and is believed to be causing Global Climate Change while the quantitatively greater carbon cycling for biomass is a natural closed process. Separating these two is necessary, for otherwise, this research would have to consider the decomposition of biomass during the composting process as a GHG emission; of little merit when remembering that the alternative is natural rotting on the ground.

The IPCC methodology for addressing CO_2 emissions from biomass has already been mentioned in the introduction but requires further discussion as it is extremely important for this study. Specifically, these are the CO_2 emissions resulting from the decomposition or combustion of paper products, food scraps or yard trimmings, defined as *biomass* for the remainder of this section. The carbon in biomass material was originally removed from the atmosphere by photosynthesis, and under natural conditions, will eventually cycle back to the atmosphere as CO_2 . This carbon is part of a natural process which cycles through the atmosphere, water, soils and biota, and is far greater in magnitude than carbon resulting from human intervention, the carbon from fossil fuels or deforestation. But the focus of the United Nations Framework Convention on Climate Change is not on these natural processes but on the anthropogenic emissions, emissions resulting from human activities and subject to human control, as it is these emissions that have the potential to disrupt the carbon's biogeochemical cycle and alter the atmosphere's heat trapping ability (USEPA 1998).

The difference in CO_2 emissions from the decomposition of biogenic materials and the combustion of fossil fuels was explained succinctly in a U.S. Environmental Protection Agency report (ibid):

"Thus, for processes with CO_2 emissions, if (a) the emissions are from biogenic materials and (b) the materials are grown on a sustainable basis, then those emissions are considered to simply close the loop in the natural carbon cycle – that is, they return to the atmosphere CO_2 which was originally removed by photosynthesis. In this case, the CO_2 emissions *are not* counted. ... On the other hand, CO_2 emissions from burning fossil fuels *are* counted because these emissions would not enter the cycle were it not for human activity. Likewise, CH_4 emissions from landfills *are* counted – even though the source of carbon is primarily biogenic, CH_4 emissions would not be emitted were it not for the human activity of landfilling the waste, which creates anaerobic conditions conducive to CH_4 formation."

As a result, the CO_2 emissions resulting from composting, incineration or landfilling of biomass are considered to be "neutral" and thus *are not* considered to be greenhouse gas emissions. Therefore, the release of CO_2 during anaerobic decomposition at landfills, the biomass- CO_2 emission from combustion at incinerators and the CO_2 resulting from aerobic decomposition during composting *are not* considered as greenhouse gas emissions. In fact, incineration can just be thought of as an accelerated version of composting with an energy generating component included. It is important to recognize the important assumption that biomass is sustainably grown and harvested. The combustion of paper that was manufactured from unsustainable harvested trees would not be GHG neutral; there is no future tree growth to fix this carbon once again. This assumption is necessary to neglect any CO_2 emissions from biomass decomposition/oxidation. This report assumes that paper products, food scraps and yard trimmings are sustainably harvested.

Separating the CO_2 resulting from fossil fuels and the CO_2 resulting from biomass decomposition or combustion is necessary to prevent effort being wasted on natural processes which are not a concern for Global Climate Change. For example, this distinction causes the calculations in the appendices to account for the diesel fuel consumption (for conversion into units of CO_2 emitted) associated with the curbside collection, transfer station processing and subsequent transportation of yard trimmings to a centralized composting facility. It also includes the diesel fuel consumption necessary to operate the equipment required to perform composting of this material. However, it does not consider any of the emissions which result when this organic material is oxidized by microorganisms to inorganic CO_2 . This is simply the conclusion of the cycle which started when inorganic CO_2 in the atmosphere was fixed by photosynthesis to organic carbon. Readers may have already noticed that a reference time-frame is inherent in treating biomass decomposition as GHG neutral. Fossil fuels contain carbon which was also originally CO_2 in the atmosphere and was fixed by photosynthesis into the organic carbon of biomass. This occurred millions of years ago and the fossil fuel carbon has been stored deep underground in geological reservoirs in the interim. Liberating this carbon into the atmosphere is fundamentally different than liberating the carbon in an apple core which was photosynthesized 6 months or 6 years ago. Even liberating the carbon in paper products which were photosynthesized by tree growth 50 years ago is fundamentally different than liberating carbon from fossil fuels created millions of years ago. Especially when remembering that a new tree will be growing in the location where the previous one was harvested – the sustainable harvesting assumption. It is these boundaries which are used in the calculations in the appendices.

Landfill methane emissions also require discussion in the context of biomass carbon cycling. If the CO₂ emission from a landfill is neutral but CH₄ emissions are GHG contributions, would it not be more accurate to subtract CH₄ by the CO₂ which would have occurred otherwise. This improvement is based on the fact that the methane results from a biomass waste and if the material can decompose anaerobically (without oxygen), it would likely decompose aerobically (breakdown with oxygen is inherently easier). Though methane is 21 times more effective than CO₂, it would be more accurate to subtract the CO₂ that would otherwise have occurred if the methane emission did not. This reduces landfill methane emissions by approximately 5% and is defined by this author as CO_2 Subtraction. However, this improvement has not been included in this report so that it would be consistent with the IPCC methodology, but it is logical that it may be included in future work.

What if photosynthesis removes CO_2 from the atmosphere to create biomass but the carbon is never returned to the atmosphere? If the biomass resists the decomposition necessary to return the carbon to the atmosphere, this process can be interpreted as a GHG benefit and is analogous to permanently converting grassland to forests to sequester carbon. Both examples are reducing the atmospheric concentration of CO_2 to assist in mitigating Global Climate Change. This removal of carbon from the atmosphere and permanent storage can occur when biomass is disposed in landfills and resists decomposition in the anaerobic conditions. The next section reviews this emerging issue.

2.4 LANDFILL CARBON SEQUESTRATION

The anaerobic decomposition of municipal solid waste has been well documented in the past and will not be reviewed in this thesis. However, this report will address the emerging issue of partial decomposition of organic materials in landfills in this section. The three organic components of municipal solid waste which are critical to the degradation reported in the literature are cellulose (40-50% dry mass), lignin (10-15%) and hemicellulose (9-12%) (Barlaz 1989a). Both the decomposed and undecomposed

organics are of concern in GHG emission considerations. The decomposed portion of the organics leads to methane emissions, whereas the portion resistant to decomposition presents the carbon sequestration potential of landfills. It is important to note that carbon sequestration is not included in the latest IPCC guidelines but was considered in a 1998 analysis by the U.S. Environmental Protection Agency (USEPA 1998).

Even under optimal conditions for biodegradation, complete anaerobic decomposition of organic materials cannot be expected. The presence of recalcitrant lignin and large particle sizes can limit the access of hydrolytic bacteria to some of the biodegradable material (Baldwin et al. 1998; Stinson and Ham 1995; Cummings and Stewart 1994; Wang et al. 1994; Tong et al. 1990). Complicating the matter further still is the fact that lignin concentrations of specific MSW components are highly variable. These issues are important for assessing the GHG emissions associated with landfill disposal and will be the focus of the discussion in this section. After the introduction of cellulose, hemicellulose and lignin biodegradability (2.4.1), a literature review of landfill carbon sequestration is presented (2.4.2). This is followed by a discussion of how this issue is applied to the two GVRD landfills analyzed in this thesis (2.4.3).

2.4.1 Introduction

It has been reported that over 90% of the methane potential of MSW results from the cellulose plus hemicellulose fraction (Barlaz et al. 1989a) and the remaining biodegradable constituents are soluble sugars and proteins. Cellulose is the principal structural molecule in plants; in fact, half of all the organic carbon in the biosphere has been estimated to be contained in cellulose (Curtis and Barnes 1989). In its frequently occurring fibrous form, its tensile strength is very great and it is insoluble in water. Cellulose is a carbohydrate; a polymer made up largely of glucose, and corresponds to the empirical formula of $(C_6H_{10}O_5)_n$. However, the degree of polymerization (DP) is very large, often ranging between 1000 and 5000, giving molecular weights between 163,000 and 810,000. Hemicelluloses are nonfibrous wood components. While cellulose is comprised mainly of glucose units, the hemicelluloses contain primarily sugar units other than glucose – such as xylose or mannose. The DP of hemicelluloses is much lower than cellulose; it is typically 150±30 (McGraw-Hill 1962).

Lignin accounts for between 20 to 30% of wood material and functions as a filler or cementing substance to impart rigidity to the tissues. It is thought that lignin probably exists in wood as branched-chain polymer molecules comprising a vast network. This network may be further intermeshed and/or chemically combined with hemicellulose or other nonlignin components of wood (ibid).

Lignin is highly recalcitrant. Not only does it strongly resist anaerobic decomposition, but it also prevents the decomposition of the embedded cellulose and hemicellulose components of the lignin matrix (Micales and Skog 1997). By themselves, the majority of cellulose and hemicellulose can be readily degraded. Under idealized laboratory decomposition conditions, Barlaz (1989b) observed the decomposition of 72% of the cellulose and hemicellulose of MSW but negligible decomposition of lignin.

There is a great deal of variability in the lignin content of many individual MSW components. This variability is demonstrated in office paper, which is largely delignified (one study measured the lignin content to be 2.3% (Barlaz 1998)), or in branches and newspapers, which are highly lignified (the same study measured lignin contents of 33% and 24%, respectively). The lignin content is "important because it is both a physical and chemical barrier to microbial attack." (Wang et al. 1994) In one study, about 40% of the cellulose in newsprint was degraded, while 90 and 97%, respectively, in delignified office and filter paper decomposed anaerobically (Khan 1997). In another study, the partial delignification of newsprint by acid chlorite treatment significantly increased the amount of cellulose available for decomposition and resulted in about 75% of the cellulose being degraded. By comparison, the cellulose decomposition in untreated newsprint was limited to 50% (Stinson and Ham 1995). Lastly researchers at the USDA Forest Service have performed calculations which "suggest that maximally only 30% of the carbon from paper and 0-3% of the carbon from wood are ever emitted as landfill gas." (Micales and Skog 1997)

2.4.2 Literature Review

Resulting from the ability of organic components of MSW to resist decomposition, the potential therefore exists for the long-term sequestration of carbon in sanitary landfills. It is worth noting that these are anaerobic conditions largely because there is no identified anaerobic microbial lignin attack (as opposed to white rot fungus which attacks aerobically). In fact, from the perspective of greenhouse gas emissions, the organic carbon deposited in landfills has to be partitioned into one of only three pathways: "(1) eventual atmospheric emission as methane, (2) eventual atmospheric emission as carbon dioxide following microbial oxidation or combustion, and (3) long-term sedimentary storage in landfill reservoirs." (Bogner and Spokas 1995) Two research investigations have attempted to estimate the amount of carbon being sequestered in landfills worldwide. The first one by Bogner and Spokas (1995), also partially described in Bogner (1992), developed a highly conservative estimate based on idealized laboratory decomposition studies with well-mixed waste and elevated moisture contents by Barlaz (1989b). It is likely that actual landfills, with high rates of compaction and restricted moisture infiltration, will have an even greater proportion of recalcitrant organic carbon and thus a greater amount of sedimentary storage would be expected. Bogner and Spokas (1995) estimated that about 30 million metric tonnes of carbon annually enters sedimentary storage by deposition in landfills - a considerable amount when compared to the estimated 20-30 million tonnes of carbon annually entering sedimentary storage worldwide from other sources (mainly marine).

The second investigation into the long-term storage of carbon in landfills was performed by Barlaz (1998) and is also discussed in Eleazer et al. (1997) and USEPA (1998). This also simulated enhanced anaerobic decomposition in laboratory-scale reactors. This research placed various types of organic waste in separate reactor vessels "in which was maintained anaerobic conditions similar to those in a landfill, but controlled to favor maximum methane generation." The experiments included shredding, seeding, leachate recycling and the maintenance of sufficient concentrations of nitrogen and phosphorus to ensure nutrient availability. These reactors were allowed to run for periods varying from three months to two years. The experiment for each reactor was finished when either no measurable methane was being emitted (below instrument detection limit), or when it was determined that the reactor had produced at least 95% of the methane that it would produce if run indefinitely. The amount of methane and the amount of undecomposed carbon remaining in each reactor at the end of the experiment was measured.

The goal of this second study was to determine the "ultimate biodegradability" that is to be expected. The most significant contribution of this research is the study of the major individual components of MSW separately, and the subsequent determination of component-specific "Carbon Storage Factors". Once again, this storage determination is conservative; actual decomposition in a traditional landfill would be expected to be lower. The measured Carbon Storage Factor (CSF) represents the mass of carbon that was stored (not anaerobically degraded) per initial dry mass of component. Not surprising, the highest storage capability was observed with the high lignin MSW components, and the lowest storage was demonstrated by the lower lignin content materials. The measured CSF for grass, leaves, branches and newsprint was 0.32, 0.54, 0.38 and 0.42 kg C/dry kg, corresponding to lignin concentrations of 23, 43, 33 and 24%, respectively. Food waste and office paper exhibited low storage, with CSFs of 0.08 and 0.05 kg C/dry kg at low lignin concentrations of 11 and 2.3%, respectively. The carbon measured by the CSF includes not only the portion of cellulose and hemicellulose (and in the case of food waste - protein) which resisted anaerobic decomposition, but also most of the lignin content - very little lignin was actually degraded.

In an extrapolation of this data, Barlaz used these results to generate a global landfill carbon storage value. He estimated the global carbon sequestration due to MSW burial to be 118.7 million metric tonnes of carbon annually. This global carbon sequestration value is much greater than the previous value estimated by Bogner and Spokas.

Inspection of these Carbon Storage Factors for development in this thesis has discovered inconsistencies in the data reported by Barlaz (1998). For example, the CSF for leaves was reported as 0.54 kg C per dry kg while the initial carbon content of the leaves was only reported as 0.49 kg C per dry kg. This impossible result raises important questions about the results. The method used to calculate the CSF is a back-calculation based upon the carbon remaining in the reactor at the end of the experiment, but corrections were necessary to attribute the necessary fraction to the seed introduced to insure successful decomposition. It appears the initial carbon content was not used at any time for the calculation of CSF's and that the uncertainty with the correction for the seed has caused problems with some of the CSF's reported. Upon personal communication with Morton Barlaz and Jim Atwater, a new method for estimating Carbon Storage Factors is developed and employed in this thesis. Using the methane emission reported in USEPA (1998) to calculate the moles of CH₄ emitted and by assuming equal moles of CO₂, it is possible to estimate the Carbon Available for Anaerobic Decomposition (CAAD). When this CAAD is subtracted from the initial carbon content reported in Barlaz (1998), a revised CSF results. The actual calculations for the revised CSF's are presented in the respective appendix for each biodegradable material investigated. Only one material changes appreciably with this revision: the CSF for leaves is decreased (from the

previous 0.54 kg C/dry kg to a new 0.43 kg C/dry kg). All the remaining biodegradable waste components (newsprint, office paper, grass and branches) change only slightly. The above revision has not been used on the CSF for food waste due to the fact that the laboratory-scale reactors for food contained a greater proportion of seed than the other reactors. If the above revisions are used on food waste, the CSF increases by 150%, an unreasonable amount. It is this author's belief that the current CSF is likely the more appropriate and it is thus left unrevised.

2.4.3 Application to GVRD Landfills

The application of this issue to the analysis in this thesis must be addressed. What proportion of office paper, newsprint, food and yard waste will remain undecomposed in the Cache Creek or Vancouver Landfill? It requires noting that only the sequestration of these four biomass materials is of consequence, because they do not contain the carbon of concern from a climate change perspective. Any carbon which is stored in this manner is a GHG benefit to the atmosphere. However, the disposal of plastics is *not* to be considered a net GHG benefit – plastics contain carbon from petroleum products that, as fossil fuels, was already in storage. As a result, the plastics have simply been moved from one 'storage' state to another, and are not considered in this analysis.

To estimate landfill carbon sequestration and the inverse of this issue, landfill methane emissions, a Time-Dependant model is developed in this thesis. In this model, all of the carbon disposed in a landfill has to eventually follow one of four distinct pathways: atmospheric emission as CH_4 , atmospheric emission as CO_2 , long-term storage or awaiting decomposition (though not yet degraded, this carbon is not to be considered sequestered). In this manner, emissions for the next 20 years are estimated.

In this model, the organic-carbon in the newsprint, office paper and food and yard waste components of MSW disposed in landfills will be partitioned according to the pathways described above. The landfill carbon sequestration estimates as reported by Barlaz (1998), and revised for this thesis as described in the previous section, are likely the most appropriate. However, since the Cache Creek Landfill (CCLF) is a dry landfill (there is little appreciable leachate (Pers. comm. Louie DeVent), the actual sequestration may be greater. The Vancouver Landfill (VLF) is a wet landfill (a substantial quantity of leachate is annually transferred to the nearest wastewater treatment plant (Pers. comm.. Paul Henderson) and is likely better represented by the experiments by Barlaz. If data for dry landfill sequestration becomes available in the future, the estimates can be revised. The flip side of the sequestered fraction is the *Carbon Available for Anaerobic Decomposition* (as described in the previous section) which is the total CH₄ and CO₂ which was emitted from the anaerobic reactors during the enhanced decomposition simulated by Barlaz. This CAAD is used in this thesis to estimate the methane generation potential at the landfills.

At the end of 20 years, organic carbon in this model can decompose (to CO_2 or CH_4), it can be sequestered or it can simply be awaiting decomposition. However, this is not to say that carbon has to decompose *anaerobically* – organic carbon can be removed in the leachate and be aerobically degraded at wastewater treatment plants. While identifying

this possibility is valuable, the following estimates demonstrate the relative lack of importance of this issue.

At the Vancouver Landfill, 2,115,772 m³ of leachate was collected and transferred to the Annacis Island Wastewater Treatment Plant in 1999 (Pers. comm.. Paul Henderson). Using a typical BOD₅ concentration of 100 mg/L (Metcalf & Eddy 1991), it is possible to calculate the mass of organic carbon contained in this leachate. This can be compared with the annual loss of carbon as landfill gas as a result of anaerobic decomposition. The most recent estimate is that the landfill gas production rate was 5082 cubic feet per minute in 1999 (Pers. comm. Paul Henderson). These calculations are below.

Mass of Carbon in Leachate =
$$(2,115,772 \text{ m}^3) (100 \text{ mg O}_L) \left(\frac{12 \text{ g}_{\text{mol C}}}{32 \text{ g}_{\text{mol O}_2}} \right) (100^{-9} \text{ tonnes}_{\text{mg}}) (1000 \text{ L}_{\text{m}^3}) = 79 \text{ tonnes of C}$$

Volume of LFG = $(5,082 \text{ ft}^3/\text{min}) \left(\frac{1 \text{ m}}{3.28 \text{ ft}}\right) \left(60 \text{ min}/\text{h} * 24 \text{ h}/\text{d} * 365 \text{ d}/\text{yr}\right) (1000 \text{ L}/\text{m}^3) = 75.7 * 10^9 \text{ L}$ Mass of Carbon in Landfill Gas = $(75.7 * 10^9 \text{ L}) \left(\frac{1 \text{mol}}{22.4 \text{ L}}\right) (12 \text{ g}/\text{mol}) (10^{-6} \text{ tonnes}/\text{g}) = 40,600 \text{ tonnes of Carbon}$

The estimated 79 tonnes of carbon leaving the landfill as leachate is virtually irrelevant when compared to the 40,600 tonnes of carbon leaving the landfill as carbon dioxide or methane gas. Furthermore, since the Cache Creek Landfill is a dry landfill with little appreciable leachate (any leachate which is collected is spread on the active face to return the leachate back to the fill (Pers. comm. Louie DeVent)), this issue has even less importance. As a result of the demonstrated lack of importance, the potential for landfill leachate to provide aerobic decomposition of the organic carbon deposited in landfills is ignored.

It is also helpful to compare the mass of carbon in landfill gas with the mass of carbon in place at the landfill site. Since beginning operation in 1966, an estimated 11.3 million tonnes of waste has been deposited in the Vancouver Landfill by 1999 (CRA 1999), or an average 330,000 tonnes per year. By assuming a moisture content for MSW of 25% and a carbon content for MSW of 50%, it can be estimated that each year 124,000 tonnes of carbon is deposited in the landfill. However, only about 40,000 tonnes of carbon, or one part in three, actually escapes in the landfill gas each year. These simple estimates suggest that sequestration is indeed occurring at the local Vancouver Landfill.

Now part of the landfill gas (LFG) resulting from anaerobic decomposition may be collected. The methane gas component can be flared or utilized for energy. The remaining portion will escape collection and will be emitted to the atmosphere. However, some of the CH₄ which escapes collection can still be oxidized to CO_2 by microorganisms in the landfill cover materials prior to emission. New research by Czepiel et al. (1996) estimated the landfill oxidation rate of 10% for landfill methane. This study investigated a landfill that had a 1-2 m cover consisting of sandy-clay loam with intermittent low shrubs and grasses in older sections. This estimate will be used as an oxidation rate representative of the CCLF and the VLF for methane by-passing collection.

The last "fraction" or "partition" for organic carbon in this model is that which has yet to decompose. In this model, part of the organic carbon that will eventually decompose will not do so within the first 20 years; this carbon is part of the CAAD which hasn't yet decomposed after 20 years. Due to its future degradability potential, it cannot be considered as having entered long-term storage.

Critical to this time-dependant modelling is the first-order decay rate constant used. Various decay rates are published in available literature. Several of these were experimented with for this research but it is difficult to know which is of the greatest accuracy. The first order decay rate constant used by the GVRD in modelling methane emissions at the CCLF, 0.02 yr⁻¹, can be used to simulate the future degradation in the CCLF (GVRD 1999b). This is the decay rate developed by the U.S. Environmental Protection Agency for dry landfills (USEPA 1997). Unfortunately, this is an estimate of the degradation rate of general MSW and is not specific to any particular waste component. Conestoga-Rovers & Associates used a decay rate constant of 0.028 yr⁻¹ when modelling the landfill gas at the VLF in a recent assessment for the Citv of Vancouver (Conestoga-Rovers 1999). This decay constant was developed by Levelton & Associates (for Environment Canada) in a province by province evaluation of landfill emissions (B.H. Levelton 1991). This higher decay rate represents the greater degradation to be expected at a wet landfill over the dry Cache Creek Landfill. When using the 0.02 yr⁻¹decay rate it can be estimated that only 33% of the CAAD will degrade within the 20 year time period and when using the higher 0.028 yr⁻¹, 43% of the CAAD is expected within the time period. This author believes it more useful to assume that over half of the CAAD of newsprint, office paper and Remainder and that over three-quarters of the CAAD of food scraps and yard trimmings is realized in the first 20 years after disposal (food waste is known to be readily decomposable and since yard waste is comprised of about 50% grass, this component is also easily degraded). By using a decay rate of 0.04 yr⁻¹ for paper and Remainder disposed in the Cache Creek Landfill, 56% of the CAAD will materialize in the 20 years. For the Vancouver Landfill, the decay rate of 0.05 yr^{-1} will result in 64% of the CAAD being depleted. Using 0.07 yr^{-1} for the food and vard waste disposed at Cache Creek, 77% of CAAD will be decomposed. At Vancouver, 0.08 yr⁻¹ calculates that 82% of the CAAD degrades. Lastly, if users wish to model the ultimate methane generation, 100% decomposition of the CAAD, then inputting the decay rate as 0.14 yr^{-1} will cause this.

These decay rates are displayed in the table below. Due to the nature of the spreadsheet Model, users can change the decay rates in the future to suit their needs.

Tuolo 2 T. Thist officer B body Tube Constants				
Landfill	Waste Component	Decay Rate (year ⁻¹)	% of CAAD in first 20 years	Source
Cache Creek	MSW	0.02	33	GVRD 1999b
Vancouver	MSW	0.028	43	Conestoga-Rovers 1999
Cache Creek	Paper & Remainder	0.04	56	assumption
Vancouver	Paper & Remainder	0.05	64	assumption
Cache Creek	Food & Yard	0.07	77	assumption
Vancouver	Food & Yard	0.08	82	assumption
either	any	0.14	100	change to ultimate decomposition

Table 2-1: First-Order Decay Rate Constants

Also important in modelling GHG emissions is the expected collection efficiency of the generated landfill gas. This Model slowly increases, year after year, not only the collection effectiveness but also the proportion utilized for energy (to replace fossil energy).

2.5 NITROUS OXIDE EMISSIONS

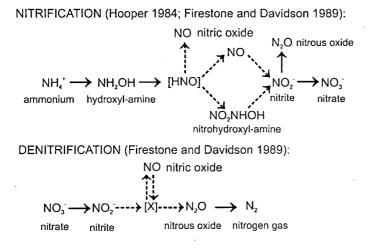
The potential is great for significant releases of nitrous oxide during waste management, especially food and yard waste management, and consequently requires consideration. Given that N₂O is a strong greenhouse gas, it is estimated to be 310 times more effective in trapping infrared radiation than CO_2 , it has to be considered in this research. In order to facilitate this, the *Global Nitrogen Cycle* (2.5.1) and the *Global Nitrous Oxide Cycle* (2.5.2) must be introduced. This is followed by the Anthropogenic Interference with the Global Nitrogen Cycle (2.5.3) and the consequent Anthropogenic Interference with the Global Nitrous Oxide Cycle (2.5.4). Finally this human-induced interference will be assessed for its Implications for Waste Management (2.5.5). This section will discuss the ramifications for Landfill Disposal (2.5.5.1), Composting (2.5.5.2) and Incineration (2.5.5.3) in turn. A detailed discussion of this can be found in Barton & Atwater (2000). This entire section is a summary of that paper. While it may appear that much of the following information is unrelated to the primary focus of the thesis, this review is provided to impress upon readers the uncertainty of the reported data and the crude understanding of this issue. As a result, the actual emissions measured in the future can and may be much greater than are currently estimated.

2.5.1 Global Nitrogen Cycle

Nitrogen is a critical element for life. It is an essential component of amino acids, which are the building blocks of proteins, which in turn are the building blocks of all life. It is estimated that 16% of protein, or 0.16 kg of N per kg of protein, is nitrogen (IPCC 1997). The cycling of global nitrogen throughout terrestrial and aquatic ecosystems and the atmosphere is critical for this building block.

The Earth's atmosphere is 78% by volume molecular nitrogen, N₂ gas, and thus it is an immense reservoir. It is estimated that 5 billion million metric tonnes of nitrogen are contained in the atmosphere, ocean, terrestrial and marine biota, soil organic matter and sedimentary rocks. Although N is abundant, the vast majority of it is in a form which can be used by only a few living organisms (Mackenzie 1998). It is estimated that <0.02% (or ~1 million million tonnes) of global N is actually accessible to living organisms, most is either diatomic nitrogen (N₂ gas) in the atmosphere (~78%) or tied up in sedimentary rocks (~20%) (ibid). To be available for utilization by living organisms, it must be in the form of reactive or fixed nitrogen (defined as "N bonded to C, O or H (e.g. NO_y, NH_x, organic N)" (Galloway 1998)). Only a few species of aquatic and terrestrial bacteria and blue-green algae can fix the nearly inert N₂ molecule into ammonium (NH₄⁺) for utilization. This conversion is called biological N-fixation (BNF) and it has been estimated that in preindustrial times, 90-130 x10⁶ metric tonnes of N was annually fixed by this natural process (Galloway 1995). Lightning contributes an estimated additional 3-5 x10⁶ metric tonnes of N fixation annually.

This reactive or fixed nitrogen moves through the terrestrial N cycle by the death of plants and microorganisms, *mineralization* – the breakdown of amino acids, *assimilation* – uptake by plants and by *immobilization* – uptake by microorganisms (Kinzig and Socolow 1994). Assuming an annual fixation rate of 130 million tonnes, this is miniscule in relation to the pool of total nitrogen (1 part in 38 million) or to the pool of reactive nitrogen (1 part in 7800). However it is upon this fixation rate which organisms depend. Since plant and animal life can only utilize reactive nitrogen as nutrients, and not diatomic nitrogen, "all life ultimately depends on nitrogen fixation" (Ayres et al 1994).


For nitrogen to remain in steady state conditions there must also be the return of reactive N to the N₂ reservoir (though this reactive N may transfer through several from due to oxidations and reductions before returning to N₂). The majority of this is accomplished by the microbial processes, *nitrification* and *denitrification*. There is also *pyrodenitrification* which occurs during forest fires. In nitrification, ammonium (NH₄⁺) is oxidized to nitrate (NO₃⁻) by mainly autotrophic bacteria under aerobic conditions in order to derive energy. In denitrification, nitrate is reduced to N₂ by mainly facultative heterotrophic bacteria under anoxic (oxygen restricted) conditions. These bacteria use the nitrate as a terminal electron acceptor so that they can concurrently derive energy from the breakdown of organic carbon (Beauchamp 1997). During pyrodenitrification, "two nitrogen atoms that were in separate molecules in plants or soil bind to one another to make N₂, as the result of a sequence of high-temperature reactions." (Ayres et al. 1994) By these three processes, equal amounts of N (the approximately 93 to 135 x10⁶ tonnes N fixed annually) are returned to the atmosphere as N₂ gas.

2.5.2 Global Nitrous Oxide Cycle

Nitrous oxide (N_2O) is a stable gas which leaks from microbial cells during nitrification and denitrification (Firestone and Davidson 1989). Though the predominant product of nitrification is nitrate (NO_3^-), and of denitrification is N_2 , a portion of the N can be emitted as nitrous oxide.

Though some parts of the nitrification and denitrification pathways are not well understood, particularly the pathways encompassing nitric oxide (NO), the generally accepted metabolic pathways are shown below. The dashed lines signify unconfirmed pathways.

Figure 2-1: Nitrification & Denitrification Pathways

The "hole-in-the-pipe" or "process-pipe" conceptualization by Firestone & Davidson has been used to visualize the N₂O production in soils. These researchers consider that N₂O production is a factor of, (1), the amount of nitrogen cycling between the soil-plant-microbial system, and (2), the ratios of the N₂O/NO₃⁻ and N₂O/N₂ products of nitrification and denitrification. These two factors, the overall movement of nitrogen through the *pipe*, and the amount of *leakage* (the size of the holes in the pipe), control the emission of N₂O.

Agricultural research has found that anywhere from 0.001% to 6.8% of the nitrogen applied to fields is emitted as N₂O (Mosier et al. 1996), and the ratio of N₂O/NO₃⁻ produced as a result of nitrification has been reported as high as 20% (Martikainen 1985), but is generally below 1% (Firestone and Davidson 1989). Though both processes have been demonstrated to result in N₂O leakage, denitrification is considered to be the major source of N₂O from soils (Sahrawat and Keeney 1986).

The production of N₂O during nitrification in soils has been demonstrated to result from: "a reductive process in which the organisms use NO₂⁻ as an electron acceptor, especially when O₂ is limiting. This mechanism not only allows the organisms to conserve limited O₂ for the oxidation of NH_4^+ (from which they gain energy for growth and regeneration), but also avoids the potential for accumulation of toxic levels of NO₂⁻." (Hutchinson and Davidson 1993; Poth and Focht 1985)

The nitrous oxide leakage during denitrification is considered to result when: "the availability of oxidant (N-oxide) greatly exceeds the availability of reductant (most commonly organic carbon), then the oxidant may be incompletely utilized, i.e. N_2O will be produced." (Firestone and Davidson 1989) "Conversely, when the overall rate of denitrification is limited by the supply of oxidant, most of the N-oxide is converted to N_2 ." (Hutchinson and Davidson 1993)

The latest estimate of the IPCC (1995) is that 9×10^6 tonnes of N₂O-N is naturally emitted to the atmosphere by soil processes, forest and brush fires and the oceans. As there is no chemical loss in the troposphere (the lower ~12 km of the atmosphere (Mackenzie 1998)), this 9×10^6 tonnes of N₂O-N slowly rises to the stratosphere where it is destroyed. The destruction of N₂O occurs at an altitude above 30 km (in the stratosphere) and returns this nitrogen to the N₂ reservoir. It takes, on average, 120 years for N₂O to reach this altitude and to be destroyed (IPCC 1995). The N₂O is destroyed predominantly by photodisassociation into N₂ molecules and O atoms. However, approximately 10% of the N₂O reacts with electronically excited oxygen atoms (formed by the photolysis of ozone) to form NO. The production of NO is important in stratospheric ozone chemistry, since NO catalytically destroys ozone (Abbatt and Molina 1993).

2.5.3 Anthropogenic Interference of the Global Nitrogen Cycle

The crux of the problem is that humans have approximately doubled the global rate of N fixation, from an estimated pre-industrial rate of 93-135 $\times 10^6$ tonnes N/yr to an estimated 243-295 $\times 10^6$ tonnes N/yr fixed currently (Galloway 1998). The increased fixation of elemental N₂ gas has been a direct result of nitrogenous fertilizer production, human-induced increases in the cultivation of leguminous crops (which host a symbiotic relationship with biological N-fixing bacteria) and by the combustion of fossil fuels. Estimates adapted from Galloway (1998) of this anthropogenic interference are provided in Table 2-2.

Table 2-2:	Global	Reactive	Nitrogen	Sources

Table 2-2. Global Reactive Milogen Boulee.	3
	Global Nitrogen Fixation
	(million tonnes N/year)
Natural Biological N Fixation	90-130
Lightning	3-5
Natural Source Subtotal	93-135
Synthetic Fertilizers	80-90
Human-Induced Biological N Fixation	40
Fossil Fuel Combustion	30
Anthropogenic Source Subtotal	150-160
TOTAL SOURCES	243-295
(Percent Anthropogenic)	(51-66%)

Fertilizer production by the Haber-Bosch process fixes N_2 to ammonia (NH₃) thereby reproducing at high temperature and pressure what bacteria can accomplish with enzymes at ambient temperature and pressure (Kinzig and Socolow 1994). Human-induced biological N-fixation occurs by the increased cultivation of leguminous crops such as soybean and alfalfa which symbiotically host nitrogen fixing bacteria in their root nodules. The last source of reactive N is the by-product of the combustion of fossil fuels. Whereas nitrogen fixation from fertilizer production and the cultivation of leguminous crops is intentional, the reactive N produced as a result of combustion is not intentional. The combustion of fossil fuels causes nitrogen that was originally in air as N_2 gas or nitrogen that was originally sequestered in the fuel as organic-N to be oxidized to nitric oxide (NO) or nitrogen dioxide (NO₂).

2.5.4 Anthropogenic Interference of the Global Nitrous Oxide Cycle

As a direct result of enhancing of the global nitrogen cycle, there has been a consequent enhancing of the global nitrous oxide cycle. The atmospheric N₂O concentration has increased from a pre-industrial level of 275 ppb to a level of 311 ppb in 1992, an increase of 13% (IPCC 1995). This is estimated to contribute 6% of the human-induced increase in the infrared radiation absorbing ability of the atmosphere (Erisman et al 1998). In addition, this concentration continues to increase by about 0.8 ppb annually (IPCC 1995).

The most recent budget, as of 1998, of global nitrous oxide is provided in Table 2-3 (adapted from Mosier et al. (1998))

	Global Sources and Sinks of N ₂ O (million tonnes N ₂ O-N/year)
Identified Natural Sources	9.0
Identified Anthropogenic Sources	7.2
Total Identified Sources	16.2
Unaccounted Sources	0
Total Sinks (Photolysis)	12.3
Atmospheric Increase	3.9

Table 2-3: Global N₂O Budget

Agricultural activities dominate the emissions of anthropogenic nitrous oxide with industrial sources (primarily fossil fuel combustion) providing the remainder of emissions.

It is only since 1998 that the budget of N_2O sources and sinks has been successfully balanced. Previous budgets were not balanced because sinks exceeded sources with the missing emissions labeled as "unaccounted sources." In the newest IPCC methodology, there are new sources of N_2O which were previously not included (IPCC 1997). In this new methodology, "three sources of N_2O are distinguished: (i) direct emissions from agricultural soils, (ii) emissions from animal production systems, and (iii) N_2O emissions indirectly induced by agricultural activities." (IPCC 1997; Mosier et al. 1998) It is the N_2O emissions indirectly resulting from agriculture with which this research is concerned, because it is the source of the emissions that result from the MSW stream.

Reactive N exported from farms as food products can cause indirect emissions of N_2O . This reactive N is eventually nitrified and denitrified and N_2O leakage can result. These sources of N_2O are considered indirect because they do not actually occur on farms but are nevertheless, agricultural in origin. For instance, the nitrification and denitrification of reactive N used in food production (and the associated N_2O leakage) may occur at wastewater treatment plants. As a result, N_2O emissions from wastewater treatment can be considered indirectly agricultural in origin, in fact, any N_2O emissions from reactive N downstream of food production are indirectly agricultural N_2O emissions. This will be further discussed in the following section, *Implications for Waste Management* (2.5.5).

2.5.5 Implications for Waste Management

The existence of anthropogenic nitrogen in MSW has important implications for waste management. Municipalities are typically given the responsibility to perform waste management. Given that fertilizer nitrogen, either in food or yard waste, has the potential to emit N₂O during this management, municipalities are responsible for the emissions. To assess this potential source of GHG emissions, a survey of available research has been performed. This survey only found nine papers on the N₂O emissions from composting, ten papers on the N₂O emissions from waste incineration and only two papers on the N₂O emissions resulting during wastewater treatment – a frequent destination of landfill leachate. Each of the management alternatives, landfill disposal, composting and incineration will be reviewed from the perspective of N₂O emissions in this section.

These papers actually generate many more questions than they answer. For all of the papers, only the immediate emissions of N_2O were measured during the investigated process. There was no attempt to quantify any *future emissions* resulting from ammonia, nitric oxide or nitrate losses during the process, or from the future decomposition of the organic matter. For example, gaseous emissions of NH_3 are common during wastewater treatment or composting, but atmospheric discharges of this reactive nitrogen are not considered with respect to subsequent N_2O emissions.

Ammonia has an atmospheric lifetime of only a few hours to a few days and is mainly removed by wet and dry deposition. However, a portion, perhaps 10%, is oxidized to NO, and a third fraction is removed by reacting with nitrates or sulphates to form ammonium-containing aerosols, $(NH_4)_2SO_4$ and NH_4NO_3 . These aerosols are later removed by rainfall or dry fallout (Matthews 1994). Nitrogen oxides $(NO_X = NO + NO_2)$ are short-lived gases and they have an atmospheric lifetime between 1-10 days. Nitrogen oxides are removed from the atmosphere by conversion to nitric acid (HNO₃), which is followed by wet or dry deposition (Olivier et al 1998; Logan 1983). In addition, nitrogen oxides are suspected to indirectly contribute to global warming – they deplete the atmospheric concentration of the OH radical; a radical which limits the atmospheric lifetime of CH_4 . With OH depleted, the potential exists for methane to have a longer atmospheric lifetime than it would otherwise be able to (Mackenzie 1995).

Once these nitrogen compounds (NH₃, NH₄⁺, NO, (NH₄)₂SO₄, NH₄NO₃, HNO₃, etc) are returned to land or water surfaces by wet or dry deposition, this reactive nitrogen is again available for nitrification/denitrification, and the associated N₂O emissions can result. As

a result, discharges of reduced or oxidized nitrogen compounds only temporally and spatially alter the nitrous oxide emissions but do nothing to prevent these emissions.

Another example of a *future* N_2O *emission* originates from the organic nitrogen contained in wastewater sludge or finished compost. As this organic-nitrogen will eventually undergo decomposition, the released ammonium (NH₄⁺) is now available to undergo nitrification and denitrification. A simplified conceptualization of N₂O emissions during waste management operations and of potential future emissions is demonstrated in Figure 2-2.

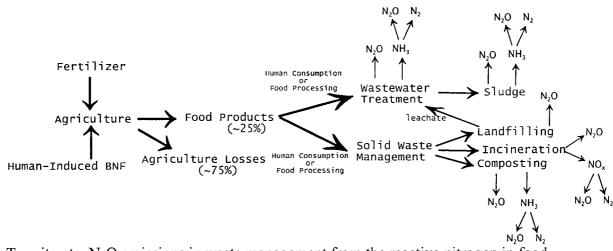


Figure 2-2: Potential N₂O Emissions from Waste Management

To reiterate, N₂O emissions in waste management from the reactive nitrogen in food waste are considered *indirectly* agricultural in origin by the IPCC. This is because the nitrogen was originally fixed for food production. In addition, the nitrogen component of yard trimmings may also be synthetic fertilizer in origin. During waste management, there can be *immediate* or *future* emissions of N₂O. Immediate emissions occur during the operation in question, be it wastewater treatment, composting, landfilling or incineration. Future emissions occur as a result of the future nitrification and denitrification of reactive N which exits the operation, usually in the form of ammonia or nitrogen oxides (NO_X = NO + NO₂) emissions or organic-nitrogen in compost or sludge. While waste managers are responsible for the release of reactive nitrogen, once the nitrogen is released they have no way of controlling its conversion to N₂O.

The following sub-sections review the potential for N_2O emissions to result from wastes that are landfilled, composted or incinerated. It is the intent of these reviews to complement the N_2O calculations in Appendix C through Appendix K.

2.5.5.1 - Landfill Disposal

Does the reactive nitrogen in landfilled MSW (predominantly in the food and yard waste components) contribute N_2O emissions to the atmosphere? A literature review has only located two research papers addressing this question. Unfortunately, only the Japanese study actually investigated the N_2O emissions resulting from waste disposed in landfills –

the other research paper, a Swedish study, examined the emissions from different materials as cover soils. In the Japanese study, two landfills, one active and the other closed, both with over 10 million tonnes of refuse in place, were examined (Tsujimoto 1994). Average N₂O emissions of 40.2 g/day and 7.8 g/day for the active and closed landfills, respectively, were observed in the landfill gas vented. This emission, while important (40 g/d of N₂O will equal the annual greenhouse gas emission of 4.5 tonnes of CO₂ equivalent [using the N₂O global warming potential of 310] or the combustion of approximately 1600 L of diesel fuel¹), represents only 9.3 kg of N₂O-N annually or 0.02% of an assumed 50,000 kg of nitrogen in the waste (using a nitrogen content of 0.5% for typical waste (White et al 1995)). Either this small emission indicates limited nitrification/denitrification taking place or limited N₂O leakage of the nitrification/denitrification taking place. (For further discussion of N₂O leakage refer to Section 2.5.2 – Global Nitrous Oxide Cycle) Given the anaerobic nature of landfills, it is likely the former. The Swedish study, determined that about 1.6% of sludge nitrogen used as a landfill cover soil will be emitted as N₂O-N during the first two years (Borjesson and Svensson 1997). This is similar to the 1.25% N₂O-N estimate for fertilizer and manure nitrogen found in agriculture research (IPCC 1997) and is not surprising considering that the land application of sludge is analagous to fertilization.

Can appreciable amounts of nitrous oxide eventually become emitted from nitrogenous waste disposed in landfills? The Japanese study has demonstrated the existence of an emission, albeit a small one. Appreciable N₂O emissions likely occur indirectly via landfill leachate or landfill gas. Reactive nitrogen contained in landfilled organic waste is released when anaerobic decomposition occurs. At this point, ammonia-nitrogen is free to undergo nitrification and denitrification, to be leached by water percolating through the fill or to be volatilized in the vented landfill gas. Ammonia nitrogen can dissolve in the percolating water and exit the landfill in the leachate. Landfill leachate is known to be high in nitrogen, with a typical total nitrogen concentration (Organic-N + NH_3 -N + NO_3 -N) between 25 and 1600 mg/L for active landfills and between 105 and 170 mg/L for mature landfills (Tchobanoglous et al. 1993). In recent years, leachate ammonia concentrations in excess of 2000 mg/L are even being reported (Henderson and Atwater 1995; Robinson et al. 1998; Rettenberger 1998). On a dry volume basis, the typical ammonia content of landfill gas has been reported between 0.1 and 1.0% (Tchobanoglous et al. 1993). Assuming that a minimum of nitrification (and thus little denitrification) occurs inside the landfill because of the anaerobic environment, the likely pathway of N_2O emissions is from the treatment of landfill leachate or the release of ammonia gas to the atmosphere. As a result, a review of the literature on the N₂O emissions reported during wastewater treatment is necessary along with a discussion of the wet and dry deposition of ammonia emitted to the atmosphere.

A survey of available research conducted on the N_2O emissions from wastewater treatment found 26 papers. Interestingly, the studies of actual wastewater treatment plants observed very low N_2O emissions, but laboratory experiments generally reported much higher N_2O emissions.

¹ Using the emission estimate of 2.8 kg of CO₂/L of diesel from Environment Canada (1997a)

Studies using laboratory-scale reactors have demonstrated high N₂O losses but have also observed a profound ability to affect these emissions; therefore the possibility exists for mitigation of a large portion of these emissions. The conversion of ammonium-nitrogen (NH_4-N) to N₂O during nitrification has been demonstrated by Zheng et al. (1994) to be between 2.3 and 7.0% at dissolved oxygen (DO) concentrations between 0.1 and 6.8 mg/L. They also found N₂O conversions as high as 16% and as low as 2.3% at solids retention times (SRT) of 3 days and 10 days, respectively. It was concluded that high N₂O production resulted when incomplete nitrification occurred. Thus preventing incomplete nitrification by maintaining DO levels greater than 0.5 mg/L and having SRTs of greater than 5 days would greatly reduce N₂O emissions. By also using reactors, Hanaki et al. (1992) observed that as much as 8% of influent nitrate-nitrogen (NO₃-N) was transformed to N₂O during denitrification, though several experiments demonstrated very little N₂O. The high conversion to N₂O was observed at a COD/NO₃-N ratio of 3.5, an SRT of 0.5 days and a pH of 6.5. These researchers concluded that "N₂O production can be avoided by achieving complete denitrification [by maintaining] high COD/NO₃-N in wastewater, long SRTs and neutral to alkaline pH conditions." Work by Hong et al. (1993) also agrees with this; they concluded that "the lower the ratio of COD/NO₃-N, the higher the percentage of N_2O in the produced gas was" and that short hydraulic retention times resulted in higher N₂O production.

Several papers have reported extremely high N₂O conversion rates in the laboratory. Osada et al. (1995) reported a 35% N₂O-N conversion in a fill and draw activated sludge process while treating swine wastewater under continuous aeration but only a 0.7% N₂O-N conversion during intermittent aeration. Experiments on a sequencing-batch reactor (SBR) found that as much as 40% of the removed nitrogen was emitted as N₂O; most of which occurred during the low DO period in aeration (Okayasu et al 1997). During the aerobic treatment of swine slurry, nitrous oxide emissions could represent up to 30% of the total nitrogen content of the slurry (Beline et al 1999). Research by Spector (1998), observed that N₂O accumulated to a maximum and was subsequently reduced to N₂ gas, when reducing nitrate with methanol in a closed reactor. At maximum accumulation, 50 to 80% of the reduced nitrate was in the form of N₂O. This scientist noted that if the same experiment had been performed in an open reactor, "most or all the N₂O retained at t_{max} would have been discharged to the atmosphere:"

In contrast to this laboratory research are the findings from several investigations at fullscale facilities. Three studies at WWTP's performing biological nitrogen removal (BNR) reported very low N₂O emissions. Kimochi et al (1998) reported N₂O-N conversions between 0.01 and 0.08% of influent nitrogen. This WWTP was modified to attempt to reduce these emissions and they found that by maintaining a dissolved oxygen concentration of over 0.5 mg/L during the aerobic/nitrification stage and allowing 60 minutes for the anoxic/denitrification stage, that complete nitrification and denitrification with a minimum of nitrous oxide production could be achieved. In fact, their findings state: "an optimum combination of aerobic and anoxic conditions and their suitable control are very important for improving nitrogen removal efficiency and controlling N₂O emissions." At a pilot plant, Thörn and Sörensson (1996), observed an average nitrous oxide production rate of 0.0091 mg N L⁻¹ h⁻¹ in the denitrification basin. However there is insufficient information to convert this value into a percentage of influent nitrogen. Research at a Swiss WWTP with a predenitrification anoxic tank followed by three aerobic tanks also observed a very low nitrous oxide emission (<0.1% of influent nitrogen) (von Schulthess and Gujer 1996). However, two studies at secondary treatment facilities (aeration tanks only treating biochemical oxygen demand) have also determined negligible emissions. At the municipal WWTP in Durham, New Hampshire, Czepiel et al. (1995) found N₂O emissions of only 1.6 x10⁻⁶ g of N₂O/L of wastewater or 3.2 g N₂O/person*year. Though it is not provided, if one assumes a typical nitrogen content of raw wastewater of 40 mg of N/L (Metcalf & Eddy 1991), this is a N₂O-N conversion of influent nitrogen of only 0.0025%. Sumer et al. (1995) reported an N₂O-N conversion of 0.001% of influent-N at an activated sludge plant in Germany; however, this plant included a pre-trickling filter to increase nitrification in the aeration tank.

If the conversions of reactive nitrogen to N_2O have been demonstrated by these five scientific studies to be extremely low and therefore of almost no importance, then why discuss it? Unfortunately, the complete picture is much more complicated and uncertain to allow for this simple dismissal. At the three BNR plants low emissions were observed; it appears that the processes to successfully promote nitrogen removal are consistent with the same processes which ensure complete nitrification & denitrification and thus minimize N₂O emissions. However, is this representative of all BNR facilities? Kimochi reported that the aerobic/anoxic conditions and their control are very important for controlling emissions. As demonstrated by laboratory research, the possibility exists for poorly operated BNR plants to be important sources of N_2O emissions. Furthermore, for the two investigations at secondary treatment facilities, there is a distinct possibility that the emissions are not low because the nitrification and denitrification which occurs in the WWTP produces little N₂O. Rather, the emissions are low because it appears that little nitrification or denitrification actually occurred at the secondary treatment plant studied by Czepiel et al. (1995). While nitrification was encouraged at the activated sludge plant studied by Sumer et al. (1995), there was little or no opportunity for denitrification. Remember, agricultural research has identified denitrification as the more important N_2O source of the two processes.

An example of past inadequate identification of nitrous oxide emission sources has been demonstrated by a very recent investigation of the South Platte River in Colorado (McMahon and Dennehy 1999). It was found that the N₂O emissions from this single river, which receives Denver's wastewater effluent, approached the emission estimated by Czepiel et al. (1995) for all the primary plants in the U.S. In a much older study, researchers investigating the surface water bodies receiving wastewater effluent from Washington, D.C., U.S.A., found data to imply that "the loss of nitrogen as N₂O could account for between 2 and 4% of the total nitrogen released by the wastewater treatment plants." (McElroy et al. 1978)

As a result of the uncertainty around estimating N_2O emissions from wastewater, the latest guidelines of the IPCC (1997) (and Mosier et al (1998)) advise using an emission coefficient of 0.01 kg N_2O -N/kg sewage-N produced (it ranges between 0.002 and 0.02

38

kg N₂O-N/kg sewage-N produced). This estimate assumes that 1% of wastewater nitrogen will be emitted as N₂O-N either immediately or in the future. This estimate will likely be improved upon with new research. The United States has used this emission coefficient as an estimate in the Environmental Protection Agency's latest national greenhouse gas inventory (USEPA 1999). This results in an estimated emission of 27,000 tonnes of N₂O from 1997 alone and can be converted to 8.4 million tonnes of carbon dioxide equivalent, MtCO₂e. While it is only a small part of the 6651 MtCO₂e estimated to be emitted by the U.S. in 1997, it is a more important part of the 931 MtCO₂e non-energy related greenhouse gas emissions (energy accounts for 86% of total U.S. greenhouse gas emissions). Furthermore, this may be an underestimate. The estimated nitrous oxide contribution from U.S. agriculture which produced the food in the first place is 283 MtCO₂e for 1997. Several researchers have estimated the nitrogen efficiency of their respective countries agricultural industry (efficiency of N in food products vs. total N input required) to be 10% for Norway (Bleken and Bakken 1997) and 25% for Germany (Isermann and Isermann 1998). Overall, Isermann and Isermann (1998) estimated the N efficiency of European Union agriculture as only being between 20-30%. Assuming the same to be true for the United States, a similar conversion of about 25% taken from the farm as food products could result in an actual waste derived N₂O emission as high as 94 MtCO₂e (from both liquid and solid forms of waste).

To bring this discussion closer to home, the typical ammonia concentration and annual quantity of leachate at the Vancouver Landfill has been obtained from the Landfill Operations Branch of the City of Vancouver (Pers. comm. Paul Henderson). In the 1999 calendar year, 2,115,772 m³ of leachate was transferred to the Annacis Island Wastewater Treatment Plant with an average ammonia concentration of 157 mg/L as nitrogen. Using the IPCC estimate of 1.0% eventual N₂O emission from the influent nitrogen to a wastewater facility in the calculations below and a nitrous oxide global warming potential of 310, it is possible to estimate that Vancouver Landfill's contribution of N₂O from leachate nitrogen is:

Mass of Nitrogen =
$$(2,115,772 \text{ m}^3)(157 \text{ mg N}_L)(10^{-9} \text{ tonnes/mg})(1000 \text{ L/m}^3) = 332 \text{ tonnes of N}$$

N₂O Emission = $(332 \text{ tonnes N})(0.01 \text{ N}_2\text{ O} \text{ N}_N)\left(\frac{44 \text{ g N}_2\text{ O}}{28 \text{ g N}_2\text{ O} \text{ N}_M}\right)(310)_{\text{GWP}} = 1617 \text{ tCO}_2\text{ e}$

As a result of these calculations, it is possible to assess a currently neglected source of greenhouse gas emissions, an estimated 1600 tonnes of CO_2 equivalent annually. To put this in perspective, it would be helpful to compare this with the currently estimated methane emission at this same landfill. The most recent estimate for this landfill is that in 1999, the landfill gas production rate was 5082 cubic feet per minute of which 50% was methane. Staff estimate that approximately 22% of the generated landfill gas is

being collected and flared (Pers. comm. Chris Underwood)². From this data is possible to calculate the current methane greenhouse gas emission:

Volume of LFG =
$$(5,082 \text{ ft}^3/\text{min}) (\frac{1 \text{ m}}{3.28 \text{ ft}})^3 (60 \text{ min}/\text{h} * 24 \text{ h}/\text{d} * 365 \text{ d}/yr) (1000 \text{ L}/m^3) = 75.7 * 10^9 \text{ L}$$

Mass of CH₄ = $(75.7 * 10^9 \text{ L}) (\frac{1 \text{mol}}{22.4 \text{ L}}) (0.5)_{\text{METHANE}} * (16 \frac{g}{\text{mol}}) (10^{-6} \text{ tonnes}/g) (21)_{\text{GWP}} * (1 - 0.22) = 443,000 \text{ tCO}_2\text{e}$

The calculations above have estimated the atmospheric emission of methane to be $443,000 \text{ tCO}_2\text{e}$ in 1999. When compared to this value, the nitrous oxide emission is less than half a percent. This estimate is likely because the majority of the landfill methane emissions result from the cellulose of disposed paper products. These same paper products also have low or negligible nitrogen contents, and therefore contribute little N₂O emissions. However, when analyzing the GHG implications of landfilling food or yard wastes (with their high nitrogen contents), N₂O emissions are of greater importance.. Also remember that the actual N₂O emissions can be much greater than the currently stipulated guideline of a 1.0% conversion rate. This will be illustrated in the next chapter, *Results of the Analysis* (Chapter 3).

A further complicating factor is that of nitrogen sequestration. Whereas the potential for carbon sequestration was previously discussed, reactive nitrogen can also be stored in landfills and will prevent nitrous oxide emissions. While the calculations above estimate that 332 tonnes of nitrogen exited the VLF as leachate in 1999, 336,633 tonnes of waste was disposed in this landfill in the same year (Pers. comm. Mike Stringer). From an old Environment Canada (1978) report, a MSW moisture content of 24% and a dry MSW nitrogen content of 0.8% results in an estimated 2050 tonnes of nitrogen in the disposed waste. While the annual mass of waste disposed in the VLF has increased in its 30 odd years of existence, the possibility exists that much more nitrogen is being deposited than will have the opportunity to exit.

Not to be overlooked is the possibility that reactive nitrogen, as ammonia, will exit the landfill in vented gas. Future wet or dry deposition will return this ammonia gas to soils or surface water bodies where nitrification and denitrification can occur. Thus the potential for future N_2O emission also exists from this pathway. If the landfill gas containing ammonia is collected and combusted, the ammonia will be oxidized to nitrogen oxides (NO or NO₂). This also provides reactive nitrogen to the atmosphere, and with subsequent wet or dry deposition, can nitrify and denitrify. The IPCC provides guidelines for these emissions and estimates that 1% of NH₃-N or NO_X-N emitted to the atmosphere will eventually be converted to N_2O . However, they also provide low and high estimates of 0.2 and 2% respectively. Thus, emission factors for gaseous emissions of ammonia or nitrogen oxides are similar to the emission factor for wastewater-nitrogen. It is not important *how* reactive nitrogen gets out of the landfill, only *how much* reactive nitrogen gets out.

 $^{^{2}}$ It is important to note that in 1999 Vancouver City Council approved the expenditure of \$5.4 million to upgrade this landfill gas collection system and thereby improve this collection efficiency (Henderson and Underwood 2000).

2.5.5.2 Composting

The composting of food and yard wastes will result in N_2O either during the process itself or by the future nitrification and denitrification of reactive nitrogen leaving the composting process in the form of ammonia emissions, nitrate or organic matter. The available research has demonstrated the existence of N_2O emissions during the composting process. This is likely N_2O leakage during the nitrification and denitrification of reactive N in the organic wastes. Researchers have observed a conversion of N to N_2O ranging from 0.00005 to 2.2% and the findings are summarized in Table 2-4.

		1 0
Compost & Method	N2O-N Loss (% of Initial TKN)†	Researcher
Dairy Cow Litter – Static Piles	0.00005 - 0.0005	Sommer and Dahl (1999)
Yard Waste – Turned Windrow	0.5	Hellebrand (1998)
Food & Yard Waste – Tunnel and Static Pile	0.2 - 0.4	Schenk et al. (1997)
Wastewater Sludge & Wood Ash – Aerated Static Piles	0.7*	Czepiel et al. (1996)
Yard Waste – Turned Windrow	1.2	Ballestero et al. (1996)
Bedding & Horse Manure – Turned Windrow	2.2 (after 60 days)	Ballestero et al. (1996)
Swine Feces & Cardboard – Aerated & Turned In-Vessel	0.1	Kuroda et al. (1996)
Not given	0.5 - 0.8	Hellmann (1995) from Hellebrand (1998)

Table 2-4: Review of Nitrous Oxide Emissions from Composting

* data provided in the research paper was adapted to determine this value

† TKN = Total Kjeldahl Nitrogen (ammonia-N + organic-N)

The above research documented immediate N_2O losses during composting, but this is not the complete picture. Additional N_2O generation is possible from the reactive nitrogen frequently lost during composting, and from the reactive nitrogen contained in finished compost. Nitrogen losses in the form of ammonia occur during composting when C:N ratios are below 20:1 and "the available carbon is fully utilized without stabilizing all of the nitrogen." (NRAES 1992) In addition, finished compost is typically land applied as a soil conditioner, where the reactive nitrogen is free to nitrify and denitrify. As a result, actual N_2O losses may be greater than demonstrated by these studies.

For the N₂O emissions from yard waste composting to be considered a net GHG emission, it would have to be human-induced emissions. In other words, it would have to be N₂O emissions which would not have occurred naturally without human interference. There are two possibilities when this could occur: (1) yard trimmings which contain anthropogenic N fertilizer (i.e., yard waste resulting from fertilizer applications), and (2), when the human-induced accelerated composting process increases the emission of N₂O over and above the rotting/decomposition of organic waste which would otherwise occur in nature. While it is a simple concept that any N₂O emission from anthropogenic

reactive N should be considered a GHG emission, it is difficult in reality, to differentiate between natural and anthropogenic yard waste nitrogen. It is even more complicated to assess the second possibility. In fact, this author has been unsuccessful in finding any scientific research on either of these issues. As a result of these complexities, two assumptions are used in this report: that only 50% of yard waste nitrogen is anthropogenic and that composting does not impact N₂O emissions which would otherwise occur in nature. By making these assumptions, this research states that only half of the N₂O emissions resulting from the composting of yard waste can be considered as anthropogenic GHG emissions.

The IPCC methodology does not yet consider composting as a N_2O source; agriculture is the main human-induced source and wastewater treatment is indirectly considered because of the anthropogenic fertilizer component of wastewater. However, it is likely that composting will be included in the future.

2.5.5.3 Incineration

Limited research has demonstrated that emissions of nitrous oxide occur during the incineration of municipal solid waste and wastewater sludge. This research was compiled by de Soete (1993) for an IPCC Workshop and is adapted for use in Table 2-5:

Waste - Facility	Temperature (°C)	N ₂ O Emission (g N ₂ O/tonne waste)	Researcher*
Municipal refuse – Stepgrate	780-880	11-43	Yasuda et al. (1992)
Municipal refuse – Stepgrate	780-980	40-220	Yasuda et al. (1992)
Municipal refuse – Fluidized Bed	830-850	14-123	Yasuda et al. (1992)
MSW – 5 stokers (20-400 tpd)	not given	26-270	Watanabe et al. (1992)
MSW – 3 fluidized bed	not given	97-293	Watanabe et al. (1992)
MSW – rot. kiln (120 tpd)	not given	35-165	Watanabe et al. (1992)
Wastewater sludge – rotary grate	750	227	Yasuda et al. (1992)
Wastewater sludge – fluidized bed	770-812	580-1528	Yasuda et al. (1992)
Wastewater sludge – rotary grate	838-854	684-1508	Yasuda et al. (1992)
Wastewater sludge – rotary grate	834-844	275-886	Yasuda et al. (1992)
Wastewater sludge – rotary grate	853-887	101-307	Yasuda et al. (1992)

Table 2-5: Review of Nitrous Oxide Emissions from Incineration

* As quoted in de Soete (1993) - unable to acquire primary reference

The data presented in Table 2-4 demonstrate the limited and highly variable research on the N_2O emissions resulting from waste incineration. Examples of emission estimates for municipal solid waste incineration which are being used are as follows (Environment Canada 1997a; USEPA 1999; USEPA 1998):

- Environment Canada National Inventory
- U.S. EPA National Inventory
- U.S. EPA MSW Analysis

160 g N₂O/tonne waste incinerated 30 g N₂O/tonne waste incinerated 130 g N₂O/tonne waste incinerated Though the research is uncertain, the data in Table 2-4 suggest three key points:

- 1. both the combustion of solid waste and sludge result in the formation of N_2O_2 ,
- 2. wastewater sludge combustion, which generally has a higher N content than MSW, may result in greater N_2O emissions, and
- 3. increasing the combustion temperature during sludge incineration may decrease N_2O formation.

Both solid waste and wastewater sludge incineration have been demonstrated to result in the thermal formation of nitrous oxide. While the emissions from MSW incineration range between 11 and 293 g of N_2O /tonne of waste, the emissions from wastewater sludge incineration range from 101 to 1528 g of N₂O/tonne of waste. This may be an indication that sludge, which generally has a higher N content than MSW, may result in greater N₂O formation and therefore emissions. Is thermal N₂O formation a function of nitrogen content? Research has also demonstrated N₂O formation during the fluidizedbed combustion of coal, and two excellent review papers on this subject are Johnsson (1994) and Wojtowicz et al. (1994). This is important, because N₂O formation during coal combustion has been found to "originate mainly from the nitrogen present in the carbonaceous fuel (fuel-N) (Wojtowicz et al. 1994)." Also, recent research on MSW incineration has found a correlation between N₂O formation and the N content of wastes incinerated (Tanikawa et al. 1995). In addition, experiments with the incineration of sewage sludges and various coals found that the sludges yielded higher N₂O emissions, and it was concluded that this was due to the higher nitrogen contents offering a greater potential for N_2O formation. Therefore, the formation of N_2O may likely be the conversion of part of the reactive nitrogen in the combusted material to N_2O gas.

Does increasing the combustion temperature during sludge incineration cause a reduction in thermal N₂O formation? While the results of Yasuda et al. (1992) are variable, the N₂O emission was lowest, 101-307 g/tonne, when the temperature was 853-887 °C. An exception to this was the result of 227 g/tonne at a temperature of 750 °C. Clearly, the only conclusion that can be derived from these results is that future research is greatly required. However, the decrease in N₂O formation with an increased combustion temperature has been conclusively demonstrated in coal research (Wojtowicz et al. 1994; Pels et al. 1994). Unfortunately, as N₂O formation decreases, the formation of NO increases, in fact the sum of fuel nitrogen conversions "was found to be remarkably constant" over a range of temperatures.(Pels et al. 1994) Nitric oxide is also of environmental concern due to its contribution to acid rain and photochemical smog. In contrast, the study by Tanikawa et al (1995) was unable to find a correlation between N₂O emission and temperature during MSW incineration, while sludge incineration experiments by Werther et al (1994) found that increasing the freeboard temperature lead to a decrease in N₂O without a consequent increasing of NO_X emissions. It is important to remember that NO_X is a future source of N₂O emissions; this reactive nitrogen is shortlived in the lower atmosphere and is returned to terrestrial ecosystems in the form of HNO₃ and NO₃ where it is then available for denitrification. Could solid waste and sludge incineration provide an effective means of performing clean denitrification? If the potential exists, the consequent increases in NO_X emissions must be contended with.

2.5.6 Summary

When nitrogen leaves farms as food products leave the farm it switches responsibility; no longer is it the responsibility of agriculture, the waste management community and municipalities take over. In addition, the nitrogen in yard wastes is assumed in this study to be partially anthropogenic in origin, and are therefore in excess of natural processes. Therefore, any immediate or future nitrous oxide emissions during landfilling, composting or incineration of these wastes must be considered as anthropogenic interference of the global N_2O cycle.

2.6 RECYCLING ANALYSIS

The collection, processing and subsequent marketing of recyclable materials in the GVRD is an inherently complicated system. Several brokers exist and compete for market share throughout the various municipalities. Some municipalities provide their own curbside collection of blue-boxes while others have contracted this collection out to private industry. Blue-box recycling, either at single- or multi-family residences, may be managed by municipal crews, one company or a number of companies. The collection of recyclables at commercial buildings are typically managed by a number of different firms. Increasing the complication, once the recyclables are at the brokers, these materials are processed and marketed to a myriad of potential factories or mills for reuse into new products.

The recycling of paper products illustrates this complexity. Once collected by one of the several methods, paper products can be shipped to mills across North America, and increasingly, recycled paper is shipped overseas to Asia. Similar systems are in place for other recyclable materials. In fact, the destinations of the collected recyclables rapidly change in response to the fluctuating markets for these materials. Brokers, as private enterprises, endeavour to maximize their revenues while concurrently minimizing the expenses incurred as a result of the necessary transportation. Recyclables collected in the GVRD could be delivered to the factories or mills in the region (or within British Columbia) which are designed to handle these materials but recycled paper could also be sent to the Eastern United States. Conversely, recycled paper is imported into Canada from cities in the U.S. to supply the local Newstech Recycling facility (Pers. comm. Pat Martin). This material is transported a great distance; likely requiring a substantial energy outlay and generating greenhouse gas emissions from transportation and handling requirements.

Collaboration with GVRD representatives identified early on in this project that it would be necessary to simplify the complicated and rapidly changing recycling system. Rather than assess the plethora of potential fates for recyclables, it was deemed appropriate to simplify the system by assuming a single recycling facility depot and a single final destination for each type of recyclable. However, this research is performed to assess this pathway in the greater industry context. Concurrent to this, an invesigation is also conducted on the ramifications of manufacturing an equivalent product using virgin materials. This research is necessary to ascertain the greenhouse gas benefits or liabilities of recycled *vs.* virgin manufacturing. The analysis of manufacturing using virgin or recycled materials is ceased when the convergence point (as discussed in Section 1.3.4) is reached. This investigation is not concerned with the GHG emissions by industry, only the differences between material choices as a result of the available recyclables supply. It is unnecessary in many cases to follow the steps all the way to finished product. This research is presented in the following sub-sections.

The following sections provide a review and analysis of the six recyclable materials investigated in this thesis: newsprint, office paper, ferrous metal, glass and high- and low-density polyethylene. These sub-sections, 2.6.1 to 2.6.6, are provided in a manner different than the rest of *Chapter 2 – Methodology* and requires explanation. The entire recycling analysis is provided here and is not expanded any further in the appendices. This is in contrast to all of the other issues investigated in this thesis where a general overview is presented in Chapter 2 - *Methodology* while the fine details are developed in the appropriate appendix. The investigation of manufacturing and recycling warrants this difference as the literature review and assessment of the local situation are closely tied together. The author believes that when the information is laid out in this manner it is most logical and effective .

2.6.1 Newsprint

Newsprint largely consists of mechanical pulp with a small percentage of full chemical pulp to increase strength (Biermann 1996). This analysis will concentrate on the mechanical pulp component. Mechanical pulp is produced by using only mechanical attrition to pulp the lignocellulosic materials (only water and steam are used – as opposed to chemical pulping which typically uses sodium hydroxide and sodium sulfide) (ibid). Since lignin is retained in the pulp, high yields between 90 and 98% (of the original fibre from the wood chips) are typically achieved (ibid). Mechanical pulp represented 46% of total pulp production in Canada in 1997 (PAPRICAN 1999). While there are two main methods to produce mechanical pulp, stone groundwood (SGW) and thermomechanical pulp (TMP), TMP is responsible for about 85% of the mechanical pulp made in North America (ibid) and it is this process which is reviewed in this section. In the TMP process, "preheated wood chips are fed into the narrow gap formed between a stationary and a rotating patterned disc, or between two counter-rotating patterned discs... By this means, the fibres are gradually separated from each other as the wood material progresses to the discs' peripheries and the pulp so produced is blown to a cyclone..." (ibid).

As with any manufacturing process, energy is required and greenhouse gas emissions can result when newsprint is produced from wood chips. This can occur whether woodchips (virgin materials) or old newspapers (recycled materials) are used in manufacturing. However, does the substitution of recycled materials for virgin materials reduce this energy consumption and affect GHG emissions? To answer this question, the full GHG emissions resulting from both processes must be known. The acquisition of virgin raw materials and their manufacture into products must be directly compared to the acquisition of recycled materials and their manufacture into equivalent products. Any difference in these total emissions will be the GHG implications of virgin *versus* recycled manufacturing. Valuable to these emission calculations are the questions of what

proportion of energy is derived from fossil energy and what proportion comes from neutral bioenergy. As an industrial sector, pulp and paper is the largest consumer of energy in Canada – using 26% of the total industrial energy demand. However, pulp and paper only derives 44% of its energy needs from fossil fuel energy sources; the remainder is derived from wood waste. This breakdown is critically important to the discussion in this section.

In assessing these issues, a review of available research (2.6.1.1) and an investigation of our local situation (2.6.1.2) is presented. For those unfamiliar with the pulp and paper industry, this review attempts to report all masses in air dry metric tonnes (adt) with an assumed moisture content of 8%.

2.6.1.1 Literature Review

A survey of available literature has located several studies by various organizations:

- United States Environmental Protection Agency (USEPA 1998),
- Franklin Associates Ltd. (FAL 1994),
- Tellus Institute (Tellus 1994),
- University of London (Leach et al. 1997),
- International Institute for Applied Systems Analysis (Virtanen and Nilsson 1992),
- Institute for Papermaking, Germany (Hamm and Gottsching 1993),
- University of Edinburgh (Collins 1998; 1996),
- British Newsprint Manufacturer's Association (BNMA 1995), and
- Aylesford Newsprint, United Kingdom (Aylesford 1998).

In addition to this literature, this author also searched extensively on the Voluntary Challenge and Registry (VCR) website of the Federal Government. This organization was initially established in 1995 by Natural Resources Canada as part of Canada's National Action Program on Climate Change. The VCR's purpose is to encourage private and public sector organizations to voluntarily limit their net greenhouse gas emissions. As of July 28, 2000, there are submissions by 28 pulp and paper organizations. The progress reports by four of these organizations were found to be of particular relevance to this work and will also be discussed in this section.

It appears that, of this research, the work by the two consulting firms, Franklin Associates Ltd. (FAL 1994) and the Tellus Institute (Tellus 1994), are the most extensive investigations. As a result of their demonstrated expertise, these two companies were contracted by the United States Environmental Protection Agency to perform a further analysis (USEPA 1998). Thus, the recent USEPA report is a collaborative effort of these two organizations and results in valuable improvements over the previous work published individually by these two. This review will only present the most recent work, that which is provided in the USEPA report.

Both firms analyzed wood chip acquisition and manufacture into virgin newsprint in the U.S. to determine an average expected emission for each tonne of virgin newsprint manufactured. FAL calculated this emission to be 2.18 tCO₂e per tonne newsprint and Tellus calculated 2.22 tCO₂e per tonne newsprint. These two estimates are subsequently averaged for further development in the USEPA report. These estimates include the

emissions from on-site energy consumption, off-site emissions from power generation for the electricity used at the mill and emissions at a chemical factory for any additives (herein defined as process energy). These estimates also include the transportationrelated emission of the raw materials (herein defined as transportation energy). It was found that the process energy was of much greater importance than the transportation energy necessary for raw material acquisition. FAL and Tellus estimated that 96 and 98% of the emissions resulted from process energy consumption, respectively, with the remainder being transportation-related. The FAL process energy emissions resulted from the consumption of 39.5 GJ per tonne newsprint; 58% came from electricity (predominantly coal generation in the U.S.), 33% resulted from natural gas and 6.5% from biomass. The Tellus process energy emissions originated from 39.5 GJ/tonne but a similar breakdown is not provided (steam is listed as a fuel source but it is not stipulated what fueled the necessary boiler).

Both these firms also assessed the GHG ramifications of recycling old newsprint into equivalent new products. They estimated the energy expended during the acquisition of recycled newsprint and the process energy expended during the manufacturing. It was assumed that 100% recycled inputs were used. FAL determined that 1.58 tCO₂e/tonne newsprint and Tellus calculated 1.54 tCO₂e/tonne newsprint. These estimates were also averaged for further development in the USEPA report. As with woodchips, the process emissions dominated over the transportation emissions; process energy was 95 and 89% of the total emissions for FAL and Tellus, respectively. FAL estimated that 26.7 GJ of process energy is expended per tonne of newsprint manufacture (60% from electricity and 39% from natural gas). Tellus estimated that 21.5 GJ of process energy was necessary to manufacture a tonne of newsprint, and once again a similar breakdown was not provided. Both of the total energy estimates for recycled production are significantly lower than those for virgin production.

It appears that the most important issues concerning these estimates are: (1) the total process energy required, and (2) what type of energy is used. Electricity, which is generated primarily from coal in the U.S. (56% of national electricity generation; USEPA (1998)), and natural gas, were the most important energy sources observed in both virgin and recycled manufacturing. FAL identified only a small fraction of energy, 6.5%, from biomass (invariably wood waste) during virgin newsprint production. While biomass energy is GHG neutral (zero emission), this relatively small fraction does not allow for much impact on the total GHG emissions.

A recent report by the Pulp & Paper Research Institute of Canada (PAPRICAN 1999) provides energy data that can compare virgin production against recycled production but does not calculate any GHG emissions. The typical energy requirement for the TMP process is between the range of 1600 and 3000 kWh/bone dry tonne (bdt) of mechanical pulp. Assuming the moisture content of an air dry tonne (adt) to be 8%, these values can be converted to a range between 5.3 and 9.9 GJ/adt. These can be compared with the reported gross energy consumption of a newsprint deinking facility of 820 kWh per adt of pulp (600 kWh/adt of electrical power and 220 kWh/adt of process steam) or 3.0 GJ/adt. This results in an energy difference of between 2.3 and 6.9 GJ/adt for the direct

comparison of TMP and deinked pulp. From the perspective of newsprint papermaking, there is no difference between deinked pulp and virgin mechanical pulp from the TMP process. By including the typical energy for newsprint papermaking, a range between 4.6 to 7.7 GJ/adt (3.4 to 5.5 GJ/adt of process steam and 1.2 to 2.3 GJ/adt of electrical power; same report), it is possible to calculate the overall energy requirement for making virgin or recycled newsprint. Assuming averages of the ranges above, virgin newsprint manufacture requires 13.8 GJ/adt and recycled manufacture requires 9.2 GJ/adt – a difference of 4.6 GJ/adt. These energy values are substantially lower than that reported by the USEPA. However, part of the difference may result from mill energy consumption not taking into account the energy losses realized by producing the electricity or steam to generate mill energy. Yet even assuming an energy conversion efficiency of 60%, the PAPRICAN data are still substantially lower than the 39.5 GJ/tonne reported for virgin newsprint and 21.5 to 26.7 GJ/tonne reported for recycled newsprint by the USEPA.

The remaining research available on the GHG implications of newsprint recycling is primarily concerned with comparing incineration with recycling. It appears that there is a scientific debate occurring in Europe which is questioning the validity of ever increasing recycling initiatives. Research at the University of London and at the University of Edinburgh, questioning recycling, appears to have sparked "counter-research" by a large member of the recycling industry, Aylesford Newsprint Ltd (ANL). Not surprisingly, the research by ANL, which was conducted by the consulting firm, Ecobalance UK, came to opposite conclusions. Unfortunately, these studies do not directly compare manufacturing with virgin woodchips against manufacturing with recycled newsprint. Rather they assess recycling against incineration plus virgin newsprint production. It is not possible to separate out the recycling versus virgin production component in these studies. In addition, most of these studies are not specific to newsprint but instead, analyze wastepaper as an entity. Nevertheless, the findings of this research are reviewed here.

Matthew Leach at the University of London performed a systems analysis of virgin and recycled wastepaper as resources flowing in and out of cities (Leach et al. 1997). They found that even when including the virgin paper production, the environmental impact of incineration for energy was lower than that of recycling. Or in other words, the energy generation of paper incineration more than offsets the energy benefit which would have been realized by using recycled paper instead of woodchips to produce new paper. The research recognizes that modern pulp & paper mills obtain most of their energy requirements from wood waste; discarded parts of the tree such as bark. In contrast, the re-pulping of wastepaper into new paper products uses energy which must usually come from fossil fuel sources. As stated in a review of this research by Pearce (1997), Leach reckoned that "in terms of fossil energy used to supply a tonne of paper in the United Kingdom, virgin paper accounts for roughly half as much energy as recycled paper."

Researchers at the International Institute for Applied Systems Analysis in Austria (IIASA 1992) analyzed this issue using three scenarios: (1) maximum recycling of wastepaper (90% collection), (2) selective use of recycled fiber with consequent virgin production

and (3) zero recycling – 100% incineration with energy recovery – and also the consequent virgin production. Only the maximum and zero-recycling scenarios are discussed here in the interest of simplicity. The overall energy demand is 25% greater for zero recycling than maximum recycling. However, about 80% of the total energy is derived from GHG-neutral wood waste in the zero recycling case, compared with only 45% in the maximum recycling scenario. In fact, the fossil fuel demand is about 100% larger in the maximum recycling scenario. This paper is also comprehensively reviewed in Cockram (1994).

The study by the Institute for Papermaking (Hamm and Gottsching 1993) in Germany, used a slightly different tack and modelled the impact of using wastepaper not as a fibre source for new paper production but as an energy source for new paper production. Their estimated possibility of substituting part of the fossil energy used in papermaking could potentially reduce fossil fuel use by 65% (as compared with present practices). However, the authors state that 70% of this wastepaper would have to be imported to satisfy demand; this point raises strong questions of the results.

Lyndhurst Collins, at the University of Edinburgh, has published two discussion papers questioning the interest in recycling when the alternative, for much of the United Kingdom, is waste incineration with energy recovery (Collins 1998; 1996). These papers, while very informative, do not provide the results of any studies. Rather, they review other work and discuss the current scientific & political understanding. Of note, is the review of an independent study conducted by the British Newsprint Manufacturer's Association (BNMA 1995), which this author has not been able to acquire. The BNMA study concluded, as quoted by Collins (1996), "there seems to be no clear winner in the comparison between recycling and incineration. With better technology and higher ratios, the case for recycling improves".

In contrast to the findings by all these European organizations, are the results of the study published by Aylesford Newsprint Limited (ANL) which was prepared by the independent consulting firm, Ecobalance UK (Aylesford 1998). This investigation compared the recycling of old newsprint at the ANL facility against incineration with energy recovery. The incineration scenario also includes the alternative newsprint production which is necessary. This 'alternative' source is assumed to be a mix of mills from the UK and abroad who could satisfy the customers of ANL in ANL's absence. Many possible environmental impacts are assessed in addition to GHG emissions, and the overall conclusion is that "Recycling of used newspapers and magazines at ANL is environmentally preferable to the incineration for energy recovery." The ANL system results in 11% less fossil fuel CO₂ emissions than incineration with alternative newsprint production. The incinerator scenario causes about 1.4 tCO₂/tonne newsprint while ANL results in about 1.25 tCO₂/per tonne. In addition, when including methane and nitrous oxide, ANL is estimated to have 15% less impact on the Greenhouse Effect than incineration.

Due to the scarcity of data on the issue of virgin *versus* recycled manufacture it is necessary to assess our local situation. Furthermore, the relatively close proximity of the

GVRD to a number of pulp & paper mills and an available forest resource, likely results in important differences with the U.S. research. In addition, British Columbia's predominant use of hydroelectric facilities for power generation has significant GHG implications when compared with the largely coal-fired electricity generation in the U.S. The next sub-section presents data that were obtained from several pulp and paper operations in the region to estimate emissions.

2.6.1.2 Local Situation

Several organizations were contacted for this research. However, only three facilities provided data for this research. These include (along with their activity in brackets):

- Howe Sound Pulp & Paper (wood chips \rightarrow virgin newsprint)
- Newstech Recycling (old newsprint \rightarrow de-inked newsprint pulp)
- Pacifica Papers (wood pulp + de-inked pulp \rightarrow newsprint with recycled content)

As a result of discussions with those contacted, an important factor has been recognized; a point missed by much of the research previously reviewed. This is the inherent variability of the pulp & paper industry resulting from the fact that there is no such thing as a typical pulp mill or a typical paper mill. Many TMP mills use sawdust, wood shavings and bark as a source of energy in power boilers. With sawmills in close proximity, there are readily available sources of wood waste for clean bioenergy. As a result, an integrated pulp & paper facility, a combined pulp mill and papermaking facility, will have much lower GHG emissions than a stand-alone paper mill which has to rely on externally supplied electricity and natural gas. (A stand-alone paper mill typically does not have any power boilers even if wood waste is available at nearby sawmills.) Furthermore, the integration of pulp and paper production removes the need to dry pulp for shipment (wet pulp is transported directly to paper-making machines); the drying of pulp can consume up to 40% of the energy used in a pulp mill (NCCP 1998). This author has observed that a number of pulp mills are in the process of upgrading their wood waste utilization with power boilers (to replace natural gas consumption) and/or with turbogenerators (to replace the need for external electricity). The following data collected by these facilities contacted have borne out this variability.

At Howe Sound Pulp & Paper (HSPP, operated by Canadian Forest Products), newsprint is manufactured entirely from wood chips. This is an integrated pulp & paper facility which performs both pulping and papermaking. There is no recycled paper content in this product as it is manufactured for export to Japan with the intent to provide new paper to replace losses. Canadian Forest Products has performed extensive life-cycle analyses on all of their products. Their analysis of newsprint production at HSPP was provided to this author upon personal communication with Mike Bradley, Director of Technology, Canfor Pulp and Paper Marketing. At HSPP, virgin newsprint production (production from wood chips) requires the energy utilization of 35.9 GJ per tonne newsprint. This energy results from biomass (56%), hydroelectricity (18%) and natural gas (27%). As the combustion of biomass (fines and wood waste) is bioenergy (carbon neutral) and there are no emissions from hydroelectricity, it follows that GHG emissions can only result from the combustion of natural gas. This natural gas consumption includes on-site usage (mill) and off-site usage by BC Hydro in the generation of electricity for the mill (using the provincial average for thermal electricity generation).

The following calculations estimate the GHG emissions from this newsprint production. CO_2 Emission from Natural Gas Combustion = 1.88 kg/m³ (Environment Canada 1997a) Energy of Natural Gas (typically) = 1020 BTU/ft³ = 37,843 kJ/m³ (Perry's 1984) Energy Fraction from Natural Gas = 26.7% Total Energy Consumption = 35.9 GJ

$$CO_{2} \text{ Emissions} = (0.267)(35.9 \, GJ_{tonne}) \frac{(1.88^{kgCO_{2}}/m^{3})(10^{6} \, kJ_{GJ})}{(37,843^{kJ}/m^{3})(10^{3} \, kg_{tonne})} = 0.48^{tCO_{2}e_{tonne}}$$

While the HSPP energy requirement of 35.9 GJ/tonne is similar to the value reported by the EPA of 39.5 GJ/tonne, the emission of 0.48 tCO₂e/tonne, is only 21% of the USEPA estimate, 2.2 tCO₂e/tonne. This low emission may be a direct result of being an integrated pulp & paper mill. In fact, in terms of all production by HSPP, GHG emissions per tonne have decreased from 1.25 tCO2e/tonne in 1990 to 0.26 tCO2e/tonne in 1997 (CANFOR 1999). This decrease in emissions is the result of "HSPP burning increased quantities of wood residue and natural gas in place of bunker "C" oil and energy efficiencies realized from a \$1.3 billion mill modernization and expansion". Furthermore, the electricity requirements of the mills in the USEPA study were largely provided by fossil fuel combustion, whereas BC Hydro is largely hydroelectric. It needs to be mentioned that this estimate of 0.48 tCO₂e/tonne does not include the harvesting and transportation of wood chips to the mill for processing while the USEPA study included this transportation. The USEPA study estimated the transportation emissions at 0.06 tCO₂e/tonne, therefore it is likely appropriate to add this to the HSPP emissions. This results in a total of $0.54 \text{ tCO}_2\text{e}/\text{tonne}$. While this estimate does not include any emission associated with the production of chemicals consumed, there is only minimal a chemical requirement for mechanical pulping, so this potential is likely negligible.

Abitibi-Consolidated Inc. submitted an extensive progress report to the Voluntary Challenge & Registry and their two Newfoundland mills, Grand Falls and Stephenville, provide valuable data to this review. Both of the mills are integrated pulp & paper operations turning wood chips into newsprint with very low recycled content (Pers. comm. Michael Innes). In 1997, the energy consumed at Grand Falls was 18.8 GJ/tonne newsprint and was 20.8 GJ/tonne at Stephenville. The GHG emissions are reported as 0.326 tCO₂e/tonne newsprint for Grand Falls and as 0.548 tCO₂e/tonne for Stephenville (Abitibi-Consolidated 1999). These emission factors do not include purchased electricity from the Newfoundland utility. However, electricity in Newfoundland is largely hydroelectric (with some thermal generation); it has an emission average of 190 tCO₂e/GWh – less than half of a low-efficiency natural gas generation (500 tCO₂e/GWh, Pers. comm. John Duffy). This report estimates the indirect GHG emissions from purchased electricity as 67,823 tCO₂e. By assuming equal consumption by each facility, dividing by the annual production of 212,000 tonnes at Grand Falls and 181,000 tonnes at Stephenville, an indirect emission factor of 0.173 tCO₂e/tonne newsprint results. When added to the direct emissions reported above, an overall emission factor of 0.499 tCO₂e/tonne newsprint for Grand Falls and as 0.721 tCO₂e/tonne for Stephenville is

estimated. The emission by the Grand Falls mill is on par with that reported by HSPP and the Stephenville mill is 50% higher.

Against virgin production can be compared the production using old newsprint. Newstech Recycling is a de-inking pulp mill which supplies recycled fibre to Pacifica Papers, a stand-alone paper mill, in addition to others. Data has been obtained from both these organizations to assess GHG emissions. Newstech produces de-inked pulp from old newspapers, old magazines and telephone directories which are purchased throughout western Canada and the U.S. mid-west. In 1999, 168,000 tonnes of old newsprint was converted into 141,000 tonnes of de-inked newsprint pulp. This required the consumption of 220 MWh of electricity each day for 350 days of the year, 143,489 GJ of natural gas and 8,321 GJ of landfill gas (Pers. comm. Pat Martin). While the landfill gas is GHG neutral, the emissions from the other sources of energy are assessed below: Electricity Consumption = 220 MWh each day for 350 days of the year = 277,200 GJ [220 MW=220 MJ/s * h/d * 3600 s/h * 350 d/yr 1GJ/1000MJ= 277,200 GJ] BC Hydro provincial emission average = $30 \text{ tCO}_2\text{e/GWh} = 0.00833 \text{ tCO}_2\text{e/GJ}$ [30 tCO₂e/GWh * (1/3600 GWh/GJ)=0.00833 tCO₂e/GJ] (BC Hydro 1998) Natural Gas Consumption = 143,489 GJ CO_2 Emission from Natural Gas Combustion = 1.88 kg/m³ (Environment Canada 1997a) Energy of Natural Gas (typically) = $1020 \text{ BTU/ft}^3 = 37,843 \text{ kJ/m}^3$ (Perry's 1984) Mass of old newsprint processed = 168,000 tonnes Mass of newsprint pulp produced = 141,000 tonnes Conversion Efficiency = $\frac{\text{Mass of Newsprint Pulp Produced}}{\text{Mass of Old Newsprint}} = \frac{141,000}{168,000} \bullet 100 = 84\%$ Electricity Emissions = $\frac{(277,200 \text{ GJ})(0.00833^{\text{tCO}_2e}/\text{GJ})}{(168,000 \text{ tonnes})} = 0.014^{\text{tCO}_2e}/\text{tonne}$ Natural Gas Emissions = $\frac{(143,489\text{GJ})}{(168,000 \text{ tonnes})} \frac{(1.88^{\text{kgCO}_2}/\text{m}^3)(10^6 \text{ kJ}/\text{GJ})}{(37,843 \text{ kJ}/\text{m}^3}(10^3 \text{ kg}/\text{tonne})} = 0.042^{\text{tCO}_2e}/\text{tonne}$ Total Emissions = Electricity + Natural Gas = $0.014 + 0.042 = 0.068 \frac{\text{tCO}_2\text{e}}{\text{tonne}}$ For discussion purposes : Electricity per pulp produced = $\frac{(277,200 \text{ GJ})}{(141,000 \text{ tonnes})} * \frac{10^6 \text{ kWh}}{3600 \text{ GJ}} = 546 \text{ kWh}/\text{adt}$

NG & Methane per pulp produced = $\frac{(143,489 + 8321 \text{ GJ})}{(141,000 \text{ tonnes})} * \frac{10^6 \text{ kWh}}{3600 \text{ GJ}} = 297 \text{ kWh}/adt$ Total Energy Consumption = 3.0 GJ/adt = 843 kWh/adt

Total emission by the Newstech facility is estimated at $0.372 \text{ tCO}_2\text{e}$ per tonne of old newsprint processed. Newsprint is processed with a conversion efficiency of 84%, for each tonne of old newsprint brought in, it can be expected that 840 kg of de-inked pulp will result. There was also the utilization of six chemicals but only three of these were used in an appreciable amount: sodium hydroxide to swell the fibers (14 kg/tonne), hydrogen peroxide as bleach to brighten the pulp (20 kg/tonne) and sodium silicate to buffer the peroxide (21 kg/tonne). Tellus (1994) has estimated the energy consumed in producing sodium hydroxide at 32.5 MJ/tonne. Even if all this energy was provided by natural gas, it only results in a miniscule GHG emission of 0.023 kgCO₂e/tonne newsprint. As a result, this report assumes that emissions from these chemicals are negligible. It is important to observe that the electricity consumption, 546 kWh/adt, and the natural gas and landfill methane consumption, 297 kWh/adt, at Newstech is on par with the values reported in the previously reviewed PAPRICAN (1999) report. This report provides typical de-inking mill data as 820 kWh per adt of pulp (600 kWh/adt of electrical power and 220 kWh of process steam).

Data has been obtained from Pacifica Papers, in Powell River, for the subsequent conversion of the de-inked pulp to newspapers. Pacifica Papers is a stand-alone paper mill and should therefore not be utilizing wood waste as an energy source. However, this facility does combust wood waste and in early 1998 installed a new fluidized bed boiler to replace 4 natural gas-fired boilers. "This installation reduced the use of fossil fuels by 59%" (Pacifica Papers 1998). In 1999, Pacifica Papers used 59,565 tonnes of de-inked pulp (recycled), 73,710 tonnes of stone groundwood pulp (wood chips), 130,322 tonnes of chemithermal mechanical pulp (wood chips), 79,056 tonnes of kraft fiber (wood chips), 1,660 tonnes of cull rolls (rejects from mill) and 50,907 tonnes of clavs and fillers to produce 410,981 tonnes of newsprint and 15,761 tonnes of sludge. This sludge makes up part of the wood waste fed to their power-boiler. This process required, in 1999, the consumption of 904,158 MWh of electricity and 2,008,376 GJ of natural gas (Pers. comm. Ray Dyer). This 343,313 tonnes of pulp is converted into newsprint with a recycled content of approximately 17%. With the calculations below, it is assumed that this energy consumption can be evenly distributed over all of the pulps used so as to estimate the emissions which would result from the manufacture of newsprint with a 100% recycled content. The calculations below are based on tonnes of pulp used.

Electricity Consumption = 904,158 MWh BC Hydro provincial emission average = 30 tCO₂e/GWh (BC Hydro 1998) Natural Gas Consumption = 2,008,376 GJ CO₂ Emission from Natural Gas Combustion = 1.88 kg/m³ (Environment Canada 1997a) Energy of Natural Gas (typically) = 1020 BTU/ft³ = 37,843 kJ/m³ (Perry's 1984) Mass of de-inked pulp processed = 59,565 tonnes Mass of pulps derived from wood chips = 284,748 tonnes Mass of newsprint produced = 410,981 tonnes Total Mass of Pulps = Deinked + Wood Pulp = 59,565 + 284,748 = 344,313 tonnes of pulp Conversion Efficiency = $\frac{Mass of Newsprint Produced}{Mass of Inputs} = \frac{410,981}{426,742} \cdot 100 = 96\%$ Electricity Emissions = $\frac{(904,158MWh)(30^{tCO_2}e'_{GWh})}{(344,313 tonnes)(1000 MWh'_{GWh})} = 0.079^{tCO_2}e'_{tonne}$ Natural Gas Emissions = $\frac{(2,008,376 \text{ GJ})}{(344,313 \text{ tonnes})} \frac{(1.88^{kgCO_2}/m^3)(10^6 \text{ kJ/GJ})}{(37,843 \text{ kJ/m}^3)} = 0.290^{tCO_2}e'_{tonne}$

Total Emissions = Electricity + Natural Gas = $0.079 + 0.290 = 0.369 \frac{\text{tCO}_2\text{e}}{\text{tonne pulp}}$

The calculations above estimate that 0.369 tCO₂e are emitted per tonne of pulp used in newsprint production at Pacifica Papers. There is also a conversion efficiency of 96%; 1 tonne of pulp (together with the appropriate quantities of clay and fillers) will typically produce 960 kg of newsprint. Similar to Newstech, there is also the consumption of several chemicals. The greatest usage, 3,441 tonnes annually, is sodium hydroxide. When this is distributed over the total pulp used for paper-making, the result is 10 kg per tonne. As it was previously estimated that the consumption of 14 kg of sodium hydroxide at Newstech results in a miniscule emission of 0.023 kgCO₂e during its production, the chemicals at Pacifica are also safely ignored here.

By assuming that all of the sources of pulp at Pacifica require the same energy requirement in paper-making, it is possible to estimate the emissions to be expected from producing a tonne of newsprint. It has been estimated that one tonne of old newsprint delivered to Newstech Recycling will be converted into 840 kg of de-inked pulp with an emission of 0.068 tCO₂e. When this 840 kg of de-inked pulp is delivered to Pacifica Papers, if assumed to be the same as the other pulp sources, it will result in 840kg*0.96 or 806 kg of newsprint being produced. This will be at an emission rate of 0.369 tCO₂e per tonne pulp used or an emission of 0.068 + 0.310 = 0.378 tCO₂e to produce 806 kg of newsprint results. As a unit of one tonne of newsprint, manufacturing a 100% recycled content would result in 0.47 tCO₂e. As this does not include transportation emissions, the USEPA estimate of 0.12 tCO₂e/tonne can be used instead. The total for recycled newsprint production becomes 0.59 tCO₂e/tonne.

While at HSPP it was estimated that a 0.54 tCO₂e emission results per tonne of virgin newsprint manufactured, it has been calculated that recycled manufacture, using Newstech Recycling and Pacifica Papers, results in a slightly larger GHG emission, 0.59 tCO₂e per tonne of newsprint with a 100% recycled content.

Another possibility for recycling old newsprint is to have the de-inking facility inside an integrated pulp & paper mill. This is the situation at Pine Falls Paper Company in Pine Falls, Manitoba. This mill produces 170,000 tonnes of newsprint annually with a recycled content of 22%. Pulp for the newsprint is produced from woodchips (groundwood and sulfite), deink (old magazines and newspapers) and purchased kraft (PFPC 1999; Pers. comm. Brian Kotak). The recycled content results from the de-inking processes on-site. Including the indirect GHG emissions from purchased electricity, this organization's progress report submission to the VCR estimates that 0.80 tCO₂e is emitted per tonne of newsprint produced. Much of this emission results from the combustion of coal as there is no natural gas available. However, new wood waste and biosolids incinerators in mid-2001 will increase on-site energy generation and reduce coal consumption by over 50%. This emission factor is higher than both HSPP and Newstech/Pacifica but will greatly decrease in the future.

There are best-case and worst-case scenarios possible for virgin and recycled production which can be discussed in the context of the above data. An integrated pulp & paper

facility could bring in large quantities of wood waste and become energy self-sufficient to produce virgin newsprint. This facility also has the advantage of not having to dry the market pulp for shipment. Little GHG emissions would result in this "best" scenario. The worst-case scenario for virgin production would be a stand-alone pulp mill providing mechanical pulp to a stand-alone paper mill with the pulp mill only supplying part of its own energy needs and the paper mill relying exclusively on fossil energy. In Canada, this scenario could occur with both mills situated in Alberta where purchased electricity is provided by coal combustion at thermal power plants. This second scenario would result in very high GHG emissions. Howe Sound Pulp & Paper is in between these scenarios but lies closer to the former. On the recycled side, two similar scenarios are also possible. A de-inking facility could be integrated with a pulp and paper facility where large quantities of bioenergy are available. In this scenario, minimal GHG emissions could result. The worst-case scenario would be a stand-alone de-inking facility paired with a stand-alone paper mill with both operations relying exclusively on fossil energy. Once again, this would result in very high GHG emissions per unit of production and could occur if both operation's relocated to Alberta. While the Newstech plant relies on external energy, the electricity is largely zero emission hydroelectric power, and the Pacifica Paper mill supplies part of its operation with bioenergy. The Newstech/Pacifica Papers data analyzed lie in between these two extremes. What if these operations did exist in Alberta? By changing the BC provincial average GHG emission intensity for electricity generation from the current 30 tCO₂e/GWh (BC Hydro 1998), to the Alberta average, (this author cannot locate the emission average for Alberta - will use the Canada's average for fossil-generated electricity 880 tCO₂e/GWh (Environment Canada 1999)), the production of recycled newsprint would result in 3.3 tCO₂e per tonne! This is a dramatic increase from previous estimates and even doubles the estimates developed by FAL and Tellus.

Of greater importance than whether newsprint is made from woodchips or old newspapers is whether bioenergy is utilized during production. And if external electricity is relied upon – where does this electricity come from? The literature review and discussion above has demonstrated the lack of any cut & dry certainty to these issues. While the USEPA (1998) work estimated a substantial GHG benefit for recycling newsprint, it appears they largely neglected the variability existing within the pulp & paper industry. All assumptions are inherently inaccurate with this industry because of this extreme variability. This author believes that the safest assumption at the present time is to assume no difference between virgin and recycled manufacture. In fact the lack of Canadian research into this issue is surprising – given the important role that pulp & paper and wastepaper recycling have today. An industry wide analysis of virgin and recycled paper production in Canada is indeed warranted.

So as to have newsprint recycling remain a zero GHG emissions activity, the curbside collection of this material and any other transportation will not be accounted for. This allows newsprint recycling to exactly break even with the alternative virgin production and to allow a zero impact in the Model.

2.6.2 Office Paper

Office paper or fine paper (its name in the pulp & paper field) is typically made from bleached kraft or sulfite softwood pulps (Biermann 1996). Kraft mills accounted for 50% of Canada's pulp production in 1997, sulphite/semi-chemical pulps made up 4.3% and the remainder was mechanical pulp (PAPRICAN 1999). This review will concentrate on kraft pulp production. Kraft pulping is a full chemical pulping method using sodium hydroxide and sodium sulfide at high pH and elevated temperate and pressure in order to dissolve much of the lignin fibers (Biermann 1996). Largely because of the delignification which occurs to make fine paper, the yield of pulp from the initial wood chips is only about 50% (NCCP 1998). However, this loss is also interpreted as an advantage over mechanical pulping because this removed lignin can be used for bioenergy purposes. "Canadian kraft mills are typically 60 to 80% energy self-sufficient and the upper limit of self-sufficiency has not yet been achieved. With the emerging energy-efficient technologies, it is conceivable that a mill could be designed and operated so that is essentially self-sufficient (PAPRICAN 1998)." In another report, the energy self-sufficiency of kraft mills in Canada has been cited as 79% (PAPTAC 1999). Currently in Finland, kraft mills generate excess electricity which is placed in the national grid to generate revenue (ibid). In fact, "an integrated pulp and paper mill in New Brunswick now sells surplus power to NB Power..." (NCCP 1998).

The two consulting firms, Franklin Associates Ltd. (FAL 1994) and the Tellus Institute (Tellus 1994), also performed an extensive investigation of office paper recycling. Subsequent to this work, these consultants were contracted by the United States Environmental Protection Agency to perform a further analysis (USEPA 1998), and it is this recent work which is reviewed here.

Both firms analyzed wood chip acquisition and manufacture into virgin office paper in the U.S. to determine the expected emission for each tonne of virgin office paper produced. FAL calculated this emission to be 2.30 tCO₂e per tonne office paper and Tellus calculated 2.14 tCO₂e per tonne office paper. Both these estimates include the process energy (factory or electricity consumption) and the transportation-related emission of the raw materials. These estimates were averaged for further development in the USEPA report. It was determined that the process energy, greatly dominated over the transportation energy necessary for raw material acquisition. FAL and Tellus estimated that 91 and 94% of the emissions resulted from process energy consumption, respectively, with the remainder being transportation-related. The FAL process energy emissions resulted from the consumption of 63.7 GJ per tonne office paper; 50% came from biomass, 25% from electricity (predominantly coal generation in the U.S.), 10%. directly from coal and 9% from natural gas. The Tellus process energy emissions originated from 40.8 GJ/tonne but a similar breakdown is not provided (steam is listed as providing 77% of the energy requirement but it is not stipulated what fueled the boiler).

These results can be directly compared with their assessment of utilizing recycled materials in manufacturing in a similar manner as presented in the previous section on newsprint. The consultants estimated the energy expended during the acquisition of recycled newsprint and the process energy expended during the manufacturing. It was

assumed that 100% recycled inputs were used. When this was not feasible, data were extrapolated to estimate as such. FAL determined that 2.02 tCO₂e is emitted per tonne office paper and Tellus calculated 1.69 tCO₂e per tonne office paper. These estimates were also averaged for further development in the USEPA report. As with woodchips, the process emissions dominated over the transportation emissions; process energy was 94 and 90% of the total emissions for FAL and Tellus, respectively. FAL estimated that 30.7 GJ of process energy is expended per tonne of office paper manufacture (the most important energy fractions are 49% from electricity and 24% from natural gas). Tellus estimated that 24.1 GJ of process energy was necessary to manufacture a tonne of office paper, but a similar breakdown was not provided. Both of the total energy estimates for recycled production are significantly lower than for virgin production.

In the previously discussed PAPRICAN (1999) report, data for kraft pulping are also provided. The typical energy requirement for a kraft mill is 17.0 GJ/adt of process steam and 3.2 GJ/adt of electrical power. Unfortunately, this 20.2 GJ/adt cannot be compared to the FAL or Tellus values, for this value does not include energy losses in generating the steam or electricity or the energy associated with producing the chemicals consumed.

A recent report by the Pulp and Paper Technical Association of Canada (PAPTAC 1999) has cited the total energy consumption of 24 Canadian kraft mills in 1996 as between 30 and 61 GJ/adt with an average of 40.4 GJ/adt. It is unclear as to why this data is twice that of the PAPRICAN report.

To obtain actual data with which to compare against the U.S. research, Weyerhaeuser and Domtar, were contacted but declined to participate in this analysis. There is no de-inking facility for office paper in Western Canada. Tony Kaptein at the Prince Albert, Saskatchewan, facility of Weyerhaueser spent a considerable amount of time explaining to this author the inherent complications in acquiring accurate data. The Prince Albert operation is an integrated pulp and paper mill which produces a number of different pulps and paper products and it would be a fairly involved process to separate out the energy requirements. Furthermore, the mill will soon drastically change its external energy consumption with the installation of a new turbo generator in August and a new bark boiler in September. While the mill currently produces 30% of its own electricity, the new turbo generator will allow the mill to produce 80 to 100% of its own electricity. This is very important from a GHG perspective as electricity generation in Saskatchewan is largely fossil fuel based. The new bark boiler will offset natural gas consumption. In fact, the GHG emissions for the Weyerhaueser Canada group of companies, formerly MacMillan Bloedel, is approximately 37% below its 1990 levels. Currently, 59% of Weverhaueser Canada's fuel energy demand is supplied by biomass fuels (Weverhaueser 1999).

Weldwood of Canada Ltd operates two kraft pulp mills producing bleached kraft pulp for making fine paper, one in Quesnel, B.C., and the other in Hinton, Alberta. Emissions data for these facilities are available on the VCR website (Weldwood 1999). Including the indirect emissions from using electricity in B.C. and from using electricity in Alberta, it is reported that 0.33 tCO_2 e resulted per tonne of kraft pulp produced at Quesnel and

0.58 tCO₂e resulted per tonne of kraft pulp produced in Hinton. As this does not include chemicals consumed during the process, data from Tellus (1994) estimated an energy requirement of 2.6 GJ/tonne office paper for the manufacturing these chemicals. Assuming the energy is completely provided by natural gas, an emission of 0.13 tCO₂e per tonne is estimated. Even with this indirect chemical emission added to the higher emission at Hinton, it is still less than a third of the value reported by Tellus in the USEPA (1998) report. It is unlikely that even when emissions for papermaking are included, that emissions could ever approach the estimates reported in USEPA (1998). This serves as another example of the high estimates by FAL and Tellus.

While this investigation is largely without any data with which to compare recycled and virgin production of office paper, only isolated pieces of information exist, it would appear that much of the same uncertainty that exists with newsprint also occurs with office paper. In fact, the low conversion rate of wood chips to kraft pulp, 50% largely because of the loss of lignin, adds a new complication. Whereas TMP mills frequently bring in wood waste to burn in power boilers, kraft mills produce their own wood waste without any external inputs and currently approach energy self-sufficiency of 80%. Furthermore, some kraft mills in the world, and one in New Brunswick, are actually exporting surplus energy. It appears that de-inking facilities may even have greater difficulty in competing against an energy self-sufficient kraft mill, especially if that deinking facility is stand-alone and relies on natural gas and external electricity for its energy demands. It is important to recognize that there will be little difference between bleached kraft pulp and de-inked pulp for the papermaking operations necessary to manufacture fine (office) paper. Furthermore, an integrated kraft pulp and paper mill will also have the advantage of not having to dry its pulp for shipment – an energy savings of as much as 40% (see previous section).

The previous section finished with the safe assumption that there is no GHG benefit to newsprint production. Virgin office paper (manufactured from a nearly energy self-sufficient integrated pulp and paper facility) could even have smaller GHG emissions than production with recycled fiber. Once again, there is significant variability present within this complicated industry. While the USEPA and their consultants estimated a substantial GHG benefit for recycling office paper, it appears they largely neglected this variability. As with newsprint, the most appropriate assumption will be to assume no GHG benefit with the important caveat that research is greatly needed on this issue.

To enable office paper recycling to remain a zero GHG emissions activity, the curbside collection of this material and any other transportation will not be accounted for. This allows office paper recycling to exactly break even with the alternative virgin production and to allow a zero impact in the Model.

2.6.3 Ferrous Metal

Ferrous metal (steel) is a readily recyclable material and the recycling of metallic scrap back into iron and steel furnaces has long been an economically viable means of utilizing ferrous waste materials. Iron ore is the most important raw material in making steel. Coal is typically used as a source of energy with limestone (CaCO₃) and lime (CaO) used as fluxing agents (substances that remove impurities from the molten iron or steel). The production of virgin molten steel involves the following steps:

- extraction and processing of the necessary iron ore, coal, limestone and lime,
- blast furnace ironmaking, and
- basic oxygen furnace steelmaking.

The production of molten steel with a 100% post-consumer content requires only the electric arc furnace steel making of densified steel scrap.

These steps, particularly the extraction and processing, require a number of different organizations. The analysis of these steps by two consulting firms will be reviewed in this section.

Two consulting firms, Franklin Associates Ltd (FAL) and the Tellus Institute (Tellus), performed investigations of the GHG emission implications of virgin steel can production and the recycling of steel cans back into steel ingot while on contract with the United States Environmental Protection Agency (USEPA 1998). These organizations analyzed the raw material acquisition and manufacture of steel cans in the United States so as to compare with their analysis of the acquisition and processing of post-consumer steel cans also into containers. FAL estimated the typical emission of virgin manufacture to be 4.2 tCO₂e per tonne steel can. This estimate includes both process energy and transportation energy emissions but also non-energy process emissions resulting from the release of CO₂ from limestone. These emissions break down into 2.8 tCO₂e per tonne steel resulting from process energy consumption, 1.0 tCO_2 e per tonne steel of non-energy process emissions and 0.4 tCO₂e per tonne steel resulting from the transportation emissions during raw material acquisition. The process energy consumption for one tonne of steel cans is estimated at 36.6 GJ. Tellus estimated the typical emission of virgin manufacture to be 4.9 tCO₂e per tonne steel can. These emissions break down into 3.8 tCO₂e per tonne steel resulting from process energy consumption, 1.0 tCO₂e per tonne steel of process non-energy emissions and 0.1 tCO₂e per tonne steel resulting from the transportation of the post-consumer steel cans. A much reduced process energy requirement is estimated, 13.7 GJ/tonne compared to 36.6 for virgin steel. The FAL and Tellus estimates were averaged for further development in the USEPA report and are also averaged here for an estimate of 4.55 tCO₂e per tonne virgin steel cans.

This estimate of virgin manufacturing can be directly compared with the assessment of utilizing post-consumer steel in manufacturing. Assuming a 100% recycled content, FAL determined the energy expended during the acquisition of recycled steel and the process energy expended during the manufacturing. It was assumed that 100% recycled inputs were used. FAL determined that 2.1 tCO₂e is emitted per tonne of recycled steel utilized. These emissions break down into 0.8 tCO₂e per tonne steel resulting from process energy

consumption, 1.0 tCO₂e per tonne steel of process non-energy emissions and 0.3 tCO₂e per tonne steel resulting from the transportation of the post-consumer steel cans. A much reduced process energy requirement is estimated, 13.7 GJ/tonne compared to 36.6 for virgin steel. Tellus determined that 2.3 tCO₂e is emitted per tonne of recycled steel utilized. These emission breaks down into 1.2 tCO₂e per tonne steel resulting from process energy emissions, 1.0 tCO₂e per tonne steel of process non-energy emissions and 0.1 tCO₂e per tonne steel resulting from the transportation of the post-consumer steel cans. A much reduced process energy requirement is estimated, 19.7 GJ/tonne compared to 48.8 for virgin steel. The FAL and Tellus estimates were averaged for further development in the USEPA report and are also averaged here for an estimate of 2.2 tCO₂e per tonne recycled steel cans.

By comparing the consultants estimates of virgin versus recycled steel can production, it is possible to derive a GHG benefit of utilizing post-consumer steel. For a tonne of steel and including the necessary transportation, the difference between $4.55 \text{ tCO}_2\text{e}$ for virgin and 2.2 tCO₂e for recycled is 2.35 tCO₂e. This 2.35 tCO₂e is the GHG benefit to be expected from recycling a tonne of steel cans rather than disposing them in a landfill and necessitating further virgin production to replace this material. While these estimates were developed for the steel used in steel cans, this is ubiqitous with steel for any purpose. To determine whether this GHG factor is appropriate for use in this investigation, the local situation has been assessed.

All recycled and scrap steel collected in the GVRD by Allied Salvage & Metal is exported to the United States (Pers. comm. George Weinstein). This is likely representative of other metal recyclers since their is no local smelter or foundry for steel. The purpose of Allied Salvage & Metal, and others, is to accumulate and process scrap steel for recycling. They wait until they have a batch of sufficient size and of appropriate quality before shipping it to a smelter or foundry in the United States.

As previously discussed, a number of different organizations participate in the production of molten steel. Due to this complexity, the opportunity to analyze the life-cycle of steel production does not presently exist. As a result, the estimates developed by the two consultants on behalf of the USEPA will be used here. Since there isn't a local steel smelter or foundry in the GVRD, and since recycled steel scrap is exported to the United States, it is also appropriate to use the recycling estimates developed by the U.S. consultants. As the transportation component of GHG emissions is included in the USEPA report, the emissions associated with the recycling of steel in the GVRD are not specifically analyzed in this thesis.

2.6.4 Glass

Glass, like ferrous metal, is also a readily recyclable material. In fact, in the United States in 1991, it was estimated that cullet (waste glass) made up about 30% of the input to new manufacturing (two-thirds of the cullet is post-consumer waste and the remainder is in-house scrap) (Gaines and Mintz 1994). The energy analysis of glass recycling by Gaines and Mintz (1994) of the Energy Systems Division of the Argonne National Laboratory provides an excellent description of the manufacturing involved and the energy implications. This report is reviewed here.

Glass is manufactured from 4 main raw materials. These include sand (silica), limestone (CaCO₃), soda ash (Na₂CO₃), and feldspar (aluminium silicates with potassium, sodium, calcium or barium) with sand making up the bulk of the raw material input. Glass-container production includes mixing of the raw materials, melting at 2800°F, then forming, annealing and finishing. Melting is by far the most energy-intensive step in the process, because of the large quantities of material which must be heated to high temperatures. This energy is typically provided by natural gas and electricity. This is the step in which cullet content can influence energy consumption and greenhouse gas emissions. Cullet can aid the melting of the batch and allows operation at a lower furnace temperature; both of which contribute to reducing energy consumption. Furthermore, the substitution of recycled glass for the virgin feedstocks limestone and soda ash can prevent the release of CO_2 which occurs when these materials are reacted to form glass. There is no physical barrier to the allowable recyclable content; glass containers can be manufactured with 100% cullet.

Gaines and Mintz (1994) determined the primary energy consumption of bottle manufacturing and the necessary transportation as being 19.7 GJ/tonne with no postconsumer recycling, 18.4 GJ/tonne with the 1991 recycled content (approximately 23%) and 17.2 GJ/tonne with maximum recycled content. While the total primary energy use decreases as the percent of glass recycled rises, the maximum energy saved is only about 13%. Furthermore, as the percent of recycled glass rises, cullet quality is likely to decline, leading to a higher reject rate and therefore increasing energy consumption. However, energy consumption is not necessarily the same as greenhouse gas emissions because the necessary reactions with limestone (CaCO₃) and soda ash (Na₂CO₃) result in the evolution of CO₂ gas; carbon that was previously sequestered in geological formations. This is a non-energy related greenhouse gas emissions and this same report calculated that 0.15 tonnes of CO₂ is released for each tonne of glass containers manufactured without any post-consumer content. As a result of this shortcoming, an actual GHG analysis of glass manufacture and recycling is necessary. This is the next report reviewed.

The consulting firm, Franklin Associates Ltd (FAL), performed the only GHG analysis of glass container manufacturing and recycling of which this author is aware. This was on contract with the United States Environmental Protection Agency (USEPA 1998).

This firm analyzed the raw material acquisition and manufacture of glass containers in the United States so as to compare with their analysis of the acquisition and processing of post-consumer glass also into containers. They estimated the typical emission of virgin manufacture to be $0.65 \text{ tCO}_2\text{e}$ per tonne glass. This estimate includes both process energy and transportation energy emissions but also process non-energy emissions resulting from the release of CO₂ from limestone and soda ash. This estimate assumes a post-consumer content of 0%. These emission breaks down into 0.44 tCO₂e per tonne glass resulting from process energy consumption (79% of which was derived from natural gas), 0.16 tCO₂e per tonne glass of non-energy process emissions and 0.04 tCO₂e per tonne glass resulting from the transportation emissions during raw material acquisition. As with other recyclables, transportation is of minor importance, only 6% of total emissions. Surprisingly, the energy consumption estimated by FAL, 7.7 GJ/tonne glass, is much lower than the previously discussed estimate of 19.7 GJ/tonne glass by Gaines and Mintz (1994). It is unclear why these two organizations had such differing estimates.

This estimate of virgin manufacturing can be directly compared with the assessment of utilizing post-consumer glass in manufacturing. Assuming a 100% post-consumer content, FAL estimated the energy expended during the acquisition of recycled glass and the process energy expended during the manufacturing. FAL determined that 0.28 tCO₂e is emitted per tonne of recycled glass manufactured. This emission breaks down into 0.24 tCO₂e per tonne glass resulting from process energy consumption (92% of which was derived from natural gas), 0 tCO₂e per tonne glass of non-energy process emissions at the factory (no new limestone or soda ash is required) and 0.04 tCO₂e per tonne glass resulting from the transportation of the post-consumer glass. The transportation is of increased importance in this process, comprising 14% of emissions. As with the virgin analysis, the estimate for the energy requirement, 5.1 GJ/tonne glass, is much lower than the estimate by Gaines and Mintz (1994) of 17.2 GJ/tonne glass.

By comparing the FAL analysis of virgin versus recycled glass production, it is possible to derive a GHG benefit of utilizing post-consumer glass. For a tonne of glass and including the necessary transportation, the difference between $0.65 \text{ tCO}_2\text{e}$ for virgin and $0.28 \text{ tCO}_2\text{e}$ for recycled is $0.37 \text{ tCO}_2\text{e}$. This $0.37 \text{ tCO}_2\text{e}$ is the GHG benefit to be expected from recycling a tonne of glass rather than disposing it in a landfill and necessitating further virgin production to replace this material.

To determine whether this benefit is appropriate to this region, our local situation is also investigated. In the GVRD, post-consumer glass enters the recycled waste stream through curb-side collection, residential drop-off or various commercial recycling initiatives. This glass is processed at recycling facilities and much of it is transported to Consumers Glass in Lavington, B.C., for use as cullet in container manufacture. Valuable information has been obtained by personal communication with Donna O'Dwyer of this organization. Consumers Glass produces glass containers with a recycled content of approximately 11%. Greater post-consumer content would be preferable and readily utilized but the supply is simply not available. Depending on how much cullet is used in production, energy savings between about 3 and 15% can be realized. Consumers Glass used 67,757 tonnes of silica sand, 18,499 tonnes of limestone, 22,447 tonnes of soda ash, 6,023 tonnes of Syenite (refined feldspar) and 13,715 tonnes of post-consumer glass in 1999 (total inputs = 128,441 tonnes) to produce 110,289 tonnes of glass containers. The difference between inputs and outputs, 18,152 tonnes, is cullet that will be used for future glass production. Cullet from previous glass manufacturing in 1998 also carried cullet forward into the 1999 production year. During 1999, 51,910 MWh of electricity and 777,980 GJ of natural gas was consumed by this organization. The following calculations calculate the GHG emissions.

Electricity Consumption = 51,910 MWh BC Hydro provincial emission average = 30 tCO₂e/GWh (BC Hydro 1998) Natural Gas Consumption = 777,980 GJ CO₂ Emission from Natural Gas Combustion = 1.88 kg/m³ (Environment Canada 1997a) Energy of Natural Gas (typically) = 1020 BTU/ft³ = 37,843 kJ/m³ (Perry's 1984) Mass of container-glass produced = 110,289 tonnes

Electricity Emissions = $\frac{(51,910 \text{MWh})(30^{\text{tCO}_2 e}/\text{GWh})}{(110,289 \text{ tonnes})(1000^{\text{MWh}}/\text{GWh})} = 0.014^{\text{tCO}_2 e}/\text{tonne}$ Natural Gas Emissions = $\frac{777,980}{(110,289 \text{ tonnes})} \frac{(1.88^{\text{kgCO}_2}/\text{m}^3)(10^6 \text{ kJ}/\text{GJ})}{(37,843 \text{kJ}/\text{m}^3)(10^3 \text{ kg}/\text{tonne})} = 0.350^{\text{tCO}_2 e}/\text{tonne}$

Total Emissions = Electricity + Natural Gas = $0.014 + 0.350 = 0.364 \frac{\text{tCO}_2\text{e}}{\text{tonne pulp}}$

The emission for Consumers Glass is lower than the FAL estimate, but the emission above does not include the non-energy release of CO_2 from the consumption of limestone and soda ash (estimated by FAL to be 0.12 tCO₂e/tonne) and does not include the energy consumption associated with the acquisition and transportation of the sand, limestone, soda ash and feldspar raw materials (not available in USEPA (1998)).

The FAL estimate is likely appropriate for use in this GVRD analysis and the $0.37 \text{ tCO}_2\text{e}$ is assumed to be the GHG benefit expected from recycling a tonne of glass in this investigation.

2.6.5 High-Density Polyethylene

The manufacture of high-density polyethylene (HDPE) products requires a number of steps from various different organizations. Production using virgin resins is a complicated process which includes:

- petroleum & natural gas extraction and refining,
- ethylene production via thermal cracking,
- slurry or gas phase polymerization process,
- compounding, extrusion & palletizing, and
- blow molding polyethylene products.

Production using recycled resins requires these steps:

- Collection and baling of post-consumer plastics
- Plastic resin separation and granulation
- Cleaning and drying
- Extruding and pelletizing
- Blow molding polyethylene products

The GHG emissions by these processes have been estimated by Franklin Associates Ltd. (FAL 1994) and the Tellus Institute (Tellus 1994). Subsequently, these consultants were contracted by the United States Environmental Protection Agency to perform a further analysis (USEPA 1998). It is the most recent work which is reviewed here. However, both these consultants did not include the blow molding of polyethylene products. Rather, their analysis ceased with resins (not finishd products) as this was sufficient for comparison purposes; manufacturing a plastic product is not affected whether the resin used is virgin or primary in origin.

Both firms analyzed the raw material acquisition and manufacture of virgin HDPE resins in the U.S. to determine the expected emission. They estimated the emissions from energy consumption during raw material acquisition and subsequent processing (process energy) and the transportation-related emissions of the raw materials (transportation energy). FAL also identified process non-energy emission during the life-cycle but it is not stated how these emissions occur. FAL estimated the total of these emissions to be 2.3 tCO₂e/tonne HDPE with a breakdown of 2.0 tCO₂e per tonne HDPE from process energy, 0.2 tCO₂e per tonne HDPE of process non-energy emissions and 0.1 tCO₂e per tonne HDPE from the transportation energy. As with other recyclables, transportation is of minor importance, only 4% of emissions. Tellus estimated the total of these emissions to be 3.4 tCO₂e/tonne HDPE with a breakdown of 2.9 tCO₂e per tonne HDPE of process emissions, 0.2 tCO₂e per tonne HDPE of process non-energy emissions and 0.3 tCO₂e per tonne HDPE of transportation emissins. As with the FAL assessment, transportation is of minor importance, only 9% of emissions. The average of the FAL and Tellus estimates is 2.85 tCO₂e/tonne HDPE.

These consultants also investigated the emissions from the alternative realization of recycled HDPE resins. This is the same end product as the previous estimate and can be directly compared. Their investigation included process energy and non-energy emissions resulting from the washing and processing of post-consumer HDPE materials to generate recycled resins and transportation energy consumed during the acquisition of this post-consumer HDPE. FAL estimated the total of these emissions to be 1.0 $tCO_2e/tonne$ HDPE with a breakdown of 0.85 tCO_2e per tonne HDPE from process energy and 0.16 tCO_2e per tonne HDPE from the transportation energy. Tellus estimated the total of these emissions to be 1.3 $tCO_2e/tonne$ HDPE with a breakdown of 1.2 tCO_2e per tonne HDPE of process emissions and 0.1 tCO_2e per tonne HDPE from the Transportation energy. Tellus estimated the total of these emissions to be 1.3 $tCO_2e/tonne$ HDPE with a breakdown of 1.2 tCO_2e per tonne HDPE of process emissions and 0.1 tCO_2e per tonne HDPE from HDPE.

By comparing the estimates of virgin versus recycled HDPE resin production, it is possible to derive a GHG benefit of utilizing post-consumer HDPE. For a tonne of HDPE and including the necessary transportation, the difference between 2.85 tCO₂e for

virgin and 1.15 tCO₂e for recycled is 1.7 tCO₂e. This 1.7 tCO₂e is the GHG benefit to be expected from recycling a tonne of HDPE rather than disposing it in a landfill or combusting it in an incinerator and therefore necessitating further virgin production to replace this material. To determine whether this GHG factor is appropriate for use in this investigation, the local situation has been assessed.

The manufacture of plastic containers using virgin resins is performed in the Lower Mainland by Portola Packaging. This firm only utilizes virgin resins produced by the petroleum industry in the United States. They do not use any virgin resins produced in Canada nor any post-consumer resins. As previously discussed, there are a number of steps to prepare resins for use in the manufacturing of plastics containers. The main steps include petroleum & natural gas extraction and refining, ethylene production, polymerization and pelletizing. Due to this complexity, and the number of potential organizations involved, this research will use the work by FAL and Tellus instead of attempting to develop a separate estimate for this virgin production. Furthermore, as resins used in the Lower Mainland actually originate from the United States, this author believes that the estimates by the U.S. consultants are appropriate for use here.

Post-consumer HDPE plastic materials such as bottles and others are recycled in the GVRD. This occurs at Merlin Plastics of Annacis Island. This organization generates recycled resins for export to California. In fact, all of the recycled resins from this facility are shipped to California where some new plastics must have a minimum recycled content (Pers. comm.. Tony Mouchachen). While plastics in the GVRD are recycled, it is important to recognize that the production of recycled plastic bottles does not occur here. However, recycled HDPE resins can be down-graded into non-food-grade materials such as buckets or plastic lumber. Tony Mouchachen of Merlin Plastics was contacted to obtain energy data but declined to participate in this research. Therefore, the estimates developed in the USEPA report are used in this thesis. As the transportation component of GHG emissions is included in the USEPA report, these emissions are not specifically analyzed in this thesis.

2.6.6 Low-Density Polyethylene

Low-density polyethylene is a material very similar to high-density polyethylene and for the purposes of this research behaves the same. As a result, much of the discussion in the previous section (2.6.5) is also applicable here. In addition, emission estimates from the USEPA work are reviewed.

Franklin Associates Ltd. (FAL) and the Tellus Institute (Tellus) also investigated LDPE manufacture and recycling for the United States Environmental Protection Agency (USEPA 1998). They estimated the emissions from energy consumption during raw material acquisition and subsequent processing (process energy) and the transportation-related emissions of the raw materials (transportation energy). FAL also identified process non-energy emission during the life-cycle but it not stated how these emissions occur. FAL estimated the total of these emissions to be 2.7 tCO₂e/tonne LDPE with a breakdown of 2.4 tCO₂e per tonne LDPE from process energy, 0.2 tCO₂e per tonne HDPE of process non-energy emissions and 0.1 tCO₂e per tonne LDPE from

transportation energy. Tellus estimated the total of these emissions to be 4.4 tCO₂e/tonne HDPE with a breakdown of 3.9 tCO₂e per tonne LDPE of process emissions, 0.2 tCO₂e per tonne HDPE of process non-energy emissions and 0.3 tCO₂e per tonne LDPE of transportation emissions. The average of the FAL and Tellus estimates is 3.55 tCO₂e/tonne LDPE.

These consultants also investigated the emissions from the alternative realization of recycled LDPE resins. This is the same end product as the previous estimate and can be directly compared. Their investigation included process energy and non-energy emissions resulting from the washing and processing of post-consumer LDPE materials to generate recycled resins and transportation energy consumed during the acquisition of this post-consumer LDPE. FAL estimated the total of these emissions to be 0.93 tCO₂e/tonne LDPE with a breakdown of 0.77 tCO₂e per tonne LDPE from process energy and 0.16 tCO₂e per tonne LDPE from the transportation energy. Tellus estimated the total of these emissions to be 1.7 tCO₂e/tonne LDPE with a breakdown of 1.6 tCO₂e per tonne LDPE for the transportation energy. Tellus estimated the total of these emissions to be 1.7 tCO₂e/tonne LDPE of transportation emissions. The average of the FAL and Tellus estimates is 1.3 tCO₂e/tonne LDPE.

By comparing the estimates of virgin versus recycled LDPE resin production, it is possible to derive a GHG benefit of utilizing post-consumer LDPE. For a tonne of LDPE and including the necessary transportation, the difference between 3.55 tCO₂e for virgin and 1.3 tCO₂e for recycled is 2.25 tCO₂e. This 2.25 tCO₂e is the GHG benefit to be expected from recycling a tonne of LDPE rather than disposing it in a landfill or combusting it in an incinerator and therefore necessitating further virgin production to replace this material. As with HDPE, it is the USEPA estimates which are used in this thesis.

2.6.7 Forest Carbon Sequestration

Can the recycling of paper products affect the carbon storage in forests? This impact would be derived from the belief that "paper and wood recycling tend to reduce timber harvesting, and possibly lengthen rotation ages, leaving more carbon sequestered in the forests."(Ince et al. 1995) Does recycling reduce the demand for timber harvesting and therefore allow greater carbon sequestration? The state of forestry in Canada and a literature review of available research on forest sequestration issues is presented in this section. In addition, the helpful discussions with individuals at the Canadian Pulp and Paper Association, the B.C. Ministry of Forests and the Canadian Forest Service are also provided.

The United States Environmental Protection Agency estimates that the rate of carbon uptake has exceeded the rate of carbon release in US forests since about 1977 (USEPA 1998). This carbon sequestration, "primarily due to forest management activities and the reforestation of previously cleared areas" (ibid), has been estimated to offset about 5% of US energy-related CO₂ emissions (USEPA 1999). In the USEPA (1998) analysis, an extensive modeling investigation was performed to estimate the amount of forest carbon sequestration per ton of paper product which is recycled. They, together with the United States Department of Agriculture (USDA) – Forest Service, found that a relationship

does exist between recycling and forest carbon sequestration. It was determined that 0.80 tonnes of additional carbon can be expected to be sequestered if one tonne of paper is recycled. This is equivalent to preventing the emission of 2.9 tCO₂e to the atmosphere. Their model treats "forest product markets in the US and Canada as a single integrated economic and biological system." However, Canadian forest inventories are not modeled in the same way or detail as the US forest inventories. This is an important limitation given that much of the economically marginal paper production is from Canadian pulp sources – recycling in the U.S. would impact mainly Canadian forests.

Peter Ince and others at the USDA – Forest Service have also modeled the carbon sequestration issue together with the fossil energy consumption implications of virgin vs. recycled paper production (Ince et al. 1995). These researchers found that by increasing the 1990 recovered paper utilization rate of 27% to 56% by 2010, that the annual emission of 180 million tonnes of CO_2 could be prevented in the U.S. Unfortunately, a breakdown of the GHG reductions into forest carbon sequestration or process energy savings is not provided.

To determine whether this US research is appropriate for application in this thesis, the Canadian situation requires investigation.

Canada's landmass of 977 million hectares contains 418 million hectares of forest. Of these forests, 245 million hectares or 59% is considered to be commercial forests. However, "due to accessibility limits, environmental constraints, land ownership, landuse constraints and operability issues, only 119 million hectares or about half of the commercial forest is considered to be available for timber production at present". Canada, along with only Russia, Alaska and parts of Scandinavia, has a predominance of the slow-growing natural (never-harvested) boreal forest. "Canada's forest is weighted toward relatively young (29%) and mature (59%) stands of trees, while over-mature stands make up most of the remainder..." (all information from NCCP (1998)) Of the 119 million hectares of available commercial forest, only 1.1 million hectares was harvested in 1998 (Natural Resources Canada 2000). In fact, natural disturbances impacted a much greater area; forest fires destroyed 1.7 million hectares in 1998 and insects defoliated 5.1 million hectares (ibid). However, some of the burnt and defoliated forests can still provide salvagable timber. The maximum allowable production levels the Allowable Annual Cut (AAC) – was even greater than the harvested area in 1998. While the AAC in 1998 was 241 million m³, only 175 million m³ or 73% was actually harvested (ibid).

This AAC consists largely of first-growth forest which has not previously been harvested. This is in constrast to activities in the US which are harvesting mainly second growth trees (Pers. comm. Bill Wilson). By the current practice of harvesting mainly first growth trees, the forest industry is removing trees which are past their biological maturity (trees which are no longer growing and fixing carbon from the atmosphere). By harvesting stands which are no longer growing and photosynthezing, forestry operations are allowing the replacement with actively growing seedlings to further fix carbon while much of the harvested tree will be converted into various wood products. Industry-wide statistics are annually published by the Canadian Pulp and Paper Association (CPPA 1999) and the following discussion will compare 1990 data (when the utilization of post-consumer paper began rapidly expanding) with the most recent data, that for 1997. The production of paper, paperboard and market pulp went from 23.7 million tonnes in 1990 to 29.1 million tonnes in 1997. Much of this production was a result of waste from sawmills. Most trees in Canada are not harvested to make paper. Rather, they are harvested to make lumber. As not all of round logs are turned into lumber, the remaining wood, excluding the bark, is typically chipped for use in pulp mills. The harvest of industrial roundwood was 156 million m^3 in 1990 yet only 42 million m^3 was roundwood directly for pulping; the majority was for lumber production. Approximately 55 million m^3 or 57% of the total virgin fibre consumed by the pulp and paper sector was wood waste from sawmills. In 1998, the national harvest had climbed to 182 million m³, but only 33 million m³ was roundwood directly for pulping; an even greater amount, 74 million m³ or 69% of virgin fibre consumed by the pulp and paper sector, was wood waste from sawmills. While the total harvest of industrial roundwood increased between 1990 and 1997, the roundwood directly consumed at pulp and paper mills actually decreased. The amount of wood waste generated at sawmills which is transferred to pulp and paper operations is remarkably consistent with the rule of thumb provided to this author by Mike Whybrow of the B.C. Ministry of Forests. He explained that approximately 40% of a round log delivered to a sawmill becomes lumber, 40% becomes wood chips and 20% becomes wood waste such as sawdust, shavings or bark which is typically combusted in the power-boilers of pulp mills or are disposed of in beehive burners. It is important to recognize that currently nearly of 70% of the vurgin fibre used at Canadian pulp operations rely on wood waste from sawmills.

Along with the wood chips from sawmills or from roundwood harvested especially for pulping is combined the de-inked pulp produced from recycled paper products. While 1990 marked the beginning of strong growth in the utilization of postconsumer paper by the pulp & paper industry, it is not a new occurrence. As far back as 1980, 1.1 million tonnes of recycled paper was used in producing 13.5 million tonnes of paper and paperboard for a utilization rate of 8.4% (CPPA 1999). In 1990, 1.8 million tonnes of recycled paper was used to produce 16.5 million tonnes of paper and paperboard, a utilization rate of 11.2%. The most recent available data is for 1998. In this year, 4.7 million tonnes of recycled paper, along with virgin fibre, produced 18.7 million tonnes of paper and paperboard for a utilization rate of 24.9%.

Given that nearly 70% of virgin fibre used in pulp & paper production is from trees not harvested directly, what effect has recycling had on fibre demand? Both David Church (Canadian Pulp & Paper Association) and Mike Whybrow (B.C. Ministry of Forests) believe that the recycling of paper products has served to 'stretch' the fibre resource. While roughly the same amount of wood chips were being utilized prior to recycling as is currently being utilized – the main difference is that recycled fibre now allows more paper to be produced. This belief is indeed borne out by available data. Virgin fibre consumed by the pulp and paper industry was 97 million m³ in 1990 and had only slightly increased to 107 million m³ in 1998 (CPPA 1999). This increase came not from direct harvesting of roundwood but from increased utilization of wood waste. The greater wood waste and recycled fiber enabled pulp & paper production to increase from 23.7 million tonnes in 1990 to 28.5 million tonnes in 1998. As previously discussed, direct harvesting of roundwood actually decreased during this period – from 42.1 million m^3 in 1990 to 33.4 million m^3 in 1998 (ibid). Assuming that wood waste utilization is already at a maximum (this author has not been able to find any data on this), it could logically be concluded that increased harvesting of roundwood for pulping would be necessary to satisfy fibre demand. Especially when considering that the AAC is currently only at 73%- there is 27% of additional harvesting available. However, this harvesting will only occur if the economics are attractive; pulping has to make money and traditionally it is the lumber which brings in the large revenues. Also, geographic considerations are important as much of this available AAC may be a great distance from the pulp mills which require this raw material. To complicate matters further, it is the opinion of Mike Whybrow that additional demand for paper would be supplied not by increased harvesting in Canada but by fast-growing plantations in tropical or sub-tropical countries. Bill Wilson (Canadian Forestry Service) is of a similar opinion and also believes that additional demand would spur on investigations into the potential of non-timber sources of pulp such as flax, hemp or agricultural residues. Assuming increased harvesting did to take place, while it may appear to lead to increased GHG emissions, removing zero net growth primary forest with a young actively photosynthesizing seedling may also have advantages.

Contrary to the USEPA (1998) report, which is designed for municipalities in the United States, this thesis is analyzing the GHG emissions solely from the GVRD waste management system. For this reason, a different tack can be employed to derive a forest carbon estimate. Paper is recycled so that the pulp & paper industry has the required minimum recycle content to remain in the marketplace. If the GVRD disposes of paper, instead of recycling, the free market value of recycled paper products would logically have to increase. With the value increasing, it is conceivable that other jurisdications would increase their recycling to satisfy any shortage. Increased harvesting of roundwood strictly for pulping is unlikely as this does nothing to reach the minimum recycled content in new paper products. If the GVRD removed its recycled paper supply, to burn for carbon-neutral bioenergy generation for instance, an incentive would result for other cities to pull more paper out of their waste stream for recycling. In this situation, if the GVRD chooses to recycle or chooses not to, there is little GHG implication. Probably the only implication would result from increased transportation to import recycled paper back to B.C. from the U.S. This research assumes that the GVRD's choice in isolation to recycle or not to recycle has zero GHG benefit or liability.

2.7 UNCERTAINTY WITH THE ESTIMATES

As with any estimating procedure, there is uncertainty in the results. This study is no exception. While much of the data, especially the diesel fuel consumption data, has very little uncertainty, there are other values for which a lack of confidence exists. In this report, it was decided that high, low and best-guess estimates will be provided with data and factors that have a high level of uncertainty. Factors for which there is minimal uncertainty will only have one value; high and low estimates will not be provided. The range of potential values (the range between the high and low values) will be included in brackets after the best-guess value. When values with uncertainty are summed, the best-guess, high and low estimates will be summed respectively to calculate the resulting best-guess, high and low estimate.

In many cases, the uncertainty results from the prevailing lack of understanding of the process being analyzed. Unfortunately, two of the most uncertain issues, landfill methane and nitrous oxide emissions, are also some of the most quantitatively important from a greenhouse gas perspective. Nevertheless, estimates are required and have therefore been developed. It is hoped that when the level of understanding grows in the future, that it will be possible to incorporate the new understanding into the model.

Only two significant figures are reported in the results of this research. This is likely the most appropriate given the uncertainty in the underlying data.

2.8 SPREADSHEET PROGRAM

In addition to this report, the second important deliverable from this research study is a spreadsheet program to facilitate future waste management planning. This spreadsheet is programmed so that the mass flows of waste into various management methods (landfill disposal, incineration, composting and recycling) are variables that can be altered. Also, parameters that are important for calculating GHG emissions, such as the effectiveness of landfill gas collection systems, are also programmed as variables (**in bold**) so that improvements in the future will cause the Model to recalculate emissions. The spreadsheet also allows for the development of a new landfill and a new incinerator. It is the intent of this spreadsheet to Model the GVRD's existing system and provide planners with a tool to calculate the future emissions to be expected from decisions made today.

This section describes the inner workings of the spreadsheet program to give readers an understanding of this Model. This section begins by explaining the 34 worksheets which are the complete spreadsheet (2.8.1). These worksheets simply represent the sample calculations provided in the appendices. The only difference being that when structured in a spreadsheet, changes in waste masses or parameters will immediately demonstrate the response on GHG emissions. The inter-relationships of these individual worksheets are effectively illustrated to readers by the use of two examples (2.8.2). After these two sub-sections, an understanding of this spreadsheet Model should be attained. Together

with the sample calculations provided in the appendices, waste management planners should feel confident enough to make future improvements to the Model.

Several scenarios of specific interest to the waste planners at the GVRD are also inputted into the spreadsheet Model. These are potential management alternatives already being discussed at the GVRD and it was identified that it would be particularly valuable to include their evaluation in this thesis. The last sub-section (2.8.3) is the discussion of the several scenarios of specific interest to the GVRD.

2.8.1 Explanation

This spreadsheet program contains 34 individual worksheets to calculate the emissions from the GVRD's existing system of solid waste management. Though at the outset, this spreadsheet may appear to be extremely complicated, it is actually quite simple. The 34 worksheets can be divided into four categories to facilitate explanation. These four main groups, *Results, General, Municipal and Waste*, are organized so that the most relevant parts to planners are up front, in the beginning, and that further exploration in the spreadsheet would reveal data and calculations of greater detail and complexity.

These groups and their associated worksheets are:

GROUP	#	NAME OF WORKSHEET
Results Group	1	GHG Emissions
	2	Waste Tonnages
	3	Emissions Factors
	4	Factor List
General Group	5	General Parameters
Municipality Group	6	City of Abbotsford
	7	City of Burnaby
	8	City of Coquitlam
	9	Corporation of Delta
	10	City of Langley
	11	Township of Langley
	12	District of Maple Ridge
	13	City of New Westminster
	14	City of North Vancouver
	15	District of North Vancouver
	16	District of Pitt Meadows
	17	City of Port Coquitlam
	18	City of Port Moody
	19	City of Richmond
	20	City of Surrey
	21	City of Vancouver
	22	District of West Vancouver
	23	City of White Rock
	24	Electoral Area A
	25	Electoral Area C
Waste Group	26	Newsprint Waste Management
	27	Office Paper Waste Management
	28	Ferrous Metal Waste Management
	29	Glass Waste Management
	30	High-Density Polyethylene Waste Management
	31	Low-Density Polyethylene Waste Management
	32	Food Waste Management
	33	Yard Trimmings Waste Management
	34	Remainder Waste Management

Table 2-6: List of Worksheets

The first worksheet (WS#1) presents the results of the entire spreadsheet program – it is the total greenhouse gas emissions from all the municipalities. WS#2 (Waste Tonnages) is the mass, in tonnes, of each component of the waste stream from each municipality under investigation. This waste tonnage is multiplied by the emission factors in WS#3 to calculate the greenhouse gas emission results in WS#1. The last worksheet in the Results Group is WS#4 (Factor List). This is simply a list of all the emission factors from the

next 30 worksheets to serve as a transition for ease of programming WS#3. Factors from WS#5 through WS#34 first are entered into the Factor List (WS#4) and then are automatically organized for Emission Factors (WS#3). The General Parameters worksheet (WS#5) is the location of factors and calculations which are not municipality or waste component specific. Examples of these factors include physical constants, landfill gas collection efficiencies and energy conversion during incineration. Examples of calculations include the transportation emissions associated with transfer stations, subsequent transport to landfills or the incinerator or landfill equipment. The next 20 worksheets, WS#6 to WS#25, comprise the Municipality Group. (While there are 23 member municipalities in the GVRD, Anmore and Belcarra are contained within the City of Port Moody municipality and the village of Lions Bay is included with Electoral Area C for this Model.) These worksheets contain all the factors which are municipalityspecific such as waste mass estimates and curbside collection. As each municipality has different distances involved in waste management (and therefore different diesel fuel consumption), it was necessary to analyze each municipality individually. The last 9 worksheets, WS#26 to WS#34, are the waste component-specific group, and contain the detailed information on Newsprint Management (WS#26), Office Paper Management (WS#27), Ferrous Metal Management (WS#28), Glass Management (WS#29), HDPE Management (WS#30), LDPE Management (WS#31), Food Waste Management (WS#32), Yard Trimmings Management (WS#33) and Remainder Waste Management (WS#34). These worksheets contain the factors necessary to calculate the emissions to be expected when these materials are either disposed in the Cache Creek or Vancouver Landfills, combusted at the Burnaby Incinerator or undergo backyard or centralized composting. WS#34 (Remainder Waste Management) is an analysis of the remaining fraction of the waste stream after the 8 main components are removed. This waste fraction will be discussed in greater detail in Section 2.10 – *Remaining Wastes*.

In the nine worksheets which assess the individual waste components, some of the emission factors are negative values. For example the energy benefit of landfill gas utilization at the Cache Creek Landfill and the energy generation at the Burnaby Incinerator are negative emissions. This results from the fact that these factors actually *reduce* greenhouse gas emissions and to be included in this thesis are calculated as negative values – when the amount of emission reduction is the value provided. In addition to energy at a landfill or incinerator, negative emission factors are presented in this thesis as a result of landfill carbon sequestration or sequestration in finished compost. These GHG benefits are converted to negative emission factors after all calculations are completed when presented in the appendices. In the spreadsheet program, each emission reduction is multiplied by –1 to convert to a negative value.

2.8.2 Examples

The workings and interconnections of these worksheets can be illustrated by using examples. The GHG emissions resulting from the incineration of food scraps in the District of North Vancouver (tCO_2e) can be calculated by multiplying two numbers, the mass of food scraps incinerated (tonnes) and the GHG emission factor for food waste incineration (tCO_2e /tonne). The mass of food scraps is determined from GVRD data on solid waste generation together with waste characterization data – the result is provided

in WS#2 (Waste Tonnages). When the GHG emission factor for food waste incineration is calculated it can be found in WS#3 (Emission Factors), but calculating this value, and all others, is essentially the bulk of this research. The factor is dependent on data in WS#5 (General Parameters), data specific only to the District of North Vancouver (WS#15), and data specific only to the incineration of food waste (WS#32). There is a series of five steps required to combust food waste from this municipality. Food waste requires curbside collection, processing at the North Shore Transfer Station and then transportation to the Burnaby Incinerator. All three of these steps require diesel fuel consumption and have been estimated in WS#15 (District of North Vancouver). Curbside collection of general waste is $0.014 \text{ tCO}_2\text{e}/\text{tonne}$, Factor 1 (WS#15 – F#1), processing at the transfer station is 0.0013 tCO₂e/tonne, Factor 4 (WS#5 – NSTS: F#1) and the transfer to the Burnaby Incinerator is 0.0026 tCO₂e/tonne (WS#5 – NSTS: F#8). Once at the Incinerator, WS#32 (Food Waste Management) is necessary for energy generation. The energy benefit of incineration results in -0.097 tCO₂e/tonne, Factor 10 (WS#32 – F#10), but the GHG emissions during incineration are 0.091 tCO₂e/tonne, Factor 1 (WS#32 - F#11). By totaling all these steps together, it is possible to calculate the overall emission factor as tonnes of CO₂ equivalent per tonne of food waste. The emission factor provided in WS#3 (Emission Factors) is the total of these factors, 0.010 tCO₂e/tonne. While a negative emission may seem odd, this will be fully discussed in the next chapter.

Examine the tabulation below of this example:

WS#	Worksheet Name	F#	Factor Name	tCO ₂ e/ tonne
15	District of North Vancouver	1	Curbside Collection of General Waste	0.014
15	District of North Vancouver	4	Transfer Station Equipment	0.0013
15	District of North Vancouver	8	Transport to the Burnaby Incinerator	0.0026
32	Food Waste Management	7	Energy Generation from Waste Incineration	-0.097
32	Food Waste Management	8	GHG Emissions from Waste Incineration	0.091
	_		TOTAL =	0.010

Table 2-7: Incineration of Food Waste from District of North Vancouver

For another example, let us calculate the emissions from the centralized composting of yard waste generated in the City of Vancouver. The series of steps required in this process are: curbside collection of yard trimmings (WS#21 – F#3), processing at the Vancouver Transfer Station (WS#21 – VTS: F#1), transport to the composting facility at the Vancouver Landfill (WS#21 – F#5), fuel consumption by composting equipment (WS#5), GHG emissions of centralized composting (WS#33 – F#12) and the long-term sequestration of compost (WS#33 – F#13). Totaling all these factors will result in the emission factor for the centralized composting of yard waste generated in the City of Vancouver. These emissions are tabulated on the next page.

WS#	Worksheet Name	F#	Factor Name	tCO ₂ e/ tonne
21	City of Vancouver	3	Curbside Collection of Yard Waste	0.027
21	City of Vancouver	4	Transfer Station Equipment	0.0009
21	City of Vancouver	6	Transport to the Composting Facility	0.0033
5	General Parameters		Composting Equipment	0.019
33	Yard Waste Management	12	Emissions from Centralized Composting	0.105
33	Yard Waste Management	13	Long-Term Sequestration of Compost	-0.10
			TOTAL =	0.05

 Table 2-8: Centralized Composting of Yard Waste from City of Vancouver

The overall emission factors in WS#3 are simply a total of all the necessary factors associated with the process under investigation. There are three parts to every activity, a municipality-specific part (What is the municipality?), a waste-specific part (What waste material is being analyzed?) and a general part (this is the depository for general data not specific to either municipalities or materials). The spreadsheet has simply been programmed to total the appropriate individual factors for each of the possible activities in WS#3 (Emission Factors). Changes in the variables or parameters at any stage will be reflected in the final results presented in WS#1 (GHG Emissions). However, it is important to distinguish between variables and results cells in the spreadsheet. New data or parameters should only be typed into variable cells (in **bold**) so that a new result can be calculated. Result cells contain the mathematical functions necessary to calculate the result from the available data and parameters. Improvements to the spreadsheet should not be performed by typing new numbers into the results cells for this would erase the calculations.

The utility of the spreadsheet Model comes from the ability to change the existing system and model the response in GHG emissions. Logically, the questions thus result: What are the modifications possible and what are the limitations in the Model? A list of the most important variable changes to users follows.

- Waste mass estimates for generation, recycling and disposal can be altered in the municipality-specific worksheets (WS#6 WS#25).
- The mass flows of waste to transfer stations and direct or transferred mass flows to disposal facilities in the GVRD can be altered in the General Parameter Worksheet (WS#5) to recalculate the percentage of waste disposed in each facility.
- Curbside collection fuel consumption data can be altered in the municipality-specific worksheets (WS#6 WS#25).
- Fuel consumption by transfer station equipment, landfill equipment or for transportation to landfills or incinerators can be altered in the General Parameter Worksheet (WS#5).
- Landfill methane collection for flaring or energy utilization can be altered in the General Parameter Worksheet (WS#5).
- Energy conversion during incineration and the fraction of steam to CPL or to a turbogenerator can be altered in the General Parameter Worksheet (WS#5).
- The GHG benefit of preventing steam generation by CPL or of preventing electricity generation by BC Hydro can be altered in the General Parameter Worksheet (WS#5).

- Global Warming Potential of CH₄ and N₂O can be altered in the General Parameter Worksheet (WS#5).
- The first-order decay rate constants for anaerobic decomposition can be altered in the waste-specific worksheets (WS#26 WS#34).
- The *Carbon Available for Anaerobic Decomposition* for each material can be altered in the waste-specific worksheets (WS#26 WS#34).
- The *Carbon Storage Factor* for each material can be altered in the waste-specific worksheets (WS#26 WS#34).
- The moisture content, nitrogen content and net energy content for each material can be altered in the waste-specific worksheets (WS#26 WS#34).
- The N₂O conversion rates for food and yard waste can be altered in WS#32 & WS#33.
- The GHG benefit of the utilization of recyclables by industry can be altered in the waste-specific worksheets (WS#26 WS#34).
- The removal of entire categories of emissions such as landfill sequestration or the benefit of recycling is possible by deleting their values in Factor List (WS#4).

The above list is not exhaustive – many other minor modifications are possible within the framework of the Model.

While the Model is flexible, there are limitations to the allowable changes. For example, the spreadsheet will not allow major changes to transfer stations in the municipalities. Waste from the three North Shore municipalities must be delivered to the North Shore Transfer Station. Once there, waste is free to be transferred to the Cache Creek, Vancouver or a Future Landfill, or the Burnaby or Future Incinerator. The same is true for Coquitlam and Port Coquitlam; waste must be delivered to the Coquitlam Transfer Station.

2.8.3 Modelling Scenarios

Of particular interest to planners at the GVRD is the GHG response of eight scenarios for future waste management alternatives. Using the existing system programmed into the Model as the baseline, any scenario inputted will recalculate new GHG emissions. Each of these scenarios can be directly compared with the baseline to identify whether the emissions increase or decrease. The first five scenarios are potential planning changes to the current management system. The last three scenarios demonstrate the response of the Model to changes in interpretation of the emission estimates (and do not actually represent management changes). These eight scenarios are the following.

- No future increases of the landfill gas collection efficiency at the Cache Creek or Vancouver Landfill and no allowance for energy utilization.
- Decreasing the fraction of steam transferred to Crown Packaging Limited (CPL) from the existing 56% to 37%; CPL will require less steam in the future (Pers. comm. Ken Carrusca).
- Allowing a turbo-generator to convert the unused steam fraction to electricity; increasing from the current 0% to 57% of steam after CPL decreases its need. (assuming 6% is required internal for plant operation)
- Hypothetically allowing incineration to replace all landfill disposal at the proposed steam usage of 37% to CPL.
- Hypothetically allowing incineration to replace all landfill disposal at 37% to CPL and 57% to electricity generation.
- Ultimate (complete) decomposition of the CAAD in the wastes to remove the 20 year time period.
- Removal of landfill carbon sequestration benefits from the Model.
- Removal of recycling and forest sequestration benefits from the Model.

The scenarios can be programmed by following the instructions below. However, it is necessary to erase changes when finished unless otherwise stated. The first scenario is performed by changing the gas collection percentages in WS#5 – General Parameters. For the year 1999, Cache Creek is assumed to flare 43% and use 0% for energy – copying these numbers down to the year 2018 will model no future increases. The same can be performed for the Vancouver Landfill. The 22% flared and 0% for energy in 1999 can be copied down to 2018 to model no changes. The second scenario, scheduled to occur in the near future as CPL has a reduced requirement for steam from the Incinerator, can be inputted by changing the Fraction of Steam Sold to CPL (Row 177 in WS#5 – General *Parameters*) from 56% to 37%. While this scenario is in effect, the third scenario can be added - to change the Fraction of Steam to Generate Electricity in a Turbo-Generator (Row 178 in WS#5 – General Parameters) from 0% to 57%. To program the fourth scenario, all previous changes have to be reversed and the table Percentage Distribution of Waste Disposal (blocks J41 to O63 in WS#5 - General Parameters) requires changing. This table contains the calculations to determine the breakdown of waste disposal for each municipality. To get all waste disposed at the Burnaby Incinerator, users need to set the Incinerator at 100% and all other facilities at 0% for each of the municipalities. While the Burnaby Incinerator cannot currently handle all this waste, this change hypothetically models the GHG emissions to be expected if it could. Users could also use Future Incinerator to model this hypothetical scenario but they would have to

provide data for the necessary transportation. Also necessary to complete this scenario is changing the Fraction of Steam Sold to CPL (Row 177 in WS#5 – *General Parameters*) from 56% to 37%. While this scenario is in effect, the fifth scenario can be programmed - change the Fraction of Steam to Generate Electricity in a Turbo-Generator (Row 178 in WS#5 – *General Parameters*) from 0% to 57%. After reversing these changes, the sixth scenario can be implemented by changing all the decay rate constants in WS#26 to WS#34 to 0.14 year⁻¹ to allow complete decomposition of the CAAD within 20 years after disposal. The seventh scenario, removing carbon sequestration can be programmed in the simplest manner by deleting all reference to sequestration in WS#4 – *Factor List*. This can be performed by deleting cells H22 to Z22 and cells H26 to Z26. The eighth and last scenario is to remove the benefits of recycling from the Model. This can be implemented by deleting all reference to recycling from the Model. This can be implemented by deleting all reference to z26.

These instructions are provided to demonstrate how modifications can be performed by users. The results of these scenarios are presented and discussed in the next chapter. The next section (2.9) is concerned with finding the appropriate data to place in WS#2 – *Waste Tonnages*. By using previous work performed by consultants on behalf of the GVRD, it is possible to estimate the required data.

2.9 WASTE MASS ESTIMATES

Up to now this report has strictly been concerned with the greenhouse gas emissions associated with waste management and the development of emission factors based on tonnes of CO_2 equivalent per tonne of waste. These completed emission factors estimate the emissions to be expected when managing a specific component (newsprint, food scraps, HDPE, etc...) in a specific manner (landfilling, incineration, composting, etc...). But how much newsprint is recycled? How much newsprint is incinerated? How much newsprint is landfilled? Furthermore, it is necessary to be municipality-specific. How many tonnes of food waste from Burnaby was incinerated, landfilled or composted in 1998? How many tonnes of office paper from Vancouver are recycled, landfilled or incinerated in 1998? The mass (tonnes) of each of these fractions is required so as to multiply with the emissions factors (tCO₂e/tonne) to calculate the overall emissions (tCO₂e). This section develops the estimates for each of the analyzed components in each of the municipalities and it is these estimates which are used to calculate GHG emissions.

There are three important concepts critical in analyzing waste. These are:

- 1. a mass of waste generated, M_{GEN} ,
- 2. a mass of waste recycled or composted, M_{REC} or M_{COM} , and
- 3. a mass of waste disposed, M_{DIS} .

These factors are inter-related by the law of conservation of mass such that: "waste that is generated but not recycled has to be disposed of." As a formula this is represented by

M_{GEN} - M_{REC} = M_{DIS}

If not diverted from disposal by recycling programs, generated wastes will either be landfilled or incinerated. Consequently, the mass disposed (M_{DIS}) can be further subdivided into the mass landfilled or the mass incinerated. Backyard or centralized composting activities are analogous to recycling programs as they serve a similar purpose – diverting waste from necessary disposal. Thus, for use with food scraps, the equation would become:

$\mathbf{M}_{\mathbf{GEN}} - \mathbf{M}_{\mathbf{COM}} = \mathbf{M}_{\mathbf{DIS}}$

Since there is only one equation and three unknowns, mathematics dictates that it is necessary to find data for two of the variables and then the third unknown can be solved for. Using newsprint as an example, the mass collected and delivered to recycling depots is typically recorded and reported to municipalities on an annual basis; this would be M_{REC} . The mass generated (M_{GEN}), i.e. the mass of newspapers distributed and consumed by residents has likely changed little over the years and data for this generation on a per capita basis is available in reports. However, the mass of newsprint disposed (M_{DIS}) has changed dramatically in recent years. In the 1980's, before strong recycling initiatives, the vast majority of newsprint and other paper products were disposed in landfills or incinerators, while in the 1990's, recycling completely reversed this. Recycling now manages a majority of the newsprint in many jurisdictions and paper bans specifying maximum allowable quantities have even been instituted at disposal facilities. These programs have greatly decreased the mass of newsprint requiring disposal. Without the results of a recent waste study which has accurately measured the mass of newsprint still in MSW (remember that even with strong recycling programs there will still be disposal), it is very difficult to estimate this mass. As a result, this third variable will be solved for. The other variables, M_{GEN} and M_{REC} , were acquired by available data and reports. This also holds true for the other 8 components of MSW analyzed.

In 1993, three consultants (CH2M Hill Engineering, KPMG Peat Marwick Stevenson & Kellogg and Resource Integration Systems) performed an extensive analysis of the GVRD's waste management and recycling programs (GVRD 1993). In their report, three sources of residential waste, urban single family, urban multi-family and rural single family, and nine major ICI (Industrial, Commercial and Institutional) groups were analyzed for 17 major waste components. All the estimates for this consultant report were based on 1991 data but unfortunately, this thesis requires more recent data, 1998 preferably, and much has changed in the preceding years. As a result, large portions of their data are projected into 1998 numbers.

A municipality's residential and ICI waste generation (M_{GEN}) estimated in 1991 can be divided by the population at that time to develop per capita estimates. Using the municipalities' population in 1998 (projections from the census in 1996), it is possible to update this waste generation. This is of greater accuracy than calculating per capita generation for the entire GVRD as a whole; different municipalities have varying fractions of their waste from commercial sources. For example, the CH2M Hill report estimated that 63% of Vancouver's waste is generated from ICI sources but only 40% of Coquitlam's waste is derived from this sector. This issue is of significant importance to the generation of office paper. However, two important assumptions are necessary by doing this. Firstly, that increasing residential population is also an indication of increasing ICI activity and that secondly, that the per capita waste materials generated by society have not changed appreciably in the last nine years. This second assumption was demonstrated by an investigation of solid waste disposal and recycling in the GVRD by Margaret Wojtarowicz (2000). Both assumptions will be necessary because of the lack of a more recent waste audit from which to acquire data. It should be noted that improvements in the future understanding of these wastes should be included in the adaptable spreadsheet program.

Individually by municipality, the generation of waste from six material categories in the CH2M Hill report were directly adaptable for use in this report. The six materials directly adaptable include newsprint, glass, ferrous metal, HDPE, food and yard waste. Assumptions are necessary to convert part of the mixed paper category into office paper and part of the mixed plastics category into low-density polyethylene (LDPE). The consultants report estimated that of the 199,000 tonnes of mixed paper (excluding newsprint or corrugated cardboard) disposed in the GVRD, that 27,000 tonnes was office paper, or 14%. Assuming that the mixed paper recycling rate, 27% of generated mixed paper, is representative of office paper, then it can be assumed that 14% of generated mixed paper is also office paper. Similarly, the consultants report estimated that of the 93,000 tonnes of mixed plastics (excluding HDPE and PET) disposed in the GVRD, that 42,300 tonnes was LDPE, or 45%. Assuming that the mixed plastics recycling rate, 8% of generated mixed plastics is LDPE. It is hoped that future understanding will improve the accuracy of these estimates.

After estimating waste generation, it is necessary to estimate the mass of waste which is recycled (M_{REC}). As previously discussed, municipalities annually publish this data. As recycling programs dramatically expanded in the 1990's, it is preferable to obtain the most recent data. However, to be consistent with the rest of this report, 1998 is the year used for data gathering and not 1999. The GVRD has provided the required data of the mass of residential materials which were recycled (M_{RFC}) and the mass of residential compostables which were composted (M_{COM}) (Pers. comm. Andrew Marr). Unfortunately, their data analysis differs from that employed in this research. Their Mixed Paper does not separate out office paper, their Metal does not separate ferrous metal, and their *Plastic* does not differentiate between HDPE, LDPE and other plastics. As a result, this research will assume that 14% of *Mixed Paper* is office paper, that 50% of Metal is ferrous metal, that 33% of Plastic is HDPE and that 33% of Plastic is LDPE. These assumptions result from an inspection of the generation masses estimated in the CH2M report. Finally, the last complication with the recycling data provided by the GVRD, is the category listed as *mixed recyclables*. These are commingled recyclables that are only weighed prior to sorting, and as a result, the masses are differentiated into paper, glass, metal, etc..., categories. These mixed recyclables, 12,342 tonnes in 1998, are a relatively low 9% of the 132,880 tonnes of recyclables in that year. By using four municipalities in which there is no mass of *mixed recyclables*, Coquitlam, Langley Township, Maple Ridge and Surrey, it is possible to estimate an average percentage for

recyclables in the GVRD. This average percentage is applied to *mixed recyclables* and added to the appropriate category. This is presented in Table 2-9: Correction for Mixed Recyclables, on the following page.

Backyard composting is estimated by the number of composters active in each municipality. While it is estimated by the GVRD that each composter annually diverts 250 kg of food scraps and yard trimmings from collection (Pers. comm. Bev Weber), it is further necessary to separate these two masses. By what is essentially a best-guess, this author assumes that 167 kg of the diverted waste was yard trimmings and that 83 kg was food scraps (or two parts yard trimming to each part food scraps). This guess results from the authors' understanding that backyard composting vessels are used more frequently for managing yard waste than food waste.

Unfortunately, the GVRD does not possess any municipality-specific data on the collection of specific recyclables from ICI sources because of the numerous private haulers which overlap jurisdictional boundaries. They only have ICI recycling data for the entire GVRD region. Since this research requires the ICI recycling rate of specific recyclables, the total mass of ICI recyclables divided by the total mass of ICI waste (pre-recycling) is assumed to serve as the recycling rate for the individual waste components analyzed in this thesis. Both masses were provided by the GVRD.

With all these assumptions, it is hoped that when data collection improves, new inputs can be provided to the spreadsheet program.

Using the City of Burnaby as an example, the wastes generated, the wastes recycled and the wastes disposed are presented in Table 2-10 on the following page. Similar tables for each of the other municipalities are included in WS #5 to WS#25. It requires noting that Anmore and Belcarra have been included with the City of Port Moody. Also, Matsqui has been included along with the City of Abbotsford (at the time of the CH2M Hill report these were separate municipalities but have now been amalgamated). As previously discussed, by subtracting the waste recycled and composted ($M_{REC} \& M_{COM}$) from the waste generated (M_{GEN}), the mass of waste disposed (M_{DIS}) can be calculated.

Table 2-9: Correction for Mixed Recyclables

1998 - RESIDENTIAL RECYCLING PROGRAMS IN THE GVRD - WMA - RECOVERED TONNES BY MATERIAL

3 - RESIDENTIAL RECYCLI	NG PR	OGRAMS II	N THE	GVRD -	WMA - I	RECOVE	RED TONNES Mixed	BY MATER	1
	ONP	Mxd Ppr	occ	Glass	Metai*	Plastic	Recyclables	TOTAL	
Abbotsford		553	2849	318	202	119	0	7145	
Burnaby		3620	290	54	715	58	1541	9774	
Coquitlam		1960	120	636	199	222	0	5742	
	2251	2170	1065	824	583	322	0	7215	
Langley City	539	351	438	117	37	41	0	1523	
Langley Township	2607	565	430 630	652	391	130	0	4975	
New Westminster	1060	678	117	2	366	10	271	2504	
North Vancouver City	1489	440	78	ے 17	26	5	485	2540	
North Vancouver District		1092	131	29	20 44	9	405 1170	2040 5931	
	1644	466	2969	333	965	9 25	0	6402	
Pitt Meadows	255	400 270	2303	0	0	0	125	650	
Port Coquitlam	255	0	0	0	0	0	1944	1944	
•				199		61	1944	1306	
Port Moody	198	474	117		86				
Richmond		3322	159	30 1605	298 516	10 561	1631	9905 15730	
Surrey	7497	5551	0	1605	516	561	0 3961		
Vancouver		7254	575	131	2653	31		23033	
West Vancouver		683 676	81	18	28	5	719	3696	
White Rock	375	676	61 077	0	0	0	219	1331	
Electoral Area A	99 40	962	277	42	214	9	105 0	1708	
Electoral Area C	46	35 alua far Sur	62	43	9	2		197	
	-uie va		eyisit	1999	as the co	Shect val	ue for 1998 is u	lavallable.	
F	RELATI	VE PERCE	NTAGE	ES:			,		
Coquitlam	45	34	2	11	3	4	0	100	
Langley Township	52	11	13	13	8	3	0	100	
Maple Ridge	26	7	46	5	15	0	0	100	
Surrey	48	35	0	10	3	4	0	100	
ŀ	VERA	GE PERCE	NTAG	E USED	AS REF	RESENT	TATIVE OF GVI	RD:	
Average Mix	43	22	15	10	7	3	0	100	
(CORRE	ECTED REC	YCLA	BLE MA	SSES:				
	ONP	Mxd Ppr	OCC	Glass	Metal	Plastic	TOTAL		
Abbotsford	3104	553	2849	318	202	119	7145		
Burnaby	4155	3959	526	207	829	98	9774		
Coquitlam	2605	1960	120	636	199	222	5742		
Delta	2251	2170	1065	824	583	322	7215		
Langley City	539	351	438	117	37	41	1523		
Langley Township	2607	565	630	652	391	130	4975		
New Westminster	1176	738	158	29	386	17	2504		
North Vancouver City	1696	547	152	65	62	18	2540		
North Vancouver District	3956	1350	310	145	131	40	5931		
Maple Ridge	1644	466	2969	333	965	25	6402		
Pitt Meadows	308	298	19	12	9	3	650		
	000	100	007	100		F 4	1011		

82

144

99

51

65

1944

1306

297 192

143 216

428

512

Port Coquitlam 832

Port Moody 271

Richmond	5153	3681	408	191	419	53	9905
Surrey	7497	5551	0	1605	516	561	15730
Vancouver	10122	8126	1180	523	2947	134	23033
West Vancouver	2470	841	191	89	81	24	3696
White Rock	469	724	94	22	16	6	1331
Electoral Area A	144	985	293	52	222	12	1708
Electoral Area C	46	35	62	43	9	2	197

Table 2-10: City of Burnaby Waste Generation, Recycling & Disposal

MASS OF WAS	STE GENER	ATION (M	GEN):						
Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	8,279	3,602	158,858	52	23	191,600	9985	4344	14330
Mixed Paper	13,025	19,112	158,858			191,600			0
Office Paper	1,824	2,676	158,858	11	17	191,600	2199	3227	5426
Ferrous Metal	1,061	10,914	158,858	7	69	191,600	1280	13163	14443
Glass	2,069	2,979	158,858	13	19	191,600	2495	3593	6088
HDPE	690	1,213	158,858	4	8	191,600	832	1463	2295
Mixed Plastics	3,695	8,541	158,858			191,600			
LDPE	1,663	3,843	158,858	10	24	191,600	2005	4636	6641
Food Waste	5,451	11,116	158,858	34	70	191,600	6574	13407	19982
Yard Waste	5,433	4,261	158,858	34	27	191,600	6553	5139	11692

Total ICI waste generated in 1998= Total ICI waste recycled in 1998= ICI Recycling Rate= # of backyard composters =

164,172 tonnes 67,479 tonnes 41 % 8,968

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	Residential	ICI	Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Composting	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	9,985	4,344	4,155			1,786	5,941		
Mixed Paper			3,959						
Office Paper	2,199	3,227	554			1,326	1,881		
Metal			829						
Ferrous Metal	1,280	13,163	415			5,411	5,825		
Glass	2,495	3,593	207			.1,477	1,684		
Plastics			98						
HDPE	832	1,463	32			601	634		
LDPE	2,005	4,636	32			1,905	1,938		
Food Waste	6,574	13,407		744	0	5,511		744	5,511
Yard Waste	6,553	5,139		1,498	8,004	2,112		1,498	10,116

Total waste disposed in 1998=

129,089 tonnes

Total waste recycled in 1998=

87,526 tonnes

MASS OF WASTE DISPOSED (WIDIS):								
Waste	Total	Total	Waste					
Material	Generation	Recycling	Disposal					
	1998	1998	1998					
	(tonnes)	(tonnes)	(tonnes)					
Newsprint	14330	5,941	8,389					
Office Paper	5426	1,881	3,546					
Ferrous Metal	14443	5,825	8,618					
Glass	6088	1,684	4,405					
HDPE	2295	634	1,662					
LDPE	6641	1,938	4,703					
Food Waste	19982	6,255	13,727					
Yard Waste	11692	11,614	78					
Remainder		51,755	83,962					

MASS OF WASTE DISPOSED (M_{DIS}):

When estimating the masses of wastes in this manner several errors occur however. In eight municipalities it is estimated that more yard waste is composted than is even generated. These municipalities are: Abbotsford, City of North Vancouver, District of North Vancouver, City of Port Coquitlam, City of Richmond, District of West Vancouver and Electoral Area A. Either the yard waste generation estimate by CH2M Hill was too low or the amount of yard waste generated in these municipalities has increased faster than the population. Rather than have negative values for the mass of yard waste disposed in these municipalities (the subtraction of waste generated and waste composted), the generation estimate is ignored and the mass of yard waste disposed is set at zero.

Special modifications are also necessary for Electoral Area A (U.B.C./U.E.L.) and Electoral Area C (Bowen Island/Howe Sound). ICI waste generation is not considered for Electoral Area A in the CH2M report. It appears that U.B.C. was combined with the City of Vancouver from the perspective of ICI waste for that report. As a result, this research uses the ICI waste generation per capita values developed for the City of Vancouver. Another necessary modification at this Electoral Area occurs in response to the fact that accurate data on recycling in 1998 is not available. However, 1999 values are available and are used instead. ICI data on Electoral Area C is also not available. However, personal communication with Mike Stringer has informed this author that the assumption of zero ICI activity from this Electoral Area is acceptable.

2.10 REMAINING WASTE

This thesis assesses specific waste components with the intent that the current participation in source-separation could be more effectively focused on GHG emission reducing activities. It has also been observed that previous greenhouse gas studies limit their accuracy and effectiveness by regarding municipal solid waste as a single entity. While this study analyzed specific components to make the research of greater value, problems still arise. After the eight investigated components of solid waste are removed, there will still be waste remaining. This is waste which does not fall under the categories of newsprint, office paper, ferrous metal, glass, HDPE, LDPE, food scraps or vard trimmings. For purposes of this research, this remaining waste is defined as *Remainder*. The Remainder may include such items as corrugated cardboard, textiles, rubber, aluminum, other plastics in addition to many other materials. Using this category, Remainder, is necessary due to the large number of materials represented in the municipal solid waste stream. Assessing all of the various pieces far outstrips the available time and funding for this work. In fact, in an extensive undertaking by the USEPA (1998) similar to this, only 11 individual components of the MSW stream were analyzed; this was estimated to only account for 55% of total waste generated in the United States.

Three sources of reference are used to determine the materials represented in the Remainder. The most important of these is the CH2M Hill report completed for the GVRD in 1993 (GVRD 1993). Data from Franklin Associates Ltd (FAL 1998) and Tchobanoglous (1993) is also provided to provide readers with a 'ball-park' of estimates by other organizations. This data is presented in the table below.

COMPONENT	PERCENTAGE OF MSW GENERATION	PERCENTAGE OF RESIDENTIAL MSW DISPOSED
	FAL (1998) ¹	Tchobanoglous et al. (1993) ²
Newsprint	5.9%	Total Paper=36%
Office Paper	3.2%	Total Paper=36%
Steel Cans ³	1.3%	5.8
Glass	5.3%	9.1
HDPE	0.6%	Total Plastics=7%
LDPE	0.01%	Total Plastics=7%
Food Scraps	10.4%	8.0
Yard Trimmings	13.4%	17.3
	Total=40.1%	Not applicable

Table 2-11: Waste Percentages

¹ Percentage of 1996 United States generation of MSW.

² Typical Composition of 1990 U.S. residential MSW (including recyclables).

³ It requires noting that the definition of steel cans is narrower than the category of ferrous metal used in this thesis.

Now in 1991, the GVRD disposed of 1,128,000 tonnes of waste from all residential and ICI sources. The 1993 CH2M Hill report estimated what materials constituted this 1,128,000 tonnes. These estimates are provided in the following table (the low and high range estimates have been removed):

Waste Type		Percent of Total
Paper	368700	32.7
Newspaper	68700	6.1
Corrugated Cardboard	108200	9.6
Fine	27000	2.4
Glossy Magazines, Fliers, Books	24300	2.2
Packaging Paper	46300	4.1
Other Paper	94300	8.4
Glass	32900	2.9
Food and Beverage Containers	26500	2.3
Other Glass	6400	0.6
Metal	57800	5.1
Aluminum Food and Beverage	4000	0.4
Ferrous Food and Beverage	14800	1.3
Other Ferrous and Aluminum	25300	2.2
Non-Ferrous	3200	0.3
Other/multi-material	10500	0.9
Plastic	98800	8.8
PET Food and Beverage	1700	0.2
HDPE Food and Beverage	6800	0.6
Film and Bag Plastics (LDPE)	42300	3.7
PVC	9200	0.8
Expanded Polystyrene (PS)	5900	0.5
Other Plastics	14200	1.3
Multi-Resin Materials	18700	1.7
Organics	361000	32.0
Food Waste	95200	8.4
Yard Waste	124100	11.0
Landclearing/landscaping	27700	2.5
Wood Waste	68300	6.1
Miscellaneous Organics	45700	4.0
Rubber	8200	0.7
Used Tires	2200	0.2
Other Rubber	6000	0.5
Natural Textiles and Leather	41300	3.7
Natural Textiles	38100	3.4
Leather	3200	0.3
Other/White Goods	1100	0.1
Bulky Goods	9800	0.9
Construction, Demolition	22600	2.0
Miscellaneous Combustibles	15400	1.4
Non-Combustibles	32900	2.9
Household Hazardous	11300	1.0
Other Materials	66500	5.9
TOTAL =	1,128,000	100.0

Table 2-12: Waste Estimates by CH2M Hill Engineering

Table 2-12 can be altered in two ways. Firstly, the eight investigated components of this research (newsprint, office paper, ferrous metal, glass, HDPE, LDPE, food scraps or yard trimmings) can be removed. For the component, *Other Ferrous and Aluminum*, 80% will be assumed to consist of ferrous metal. Secondly, the remaining materials will be consolidated into their respective categories. The new table is below:

Waste Type	Tonnage Percent of Rema			
Paper	273100	39.2		
Metal	22800	3.3		
Plastic	49700	7.1		
Organics	141700	20.3		
Rubber	8200	1.2		
Natural Textiles and Leather	41300	5.9		
Other/White Goods	1100	0.2		
Bulky Goods	9800	1.4		
Construction, Demolition	22600	3.2		
Miscellaneous Combustibles	15400	2.2		
Non-Combustibles	32900	4.7		
Household Hazardous	11300	1.6		
Other Materials	66500	9.5		
TOTAL =	696,400	100.0		

Table 2-13: Components of the Remainder

The remaining waste fraction, estimated at 62% of the total waste stream, requires investigating from a GHG perspective. Specifically: What is the potential for landfill methane emissions? What is the potential for landfill carbon sequestration? What is the energy to be derived from incinerating the Remainder? If the waste is combustible, does it release biomass carbon or fossil carbon? Does the Remainder contain any reactive nitrogen which could contribute N₂O emissions? These are the necessary questions to determine the GHG consequences of disposing of the Remainder. However, an important fraction of the Remainder is also recycled. The recycling of old corrugated cardboard (OCC) and mixed waste paper (MWP) occurs throughout the GVRD. This is the fate of much of the Remainder. In addition to the GHG implications of disposing of the Remainder in a landfill or incinerator, it is important to assess the GHG benefits or impacts of recycling part of the Remainder. Both disposal and recycling are discussed below.

The first two questions, landfill methane and landfill carbon sequestration, are interrelated due to the partitioning of the carbon available for anaerobic decomposition and the *carbon entering sequestration*. As it is difficult to estimate a carbon storage factor (CSF) for the wastes in Table 2-13, this thesis could default to using the CSF for mixed MSW published in USEPA (1998). This CSF is 0.18 tonnes of carbon sequestered per wet tonne of MSW. As the lignified newsprint and yard waste has already been investigated individually, this author believes it is more appropriate to half this CSF reduce it by 50%. As a result, the CSF used in the Model is assumed to be 0.09 tonnes C per wet tonne of MSW. If this is the *carbon entering sequestration*, what is the *carbon* available for anaerobic decomposition? The carbon to provide methane emissions will be the initial biodegradable carbon which is not sequestered. It will be contributed by paper products (39.2%), organics (20.3%), natural textiles and leather (5.9%) and miscellaneous others. In fact, these pieces represent well over half of the Remainder; 70% will be assumed. For lack of more accurate estimates, this research assumes the carbon content measured for mixed MSW, 40%, is appropriate for this 70% organic fraction. Also a moisture content of 30% is assumed. With these assumptions it is possible to calculate the landfill disposal implications of the Remainder. This is developed in Appendix K.

The next two questions, energy generation and the partition of biomass carbon or fossil carbon, are important for waste incineration. The net energy content of mixed MSW has been reported as 11,600 kJ/kg in USEPA (1998). While this included the materials already investigated individually, it is used here as an approximate energy content of the Remainder. To answer the second question, it is important to take from Table 2-13 that combustible organics consists of paper products (39.2%), organics (20.3%), plastics (7.1%), natural textiles and leather (5.9%) and miscellaneous combustibles (2.2%). By using a carbon content for plastics of 85% (see Appendix G) with the percentage mass of plastics (7.1%), and a negligible moisture content, it can be calculated that each tonne of Remainder contains 60.4 kg of fossil carbon. By using a dry carbon content for biodegradable organics of 50% (in Tchoganoglous et al. (1993) most carbon contents are between 45 and 60%) with the percentage mass of biodegradable organics (approximately 70%), and an assumed moisture content of 30%, it is possible to estimate that each tonne of Remainder contains 245 kg of biomass carbon [1000kg *0.70*(1-(0.30)*0.50 = 245]. Thus, fossil carbon represents only one carbon in 5 or 19.7% of total carbon. As a result, a fifth of all the CO₂ emissions from incineration of the Remainder are attributable to the fossil carbon in plastics. Expressed differently, 0.060 tonnes of fossil carbon will be emitted as CO₂ during the incineration of one tonne of Remainder.

The final question is: Does the Remainder contribute any N_2O emissions? For simplicity purposes, this study assumes that all the reactive nitrogen in MSW is represented in the food and yard wastes already assessed. However, there is a possibility that nitrogen exists in wood wastes and textiles. If future work demonstrates that nitrogen is in important component of the Remainder, this assumption will underestimate the emissions.

The largest component of the Remainder is paper at 39%. This is likely old corrugated cardboard (OCC), magazines and other mixed papers. This is also the portion of the Remainder which is most likely to be recycled to the greatest extent and not disposed of. OCC and mixed waste paper (MWP) are typically two categories of recyclables in the waste field which are appropriate for discussion here. Other potential recyclables could also be plastics other than HDPE or LDPE and metal other than ferrous. However, the masses of these materials are just a fraction of the paper component. As a result, only paper will be evaluated here.

Are there any GHG implications for recycling the OCC and MWP components of the Remainder? MWP probably suffers from the same uncertainty Section 2.6 demonstrated for newsprint and office paper. Section 2.6 developed the assumption that no GHG benefit results by recycling these materials – likely appropriate for MWP. FAL and Tellus estimated the GHG benefit of recycling corrugated cardboard boxes which was published in USEPA (1998). Both of these consulting firms estimated that the manufacturing of recycled cardboard boxes caused *greater* GHG emissions than the manufacturing of virgin cardboard boxes. FAL estimates 1.09 tCO₂e/tonne to produce virgin cardboard and 2.18 tCO₂e/tonne to produce recycled cardboard and 2.18 tCO₂e/tonne to produce recycled cardboard. These emissions include transportation-related emissions. There is a large

spread between these estimates. This author is not very confident with the accuracy of these estimates – they are probably as uncertain as the other paper products. As a result, the safest assumption is to believe that no GHG benefit occurs when recycling OCC and MWP out of the Remainder and since OCC and MWP are being used as proxies for recycling of the Remainder, zero GHG benefit is assumed for Remainder.

2.11 GHG EMISSIONS NOT INVESTIGATED

As there is a tremendous number of sources of greenhouse gases and the use of fossil fuels is so pervasive in Canada, this analysis cannot attempt to quantify all the possible emissions from waste management. There are likely to be thousands of individual sources of GHG emissions resulting from the direct and indirect operations associated with waste management. As a result, the development of this analysis has tried to focus only on the most significant and quantitatively important emissions.

Examples of the GHG emissions not investigated include:

- Coal consumed during the refining of iron ore to produce steel for collection vehicles, transfer trucks and construction of the Burnaby Incinerator.
- Fossil fuels consumed during the construction of the landfills, transfer stations and the Incinerator.
- Greenhouse gases from the upstream production of diesel fuel.
- Greenhouse gases from the upstream production and transmission of natural gas.
- Electricity consumption for waste management facilities (except at the Incinerator, where it was included to demonstrate the minor importance of this issue).
- Displacement of the emissions associated with the manufacture of chemical fertilizers (especially nitrogenous fertilizers) through the use of compost.

It should be mentioned that rough calculations have indicated that construction-related GHG emissions are of virtually no importance when investigating the GHG's per tonne of waste over the lifetime of an incinerator or landfill. Using the Burnaby Incinerator as an example, and by assuming that 1000 tonnes of concrete and 1000 tonnes of steel were used during its construction, it is possible to demonstrate these calculations. Using a published GHG emission factor for cement of 0.5 tCO₂e per tonne cement (Environment Canada 1997a), and assuming that a third of concrete is actually cement, it can be calculated that 170 tCO₂e will result from the 1000 tonnes of concrete in the Incinerator. By using a life-cycle GHG emission estimate developed for the fabrication of steel cans, 4.5 tCO₂e per tonne of steel cans, it is possible to calculate that 4,500 tonnes of CO₂ will be emitted to manufacture the 1000 tonnes of steel used in the Incinerator. However, when these emissions are divided by an assumed 30 year life of the Incinerator which combusts 250,000 tonnes of waste annually, it turns out that only 0.0006 tCO₂e results per tonne of waste over the Incinerator's lifetime. This is less than one kg of CO_2 per tonne of waste. By the response indicated by this rough calculation, it is deemed safe to ignore any construction-related GHG emissions.

2.12 STANDARDS

There are three standards consistently used throughout this report which are noteworthy to minimize the potential for confusion. These are:

- The unit for assessing greenhouse gas emissions.
- The moisture content convention used.
- The consistent use of 'wet' waste or 'as-is' basis for reporting.

Throughout this report, the greenhouse gas emission will be quantified as a unit of tonnes of carbon dioxide equivalent and signified as tCO_2e . The "equivalent" refers to the use of Global Warming Potentials (See Section 2.2) to calculate all GHG's in terms of CO₂. It should be noted that this unit needs to be recognized, since in climate change circles a standardized unit has not yet been developed. Some reports might refer to tonnes of CO₂ while others may refer to tonnes of carbon or MTCE (metric tonnes of carbon equivalent). The conversion from a mass of CO₂ to a mass of carbon is simple enough, it only requires multiplying by the difference in molecular mass:

$$tCO_2 e = \frac{\frac{44g}{\text{mol of } CO_2}}{\frac{12g}{\text{mol of } C}} * \text{MTCE}$$

$$MTCE = \frac{\frac{12g}{mol}}{\frac{44g}{mol}} * tCO_2 e$$

The convention used for calculating moisture content in this study is the wet-weight method of measurement; the method most commonly used in the field of solid waste management (Tchobanoglous et al. 1993). As defined in the engineering handbook, *Integrated Solid Waste Management*, percentage moisture content is the mass of the water divided by the wet mass of the material (ibid).

The masses of all waste components in this report are consistently wet weight, on an as-is basis for typical waste. The use of dry weight for the wastes does occur in several calculations and is specified as such.

Chapter 3

RESULTS & DISCUSSION

The results of the entire GHG analysis are presented in this chapter. These results include the investigation of the GVRD's existing solid waste management system (Section 3.1 - Existing System) and the greenhouse gas response of the eight scenarios assessed (Section 3.2 - Scenarios). These results are presented together with a discussion of their importance; the discussion being primarily concerned with evaluating the emissions for their implications to emissions trading and emissions taxing. In addition, future legislation to reduce GHG emissions, the so called command-and-control regulations, will be discussed in the context of its particular importance to the emissions trading opportunities identified. The Conclusions & Recommendations in Chapter 4 will complete this thesis.

Both positive and negative GHG emissions are presented and discussed in this chapter. Positive GHG emissions contribute to Global Climate Change while negative GHG emissions result from activities which actually reduce GHG emissions and help to offset the positive emissions. These negative GHG emissions are in fact of benefit from a GHG perspective. Readers should be aware that negative emissions and GHG benefits are used interchangeably throughout this chapter. Negative GHG emissions are benefits with no negative sign necessary but when benefits are discussed in this chapter the negative sign in front of the emission will remain.

3.1 EXISTING SYSTEM

Results of this research are the greenhouse gas emission estimates (Worksheet #1) calculated by multiplying the waste tonnages (Worksheet #2) by the appropriate emission factors (Worksheet #3). Both the waste tonnages and emission factors are estimates themselves; their development is described in Chapter 2 - Methodology and the appendices. Results in this thesis are estimated for wastes generated and managed in 1998. All calculations estimate what are the GHG emissions resulting from wastes in that year. Namely, the waste tonnages are for 1998 and the emission factors have been developed to model the approximate emissions to be expected from the management processes. Incineration, composting and recycling are essentially immediate activities, but it is necessary to model landfill methane emissions into the future while remembering that these greenhouse gases are from the wastes disposed in 1998 (and not from waste disposed in other years).

The emission factors, waste mass estimates and GHG emissions from all of the municipalities are provided in Appendix L – *Spreadsheet Program* and Worksheets #1,#2 and #3. In this section, the largest municipality of the GVRD, the City of Vancouver, will be discussed in detail as an example. The discussion of this municipality is readily applicable to the others. Only two significant figures are provided with the emissions

data presented in this section. As a result, slight differences can occur between the numbers here and the values in the spreadsheet.

The crux of this thesis is to create the GHG emission factors. Their development comprised the majority of the effort in this work. However, emission factors are of little use without waste masses to multiply with. Both waste mass estimates and emission factors for the City of Vancouver are presented and analyzed here.

Vancouver is the largest member municipality of the GVRD with a 1998 population of 552,481 and significant ICI activity. While 206,323 tonnes of waste was recycled in 1998, 346,991 tonnes of waste remained for disposal. Of the wastes collected for disposal, 225,740 tonnes went to the Vancouver Transfer Station, 83,761 tonnes went to the North Shore Transfer Station, 22,374 tonnes went to the Coquitlam Transfer Station, 8.899 tonnes went directly to the Vancouver Landfill and 6.217 tonnes went directly to the Burnaby Incinerator. When considering the waste flows out of the transfer stations in 1998, Worksheet #5 – General Parameters calculates that approximately 68% of Vancouver's waste was disposed at the Vancouver Landfill, with the Cache Creek Landfill taking 18% and 14% going to the Burnaby Incinerator. Or as tonnes, 236,061 tonnes was disposed at the Vancouver Landfill, 61,290 was disposed at the Cache Creek Landfill and 49,641 tonnes was combusted at the Burnaby Incinerator. The estimates for each waste component are provided in the table below. The eight materials individually assessed (newsprint, office paper, ferrous metal, glass, HDPE, LDPE, food scraps and vard trimmings) represent 42% of the disposed waste stream and 42% of the recycled stream. The Remainder fraction makes up the remaining 58% of the disposed waste and 58% of the recycled materials.

	Cache Creek	Vancouver	Burnaby		Backyard	Centralized	
	Landfill	Landfill	Incinerator	Recycling	Composting	Composting	TOTAL
Newsprint	4,669	17,984	3,782	15,178			41,614
Office Paper	1,813	6,981	1,468	5,284			15,545
Metal	4,531	17,451	3,670	17,187			42,840
Glass	2,741	10,556	2,220	5,516			21,033
HDPE	891	3,431	722	2,112			7,155
LDPE	2,285	8,801	1,851	5,053			17,990
Food Scraps	7,319	28,190	5,928		1,979	16,837	60,253
Yard Trimmings	1,235	4,758	1,001		3,981	28,112	39,087
Remainder	35,806	137,907	29,000	105,084			307,797
TOTAL	61,290	236,061	49,641	155,414	5,960	44,949	553,314

Table 3-1: Waste Mass	s Estimates f	or the City	of Vancouver ((tonnes)
14010 0 11 11 4010 11140		or the orty		(0011100)

The best-guess emission factors ($tCO_2e/tonne$ of waste) of each of Vancouver's waste management processes are presented in the table below.

				· · ·	- /	
	Cache Creek	Vancouver	Burnaby		Backyard	Centralized
	Landfill	Landfill	Incinerator	Recycling	Composting	Composting
Newsprint	-1.2	-1.2	-0.41	0.0		
Office Paper	0.59	0.83	-0.34	0.0		
Metal	0.035	0.020	-1.2	-2.4		
Glass	0.035	0.020	0.016	-0.37		
HDPE	0.035	0.020	2.1	-1.7		
LDPE	0.035	0.020	2.1	-2.3		
Food Scraps	0.26	0.32	0.010		0.057	0.13
Yard Trimmings	-0.53	-0.50	0.058		-0.032	0.054
Remainder	-0.033	0.095	-0.020	0.0		

Table 3-2: GHG Emission Factors for the City of Vancouver (tCO₂e/tonne)

Important differences can be recognized in the emission factors above. Newsprint and office paper are discussed first. The most favourable disposal method for newsprint is landfilling, not incineration, with the Cache Creek Landfill the preferred site. In fact, landfilling and incineration are of greater benefit than even recycling. Landfilling of newsprint results in lower emissions (-1.2 tCO₂e/tonne for Cache Creek and -1.2 tCO₂e/tonne for Vancouver) than the Burnaby Incinerator (-0.41 tCO₂e/tonne) largely because of landfill carbon sequestration. In fact, switching newsprint from the Incinerator to Cache Creek will reduce GHG emissions by 0.8 tCO₂e/tonne. The calculations in Appendix C – Newsprint Waste Management find that landfill sequestration causes significant GHG benefits (-1.4 tCO₂e/tonne) which more than compensates against the future methane emissions ($0.17 \text{ tCO}_2\text{e}/\text{tonne}$). While the combustion of newsprint at the Burnaby Incinerator generates carbon-neutral energy, some of which is used to offset natural gas consumption at Crown Packaging Limited (CPL), the GHG benefits are a fraction of that caused by landfill sequestration. The emission factors for the two landfills differ because of the slightly higher decay rate used to represent the wet Vancouver Landfill and because of the different transportationrelated emissions. Office paper is delignified and provides far less resistance to anaerobic decomposition than newsprint. As a result, office paper exhibits a completely different GHG response. Office paper disposal at Cache Creek results in 0.59 tCO₂e/tonne, disposal at Vancouver results in 0.83 tCO₂e/tonne but incineration causes -0.34 tCO₂e/tonne. With a greatly reduced carbon sequestration factor (-0.10 tCO₂e/tonne) as compared to newsprint, the future methane emissions (0.80 tCO₂e/tonne for Cache Creek) dominate. Once again the differences with the two landfills derive from decay rates and transportation. Even with the lower energy content of office paper, due to the presence of inert clays and fillers, important GHG benefits result from the generation of this carbon-neutral energy to offset natural gas. Now in the other direction, switching office paper from disposal in Cache Creek to combustion at the Incinerator results in emission reductions of nearly 1 tCO₂e per tonne of office paper. Recycling is estimated to result in 0 tCO₂e/tonne placing it in between incineration and landfilling as the preferred management method.

The four non-biodegradable waste components analyzed, ferrous metal, glass, HDPE and LDPE, greatly simplify matters at the landfills. Since these materials cannot contribute methane emissions, only transportation and equipment-related diesel fuel consumption causes emissions for the landfill disposal of these wastes. However, incineration and recycling processes are quite responsive to these wastes. The recycling of metal back to industry for the manufacture of new products offsets the mineral extraction and smelting which would otherwise be necessary. The utilization of recycled metal by industry results in substantial GHG benefits, -2.4 tCO₂e/tonne, and is actually the largest GHG benefit observed in this research. Part of this benefit can also occur when metal passes through an incinerator. If ferrous metal is contained in the MSW sent to the Burnaby Incinerator, part of this metal is recovered from the ash by magnetic separation and sent to processors for recycling. A GHG benefit of $-1.2 \text{ tCO}_2\text{e}/\text{tonne}$ has been estimated for metal sent to the Burnaby Incinerator to represent this additional recycling opportunity. Inert glass does not have any GHG response to landfilling or incineration (besides transportation) but results in benefits when recycled. Glass cullet has a reduced energy requirement for production when compared against raw materials, thereby causing recycled glass to have a GHG benefit of -0.37 tCO₂e/tonne. The high and low-density polyethylene plastics result in significant GHG emissions when incinerated, 2.1 tCO₂e/tonne. This results from the fact that these materials are made from petroleum products and therefore consist of fossil-carbon. Upon combustion, the resulting fossilbased CO₂ causes a large GHG emission (3.1 tCO₂e/tonne) which is only partly compensated by the energy benefit (-1.1 tCO₂e/tonne). These issues cause incineration to be the least attractive disposal method from a GHG perspective. However, substantial benefits can be realized by recycling plastic. A benefit of $-1.7 \text{ tCO}_2\text{e}/\text{tonne}$ occurs when recycled HDPE replaces virgin production and a benefit of -2.3 tCO₂e/tonne occurs when recycled LDPE also replaces virgin production.

Food scraps and yard trimmings are the last two waste components analyzed individually. Both will decompose anaerobically in a landfill but only yard trimmings will provide significant landfill carbon sequestration (-0.75 tCO₂e/tonne versus -0.09 tCO₂e/tonne for food scraps). Food scraps disposed at Cache Creek result in 0.32 tCO₂e/tonne. This is a combination of future methane (0.40 tCO₂e/tonne), energy generation (-0.06 tCO₂e/tonne), landfill sequestration (-0.088 tCO₂e/tonne) and nitrous oxide emissions (0.038 tCO₂e/tonne). Using a slightly higher decay rate to represent the Vancouver Landfill, the overall emission factor is 0.41 tCO₂e/tonne. The increase is caused by the higher future methane emission. It is valuable to compare this landfill disposal against incineration. Energy generation at the Burnaby Incinerator contributes a benefit of -0.10 tCO₂e/tonne which is largely cancelled by N₂O emissions. Together with the transportation-related emissions, an overall emission factor of 0.010 tCO₂e/tonne is estimated. Diverting food waste from Cache Creek to incineration can provide an emission reduction of 0.33 tCO₂e/tonne. Both backyard and centralized composting result in higher emissions than incineration but are still preferable over landfilling. Backyard composting causes 0.057 tCO₂e/tonne strictly from N₂O emissions. Centralized composting also causes 0.057 tCO2e/tonne from N2O but has been estimated to also release CH₄ (0.020 tCO₂e/tonne) due to inadequate aeration. Since composting does not present any opportunity to generate energy and subsequently offset fossil-based

energy production, it does not allow for the counteracting benefit that incineration has. From a strictly GHG perspective, ignoring any other environmental economic or social issues, it is preferable to incinerate food waste than to compost it.³

Two other management alternatives exist for food waste generated in the GVRD but were not analyzed by this thesis. Kitchen waste disposal units (garburators) likely manage appreciable quantities and International Bio-Recovery in North Vancouver is a new company testing and marketing their aerobic digestion technology. The household waste disposal units send the shredded food waste to the nearest wastewater treatment plant where it is oxidized to CO₂. As this treatment utilizes aerobic decomposition, it is similar to composting but there is energy consumption at the plant required for machinery. International Bio-Recovery uses aerobic digestion so is also similar to composting but may have considerable energy consumption. Steam from natural gas-fired boilers is first used to heat up a food waste slurry (to initiate digestion) and then steam is also used to dry a de-watered slurry to pellets. Electricity consumption is also necessary for the various pumps, aerators, shredders and mixers used at the facility. While it would be valuable to compare this process with traditional composting, its direct competitor, this organization has declined to participate in this research (Pers. comm. Fahimeh Mirminachi).

While readers may have found it thought-provoking that landfilling newsprint is of greater GHG benefit than even recycling, it is equally intriguing that sequestration causes landfill disposal of yard trimmings to be preferable over backyard or centralized composting. The overall emission factor for the disposal of yard trimmings at Cache Creek is -0.53 tCO₂e/tonne and for the Vancouver is -0.50 tCO₂e/tonne. These activities are of greater benefit than incineration (0.058 tCO₂e/tonne), backyard composting (-0.032 tCO₂e/tonne) and centralized composting (0.054 tCO₂e/tonne). Given the choice, landfilling at Cache Creek is the preferred management method for yard trimmings. The significant landfill sequestration of yard waste (-0.75 tCO₂e/tonne) more than compensates against the future methane emissions ($0.18 \text{ tCO}_2\text{e}/\text{tonne}$), and this is using a higher decay rate than used for paper which calculates that 77% of the Carbon Available for Anaerobic Decomposition actually degrades within the 20 year period. Both types of composting are estimated to release N₂O and centralized composting also emits CH₄ as with the food waste, but in contrast, an assumption has been used to approximate the sequestration potential of finished compost. For both composting methods, it is assumed that -0.10 tCO₂e/tonne serves as a GHG benefit.

Based on the assumed properties of the Remainder, as developed in Section 2.3 - Remaining Wastes, the GHG implications of landfilling, incineration and recycling are also developed. Disposal at Cache Creek (-0.033 tCO₂e/tonne) is nearly equivalent to combustion at the Burnaby Incinerator (-0.037 tCO₂e/tonne). With the higher decay rate assumed for the Vancouver Landfill, an emission factor of 0.10 tCO₂e/tonne is estimated. Recycling of the remainder causes a GHG benefit of 0 tCO₂e/tonne.

³ This is surprising result when considering that this author's original interest in this subject came from an attempt to demonstrate the GHG benefits of backyard composting over landfilling. Initially, incineration was not included as a waste management alternative.

The importance of transportation and equipment-related emissions to waste management is a relatively minor issue for landfilling and incineration. This research has found that methane, sequestration, energy benefits or nitrous oxide issues are of much greater value when calculating on a per tonne of waste basis. This fact can be effectively illustrated by sub-dividing some of the calculated emission factors in Table 3-2 into five distinct groups: Transport, Future Methane, Energy Utilization, Carbon Sequestration and Nitrous Oxide. The Transport group contains emissions resulting from curbside collection, transfer station equipment, transport to disposal facility and landfill equipment while the other groups are specific to landfilling or incineration. Using absolute values, all emissions are converted to positive numbers, it is possible to compare the percentage importance of these factors. Two examples are provided below. The first figure compares newsprint disposal at the Cache Creek Landfill, the Vancouver Landfill or at the Burnaby Incinerator. The second figure compares food waste disposal also at the Cache Creek Landfill, the Vancouver Landfill or at the Burnaby Incinerator.

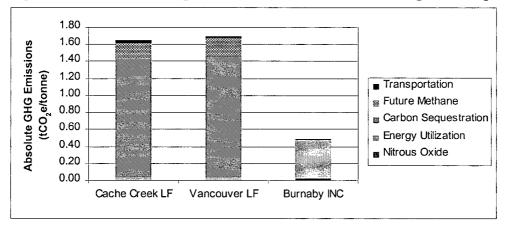
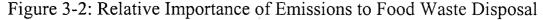
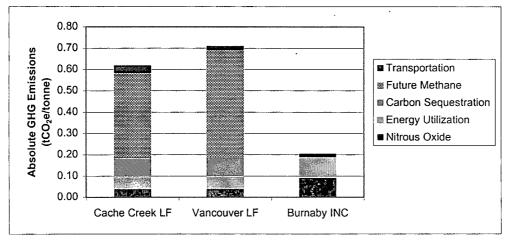




Figure 3-1: Relative Importance of Emissions to Newsprint Disposal

For newsprint disposal, transportation only represents 2% of the absolute GHG emissions at the Cache Creek Landfill, only 1% at the Vancouver Landfill and 3% of emissions at the Burnaby Incinerator. Carbon sequestration is of dominant importance at Cache Creek (86%) and at Vancouver (83%) while energy generation is of greatest importance at the Burnaby Incinerator (95%). During food waste disposal, transportation only represents 6%, 3% or 8% at the Creek Cache Landfill, the Vancouver Landfill or the Burnaby Incinerator. With food waste, future methane is of greatest value during landfilling (64% at Cache Creek and 71% at Vancouver) and energy utilization is the largest percentage during incineration (50%).

Carbon taxation of diesel fuel and other fossil fuels is a very real possibility in 5 or 10 years and could have an impact on the economics of waste transportation. To stave off any surprises, it would be in the GVRD's best interest to assess the unknown effect increased fuel costs could have on the system. However, the GVRD should be more concerned with future taxation on landfill methane emissions or the uncertain nitrous oxide releases for these have much greater quantities.

The Waste Mass Estimates of Table 3-1 are multiplied by the GHG Emission Factors of Table 3-2 to determine the GHG Emissions in Table 3-3 below.

			2				
·	Cache Creek	Vancouver	Burnaby		Backyard	Centralized	
	Landfill	Landfill	Incinerator	Recycling	Composting	Composting	TOTAL
Newsprint	-5800	-22000	-1500				-29,300
Office Paper	1100	5800	-500				6,400
Metal	160	340	-4300	-40000			-43,800
Glass	96	210	35	-2000			-1,659
HDPE	31	68	1500	-3600			-2,001
LDPE	80	170	3900	-11000			-6,850
Food Scraps	2400	12000	56		110	2100	16,666
Yard Trimmings	-660	-2400	58		-130	1500	-1,632
Remainder	-1200	13000	-580				11,220
TOTAL	-3,793	7,188	-1,331	-56,600	-20	3,600	-50,956

Table 3-3: GHG Emissions from the City of Vancouver (tCO₂e)

The City of Vancouver's waste management in 1998 is estimated to have a GHG emission of -50,956 tCO₂e, or a GHG benefit of about -51,000 tCO₂e. However, there is a range between +54,000 tCO₂e for the high estimate and -106,000 tCO₂e for the low estimate. The lion's share of the emission reduction is contributed by recycling operations -56,600 tCO₂e during the management of 155,414 tonnes of material. Of particular note is the fact that while 236,091 tonnes of waste was disposed at the Vancouver Landfill in 1998, only 7,188 tCO₂e is estimated to be emitted as greenhouse gases in the next 20 years. In fact, for the 61,290 tonnes of waste disposed at Cache Creek in 1998, a GHG benefit of -3,800 tCO₂e is estimated and for the 49,641 tonnes combusted at the Burnaby Incinerator, a GHG benefit of -1,300 tCO₂e occurs. Contrary to conventional understanding, the Cache Creek Landfill actually helps reduce the atmospheric concentrations of greenhouse gases rather than contribute to their increases (except if full decomposition with low gas collection is modelled). Backyard composting is estimated to result in -20 tCO₂e during the management of 5,950 tonnes of food and yard waste. Centralized composting results in 3,600 tCO₂e during the processing of 44,949 tonnes of food and yard waste. It is important to recognize that centralized composting is estimated to be a GHG contributor while the Cache Creek Landfill and the Burnaby Incinerator are actually of GHG benefit.

The total GHG emission estimates for all of the 20 municipalities analyzed are presented in the following table.

· · ·	Cache Creek	Vancouver	Burnaby		Backyard	Centralized	
	Landfill	Landfill	Incinerator	Recycling	Composting	Composting	TOTAL
City of Abbotsford	-3000	1.0	0	-4600	-5.0	210	-7,394
City of Burnaby	-1,200	52	-1600	-20,000	-5.0	1,100	-21,653
City of Coquitlam	-5,600	130	-21	-3,100	-2.0	270	-8,323
Corporation of Delta	-350	370	-2.2	-5,700	-5.4	320	-5,368
City of Langley	-880	10	-0.32	-1,000	-0.3	39	-1,832
Township of Langley	-2,300	-5.0	40	-6,500	-2.4	240	-8,527
D. of Maple Ridge	-1,500	6.0	1.5	-3,100	-2.3	150	-4,445
New Westminster	-770	13	-210	-4,900	-1.2	190	-5,678
C. of North Vancouver	-500	-1.6	40	-4,800	-1.4	290	-4,973
D. of North Vancouver	-1,400	55	-620	-3,100	-4.5	470	-4,599
D. of Pitt Meadows	-560	-7.4	-0.46	-240	-0.4	10	-799
City of Port Coquitlam	-590	32	-1.6	-3,500	-3.1	170	-3,893
City of Port Moody	-780	-9.1	0.07	-1,300	0.0	110	-1,979
City of Richmond	-300	1,500	-140	-24,000	-4.3	1,400	-21,544
City of Surrey	-12,000	-550	11	-19,000	-3.7	940	-30,603
City of Vancouver	-3,800	7,400	-1300	-57,000	-13	3,600	-51,113
D. of West Vancouver	-310	8.3	-23	-1,900	-1.7	230	-1,996
City of White Rock	-14	320	0.03	-420	-1.1	20	-95
Electoral Area A	0.0	170	0.0	-890	0.0	38	-682
Electoral Area C	-97	-0.9	19	-29	0.0	0.4	-108
TOTAL	-35,951	9,493	-3,807	-165,079	-57	9,797	-185,604

The overall contribution of the GVRD's waste management system to Global Climate Change is a best-guess GHG emission of -184,970 tCO₂e, or about -180,000 tCO₂e, for the wastes of 1998. The high estimate for the GVRD is +116,000 tCO₂e and the low estimate is -325,000 tCO₂e. The overall total in the table above (-185,604) sums up the values for which only two significant figures are provided – this causes a slight difference. The system actually reduced GHG emissions by 180,000 tCO₂e in 1998. Of course this estimate is highly dependant on where the boundaries of the investigation are drawn and what assumptions are made. The GHG benefits (the negative emissions) are largely a result of the utilization of recyclables to offset virgin production by industry, landfill carbon sequestration and energy generation during incineration. These benefits more than compensate the landfill methane, nitrous oxide or diesel fuel-transportation emissions. Furthermore, installing electricity generation at the Burnaby Incinerator or increasing the gas collection at landfills (two of many possible examples), could even increase these GHG benefits.

There are important caveats to the GVRD estimate presented above which require addressing. The future methane generation included in the previous table does not represent the ultimate decomposition of the organic materials but rather a time-dependent estimate for the 20 years after disposal. Based on the decay rate used, the Model calculates that just over half of the CAAD of the paper products and that just over threequarters of the CAAD of food and yard waste decomposes in 20 years. As a result, there is a strong potential for methane emissions to occur after 20 years, thus causing the Model to underestimate the complete future impact. Another caveat regards the valuable contribution of recycling to the GVRD system. The GHG benefit of recycling at the GVRD was estimated at -165,079 tCO₂e. One could argue that this benefit is outside the authority of the GVRD (it is realized by industry) and as such should not be included here. Without recycling acting as a strong counteracting force to CH₄, N₂O, transportation-CO₂ and others, the importance of these emissions increases. These caveats serve as an excellent transition to the next section, *Scenarios*. In response to the first caveat an ultimate decomposition scenario is presented and because of the second issue, another scenario removes the GHG implications of recycling from the Model.

3.2 SCENARIOS

The results of eight scenarios which can be programmed into the Model are presented in this section. The first five scenarios represent what could be future changes to the existing waste management system. These include such things as improvements in landfill methane collection, improvements in energy generation during incineration and allowing incineration to replace landfill disposal. The remaining scenarios demonstrate the response of the Model to changes in three controversial aspects of the GHG emission estimates. These aspects include allowing complete decomposition of the Carbon Available for Anaerobic Decomposition (CAAD), the removal of landfill carbon sequestration from the Model and the removal of any GHG benefits from recycling activities from the Model. Each of these scenarios are presented and discussed in detail in this section. All of these scenarios are discussed by comparing them to the existing system which was estimated to have an overall GHG impact of -180,000 tCO₂e. However, the spreadsheet carries all values forward (not just significant figures) so the overall GHG emissions used for the existing system is actually -184,970 tCO₂e. This existing system is the base-case against which the scenarios need to be analyzed so as to determine if the changes increase or decrease emissions. Units discussed in this section are tCO_2e/yr – while emissions were calculated for the wastes of 1998. By assuming that successive years have much the same masses and characteristics it is possible to extrapolate the emissions to future years as well. The actual programming changes necessary for the Model to determine these scenarios are described in Section 2.8.3 -Modelling Scenarios.

Landfill gas collection for flaring or energy utilization is of vital importance from the perspective of methane gas emissions to the atmosphere. While the spreadsheet estimates the GHG emissions of GVRD waste management in 1998, it is necessary to model the future methane emissions resulting from anaerobic decomposition at the landfills. Not only is the estimated future methane generation important but so is the question of what happens to gas collection in the future. The Model assumes that gas collection, either for flaring or energy utilization, will increase over the current rate and that an increasing fraction is used for energy. This is a safe assumption given the current provincial and federal regulatory interest in LFG to cause reductions in the national GHG emissions

inventory. This increasing gas collection may be in response to new legislation or to avoid paying new GHG emission taxes. Currently, the Cache Creek Landfill collects and flares an estimated 43% of generated methane and the Vancouver Landfill collects and flares an estimated 22%. Both of these facilities are assumed in the Model to linearly increase their collection so that by the year 2020, 75% of generated methane is captured and used for energy. What happens if these assumed improvements do not actually occur? Letting the current collection efficiency remain constant for the next 20 years is Scenario #1.

Scenario #1 results in +109,000 tCO₂e/yr, a difference of 290,000 tCO₂e just for the waste of one year, 1998. These are the emissions potentially available for emissions trading if the GVRD was to implement the LFG collection improvements as assumed in the Model. As indicated in Section 1.4, trading of emission reduction credits can be available to any organization that voluntarily reduces its own GHG emissions, i.e. it was not instructed to reduce by legislation. Assuming \$5 will be the average market value for a tonne of CO₂e over the next two decades, there could be almost \$1.5 million available each year when an outside party purchases the emission credits of the GVRD. This could be a significant source of revenue to finance the actual LFG improvements.

A very real modification to this 290,000 tCO₂e/yr credit for emission trading would be in the situation where legislation only goes part of the way to the methane collection improvements assumed. In this case, crediting would only be available to the voluntary emission reductions over and above that stipulated by regulations. This 290,000 tCO₂e/yr credit would be appropriately decreased by the LFG improvements already necessary by legislation.

The second scenario, decreasing the fraction of steam sent to CPL from the current 56% to 37%, results from the fact that CPL has informed the GVRD that they will have a reduced need for steam in the future. Less steam used by CPL means reduced GHG benefits because this steam will no longer be displacing natural gas consumption. This scenario causes the total GVRD emissons to become $-161,000 \text{ tCO}_2\text{e/yr}$, an increase of 24,000 tCO₂e/yr. Less steam offsetting the natural gas consumption at CPL logically removes part of the GHG benefit this Model had originally identified.

The GVRD together with Montenay Inc., the organization contracted to operate the Burnaby Incinerator, is exploring the potential for electricity generation at the Incinerator. This includes installing a turbo-generator and improving the boiler efficiency by raising the steam temperature from the current 250°C to 400°C. Scenario #3 demonstrates the significant GHG ramifications of this electricity generation since it offsets low efficiency natural gas electricity generation by the Burrard Thermal facility of BC Hydro. Using the new steam utilization by CPL of 37% and assuming about 6% of steam is used internally for plant operation, there is a remaining 57% of the steam available to make electricity. This improvement results in the overall GVRD emissions becoming $-216,000 \text{ tCO}_2\text{e/yr}$, a reduction of 55,000 tCO₂e/yr when compared to the $-161,000 \text{ tCO}_2\text{e/yr}$ GVRD emissions when 37% of steam went to CPL but no steam was used for electricity generation (Scenario #2). This entire emission reduction, 55,000

 tCO_2e/yr , could all be claimed as a credit, for it resulted from a voluntary project. Assuming once again that these credits would be sold at $5/tCO_2$, about 275,000 in revenue could be generated annually by implementing this project.

While extensive modelling of 8 waste management components and the Remainder was performed to estimate this 55,000 tCO₂e/yr emission reduction, it is also possible to back calculate this amount as an effective check. About 820,000 tonnes of steam is generated annually at the Burnaby Incinerator with an energy content of 2.85 GJ/tonne steam for a total energy production of 2,337,000 GJ (Pers. comm. Richard Holt). Allowing 57% of this steam to be converted to electrical energy, at an efficiency of 32%, as an offset against Burrard Thermal (with a GHG emission intensity of 0.147 tCO₂e/GJ), results in a GHG benefit of 62,661 tCO₂e. The Model estimates the GHG benefit of generating electricity at the Incinerator as 55,000 tCO₂e while the back-calculation determines a slightly greater GHG benefit of 63,000 tCO₂e, an increase of 15%. Assuming that all the efficiencies at the Incinerator are correct, it is likely the energy content of the waste which is slightly off. The Model must be slightly underestimating the electrical energy which can be made at the Incinerator and therefore underestimating the GHG benefit. It is unclear where this energy content is being underestimated. This author hopes that future research will be able to tighten up these numbers so as to reduce any inaccuracies. For this thesis it will suffice to state that energy benefits of incineration may be slightly underestimated and could be larger in reality.

The fourth scenario is also a potential management change for the future. This scenario entails replacing all landfilling with incineration. This scenario uses a hypothetical Burnaby Incinerator as the disposal method even though the current facility is operating at capacity and could not accept any additional waste. The assumption that only 37% of steam is used by CPL and no steam is used to make electricity has an important effect on this scenario. The GVRD emissions become $-67,000 \text{ tCO}_2\text{e/yr}$ when this scenario is implemented; an increase of 118,000 tCO₂e/yr from the base-case. As the GHG emissions respond by increasing when incineration replaces landfilling, it would appear that landfill disposal is the preferred management method. However, the landfill methane is only estimated for 20 years and does not model the full impact of potential methane. By modelling the ultimate (complete) decomposition of the CAAD, essentially Scenario #6, it is possible to estimate the life-cycle impacts of landfilling. (Though this discussion is jumping ahead, it will suffice to state that ultimate decomposition in the existing GVRD system causes overall emissions of $+147,000 \text{ tCO}_2\text{e/yr.}$) Now the difference between --67,000 tCO₂e/yr and +147,000 tCO₂e/yr is a substantial GHG increase of 214.000 tCO₂e/yr. As a result, switching from landfilling to incineration could result in a GHG benefit of 214,000 tCO₂e/yr. Furthermore, this is incineration in which only 37% of the steam is used for energy; 6% is assumed to be used internally and 57% of the steam is unutilized. What happens to the emissions when greater energy generation occurs? Scenario #5 demonstrates the answer.

While still hypothetically having incineration replace landfilling and 37% of steam going to Crown, Scenario #5 includes allowing 57% of the steam to generate electricity. The overall GHG emissions drastically decrease to $-303,000 \text{ tCO}_2\text{e/yr}$; this is an emission

reduction of 118,000 tCO₂e/yr from the existing GVRD system and an emission reduction of 450,000 tCO₂e/yr from the ultimate decomposition variant discussed above. Both Scenarios #4 & #5 represent emissions trading opportunities well worth investigating. Depending on the baseline to compare against and still assuming $5/tCO_2e$, Scenario #5 could realize between \$1.3 million and \$2.5 million each year just in credit trading revenue.

While the result of Scenario #6 has already been used for comparison purposes, this scenario has not been properly discussed. Landfill methane generation is a highly uncertain issue to accurately model. A 20 year time period was arbitrarily chosen so that appreciable quantities of methane would result while still staying within what could be a foreseeable future. During this reference time period not all of the Carbon Available for Anaerobic Decomposition (CAAD) will be realized. Thus, a limitation of this modeling is that it doesn't represent the complete impact of landfill disposal. Whereas incineration, composting and recycling are essentially immediate activities, the ultimate GHG implications of landfilling are not even ascertained after estimating 20 years of methane generation. Anaerobic decomposition of the organic waste, and methane/GHG emissions can result well beyond 20 years after disposal. To determine the complete life-cycle impact of landfilling, the decay rate constant needs to be increased so that all of the CAAD decomposes within the 20 years. This is Scenario #6; using the same assumed improvements in the LFG collection effectiveness at Cache Creek and Vancouver, it is estimated that the GVRD emissions are +147,000 tCO₂e/yr. This is an increase of 330,000 tCO₂e/yr over the existing system and demonstrates a possible complete impact of landfilling. While in the base-case, the Cache Creek Landfill pathway resulted in overall emissions of -36,000 tCO₂e/yr and the Vancouver Landfill pathway resulted in overall emissions of +9,500 tCO₂e/yr, under complete decomposition these emissions significantly increase. Disposal at the Cache Creek Landfill causes GHG emissions of +180,000 tCO₂e/yr and disposal at the Vancouver Landfill causes GHG emissions of +120,000 tCO₂e/yr. The GVRD organization has complete freedom to model methane in whichever manner it deems appropriate. However, consideration is required when trying to claim credits for all the prevented future methane emissions (as the future is obviously highly uncertain). This author has become acutely aware of this important issue after being exposed to individuals attempting to claim GHG credits by the diversion of organic waste from landfill disposal. While preventing future methane emissions will indeed occur, potential abuse can be a problem because overestimating methane, and thus overestimating the GHG benefits of diversion, is easily performed.

Scenario #7 is concerned with demonstrating the importance of the controversial landfill carbon sequestration issue to this model. If the GVRD was to decide that landfill carbon sequestration was an unacceptable GHG benefit to be included in the Model, it could be removed for the calculation of the GVRD's overall impact on the atmosphere. It requires noting that landfill carbon sequestration is still necessary to appropriately partition the organic-carbon into the fraction that can anaerobically decompose, the CAAD. Removing sequestration as a GHG benefit causes the GVRD system to have a GHG emission of 109,000 tCO₂e/yr. Thus emissions increase by 294,000 tCO₂e/yr; the Cache Creek Landfill goes from a previous -36,000 tCO₂e/yr to 130,000 tCO₂e/yr and the

. 0

Vancouver Landfill goes from 9,500 tCO₂e/yr to 140,000 tCO₂e/yr. Landfill carbon sequestration and recycling (as demonstrated in the last scenario) are extremely important in enabling the GVRD waste management system to be a net negative emitter of greenhouse gases.

The last scenario, Scenario #8, demonstrates the removal of any recycling GHG benefits from the Model. One could argue that emissions differences by manufacturing industries as a result of material choices are outside the authority of the GVRD waste management system. As a result, allowing the Model to include this GHG benefit to counteract such positive emissions like CH₄, N₂O or transportation-CO₂, would be inappropriate. Removing this benefit, just as with landfill carbon sequestration, has a tremendous effect on the overall GVRD emissions. The emission of the system becomes -21,000 tCO₂e/yr for an increase of 164,000 tCO₂e/yr. Allowing a recycling benefit to be claimed by the organization which allowed it to become a reality is entirely valid, in this author's opinion. In fact, aggressive expansion of the existing recycling activities would result in GHG benefits which the GVRD should attempt to claim ownership of. This trading could partially or fully offset the cost for the recycling expansion.

A number of conclusions and recommendations result from these eight scenarios. These are provided in the next chapter.

Chapter 4

CONCLUSIONS & RECOMMENDATIONS

The GVRD waste management system is not a net emitter of greenhouse gases to the atmosphere. In fact, this research has estimated that the wastes of 1998 prevented 180,000 tCO₂e emissions. This can also be interpreted as a GHG benefit of 180,000 tCO₂e. This benefit largely results from landfill carbon sequestration and recycling activities with some benefit from energy generation at the Burnaby Incinerator. Important GHG emissions identified by this research include landfill CH₄, CO₂ released during the combustion of diesel fuel and plastics, and N₂O emissions. The scenarios of the previous chapter demonstrate the critical importance that future management changes can have on the overall GVRD emissions. This is of particular relevance when analyzed from the perspective of emissions trading. The conclusions derived from the scenarios are the following.

- The difference between pursuing improvements in LFG collection and doing nothing could be almost 300,000 tCO₂e/yr an enormous amount if all available for trading.
- The initiation of electricity generation could reduce emissions by 55,000 tCO₂e/yr. There is no question about whether this can be claimed as a credit because the benefits result from a voluntary project. At \$5/tCO₂e, this project could bring in nearly \$300,000 annually just in credit trading; not to mention the value of the electricity when sold to BC Hydro. Furthermore, the Model may actually be slightly underestimating these benefits.
- Considering incineration as a replacement for landfill disposal could bring in credits of 140,000 tCO₂e/yr when electricity generation is provided. Trading revenue well over \$1 million each year is a very real possibility.
- The future methane liability of landfilling requires extensive consideration, for when ultimate decomposition is modeled for the future, the full life-cycle environmental cost of landfill disposal is significant; an emission increase of over 300,000 tCO₂e/yr was estimated from ultimate decomposition.
- Landfill carbon sequestration and recycling enable the GVRD to be a negative emitter of greenhouse gases but the former is controversial and the latter can be argued as an inappropriate for the GVRD to claim credit for.

A final product of this research is a spreadsheet model to quantify the GHG emissions from GVRD solid waste management. This is a flexible Model which can illustrate the positive or negative impacts that management changes can have on GHG emissions to the atmosphere. The Model could be of great value in helping to identify emissions trading opportunities. The following are a number of recommendations for the GVRD which result from this research.

- To strongly encourage the GVRD to begin actively participating in emissions trading to generate revenue or to bank credits in anticipation of future regulatory requirements.
- To investigate improving the LFG collection system at the Cache Creek Landfill (Engineers at the City of Vancouver are currently in the process of upgrading collection at the Vancouver Landfill) and claiming emissions credits for the voluntary portion of this project.
- To investigate electricity generation at the Burnaby Incinerator to generate revenue from emissions trading and from the sale of energy.
- To consider the transition away from landfill disposal, because of the long-term methane liability, and towards incineration, because of the bioenergy potential (this transition can also be facilitated by trading).
- To expand the recycling of metal, glass and plastic materials of the waste stream. This could be funded by claiming the GHG credits from the emission benefits (while current recycling activities occurred without any GHG considerations, expansion of the activity is a fair opportunity to claim GHG credits).
- To expand the backyard composting of food waste when landfilling is the disposal alternative. This is of particular relevance to municipalities such as the City of Vancouver and the City of Coquitlam where a high percentage of waste is historically landfilled. Expansion of the existing participation in backyard composting would also be available for trading.
- To reevaluate the current emphasis on paper recycling. From a strictly GHG perspective, the Model has estimated that newsprint disposal or incineration is preferable to recycling and that the incineration of office paper is also preferable to recycling. The combustion of paper products for bioenergy generation or the landfill sequestering of newsprint maybe more valuable than recycling.
- To assess other components of the MSW stream, such as corrugated cardboard or mixed paper, so as to decrease the size of the Remainder.
- To initiate research on the potential for N₂O emissions at the wastewater treatment plants managing landfill leachate and the potential for thermal N₂O formation during waste incineration. (In a side point, an investigation of the GVRD wastewater treatment plants for N₂O emissions and for potential bioenergy generation from the anaerobic digestors would also be valuable.)
- To initiate research in landfill carbon sequestration to increase the understanding of the local situation.
- To evaluate what impact the carbon taxation of diesel fuel will have on the current economics of waste transport.
- To consider bringing in new staff to identify and implement GHG reducing projects. Combined with emissions trading, these individuals could conceivably pay for themselves while resulting in environmental benefits.
- To assess the aerobic digestion, anaerobic digestion and the new ethanol synthesis technologies as solid waste management alternatives to landfilling or incineration.

A final recommendation results from the author's opinion that the GVRD should remain cautious about selling valuable GHG credits too cheaply. Enormous potential exists for

these credits to drastically increase in value. While the trading value of CO_2 currently languishes at about \$1 per tonne, it could rapidly rise to \$5, \$10 or even \$20 once scarcity hits this new commodity. Extensive consideration should be given to the banking of these credits for future use and for limiting the length of trading contracts so as not to be locked in at a low price.

In closing, it is important to recognize that there is uncertainty in the modelling performed for this research. The understanding of many of the issues in this report is its infancy. Research is necessary to decrease the uncertainty. It is hoped that a combination of future effort by the GVRD, university researchers, consultants and members of federal and provincial departments will expand upon these ideas. The environmental and economic benefits could be considerable indeed.

BIBLIOGRAPHY

5.1 REFERENCES

Abbatt, J.P.D., and M.J. Molina. 1993. *Status of Stratospheric Ozone Depletion*. Annu. Rev. Energy Environ., 18, 1-29.

Abitibi-Consolidated Inc. 1999. Meeting the Challenge of Climate Change: Update on Energy Use and Greenhouse Gas Emission Inventory 1998 vs 1990. Submission to the Voluntary Challenge & Registry, available at www.vcr-mvr.ca

Alcamo, J. and E. Kreileman. 1996. The Global Climate System: Near Term Action of Long Term Protection. Netherlands: National Institute for Public Health and the Environment. In: Rolfe, C. 1998. Turning Down the Heat. West Coast Environmental Law Research Foundation.

American Geophysical Union. February 2, 1999. Position Statement: Climate Change and Greenhouse Gases. EOS: Transactions of the AGU, 80(5), 49.

Aumonier, S. 1996. The Greenhouse Gas Consequences of Waste Management – Identifying Preferred Options. Energy Convers. Mgmt., 37(6-8), 1117-1122.

Aylesford Newsprint Ltd. 1998. Newsprint: A Life Cycle Study. Prepared by Ecobalance UK. Summary Paper.

Ayres, R.U., W.H. Schlesinger, and R.H. Socolow. 1994. Human Impacts on the Carbon and Nitrogen Cycles. Industrial Ecology and Global Change. Ed by R. Socolow, C. Andrews, F. Berkhout & V.Thomas, Cambridge University Press, New York, 121-155.

Ballestero, T.P. and E. Douglas. 1996. Comparison Between the Nitrogen Fluxes from Composting Farm Wastes and Composting Yard Wastes. Trans. Am. Soc. Agric. Engrs., 39(5), 1709-1715.

Baldwin, T.D., J. Stinson and R.K. Ham. 1998. Decomposition of Specific Materials Buried within Sanitary Landfills. Journal of Environmental Engineering., 124(12), 1193-1202.

Barlaz, M.A. 1998. Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills. Global Biogeochemical Cycles, 12(2), 373-380.

Barlaz, M.A., R.K. Ham and D.M. Schaefer. 1989a. *Mass-Balance Analysis of Anaerobically Decomposed Refuse*. Journal of Environmental Engineering, 115, 1088-1102.

Barlaz, M.A., D.M. Schaefer and R.K. Ham. 1989b. Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Applied and Environmental Microbiology, 55, 55-65. In: Bogner, J. and K. Spokas. 1995. Carbon Storage in Landfills. In: Soils and Global Change. Edited by R. Lal, J. Kimble, E. Levine and B.A. Stewart, CRC Press Inc.

Barton, P.K. and J.W. Atwater. 2000. *Nitrous Oxide Emissions and the Anthropogenic Nitrogen in Wastewater & Solid Waste*. Submitted to the Journal of Environmental Engineering (ASCE) for publication.

Barton, P.K, D.N. Bird and J.W. Atwater. 1999. Composting: An Action that Reduces Greenhouse Gas Emissions? Proceedings of the International Composting Symposium, Halifax, Canada, September 19-23, 1999.

BC Hydro. 2000. *BC Hydro's Request for Greenhouse Gas Offset Proposals*. Available at http://eww.bchydro.bc.ca/environment/ghg/index.html

BC Hydro. 1998. 1998 Report on the Environment. Prepared by Corporate Environment Department.

Beauchamp, E.G. 1997. Nitrous Oxide Emission from Agricultural Soils, Can. J. Soil Sci., 77(2), 113-123.

Beline, F., J. Martinez, D. Chadwick, F. Guiziou, and C.-M. Coste. 1999. Factors affecting Nitrogen Transformations and Related Nitrous Oxide Emissions from Aerobically Treated Piggery Slurry. J. Agric. Engng. Res., 73, 235-243.

Biermann, C.J. 1996. Handbook of Pulping and Papermaking. Second Edition, Academic Press Inc, U.S.A.

Bleken, M.A., and L.R. Bakken. 1997. The Nitrogen Cost of Food Production: Norwegian Society. Ambio, 26(3), 134-142.

Bogner, J. and K. Spokas. 1995. *Carbon Storage in Landfills*. In: Soils and Global Change. Edited by R. Lal, J. Kimble, E. Levine and B.A. Stewart, CRC Press Inc.

Bogner, J.E. 1992. Anaerobic burial of refuse in landfills: increased atmospheric methane and implications for increased carbon storage. Ecological Bulletins, 42, 98-108.

- Börjesson, G., and B.H. Svensson. 1997. Nitrous oxide emissions from landfill cover soils in Sweden. Tellus, 49B, 357-363.
- BNMA (British Newsprint Manufacturer's Association). 1995. Recycle or Incinerate? The Future for Used Newspapers: An Independent Evaluation. BNMA, Swindon, UK. In: Collins, L. 1996. Recycling and the Environmental Debate: A Question of Social Conscience or Scientific Reason? Journal of Environmental Planning and Management, 39(3), 333-355.
- CANFOR (Canadian Forest Products Ltd.) 1999. Progress report submission to the Voluntary Challenge & Registry, available at www.vcr-mvr.ca
- Cockram, R. 1994. Recycling and incineration: An ideal mix for wastepaper. Pulp & Paper International. 36(5), 73-75.
- Collins, L. 1998. *Renewable energy from wood and paper: technological and cultural implications*. Technology in Society, 20, 157-177.
- Collins, L. 1996. Recycling and the Environmental Debate: A Question of Social Conscience or Scientific Reason? Journal of Environmental Planning and Management, 39(3), 333-355.
- CPPA (Canadian Pulp and Paper Association). 1999. Reference Tables: 1999. Published by CPPA.
- CRA (Conestoga-Rovers & Associates). 1999. Final Report: Vancouver Landfill Gas Management System Project I. Prepared for the City of Vancouver.
- CSR (Corporations Supporting Recycling, Environment and Plastics Industry Council and Environment Canada). 1999. Integrated Waste Management Workshop for Municipalities: Participants Manual and Model Disks. Held October 20, 1999, in London, Ontario.
- Cummings, S.P. and C.S. Stewart. 1994. *Newspaper as a Substrate for Cellulolytic Landfill Bacteria*. Journal of Applied Bacteriology. 76, 196-202.
- Curtis, H. and N.S. Barnes. 1989. Biology. Fifth Edition. Worth Publishers, New York.
- Czepiel, P.M., B. Mosher, P.M. Crill and R.C. Harriss. 1996. *Quantifying the effect of oxidation on landfill methane emissions*. Journal of Geophysical Research. 101(D11), 16,721-16,729,
- Czepiel, P., E. Douglas, R. Harriss and P. Crill. 1996. Measurements of N₂O from Composted Organic Wastes. Envir. Sci. & Tech., 30(8), 2519-2525.
- Czepiel, P., P. Crill, and R. Harriss. 1995. Nitrous Oxide Emissions from Wastewater Treatment, Envir. Sci. & Tech., 29(9), 2352-2356.
- de Soete, G. 1993. "Nitrous oxide from combustion and industry: chemistry, emissions, and control." *Proceedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emissions Inventories and Options for Control*, Ed by A.R. van Amstel, RIVM Report No. 481507003, Bilthoven, The Netherlands, 287-337.

Dunn, S. 1999. Scientific Society Speaks Out on Climate. WorldWatch, 12(3), 10-11.

- Eleazer, W., W.Odle, Y.Wang and M.A.Barlaz. 1997. *Biodegradative Analysis of Municipal Solid Waste in Laboratory-Scale Landfills*. Environmental Science & Technology. 31(3), 911-917.
- Environment Canada. 1999. Canada's Greenhouse Gas Inventory: 1997 Emissions and Removals with Trends. Prepared by F. Neitzert, K. Olsen and P. Collas, Pollution Data Branch, Air Pollution Prevention Directorate. En49-8/5-9E.
- Environment Canada. 1997a. *Trends in Canada's Greenhouse Gas Emissions (1990-1995)*, Prepared by Jaques, A., F.Neitzert and P.Boileau, Pollution Data Branch, Air Pollution Prevention Directorate. En 49-5/5-8E.
- Environment Canada. 1997b. A Matter of Degrees: A Primer on Climate Change. En1-21/1-1997E.
- Environment Canada. 1978. Municipal Refuse Statistics for Canadian Communities over 100,000: 1976-1977. Prepared by Bird & Hale Inc for the Waste Management Branch of the Environmental Protection Service.
- Erisman, J.W., T. Brydges, K. Bull, E. Cowling, P. Grennfelt, L. Nordberg, K. Satake, T. Schneider, S. Smeulders, K.W. Van der Hoek, J.R. Wisniewski, and J. Wisniewski. 1998. *Summary Statement First International Nitrogen Conference*. Environ. Pollut., 102(S1), 3-12.
- Eschenroeder, A. 1999. *Greenhouse Gas Dynamics of Municipal Solid Waste Alternatives*. Proceedings of the Air & Waste Management Associations Second International Specialty Conference on Global Climate Change, Oct 13-16, 1998.
- Firestone, M.K., and E.A. Davidson. 1989. Microbiological Basis of NO and N₂O Production and Consumption in Soil. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, Ed by M.O. Andrae and D.S. Schimel, New York, Wiley, 7-21.

- FAL (Franklin Associates Ltd.) 1994. The Role of Recycling in Integrated Solid Waste Management to the Year 2000. Prepared for Keep America Beautiful, Inc. Stamford, CT, USA.
- Gaines, L.L and M.M. Mintz. 1994. *Energy Implications of Glass-Container Recycling*. A joint effort of the Energy Systems Division of the Argonne National Laboratory and the National Renewable Energy Laboratory, United States.
- Galloway, J.N. 1998. The Global Nitrogen Cycle: Changes and Consequences, Environ. Pollut., 102(S1), 15-24.
- Galloway, J.N. W.H. Schlesinger, H. Levy II, A. Michaels, and J.L. Schnoor. 1995. Nitrogen fixation: anthropogenic enhancement – environmental response, Global Biogeochem. Cycles, 9(2), 235-252.
- GERT (Greenhouse Gas Emission Reduction Trading Pilot Program). 1999. Information available at the website, www.gert.org
- GERT (Greenhouse Gas Emission Reduction Trading Pilot Program). 1998. Information available at the website, www.gert.org
- GVRD (Greater Vancouver Regional District). 1999a. GVRD Solid Waste Flow Model. Obtained by personal communication with Mike Stringer, Senior Engineer, GVRD.
- GVRD (Greater Vancouver Regional District). 1999b. GVRD Corporate: 1997 Greenhouse Gas Emission Inventory and 1990 Backcast/2010 Forecast. Report prepared by the Air Quality Department.
- GVRD (Greater Vancouver Regional District). 1993. Waste Flow and Recycling Audit. Volume 1: Waste Generation and Flow Analysis. Prepared by Resource Integration Systems in association with CH2M Hill Engineering Ltd and KPMG Peat Marwick Stevenson & Kellogg.
- Hamm, U. and L. Gottsching. 1993. The CO₂ Balance How is it affected by the German Pulp and Paper Industry? Appita, 46(3), 179-186.
- Hanaki, K., Z. Hong, and T. Matsuo. 1992. Production of Nitrous Oxide Gas During Denitrification of Wastewater. Water Sci. & Technol., 26(5-6), 1027-1036.
- Hanisch, C. December 1, 1998. *Taking Stock Green Tax Reform Initiatives*. Environmental Science & Technology. 540-544
- Hellebrand, H.J. 1998. Emission of Nitrous Oxide and other Trace Gases during Composting of Grass and Green Waste. J. of Agric. Engng. Res., 69, 365-375.
- Hellmann, B. 1995. Freisetzung klimarelevanter Spurengase in Bereichen mit hoher Akkumulation von Biomassen. Abschlußbericht für die Deutsche Bundesstiftung Umwelt, (Release of greenhouse gases in areas of high accumulation of biomass. Research Report for the German Foundation for Environment). Osnabruck: Zeller Verlag. In Hellebrand, H.J. 1998. Emission of Nitrous Oxide and other Trace Gases during Composting of Grass and Green Waste. J. of Agric. Engng. Res., 69, 365-375.
- Henderson, J.P. and C. Underwood. 2000. *The Vancouver Landfill: Planning for the Future*. Proceedings of the SWANA Pacific Northwest Regional Solid Waste Symposium, April 13-14, 2000.
- Henderson, J.P, and J.W. Atwater. 1995. *High ammonia landfill leachate treatment using anaerobic filter* and rotating biological contactor. Can. J. Civ. Eng., 22, 992-1000.
- Hettiaratchi, J.P.A., R. Pradhan, K. Gunsch and J.L. Leskiw. 1998. A Methodology to Estimate the Carbon Off-Set Potential of Composting Biodegradable Municipal Solid Waste (BMSW). Journal of Solid Waste Technology and Management. 25(3&4), 119-127.
- Hong, Z., K. Hanaki, and T. Matsuo. 1993. Greenhouse gas-N₂O production during denitrification in wastewater treatment. Water Sci. & Technol., 28(7), 203-207.
- Hooper, A.B. 1984. Ammonium oxidation and energy transduction in the nitrifying bacteria. Microbial Chemoautotrophy. Ed by W.R. Strohl and O.H. Tuovinen, Ohio State University Press, Columbus, Ohio, 133-169.
- Houghton, J.T. 1997. *Global Warming: The Complete Briefing*. Second Edition, Cambridge University Press.
- Hunt, R.G. 1995. *LCA considerations of solid waste management alternatives for paper and plastics*. Resources, Conservation and Recycling. 14, 225-231.
- Hutchinson, G.L., and E.A. Davidson. 1993. Processes for Production and Consumption of Gaseous Nitrogen Oxides in Soil. Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. Ed by G.A. Peterson, P.B. Baenziger, R.J. Lawrence, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, 79-93.
- IISD (International Institute for Sustainable Development). 1998. Incentives for Early Action on Climate Change. Foundation Paper.

- Ince, P.J., K.E. Skog, L.S. Heath. 1995. Recycling in the big picture the really big picture. Resource Recycling, 14(6), 41-45
- IPCC (Intergovernmental Panel on Climate Change/Organization for Economic Cooperation and Development). 1997. *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories*. Three Volumes. Paris, France.
- IPCC (Intergovernmental Panel on Climate Change). 1995. *Climate Change 1995: The Science of Climate Change*. Contribution of Working Group 1 to the Second Assessment Report of the IPCC. Cambridge University Press, United Kingdom.
- IPCC (Intergovernmental Panel on Climate Change). 1995. Second Assessment Synthesis of Scientific-Technical Information Relevant to Interpreting Article 2 of the UN Framework Convention on Climate Change. Available on the website: www.unfccc.org
- Isermann, K., and R. Isermann. 1998. Food Production and Consumption in Germany: N flows and N emissions. Nutrient Cycling in Agroecosystems, 52, 298-301.
- Johnsson, J.E. 1994. Formation and reduction of nitrogen oxides in fluidized-bed combustion. Fuel. 73(9), 1398-1415.
- Khan, A.W. 1977. Anaerobic degradation of cellulose by mixed culture. Canadian Journal of Microbiology. 23, 1700-1705. In: Wang, Y., C.S. Byrd and M.A. Barlaz. 1994. Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay. Journal of Industrial Microbiology. 13, 147-153.
- Kimochi, Y., Y. Inamori, M. Mizuochi, K. Xu, and M. Matsumura. 1998. Nitrogen Removal and N₂O Emission in a Full-Scale Domestic Wastewater Treatment Plant with Intermittent Aeration. J. Ferment. Bioeng., 86(2), 202-206.
- Kinzig, A.P., and R.H. Socolow. 1994. *Human Impacts on the Nitrogen Cycle*. Phys. Today, November, 24-31.
- Kuroda, K., T.Osada, M.Yonaga, A.Kanematu, T.Nitta, S.Mouri and T.Kojima. 1996. Emissions of Malodorous Compounds and Greenhouse Gases from Composting Swine Feces. Bioresource Technol., 56, 265-271.
- Leach, M.A., A. Bauen and N.J.D. Lucas. 1997. A Systems Approach to Materials Flow in Sustainable Cities: A Case Study of Paper. Journal of Environmental Planning and Management. 40(6), 705-723
- Logan, J.A. 1983. Nitrogen Oxides in the Troposphere: Global and Regional Budgets. J. Geophys. Res., 88(C15), 10,785-10,807.
- McElroy, M.B., J.W. Elkins, S.C. Wofsy, C.E. Kolb, A.P. Duran and W.A. Kaplan. 1978. *Production and release of N₂O from the Potomac Estuary*. Limnol. Oceanogr., 23(6), 1168-1182.
- Mackenzie, F.T. 1998. Our Changing Plane: An Introduction to Earth System Science and Global Environmental Change, 2nd Ed., Prentice-Hall, New Jersery, U.S.A.
- Mackenzie, F.T. 1995. *Global Climatic Change: Climatically Important Biogenic Gases and Feedbacks*. Biotic Feedbacks in the Global Climatic System, Edited by G.M Woodwell & F.T. Mackenzie, Oxford University Press, New York, 22-46.
- McGraw-Hill Inc. 1962. Pulp and Paper Science and Technology. Volume 1, Pulp., Edited by C.E. Libby, New York.
- McMahon, P.B. and K.F. Dennehy. 1999. N₂O Emissions from a Nitrogen-Enriched River. Envir. Sci. & Tech., 33(1), 21-25.
- Martikainen, P.J. 1985. Nitrous Oxide Emission associated with autotrophic ammonium oxidation in acid coniferous forest soil. Appl. Env. Microbiol., 50, 1519-1525.
- Matthews, E. 1994. Nitrogenous fertilizers: Global distribution of consumption and associated emissions of nitrous oxide and ammonia. Global Biogeochem. Cycles, 8(4), 411-439.
- Metcalf & Eddy, Inc. 1991. Wastewater Engineering: Treatment, Disposal and Reuse, 3rd Ed., McGraw-Hill Publishing, New York.
- Micales, J.A. and K.E. Skog. 1997. *The decomposition of forest products in landfills*. International Biodeterioration & Biodegradation. 39, 145-158.
- Mosier, A., C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger, and O. van Cleemput. 1998. *Closing the global N₂O budget: nitrous oxide emissions through the agricultural nitrogen cycle*. Nutrient Cycling in Agroecosystems, 52, 225-248.
- Mosier, A.R., J.M. Duxbury, J.R. Freney, O. Heinemeyer, and K. Minami. 1996. Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation. Plant and Soil, 181, 95-108.

- Natural Resources Canada. 2000. The State of Canada's Forests (1999-2000): Forests in the New Millenium.
- NCCP (National Climate Change Process Environment Canada). 1998. A Survey of the Forest Sector and Forest Sector Operations. Foundation Paper of the Forest Sector Issue Table.
- NRAES (Northeast Regional Agricultural Engineering Service). 1992. On-Farm Composting Handbook, Ed by R. Rynk, Ithaca, New York .
- Okayasu, Y., I. Abe, and Y. Matsuo. 1997. Emission of Nitrous Oxide from High-Rate Nitrification and Denitrification by Mixed Liquor Circulating Process and Sequencing Batch Reactor Process. Wat. Sci. & Tech., 36(12) 39-45.
- Olivier, J.G.J., A.F. Bouwman, K.W. Van der Hoek, and J.J.M. Berdowski. 1998. *Global air emission inventories for anthropogenic sources of NO_X, NH₃ and N₂O in 1990.* Environ. Pollut., 102(S1) 135-148.
- Osada, T., K. Kuroda, and M. Yonaga. 1995. *Reducing Nitrous Oxide Gas Emissions from Fill-and-Draw Type Activated Sludge Process*. Water Res., 29(6) 1607-1608.
- Pacifica Papers. 1998. Greenhouse Gas Emissions Action Plan: Years 1990, 1994, 1995, 1996, 1997 and 1998. Progress reported submitted to the Voluntary Challenge & Registry of Environment Canada.
- PAPRICAN (Pulp and Paper Research Institute of Canada). 1999. Energy Cost Reduction in the Pulp and Paper Industry: A Monograph. Prepared by AGRA Simons, Duncan Industrial, Ecole Polytechnique, NLK Consultants, Sandwell Inc, SodeXpro and Walsh Automation.
- PAPTAC (Pulp and Paper Technical Association of Canada). 1999. A Guide to Energy Savings Opportunities in the Kraft Pulp Industry. Prepared by AGRA Simons Ltd.
- Pearce, F. 1997. Burn Me. New Scientist. November, 22.
- Pels, J.R., M.A. Wojtowicz, F. Kapteijn, and J.A. Moulijn. 1994. The trade-off between NO_X and N₂O formation in fluidised-bed combustion of coal. Proceedings of the Sixth International Workshop on Nitrous Oxide Emissions, June, 1994, Turku, Finland, 79-93.
- Perry's Chemical Engineers Handbook. 1984. Sixth Edition.
- PFPC (Pine Falls Paper Company). 1999. 1998 Progress Report: Action Plan for Reducing Greenhouse Gas Emissions. Submission to the Voluntary Challenge & Registry, available at www.vcr-mvr.ca
- Pipatti, R. and I. Savolainen. 1996. Role of Energy Production in the Control of Greenhouse Gas Emissions from Waste Management. Energy Convers. Mgmt. 17(6-8). 1105-1110.
- Poth, M., and D.D. Focht. 1985. "¹⁵N kinetic analysis of N₂O production of Nitrosomonas europaea: An examination of nitrification" *Appl. Environ. Microbiol.*, 49, 1134-1141.

Rettenberger, G. 1998. *Leachate Treatment Plants in Germany* International Training Seminar: Management and Treatment of MSW Landfill Leachate, (CISA, Sanitary Environmental Engineering Centre, Cagliari, Italy), December 2-4, 1998, Venice, Italy.

Revelle, R. and H.E. Suess. 1957. Carbon Dioxide Exchange between Atmosphere and Ocean and the Question of an Increase of Atmospheric CO2 during the Past Decades. Tellus, 9, 18-27.

- Robinson, H.D., C.K. Chen, R.W. Formby, and M.S. Carville. 1998. Leachate Treatment Plants at Hong Kong Landfill Sites. International Training Seminar: Management and Treatment of MSW Landfill Leachate, (CISA, Sanitary Environmental Engineering Centre, Cagliari, Italy), December 2-4, 1998, Venice, Italy.
- Rolfe, C. 1998. Turning Down the Heat. West Coast Environmental Law Research Foundation.
- Sahrawat, K.L., and D.R. Keeney. 1986. Nitrous oxide emission from soils. Adv. Soil Sci., 4, 103-148. In: Curtin, D., F. Selles, C.A. Campbell, and V.O. Biederbeck. 1994. Canadian Prairie Agriculture as a Source and Sink of the Greenhouse Gases, Carbon Dioxide and Nitrous Oxide, Agriculture Canada Report 379M0082.
- Schenk, K., S.Appel, and D.Daum. 1997. N₂O Emissions during Composting of Organic Waste (Refereed). Acta Hortic., 450, 253-261.
- Schulthess, R.v., and W. Gujer. 1996. Release of Nitrous Oxide from Denitrifying Activated Sludge: Verification and Application of a Mathematical Model. Water Res., 30, 521-530.
- Sommer, S.G. and P. Dahl. 1999. Nutrient and Carbon Balance During the Composting of Deep Litter. J. Agric. Engng. Res. 74, 145-153.
- Spector, M. 1998. *Production and decomposition of nitrous oxide during biological denitrification*. Water Environment Research, 70(5), 1096-1098.

Stinson, J.A. and R.K. Ham. 1995. Effect of Lignin on the Anaerobic Decomposition of Cellulose as Determined through the Use of a Biochemical Methane Potential Method. Environmental Science & Technology. 29(9), 2305-2310.

- Sumer, E., A. Weiske, G. Benekiser, and J.C.G. Ottow. 1995. Influence of environmental conditions on the amount of N2O released from activated sludge in a domestic waste water treatment plant. Exper., 51, 419-422.
- Tanikawa, N., T. Imai, and K. Urano. 1995. *Characteristics of continuous analyzers for nitrous oxide in flue gas from municipal incinerators*. Sci. Total Environ., 175, 189-198.
- Tchobanoglous, G., H. Theisen, and S. Vigil. 1993. Integrated Solid Waste Management: Engineering Principles and Management Issues, McGraw-Hill Publishing, New York.
- Tellus Institute. 1994. *Energy Implications of Integrated Solid Waste Management Systems*. Report prepared for the New York State Energy Research and Development Authority.
- Thörn, M., and F. Sörensson. 1996. Variation of Nitrous Oxide Formation in the Denitrification Basin in a Wastewater Treatment Plant with Nitrogen Removal. Water Res., 30(6), 1543-1547.
- Tong, X., L.H. Smith and P.L. McCarty. 1990. *Methane Fermentation of Selected Lignocellulosic Materials*. Biomass. 21, 239-255.
- Tsujimoto, Y., J. Masuda, J. Fukuyama, and H. Ito. 1994. "N₂O Emissions at Solid Waste Disposal Sites in Osaka City," *J. Air & Waste Management Association*, 44, 1313-1314.
- USEPA (United States Environmental Protection Agency). 1999. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-1997, Report prepared by the Office of Policy, EPA236-R-99-003.

USEPA (United States Environmental Protection Agency). 1998. Greenhouse Gas Emissions from Management of Selected Materials in Municipal Solid Waste. Report prepared by the Office of Solid Waste and Emergency Response, EPA530-R-98-013.

Virtanen, Y. and S. Nilsson. 1992. Some Environmental Policy Implications of Recycling Paper Products in Western Europe. International Institute for Applied Systems Analysis, Executive Report 22.

- Watanabe, M., M. Sato, M. Miyazaki, and M. Tanaka. 1992. Emission rate of N₂O from municipal solid waste incinerators. Proceedings of the Fifth International Workshop on N₂O Emissions, July 1-3, 1992, Tsukuba, Japan In: de Soete, G. 1993. Nitrous oxide from combustion and industry: chemistry, emissions, and control. Proceedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emissions Inventories and Options for Control. Ed by A.R. van Amstel, RIVM Report No. 481507003, Bilthoven, The Netherlands, 287-337.
- Wang, Y., C.S. Byrd and M.A. Barlaz. 1994. Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay. Journal of Industrial Microbiology. 13, 147-153.
- Weldwood of Canada Ltd. 1999. 1998 Emissions of Greenhouse Gases: A Progress Report. Submission to the Voluntary Challenge & Registry, available at www.vcr-mvr.ca
- Werther, J., T. Ogada, and C. Philippek. 1994. N₂O Emissions from Fluidized Bed Combustion of Sewage Sludges. Proceedings of the Sixth International Workshop on Nitrous Oxide Emissions, Turku, Finland, June 1994, 139-154.
- Weyerhaueser. 1999. Greenhouse Gas Emissions Action Plan: 1999. Submission to the Voluntary Challenge & Registry, available at www.vcr-mvr.ca
- White, D.M., K.L. Nebel, and M. Gundappa, and K.R. Ferry. 1995. *NO_X Control Technologies Applicable* to Municipal Waste Combustion. United States Environmental Protection Agency Summary Report.
- Wojtarowicz, M. 2000. Impact of Population Growth and Immigration on the Solid Waste Management System in the Greater Vancouver Regional District. Prepared for Professor J.W. Atwater, Department of Civil Engineering, University of British Columbia, Vancouver Canada.
- Wojtowicz, M.A., J.R. Pels, and J.A. Moulijn. 1994. N₂O emission control in coal combustion. Fuel, 73(9), 1416-1422.
- Yasuda, K., M. Takahashi. 1992. Emissions of nitrous oxide from waste management systems. Proceedings of the Fifth International Workshop on N₂O Emissions, July 1-3, 1992, Tsukuba, Japan. In: de Soete, G. 1993. Nitrous oxide from combustion and industry: chemistry, emissions, and control. Proceedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emissions Inventories and Options for Control. Ed by A.R. van Amstel, RIVM Report No. 481507003, Bilthoven, The Netherlands, 287-337.
- Zheng, H., K. Hanaki, and T. Matsuo. 1994. Production of Nitrous Oxide Gas During Nitrification of Wastewater. Wat. Sci. & Tech., 30(6), 133-141.

5.2 PERSONAL COMMUNICATIONS

Jim Atwater, Associate Professor, Department of Civil Engineering, University of British Columbia, (604) 822-4694, jatwater@civil.ubc.ca
Chantal Babensee, Project Engineer, Contracted Services, Engineering & Construction, Greater Vancouver Regional District, (604) 436-6853, chantal.babensee@gvrd.bc.ca
Morton Barlaz, Associate Professor and Associate Head, Department of Civil Engineering, North Carolina
State University, (919) 515-7676, Barlaz@unity.ncsu.edu
Mike Bradley, Director – Technology, Canfor Pulp and Paper Marketing, (604) 661-5264,
mbradley@canfor.ca
Ken Carrusca, Project Engineer – Regional Utility Planning, Policy and Planning Department, Greater
Vancouver Regional District, (604) 436-6822, ken.carrusca@gvrd.bc.ca
Dave Church, Canadian Pulp & Paper Association (514) 866-6621 ext.242
Louie DeVent, Operations Manager, Wastech Services Ltd, (604) 521-1715, ldevent@wastech.bc.ca
John Duffy, Corporate Environment Department, B.C. Hydro Ltd, (604) 623 4391
Ray Dyer, Pacifica Papers – Powell River (B.C.), (250) 724-7483, RADyer@pacifica-papers.com
Ali Ergudenler, Senior Project Engineer, Air Quality Department, Greater Vancouver Regaional District,
(604) 436-6774, ali.ergudenler@gvrd.bc.ca
Paul Henderson, Landfill Manager, Landfill Operations Branch, City of Vancouver, (604) 946-8049,
paul_henderson@city.vancouver.bc.ca
Michael Innes, Vice-President - Environment, Health & Safety, Abitibi-Consolidated, (514) 875-2160
Tony Kaptien, Weyerhaeuser – Prince Albert (Saskatchewan), (306) 953-1856,
tony.kaptein@weyerhaeuser.com
Brian Kotak, Environment Director, Pine Falls Paper Company, Pine Falls, Manitoba, (204) 367-5353,
bkotak@pfpc.mb.ca
Al Lynch, Manager, North Shore Recycling Program, (604) 984-9730, LynchA@district.north-van.bc.ca
Andrew Marr, Senior Project Engineer, Greater Vancouver Regional District, (604) 436-6807,
andrew.marr@gvrd.bc.ca
Pat Martin, Technical/Environmental Manager, Newstech Recycling, (604) 527-5734, pmartin@pro.net
Fahimeh Mirminachi, Director of Research & Development, International Bio-Recovery Corp., North
Vancouver, BC, (604) 924-1023, fahimeh@ibrcorp.com
Tony Mouchachen, Merlin Plastics, (604) 522-6799 ext 11
Donna O'Dwyer, Consumers Glass, (250) 549-8205, dodwyer@consumersglass.com
Mike Stringer, Senior Engineer, Greater Vancouver Regional District, (604) 436-6810,
mike.stringer@gvrd.bc.ca
Chris Underwood, Landfill Operations Branch, City of Vancouver, (604) 946-3984,
chris_underwood@city.vancouver.bc.ca
Bev Weber, Composting Program Manager, Greater Vancouver Regional District, (604) 436-6803,
bev.weber@gvrd.bc.ca
George Weinstein, Allied Salvage & Metal, (604) 322-6629
Mike Whybrow, Manager – Economics & Trade, B.C. Ministry of Forests, (250) 387-8613,
mike.whybrow@gems7.gov.bc.ca
Bill Wilson, Director - Industry, Trade & Economics, Pacific Forestry Service, Canadian Forestry Service,
Natural Resources Canada, (250) 363-0721, bwilson@pfc.forestry.ca

)

APPENDIX A: GENERAL CALCULATIONS

This appendix contains the general calculations and parameters which are not specific to any municipality or to any waste material. This includes the fuel consumption estimates for waste transferred to transfer stations, subsequent transport to disposal facilities and the operation of equipment at the Vancouver or Cache Creek Landfill. These estimates also include the fuel consumption for equipment at recycling or composting facilities. These calculations are the same utilized in Worksheet #5 - General Parameters to estimate emission factors necessary for the model. This appendix can be separated into 8 separate sections:

- Waste Delivered to the Coquitlam Transfer Station
- Waste Delivered to the North Shore Transfer Station
- Waste Delivered to the Vancouver Transfer Station
- Waste Delivered to the Matsqui Transfer Station
- Waste Delivered to the Langley Transfer Station
- Waste Delivered to the Maple Ridge Transfer Station
- Recycling Equipment
- Centralized Composting Equipment
- Diesel Fuel Combustion Emissions

Emission factors for these 8 alternatives are developed in turn.

An exception to the description above occurs in Worksheet #5 – General Parameters which represents this very appendix in the spreadsheet model. This worksheet contains all the waste flow data for 1998 as provided by the GVRD. These are all the masses of waste collected at the member municipalities and delivered to transfer stations and transferred to final disposal destinations. This data is necessary to determine the quantities of waste disposed at the Cache Creek Landfill, the Vancouver Landfill or the Burnaby Incinerator for each municipality. These tables are presented in the Worksheet #5 and are not provided in this appendix.

So as to facilitate the explanations and calculations in the following sections, a number of abbreviations have been employed. These are listed below:

CCLF – Cache Creek Landfill

VLF – Vancouver Landfill

BI – Burnaby Incinerator

NSTS – North Shore Transfer Station

CTS – Coquitlam Transfer Station

VTS – Vancouver Transfer Station

LTS – Langley Tranfer Station

MTS – Matsqui Transfer Station

MRTS – Maple Ridge Transfer Station

FutLF – Future Landfill

FutINC – Future Incinerator

While this research has attempted to obtain fuel consumption data from as many sources as possible, the sheer number of potential transportation requirements causes assumptions to be necessary. These include that a typical heavy-duty diesel vehicle has a diesel fuel consumption of 45.0L per 100km, as published by Environment Canada (1997), and that each of these trucks has a capacity of 20 tonnes. Also, to assign fuel consumption to the appropriate transportation, it is also necessary to know whether the vehicle returns to the original location, therefore necessitating fuel for the entire round-trip, or whether the vehicle provided another task on the return trip, thereby necessitating fuel only for this a one-way distance.

WASTE DELIVERED TO THE COQUITLAM TRANSFER STATION

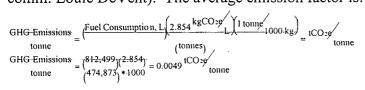
1. Diesel Fuel Consumption by Transfer Station Equipment:

At the CTS approximately 279,495 litres of diesel fuel was consumed in 1998 for the processing of 319,651 tonnes of waste (Pers. comm. Louie DeVent).

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854^{\text{kgCO}}, \underline{e}'_{\text{L}})(1 \text{ tonne}'_{1000 \text{ kg}})}{(\text{tonnes})} = \frac{\text{CO}_2 \underline{e}'_{\text{tonne}}}{(139,651) \times 1000} = 0.0025 \text{ tCO}_2 \underline{e}'_{\text{tonne}}$$

GHG Emission = $0.0025 \text{ tCO}_2\text{e}/\text{tonne}$

2. Diesel Fuel Consumption for Transport to the Cache Creek Landfill:


Tractor trailers transport waste the approximate 300 km distance from the GVRD to the Cache Creek Landfill (GVRD 1993b). A recent GVRD report has estimated the GHG emissions associated with this transport (GVRD 1999b). The total diesel fuel used in 1997 (both ways) was 4,440,000 L; of which half was estimated to be the responsibility of the GVRD (woodchips are transported to the Lower Mainland on the return trip). In 1998, 8,112 trips were taken from the CTS to the CCLF for the disposal of 303,608 tonnes of waste. Each tractor trailer trip consumes about 200 litres (one way) (Pers. comm. Louie DeVent). The average emission factor for this transport is:

$$\frac{\text{Mass Hauled}}{\text{Trip}} = \frac{303,608 \text{ tonnes}}{8,112 \text{ trips}} = 37.4^{tonnes} / trip$$

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\frac{\text{Fuel Consumption, } / trip\right)\left(2.854 \text{ kgCO}_2\text{e}/ \right)\left(1 \text{ tonne} / 1000 \text{ kg}\right)}{\left(tonnes / trip\right)} = \frac{1002 \text{ e}}{1000 \text{ kg}} = \frac{1000 \text{ e}}{1000 \text{ kg}} = \frac{1000$$

3. Diesel Fuel Consumption by Equipment at the Cache Creek Landfill:

The diesel fuel combusted by equipment at the Cache Creek Landfill in 1998 was 812,499L. During this same time period, 474,873 tonnes of waste was disposed (Pers. comm. Louie DeVent). The average emission factor is:

GHG Emission = $0.0049 \text{ tCO}_2\text{e/tonne}$

4. Diesel Fuel Consumption for Transport to the Vancouver Landfill:

Approximately 339 tractor-trailer trips were required to transport 8,189 tonnes of waste from the CTS to the VLF. The necessitated the consumption of 45 litres of diesel fuel per trip (Pers. comm. Louie DeVent).

 $\frac{\text{Mass Hauled}}{\text{Trip}} = \frac{8,189 \text{ tonnes}}{339 \text{ trips}} = 24.2 \frac{\text{tonnes}}{\text{trip}}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\frac{\text{Fuel Consumption, } L_{trip}}{(tonnes/trip)}\right) = 1003 \text{ kg}}{(tonnes/trip)} = 1003 \text{ e}/(tonnes/trip)}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(45)(2.854)}{(24.2) \times 1000} = 0.0053 \frac{10032}{\text{tonne}}$

GHG Emission = $0.0053 \text{ tCO}_2\text{e/tonne}$

5. Diesel Fuel Consumption by Equipment at the Vancouver Landfill:

In 1998, approximately 335,000 litres was consumed by City operations (a small part of this also includes the composting equipment but cannot be differentiated) and 144,000 litres was consumed by a private contractor supplying cover materials. During this same time period, a total of 379,554 tonnes of waste was disposed at this site (Pers. comm. Kevin Van Vliet).

 $\frac{GHG \ Emissions}{tonne} = \frac{(Fuel \ Consumption, \ L(2.854^{kgCO_2e}/L)(1 \ tonne/1000 \ kg)}{(tonnes)} = tCO_2e/tonne$ $\frac{GHG \ Emissions}{tonne} = \frac{(335,000 + 144,000)(2.854)}{(379,554) + 1000} = 0.0036 \ tCO_2e/tonne$ $GHG \ Emission = 0.0036 \ tCO_2e/tonne$

6. Diesel Fuel Consumption for Transport to the Burnaby Incinerator:

Trucks transport waste from the Coquitlam Transfer Station to the Burnaby Incinerator and return empty. In 1998, 176 trips delivered 3,981 tonnes of waste to the Incinerator and consumed 23 litres per trip in the process (Pers. comm. Louie DeVent).

and consumed 2.5 Introd per trip $\frac{\text{Mass Hauled}}{\text{Trip}} = \frac{3.981 \text{ tonnes}}{176 \text{ trips}} = 22.6^{10nnes}/trip$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\text{Fuel Consumption, } L/\text{trip}\right)\left(2.854 \text{ kgCO}_2\text{e}/L\right)\left(1 \text{ tonne}/1000 \text{ kg}\right)}{\left(1000 \text{ kg}\right)} = \text{tCO}_2\text{e}/\text{tonne}}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(23)(2.854)}{(22.6) + 1000} = 0.0029 \text{ tCO}_2\text{e}/\text{tonne}}{\text{GHG emission}} = 0.0029 \text{ tCO}_2\text{e}/\text{tonne}}$

WASTE DELIVERED TO THE NORTH SHORE TRANSFER STATION1. Diesel Fuel Consumption by Transfer Station Equipment:

At the NSTS, 87,918 litres was consumed by equipment for the processing of 194,755 tonnes of waste (Pers. comm. Louie DeVent).

1

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854 \text{ kgCO}_2\text{e}/\text{L})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = \text{tCO}_2\text{e}/\text{tonne}}{\frac{\text{GHG Emissions}}{\text{tonne}}} = \frac{(87.918)(2.854)}{(194.755) \times 1000} = 0.0013 \text{ tCO}_2\text{e}/\text{tonne}}{\text{GHG Emissions}} = 0.0013 \text{ tCO}_2\text{e}/\text{tonne}}$

117

2. Diesel Fuel Consumption for Transport to the Cache Creek Landfill:

Tractor trailers transport waste the approximate 300 km distance from the GVRD to the Cache Creek Landfill (GVRD 1993b). A recent GVRD report has estimated the GHG emissions associated with this transport (GVRD 1999b). The total diesel fuel used in 1997 (both ways) was 4,440,000 L; of which half was estimated to be the responsibility of the GVRD (woodchips are transported to the Lower Mainland on the return trip). In 1998, 2,283 trips were taken from the NSTS to the CCLF for the disposal of 82,930 tonnes of waste. Each tractor trailer trip consumes about 215 litres (one way) (Pers. comm. Louie DeVent). The average emission factor for this transport is:

 $\frac{\text{Mass Hauled}}{\text{Trip}} = \frac{82.930 \text{ tonnes}}{2.283 \text{ trips}} = 36.3^{tonnes}/trip$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\frac{\text{Fuel Consumption, } L'_{\text{trip}}\right)(2.854 \text{ kgCO}_{2}e'_{L})(1 \text{ tonne}/1000 \text{ kg})}{(tonnes'_{trip})} = tCO_{2}e'_{\text{tonne}}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(215)(2.854)}{(36.3) * 1000} = 0.017 \text{ tCO}_{2}e'_{\text{tonne}}$ $\text{GHG Emission} = 0.017 \text{ tCO}_{2}e/\text{tonne}$

3. Diesel Fuel Consumption by Equipment at the Cache Creek Landfill:

The diesel fuel combusted by equipment at the Cache Creek Landfill in 1998 was 812,499L. During this same time period, 474,873 tonnes of waste was disposed (Pers. comm. Louie DeVent). The average emission factor is:

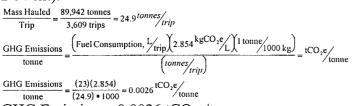
 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854^{\text{kgCO}}, \text{e}_{\text{L}})(1 \text{ tonne}/(000 \text{ kg}))}{(\text{tonnes})} = t^{\text{CO}}, \text{e}_{\text{tonne}}}{\frac{\text{GHG Emissions}}{\text{tonne}}} = \frac{(812,499)(2.854)}{(474,873) \times 1000} = 0.0049^{\text{tCO}}, \text{e}_{\text{tonne}}}{\text{GHG Emission}} = 0.0049 \text{ tCO}, \text{e}_{\text{tonne}}}$

4. Diesel Fuel Consumption for Transport to the Vancouver Landfill:

A small percentage (less than 1%) of the waste delivered to the NSTS was disposed at the VLF in 1998 (GVRD 1999a). The trucks return empty. In this year, 71 trips delivered 1,754 tonnes and consumed 45 litres per trip (Pers. comm. Louie DeVent).

 $\frac{\text{Mass Hauled}}{\text{Trip}} = \frac{1.754 \text{ tonnes}}{71 \text{ trips}} = 24.7^{tonnes}/_{trip}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\frac{\text{Fuel Consumption, } L/\text{trip}}{2.854}\right)^{2.854} + \frac{\text{kgCO_2e}}{1000 \text{ kg}}}{\left(\frac{\text{tonnes}}{\text{trip}}\right)} = \frac{100 \text{ ge}}{1000 \text{ kg}} = 100 \text{ ge}/_{tonne}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(45)(2.854)}{(24.7) \times 1000} = 0.0052 \text{ tCO_2e}/_{tonne}$ $\text{GHG emissions} = 0.0052 \text{ tCO_2e}/\text{tonne}$

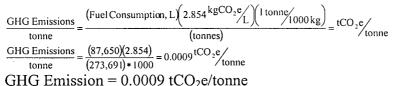
5. Diesel Fuel Consumption by Equipment at the Vancouver Landfill:


In 1998, approximately 335,000 litres was consumed by City operations (a small part of this also includes the composting equipment but cannot be differentiated) and 144,000 litres was consumed by a private contractor supplying cover materials. During this same time period, a total of 379,554 tonnes of waste was disposed at this site (Pers. comm. Kevin Van Vliet).

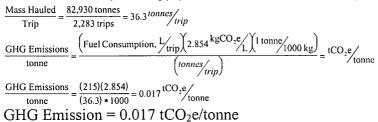
 $\begin{array}{l} \text{GHG-Emissions} &= \underbrace{\left(\begin{array}{c} \text{Fuel Consumption, L} \left(2.854^{\text{kgCO}_{29}} \right) \left(1 \text{ tonne} \right) \\ \text{tonne} & \underbrace{\left(1 \text{ tonne} \right) } \\ \text{GHG-Emissions} &= \underbrace{\left(\begin{array}{c} 335,000 + 144,000 \\ 379,554 \ast 1000 \end{array}\right) \left(2.854 \right) \\ \text{GHG-Emission} &= 0.0036 \\ \text{tonne} \\ \text{GHG-Emission} &= 0.0036 \\ \text{tCO}_2\text{e}/\text{tonne} \\ \end{array} \right) \end{array}$

118

6. Diesel Fuel Consumption for Transport to the Burnaby Incinerator:


Trucks transport waste from the NSTS to the BI and return empty. In 1998, 3,609 trucks trips delivered 89,942 tonnes of waste and used 23 litres per trip (Pers. comm. Louie DeVent).

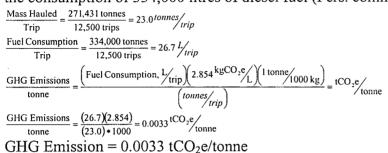
GHG Emission = $0.0026 \text{ tCO}_2\text{e/tonne}$


WASTE DELIVERED TO THE VANCOUVER TRANSFER STATION1. Diesel Fuel Consumption by Transfer Station Equipment:

At the Vancouver Transfer Station approximately 87,650 litres of diesel fuel was consumed in 1998 for the transfer of 273,691 tonnes of waste (Pers. comm. Kevin Van Vliet). The resulting emission factor is:

2. Diesel Fuel Consumption for Transport to the Cache Creek Landfill:

Tractor trailers transport waste the approximate 300 km distance from the GVRD to the CCLF (GVRD 1993b). A recent GVRD report has estimated the GHG emissions associated with this transport (GVRD 1999b). The total diesel fuel used in 1997 (both ways) was 4,440,000 L; of which half was estimated to be the responsibility of the GVRD (woodchips are transported to the Lower Mainland on the return trip). In 1998, no waste was transferred from the VTS to the CCLF. However, the inspection of a street map of Vancouver has determined the NSTS to be an approximate estimate for the hypothetical transfer from the VTS. In 1998, 2,283 trips were taken from the NSTS to the CCLF for the disposal of 82,930 tonnes of waste. Each tractor trailer trip consumes about 215 litres (one way) (Pers. comm. Louie DeVent).


3. Diesel Fuel Consumption by Equipment at the Cache Creek Landfill:

The diesel fuel combusted by equipment at the Cache Creek Landfill in 1998 was 812,499L. During this same time period, 474,873 tonnes of waste was disposed (Pers. comm. Louie DeVent). The average emission factor is:

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854^{\text{kgCO}_2e}/\text{L})^{(1 \text{ tonne}/1000 \text{ kg})}}{(\text{tonnes})} = \frac{\text{tCO}_2e}{\text{tonne}}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(812,499)(2.854)}{(474,873)*1000} = 0.0049^{\text{tCO}_2e}/\text{tonne}$ $\text{GHG Emission} = 0.0049 \text{ tCO}_2e/\text{tonne}$

4. Diesel Fuel Consumption for Transport to the Vancouver Landfill:

Approximately 12,500 tractor-trailer trips were required to transport 271,431 tonnes of waste and 16,500 tonnes of yard trimmings from the VTS to the VLF. This necessitated the consumption of 334,000 litres of diesel fuel (Pers. comm. Kevin Van Vliet).

5. Diesel Fuel Consumption by Equipment at the Vancouver Landfill:

In 1998, approximately 335,000 litres was consumed by City operations (a small part of this also includes the composting equipment but cannot be differentiated) and 144,000 litres was consumed by a private contractor supplying cover materials. During this same time period, a total of 379,554 tonnes of waste was disposed at this site (Pers. comm. Kevin Van Vliet).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854^{\text{kgCO}_2e}\text{L})^{1 \text{tonne}}_{1000 \text{ kg}})}{(\text{tonnes})} = \frac{100 \text{ ge}}{\text{tonne}} = \frac{(335,000 + 144,000)(2.854)}{(379,554) + 1000} = 0.0036^{\text{tCO}_2e}\text{tonne}}{\text{GHG Emission}} = 0.0036 \text{ tCO}_2e\text{tonne}}$

6. Diesel Fuel Consumption for Transport to the Burnaby Incinerator:

No waste was transferred from the VTS to the BI in 1998. However, a hypothetical assumption is calculated. By assuming 20 tonnes hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 22 km (estimated from map), the emission would be:

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\text{Fuel Consumption, } \frac{L_{100\text{ km}}}{1000\text{ km}}\right) \text{Distance, } \text{km} \left(2.854^{\text{kgCO}_2\text{e}}\right) \left(1 \text{ tonne}_{1000\text{ kg}}\right)}{\left(1000\text{ kg}\right)} = 1^{\text{CO}_2\text{e}}/\text{tonne}}$$

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\frac{45_{100}}{20}\right)(22)(2.854)}{(20) \times 1000} = 0.0014^{\text{tCO}_2\text{e}}/\text{tonne}}{\text{GHG Emission}} = 0.0083 \text{ tCO}_2\text{e}/\text{tonne}}$$

WASTE DELIVERED TO THE MATSQUI TRANSFER STATION

1. Diesel Fuel Consumption by Transfer Station Equipment:

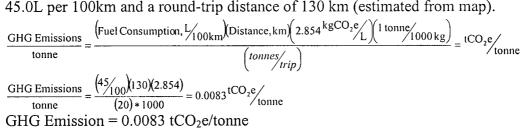
At the MTS approximately 33,280 litres of diesel fuel was consumed in 1998 for the processing of 75,850 tonnes of waste (Pers. comm. Louie DeVent). The resulting emission factor is:

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854 \text{ kgCO}_{3}\text{C})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = \text{tCO}_{2}\text{e}/\text{tonne}}{\frac{\text{GHG Emissions}}{\text{tonne}}} = \frac{(33,280)(2.854)}{(75,580)*1000} = 0.0013 \text{ tCO}_{2}\text{e}/\text{tonne}}{\text{GHG Emission}} = 0.0013 \text{ tCO}_{2}\text{e}/\text{tonne}}$

2. Diesel Fuel Consumption for Transport to the Cache Creek Landfill:

Tractor trailers transport waste the approximate 300 km distance from the GVRD to the CCLF (GVRD 1993b). A recent GVRD report has estimated the GHG emissions associated with this transport (GVRD 1999b). The total diesel fuel used in 1997 (both ways) was 4,440,000 L; of which half was estimated to be the responsibility of the GVRD (woodchips are transported to the Lower Mainland on the return trip). In 1998, 2104 trips were taken from the MTS to the CCLF for the disposal of 73,169 tonnes of waste. Each tractor trailer trip consumes about 185 litres (one way) (Pers. comm. Louie DeVent).

 $\frac{\text{Mass Hauled}}{\text{Trip}} = \frac{73,169 \text{ tonnes}}{2,104 \text{ trips}} = 34,8^{(onnes/trip)} \\ \frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\frac{\text{Fuel Consumption, } L_{trip}\right)(2.854 \text{ kgCO}_2 \text{e}/L\right)(1 \text{ tonne}/1000 \text{ kg})}{(tonnes/trip)} = 10014 \text{ tCO}_2 \text{e}/tonne} \\ \frac{\text{GHG Emissions}}{\text{GHG Emission}} = \frac{(185)(2.854)}{(34.8) \times 1000} = 0.014 \text{ tCO}_2 \text{e}/tonne} \\ \text{GHG Emission} = 0.014 \text{ tCO}_2 \text{e}/tonne} \\ \end{array}$

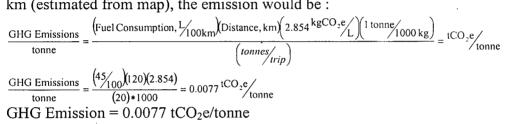

3. Diesel Fuel Consumption by Equipment at the Cache Creek Landfill:

The diesel fuel combusted by equipment at the Cache Creek Landfill in 1998 was 812,499L. During this same time period, 474,873 tonnes of waste was disposed (Pers. comm. Louie DeVent). The average emission factor is:

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854^{\text{kgCO}_2\text{e}}/\text{L})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = \frac{(\text{CO}_2\text{e}/\text{tonne}}{(474,873) * 1000} = 0.0049^{\text{tCO}_2\text{e}/\text{tonne}}$ $\frac{\text{GHG Emissions}}{\text{GHG Emission}} = \frac{(812,499)(2.854)}{(474,873) * 1000} = 0.0049^{\text{tCO}_2\text{e}/\text{tonne}}$

4. Diesel Fuel Consumption for Transport to the Vancouver Landfill:

No waste was transferred from the MTS to the VLF in 1998. This hypothetical emission factor is estimated by assuming 20 tonnes is hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 130 km (estimated from map).


5. Diesel Fuel Consumption by Equipment at the Vancouver Landfill:

In 1998, approximately 335,000 litres was consumed by City operations (a small part of this also includes the composting equipment but cannot be differentiated) and 144,000 litres was consumed by a private contractor supplying cover materials. During this same time period, a total of 379,554 tonnes of waste was disposed at this site (Pers. comm. Kevin Van Vliet).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854^{\text{kgCO}_{2}e}/\text{L})^{1 \text{tonne}}/1000 \text{ kg})}{(\text{tonnes})} = t^{\text{CO}_{2}e}/\text{tonne}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(335,000 + 144,000)(2.854)}{(379,554) * 1000} = 0.0036^{\text{tCO}_{2}e}/\text{tonne}$ $\text{GHG Emission} = 0.0036 \text{ tCO}_{2}e/\text{tonne}$

6. Diesel Fuel Consumption for Transport to the Burnaby Incinerator:

No waste is transferred from the MTS to the BI in 1998. By assuming 20 tonnes hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 120 km (estimated from map), the emission would be :

WASTE DELIVERED TO THE LANGLEY TRANSFER STATION

Most of the waste dropped off at the LTS in 1998 was subsequently transferred to the MTS. This majority was 87% of total waste. The remaining 12% was transferred to the CTS. Both the MTS and the CTS transferred most of their waste to the CCLF. As the MTS is the most important pathway, it will be used as representative of waste disposed in the CCLF which originated at the LTS. However, the hypothetical disposal of waste disposed at the VLF or the BI will be assumed to have been transferred there from the LTS.

1. Diesel Fuel Consumption by Transfer Station Equipment:

Analysis of other transfer stations have allowed estimates for waste processing:

North Shore Transfer Station = $0.0013 \text{ tCO}_2\text{e/tonne}$ Coquitlam Transfer Station = $0.0025 \text{ tCO}_2\text{e/tonne}$ Vancouver Transfer Station = $0.0009 \text{ tCO}_2\text{e/tonne}$ Matsqui Transfer Station = $0.0013 \text{ tCO}_2\text{e/tonne}$

An average of these four estimates will be used here for the LTS. GHG Emission = $0.0015 \text{ tCO}_2\text{e}/\text{tonne}$

2. Diesel Fuel Consumption for Transport to the Cache Creek Landfill:

The majority of waste delivered to LTS is subsequently transported to the MTS. From the MTS, waste is disposed in the CCLF. Therefore, the transport from the LTS to the

MTS, processing at the MTS and finally transport to the CCLF must be included here. By assuming 20 tonnes hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 40 km, the emission would be:

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\text{Fuel Consumption, } L_{100\text{km}}\right)\left(\text{Distance, km}\right)\left(2.854^{\text{kgCO}_2e}\right)\left(1 \text{ tonne}_{1000\text{ kg}}\right)}{\left(tonnes/trip\right)} = t\text{CO}_2e/\text{tonne}}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\frac{45}{100}\right)\left(40\right)\left(2.854\right)}{\left(20\right)*1000} = 0.0026^{\text{tCO}_2e}/\text{tonne}}$ $\text{GHG Emission} = 0.0026 \text{ tCO}_2e/\text{tonne}$

At the Matsqui Transfer Station approximately 33,280 litres of diesel fuel was consumed in 1998 for the processing of 75,850 tonnes of waste (Pers. comm. Louie DeVent). The resulting emission factor is:

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}\left(2.854 \text{ kgCO}_{2}e_{/L}\right)\left(1 \text{ tonne}/1000 \text{ kg}\right)}{(\text{tonnes})} = \frac{\text{tCO}_{2}e_{/tonne}}{\text{tonne}}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(33,280)(2.854)}{(75,580) \times 1000} = 0.0013 \text{ tCO}_{2}e_{/tonne}}{\text{GHG Emission}} = 0.0013 \text{ tCO}_{2}e/\text{tonne}}$

Tractor trailers transport waste the approximate 300 km distance from the GVRD to the Cache Creek Landfill (GVRD 1993b). A recent GVRD report has estimated the GHG emissions associated with this transport (GVRD 1999b). The total diesel fuel used in 1997 (both ways) was 4,440,000 L; of which half was estimated to be the responsibility of the GVRD (woodchips are transported to the Lower Mainland on the return trip). In 1998, 2104 trips were taken from the Matsqui Transfer Station to the Cache Creek Landfill for the disposal of 73,169 tonnes of waste. Each tractor trailer trip consumes about 185 litres (one way) (Pers. comm. Louie DeVent).

$$\frac{\text{Mass Hauled}}{\text{Trip}} = \frac{73,169 \text{ tonnes}}{2,104 \text{ trips}} = 34.8 \text{ tonnes/trip}$$

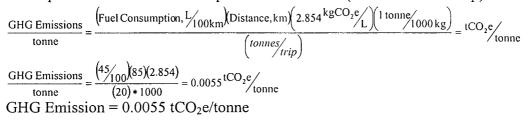
$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\text{Fuel Consumption, } \frac{\text{L}}{\text{trip}}\right)\left(2.854 \frac{\text{kgCO}_2e}{L}\right)\left(1 \text{ tonne}/1000 \text{ kg}\right)}{\left(\frac{\text{tonnes}}{\text{trip}}\right)} = \frac{1000 \text{ kg}}{2} = 1000 \text{ kg}}{2} = 1000 \text{ kg}$$

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(185)(2.854)}{(34.8) \times 1000} = 0.014 \text{ tCO}_2e}{\text{tonne}}$$

$$\frac{\text{GHG Emissions}}{\text{GHG Emission}} = 0.014 \text{ tCO}_2e/\text{tonne}$$

Total GHG Emission = 0.0026 + 0.0013 + 0.014 = 0.018 tCO₂e/tonne

3. Diesel Fuel Consumption by Equipment at the Cache Creek Landfill:

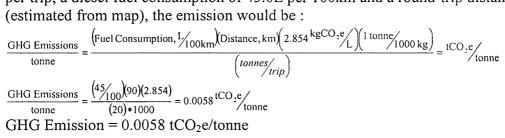

The diesel fuel combusted by equipment at the Cache Creek Landfill in 1998 was 812,499L. During this same time period, 474,873 tonnes of waste was disposed (Pers. comm. Louie DeVent). The average emission factor is:

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854 \text{ kgCO}_2\text{e}/\text{L})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = \frac{(\text{Fuel Consumption, L}(2.854 \text{ kgCO}_2\text{e}/\text{L})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = \frac{(\text{S12,499})(2.854)}{(474,873) \times 1000} = 0.0049 \text{ tCO}_2\text{e}/\text{tonne}}$

GHG Emission = $0.0049 \text{ tCO}_2\text{e/tonne}$

4. Diesel Fuel Consumption for Transport to the Vancouver Landfill:

No waste was transferred from the LTS to the VLF in 1998. This hypothetical emission factor is estimated by assuming 20 tonnes is hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 85 km (estimated from map).


5. Diesel Fuel Consumption by Equipment at the Vancouver Landfill:

In 1998, approximately 335,000 litres was consumed by City operations (a small part of this also includes the composting equipment but cannot be differentiated) and 144,000 litres was consumed by a private contractor supplying cover materials. During this same time period, a total of 379,554 tonnes of waste was disposed at this site (Pers. comm. Kevin Van Vliet).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854^{\text{kgCO}_2e}/\text{L})^{1 \text{ tonne}}/1000 \text{ kg})}{(\text{tonnes})} = t^{\text{CO}_2e}/\text{tonne}}{\frac{(335,000 + 144,000)(2.854)}{(379,554) + 1000}} = 0.0036^{1\text{CO}_2e}/\text{tonne}}{\text{GHG Emission}} = 0.0036 \text{ tCO}_2e/\text{tonne}}$

6. Diesel Fuel Consumption for Transport to the Burnaby Incinerator:

No waste is transferred from the MRTS to the BI in 1998. By assuming 20 tonnes hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 90 km (estimated from map), the emission would be :

WASTE DELIVERED TO THE MAPLE RIDGE TRANSFER STATION

Most of the waste dropped off at the MRTS in 1998 was subsequently transferred to the MTS. This majority was 83% of total waste. The remaining 17% was transferred to the CTS. Both the MTS and the CTS transferred most of their waste to the CCLF. As the MTS is the most important pathway, it will be used as representative of waste disposed in the CCLF which originated at the MRTS. However, the hypothetical disposal of waste disposed at the VLF or the BI will be assumed to have been transferred there from the MRTS.

7. Diesel Fuel Consumption by Transfer Station Equipment:

Analysis of other transfer stations have allowed estimates for waste processing: North Shore Transfer Station = $0.0013 \text{ tCO}_2\text{e}/\text{tonne}$ Coquitlam Transfer Station = $0.0025 \text{ tCO}_2\text{e/tonne}$ Vancouver Transfer Station = $0.0009 \text{ tCO}_2\text{e/tonne}$ Matsqui Transfer Station = $0.0013 \text{ tCO}_2\text{e/tonne}$

An average of these four estimates will be used here for the MRTS. GHG Emission = $0.0015 \text{ tCO}_2\text{e}/\text{tonne}$

8. Diesel Fuel Consumption for Transport to the Cache Creek Landfill:

The majority of wasteWaste originating in the District of Maple Ridge is processed at the MRTS and subsequently transported to the MTS. From the MTS, waste is disposed in the CCLF. Therefore, the transport from MRTS to MTS, processing at MTS and finally transport to the CCLF must be included here. By assuming 20 tonnes hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 60 km, the emission would be:

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\text{Fuel Consumption}, \frac{L_{100\text{km}}}{\text{tonkm}}\right) \text{Distance, km} \left(2.854^{\text{kgCO}_2\text{e}}\right) \left(1 \text{ tonne}_{1000 \text{ kg}}\right)}{\left(\frac{\text{tonnes}_{trip}}{1000 \text{ kg}}\right)} = \text{tCO}_2\text{e}_{\text{tonne}}}$$

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\frac{45_{100}}{(20) \times 1000}\right) = 0.0039^{1\text{CO}_2\text{e}}}{(20) \times 1000} = 0.0039^{1\text{CO}_2\text{e}}/\text{tonne}}$$

$$\text{GHG Emission} = 0.0039 \text{ tCO}_2\text{e}/\text{tonne}}$$

At the Matsqui Transfer Station approximately 33,280 litres of diesel fuel was consumed in 1998 for the processing of 75,850 tonnes of waste (Pers. comm. Louie DeVent). The resulting emission factor is:

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854^{\text{kgCO}_2e}/\text{L})^{1 \text{tonne}/1000 \text{kg}})}{(\text{tonnes})} = \frac{100 \text{ ge}}{(\text{tonne})} = \frac{(33,280)(2.854)}{(75,580) \times 1000} = 0.0013^{1 \text{CO}_2e}/\text{tonne}$$
GHG Emission = 0.0013 tCO_2e/tonne

Tractor trailers transport waste the approximate 300 km distance from the GVRD to the Cache Creek Landfill (GVRD 1993b). A recent GVRD report has estimated the GHG emissions associated with this transport (GVRD 1999b). The total diesel fuel used in 1997 (both ways) was 4,440,000 L; of which half was estimated to be the responsibility of the GVRD (woodchips are transported to the Lower Mainland on the return trip). In 1998, 2104 trips were taken from the Matsqui Transfer Station to the Cache Creek Landfill for the disposal of 73,169 tonnes of waste. Each tractor trailer trip consumes about 185 litres (one way) (Pers. comm. Louie DeVent).

$$\frac{\text{Mass Hauled}}{\text{Trip}} = \frac{73,169 \text{ tonnes}}{2,104 \text{ trips}} = 34.8 \text{ tonnes/trip}$$

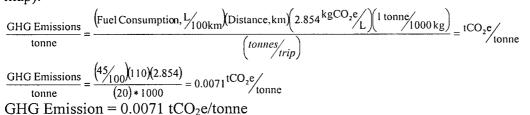
$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\frac{\text{Fuel Consumption, } L/\text{trip}}{(tonnes/trip)}\right) \left(2.854 \text{ kgCO}_{2}e/L\right) \left(1 \text{ tonne}/1000 \text{ kg}\right)}{(tonnes/trip)} = \text{tCO}_{2}e/\text{tonne}$$

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(185)(2.854)}{(34.8) \times 1000} = 0.014 \text{ tCO}_{2}e/\text{tonne}$$

$$\text{GHG Emission} = 0.014 \text{ tCO}_{2}e/\text{tonne}$$

Total GHG Emission = 0.0039 + 0.0013 + 0.014 = 0.019 tCO₂e/tonne

9. Diesel Fuel Consumption by Equipment at the Cache Creek Landfill:

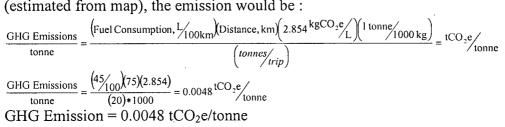

The diesel fuel combusted by equipment at the Cache Creek Landfill in 1998 was 812,499L. During this same time period, 474,873 tonnes of waste was disposed (Pers. comm. Louie DeVent). The average emission factor is:

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854 \text{ kgCO}_{3}\text{e}/L)(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = \text{tCO}_{2}\text{e}/\text{tonne}}{\frac{\text{GHG Emissions}}{\text{tonne}}} = \frac{(812,499)(2.854)}{(474,873)*1000} = 0.0049 \text{ tCO}_{2}\text{e}/\text{tonne}}{\frac{(1000 \text{ kg})}{(1000 \text{ kg})}} = 0.0049 \text{ tCO}_{3}\text{e}/\text{tonne}}$

GHG Emission = $0.0049 \text{ tCO}_2\text{e/tonne}$

10. Diesel Fuel Consumption for Transport to the Vancouver Landfill:

No waste was transferred from the MRTS to the VLF in 1998. This hypothetical emission factor is estimated by assuming 20 tonnes is hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 110 km (estimated from map).


11. Diesel Fuel Consumption by Equipment at the Vancouver Landfill:

In 1998, approximately 335,000 litres was consumed by City operations (a small part of this also includes the composting equipment but cannot be differentiated) and 144,000 litres was consumed by a private contractor supplying cover materials. During this same time period, a total of 379,554 tonnes of waste was disposed at this site (Pers. comm. Kevin Van Vliet).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854^{\text{kgCO}_2e}/\text{L})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = \frac{1\text{CO}_2e}{\text{tonne}}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(335,000 + 144,000)(2.854)}{(379,554) * 1000} = 0.0036 \text{ tCO}_2e}{\text{tonne}}$ $\text{GHG Emission} = 0.0036 \text{ tCO}_2e/\text{tonne}$

12. Diesel Fuel Consumption for Transport to the Burnaby Incinerator:

No waste is transferred from the MRTS to the BI in 1998. By assuming 20 tonnes hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 75 km (estimated from map), the emission would be :

RECYCLING EQUIPMENT

Fossil Fuel Consumption by Equipment at Recycling Facilities:

Electricity and fossil fuels are required by equipment at recycling facilities. The low greenhouse gas emission intensity for electricity in this province (because of the predominance of hydroelectric generation) allows the electricity to be ignored. However, propane is required by forklifts and 'bobcat-like' loaders at the recycling depot in Surrey operated by ETL Recycling Services. Data was obtained for this organization and will be used as to represent all recycling depots in the GVRD. In 1998, the ETL facility consumed 0.45L of propane per tonne of materials recycled (Pers. comm. Brian Carrow). Propane has a greenhouse gas emission factor of 1.53 kgCO₂/L combusted (Env Can 1999).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \left(\frac{0.45 \text{ L propane}}{\text{tonne Recyclables}}\right) \left(\frac{1.53 \text{ kgCO}_2}{\text{L propane}}\right) \left(\frac{\text{tonne}}{1000 \text{ kg}}\right) = 0.0007 \text{ tCO}_2 \text{ e/tonne}$

GHG Emission = $0.0007 \text{ tCO}_2\text{e/tonne}$

CENTRALIZED COMPOSTING EQUIPMENT

Diesel Fuel Consumption by Equipment at Composting Facilities:

Data cannot be obtained for the diesel consumed by the composting equipment at either Fraser Richmond Bio-Cycle or the composting facility at the Vancouver Landfill since this consumption cannot be separated from other equipment. As a result, the diesel consumed by composting equipment will have to be estimated from available literature. Franklin Associates, in a 1994 report, estimated that 221,000 BTUs of energy was required from diesel fuel in order to compost a short ton of yard trimmings and that this fuel results in a greenhouse gas emission of 0.0763 tCO₂e/million BTUs (Franklin Associates 1994; USEPA 1998).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \left(\frac{221000 \text{ BTU}}{\text{short ton Yard Waste}}\right) \left(\frac{0.0763 \text{ tCO}_2 \text{ e}}{10^6 \text{ BTU}}\right) \left(\frac{1.102 \text{ short ton}}{\text{metric tonne}}\right) = 0.019 \text{ tCO}_2 \text{ e/tonne}$

GHG Emission = $0.019 \text{ tCO}_2\text{e/tonne}$

DIESEL FUEL COMBUSTION EMISSIONS

There are three greenhouse gases (CO₂, CH₄ and N₂O) emitted during the combustion of diesel fuel. All three of these gases have different 100 year Global Warming Potentials which can be used to calculate the GHG emission in terms of carbon dioxide.

Heavy duty diesel truck (moderate control) emits (Environment Canada 1997):

2,730 g of CO₂/L fuel 0.20 g of CH₄/L fuel 0.40 g of N₂O/L fuel

Global Warming Potentials (GWP) based on a 100 year Timeframe (IPCC 1995):

GWP of $CO_2 = 1$ GWP of $CH_4 = 21$ GWP of $N_2O = 310$ $\frac{\text{GHG Emissions}}{\text{L of Diesel Fuel}} = \frac{g \text{CO}_2}{L} * GWP_{CO_2} + \frac{g \text{CH}_4}{L} * GWP_{CH_4} + \frac{g N_2 \text{O}}{L} * GWP_{N_2O} = \frac{g \text{CO}_2 e}{L}$

4

 $\frac{\text{GHG Emissions}}{\text{L of Diesel Fuel}} = 2730^{\text{g CO}_2} / L^{*1 + 0.20^{\text{g CH}_4}} / L^{*21 + 0.40^{\text{g N}_2\text{O}}} / L^{*310} = 2854^{\text{g CO}_2\text{e}} / L$ GHG Emission from Diesel Fuel Combustion = 2.854 kgCO₂e/L

APPENDIX B: MUNICIPALITY CALCULATIONS

This appendix presents all the diesel fuel consumption data necessary for waste transportation issues specific to each municipality. With this data, greenhouse gas emission factors are estimated. While the Waste Mass Estimates, described in Section 2.9, are also specific to municipalities, this is not presented here – it is provided in Worksheet #5 of the spreadsheet. The discussion in Section 2.9 is deemed to be sufficient to provide an understanding of those calculations. All of the data and calculations for the 20 municipalities' Waste Mass Estimates are provided in Appendix L – *Spreadsheet Program*. This also includes the estimates of the masses of different waste components which are disposed or recycled. It was necessary to estimate waste masses specific to individual municipalities because of the highly variable contribution of wastes from ICI sources which are independent of the residential population of that jurisdiction.

It requires noting that this appendix (and as previously discussed, the entire report) assumes that waste from Anmore and Belcarra are essentially from the City of Port Moody and that waste from the Village of Lions Bay can be included with Electoral Area C.

So as to facilitate the explanations and calculations in the following sections, a number of abbreviations have been employed. These are listed below:

CCLF – Cache Creek Landfill VLF – Vancouver Landfill BI – Burnaby Incinerator NSTS – North Shore Transfer Station CTS – Coquitlam Transfer Station VTS – Vancouver Transfer Station LTS – Langley Transfer Station MTS – Matsqui Transfer Station MRTS – Maple Ridge Transfer Station FutLF – Future Landfill FutINC – Future Incinerator

When dealing with the curbside collection of waste, recyclables and yard trimmings at the various single and multi-family residential and ICI sources of the materials in the member municipalities, assumptions are necessary. No municipality was able to provide the fuel consumption data for ICI collection as it handled by multiple private contractors with confidential customer lists, but municipalities can easily obtain data for the singlefamily residential collection and can frequently gather multi-family data. As a result of these complexities, the easily obtainable single-family residential collection has been used as representative of all collections (except where specified).

Substantial effort has been undertaken to collect the necessary information for each municipality, yet much of the data is unavailable. As a result, the data which was

successfully acquired will be used to fill in the gaps where the actual numbers do not exist.

For curbside waste collection, data has been acquired from 5 municipalities. Three municipalities provided fuel data on the curbside collection of recyclables. Data for the separate curbside collection of yard trimmings has been obtained from four municipalities. This emission factors estimated for this collection along with the fuel consumption and total mass of material collected is presented in the table below. An average of these emission factors is used with the municipalities for which data is unavailable.

	Emission Factor	Diesel Fuel	Mass Collected
CENED AL MASTE	(tCO ₂ e/tonne)	Consumption (L)	(tonnes)
GENERAL WASTE			
City of Burnaby	0.019	156,000	23,098
Corporation of Delta	0.006	134,000	67,110
City of New Westminster	0.023	50,331	6,309
City of North Vancouver	0.011	16,257	4,175
City of Vancouver	0.012	316,000	76,000
Average =	0.014		
RECYCLABLES			
City of Burnaby	0.045	134,000	8,437
City of New Westminster	0.052	24,604	1,344
City of Vancouver	0.031	190,000	17,500
Average =	0.043		
YARD TRIMMINGS			
City of Burnaby	0.024	58,000	6,798
Corporation of Delta	0.030	23,075	2,227
City of North Vancouver	0.023	10,020	1,223
Average =	0.027		

Curbside Collection of Waste, Recyclables & Yard Trimmings

An extensive analysis of recycling issues is provided in Section 2.6 of this report. Many emission factors developed by the USEPA (1998) and discussed in Section 2.6 are being used in this thesis. As these emission factors already include a transportation component, it is appropriate not to include the curbside collection of recyclables for the table above. Even the recyclable materials which are not using the USEPA estimates, newsprint and office paper, curb-side collection is not included so as to allow recycling to remain zero from a GHG emissions perspective (See 2.6.1 and 2.6.2). While this curbside collection of recyclables is presented in the table above and displayed in the spreadsheet model it is not used and does not have any effect on emission estimates.

The following sections, B.1 through to B.20, are the calculations for the 20 municipalies investigated.

B.1 CITY OF ABBOTSFORD

In 1998, the City of Abbotsford generated 48,949 tonnes of waste which was delivered to the MTS (48,031 tonnes) and to the LTS (162 tonnes) (GVRD 1999a). For this analysis it is assumed that all of the waste was delivered to the MTS. Approximately half of the general waste and recyclables generated in Abbotsford are collected by municipal crews. Their data will be used for all of Abbotsford. There is no separate collection of yard trimmings in this municipality, only residential drop-off. The emissions from residents dropping off yard waste individually will not be considered here. Furthermore, yard trimmings are ground up and used as a soil amendment directly; they are not composted in the traditional manner (Pers. comm. Roger Farrant).

1. Diesel Fuel Consumption for Curbside Waste Collection:

Average GHG Emission = 0.014 tCO₂e/tonne

2. Diesel Fuel Consumption for Curbside Recyclables Collection:

Average GHG Emission = $0.043 \text{ tCO}_2\text{e/tonne}$

B.2 CITY OF BURNABY

In the City of Burnaby, collected waste was delivered to 3 different locations in 1998, the BI (91,666 tonnes), the CTS (27,081 tonnes) and the NSTS (10,342 tonnes) (GVRD 1999a). These waste flows complicate the modelling of this municipality. For example, waste disposed at the BI could have been directly delivered their by collection vehicles, could have been transferred from the NSTS or could have been transferred from the CTS. Of the total 129,089 tonnes of waste disposed in 1998, 71% was delivered to the Burnaby Incinerator, 21% was delivered to the CTS (96% of which was transferred to the CCLF) and 8% was delivered to the NSTS (51.5% of which was transferred to the BI and 47.5% was transferred to the CCLF). The transportation differences between the CTS and the NSTS are of relatively minor importance. To simplify matters, it is assumed that waste going to a transfer station will be delivered only to the CTS. As a result, it can be assumed that 71% of waste was directly delivered to the Burnaby Incinerator, 15% of waste was delivered to the Burnaby Incinerator, 15% of waste was directly delivered to the CTS and 14% of waste was disposed at the CCLF.

The CTS can allow subsequent transfer to the CCLF, the VLF and the BI. Due to the fact that the vast majority of disposed waste is directly delivered to the BI, the emission factor for this transport will have to be corrected to include the portion requiring equipment processing and transfer. These calculations are performed in Worksheet #7 - City of *Burnaby*. The collection of general waste, recyclables and yard trimmings (all separate) are handled by municipal crews. Recyclables are delivered to a recycling depot operated by Crown Packaging Limited and yard trimmings are delivered directly to Fraser Richmond Bio-Cycle (Pers. comm. Lambert Chu).

1. Diesel Fuel Consumption for Curbside Waste Collection:

In 1999, municipal crews collected 23,098 tonnes of waste from single and two familiy residences and consumed 156,000 litres in the process. Actual fuel consumption data

between January and April was unavailable, therefore the annual fuel consumption data was extrapolated based on the May to December period (Pers. comm. Lambert Chu).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L})(2.854^{\text{kgCO}_2e}/\text{L})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = \frac{\text{tCO}_2e}{\text{tonne}}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(156,000)(2.854)}{(23,098)*1000} = 0.019^{\text{tCO}_2e}/\text{tonne}$ $\text{GHG Emissions} = 0.019 \text{ tCO}_2e/\text{tonne}$

2. Diesel Fuel Consumption for Curbside Recyclables Collection:

In 1999, municipal crews collected 8,437 tonnes of recyclables from single and multifamily curbside collection and consumed 134,000 litres in the process. Actual fuel consumption data between January and April was unavailable, therefore the annual fuel consumption data was extrapolated based on the May to December period (Pers. comm. Lambert Chu).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L})(2.854^{\text{kgCO}_2e}/\text{L})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = t^{\text{CO}_2e}/\text{tonne}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(134,000)(2.854)}{(8,437)*1000} = 0.045 t^{\text{CO}_2e}/\text{tonne}$ $\text{GHG Emissions} = 0.045 \text{ tCO}_2e/\text{tonne}$

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection:

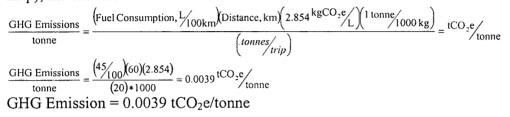
In 1999, municipal crews collected 6,798 tonnes of yard trimmings by curbside collection and consumed 58,000 litres in the process. Actual fuel consumption data between January and April was unavailable, therefore the annual fuel consumption data was extrapolated based on the May to December period (Pers. comm. Lambert Chu).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854^{\text{kgCO}_2e}/\text{L})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = \frac{\text{tCO}_2e}{\text{tonne}}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(58,000)(2.854)}{(6,798) * 1000} = 0.024^{\text{tCO}_2e}/\text{tonne}$ $\text{GHG Emissions} = 0.024 \text{ tCO}_2e/\text{tonne}$

B.3 CITY OF COQUITLAM

In the City of Coquitlam, 93,925 tonnes of waste was generated and delivered to the CTS in 1998 and 78 tonnes was directly delivered to the BI (GVRD 1999a). It is assumed in this study that all waste originating in the City of Coquitlam is processed at the CTS. All three separate collections of general waste, recyclables and yard trimmings are performed by contract with Canadian Waste. The recyclables are delivered to Best Recycling for processing and the yard trimmings are directly delivered to Fraser Richmond Bio-Cycle depot in Pitt Meadows for subsequent transportation to the Richmond composting facility (Pers. comm. Mike Iviney).

1. Diesel Fuel Consumption for Curbside Waste Collection:

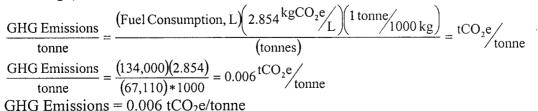

Average GHG Emission = $0.014 \text{ tCO}_2\text{e/tonne}$

2. Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG Emission = 0.043 tCO₂e/tonne

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG Emission = 0.027 tCO₂e/tonne

4. Diesel Fuel Consumption for Yard Trimmings Transport to Fraser Richmond Biocycle:

The transport of the yard trimmings from the Pitt Meadows depot to the Richmond composting facility is calculated below. By assuming 20 tonnes hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 60 km (estimated from map), the emission would be :



B.4 CORPORATION OF DELTA

In 1998, the Corporation of Delta generated 69,104 tonnes of waste which was delivered to the VLF (64,428 tonnes), the CTS (3,973 tonnes) and the VTS (703 tonnes) (GVRD 1999a). For this analysis, since the relatively minor amount delivered to the VTS will subsequently be transferred to the VLF, it is assumed that all the waste from this municipality is directly delivered to the VLF (except for waste which goes to the CTS). When assessing the emissions for transferrring waste to the BI it will have been assumed to have been directly delivered there and when assessing the emissions from disposing waste at the CCLF it will be assumed to have been transferred from the CTS. A private contractor provides the separate collection of general waste, recyclables and yard trimmings in this municipality. Yard waste is directly delivered to the composting facility at the VLF (Pers. comm. Sharon Horsburgh).

1. Diesel Fuel Consumption for Curbside Waste Collection:

The private contractor employed on behalf of this municipality collected 67,110 tonnes of waste in 1999 and consumed 134,000 litres in the process (Pers. comm. Sharon Horsburgh).

2. Diesel Fuel Consumption for Curbside Recyclables Collection:

Average GHG Emission = $0.043 \text{ tCO}_2\text{e}/\text{tonne}$

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection:

The private contractor employed on behalf of this municipality collected 2,227 tonnes of yard trimmings in 1999 and consumed 23,075 litres in the process (Pers. comm. Sharon Horsburgh).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L})(2.854^{\text{kgCO}_2e}/\text{L})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = t^{\text{CO}_2e}/\text{tonne}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(23,075)(2.854)}{(2,227)*1000} = 0.030 \text{ t}^{\text{CO}_2e}/\text{tonne}$ $\text{GHG Emissions} = 0.030 \text{ t}^{\text{CO}_2e}/\text{tonne}$

B.5 CITY OF LANGLEY

In the City of Langley, 13,995 tonnes of waste was generated and delivered to the CTS (10,025 tonnes), the MTS (3,460 tonnes) and the LTS (510 tonnes) (GVRD 1999a). As most of the waste (72%) was delivered to the CTS, this is used as a proxy for all of the waste generated in the City of Langley. Canadian Waste is the private contractor that provides the curbside collection of general waste, recyclables and yard trimmings in this municipality.

1. **Diesel Fuel Consumption for Curbside Waste Collection:** Average GHG Emission = 0.014 tCO₂e/tonne

2. Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG Emission = 0.043 tCO₂e/tonne

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG Emission = 0.027 tCO₂e/tonne

4. Diesel Fuel Consumption for Yard Waste Transport to Composting Facility: As the yard trimmings collected separately is directly delivered to one of the several GVRD approved composting facilities, this emission factor is unnecessary. On any given day, yard trimmings may or may not be deposited at Fraser Richmond Bio-Cycle but is assumed to be for this research.

B.6 TOWNSHIP OF LANGLEY

In the Township of Langley, 27,521 tonnes of waste was generated in 1998. This was delivered to the LTS (11,744 tonnes), the BI (5,961 tonnes), the CTS (5,501 tonnes) and the MTS (4,315) (GVRD 1993a). Most of the waste delivered to the LTS is transferred to the MTS for subsequent disposal in the CCLF (87% in 1998) and most of the waste delivered to the CTS is transferred for disposal at the CCLF). To simplify these flows, waste to be disposed at the CCLF will be assumed to be delivered to the LTS and transferred to the MTS. In addition, waste disposed at the VLF is assumed to be transferred to be directly

delivered there. Canadian Waste is the private contractor that provides the curbside collection of general waste, recyclables and yard trimmings in this municipality.

1. Diesel Fuel Consumption for Curbside Waste Collection: Average GHG Emission = 0.014 tCO₂e/tonne

2. Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG Emission = 0.043 tCO₂e/tonne

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG Emission = 0.027 tCO₂e/tonne

From the perspective of recycling, transport within this municipality would be very similar to the City of Langley. Please refer to Section B.5 for the remaining emission factors.

B.7 DISTRICT OF MAPLE RIDGE

In 1998, the District of Maple Ridge generated 21,355 tonnes of waste which was delivered to the MRTS (12,177 tonnes), the CTS (8,308 tonnes) and the MTS (870 tonnes) (GVRD 1999a). Similar to the LTS, most of the waste at the MRTS (83%) is transferred to MTS, and is ultimately sent to the CCLF. For this analysis, it is therefore assumed that waste disposed in the CCLF was processed at the MRTS and waste disposed at the VLF or combusted at the BI was processed at the CTS.

1. Diesel Fuel Consumption for Curbside Waste Collection:

Average GHG Emission = $0.014 \text{ tCO}_2\text{e}/\text{tonne}$

2. Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG Emission = 0.043 tCO₂e/tonne

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG Emission = 0.027 tCO₂e/tonne

B.8 CITY OF NEW WESTMINSTER

In 1998, the City of New Westminster generated 28,018 tonnes of waste which was delivered to the BI (14,411 tonnes) and to the CTS (13,607 tonnes) (GVRD 1999a). For this analysis, it will be assumed that waste disposed at the CCLF or VLF was processed at the CTS and that all waste combusted at the BI was directly transported there by collection vehicles. In this municipality, general waste and recyclables are collected by municipal crews. There is no separate collection of yard trimmings, however residents can drop off this waste at depots. Yard waste is subsequently transported to the Fraser Richmond BioCycle composting facility in Richmond (Pers. comm. Ron Trewern).

1. Diesel Fuel Consumption for Curbside Waste Collection:

In 1999, municipal crews collected 6,309 tonnes of waste from residences and consumed 50,331 litres in the process (Pers. comm. Ron Trewern).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L} (2.854^{\text{kgCO}_2e}/\text{L})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = t^{\text{CO}_2e}/\text{tonne}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(50,331)(2.854)}{(6,309)*1000} = 0.023^{\text{tCO}_2e}/\text{tonne}$ $\text{GHG Emissions} = 0.023 \text{ tCO}_2e/\text{tonne}$

2. Diesel Fuel Consumption for Curbside Recyclables Collection:

In 1999, municipal crews collected 1,344 tonnes of recyclables from residences and consumed 24,604 litres in the process (Pers. comm. Ron Trewern).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L})(2.854^{\text{kgCO}_2e}/\text{L})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = \frac{\text{tCO}_2e}{\text{tonne}}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(24,604)(2.854)}{(1,344)*1000} = 0.052^{\text{tCO}_2e}/\text{tonne}$ $\text{GHG Emissions} = 0.052 \text{ tCO}_2e/\text{tonne}$

3. Diesel Fuel Consumption for Yard Trimmings Transport to Fraser Richmond Biocycle:

By assuming 20 tonnes hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 40 km, the emission would be:

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{FuelConsumption}, \frac{L_{100\text{km}}}{(1000\text{ km})})(\text{Distance, km})(2.854^{\text{kgCO}_2e})(1 \text{ tonne}/1000 \text{ kg})}{(tonnes/trip)} = t^{\text{CO}_2e}/\text{tonne}}$$

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(45/100)(40)(2.854)}{(20) \times 1000} = 0.0026^{1\text{CO}_2e}/\text{tonne}}$$

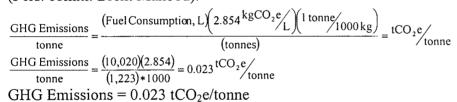
$$\text{GHG Emission} = 0.0026 \text{ tCO}_2e/\text{tonne}$$

B.9 CITY OF NORTH VANCOUVER

In the City of North Vancouver, 10,037 tonnes of waste was generated and delivered to the NSTS in 1998. The only other drop off site for waste was the CTS with only 136 tonnes (GVRD 1999a). For this analysis, it is assumed that all of the waste generated in this municipality is deposited at the NSTS. In this municipality, municipal crews provide the curbside collection of general waste and yard trimmings for ground-level residences and small apartments while private haulers provide the waste collection at the large apartment and commercial buildings. While there may be differences between single and multi-family dwellings from the perspective of fuel efficiency, this investigation only uses the data obtained from the municipal crews. Recyclables are collected by contract with International Paper Industries, which also provides the subsequent processing (Pers. comm. Brent Mahood). The separate curbside collection of yard trimmings only started in 1998, so the most recent available data, the calendar year of 1999, is used here.

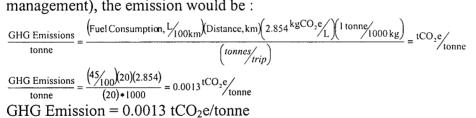
1. Diesel Fuel Consumption for Curbside Waste Collection:

The municipal crews of the City of North Vancouver collected 4,175 tonnes of waste at single-family residences in 1999 and consumed 16,257 litres in the process (Pers. comm. Brent Mahood).


 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854 \text{ kgCO}_2\text{e})(1 \text{ tonne})(1000 \text{ kg})}{(\text{tonnes})} = \frac{10022 \text{e}}{(1000 \text{ kg})} =$

2. Diesel Fuel Consumption for Curbside Recyclables Collection:

Average GHG Emission = $0.043 \text{ tCO}_2\text{e/tonne}$


3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection:

The municipal crews of the City of North Vancouver collected 1,223 tonnes of yard waste at single-family residences in 1999 and consumed 10,020 litres in the process (Pers. comm. Brent Mahood).

4. Diesel Fuel Consumption for Yard Trimmings Transport to Fraser Richmond Biocycle:

By assuming 20 tonnes hauled per trip, a diesel fuel consumption of 45.0L per 100km and a one-way distance of 20 km (the trucks return to the NSTS with finished compost (Pers. comm. Steve Aujla) and therefore the return trip is not be included under waste management), the emission would be :

B.10 DISTRICT OF NORTH VANCOUVER

In the District of North Vancouver, 73,521 tonnes of waste was generated and delivered to the NSTS in 1997. The only other drop-off location was the CTS with 379 tonnes (GVRD 1999a). It is assumed in this analysis that all of the waste generated in this municipality is delivered to the NSTS. In this municipality, municipal crews collect general waste and yard trimmings from all the residences (Pers. comm. Daryl Mielty). Recyclables are collected by contract with International Paper Industries, which also provides the subsequent processing.

1. Diesel Fuel Consumption for Curbside Waste Collection:

Average GHG Emission = $0.014 \text{ tCO}_2\text{e/tonne}$

2. Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG Emission = 0.043 tCO₂e/tonne

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection:

Average GHG Emission = $0.027 \text{ tCO}_2\text{e/tonne}$

From the perspective of recycling, transport within this municipality would be very similar to the City of North Vancouver. Please refer to Section B.9 for the remaining emission factors.

B.11 DISTRICT OF PITT MEADOWS

In 1998, the District of Pitt Meadows generated 3,821 tonnes of waste which was delivered to the CTS (3,595 tonnes), the MRTS (209 tonnes) and the MTS (17 tonnes) (GVRD 1999a). For this analysis, it is assumed that all waste originating in this municipality is processed at the CTS. In this municipality, the private contractor, Canadian Waste provides the curbside collection of general waste, recyclables and yard trimmings. Recyclables are delivered to Wastech in Coquitlam and yard trimmings are dropped off at the Fraser Richmond Bio-Cycle depot in Pitt Meadows for subsequent transport to the Richmond composting facility (Pers. comm. Greg Cross).

1. Diesel Fuel Consumption for Curbside Waste Collection:

Average GHG Emission = $0.014 \text{ tCO}_2\text{e}/\text{tonne}$

2. Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG Emission = 0.043 tCO₂e/tonne

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG Emission = 0.027 tCO₂e/tonne

4. Diesel Fuel Consumption for Yard Trimmings Transport to Fraser Richmond Biocycle:

The transport of the yard trimmings from the Pitt Meadows depot to the Richmond composting facility is calculated below. By assuming 20 tonnes hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 60 km (estimated from map), the emission would be :

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\text{Fuel Consumption, } \frac{L}{100 \text{ km}}\right) \text{Distance, } \text{km}\left(2.854^{\text{kgCO}_2e}\right) \left(1 \text{ tonne}/1000 \text{ kg}\right)}{\left(tonnes/trip\right)} = t^{\text{CO}_2e}/\text{tonne}}$$

$$\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\frac{45}{100}\right)(60)(2.854)}{(20)*1000} = 0.0039 \text{ tCO}_2e/\text{tonne}}$$

$$\text{GHG Emission} = 0.0039 \text{ tCO}_2e/\text{tonne}$$

B.12 CITY OF PORT COQUITLAM

In 1998, the City of Port Coquitlam generated a total of 17,895 tonnes of waste of which 100% was delivered to the CTS (GVRD 1999a).

1. Diesel Fuel Consumption for Curbside Waste Collection:

Average GHG Emission = $0.014 \text{ tCO}_2\text{e/tonne}$

2. Diesel Fuel Consumption for Curbside Recyclables Collection:

Average GHG Emission = $0.043 \text{ tCO}_2\text{e/tonne}$

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection:

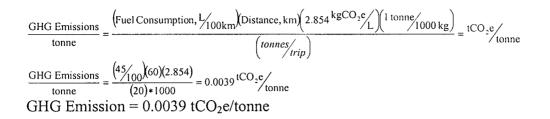
Average GHG Emission = $0.027 \text{ tCO}_2\text{e}/\text{tonne}$

From the perspective of recycling, transport within this municipality would be very similar to the City of Coquitlam. Please refer to Section B.3 for the remaining emission factors.

B.13 CITY OF PORT MOODY

In 1998, the City of Port Moody generated 5,670 tonnes of waste and all of this was delivered to the CTS (GVRD 1999a). As previously discussed, waste generated in Anmore or Belcarra is to be assumed as having originated in the City of Port Moody. In the GVRD's Solid Waste Flow Model for 1998 (GVRD 1999a), this is already assumed as the waste from Anmore & Belcarra is zero (Pers. comm.. Mike Stringer). Canadian Waste is the private contractor which provides the curbside collection of general waste, recyclables and yard trimmings. Recyclables are delivered to Wastech Services in Coquitlam and the yard trimmings are delivered to the Fraser Richmond BioCycle depot in Pitt Meadows for subsequent transport to the Richmond composting facility.

1. Diesel Fuel Consumption for Curbside Waste Collection:


Average GHG Emission = 0.014 tCO₂e/tonne

2. Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG Emission = 0.043 tCO₂e/tonne

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG Emission = 0.027 tCO₂e/tonne

4. Diesel Fuel Consumption for Yard Trimmings Transport to Fraser Richmond Biocycle:

The transport of the yard trimmings from the Pitt Meadows depot to the Richmond composting facility is calculated below. By assuming 20 tonnes hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 60 km (estimated from map), the emission would be :

B.14 CITY OF RICHMOND

In 1998, the City of Richmond generated 64,364 tonnes of waste; most of which was delivered to the VTS (43,609 tonnes), however, waste was also delivered to the VLF (7,508 tonnes), the BI (7,280 tonnes) and the CTS (5,967 tonnes) (GVRD 1999a). For this analysis, it is assumed that waste disposed in the VLF was processed through the VTS, that waste combusted at the BI was delivered directly there and that waste disposed at the CCLF was processed through the CTS. Yard waste is assumed to be directly delivered to Fraser Richmond Biocycle.

1. Diesel Fuel Consumption for Curbside Waste Collection:

Average GHG Emission = 0.014 tCO₂e/tonne

2. Diesel Fuel Consumption for Curbside Recyclables Collection:

Average GHG Emission = $0.043 \text{ tCO}_2\text{e/tonne}$

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG Emission = 0.027 tCO₂e/tonne

B.15 CITY OF SURREY

In 1998, the City of Surrey generated 126,130 tonnes of waste which was delivered to the CTS (96,881 tonnes), the BI (21,286 tonnes), the VLF (7,471 tonnes) and the MTS (492 tonnes) (GVRD 1999a). For this analysis, it is assumed that all waste generated in this municipality was processed through the CTS. Also, the curbside collection of waste will deliver to the CTS. Canadian Waste is the private contractor which handles the curbside collection of general waste, recyclables and yard trimmings (Pers. comm. Richard Woo). Recyclables are delivered to the recycling depot operated by ETL Recycling Services.

1. Diesel Fuel Consumption for Curbside Waste Collection:

Average GHG Emission = 0.014 tCO₂e/tonne

2. Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG Emission = 0.043 tCO₂e/tonne

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection:

Average GHG Emission = $0.027 \text{ tCO}_2\text{e/tonne}$

4. Diesel Fuel Consumption for Yard Trimmings Transport to Fraser Richmond Biocycle:

By assuming 20 tonnes hauled per trip, a diesel fuel consumption of 45.0L per 100km and a round-trip distance of 60 km (estimated from map), the emission would be :

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\frac{\text{Fuel Consumption, } L_{100\text{km}}}{\text{tonne}}\right) \text{Distance, km} \left(2.854^{\text{kgCO}_2e} L\right) \left(1 \text{ tonne}/1000 \text{ kg}\right)}{\left(\frac{\text{tonnes}/trip}{1000\text{ kg}}\right)} = \frac{100^{-2} \text{c}}{1000^{-2} \text{c}} \text{c}}{(1000^{-2} \text{c})^{-2} \text{c}} \text{c}}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{\left(\frac{45}{100}\right)^{(40)(2.854)}}{(20) \times 1000} = 0.0026^{-1002} \text{ tCO}_2 \text{e}}{\text{tonne}}$ $\text{GHG Emission} = 0.0026 \text{ tCO}_2 \text{e}/\text{tonne}}$

B.16 CITY OF VANCOUVER

In 1998, the City of Vancouver generated 346,991 tonnes of waste which was collected and delivered to the VTS (225,740 tonnes), to the NSTS (83,761 tonnes), to the CTS (22,374 tonnes) and directly delivered to the VLF (8,899 tonnes) and the BI (6,217 tonnes) (GVRD 1999a). As 100% of the waste delivered to the VTS is transferred to the VLF, the small amount delivered directly to the VLF is insignificant and is assumed to have been transferred through the VTS. As approximately half of the waste delivered to the NSTS is transferred to the BI and the other half is transferred to the CCLF, and since the 83,761 tonnes at the NSTS is much greater than either the tonnage going to the CTS or BI, it is assumed that waste disposed in the CCLF or combusted at the BI was processed at the NSTS. In this municipality, city crews provide the curbside collection of general waste, recyclables and yard trimmings for ground-level (single family) residences while private contractors provide collection of general waste and recyclable at apartment (multi-family) residences and commercial buildings. Canadian Waste, the largest private hauler, collected nearly as much waste in 1998 (72,900 tonnes) as the city crews did (76,000 tonnes) (Pers. comm. Kevin Van Vliet). As a result, data from this organization was also obtained for comparison. However, as a simplification, only the data for ground-level residences will used in the greenhouse gas estimates. The collected recyclables were delivered to a recycling depot in south Vancouver operated by Browning Ferris Industries. A separate collection of yard waste was recently been initiated in this municipality. Currently, vard waste is collected and delivered to the VTS for subsequent transport to the composting facility at the VLF.

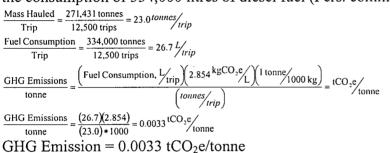
1. Diesel Fuel Consumption for Curbside Waste Collection:

In 1998, the city crews collected 76,000 tonnes of waste from ground level (single-family) residences and delivered it to the VTS. During this activity approximately 316,000 litres of diesel fuel was consumed (Pers. comm. Kevin Van Vliet).

 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}(2.854 \text{ kgCO}, \text{e}/\text{L})(1 \text{ tonne}/1000 \text{ kg})}{(\text{tonnes})} = \text{tCO}_3\text{e}/\text{tonne}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(316,000)(2.854)}{(76,000)*1000} = 0.012 \text{ tCO}_3\text{e}/\text{tonne}$ $\text{GHG Emissions} = 0.012 \text{ tCO}_2\text{e}/\text{tonne}$

2. Diesel Fuel Consumption for Curbside Recyclables Collection:

The collection of recyclables from single-family residences (blue boxes) is performed by municipal crews. In the collection of 17,500 tonnes of recyclables in 1998, approximately 190,000 litres of diesel fuel was consumed (Pers. comm. Kevin Van Vliet). The average emission is calculated below:


 $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(\text{Fuel Consumption, L}\left(2.854^{\text{kgCO}_2e}\right)\left(1 \text{ tonne}/1000 \text{ kg}\right)}{(\text{tonnes})} = \text{tCO}_2e/\text{tonne}$ $\frac{\text{GHG Emissions}}{\text{tonne}} = \frac{(190,000)(2.854)}{(17,500) * 1000} = 0.031^{\text{tCO}_2e}/\text{tonne}$ $\text{GHG Emissions} = 0.031 \text{ tCO}_2e/\text{tonne}$

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection:

Average GHG Emission = $0.027 \text{ tCO}_2\text{e}/\text{tonne}$

4. Diesel Fuel Consumption for Yard Trimmings Transport to the Vancouver Composting Facility:

Approximately 12,500 tractor-trailer trips were required to transport 271,431 tonnes of waste and 16,500 tonnes of yard trimmings from the VTS to the VLF. This necessitated the consumption of 334,000 litres of diesel fuel (Pers. comm. Kevin Van Vliet).

B.17 DISTRICT OF WEST VANCOUVER

In the District of West Vancouver, 15,733 tonnes of waste was generated and delivered to the NSTS in 1998 (GVRD 1999a). This is 100% of the waste stream collected that year. International Paper Industries (IPI) is the private contractor which provides the curbside collection of general waste, recyclables and yard trimmings. Recyclables are delivered to the recycling depot near the North Shore Transfer Station which is operated by IPI. Yard trimmings are delivered to the Green Waste Processing Yard at the North Shore Transfer Station for subsequent transport to the Richmond composting facility of Fraser Richmond Bio-Cycle.

1. Diesel Fuel Consumption for Curbside Waste Collection:

Average GHG Emission = $0.014 \text{ tCO}_2\text{e}/\text{tonne}$

2. Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG Emission = 0.043 tCO₂e/tonne

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection:

<u>ي</u>،

Average GHG Emission = $0.027 \text{ tCO}_2\text{e/tonne}$

From the perspective of recycling, transport within this municipality would be very similar to the City of North Vancouver. Please refer to Section B.9 for the remaining emission factors.

B.18 CITY OF WHITE ROCK

In 1998, the City of White Rock generated 8,964 tonnes of waste which was collected and delivered to the VLF (8,635 tonnes), to the CTS (287 tonnes), and to the VTS (42 tonnes) (GVRD 1999a). For this analysis, it is assumed that waste disposed in the VLF was delivered directly there, while waste to the CCLF or the BI was first processed at the CTS.

1. Diesel Fuel Consumption for Curbside Waste Collection:

Average GHG Emission = 0.014 tCO₂e/tonne

2. Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG Emission = 0.043 tCO₂e/tonne

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection:

Average GHG Emission = $0.027 \text{ tCO}_2\text{e/tonne}$

B.19 ELECTORAL AREA A (U.B.C. & U.E.L.)

In 1998, Electoral A generated 3,349 tonnes of waste which was collected and delivered to the VTS (3,283 tonnes) and the VLF (66 tonnes) (GVRD 1999a). For this analysis, it is assumed that all waste generated will be processed through the VTS.

1. Diesel Fuel Consumption for Curbside Waste Collection:

Average GHG Emission = $0.014 \text{ tCO}_2\text{e/tonne}$

2. Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG Emission = 0.043 tCO₂e/tonne

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG Emission = 0.027 tCO₂e/tonne

4. Diesel Fuel Consumption for Yard Trimmings Transport to Fraser Richmond Biocycle:

B.20 ELECTORAL AREA C (BOWEN ISLAND & HOWE SOUND)

In the 1998, Electoral C generated 1,266 tonnes of waste which was collected and delivered to the NSTS (GVRD 1999a). Th fuel consumption of the ferries associated with crossing Howe Sound is not included in this analysis. As previously discussed,

waste generated from the Village of Lions Bay is to be assumed as originating from Electoral Area C. In 1998, only a total of 23 tonnes of waste came from Lions Bay to the NSTS (GVRD 1999a). Obviously much of the generated waste is being managed outside of the GVRD and will not be subject to any analysis.

1. Diesel Fuel Consumption for Curbside Waste Collection:

Average GHG Emission = $0.014 \text{ tCO}_2\text{e/tonne}$

2. Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG Emission = 0.043 tCO₂e/tonne

3. Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG Emission = 0.027 tCO₂e/tonne

From the perspective of recycling, transport within this municipality would be very similar to the City of North Vancouver. Please refer to Section B.9 for the remaining emission factors.

APPENDIX C: NEWSPRINT WASTE MANAGEMENT

This appendix provides all the data and calculations to estimate emission factors for the landfilling, incineration or recycling of newsprint generated in the GVRD. The first three sections are devoted to the GHG implications of the Cache Creek Landfill (1-3). The next three sections assess the same implications for the Vancouver Landfill (4-6). Sections 7 and 8, assess the energy generation and GHG emissions from the Burnaby Incinerator. The last two sections of this appendix, 9 and 10, analyze the GHG ramifications of newsprint recycling.

1. Methane & Energy Implications of the Cache Creek Landfill:

As discussed in Section 2.4, a time-dependant model is used to estimate emissions for the next 20 years. In this model, calculations are used to estimate the future methane emissions from the anaerobic decomposition of disposed newsprint. These calculations estimate the emission for a 20 year period between 1999 and 2018 for waste deposited in the year 1998. As this estimate is strictly limited to these years, and anaerobic decomposition could continue after this period, the actual or total emissions could be greater. At the end of 20 years, the organic-carbon previously deposited in the landfill will have either been emitted as CH₄, emitted as CO₂, entered long-term storage or not yet decomposed. The Carbon Storage Factors estimated by Barlaz (and discussed in Section 2.4) are used here and revised to determine the fraction sequestered and the fraction of *Carbon Available for Anaerobic Decomposition*. However, the decay rate will determine how much of the CAAD (carbon not being sequestered) will actually be decomposed during the 20 year time period. As a result, carbon not yet degraded, but not entering storage, will remain at the end of the time period.

The Scholl Canyon Decay Model (EMCON Associates 1980) is recommended by the IPCC (IPCC 1997), and is also used by Environment Canada (1997), for estimating methane emission at landfills. The first order equation for this model is:

$$G_i = k L_O M_i e^{-kt_i}$$

where: G_i = methane generation rate from waste placed in the ith year

k = methane generation first order rate constant (year⁻¹)

 $L_o =$ methane generation potential (tCH₄/tonne waste)

 M_i = mass of waste placed in the ith year (tonnes)

 t_i = age of the ith section (years)

This research uses this model to estimate landfill methane emissions.

The first order decay rate constant used here is 0.04 y^{-1} and the assumptions behind it are discussed in Section 2.4 - *Landfill Carbon Sequestration*.

Also of great importance with respect to methane generation, is what fraction of landfill gas escapes collection systems and is emitted to the atmosphere. Personal

communication with Wastech Services (Pers. comm.. Louie DeVent) has informed this author that 2.1 million m^3 of CH₄ gas was collected in 1998 and flared without any energy utilization. However, the GVRD has modelled that 4,931,000 m³ of CH₄ was generated in this same year (GVRD 1999b). While this generation estimate is by no means certain, when dividing the LFG collection by the LFG generation a landfill gas collection efficiency of 43% can be approximated. While this may be the current situation, it is likely that with the strong federal and provincial interest in stricter landfill gas regulations this efficiency will probably increase in the future. Not only will the collection efficiency be greater but the current flaring could adapt to allow for energy utilization. If utilization occurred, the consumption of landfill gas would be a replacement of fossil-based natural gas; thereby resulting in a GHG benefit. As a result of the potential for increasing regulations to improve landfill gas collection systems, this model will slowly ramp up, year after year, not only the collection efficiency but also the proportion utilized for energy (to replace fossil energy). The energy generation benefits of landfill methane derive from the assumption that they are the CO_2 prevented by the replacement of natural gas. By utilizing landfill gas for energy generation, the consumption of fossil fuel and a GHG emission is prevented.

Lastly, there is also the potential for microorganisms in the cover material of the landfill to cause the oxidation of CH_4 to CO_2 . Research conducted in the U.S. has observed this factor to oxidize about 10% of the methane which had escaped collection (Czepiel et al. 1996). This is the oxidation factor to be used for methane gas which bypassed collection systems.

The calculations for landfill methane emissions and energy generation follow – starting with the Carbon Available for Anaerobic Decomposition (CAAD):

Estimated Methane Yield from Newsprint in reactors = 74.2 ml/dry gram (USEPA 1998) Assumed Carbon Dioxide Yield from newsprint = 74.2 ml/dry gram Molar gas constant=22.4 L/mol at standard temperature and pressure Typical Moisture Content of Newsprint = 6% (Tchobanoglous et al. 1993)

$$MolesofCH_{4} = \frac{\frac{74.2 \, ml}{gram}}{\frac{22,400 \, ml}{mol}} = 0.0033 molCH_{4}$$
$$MolesofCO_{2} = \frac{\frac{74.2 \, ml}{gram}}{\frac{22,400 \, ml}{mol}} = 0.0033 molCO_{2}$$

TotalMolesofC = 0.0033 + 0.0033 = 0.0066 molC

CarbonAvailableforAnaerobicDecomposition = $0.0066molC * 12 \frac{g}{mol} = 0.0795gC / drygram$

CAAD(dry) = 0.0795 gC / drygram = 0.0795 tC / drytonne

CAAD(wet) = 0.0795 * (1 - 0.06) = 0.075 gC / wetgram = 0.075 tC / wettonne

Carbon Content of Dry Newsprint = 49.1% (Barlaz 1998) RevisedCarbonStorageFactor = InitialCarbon – CAAD = gC/drygram RevisedCarbonStorageFactor = $0.491 \frac{gC}{drygram} - 0.0795 \frac{gC}{drygram} = 0.41gC/drygram$ RevisedCarbonStorageFactor = 0.41gC/drygram = 0.41tC/drytonne

This 0.075 tC per wet tonne of newsprint is available for anaerobic decomposition and will be assumed to be evenly split between CH_4 and CO_2 . Remember that since any CO_2 is neutral, it does not have to be considered further.

Methane Generation = $(Carbon To Decompose^{tC}/WetTonne)$ (Methane Fraction) $\left(\frac{Molecular MassofCH_4}{Molecular MassofC}\right) = {}^{tCH_4}/Wet Tonne$ Methane Generation = $(0.075)(0.5)\left(\frac{16}{12}\right) = 0.050 {}^{tCH_4}/WetTonne$ Methane Generation Potential = 0.050 tCH₄/tonne of food waste

The calculations below demonstrate the estimate of the methane emissions for the year 1999 and the year 2010 for one tonne of newsprint deposited in the year 1998. The year 1999 is assumed as the first year, year zero, of decomposition.

YEAR 2001

Solving for the Methane Generation Rate (G_i): methane generation first order rate constant (k) = 0.04 year⁻¹ methane generation potential (L_o) = 0.050 tCH₄/tonne waste mass of waste placed in the ith year (M_i) = 1 tonne age of the ith section (t_i) = 1999-1999 = 0 year $G_i = kL_0M_ie^{-kt_i}$

$$G_{i} = \left(0.04 \frac{1}{yr}\right) \bullet \left(0.050^{tCH_{4}} / tonne\right) \bullet (1tonne) \bullet e^{\left(-0.04 \frac{1}{yr}\right) \bullet (0yr)} = 0.00199^{tCH_{4}} / yr$$

Solving for the Atmospheric Methane Emission: methane generation rate = $0.00199 \text{ tCH}_4/\text{yr}$ percentage oxidation by cover material = 10%percentage landfill gas flared = 43%percentage landfill gas for energy = 0%

Methane Emission = $(\text{Generation})(1 - \% Flared - \% Energy)(1 - \text{Oxidation})(\text{GWP of CH}_4) = \frac{\text{tCO}_2\text{e}}{\text{tonne}}$

Methane Emission = $(0.00199)(1 - 0.43 - 0)(1 - 0.10)(21) = 0.0215 \frac{tCO_2e}{tonne}$

Solving for the Energy Generation: percentage landfill gas for energy = 0%

GHG Benefit of Energy Generation = $(CH_4 \text{ Generation})(\% \text{Energy})\left(\frac{\text{Molecular Mass of CO}_2}{\text{Molecular Mass of CH}_4}\right) = \frac{tCO_2 e}{tonne}$ GHG Benefit of Energy Generation = $(0.00199)(0)\left(\frac{44}{16}\right) = 0 \frac{tCO_2 e}{tonne}$

YEAR 2010

Solving for the Methane Generation Rate (G_i): methane generation first order rate constant (k) = 0.04 year⁻¹ methane generation potential (L_o) = 0.050 tCH₄/tonne waste mass of waste placed in the ith year (M_i) = 1 tonne age of the ith section (t_i) = 2010 - 1999 = 11 year $G_i = kL_oM_ie^{-kt_i}$ $G_i = (0.04 \frac{1}{yr}) \cdot (0.05^{tCH_4}/_{tonne}) \cdot (1tonne) \cdot e^{(-0.04 \frac{1}{yr}) \cdot (11yr)} = 0.00128^{tCH_4}/_{yr}$

Solving for the Atmospheric Methane Emission: methane generation rate = $0.00128 \text{ tCH}_4/\text{yr}$ percentage oxidation by cover material = 10%percentage landfill gas flared = 25%percentage landfill gas for energy = 50%

Methane Emission = (Generation)(1 - %Flared - % Energy)(1 - Oxidation)(GWP of CH_4) = $\frac{tCO_2e}{tonne}$

Methane Emission = $(0.00128)(1 - 0.25 - 0.50)(1 - 0.10)(21) = 0.0061 \frac{tCO_2e}{tonne}$

Solving for the Energy Generation: percentage landfill gas for energy = 50%

GHG Benefit of Energy Generation = $(CH_4 \text{ Generation})(\%\text{Energy})\left(\frac{\text{Molecular Mass of CO}_2}{\text{Molecular Mass of CH}_4}\right) = \frac{tCO_2e}{tonne}$

GHG Benefit of Energy Generation = $(0.00128)(0.50)\left(\frac{44}{16}\right) = 0.0019 \frac{\text{tCO}_2\text{e}}{\text{tonne}}$

BEST-GUE	SS:				
	Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit
Methane	Cover	of LFG	of LFG for	Methane	of Energy
Generation	Material	Flared	Energy	Emissions	Utilization
(tCH₄/yr)	(%)	(%)	(%)	(tCO ₂ e/yr)	(tCO ₂ e/yr)
-	-	-	-	-	-
0.00199	10	43	0	0.0215	0.0000
0.00191	10	50	0	0.0181	0.0000
0.00184	10	50	10	0.0139	0.0005
0.00177	10	50	15	0.0117	0.0007
0.00170	10	45	20	0.0112	0.0009
0.00163	10	40	25	0.0108	0.0011
0.00157	10	35	35	0.0089	0.0015
0.00151	10	30	40	0.0085	0.0017
0.00145	10	25	50	0.0068	0.0020
0.00139	10	25	50	0.0066	0.0019
0.00134	10	20	55	0.0063	0.0020
0.00128	10	20	55	0.0061	0.0019
0.00123	10	15	60	0.0058	0.0020
0.00118	10	15	60	0.0056	0.0020
0.00114	10 、	10	65	0.0054	0.0020
0.00109	10	10	65	0.0052	0.0020
0.00105	10	5	70	0.0050	0.0020
0.00101	10	5	70	0.0048	0.0019
0.00097	10	0	75	0.0046	0.0020
0.00093	10	0	75	0.0044	0.0019
0.02799				0.171	0.030
Best-Guess of Atmospheric Methane Emissions=				0.171	tCO ₂ e/tonne
	Methane Generation (tCH₄/yr) - 0.00199 0.00191 0.00184 0.00177 0.00170 0.00163 0.00157 0.00151 0.00134 0.00128 0.00123 0.00114 0.00123 0.00118 0.00114 0.00109 0.00105 0.00101 0.00097 0.00093 0.02799	Methane Cover Generation Material (tCH ₄ /yr) (%) - - 0.00199 10 0.00191 10 0.00191 10 0.00184 10 0.00177 10 0.00163 10 0.00157 10 0.00151 10 0.00139 10 0.00131 10 0.00123 10 0.00123 10 0.00114 10 0.00105 10 0.00107 10 0.00114 10 0.00105 10 0.00105 10 0.00107 10 0.00097 10 0.00093 10 0.02799 10	Oxidation by Methane GenerationPercentage of LFGMaterialFlared(tCH4/yr)(%)(%)0.0019910430.0019110500.0018410500.0017710450.0016310400.0015710350.0015110250.0013910250.0013410200.0012310150.0011410100.001051050.001141050.0011410100.001051050.001011050.001031000.001051050.001011000.001031000.001031000.001051050.001011000.00093100	Oxidation byPercentagePercentageMethaneCoverof LFGof LFG forGenerationMaterialFlaredEnergy(tCH4/yr)(%)(%)(%)0.00199104300.00191105000.001921050100.001731050150.001741045200.001631040250.001571035350.001511025500.001451025500.001341020550.001281015600.001141015600.001151055700.00105105700.00105105700.00105100750.00105100750.00105100750.009310075	Oxidation by Methane Percentage Cover Percentage of LFG Atmospheric of LFG for Atmospheric Methane Generation Material Flared Energy Emissions (tCH4/yr) (%) (%) (%) (tCO2e/yr) - - - - 0.00199 10 43 0 0.0215 0.00191 10 50 0 0.0181 0.00184 10 50 10 0.0139 0.00177 10 45 20 0.0112 0.00163 10 40 25 0.0089 0.00151 10 35 35 0.0085 0.00151 10 25 50 0.0066 0.00139 10 25 50 0.0066 0.00134 10 20 55 0.0061 0.00128 10 20 55 0.0061 0.00123 10 15 60 0.0058 0.00118 10

Using these calculations, the model is presented below:

For the 20 year period between 1999 and 2018, it is estimated that 0.028 tCH₄/tonne would be generated. This represents 56% of the ultimate potential of 0.050 tCH₄/tonne, the CAAD. This generation corresponds to, minus the collection and oxidation, an emission of 0.171 tCO₂e/tonne. Furthermore an energy benefit, via the replacement of fossil energy, of 0.030 tCO₂e/tonne would be realized.

-0.030

tCO₂e/tonne

Best-Guess of Benefit of Energy Utilization=

The calculations above are based on best-guess data. However, the first-order decay rate constant, the LFG collection for flaring or energy utilization and the oxidation by landfill cover materials are all uncertain. Rather than simply providing just best-guess estimates, high and low estimates are calculated to demonstrate a likely range for future methane

emissions. These estimates are developed by increasing and decreasing the important parameters involved in calculations above. The high estimate uses a first-order decay rate constant that is increased by 50% while the LFG collection for flaring and energy utilization is decreased to an appropriate level deemed by this author. The oxidation by landfill cover materials is also decreased by 50%. The low estimate uses a first-order decay rate constant that is decreased by 50% with the collection effectiveness increased appropriately. The oxidation by cover materials is also increased by 50% in the low estimate. These calculations presented in Worksheet 26 and the results are below.

Best-Guess of Atmospheric Methane Emissions=	0.171	tCO ₂ e/tonne
Best-Guess of Benefit of Energy Utilization=	-0.030	tCO ₂ e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.079	tCO ₂ e/tonne
Low Estimate of Benefit of Energy Utilization=	-0.020	tCO2e/tonne
High Estimate of Atmospheric Methane Emissions=	0.321	tCO2e/tonne
High Estimate of Benefit of Energy Utilization=	-0.007	tCO2e/tonne

2. Long-Term Carbon Sequestration in the Cache Creek Landfill:

Since not all of the cellulose and hemicellulose and only a negligible portion of the lignin from newsprint is expected to anaerobically degrade in a landfill, organic-carbon will remain in long-term storage in the landfill. In this capacity, the organic-carbon, which was originally atmospheric CO_2 but was photosynthesized into biomass, will be sequestered. As a result, organic-carbon can perform a GHG benefit, a negative GHG emission. This issue is discussed in greater detail in Section 2.4 – Landfill Carbon Sequestration.

The Carbon Storage Factors, as determined by Barlaz (1998), and also discussed in Eleazer et al. (1997), are used here as representative of long-term storage in the CCLF. These experiments determined that the long-term carbon storage of newsprint in landfills is 0.42 kg C per kg of dry newsprint. The researchers observed that 31% of the cellulose and hemicellulose fraction and only a negligible portion of lignin decomposed. However, these factors were developed with laboratory research of idealized landfill decomposition conditions and are thus highly conservative. As a result, the actual storage in the CCLF could be greater than is indicated by these experiments. While there is great potential for uncertainty with this estimate, it is likely that the uncertainty would be skewed towards a greater value. By using this conservative estimate, the risk of overestimating this factor is probably minimal. For these reasons, only the best-guess estimate will be used in this analysis.

In Section #1 of the Appendix a revised Carbon Storage Factor was developed to attempt to correct inconsistencies in the previous estimates by Barlaz. The new estimate is as follows:

Revised Carbon Storage Factor for newsprint = 0.41 tC/dry tonne newsprint

Typical Moisture Content of Newsprint = 6% (Tchobanoglous et al. 1993)

Carbon Sequestration = $\binom{tC}{Dry \text{ newsprint}}(1 - Moisture Content) \left(\frac{\frac{44gCO_2}{mol}}{12gC}\right) = \frac{tCO_2e}{tonne}$

Carbon Sequestration = $(0.41)(1 - 0.06)(\frac{44}{12}) = 1.41 \frac{100^{2}}{100^{2}}$ tonne

Long-Term Carbon Sequestration from Newsprint = -1.41 tCO₂e/tonne

3. Immediate & Future N₂O Emissions from the Cache Creek Landfill

As the nitrogen content of newsprint is negligible (<0.1% in Tchobanoglous (1993)), the potential for nitrous oxide emissions can be ignored.

4. Methane & Energy Implications of the Vancouver Landfill:

The only significant difference between this section and Section 1, *Methane & Energy Implications of the Cache Creek Landfill*, is the estimated landfill gas collection efficiency and the first order decay rate constant. While at Cache Creek the current collection efficiency is estimated to be 43%, the current collection efficiency at the Vancouver Landfill is estimated to only be 22% (Pers. comm. Chris Underwood). However, engineers with the City of Vancouver are currently in the process of upgrading the collection equipment. As with the CCLF assessment, the collection efficiency is assumed to increase year after year in response to improving regulations. In this study, the first order decay rate constant used for the VLF in this report, 0.05 yr⁻¹, is assumed based on the discussion in Section 2.4 – *Landfill Carbon Sequestration*.

BEST-GUESS:						
		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit
	Methane	Cover	of LFG	of LFG for	Methane	of Energy
YEAR	Generation	Material	Flared	Energy	Emissions	Utilization
	(tCH₄/yr)	(%)	(%)	(%)	(tCO ₂ e/yr)	(tCO₂e/yr)
1998	-	-	-	-	-	-
1999	0.00249	10	22	0	0.0367	0.0000
2000	0.00237	10	30	0	0.0313	0.0000
2001	0.00225	10	35	10	0.0234	0.0006
2002	0.00214	10	40	15	0.0182	0.0009
2003	0.00204	10	45	20	0.0135	0.0011
2004	0.00194	10	40	25	0.0128	0.0013
2005	0.00185	10	30	40	0.0105	0.0020
2006	0.00176	10	30	40	0.0100	0.0019
2007	0.00167	10	25	50	0.0079	0.0023
2008	0.00159	10	25	50	0.0075	0.0022
2009	0.00151	10	20	55	0.0071	0.0023
2010	0.00144	10	20	55	0.0068	0.0022

Based on these changes, the model is provided below:

151

2011	0.00137	10	15	60	0.0065	0.0023
2012	0.00130	10	15	60	0.0061	0.0021
2013	0.00124	10	10	65	0.0058	0.0022
2014	0.00118	10	10	65	0.0056	0.0021
2015	0.00112	10	5	70	0.0053	0.0022
2016	0.00106	10	5	70	0.0050	0.0020
2017	0.00101	10	0	75	0.0048	0.0021
2018	0.00096	10	0	75	0.0046	0.0020
TOTAL =	0.032		- -		0.229	0.034
Best-Guess of Atmospheric Methane Emissions=				0.229	tCO ₂ e/tonne	
Best-Guess of Benefit of Energy Utilization=				-0.034	tCO ₂ e/tonne	
Low Estimate of Atmospheric Methane Emissions=				0.107	tCO ₂ e/tonne	

-0.023

0.408

-0.007

tCO₂e/tonne

tCO₂e/tonne

tCO₂e/tonne

High Estimate of Atmospheric Methane Emissions= High Estimate of Benefit of Energy Utilization=

Low Estimate of Benefit of Energy Utilization=

5. Long-Term Carbon Sequestration in the Vancouver Landfill:

The Revised Carbon Storage Factors is used here as representative of long-term storage in the VLF.

Long-Term Carbon Sequestration from Newsprint = -1.41 tCO₂e/tonne

6. Immediate & Future N₂O Emissions from the Vancouver Landfill

As the nitrogen content of newsprint is negligible (<0.1% in Tchobanoglous (1993)), the potential for nitrous oxide emissions can be ignored.

7. Energy Generation from Waste Incineration at the Burnaby Incinerator:

At the Burnaby Incinerator, 247,075 tonnes of waste was combusted in 1998 to generate 816,916 tonnes of steam (Montenay Inc. 1999; Pers. comm. Richard Holt). Of this steam produced, 56% was exported to Crown Packaging Ltd. – Paper Mill Division (CPL) for utilization in the pulping of corrugated cardboard into various recycled paper products (the remainder is used internally or condensed for disposal) (Pers. comm. John MacDowell). This steam, when utilized by CPL, offsets the combustion of natural gas which would otherwise be necessary. Of the remaining steam, a small portion is used internally for heating purposes at the Incinerator and the vast majority is condensed for disposal. There is currently no electricity generation at the Incinerator. For these calculations, it is assumed that 40% of the steam is used for electricity generation and the remaining 4% is used internally at the Incinerator. The calculations below determine the greenhouse gas implications of current energy generation at the Burnaby Incinerator and the potential for electricity generation in the future.

One of the most important parameters at a waste-to-energy facility like the Burnaby Incinerator, is the energy efficiency; what percentage of the energy embodied in the combusted waste is represented in the generated steam? This critical parameter is a valuable indication of the effectiveness of the facility in generating energy. After construction in 1988, the boiler efficiency was measured at 71%, but initial test runs this year have indicated that it may have decreased to 69% (Pers. comm. Ron Richter). This is still higher than the typical thermal efficiency reported in literature of 63% for a massfired incinerator-boiler (Tchobanoglous 1993). Furthermore, improvements to the boiler will be made in the future to increase this efficiency to between 75 and 77% when a planned turbo generator is installed for electricity generation. For this research, it is assumed that Incinerator currently has a boiler efficiency of 70% (conversion of waste energy to steam energy). The proposed turbo generator at the incinerator, together with improvements to current steam generation, will have a steam to electricity conversion efficiency of 32% (Pers. comm. Ron Richter; it has been calculated by consultants that 24MW could result from the incinerator using all of its steam for electricity generation). To calculate an overall efficiency of waste energy to electrical energy, the two efficiencies, 70% for waste-to-steam and 32% for steam-to-electricity, can be multiplied. This results in an overall efficiency of 23% - slightly greater than the 18% efficiency recently assumed in an EPA analysis (USEPA 1998). This is logical considering that the EPA assumption is an average of the old low-efficiency and modern high efficiency waste-to-energy plants in the U.S.

In order to determine the amount of GHG emissions prevented by this operation the energy produced by combustion in an Incinerator-Boiler to make steam must be determined (1). Next, the emission factor for natural gas that would otherwise be combusted to make steam is necessary (2). These results must then be multiplied to calculate the GHG emissions prevented per tonne of waste by the utilization of steam by CPL (3). In addition, the energy produced by the Incinerator which is used to make electricity needs to be calculated (4) and the emission factor for electricity production in British Columbia needs to be determined (5). Multiplying these two results will find the GHG benefit of replacing electrical generation by the provincial utility, B.C. Hydro (6). Both (3) and (6) are summed to calculate a total GHG emission prevention (7). These calculations are below:

Net Energy Content of Newsprint = 7,950 BTU/lb = 18,435 kJ/kg (USEPA 1998) (7,950 BTU/lb*1.054 kJ/BTU*2.20 lb/kg = 18,435 kJ/kg) (wet basis, correction for latent heat of water in this reference is assumed but not directly specified)

From another source (Tchobanoglous et al. 1993): Gross Energy Content of Newsprint = 7,975 BTU/lb = 18,492 kJ/kg (wet basis) Typical Moisture Content of Newsprint = 6% (Tchobanoglous et al. 1993) Latent Heat of Water=2473 kJ/kg (Incropera and DeWitt 1990) Net Energy Content = [Gross Energy] - [Latent Heat of Vaporization] Net Energy Content = $\left[18,492 \frac{kJ}{kg}\right] - \left[\left(2473 \frac{kJ}{kg}\right)(0.06)_{MC}\right] = 18,344 \frac{kJ}{kg}$ An average of these two values will used as the estimate for the net energy content.

Net Energy Content = $\left[\frac{18,435+18,344}{2}\right] = 18,390 \text{ kJ/kg} = 18.4 \text{ GJ/tonne}$ Best-Guess Estimate of the Net Energy Content of Newsprint = 18.4 GJ/tonne

Steam Energy produced by the combustion of newsprint in an Incinerator-Boiler (1): Assumed Boiler Efficiency = 70% (Pers. comm. Ron Richter) Fraction of Steam Utilized by CPL = 56% (Montenay Inc. 1999) $\frac{\text{Utilized Energy}}{\text{tonne Newsprint}} = \frac{\text{energy}}{\text{tonne}} * (\text{Thermal Efficiency}) * (\text{Energy Utilization}) = \frac{\text{kJ}}{\text{tonne}}$ $\frac{\text{Utilized Energy}}{\text{tonne Newsprint}} = \frac{18.4 \text{ GJ}}{\text{tonne}} * (0.70) * (0.56) = 7.21 \frac{\text{GJ}}{\text{tonne}}$

Utilized Steam Energy per tonne of newsprint, (1) = 7.21 GJ/tonne

Emission factor for natural gas that would otherwise be combusted by CPL (2): Typical Efficiency of Natural Gas Combustion to generate Steam = 80% (Fryling 1966) CO₂ Emission from Natural Gas Combustion = 1.88 kg/m³ (Environment Canada 1997a) Typical Energy of Natural Gas = 1020 BTU/ft³ = 37,843 kJ/m³ (Perry's 1984) (Energy=1020 BTU/ft³ * 1.054 kJ/BTU * 35.2 ft³/m³ = 37,843 kJ/m³)

Emission Factor for Natural Gas =
$$\frac{\left(1.88 \text{ kgCO}_2/\text{m}^3\right) * \left(\frac{\text{tonnes}}{1000 \text{ kg}}\right)}{\left(\text{Natural Gas kJ/m}^3\right) * (\text{Efficiency}) * \left(\frac{GJ}{10^6 \text{ kJ}}\right)} = \frac{\text{tCO}_2 \text{e}/\text{GJ}}{\left(\frac{1.88 \text{ kgCO}_2}{\text{m}^3}\right) * \left(\frac{\text{tonnes}}{1000 \text{ kg}}\right)} = 0.062 \text{ tCO}_2 \text{e}/\text{GJ}}$$

Emission Factor for Natural Gas =
$$\frac{\left(1.88 \text{ kgCO}_2/\text{m}^3\right) * \left(\frac{\text{tonnes}}{1000 \text{ kg}}\right)}{\left(37843 \text{ kJ/m}^3\right) * (0.80) * \left(\frac{GJ}{10^6 \text{ kJ}}\right)} = 0.062 \text{ tCO}_2 \text{e}/\text{GJ}}$$

Emission Factor for Natural Gas, $(2) = 0.062 \text{ tCO}_{2}\text{e/GJ}$

GHG emission prevented per tonne of newsprint (3):

 $\frac{\text{GHG Emission Prevented}}{\text{tonne newsprint}} = \left(\frac{\text{Utilized Energy}}{\text{tonne Newsprint}}\right) * \left(\text{Emission Factor for Natural Gas, } {}^{\text{tCO}_2e} / {}_{\text{GJ}}\right) = {}^{\text{tCO}_2e} / {}_{\text{tonne}}$ $\frac{\text{GHG Emission Prevented}}{\text{tonne newsprint}} = \left(7.21 \text{GJ} / {}_{\text{tonne}}\right) * \left(0.062 {}^{\text{tCO}_2e} / {}_{\text{GJ}}\right) = 0.4477 {}^{\text{tCO}_2e} / {}_{\text{tonne}}$

GHG Emission Prevented from Natural Gas, $(3) = 0.447 \text{ tCO}_2\text{e}/\text{tonne}$

Electricity produced by the combustion of newsprint in an Incinerator-Boiler (4): Assumed Turbo Generator Efficiency = 32% (Pers. comm. Ron Richter) Steam Fraction for Electricity Generation = 40% (assumed as discussed)

 $\frac{\text{Utilized Energy}}{\text{tonne Newsprint}} = \frac{\text{energy}}{\text{tonne}} * (\text{Boiler Effic}) * (TurboGenerator) * (\text{Energy Utilization}) = \frac{\text{kJ}}{\text{tonne}}$ $\frac{\text{Utilized Energy}}{\text{tonne Newsprint}} = \frac{18.4 \text{ GJ}}{\text{tonne}} * (0.70) * (0.32) * (0.40) = 1.65 \frac{\text{GJ}}{\text{tonne}}$

Utilized Electrical Energy per tonne of newsprint, (4) = 1.65 GJ/tonne

Emission factor for electricity that would otherwise be generated by B.C. Hydro (5): While electricity generation in British Columbia is predominantly from hydroelectric facilities, there are several thermal generation stations. The GHG emission intensity for electricity production in this province, $30 \text{ tCO}_2\text{e/GWh}$ (BC Hydro 1998), is a fraction of the Canadian average for fossil fuel electricity generation, 960 tCO₂e/GWh (Environment Canada 1997a). Of considerable note is that the emission intensity for the natural gas power plant, Burrard Thermal, is significantly higher than this BC average also. Burrard Thermal emits 530 tCO₂e/GWh (BC Hydro 1998), and if the Incinerator can replace this marginal electricity production, the GHG benefit would be much greater. Discussion with a representative of B.C. Hydro has informed this author that any new electricity generation would likely be replacing low-efficiency natural gas generation either at Burrard Thermal or in Washington state (Pers. comm. John Duffy). Thus the emission factor for Burrard Thermal is appropriate for use in these calculations.

Burrard Thermal emission intensity = $530 \text{ tCO}_2\text{e/GWh} = 0.147 \text{ tCO}_2\text{e/GJ}$ [530 tCO₂e/GWh * (1/3600 GWh/GJ)=0.147 tCO₂e/GJ] Emission Factor for Electricity Generation, (5) = 0.147 tCO₂e/GJ

Electrical GHG emission prevented per tonne of newsprint: (6)

 $\frac{\text{GHG Emission Prevented}}{\text{tonne newsprint}} = \left(\frac{\text{Utilized Energy}}{\text{tonne Newsprint}}\right) * \left(\text{Emission Factor for Electricity}, \frac{\text{tCO}_2e}{\text{GJ}}\right) = \frac{1\text{CO}_2e}{\text{tonne}}$ $\frac{\text{GHG Emission Prevented}}{\text{tonne newsprint}} = \left(1.65 \text{GJ}_{\text{tonne}}\right) * \left(0.147 \frac{1\text{CO}_2e}{\text{GJ}}\right) = 0.243 \frac{1\text{CO}_2e}{\text{tonne}}$

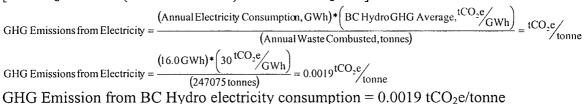
GHG Emission Prevented from Electricity, $(6) = 0.243 \text{ tCO}_2\text{e/tonne}$

Total GHG Emissions Prevented, $(7) = 0.447 + 0.243 = -0.69 \text{ tCO}_2\text{e/tonne}$

8. GHG Emissions from Waste Incineration at the Burnaby Incinerator:

At the Burnaby Incinerator, 247,075 tonnes of waste was combusted in 1998. This process required the consumption of 7,516 GJ of natural gas, 16,011 MWh of electricity, and 3,369 tonnes of lime (CaO) and 295 tonnes of ammonia (NH₃) for acid gas control (Montenay Inc. 1999; Pers. comm. Richard Holt). Greenhouse gas emissions result from municipal solid waste incineration. This includes emissions of carbon dioxide and nitrous oxide during incineration, the consumption of natural gas and electricity, and the consumption of lime for acid gas control (the production of lime from limestone results in CO₂ emissions). Since newsprint is biomass carbon and is therefore carbon-neutral, the CO₂ emissions can be ignored here. Environment Canada estimates that while a small methane emission is measurable during MSW incineration (Environment Canada 1999). That will also be assumed for this investigation.

To begin, the emissions resulting from natural gas and electricity consumption will be equally distributed over the entire solid waste combusted in 1998.


CO₂ Emission from Natural Gas Combustion = 1.88 kg/m^3 (Environment Canada 1997) Typical Energy of Natural Gas = $1020 \text{ BTU/ft}^3 = 37,843 \text{ kJ/m}^3$ (Perry's 1984) (Energy= $1020 \text{ BTU/ft}^3 * 1.054 \text{ kJ/BTU} * 35.2 \text{ ft}^3/\text{m}^3 = 37,843 \text{ kJ/m}^3$)

$$GHG Emissions from Natural Gas = \frac{(Annual Energy Consumption, GJ)}{(Annual Waste Combusted, tonnes)} \frac{*(1.88 \text{ kgCO}_2/\text{m}^3) *(\frac{\text{tonnes}}{1000 \text{ kg}})}{(Natural Gas \text{ kJ}/\text{m}^3) *(\frac{GJ}{10^6 \text{ kJ}}) *} = \text{tCO}_2 \text{e}/\text{tonne}$$

$$GHG Emissions from Natural Gas = \frac{(7519 \text{ GJ})}{(247075 \text{ tonnes})} \frac{*(1.88 \text{ kgCO}_2/\text{m}^3) *(\frac{\text{tonnes}}{1000 \text{ kg}})}{(37843 \text{ kJ}/\text{m}^3) *(\frac{GJ}{10^6 \text{ kJ}}) *} = 0.0015 \text{ tCO}_2 \text{e}/\text{tonne}$$

GHG Emission from Natural Gas Consumption = 0.0015 tCO₂e/tonne

Discussion with a representative of B.C. Hydro has informed this author that since the Burnaby Incinerator has been drawing load since the late 1980's it can be assumed to use the provincial average for electricity generation. In other words, the Burnaby Incinerator does not have to be assumed as using marginal electricity generation – it is an established user. Therefore, this analysis will assume the B.C. average for electricity generation. BC Hydro emission intensity = $30 \text{ tCO}_2\text{e/GWh} = 0.00833 \text{ tCO}_2\text{e/GJ}$ [$30 \text{ tCO}_2\text{e/GWh} * (1/3600 \text{ GWh/GJ})=0.00833 \text{ tCO}_2\text{e/GJ}$]

Lime (calcium oxide, CaO) is used at the Incinerator during air pollution control to neutralize acid gases which are produced during the combustion of waste. While the consumption of lime at the incinerator does not result in GHG emissions, the production of this material by the lime calcination process does result in emissions. In the production of lime, limestone (CaCO₃) is heated so that it separates to CaO and CO₂. In addition to the fossil fuel energy required to perform this reaction there is the non-energy related GHG emission from the liberalization of the unwanted carbon dioxide gas. Environment Canada (1997) has estimated that 0.790 kg of CO₂ is emitted during the production of each kg of lime. It is assumed that the incineration of food waste equally requires the use of lime for the neutralization of acid gases as any other waste. Therefore:

GHG Emission from CaO Production = 0.790 tCO₂e/tonne CaO GHG Emissions from Lime = $\left(\frac{0.790 \text{ tCO}_2}{\text{tonne CaO}}\right) * \frac{3,369 \text{ tonnes of CaO}}{247,075 \text{ tonnes of waste}} = 0.011 \text{ tCO}_2/\text{tonne}$ GHG Emission from lime consumption at Incinerator=0.011 tCO₂e/tonne

As a result of the combustion of waste, CO_2 emissions occur. As the waste being investigated here is biogenic in origin (and thus considered "neutral") the CO_2 emissions need not be considered.

Nitrous oxide emissions from the incineration of newsprint can result in one of the five following pathways.

- Thermal conversion of the N₂ gas in air to N₂O during combustion (Immediate emis.)
- Thermal conversion of the nitrogen in waste to N₂O (Immediate emission)

- Thermal conversion of the ammonia injected in the flue gases (Immediate emission)
- Microbial N₂O conversion of NO_X emitted and later denitrified (Future emission)
- Microbial N₂O conversion of NH₃ injected but unreacted (Future emission)

Each of these five pathways are evaluated in the following calculations. Unfortunately, the current lack of understanding in these issues result in much uncertainty associated with the following estimates. An extensive discussion of the issue is provided Section 2.5.5.3.

The first two potential sources of nitrous oxide emissions result from the potential for the nitrogen in waste or the N_2 gas in air to thermal convert to N_2O during incineration. There is limited and highly variable research of the N_2O emissions resulting from municipal solid waste incineration. Examples of emission estimates being used are:

- IPCC Compilation (de Soete 1993)
- Environment Canada Inventory (1997)
- USEPA National Inventory (1999)
- USEPA MSW Analysis (1998)

11-293 gN₂O/tonne of waste 160 gN₂O/tonne of waste 30 gN₂O/tonne of waste 130 gN₂O/tonne of waste

Research in the fluidized bed combustion of coal has determined that N_2O emissions originate mainly from the oxidation of fuel nitrogen (Moritomi 1994), and since coal combustion is similar to that of waste incineration, it can be inferred that N_2O emissions during incineration are likely a factor of the nitrogen content. This hypothesis is reinforced by one study (Tanikawa et al. 1995), and the observation that the incineration of high nitrogen content wastewater sludge produces much higher N_2O emission rates than MSW incinerators (Tanaka et al. 1994). Since newsprint has a negligible nitrogen content (<0.1%), this study will assume that the incineration of newsprint does not have to account for any of the nitrous oxide emissions measured during MSW incineration. However, there is still the possibility of alternative pathways for N_2O emissions.

The incineration of newsprint needs to take responsibility for the N₂O emissions resulting from acid gas (NO_X) control. As the nitrogen oxide releases can be from molecular nitrogen in the air, office paper incineration can contribute to this emission. This study assumes that the emissions from acid gas control should be evenly distributed across the mass of waste combusted. At the Burnaby Incinerator, 295 tonnes of ammonia (NH₃) was used during the combustion of 247,075 tonnes of waste in 1998 to reduce NO_X emissions. As a result of the lack of any available research on the propensity for injected ammonia to thermally convert to N₂O, this study will assume the same conversion rate exhibited by the waste-nitrogen upon incineration. (See Appendix I #8) Therefore, approximately 1.7% of injected ammonia, and ranging between 0.3 and 3.1%, will be estimated to convert to nitrous oxide.

Fraction of Injected-Ammonia emitted as $N_2O = 1.7 (0.3-3.1) \%$ Annual consumption of ammonia (1998) = 295 tonnes Annual mass of waste combusted (1998) = 247,075 tonnes

$$N_{2}O \text{ from NH}_{3} \text{ Injection} = \frac{\left(NH_{3}\text{ Injected, tonnes}\right) \left(\frac{14gN_{mol}}{17g NH_{3}}\right)}{\left(Waste \text{ Combusted, tonnes}\right)} * \left(N_{2}O \text{ Conversion}\right) \left(\frac{44gN_{2}O_{mol}}{28gN_{2}O - N_{mol}}\right) (GWP \text{ of } N_{2}O) = \frac{tCO_{2}e_{mol}}{tonne}$$

$$N_{2}O \text{ from NH}_{3} \text{ Injection} = \frac{\left(295\right)\left(\frac{14}{17}\right)}{\left(247,075\right)} * \left(0.017\right)\left(\frac{44}{28}\right)(310) = 0.0081 \frac{tCO_{2}e_{mol}}{tonne}$$

 N_2O Emission resulting from NH_3 Injection = 0.0081 (0.0014 - 0.015) tCO₂e/tonne

In addition to the potential for injected NH_3 to thermally convert to N_2O , there can also be the future denitrification of the nitrogen oxide (NO_X) gases released. It has been estimated that 10-30% of waste-nitrogen is converted to $NO_X (NO + NO_2)$ during combustion (White et al. 1995). This report will evenly distribute NO_X emissions across the total mass of waste incinerated even though newsprint has a negligible nitrogen content. Nitrogen oxides are short lived in the atmosphere as they are quickly rained out in the form of nitrate (NO_3) or nitric acid (HNO_3) . Thus the deposition as NO_3 will eventually require denitrification to N₂, resulting in potential leakage of N₂O. The IPCC provides guidelines for these emissions and estimates that 1% of emitted NH₃-N or NO_X-N will be converted to N₂O. However they also provide low and high estimates of 0.2 and 2% respectively. All three of these values are used in this study. In addition to the potential for the microbial conversion of nitrogen oxide to nitrous oxide, nitrogen oxides are suspected to be indirect greenhouse gases for another reason - they deplete the tropospheric concentration of the OH radical, which would otherwise react and destroy CH_4 (Mackenzie 1995). Thus NO_X causes CH_4 to be a stronger GHG. (As it is too early for any methodology on this issue, it will have to be ignored in this report.) At the Burnaby Incinerator it is estimated that 449 tonnes of NO_X was emitted in 1998 (Pers. comm. Chantal Babensee). Nitric oxide (NO) is predominantly the nitrogen oxide formed during incineration (Robinson 1986), and this is assumed in the calculations below.

Best-Guess Estimate for the future N₂O conversion of NO_X = 1% N₂O-N/NO_X-N Low Estimate for the future N₂O conversion of NO_X = 0.2% N₂O-N/NO_X-N High Estimate for the future N₂O conversion of NO_X = 2% N₂O-N/NO_X-N Annual NO_X emission (1998) = 449 tonnes

Annual mass of waste combusted (1998) = 247,075 tonnes

$$N_{2}O \text{ Emission from NO}_{x} = \frac{(NO_{x} \text{ Emission, tonnes}) \left(\frac{14 \frac{gN}{mol}}{30 \frac{gNO}{mol}}\right)}{(Waste \text{ Combusted, tonnes})} * (N_{2}O \text{ Conversion}) \left(\frac{44 \frac{gN_{2}O}{mol}}{28 \frac{gN_{2}O - N}{mol}}\right) (GWP \text{ of } N_{2}O) = \frac{tCO_{2}e}{tonne}$$

$$N_{2}O \text{ Emission from NO}_{x} = \frac{(449) \left(\frac{14}{30}\right)}{(247,075)} * (0.01) \left(\frac{44}{28}\right) (310) = 0.004 (0.001 - 0.008) \frac{tCO_{2}e}{tonne}$$
Future N₂O from NO_x Emission = 0.004 (0.001 - 0.008) tCO₂e/tonne

The last potential N_2O emission from waste incineration could occur when ammonia is injected into the flue gas but is emitted to the atmosphere, the so-called "ammonia slip". The ammonia will undergo wet or dry deposition to soils downwind where it can nitrify

and denitrify. Communication with the GVRD (Pers. comm. Chantal Babensee) has learned that ammonia slip is virtually negligible at the Incinerator largely because only the minimum amount is injected into the flue gas. As a result, the potential for ammonia slip to result in nitrous oxide emissions can be neglected in this study.

Total GHG Emissions = N_2O + Natural Gas + Electricity + Lime = tCO₂e/tonne Total Emissions = 0.0121 + 0.0015 + 0.0019 + 0.011= $0.027 (0.017-0.037) tCO_2e$ /tonne

9. GHG Emissions of Recycled Newsprint Utilization

The assumption discussed in Section 2.6.1 - Newsprint is that no GHG benefit exists with newsprint recycling.

GHG Benefit of Recycled Newsprint Utilization = 0 tCO₂e/tonne

10. Effect of Recycling Newsprint on Forest Carbon Storage

The assumption discussed in Section 2.6.7 – *Forest Carbon Sequestration* is that no GHG benefit exists with newsprint recycling.

GHG Benefit of Recycled Newsprint Utilization = 0 tCO₂e/tonne

APPENDIX'D: OFFICE PAPER WASTE MANAGEMENT

This appendix provides all the data and calculations specific to estimating GHG emission factors for the landfilling, incineration or recycling of office paper generated in the GVRD. However, a great deal of the data and calculations are similar to those presented in Appendix C – *Newsprint Waste Managment*. As a result, only the important data and calculations which are different from newsprint are presented here. The first three sections are devoted to the GHG implications of the Cache Creek Landfill (1-3). The next three sections assess the same implications for the Vancouver Landfill (4-6). Sections 7 and 8, assess the energy generation and GHG emissions from the Burnaby Incinerator. The last two sections of this appendix, 9 and 10, analyze the GHG ramifications of office paper recycling.

1. Methane & Energy Implications of the Cache Creek Landfill:

The calculations for landfill methane emissions and energy generation follow – starting with the Carbon Available for Anaerobic Decomposition (CAAD):

Estimated Methane Yield from Office Paper in reactors = 346 ml/gram (USEPA 1998) Assumed Carbon Dioxide Yield from office paper = 346 ml/dry gram Molar gas constant=22.4 L/mol at standard temperature and pressure Typical Moisture Content of Office Paper= 6% (Tchobanoglous et al. 1993)

$$MolesofCH_{4} = \frac{\frac{346 \, ml}{gram}}{\frac{22,400 \, ml}{mol}} = 0.0154 \, molCH_{4}$$

$$MolesofCO_{2} = \frac{\frac{346 \, ml}{gram}}{\frac{22,400 \, ml}{mol}} = 0.0154 \, molCO_{2}$$

TotalMoles of C = 0.0154 + 0.0154 = 0.0309 mol C

CarbonAvailableforAnaerobicDecomposition = $0.0309 molC * 12 \frac{g}{mol} = 0.371 gC / drygram$

CAAD(dry) = 0.371gC / drygram = 0.371tC / drytonneCAAD(wet) = 0.371*(1-0.06) = 0.348gC / wetgram = 0.348tC / wettonne

Carbon Content of Dry Office Paper = 40.3% (Barlaz 1998)

 $\label{eq:resonance} Re\,visedCarbonStorageFactor = InitialCarbon-CAAD = gC\,/\,drygram$

Re visedCarbonStorageFactor = $0.403 \frac{gC}{drygram} - 0.371 \frac{gC}{drygram} = 0.03gC / drygram$

RevisedCarbonStorageFactor = 0.03gC/drygram = 0.03tC/drytonne

This 0.348 tC per wet tonne of office paper is available for anaerobic decomposition and will be assumed to be evenly split between CH_4 and CO_2 . Remember that since any CO_2 is neutral, it does not have to be considered further.

Methane Generation = $\left(\text{Carbon To Decompose}^{\text{tC}} \right)$ (Methane Fraction) $\left(\frac{\text{Molecular MassofCH}_{4}}{\text{Molecular MassofC}} \right) = \frac{\text{tCH}_{4}}{\text{Wet Tonne}}$

Methane Generation = $(0.348)(0.5)\left(\frac{16}{12}\right) = 0.232 \text{ tCH}_{4}/\text{WetTonne}$ Methane Generation Potential = 0.232 tCH₄/tonne of office paper

The first order decay rate constant used here is 0.04 y^{-1} and the assumptions behind it are discussed in Section 2.4 - *Landfill Carbon Sequestration*.

The calculations in Worksheet # 27, estimate that for the 20 year period between 1999 and 2018, 0.130 tCH₄/tonne would be generated. This represents only 56% of the ultimate potential of 0.232 tCH₄/tonne. This generation corresponds to, minus the collection and oxidation, an emission of 0.798 tCO₂e/tonne. Furthermore an energy benefit, via the replacement of fossil energy, of 0.141 tCO₂e/tonne would be realized.

Best-Guess of Atmospheric Methane Emissions=	0.798	tCO ₂ e/tonne
Best-Guess of Benefit of Energy Utilization=	-0.141	tCO ₂ e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.368	tCO ₂ e/tonne
Low Estimate of Benefit of Energy Utilization=	-0.091	tCO₂e/tonne
High Estimate of Atmospheric Methane Emissions=	1.498	tCO₂e/tonne
High Estimate of Benefit of Energy Utilization=	-0.033	tCO ₂ e/tonne

2. Long-Term Carbon Sequestration in the Cache Creek Landfill:

Since not all of the cellulose and hemicellulose and only a negligible portion of the lignin from office paper is expected to anaerobically degrade in a landfill, organic-carbon will remain in long-term storage in the landfill. In this capacity, the organic-carbon, which was originally atmospheric CO_2 but was photosynthesized into biomass, will be sequestered. As a result, organic-carbon can perform a GHG benefit, a negative GHG emission. This issue is discussed in greater detail in Section 2.4 – *Landfill Carbon Sequestration*.

The Carbon Storage Factors, as determined by Barlaz (1998), and also discussed in Eleazer et al. (1997), are used here as representative of long-term storage in the CCLF. These experiments determined that the long-term carbon storage of office paper in landfills is 0.05 kg C per kg of dry newsprint. The researchers observed that office paper, with a lignin content measured at 2.3% (dry mass), approximately 55% of the cellulose and hemicellulose fraction and a negligible portion of lignin anaerobically decomposed. However, these factors were developed with laboratory research of idealized landfill decomposition conditions and are thus highly conservative. As a result, the actual storage in the CCLF could be greater than is indicated by these experiments. While there is great potential for uncertainty with this estimate, it is likely that the uncertainty would be skewed towards a greater value. By using this conservative estimate, the risk of overestimating this factor is probably minimal. For these reasons, only the best-guess estimate will be used in this analysis.

In Section #1 of the Appendix a revised Carbon Storage Factor was developed to attempt to correct inconsistencies in the previous estimates by Barlaz. The new estimate is as follows:

Revised Carbon Storage Factor for office paper = 0.03 tC/dry tonne Typical Moisture Content of Office Paper = 6% (Tchobanoglous et al. 1993)

Carbon Sequestration =
$$\binom{\text{kgC}}{\text{Dry Office Paper}} (1 - \text{Moisture Content}) \left(\frac{\frac{44\text{gCO}_2}{\text{mol}}}{12\text{gC}}\right) = \frac{\text{tCO}_2 e}{\text{tonne}}$$

Carbon Sequestration = $(0.03)(1 - 0.06)\left(\frac{44}{12}\right) = 0.10 \frac{100}{100} \frac{1000}{100}$

Long-Term Carbon Sequestration from Office Paper= -0.10 tCO₂e/tonne

3. Immediate & Future N₂O Emissions from the Cache Creek Landfill

As the nitrogen content of office paper is negligible, the potential for nitrous oxide emissions can be ignored.

4. Methane & Energy Implications of the Vancouver Landfill:

The only significant difference between this section and Section 1, *Methane & Energy Implications of the Cache Creek Landfill*, is the estimated landfill gas collection efficiency and the first order decay rate constant. While at Cache Creek the current collection efficiency is estimated to be 43%, the current collection efficiency at the Vancouver Landfill is estimated to only be 22% (Pers. comm. Chris Underwood). However, engineers with the City of Vancouver are currently in the process of upgrading the collection equipment. As with the CCLF assessment, the collection efficiency is assumed to increase year after year in response to improving regulations. The first order decay rate constant used here is 0.05 y^{-1} and the assumptions behind it are discussed in Section 2.4 - Landfill Carbon Sequestration.

Worksheet #27 determines that:		
Best-Guess of Atmospheric Methane Emissions=	1.070	tCO₂e/tonne
Best-Guess of Benefit of Energy Utilization=	-0.158	tCO ₂ e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.501	tCO₂e/tonne
Low Estimate of Benefit of Energy Utilization=	-0.107	tCO ₂ e/tonne
High Estimate of Atmospheric Methane Emissions=	1.903	tCO ₂ e/tonne
High Estimate of Benefit of Energy Utilization=	-0.033	tCO₂e/tonne

5. Long-Term Carbon Sequestration in the Vancouver Landfill:

The Revised Carbon Storage Factors is used here as representative of long-term storage in the VLF.

Long-Term Carbon Sequestration from Office Paper = $-0.10 \text{ tCO}_2\text{e}/\text{tonne}$

6. Immediate & Future N₂O Emissions from the Vancouver Landfill As the nitrogen content of office paper is negligible, the potential for nitrous oxide emissions can be ignored.

7. **Energy Generation from Waste Incineration at the Burnaby Incinerator:** Net Energy Content of Office Paper = 6,800 BTU/lb = 15,768 kJ/kg (USEPA 1998) (6,800 BTU/lb*1.054 kJ/BTU*2.20 lb/kg = 15,768 kJ/kg)(wet basis, correction for latent heat of water in this reference is assumed but not directly specified)

From another source (Tchobanoglous et al. 1993):

Gross Energy Content of Office Paper = 6,799 BTU/lb = 15,765 kJ/kg (wet basis) Typical Moisture Content of Newsprint = 6% (Tchobanoglous et al. 1993) Latent Heat of Water=2473 kJ/kg (Incropera and DeWitt 1990) Net Energy Content = [Gross Energy] - [Latent Heat of Vaporization]

Net Energy Content = $\left[15,765 \text{ kJ}/\text{kg}\right] - \left[\left(2473 \frac{kJ}{kg}\right)(0.06)_{MC}\right] = 15,616 \frac{kJ}{kg}$

An average of these two values will used as the estimate for the net energy content.

Net Energy Content = $\left[\frac{15,765+15,616}{2}\right] = 15,692 \text{ kJ/kg} = 15.7 \text{ GJ/tonne}$ Net Energy Content of Office Paper = 15.7 GJ/tonne

Steam Energy produced by the combustion of office paper in an Incinerator-Boiler (1): Assumed Boiler Efficiency = 70% (Pers. comm. Ron Richter) Fraction of Steam Utilized by CPL = 56% (Montenay Inc. 1999)

 $\frac{\text{Utilized Energy}}{\text{tonne Office Paper}} = \frac{\text{energy}}{\text{tonne}} * (\text{Thermal Efficiency}) * (\text{Energy Utilization}) = \frac{\text{kJ}}{\text{tonne}}$

 $\frac{\text{Utilized Energy}}{\text{tonne Office Paper}} = \frac{15.7 \text{ GJ}}{\text{tonne}} * (0.70) * (0.56) = 6.15 \frac{\text{GJ}}{\text{tonne}}$

Utilized Steam Energy per tonne of office paper, (1) = 6.15 GJ/tonne

GHG emission prevented per tonne of office paper (3):

 $\frac{\text{GHG Emission Prevented}}{\text{tonne office paper}} = \left(\frac{\text{Utilized Energy}}{\text{tonne office paper}}\right) * \left(\text{Emission Factor for Natural Gas, } \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = \frac{\text{tCO}_2\text{e}}{\text{tonne}}$ $\frac{\text{GHG Emission Prevented}}{\text{tonne office paper}} = (6.15 \text{GJ/}_{\text{tonne}}) * (0.062 \text{ }^{\text{tCO}_2\text{e}}/_{\text{GJ}}) = 0.381 \text{ }^{\text{tCO}_2\text{e}}/_{\text{tonne}}$ GHG Emission Prevented from Natural Gas, $(3) = 0.381 \text{ tCO}_2\text{e}/\text{tonne}$

Electricity produced by the combustion of office paper in an Incinerator-Boiler (4): Assumed Turbo Generator Efficiency = 32% (Pers. comm. Ron Richter) Steam Fraction for Electricity Generation = 40% (assumed as discussed)

 $\frac{\text{Utilized Energy}}{\text{tonne office paper}} = \frac{\text{energy}}{\text{tonne}} * (\text{Boiler Effic}) * (TurboGenerator) * (\text{Energy Utilization}) = \frac{\text{kJ}}{\text{tonne}}$ $\frac{\text{Utilized Energy}}{\text{tonne office paper}} = \frac{15.7 \text{ GJ}}{\text{tonne}} * (0.70) * (0.32) * (0.40) = 1.41 \frac{\text{GJ}}{\text{tonne}}$ Utilized Electrical Energy per tonne of office paper, (4) = 1.41 GJ/tonne

Electrical GHG emission prevented per tonne of office paper: (6) $\frac{\text{GHG Emission Prevented}}{\text{tonne office paper}} = \left(\frac{\text{Utilized Energy}}{\text{tonne office paper}}\right) * \left(\text{Emission Factor for Electricity, } \frac{1 \text{CO}_2 \text{e}}{\text{GJ}}\right) = \frac{1 \text{CO}_2 \text{e}}{\text{tonne}}$ $\frac{\text{GHG Emission Prevented}}{\text{tonne office paper}} = \left(1.41 \text{GJ}/\text{tonne}\right) * \left(0.147 \text{tCO}_2 \text{e}/\text{GJ}\right) = 0.207 \text{tCO}_2 \text{e}/\text{tonne}}$ $\text{GHG Emission Prevented from Electricity, (6) = 0.207 \text{tCO}_2 \text{e}/\text{tonne}}$

Total GHG Emissions Prevented, (7) = 0.381 + 0.207 = -0.59 tCO₂e/tonne

8. GHG Emissions from Waste Incineration at the Burnaby Incinerator:

This entire section is identical to the same one in Appendix C- Newsprint Waste Management.

Total GHG Emissions = N_2O + Natural Gas + Electricity + Lime = tCO₂e/tonne Total Emissions = 0.027 (0.017-0.037) tCO₂e/tonne

9. GHG Emissions of Recycled Office Paper Utilization

The assumption discussed in Section 2.6.2 - Office Paper is that no GHG benefit exists with office paper recycling.

GHG Benefit of Recycled Office Paper Utilization = 0 tCO₂e/tonne

10. Effect of Recycling Office Paper on Forest Carbon Storage

The assumption discussed in Section 2.6.7 – *Forest Carbon Sequestration* is that no GHG benefit exists with office paper recycling.

GHG Benefit of Recycled Office Paper Utilization = 0 tCO₂e/tonne

APPENDIX E: FERROUS METAL MANAGEMENT

As ferrous metal is not organic and will not participate in methane emissions at any landfills, the only emission factors required with the disposal of metals are associated with the transportation and processing. The diesel fuel consumption for equipment at the CCLF or at the BBLF is in the section, *General Parameters*, and the transportation emissions are included in the municipality-specific parameters. Only emissions strictly associated with metal are included here.

1. GHG Emissions of Recycled Ferrous Metal Utilization

The assumption discussed in Section 2.6.3 - Ferrous Metal is that a GHG benefit of 2.35 tCO₂e/tonne exists with the recycling of ferrous metal.

GHG Benefit of Recycled Ferrous Metal Utilization = 2.35 tCO₂e/tonne

2. GHG Benefit of Ferrous Metal Incineration

The incineration of metals causes a GHG benefit which does not occur when metals are landfilled. Magnetic separation allows for the recovery of ferrous metal after incineration so that recycling can occur. This increased recycling, separate from curbside recycling initiatives, will also cause reduced GHG emissions by industry for the manufacture of similar products. As a result, it is appropriate for incineration to be assigned a GHG benefit for this additional recycling. The necessary question is: What fraction of metal in waste is captured for recycling? Inspection of WS#3 - Waste Tonnages of the spreadsheet model finds that an estimated 16,174 tonnes of ferrous metal is delivered to the Burnaby Incinerator in 1998, the year analyzed. However, GVRD records document that only 7,170 tonnes of metal was recovered from the Incinerator for recycling. Either the capture efficiency is only 44% or the estimated metal incinerated, 16,174 tonnes, is too high as it likely that the GVRD records are accurate. Lacking more accurate waste metal generation data at the municipalities, this research assumes a 50% capture efficiency of metal at the Incinerator. If more accurate waste mass estimates are developed, users should revise this assumption to increase the accuracy of this issue. To calculate the resulting GHG benefit the metal in wastes incinerated is multiplied by 50% and then by recycling benefit of ferrous metal:

Ferrous Metal Capture Efficiency at Incinerator = 50% GHG Benefit of Recycled Ferrous Metal Utilization = 2.35 tCO₂e/tonne

 $Benefit of Incinerating Metal = \frac{1 \text{ tonne}}{\text{tonne}} * (0.50) * \left(2.35 \frac{\text{tCO}_2 e}{\text{tonne}}\right) = 1.18 \frac{\text{tCO}_2 e}{\text{tonne}}$ GHG Benefit of Incinerating Metal-Containing Wastes = 1.18 tCO₂e/tonne

APPENDIX F: GLASS MANAGEMENT

As glass is not organic and will not participate in methane emissions, the only emission factors required with the landfill disposal of glass are associated with the transportation and processing. The diesel fuel consumption for equipment at the CCLF or at the BBLF is in the section, *General Parameters*, and the transportation emissions are included in the municipality-specific parameters. Only emissions strictly associated with glass are included here.

1. GHG Emissions of Recycled Glass Utilization

The assumption discussed in Section 2.6.4 - Glass is that a GHG benefit of 0.37 tCO₂e/tonne exists with the recycling of glass.

GHG Benefit of Recycled Glass Utilization = 0.37 tCO₂e/tonne

APPENDIX G: HIGH-DENSITY POLYETHYLENE MANAGEMENT

High-density polyethylene (HDPE) is a plastic manufactured from petroleum products. Therefore, HDPE is an organic material which contains fossil-carbon; contrary to paper, food or yard waste which are organic materials but contain atmospheric carbon that was fixed by photosynthesis. High-density polyethylene does not biodegrade therefore it cannot contribute to landfill methane emissions. The only emission factors required with the landfill disposal of HDPE are associated with transportation and processing and are thus not included here. Plastics, being organic, are readily combustible during incineration and generate significant amounts of energy. Importantly, the carbon dioxide emissions from plastics must be treated differently than the neutral carbon dioxide emissions from paper, food or yard trimmings as plastics contain fossil-carbon and any combustion results in greenhouse gas emissions.

This appendix provides all the data and calculations to estimate emission factors for the incineration or recycling of HDPE generated in the GVRD. However, many of these calculations are similar to Appendix C – Newsprint Waste Management. Only the items specific to HDPE are included here. The first section is devoted to the energy generation implications at the Burnaby Incinerator. The next section assesses the GHG emissions of this incineration. The last section of this appendix analyzes the GHG ramifications of HDPE recycling.

1. **Energy Generation from Waste Incineration:**

Typical Energy Content of HDPE = 18,687 BTU/lb = 43,331 kJ/kg = 43.3 GJ/tonne (18,687 BTU/lb*1.054 kJ/BTU*2.20 lb/kg = 43,331 kJ/kg) (USEPA 1998) (wet basis, correction for latent heat of water in this reference is assumed but not directly specified)

Steam Energy produced by the combustion of HDPE in an Incinerator-Boiler (1): Assumed Boiler Efficiency = 70% (Pers. comm. Ron Richter) Fraction of Steam Utilized by CPL = 56% (Montenay Inc. 1999)

 $\frac{\text{Utilized Energy}}{\text{tonne HDPE}} = \frac{\text{energy}}{\text{tonne}} * (\text{Thermal Efficiency}) * (\text{Energy Utilization}) = \frac{\text{kJ}}{\text{tonne}}$ $\frac{\text{Utilized Energy}}{\text{tonne HDPE}} = \frac{43.3 \text{ GJ}}{\text{tonne}} * (0.70) * (0.56) = 17.0 \frac{\text{GJ}}{\text{tonne}}$

Utilized Steam Energy per tonne of HDPE, (1) = 17.0 GJ/tonne

GHG emission prevented per tonne of HDPE (3):

 $\frac{\text{GHG Emission Prevented}}{\text{tonneHDPE}} = \left(\frac{\text{Utilized Energy}}{\text{tonne HDPE}}\right) * \left(\text{Emission Factor for Natural Gas, } \frac{\text{tCO}_2 \text{e}}{\text{GJ}}\right) = \frac{\text{tCO}_2 \text{e}}{\text{tonne}}$ $\frac{\text{GHG Emission Prevented}}{\text{tonne HDPE}} = (17.0 \text{ GJ/tonne}) * (0.062 \text{ tCO}_2\text{e/GJ}) = 1.05 \text{ tCO}_2\text{e/tonne}$ tonne HDPE GHG Emission Prevented from Natural Gas. $(3) = 1.05 \text{ tCO}_{2}\text{e}/\text{tonne}$

Electricity produced by the combustion of HDPE in an Incinerator-Boiler (4): Assumed Turbo Generator Efficiency = 32% (Pers. comm. Ron Richter)

Steam Fraction for Electricity Generation = 40% (assumed as discussed)

 $\frac{\text{Utilized Energy}}{\text{tonne HDPE}} = \frac{\text{energy}}{\text{tonne}} * (\text{Boiler Effic}) * (TurboGenerator) * (\text{Energy Utilization}) = \frac{\text{kJ}}{\text{tonne}}$ $\frac{\text{Utilized Energy}}{\text{tonneHDPE}} = \frac{43.3\text{GJ}}{\text{tonne}} * (0.70) * (0.32) * (0.40) = 3.88 \frac{\text{GJ}}{\text{tonne}}$

Utilized Electrical Energy per tonne of HDPE, (4) = 3.88 GJ/tonne

Electrical GHG emission prevented per tonne of HDPE: (6) $\frac{\text{GHG Emission Prevented}}{\text{tonne HDPE}} = \left(\frac{\text{Utilized Energy}}{\text{tonne HDPEr}}\right) * \left(\text{Emission Factor for Electricity, } \frac{\text{tCO}_2e}{\text{GJ}}\right) = \frac{\text{tCO}_2e}{\text{tonne}} \\ \frac{\text{GHG Emission Prevented}}{\text{tonne HDPE}} = \left(3.88 \frac{\text{GJ}}{\text{tonne}}\right) * \left(0.147 \frac{\text{tCO}_2e}{\text{GJ}}\right) = 0.57 \frac{\text{tCO}_2e}{\text{tonne}} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \text{ tCO}_2e/\text{tonne} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \text{ tCO}_2e/\text{tonne} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \frac{\text{tCO}_2e}{\text{tonne}} \\ \text{CO}_2e/\text{tonne} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \frac{\text{tCO}_2e}{\text{tonne}} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \frac{\text{tCO}_2e}{\text{tonne}} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \frac{\text{tCO}_2e}{\text{tonne}} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \frac{\text{tCO}_2e}{\text{tonne}} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \frac{\text{tCO}_2e}{\text{tonne}} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \frac{\text{tCO}_2e}{\text{tonne}} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \frac{\text{tCO}_2e}{\text{tonne}} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \frac{\text{tCO}_2e}{\text{tonne}} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \frac{\text{tCO}_2e}{\text{tonne}} \\ \text{GHG Emission Prevented from Electricity, } (6) = 0.57 \frac{\text{tCO}_2e}{\text{tonne}} \\ \text{GHG Emission Prevented For Prevented For$

Total GHG Emissions Prevented, $(7) = 1.05 + 0.57 = -1.62 \text{ tCO}_2\text{e/tonne}$

2. GHG Emissions from Waste Incineration:

At the Burnaby Incinerator, 247,075 tonnes of waste was combusted in 1998. This process required the consumption of 7,516 GJ of natural gas, 16,011 MWh of electricity, and 3,369 tonnes of lime (CaO) and 295 tonnes of ammonia (NH₃) for acid gas control (Montenay Inc. 1999; Pers. comm. Richard Holt). Greenhouse gas emissions result from municipal solid waste incineration. This includes emissions of carbon dioxide and nitrous oxide during incineration, the consumption of natural gas and electricity, and the consumption of lime for acid gas control (the production of lime from limestone results in CO₂ emissions). Since newsprint is biomass carbon and is therefore carbon-neutral, the CO₂ emission is measurable during wastewater sewage sludge incineration there is negligible methane emissions during MSW incineration (Environment Canada 1999). That will also be assumed for this investigation. In the combustion of HDPE, the greatest GHG emission is associated with the fossil carbon emissions of carbon dioxide. These are calculated first:

The fossil carbon content of HDPE has been assumed to be 83% in one recent report (USEPA 1998). This is the mass of carbon divided by the total mass of the plastic. In a draft report available on the internet, USEPA (2000), the fossil carbon content was assumed to be 86%. This research will assume the fossil carbon content of HDPE as 85% of the total mass of the plastic.

Fossil carbon content of HDPE = 85%

CO₂ Emissions from HDPE combustion =
$$\left(0.85 \text{ tC/}_{\text{tonne} \text{ HDPE}} \left(\frac{44 \frac{gCO_2}{mol}}{12 \frac{gC}{mol}} \right) = 3.12 \frac{tCO_2 e}{tonne} \right)$$

GHG Emission of fossil-carbon from HDPE combustion = 3.12 tCO₂e/tonne

The emissions resulting from natural gas and electricity consumption will be equally distributed over the entire solid waste combusted in 1998.

Lime (calcium oxide, CaO) is used at the Incinerator during air pollution control to neutralize acid gases which are produced during the combustion of waste. While the consumption of lime at the incinerator does not result in GHG emissions, the production of this material by the lime calcination process does result in emissions. In the production of lime, limestone (CaCO₃) is heated so that it separates to CaO and CO₂. In addition to the fossil fuel energy required to perform this reaction there is the non-energy related GHG emission from the liberalization of the unwanted carbon dioxide gas. Environment Canada (1997) has estimated that 0.790 kg of CO₂ is emitted during the production of each kg of lime. It is assumed that the incineration of HDPE equally requires the use of lime for the neutralization of acid gases as any other waste. Therefore:

GHG Emission from CaO Production = $0.790 \text{ tCO}_2\text{e/tonne CaO}$

GHG Emissions from Lime = $\left(0.790 \frac{\text{tCO}_2}{\text{tonne CaO}}\right) * \frac{3,369 \text{ tonnes of CaO}}{247,075 \text{ tonnes of waste}} = 0.011 \frac{\text{tCO}_2}{\text{tonne}}$ GHG Emission from lime consumption at Incinerator=0.011 tCO₂e/tonne

Nitrous oxide emissions from the incineration of HDPE can result in one of the five following pathways.

- Thermal conversion of the N₂ gas in air to N₂O during combustion (Immediate emis.)
- Thermal conversion of the nitrogen in food waste to N₂O (Immediate emission)
- Thermal conversion of the ammonia injected in the flue gases (Immediate emission)
- Microbial N₂O conversion of NO_X emitted and later denitrified (Future emission)
- Microbial N₂O conversion of NH₃ injected but unreacted (Future emission)

Each of these five pathways are evaluated in the following calculations. Unfortunately, the current lack of understanding in these issues result in much uncertainty associated with the following estimates. An extensive discussion of the issue is provided Section 2.5.5.3.

The first two potential sources of nitrous oxide emissions result from the potential for the nitrogen in waste or the N_2 gas in air to thermal convert to N_2O during incineration. There is limited and highly variable research of the N_2O emissions resulting from municipal solid waste incineration. Examples of emission estimates being used are:

- IPCC Compilation (de Soete 1993)
- Environment Canada Inventory (1997)
- USEPA National Inventory (1999)

11-293 gN_2O /tonne of waste gN_2O /tonne of waste gN_2O /tonne of waste gN_2O /tonne of waste

• USEPA MSW Analysis (1998)

Research in the fluidized bed combustion of coal has determined that N_2O emissions originate mainly from the oxidation of fuel nitrogen (Moritomi 1994), and since coal combustion is similar to that of waste incineration, it can be inferred that N_2O emissions during incineration are likely a factor of the nitrogen content. This hypothesis is reinforced by one study (Tanikawa et al. 1995), and the observation that the incineration of high nitrogen content wastewater sludge produces much higher N_2O emission rates than MSW incinerators (Tanaka et al. 1994). Since polyethylene has a negligible nitrogen content (<0.1% on a dry weight basis (Tchobanoglous et al. 1993), this study will assume that the incineration of HDPE does not have to account for any of the nitrous oxide emissions measured during MSW incineration. However, there is still the possibility of alternative pathways for N_2O emissions.

The incineration of HDPE needs to take responsibility for the N₂O emissions resulting from acid gas (NO_X) control. As the nitrogen oxide releases can be from molecular nitrogen in the air, HDPE incineration can contribute to this emission. This study assumes that the emissions from acid gas control should be evenly distributed across the mass of waste combusted. At the Burnaby Incinerator, 295 tonnes of ammonia (NH₃) was used during the combustion of 247,075 tonnes of waste in 1998 to reduce NO_X emissions. As a result of the lack of any available research on the propensity for injected ammonia to thermally convert to N₂O, this study will assume the same conversion rate exhibited by the waste-nitrogen upon incineration. (See Appendix I #8) Therefore, approximately 1.7% of injected ammonia will be estimated to convert to nitrous oxide (only the best-guess estimate is used here as the emission is greatly dominated by the fossil-carbon content).

Fraction of Injected-Ammonia emitted as $N_2O = 1.7\%$ Annual consumption of ammonia (1998) = 295 tonnes Annual mass of waste combusted (1998) = 247,075 tonnes

$$N_{2}O \text{ from NH}_{3} \text{ Injection} = \frac{(\text{NH}_{3} \text{ Injected, tonnes})}{(\text{Waste Combusted, tonnes})} * (N_{2}O \text{ Conversion}) \left(\frac{44 \text{gN}_{2}O}{28 \text{gN}_{2}O - N}\right) (\text{GWP of } N_{2}O) = \frac{1CO_{2}e}{\text{tonne}}$$

N₂O from NH₃ Injection =
$$\frac{(295)\left(\frac{14}{17}\right)}{(247,075)} * (0.017)\left(\frac{44}{28}\right)(310) = 0.0081 \text{ tCO}_{2}\text{ c/tonne}$$

 N_2O Emission resulting from NH₃ Injection = 0.0081 (0.0014 - 0.015) tCO₂e/tonne

(14gN/)

In addition to the potential for injected NH_3 to thermally convert to N_2O , there can also be the future denitrification of the nitrogen oxide (NO_X) gases released. It has been estimated that 10-30% of waste-nitrogen is converted to $NO_X (NO + NO_2)$ during combustion (White et al. 1995). This report will evenly distribute NO_X emissions across the total mass of waste incinerated even though HDPE has a negligible nitrogen content. Nitrogen oxides are short lived in the atmosphere as they are quickly rained out in the form of nitrate (NO₃⁻) or nitric acid (HNO₃). Thus the deposition as NO₃⁻ will eventually require denitrification to N₂, resulting in potential leakage of N₂O. The IPCC provides guidelines for these emissions and estimates that 1% of emitted NH₃-N or NO_X-N will be converted to N₂O. This value is used to develop this emission factor (only the best-guess estimate is used here as the emission is greatly dominated by the fossil-carbon content). In addition to the potential for the microbial conversion of nitrogen oxide to nitrous oxide, nitrogen oxides are suspected to be indirect greenhouse gases for another reason they deplete the tropospheric concentration of the OH radical, which would otherwise react and destroy CH₄ (Mackenzie 1995). Thus NO_X causes CH₄ to be a stronger GHG. (As it is too early for any methodology on this issue, it will have to be ignored in this report.) At the Burnaby Incinerator it is estimated that 449 tonnes of NO_X was emitted in 1998 (Pers. comm. Chantal Babensee). Nitric oxide (NO) is predominantly the nitrogen

oxide formed during incineration (Robinson 1986), and is assumed in the calculations below.

Best-Guess Estimate for the future N₂O conversion of NO_X = 1% N₂O-N/NO_X-N Annual NO_X emission (1998) = 449 tonnes Annual mass of waste combusted (1998) = 247,075 tonnes

$$N_{2}O \text{ Emission from NO}_{X} = \frac{(NO_{X} \text{ Emission, tonnes}) \left(\frac{14 \frac{gN}{mol}}{30 \frac{gNO}{mol}} \right)}{(Waste \text{ Combusted, tonnes})} * (N_{2}O \text{ Conversion}) \left(\frac{44 \frac{gN_{2}O}{mol}}{28 \frac{gN_{2}O - N}{mol}} \right) (GWP \text{ of } N_{2}O) = \frac{1CO_{2}e}{tonne}$$

$$N_{2}O \text{ Emission from NO}_{X} = \frac{(449) \left(\frac{14}{30} \right)}{(247,075)} * (0.01) \left(\frac{44}{28} \right) (310) = 0.004 \frac{1CO_{2}e}{tonne}$$
Future N₂O from NO_X emission= 0.004 tCO₂e/tonne

The last potential N_2O emission from waste incineration could occur when ammonia is injected into the flue gas but is emitted to the atmosphere, the so-called "ammonia slip". The ammonia will undergo wet or dry deposition to soils downwind where it can nitrify and denitrify. Communication with the GVRD (Pers. comm. Chantal Babensee) has learned that ammonia slip is virtually negligible at the Incinerator largely because only the minimum amount is injected into the flue gas. As a result, the potential for ammonia slip to result in nitrous oxide emissions can be neglected in this study.

Total GHG Emissions = $CO_2 + N_2O + Natural Gas + Electricity + Lime = tCO_2e/tonne$ Total Emissions = 3.14 tCO₂e/tonne

3. GHG Emissions of Recycled HDPE Utilization

The assumption discussed in Section 2.6.5 - High-Density Polyethylene is that a GHG benefit of 1.7 tCO_2e /tonne exists with the recycling of HDPE.

GHG Benefit of Recycled HDPE Utilization = 1.7 tCO₂e/tonne

APPENDIX H: LOW-DENSITY POLYETHYLENE MANAGEMENT

Low-density polyethylene (LDPE) is a plastic manufactured from petroleum products. Therefore, LDPE is an organic material which contains fossil-carbon; contrary to paper, food or yard waste which are organic materials but contain atmospheric carbon that was fixed by photosynthesis. Low-density polyethylene does not biodegrade therefore it cannot contribute to landfill methane emissions. The only emission factors required with the landfill disposal of LDPE are associated with transportation and processing and are thus not included here. Plastics, being organic, are readily combustible during incineration and generate significant amounts of energy. Importantly, the carbon dioxide emissions from plastics must be treated differently than the neutral carbon dioxide emissions from paper, food or yard trimmings as plastics contain fossil-carbon and any combustion results in greenhouse gas emissions.

As LDPE exhibits all the same material properties as HDPE from the perspective of GHG emissions, the emission factors are identical for waste incineration. Only the GHG ramifications of LDPE recycling are provided in this Appendix.

1. GHG Emissions of Recycled LDPE Utilization

The assumption discussed in Section 2.6.6 - Low-Density Polyethylene is that a GHG benefit of 2.25 tCO₂e/tonne exists with the recycling of HDPE.

GHG Benefit of Recycled HDPE Utilization = $2.25 \text{ tCO}_2\text{e}/\text{tonne}$

APPENDIXI: FOOD WASTE MANAGEMENT

This appendix only provides the data and calculations specific to estimating the emission factors for the landfilling, incineration or composting of food waste generated in the GVRD. For complete sample calculations, refer to Appendix C – Newsprint Waste Management. The first three sections are devoted to the GHG implications of the Cache Creek Landfill (1-3). The next three sections assess the same implications for the Vancouver Landfill (4-6). Sections 7 and 8, assess the energy generation and GHG emissions from the Burnaby Incinerator. The last three sections of this appendix, 9 through 11, analyze the GHG ramifications of the backyard or centralized composting of food waste.

Food waste in this thesis is treated as a single entity yet it is a highly heterogeneous mixture of fruits, vegetables, meats, fats, breads and other components. While all this mixture can be landfilled or incinerated it needs to be recognized that composting does not typically manage meats and fats due to the rodent problems which result. This is a limitation of this research.

1. Methane & Energy Implications of the Cache Creek Landfill:

The calculations for landfill methane emissions and energy generation follow – starting with the Carbon Available for Anaerobic Decomposition (CAAD). However, as discussed in Section 2.4 – Landfill Carbon Sequestration, this CAAD is calculated from the CSF published by Barlaz (1998) and is not revised as the others are. The CAAD for food waste is the difference of the initial carbon content minus the fraction which is assumed to enter long-term storage.

Typical Carbon Content of Dry Food Waste = 48.0% (Tchobanoglous et al. 1993) Typical Moisture Content of Food Waste = 70% (Tchobanoglous et al. 1993) Carbon Storage Factor (CSF) = 0.08 kg C/dry kg (Barlaz 1998)

= 0.08*(1-MC)=0.08*(1-0.70)=0.024 kg C/fresh kgCarbon Available To Decompose = (1 Wet Tonne/Wet Tonne/(1 - Moisture Content)^{Dry Tonne}/Wet Tonne/(CarbonContent MassC/DryMass)-Carbon Available To Decompose = (1)(1 - 0.70)(0.48) - 0.024 = 0.120 ^{tC}/_{WetTonne}

This 0.120 tC per wet tonne of food waste is available for anaerobic decomposition and will be assumed to be evenly split between CH_4 and CO_2 . Remember that since any CO_2 is neutral, it does not have to be considered further.

 $Methane Generation = (Carbon To Decompose {}^{tC}/_{WetTonne}) (Methane Fraction) \left(\frac{Molecular MassofCH_{4}}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofCH_{4}}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofCH_{4}}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofCH_{4}}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofCH_{4}}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofCH_{4}}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofCH_{4}}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet Tonne} (Methane Fraction) \left(\frac{Molecular MassofC}{Molecular MassofC} \right) = {}^{tCH_{4}}/_{Wet$ Methane Generation = $(0.120)(0.5)\left(\frac{16}{12}\right) = 0.080^{\text{tCH}_4}$ WetTonne Methane Generation Potential = $0.080 \text{ tCH}_4/\text{tonne of food waste}$

The first order decay rate constant used here is 0.07 y^{-1} and the assumptions behind it are discussed in Section 2.4 - Landfill Carbon Sequestration.

The model in Worksheet #32, estimates that for the 20 year period between 1999 and 2018, 0.050 tCH₄/tonne would be generated. This represents 77% of the ultimate potential of 0.064 tCH₄/tonne. This generation corresponds to, minus the collection and oxidation, an emission of 0.320 tCO₂e/tonne. Furthermore an energy benefit, via the replacement of fossil energy, of 0.049 tCO₂e/tonne was realized.

Estimates are as follows:

Best-Guess of Atmospheric Methane Emissions=	0.320	tCO₂e/tonne
Best-Guess of Benefit of Energy Utilization=	-0.049	tCO ₂ e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.162	tCO ₂ e/tonne
Low Estimate of Benefit of Energy Utilization=	-0.037	tCO2e/tonne
High Estimate of Atmospheric Methane Emissions=	0.547	tCO ₂ e/tonne
High Estimate of Benefit of Energy Utilization=	-0.009	tCO₂e/tonne

2. Long-Term Carbon Sequestration in the Cache Creek Landfill:

Since not all of the cellulose and hemicellulose and only a negligible portion of the lignin from food waste is expected to anaerobically degrade in a landfill, organic-carbon will remain in long-term storage in the landfill. In this capacity, the organic-carbon, which was originally atmospheric CO_2 but was photosynthesized into biomass, will be sequestered. As a result, organic-carbon can perform a GHG benefit, a negative GHG emission. This issue is discussed in greater detail in Section 2.4 – *Landfill Carbon Sequestration*.

The Carbon Storage Factors, as determined by Barlaz (1998), and also discussed in Eleazer et al. (1997), are used here as representative of long-term storage in the CCLF. These researchers observed that food waste, with a measured lignin concentration of 11.4%, exhibited an 84% decomposition of the cellulose, hemicellulose and protein fraction but only a negligible breakdown of the lignin. These experiments determined that the long-term carbon storage of food waste in landfills is 0.08 tC/tonne of dry food waste. However, these factors were developed with laboratory research of idealized landfill decomposition conditions and are thus highly conservative. As a result, the actual storage in the CCLF could be greater than is indicated by these experiments. While there is great potential for uncertainty with this estimate, it is likely that the uncertainty would be skewed towards a greater value. By using this conservative estimate, the risk of overestimating this factor is probably minimal. For these reasons, only the best-guess estimate will be used in this analysis.

In Section #1 of the Appendix a revised Carbon Storage Factor was developed to attempt to correct inconsistencies in the previous estimates by Barlaz. The new estimate is as follows:

Revised Carbon Storage Factor for food waste = 0.19 tC/dry tonne Typical Moisture Content of Food Waste = 70% (Tchobanoglous et al. 1993)

Carbon Sequestration =
$$\binom{\text{kgC}}{\text{Dry Food Waste}}$$
 (I – Moisture Content) $\left(\frac{\frac{44\text{gCO}_2}{\text{mol}}}{12\text{gC}}\right)$ = $\frac{\text{tCO}_2\text{e}}{\text{tonne}}$

Carbon Sequestration = $(0.19)(1 - 0.70)\left(\frac{44}{12}\right) = 0.209 \frac{100}{200} \frac{100}{100}$ tonne

Long-Term Carbon Sequestration from Food Waste = -0.209 tCO₂e/tonne

3. Immediate & Future N₂O Emissions from the Cache Creek Landfill

The organic-nitrogen in food waste is predominantly anthropogenic in origin – almost all of the nitrogen was derived from synthetic fertilizers or the human-induced cultivation of legumes which perform biological nitrogen fixation. When disposed in landfills, most of the food waste undergoes anaerobic decomposition to CO_2 and CH_4 and at this point the organic-nitrogen is transformed to ammonia (NH₃) or ammonium (NH₄⁺). When in this form, the nitrogen is free to undergo nitrification and denitrification to be leached by water percolating through the fill or to be volatilized and vented with the landfill gas. However, as a result of the anaerobic conditions (specifically the lack of electron acceptors), there is likely very little opportunity for nitrification to occur and thus very little opportunity for denitrification or nitrous oxide emissions to occur. Therefore, nitrous oxide emissions from solubilized ammonia in the landfill leachate or volatilized ammonia in the landfill gas. An extensive discussion of this issue is provided in Section 2.5.5.1.

It is assumed in this analysis that the anaerobic conditions present in landfills do not present the opportunity for ammonia compounds to nitrify to nitrate (this also prevents any denitrification). As a result, there is no potential for immediate nitrous oxide emissions at the landfill site. It is also assumed that all of the nitrogen contained in food waste which decomposes will eventually be solubilized and exit the landfill as leachate or vented gas. (This may be an overestimate due to the potential for Nitrogen Sequestration - discussed in Section 2.5.5.1) Since this leachate will be transferred to a wastewater treatment plant and the vented landfill gas is the emission of reactive nitrogen to the atmosphere, the IPCC estimates for these potential N₂O sources are appropriate here. Therefore N₂O emissions estimated from nitrogen in food waste will be future emissions at the treatment plant managing the landfill leachate or the subsequent nitrification and denitrification of wet or dry deposited ammonia or nitrogen oxide gas. As a result of the uncertainty associated with the IPCC estimate, the high and low estimates provided by the IPCC will also be used here. While not all food waste will anaerobically decompose, the lignin fraction will resist decomposition, it will be assumed that the nitrogen is predominantly from the protein fraction of food waste and thus all nitrogen will be available for solubilization.

There is no appreciable leachate at the Cache Creek Landfill due to the dry climatic conditions. Any leachate which is collected is spread on the active face to return the leachate back to the fill (Pers. comm.. Louie DeVent). As a result, it is assumed that ammonia only exits the landfill in the vented gas.

Best-Guess Estimate of the N₂O from vented nitrogen = 1.0% N₂O/emitted NH₃ or NO_X

Low Estimate of the N₂O from vented nitrogen = 0.2% N₂O/emitted NH₃ or NO_X High Estimate of the N₂O from vented nitrogen = 2.0% N₂O/emitted NH₃ or NO_X Typical moisture content of food waste = 70% (Tchobanoglous et al. 1993) Nitrogen content of dry food waste = 2.6% N (Tchobanoglous et al. 1993)

Nitrogen Content of Wet Food Waste = $(Dry N Content \frac{\log N}{\log dry food})(1 - MoistureContent)$ Nitrogen Content of Wet Food Waste = (0.026)(1 - 0.70) = 0.0078 = 0.8%N

N₂O Emission = (Mass tonne/tonne) (N Content) (N₂O Conversion)
$$\left(\frac{44 \text{ gN}_2\text{ O}}{28 \text{ gN}_2\text{ O} - \text{ N}/\text{mol}}\right)$$
 (GWP of N₂O)

 $N_{2}O \text{ Emission} = \left(1 \frac{\text{tonne}}{\text{tonne}}\right) (0.008)(0.01) \left(\frac{44}{28}\right)(310) = 0.038 \frac{\text{tCO}_{2}e}{\text{tonne}}$ Immediate & Future N₂O Emissions = 0.038 (0.008-0.076) tCO₂e/tonne

4. Methane & Energy Implications of the Vancouver Landfill:

The only significant difference between this section and Section 1, *Methane & Energy Implications of the Cache Creek Landfill*, is the estimated landfill gas collection efficiency and the first order decay rate constant. While at Cache Creek the current collection efficiency is estimated to be 43%, the current collection efficiency at the Vancouver Landfill is estimated to only be 22% (Pers. comm. Chris Underwood). However, engineers with the City of Vancouver are currently in the process of upgrading the collection equipment. As with the CCLF assessment, the collection efficiency is assumed to increase year after year in response to improving regulations. The first order decay rate constant used here is 0.08 yr⁻¹ and the assumptions behind it are discussed in Section 2.4 - Landfill Carbon Sequestration.

From Worksheet #32:

Best-Guess of Atmospheric Methane Emissions=	0.404	tCO₂e/tonne
Best-Guess of Benefit of Energy Utilization=	-0.050	tCO₂e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.203	tCO₂e/tonne
Low Estimate of Benefit of Energy Utilization=	-0.040	tCO₂e/tonne
High Estimate of Atmospheric Methane Emissions=	0.665	tCO₂e/tonne
High Estimate of Benefit of Energy Utilization=	-0.008	tCO ₂ e/tonne

5. Long-Term Carbon Sequestration in the Vancouver Landfill:

The Revised Carbon Storage Factors is used here as representative of long-term storage in the VLF.

Long-Term Carbon Sequestration from Food Waste = -0.209 tCO₂e/tonne

6. Immediate & Future N₂O Emissions from the Vancouver Landfill:

The potential for nitrous oxide emissions at the Vancouver Landfill differ from the Cache Creek Landfill in that they are assumed to result from the solubilized ammonia in the leachate instead of the volatilized ammonia gas. It is assumed that all of the nitrogen contained in food waste which decomposes will eventually be solubilized and exit the landfill as leachate. (This may be an overestimate due to the potential for Nitrogen Sequestration – discussed in Section 2.5.5.1) The calculations for this emission are below:

Best-Guess Estimate of the N₂O from wastewater nitrogen = 1.0% N₂O/influent-N Low Estimate of the N₂O from wastewater nitrogen = 0.2% N₂O/ influent-N High Estimate of the N₂O from wastewater nitrogen = 2.0% N₂O/ influent-N Typical moisture content of food waste = 70% (Tchobanoglous et al. 1993) Nitrogen content of dry food waste = 2.6% N (Tchobanoglous et al. 1993)

Nitrogen Content of Wet Food Waste = $\left(Dry N Content \frac{kg N}{kg dry food} \right) (1 - MoistureContent)$ Nitrogen Content of Wet Food Waste = (0.026)(1 - 0.70) = 0.0078 = 0.8%N

N₂O Emission =
$$(Mass^{tonne}/_{tonne})(N \text{ Content})(N_2O \text{ Conversion})\left(\frac{44 \text{ gN}_2O}{28 \text{ gN}_2O - N}\right)(GWP \text{ of } N_2O)$$

N₂O Emission = $(1 \text{ tonne}/\text{tonne})(0.008)(0.01)(\frac{44}{28})(310) = 0.039 \text{ tCO}_2\text{e}/\text{tonne}$

Total Immediate & Future N₂O Emissions = 0.039 (0.008-0.078) tCO₂e/tonne

7. Energy Generation from Waste Incineration at the Burnaby Incinerator: Net Energy Content of Food Waste = 2,370 BTU/lb = 5,496 kJ/kg (USEPA 1998) (2,370 BTU/lb*1.054 kJ/BTU*2.20 lb/kg = 5,496 kJ/kg) (wet basis, correction for latent heat of water in this reference is assumed but not directly specified)

From another source (Tchobanoglous et al. 1993): Gross Energy Content of Food Waste = 1,797 BTU/lb = 4,167 kJ/kg (wet basis) Typical Moisture Content of Food Waste = 70% (Tchobanoglous et al. 1993) Latent Heat of Water=2473 kJ/kg (Incropera and DeWitt 1990) Net EnergyContent = [Gross Energy] - [Latent Heat of Vaporization]

Net Energy Content = $\left[4,167 \text{ kJ/kg}\right] - \left[\left(2473 \frac{kJ}{kg}\right)(0.70)_{MC}\right] = 2,436 \frac{kJ}{kg}$

Because of the variation between these values, the average will be used as the best-guess estimate while the high and low estimates will be the high and low values respectively.

Net EnergyContent = $\left[\frac{5496 + 2436}{2}\right] = 3,966 \text{ kJ/kg} = 4.0 \text{ GJ/tonne}$

Best-Guess Estimate of the Net Energy Content of Food Waste = 4.0 GJ/tonne Low Estimate of the Net Energy Content of Food Waste = 2.4 GJ/tonne High Estimate of the Net Energy Content of Food Waste = 5.5 GJ/tonne Steam Energy produced by the combustion of food waste in an Incinerator-Boiler (1): Assumed Boiler Efficiency = 70% (Pers. comm. Ron Richter) Fraction of Steam Utilized by CPL = 56% (Montenay Inc. 1999)

 $\frac{\text{Utilized Energy}}{\text{tonne Food Waste}} = \frac{\text{energy}}{\text{tonne}} * (\text{Thermal Efficiency}) * (\text{Energy Utilization}) = \frac{\text{kJ}}{\text{tonne}}$

 $\frac{\text{Utilized Energy}}{\text{tonne Food Waste}} = \frac{4.0 \text{ GJ}}{\text{tonne}} * (0.70) * (0.56) = 1.57 \frac{\text{GJ}}{\text{tonne}}$

Utilized Steam Energy per tonne of food waste, (1) = 1.57 (0.94-2.16) GJ/tonne

GHG emission prevented per tonne of food waste (3):

 $\frac{\text{GHG Emission Prevented}}{\text{tonne food waste}} = \left(\frac{\text{Utilized Energy}}{\text{tonne Newsprint}}\right) * \left(\text{Emission Factor for Natural Gas, } \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = \frac{\text{tCO}_2\text{e}}{\text{tonne}}$ $\frac{\text{GHG Emission Prevented}}{\text{tonne food waste}} = \left(1.57 \frac{\text{GJ}}{\text{tonne}}\right) * \left(0.062 \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = 0.097 \frac{\text{tCO}_2\text{e}}{\text{tonne}}$ GHG Emission Prevented from Natural Gas, $(3) = 0.097 (0.058-0.134) tCO_2 e/tonne$

Electricity produced by the combustion of food waste in an Incinerator-Boiler (4): Assumed Turbo Generator Efficiency = 32% (Pers. comm. Ron Richter) Steam Fraction for Electricity Generation = 40% (assumed as discussed)

 $\frac{\text{Utilized Energy}}{\text{tonne Food Waste}} = \frac{\text{energy}}{\text{tonne}} * (\text{Boiler Effic}) * (TurboGenerator}) * (\text{Energy Utilization}) = \frac{\text{kJ}}{\text{tonne}}$ $\frac{\text{Utilized Energy}}{\text{tonne Food Waste}} = \frac{4.0 \text{ GJ}}{\text{tonne}} * (0.70) * (0.32) * (0.40) = 0.36 \frac{\text{GJ}}{\text{tonne}}$

Utilized Electrical Energy per tonne of food waste, (4) = 0.36 (0.22-0.49) GJ/tonne

Electrical GHG emission prevented per tonne of food waste: (6)

 $\frac{\text{GHG Emission Prevented}}{\text{tonne food waste}} = \left(\frac{\text{Utilized Energy}}{\text{tonne food waste}}\right) * \left(\text{Emission Factor for Electricity}, \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = \frac{\text{tCO}_2\text{e}}{\text{tonne}} + \frac{\text{GHG Emission Prevented}}{\text{tonne food waste}} = \left(0.36 \frac{\text{GJ}}{\text{tonne}}\right) * \left(0.147 \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = 0.053 \frac{\text{tCO}_2\text{e}}{\text{tonne}} + \frac{1000 \text{ cm}}{\text{tonne}} + \frac{1000 \text{ cm}}{\text{tonne}}$

GHG Emission Prevented from Electricity, $(6) = 0.053 (0.032-0.072) \text{ tCO}_2\text{e}/\text{tonne}$

Total GHG Emissions Prevented, $(7) = 0.097 + 0.053 = -0.15 (0.09-0.21) tCO_2e/tonne$

8. Greenhouse Gas Emissions from Waste Incineration:

At the Burnaby Incinerator, 247,075 tonnes of waste was combusted in 1998. This process required the consumption of 7,516 GJ of natural gas, 16,011 MWh of electricity, and 3,369 tonnes of lime (CaO) and 295 tonnes of ammonia (NH₃) for acid gas control (Montenay Inc. 1999; Pers. comm. Richard Holt). Greenhouse gas emissions result from municipal solid waste incineration. This includes emissions of carbon dioxide and nitrous oxide during incineration, the consumption of natural gas and electricity, and the consumption of lime for acid gas control (the production of lime from limestone results in CO₂ emissions). Since food waste is biomass carbon and is therefore carbon-neutral, the CO₂ emissions can be ignored here. Environment Canada estimates that while a small methane emission is measurable during wastewater sewage sludge incineration there is negligible methane emissions during MSW incineration (Environment Canada 1999). That will also be assumed for this investigation.

The most important greenhouse gas emission associated with the incineration of food waste, and also the most uncertain, is the potential for significant nitrous oxide releases. This can result from one of five pathways:

- Thermal conversion of the N₂ gas in air to N₂O during combustion (Immediate emis.)
- Thermal conversion of the nitrogen in food waste to N₂O (Immediate emission)
- Thermal conversion of the ammonia injected in the flue gases (Immediate emission)
- Microbial N₂O conversion of NO_X emitted and later denitrified (Future emission)
- Microbial N₂O conversion of NH₃ injected but unreacted (Future emission)

Each of these five pathways are evaluated in the following calculations. Unfortunately, the current lack of understanding in these issues result in much uncertainty associated with the following estimates. An extensive discussion of the issue is provided Section 2.5.5.3.

The first two potential sources of nitrous oxide emissions result from the potential for the nitrogen in waste or the N_2 gas in air to thermal convert to N_2O during incineration. There is limited and highly variable research of the N_2O emissions resulting from municipal solid waste incineration. Examples of emission estimates being used are:

- IPCC Compilation (de Soete 1993)
- Environment Canada Inventory (1997)
- USEPA National Inventory (1999)

11-293 gN₂O/tonne of waste 160 gN₂O/tonne of waste 30 gN₂O/tonne of waste 130 gN₂O/tonne of waste

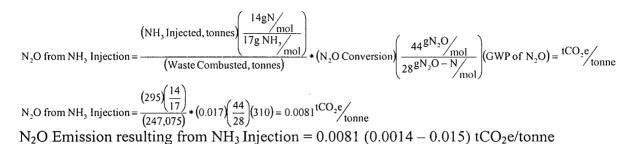
• USEPA MSW Analysis (1998)

Research in the fluidized bed combustion of coal has determined that N₂O emissions originate mainly from the oxidation of fuel nitrogen (Moritomi 1994), and since coal combustion is similar to that of waste incineration, it can be inferred that N₂O emissions during incineration are likely a factor of the nitrogen content. This hypothesis is reinforced by one study (Tanikawa et al. 1995), and the observation that the incineration of high nitrogen content wastewater sludge produces much higher N₂O emission rates than MSW incinerators (Tanaka et al. 1994). For this research, it is deemed appropriate for food waste to account for its proportionate share of nitrous oxide rather than distribute it across a typical municipal solid waste, the individual components of which (excluding food) may be low in nitrogen. As a result, the immediate N₂O emissions measured during incineration will be assumed to be entirely a contribution of the nitrogen content and not the N_2 gas in air. These estimates below first determine the nitrogen emission during incineration as nitrous oxide and then determine the nitrogen of municipal solid waste. By dividing these two results it is possible to estimate the expected nitrous oxide conversion of waste-nitrogen, an important emission factor. For these calculations, the Environment Canada (1997) estimate will be used as the best-guess value (160 gN_2O /tonne). The IPCC compilation (de Soete 1993) will be used as the high estimate (300 gN₂O/tonne) and the USEPA national inventory (1999) will be used as the low estimate (30 gN₂O/tonne).

Best-Guess Estimate for N₂O Emissions from Incineration = 160 gN₂O/tonne of MSW Low Estimate for N₂O Emissions from Incineration = $30 \text{ gN}_2\text{O}$ /tonne of MSW

High Estimate for N₂O Emissions from Incineration = $300 \text{ gN}_2\text{O}$ /tonne of MSW Nitrogen Content of MSW = 0.8% N/dry tonne (Environment Canada 1978) Moisture Content of MSW = 24% (Environment Canada 1978)

 $N_{2}O \text{ Emission} = \left(N_{2}O \text{ from Incineration } g N_{2}O /_{\text{tonne MSW}}\right) \left(\frac{28 g N_{2}O - N /_{\text{mol}}}{44 g N_{2}O - N /_{\text{mol}}}\right) = g N_{2}O - N /_{\text{tonneMSW}}$ $N_{2}O \text{ Emission} = \left(160\right) \left(\frac{28}{44}\right) = 102 (19 - 191) g N_{2}O - N /_{\text{tonneMSW}}$ Nitrogen in MSW incinerated = $\left(1000 \frac{\text{kg}}{\text{tonne}}\right) \left(\text{NitrogenContent } N /_{\text{DryWaste}}\right) \left[\left(1 - \text{MoistureContent}\right) \frac{\text{dry}}{\text{wet}}\right] = \frac{\text{kgN}}{\text{tonne MSW}}$ Nitrogen in MSW incinerated = $\left(10^{6} \frac{\text{g}}{\text{tonne}}\right) \left(0.008\right) \left[\left(1 - 0.24\right) \frac{\text{dry}}{\text{wet}}\right] = 6080 g N /_{\text{tonneMSW}}$ PercentageOf Waste Nitrogen Emitted As $N_{2}O - N = \frac{102 g N_{2}O - N /_{\text{tonneMSW}}}{6080 g N /_{\text{tonneMSW}}} = 0.017 g N_{2}O - N /_{gN} = 1.7\%$ Conversion of Nitrogen to $N_{2}O$ Fraction of Waste-Nitrogen emitted as $N_{2}O = 1.7 (0.3 - 3.1) \%$


Therefore, it has been estimated that approximately 1.7% of the nitrogen in waste is emitted as N₂O during incineration but could likely range between 0.3 and 3.1%. The immediate N₂O emission from the conversion of food-nitrogen during combustion can now be estimated:

Nitrogen Content of food waste = 0.8% N (wet basis) – see #3

Immediate N₂O Emission = (Mass tonne/tonne)(NContent)(N₂OEmission)
$$\left(\frac{44 gN_2O}{28 gN_2O - N/mol}\right)$$
 (GWPofN₂O) = $tCO_2e/tonne$
Immediate N₂O Emission = (1)(0.008)(0.017) $\left(\frac{44}{28}\right)$ (310) = 0.066 (0.012 - 0.13) $tCO_2e/tonne$
Immediate N₂O Emission = 0.065 (0.011-0.12) tCO₂e/tonne

The next potential pathway for N₂O emissions could result from the injection of ammonia into the flue gas to reduce NO_X gases. Remember that at the Burnaby Incinerator, 295 tonnes of ammonia (NH₃) was used during the combustion of 247,075 tonnes of waste in 1998 to reduce NO_X emissions. As a result of the lack of any available research on the propensity for injected ammonia to thermally convert to N₂O, this study will assume the same conversion rate exhibited by the waste-nitrogen upon incineration. Therefore, approximately 1.8% of injected ammonia, and ranging between 0.3 and 3.4%, will be estimated to convert to nitrous oxide. There is a complicating factor which requires discussion. Does the NO_X acid gases which require treatment by ammonia injection result from the incineration of nitrogen-rich materials or from municipal solid waste in general? If the former is true, food waste would need to take responsibility for its proportionate share of NO_X/NH₃ while if the latter is true these emissions could be evenly divided among the waste incinerated. This is a difficult question to answer and for simplicity this investigation assumes that NO_X/NH_3 is equally contributed by all waste. In the event that NO_X/NH_3 is a function of nitrogen content, the results here would be underestimating the contribution of food waste.

Fraction of Waste-Nitrogen emitted as $N_2O = 1.7 (0.3-3.1) \%$ Annual consumption of ammonia (1998) = 295 tonnes Annual mass of waste combusted (1998) = 247,075 tonnes

In addition to the potential for injected NH_3 to thermally convert to N_2O , there can also be the future denitrification of the nitrogen oxide (NO_x) gases released. It has been estimated that 10-30% of waste-nitrogen is converted to NO_x (NO + NO₂) during combustion (White et al. 1995). Nitrogen oxides are short lived in the atmosphere as they are quickly rained out in the form of nitrate (NO_3) or nitric acid (HNO_3) . Thus the deposition as NO_3^- will eventually require denitrification to N_2 , resulting in potential leakage of N₂O. The IPCC provides guidelines for these emissions and estimates that 1% of emitted NH₃-N or NO_x-N will be converted to N₂O. However they also provide low and high estimates of 0.2 and 2% respectively. All three of these values are used in this study. In addition to the potential for the microbial conversion of nitrogen oxide to nitrous oxide, nitrogen oxides are suspected to be indirect greenhouse gases for another reason – they deplete the tropospheric concentration of the OH radical, which would otherwise react and destroy CH_4 (Mackenzie 1995). Thus NO_X causes CH_4 to be a stronger GHG. (As it is too early for any methodology on this issue, it will have to be ignored in this report.) At the Burnaby Incinerator it is estimated that 449 tonnes of NO_X was emitted in 1998 (Pers. comm. Chantal Babensee). Nitric oxide (NO) is predominantly the nitrogen oxide formed during incineration (Robinson 1986), and is assumed in the calculations below.

Best-Guess Estimate for the future N₂O conversion of NO_X = 1% N₂O-N/NO_X-N Low Estimate for the future N₂O conversion of NO_X = 0.2% N₂O-N/NO_X-N High Estimate for the future N₂O conversion of NO_X = 2% N₂O-N/NO_X-N Annual NO_X emission (1998) = 449 tonnes

Annual mass of waste combusted (1998) = 247,075 tonnes

$$N_{2}O \text{ Emission from NO}_{x} = \frac{(NO_{x} \text{ Emission, tonnes}) \left(\frac{14 \frac{gN}{mol}}{30 \frac{gNO}{mol}}\right)}{(Waste \text{ Combusted, tonnes})} * (N_{2}O \text{ Conversion}) \left(\frac{44 \frac{gN_{2}O}{mol}}{28 \frac{gN_{2}O - N}{mol}}\right) (GWP \text{ of } N_{2}O) = \frac{1CO_{2}e}{tonne}$$

$$N_{2}O \text{ Emission from NO}_{x} = \frac{(449) \left(\frac{14}{30}\right)}{(247,075)} * (0.01) \left(\frac{44}{28}\right) (310) = 0.004 (0.001 - 0.008) \frac{1CO_{2}e}{tonne}$$

$$N_{2}O \text{ from NH}_{3} \text{ Injection} = 0.004 (0.001 - 0.008) \text{ tCO}_{2}e/tonne$$

The last potential N_2O emission from waste incineration could occur when ammonia is injected into the flue gas but is emitted to the atmosphere, the so-called "ammonia slip". The ammonia will undergo wet or dry deposition to soils downwind where it can nitrify

and denitrify. Communication with the GVRD (Pers. comm. Chantal Babensee) has learned that ammonia slip is virtually negligible at the Incinerator largely because only the minimum amount is injected into the flue gas. As a result, the potential for ammonia slip to result in nitrous oxide emissions can be neglected in this study.

The remaining greenhouse gas emissions during waste combustion result from the consumption of natural gas, electricity and lime by the Incinerator. This analysis will assume that the emissions resulting from natural gas, electricity and lime consumption will be equally distributed over the entire solid waste combusted in 1998. These estimates are below:

Natural gas consumption (1998) = 7516 GJ CO₂ Emission from Natural Gas Combustion = 1.88 kg/m³ (Environment Canada 1997) Typical Energy of Natural Gas = 1020 BTU/ft³ = 37,843 kJ/m³ (Perry's 1984) (Energy=1020 BTU/ft³ * 1.054 kJ/BTU * 35.2 ft³/m³ = 37,843 kJ/m³) GHG Emissions from Natural Gas = $\frac{(\text{Annual Energy Consumption, GJ})}{(\text{Annual Waste Combusted, tonnes})} \frac{*(1.88^{kgCO_2}/m^3) * (\frac{tonnes}{1000 kg})}{(Natural Gas kJ/m^3) * (\frac{GJ}{10^6 kJ}) *} = t^{CO_2}e/tonne}$ GHG Emissions from Natural Gas = $\frac{(7516 \text{GJ})}{(247075 \text{ tonnes})} \frac{*(1.88^{kgCO_2}/m^3) * (\frac{tonnes}{1000 kg})}{(37843^{kJ}/m^3) * (\frac{GJ}{10^6 kJ}) *} = 0.0015^{tCO_2}e/tonne}$

GHG Emission from Natural Gas Consumption = 0.0015 tCO₂e/tonne

Electricity consumption (1998) = 16011 MWh While up for debate, this analysis will assume the B.C. average for electricity. BC Hydro emission intensity = 30 tCO₂e/GWh = 0.00833 tCO₂e/GJ [30 tCO₂e/GWh * (1/3600 GWh/GJ)=0.00833 tCO₂e/GJ] GHG Emissions from Electricity = $\frac{(\text{Annual Electricity Consumption, GWh}*(\text{BC HydroGHG Average, }^{1CO_2e}/_{GWh})}{(\text{Annual Waste Combusted, tonnes})} = tCO_2e/_{tonne}$ GHG Emissions from Electricity = $\frac{(16.0 \text{GWh})*(30 tCO_2e/_{GWh})}{(247075 \text{ tonnes})} = 0.0019 tCO_2e/_{tonne}$

GHG Emission from BC Hydro electricity consumption = $0.0019 \text{ tCO}_2\text{e}/\text{tonne}$

Lime (calcium oxide, CaO) is used at the Incinerator during air pollution control to neutralize acid gases which are produced during the combustion of waste. While the consumption of lime at the incinerator does not result in GHG emissions, the production of this material by the lime calcination process does result in emissions. In the production of lime, limestone (CaCO₃) is heated so that it separates to CaO and CO₂. In addition to the fossil fuel energy required to perform this reaction there is the non-energy related GHG emission from the liberalization of the unwanted carbon dioxide gas. Environment Canada (1997) has estimated that 0.790 kg of CO₂ is emitted during the production of each kg of lime. It is assumed that the incineration of food waste equally requires the use of lime for the neutralization of acid gases as any other waste. Therefore:

GHG Emission from CaO Production = $0.790 \text{ tCO}_2\text{e}/\text{tonne CaO}$

GHG Emissions from Lime = $\left(0.790 \frac{\text{tCO}_2}{\text{tonne CaO}}\right) * \frac{3369 \text{ tonnes of CaO}}{247075 \text{ tonnes of waste}} = 0.011 \frac{\text{tCO}_2}{\text{tonne}}$

The total greenhouse gas emissions resulting from the incineration of food waste are summed below. While there is little uncertainty with the emissions from natural gas, electricity and lime consumption, the nitrous oxide emissions are uncertain and cause the provision of best-guess, high and low estimates. The high and low estimates are the total of all the high and low estimates, respectively.

Total GHG Emissions = N_2O + Natural Gas + Electricity + Lime = tCO₂e/tonne Total Emissions= 0.092 (0.028 - 0.16) tCO₂e/tonne

9. Greenhouse Gas Emissions from Backyard Composting:

The backyard composting of food waste together with yard trimmings at ground-level dwellings is quite common in the GVRD. The participation has been strongly encouraged by the GVRD and others and can even exceed 25% of the single-family residences in some of the member municipalities. This section will evaluate the greenhouse gas implications of the backyard composting of food waste by residents.

Research has observed emissions of carbon dioxide, methane and nitrous oxide during composting. As food waste is photosynthetic in origin, any carbon dioxide emissions resulting during the composting process are considered neutral and therefore do not have to be considered as greenhouse gas emissions. However, methane emissions can occur from inadequately aerated composting piles. While the carbon in methane is originally from atmospheric carbon dioxide, returning the carbon as methane, with its Global Warming Potential 21 times that of CO_2 , has important greenhouse gas implications.

The Office of Solid Waste of the U.S. Environmental Protection Agency (1998) investigated the extent to which composting might result in methane emissions by conducting a literature search of articles published between 1991 and 1995 and by contacting several researchers at universities and the U.S. Department of Agriculture. Their literature search was unproductive and the researchers contacted stated that wellmanaged compost operations usually do not generate methane because they typically maintain an aerobic environment with proper moisture content to encourage aerobic decomposition of the materials. "...even if methane is generated in anaerobic pockets in the center of the compost pile, the methane is most likely oxidized when it reaches the oxygen-rich surface of the pile." As a result it was concluded from the available information that methane generation from composting is likely negligible.

Contrary to this conclusion was that of consultants in a recent Environment Canada report (Proctor & Redfern Ltd. 1995). It was concluded by Proctor & Redfern, in association with Ortech International, that while no methane emissions result from mechanized composting, a small amount does result from backyard composting. They estimated that 7.3 kg of CH_4 is emitted for every tonne of waste backyard composted. These consultants concluded that without mechanical mixing, the process is partially

anaerobic and results in some CH_4 production. It is not stated in this summary report how this value was determined.

For this investigation, a literature search of any research which had quantified any methane emissions from composting operations was also conducted. Five research papers were found during this search. In a German study (Hellebrand 1998), 14.8 tonnes of green waste from land maintenance was passively composted in trapezoidal heaps for 194 days with turning at 32 and 70 days. They found that of 4.3 tonnes of initial carbon, 3.5 tonnes was lost as CO_2 and 75 kg as CH_4 , or a methane emission of 1.7% of the initial carbon. Sommer and Dahl (1999) only observed methane emissions from the compressed and unmixed treatments of their experimental dairy litter compost heaps between the 30 and 40 day period of a 197 composting duration. The highest emission observed was 40 g of CH₄-C per day. Jackson and Line (1998), from the University of Tasmania, reported that at no time during the windrow composting of pulp and paper mill sludge was methane detected. This was despite the fact that tests indicated that the compost piles were oxygen starved for most of the trial. In a British study (Lopez-Real and Baptista 1996) of the composting of cattle manure and straw, the researchers found that the passive composting method produced high levels of methane (> 4 percent) while both the windrowing (mechanical turning) and the forced aeration method "drastically reduced methane output." Samples taken from the top of the passive composting, windrow and forced aeration piles at 14 days into the 36 day experiment had CH₄ concentrations of 48.675 ± 25.949 , 39.6 ± 39.4 and 3.69 ± 0.38 parts per million volume. respectively. An investigation of the biosolids composting facilities (aerated static piles of biosolids + woodchips; 1:1 by weight) operated in conjunction with the City of Philadelphia's wastewater treatment plants has observed methane emissions (Hentz et al. 1996). They reported emissions of 42,060 lbs of CH_4/yr from the compost piles, 15,180 lbs of CH_4/vr from the biofilters and 1,700 lbs of CH_4/vr from the curing piles. Unfortunately it is not stated in this paper what was the annual throughput of organic wastes so as to convert these methane emissions into a percentage of decomposed carbon.

Methanogenic bacteria are very sensitive to oxygen, pH and temperature and even when conditions are optimum, can still be quite problematic to culture. These methanogenic bacteria have to be in conditions completely devoid of oxygen, within a narrow pH range of 6.6 to 7.6 and a temperature of 30 to 38° C (Metcalf & Eddy Inc 1991). Though some of the composting studies demonstrated methane emissions, these were from compost heaps much larger in size, with a greater potential for anaerobic zones to develop, than a relatively small (200-250L) backyard composter. As a result, it will be assumed that CH₄ emissions from backyard composting are negligible or non-existent. In the event that future research demonstrates the existence of CH₄ emissions, this assumption will be an underestimate of actual GHG emissions.

During composting, seven research papers have been obtained which document immediate emissions of nitrous oxide during the composting of various organic wastes. These emission are N_2O leaking from microorganisms during the nitrification and denitrification of reactive N in these wastes. These researchers have observed a

conversion of reactive N to N_2O ranging from 0.00005 to 2.2%. An extensive review of this issue is provided in Section 2.5.5.2.

As a result of the available literature, this analysis will use a best-guess estimate that 0.8% of the initial nitrogen in the compost was converted to N₂O during the composting process. This study will assume high and low estimates of 2% and 0.2%. This data, while important, is not the full picture of N₂O emissions from composting. These research findings above are only the immediate releases of N₂O; there will also be future releases of N₂O resulting from the future nitrification and denitrification of the ammonia or nitric oxide emissions during composting and from the future decomposition of the nitrogen contained in finished compost. These future emissions must also be assessed, thereby necessitating a nitrogen balance.

The immediate N_2O emissions observed during composting were a result of nitrification and denitrification of the initial nitrogen present in the organic materials to be composted. It is therefore important to know what portion of the initial nitrogen underwent nitrification and denitrification to cause the observed N_2O emissions. This investigation assumes that 30% of the initial nitrogen actually decomposed. This assumption is uncertain and as a result, low and high estimates of 10 and 50% are utilized. Because of the assumption that 30% of the initial nitrogen actually decomposed, it is conversely assumed that 70% of the initial nitrogen present in the compost escaped nitrification/denitrification. This majority of the compost which did not nitrify or denitrify may have volatilized from the compost pile in the form of ammonia emissions (and been subject to downwind deposition), may have leached from the compost pile as ammonia, organic-nitrogen or nitrate, or may be contained in the finished compost. This nitrogen will be subject to future nitrification and denitrification and can therefore result in future emissions of N_2O .

The potential for these future N_2O emissions are estimated using the IPCC guidelines for NH₃ or NO_X emitted as gases (IPCC 1997). It is estimated that 1% of emitted NH₃-N or NO_X-N will eventually be converted to N₂O-N with low and high estimates of 0.2 and 2% respectively.

Nitrogen Content of food waste = 0.8% N (wet basis) – see #3 Best-Guess Estimate of the Immediate N₂O Emission = 0.8% of initial N Low Estimate of the Immediate N₂O Emission = 0.2% of initial N High Estimate of the Immediate N₂O Emission = 2.0% of initial N Immediate N₂O Emission = $(Mass tonne/tonne)(NContent)(N_2OEmission)\left(\frac{44}{28}gN_2O/mol}{28gN_2O-N/mol}\right)(GWPofN_2O) = tCO_2e/tonne$ Immediate N₂O Emission = $(1)(0.008)(0.008)\left(\frac{44}{28}\right)(310) = 0.030tCO_2e/tonne$ Immediate N₂O Emission = 0.030 (0.008-0.076) tCO₂e/tonne

Nitrogen Content of food waste = 0.8% N (wet basis) – see #3 Best-Guess Estimate of Fraction Undergoing Future N₂O Emissions = 70% Low Estimate of Fraction Undergoing Future N₂O Emissions = 50% High Estimate of Fraction Undergoing Future N₂O Emssions = 90% Best-Guess Estimate for the future N₂O conversion = 1% N₂O-N/NO_X-N Low Estimate for the future N₂O conversion = 0.2% N₂O-N/NO_X-N High Estimate for the future N₂O conversion = 2% N₂O-N/NO_X-N

Mass of Nitrogen Available for Future N₂O = (Mass tonne/tonne) (NContent)(Future N Fraction) = Mass of Future N/tonne food waste Mass of Nitrogen Available for Future N₂O = (1)(0.008)(0.70) = 0.0056 (0.0039 - 0.0070) tonne Future N/tonne food waste

Future N₂O Emission = (Mass of Future N)(N₂O Conversion) $\left(\frac{44 gN_2O}{28 gN_2O - N}\right)$ (GWP of N₂O) = tCO_2e /tonne Future N₂O Emission = (0.0056)(0.01) $\left(\frac{44}{28}\right)$ (310) = 0.027 (0.004 - 0.068) tCO_2e /tonne

Future N₂O Emission = 0.027 (0.004-0.068) tCO₂e/tonne

Since the carbon dioxide emissions from composting can be ignored (GHG neutrality) and this study assumes that methane emissions from backyard composters are nonexistent, the only GHG emissions resulting from backyard composting of food waste is nitrous oxide. The potential for immediate and future N_2O best-guess emission estimates are totalled below together with the total of the low and high estimates respectively.

Total GHG Emissions from Backyard Composting = 0.057 (0.011-0.144) tCO₂e/tonne

10. Greenhouse Gas Emissions from Centralized Composting:

The centralized composting of food waste does not currently occur in the GVRD, but is actively pursued in other jurisdictions such as Edmonton or Halifax. However, the centralized composting of yard trimmings collected from residents is performed at Fraser-Richmond Biocycle (FRBC) and at other composting facilities in the GVRD. FRBC uses passively aerated windrows and handles the yard trimmings for the three municipalities of the North Shore, Burnaby, Delta, Surrey, New Westminster, Port Coquitlam, Coquitlam, Maple Ridge and Pitt Meadows (Pers. comm. Steve Aujla). These windrows are roughly triangular in profile, about 25 feet in height, having a base of about 40 feet and several hundred feet in length. The composting process in these windrows is 4 to 5 months in duration. During this process, the windrows are turned 12 to 14 times to provide aeration for the decomposition (Pers. comm. Steve Aujla).

This investigation assumes that centralized composting of food waste will occur in the same manner as is currently being performed at FRBC for yard trimmings. The important difference between backyard and centralized composting is the potential for methane emissions to occur (carbon dioxide emissions from food waste are greenhouse gas neutral [see Section 2.3 – *Biomass Decompostion/Combustion*] and there should be little difference between centralized and backyard composting from the perspective of nitrous oxide emissions). As discussed in the previous section, five research papers investigated methane emissions. Two of these papers reported methane being emitted during passive aerating composting with turning. In the German study (Hellebrand 1998)

it was observed that 1.7% of the initial carbon was emitted as methane and in the British study (Lopez-Real and Baptista 1996), the researchers found that the passive composting method produced high levels of methane (> 4 percent of initial carbon) while both the windrowing (mechanical turning) and the forced aeration method "drastically reduced methane output." FRBC also performs windrow composting with turning every week or every two weeks, thus the intervals between turning can result in anaerobic conditions in the center of these large windrows. This author believes that methane emissions are a possibility. Given the scarcity of data, but the potential, this investigation will assume that 0.5% of the initial carbon in food waste will be emitting as methane during centralized composting. In addition, high and low estimates of 0.1% and 1% of initial carbon will also be utilized because of the uncertainty involved.

Best-Guess Estimate of the Methane Emission = 0.5% of initial carbon Low Estimate of the Methane Emission = 0.1% of initial carbon High Estimate of the Methane Emission = 1.0% of initial carbon Typical Carbon Content of Food Waste = 48.0% (dry basis) (Tchobanoglous et al. 1993) Typical Moisture Content of Food Waste = 70% (Tchobanoglous et al. 1993)

$$Methane Emission = (Mass tonne/tonne)(C Content)(1 - Moisture Content)(CH_4 Emission) \left(\frac{16 \frac{\text{gCH}_4}{\text{mol}}}{12 \frac{\text{gC}}{\text{mol}}}\right) (GWP \text{ of } CH_4) = \frac{1CO_2 e}{tonne}$$

$$Methane Emission = (1)(0.48)(1 - 0.70)(0.005) \left(\frac{16}{12}\right)(21) = 0.020(0.004 - 0.040) \frac{1CO_2 e}{tonne}$$

Methane Emission from Centralized Composting = $0.020 (0.004-0.040) \text{ tCO}_2\text{e/tonne}$

The methane emission above needs to be combined with the nitrous oxide emissions previously estimated for backyard composting:

Total GHG Emissions from Centralized Composting = 0.077 (0.015-0.185) tCO₂e/tonne

11. Long-Term Carbon Sequestration of Compost:

In a similar study to this one, the EPA assumed that the backyard composting of food scraps converts all of the carbon to CO_2 and that none of the carbon becomes sequestered as humic substances (food waste has been demonstrated to be readily degradable to CO_2) (USEPA 1998). The same assumption is used here. It was previously discussed that 84% of the non-lignin fraction of food waste anaerobically decomposes in landfills (Barlaz 1998), therefore it is likely a valid assumption that 100% of food waste would aerobically decompose during composting. In this thesis, it is necessary to be consistent with the time frame used for Global Warming Potentials, a 100 year reference period. Therefore, this assumption of no carbon sequestered from food-waste-derived-compost after a 100 period is likely valid. The backyard composting of food scraps and yard trimmings probably results in primarily yard waste remaining in the finished compost. (It will be discussed in the next appendix what proportion of this finished compost, largely consisting of yard waste, will contribute to long-term carbon sequestration.) As a result, the potential for food waste to undergo long-term sequestration as compost will be assumed to be negligible.

Carbon Sequestration of Composted Food Waste = 0 tCO₂e/tonne

APPENDIX J: YARD TRIMMINGS MANAGEMENT

This appendix provides only the data and calculations specific to estimating the emission factors for the landfilling, incineration or composting of yard trimmings generated in the GVRD. Refer to Appendix C – *Newsprint Waste Management* for the full sample calculations. The first three sections are devoted to the GHG implications of the Cache Creek Landfill (1-3). The next three sections assess the same implications for the Vancouver Landfill (4-6). Sections 7 and 8, assess the energy generation and GHG emissions from the Burnaby Incinerator. The last three sections of this appendix, 9 through 11, analyze the GHG ramifications of the backyard or centralized composting of yard trimmings.

While this appendix contains many similarities with Appendix I, Food Waste Management, the distinctiveness of the three main components of yard waste (grass, leaves and branches) cause several differences. Each of these three main components of typical 'yard trimmings' have varying lignin concentrations and hence exhibit different responses to anaerobic decomposition. For the purpose of this investigation, it will be assumed that typical yard trimmings in the GVRD consists of 50% grass, 25% leaves and 25% branches by mass. This distribution was used in a similar EPA analysis (USEPA 1998). However, when assessing the potential landfill methane emissions and landfill carbon sequestration implications of yard waste, these three components are analyzed individually. When not specified by one of the three components, readers can assume that yard waste is being treated as a total entity.

1. Methane & Energy Implications of the Cache Creek Landfill:

The calculations for landfill methane emissions and energy generation follow – starting with the Carbon Available for Anaerobic Decomposition (CAAD):

Grass:

Estimated Methane Yield from Grass in reactors = 144.3 ml/gram (USEPA 1998) Assumed Carbon Dioxide Yield from grass = 144.3 ml/gram Molar gas constant=22.4 L/mol at standard temperature and pressure Typical Moisture Content of Grass= 60% (USEPA 1998)

$$MolesofCH_{4} = \frac{\frac{144.3 \, ml}{gram}}{\frac{22,400 \, ml}{mol}} = 0.0064 \, molCH_{4}$$
$$MolesofCO_{2} = \frac{\frac{144.3 \, ml}{gram}}{\frac{22,400 \, ml}{mol}} = 0.0064 \, molCO_{2}$$

TotalMoles of C = 0.0064 + 0.0064 = 0.0129 mol C

CarbonAvailableforAnaerobicDecomposition = $0.0129 molC * 12 \frac{g}{mol} = 0.155 gC / drygram$

CAAD(dry) = 0.155 gC / drygram = 0.155 tC / drytonneCAAD(wet) = 0.155 * (1 - 0.60) = 0.055 gC / wetgram = 0.055 tC / wettonne

Carbon Content of Dry Grass = 44.9% (Barlaz 1998)

Re visedCarbonStorageFactor = InitialCarbon – CAAD = gC / drygram Re visedCarbonStorageFactor = $0.449 \frac{gC}{drygram} - 0.155 \frac{gC}{drygram} = 0.32gC / drygram$ Re visedCarbonStorageFactor = 0.32gC / drygram = 0.32tC / drytonne

Leaves:

Estimated Methane Yield of Leaves from Barlaz = 56 ml/gram (USEPA 1998) Assumed Carbon Dioxide Yield from leaves = 56 ml/gram Molar gas constant=22.4 L/mol at standard temperature and pressure Typical Moisture Content of leaves= 20% (USEPA 1998) Carbon Content of Dry Leaves = 44.9% (Barlaz 1998)

With the same calculations above: Carbon Available for Anaerobic Decomposition (dry) = 0.060 tC/dry tonne Revised Carbon Storage Factor = 0.43 tC/dry tonne

Branches:

Estimated Methane Yield from Branches in reactors = 76.3 ml/gram (USEPA 1998) Assumed Carbon Dioxide Yield from branches = 76.3 ml/gram Molar gas constant=22.4 L/mol at standard temperature and pressure Typical Moisture Content of branches= 40% (USEPA 1998) Carbon Content of Dry Branches = 49.4% (Barlaz 1998)

With the same calculations above:

Carbon Available for Anaerobic Decomposition (dry) = 0.082 tC/dry tonne Revised Carbon Storage Factor = 0.41 tC/dry tonne

Mass averages can now be calculated for CAAD and CSF for yard waste as an entity: $MassAverageCAAD = (\% * CAAD*[1-MC])_{GRASS} + (\% * CAAD*[1-MC])_{LEAVES} + (\% * CAAD*[1-MC])_{RRANCHES}$ MassAverageCAAD = (0.50*0.155*[1-0.60]) + (0.25*0.060*[1-0.20]) + (0.25*0.082*[1-0.40]) $MassAverageCAAD(wet) = 0.055tC/_{wettonne}$

 $MassAverageCSF = (\% * CSF * [1 - MC])_{GRASS} + (\% * CSF * [1 - MC])_{LEAVES} + (\% * CSF * [1 - MC])_{BRANCHES} \\ MassAverageCSF = (0.50 * 0.29 * [1 - 0.60])_{GRASS} + (0.25 * 0.43 * [1 - 0.20])_{LEAVES} + (0.25 * 0.41 * [1 - 0.40])_{BRANCHES} \\ MassAverageCSF = 0.206 tC/_{wettonne}$

This 0.055 tC per wet tonne of yard trimmings is available for anaerobic decomposition and will be assumed to be evenly split between CH_4 and CO_2 . Remember that since any CO_2 is neutral, it does not have to be considered further.

MethaneGeneration = $(Carbon To DecomposetC_{WetTonne})$ (MethaneFraction) $\left(\frac{MolecularMassofCH_4}{MolecularMassofC}\right) = {}^{tCH_4}/_{WetTonne}$ MethaneGeneration = $(0.055)(0.5)\left(\frac{16}{12}\right) = 0.037 {}^{tCH_4}/_{WetTonne}$ Methane Generation Potential = $0.037 {}^{tCH_4}/_{tonne}$ of yard trimmings

The first order decay rate constant used here is 0.07 y^{-1} and the assumptions behind it are discussed in Section 2.4 - *Landfill Carbon Sequestration*.

From the model in Worksheet #33: Best-Guess of Atmospheric Methane Emissions= 0.183 tCO₂e/tonne Best-Guess of Benefit of Energy Utilization= tCO₂e/tonne -0.028 tCO₂e/tonne Low Estimate of Atmospheric Methane Emissions= 0.092 tCO₂e/tonne Low Estimate of Benefit of Energy Utilization= -0.021 tCO₂e/tonne High Estimate of Atmospheric Methane Emissions= 0.313 High Estimate of Benefit of Energy Utilization= -0.005 tCO₂e/tonne

2. Long-Term Carbon Sequestration in the Cache Creek Landfill:

Since not all of the cellulose and hemicellulose and only a negligible portion of the lignin from yard trimmings is expected to anaerobically degrade in a landfill, organic-carbon will remain in long-term storage in the landfill. In this capacity, the organic-carbon, which was originally atmospheric CO_2 but was photosynthesized into biomass, will be sequestered. As a result, organic-carbon can perform a GHG benefit, a negative GHG emission. This issue is discussed in greater detail in Section 2.4 – Landfill Carbon Sequestration.

The Carbon Storage Factors, as determined by Barlaz (1998), and also discussed in Eleazer et al. (1997), are used here as representative of long-term storage in the CCLF. These researchers observed that grass, with a lignin concentration measured at 28%, exhibited a 94% decomposition of the cellulose plus hemicellulose fraction and resulted in a carbon storage factor estimated at 0.32 kgC per dry kg. They also observed that leaves, with a 44% lignin content, exhibited a 28% decomposition of the cellulose plus hemicellulose fraction and resulted in carbon storage factor of 0.54 kgC per dry kg. These researchers also tested branches as well; branches, with a lignin content of 33%, exhibited a 28% decomposition of the cellulose plus hemicellulose fraction and resulted in a carbon storage factor 0.38 kg C per dry kg. However, these factors were developed with laboratory research of idealized landfill decomposition conditions and are thus highly conservative. As a result, the actual storage in the CCLF could be greater than is indicated by these experiments. While there is great potential for uncertainty with this estimate, it is likely that the uncertainty would be skewed towards a greater value. By using this conservative estimate, the risk of overestimating this factor is probably minimal. For these reasons, only the best-guess estimate will be used in this analysis.

In Section #1 of the Appendix a revised Carbon Storage Factor was developed to attempt to correct inconsistencies in the previous estimates by Barlaz. The new estimate is as follows:

Revised Carbon Storage Factor for yard waste = 0.206 tC/wet tonne

Carbon Sequestration =
$$\binom{\text{kgC}}{\text{Wet Yard Trimmngs}} \begin{pmatrix} \frac{44\text{gCO}_2}{\text{mol}} \\ \frac{12\text{gC}}{\text{mol}} \end{pmatrix} = \frac{\text{tCO}_2\text{e}}{\text{tonne}}$$

Carbon Sequestration = $(0.206)\left(\frac{44}{12}\right) = 0.75 \frac{100}{2} e/tonne$

Long-Term Carbon Sequestration from Yard Trimmings = -0.75 tCO₂e/tonne

3. Immediate & Future N₂O Emissions from the Cache Creek Landfill

What portion of the reactive nitrogen contained in yard wastes is anthropogenic in origin? While the nitrogen portion that was fixed by human activity can contribute nitrous oxide emissions, the nitrogen portion that was fixed by nature can be considered as part of natural cycling and thus GHG neutral. Given that urban green spaces are frequently applied with fertilizers, compost or animal manures, it is probably safe to assume that most of the nitrogen is anthropogenic. Furthermore, the NO_X released from automobile exhausts, also anthropogenic, probably serves as another nitrogen source for this urban vegetation. This report will assume that the reactive nitrogen in yard wastes are predominantly anthropogenic in origin; thus nitrous oxide emissions from this nitrogen *are* GHG emissions.

When yard wastes are disposed in landfills, this material is available for anaerobic decomposition. If decomposed, the organic-nitrogen is transformed to ammonia (NH₃) or ammonium (NH₄⁺). When in this form, the nitrogen is free to undergo nitrification and denitrification to be leached by water percolating through the fill or to be volatilized and vented with the landfill gas. However, as a result of the anaerobic conditions (specifically the lack of electron acceptors), there is likely very little opportunity for nitrification to occur and thus very little opportunity for denitrification or nitrous oxide emissions to occur. Therefore, nitrous oxide emissions likely only result from solubilized ammonia in the landfill leachate or volatilized ammonia in the landfill gas. An extensive discussion of this issue is provided in Section 2.5.5.1.

It is assumed in this analysis that the anaerobic conditions present in landfills do not present the opportunity for ammonia compounds to nitrify to nitrate (this also prevents any denitrification). As a result, there is no potential for immediate nitrous oxide emissions at the landfill site. It is also assumed that all of the nitrogen contained in the vard trimmings which decompose will eventually be solubilized and exit the landfill as leachate or vented gas. (This may be an overestimate due to the potential for Nitrogen Sequestration – discussed in Section 2.5.5.1) Since this leachate will be transferred to a wastewater treatment plant and the vented landfill gas is the emission of reactive nitrogen to the atmosphere, the IPCC estimates for these potential N₂O sources are appropriate here. Therefore N₂O emissions estimated from nitrogen in yard waste will be future emissions at the treatment plant managing the landfill leachate or the subsequent nitrification and denitrification resulting from wet or dry deposition of NH₃ or NO_X. As a result of the uncertainty associated with the IPCC estimate, the high and low estimates provided by the IPCC will also be used here. Since not all yard waste can be expected to anaerobically decompose, thus not all of the nitrogen can be expected to be released, a percentage decomposition factor is used to approximate the fraction of nitrogen converted to NH₃.

There is no appreciable leachate at the Cache Creek Landfill due to the dry climatic conditions. Any leachate which is collected is spread on the active face to return the leachate back to the fill (Pers. comm.. Louie DeVent). As a result, it is assumed that ammonia only exits the landfill in the vented gas.

Best-Guess Estimate of the N₂O from vented nitrogen = 1.0% N₂O/emitted NH₃ or NO_X Low Estimate of the N₂O from vented nitrogen = 0.2% N₂O/emitted NH₃ or NO_X High Estimate of the N₂O from vented nitrogen = 2.0% N₂O/emitted NH₃ or NO_X Typical moisture content of yard trimmings = 45% (Tchobanoglous et al. 1993) Nitrogen content of dry yard trimmings = 3.4% N (Tchobanoglous et al. 1993) Percentage Decomposition to be expected from yard trimmings=34% (Barlaz 1998) (mass weighted decomposition=grass+leaves+branches=35*0.5+37*0.25+28*0.25=34%) Nitrogen Content of Wet Yard Trimmings = $\left(Dry N Content \frac{kg N}{kg dry food} \right) (1 - MoistureContent)$

Nitrogen Content of Wet Food Waste = (0.034)(1 - 0.45) = 0.019 = 1.9% N

 $N_{2}O \text{ Emission} = (Mass \text{ tonne}/tonne) (N \text{ Content}) (Decomposition) (N_{2}O \text{ Conversion}) \left(\frac{44 \text{ gN}_{2}O/mol}{28 \text{ gN}_{2}O - N/mol}\right) (GWP \text{ of } N_{2}O)$

 N_2O Emission = $(1 \text{ tonne}/\text{tonne})(0.019)(0.34)(0.01)(\frac{44}{28})(310) = 0.031 \text{ tCO}_2\text{e}/\text{tonne}$ Immediate & Future N₂O Emissions = 0.031 (0.006-0.063) tCO₂e/tonne

4. Methane & Energy Implications of the Vancouver Landfill:

The only significant difference between this section and Section 1, *Methane & Energy Implications of the Cache Creek Landfill*, is the estimated landfill gas collection efficiency and the first order decay rate constant. While at Cache Creek the current collection efficiency is estimated to be 43%, the current collection efficiency at the Vancouver Landfill is estimated to only be 22% (Pers. comm. Chris Underwood). However, engineers with the City of Vancouver are currently in the process of upgrading the collection equipment. As with the CCLF assessment, the collection efficiency is assumed to increase year after year in response to improving regulations. The first order decay rate constant used here is 0.08 yr⁻¹ and the assumptions behind it are discussed in Section 2.4 - Landfill Carbon Sequestration.

Best-Guess of Atmospheric Methane Emissions=	0.231	tCO ₂ e/tonne
Best-Guess of Benefit of Energy Utilization=	-0.029	tCO ₂ e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.116	tCO₂e/tonne
Low Estimate of Benefit of Energy Utilization=	-0.023	tCO₂e/tonne
High Estimate of Atmospheric Methane Emissions=	0.381	tCO ₂ e/tonne
High Estimate of Benefit of Energy Utilization=	-0.005	tCO ₂ e/tonne

5. Long-Term Carbon Sequestration in the Vancouver Landfill:

The Revised Carbon Storage Factors is used here as representative of long-term storage in the VLF.

Long-Term Carbon Sequestration from Yard Waste = -0.75 tCO₂e/tonne

6. Immediate & Future N₂O Emissions from the Vancouver Landfill:

The potential for nitrous oxide emissions at the Vancouver Landfill differ from the Cache Creek Landfill in that they are assumed to result from the solubilized ammonia in the leachate instead of the volatilized ammonia gas. It is assumed that all of the nitrogen contained in yard waste which decomposes will eventually be solubilized and exit the landfill as leachate. (This may be an overestimate due to the potential for Nitrogen Sequestration – discussed in Section 2.5.5.1) The calculations for this emission are below:

Best-Guess Estimate of the N₂O from wastewater nitrogen = 1.0% N₂O/influent-N Low Estimate of the N₂O from wastewater nitrogen = 0.2% N₂O/ influent-N High Estimate of the N₂O from wastewater nitrogen = 2.0% N₂O/ influent-N Typical moisture content of yard trimmings = 45% (Tchobanoglous et al. 1993) Nitrogen content of dry yard trimmings = 3.4% N (Tchobanoglous et al. 1993) Percentage Decomposition to be expected from yard trimmings=34% (Barlaz 1998) (mass weighted decomposition=grass+leaves+branches=35*0.5+37*0.25+28*0.25=34%)

Nitrogen Content of Wet Yard Trimmings = $\left(Dry N Content \frac{kg N}{kg dry food} \right) (1 - MoistureContent)$ Nitrogen Content of Wet Food Waste = (0.034)(1 - 0.45) = 0.019 = 1.9%N

$$N_{2}O \text{ Emission} = (Mass \text{ tonne}/tonne)(N \text{ Content})(Decomposition)(N_{2}O \text{ Conversion})\left(\frac{44 \text{ gN}_{2}O}{28 \text{ gN}_{2}O - N}\right)(GWP \text{ of } N_{2}O)$$

 N_2O Emission = $(1 \text{ tonne}/\text{tonne})(0.019)(0.34)(0.01)(\frac{44}{28})(310) = 0.031 \text{ t}^{\text{CO}_2\text{e}}/\text{tonne}$ Immediate & Future N₂O Emissions = 0.031 (0.006-0.063) tCO₂e/tonne

7. Energy Generation from Waste Incineration:

Net Energy Content of Yard Trimmings = 2,800 BTU/lb = 6,493 kJ/kg (USEPA 1998) (2,800 BTU/lb*1.054 kJ/BTU*2.20 lb/kg = 6,493 kJ/kg) (wet basis, correction for latent heat of water in this reference is assumed but not directly specified)

From another source (Tchobanoglous et al. 1993): Gross Energy Content of yard trimmings = 2,601 BTU/lb = 6,031 kJ/kg (wet basis) Typical Moisture Content of Yard Trimmings = 45% (CALCS ABOVE????) Latent Heat of Water=2473 kJ/kg (Incropera and DeWitt 1990) Net Energy Content = [Gross Energy]-[Latent Heat of Vaporization]

Net Energy Content = $\left[6,031 \text{ kJ/kg}\right] - \left[\left(2473 \frac{kJ}{kg}\right)(0.45)_{MC}\right] = 4,918 \frac{kJ}{kg}$

Because of the variation between these values, the average will be used as the estimate.

Net Energy Content =
$$\left\lfloor \frac{6493 + 4918}{2} \right\rfloor = 5706 \frac{\text{kJ}}{\text{kg}} = 5.7 \frac{\text{GJ}}{\text{tonne}}$$

Estimate of the Net Energy Content of Wet Yard Waste = 5.7 GJ/tonne

Steam Energy produced by the combustion of yard waste in an Incinerator-Boiler (1): Assumed Boiler Efficiency = 70% (Pers. comm. Ron Richter) Fraction of Steam Utilized by CPL = 56% (Montenay Inc. 1999)

 $\frac{\text{Utilized Energy}}{\text{tonne Yard Waste}} = \frac{\text{energy}}{\text{tonne}} * (\text{Thermal Efficiency}) * (\text{Energy Utilization}) = \frac{\text{kJ}}{\text{tonne}}$

 $\frac{\text{Utilized Energy}}{\text{tonne Yard Waste}} = \frac{5.7 \text{ GJ}}{\text{tonne}} * (0.70) * (0.56) = 2.23 \frac{\text{GJ}}{\text{tonne}}$

Utilized Steam Energy per tonne of vard waste, (1) = 2.23 GJ/tonne

GHG emission prevented per tonne of food waste (3):

 $\frac{\text{GHG Emission Prevented}}{\text{tonne yard waste}} = \left(\frac{\text{Utilized Energy}}{\text{tonne yard waste}}\right) * \left(\text{Emission Factor for Natural Gas, } ^{\text{LO}_2e}/_{\text{GJ}}\right) = {}^{\text{LO}_2e}/_{\text{tonne}}$ $\frac{\text{GHG Emission Prevented}}{\text{tonne yard waste}} = \left(2.23 \text{ GJ}/_{\text{tonne}}\right) * \left(0.062 {}^{\text{LO}_2e}/_{\text{GJ}}\right) = 0.139 {}^{\text{LO}_2e}/_{\text{tonne}}$

GHG Emission Prevented from Natural Gas, $(3) = 0.139 \text{ tCO}_{2}\text{e/tonne}$

Electricity produced by the combustion of yard waste in an Incinerator-Boiler (4): Assumed Turbo Generator Efficiency = 32% (Pers. comm. Ron Richter) Steam Fraction for Electricity Generation = 40% (assumed as discussed)

 $\frac{\text{Utilized Energy}}{\text{tonne Yard Waste}} = \frac{\text{energy}}{\text{tonne}} * (\text{Boiler Effic}) * (\text{Turbo Generator}) * (\text{Energy Utilization}) = \frac{\text{kJ}}{\text{tonne}}$ $\frac{\text{Utilized Energy}}{\text{tonne Yard Waste}} = \frac{5.7 \text{ GJ}}{\text{tonne}} * (0.70) * (0.32) * (0.40) = 0.51 \frac{\text{GJ}}{\text{tonne}}$ Utilized Electrical Energy per tonne of yard waste, (4) = 0.51 GJ/tonne

Electrical GHG emission prevented per tonne of yard waste: (6)

 $\frac{\text{GHG Emission Prevented}}{\text{tonne yard waste}} = \left(\frac{\text{Utilized Energy}}{\text{tonne yard waste}}\right) * \left(\text{Emission Factor for Electricity, } \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = \frac{\text{tCO}_2\text{e}}{\text{tonne}} \\ \frac{\text{GHG Emission Prevented}}{\text{tonne yard waste}} = \left(0.51 \frac{\text{GJ}}{\text{tonne}}\right) * \left(0.147 \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = 0.075 \frac{\text{tCO}_2\text{e}}{\text{tonne}} \\ \frac{\text{GHG Emission Prevented}}{\text{tonne yard waste}} = \left(0.51 \frac{\text{GJ}}{\text{tonne}}\right) * \left(0.147 \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = 0.075 \frac{\text{tCO}_2\text{e}}{\text{tonne}} \\ \frac{\text{GHG Emission Prevented}}{\text{tonne yard waste}} = \left(0.51 \frac{\text{GJ}}{\text{tonne}}\right) * \left(0.147 \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = 0.075 \frac{\text{tCO}_2\text{e}}{\text{tonne}} \\ \frac{\text{GHG Emission Prevented}}{\text{tonne yard waste}} = \left(0.51 \frac{\text{GJ}}{\text{tonne}}\right) * \left(0.147 \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = 0.075 \frac{\text{tCO}_2\text{e}}{\text{tonne}} \\ \frac{\text{GHG Emission Prevented}}{\text{tonne yard waste}} = \left(0.51 \frac{\text{GJ}}{\text{tonne}}\right) * \left(0.147 \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = 0.075 \frac{\text{tCO}_2\text{e}}{\text{tonne}} \\ \frac{\text{GHG Emission Prevented}}{\text{tonne yard waste}} = \left(0.51 \frac{\text{GJ}}{\text{tonne}}\right) * \left(0.147 \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = 0.075 \frac{\text{tCO}_2\text{e}}{\text{tonne}}$ GHG Emission Prevented from Electricity, $(6) = 0.075 \text{ tCO}_2 \text{e/tonne}$

Total GHG Emissions Prevented, $(7) = 0.139 + 0.075 = -0.214 \text{ tCO}_2\text{e/tonne}$

8. **Greenhouse Gas Emissions from Waste Incineration:**

At the Burnaby Incinerator, 247,075 tonnes of waste was combusted in 1998. This process required the consumption of 7,516 GJ of natural gas, 16,011 MWh of electricity, and 3,369 tonnes of lime (CaO) and 295 tonnes of ammonia (NH₃) for acid gas control (Montenay Inc. 1999; Pers. comm. Richard Holt). Greenhouse gas emissions result from municipal solid waste incineration. This includes emissions of carbon dioxide and nitrous oxide during incineration, the consumption of natural gas and electricity, and the consumption of lime for acid gas control (the production of lime from limestone results in CO₂ emissions). Since yard waste is biomass carbon and is therefore carbon-neutral, the CO₂ emissions can be ignored here. Environment Canada estimates that while a small methane emission is measurable during wastewater sewage sludge incineration there is negligible methane emissions during MSW incineration (Environment Canada 1999). That will also be assumed for this investigation.

The most important greenhouse gas emission associated with the incineration of yard waste, and also the most uncertain, is the potential for significant nitrous oxide releases. This can result from one of five pathways:

- Thermal conversion of the N₂ gas in air to N₂O during combustion (Immediate emis.)
- Thermal conversion of the nitrogen in food waste to N₂O (Immediate emission)
- Thermal conversion of the ammonia injected in the flue gases (Immediate emission)
- Microbial N₂O conversion of NO_X emitted and later denitrified (Future emission)
- Microbial N₂O conversion of NH₃ injected but unreacted (Future emission)

Each of these five pathways are evaluated in the following calculations. Unfortunately, the current lack of understanding in these issues result in much uncertainty associated with the following estimates. An extensive discussion of the issue is provided Section 2.5.5.3.

The first two potential sources of nitrous oxide emissions result from the potential for the nitrogen in waste or the N_2 gas in air to thermal convert to N_2O during incineration. There is limited and highly variable research of the N_2O emissions resulting from municipal solid waste incineration. Examples of emission estimates being used are:

- IPCC Compilation (de Soete 1993)
- Environment Canada Inventory (1997)
- USEPA National Inventory (1999)

11-293 gN₂O/tonne of waste 160 gN₂O/tonne of waste 30 gN₂O/tonne of waste 130 gN₂O/tonne of waste

• USEPA MSW Analysis (1998)

Research in the fluidized bed combustion of coal has determined that N₂O emissions originate mainly from the oxidation of fuel nitrogen (Moritomi 1994), and since coal combustion is similar to that of waste incineration, it can be inferred that N₂O emissions during incineration are likely a factor of the nitrogen content. This hypothesis is reinforced by one study (Tanikawa et al. 1995), and the observation that the incineration of high nitrogen content wastewater sludge produces much higher N₂O emission rates than MSW incinerators (Tanaka et al. 1994). For this research, it is deemed appropriate for yard waste to account for its proportionate share of nitrous oxide rather than distribute it across a typical municipal solid waste, the individual components of which (excluding yard waste) may be low in nitrogen. As a result, the immediate N₂O emissions measured during incineration will be assumed to be entirely a contribution of the nitrogen content and not the N₂ gas in air. These estimates below first determine the nitrogen emission during incineration as nitrous oxide and then determine the nitrogen of municipal solid waste. By dividing these two results it is possible to estimate the expected nitrous oxide conversion of waste-nitrogen, an important emission factor. For these calculations, the Environment Canada (1997) estimate will be used as the best-guess value (160 gN₂O/tonne). The IPCC compilation (de Soete 1993) will be used as the high estimate (300 gN₂O/tonne) and the USEPA national inventory (1999) will be used as the low estimate (30 gN_2O /tonne).

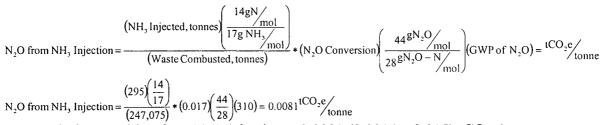
Best-Guess Estimate for N₂O Emissions from Incineration = $160 \text{ gN}_2\text{O}$ /tonne of MSW Low Estimate for N₂O Emissions from Incineration = $30 \text{ gN}_2\text{O}$ /tonne of MSW

High Estimate for N₂O Emissions from Incineration = $300 \text{ gN}_2\text{O}$ /tonne of MSW Nitrogen Content of MSW = 0.8% N/dry tonne (Environment Canada 1978) Moisture Content of MSW = 24% (Environment Canada 1978)

 $N_{2}O \text{ Emission} = \left(N_{2}O \text{ from Incineration} {}^{g} N_{2}O /_{\text{tonne} MSW}\right) \left(\frac{28 {}^{g} {}^{g} {}^{2} O - N /_{\text{mol}}}{44 {}^{g} {}^{N_{2}} O - N /_{\text{mol}}}\right) = {}^{g} {}^{N_{2}}O - N /_{\text{tonne}MSW}$ $N_{2}O \text{ Emission} = \left(160\right) \left(\frac{28}{44}\right) = 102 (19 - 191) {}^{g} {}^{N_{2}}O - N /_{\text{tonne}MSW}$ Nitrogen in MSW incinerated = $\left(1000 {}^{k} {}^{g} /_{\text{tonne}}\right) \left(\text{NitrogenContent} {}^{N} /_{\text{DryWaste}}\right) \left[\left(1 - \text{MoistureContent}\right) {}^{d} {}^{r} {}^{y} /_{\text{wet}}\right] = {}^{k} {}^{g} {}^{N} /_{\text{tonne} MSW}$ Nitrogen in MSW incinerated = $\left(10^{6} {}^{g} /_{\text{tonne}}\right) \left(0.008\right) \left[\left(1 - 0.24\right) {}^{d} {}^{r} {}^{y} /_{\text{wet}}\right] = 6080 {}^{g} N /_{\text{tonne} MSW}$ PercentageOf Waste Nitrogen Emitted As $N_{2}O - N = \frac{102 {}^{g} {}^{N_{2}O - N} /_{\text{tonne} MSW}}{6080 {}^{g} N /_{\text{tonne} MSW}} = 0.017 {}^{g} {}^{N_{2}O - N} /_{gN} = 1.7\% \text{ Conversion of Nitrogen to } N_{2}O$ Fraction of Waste-Nitrogen emitted as $N_{2}O = 1.7 (0.3 - 3.1) \%$

Therefore, it has been estimated that approximately 1.7% of the nitrogen in waste is emitted as N₂O during incineration but could likely range between 0.3 and 3.1%. The immediate N₂O emission from the conversion of food-nitrogen during combustion can now be estimated:

Nitrogen Content of wet yard waste = 1.9% N (wet basis) - see #3


Immediate N₂O Emission = (Mass tonne/tonne)(NContent)(N₂OEmission)
$$\left(\frac{44 \text{gN}_2\text{O}}{28 \text{gN}_2\text{O} - \text{N}/\text{mol}}\right)$$
 (GWPofN₂O) = $\frac{\text{tCO}_2\text{e}}{\text{tonne}}$

Immediate N₂O Emission = $(1)(0.019)(0.017)\left(\frac{44}{28}\right)(310) = 0.157 \frac{\text{tCO}_2e}{\text{tonne}}$ Immediate N₂O Emission = 0.157 (0.028-0.29) tCO₂e/tonne

The next potential pathway for N₂O emissions could result from the injection of ammonia into the flue gas to reduce NO_X gases. Remember that at the Burnaby Incinerator, 295 tonnes of ammonia (NH₃) was used during the combustion of 247,075 tonnes of waste in 1998 to reduce NO_x emissions. As a result of the lack of any available research on the propensity for injected ammonia to thermally convert to N₂O, this study will assume the same conversion rate exhibited by the waste-nitrogen upon incineration. Therefore, approximately 1.7% of injected ammonia, and ranging between 0.3 and 3.1%, will be estimated to convert to nitrous oxide. There is a complicating factor which requires discussion. Does the NO_X acid gases which require treatment by ammonia injection result from the incineration of nitrogen-rich materials or from municipal solid waste in general? If the former is true, yard waste would need to take responsibility for its proportionate share of NO_x/NH_3 while if the latter is true these emissions could be evenly divided among the waste incinerated. This is a difficult question to answer and for simplicity this investigation assumes that NO_X/NH_3 is equally contributed by all waste. In the event that NO_x/NH_3 is a function of nitrogen content, the results here would be underestimating the contribution from yard waste.

Fraction of Injected-Ammonia emitted as $N_2O = 1.7 (0.3-3.1) \%$ Annual consumption of ammonia (1998) = 295 tonnes Annual mass of waste combusted (1998) = 247,075 tonnes

,

 N_2O Emission resulting from NH₃ Injection = 0.0081 (0.0014 - 0.015) tCO₂e/tonne

In addition to the potential for injected NH_3 to thermally convert to N_2O , there can also be the future denitrification of the nitrogen oxide (NO_X) gases released. It has been estimated that 10-30% of waste-nitrogen is converted to $NO_X (NO + NO_2)$ during combustion (White et al. 1995). Nitrogen oxides are short lived in the atmosphere as they are quickly rained out in the form of nitrate (NO_3) or nitric acid (HNO_3) . Thus the deposition as NO₃⁻ will eventually require denitrification to N₂, resulting in potential leakage of N₂O. The IPCC provides guidelines for these emissions and estimates that 1% of emitted NH_3 -N or NO_X -N will be converted to N_2O . However they also provide low and high estimates of 0.2 and 2% respectively. All three of these values are used in this study. In addition to the potential for the microbial conversion of nitrogen oxide to nitrous oxide, nitrogen oxides are suspected to be indirect greenhouse gases for another reason – they deplete the tropospheric concentration of the OH radical, which would otherwise react and destroy CH_4 (Mackenzie 1995). Thus NO_X causes CH_4 to be a stronger GHG. (As it is too early for any methodology on this issue, it will have to be ignored in this report.) At the Burnaby Incinerator it is estimated that 449 tonnes of NO_X was emitted in 1998 (Pers. comm. Chantal Babensee). Nitric oxide (NO) is predominantly the nitrogen oxide formed during incineration (Robinson 1986), and is assumed in the calculations below.

Best-Guess Estimate for the future N₂O conversion of NO_X = 1% N₂O-N/NO_X-N Low Estimate for the future N₂O conversion of NO_X = 0.2% N₂O-N/NO_X-N High Estimate for the future N₂O conversion of NO_X = 2% N₂O-N/NO_X-N Annual NO_X emission (1998) = 449 tonnes Annual mass of waste combusted (1998) = 247,075 tonnes

$$N_{2}O \text{ Emission from NO}_{x} = \frac{(NO_{x} \text{ Emission, tonnes}) \left(\frac{14 \frac{gN}{mol}}{30 \frac{gNO}{mol}}\right)}{(Waste \text{ Combusted, tonnes})} * (N_{2}O \text{ Conversion}) \left(\frac{44 \frac{gN_{2}O}{mol}}{28 \frac{gN_{2}O - N}{mol}}\right) (GWP \text{ of } N_{2}O) = \frac{1CO_{2}e}{tonne}$$

$$N_{2}O \text{ Emission from NO}_{x} = \frac{(449) \left(\frac{14}{30}\right)}{(247,075)} * (0.01) \left(\frac{44}{28}\right) (310) = 0.0074 (0.0012 - 0.014) \frac{1CO_{2}e}{tonne}$$

$$N_{2}O \text{ from NH}_{3} \text{ Injection} = 0.004 (0.001 - 0.008) \text{ tCO}_{2}e/\text{tonne}$$

The last potential N_2O emission from waste incineration could occur when ammonia is injected into the flue gas but is emitted to the atmosphere, the so-called "ammonia slip". The ammonia will undergo wet or dry deposition to soils downwind where it can nitrify

and denitrify. Communication with the GVRD (Pers. comm. Chantal Babensee) has learned that ammonia slip is virtually negligible at the Incinerator largely because only the minimum amount is injected into the flue gas. As a result, the potential for ammonia slip to result in nitrous oxide emissions is neglected in this study.

The remaining greenhouse gas emissions during waste combustion result from the consumption of natural gas, electricity and lime by the Incinerator. This analysis will assume that the emissions resulting from natural gas, electricity and lime consumption will be equally distributed over the entire solid waste combusted in 1998. These estimates are in Appendix C – *Newsprint Waste Management*.

The total greenhouse gas emissions resulting from the incineration of yard trimmings are summed below. While there is little uncertainty with the emissions from natural gas, electricity and lime consumption, the nitrous oxide emissions are uncertain and cause the provision of best-guess, high and low estimates. The high and low estimates are the total of all the high and low estimates, respectively.

Total GHG Emissions = N_2O + Natural Gas + Electricity + Lime = tCO₂e/tonne Total Emissions= 0.18 (0.045-0.33) tCO₂e/tonne

9. Greenhouse Gas Emissions from Backyard Composting:

The backyard composting of yard trimmings together with food waste at ground-level dwellings is quite common in the GVRD. The participation has been strongly encouraged by the GVRD and others and can even exceed 25% of the single-family residences in some of the member municipalities. This section will evaluate the greenhouse gas implications of the backyard composting of food waste by residents.

Research has observed emissions of carbon dioxide, methane and nitrous oxide during composting. As food waste is photosynthetic in origin, any carbon dioxide emissions resulting during the composting process are considered neutral and therefore do not have to be considered as greenhouse gas emissions. However, methane emissions can occur from inadequately aerated composting piles. While the carbon in methane is originally from atmospheric carbon dioxide, returning the carbon as methane, with its Global Warming Potential 21 times that of CO_2 , has important greenhouse gas implications.

The potential for methane emissions during composting is reviewed in Appendix I – *Food Waste Management*.

Though some of the composting studies demonstrated methane emissions, these were from compost heaps much larger in size, with a greater potential for anaerobic zones to develop, than a relatively small (200-250L) backyard composter. As a result, it will be assumed that CH_4 emissions from backyard composting are negligible or non-existent. In the event that future research demonstrates the existence of CH_4 emissions, this assumption will be an underestimate of actual GHG emissions.

During composting, seven research papers have been obtained which document immediate emissions of nitrous oxide during the composting of various organic wastes. These emission are N₂O leaking from microorganisms during the nitrification and denitrification of reactive N in these wastes. These researchers have observed a conversion of reactive N to N₂O ranging from 0.00005 to 2.2%. An extensive review of this issue is provided in Section 2.5.5.2.

As a result of the available literature, this analysis will use a best-guess estimate that 0.8% of the initial nitrogen in the compost was converted to N₂O during the composting process. This study will assume high and low estimates of 2% and 0.2%. This data, while important, is not the full picture of N₂O emissions from composting. These research findings above are only the immediate releases of N₂O; there will also be future releases of N₂O resulting from the future nitrification and denitrification of the ammonia or nitric oxide emissions during composting and from the future decomposition of the nitrogen contained in finished compost. These future emissions must also be assessed, thereby necessitating a nitrogen balance.

The immediate N_2O emissions observed during composting were a result of nitrification and denitrification of the initial nitrogen present in the organic materials to be composted. It is therefore important to know what portion of the initial nitrogen underwent nitrification and denitrification to cause the observed N_2O emissions. This investigation assumes that 30% of the initial nitrogen actually decomposed. This assumption is uncertain and as a result, low and high estimates of 10 and 50% are utilized. Because of the assumption that 30% of the initial nitrogen actually decomposed, it is conversely assumed that 70% of the initial nitrogen present in the compost escaped nitrification/denitrification. This majority of the compost which did not nitrify or denitrify may have volatilized from the compost pile in the form of ammonia emissions (and been subject to downwind deposition), may have leached from the compost pile as ammonia, organic-nitrogen or nitrate, or may be contained in the finished compost. This nitrogen will be subject to future nitrification and denitrification and can therefore result in future emissions of N_2O .

The last important consideration when assessing the potential for N_2O emissions from yard waste is the anthropogenic/natural nitrogen complication. What are the relative fractions of the anthropogenic reactive nitrogen and natural reactive nitrogen in yard waste to be nitrified and denitrified? This question is also discussed in Section 2.5.5.2. Due to the inherent difficulty in separating chemical fertilizer-based reactive nitrogen from the naturally reactive existing in yard wastes contained in a community, this research assumes a 50:50 split. Therefore 50% of the nitrogen is assumed to be humaninduced and the remaining 50% would exist regardless of human interference. This assumption results in only half of the actual N₂O emitted to be considered as a GHG emission to the atmosphere – the natural nitrogen is simply participating in natural N₂O cycling. The potential for these future N_2O emissions are estimated using the IPCC guidelines for NH₃ or NO_X emitted as gases (IPCC 1997). It is estimated that 1% of emitted NH₃-N or NO_X-N will eventually be converted to N₂O-N with low and high estimates of 0.2 and 2% respectively.

Nitrogen Content of yard waste = 1.9% N (wet basis) – see #3 Anthropogenic Fraction of the Nitrogen Content = 50%Anthropogenic Nitrogen Content of Yard Waste = 1.9% * 0.50 = 0.95% Anthro N Best-Guess Estimate of the Immediate N₂O Emission = 0.8% of initial N Low Estimate of the Immediate N₂O Emission = 0.2% of initial N High Estimate of the Immediate N₂O Emission = 2.0% of initial N

Immediate N₂O Emission = (Mass tonne/tonne)(NContent)(N₂OEmission) $\left(\frac{44 \text{ gN}_2\text{ O}/\text{mol}}{28 \text{ gN}_2\text{ O} - \text{ N}/\text{mol}}\right)$ (GWPofN₂O) = $^{\text{tCO}_2\text{ e}/\text{tonne}}$ Immediate N₂O Emission = (1)(0.0095)(0.008) $\left(\frac{44}{28}\right)$ (310) = 0.036 $^{\text{tCO}_2\text{ e}/\text{tonne}}$

Immediate N₂O Emission = 0.036 (0.009-0.091) tCO₂e./tonne

Anthropogenic Nitrogen Content of Yard Waste = 0.95% N (wet basis) Best-Guess Estimate of Fraction Undergoing Future N₂O Emissions = 70% Low Estimate of Fraction Undergoing Future N₂O Emissions = 50% High Estimate of Fraction Undergoing Future N₂O Emissions = 90% Best-Guess Estimate for the future N₂O conversion = 1% N₂O-N/NO_X-N Low Estimate for the future N₂O conversion = 0.2% N₂O-N/NO_X-N High Estimate for the future N₂O conversion = 2% N₂O-N/NO_X-N

Mass of Nitrogen Available for Future N₂O = (Mass tonne/tonne) (NContent) (Future N Fraction) = Mass of Future N/tonne food waste Mass of Nitrogen Available for Future N₂O = (1)(0.0095)(0.70) = 0.0065 (0.0047 - 0.0084) tonne Future N/tonne food waste

Future N₂O Emission = (Mass of Future N)(N₂O Conversion) $\left(\frac{44 \text{ gN}_2\text{ O}}{28 \text{ gN}_2\text{ O} - \text{ N}}\right)$ (GWP of N₂O) = $\frac{\text{tCO}_2\text{e}}{\text{tonne}}$

Future N₂O Emission = $(0.0065)(0.01)\left(\frac{44}{28}\right)(310) = 0.032 \text{ tCO}_2\text{e/tonne}$ Future N₂O Emission = 0.032 (0.0005-0.082) tCO₂e/tonne

Since the carbon dioxide emissions from composting can be ignored (GHG neutrality) and this study assumes that methane emissions from backyard composters are nonexistent, the only GHG emissions resulting from backyard composting of yard waste is nitrous oxide. The potential for immediate and future N_2O best-guess emission estimates are totalled below together with the total of the low and high estimates respectively.

Total GHG Emissions from Backyard Composting = 0.068 (0.014-0.173) tCO₂e/tonne

10. Greenhouse Gas Emissions from Centralized Composting:

The centralized composting of food waste does not currently occur in the GVRD, but is actively pursued in other jurisdictions such as Edmonton or Halifax. However, the centralized composting of yard trimmings collected from residents is performed at Fraser-Richmond Biocycle (FRBC) and at other composting facilities in the GVRD. FRBC uses passively aerated windrows and handles the yard trimmings for the three municipalities of the North Shore, Burnaby, Delta, Surrey, New Westminster, Port Coquitlam, Coquitlam, Maple Ridge and Pitt Meadows (Pers. comm. Steve Aujla). These windrows are roughly triangular in profile, about 25 feet in height, having a base of about 40 feet and several hundred feet in length. The composting process in these windrows is 4 to 5 months in duration. During this process, the windrows are turned 12 to 14 times to provide aeration for the decomposition (Pers. comm. Steve Aujla).

The important difference between backyard and centralized composting of yard wastes is the potential for methane emissions to occur (carbon dioxide emissions from yard wastes are greenhouse gas neutral [see Section 2.3 – *Biomass Decomposition/Combustion*] and there should be little difference between centralized and backyard composting from the perspective of nitrous oxide emissions). As discussed in Appendix I, five research papers have investigated methane emissions with mixed results being reported. In the German study (Hellebrand 1998) it was observed that 1.7% of the initial carbon was emitted as methane and in the British study (Lopez-Real and Baptista 1996), the researchers found that the passive composting method produced high levels of methane (> 4 percent of initial carbon) while both the windrowing (mechanical turning) and the forced aeration method "drastically reduced methane output." FRBC also performs windrow composting with turning every week or every two weeks, thus the intervals between turning can result in anaerobic conditions in the center of these large windrows. This author believes that methane emissions are a possibility. Given the scarcity of data, but the potential, this investigation will assume that 0.5% of the initial carbon in food waste will be emitting as methane during centralized composting. In addition, high and low estimates of 0.1% and 1% of initial carbon will also be utilized because of the uncertainty involved.

Best-Guess Estimate of the Methane Emission = 0.5% of initial carbon Low Estimate of the Methane Emission = 0.1% of initial carbon High Estimate of the Methane Emission = 1.0% of initial carbon Typical Carbon Content of Yard Waste = 47.0% (dry basis) (Tchobanoglous et al. 1993) Typical Moisture Content of Yard Waste = 45% (Tchobanoglous et al. 1993)

Methane Emission = $(Mass tonne/tonne)(C Content)(I - Moisture Content)(CH_4 Emission) \left(\frac{16 \text{ gCH}_4/\text{mol}}{12 \text{ gC}/\text{mol}}\right)(GWP \text{ of } CH_4) = \frac{100 \text{ cm}^2}{100 \text{ cm}^2}$

Methane Emission = $(1)(0.47)(1 - 0.45)(0.005)(\frac{16}{12})(21) = 0.036 \text{ }^{\text{tCO}_2\text{e}}/\text{tonne}$

Methane Emission from Centralized Composting = $0.036 (0.007-0.072) \text{ tCO}_2\text{e/tonne}$

The methane emission above needs to be combined with the nitrous oxide emissions previously estimated for backyard composting:

Total GHG Emissions from Centralized Composting = 0.105 (0.021-0.245) tCO₂e/tonne

11. Long-Term Carbon Sequestration of Compost:

The U.S. Environmental Protection Agency (1998) developed an estimate that between 0.004 and 0.20 tCO₂e/tonne yard waste is sequestered when yard trimmings are managed by centralized composting. This is believed to result because "the heat generated within the compost piles favors "thermophilic" (heat-loving) bacteria, which tend to produce a greater proportion of stable, long-chain carbon compounds than do bacteria that predominate at ambient surface temperatures." These humic substances provide carbon sequestration in excess of yard trimmings left directly on the ground to naturally rot. The USEPA did not consider the alternative backyard composting of yard wastes. Due to the lack of research in these issues and the high degree of uncertainty which exists, the USEPA report identifies this as an area which could benefit from further study.

The estimates developed by the USEPA, 0.004 and 0.20 tCO₂e/tonne yard waste, are used in this thesis as high and low estimates of the carbon sequestration resulting from the centralized composting of yard waste. The average of these values, 0.10 tCO₂e/tonne, is used as the best-guess estimate. Since the backyard composting of yard waste (individually or together with food scraps) does not typically reach the high temperatures observed during centralized operations, the conditions are likely not conducive to the formation of the humic substances important for carbon sequestration. As a result, this thesis assumes that no carbon sequestration occurs when yard waste is backyard composted.

Best-Guess Estimate of Carbon Sequestration of Centralized Composted Yard Waste = $0.10 \text{ tCO}_2\text{e}/\text{tonne}$ Low Estimate of Carbon Sequestration of Centralized Composted Yard Waste = $0.004 \text{ tCO}_2\text{e}/\text{tonne}$ High Estimate of Carbon Sequestration of Centralized Composted Yard Waste = $0.20 \text{ tCO}_2\text{e}/\text{tonne}$

Estimate of Carbon Sequestration of Backyard Composted Yard Waste = $0 \text{ tCO}_2\text{e}/\text{tonne}$

APPENDIX K: REMAINDER WASTE MANAGEMENT

This appendix provides all the data and calculations to estimate emission factors for the landfilling or incineration of the Remainder. The first three sections are devoted to the GHG implications of the Cache Creek Landfill (1-3). The next three sections assess the same implications for the Vancouver Landfill (4-6). Sections 7 and 8, assess the energy generation and GHG emissions from the Burnaby Incinerator. The issues surrounding the Remainder are extensively discussed in Section 2.10 and readers are encouraged to examine that section prior to this appendix. The following data are developed in that section and are used in the calculations:

Carbon Storage Factor for wet Remainder = 0.09 tC/wet tonne Remainder Carbon Content of Biodegradable Organic Carbon in Remainder = 50% Biodegradable Fraction of Remainder = 70% Moisture Content of Biodegradable Carbon in Remainder = 30% Net Energy Content of Remainder = 11,600 kJ/kg Fossil Carbon Content of Remainder = 0.060 tC/tonnes Remainder Nitrogen Content of Remainder = 0 %

1. Methane & Energy Implications of the Cache Creek Landfill:

Biodegradable Carbon Content of Remainder = 50%

Moisture Content of Biodegradable Carbon in Remainder = 30%

Carbon Storage Factor for wet Remainder = 0.09 tC/wet tonne Remainder

Carbon To Decompose = (1 Wet Tonne/(Wet Tonne))Biodegradable Fraction) $[(1 - MC)^{Dry}/(Wet)]$ (CarbonContent MassC/(DryMass)) - CSF

Carbon To Decompose = (1)(0.70)(1 - 0.30)(0.50) - 0.09 = 0.1551C/WetTonne

This 0.155 tC per wet tonne of Remainder is available for anaerobic decomposition and will be assumed to be evenly split between CH_4 and CO_2 . Remember that since any CO_2 is neutral, it does not have to be considered further.

Methane Generation = (Carbon To Decompose^{tC}/WetTonne) (Methane Fraction)
$$\left(\frac{\text{Molecular MassofCH}_4}{\text{Molecular MassofC}}\right) = \frac{\text{tCH}_4}{\text{Wet Tonne}}$$

Methane Generation = $(0.155)(0.5)\left(\frac{16}{12}\right) = 0.103 \text{ tCH}_{4}/\text{WetTonne}$ Methane Generation Potential = 0.103 tCH₄/tonne of food waste

The first order decay rate constant used here is 0.04 yr^{-1} and the assumptions behind it are discussed in Section 2.4 - *Landfill Carbon Sequestration*.

From Worksheet #34:

Best-Guess of Atmospheric Methane Emissions=	0.312	tCO ₂ e/tonne
Best-Guess of Benefit of Energy Utilization=	-0.050	tCO ₂ e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.164	tCO ₂ e/tonne
Low Estimate of Benefit of Energy Utilization=	-0.041	tCO ₂ e/tonne
High Estimate of Atmospheric Methane Emissions=	0.666	tCO ₂ e/tonne

203

High Estimate of Benefit of Energy Utilization=

2. Long-Term Carbon Sequestration in the Cache Creek Landfill:

As discussed in Section 2.10 - Remaining Wastes, the Carbon Storage Factor used for Remainder in this thesis will be that for mixed MSW published in USEPA (1998). This CSF is 0.18 tonnes of carbon sequestered per wet tonne of MSW.

3. Immediate & Future N₂O Emissions from the Cache Creek Landfill

The nitrogen content of the Remainder is assumed to be negligible, therefore there is no potential for N_2O emissions.

4. Methane & Energy Implications of the Vancouver Landfill:

The only significant difference between this section and Section 1, *Methane & Energy Implications of the Cache Creek Landfill*, is the estimated landfill gas collection efficiency and the first order decay rate constant. While at Cache Creek the current collection efficiency is estimated to be 43%, the current collection efficiency at the Vancouver Landfill is estimated to only be 22% (Pers. comm. Chris Underwood). However, engineers with the City of Vancouver are currently in the process of upgrading the collection equipment. As with the CCLF assessment, the collection efficiency is assumed to increase year after year in response to improving regulations. The first order decay rate constant used here is 0.05 yr⁻¹ and the assumptions behind it are discussed in Section 2.4 - Landfill Carbon Sequestration.

From Worksheet #34:

Best-Guess of Atmospheric Methane Emissions=	0.476	tCO ₂ e/tonne
Best-Guess of Benefit of Energy Utilization=	-0.070	tCO ₂ e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.223	tCO ₂ e/tonne
Low Estimate of Benefit of Energy Utilization=	-0.048	tCO ₂ e/tonne
High Estimate of Atmospheric Methane Emissions=	0.846	tCO ₂ e/tonne
High Estimate of Benefit of Energy Utilization=	-0.015	tCO₂e/tonne

5. Long-Term Carbon Sequestration in the Vancouver Landfill:

As discussed in Section 2.10 – *Remaining Wastes*, the Carbon Storage Factor used for Remainder in this thesis will be that for mixed MSW published in USEPA (1998). This CSF is 0.18 tonnes of carbon sequestered per wet tonne of MSW.

6. Immediate & Future N₂O Emissions from the Vancouver Landfill:

The nitrogen content of the Remainder is assumed to be negligible, therefore there is no potential for N_2O emissions.

7. Energy Generation from Waste Incineration at the Burnaby Incinerator: Not Energy Content of Demoinder = 11.6 CU/terms

Net Energy Content of Remainder = 11.6 GJ/tonne

Steam Energy produced by the combustion of Remainder in an Incinerator-Boiler (1): Assumed Boiler Efficiency = 70% (Pers. comm. Ron Richter) Fraction of Steam Utilized by CPL = 56% (Montenay Inc. 1999)

 $\frac{\text{Utilized Energy}}{\text{tonne Remainder}} = \frac{\text{energy}}{\text{tonne}} * (\text{Thermal Efficiency}) * (\text{Energy Utilization}) = \frac{\text{kJ}}{\text{tonne}}$

 $\frac{\text{Utilized Energy}}{\text{tonne Remainder}} = \frac{11.6 \text{ GJ}}{\text{tonne}} * (0.70) * (0.56) = 4.54 \frac{\text{GJ}}{\text{tonne}}$

Utilized Steam Energy per tonne of Remainder, (1) = 4.54 GJ/tonne

GHG emission prevented per tonne of Remainder (3):

 $\frac{\text{GHG Emission Prevented}}{\text{tonne Remainder}} = \left(\frac{\text{Utilized Energy}}{\text{tonne Newsprint}}\right) * \left(\text{Emission Factor for Natural Gas, } \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = \frac{\text{tCO}_2\text{e}}{\text{tonne}}$ $\frac{\text{GHG Emission Prevented}}{\text{tonne Remainder}} = \left(4.54 \frac{\text{GJ}}{\text{tonne}}\right) * \left(0.062 \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = 0.281 \frac{\text{tCO}_2\text{e}}{\text{tonne}}$ $\frac{\text{GHG Emission Prevented}}{\text{GHG Emission Prevented from Natural Gas, } (3) = 0.281 \text{ tCO}_2\text{e}/\text{tonne}}$

Electricity produced by the combustion of Remainder in an Incinerator-Boiler (4): Assumed Turbo Generator Efficiency = 32% (Pers. comm. Ron Richter) Steam Fraction for Electricity Generation = 40% (assumed as discussed)

 $\frac{\text{Utilized Energy}}{\text{tonne Remainder}} = \frac{\text{energy}}{\text{tonne}} * (\text{Boiler Effic}) * (TurboGenerator) * (\text{Energy Utilization}) = \frac{\text{kJ}}{\text{tonne}}$ $\frac{\text{Utilized Energy}}{\text{tonne Remainder}} = \frac{11.6 \text{ GJ}}{\text{tonne}} * (0.70) * (0.32) * (0.40) = 1.04 \frac{\text{GJ}}{\text{tonne}}$

Utilized Electrical Energy per tonne of Remainder, (4) = 1.04 GJ/tonne

Electrical GHG emission prevented per tonne of Remainder: (6)

 $\frac{\text{GHG Emission Prevented}}{\text{tonne Remainder}} = \left(\frac{\text{Utilized Energy}}{\text{tonne Remainder}}\right) * \left(\text{Emission Factor for Electricity, } \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = \frac{\text{tCO}_2\text{e}}{\text{tonne}} \frac{\text{GHG Emission Prevented}}{\text{tonne Remainder}} = \left(1.04 \frac{\text{GJ}}{\text{tonne}}\right) * \left(0.147 \frac{\text{tCO}_2\text{e}}{\text{GJ}}\right) = 0.153 \frac{\text{tCO}_2\text{e}}{\text{tonne}}$ $\frac{\text{GHG Emission Prevented}}{\text{GHG Emission Prevented from Electricity, } (6) = 0.153 \frac{\text{tCO}_2\text{e}}{\text{tonne}}$

Total GHG Emissions Prevented, $(7) = 0.281 + 0.153 = -0.434 \text{ tCO}_2\text{e/tonne}$

8. Greenhouse Gas Emissions from Waste Incineration:

At the Burnaby Incinerator, 247,075 tonnes of waste was combusted in 1998. This process required the consumption of 7,516 GJ of natural gas, 16,011 MWh of electricity, and 3,369 tonnes of lime (CaO) and 295 tonnes of ammonia (NH₃) for acid gas control (Montenay Inc. 1999; Pers. comm. Richard Holt). Greenhouse gas emissions result from municipal solid waste incineration. This includes emissions of carbon dioxide and nitrous oxide during incineration, the consumption of natural gas and electricity, and the consumption of lime for acid gas control (the production of lime from limestone results in CO_2 emissions). Part of Remainder is fossil carbon and is therefore important from a

GHG perspective when combusted and must be assessed. However, the biomass carbon fraction is carbon-neutral, and is ignored

From Section 2.10:

Fossil Carbon Emissions during Incineration of Remainder = 0.060 tC/tonnes Remainder

CO₂ Emissions from Remainder combustion = $\left(0.060 \text{ tC/tonne} \left(\frac{44 \text{ gCO}_2/\text{mol}}{12 \text{ gC/mol}}\right) = 0.22 \text{ tCO}_2 \text{ e/tonne}\right)$

GHG Emission of fossil-carbon from Remainder combustion = $0.22 \text{ tCO}_2\text{e}/\text{tonne}$

The emissions resulting from natural gas and electricity consumption will be equally distributed over the entire solid waste combusted in 1998.

Lime (calcium oxide, CaO) is used at the Incinerator during air pollution control to neutralize acid gases which are produced during the combustion of waste. While the consumption of lime at the incinerator does not result in GHG emissions, the production of this material by the lime calcination process does result in emissions. In the production of lime, limestone (CaCO₃) is heated so that it separates to CaO and CO₂. In addition to the fossil fuel energy required to perform this reaction there is the non-energy related GHG emission from the liberalization of the unwanted carbon dioxide gas. Environment Canada (1997) has estimated that 0.790 kg of CO₂ is emitted during the production of each kg of lime. It is assumed that the incineration of HDPE equally requires the use of lime for the neutralization of acid gases as any other waste. Therefore:

GHG Emission from CaO Production = 0.790 tCO₂e/tonne CaO GHG Emissions from Lime = $\left(0.790 \frac{\text{tCO}_2}{\text{tonne CaO}}\right) * \frac{3,369 \text{ tonnes of CaO}}{247,075 \text{ tonnes of waste}} = 0.011 \frac{\text{tCO}_2}{\text{tonne}}$

GHG Emission from lime consumption at Incinerator=0.011 tCO2e/tonne

Nitrous oxide emissions from the incineration of Remainder can result in one of the five following pathways.

- Thermal conversion of the N₂ gas in air to N₂O during combustion (Immediate emis.)
- Thermal conversion of the nitrogen in food waste to N_2O (Immediate emission)
- Thermal conversion of the ammonia injected in the flue gases (Immediate emission)
- Microbial N₂O conversion of NO_X emitted and later denitrified (Future emission)
- Microbial N₂O conversion of NH₃ injected but unreacted (Future emission)

Each of these five pathways are evaluated in the following calculations. Unfortunately, the current lack of understanding in these issues result in much uncertainty associated with the following estimates. An extensive discussion of the issue is provided Section 2.5.5.3.

The first two potential sources of nitrous oxide emissions result from the potential for the nitrogen in waste or the N_2 gas in air to thermal convert to N_2O during incineration. There is limited and highly variable research of the N_2O emissions resulting from municipal solid waste incineration. Examples of emission estimates being used are:

- IPCC Compilation (de Soete 1993)
- Environment Canada Inventory (1997)
- USEPA National Inventory (1999)
- USEPA MSW Analysis (1998)

11-293 gN₂O/tonne of waste 160 gN₂O/tonne of waste 30 gN₂O/tonne of waste 130 gN₂O/tonne of waste

Research in the fluidized bed combustion of coal has determined that N_2O emissions originate mainly from the oxidation of fuel nitrogen (Moritomi 1994), and since coal combustion is similar to that of waste incineration, it can be inferred that N_2O emissions during incineration are likely a factor of the nitrogen content. This hypothesis is reinforced by one study (Tanikawa et al. 1995), and the observation that the incineration of high nitrogen content wastewater sludge produces much higher N_2O emission rates than MSW incinerators (Tanaka et al. 1994). Since Remainder is assumed to have a negligible nitrogen content, this study will assume that this incineration does not have to account for any of the nitrous oxide emissions measured during MSW incineration. However, there is still the possibility of alternative pathways for N_2O emissions.

The incineration of Remainder needs to take responsibility for the N₂O emissions resulting from acid gas (NO_X) control. As the nitrogen oxide releases can be from molecular nitrogen in the air, Remainder incineration can contribute to this emission. This study assumes that the emissions from acid gas control should be evenly distributed across the mass of waste combusted. At the Burnaby Incinerator, 295 tonnes of ammonia (NH₃) was used during the combustion of 247,075 tonnes of waste in 1998 to reduce NO_X emissions. As a result of the lack of any available research on the propensity for injected ammonia to thermally convert to N₂O, this study will assume the same conversion rate exhibited by the waste-nitrogen upon incineration. (See Appendix I #8) Therefore, approximately 1.7% of injected ammonia, and ranging between 0.3 and 3.1%, will be estimated to convert to nitrous oxide.

Fraction of Injected-Ammonia emitted as $N_2O = 1.7 (0.3-3.1) \%$ Annual consumption of ammonia (1998) = 295 tonnes Annual mass of waste combusted (1998) = 247,075 tonnes

$$N_{2}O \text{ from NH}_{3} \text{ Injection} = \frac{(NH_{3} \text{ Injected, tonnes})}{(Waste Combusted, tonnes)} * (N_{2}O \text{ Conversion}) \left(\frac{44 \text{ gN}_{2}O}{28 \text{ gN}_{2}O - \text{N}_{mol}}\right) (GWP \text{ of } N_{2}O) = \frac{1CO_{2}e}{\text{tonne}}$$

$$N_{2}O \text{ from NH}_{3} \text{ Injection} = \frac{(295)\left(\frac{14}{17}\right)}{(247,075)} * (0.017)\left(\frac{44}{28}\right)(310) = 0.0081 \text{ tCO}_{2}e}{\text{tonne}}$$

$$N_{2}O \text{ Emission resulting from NH}_{3} \text{ Injection} = 0.0081 (0.0014 - 0.015) \text{ tCO}_{2}e/\text{tonne}}$$

In addition to the potential for injected NH_3 to thermally convert to N_2O , there can also be the future denitrification of the nitrogen oxide (NO_X) gases released. It has been estimated that 10-30% of waste-nitrogen is converted to NO_X ($NO + NO_2$) during combustion (White et al. 1995). This report will evenly distribute NO_X emissions across the total mass of waste incinerated even though Remainder has a negligible nitrogen content. Nitrogen oxides are short lived in the atmosphere as they are quickly rained out in the form of nitrate (NO_3) or nitric acid (HNO₃). Thus the deposition as NO_3^- will eventually require denitrification to N_2 , resulting in potential leakage of N_2O . The IPCC provides guidelines for these emissions and estimates that 1% of emitted NH_3 -N or NO_X -N will be converted to N_2O . However they also provide low and high estimates of 0.2 and 2% respectively. All three of these values are used in this study. In addition to the potential for the microbial conversion of nitrogen oxide to nitrous oxide, nitrogen oxides are suspected to be indirect greenhouse gases for another reason – they deplete the tropospheric concentration of the OH radical, which would otherwise react and destroy CH₄ (Mackenzie 1995). Thus NO_X causes CH₄ to be a stronger GHG. (As it is too early for any methodology on this issue, it will have to be ignored in this report.) At the Burnaby Incinerator it is estimated that 449 tonnes of NO_X was emitted in 1998 (Pers. comm. Chantal Babensee). Nitric oxide (NO) is predominantly the nitrogen oxide formed during incineration (Robinson 1986), and is assumed in the calculations below.

Best-Guess Estimate for the future N₂O conversion of NO_X = 1% N₂O-N/NO_X-N Low Estimate for the future N₂O conversion of NO_X = 0.2% N₂O-N/NO_X-N High Estimate for the future N₂O conversion of NO_X = 2% N₂O-N/NO_X-N Annual NO_X emission (1998) = 449 tonnes Annual mass of waste combusted (1998) = 247,075 tonnes

$$N_{2}O \text{ Emission from NO}_{x} = \frac{(NO_{x} \text{ Emission, tonnes}) \left(\frac{14 \frac{gN}{mol}}{30 \frac{gNO}{mol}}\right)}{(Waste \text{ Combusted, tonnes})} * (N_{2}O \text{ Conversion}) \left(\frac{44 \frac{gN_{2}O}{mol}}{28 \frac{gN_{2}O - N}{mol}}\right) (GWP \text{ of } N_{2}O) = \frac{tCO_{2}e}{tonne}$$

$$N_{2}O \text{ Emission from NO}_{x} = \frac{(449) \left(\frac{14}{30}\right)}{(247,075)} * (0.01) \left(\frac{44}{28}\right) (310) = 0.0074 (0.0012 - 0.014) \frac{tCO_{2}e}{tonne}$$
Future N₂O from NO_x emission= 0.004 (0.001-0.008) tCO₂e/tonne

The last potential N_2O emission from waste incineration could occur when ammonia is injected into the flue gas but is emitted to the atmosphere, the so-called "ammonia slip". The ammonia will undergo wet or dry deposition to soils downwind where it can nitrify and denitrify. Communication with the GVRD (Pers. comm. Chantal Babensee) has learned that ammonia slip is virtually negligible at the Incinerator largely because only the minimum amount is injected into the flue gas. As a result, the potential for ammonia slip to result in nitrous oxide emissions can be neglected in this study.

The remaining greenhouse gas emissions during waste combustion result from the consumption of natural gas, electricity and lime by the Incinerator. This analysis will assume that the emissions resulting from natural gas, electricity and lime consumption will be equally distributed over the entire solid waste combusted in 1998. These estimates are in Appendix C – *Newsprint Waste Management*.

Total GHG Emissions = $CO_2 + N_2O + Natural Gas + Electricity + Lime = tCO_2e/tonne$ Total Emissions = 0.25 (0.24-0.26) tCO_2e/tonne

9. GHG Emissions of Recycled Remainder Utilization:

The assumption discussed in Section 2.10 - Remaining Wastes is that a GHG benefit of 0 tCO₂e/tonne exists with the recycling of Remainder.

GHG Benefit of Recycled Remainder Utilization = 0 tCO₂e/tonne

10. Effect of Recycling Remainder on Forest Carbon Storage

The assumption discussed in Section 2.6.7 – *Forest Carbon Sequestration* is that no GHG benefit exists with Remainder recycling.

GHG Benefit of Recycled Remainder Utilization = 0 tCO₂e/tonne

APPENDIX L: SPREADSHEET PROGRAM

The appendix contains print-outs of each of the 34 worksheets which create the spreadsheet model. These worksheets are presented in the following pages in the same order they are on the spreadsheet and as listed in Table 2-5 : List of Worksheets. This table is reprinted below along with the page numbers where these worksheets can be found.

GROUP	#	NAME OF WORKSHEET	PAGE NUMBERS
Results Group	1	GHG Emissions	211
_	2	Waste Tonnages	213
	3	Emissions Factors	214
	4	Factor List	216
General Group	5	General Parameters	218
Municipality Group	6	City of Abbotsford	225
	7	City of Burnaby	226
	8	City of Coquitlam	227
	9	Corporation of Delta	228
	10	City of Langley	229
	11	Township of Langley	230
	12	District of Maple Ridge	231
	13	City of New Westminster	232
	14	City of North Vancouver	. 233
	15	District of North Vancouver	234
	16	District of Pitt Meadows	235
	17	City of Port Coquitlam	236
	18	City of Port Moody	237
	19	City of Richmond	238
	20	City of Surrey	239
	21	City of Vancouver	240
	22	District of West Vancouver	241
	23	City of White Rock	242
	24	Electoral Area A	243
	25	Electoral Area C	244
Waste Group	26	Newsprint Waste Management	245
-	27	Office Paper Waste Management	247
	28	Ferrous Metal Waste Management	249
	29	Glass Waste Management	250
	30	HDPE Waste Management	251
	31	LDPE Waste Management	252
	32	Food Waste Management	253
	33	Yard Waste Management	256
	34	Remainder Waste Management	259

List of Worksheets

1998 GREENHOUSE GAS EMISSIONS (ICO2e)

methods D. al. Michaely Vencoment D. al. Michaely Vencoment <thd. al.="" michaely="" th="" vencoment<=""> D. al. Michaely Venco</thd.>	00 00 00 00 234 /	B007 4447 44816 90042 37.0 251 54.3 -46416 90042 37.0 251 54.3 -76.4 90.2 31.0 251 54.3 -76.3 90.2 0.0 0.0 0.0 201 0.0	1943 1959 9503 1954 1944 912.8 1175 6042 10912 392 9912 12.4 419 1023 492 9023 9912 992 9911 12.4 419 1023 4023 1021 74 202 9917 201 201 201 201 201 202 9912 201	
D. O. (1 Merry Vurseneer High D 175.11 166.8 150.1 66.8 150.1 175.11 166.8 150.1 36.9 35.0 36.9 10 0.15 0.0 0.0 36.9 37.1 46.6 10.15 0.0 0.0 0.0 0.0 0.0 0.0 10.25 0.0 0.0 0.0 0.0 0.0 0.0 10.27 0.0 0.0 0.0 0.0 0.0 0.0 10.27 12.7	00 00 00 00 00 00 00 00 00 00 00 00 00	B00.7 444.7 -463.6 B00.2 25.1 54.3 -465.5 207.2 25.1 54.3 -76.5 207.2 0.0 0.0 0.0 0.0 0.23 -5.03 427.0 70.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1475.40 09592 2025.2 1477.5 064.23 1027.2 14.9 1022 10272 10272 0.0 0.0 19.8 0.95 2020 19.8 0.95 2020 19.9 0.0 2051.5 3195.4 17.3 2051.5 3195.4 17.3 2051.5 3195.4	
Bit Control Memory Bit Control Memory Bit 1753.1 1153.1 1753.1 1153.1 1168.3 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 1.15.1 1.17.16.1 1.17.16.1 1.16.1 1.17.16.1 1.17.16.1 1.16.2 0.0 0.0 0.0 0.0 0.0 1.16.1 1.17.16.1 1.17.16.1 1.16.1 1.17.16.1 1.17.16.1 1.16.1 1.17.16.1 1.17.16.1	00000000000000000000000000000000000000	250.7 448.7 45816 5 25.1 54.3 455 0 0 0 0 0 0 73.8 530.9 427.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	25.1 548.7 25.1 54.3 2.0 0.0 2.0 5.0 2.0 0.0 0.0 0.0 0.0 0.0	6,224,0 6,127,5 6,12,4 6,12,4 6,12,4 1,202,1 1,202,1 1,21,5 4,73,9 2,21,5 4,73,9 2,21,5 4,73,9 2,21,5 4,73,9 2,21,5 2,21,5 2,21,5 2,21,5 2,21,5 2,21,5 2,21,5 2,21,5 2,21,5 2,21,5 2,21,5 2,21,5 2,127,5 2,12,127,5 2,	
	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.8 7.3.5 5.8 7.3.5 5.8 7.3.5 5.8 7.3.5	800.7 25.1 0.0 0.0 0.0		[
	0.0 0.0 0.0 0.0 0.0 0.0 5.8 5.8		-3069.1 932.8 32.4 0.0 97.7 97.7 97.7 97.7 0.0 104.2 104.2 553.3	
		388.7 - 6.4 - 7.3.3 0.0 0.0		
Hend Variation (1997) (00 00 00 00 00 00 00 00 00 00 00 00 00		-5705.7 -1106.4 -20.5 -20.5 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -235.7	
Let al. 1995 (1997) (19		-758 4.8 100 100 100 00	-4979.3 -501.0 -1.6 -1.6 -1.6 39.7 -1.4 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5	
福子 一時 一時 1993 1995 199	-192.6 -4.3 0.0 129.5 0.0 63.6 63.6	2584.6 101.7 0.0 -17.8 0.0	-909.2 3260.1 133.3 34.2 9.0 90.0 429.9	
International and a second sec	.359.6 -359.6 -9.5 -45.9 -0.0 5.0 5.0	-22.9 -22.9 0.0 0.0 0.0 0.0	-7639.5 -2433.5 -55.0 0.0 -437.8 -4356.7 7.1 7.1 7.1	
M 1997 1997 1997 1997 1997 1997 1997 199	-257.4 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -11.6 -11.6 -11.6 -59.1	-158.2 20.9 0.0 0.0 0.0 0.0	-5632.2 -769.1 12.7 12.7 12.7 0.0 -209.1 -209.1 -12 -1.2 -1.2	
		4146.9 77.2 0.0 0.0 0.0	2545.4 5125.7 5125.7 100.0 0.0 3.7 0.0 3.7 125.7 157.6 274.0	
	564.8 -7.2 -0.0 -0.4 -0.4 -0.4 -0.4 -0.0 -1.0 -0.0	-1902.6 -19.0 0.0 0.0 0.0	-7258.5 -4221.0 -46.6 -0.6 -0.6 -3125.7 -3125.7 13.2 13.2	
Bell D. D. <thd.< th=""> D. D. D.</thd.<>	-467.8 -5.6 -5.6 0.0 0.3 0.0 2.1.7 -21.7 64.9	311.1 14.5 0.0 0.0 0.0	14855.1 -1482.6 60 0.0 1.5 -1.5 -2.3 -2.3 148.1	
444 444 444 144 144 144 144 144	619.0 -5.9 -5.9 -5.9 -5.9 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0	3010.1 37.5 0.0 2.6.1 0.0	-1728.3 3809.3 53.2 5.3 5.0 0.0 0.0 -6409.1 176.3 445.0	
mille of Langler land langler 1315 - 1515	-1516.8 -12.	-1396.6 -8-3 0.0 -75.5 0.0	11376.1 11376.2 105.7 0.0 0.0 0.0 0.0 109.7 100.7 100.7	
Remain and a second and a secon	1257.0 10.1 0.0 38.3 0.0 0.0 32.6	-237.4 7.1 0.0 51.5 0.0	-22284.5 -2284.5 -5.0 -5.0 -0.0 -0.0 -0.0 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4	
· · · · · · · · · · · · · · · · · · ·		3035.1 858 0.0 0.0	2728.1 3543.1 103.7 0.0 2.3 2.3 2.3 2.3 19.0 19.0 73.3	
No. Contraction 10. 10. 10	659.5 -12.5 0.0 0.7 1.1 1.1	-1442.4 -21.1 0.0 0.0 0.0	-3697.1 -2664.2 -42.8 -42.8 -0.0 -0.0 -1013.4 -1013.4 -15 -24.6	
Ref 46 1	547.0 -9.8 0.6 0.0 0.0 0.0 0.0 0.0	-264.5 16.5 0.0 -1.3 0.0	-1842.5 -877.6 -9.6 -0.0 -0.0 -1013.4 -1013.4 -1013.4 -1013.4	
3,344 4,45 4,555 4,55	-11.4 -170.2 0.0 0.1 276.8 306.8	963.0 2362.0 0.0 0.0 0.0	20864.8 937.6 937.6 937.6 1644.2 1644.2 1644.2 1644.2 16587.2 391.5 580.2	
Encommismin (Lobin Annual Image: Second Secon	-20.5 -356.0 0.0 0.0 213.5 212.5	-191.3 -7010.0 0.0 0.0 0.0	-19210.9 -847.3 -12991.9 -12991.9 -2.7 -2.7 -2.7 -5687.2 -30.9 -287.4	
Band Control of the second sec	-17.3 -252.4 0.0 0.0 50.7 +72.5	-108.7 3023.9 0.0 1.1 0.0 0.0	-5356.4 -5356.4 -5356.4 -51.1 -2.2 -5.6 -5.4 -5.4 -5.4 -5.4 -319.7	
1 1	-262.2 -5.9 0.0 2.1 0.0 100.9 331.2	25163.0 996.0 0.0 -5.5 0.0 0.0	24469,6 25867.4 1059.9 0.0 6.0 10.0 142.7 142.7 142.7	
Convertiant Convertiant Convertiant	8.59- 8.50- 8.0- 0.0 0.0 1.152	-11958.4 -245.3 0.0 -26.0 0.0 0.0	-20744.2 -17537.0 -366 6 -366 6 0 0 -35.3 -35.3 -3072.2 11.3 -3072.2 -3072.2	
Bit Composition Composition <thcomposition< th=""> <thcom< th=""><th>401.3 10.1 0.0 0.0 186.2</th><th>-2192.9 191.5 0.0 16.2 0.0</th><th>5299.0 5597.2 5597.2 126.1 0.0 0.0 2012.2 2012.2 267.5</th><th></th></thcom<></thcomposition<>	401.3 10.1 0.0 0.0 186.2	-2192.9 191.5 0.0 16.2 0.0	5299.0 5597.2 5597.2 126.1 0.0 0.0 2012.2 2012.2 267.5	
7 194 7	-6.4 -0.1 11.8 0.0 259.2 259.2 596.3	7322.0 278.1 200 -305.1 0.0	-5524.3 8979.3 342.6 0.0 -514.8 0.0 19748.9 368.7 266.7 2150.8	
City of Burnersy City of Burnersy Low Low Low Low Altra burnersy 2000 Altraburnersy 2000	11.9 0.0 20.5 20.5 20.5 20.5	11222 1625.0 1625.0 1625.0	-25589.8 -2513.1 -109.5 -109.5 -109.44 -197.48 -197.48 -28.9 -28.9	
Berling Berling <t< th=""><th>8.6 0.0 1.4 1.4 1.4</th><th>522.7 55.8 991.2 9.0</th><th>-21372.1 -221.2 51.7 6.0 -1521.4 -1521.4 -1521.4 -5.0 -5.0</th><th></th></t<>	8.6 0.0 1.4 1.4 1.4	522.7 55.8 991.2 9.0	-21372.1 -221.2 51.7 6.0 -1521.4 -1521.4 -1521.4 -5.0 -5.0	
1444 2. 1464 2. 146	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.40711 1.7 0.0 0.0 0.0	9721.4 9721.4 8.5 0.1 0.1 0.0 0.0 365.8 365.8 499.4	High
City of Absentioned City of A	20 0 0 20 20 143 0	-5525.9 7.1- 0.0 0.0 0.0	-13864.2 -3.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -107.5 -107.5	Low 124040 2
Christian Christian 4 4 4 <	000 0.0 0.0 0.0 0.0 0.0 0.0		7385.6	Best
				Iμ
Nevergrift Cache Cache Verter Luadia Verter Luadia Farent Inder Farent Lunda Farent Lunda Verscenar Lunda	Lerry accel composition Yard Trimmings Vancoure Landia Danaby incinental Bunaby incinentalo Future Incinentalo Backyed Compositio	Remainder Cache Creek Landii Vancower Landii Future Landii Burnaby Incientatio Future Incientatio Recycling	TOTAL Cache Creek Landi Vancouver Landi Euture Landi Burnaby Incinerator Future Incinerator Reckyard Compositing Backyard Compositing	
	ۍ م ن	-	. ھڙ ت	

 Rest
 East
 Low
 HB

 0vPD 107A.a.
 -164070
 324942
 116432

 Certra Creek Landin Tolan
 -36144
 91922
 116432

 Vacana
 -36144
 91922
 -116432

 Vacana
 -36144
 91924
 -3614

 Funce Instrator
 -10444
 -3644
 -3644

 Funce Instrator
 -10444
 -3644
 -3644

 Funce Instrator
 -10444
 -3644
 -3644

 Rest-Rest
 -10440
 -163400
 -163400

 Rest-Rest
 -10444
 -10400
 -163404

 Rest-Rest
 -10444
 -10400
 -163404

 Rest
 -10444

•

	Newsprint Newsprint Vencower Landia Future Landia Euroby hickeretor Nerycling	Office Paper Vencouver Landia Vencouver Landia Future Landia Future hicterator Recretion	Metal Metal Vancover Landfa Vancover Landfa Futue Landfa Futue Landfa Futue hoterator Recycling	Calense Calense Creat, Landfa Vancouver, Landfa Future Landfa Future Incinentor Recycling	HDPE Vancovar Landfä Vancovar Landfä Future Landfä Future Incinerator Recrycting	LDPE Cache Creek Landfal Vancouver Landfal Vancouver Landfal Burnab Incinerator Burnab Incinerator Future Incinerator Recycling	Pood Scraps Cache Creat Landfa Vancover Landfa Future Landfa Burnity incinerator Barchy ard Compositing Centralized Compositing	Ard Trimmings Ceche Cresh Landia Vancouver Landia Future Landia Burnaby heineretor Future heineretor Backyard Compositing Centrakted Compositing	Remainder Sens Creat Level Vincours Level Sens Level Vincours Vincours Vincours Resycforg
High	-256343.0	153060.5 15303.9 0.0 0.0 0.0	988.5 502.1 0.0 -187.12.9 0.0	613.8 307.2 0.0 1.74.1 0.0	215.7 97.4 0.0 6806.2 0.0	629.0 629.0 265.8 0.0 19362.7 0.0	36566.5 36653.7 35653.7 0.0 1098.5 1216.5 1216.5 1216.5	-7507.4 -7507.4 	104352.0 116449.7 0.0 1045.1 0.0 0.0 0.0
101AL Low	45690.3 -39149.0 0.0 -7264.7 0.0 0.0	2715.9 3336.0 0.0 -2433.5 0.0 0.0	968.5 502.1 0.0 -18712.9 0.0	613.8 307.2 0.0 174.1 0.0 -7010.5	215.7 97.4 0.0 6688.2 0.0	629.0 265.8 0.0 19362.7 0.0	5878.7 6304.5 0.0 -356.7 0.0 96.2 96.2 2763.0	-13664.6 -4780.2 0.0 -458.3 0.0 0.0 0.0 232.0 232.6	-194 16.9 -20580 3 0.0 0.0 0.0
Best	42650.9 15620.3 0.0 0.0 0.0	7626.7 8945.5 0.0 -2363.4 0.0 0.0	988.5 502.1 0.0 113167.2	613.8 307.2 0.0 174.1 0.0 0.0	215.7 97.4 0.0 6346.2 0.0	629.0 265.8 0.0 19362.7 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-11497.7 -3775.0 0.0 0.0 334.6 0.0 -537.9 4321.1	-8965.0 20776.5 0.0 0.0 0.0
¥igh	62 112 00 00 00 00 00 00 00 00	28 0 0 7 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0	0.7 0.0 0.0 0.0 0.0	0.9 0.0 0.0 0.5 0.0	600 000 000 000 1,4-	10 0.0 0.0 0.0 1.5	619 - 0 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.3 -0.4 15.1 0.0 0.0 0.0	91 37 1 38 3 38 3 37 1 58 2 37 1 59 3 50 0 50
Electoral Area C Low	1026 21-2-0 0.0 0.0 0.0 0.0 0.0	4 00 7 9 0 0 7 9 0 0 0 9 0 0	-00 22 00 10 00 00 00	0.9 0.0 0.5 15.9	0.0 0.0 1.1 0.0 1.1	10 0.0 0.0 0.0 1.5	555758 5587 588 588 588 588 588 588 588	8,0- 9,0- 9,0- 9,0- 9,0- 9,0- 9,0- 8,0- 9,0- 8,0- 8,0- 8,0- 8,0- 8,0- 8,0- 8,0- 8	46.1 46.1 48.2 48.2 48.2 475.9 475.9 475.9 475.9 475.9 475.9 475.9 475.9 475.9 475.9 475.9 475.9 475.9 475.9 475.9 475.0
Eest Ele	N 8 7 8 8	12.2 0.6 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0	0.0 0.0 0.5 0.5 0.5	5 0 0 0 0 1	10 0.0 0.5 0.5 15	8 8 6 7 8 8 8 8 6 7 8 8 8 8 6 7 8 8	47.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.4 6.6 106.6 106.6 106.6 106.6 100.0 1000.0 100.0 100.0 100.0 100
A High	0.0 0.0 0.0 0.0 0.0 0.0	000000	3.9 9.0 0.0 0.0 671.5	8 7 8 8 8 F	0 - 0 0 1 9 - 0 0 0 1 9 - 0 0 0 1	0.0 3.2 0.0 0.0 134.2	600 100 100 100 100 100 100 100 100 100	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Electoral Area A Low	0.0 0.0 0.0 0.0 0.0		0.0 3.9 0.0 0.0 0.0	55 57 58 59 59 59 59 59 59 59 59 59 59 59 59 59	00 00 0 2 2 5 0 0 0 0 2 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80 81 134.2 134.2	00 137 00 00 00 00 00 00 120	0.0 6.72- 0.0 0.0 0.0 0.0 0.0	279.0 279.0 200 200 200 200 200 200 200 200 200 2
Best Ek	5.05 20 20 20 20 20 20 20 20 20 20 20 20 20		0.0 0.0 0.0 0.0 0.0	00 23 39 8 00 00 00 00 00 00 00 00 00 00 00 00 0	12 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0	134 2 134 2 134 2	0.0 209.5 0.0 0.0 0.0 23.5	52 25 26 26 26 26 27 24 24 26 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tock High	1:505 1:205 1:00 1:00 1:00 0:0	800 000 000 000 000 000	0.0 280.0 280.0	20 20 00 00 00 00 00 00 00 00 00 00 00 0	282 282 282 282	4 0 0 0 0 4 6 0 0 0 0 4 7 4 7 5 7 4 7	23.4 230.7 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	0.9 0.0 0.0 0.0 0.0 0.0 2.5 5.5 4	50.5 2565.2 0.0 0.0 0.0 1.27 1.27 1.27 1.23 2.00 1.27 1.23 5.00 1.20 1.27 1.23 5.00 1.20 1.27 5.15 5.15 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27
City of White Rock	16.3 512.5 0.0 0.0 0.0	4 1 8 1 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	57 57 200 0 0 0 0 0 0	282 282	2.28283	35 139 2 0 0 0 0 2 1 6 0 0 0 2 1 6	14000077 1000077 1000077	-23.0 -727.5 -727.5 -727.5 -727.5 -727.5 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -16.2 -17.5 -16.2 -17.5 -
Best	15.1- 1689- 1.0- 1.0- 0.0 0.0	8.5 7.89 0.0 0.0 0.0	8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0	52 8 8 8 5 50 8 8 5 5	287 287 287	2,20002	10.5 410.3 0.0 0.0 0.0 0.1 17.5	-8- -274.9 0.0 0.0 -10 2 -10 2	1.5 1.5 0.0 0.0 0.0 0.0 1.1 1.1 1.2 1.1 1.1 1.1 1.2 1.1 1.1
ncouver High	614.8 - 12.1 - 12.1 - 0.0 - 0.0 - 0.0	80 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	17.9 0.2 0.0 0.0 1285.3	19 19 19 19 19 19 19 19 19 19 19 19 19 1	4.8 0.1 0.0 157.0	11.0 0.2 0.0 0.0 0.0 0.0	757.0 19.1 19.1 19.1 20.0 35.7 173.2	0.0 0.0 86.0 250.7	1501.5 46.5 46.5 0.0 132.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
f West Vanc Low	-16.0 -16.0 0.0 0.0 0.0	453 912 000 000 000 000 000 000 000 000 000 0	17.9 0.2 0.0 0.0 0.0 0.0 -1285.3	1900 800 800 800 800 800 800 800 800 800	4.8 0.0 1.57.0 1.57.0	11.0 0.2 0.0 676.6 0.0 0.0	121.5 3.4 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	00 00 00 1728 4728	710.9 -11.6 0.0 -126.9 -126.9 -1254.5 -2010.7 -1254.5 -22.0 0.0 -105.2 0.0 -105.2 0.0 -105.2 0.0
D. of Best	-715.2 -14.6 0.0 -253.4 0.0 0.0	127.2 3.8 0.0 -7.8.9 0.0	17.8 0.2 0.0 -607.0 0.0 -1285.3	1.81 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	4.8 0.1 297.4 157.0	11.0 0.2 0.0 0.0 0.0 0.0	354.0 9.5 0.0 13.5 14.1 14.1	0.0 0.0 0.0 0.0 15.7 131.5	-128.9 -128.9 -128.9 -128.9 -128.9 -128.9 -128.5 -1952.5 -1952.5 -1952.5 -1952.5 -1952.5 -1952.5 -1952.5 -17.7 -17.7 -17.8 -17.8 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.28.9 -1.95.5 -1.15.5
uver High	4967.9 -17645.5 0.0 -1493.0 0.0	2532.0 12468.3 0.0 1433.1 0.0	158.3 343.7 343.7 0.0 0.0 0.0 	95.7 207.9 0.0 35.0 -2040.9	31.1 67.6 0.0 1515.6 0.0	79.6 173.3 0.0 3095.5 0.0	5067.1 232(9.3 0.0 2(9.5 265.7 265.7 3933.2	430.1 -1407.6 0.0 136.9 0.0 0.0 6.89.0 2658.3	12774.4 71902.2 0.0 256.2 0.0 54006.5 54006.5 15340.4 15340.4 15340.4 15340.4 15340.4 15340.4 1532.5 0.0 -532.5 0.0 -532.5 13 -57391.3 -57391.3
City of Vancouver Low	-6158.5 -23542.5 0.0 -1571.9 0.0	377.1 2162.8 0.0 -513.7 0.0	158.3 343.7 0.0 0.0 40390.5	207.9 207.9 25.0 25.0 25.0 25.0	31.1 67.6 0.0 1518.8 0.0	8.87 6.67 0.0 0.0 0.0 0.0 0.0	500.4 4023.2 5.1 5.0 0.0 0.0 1003.0	-791.9 -3016.1 0.0 79.2 54.4 54.4	-6160.7 -18654.0 -0.0 -0.72.8 -0.72.8 -0.0 -11558.5 -11558.5 -11558.5 -11558.5 -11558.5 -11558.5 -11558.5 -11558.5 -12539.3 -77.0 -7
Best	-5777.5 -21542.3 0.0 -1534.0 0.0	1065.8 5783.1 0.0 1499.0	1583 343.7 343.7 0.0 40390.5	85.7 207.8 35.0 35.0 0.0	31.1 67.6 0.0 1518.8 2589.7	79 8 79 8 173.3 0.0 0.0 0.0 0.0	2361.2 11549.3 0.0 56.4 112.6 2122.3	657.2 -2379.4 0.0 58.4 0.0 126.1 150.4 2	-1179.4 -1179.4 -1179.4 -1158.2 -582.5 -1158.3 -113.3 -13.3 -13.3 -13.3 -13.3 -13.3 -13.3 -13.3 -13.3
ч ^в ін А	8476.3 049.2 0.0 0.0 0.0	3635.0 520.5 0.0 -218.0 0.0	8.1 8.1 0.0 0.0 1.2399.1	120.2 4.9 0.0 11.0	46.4 1.9 0.0 0.0 0.0 -1286.0	136.0 5.6 0.0 0.00 0.0 0.0 0.0	6721.3 1095.9 0.0 106.5 79.1 79.1	4722.0 438.2 0.0 0.0 190.8 480.5	15399.8 2362.0 0.0 0.0 114.0 0.0 0.0 0.0 0.0 2711.5 2711.5 2711.5 0.0 0.0 0.0 0.0 0.0 1276.0
City of Surrey Low	-10510.9 -1118.5 0.0 0.0 0.0	575.2 885.9 0.0 0.0 0.0	2.981 1.8 0.0 1.0521- 1.0521- 1.299221-	120.2 4.9 11.0 11.0	46.4 1.9 0.0 0.0 0.0 0.0 -1286.0	138 0 5.6 0.0 1904.0 0.0	1385.7 183.6 19.9 19.9 242.3 242.3	7.8178- 929.4 9.0 1.265.1 1.251 1.21	-7316.5 645.6 0.0 1229.2 0.0 0.0 1.2 24065.2 -24065.2 -24065.2 -24065.2 -24065.2 -24065.2 -24065.5 -2405.5 -240
Best	9659.6 9.02 1.02 1.01 1.01 0.0	1618.4 240.5 0.0 0.0 0.0	199.5 8.1 8.1 0.0 -1520.1 0.0 -12399.1	120.2 4.9 11.0 0.0	46.4 1.9 0.0 0.0 0.0 0.0	138 0 5.6 0.0 1904.0 0.0	5755 5413 233 242 342 5680 6680	7227.5 734.9 0.0 185.5 185.5 0.0 2.34.9	-1342.1 -1342.1 410.9 0.0 -225.9 0.0 0.0 -225.9 -225.9 -225.9 -225.5 -20433.5 -30433.5 -12231.4 -12231.4 -12231.4 -12231.4 -12231.4 -12231.4 -12231.4 -12231.4 -12231.4 -12235.5 -12235.5 -12255.5 -125555.5 -125555.5 -125555.5 -125555.5 -125555.5 -
Hgh	-501.7 -5013.0 0.0 0.0 0.0 0.0	305.4 3489.6 0.0 0.0 0.0	21.4 114.0 0.0 0.0 0.0 -16425.4	13.5 71.9 0.0 0.0 245.5	3.9 21.0 0.0 230.6 0.0 -1206.3	12.1 64.4 0.0 0.0 0.0 0.0	642.2 6629.7 0.0 41.5 91.4 91.4	0.0 0.0 0.0 220.5 1186 4	6,146 6,146 6,166 6,166 1,150 1,
City of Richmond Low	-746.1 -5815.5 -303.1 0.0	45.8 608.8 0.0 0.0 0.0	21.4 114.0 0.0 0.0 0.0 -670.1 0.0	13.5 71.9 0.0 0.0 0.0	3.9 21.0 0.0 0.0 0.0 0.0 1206.3	12.1 64.4 0.0 0.0 0.0 -5251.7	102.8 1196.0 0.0 -19.6 0.0 7.2 7.2 378.2	0.0 0.0 0.0 17.4	449.0
Best	659.8 -659.8 -295.8 0.0 0.0 0.0	126.9 1620.8 0.0 95.7 0.0	21.4 114.0 0.0 -870.1 0.0 -16425.4	13.5 71.9 0.0 0.0 0.0	3.9 21.0 0.0 280.6 0.0 -1206.3	12.1 64.4 690.5 590.5 -5251.7	300.1 3406.0 0.0 0.0 36.1 760.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-2337.6 2237.6 0.0 0.0 73.9 0.0 0.0 0.0 1543.4 1543.4 1543.4 0.0 136.6 146.6 1
vbo High	-794.6 -19.9 0.0 0.0 0.0	398.5 13.8 0.0 -1.2 0.0	15.8 0.3 0.0 0.0 0.0 0.0	5.0 0.1 0.0 0.0 0.0	4 0 0 0 4 0 0 0 0 4 2 0 0 0 4	11.2 0.2 0.0 8.5 206.4	683.8 22.4 0.0 0.5 0.0 0.0	215.8 4.9 0.0 1.6 0.0 0.0	649.4 2510 2510 2510 2511 2511 2511 2511 2511
City of Port Moody A Low High	5.585 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.0	899 2.4 0.0 1.3 0.0 0.0 0.0	15.8 0.3 -6.5 -6.5	50 0.1 0.0 0.0 0.0 0.0 1124	4 0 0 0 0 1 0 - 0 0 0 0 1	11.2 0.2 8.5 0.0 0.0	0 0 0 0 0 11 0 0 0 0 0 1 1 0 0 0 0	-10.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-308.5 -5.3 -5.3 -0.6 -0.6 -0.6 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7
Best	-24.3 -24.3 -24.3 -3.9 0.0 0.0	168.6 6.4 0.0 0.0 0.0	15.8 0.3 6.5 0.0 5.5 1.5 5.0 1	50 0.1 0.0 0.0 0.0	4 0 0 0 0 4 0 1 0 0 0 0 4	11.2 0.2 8.5 0.0 0.0	324.2 11.2 0.0 0.0 35.9	100 100 100 100 100 100 100 100 100 100	56.6 4.6 0.0 2.0 2.0 1.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0
uktarm High	-1164.0 -29.2 0.0 -5.6 -5.6 0.0	946.6 32.7 0.0 0.0 0.0	45.9 0.9 -19.0 0.0 -19.0	17.6 0.3 0.1 0.1 0.1	8.5 0.2 0.0 160.7	28.6 0.5 0.0 21.6 21.6 -745.0	1284.5 41.4 0.0 1.0 65.9 1733	0.0 0.0 0.0 0.0 159.0 135.6	3883.4 154.0 0.0 0.0 0.0 0.0 0.0 2238.9 200.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
City of Port Coquittam Best Low High	-1443.4 -38.5 -5.9 -5.9 -0.0 -0.0	142.0 5.8 0.0 0.0 0.0	45.9 0.9 0.0 -19.0 -19.0	17.6 0.0 0.0 1.601	8.5 0.2 0.0 160.7	28.6 0.5 21.6 0.0 21.6 0.0	205.6 7.4 0.0 0.0 5.2 5.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-1845.5 -37.9 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3
City c Best	1353.9 252- 0.0 0.0 0.0 0.0	399.5 15.2 0.0 0.0 0.0	45.9 0.9 0.0 0.0 2452.0	17.6 0.3 0.0 160.1	8.5 0.2 6.4 0.0 -1607	28.6 0.5 0.0 21.6 0.0 -745.0	600.2 20.7 0.0 26.0 26.0 26.0	0.0 0.0 0.2 1.5 74.6	
ows High	5808- 121- 0.0 0.0 0.0 0.0	176.0 5.8 0.0 0.0 0.0	12.2 0.2 4.8 0.0	8.2 0.0 0.0 0.0 0.0	24 24 0.0 1.7 13.3	7.4 0.0 5.3 8.4 6.0	429,1 13,1 0,0 0,3 7,7 15,5	-156.0 -3.3 0.0 1.1 1.1 2.2 2.2	424.2 16.0 0.0 0.0 1335.0 1355.0 1335.0 1355
					-				

ι	City of	City of	City of	Corp. of	City of	T.of D	D.of Maple	New		D. of N.				City of	City of	City of	West	White E	Elect, A	Elect. C	
	Abbots.	Burneby	ġ	Delta	Langley	. E	Ridge	\mathbf{F}	N. Van.	Ē	Meadows	ġ	Moody Ri		-	Van.	-			owen, HS)	TOTAL
Cache Creek Landfill	3,710.4	2,011.3	4,764.3	293.7	650.8	2,141.9	1,808.9	~~~						-			579.0	12.4	0.0	6.77	34,700
Vancouver Landfill	1.5	52.4	128.5	5,014.9	12.5	18.3	23.2							_		-	12.2	8.635	171.8	9.0	829 o
Burnaby Incinerator	0.7	6,325.5	9.99	6.6	6.1	608.6	11.3										628.0	0.2	0.0	84.5	17,563
Future Incinerator Recycling	3,412.2	0.0 5,940.7	0.0 2.836.7	0.0 2,631.3	0.0 616.7	3,100.4	0.0	0.0 1,613.5	2,165.3 4	4,235.5	326.7 1	0.0	364.9 7	7,214.8 5	9,073.1	15,177.9 2	2,647.5	510.7	200.2	0.0 46.0	0 65,102
Office Paper				ſ	ſ					-	_	-	⊢	-	⊢						
Cache Creek Landfill	1,379.5	850.1	1,284.7	72.9	338.3	885.8 7 5	731.6	460.2				676.8 18 2			_		215.4 4 E	6.4 201 e	0.0	29.7	12,907
Vencouver Lendhi	9 0	58	3,00	0.0	0.0	e. 0	4 G	0.0				0.0					0.0	0.0	0.0	t 0	0
Burnaby Incinerator	0.3	2,673.6	18.0	2	32	251.7	4.6	513.0				6.9					233.6	0.1	0.0	22.5	6,998
Future Incinerator	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Recycling	320.1	1,880.7	433.8	624.9	107.7	450.2	194.3	459.2	╉	+	+	312.6	+	+			Z34.3	134.0	104.0	4.9	269,61
Metal	1 000 1	1 000	1 040 0	£.	3 - 6-1	20121	c 1 3 1 1					_					482.7	16.7		181	26 674
Vancouver Landfill	1.850,2	2.000.2	79.5	5 096 2	14.1	13.9	14.7				-						10.2	525.2	178.8	40	27.224
Future Landfill	0.0	0.0	0.0	0.0	0.0	0.0	0.0										0.0	0.0	0.0	0.0	0
Burneby Incinerator	0.4	6,498.1	41.2	2.3	6.9	460.2	7.2	1,100.2	274.9	1,483.1	4.2	16.4	5.7	749.4	1,309.3	3,669.8	524.6	0.2	0.0	50.0	16,174
Future Incinerator	0.0	0.0	0.0	0.0	0.0 281.6	0.0	0.0 1 034 6										0.0	123.4	0.0 285 7	9.0	0 48 156
Glass	2.121.1	2.22012	2	• 'mm' •	2			╀	+	┢		+	+	+-	+	+					
Coche Creek Landfill	1,557.0	1.056.0	2,181.2	97.5	323.2	828.7	764.9	568.4									493.6	12.9	0:0	25.3	16,537
Vancouver Landfill	0.6	27.5	58.8	1,665.8	5.2	1.7	9.8	15.3						_			10.4	405.6	107.0	0.5	16,567
Future Landfill	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0									0.0	8	8	8	0
Burnaby Incinerator	200	1.126.5	2	<u>,</u> 6		0.0	• •			n							200	1 0	2 2		
Recycling	596.1	1,683.8	837.6	1,162.2	183.2	1,070.9	485.0	390.4	470.8	386.7	26.1	432.6	303.8	2,014.7 2	2,928.0	5,516.0	252.2	56.5	107.5	43.0	18,947
HDPE				ſ						_	-	-		-	⊢	┝					
Cache Creek Landfitt	538.3	398.4	651.5	26.0	139.6	368.1	323.2	165.4	-			232.9				890.9	130.1	3.7	0.0	8.7	5,795
Vancouver Landfill	0.2	10.4	17.6	443.9	2.7	3.1	4.1	4.5				6.3				6,431,3	2.8	115.0	48.9	0.2	5,201
Future Landfill	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0				0.0	0.0	0.0	0.0	0.0	0 12
Burnaby Incinerator	0.1	1,252.6		3 6	2 2	0.4.0 0.4		4.40				- 0				0.0		2 6	5 6	4 C	2007.5
Future Incinetator Recycling	596.1	633.7	169.5	220.0	41.4	220.5	4.77	135.0	7.671	113.0	9.0	94.5	49.7	0.00	756.5	2.111.6	92.3	16.6	26.9	0.7	6.247
									+	┢	┼╌		┝		┢		-				
Cache Creek Landfil	1,702.2	1.127.6	1,628.3	100.2	447.5	1,156.2	921.3	557.4			_							10.3	0:0	27.8	16,882
Vancouver Landfill	0.7	29:4	49.3	1,710.8	8,6	6.6	11.8	15.0			_							323.3	147.0	0.6	14,523
Future Landfill	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0										0.0	0.0	0.0	0
Bumaby incinerator	200	3,346.4	9. Q	2.0	4 0	5.525	à	67170		-									2 0	2	201.7
Recycling	355.2	1,937.7	285.0	541.9	94.9	558.7	170.3	442.4	439.0	271.0	19.8	331.1	127.3 2	2,334.1	1,705.4 5	5,053.4	142.9	37.5	59.7	0.7	14,908
Food Scraps					ſ				╞	╞	┝	╞	┢	┢╌	┢	-	┝				
Cache Creek Landfill	5,160.3	3,290.9	5,694.1	273.9	1,474.4	3,573.2	2,926.3	1,707.6	770.9	2.277.1		1,850.8		-	12.566.8 7	7,319.2	1,090.1	32.3	0.0	92.0	52,643
Vancouver Landfill	5	85.7	153.6	4,677.9	28.4	30.6	37.5				15.8		27.0	8,270.4	-	_		1,015.6	508.7	6.1	44,569
Future Landfill	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-										0.0	0.0	8.8	0 100
Euturady Incinerator.	2 2	0.000			0.0		7.01	_										1 0 0	0	0.00	0
Beckvard Compositing	742.6	744.3	269.6	7.94.7	38.6	357.8	340.3											159.4	8	00	8,439
Centralized Composting	1,130.4	5,510.7	626.1	1,174.2	264.9	1,680.3	677.8		_	_		_		-	-	_		143.2	187.2	0.0	45,217
Yard Trimmings										_		_				_					
Cache Creek Landfill	0.0	18.7	756.7	32.2	1,031.5	2,382.8	0.638	_		-							0.0	17.3	0.0	70.2	21,707
Vancouver Landfill.	0.0	<u>0</u> .5	20.4	549.4	19.8	8.	11.4								-		0.0	543.6	90.7	1.5	7,513
Future Landfill	0.0	0.8	0.0	8.6	0.0	0.0	0.0										0.0	0.0	0.0	0.5	0 5 765
Future Incinerator	3 3	300	0.0	8	00	0.0	00										00	0.0	0.0	0.0	¢
Backyard Compositing	1,494.1	1,497.7	583.0	1,599.0	7.77	719.9	684.7	367.4	425.5 1	1,331.3	106.9	918.5	0.0	1,273.7	1,102.2 3	3,980.9	496.8	320.8	0.0	0.0	16,980
Centralized Composting	4, 196.7	10,115.4	3,482.8	3,269.6	135.2	636.6	1,292.4	-		-		_		_	+	-	,709.6	54.2	263.1	8.0	87,059
Remainder										_		-									
Cache Creek Landfill Vannonner I andfill	32,771.6	524.3	0.05.07	2,750.1	5,400.8 162.8	5,333.1 71.3	11,439.5	6./50./	2 2.242.2	584.4	30.3	292.2	48.9 2	23.555.3	4.580.2 13	137.907.2	4,103.7 88.5 5	5.163.6	2.096.2	5.7	224,367
Future Landfill	0.0	00	0.0	0.0	0.0	0.0	0.0												0.0	0.0	•
Burneby Incinerator	6.6	63,307.9	981.1	36.1	79.2	2,367.9	71.2		_		-			_					0.0	294.0	154,365
Future Incmerator	0.0	0.0	00	0.0	0.0	0.0	0.0					_					_		0.0	0.0	•
Recycling	21,454.0	51,755.4	17,491.8	10,677.1	5,367.3	12,944.4	0.707.0			-	_		-	-		_	_	-	690.6	5./F	3/3,50/
TOTAL	84,348	216,615	121,819	93,350	21,204	51.12	195.95												0,004	1,454	DIAL
TOTAL																					
Totol Totol Land	A 78 A68																				
Vancouver Landfill Total=	380,639																				
Future Londfill Total=	•																				
Burnaby Incinerator Total=	251,206																				
Future Incinerator Totals	0																				
Recycling Total=	542,559																				
Eleckyard Composting 10tal= Centralized Composting Total=	132,276																				

213

1998 WASTE TONNAGES (wet tonne)

TOTAL Cache Creak Landill Totals Vencouver Landill Totals Future Londill Totals Future Increments Totals Future Increments Totals Becyver Comparing Totals Centralized Comparing Totals

478,468 380,639 251,206 252,559 25,420 132,276 132,276 700,254

		Office Paper Cache Creek Landfill Vancouver Landfill Future Landfill Burnaby Incinerator Future Incinerator Recycling)		Glass Ceche Creek Landfill Vancouver Landfill Future Landfill Burmaby Incinerator Future Incinerator Future Incinerator	HDPE Cache Creek Landfill Vancouver Landfill Future Landfill Burnaby Incinerator Future Incinerator Future Recycling	LDPE Ceche Creek Landfill Vancouver Landfill Future Landfill Burnaby Incinerator Future Incinerator Recverind	Food Scraps Cache Creek Landfill Varouver Landfill Burnaby Incinerator Future Incinerator Backyad Compositing Centralized Compositing	Yard Trimmings Ceche Creek Lendfill Vancover Lendfill Future Landfill Burnaby Incinerator Future Incinerator Backyard Compositing Centraized Compositing	Remainder Cache Creek Landfill Vancouver Landfill Future Landfill Burnaby Incinerator
Cury of Abbotstord Best Low High	-1.24 -1.32 -1.19 -1.30 -1.26 -1.29 -0.41 -0.41 -0.42 0.00	0.59 0.21 0.84 0.32 0.57 0.19 -0.33 -0.34 -0.33 -0.34 0.30 0.00	0.04 0.04 0.03 0.03 0.02 0.02 -1.15 -1.15 -1.16 -1.16 -2.35 -2.35	0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03	0.04 0.04 0.03 0.03 0.02 0.02 2.11 2.11 2.10 2.10 2.10 2.10			-0.03 -0.17 0.10 -0.13 -0.02 -0.13 -0.01 -0.02
ibotstord v Hig	22 23 24 25 25 25 26 26 26 26 20 20 20 20 20 20 20 20 20 20 20 20 20	21 1.40 22 1.79 34 -0.32 35 -0.33 36 -0.33	M 0.04 03 0.03 02 0.03 15 -1.15 16 -1.16 35 -2.35	4 0.04 23 0.03 22 0.02 37 0.02	04 0.04 03 0.03 02 0.03 11 2.11 10 2.11 10 - 1.70	25 225 22 2004 22 2003 22 25 22 25 2			17 0.36 13 0.53 19 0.34 02 0.04
Be	06 1.12 33 40 0.00 0.00 0.00 0.00	10 10 10 10 10 10 10 10 10 10 10 10 10 1	04 0.04 03 0.03 15 -1,15 16 -1,15 35 -2.35	24 0.04 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	25 225 22 225 22 225 25 22 25 2			002 0.11 0.02 0.02 0.02 0.02
city or burnaroy st Low h	6 6 6 1 3 3 6 6 6 1 3 3 6 6 6 1 4 2 3 6 6 6 1 4 2 3 7 6 6 6 6 1 4 1 3 7 6 6 6 6 6 7 1 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0.22 8 0.13 8 0.13 3 -0.34 0.35 0.34	4 0.04 3 0.03 5 -1.15 5 -2.35	4 0.04 2 0.03 2 0.02 2 0.02 2 0.02	4 0.04 3 0.03 2 0.02 1 2.11 2.11 2.11 0 -1.70	4 0.04 2 0.03 1 2.11 2 25 -225			6 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 0
/ High	0000 0000 0000 0000 0000 0000 0000	2 1.80 2 1.80 3 1.38 5 -0.32 4 -0.32 0 0.00	4 0.04 3 0.03 5 -1.15 5 -1.15	4 0.04 2 0.03 2 0.02 2 0.02 2 0.02 7 -0.37	2 0.04 2 0.03 2 0.03 1.70 0.02	2004 2003 2003 2002 2002 2003 2003 2003		2 0.28 0.28 0.20 0.20 0.20 0.20 0.20 0.20	2 0.36 0.31 0.34 0.34
Be	61.24 51.26 9 - 0.40 0 - 0.40 0 - 0.40 0 - 0.00	0 0.59 0 0.83 8 0.57 2 -0.34 0.34 0 0.00	4 0.04 3 0.03 5 -1.16 5 -2.35	2 0.02 2 0.02 2 0.02 2 0.02 2 0.02	4 0.04 3 0.03 2 0.03 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 1	2004 2003 2003 2003 2011 2011 2011 2012 2025 2025	0.000 0		8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t Low H	4 -1.32 6 -1.30 6 -1.23 0 -0.41 0 -0.41	0.21 0.32 0.32 4 0.35 4 0.35 0.03 0.00	4 0.04 3 0.03 6 -1.16 6 -1.16 5 -2.35	4 0.04 2 0.03 2 0.02 2 0.02 7 -0.37	4 0.04 3 0.03 2 0.03 1 2.11 2 11 2 11 0 -1.70	2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11		6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
/ High		1 140 2 1.79 5 1.38 5 0.33 0 000	t 0.04 8 0.03 6 1.16 6 1.16 5 2.35	4 0.04 2 0.03 2 0.02 2 0.02 7 -0.37	4 0.04 3 0.03 2 0.03 1 2.11 1 2.11 0 -1.70	2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11			- 5 8 6 8 6 6 9 6 8 6 7 6 9 8 6 7 6 9 7 6 9 8 6 7 6 9 7 7 6 9 7 7 6 9 7 7 7 7
	-1.24	0.056	0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.03	2.10	0.01 2.09 2.25 2.25		0.055 0.055 0.056 0.056 0.056 0.056 0.056 0.055 0.03 0.055 0.03 0.055 0.03 0.055 0.03 0.055 0.05	0.0 0.0 0.0 0.0 0.0
Best Low High	1.32 1.32 1.32 1.32 1.32 1.30 1.30 1.30	0.20	0.03 0.01 0.01 0.01 7.1.17 7 1.17 7 2.35	0.03	0.03 0.01 2.09 2.10 2.10	0.03 0.01 2.09 2.10 2.10			8,0,0,0,0 8,0,0,0
High	-1.07 -1.16 -1.16 -0.40 -0.40	1.39 1.77 1.37 -0.34 0.00	0.03 0.01 0.01 1.17 -1.17 -1.17 -1.17	0.01 0.01 0.01 0.01	0.03 0.01 2.09 0.00 0.00	0.03 2.09 2.09 2.25			0.35
Best	1.19 1.126 0.40 0.40	0.55 0.51 0.34 0.34 0.05	0.04 0.03 0.02 -1.16 -1.16	0.03 0.03 0.02 0.02 0.02	0.03 0.03 0.02 11 2 11 2 1 70	0.04 0.03 2.11 2.11 2.25			0.0 0.0 0.0 0.0 0.0 0.0
Low	1.30 1.30 1.28 1.29 1.29 0.00	0.21 0.32 0.35 0.35 0.00	0.04 0.03 0.02 1.16 -1.16 -2.35	0.03 0.03 0.02 0.02 0.37	0.04 0.03 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.1	0.04 2.11 2.11 2.25	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	-0.63 -0.63 -0.66 -0.08 -0.08 -0.08 -0.08	∑1.0,0,0,0 €1.0,0,0
High	0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33	1.40 1.73 1.38 0.33 0.03	0.04 0.03 0.02 -1.16 -1.16 -1.16	0.03 0.03 0.02 0.02 0.37	0.04 0.03 2.11 2.11 2.11 2.11	0.04 0.03 2.11 2.25	80 80 10 10 10 10 10 10 10 10 10 10 10 10 10	0.37 0.37 0.29 0.29 0.29 0.29 0.20	0.36
Best	-1.13 -1.19 -0.41 -0.41 0.00	0.57 0.53 0.34 0.03 0.03 0.03	0.04 0.02 0.02 -1.16 -1.16 -2.35	0.04 0.02 0.02 0.03	0.04 0.02 0.02 2.10 2.10	0.04 2.10 2.25 2.25	0.41 0.41 0.00 0.00 0.01 0.12 0.12	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0.000
ist Low High	1.31 1.30 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29	0.21 0.45 0.35 0.03 0.03 0.03 0.03	0.04 0.02 0.02 -1.16 -1.16 -2.35	0.04 0.02 0.02 0.037	0.04 0.02 0.02 2.10 2.10	0.04 0.02 2.10 2.25	0.11 0.15 0.02 0.02 0.01 0.02	0.66 0.06 0.08 0.00 0.01 0.01	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
High		1.79 1.79 0.33 0.03 0.00	0.04 0.02 0.02 -1.16 -1.16 -2.35	0.04 0.02 0.02 0.03 0.03	0.04 0.02 0.02 0.01 0.01	0.02 2.10 2.25 2.25	6.89.99.99.9 6.89.99.94.5 29.99.54.52	9,20 1,27 1,10 1,10 1,10 1,10 1,10 1,10 1,10 1,1	0.36
Best L	1,12 1,12 1,26 1,126 1,26 1,	0.59 0.34 0.34 0.34	0.04 0.03 0.03 -1.16 -1.16 -2.35	0.04 0.03 0.02 0.03	0.04 0.03 0.03 2.11 2.11	0.04 0.03 2.11 2.11 2.11 2.25	0.33 0.30 0.01 0.01 0.05 0.12	0.53 0.55 0.05 0.06 0.03 0.03 0.03	0 0 0 0 0 0 0 0 0 0 0
Low	-1.31 -1.29 -0.41 -0.41 -0.41 -0.41 -0.00	0.21 0.32 0.35 0.35 0.03	0.04 0.03 0.03 1.16 -1.16 -2.35	0.04 0.03 0.02 0.02 0.02	0.04 0.03 0.03 2.11 2.11	0.04 0.02 2.11 2.11	0.01 0.02 0.04 0.01 0.02 0.05	9.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
High	1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1.40 1.79 1.38 0.33 0.00	0.04 0.03 1.16 -1.16 -2.35	0.04 0.03 0.02 0.02 0.02	0.04 0.03 0.03 2.11 2.11 0.01	0.04 0.02 2.11 2.11 2.25	0.70 0.83 0.67 0.04 0.04 0.04	45.0 0.37 0.20 0.20 0.10 0.10 0.00	0.36 0.53 0.34
Best	-1.23 -1.18 -0.40 -0.40	0.00 84.0 85.0 85.0 85.0 85.0 80.0 80.0 80.0 80	0.05 0.03 0.03 -1.15 -1.15 -2.35	0.05 0.03 0.03 0.03	0.05 0.03 0.03 2.11 2.11	0.05 0.03 2.11 2.11 2.25	0.33 0.42 0.02 0.06 0.10	-0.52 -0.49 -0.54 -0.54 -0.07 -0.03	0.11 0.02
Low High	1.31 1.29 1.28 1.28 0.00	0.22 0.32 0.34 0.34 0.34 0.34	0.05 0.03 0.03 -1.15 -1.15 -1.15	0.05 0.03 0.03 0.03 0.03	0.05 0.03 0.03 2.11 2.11	0.05 0.03 2.11 2.11	0.12 0.16 0.01 0.01 0.01 0.01 0.01	-0.63 -0.65 -0.07 -0.07 -0.07 -0.07	9 9 9 9 21 81 5
High	-1.05 -1.15 -1.15 -0.39 0.00	1.41 1.80 1.39 -0.32 0.00	0.05 0.03 0.03 -1.15 -1.15 -1.15	0.05 0.03 0.03 0.02 0.03	0.05 0.03 0.03 2.11 2.11 -1.70	0.05 0.03 2.11 2.11	0.70 0.68 0.08 0.05 0.05 0.14 0.05	-0.34 -0.36 -0.28 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36	0.37
Best	-1.24 -1.26 -0.41 -0.41	0.55 0.53 0.34 0.34 0.00	0.03 0.02 0.01 -1.16 -1.16	0.03 0.02 0.01 0.02 0.03	0.03 0.02 2.10 2.10	0.03 0.03 2.10 2.25	0.32 0.32 0.01 0.01 0.05 0.12	-0.53 -0.55 -0.06 -0.06 -0.03 -0.03	0,0,0,0,0 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Low High	-1.32 -1.31 -0.42 -0.42 -0.42	0.21 0.31 -0.35 -0.35 0.00	0.03 0.02 0.01 -1.16 -2.35	0.03 0.02 0.01 0.02 0.01	0.03 0.02 2.10 2.10	0.03 0.03 2.10 2.10	0.11 0.14 0.09 0.02 0.02 0.06	- 0.64 - 0.63 - 0.08 - 0.08 - 0.08 - 0.08 - 0.09	0,0,0,0,0 7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
High		1.40 1.79 1.37 -0.33 -0.33	0.03 0.02 0.01 -1.16 -2.35	0.03 0.01 0.01 0.01	0.03 0.02 0.01 0.01 0.01	0.03 0.03 0.01 2.10 2.10	0.69 0.69 0.04 0.04 0.14 0.23		0.35
Best	-1.24 -1.19 -0.40 0.00	0.59 0.53 0.34 0.34	0.04 0.02 0.02 -1.16 -1.16	0.04 0.02 0.02 0.02	0.04 0.02 2.11 2.11 2.11 2.11	0.04 0.02 0.02 2.11 2.11	0.32 0.41 0.01 0.01 0.01 0.01	-0.53 -0.56 -0.06 -0.06 -0.03	0.03 0.10 0.02
Low High	1.32 1.32 1.36 1.42 0.04 0.08	0.21 0.31 -0.35 -0.35 0.00	0.04 0.02 0.02 -1.16 -1.16	0.02 0.02 0.02 0.02	0.02 2.11 2.11 2.11 2.11 2.11	0.04 0.02 2.10 2.25	0.11 0.15 0.09 0.01 0.02 0.01	0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02	1.0 51.0 81.0 81.0
High	- 0.99 0.40 0.40 0.40	1.40 1.73 1.38 0.33 0.03	0.04 0.02 0.02 -1.16 -1.16 -2.35	0.02 0.02 0.03 0.03	0.04 0.02 0.02 0.01	0.04 0.02 2.11 2.10 2.25	0.65 0.65 0.04 0.04 0.14		0.36

1998 EMISSION FACTORS (tCO2e/wet tonne)

	Γ					Τ						Γ										-	Γ											Τ			••••			T										
	Newsprint	Ceche Creek Landfill	Vencouver Landfill	Future Landfill Remains Incinerator	Future Incinerator	Recycling	Office Paper Cache Creek Landlil	Vancouver Landfill	Future Landfill	Burnaby Incinerator	Future Incinerator Recycling	Metal	Cache Creek Landfill	Vancouver Landfili	Future Landfill	Burnaby Incinerator	Future incinerator Recycling	Glass	Cache Creek Landfill	Future Landfill	Jurnaby Incinerator	uture Incinerator	HDPE	Cache Creek Landfill	Vancouver Landfill	Future Landitt Runnhv Incinerator	Future Incinerator	Recycling	LDPE	Cache Creek Landfill	Future Landfill	Burnaby Incinerator	Future Incinerator Recycling	ood Scrans	Cache Creek Landfill	Vancouver Landfill	Burnaby Incinerator	Future Incinerator	Backyard Composting Centralized Composting	Yard Trimmings	Cache Creek Landfill Vencower I antfill	Future Landfill	Burnaby Incinerator	Backyard Composting	Centralized Composting	Remainder	Cache Creek Landfill Venneuwer Landfill	Future Landfill	urnaby Incinerator	Future Incinerator Recycling
ے اور ا	-		66.0			- 1				-	E E	+-		0.02			-2.35					0.02			0.02								2.10 F	1		~			0.14 0.23 0.23	r ·	5 5 7 7 7 7 7 7 7 7 7 7 7 7				-					5 8
Electoral Area C st Low High		-1.32	9. .	67 F	-0.42	8.0	0.21	0.31	0.19	0.35	8.9 9.0	8	0.04	0.02	0.02	9.1	-1.15		5.0	0.02	0.02	0.02	2	0.04	0.02	2 11	2.10	-1.70		900 800	0.02	2.11	2.10 -2.25		0.11	0.15	-0.01	-0.02	0.06		5 G 6 G	-0.66	0.08	0.01	0.06		1.0	5 Q	-0.03	50.7 00.00
Elect Best		-1.24	-1.19	8 9	0.41	0.0	0.59	0.83	0.57	5 , 6	5 G	20.0	0.04	0.02	0.02	9 : 9	-2.35		8.6	0.02	0.02	0.02		0.04	0.02	20.02	510	-1.70		50 50 50 50 50 50 50 50 50 50 50 50 50 5	0.02	2.11	2.10		0.32	0.41	0.01	0.01	0.06		5 9 9 9	-0.55	0.06	8.0	0.05		-0.03	0.02	-0.02	0.02
- E		-1.06	66.0-	2 g	9.9	8	1,40	1.79	8. F	R R	R E	3	0.04	0.02	0.01	9.4	-235		200	10.0	0.02	0.01		0.04	0.02	5.6	10.0	-1.70		200	0.01	2.11	2.10		0.69	0.83	0.04	0.04	0.23		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.37	0.20	0.17	0.09		96.0	18.0	10.0	5.0
Electoral Area A st Low H		-1.32	-1.31	67.1-	0.42	0.0	0.21	0.31	0.19	0.35	80 G	200	0.04	0.02	0.01	-1-19 	-1.10		8.6	0.01	0.02	0.01	200	0.04	0.02	11.0	2.10	-1.70		0.04	0.01	2.11	2.10		0.11	0.14	10:0-	-0.02	0.01		8 8 8	-0.66	-0.08	0.01	0.07		2.0	0.19	-0.03	5.0
Best		-1.24	8 1- 20	97 F	-0.41	0.0	0.59	0.83	0.57	8, 7 8, 7	5 0 0	3	0.04	0.02	0.01	-1.16 	-1.16	:	5 G	0.01	0.02	0.01	2	0.04	0.02	5.0	2.10	-1.70		0.04	0.01	2.11	2.10 -2.25		0.32	0.41	0.01	0.01	0.06		5 5 7 7 7 7	-0.55	0.06 90.06	80°	0.05		0.03	-0.02	-0.02	0.02
¥ Į	-	-1.06	8.4	91.1-	65.0-	80	1.40	1.78	1.38	8,8	8. P		0.04	0.01	0.02	1.16	-1.16		8.6	0.02	0.02	0.02		0.04	0.01	20.0	0.01	-1.70		8.0	0.02	2.11	2.11		0.69	0.82	0.0	0.04	1 2 0		8 9 9 9	-0.37	8.0	0.12	0.09		8.0	16.0	0.01	5.0
City of White Rock st Low High		-1.32	131	R 140	-0.41	0.00	0.21	02.0	0.19	-0.35	9. G	20.0	0.04	0.01	0.02	-1.16	-1.16		500	0.02	0.02	0.02		0.04	0.01	20.0	512	-1.70		500	0.02	2.11	2.11		0.11	0.14	-0.01	-0.01	0.01			-0.66	80.0-	0.01	0.06		1.0	61.0	-0.03	50.0 100.0
City of Best		-1.24	8 2	67 - P	-0.40	0.00	0.59	0.62	0.57	8, 6 8, 7	5, 6 6, 6	20.2	0.04	0.01	0.02	9.4	-1.10		8.8	0.02	0.02	0.02		0.04	0.01	211	211	-1.70		500	0.02	2.11	2.11		0.32	0.40	0.0	0.01	0.06		-0.53 -0.51	-0.55	0.06 0.06	-0.03	0.05		-0.03	0.02	-0.02	000
Tich I		-1.06	66.0	e 9	0.40	0.0	1.40	1.79	8	8,8	8.0	3	0.04	0.02	0.02	9 9	-1.16		8.6	0.02	0.02	0.02		8 8	6 6	20.0	0.01	-1.70		50.00	0.02	2.11	2.10		0.69	8.0	0.0	0.04	0.73		8, 8, 9, 9	-0.37	0.20	27.0	0.09		8.0	5	-0.01	58
D. of West Vancouver Best Low High		-1.32	6 1 3	R 19	-0.42	0.00	0.21	0.31	0.19	8.6	800	20.0	0.04	0.02	0.02	9.7	-1.16		200	0.02	0.02	0.02		0.04	0.02	20.02	5 10	-1.70		0.04	0.02	2.11	2.10 -2.25		0.11	0.15	10.0-	-0.02	0.05		9 8 8 8	99.0	80.0	0.0	0.06		5 F F	61 (P	-0.03	3.8
D. of W. Best		-1.24	-1.19	97 -	-0.41	0.0	0.59	0.83	0.57	5 A	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	200	0.04	0.02	0.02	9.19	-1.16		5.5	0.02	0.02	0.02		0.04	0.02	20.02	510	-1.70		0.0	0.02	2.11	2.10 -2.25		0.32	0.41	0.0	0.01	0.06		8 9 8 9	-0.55	0.06 90.06	80.0-	0.05		0.03	-0.05 -0.02	0.02	0.0
, Eight		-1.8	66.0	e e	-0.40	0.0	1.40	1.79	1.37	នុន	8.6	-	0.03	0.02	10.0	9.19	-1.16		0.03	0.01	0.02	0.01		0.03	0.02	5.5	0.01	-1.70		0.03	0.01	2.10	2.10		0.69	0.82	500	0.03	0.14		50 Q	-0.37	0.20	0.17	0.09		8.0	0.33	0.01	5.0
City of Vancouver st Low H		-1.32	131	5 G	0.42	0.0	0.21	0.31	0.19	6.35 27	8.0	200	0.03	0.02	0.01	9.7	-1.10		0.03	0.01	0.02	0.01		0.03	0.02	5.0	5 10	-1.70		0.03	0.01	2.10	2.10 -2.25		0.11	0.14	-0.01	-0.02	0.01		999 1997	-0.66	90.0 0	0.01	0.07	ŗ	2 9	5 Q	-0.03	50.0
City o Best		-1.24	8 7	97	0.41	80	0.59	0.83	0.57	5		20.0	0.03	0.02	0.01	9. 1. 1.	-1.16		0.03	0.01	0.02	0.01		0.03	0.02	19.9	5 10	-1.70		0.03	0.01	2.10	2.10		0.32	0.41	0.0	0.01	0.06		9 9 8 8	0.55	90.0 90.0	800	0.05		-0.033	0.025	0.020	67 00 00
Hich		-1.06	8.5	9 7 7 7	6.0	80	1.40	1.78	1.38	8	8.0		9.0	0.01	0.02	<u>9</u>	-7.35		000	0.02	0.01	0.02		0.04	5.0	2 10	0.0	-1.70		500	0.02	2.10	211		0.69	0.82	0.0	0.04	0.14		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-0.37	0.19	0.17	0.10		8.5	12	10.0	- 00 - 00 - 00 - 00
City of Surrey Low		-1.32	131	R 4	0.41	0:00	0.21	0:30	0.19	5.5	80		0.04	0.01	0.02	9 y	-1.16		500	0.02	0.01	0.02		0.04	0.0	2010	511	-1.70		0.04	0.02	2.10	2.11 -2.25		0.11	0.14	-0.02	-0.01	0.06		9 9 8 8	-0.66	90.0- 80.0-	0.01	0.07			61.0	-0.03	200
Best City		-1.24	8 8	87 F	0.40	0.0	0.59	0.82	0.57	5, 5 7	5, 5 9 0	3	0.04	0.01	0.02	-1.16	-1.10		50	0.02	0.01	0.02		0.04	0.01	20.0	5 12	-1.70		500	0.02	2.10	211		0.32	0.40	0.0	0.01	0.06		-0.53 -0.53	-0.55	0.06 20.0	800	0.05		0.03	-0.02	-0.02	7 8 7 8
p I	,	-1.06	66.Q	91.16	0.40	8.0	1,40	1.79	8.	8	Re	3	0.04	0.02	0.01	9.4	-1.16		8.8	0.01	0.01	10.0		0.04	6 6	5.6	10.0	-1.70		8.6	10.0	2.10	2.10		0.69	0.83	0.0	0.04	0.73		4 8 8	-0.37	0.19	0.17	0.09		8.6	1 7	0.01	58
if Richmond Low H		-1.32	131	57.1-	0.42	8.0	0.21	0.31	0.19	-0.35 25.0	80 G	20.0	0.04	0.02	0.01	9.9	-1.10		8.6	0.01	0.01	0.01		0.04	0.02	10.0	2 2	-1.70		0.04	0.01	2.10	2.10		0.11	0.14	-0.02	-0.02	0.01		9 9 9 9	99.0	0.08	0.01	0.06		2.9 2.5	5 6	-0.03	0.00
City of Rich Best Low		-1.24	97.1- 50	971-29	0.41	0.0	0.59	0.83	0.57	9 9 7	5 G	2	0.04	0.02	0.01	9 9 	-1.10		5.0	0.01	0.01	0.01	2.2	0.04	0.02	2 10	2 2	-1.70		5.6	0.01	2.10	2.10		0.32	0.41	0.0	0.01	0.06		6 19 19	-0.55	0.06 90.0	0.03	0.05		-0.03	0.02	0.02	70.0 0.00
¢ I		-1.06	6.9	91.1-	6.0	8	1,40	62.1	1.38	8,6	R S	3	0.0	0.03	0.02	-1.16	-1.16		88	0.02	0.02	0.02		0.04	50.0	20.0	0.0	-1.70		8 8	0.02	2.11	2.11		0.69	59.0	0.04	0.04	0.14		8 R	0.37	8.8	0.17	0,10		9.0	38	-0.01	58
y of Port Moody Low High		-1.32	97. 1.30	67.I-	-0.41	0.0	0.21	0.32	0.19	0.35	50.0	3	0.04	0.03	0.02	1.16	-1.16		8.6	0.02	0.02	0.02		0.04	0.03	20.02	511	-1.70		0.04	0.02	2.11	2.11		0.11	0.15	0.01	-0.01	0.05		9 9 9 9	-0.66	-0.08	00.0	0.07	2		6 61 (P	-0.03	
City of Best		-1.24	-1.19	-1.26 -0.40	-0.40	0.00	0.59	0.83	0.57	50	8. S	3	0.0	0.03	0.02	-1.16 	-1.16 -2.35		8.8	0.02	0.02	0.02		0.04	0.03	2 11 0	51	-1.70		9 G	0.02	2.11	211 275		0.32	0.42	0.0	0.01	0.06		0.53	-0.55	0.06	0.03	0.05		0.03	0.02	0.02	0.07
High		-1.06	66.9	9 92 O	69	8.0	1.40	1.79	1.38	8,8	R e	8	0.04	0.03	0.02	-1.16	- 19 - 732	-	8.6	500	0.02	0.02	-	90.0	8.6	2 11	0.0	-1.70		8.8	0.02	2.11	211		0.69	80	500	0.04	4 0 23		50 Q	-0.37	0.20	0.12	0.09		8.5	55	0.01	5 8
of Port Coquitiam Low Hist		-1.32	8.1	1.23	0.41	80	0.21	0.32	0.19	5.9	8.6	3	0.04	0.03	0.02	-1.16	- 35		9 G	0.02	0.02	0.02	10.0	0.04	0.03	2.11	12	-1.70		9.0	0.02	2.11	2.11 -2.25		0.11	0.15	6.0 10 10	-0.01	0.01		-0.64 53 0-	99.0	-0.08	0.01	0.06		6 9 9	61.0-	0.03	0.00
City of F Best		-1.24	-1.19	-1.26	0.40	800	0.59	0.83	0.57	9 9 9	8 9 9	8	0.04	0.03	0.02	-1.16	-1.16		8.6	0.02	0.02	0.02	10.0	0.04	0.03	0.02	5 5	-1.70		800	0.02	2.11	2.11 2.35		0.32	0.42	6.0	0.01	0.06		-0.53	-0.55	0.06	80.0-	0.05		6-0-0	0.02	-0.02	200 700
dows High		-1.06	0.99	- 16 - 16	8.9	0.0	1.40	1.79	8.1	ខ្លួ	19. P	3	0.04	0.03	0.02	1.16	- 16		8.6	0.02	0.02	0.02		10 .0	0.03	0.02	10.0	-1.70		8.0	0.02	2.11	2.11 -2.25		0.69	0.83	500	0.04	0.14		۲ ج ج	0.37	0.20	0.17	0.10		9.0	0.34	-0.01	6.0
t of Pitt Meadows t ow High			6.1-				0.21	0.32	0.19	0.35	90 90 90 90 90 90 90 90 90 90	0.0					-2.35 -2.35		9.0 50	0.02	0.02	0.02		0.04	0.03	20:0	5 1	-1.70		80	0.02	2.11	2.11	4	0.11	0.15	0.0	-0.01	0.01		9 29 29 29 29 29 29 29 29 29 29 29 29 29	99.0	90.0- 90.0-	0.01	0.07		0 17 6 1	5 ¢	0.03	60.0 0

LIST
CTOR
ION FA
EMISS

80 0 60 0		51015	Basi	ury or Burnady st Low H	5	2	Low High	ď	corporation of Units		Best		High Best		High	Bart	utsuryct of mapre moge est Low H	5	Best			Best L		۵ د	U. OT NOTET VERK Best Low		
ide Waste Collection: ide Recyclables Collection:			Best													i and	No.										
ction:	8	5 F	5													1420										,	
	0.014	0.014	0.019	0.019 0	0.019 0	0.014 0.0	14 0.014		-			-				0.014	-									0.014	
	0.043	0.043	0.045	0.045 0	0.045 0	0.043 0.043	43 0.043	3 0.043	0.043	0.043 0	0.043 0.0			43 0.043	0.043	CH0.0	-	0.043 0		0.052 0.0		0.023 0.0	0.023 0.0	0.023 0.0	0.043	0.043	
Diasel Fuel Consumption for Curbside Yard Trimmings Collection:	0.000	0.00	0.024	0.024 0	0.024 0	0.027 0.0	27 0.027		0:030			0.027 0.0	0.027 0.027			0.027	0.027	0.027	2		0.000					0.027	
Total for Waste Disposed at the Cache Creek Landfill= 0.021	0.021	0.021	0.023	0.023 0	0.023 0	0.023 0.0	CZ0 0 CZ		0.023			0.023 0.0	0.023 0.025	25 0.025	0.025	0.027	0.027 0	0.027 0		0.023 0.0	0.023 0.0					023	
Total for Waste Disposed at the Vancouver Landill= 0.013	0.013	0.013	0.011						0.000	0.000		0.011 0.0	0.011 0.011	11 0.011	0.011	0.011		0.011 0	0.011 0							010	
Total for Waste Disposed at a Future Landfill=	0.001	0.001	0.002	0.002 0		0.002 0.0			0.002	0.002	-	0.002 0.6	0.002 0.002			0.002	0.002	0.002 0	-				0.001 0.0			001	
Total for Waste Disposed at the Burnaby Incinerator= 0.009	0.009	0.009	0.001			0.005 0.0			0.000	0.000	0.005 0.0	0.005 0.0	005 0.000		0:000	0.005	0.005	0.005 0	0.000	0.000 0.0		0.004 0.				904	
	0.001	0.001					0.002 0.002	0.002		0.002	-	0.002 0.0	-	02 0.002		0.002					0.002 0.		-	0.001 0.0	0.001 0.	0.001	
Diesel Fuel Constrimption for Newsprint Transport to Newstech:																											
Diesel Fuel Consumption for Office Paper Transport to Processor.																											
Fuel Consumption for Yard Waste Transport to F.R. BioCycle:					ø	0.0039 0.00	0.0039 0.0039	6								0.0000	0.0000 0	0 0000:0	0.0026 0.	0.0026 0.0	0.0026 0.0	0.0013 0.0	0.0013 0.0	D.0013 0.0	0.0013 0.0	0013	
Fuel Consumption for Composting Equipment at F.R. BioCycle: 0.0186	0.0186		0.0186	0.0186 0.0186 0.0186 0.0186		0.0186 0.01	0.0186 0.0186	6 0.0186	5 0.0186	0.0186 0.0186		0.0186 0.0	0.0186 0.018	0.0186 0.0186 0.0186		0.0186 (0.0186 0	Ŭ		0.0186 0.0	0.0186 0.0	0.0186 0.0	0.0186 0.0	0.0186 0.0	0.0186 0.0	0.0186	
MATERIAL-SPECIFIC FACTORS:	Newsprint	[15	Office Paper	╞	Metal Glass	HDPE	E LOPE		Food Scraps		Yard Tr	Yard Trimmings	L	Remainder	[
Best-Guess. Low or Bich Estimate: Best	Mon	High	Best		-for	Best Best	Best	Best	Best	ð	łich	Best Lo	Low High	_	wol	hiah											
	0.079	0.321	0.798			╞	+	┞	F	0.201	Ľ	1	L	+	0.3119 0.1635 0.6663	0.6663											
Energy Utilization at the Cache Creek Landfill: -0.030	-0.020	-0.007	-0.141	-0.091	0.033				-0.060	-0.046	011 0	0.028 -0.	0.021 -0.00	0.005 -0.0498	-0.0498 -0.0405 -	-0.0145											
Long-Term Carbon Sequestration in the Cache Creek Landfill: -1.413	-1.413	-1.413	-0.103	-0.103	-0.103				-0.068	-0.088	0.085 -0.		0.754 -0.754		-0.3300 -0.3300 -	0.3300											
Immediate & Future N ₂ O Emissions from the Cache Creek Landfill: 0.000	0.000	0,000	0000	0.000	0.000				0 038	0.008	0.076 0.0	0.031 0.1	0.006 0.062	62 0.0000	0,000	0,0000											
Future Methane Emissions at the Vancouver Landfill: 0.229	0.107	D.408	1.070	0.501	1.903				0.502	0.253 0	0.826 0.3	0.231 0.	0.116 0.381	91 0.4759	0.2227	0.8464											
	-0.023	-0.007	-0.158	-0.107	0.033				-0.062	-0.049		_	0.023 -0.00	0.005 -0.0703	0.0702 -0.0477 -	-0.0147											
Long-Term Carbon Sequestration in the Vancouver Landfill: -1.413	-1.413	-1.413	-0.103	-0.103 -4	0.103				-0.088	-0.068						0.3300											
Immediate & Future N ₂ O Emissions from the Vancouver Landfill: 0.000	0.000	0.000	0.000	0.000	0.000				0.038	0.008	0.076 0.0	0.031 0.4	0.006 0.062	62 0.0000	0.0000	0.0000											
Future Methane Emissions at a Future Landfill: 0.171	0.138	0.248	0.798	0.368 1	1.498				0.398	0.201	0.680 0.1	0.183 0.1	0.092 0.313	13 0.3549	0.1635	0.6663											
Enerov Utilization at a Future Landfilt: -0.030	-0.031	-0.006	-0.141	0.091	-0.033				-0.060	-0.046	0.011 -0.	0.028 -0.	-0.021 -0.00	0.005 -0.0626	-0.0626 -0.0405 -	-0.0145											
Long-Term Carbon Sequestration at a Future Landfill: -1.413	-1.413	-1.413	-0.103	-0.103	-0.103				-0.086	-0.088	-0.088 -0.	0.754 -0.	-0.754 -0.754		-0.3300 -0.3300 -0.3300	0.3300											
Immediate & Future N ₂ O Emissions from a Future Landfill: 0.000	0.000	0.000	0.000	0.000	0.000				0.038	0.008	0.076 0.0	0.031 0.0	0.006 0.062	62 0.0000	0.000	0.0000											
Energy Generation from Waste Incineration at the Burnaby Incinerator -0.448	-0.448	-0.448	-0.382	-0.382 -(-0.382		-1.054	4 -1.054	-0.097	-0.058 -(0.139 -0.	0.139 -0.13	0.139 -0.2824	-0.2824	0.2824											
GHG Emissions from Waste Incineration at the Burnaby Incinerator: 0.027	0.016	0.037	0.027	0.016 0	0.037 -1	-1.175	3.143	3,143	0.091	0.028 0	0.155 0.1	0.181 0.0	0.044 0.320	20 0.2465	0.2365	0.2573											
Energy Generation from Waste Combustion at a Future Incinerator0.448	-0.448	-0.448	-0.382	-0.382	0.382	-	-1.054	4 -1.054	10.097	-0.058	0.134 0.	0.139 -0.	0.139 -0.13	0.139 -0.2824	-0.2824	-0.2824											
GHG Emissions from Waste Combustion at a Future Incinerator: 0.027	0.016	0.037	0.027	0.016 0	0.037 -1	-1.175	3.143	3,143	0.091	0.028 0	0.155 0.1	0.181 0.0	0.044 0.320	20 0.2465	0.2365	0.2573											
	0000	0.000					-0.370 -1.700		-					0.0000	0.000	00000											
:00	000.0	000.0						_						0.000	00000	00000											
						-			0.057	0.011 0	0.144 0.0	0.068 0.4	0.014 0.173			-											
Long-Term Carbon Sequestration (Backvard Compositino):									0000	0.000				8													
GHG Emissions from Centralized Compositing:									0.077	0.015				5													
I ono. Term Cerbon Sequestration (Centralized Composition):									0.000	0.000				00													
]											

		~	4		~	.		-			ç	ş
0		br r	0.01	0.04	0.02	0.02	0.010	00:0	0.0	0.001	0.000	0.018
actoral Are		ľ	0.014	0.043	0.027	0.023	0.010	0.001	007	0.001	0.000	0.0186
ū		Best	0.014	0.043	0.027	0.023	0.010	0.001	0.004	0.001	0.000	0.0186
		főI	0.014	0.043	0.027	0.023	0.008	0.001	0.002	0.001	0.0033	0.0186
lactoral Area		Low	0.014	0.043	0.027	0.023	0.008	0.001	0.002	0.001	0.0033	0.0166
đ		Best	0.014	0.043	0.027	0.023	0.008	0.001	0.002	0.001	0.0033	0.0186
ţ	ſ									0.002	0000.0	0.0186
City of White Rock		Low	0.014	0.043	0.027	0.023	0.000	0.002	0.005	0.002	0.0000	0.0186
, and the second se										0.002	0.0000	0.0186
ļ		fgi	0.014	0.043	0.027	0.023	0.010	0.001	0.004	0.001	0.0013	0.0186
ant Vancou		M	0,014	0.043	0.027	0.023	0.010	0.001	0.004	0.001	0.0013	0.0186
2 20	5									0.001	0.0013	0.0186
		fgi f	0.012	0.031	0.027	0.023	0.008	0.001	0.004	0.001	0.0033	0.0186
City of Vancounse											0.0033	0.0186
240	2									0.001	0.0033	0.0186
		нgн	0.014	0.043	0.027	0.023	0.00	0.002	0.000	0.002	0.0039	0.0186 (
of Summer										0.002	0 0039 0	-
č	,									0.002	0.0039 0	Ű
			-	-	-	-	-	-		0.001 0	-	0.0186 0.
-hmond										0.001 0.1		.0186 0.0
Chu of B									0.00 0.0			°
												5 0.0186
Mende	5									0.002	0.0039	Ö
City of Dort 1		۲ø	0.014						0.005		0.0039	
đ	5	Best	0.014	0.043	0.027	0.023	0.011	0.002	0.005	0.002	0.0039	0.0186
and the		High	0.014	0.043	0.027	0.023	0.011	0.002	0.005	0.002		0.0186
City of Post Coquitism		۲o	0.014	0.043	0.027	0.023	0.011	0.002	0.005	0.002		0.0186
2010	2	Best	0.014	0.043	0.027	0.023	0.011	0.002	0.005	0.002		0.0186
-		Чрн Н	0.014	0.043	0.027	0.023	0.011	0.002	0.005	0.002	0.0039	0.0186
District of Dist Mandours		Moj	0.014	0.043	0.027	0.023	0.011	0.002	0.005	0.002	0.0039	0.0186
District		Best	0.014	0.043	0.027	0.023	0.011	0.002	0.005	0.002	6600.0	0.0196
		fgi	0.014	0.043	0.027	0.023	0.010	0.001	0.004	0.001	0.0013	0.0186
ā	5											

GENERAL PARAMETERS:

1998 Waste Flow

DIRECT HAUL (TONNES):

	DIRECT HA	UL (TONNE	ES):														
	Cache Creek	Vancouver	Future	Burnaby	Future	Coquitlam	North Shore	Vancouver	Matsqui	Langley	Maple Ridge						
	Landfill	Landfill	Landfill	Incinerator	Incinerator	TS	TS	TS	TS	TS	TS	TOTAL:					
Abbotsford	0	0	0	0	0	756	0	0	48,031	162	0	48,949					
Burnaby	õ	ő	ŏ	91,666	ŏ	27.081	10,342	ő	0	0	ő	129,089					
Coquillam	õ	ő	ő	78	ů	93,925	10,342	õ	ŏ	Ď	0 0	94,003					
	-	•	-		-		-			-	-						
Delta	0	64,428	0	0	0	3,973	0	703	0	0	0	69,104					
Langley (City)	0	0	0	0	0	10,025	0	0	3,460	510	0	13,995					
Langley (Town)	0	0	0	5,961	0	5,501	0	0	4,315	11,744	0	27,521					
Maple Ridge	0	0	0	0	0	8,308	0	0	870	0	12,177	21,355					
New Westminster	0	0	0	14,411	0	13,607	0	0	0	0	0	28,018					
N. Van. (City)	0	0	0	0	0	136	10,037	0	0	0	0	10,173					
N. Van. (District)	0	0	0	0	0	379	73,521	ō	ō	0	ō	73,900					
Pitt Meadows	õ	ō	ŏ	ő	ő	3,595	0	õ	17	õ	209	3,821					
	ů	0	ō	D D	0		ő	0	0	0	209						
Port Coquitlam	0	0	0	0	0	17,895	-	0	-	0	0	17,895					
Port Moody	•	•	-	-	-	5,670	0	•	0	-	•	5,670					
Richmond	0	7,508	0	7,280	0	5,967	0	43,609	0	0	0	64,364					
Surrey	0	7,471	0	21,286	0	96,881	0	0	492	0	0	126,130					
Vancouver	0	8,899	0	6,217	0	22,374	83,761	225,740	0	0	0	346,991					
West Vancouver	0	0	0	0	0	0	15,733	0	0	0	0	15,733					
White Rock	0	8,635	0	0	0	287	0	42	0	0	0	8,964					
Elect A (U.E.L.)	0	66	0	0	0	0	٥	3,283	0	0	0	3,349					
Elect C (Bowen)	ò	0	Ó	0	0	0	1,289	0	Ó	0	Ó	1,289					
TOTAL:	ō	97,007	õ	146,899	ō	316,360	194,683	273,377	57,185	12,416	12,386	.,					
101112	v	01,001	•			0.01000	101,000	210,011	07,100		12,000						
	TRANSFER		ONNEON							TRANCE		DEDOENT	ACEC				
	TRANSFER									TRANSFI	ER FLOWS (
	Cache Creek	Vancouver	Future	Burnaby	Future	Coquitlam	Matsqui					Cache Cree	Vancouve	Future	Burnaby	Future	
transfers to}	Landfill	Landfill	Landfill	Incinerator	Incinerator	TS	TS	TOTAL:		ti	ansfers to}	Landfill	Landfill	Landfill	Incinerator	Incinerato	ſ
Coquillam TS	303,608	8,189	0	3,981	0	0	0	315,778			Coquitlam TS	96.1	2.6	0.0	1.3	0.0	
North Shore TS	82,930	1,754	0	89,942	0	0	0	174,626		N	orth Shore TS	47.5	1.0	0.0	51.5	0.0	
Vancouver TS	0	271,431	ò	ò	0	0	0	271,431			Vancouver TS	0.0	100.0	0.0	0.0	0.0	
Matsqui TS	73,169	0	ò	ō.	n	ō	ō	73,169			Matsqui TS	100.0	0.0	0.0	0.0	0.0	
Langley TS	0	ů.	ō	0	ō	1,217	8,172	9,389			Langley TS	99.5	0.3	0.0	0.2	0.0	
Maple Ridge TS	õ	õ	õ	ő	ŏ	2,030	10,070	12,100			aple Ridge TS	99.4	0.4	0.0	0.2	0.0	
	459,707	-	0	93,923	0			12,100		M	apie Ridge 15	89.4	0.4	0.0	0.2	0.0	
TOTAL=	459,707	281,374	U	93,923	U	3,247	18,242										
TOTAL MA	ASS FLOWS (TO										ASTE DISPOSA						
	Cache Creek		Future	Burnaby	Future			Cache Creek		Future	Burnaby	Future					
	Landfill	Landfill	Landfill	Incinerator	Incinerator	TOTAL		Landfill	Landfill	Landfill	Incinerator	Incinerator	TOTAL				
Abbotsford	48,919	20	0	10	0	48,949		99.9	0.0	0.0	0.0	0.0	100				
Burnaby	30,949	806	0	97,334	0	129,089		24.0	0.6	0.0	75.4	0.0	100				
Coquitlam	90,305	2,438	0	1,262	0	94,003		96.1	2.6	0.0	1.3	0.0	100				
Della	3,820	65,234	0	50	0	69,104		5.5	94,4	0.0	0.1	0.0	100				
Langley (City)	13,606	262	0	127	0	13,995		97.2	1,9	0.0	0.9	0.0	100				
Langley (Town)	21,289	182	ò	6,050	ò	27,521		77.4	0.7	0.0	22.0	0.0	100				
Maple Ridge	20,956	268	õ	130	ō	21,355		98.1	1.3	0.0	0.6	0.0	100				
New Westminster	13,083	353	ŏ	14,583	ŏ	28,018		46.7	1.3	0.0	52.0	0.0	100				
N, Van, (City)	4,897	104	0	5,171	ő	10,173		48.1	1.0	0.0	50.8	0.0	100				
			0														
N. Van. (District)	35,280	748		37,872	0	73,900		47.7	1.0	0.0	51.2	0.0	100				
Pitt Meadows	3,681	94	0	46	0	3,821		96.3	2.5	0.0	1.2	0.0	100				
Port Coquitlam	17,205	464	0	226	0	17,895		96.1	2.6	0.0	1.3	0.0	100				
Port Moody	5,451	147	0	71	0	5,670		96.1	2.6	0.0	1.3	0.0	100				
Richmond	5,737	51,272	0	7,355	0	64,364		8.9	79.7	0.0	11.4	0.0	100				
Surrey	93,639	9,983	0	22,507	0	126,130		74.2	7.9	0.0	17.8	0.0	100				
Vancouver	61,290	236,061	ō	49,641	Ō	346,991		17.7	68.0	0.0	14.3	0.0	100				
West Vancouver	7,472	158	õ	8,103	ō	15,733		47.5	1.0	0,0	51.5	0.0	100				
White Rock	276	8,684	õ	4	õ	8,964		3.1	96.9	0.0	0.0	0.0	100				
Elect A (U.E.L.)	0	3,349	õ	0	0	3,349		0.0	100.0	0.0	0.0	0.0	100				
			0	664	ő	1,289		47.5		0.0	51.5	0.0	100				
Elect C (Bowen)	612	13	-		-	1,209		47.5	1.0	0.0	01.5	0.0	100				
TOTAL	478 468	380 639	0	251 206	0												

TOTAL

100.0 100.0 100.0 100.0 100.0 100.0

New Westminster	13,083	353	0	14,583	0	28,018	46.7	1.3	0.0	52.0	0.0
N, Van, (City)	4,897	104	0	5,171	0	10,173	48.1	1.0	0.0	50.8	0.0
N. Van. (District)	35,280	748	0	37,872	0	73,900	47.7	1.0	0.0	51.2	0.0
Pitt Meadows	3,681	94	0	46	0	3,821	96.3	2.5	0.0	1.2	0.0
Port Coquittam	17,205	464	0	226	0	17,895	96.1	2.6	0.0	1.3	0.0
Port Moody	5,451	147	0	71	0	5,670	96.1	2.6	0.0	1.3	0.0
Richmond	5,737	51,272	0	7,355	0	64,364	8.9	79.7	0.0	11.4	0.0
Surrey	93,639	9,983	0	22,507	0	126,130	74.2	7.9	0.0	17.8	0.0
Vancouver	61,290	236,061	0	49,641	0	346,991	17.7	68.0	0.0	14.3	0.0
West Vancouver	7,472	158	0	8,103	0	15,733	47.5	1.0	0.0	51.5	0.0
White Rock	278	8,684	0	4	0	8,964	3.1	96.9	0.0	0.0	0.0
Elect A (U.E.L.)	0	3,349	0	0	0	3,349	0.0	100.0	0.0	0.0	0.0
Elect C (Bowen)	612	13	0	664	0	1,289	47.5	1.0	0.0	51.5	0.0
TOTAL:	478,468	380,639	0	251,206	0						

PHYSICAL CONSTANTS & DATA FROM LITERATURE:		
Global Warming Potential of CH ₄ =	21	
Global Warming Potential of N ₂ O=	310	
Molecular mass of methane (CH ₄)=	16	g/mol
Molecular mass of carbon (C)=	12	g/mol
Molecular mass of carbon dioxide (CO ₂)=	44	g/mol
Molecular mass of nitrous oxide (N ₂ O)=	44	g/mol
Molecular mass of nitrogen in nitrous oxide (N ₂ O-N)=	28	g/mol
Molecular mass of ammonia (NH₃)≐	17	g/mol
Molecular mass of nitrogen in ammonia (NH3-N)=	14	g/mol
Molecular mass of nitric oxide (NO)=	30	g/mol
Molecular mass of nitrogen in nitric oxide (NO-N)=	14	g/mol
Latent heat of water=	2,473	kJ/kg
Fraction of anaerobically decomposed carbon to be CH ₄ =	50	%
CO ₂ emission from natural gas combustion	1.88	kgCO ₂ /m ³
Energy of natural gas (typically) =	37,843	kJ/m ³
GHG emission from diesel fuel combustion=	2.854	kgCO₂e/L
GHG emission from diesel fuel combustion≈	0.076	1CO2e/106BTU
GHG emission from propane combustion=	1.530	kgCO ₂ e/L

DATA FOR THE CACHE CREEK LANDFILL:

	В	EST-GUES	S	LOW-ESTIMATE			HIGH-ESTIMATE			
	Oxidation	Oxidation					Oxidation			
	by Cover	% LFG	% LFG	by Cover	% LFG	% LFG	by Cover	% LFG	% LFG	
YEAR	Material	Flared	Energy	Material	Fiared	Energy	Material	Flared	Energy	
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	
1998	•	-	-	· ·	•	•	•	-	•	
1999	10	43	0	15	43	0	5	43	0	
2000	10	50	0	15	50	0	5	50	0	
2001	10	50	10	15	50	10	5	50	0	
2002	10	50	15	15	55	15	5	50	0	
2003	10	45	20	15	55	20	5	50	0	
2004	10	40	25	15	50	25	5	55	0	
2005	10	35	35	15	40	35	5	55	0	

2006	10	30	40	15	35	40	5	55	5	
2007	10	25	50	15	25	50	5	55	5	i i
2008	10	25	50	15	30	50	5	50	10	i i
2009	10	20	55	15	25	55	5	50	10	i i
2010	10	20	55	15	25	55	5	50	10	i i
2011	10	15	60	15	20	60	5	45	15	i i
2012	10	15	60	15	20	60	5	45	15	i i
2013	10	10	65	15	15	65	5	45	15	Ĺ.
2014	10	10	65	15	15	65	5	40	20	Ĺ
2015	10	5	70	15	10	70	5	40	20	į –
2016	10	5	70	15	10	70	5	35	25	ĺ –
2017	10	0	75	15	0	85	5	35	25	i i
2018	10	0	75	15	0	85	5	35	25	i i

DATA FOR THE VANCOUVER LANDFILL:

	В	EST-GUES	S	LO	W-ESTIM/	TE	HIGH-ESTIMATE		
	Oxidation			Oxidation			Oxidation		
	by Cover	% LFG	% LFG	by Cover	% LFG	% LFG	by Cover	% LFG	% LFG
YEAR	Material	 Flared 	Energy	Material	Flared	Energy	Material	Flared	Energy
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1998	•	•	•	-	-	•	-	-	-
1999	10	22	0	15	22	0	5	22	0
2000	10	30	0	15	35	0	5	30	0
2001	10	35	10	15	40	10	5	35	0
2002	10	40	15	15	45	15	5	40	0
2003	10	45	20	15	55	20	5	50	0
2004	10	40	25	15	50	25	5	55	0
2005	10	30	40	15	40	35	5	55	0
2006	10	30	40	15	35	40	5	55	5
2007	10	25	50	15	25	50	5	55	5
2008	10	25	50	15	30	50	5	50	10
2009	10	20	55	15	25	55	5	50	10
2010	10	20	55	15	25	55	5	50	10
2011	10	15	60	15	20	60	5	45	15
2012	10	15	60	15	20	60	5	45	15
2013	10	10	65	15	15	65	5	45	15
2014	10	10	65	15	15	65	5	40	20
2015	10	5	70	15	10	70	5	40	20
2016	10	5	70	15	10	70	5	35	25
2017	10	0	75	15	0	85	5	35	25
2018	10	0	75	15	0	85	5	35	25

DATA FOR A FUTURE LANDFILL:

	В	EST-GUES	s	LO	W-ESTIMA	\TE	HIGH-ESTIMATE			
	Oxidation			Oxidation			Oxidation			
	by Cover	% LFG	% LFG	by Cover	% LFG	% LFG	by Cover	% LFG	% LFG	
YEAR	Material	Flared	Energy	Material	Flared	Energy	Material	Flared	Energy	
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	
1998	•	•	•	•	•	•	-	•	• •	
1999	10	43	0	15	43	0	5	43	0	
2000	10	50	0	15	50	0	5	50	0	
2001	10	50	10	15	50	10	5	50	0	
2002	10	50	15	15	55	15	5	50	0	
2003	10	45	20	15	55	20	5	50	0	
2004	10	40	25	15	50	25	5	55	0	
2005	10	· 35	35	15	40	35	5	55	0	
2006	10	30	40	15	35	40	5	55	5	
2007	10	25	50	15	25	50	5	55	5	
2008	10	25	50	15	30	50	5	50	10	
2009	10	20	55	15	25	55	5	50	10	
2010	10	20	55	15	25	55	5	50	10	
2011	10	15	60	15	20	60	5	45	15	
2012	10	15	60	15	20	60	5	45	15	
2013	10	10	65	15	15	65	5	45	15	
2014	10	10	65	15	15	65	5	40	20	
2015	10	5	70	15	10	70	5	40	20	
2016	10	5	70	15	10	70	5	35	25	
2017	10	0	75	15	0	85	5	35	25	
2018	10	0	75	15	0	85	5	35	25	

DATA & CALCULATIONS FOR THE BURNABY INCINERATOR: Mass of waste combusted (1998) = Fraction of steam sold to Crown Peperboard Fraction of steam to generate electricity in Turbogenerator= Thermal efficiency of a mass-field inclerator-boiler= Electric efficiency of a turbo-generator = 247,075 tonnes of MSW 56 % 0 % 70 % 32 % 80 % 0.0621 ICO2e/GJ 0.147 ICO2e/GJ Efficiency of natural gas combustion to generate steam= Emission factor for natural gas consumption at Crown= Burrard Thermal Emission Average for Electricity Generation= Best-guess estimate of fraction of waste-nitrogen emitted as N2O= 1.7 %N₂O/waste-nitrogen Low estimate of fraction of waste-nitrogen emitted as N_2O= High estimate of fraction of waste-nitrogen emitted as N_2O= 0.3 %N₂O/waste-nitrogen 3.1 %N₂O/waste-nitrogen Ammonia injected into flue gases (1998) = 295 tonnes NH₃ Best-guess estimate immediate N₂O emission from NH₃= Low estimate immediate N₂O emission from NH₃= 0.0081 ICO2e/tonne 0.0014 ICO2e/Ionne High estimate immediate N2O emission from NH3= 0.015 tCO2e/lonne 1.0 %N2O/emitted NH3 or NOx Best-Guess Estimate of the N2O from vented nitrogen# Low Estimate of the N₂O from vented nitrogene High Estimate of the N₂O from vented nitrogene Nitrogen oxide (NO_x) emission (1998) = 0.2 %N₂O/emitted NH₃ or NO_X 2.0 %N₂O/emitted NH₃ or NO_X 449 tonnes NO Best-guess estimate for future N2O conversion of NOx= 0.0041 ICO2e/tonne 0.0008 tCO2e/tonne Low estimate for future N2O conversion of NOX= High estimate for future N2O conversion of NOx= 0.0083 ICO2e/tonne Natural gas consumption (1998)= 7516 GJ

	CO₂ emission from natural gas consumption=	0.0015	1CO2e/tonne
	8C Hydro electricity consumption (1998)=	16011	MMA
	Provincial average of BC Hydro emission intensity=		tCO ₂ e/GWh
	CO₂ emission from electricity consumption [∞]	0.0019	ICO2e/lonne
	Lime consumption (1998)=	3369	tonnes CaO
	GHG emission from Industrial CaO (lime) production≃		tCO ₂ e/tonne CaO
	GHG emission from Incinerator lime consumption=	0.011	tCO2e/tonne
	DATA & CALCULATIONS FOR A FUTURE INCINERATOR	२ .	
	Mass of waste combusted (1998) =	247,075	tonnes of MSW
	Fraction of steam sold to Crown Paperboard=	56	% %
	Fraction of steam to generate electricity in Turbogenerator= Thermal efficiency of a mass-fired incinerator-boller=	70	
	Electric efficiency of a turbo-generator =	88	%
	Efficiency of natural gas combustion to generate steam=	. 80	%
	Emission factor for natural gas consumption at Crown=		ICO2e/GJ
	Burrard Thermal Emission Average for Electricity Generation=	0.147	tCO2e/GJ
	Best-guess estimate of fraction of waste-nitrogen emitted as $N_2O=$		%N ₂ O/waste-nitrogen
	Low estimate of fraction of waste-nitrogen emitted as N ₂ O=		%N ₂ O/waste-nitrogen
	High estimate of fraction of waste-nitrogen emitted as N ₂ O=	3.1	%N ₂ O/waste-nitrogen
	Ammonia injected into flue gases (1998) =		tonnes NH ₃
	Best-guess estimate immediate N₂O emission from NH₃≃		ICO2e/tonne
	Low estimate immediate N₂O emission from NH₃= High estimate immediate N₂O emission from NH₃=		ICO2e/tonne ICO2e/tonne
		0.010	2
	Best-Guess Estimate of the N ₂ O from vented nitrogene		%N ₂ O/emitted NH ₃ or NO _X
	Low Estimate of the N ₂ O from vented nitrogen= High Estimate of the N ₂ O from vented nitrogen=		%N ₂ O/emitted NH ₃ or NO _X %N ₂ O/emitted NH ₃ or NO _X
	Nitrogen oxide (NO _x) emission (1998) =		tonnes NO
	Best-guess estimate for future N₂O conversion of NO _X ∞	0.0041	ICO2e/tonne
	Low estimate for future N ₂ O conversion of NO _X =		ICO2e/lonne
	High estimate for future N ₂ O conversion of NO _x =	0.0083	ICO2e/tonne
	Natural gas consumption (1998)=	7516	GJ
	CO ₂ emission from natural gas consumption#	0.0015	tCO2e/tonne
	BC Hydro electricity consumption (1998)=	16011	MWh
	Provincial average of BC Hydro emission intensity=		tCO ₂ e/GWh
	CO ₂ emission from electricity consumption=	0.0019	ICO2e/tonne
	Lime consumption (1998)=	3369	tonnes CaO
	GHG emission from industrial CaO (lime) production=		tCO ₂ e/tonne CaO
	GHG emission from Incinerator lime consumption=	0.011	ICO ₂ e/lonne
	WASTE DELIVERED TO THE COQUITLAM TRANSFER STATION		
1	Diesel Fuel Consumption by Transfer Station Equipment: Diesel fuel consumption by equipment (1998)=	279,495	1
	Mass of waste managed (1998)=	319,651	
	GHG emission from equipment =	0.0025	tCO2e/tonne
2	Diesel Fuel Consumption for Transport to the Cache Creek Landfill:		
	Diesel fuel consumption per trip (only one way)= # of round trips in 1998=	200	L trips
	Mass of waste transported (1998)=	303,608	
	Average mass of waste transported=		tonnes/trip
	GHG emission from waste transport =	0.015	ICO ₂ e/tonne
-			
3	Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption during disposal (1998)=	812.499	
	Mass collected during this consumption (1998)=	474,873	-
	GHG emission from waste collection =		tCO _z e/tonne
4	Diesel Fuel Consumption for Transport to the Vancouver Landfill:		
	Diesel fuel consumption per trip (round-trip)= # of round trips in 1998=	45	
	Mass of waste transported (1998)=		trips tonnes
	Average mass of waste transported =		tonnes/trip
	GHG emission from waste transport =	0.0053	tCO2e/tonne
5	Diesel Fuel Consumption by Equipment at the Vancouver Landfill:		
	Diesel fuel consumption during disposal (1998)= Mass collected during this consumption (1998)=	479,000 379,554	
	GHG emission from waste collection =		tCO ₂ e/tonne
6	Diesel Fuel Consumption for Transport to a Future Landfill:		
	Diesel fuel consumption per trip (round-trip)=		L
	# of round trips in 1998=		trips
	Mass of waste transported (1998)= Average mass of waste transported =		tonnes lonnes/trip
	GHG emission from waste transport =		ICO2e/lonne
7	Diesel Fuel Consumption by Equipment at a Future Landfill:		
	Diesel fuel consumption during disposal (1998)=		L
	Mass collected during this consumption (1998)= GHG emission from waste collection =		tonnes tCO2e/tonne

.

.

8	Diesel Fuel Consumption for Transport to the Burnaby Incinerator:		
	Diesel fuel consumption per round trip=	23	L
	# of round trips in 1998=		trips
	Mass of waste transported (1998)=		tonnes
	Average mass of waste transported= GHG emission from waste transport =		tonnes/trip tCO2e/tonne
			•
9	Diesel Fuel Consumption for Transport to a Future Incinerator:		
	Diesel fuel consumption per round trip=	0	L
	# of round trips in 1998=		trips
	Mass of waste transported (1998)=		tonnes
	Average mass of waste transported= GHG emission from waste transport =		tonnes/trip tCO ₂ e/tonne
		0.0000	
	Total for Waste Disposed at the Cache Creek Landfill=	0.0226	tCO2e/tonne
	Total for Waste Disposed at the Vancouver Landfilt≐	0.0114	1CO2e/tonne
	Total for Waste Disposed at a Future Landfill=	0.0025	ICOze/Ionne
	Total for Waste Disposed at the Burnaby Incinerator=		1CO2e/tonne
	Total for Waste Disposed at a Future Incinerator=	0.0025	ICO2e/Ionne
1	WASTE DELIVERED TO THE NORTH SHORE TRANSFER STATIO Diesel Fuel Consumption by Transfer Station Equipment:	N	
	Diesel fuel consumption by equipment (1998)=	87,918	L
	Mass of waste managed (1998)=	194,755	
	GHG emission from equipment =	0.0013	ICO _z e/tonne
2	Diesel Fuel Consumption for Transport to the Cache Creek Landfill:		
2	Diesel fuel consumption per trip (only one way)=	215	
	# of round trips in 1998=	2,283	
	•	82,930	tonnes
	Average mass of waste transported≂	36.3	tonnes/trip
	GHG emission from waste transport =	0.017	tCO2e/tonne
•	Discol Fuel Consumption by Equipment of the Cooks Creek Londfills		
3	Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption during disposal (1998)=	812,499	
	Mass collected during this consumption (1998)=	474,873	
	GHG emission from waste collection =		tCO ₂ e/tonne
4	Diesel Fuel Consumption for Transport to the Vancouver Landfill:		
	Diesel fuel consumption per trip (round-trip)=	45	
	# of round trips in 1998=		trips
	Mass of waste transported (1998)= Average mass of waste transported =		tonnes tonnes/trip
	GHG emission from waste transport =		tCO2e/tonne
5	Diesel Fuel Consumption by Equipment at the Vancouver Landfill:		
	Diesel fuel consumption during disposal (1998)=	479,000	
	Mass collected during this consumption (1998)= GHG emission from waste collection =	379,554	tCO _z e/tonne
		0.00000	
6	Diesel Fuel Consumption for Transport to a Future Landfill:		
	Dieset fuel consumption per trip (round-trip)=	0	L
	# of round trips in 1998=	1	trips
	Mass of waste transported (1998)=		tonnes
	Average mass of waste transported =		tonnes/trip tCO2e/tonne
	GHG emission from waste transport =	0.0000	10020101110
7	Diesel Fuel Consumption by Equipment at a Future Landfill:		
	Diesel fuel consumption during disposal (1998)=	0	L
	Mass collected during this consumption (1998)=		tonnes
	GHG emission from waste collection =	0,0000	tCO _z e/tonne
8	Diesel Fuel Consumption for Transport to the Burnaby Incinerator:		
0	Diesel fuel consumption per round tripe	23	L
	# of round trips in 1998=		trips
	Mass of waste transported (1998)=	89,942	tonnes
	Average mass of waste transported=		tonnes/trip
	GHG emission from waste transport =	0.0026	ICO2e/lonne
9	Diesel Fuel Consumption for Transport to a Future Incinerator:		
÷	Diesel fuel consumption per round trip=	٥	L
	# of round trips in 1998=		trips
	Mass of waste transported (1998)=		tonnes
	Average mass of waste transported=		lonnes/trip
	GHG emission from waste transport =	0.0000	ICO2e/tonne
	Talal (as Masta Diseased at the Origin Origin Land/**	0.000	100-0#0777
	Total for Waste Disposed at the Cache Creek Landfill=		ICO ₂ e/tonne ICO ₂ e/tonne
	Total for Waste Disposed at the Vancouver Landfäl≃ Total for Waste Disposed at a Future Landfäl≏		tCO ₂ e/tonne
	Total for Waste Disposed at a Future Lancine Total for Waste Disposed at the Burnaby Incinerator		tCO2e/tonne
	Total for Waste Disposed at a Future Incinerator=	0.0013	tCO2e/tonne

-

1	WASTE DELIVERED TO THE VANCOUVER TRANSFER STATION		
	Diesel Fuel Consumption by Transfer Station Equipment: Dieset fuel consumption by equipment (1998)=	87,650	1
	Mass of waste managed (1998)=	273,691	
	GHG emission from equipment =		tCO2e/tonne
_			
2	Diesel Fuel Consumption for Transport to the Cache Creek Landfill:	215	
	Diesel fuel consumption per trip (only one way)= # of round trips in 1998=	215	
	Mass of waste transported (1998)=		tonnes
	Average mass of waste transported=		tonnes/trip
	GHG emission from waste transport =	0.017	ICO ₂ e/tonne
	Disard Engl Operation has Englished at the Operate Operation of the		
3	Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption during disposal (1998)=	812,499	
	Mass collected during this consumption (1998)=	474,873	
	GHG emission from waste collection =		tCO2e/tonne
4	Diesel Fuel Consumption for Transport to the Vancouver Landfill:		
	Total diesel fuel consumption = # of round trips in 1998=	334,000 12500	
	# of round trips in 1990= Mass of waste transported (1998)=	287,931	-
	Average mass of waste transported =		tonnes/trip
	Average fuel consumption per trip =	26.7	L/trip
	GHG emission from waste transport =	0.0033	ICO2e/Ionne
5	Disset Evel Consumption by Equipment at the Vencewar Landfills		
5	Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel fuel consumption during disposal (1998)=	479,000	L
	Mass collected during this consumption (1998)=	379,554	
	GHG emission from waste collection =		ICO2e/tonne
6	Diesel Fuel Consumption for Transport to a Future Landfill:		
	Total diesel fuel consumption = # of round trips in 1998=		L trips
	Mass of waste transported (1998)=		tonnes
	Average mass of waste transported =		tonnes/trip
	Average fuel consumption per trip =		L/trip
	GHG emission from waste transport =	0.0000	ICO ₂ e/tonne
7	Diesel Fuel Consumption by Equipment at a Future Landfill:		
'	Diesel fuel consumption by Equipment at a Future Landait.	0	L
	Mass collected during this consumption (1998)=		tonnes
	GHG emission from waste collection =	0.0000	ICO2e/tonne
	Dissel Fuel Consumption for Tennenget to the Durneby Incidentian		
8	Diesel Fuel Consumption for Transport to the Burnaby Incinerator: Tonnes hauled per trip =	20	tonnes/trip
	Distance per trip =		km
	Diesel Fuel Consumption =		L/100 km
	GHG emission =	0.0014	ICO _z e/tonne
9	Diesel Fuel Consumption for Transport to a Future Incinerator:		
-	Tonnes hauled per trip =	1	tonnes/trip
	Distance per trip =	0	km
	Diesel Fuel Consumption =		L/100 km
	GHG emission =	0.0000	ICO ₂ e/tonne
	Total for Waste Disposed at the Cache Creek Landfilt=	0 0227	ICO2e/tonne
	Total for Waste Disposed at the Vancouver Landfilt=		ICO ₂ e/tonne
	Total for Waste Disposed at a Future Landfill=		ICO2e/tonne
	Total for Waste Disposed at the Burnaby Incinerator=		CO2e/tonne
	Total for Waste Disposed at a Future Incinerator=	0.0009	ICO2e/tonne
	WASTE DELIVERED TO THE MATSQUI TRANSFER STATION		
1 '	Diesel Fuel Consumption by Transfer Station Equipment:		
	Diesel fuel consumption by equipment (1998)=	33,280	L
	Mass of waste managed (1998)=	75,850	tonnes
	GHG emission from equipment =	0.0013	1CO ₂ e/lonne
2	Diesel Fuel Consumption for Transport to the Cache Creek Landfill:		
2	Diesel fuel consumption per trip (only one way)=	185	L
	# of round trips in 1998=	2,104	
	Mass of waste transported (1998)≈	73,169	tonnes
	Average mass of waste transported=		tonnes/trip
	GHG emission from waste transport =	0.015	1CO2e/lonne
3	Diesel Fuel Consumption by Equipment at the Cache Creek Landfill:		
5	Diesel fuel consumption by Equipment at the Cache Creek Landini. Diesel fuel consumption during disposal (1998)=	812,499	L
	Mass collected during this consumption (1998)=	474,873	
	GHG emission from waste collection =	0.0049	tCO2e/tonne
	Discut Cost Operation for Taxa and the Manager of 197		
4	Diesel Fuel Consumption for Transport to the Vancouver Landfill:	30	tonnes/trip
	Tonnes hauled per trip = Distance per trip =	130	
	Diesel Fuel Consumption =		L/100 km
	GHG emission =	0.0083	ICO2e/lanne

•

5		
•	Diesel Fuel Consumption by Equipment at the Vancouver Landfill:	
	Dieset fuel consumption during disposal (1998)=	479,000 L
	Mass collected during this consumption (1998)= GHG emission from waste collection =	379,554 tonnes 0.0036 tCO ₂ e/tonne
	GHG emission from waste collection =	0.0036 10026/101116
6	Diesel Fuel Consumption for Transport to a Future Landfill:	
	Total diesel fuel consumption =	0 L
	# of round trips in 1998=	1 trips
	Mass of waste transported (1998)=	1 tonnes
	Average mass of waste transported =	1.0 tonnes/trip
	Average fuel consumption per trip =	0.0 L/trip
	GHG emission from waste transport =	0.0000 ICO2e/Ionne
7	Diesel Fuel Consumption by Equipment at a Future Landfill:	
•	Diesel fuel consumption during disposal (1998)=	0 L
	Mass collected during this consumption (1998)=	1 tonnes
	GHG emission from waste collection =	0.0000 tCO2e/tonne
8	Diesel Fuel Consumption for Transport to the Burnaby Incinerator:	
0	Tonnes hauled per trip =	20 tonnes/trip
	Distance per trip =	120 km
	Diesel Fuel Consumption =	45.0 L/100 km
	GHG emission =	0.0077 tCO2e/tonne
9	Diesel Fuel Consumption for Transport to a Future Incinerator:	
	Tonnes hauted per trip =	1 tonnes/trip
	Distance per trip =	0 km
	Diesel Fuel Consumption =	45.0 L/100 km 0.0000 ICO ₂ e/lonne
	GHG emission =	0.0000 100ge/tonne
	Total for Waste Disposed at the Cache Creek Landfill=	0.0213 ICO2e/lonne
	Total for Waste Disposed at the Vancouver Landfill=	0.0132 ICOze/tonne
	Total for Waste Disposed at a Future Landfill=	0.0013 ICO-e/lonne
	Total for Waste Disposed at the Burnaby Incinerator=	0.0090 ICO2e/tonne
	Total for Waste Disposed at a Future Incinerator=	0.0013 ICOze/tonne
	WASTE DELIVERED TO THE LANGLEY TRANSFER STATION	
1	Diesel Fuel Consumption by Transfer Station Equipment:	
	Average GHG emission from equipment =	0.0015 ICO2e/tonne
2	Diesel Fuel Consumption for Transport to the Cache Creek Landfill:	
٤.	Transfer to the Matsqui Transfer Station	
	Tonnes hauled per trip =	20 tonnes/trip
	Distance per trip =	40 km
	Diesel Fuel Consumption =	45.0 L/100 km
	GHG emission =	0.0026 tCO2e/tonne
	Processing at the Matsqui Transfer Station	
	Diesel fuel consumption by equipment (1998)=	33,280 L
	Mass of waste managed (1998)=	
		75,850 tonnes
	GHG emission from equipment ≈	75,850 tonnes 0.0013 tCO ₂ e/tonne
	GHG emission from equipment #	
	GHG emission from equipment ≈ Transfer to the Cache Creek Landfill	0.0013 tCO ₂ e/tonne
	GHG emission from equipment ≈ Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (onty one way)=	0.0013 tCO ₂ e/lonne 185 L
	GHG emission from equipment ⇒ Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998=	0.0013 1CO ₂ e/tonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip
	GHG emission from equipment ⇒ Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (onty one way)= # of round trips in 1998= Mass of waste transported (1998)=	0.0013 1CO ₂ e/tonne 185 L 2,104 trips 73,169 tonnes
	GHG emission from equipment ⇒ Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mass of waste transported (1998)= Average mass of waste transported= GHG emission from waste transport =	0.0013 1CO ₂ e/tonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip
3	GHG emission from equipment ■ Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (onty one way)= # of round trips in 1998= Mass of waste transported (1998)= Average mass of waste transported= GHG emission from waste transport = Diesel Fuel Consumption by Equipment at the Cache Creek Landfill:	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne
3	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mass of waste transported (1998)= Average mass of waste transported= GHG emission from waste transport = Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel Fuel consumption during disposal (1998)=	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0,015 ICO ₂ e/lonne 812,499 L
3	GHG emission from equipment ⇒ Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mass of waste transported (1998)= Average mass of waste transported= GHG emission from waste transport = Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel Fuel consumption during disposal (1998)= Mass collected during this consumption (1998)=	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes
3	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mass of waste transported (1998)= Average mass of waste transported= GHG emission from waste transport = Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel Fuel consumption during disposal (1998)=	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0,015 ICO ₂ e/lonne 812,499 L
3	GHG emission from equipment ⇒ Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mass of waste transported (1998)= Average mass of waste transported= GHG emission from waste transport = Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel Fuel consumption during disposal (1998)= Mass collected during this consumption (1998)=	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes
	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (onty one way)= # of round trips in 1998= Mass of waste transported (1998)= Average mass of waste transported= GHG emission from waste transport = Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption turing disposal (1998)= Mass collected during this consumption (1998)= GHG emission from waste collection =	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes
	GHG emission from equipment ⇒ Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported= GHG emission from waste transport = Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption during disposal (1998)= Mess collected during this consumption (1998)= GHG emission from waste collection = Diesel Fuel Consumption for Transport to the Vancouver Landfill:	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km
	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (onty one way)= # of round trips in 1998= Mass of waste transported (1998)= Average mass of waste transported= GHG emission from waste transport = Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption during disposal (1998)= Mass collected during this consumption (1998)= GHG emission from waste collection = Diesel Fuel Consumption for Transport to the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption =	0.0013 ICO ₂ e/lonne 185 L 2.104 trips 73.169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812.499 L 474.873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 45.0 L/100 km
	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mass of waste transported (1998)= Average mass of waste transported= GHG emission from waste transport = Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel Fuel Consumption for Transport to the Vancouver Landfill: Tonnes hauled per trip = Distance per trip =	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km
4	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported= GHG emission from waste transport = Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption during disposal (1998)= Mess collected during this consumption (1998)= GHG emission from waste collection = Diesel Fuel Consumption for Transport to the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption = GHG emission =	0.0013 ICO ₂ e/lonne 185 L 2.104 trips 73.169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812.499 L 474.873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 45.0 L/100 km
	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported= GHG emission from waste transported= GHG emission from waste transport = Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel Fuel Consumption for Transport to the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption = GHG emission = Diesel Fuel Consumption by Equipment at the Vancouver Landfill:	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 45.0 L/100 km 0.0055 ICO ₂ e/lonne
4	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported= GHG emission from waste transported= Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption for Transport to the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption = GHG emission = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Tonnes hauled per trip = Diesel fuel Consumption = GHG emission =	0.0013 ICO ₂ e/lonne 185 L 2.104 trips 73.169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812.499 L 474.873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 45.0 L/100 km 0.0055 ICO ₂ e/lonne 479.000 L
4	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported= GHG emission from waste transported= GHG emission from waste transported= Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption during disposal (1998)= Mess collected during this consumption (1998)= GHG emission from waste collection = Diesel Fuel Consumption for Transport to the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption = GHG emission = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel fuel consumption during disposal (1998)= Mess collected during this consumption (1998)= Mess coll	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 0.0055 ICO ₂ e/lonne 479,000 L 379,554 tonnes
4	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported= GHG emission from waste transported= Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption for Transport to the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption = GHG emission = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Tonnes hauled per trip = Diesel fuel Consumption = GHG emission =	0.0013 ICO ₂ e/lonne 185 L 2.104 trips 73.169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812.499 L 474.873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 45.0 L/100 km 0.0055 ICO ₂ e/lonne 479.000 L
4	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported= GHG emission from waste transported= GHG emission from waste transported= Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption during disposal (1998)= Mess collected during this consumption (1998)= GHG emission from waste collection = Diesel Fuel Consumption for Transport to the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption = GHG emission = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel fuel consumption during disposal (1998)= Mess collected during this consumption (1998)= Mess coll	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 0.0055 ICO ₂ e/lonne 479,000 L 379,554 tonnes
4	GHG emission from equipment ⇒ Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mass of waste transported (1998)= Average mass of waste transported= GHG emission from waste transport= Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption during disposal (1998)= GHG emission from waste collection = Diesel Fuel Consumption for Transport to the Vancouver Landfill: Tonnes hauted per trip = Diesel Fuel Consumption = GHG emission = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel Fuel Consumption for Transport to the Vancouver Landfill: Tonnes hauted per trip = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel Fuel Consumption for Transport to the Vancouver Landfill: GHG emission = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel Fuel Consumption for Transport (1998)= GHG emission from waste collection ≈	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 0.0055 ICO ₂ e/lonne 479,000 L 379,554 tonnes
4	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported= GHG emission from waste transported= Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption for Transport to the Vancouver Landfill: Tonnes hauted per trip = Diesel Fuel Consumption = GHG emission = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Tonnes hauted per trip = Diesel Fuel Consumption for Transport to the Vancouver Landfill: Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel Fuel Consumption for Transport to 1998)= GHG emission = Diesel Fuel Consumption for Transport to a Latture Landfill: Diesel Fuel Consumption for Transport to the Vancouver Landfill: Diesel Fuel Consumption for Transport to the Vancouver Landfill: Diesel Fuel Consumption for Transport to the Vancouver Landfill: Diesel Fuel Consumption for Transport to the Vancouver Landfill: Diesel Fuel Consumption for Transport to a Future Landfill: Diesel Fuel Consumption for Transport to a Future Landfill: Diesel Fuel Consumption for Transport to a Future Landfill:	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 4.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 45.0 L/100 km 0.0055 ICO ₂ e/lonne 479,000 L 379,554 tonnes 0.0036 ICO ₂ e/lonne
4	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported= GHG emission from waste transported= GHG emission from waste transported= Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption during disposal (1998)= Mess collected during this consumption (1998)= GHG emission from waste collection = Diesel Fuel Consumption for Transport to the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel fuel consumption by Equipment at the Vancouver Landfill: Diesel fuel consumption for Transport to a Future Landfill: Diesel fuel consumption for Transport to a Future Landfill: Tonse hauled per trip = Diesel Fuel Consumption for Transport to a Future Landfill: Diesel fuel consumption for Transport to a Future Landfill: Diesel Fuel Consumption for Transport to a Future Landfill: Diesel Fuel Consumption for Transport to a Future Landfill: Diesel Fuel Consumption for Transport to a Future Landfill: Diesel Fuel Consumption for Transport to a Future Landfill: Total diesel fuel consumption =	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 0.0055 ICO ₂ e/lonne 479,000 L 379,554 tonnes 0.0036 ICO ₂ e/tonne 0 L
4	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported= GHG emission from waste transported= Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption during disposal (1998)= GHG emission from waste collection = Diesel Fuel Consumption for Transport to the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption per trip = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Tonnes hauled per trip = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel Fuel Consumption for Transport to a Future Landfill: Diesel Fuel Consumption for Transport to a Future Landfill: Total diesel fuel consumption = # of round trips in 1998=	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 45.0 L/100 km 0.0055 ICO ₂ e/lonne 479,000 L 379,554 tonnes 0.0036 ICO ₂ e/lonne
4	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported= GHG emission from waste transported= GHG emission from waste transported= Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption for Transport to the Vancouver Landfill: Tonnes haufed per trip = Diesel Fuel Consumption on the Vancouver Landfill: Tonnes haufed per trip = Diesel Fuel Consumption = GHG emission = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel fuel consumption for Transport to the Vancouver Landfill: Diesel fuel consumption for Transport to the Vancouver Landfill: Diesel fuel consumption for Transport to the Vancouver Landfill: Diesel fuel consumption for Transport to a future Landfill: Diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport for	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 45.0 L/100 km 0.0055 ICO ₂ e/lonne 479,000 L 379,554 tonnes 0.0036 ICO ₂ e/lonne 0 L 1 trips 1 tonnes/trip 0.0 L/trip
4	GHG emission from equipment = Transfer to the Cache Creek Landfill Diesel fuel consumption per trip (only one way)= # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported= GHG emission from waste transported= GHG emission from waste transported= Diesel Fuel Consumption by Equipment at the Cache Creek Landfill: Diesel fuel consumption during disposal (1998)= Mess collected during this consumption (1998)= GHG emission from waste collection = Diesel Fuel Consumption for Transport to the Vancouver Landfill: Tonnes hauted per trip = Diesel Fuel Consumption of Transport to the Vancouver Landfill: Tonnes hauted per trip = Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel Fuel Consumption by Equipment at the Vancouver Landfill: Diesel fuel consumption for Transport to a the Vancouver Landfill: Diesel fuel consumption for Transport to a Future Landfill: Diesel fuel consumption for Transport to a Future Landfill: Diesel fuel consumption for Transport to a Future Landfill: Diesel Fuel Consumption for Transport to a Future Landfill: Diesel Fuel Consumption for Transport to a Future Landfill: Diesel Fuel Consumption for Transport to a Future Landfill: Diesel Fuel Consumption for Transport to a Future Landfill: Total diesel fuel consumption for Transport to a Future Landfill: Total diesel fuel consumption = # of round trips in 1998= Mess of waste transported (1998)= Average mass of waste transported [1998]=	0.0013 ICO ₂ e/lonne 185 L 2,104 trips 73,169 tonnes 34.8 tonnes/trip 0.015 ICO ₂ e/lonne 812,499 L 474,873 tonnes 0.0049 ICO ₂ e/lonne 20 tonnes/trip 85 km 4.50 L/100 km 0.0035 ICO ₂ e/lonne 479,000 L 379,554 tonnes 0.0036 ICO ₂ e/lonne 0 L 1 trips 1 tonnes 1.0 tonnes/trip

7	Diesel Fuel Consumption by Equipment at a Future Landfill:	
	Diesel fuel consumption during disposal (1998)≠	0 L
	Mass collected during this consumption (1998)= GHG emission from waste collection =	1 tonnes 0.0000 tCO _z e/lonne
8	Diesel Fuel Consumption for Transport to the Burnaby Incinerato	
	Tonnes hauled per trip = Distance per trip =	20 tonnes/trip 90 km
	Distance per trip =	45.0 L/100 km
	GHG emission =	0.0058 tCO2e/tonne
9	Diesel Fuel Consumption for Transport to a Future Incinerator: Tonnes hauled per trip =	1 tonnes/trip
	Distance per trip =	0 km
	Diesel Fuel Consumption =	45.0 L/100 km
	GHG emission =	0.0000 ICO2e/tonne
	Total for Waste Disposed at the Cache Creek Landfill=	0.0254 ICO2e/lonne
	Total for Waste Disposed at the Vancouver Landfill=	0.0106 ICOze/lonne
	Total for Waste Disposed at a Future Landfill≃	0.0015 ICO2e/lonne
	Total for Waste Disposed at the Burnaby Incinerator=	0.0073 tCO2e/tonne
	Total for Waste Disposed at a Future Incinerator≖	0.0015 ICOze/Ionne
	WASTE DELIVERED TO THE MAPLE RIDGE TRANSFER STA	TION
1	Diesel Fuel Consumption by Transfer Station Equipment: Average GHG emission from equipment =	0.0015 ICO ₂ e/lonne
	nice ago on lo enhalon nom equipment =	0.0010 (002e/tolline
2	Diesel Fuel Consumption for Transport to the Cache Creek Land	ifili:
	Transfer to the Matsqui Transfer Station	30 krassovicia
	Tonnes hauled per trip = Distance per trip =	20 tonnes/trip 60 km
	Dissel Fuel Consumption =	45.0 L/100 km
	GHG emission =	0.0039 ICO2e/Ionne
	Processing at the Matsqui Transfer Station	
	Diesel fuel consumption by equipment (1998)	33,280 L
	Mass of waste managed (1998)=	75,850 tonnes
	GHG emission from equipment =	0.0013 ICO2e/Ionne
	Transfer to the Cache Creek Landfill	
	Diesel fuel consumption per trip (only one way)=	185 L
	# of round trips in 1998#	2,104 trips
	Mass of waste transported (1998)= Average mass of waste transported=	73,169 tonnes 34.8 tonnes/trip
	GHG emission from waste transported=	0.015 tCO ₂ e/tonne
3	Diesel Fuel Consumption by Equipment at the Cache Creek Lan	
	Diesel fuet consumption during disposal (1998)= Mass collected during this consumption (1998)=	812,499 L 474,873 tonnes
	GHG emission from waste collection =	0.0049 tCOze/tonne
4	Diesel Fuel Consumption for Transport to the Vancouver Landfill Tennes hauled per trip =	20 tonnes/trip
	Distance per trip =	110 km
	Diesel Fuel Consumption =	45.0 L/100 km
	GHG emission =	0.0071 ICO2e/Ionne
5	Diesel Fuel Consumption by Equipment at the Vancouver Landfi	III:
	Diesel fuel consumption during disposal (1998)*	479,000 L
	Mass collected during this consumption (1998)=	379,554 tonnes
	GHG emission from waste collection =	0.0036 ICO2e/lonne
6	Diesel Fuel Consumption for Transport to a Future Landfill:	
	Total diesel fuel consumption =	0 L
	# of round trips in 1998=	1 trips
	Mass of waste transported (1998)≃ Average mass of waste transported ≃	1 tonnes 1.0 tonnes/trip
	Average fuel consumption per trip =	0.0 L/trip
	GHG emission from waste transport =	0.0000 ICO ₂ e/tonne
-	Discol Fuel Oceanization by Factor and the Factor in 1999	
7	Diesel Fuel Consumption by Equipment at a Future Landfill: Diesel fuel consumption during disposal (1998)=	0 L
	Mass collected during this consumption (1998)=	1 tonnes
	GHG emission from waste collection =	0.0000 ICO2e/Ionne
8	Diesel Fuel Consumption for Transport to the Burnaby Incinerato	or:
	Tonnes hauled per trip =	20 tonnes/trip
	Distance per trip =	75 km
	Diesel Fuel Consumption =	45.0 L/100 km
9	Diesel Fuel Consumption = GHG emission = Diesel Fuel Consumption for Transport to a Future Incinerator:	45.0 L/100 km 0.0048 (CO ₂ e/ionne
9	Diesel Fuel Consumption = GHG emission =	45.0 L/100 km

Diesel Fuel Consumption =	45.0 L/100 km
GHG emission =	0.0000 ICO2e/tonne
Total for Waste Disposed at the Cache Creek Landfill=	0.0267 ICO2e/tonne
Total for Waste Disposed at the Vancouver Landfill=	0.0122 ICO2e/Ionne
Total for Waste Disposed at a Future Landfill=	0.0015 ICO2e/lonne
Total for Waste Disposed at the Burnaby Incinerator=	0.0063 1CO2e/tonne
Total for Waste Disposed at a Future Incinerator=	0.0015 ICO2e/tonne
RECYCLING EQUIPMENT	
Diesel Fuel Consumption by Equipment at Recycling Facilities:	
Propane fuel consumption during processing (1998)=	0.45 L/tonne recyclables
GHG emission from waste collection =	0.0007 ICOze/Ionne

CENTRALIZED COMPOSTING EQUIPMENT Diesel Fuel Consumption by Equipment at Composting Facilities: Diesel fuel consumption composting= GHG emission from waste collection =

221,000 BTU/short ton of yard trimmings 0.019 (CO₂e/tonne

CITY OF ABBOTSFORD:

.

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	4,737	585	84,687	56	7	113,375	6342	783	7125
Mixed Paper	5,782	3,291	84,687			113,375			
Office Paper	809	461	84,687	10	5	113,375	1084	617	1701
Ferrous Metal	493	1,899	84,687	6	22	113,375	660	2542	3202
Glass	1,081	528	84,687	13	6	113,375	1447	707	2154
HDPE	297	222	84,687	4	3	113,375	398	297	695
Mixed Plastics	2,084	1,333	84,687			113,375			
LDPE	938	600	84,687	11	7	113,375	1255	803	2059
Food Waste	3,110	2,146	84,687	37	25	113,375	4164	2873	7036
Yard Waste	2,537	791	84,687	30	9	113,375	3396	1059	4455
Total ICI waste	generated in 1	998=	55,397	tonnes					
Total ICI waste	recycled in 19	98=	21,797	tonnes					
ICI Recycling Ra	te=		39	%					

ICI Recycling Rate= 8,947

of backyard composters =

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	Residential	ICI [Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Composting	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(lonnes)	(tonnes)
Newsprint	6,342	783	3,104			308	3,412		1
Mixed Paper			553						
Office Paper	1,084	617	77			243	320		
Metal			202						
Ferrous Metal	660	2,542	101			1,000	1,101		
Glass	1,447	707	318			278	596		
Plastics			119						
HDPE	398	297	39			117	156		
LDPE	1,255	803	39			316	355		
Food Waste	4,164	2,873		743	0	1,130		743	1,130
Yard Waste	3,396	1,059		1,494	3,780	417		1,494	4,197

Total waste disposed in 1998= Total waste recycled in 1998=

48,949 tonnes 34,959 tonnes

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to BurInc	to FutInc	CCLF	VLF	FulLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	7125	3,412	3,713	99.9	0.0	0.0	0.0	0.0	3,710	2	0	1	0
Office Paper	1701	320	1,380	99.9	0.0	0.0	0.0	0.0	1,380	1	0	0	0
Ferrous Metal	3202	1,101	2,101	99.9	0.0	0.0	0.0	0.0	2,100	1	0	0	0
Glass	2154	596	1,558	99.9	0.0	0.0	0.0	0.0	1,557	1	0	0	0
HDPE	695	156	539	99.9	0.0	0.0	0.0	0.0	538	0	0	0	0
LDPE	2059	355	1,703	99.9	0.0	0.0	0.0	0.0	1,702	1	0	0	0
Food Waste	7036	1,873	5,163	99.9	0.0	0.0	0.0	0.0	5,160	2	0	1	0
Yard Waste	4455	5,691	0	99.9	0.0	0.0	0.0	0.0	0	0	0	0	0
Remainder		21,454	32,792	99.9	0.0	0.0	0.0	0.0	32,772	13	0	7	0
								TOTAL=	48,919	20	0	10	0

EMISSION FACTORS:

1	Diesel Fuel Consumption for Curbside Waste Collection:
	Average GHG emission from waste collection =

2 Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG emission from waste collection =

3	Emission Factor for Waste Disposal:	
	All waste is assumed to be delivered to the Matsqui Transfer Station.	
	Waste Disposed at the Cache Creek Landfill=	0.0213
	Waste Disposed at the Vancouver Landfill=	0.0132
	Waste Disposed at a Future Landfill=	0.0013
	Waste Disposed at the Burnaby Incinerator=	0.0090
	Waste Disposed at a Future Incinerator=	0.0013

0.043 tCO2e/tonne

tCO2e/tonne tCO2e/tonne tCO2e/tonne tCO2e/tonne tCO₂e/tonne

CITY OF BURNABY:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Waste	esidenti	ICI	opulation o	Residential	ICI	opulation o	Residentia	ICI	Total
Material	eneratio	eneratio	Municipality	Generation	Generation	Municipality	Generatio	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	8,279	3,602	158,858	52	23	191,600	9985	4344	14330
Mixed Paper	13,025	19,112	158,858			191,600			0
Office Pap	1,824	2,676	158,858	11	17	191,600	2199	3227	5426
Ferrous Met	1,061	10,914	158,858	7	69	191,600	1280	13163	14443
Glass	2,069	2,979	158,858	13	19	191,600	2495	3593	6088
HDPE	690	1,213	158,858	4	8	191,600	832	1463	2295
Mixed Plasti	3,695	8,541	158,858			191,600			
LDPE	1,663	3,843	158,858	10	24	191,600	2005	4636	6641
Food Waste	5,451	11,116	158,858	34	70	191,600	6574	13407	19982
Yard Waste	5,433	4,261	158,858	34	27	191,600	6553	5139	11692

Total ICI waste generated in 1998=	164,172 tonnes
Total ICI waste recycled in 1998=	67,479 tonnes
ICI Recycling Rate=	41 %
# of backyard composters =	8,968

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	esidenti	101	Residential	Backyard	Centralize	ICI	Total	Backyard	Centralized
Material	eneratio	eneratio	Recycling	Compostin	Compostin	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	9,985	4,344	4,155			1,786	5,941		
Mixed Paper			3,959						
Office Pap	2,199	3,227	554		1	1,326	1,881		
Metal			829						
Ferrous M	1,280	13,163	415			5,411	5,825		
Glass	2,495	3,593	207			1,477	1,684		
Plastics			98						
HDPE	832	1,463	32			601	634		
LDPE	2,005	4,636	32			1,905	1,938		
Food Waste	6,574	13,407		744	0	5,511		744	5,511
Yard Waste	6,553	5,139		1,498	8,004	2,112		1,498	10,116

Total waste disposed in 1998≖ Total waste recycled in 1998≖ 129,089 tonnes 87,526 tonnes

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	% OF M _{DIS}	% OF M _{DIS}	% OF Moi	% OF M _{DIS}	Disposal	Disposa	Disposa	Disposa	Disposal
Material	eneratio	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burlnc	to Futinc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	14330	5,941	8,389	24.0	0.6	0.0	75.4	0.0	2,011	52	0	6,325	0
Office Paper	5426	1,881	3,546	24.0	0.6	0.0	75.4	0.0	850	22	0	2,674	0
Ferrous Met	14443	5,825	8,618	24.0	0.6	0.0	• 75.4	0.0	2,066	54	0	6,498	0
Glass	6088	1,684	4,405	24.0	0.6	0.0	75.4	0.0	1,056	28	0	3,321	0
HDPE	2295	634	1,662	24.0	0.6	0.0	75.4	0.0	398	10	0	1,253	0
LDPE	6641	1,938	4,703	24.0	0.6	0.0	75.4	0.0	1,128	29	0	3,546	0
Food Waste	19982	6,255	13,727	24.0	0.6	0.0	75.4	0.0	3,291	86	0	10,350	0
Yard Waste	11692	11,614	78	24.0	0.6	0.0	75.4	0.0	19	0	0	59	0
Remainder		51,755	83,962	24.0	0.6	0.0	75.4	0.0	20,130	524	0	63,308	0
				-				TOTAL=	30,949	806	0	97,334	0

EMISSION FACTORS:

1	Diesel Fuel Consumption for Curbside Waste Collection:		
	Diesel fuel consumption during collection (1998)=	156,000	L
	Mass collected during this consumption (1998)=	23,098	tonnes
	GHG emission from waste collection =	0.019	tCO2e/tonne

2 Diesel Fuel Consumption for Curbside Recyclables Collection: Diesel fuel consumption during collection (1998)= 134,000 L 8,437 tonnes 0.045 tCO₂e/tonne Mass collected during this consumption (1998)= GHG emission from waste collection =

3	Diesel Fuel Consumption for Curbside Yard Trimmings Co	llection:	
	Diesel fuel consumption during collection (1998)=	58,000	L
	Mass collected during this consumption (1998)=	6,798	tonnes
	GHG emission from waste collection =	0.024	tCO₂e/tonne

3 Emission Factor for Waste Disposal:

Most waste to the Burnaby Incinerator is directly delivered, however a portion is assumed to pass through the Coquitlam Transfer Station. This requires a correction of the emission factor for the Burnaby Incinerator. Waste disposed at the CCLF, the VLF, a Future LF or Future Incinerator is assumed to pass through the CTS.

Assumed Percentage of Waste Directly Delivered to the BI=	71 %
Assumed Percentage of Waste Transferred to the BI from CTS=	15 %
Assumed Percentage of Waste Transferred to the CCLF from the	14 %
Waste Disposed at the Cache Creek Landfill=	0.0226 tCO2e/tonne
Waste Disposed at the Vancouver Landfill=	0.0114 tCO2e/tonne
Waste Disposed at a Future Landfill=	0.0025 tCO2e/tonne
Waste Disposed at the Burnaby Incinerator=	0.0009 tCO2e/tonne
Waste Disposed at a Future Incinerator=	0.0025 tCO2e/tonne

CITY OF COQUITLAM:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total	
Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation	
1991	1991	1991	per capita	per capita	1998	1998	1998	1998	
(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)	
5,138	794	84,021	61	9	110,423	6753	1043	7796	
5,724	3,902	84,021			110,423				
801	546	84,021	10	7	110,423	1053	718	1771	
597	2,332	84,021	7	28	110,423	785	3065	3849	
1,674	691	84,021	20	8	110,423	2200	908	3108	
315	330	84,021	4	4	110,423	414	434	848	
2,087	1,613	84,021		19	110,423		2120		
939	726	84,021	11	9	110,423	1234	954	2188	
3,061	2,146	84,021	36	26	110,423	4023	2820	6843	
2,902	791	84,021	35	9	110,423	3814	1040	4853	
generated in	1998=	80 849	tonnes						
	Generation 1991 (tonnes) 5,138 5,724 801 597 1,674 315 2,087 939 3,061 2,902	Generation Generation 1991 1991 (tonnes) (tonnes) 5,138 794 5,724 3,902 801 546 597 2,332 1,674 691 315 330 2,087 1,613 939 726 3,061 2,146	Generation Generation Municipality 1991 1991 1991 (tonnes) (tonnes) 1991 5,138 794 84,021 5,724 3,902 84,021 801 546 84,021 1,674 691 84,021 315 330 84,021 2,087 1,613 84,021 3,061 2,146 84,021 2,902 791 84,021	Generation Generation Municipality Generation 1991 1991 1991 per capita (tonnes) (tonnes) (kg/cap*yr) 5,138 794 84,021 61 5,724 3,902 84,021 10 597 2,332 84,021 7 1,674 691 84,021 20 315 330 84,021 4 939 726 84,021 11 3,061 2,146 84,021 36 2,902 791 84,021 35	Generation Generation Municipality Generation Generatin Generatin Generat	Generation 1991 Generation 1991 Municipality 1991 Generation 1991 Generation per capita (kg/cap*yr) Generation per capita (kg/cap*yr) Municipality 1998 (tonnes) (tonnes) (kg/cap*yr) (kg/cap*yr) 1998 5,138 794 84,021 61 9 110,423 5,724 3,902 84,021 10 7 110,423 801 546 84,021 10 7 110,423 597 2,332 84,021 20 8 110,423 315 330 84,021 20 8 110,423 3,051 3,661 2,146 84,021 19 110,423 3,061 2,146 84,021 35 9 110,423 3,061 2,146 84,021 35 9 110,423	Generation Generation Municipality Generation Generation Municipality Generation Municipality Generation Municipality Generation 1998 1978 10073	Generation Generation Municipality Generation Gener	Generation 1991 Generation 1991 Municipality 1991 Generation 1991 Municipality 1991 Generation 1991 Generation 1991 Generation 1998 Generation 10423 Tri 10423 Tri 10423 Generation 1998 Generation 1998 Generation 1998 Generation 1998 Generation 1998 Generation 1998 Tri 1043 Tri 1043 Generation 1998 Generation 1998 Generation 1998 Generation 1998 Generation 1998 Generation 1993 Tri 1040 Gener

lotal ICI waste generated in 1998=	80,849 tonnes	
Total ICI waste recycled in 1998=	17,949 tonnes	
ICI Recycling Rate=	22 %	
# of backyard composters =	3,491	

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	Residential	ICI	Residential	Backyard	Centralized	ICI	Total	Backyard	entralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	omposting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	6,753	1,043	2,605			232	2,837		
Mixed Paper			1,960		1				
Office Paper	1,053	718	274			159	434		
Metal			199						
Ferrous Metal	785	3,065	100		1	680	780		
Glass	2,200	908	636		1	202	838		
Plastics			222						
HDPE	414	434	73			96	170		
LDPE	1,234	954	73			212	285		
Food Waste	4,023	2,820		290	0	626		290	626
Yard Waste	3,814	1,040		583	3,252	231		583	3,483

Total waste disposed in 1998= Total waste recycled in 1998=

GHG emission =

```
94,003 tonnes
27,816 tonnes
```

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Totał	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burlnc	to Futinc	CCLF	VLF	FutLF	Burinc	Futinc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	7796	2,837	4,959	96.1	2.6	0.0	1.3	0.0	4,764	129	0	67	0
Office Paper	1771	434	1,337	96.1	2.6	0.0	1.3	0.0	1,285	35	0	18	0
Ferrous Metal	3849	780	3,069	96.1	2.6	0.0	1.3	0.0	2,949	80	0	41	0
Glass	3108	838	2,271	96.1	2.6	0.0	1.3	0.0	2,181	59	0	30	0
HDPE	848	170	678	96.1	2.6	0.0	1.3	0.0	651	18	0	9	0
LDPE	2188	285	1,903	96.1	2.6	0.0	1.3	0.0	1,828	49	0	26	0
Food Waste	6843	916	5,927	96.1	2.6	0.0	1.3	0.0	5,694	154	0	80	0
Yard Waste	4853	4,066 .	788	96.1	2.6	0.0	1.3	0.0	757	20	0	11	0
Remainder		17,492	73,070	96.1	2.6	0.0	1.3	0.0	70,196	1,893	0	981	0
				-				TOTAL=	90,305	2,436	0	1,262	0

.

1	Diesel Fuel Consumption for Curbside Waste Collection: Average GHG emission from waste collection =	0.014 tCO _z e/tonne
2	Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG emission from waste collection =	0.043 tCO₂e/tonne
3	Diesel Fuel Consumption for Curbside Yard Trimmings Collection:	
	Average GHG emission from waste collection =	0.027 tCO₂e/tonne
4	Emission Factor for Waste Disposal:	
	All waste is assumed to be delivered to the Coquitlam Transfer Station.	
	Waste Disposed at the Cache Creek Landfill=	0.0226 tCO2e/tonne
	Waste Disposed at the Vancouver Landfill=	0.0114 tCO2e/tonne
	Waste Disposed at a Future Landfill=	0.0025 tCOze/tonne
	Waste Disposed at the Burnaby Incinerator=	0.0054 tCO2e/tonne
	Waste Disposed at a Future Incinerator=	0.0025 tCO2e/tonne
5	Diesel Fuel Consumption for Yard Trimmings Transport to Fraser-Richmond	d BioCycle:
	Tonnes hauled per trip =	20 tonnes/trip
	Distance per trip =	60 km
	Diesel Fuel Consumption =	45.0 L/100 km

0.004 tCO2e/tonne

ι.

CORPORATION OF DELTA:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION ($\rm M_{GEN}$):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	5,987	1,010	88,978	67	11	101,018	6797	1147	7944
Mixed Paper	6,138	6,090	88,978			101,018			0
Office Paper	859	853	88,978	10	10	101,018	976	968	1944
Ferrous Metal	770	3,366	88,978	9	38	101,018	874	3821	4696
Glass	1,680	898	88,978	19	10	101,018	1907	1020	2927
HDPE	306	302	88,978	3	3	101,018	347	343	690
Mixed Plastics	2,037	2,571	88,978			101,018			
LDPE	917	1,157	88,978	10	13	101,018	1041	1314	2354
Food Waste	2,981	3,118	88,978	34	35	101,018	3384	3540	6924
Yard Waste	3,554	1,247	88,978	40	14	101,018	4035	1416	5451
Total ICI waste	generated in	1998=	35,704	tonnes					
Total ICI waste	recycled in 1	1998=	11,843	tonnes					
ICI Recycling R	ate=		33	%					
#			0 575						

.

Total ICI waste recycled in 1998= ICI Recycling Rate= # of backyard composters =

MASS OF WASTE RECYCLED (M_{REC}) & COMPOSTED (M_{COM}):

Waste	Residential	ICI (Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Composting	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	6,797	1,147	2,251			380	2,631		
Mixed Paper			2,170						
Office Paper	976	968	304			321	625		
Metal			583						
Ferrous Metal	874	3,821	292			1,268	1,559		
Glass	1,907	1,020	824			338	1,162		
Plastics			322						
HDPE	347	343	106			114	220		
LDPE	1,041	1,314	106			436	542		
Food Waste	3,384	3,540		795	0	1,174		795	1,174
Yard Waste	4,035	1,416		1,599	2,800	470		1,599	3,270

Total waste disposed in 1998= Total waste recycled in 1998=

```
69,104 tonnes
24,254 tonnes
```

9,575

MASS OF WASTE DISPOSED (MDis):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burinc	to Futinc	CCLF	VLF	FutLF	Burinc	Futinc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	7944	2,631	5,312	5.5	94.4	0.0	0.1	0.0	294	5,015	0	4	0
Office Paper	1944	625	1,319	5.5	94.4	0.0	0.1	0.0	73	1,245	0	1	0
Ferrous Metal	4696	1,559	3,137	5.5	94.4	0.0	0.1	0.0	173	2,961	0	2	0
Glass	2927	1,162	1,765	5.5	94.4	0.0	0.1	0.0	98	1,666	0	1	0
HDPE	690	220	470	5.5	94.4	0.0	0,1	0.0	26	444	0	0	0
LDPE	2354	542	1,812	5.5	94.4	0.0	0.1	0.0	100	1,711	0	1	0
Food Waste	6924	1,969	4,955	5.5	94.4	0.0	0.1	0.0	274	4,678	0	4	0
Yard Waste	5451	4,869	582	5.5	94.4	0.0	0.1	0.0	32	549	0	0	0
Remainder		10,677	49,752	5.5	94.4	0.0	0.1	0.0	2,750	46,965	0	36	0
				-				TOTAL=	3,820	65,234	0	50	0

L tonnes tCO2e/tonne

L tonnes tCO2e/tonne

tCO2e/tonne

1	Diesel Fuel Consumption for Curbside Waste Collection:	
	Diesel fuel consumption during collection (1998)=	134,000
	Mass collected during this consumption (1998)=	67,110
	GHG emission from waste collection =	0.006
2	Diesel Fuel Consumption for Curbside Recyclables Collection:	
	Average GHG emission from waste collection =	0.043
3	Diesel Fuel Consumption for Curbside Yard Trimmings Collection:	
	Diesel fuel consumption during collection (1998)≃	23,075
	Mass collected during this consumption (1998)=	2,227
	GHG emission from waste collection =	0.030
4	Emission Factor for Waste Disposal:	
	Waste is directly delivered to the VLF and the BI.	
	Emission factors are only for the CCLF, FutLF and FutInc which all go through the CTS.	

Emission factors are only for the CCLF, FutLF and Futling which all go through	the CIS.
Waste Disposed at the Cache Creek Landfill=	0.0226 tCO2e/tonne
Waste Disposed at the Vancouver Landfill=	0.0000 tCO2e/tonne
Waste Disposed at a Future Landfill≈	0.0025 tCO2e/tonne
Waste Disposed at the Burnaby Incinerator=	0.0000 tCO2e/tonne
Waste Disposed at a Future Incinerator=	0.0025 tCO2e/tonne

CITY OF LANGLEY:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION ($\rm M_{GEN}$):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	838	217	19,765	42	11	24,094	1022	265	1286
Mixed Paper	1,502	1,168	19,765			24,094			
Office Paper	210	164	19,765	11	8	24,094	256	199	456
Ferrous Metal	115	735	19,765	6	37	24,094	140	896	1036
Glass	238	185	19,765	12	9	24,094	290	226	516
HDPE	74	78	19,765	4	4	24,094	90	95	185
Mixed Plastics	507	505	19,765			24,094			
LDPE	228	227	19,765	12	11	24,094	278	277	555
Food Waste	753	740	19,765	38	37	24,094	918	902	1820
Yard Waste	779	266	19,765	39	13	24,094	950	324	1274
Total ICI waste	generated in 1	998=	18,835	tonnes					
Total ICI waste	recycled in 19	98=	5,530	tonnes					
ICI Recycling Ra	ite=		29	%					
# of backyard c	omposters =		465						

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	Residential	ICI	Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	1,022	265	539			78	617		
Mixed Paper			351						
Office Paper	256	199	49			59	108		
Metal			37						
Ferrous Metal	140	896	19			263	282		
Glass	290	226	117			66	183		
Plastics			41						
HDPE	90	95	14			28	41		
LDPE	278	277	14			81	95		
Food Waste	918	902		39	0	265		39	265
Yard Waste	950	324		78	40	95		78	135

13,995 tonnes 7,209 tonnes

Total waste disposed in 1998= Total waste recycled in 1998=

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burinc	to Futinc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	1286	617	669	97.2	1.9	0.0	0.9	0.0	651	13	0	6	0
Office Paper	456	108	348	97.2	1.9	0.0	0.9	0.0	338	7	0	3	0
Ferrous Metal	1036	282	755	97.2	1.9	0.0	0.9	0.0	734	14	0	7	0
Glass	516	183	332	97.2	1.9	0.0	0,9	0.0	323	6	0	3	0
HDPE	185	41	144	97.2	1.9	0.0	0.9	0.0	140	3	0	1	0
LDPE	555	95	460	97.2	1.9	0.0	0.9	0.0	447	9	0	4	0
Food Waste	1820	303	1,517	97.2	1.9	0.0	0.9	0.0	1,474	28	0	14	0
Yard Waste	1274	213	1,061	97.2	1.9	0.0	0.9	0.0	1,032	20	0	10	0
Remainder		5,367	8,709	97.2	1.9	0.0	0.9	0.0	8,467	163	0	79	0
				-				TOTAL=	13,606	262	0	127	0

- 1 Diesel Fuel Consumption for Curbside Waste Collection: Average GHG emission from waste collection = 2 Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG emission from waste collection =
- 3 Diesel Fuel Consumption for Curbside Yard Trimmings Collection:

Average GHG emission from waste collection =

4 Emission Factor for Waste Disposal: All waste is assumed to be delivered to the Coquitlam Transfer Station. Waste Disposed at the Cache Creek Landfill= Waste Disposed at the Vancouver Landfill= Waste Disposed at a Future Landfill= Waste Disposed at the Burnaby Incinerator= Waste Disposed at a Future Incinerator=

0.014 tCO2e/tonne

0.043 tCO2e/tonne

0.027 tCO2e/tonne

0.0226 tCO2e/tonne 0.0114 tCO2e/tonne 0.0025 tCO2e/tonne 0.0054 tCO2e/tonne 0.0025 tCO2e/tonne

TOWNSHIP OF LANGLEY:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	3,697	728	66,040	56	11	87,595	4904	966	5869
Mixed Paper	4,680	3,911	66,040			87,595			
Office Paper	655	548	66,040	10	8	87,595	869	726	1595
Ferrous Metal	522	2,462	66,040	8	37	87,595	692	3266	3958
Glass	997	618	66,040	15	9	87,595	1322	820	2142
HDPE	263	262	66,040	4	4	87,595	349	348	696
Mixed Plastics	1,749	1,691	66,040			87,595			
LDPE	787	761	66,040	12	12	87,595	1044	1009	2053
Food Waste	2,540	2,479	66,040	38	38	87,595	3369	3288	6657
Yard Waste	2,456	889	66,040	37	13	87,595	3258	1179	4437
Total ICI waste g	enerated in 19	998=	34,277	tonnes					
Total ICI waste r	ecycled in 199	8=	17,516	tonnes					
ICI Recycling Rat	e=		51	%					
# of backyard co	mposters =		4,311						

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	Residential	ICI	Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	4,904	966	2,607			493	3,100		
Mixed Paper			565						
Office Paper	869	726	79			371	450		
Metal			391						
Ferrous Metal	692	3,266	196			1,669	1,864		
Glass	1,322	820	652			419	1,071		
Plastics			130						
HDPE	349	348	43			178	220		
LDPE	1,044	1,009	43			516	559		
Food Waste	3,369	3,288		358	0	1,680		358	1,680
Yard Waste	3,258	1,179		720	34	603		720	637

Total waste disposed in 1998≃ Total waste recycled in 1998=

```
27,521 tonnes
23,604 tonnes
```

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	% OF Mois	Disposal	Disposal	Disposal	Disposal	Disposal			
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burinc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	5869	3,100	2,769	77.4	0.7	0.0	22.0	0.0	2,142	18	0	609	0
Office Paper	1595	450	1,145	77.4	0.7	0.0	22.0	0.0	886	8	0	252	0
Ferrous Metal	3958	1,864	2,094	77.4	0.7	0.0	22.0	0.0	1,620	14	0	460	0
Glass	2142	1,071	1,071	77.4	0.7	0.0	22.0	0.0	829	7	0	235	0
HDPE	696	220	476	77.4	0.7	0.0	22.0	0.0	368	3	0	105	0
LDPE	2053	559	1,495	77.4	0.7	0.0	22.0	0.0	1,156	10	0	329	0
Food Waste	6657	2,038	4,619	77.4	0.7	0.0	22.0	0.0	3,573	31	0	1,015	0
Yard Waste	4437	1,357	3,080	77.4	0.7	0.0	22.0	0.0	2,383	20	0	677	0
Remainder		12,944	10,772	77.4	0.7	0.0	22.0	0.0	8,333	71	0	2,368	0
				•				TOTAL=	21,289	182	0	6,050	0

1	Diesel Fuel Consumption for Curbside Waste Collection: Average GHG emission from waste collection =	0.014 tCO ₂ e/tonne
2	Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG emission from waste collection =	0.043 tCO ₂ e/tonne
3	Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG emission from waste collection =	0.027 tCO ₂ e/tonne
4	Emission Factor for Waste Disposal: Waste to the CCLF is first delivered to the LTS and transferred to the MTS. Waste disposed at the VLF, FutLF or FutINC is transferred through the LTS. Waste disposed at the BI is directly delivered there (thus no emission factor below). Waste Disposed at the Cache Creek Landfill= Waste Disposed at the Vancouver Landfill= Waste Disposed at a Future Landfill= Waste Disposed at the Burnaby Incinerator= Waste Disposed at a Future Incinerator=	0.0254 tCO2e/lonne 0.0106 tCO2e/lonne 0.0015 tCO2e/lonne 0.0000 tCO2e/lonne 0.0015 tCO2e/lonne

Refer to City of Langley for recycling transportation issues.

DISTRICT OF MAPLE RIDGE:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

			000							
Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total	
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation	
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998	
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)	
Newsprint	2,524	391	48,422	52	8	60,987	3179	492	3671	
Mixed Paper	3,371	1,959	48,422			60,987				
Office Paper	472	274	48,422	10	6	60,987	594	345	940	
Ferrous Metal	580	1,173	48,422	12	24	60,987	731	1477	2208	
Glass	681	323	48,422	14	7	60,987	858	407	1265	
HOPE	176	147	48,422	4	3	60,987	222	185	407	
Mixed Plastics	1,192	765	48,422			60,987				
LDPE	536	344	48,422	11	7	60,987	676	434	1109	
Food Waste	1,736	1,440	48,422	36	30	60,987	2186	1814	4000	
Yard Waste	1,772	517	48,422	37	11	60,987	2232	651	2883	
Total ICI waste g	generated in	1998=	15,661	tonnes						

 Total ICI waste recycled in 1998=
 5,853 tonnes

 Total ICI waste recycled in 1998=
 5,853 tonnes

 ICI Recycling Rate=
 37 %

 # of backyard composters =
 4,100

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	Residential	ICI	Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Materiał	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	3,179	492	1,644			184	1,828		1
Mixed Paper			466						
Office Paper	594	345	65			129	194		
Metal			965						
Ferrous Metal	731	1,477	483		l l	552	1,035		1
Glass	858	407	333			152	485		
Plastics			25						1
HDPE	222	185	8			69	77		1
LDPE	676	434	8			162	170		
Food Waste	2,186	1,814		340	0	678		340	678
Yard Waste	2,232	651		685	1,049	243		685	1,292

Total waste disposed in 1998= Total waste recycled in 1998=

```
21,355 tonnes
14,992 tonnes
```

MASS OF WASTE DISPOSED (Mpis):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burinc	to FutInc	CCLF	VLF	FutLF	Burinc	Futinc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	3671	1,828	1,843	98.1	1.3	0.0	0.6	0.0	1,809	23	0	11	0
Office Paper	940	194	745	98.1	1.3	0.0	0.6	0.0	732	9	0	5	0
Ferrous Metal	2208	1,035	1,173	98.1	1.3	0.0	0.6	0.0	1,151	15	0	7	0
Glass	1265	485	779	98.1	1.3	0.0	0.6	0.0	765	10	0	5	0
HDPE	407	77	329	98.1	1.3	0.0	0.6	0.0	323	4	0	2	0
LDPE	1109	170	939	98.1	1.3	0.0	0.6	0.0	921	12	0	6	0
Food Waste	4000	1,018	2,982	98.1	1.3	0.0	0.6	0.0	2,926	37	0	18	0
Yard Waste	2883	1,977	906	98.1	1.3	0.0	0.6	. 0.0	889	11	0	6	0
Remainder		8,207	11,657	98.1	1.3	0.0	0.6	0.0	11,439	147	0	71	0
			-	-				TOTAL=	20,956	268	0	130	0

1 Diesel Fuel Consumption for Curbside Waste Collection: Average GHG emission from waste collection =

0.014 tCO2e/tonne

- 2 Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG emission from waste collection =
- 3 Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG emission from waste collection =
- 0.043 tCO₂e/tonne 0.027 tCO₂e/tonne
- 4
 Emission Factor for Waste Disposal: Waste to the CCLF is first delivered to the MRTS and transferred to the MTS. Waste disposed at the VLF, BI, FutLF or FutI is transferred through the CTS. Waste Disposed at the Cache Creek Landfill=
 0.0267 tCO₂e/tonne

 Waste Disposed at the Vancouver Landfill=
 0.0114 tCO₂e/tonne

 Waste Disposed at a Future Landfill=
 0.0025 tCO₂e/tonne

 Waste Disposed at the Burnaby Incinerator=
 0.0054 tCO₂e/tonne

 Waste Disposed at a Future Incinerator=
 0.0054 tCO₂e/tonne

 5
 Diesel Fuel Consumption for Yard Trimmings Transport to Fraser-Richmond BioCycle:

 Tonnes hauled per trip =
 20 tonnes/trlp

 Distance per trip =
 0 km

 Diesel Fuel Consumption =
 45.0 L/100 km

 GHG emission =
 0.000 tCO2e/tonne

CITY OF NEW WESTMINSTER:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	2,184	920	43,585	50	21	53,575	2685	1131	3815
Mixed Paper	3,050	5,346	43,585			53,575			
Office Paper	427	748	43,585	10	17	53,575	525	920	1445
Ferrous Metal	212	2,715	43,585	5	62	53,575	261	3337	3598
Glass	548	760	43,585	13	17	53,575	674	934	1608
HDPE	126	272	43,585	3	6	53,575	155	334	489
Mixed Plastics	917	2,041	43,585			53,575			
LDPE	413	918	43,585	9	21	53,575	507	1129	1636
Food Waste	1,391	2,826	43,585	32	65	53,575	1710	3474	5184
Yard Waste	2,018	1,140	43,585	46	26	53,575	2481	1401	3882
Total ICI waste	generated in '	1998=	36,117	tonnes					
Total ICI waste	recycled in 19	98=	13,972	tonnes					
ICI Recycling Ra	ite=		39	%					
# of backyard c	omposters =		2,200						

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	Residential	ICI	Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	2,685	1,131	1,176			437	1,613		
Mixed Paper			738						
Office Paper	525	920	103			356	459		
Metal		1	386						
Ferrous Metal	261	3,337	193			1,291	1,484		
Glass	674	934	29			361	390		
Plastics)	17						1
HDPE	155	334	6			129	135		
LDPE	507	1,129	6			437	442		ſ
Food Waste	1,710	3,474		183	0	1,344		183	1,344
Yard Waste	2,481	1,401		367	1,751	542		367	2,293

Total waste disposed in 1998= Total waste recycled in 1998= 28,018 tonnes 18,784 tonnes

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to BurInc	to FutInc	CCLF	VLF	FutLF	Burinc	Futinc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	3815	1,613	2,202	46.7	1.3	0.0	52.0	0.0	1,028	28	0	1,146	0
Office Paper	1445	459	986	46.7	1.3	0.0	52.0	0.0	460	12	0	513	0
Ferrous Metal	3598	1,484	2,114	46.7	1.3	0.0	52.0	0.0	987	27	0	1,100	0
Glass	1608	390	1,217	46.7	1.3	0.0	52.0	0.0	568	15	0	634	0
HDPE	489	135	354	46.7	1.3	0.0	52.0	0.0	165	4	0	184	0
LDPE	1636	442	1,194	46.7	1.3	0.0	52.0	0.0	557	15	0	621	0
Food Waste	5184	1,526	3,657	46.7	1.3	0.0	52.0	0.0	1,708	46	0	1,903	0
Yard Waste	3882	2,660	1,221	46.7	1.3	0.0	52.0	0.0	570	15	0	636	0
Remainder		10,073	15,073	46.7	1.3	0.0	52.0	0.0	7,038	190	0	7,845	0
				-				TOTAL=	13,083	353	0	14,583	0

1 Diesel Fuel Consumption for Curbside Waste Collection: Diesel fuel consumption during collection (1998)= Mass collected during this consumption (1998)= GHG emission from waste collection =

50,331 L 6,309 tonnes 0.023 tCO₂e/tonne

> 1,344 tonnes 0.052 tCO2e/tonne

24,604 L

2 Diesel Fuel Consumption for Curbside Recyclables Collection: Diesel fuel consumption during collection (1998)= Mass collected during this consumption (1998)= GHG emission from waste collection =

3	Emission Factor for Waste Disposal:	
	Waste to the CCLF, VLF, FutLF or FutI is transferred through the CTS,	
	Waste disposed at the BI is directly delivered there (thus no emission factor below).	
	Waste Disposed at the Cache Creek Landfill=	0.0226 tCO2e/tonne
	Waste Disposed at the Vancouver Landfill=	0.0114 tCO2e/tonne
	Waste Disposed at a Future Landfill=	0.0025 tCO2e/tonne
	Waste Disposed at the Burnaby Incinerator=	0.0000 tCO2e/tonne
	Waste Disposed at a Future Incinerator=	0.0025 tCO2e/tonne

 4
 Diesel Fuel Consumption for Yard Trimmings Transport to Fraser-Richmond BioCycle:

 Tonnes hauled per trip =
 20 tonnes/trip

 Distance per trip =
 40 km

 Diesel Fuel Consumption =
 45.0 L/100 km

 GHG emission =
 0.003 tCO2e/tonne

CITY OF NORTH VANCOUVER:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	2,572	495	38,436	67	13	44,428	2973	572	3545
Mixed Paper	2,483	2,698	38,436			44,428			
Office Paper	348	378	38,436	9	10	44,428	402	437	838
Ferrous Metal	230	1,472	38,436	6	38	44,428	266	1701	1967
Glass	736	428	38,436	19	11	44,428	851	495	1345
HDPE	118	177	38,436	3	5	44,428	136	205	341
Mixed Plastics	854	1,015	38,436			44,428			
LDPE	384	457	38,436	10	12	44,428	444	528	972
Food Waste	1,293	1,531	38,436	34	40	44,428	1495	1770	3264
Yard Waste	1,113	540	38,436	29	14	44,428	1287	624	1911
Total ICI waste	generated in	1998=	14,108	tonnes					
Total ICI waste	recycled in 19	998=	11,571	tonnes					

 Total ICI waste generated in 1998 14,105 (0)

 Total ICI waste recycled in 1998 11,571 (0)

 ICI Recycling Rate=
 82 %

 # of backyard composters =
 2,548

MASS OF WASTE RECYCLED (M_{REC}) & COMPOSTED (M_{COM}):

Waste	Residential	ICI [Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Composting	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	2,973	572	1,696			469	2,165		
Mixed Paper			547						
Office Paper	402	437	77			358	435		
Metal			62						
Ferrous Metal	266	1,701	31			1,396	1,427		
Glass	851	495	65			406	471		
Plastics			18						
HOPE	136	205	6			168	174		
LDPE	444	528	6			433	439		
Food Waste	1,495	1,770		211	0	1,451		211	1,451
Yard Waste	1,287	624		426	1,990	512		426	2,502

Total waste disposed in 1998≂ Total waste recycled in 1998=

```
10,173 tonnes
16,738 tonnes
```

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	% OF M _{OIS}	Disposal	Disposal	Disposal	Disposal	Disposal			
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burinc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	3545	2,165	1,380	48.1	1.0	0.0	50.8	0.0	664	14	0	701	0
Office Paper	838	435	404	48.1	1.0	0.0	50.8	0.0	194	4	0	205	0
Ferrous Metal	1967	1,427	541	48.1	1.0	0.0	50.8	0.0	260	6	0	275	0
Glass	1345	471	875	48.1	1.0	0.0	50.8	0.0	421	9	0	445	0
HDPE	341	174	167	48.1	1.0	0.0	50.8	0.0	81	2	0	85	0
LDPE	972	439	533	48.1	1.0	0.0	50.8	0.0	257	5	0	271	0
Food Waste	3264	1,663	1,601	48.1	1.0	0.0	50.8	0.0	771	16	0	814	0
Yard Waste	1911	2,927	0	48.1	1.0	0.0	50.8	0.0	0	0	0	0	0
Remainder		7,038	4,672	48.1	1.0	0.0	50.8	0.0	2,249	48	0	2,375	0
								TOTAL≖	4,897	104	0	5,171	0

~

1	Diesel Fuel Consumption for Curbside Waste Collection:	
	Diesel fuel consumption during collection (1999)=	16.257 L
	Mass collected during this consumption (1999)=	4,175 tonnes
	GHG emission from waste collection =	0.011 tCO ₂ e/tonne
2	Diesel Fuel Consumption for Curbside Recyclables Collection:	
	Diesel fuel consumption during collection (1999)=	10,020 L
	Mass collected during this consumption (1999)=	1,223 tonnes
	GHG emission from waste collection =	0.023 tCO2e/tonne
3	Diesel Fuel Consumption for Curbside Yard Trimmings Collection:	
	Diesel fuel consumption during collection (1999)=	10,020 L
	Mass collected during this consumption (1999)=	1,223 tonnes
	GHG emission from waste collection =	0.023 tCO2e/tonne
4	Emission Factor for Waste Disposal:	
	All waste through the NSTS.	
	Waste Disposed at the Cache Creek Landfill=	0.0231 tCO2e/tonne
	Waste Disposed at the Vancouver Landfill=	0.0101 tCO2e/tonne
	Waste Disposed at a Future Landfill=	0.0013 tCO2e/tonne
	Waste Disposed at the Burnaby Incinerator≃	0.0039 tCO2e/tonne
	Waste Disposed at a Future Incinerator=	0.0013 tCO2e/tonne
5	Diesel Fuel Consumption for Yard Trimmings Transport to Fraser-Richn	nond BioCycle:
	Tonnes hauted per trip =	20 tonnes/trip
	Distance per trin =	20 km

 Distance per trip =
 22 km

 Disasci Fuel Consumption =
 45.0 L/100 km

 GHG emission =
 0.001 ICO2e/Ionne

DISTRICT OF NORTH VANCOUVER:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION ($M_{\mbox{GEN}}$):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	5,391	961	75,157	72	13	85,292	6118	1091	7209
Mixed Paper	5,283	5,238	75,157			85,292			
Office Paper	740	733	75,157	10	10	85,292	839	832	1672
Ferrous Metal	483	2,857	75,157	6	38	85,292	548	3242	3790
Glass	1,313	831	75,157	17	11	85,292	1490	943	2433
HDPE	287	343	75,157	4	5	85,292	326	389	715
Mixed Plastics	1,761	1,970	75,157			85,292			
LDPE	792	887	75,157	11	12	85,292	899	1006	1905
Food Waste	2,575	2,973	75,157	34	40	85,292	2922	3374	6296
Yard Waste	2,984	1,048	75,157	40	14	85,292	3386	1189	4576
Total ICI waste	generated in	1998=	42.579	tonnes					
Total ICI waste	•			tonnes					

Total ICI waste recycled in 1998=	10,912 tonn
ICI Recycling Rate=	26 %
# of backyard composters =	7,972

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	Residential	ICI [Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	6,118	1,091	3,956			279	4,235		
Mixed Paper			1,350						
Office Paper	839	832	189			213	402		
Metal			131						
Ferrous Metal	548	3,242	66			831	896		
Glass	1,490	943	145			242	387		
Plastics			40						
HDPE	326	389	13			100	113		
LDPE	899	1,006	13			258	271		
Food Waste	2,922	3,374		662	0	865		662	865
Yard Waste	3,386	1,189		1,331	6,818	305		1,331	7,123

Total waste disposed in 1998= Total waste recycled in 1998=

73,900 tonnes 25,654 tonnes

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{ois}	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal			
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to BurInc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	7209	4,235	2,973	47.7	1.0	0.0	51.2	0.0	1,419	30	0	1,524	0
Office Paper	1672	402	1,269	47.7	1.0	0.0	51.2	0.0	606	13	0	650	0
Ferrous Metal	3790	896	2,894	47.7	1.0	0.0	51.2	0.0	1,382	29	0	1,483	0
Glass	2433	387	2,046	47.7	1.0	0.0	51.2	0.0	977	21	0	1,049	0
HDPE	715	113	602	47.7	1.0	0.0	51.2	0.0	287	6	0	309	0
LDPE	1905	271	1,634	47.7	1.0	0.0	51.2	0.0	780	17	0	838	0
Food Waste	6296	1,526	4,770	47.7	1.0	0.0	51.2	0.0	2,277	48	0	2,444	0
Yard Waste	4576	8,454	0	47.7	1.0	0.0	51.2	0.0	0	0	0	0	0
Remainder		9,369	57,711	47.7	1.0	0.0	51.2	0.0	27,551	584	0	29,576	0
								TOTAL=	35,280	748	0	37,872	0

1	Diesel Fuel Consumption for Curbside Waste Collection:	
	Average GHG emission from waste collection =	0.014 tCO ₂ e/tonne
2	Diesel Fuel Consumption for Curbside Recyclables Collection:	
	Average GHG emission from waste collection =	0.043 tCO ₂ e/tonne
3	Diesel Fuel Consumption for Curbside Yard Trimmings Collection:	
	Average GHG emission from waste collection =	0.027 tCO2e/tonne
4	Emission Factor for Waste Disposal:	
4	Emission Factor for Waste Disposal: All waste through the NSTS.	
4		0.0231 tCO₂e/tonne
4	All waste through the NSTS.	0.0231 tCO₂e/tonne 0.0101 tCO₂e/tonne
4	All waste through the NSTS. Waste Disposed at the Cache Creek Landfill=	· - · •
4	All waste through the NSTS. Waste Disposed at the Cache Creek Landfill= Waste Disposed at the Vancouver Landfill≂	0.0101 tCO2e/tonne

Refer to the City of North Vancouver for recycling transportation issues.

DISTRICT OF PITT MEADOWS:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material		Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	581	52	11,147	52	5	14,504	756	68	824
Mixed Paper	766	249	11,147			14,504			
Office Paper	107	35	11,147	10	3	14,504	140	45	185
Ferrous Metal	135	187	11,147	12	17	14,504	176	243	419
Glass	159	39	11,147	14	3	14,504	207	51	258
HDPE	40	19	11,147	4	2	14,504	52	25	77
Mixed Plastics	274	116	11,147			14,504			
LDPE	123	52	11,147	11	5	14,504	160	68	228
Food Waste	401	184	11,147	36	17	14,504	522	239	761
Yard Waste	395	64	11,147	35	6	14,504	514	83	597
Total ICI waste	generated in 1	998=	4,953	tonnes					
Total ICI waste i	ecycled in 199	98=	1,372	tonnes					
ICI Recycling Ra	te=		28	%					

ICI Recycling Rate= # of backyard composters =

MASS OF WASTE RECYCLED (M_{REC}) & COMPOSTED (M_{COM}):

Waste	Residential	ICI	Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	756	68	308			19	327		
Mixed Paper			298						
Office Paper	140	45	42			13	54		ł
Metal			9						
Ferrous Metal	176	243	5		ł	67	72		
Glass	207	51	12			14	26		
Plastics			3						
HDPE	52	25	1			7	8		
LDPE	160	68	1			19	20		[
Food Waste	522	239		53	0	66		53	66
Yard Waste	514	83		107	0	23		107	23

Total waste disposed in 1998= Total waste recycled in 1998=

```
3,821 tonnes
2,182 tonnes
```

640

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burinc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	824	327	497	96.3	2.5	0.0	1.2	0.0	479	12	0	6	0
Office Paper	185	54	131	96.3	2.5	0.0	1.2	0.0	126	3	0	2	0
Ferrous Metal	419	72	347	96.3	2.5	0.0	1.2	0.0	334	9	0	4	0
Glass	258	26	232	96.3	2.5	0.0	1.2	0.0	223	6	0	3	0
HDPE	77	8	69	96,3	2.5	0.0	1.2	0.0	66	2	0	1	0
LDPE	228	20	209	96.3	2.5	0.0	1.2	0.0	201	5	0	2	0
Food Waste	761	119	642	96.3	2.5	0.0	1.2	0.0	618	16	0	8	0
Yard Waste	597	130	467	96.3	2.5	0.0	1.2	0.0	450	12	0	6	0
Remainder		1,426	1,228	96.3	2.5	0.0	1.2	0.0	1,183	30	0	15	0
				-				TOTAL=	3,681	94	0	46	0

1	Diesel Fuel Consumption for Curbside Waste Collection:		
	Average GHG emission from waste collection ⇔	0.014	tCO₂e/tonne
2	Diesel Fuel Consumption for Curbside Recyclables Collection:		
	Average GHG emission from waste collection =	0.043	tCO₂e/tonne
3	Diesel Fuel Consumption for Curbside Yard Trimmings Collection:		
	Average GHG emission from waste collection =	0.027	tCO2e/tonne
4	Emission Factor for Waste Disposal:		
	All waste through the CTS.		
	Waste Disposed at the Cache Creek Landfill=	0.0226	tCO₂e/tonne
	Waste Disposed at the Vancouver Landfill=	0.0114	tCO2e/tonne
	Waste Disposed at a Future Landfill=	0.0025	tCO2e/tonne
	Waste Disposed at the Burnaby Incinerator=	0.0054	tCO₂e/tonne
	Waste Disposed at a Future Incinerator=	0.0025	tCO2e/tonne
5	Diesel Fuel Consumption for Yard Trimmings Transport to Fraser-Richmond Bio	Cycle:	
	Tonnes hauled per trip =		tonnes/trip
	Distance per trip =		km L/100 km
	Diesel Fuel Consumption ≕ GHG emission ≃		tCO ₂ e/tonne
		0.004	10020101110

CITY OF PORT COQUITLAM:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	1,470	653	36,773	40	18	39,823	1592	707	2299
Mixed Paper	3,105	3,600	36,773			39,823			
Office Paper	435	504	36,773	12	14	39,823	471	546	1017
Ferrous Metal	217	1,963	36,773	6	53	39,823	235	2126	2361
Glass	381	480	36,773	10	13	39,823	413	520	932
HDPE	156	155	36,773	4	4	39,823	169	168	337
Mixed Plastics	953	1,393	36,773			39,823			
LDPE	429	627	36,773	12	17	39,823	464	679	1143
Food Waste	1,393	1,501	36,773	38	41	39,823	1509	1625	3134
Yard Waste	1,619	600	36,773	44	16	39,823	1753	650	2403
Total ICI waste	generated in	1998=	13 038	tonnes					
Total ICI waste recycled in 1998=			6,036 tonnes						

Total ICI waste recycled in 1998=	6,036 tonn
ICI Recycling Rate=	46 %
# of backyard composters =	5,500

MASS OF WASTE RECYCLED (M_{REC}) & COMPOSTED (M_{COM}):

Waste	Residential	ICI [Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	1,592	707	832			327	1,159		
Mixed Paper			428						
Office Paper	471	546	60			253	313		
Metal			144						
Ferrous Metal	235	2,126	72			984	1,056		
Glass	413	520	192			241	433		
Plastics			51						
HDPE	169	168	17			78	95		1
LDPE	464	679	17			314	331		
Food Waste	1,509	1,625		457	0	753		457	753
Yard Waste	1,753	650		919	1,185	301		919	1,486

17,895 tonnes 10,540 tonnes

Total waste disposed in 1998≖ Total waste recycled in 1998=

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposa!				
Material	Generation	Recycling	j Disposal	to CCLF	to VLF	to FutLF	to Burinc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	2299	1,159	1,140	96.1	2.6	0.0	1.3	0.0	1,096	30	0	14	0
Office Paper	1017	313	704	96.1	2.6	0.0	1.3	0.0	677	18	0	9	0
Ferrous Metal	2361	1,056	1,305	96.1	2.6	0.0	1.3	0.0	1,254	34	0	16	0
Glass	932	433	500	96.1	2.6	0.0	1.3	0.0	481	13	0	6	0
HDPE	337	95	242	96.1	2.6	0.0	1.3	0.0	233	6	0	3	0
LDPE	1143	331	812	96.1	2.6	0.0	1.3	0.0	781	21	0	10	0
Food Waste	3134	1,209	1,925	96.1	2.6	0.0	1.3	0.0	1,851	50	0	24	0
Yard Waste	2403	2,404	0	96.1	2.6	0.0	1.3	0.0	0	0	0	0	0
Remainder		3,540	11,268	96.1	2.6	0.0	1.3	0.0	10,833	292	0	142	0
								TOTAL=	17,205	464	0	226	0

1	Diesel Fuel Consumption for Curbside Waste Collection: Average GHG emission from waste collection =	0.014 tCO ₂ e/tonne
2	Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG emission from waste collection =	0.043 tCO₂e/tonne
3	Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG emission from waste collection =	0.027 tCO ₂ e/tonne
4	Emission Factor for Waste Disposal: All waste through the CTS. Waste Disposed at the Cache Creek Landfill= Waste Disposed at the Vancouver Landfill= Waste Disposed at a Future Landfill= Waste Disposed at the Burnaby Incinerator= Waste Disposed at a Future Incinerator=	0.0226 ICO ₂ e/tonne 0.0114 ICO ₂ e/tonne 0.0025 ICO ₂ e/tonne 0.0054 ICO ₂ e/tonne 0.0025 ICO ₂ e/tonne

Refer to the City of Coquitlam for recycling transportation issues.

CITY OF PORT MOODY:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (MGEN):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	719	156	17,712	41	9	23,134	939	204	1143
Mixed Paper	1,495	967	17,712			23,134			
Office Paper	209	135	17,712	12	• 8	23,134	273	177	450
Ferrous Metal	102	519	17,712	6	29	23,134	133	678	811
Glass	195	146	17,712	11	8	23,134	255	191	445
HDPE	78	47	17,712	4	3	23,134	102	61	163
Mixed Plastics	368	391	17,712			23,134			
LDPE	166	176	17,712	9	10	23,134	216	230	446
Food Waste	542	471	17,712	31	27	23,134	708	615	1323
Yard Waste	1,293	183	17,712	73	10	23,134	1689	239	1928
Total ICI waste	generated in 1	998=	7,045	tonnes					
Total ICI waste	recycled in 19	98=	3,245	tonnes					
ICI Recycling Ra	te=		46	%					

ICI Recycling Rate= # of backyard composters =

MASS OF WASTE RECYCLED (M_{REC}) & COMPOSTED (M_{COM}):

Waste	Residential	ICI [Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	939	204	271			94	365		
Mixed Paper			512						
Office Paper	273	177	72		1	81	153		
Metal			99		1				
Ferrous Metal	133	678	50			312	362		
Glass	255	191	216			88	304		
Plastics			65						
HDPE	102	61	21			28	50		
LDPE	216	230	21			106	127		
Food Waste	708	615		0	0	283		0	283
Yard Waste	1,689	239		0	1,170	110		0	1,280

.

Total waste disposed in 1998= Total waste recycled in 1998=

0

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burinc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	1143	365	778	96.1	2.6	0.0	1.3	0.0	748	20	0	10	0
Office Paper	450	153	297	96.1	2.6	0.0	1.3	0.0	286	8	0	4	0
Ferrous Metal	811	362	449	96.1	2.6	0.0	1.3	0.0	432	12	0	6	0
Glass	445	304	142	96.1	2.6	0.0	1.3	0.0	136	4	0	2	0
HDPE	163	50	114	96.1	2.6	0.0	1.3	0.0	109	3	0	1	0
LDPE	446	127	319	96.1	2.6	0.0	1.3	0.0	307	8	0	4	0
Food Waste	1323	283	1,040	96.1	2.6	0.0	1.3	0.0	1,000	27	0	13	0
Yard Waste	1928	1,280	648	96.1	2.6	0.0	1.3	0.0	623	17	0	8	0
Remainder		2,798	1,884	96.1	2.6	0.0	1.3	0.0	1,812	49	0	24	0
				-				TOTAL=	5,451	147	0	71	0

.

.

1	Diesel Fuel Consumption for Curbside Waste Collection: Average GHG emission from waste collection =	0.014 tCO ₂ e/tonne
2	Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG emission from waste collection =	0.043 tCO₂e/tonne
3	Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG emission from waste collection =	0.027 tCO₂e/tonne
4	Emission Factor for Waste Disposal: All waste through the CTS. Waste Disposed at the Cache Creek Landfill= Waste Disposed at the Vancouver Landfill= Waste Disposed at a Future Landfill= Waste Disposed at the Burnaby Incinerator= Waste Disposed at a Future Incinerator=	0.0226 tCO2e/tonne 0.0114 tCO2e/tonne 0.0025 tCO2e/tonne 0.0054 tCO2e/tonne 0.0025 tCO2e/tonne
5	Diesel Fuel Consumption for Yard Trimmings Transport to Fraser-Richmond B	ioCycle:

٦ġ sp Tonnes hauled per trip = Distance per trip = Diesel Fuel Consumption = GHG emission = 20 tonnes/trip 60 km 45.0 L/100 km 0.004 tCO2e/tonne

^{5,670} tonnes 5,722 tonnes

CITY OF RICHMOND:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	7,630	2,979	126,624	60	24	161,957	9759	3810	13569
Mixed Paper	8,992	16,491	126,624			161,957			
Office Paper	1,259	2,309	126,624	10	18	161,957	1610	2953	4563
Ferrous Metal	796	9,796	126,624	6	77	161,957	1018	12529	13548
Glass	2,173	2,635	126,624	17	21	161,957	2779	3370	6150
HDPE	500	1,000	126,624	4	8	161,957	640	1279	1919
Mixed Plastics	3,055	7,438	126,624			161,957			
LDPÉ	1,375	3,347	126,624	11	26	161,957	1758	4281	6039
Food Waste	4,503	8,955	126,624	36	71	161,957	5760	11454	17213
Yard Waste	4,789	3,304	126,624	38	26	161,957	6125	4226	10351

retarier state generated in reve	••,•••
Total ICI waste recycled in 1998=	51,091 tonnes
ICI Recycling Rate=	54 %
# of backyard composters =	7,627

MASS OF WASTE RECYCLED (M_{REC}) & COMPOSTED (M_{COM}):

Waste	Residential	ICI [Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	9,759	3,810	5,153		1	2,062	7,215		1
Mixed Paper			3,681						1
Office Paper	1,610	2,953	515			1,598	2,113		
Metal			419						
Ferrous Metal	1,018	12,529	210			6,780	6,990		
Glass	2,779	3,370	191		1	1,824	2,015		1
Plastics			53						
HDPE	640	1,279	17			692	710		
LDPE	1,758	4,281	17			2,317	2,334		
Food Waste	5,760	11,454		633	0	6,198		633	6,198
Yard Waste	6,125	4,226		1,274	10,737	2,287		1,274	13,024

Total waste disposed in 1998= Total waste recycled in 1998=

```
64,364 tonnes
73,640 tonnes
```

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burinc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	13569	7,215	6,354	8.9	79.7	0.0	11.4	0.0	566	5,062	0	726	0
Office Paper	4563	2,113	2,450	8.9	79.7	0.0	11.4	0.0	218	1,952	0	280	0
Ferrous Metal	13548	6,990	6,558	8.9	79.7	0.0	11.4	0.0	585	5,224	0	749	0
Glass	6150	2,015	4,135	8.9	79.7	0.0	11.4	0.0	369	3,294	0	473	0
HDPE	1919	710	1,209	8.9	79.7	0.0	11.4	0.0	108	963	0	138	0
LDPE	6039	2,334	3,705	8.9	79.7	0.0	11.4	0.0	330	2,952	0	423	0
Food Waste	17213	6,831	10,382	8.9	79.7	0.0	11.4	0.0	925	8,270	0	1,186	0
Yard Waste	10351	14,297	0	8.9	79.7	0.0	11.4	0.0	0	0	0	0	0
Remainder		31,135	29,570	8.9	79.7	0.0	11.4	0.0	2,636	23,555	0	3,379	0
								TOTAL=	5,737	51,272	0	7,355	0

1	Diesel Fuel Consumption for Curbside Waste Collection: Average GHG emission from waste collection =	0.014 tCO2e/tonne
2	Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG emission from waste collection =	0.043 tCO₂e/tonne
3	Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG emission from waste collection =	0.027 tCO₂e/tonne
4	Emission Factor for Waste Disposal: Waste disposed at the VLF, FutLF or FutI is assumed to have been transferred from the VTS. Waste disposed at the BI is assumed to have been directly delivered there (thus no emission Waste disposed at the CCLF is assumed to have been transferred throught the CTS. Waste Disposed at the Cache Creek Landfill=	below). 0.0226 tCO ₂ e/tonne

Waste Disposed at the Vancouver Landfill=	0.0078 tCO₂e/tonne
Waste Disposed at a Future Landfill=	0.0009 tCO2e/tonne
Waste Disposed at the Burnaby Incinerator=	0.0000 tCO2e/tonne
Waste Disposed at a Future Incinerator≖	0.0009 tCO2e/tonne

CITY OF SURREY:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	12,180	2,447	245,173	50	10	332,244	16506	3316	19822
Mixed Paper	16,974	12,559	245,173			332,244			
Office Paper	2,376	1,758	245,173	10	7	332,244	3220	2383	5603
Ferrous Metal	1,517	7,791	245,173	6	32	332,244	2056	10558	12614
Glass	3,368	2,054	245,173	14	8	332,244	4564	2783	7348
HDPE	930	887	245,173	4	4	332,244	1260	1202	2462
Mixed Plastics	5,871	5,245	245,173			332,244			
LDPE	2,642	2,360	245,173	11	10	332,244	3580	3198	6779
Food Waste	8,597	8,192	245,173	35	33	332,244	11650	11101	22751
Yard Waste	15,204	2,885	245,173	62	12	332,244	20604	3910	24513
Total ICI waste g	enerated in 199	98=	119,481	tonnes					
Total ICI waste recycled in 1998=			56,790	tonnes					
ICI Recycling Rat	e=		48	%					

ICI Recycling Rate= # of backyard composters =

MASS OF WASTE RECYCLED (M_{REC}) & COMPOSTED (M_{COM}): Waste Residential ICI Residential Backvard

Waste	Residential	ICI	Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Composting	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	16,506	3,316	7,497			1,576	9,073		
Mixed Paper			5,551						
Office Paper	3,220	2,383	777			1,133	1,910		
Metal			516						
Ferrous Metal	2,056	10,558	258			5,018	5,276		
Glass	4,564	2,783	1,605			1,323	2,928		
Plastics			561						
HDPE	1,260	1,202	185			571	756		
LDPE	3,580	3,198	185			1,520	1,705		
Food Waste	11,650	11,101		548	0	5,277		548	5,277
Yard Waste	20,604	3,910		1,102	3,194	1,858		1,102	5,052

Total waste disposed in 1998≂ Total waste recycled in 1998=

```
126,130 tonnes
95,357 tonnes
```

6,600

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burinc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(lonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	19822	9,073	10,749	74.2	7.9	0.0	17.8	0.0	7,980	851	0	1,918	0
Office Paper	5603	1,910	3,693	74.2	7.9	0.0	17.8	0.0	2,742	292	0	659	0
Ferrous Metal	12614	5,276	7,337	74.2	7.9	0.0	17.8	0.0	5,447	581	0	1,309	0
Glass	7348	2,928	4,420	74.2	7.9	0.0	17.8	0.0	3,281	350	0	789	0
HDPE	2462	756	1,706	74.2	7.9	0.0	17.8	0.0	1,266	135	0	304	0
LDPE	6779	1,705	5,073	74.2	7.9	0.0	17.8	0.0	3,766	402	0	905	0
Food Waste	22751	5,824	16,927	74.2	7.9	0.0	17.8	0.0	12,567	1,340	0	3,021	0
Yard Waste	24513	6,154	18,359	74.2	7.9	0.0	17.8	0.0	13,630	1,453	0	3,276	0
Remainder		61,729	57,866	74.2 .	, 7.9	0.0	17.8	0.0	42,960	4,580	0	10,326	0
				_				TOTAL=	93,639	9,983	0	22,507	0

1	Diesel Fuel Consumption for Curbside Waste Collection: Average GHG emission from waste collection =	0.014	tCO₂e/tonne
2	Diesel Fuel Consumption for Curbside Recyclables Collection:		
	Average GHG emission from waste collection =	0.043	tCO₂e/tonne
3	Diesel Fuel Consumption for Curbside Yard Trimmings Collection:		
	Average GHG emission from waste collection =	0.027	tCO _z e/tonne
4	Emission Factor for Waste Disposal:		
	Waste disposed at the CCLF, FutLF or Futl is assumed to have been transferred from the CTS.		
	Waste disposed at the BI is assumed to have been directly delivered there (thus no emission below	<i>ı</i>).	
	Waste disposed at the VLF is assumed to have been directly delivered there (thus no emission bel	ow).	
	Waste Disposed at the Cache Creek Landfill=	0.0226	tCO₂e/tonne
	Waste Disposed at the Vancouver Landfill=	0.0000	tCO2e/tonne
	Waste Disposed at a Future Landfill=	0.0025	tCO2e/tonne
	Waste Disposed at the Burnaby Incinerator=	0.0000	tCO₂e/tonne
	Waste Disposed at a Future Incinerator=	0.0025	tCO2e/tonne
5	Diesel Fuel Consumption for Yard Trimmings Transport to Fraser-Richmond BioCy	cle:	
	Tonnes hauled per trip =		tonnes/trip
	Distance per trip =		km
	Diesel Fuel Consumption = GHG emission =		L/100 km tCO2e/tonne
	Grid Emission -	0.004	ico2enonne

onnes hauled per trip =	20 tonnes/trip
stance per trip =	60 km
esel Fuel Consumption =	45.0 L/100 km
HG emission =	0.004 tCO2e/tonne

CITY OF VANCOUVER:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	24,865	10,675	471,844	53	23	552,481	29114	12499	41614
Mixed Paper	32,303	62,529	471,844			552,481			
Office Paper	4,522	8,754	471,844	10	19	552,481	5295	10250	15545
Ferrous Metal	3,409	33,178	471,844	7	70	552,481	3992	38848	42840
Glass	7,421	10,542	471,844	16	22	552,481	8689	12344	21033
HDPE	1,746	4,365	471,844	4	9	552,481	2044	5111	7155
Mixed Plastics	10,639	23,503	471,844			552,481			
LDPE	4,788	10,576	471,844	10	22	552,481	5606	12384	17990
Food Waste	15,909	35,550	471,844	34	75	552,481	18628	41625	60253
Yard Waste	21,407	11,975	471,844	45	25	552,481	25065	14021	39087

Total ICI waste generated in 1998= Total ICI waste recycled in 1998= ICI Recycling Rate= # of backyard composters = 382,660 tonnes 154,785 tonnes 40 % 23,838

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	Residential	ICI 🛛	Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	29,114	12,499	10,122			5,056	15,178		
Mixed Paper			8,126						
Office Paper	5,295	10,250	1,138			4,146	5,284		i
Metal			2,947						
Ferrous Metal	3,992	38,848	1,474			15,714	17,187		
Glass	8,689	12,344	523			4,993	5,516		
Plastics			134						
HDPE	2,044	5,111	44			2,067	2,112		
LDPE	5,606	12,384	44			5,009	5,053		
Food Waste	18,628	41,625		1,979	0	16,837		1,979	16,837
Yard Waste	25,065	14,021		3,981	22,440	5,672		3,981	28,112

Total waste disposed in 1998= Total waste recycled in 1998=

```
346,991 tonnes
206,323 tonnes
```

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	% OF M _{D/S}	% OF M _{DIS}	% OF M _{DIS}	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burinc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	41614	15,178	26,436	17.7	68.0	0.0	14.3	0.0	4,669	17,984	0	3,782	0
Office Paper	15545	5,284	10,262	17.7	68,0	0.0	14.3	0.0	1,813	6,981	0	1,468	0
Ferrous Metal	42840	17,187	25,652	17.7	68.0	0.0	14.3	0.0	4,531	17,451	0	3,670	0
Glass	21033	5,516	15,517	17.7	68.0	0.0	14.3	0.0	2,741	10,556	0	2,220	0
HDPE	7155	2,112	5,044	17.7	68.0	0.0	14.3	0.0	891	3,431	0	722	0
LOPE	17990	5,053	12,936	17.7	68.0	0.0	14.3	0.0	2,285	8,801	0	1,851	0
Food Waste	60253	18,816	41,437	17.7	68.0	0.0	14.3	0.0	7,319	28,190	0	5,928	0
Yard Waste	39087	32,093	6,994	17.7	68.0	0.0	14.3	0.0	1,235	4,758	0	1,001	0
Remainder		105,084	202,713	17.7	68.0	0.0	14.3	0.0	35,806	137,907	0	29,000	0
				_				TOTAL=	61,290	236,061	0	49,641	0

316,000 L 76,000 tonnes

190,000 L

17,500 tonnes 0.031 tCO2e/tonne

1	Diesel Fuel Consumption for Curbside Waste Collection:
	Diesel fuel consumption during collection (1998)=
	Mass collected during this consumption (1998)=
	GHG emission from waste collection =

2 Diesel Fuel Consumption for Curbside Recyclables Collection: Diesel fuel consumption during collection (1998)= Mass collected during this consumption (1998)= GHG emission from waste collection =

3 Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG emission from waste collection =

0.027 tCOze/tonne

0.012 tCO2e/tonne

.

4	Emission Factor for Waste Disposal:							
	Waste disposed at the VLF, FutLF or FutI is assumed to have been transferred from the VT	S.						
	Waste disposed at the CCLF or BI is assumed to have been transferred from the NSTS.							
	Waste Disposed at the Cache Creek Landfill=	0.0231 tCO2e/tonne						
	Waste Disposed at the Vancouver Landfill=	0.0078 tCO2e/tonne						
	Waste Disposed at a Future Landfill=	0.0009 tCO2e/tonne						
	Waste Disposed at the Burnaby Incinerator=	0.0039 tCO2e/tonne						
	Waste Disposed at a Future Incinerator=	0.0009 tCO2e/tonne						

5 Diesel Fuel Consumption for Yard Trimmings Transport to Composting Facility at the Vancouver Landfill: assuming similar to general waste transport Total diesel fuel consumption = 334,000 L # of round trips in 1998= 12500 trips Mass of waste transported (1998)= Average mass of waste transported = 287,931 tonnes 23.0 tonnes/trip 26.7 L/trip 0.0033 tCO₂e/tonne

Average fuel consumption per trip = GHG emission from waste transport =

DISTRICT OF WEST VANCOUVER:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	3,105	410	38,783	80	11	42,664	3416	451	3867
Mixed Paper	2,542	1,924	38,783			42,664			
Office Paper	356	269	38,783	9	7	42,664	391	296	688
Ferrous Metal	253	1,170	38,783	7	30	42,664	278	1287	1565
Glass	797	377	38,783	21	10	42,664	877	415	1291
HDPE	138	195	38,783	4	5	42,664	152	215	366
Mixed Plastics	855	693	38,783			42,664			
LDPE	385	312	38,783	10	8	42,664	423	343	766
Food Waste	1,263	1,728	38,783	33	45	42,664	1389	1901	3290
Yard Waste	1,353	565	38,783	35	15	42,664	1488	622	2110
Total ICI waste generated in 1998=			55,397	tonnes					
Total ICI waste recycled in 1998=			21,797	tonnes					
ICI Recycling Rate=			39	%					
# of backyard composters =			2,975						

MASS OF WASTE RECYCLED (M_{REC}) & COMPOSTED (M_{COM}):

Waste	Residential	ICI [Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	3,416	451	2,470			177	2,647		
Mixed Paper			841						
Office Paper	391	296	118			117	234		
Metal			81						
Ferrous Metal	278	1,287	41			506	547		
Glass	877	415	89			163	252		
Plastics			24						
HDPE	152	215	8			84	92		
LDPE	423	343	8			135	143		1
Food Waste	1,389	1,901		247	0	748		247	748
Yard Waste	1,488	622		497	2,465	245		497	2,710

Total waste disposed in 1998= Total waste recycled in 1998=

15,733 tonnes 18,167 tonnes

MASS OF WASTE DISPOSED (MDIS):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burinc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	3867	2,647	1,219	47.5	1.0	0.0	51.5	0.0	579	12	0	628	0
Office Paper	688	234	453	47.5	1.0	0.0	51.5	0.0	215	5	0	234	0
Ferrous Metal	1565	547	1,018	47.5	1.0	0.0	51.5	0.0	484	10	0	525	0
Glass	1291	252	1,039	47.5	1.0	0.0	51.5	0.0	494	10	0	535	0
HDPE	366	92	274	47.5	1.0	0.0	51.5	0.0	130	3	0	141	0
LDPE	766	143	623	47.5	1.0	0.0	51.5	0.0	296	6	0	321	0
Food Waste	3290	995	2,295	47.5	1.0	0.0	51.5	0.0	1,090	23	0	1,182	0
Yard Waste	2110	3,206	0	47.5	1.0	0.0	51.5	0.0	0	0	0	0	0
Remainder		10,050	8,810	47.5	1.0	0.0	51.5	0.0	4,184	88	0	4,537	0
								TOTAL=	7,472	158	0	8,103	0

0.014 tCO2e/tonne

0.043 tCO2e/tonne

0.027 tCO2e/tonne

Calculation/Results are in bold:

- 1 Diesel Fuel Consumption for Curbside Waste Collection: Average GHG emission from waste collection =
- 2 Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG emission from waste collection =
- 3 Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG emission from waste collection =

4	Emission Factor for Waste Disposal:	
	All waste through the NSTS.	
	Waste Disposed at the Cache Creek Landfill=	0.0231 tCO2e/tonne
	Waste Disposed at the Vancouver Landfill=	0.0101 tCO2e/tonne
	Waste Disposed at a Future Landfill=	0.0013 tCO2e/tonne
	Waste Disposed at the Burnaby Incinerator=	0.0039 tCO2e/tonne
	Waste Disposed at a Future Incinerator=	0.0013 tCO2e/tonne

Refer to the City of North Vancouver for recycling transportation issues.

241

CITY OF WHITE ROCK:

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (MGEN):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	650	180	38,783	17	5	42,664	715	198	913
Mixed Paper	1,221	1,007	38,783			42,664			
Office Paper	171	141	38,783	4	4	42,664	188	155	343
Ferrous Metal	107	498	38,783	3	13	42,664	118	548	666
Glass	283	149	38,783	7	4	42,664	311	164	475
HDPE	60	63	38,783	2	2	42,664	66	69	135
Mixed Plastics	409	341	38,783			42,664			
LDPE	184	153	38,783	5	4	42,664	202	169	371
Food Waste	610	618	38,783	16	16	42,664	671	680	1351
Yard Waste	617	234	38,783	16	6	42,664	679	257	936
Total ICI waste generated in 1998=			10,094	tonnes					
Total ICI waste recycled in 1998=			2,126	tonnes					
ICI Recycling Rate=			21	%	•				
# of backyard composters =			1,921						

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	Residential	ICI [Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	715	198	469			42	511		
Mixed Paper		1	724						
Office Paper	188	155	101			33	134		
Metai			16					•	
Ferrous Metal	118	548	8			115	123		
Glass	311	164	22			35	57		
Plastics			6						
HDPE	66	69	2			15	17		
LDPE	202	169	2			36	38		
Food Waste	671	680		159	0	143		159	143
Yard Waste	679	257		321	0	54		321	54

Total waste disposed in 1998= Total waste recycled in 1998=

MASS OF WASTE DISPOSED (M_{DIS}):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burlnc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	913	511	402	3.1	96.9	0.0	0.0	0.0	12	390	0	0	0
Office Paper	343	134	209	3.1	96.9	0.0	0.0	0.0	6	203	0	0	0
Ferrous Metal	666	123	542	3.1	96.9	0.0	0.0	0.0	17	525	0	0	0
Glass	475	57	419	3.1	96.9	0.0	0.0	0.0	13	406	0	0	0
HDPE	135	17	119	3.1	96.9	0.0	0.0	0.0	4	115	0	0	0
LDPE	371	38	334	3.1	96.9	0.0	0.0	0.0	10	323	0	0	0
Food Waste	1351	303	1,048	3.1	96.9	0.0	0.0	0.0	32	1,016	0	0	0
Yard Waste	936	375	561	3.1	96.9	0.0	0.0	0.0	17	544	0	0	0
Remainder		2,381	5,330	3.1	96.9	0.0	0.0	0.0	164	5,164	0	2	0
				-				TOTAL=	276	8,684	0	4	0

1	Diesel Fuel Consumption for Curbside Waste Collection: Average GHG emission from waste collection =	0.014 tCO ₂ e/tonne
2	Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG emission from waste collection =	0.043 tCO ₂ e/tonne
3	Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG emission from waste collection =	0.027 tCO ₂ e/tonne
4	Emission Factor for Waste Disposal: Waste disposed at the VLF is directly delivered there (thus no emission factor below). Waste disposed at the CCLF, BI, FutLF, FutI is transferred through the CTS. Waste Disposed at the Cache Creek Landfill= Waste Disposed at the Vancouver Landfill= Waste Disposed at a Future Landfill= Waste Disposed at the Burnaby Incinerator= Waste Disposed at a Future Incinerator=	0.0226 tCO ₂ e/tonne 0.0000 tCO ₂ e/tonne 0.0025 tCO ₂ e/tonne 0.0054 tCO ₂ e/tonne 0.0025 tCO ₂ e/tonne

ne

^{8,964} tonnes 3,937 tonnes

ELECTORAL A (U.B.C. & U.E.L.):

Variables that can be changed by users are in bold. MASS OF WASTE GENERATION (M_{GEN}):

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	172		4,534	38	23	6,144	233	139	372
Mixed Paper	330		4,534			6,144			
Office Paper	46		4,534	10	19	6,144	63	114	177
Ferrous Metal	24		4,534	5	70	6,144	33	432	465
Glass	57		4,534	13	22	6,144	77	137	215
HDPE	14		4,534	3	9	6,144	19	57	76
Mixed Plastics	113		4,534			6,144			
LDPE	51		4,534	11	22	6,144	69	138	207
Food Waste	172		4,534	38	75	6,144	233	463	696
Yard Waste	146		4,534	32	25	6,144	198	156	354
Total ICI waste g	enerated in 19) 8=		tonnes					
Total ICI waste recycled in 1998=				tonnes					
ICI Recycling Rate=			40	%					
# of backyard composters =			0						

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	Residential	ICI [Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Composting	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	233	139	144			56	200		1
Mixed Paper			985						
Office Paper	63	114	138			46	184		
Metal		ľ	222						
Ferrous Metal	33	432	111			175	286		
Glass	77	137 ·	52			56	108		
Plastics		ł	12						
HDPE	19	57	4			23	27		
LDPE	69	138	4			56	60		
Food Waste	233	463		0	0	187		0	187
Yard Waste	198	156		0	200	63		0	263

Total waste disposed in 1998= Total waste recycled in 1998=

```
3,349 tonnes
2,205 tonnes
```

MASS OF WASTE DISPOSED (MDIS):

1 Diesel Fuel Consumption for Curbside Waste Collection:

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to BurInc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	372	200	172	0.0	100.0	0.0	0.0	0.0	0	172	0	0	0
Office Paper	177	184	0	0.0	100.0	0.0	0.0	0.0	0	0	0	0	0
Ferrous Metal	465	286	179	0.0	100.0	0.0	0.0	0.0	0	179	0	0	0
Glass	215	108	107	0.0	100.0	0.0	0.0	0.0	0	107	0	0	0
HDPE	76	27	49	0.0	100.0	0.0	0.0	0.0	0	49	0	0	0
LDPE	207	60	147	0.0	100.0	0.0	0.0	0.0	0	147	0	0	0
Food Waste	696	187	509	0.0	100.0	0.0	0.0	0.0	0	509	0	0	0
Yard Waste	354	263	91	0.0	100.0	0.0	0.0	0.0	0	91	0	0	0
Remainder		891	2,096	0.0	100.0	0.0	0.0	0.0	0 .	2,096	0	0	0
								TOTAL=	0	3,349	0	0	0

•	Dieser Fuel Consumption for Curbside Waste Collection.	
	Average GHG emission from waste collection =	0.014 tCO2e/tonne
2	Diesel Fuel Consumption for Curbside Recyclables Collection:	
	Average GHG emission from waste collection =	0.043 tCO2e/tonne
3	Diesel Fuel Consumption for Curbside Yard Trimmings Collection:	
	Average GHG emission from waste collection =	0.027 tCO2e/tonne
4	Emission Factor for Waste Disposal:	
	All waste through the VTS.	
	Waste Disposed at the Cache Creek Landfill≈	0.0227 tCO2e/tonne
	Waste Disposed at the Vancouver Landfill=	0.0078 tCO2e/tonne
	Waste Disposed at a Future Landfill=	0.0009 tCO2e/tonne
	Waste Disposed at the Burnaby Incinerator=	0.0023 tCO2e/tonne
	Waste Disposed at a Future Incinerator=	0.0009 tCOze/tonne
5	Diesel Fuel Consumption for Yard Trimmings Transport to Composting F	Facility at the Vancouver Land
	assuming similar to general waste transport	
	Total diesel fuel consumption =	334,000 L

# of round trips in 1998≕	12500 trips
Mass of waste transported (1998)=	287,931 tonnes
Average mass of waste transported =	23.0 tonnes/trip
Average fuel consumption per trip =	26.7 L/trip
GHG emission from waste transport =	0.0033 tCO2e/tonne

ELECTORAL C (BOWEN ISLAND & HOWE SOUND):

Variables that can be changed by users are in bold.

Waste	Residential	ICI	Population of	Residential	ICI	Population of	Residential	ICI	Total
Material	Generation	Generation	Municipality	Generation	Generation	Municipality	Generation	Generation	Generation
	1991	1991	1991	per capita	per capita	1998	1998	1998	1998
	(tonnes)	(tonnes)		(kg/cap*yr)	(kg/cap*yr)		(tonnes)	(tonnes)	(tonnes)
Newsprint	155		2,459	63		3,332	210		210
Mixed Paper	256		2,459	104		3,332	347		347
Office Paper	36		2,459	15		3,332	49		49
Ferrous Metal	32		2,459	13		3,332	43		43
Glass	71		2,459	29		3,332	96		96
HDPE	14		2,459	6		3,332	19		19
Mixed Plastics	97		2,459			3,332			
LDPE	44		2,459	18		3,332	59		59
Food Waste	143		2,459	58		3,332	· 194		194
Yard Waste	115		2,459	47		3,332	156		156
Total ICI waste	generated in '	1998=		tonnes					
Total ICI waste recycled in 1998=				tonnes					
ICI Recycling Rate=			#DIV/0!	%					

ICI Recycling Rate= # of backyard composters =

MASS OF WASTE RECYCLED (MREC) & COMPOSTED (MCOM):

Waste	Residential	ICI [Residential	Backyard	Centralized	ICI	Total	Backyard	Centralized
Material	Generation	Generation	Recycling	Composting	Composting	Recycling	Recycling	Compostin	Composting
	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	210	0	46				46		
Mixed Paper	347	0	35						1
Office Paper	49	0	5				5		
Metal			9						
Ferrous Metal	43	0	5				5		
Glass	96	0	43				43		
Plastics		i	2						
HDPE	19	0	1				1		
LDPE	59	0	1				1		
Food Waste	194	0		0	0			0	0
Yard Waste	156	0		0	8			0	8

Total waste disposed in 1998= Total waste recycled in 1998=

```
1,289 tonnes
 205 tonnes
```

n

MASS OF WASTE DISPOSED (MDis):

Waste	Total	Total	Waste	% OF M _{DIS}	Disposal	Disposal	Disposal	Disposal	Disposal				
Material	Generation	Recycling	Disposal	to CCLF	to VLF	to FutLF	to Burinc	to FutInc	CCLF	VLF	FutLF	Burinc	FutInc
	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
	(tonnes)	(tonnes)	(tonnes)	(%)	(%)	(%)	(%)	(%)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Newsprint	210	46	164	47.5	1.0	0.0	51.5	0.0	78	2	0	84	0
Office Paper	49	5	44	47.5	1.0	0.0	51.5	0.0	21	0	0	22	0
Ferrous Metal	43	5	39	47.5	1.0	0.0	51.5	0.0	18	0	0	20	0
Glass	96	43	53	47.5	1.0	0.0	51.5	0.0	25	1	0	27	0
HDPE	19	1	18	47.5	1.0	0.0	51.5	0.0	9	0	0	9	0
LDPE	59	1	58	47.5	1.0	0.0	51.5	0.0	28	1	0	30	0
Food Waste	194	0	194	47.5	1.0	0.0	51.5	0.0	92	2	0	100	0
Yard Waste	156	8	148	47.5	1.0	0.0	51.5	0.0	70	1	0	76	0
Remainder		97	571	47.5	1.0	0.0	51.5	0.0	271	6	0	294	0
				-				TOTAL≕	612	13	0	664	0

0.014 tCO2e/tonne

0.043 tCO2e/tonne

0.027 tCO2e/tonne

- 1 Diesel Fuel Consumption for Curbside Waste Collection: Average GHG emission from waste collection =
- 2 Diesel Fuel Consumption for Curbside Recyclables Collection: Average GHG emission from waste collection =
- 3 Diesel Fuel Consumption for Curbside Yard Trimmings Collection: Average GHG emission from waste collection =
- 4 Emission Factor for Waste Disposal: All waste through the NSTS. 0.0231 tCO2e/tonne Waste Disposed at the Cache Creek Landfill= Waste Disposed at the Vancouver Landfill= 0.0101 tCO2e/tonne 0.0013 tCO2e/tonne Waste Disposed at a Future Landfill= Waste Disposed at the Burnaby Incinerator= Waste Disposed at a Future Incinerator=

Refer to the City of North Vancouver for recycling transportation issues.

NEWSPRINT MANAGEMENT:

Variables that can be changed by users are in bold.

	Carbon Available for Anserobic Decomposition®	0.0795	kg C/dry kg
	Carbon storage factor for newsprint (dry)=	0,41	kg C/dry kg
	Moisture content of newsprint=	6	*
	Nitrogen content of newsprint (dry mass basis)=	0	%N
	Net energy content of wet newsprint=	18.4	GJ/tonne
1	Methane & Energy Implications of the Cache Creek Landfill		
	Carbon available for aneerobic decomposition=	0.075	tC/wel tonne

0 ICH_/wet tonne
4 year"
2 year ¹
6 year ⁻¹
0

over atorial (%)	Percentage of LFG Flared	Percentage of LFG for	Atmospheric	GHG Benefit			LOW-ESTIMATE:				HIGH-ESTIMATE:					
aterial (%)		of LFG for				Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefa		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit
(%)	Channel .		Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	ofLFG	of LFG for	Methane	of Energy
	Lined	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flored	Energy	Emissions	Utilization
	(%)	(%)	(ICO ₂ e/yr)	(ICO2@/yr)	(tCH _e /yr)	(%)	(%)	(%)	(ICO2e/yr)	(ICO2e/yr)	(ICH_/yr)	(%)	(%)	(%)	(ICO ₂ e/yr)	(ICO2e/yr)
•	-		-												• *	-
10	43	0	0 0215	0.0000	0.00100	15	43	0	0.0101	0.0000	0.00299	5	43	0	0 0340	0 0000
10	50	0	0.0181	0.0000	0.00098	15	50	0	0.0087	0.0000	0.00282	5	50	0	0.0281	0 0000
10	50	10	0.0139	0.0005	0.00096	15	50	10	0 0068	0.0003	0.00265	5	50	0	0 0264	0.0000
10	50	15	0.0117	0.0007	0.00094	15	55	15	0 0050	0.0004	0 00250	5	50	0	0.0249	0.0000
10	45	20	0 0112	0.0009	0.00092	15	55	20	0 0041	0 0005	D D0235	5	50	0	0.0235	0.0000
10	40	25	0 0 108	0.0011	0.00090	15	50	25	0.0040	0.0006	0.00221	5	55	0	0 0 1 9 9	0.0000
10	35	35	0 0089	0.0015	0.00088	15	40	35	0.0039	0.0009	0 00209	5	55	٥	0 0187	0.0000
10	30	40	0.0085	0.0017	0.00087	15	35	40	0.0039	0.0010	0.00196	5	55	5	0.0157	0.0003
10	25	50	0.0068	0.0020	0.00085	15	25	50	0 0038	0.0012	0.00185	5	55	5	0.0148	0.0003
10	25	50	0.0066	0.0019	0.00083	15	30	50	0.0030	0.0011	0.00174	5	50	10	0.0139	0.0005
10	20	55	0.0063	0.0020	0.00082	15	25	55	0.0029	0.0012	0 00 164	5	50	10	0.0131	0.0005
10	20	55	0 0061	0.0019	0.00080	15	25	55	0.0029	0.0012	0 00154	5	50	10	0.0123	0.0004
10	15	60	0.0058	0.0020	0.00078	15	20	60	0.0028	0.0013	0.00145	5	45	15	0 01 16	0.0006
10	15	60	0.0056	0.0020	0.00077	15	20	60	0.0027	0.0013	0.00137	5	45	15	0.0109	0.0006
10	10	65	0.0054	0.0020	0.00075	15	15	65	0 0027	0.0013	0.00129	5	45	15	0.0103	0.0005
10	10	65	0.0052	0.0020	0.00074	15	15	65	0.0026	0.0013	0.00122	5	40	20	0.0097	0.0007
10	5	70	0.0050	0.0020	0.00072	15	10	70	0.0026	0.0014	0.00114	5	40	20	0.0091	0 0006
												-				0.0007
												-				0.0007
10	0	75				15	0	85				5	35	25		0.0007
			0.171	0.030	0.017				0.079	0.029	0.036				0.321	0.007
10 10 10		0	0 75 0 75	0 75 0.0046 0 75 0.0044 0.171	0 75 0.0046 0.0020 0 75 0.0044 0.0019 0.171 0.039	0 75 0.0046 0.0020 0.00070 0 75 0.0044 0.0019 0.00068 0.171 0.020 0.017	0 75 0.0046 0.0020 0.00070 15 0 75 0.0044 0.0019 0.00068 15 0.171 0.028 0.017	0 75 0.0046 0.0020 0.00070 15 0 0 75 0.0044 0.0019 0.00068 15 0 0.171 0.028 0.017 0.017 0.017	0 75 0.0046 0.0020 0.00070 15 0 85 0 75 0.0044 0.0019 0.00068 15 0 85 0.171 0.029 0.017 0.017 0.017 0.017	0 75 0.0046 0.0020 0.00070 15 0 85 0.0019 0 75 0.0044 0.0019 0.00068 15 0 85 0.0018 0.171 0.020 0.017 0.017 0.079	0 75 0.0046 0.0020 0.00070 15 0 85 0.0019 0.0016 0 75 0.0044 0.0019 0.00068 15 0 85 0.0018 0.0016 0.171 0.030 0.017 0.029 0.029 0.029	0 75 0.0046 0.0020 0.00070 15 0 85 0.0019 0.0012 0 75 0.0044 0.0019 0.00088 15 0 85 0.0018 0.00066 0.171 0.030 0.017 0.079 0.020 0.036	0 75 0.0046 0.0020 0.00070 15 0 85 0.0019 0.00102 5 0 75 0.0044 0.0019 0.00068 15 0 85 0.0018 0.0016 0.00066 5 0.171 0.030 0.017 0.079 0.020 0.036	0 75 0.0046 0.0020 0.00670 15 0 85 0.0019 0.00102 5 35 0 75 0.0044 0.0019 0.00668 15 0 85 0.0018 0.0016 0.00566 5 35 0.171 0.030 0.017 0.079 0.029 0.026 5 35	0 75 0.0046 0.0020 0.00070 15 0 85 0.0019 0.00102 5 35 25 0 75 0.0044 0.0019 0.00068 15 0 85 0.0018 0.00102 5 35 25 0.171 0.028 0.017 8.079 0.028 0.026 9.036	0 75 0.0046 0.0020 0.00070 15 0 85 0.0019 0.0012 5 35 25 0.0081 0 75 0.0044 0.0019 0.00058 15 0 85 0.0018 0.0016 0.00066 5 35 25 0.0076 0.171 0.830 0.017 0.079 0.020 0.036 0.321

Best-Guess of Atmospheric Methane Emissions×	0.171	(CO ₂ e/lonne
Best-Guess of Benefit of Energy Utilization=	-0.030	tCO ₂ e/tonne
Low Estimate of Atmospheric Methane Emissions#	0.079	ICO ₂ e/lonne
Low Estimate of Benefit of Energy Utilization=	-0.020	tCO ₂ e/tonne
High Estimate of Atmospheric Methane Emissions=	0.321	tCO ₂ e/tonne
High Estimate of Benefit of Energy Utilization=	-0.007	tCO2e/tonne

2 Long-Term Carbon Sequestration in the Cache Creek Landfill: From research by Barks; Long term carbon sequestration from newsprint= -1.41 ICOze/Ionne

3	Immediate & Future N ₂ O Emissions from the Cache Creek Landfill:	
	The potential of this emission is ignored.	
	Estimate of the N ₂ O Emission=	0 tCO ₂ e/tonne

4 Methane & Energy Implications of the Vancouver Landfill Carbon available for anerobic decomposition= Methane generation potential. L₂= Best-guess first order docay rate constant, k= Low estimate first order decay rate constant, k= High estimate first order docay rate constant, k= 0.075 tC/wet tonne 0.050 tCH₄/wet tonne 0.05 year⁻¹ 0.025 year⁻¹ 0.075 year⁻¹

	BEST-GUES	SS:					LOW-ESTIN	MATE:					HIGH-EST	IMATE:				
-		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit
	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy
YEAR	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flored	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization
	(tCH_/yr)	(%)	(%)	(%)	(ICO20/yr)	(ICO ₂ e/yr)	(tCH ₄ /yr)	(%)	(%)	(%)	(ICO ₂ e/yr)	(tCO2e/yr)	(ICH4/yr)	(%)	(%)	(%)	(ICO2e/yr)	(ICO ₂ e/yr)
1998	-		•	•	•		•	•	•	•		•	· ·	•	-	-		
1999	0.00249	10	22	0	0.0367	0.0000	0.00125	15	22	0	0.0173	0 0000	0.00374	5	22	0	0.0581	0.0000
2000	0.00237	10	30	0	0.0313	0.0000	0.00121	15	35	0	0.0141	0.0000	0.00347	5	30	0	0.0484	0.0000
2001	0.00225	10	35	10	0.0234	0.0006	0.00118	15	40	10	0.0105	0.0003	0.00322	5	35	0	0.0417	0.0000
2002	0.00214	10	40	15	0.0182	0.0009	0.00116	15	45	15	0.0083	0 0005	0.00298	5	40	0	0.0357	0.0000
2003	0.00204	10	45	20	0.0135	0.0011	0.00113	15	55	20	0.0050	0.0006	0.00277	5	50	0	0.0276	0.0000
2004	0.00194	10	40	25	0.0128	0.0013	0.00110	15	50	25	0.0049	0.0008	0.00257	5	55	0	0.0231	0.0000
2005	0.00185	10	30	40	0.0105	0.0020	0.00107	15	40	35	0.0048	0.0010	0.00238	5	55	0	0 0214	0.0000
2006	0.00176	10	30	40	0.0100	0.0019	0.00105	15	35	40	0.0047	0 00 12	0 00221	5	55	5	0.0176	0.0003
2007	0.00167	10	25	50	0.0079	0.0023	0.00102	15	25	50	0.0046	0.0014	0.00205	5	55	5	0.0164	0.0003
2008	0.00159	10	25	50	0.0075	0.0022	0.00099	15	30	50	0.0036	0.0014	0.00190	5	50	10	0.0152	0.0005
2009	0.00151	10	20	55	0.0071	0.0023	0.00097	15	25	55	0.0035	0.0015	0.00176	5	50	10	0 0 1 4 1	0 0005
2010	0.00144	10	20	55	0.0068	0.0022	0.00095	15	25	55	0.0034	0.0014	0.00164	5	50	10	0.0131	0 0005
2011	0.00137	10	15	60	0.0065	0.0023	0.00092	15	20	60	0.0033	0.0015	0.00152	5	45	15	0.0121	0.0006
2012	0.00130	10	15	60	0.0061	0.0021	0.00090	15	20	60	0 0032	0.0015	0.00141	5	45	15	00112	0.0006
2013	0.00124	10	10	65	0.0058	0.0022	0.00088	15	15	65	0.0031	0.0016	0.00131	5	45	15	0 0 1 0 4	0.0005
2014	0.00118	10	10	65	0.0056	0.0021	0.00088	15	15	65	0.0031	0.0015	0.00121	5	40	20	0.0097	0.0007
2015	0.00112	10	5	70	0.0053	0.0022	0.00083	15	10	70	0.0030	0.0016	0.00113	5	40	20	0 0090	0.0006
2016	0.00106	10	5	70	0.0050	0.0020	0.00081	15	10	70	0.0029	0.0016	0.00104	5	35	25	0.0083	0.0007
2017	0.00101	10	0	75	0.0048	0.0021	0.00079	15	0	85	0.0021	0.0019	0.00097	5	35	25	0.0077	0.0007
2018	0.00096	10	0	75	0.0046	0.0020	0.00077	15	D	85	0.0021	0.0018	0.00090	5 ·	35	25	0.0072	0.0006
TOTAL =	0.032				0.229	0.034	0.020				0,107	0,023	0.040				0,408	0.007

Best-Guess of Atmospheric Methane Emissions*	0.229	tCO ₂ e/tonne
Best-Guess of Benefit of Energy Utilization=	-0.034	tCO ₂ e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.107	tCO ₂ e/tonne
Low Estimate of Senefit of Energy Utilization=	-0.023	tCO ₂ e/tonne
High Estimate of Atmospheric Methene Emissions=	0.408	tCO2e/tonne
High Estimate of Benefit of Energy Utilization=	-0.007	tCO ₂ e/tonne

-1.41 ICOze/tonne

5 Long-Term Carbon Sequestration in the Vancouver Landfill: From research by Barlaz: Long term carbon sequestration from newsprint=

6 Immediate & Future N₂O Emissions from the Vancouver Landfill: The potential of this emission is ignored. Estimate of the N₂O Emission=

7	Methane & Energy Implications at a Future Landfill	
	Cerbon available for anserobic decomposition=	0.075 tC/wet to
	Methane generation potential, L _e =	0.050 tCH_/we
	Best-guess first order decay rate constant, k=	0.04 year"
	Low estimate first order decay rate constant, k=	0.02 year"
	High estimate first order decay rate constant, k=	0.05 year"

0 tCOzeitonne

	BEST-GUES	SS:					LOW-ESTIN	MATE:					HIGH-ESTI	MATE:				
		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentege	Atmospheric	GHG Bene
	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Melhane	of Energy	Methane	Cover	of LFG	of LFG for	Methone	of Energy
EAR	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilizatio
	(ICH_/yr)	(%)	(%)	(%)	(ICO ₂ e/yr)	(ICO2e/yr)	(ICH_/yr)	(%)	(%)	(%)	(tCO ₂ e/yr)	(ICO2e/yr)	(ICH_/yr)	(%)	(%)	(%)	(tCO2e/yr)	(ICO ₂ e/y
998	-		•	•			•			•								-
999	0.00199	10	43	0	0.0215	0.0000	0.00199	15	43	0	0.0203	0.0000	0.00199	5	43	0	0.0227	0.0000
000	0.00191	10	50	0	0.0181	0.0000	0.00191	15	50	0	0.0171	0.0000	0.00191	5	50	0	0.0191	0.0000
001	0.00184	10	50	10	0.0139	0.0005	0.00184	15	50	10	0.0131	0.0005	0 00184	5	50	0	0.0183	0 0000
002	0.00177	10	50	15	0.0117	0.0007	0.00177	15	55	15	0.0095	0 0007	0 00 177	5	50	0	0.0176	0.0000
003	0.00170	10	45	20	0.0112	0.0009	0.00170	15	55	20	0.0076	0.0009	0.00170	5	50	0	0 0 169	0 0000
004	0.00163	10	40	25	0.0108	0.0011	0.00163	15	50	25	0.0073	0 0011	0 00 163	5	55	0	0.0146	0.0000
005	0.00157	10	35	35	0.0089	0.0015	0.00157	15	40	35	0.0070	0.0015	0 00 157	5	55	0	0.0141	0 0000
006 :	0.00151	10	30	40	0.0085	0.0017	0.00151	15	35	40	0.0067	0.0017	0.00151	5	55	5	0.0120	0.0002
007	0.00145	10	25	50	0.0068	0.0020	0.00145	15	25	50	0.0065	0 0020	0 00145	5	55	5	0.0115	0.0002
008	0.00139	10	25	50	0.0065	0.0019	0.00139	15	30	50	0.0050	0.0019	0.00139	5	50	10	0.0111	0 0004
009	0.00134	10	20	55	0.0063	0.0020	0.00134	15	25	55	0.0048	0.0020	0 00134	5	50	10	0.0107	0.0004
010	0.00128	10	20	55	0.0061	0.0019	0.00128	15	25	55	0 0046	0.0019	0 00 128	5	50	10	0.0102	0.0004
011	0.00123	t0	15	60	0.0058	0.0020	0.00123	15	20	60	0.0044	0.0020	0.00123	5	45	15	0.0098	0.0005
012	0.00118	10	15	60	0.0056	0.0020	0.00118	15	20	60	0.0042	0.0020	0.00118	5	45	15	0.0095	0.0005
013	0.00114	. t0	10	65	0.0054	0.0020	0.00114	15	15	65	0.0041	0.0020	0.00114	5	45	15	0.0091	0.0005
014	0.00109	10	10	65	0.0052	0.0020	0.00109	15	15	65	0.0039	0 0020	0.00109	5	40	20	0.0087	0.0006
015	0.00105	10	5	70	0.0050	0.0020	0.00105	15	t0	70	0.0038	0.0020	0.00105	5	40	20	0.0084	0.0006
016	0.00101	10	5	70	0.0048	0.0019	0.00101	15	10	70	0.0036	0.0019	0.00101	5	35	25	0.0081	0.0007
017	0.00097	10	0	75	0.0046	0.0020	0.00097	15	0	85	0.0026	0 0023	0 00097	5	35	25	0.0077	0.0007
018	0.00093	10	0	75	0.0044	0.0019	0.00093	15	0	85	0.0025	0.0022	0.00093	5	35	25	0.0074	0.0006
AL =	0.028				0.171	0.030	0.028				0.138	0.031	0.028				0.248	0.006

Best-Guess of Atmospheric Methane Emissions=	0.171	tCO ₂ e/lonne
Best-Guess of Benefit of Energy Utilization=	-0.030	tCO ₂ e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.138	tCO ₂ e/tonne
Low Estimate of Benefit of Energy Utilization#	-0,031	tCO ₂ e/tonne
High Estimate of Atmospheric Methane Emissions=	0.248	tCO ₂ e/tonne
High Estimate of Benefit of Energy Utilization#	-0.006	tCO ₂ e/tonne

8	Long-Term Carbon Sequestration at a Future Landfill: From research by Barlaz:	
	Long term carbon sequestration from newsprint=	-1.41 tCO2e/tonne

9	Immediate & Future N ₂ O Emissions at a Future Landfill:	
	The potential of this emission is ignored.	
	Estimate of the N ₂ O Emission®	0 tCO _z eltonne

10 Energy Generation from Waste Incineration at the Burn	aby Incinerator:
Net energy content of wet newsprint#	18.4 GJ/tonne

	Utilized steam energy by Crown=	7.21	GJ/tonne
	Turbogenerator electricity produced*	0.00	GJ/tonne
	Emission prevention by steam utilization at Crown=	0.448	tCO ₇ e/tonne
	Emission prevention by offsetting BC Hydro (Burrard Thermal)=	0.000	tCO2e/tonne
	Total GHG emission prevented by energy production=	-0.45	tCO ₂ e/tonne
11	GHG Emissions from Waste Incineration at the Burnaby Incinerator:		
	Best-guess estimate of total GHG emissions from waste incineration=	0 027	tCO2e/tonne
	Low estimate of total GHG emissions from waste incineration=	0.015	ICO ₂ e/tonne
	High estimete of total GHG emissions from waste incineration=	0.037	tCO ₂ e/tonne
12	Energy Generation from Waste Incineration at a Future Incinerator:		
	Net energy content of wet newsprint#	18.4	GJ/tonne
	Utilized steam energy by Crown*	7.21	GJ/tonne
	Turbogenerator electricity produced=	0.00	GJ/tonne
	Emission prevention by stearn utilization at Crown=	0.448	tCO ₂ e/tonne
	Emission prevention by offsetting SC Hydro (Burrard Thermal)=	0.000	tCO ₂ e/tonne

Emission prevention by offsetting SC Hydro (Burrard Thermal)=	0.000 tCO ₂ e/tonne
Total GHG emission prevented by energy production=	-0.448 tCO2#/tonne

13	GHG Emissions from Waste Incineration at a Future Incinerator:		
	Best-guess estimate of total GHG emissions from waste incineration=	0 027	ICO ₂ e/tonne
	Low estimate of total GHG emissions from waste incineration#	0 0 16	ICO2e/tonne
	High estimate of total GHG emissions from waste incineration=	0.037	ICO ₂ e/tonne
14	GHG Emissions of Recycled Newsprint Utilization:		
	GHG benefit of recycled versus virgin manufacturing#	0	tCO ₂ e/tonne

15 Effect of Recycling Newsprint on Forest Carbon Storage; GHG implications of recycled newsprint on Forestry= 0 tCO3eAnnee

OFFICE PAPER MANAGEMENT:

Var	ables that can be changed by users are in bold.		
	Carbon Available for Anaerobic Decomposition=	0,371	kg C/dry kg
	Carbon storage factor for office paper (dry)=	0.03	kg C/dry kg
	Moisture content of office paper=	6	*
	Nitrogen content of office paper (dry mass basis)=	0	%N
	Net energy content of office paper=	15.7	GJ/tonne
1	Methane & Energy Implications of the Cache Creek Landfill		
	Carbon available for anserobic decomposition*	0.348	tC/wet tonne

Methane generation potential, L _e =	0.232 tCH_Avet tonne
Best-guess first order decay rate constant, k=	0.04 year ⁴
Low estimate first order decay rate constant, k=	0.02 year ⁻¹
High estimate first order decay rate constant, k=	0.06 year"

	BEST-GUE	SS:					LOW-EST	IMATE:					HIGH-ES1	IMATE:		_		
		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Almospheric	GHG Benefit
	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy
YEAR	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flored	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization
	(ICH_/yr)	(%)	(%)	(%)	(ICO2e/yr)	(tCO ₂ e/yr)	(tCH_/yr)	(%)	(%)	(%)	(ICO ₂ e/yr)	(ICO2e/yr)	(tCH_/yr)	(%)	(%)	(%)	(tCO ₇ e/yr)	(ICO ₂ e/yr)
1998	•	•	•	-	-	-	•	-	•		-	•	•	-	-	•	-	-
1999	0.00929	10	43	٥	0.1001	0.0000	0.00465	15	43	0	0 0473	0.0000	0.01394	5	43	0	0.1585	0.0000
2000	0.00893	10	50	D	0.0844	0.0000	0.00455	15	50	0	0.0406	0.0000	0.01313	5	50	0	0.1309	0.0000
2001	0.00858	10	50	10	0.0648	0.0024	0.00446	15	50	10	0.0319	0.0012	0.01236	5	50	0	0.1233	0 0000
2002	0.00824	10	50	15	0.0545	0.0034	0.00438	15	55	15	0 0234	0.0018	0.01164	5	50	0	0.1161	0 0000
2003	0.00792	10	45	20	0.0524	0.0044	0.00429	15	55	20	0 0 1 9 1	0.0024	0.01096	5	50	0	0.1094	0.0000
2004	0.00761	10	40	25	0.0503	0.0052	0.00420	15	50	25	0 0168	0.0029	0.01033	5	55	0	0.0927	0.0000
2005	0.00731	10	35	35	0.0414	0.0070	0 004 12	15	40	35	0.0184	0.0040	0.00972	5	55	0	0.0873	0.0000
2006	0.00702	10	30	40	0.0398	0.0077	0.00404	15	35	40	0 0 1 60	0.0044	0.00916	5	55	5	0.0731	0.0013
2007	0.00675	10	25	50	0.0319	0.0093	0.00396	15	25	50	0 0177	0 0054	0.00862	5	55	5	0.0688	0.0012
2008	0.00648	10	25	50	0.0306	0.0089	0 00388	15	30	50	0.0139	0.0053	0.00812	5	50	10	0.0648	0.0022
2009	0.00623	10	20	55	0.0294	0.0094	0.00380	15	25	55	0.0136	0.0058	0.00765	5	50	10	0.0610	0.0021
2010	0.00598	10	20	55	0.0283	0.0091	0.00373	15	25	55	0 0133	0.0056	0.00720	5	50	10	0.0575	0.0020
2011	0.00575	10	15	60	0.0272	0.0095	0.00365	15	20	60	0 0 1 3 0	0 0060	0.00678	5	45	15	0.0541	0.0028
2012	0.00552	10	15	60	0.0261	0.0091	0 00358	15	20	60	0.0128	0.0059	0.00639	5	45	15	0 0510	0.0026
2013	0.00531	10	10	65	0.0251	0.0095	0.00351	15	15	65	0.0125	0.0063	0.00602	5	45	15	0.0480	0.0025
2014	0.00510	10	10	65	0.0241	0.0091	0.00344	15	15	65	0.0123	0.0062	0.00567	5	40	20	0.0452	0.0031
2015	0.00490	10	5	70	0.0232	0.0094	0.00337	15	10	70	0.0120	0.0065	0 00534	5	40	20	0.0426	0.0029
2016	0.00471	10	5	70	0.0222	0.0091	0.00331	15	10	70	0 01 18	0.0064	0.00503	5	35	25	0.0401	0.0035
2017	0.00452	10	0	75	0.0214	0.0093	0.00324	15	0	85	0.0087	0 0076	0.00473	5	35	25	0.0378	0.0033
2018	0.00435	10	¢	75	0.0205	0.0090	0.00318	15	0	85	0 0085	0.0074	0.00446	5	35	25	0 0356	0.0031
TOTAL .	0.130				0,798	0.141	0.077				0.368	0.091	0.167				1.498	0,033

Best-Guess of Atmospheric Methene Emissions×	0.798	tCO ₂ e/tonne
Best-Guess of Benefit of Energy Utilization=	-0.141	tCO ₂ e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.368	ICO ₂ e/tonne
Low Estimate of Benefit of Energy Utilization=	-0.091	tCO ₂ e/tonne
High Estimate of Atmospheric Methane Emissions=	1,498	tCO ₂ e/tonne
High Estimate of Benefit of Energy Utilization*	-0.033	tCO ₂ e/tonne

2	Long-Term Carbon Sequestration in the Cache Creek Landfill:	
	From research by Barlaz:	
	Long term carbon sequestration from newsprint=	-0.10 ICO2e/

3 Immediate & Future N2O Emissions from the Cache Creek Landfill: The potential of this emission is ignored. Estimate of the N₂O Emission= 0 tCO2e/tonne

Methane & Energy implications of the Vancouver Landfill	
Carbon available for anaerobic decomposition=	0.348 tC/wet tonne
Methane generation potential, L _o =	0.232 tCH ₄ /wel tonne
Best-guess first order decay rate constant, k≖	0.05 year"
Low estimate first order decay rate constant, k=	0.025 year"
High estimate first order decay rate constant, k=	0.075 year"
	Carbon avsitable for anserablic decomposition= Methane generation pointiul, L _m = Best-guess first order decay rate constant, k= Low estimate first order decay rate constant, k=

	BEST-GUE	8S:					LOW-EST	IMATE:					HIGH-EST	IMATE:				
		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit
	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy
YEAR	Generation	Material	Flored	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization
	(ICH_dyr)	(%)	(%)	(%)	(ICD ₂ e/yr)	(tCO2e/yr)	{ICH_Ayr}	(%)	(%)	(%)	(tCO2e/yr)	(tCO2e/yr)	(ICH_/yr)	(%)	(%)	(%)	(tCD ₂ e/yr)	(tCO2e/yr)
1998		•	•	•	•	•	•	•	-			•	•		•	•		•
1999	0.01162	10	22	0	0.1712	0.0000	0.00581	15	22	0	0.0809	0.0000	0.01742	5	22	0	0.2711	0.0000
2000	0.01105	10	30	0	0.1462	0.0000	0 00566	15	35	0	0.0657	0.0000	0.01616	5	30	0	0.2257	0.0000
2001	0.01051	10	35	10	0.1093	0.0029	0.00552	15	40	10	0.0493	0.0015	0.01500	5	35	0	0.1945	0.0000
2002	0.01000	10	40	15	0.0850	0 0041	0.00539	15	45	15	0.0385	0.0022	0.01391	5	40	0	0.1665	0.0000
2003	0.00951	10	45	20	0.0629	0.0052	0.00525	15	55	20	0.0235	0.0029	0.01291	5	50	0	0.1287	0.0000
2004	0.00905	10	40	25	0.0598	0.0062	0.00513	15	50	25	0 0229	0.0035	0 01197	5	55	0	0.1075	0.0000
2005	0.00860	10	30	40	0.0488	0.0095	0.00500	15	40	35	0.0223	0.0048	0.01111	5	55	0	0.0997	0.0000
2006	0.00819	10	30	40	0.0464	0.0090	0.00488	15	35	40	0.0216	0.0054	0.01031	5	55	5	0.0822	0 00 14
2007	0.00779	10	25	50	0.0368	0.0107	0.00475	15	25	50	0.0212	0.0065	0.00956	5	55	5	0.0763	0.0013
2008	0 00741	10	25	50	0.0350	0.0102	0.00464	15	30	50	0.0166	0.0064	0,00887	5	50	10	0.0708	0.0024
2009	0.00705	10	20	55	0.0333	0.0107	0.00452	15	25	55	0.0161	0 0068	0 00823	5	50	10	0.0657	0.0023
2010	0.00670	10	20	55	0.0317	0.0101	0.00441	15	25	55	0.0157	0.0067	0.00764	5	50	10	0.0609	0.0021
2011	0.00637	10	15	60	0.0301	0.0105	0.00430	15	20	60	0.0154	0.0071	0.00708	5	45	15	0.0565	0.0029
2012	0.00606	tO	15	60	0.0287	0.0100	0.00420	15	20	60	0.0150	0.0069	0.00657	5	45	15	0.0524	0.0027
2013	0.00577	10	10	65	0.0273	0.0103	0.00409	15	15	65	0.0145	0.0073	0.00610	5	45	15	0.0487	0.0025
2014	0.00549	10	10	65	0.0259	0.0098	0.00399	15	15	65	0.0142	0.0071	0.00566	5	40	20	0.0451	0.0031
2015	0.00522	10	5	70	0.0247	0.0100	0.00389	15	10	70	0.0139	0.0075	0.00525	5	40	20	0.0419	0.0029
2016	0.00496	10	5	70	0.0235	0.0096	0.00380	15	10	70	0.0136	0.0073	0.00487	5	35	25	0.0389	0.0033
2017	0.00472	10	0	75	0.0223	0.0097	0.00370	15	0	85	0.0099	0.0087	0.00452	5	35	25	0.0360	0.0031
2018	0.00449	10	0	75	0.0212	0.0093	0.00361	15	0	85	0.0097	0.0054	0.00419	5	35	25	0.0334	0.0029
TAL #	0.151				1.070	0.158	0.093				0.501	0.107	0.187				1,903	0.033

Best-Guess of Almospheric Methane Emissions=	1.070	(CO ₂ e/lonne
Best-Guess of Benefit of Energy Utilization=	-0.158	tCO ₂ e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.501	tCO ₂ e/tonne
Low Estimate of Benefit of Energy Utilization*	-0.107	tCO ₂ e/tonne
High Estimate of Atmospheric Methane Emissions=	1.903	tCO ₂ e/lonne
High Estimate of Benefit of Energy Utilization®	-0.033	tCO ₂ e/tonne

5 Long-Term Carbon Sequestration in the Vancouver Landfill: From research by Barlaz: Long term carbon sequestration from office paper=

-0.10 ICO2e/tonne

6 Immediate & Future NyO Emissions from the Vancouver Landfill: The potential of this emission is ignored. Estimate of the NyO Emission=

7	Methane & Energy Implications at a Future Landfill		
	Carbon available for anaerobic decomposition=	0.348	tC/wet tonne
	Methane generation potential, L.=	0.232	tCH ₄ /wet tonne
	Best-guess first order decay rate constant, k=	0.04	year"
	Low estimate first order decay rate constant, k=	0.02	year"
	High estimate first order decay rate constant, k=	0.06	year"

0 tCOzeftonne

	BEST-GUES	· ·					LOW-ESTI	MATE					HIGH-EST	MATE				
		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit			Percentage	Percentage	Atmospheric	GHG Benefit			Percentage	Perrentage	Atmospheric	GHG Banafi
	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	aftFG	of LFG for	Methane	of Energy
YEAR	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization
	(ICH_/yr)	(%)	(%)	(%)	(ICO ₂ e/yr)	(ICO2e/yr)	(ICH_/yr)	(%)	(%)	(%)	(ICO2e/yr)	(ICO2e/yr)	(ICH_/yr)	(%)	(%)	(%)	(ICO2e/yt)	(tCO2e/yr)
1998																		
1999	0.00929	10	43	0	0.1001	0.0000	0 00465	15	43	0	0.0473	0.0000	0.01394	5	43	0	0,1585	0 0000
2000	0 00693	10	50	0	0.0844	0.0000	0.00455	15	50	0	0.0406	0.0000	0.01313	5	50	0	0.1309	0 0000
2001	0.00858	10	50	10	0 0648	0.0024	0.00446	15	50	10	0.0319	0.0012	0.01236	5	50	0	0.1233	0.0000
2002	0.00524	10	50	15	0.0545	0.0034	0.00438	15	55	15	0.0234	0.0018	0.01164	5	50	0	0,1161	0.0000
2003	0.00792	10	45	20	0.0524	0.0044	0 00429	15	55	20	0.0191	0.0024	0.01096	5	50	0	0.1094	0.0000
2004	0.00761	10	40	25	0.0503	0 0052	0.00420	15	50	25	0 0 188	0.0029	0 0 1033	5	55	0	0.0927	0.0000
2005	0 00731	10	35	35	0.0414	0.0070	0.00412	15	40	35	0.0184	0.0040	0.00972	5	55	Ď	0 0873	0.0000
2006	0.00702	10	30	40	0.0398	0.0077	0.00404	15	35	40	0.0180	0.0044	0.00916	5	55	5	0 0731	0.0013
2007	0.00675	10	25	50	0.0319	0,0093	0 00396	15	25	50	0.0177	0.0054	0.00862	5	55	5	0 0555	0.0012
2008	0.00648	10	25	50	0 0306	0.0089	0 00388	15	30	50	0.0139	0.0053	0.00812	s	50	10	0.0648	0.0022
2009	0.00623	10	20	55	0 0294	0.0094	0.00380	15	25	55	0.0136	0.0058	0.00765	5	50	10	0.0610	0.0021
2010	0.00598	10	20	55	0.0283	0.0091	0.00373	15	25	55	0.0133	0.0056	0.00720	5	50	10	0.0575	0.0020
2011	0.00575	10	15	60	0.0272	0.0095	0.00365	15	20	60	0.0130	0.0060	0.00678	5	45	15	0.0541	0.0025
2012	0.00552	10	15	60	0.0261	0.0091	0.00358	15	20	60	0.0128	0.0059	0.00639	5	45	15	0 0510	0.0026
2013	0,00531	10	10	65	0.0251	0.0095	0.00351	15	15	65	0.0125	0.0063	0.00602	5	45	15	0.0480	0.0025
2014	0.00510	10	10	65	0.0241	0.0091	0.00344	15	15	65	0.0123	0.0062	0.00567	5	40	20	0 0452	0.0031
2015	0.00490	10	5	70	0.0232	0.0094	0.00337	15	10	70	0.0120	0.0065	0.00534	5	40	20	0.0426	0.0029
2015	0.00471	10	5	70	0 0222	0.0091	0.00331	15	10	70	0.0118	0.0064	0.00503	5	35	25	0.0428	0.0025
2017	0.00452	10	0	75	0.0214	0.0093	0.00324	15	0	85	0.0087	0.0076	0.00473	5	35	25	0.0378	0.0033
2018	0.00435	10	õ	75	0.0205	0.0090	0.00318	15	ō	85	0.0085	0.0074	0.00446	5	35	25	0.0356	0.0031
TOTAL =		10	v	75	0.0205	0,141	0.077	13	v	63	0.368	0.00/4	0.167		33	29	1.498	0.0031
TOTAL -					0.190	9,141	0.077				0.300	0.057	0.107				1.490	0.033
B	as of Atmospheric	Mathana Emi			0.798	tCO ₂ e/tonne												
	iss of Armospheric iss of Benefit of Er				-0.141	tCO2#/tonne												
	nste of Abmospher				-0.141	tCO2e/tonne												
	nate of Benefit of I				-0.091	tCO ₂ e/tonne												
	mate of Atmosphe				1.498	tCO ₂ e/tonne												
High Estin	mate of Benefit of	Energy Utilizat	ion#		-0.033	tCO2e/lanne												
	erm Carbon Se	questration a	a a Fotore L	andilli														
	earch by Gerlaz:					ICO ₂ e/lonne												
Long term	n carbon sequestr	stion from offic	e paper=		-0.10	CO24/10114												
I	ate & Future N;																	
maneois																		
	-	-	s al a Fulure	Landhii:														
	ntial of this emissio	on is ignored.	s al a Fulure	E Landhill:														
	-	on is ignored.	s al a Fulure	ELANDINI:	٥	tCO2e/tonne												
	ntial of this emissio	on is ignored.	s al a Fulure	ELAODINI:	0	tCO ₂ e/tonne												
Estimate	ntial of this ernissic of the N ₂ O Emis	on is ignored. slon=				tCO ₂ e/tonne												
Entimate	ntial of this emission of the N ₂ O Emis Generation from	m is ignored. alon= m Waste Inc			Incinerator:													
Entimate	ntial of this ernissic of the N ₂ O Emis	m is ignored. alon= m Waste Inc			Incinerator:	tCO2e/tonne GJ/tonne												
Entimata Energy (Net energy	ntiel of this emission of the N ₂ O Emis Generation from any content of wet r	m is ignored. sion= m Waste Inc wwsprint≖			Incinerator: 15.7	GJ/tonne												
Entimate Energy (Nat energy Utilized st	ntiel of this emissic of the N ₂ O Emis Generation froi gy content of wet r team energy by C	m is ignored. slon= m Waste Inc wwsprint= rown=			Incinerator: 15.7 6.15	GJ/tonne GJ/tonne												
Entimate Energy (Nat energy Utilized st	ntiel of this emission of the N ₂ O Emis Generation from any content of wet r	m is ignored. slon= m Waste Inc wwsprint= rown=			Incinerator: 15.7 6.15	GJ/tonne												
Entimate Energy (Net energy Utilized at Turbogen	ntiel of this emission of the N ₂ O Emis Generation froi gy content of wet r team energy by C terator electricity p	n is ignored. slon= m Waste Inco newsprint= rown= rown=	ineration at t		Incinerator: 15.7 6.15 0.00	GJ/tonne GJ/tonne GJ/tonne												
Entimate Energy (Nationary Utilized at Turbogen Emission	ntial of this emission of the N ₂ O Emis Generation froi gy content of wet r team energy by C terator electricity p prevention by ste	on is ignored. slon= m Waste Inco newsprint= rown= oroduced= em utilization a	ineration at t t Crown=	lhe Burnaby I	Incinerator: 15.7 6.15 0.00 0.382	GJ/tonne GJ/tonne GJ/tonne tCO ₂ e/tonne												
Entimate Energy (Nat energy Utilized at Turbogen Emission	ntiel of this emission of the N ₂ O Emis Generation froi gy content of wet r team energy by C terator electricity p	on is ignored. slon= m Waste Inco newsprint= rown= oroduced= em utilization a	ineration at t t Crown=	lhe Burnaby I	Incinerator: 15.7 6.15 0.00 0.382	GJ/tonne GJ/tonne GJ/tonne												
Entimate Energy (Net energy Utilized at Turbogen Emission (ntiel of this emission of the N ₂ O Emission Generation from an energy by Content of wet r team energy by Content of wet r revention by states prevention by states	n is ignored. slon= m Waste Inc sewsprint= rown= sroduced= am utilization a setting BC Hyd	ineration at 1 t Crown= ro (Burrard The	lhe Burnaby I	Incinerator: 15.7 6.15 0.00 0.382 0.000	GJ/tonne GJ/tonne GJ/tonne tCO ₂ e/tonne tCO ₂ e/tonne												
Entimate Energy 4 Net energy Utilized at Turbogen Emission Emission	ntial of this emission of the N ₂ O Emis Generation froi gy content of wet r team energy by C terator electricity p prevention by ste	n is ignored. slon= m Waste Inc sewsprint= rown= sroduced= am utilization a setting BC Hyd	ineration at 1 t Crown= ro (Burrard The	lhe Burnaby I	Incinerator: 15.7 6.15 0.00 0.382 0.000	GJ/tonne GJ/tonne GJ/tonne tCO ₂ e/tonne												
Entimate Energy 4 Net energy Utilized at Turbogen Emission Emission	ntiel of this emission of the N ₂ O Emission Generation from an energy by Content of wet r team energy by Content of wet r revention by states prevention by states	n is ignored. slon= m Waste Inc sewsprint= rown= sroduced= am utilization a setting BC Hyd	ineration at 1 t Crown= ro (Burrard The	lhe Burnaby I	Incinerator: 15.7 6.15 0.00 0.382 0.000	GJ/tonne GJ/tonne GJ/tonne tCO ₂ e/tonne tCO ₂ e/tonne												
Entimate Energy (Net energ Utilized at Turbogen Emission (Emission)	ntial of this emission of the N ₂ O Emission Generation from gy content of wet r team energy by C nerator electricity p prevention by site prevention by site prevention by offs G emission preven	n is ignered, slon= m Waste Inc newsprint= rown= woduced= am utilization a netting BC Hyd ntad by energy	ineration al I Crown= to (Burrerd The production=	the Burnaby mai)#	Incinerator: 15.7 6.15 0.00 0.382 0.000 -0.38	GJ/tonne GJ/tonne GJ/tonne tCO ₂ e/tonne tCO ₂ e/tonne												
Entimate Energy (Net energy Utilized at Turbogen Emission Emission Total GHC GHG Em	ntial of this emission of the N ₂ O Emis Generation (roi gy contant of wet r team energy by C nerator electricity p prevention by ste- prevention by offs G emission prever missions (rom)	n is ignored. alon= m Waste Inc newsprint= rown= woduced= am utilization a letting BC Hyd nted by energy Waste Incine	ineration at t Crown= to (Burrard The production= production=	ihe Burnaby rmelj= Burnaby Inc	Incinerator: 15.7 6.15 0.00 0.382 0.000 -0.38 inerator:	GJ/tonne GJ/tonne GJ/tonne tCO2e/tonne tCO2e/tonne tCO2e/tonne												
Entimate Energy (Net energy Utilized at Turbogen Emission Emission Total GHC GHG En Best-gues	ntial of this emission of the N ₂ O Emis Generation fron gy content of well r team energy by C error electricity p prevention by off G emission prever missions from 1 se astimate of tota	n is ignored. sion= m Waste Inc newsprint= rown= am utilization a netting BC Hyd ntad by energy Waste Incine I GHG emissio	ineration at t Crown= to (Burrerd The production= anation at the ms from weste	lhe Burnaby I rmelja Burnaby Inc incinarationa	Incineralor: 15.7 6.15 0.00 0.382 0.000 -0.38 -0.38 ineralor: 0.027	GJ/tonne GJ/tonne GJ/tonne tCO_ze/tonne tCO_ze/tonne tCO_ze/tonne												
Entimate Energy (Net energy Utilized at Turbogen: Emission Total GHC GHG En Best-gues Low estim	nital of this emission of the NgD Emis Genoration fron gy content of wet re learn energy by C. prevention by site prevention by offit G emission preven missions from 11 as estimate of total GHG	n is ignored. sion= m Waste Inc ewsprint= rown= am utilization a setting BC Hydi ntad by energy Waste Incine I CHC emission from strong from	ineration at t Crown= ro (Burrerd The production= aration at the aveste incinera	lhe Burnaby rmel]# Burnaby Inc incineration= ation=	Incineralor: 15.7 6.15 0.00 0.382 0.000 -0.38 -0.38 ineralor: 0.027 0.016	GJ/tonne GJ/tonne ICO ₂ e/tonne ICO ₂ e/tonne ICO ₂ e/tonne ICO ₂ e/tonne												
Entimate Energy (Net energy Utilized at Turbogen: Emission Total GHC GHG En Best-gues Low estim	ntial of this emission of the N ₂ O Emis Generation fron gy content of well r team energy by C error electricity p prevention by off G emission prever missions from 1 se astimate of tota	n is ignored. sion= m Waste Inc ewsprint= rown= am utilization a setting BC Hydi ntad by energy Waste Incine I CHC emission from strong from	ineration at t Crown= ro (Burrerd The production= aration at the aveste incinera	lhe Burnaby rmel]# Burnaby Inc incineration= ation=	Incineralor: 15.7 6.15 0.00 0.382 0.000 -0.38 -0.38 ineralor: 0.027 0.016	GJ/tonne GJ/tonne GJ/tonne tCO_ze/tonne tCO_ze/tonne tCO_ze/tonne												
Entimeta Energy (Net energy Utilized at Turbogen Emission Total GHC GHG En Best-gues Low estim	nital of this emission of the NgD Emis Genoration fron gy content of wet re learn energy by C. prevention by site prevention by offit G emission preven missions from 11 as estimate of total GHG	n is ignored. sion= m Waste Inc ewsprint= rown= am utilization a setting BC Hydi ntad by energy Waste Incine I CHC emission from	ineration at t Crown= ro (Burrerd The production= aration at the aveste incinera	lhe Burnaby rmel]# Burnaby Inc incineration= ation=	Incineralor: 15.7 6.15 0.00 0.382 0.000 -0.38 -0.38 ineralor: 0.027 0.016	GJ/tonne GJ/tonne ICO ₂ e/tonne ICO ₂ e/tonne ICO ₂ e/tonne ICO ₂ e/tonne												
Entimeta Energy (Net energy Utilized at Turbogen: Emission (Emission) Total GHC GHG En Best-gues Low estim High estim	nisi of this emission of the N ₂ O Emis Generation (rot yr contant of we'r learn energy by C: revelor electrick p prevention by affi g emission prevention of G emission preven missions from 1 as estimate of loalad mate of loalad GHG	n is ignored. slon= m Waste Inc newsprint= rown= woduced= am utilization a letting BC Hyd nted by energy Waste Incine I GHG emissio emissions fror emissions fror	ineration at t Growns to (Burrard The productions tration at the maste inciner n waste inciner	the Burnaby I rmel)= Burnaby Inc incineration= stion=	incineralor: 15.7 6.15 0.00 0.382 0.000 -0.38 ineralor: 0.027 0.016 0.037	GJ/tonne GJ/tonne ICO ₂ e/tonne ICO ₂ e/tonne ICO ₂ e/tonne ICO ₂ e/tonne												
Entimete Energy (Net energ Utilized at Turbogen Emission Emission Total GHC GHG Em Best-gues Low estim High estim	nisi of this emission of the N ₂ O Emis Generation (rot y) content of wet n team energy by C revealer stectricky p prevention by off g emission prever missions from 1 as estimate of total CHG eneration (rot Generation (rot)	on is ignored. ston= m Waste Inc www.print= rown= woduced= am utilization a tetting BC Hyd nited by energy Waste Incine i OHG emission from m Waste Inc m Waste Inc	ineration at t Growns to (Burrard The productions tration at the maste inciner n waste inciner	the Burnaby I rmel)= Burnaby Inc incineration= stion=	Incinerator: 15.7 6.15 0.00 0.382 0.000 -0.38 inerator: 0.027 0.016 0.037 nerator:	GJ/tonne GJ/tonne GJ/tonne KC0_je/tonne KC0_je/tonne KC0_je/tonne KC0_je/tonne												
Entimeta Energy (Net energy Utilized at Turbogen Emission Emission Total GHC GHG Em Best-gues Low estim High estim	nisi of this emission of the N ₂ O Emis Generation (rot yr contant of we'r learn energy by C: revelor electrick p prevention by affi g emission prevention of G emission preven missions from 1 as estimate of loalad mate of loalad GHG	on is ignored. ston= m Waste Inc www.print= rown= rown= woduced= am utilization a neeting BC Hyd need by energy Waste Incine i OHG emission from m Waste Incine m Waste Inc	ineration at t Growns to (Burrard The productions tration at the maste inciner n waste inciner	the Burnaby I rmel)= Burnaby Inc incineration= stion=	Incinerator: 15.7 6.15 0.00 0.382 0.000 -0.38 inerator: 0.027 0.016 0.037 nerator:	GJ/tonne GJ/tonne ICO ₂ e/tonne ICO ₂ e/tonne ICO ₂ e/tonne ICO ₂ e/tonne												
Estimata Energy (Net energy Utilized at Turbogen Emission (Emission) Total GHC GHG Em Best-gues Low estim High estim Energy (nisel of this emission of the N-Q Emis Generation (rot) gy contant of wet r team energy by C reventor stacticity p prevention by offi- g emission preven- missions (rom) as estimate of total G emission preven- mate of total GHG Generation (rot gy contant of wet r	n is ignored. alon= m Waste Inc. www.print= rown= woducad= am utilization a letting BC Hyd nted by energy Waste Incine emissions from emissions from Waste Income www.print=	ineration at t Growns to (Burrard The productions tration at the maste inciner n waste inciner	the Burnaby I rmel)= Burnaby Inc incineration= stion=	Incineralor: 15.7 6.15 0.00 -0.382 0.000 -0.38 0.000 -0.38 0.007 0.016 0.037 neralor: 15.7	GJ/tonne GJ/tonne GJ/tonne tCO_jeltonne tCO_jeltonne tCO_jeltonne tCO_jeltonne tCO_jeltonne												
Entimate Energy 4 Net energy Utilized at Turbogen Emission Total GHC GHG En Best-gues Low estim High estim Energy 4 Net energy Utilized at	nial of this emission of the N ₂ O Emis Generation froi y content of wet r team energy by C. prevention by the prevention by the s a stimular of lotal GHG Generation froi py contact of wet a	on is ignored. alon= m Waste Inc www.print= rown= woduced= am utilization a testing BC Hyd atestion a testing BC Hyd atesting BC Hyd	ineration at t Growns to (Burrard The productions tration at the maste inciner n waste inciner	the Burnaby I rmel)= Burnaby Inc incineration= stion=	Incineralor: 15.7 6.15 0.00 0.382 0.000 -0.38 ineralor: 0.027 0.016 0.037 neralor: 15.7 6.15	G.J.tonne G.J.tonne KCO3e/tonne KCO3e/tonne KCO3e/tonne KCO3e/tonne KCO3e/tonne KCO3e/tonne KCO3e/tonne												
Entimate Energy (Net energy Utilized at Turbogen: Emission Emission Total GHC GHG En Beat-gues Low estim High estim Energy (Net energy Utilized at	nisel of this emission of the N-Q Emis Generation (rot) gy contant of wet r team energy by C reventor stacticity p prevention by offi- g emission preven- missions (rom) as estimate of total G emission preven- mate of total GHG Generation (rot gy contant of wet r	on is ignored. alon= m Waste Inc www.print= rown= woduced= am utilization a testing BC Hyd atestion a testing BC Hyd atesting BC Hyd	ineration at t Growns to (Burrard The productions tration at the maste inciner n waste inciner	the Burnaby I rmel)= Burnaby Inc incineration= stion=	Incineralor: 15.7 6.15 0.00 0.382 0.000 -0.38 ineralor: 0.027 0.016 0.037 neralor: 15.7 6.15	GJ/tonne GJ/tonne GJ/tonne tCO_jeltonne tCO_jeltonne tCO_jeltonne tCO_jeltonne tCO_jeltonne												
Entimeta Energy () Net energy Utilized at Turbogen Embasion Embasion Total GHC GHG En Best-gues Low estim High estim Energy () Utilized at Turbogen	niał of this emission of the N ₂ O Emis Genoralion froi y content of wet r terem energy by C. y evention by sta g emission structicky p prevention by y di g emission prever missions from the statistical to the s estimation of total set to the statistical total Generalion from genoralion from wet a genoralion from wet a team energy by C reversion electricky p	on is ignored. alon= m Waste Inc www.print= rown= woduced= am utilization a leating BC Hyd inted by energy Waste Incines of CHC emission from amissions from amissions from amissions from m Waste Inci severprint= rown= woduced=	ineration at t Crowns to (Burrard The productions tration at the maste incinen n waste incinen ineration at	the Burnaby I rmel)= Burnaby Inc incineration= stion=	Incinerator: 15.7 6.15 0.00 0.382 0.000 -0.38 0.000 -0.38 0.000 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.020 0.000 0.0200 0.0200 0.0200 0.0200000000	GJ/tonne GJ/tonne CG/je/tonne CG/je/tonne CG/je/tonne CG/tonne GJ/tonne GJ/tonne GJ/tonne												
Entimeta Energy (Net energy Utilized at Turbogen Emission Code Energy High energy Utilized at Turbogen Emergy Utilized at Turbogen	nial of this emission of the N ₂ O Emis Generation (rot yr contant of we'r learn energy by C, wardor electrick p prevention by aft prevention by aft of emission preven missions from 1 e estimate of total GHG mate of total GHG Generation (rot yr contant of we'r tasam energy by C prevention by atte	on is ignored. alon= m Waste Inc. rown= rown= am ubitation a enting BC Hyd am ubitation a enting BC Hyd niad by energy Waste Incine emissions from m Waste Inc. news print= rown=	ineration at t Crown= to (Burrerd The production= or ation at the as from waste nowaste inciner ineration at ineration at t Crown=	lhe Burnaby rmelj= Burnaby Inc incinention= alion= alion= a Future Incir	incinerator: 15.7 6.15 0.00 -0.38 0.000 -0.38 inerator: 0.017 0.016 0.037 15.7 6.05 0.05 0.030 2.382	GJ/tonne GJ/tonne (C/ze/tonne (C/ze/tonne (C/ze/tonne (C/ze/tonne (C/ze/tonne GJ/tonne GJ/tonne GJ/tonne												
Earlinete Energy (Net energy Turbogen Emission) Emission (Emission) Total GHC GHG En Best-gues Low estimute High earlin High earlin Utilized at Turbogen Emission)	niał of this emission of the N ₂ O Emis Genoralion froi y content of wet r terem energy by C. y evention by sta g emission structicky p prevenion by y di g emission prever missions from terest terest of terms of total G emission from terest terest of terms of total Generalion from genoralion from terest of terms of total Generalion from terms of total GHG	on is ignored. alon= m Waste Inc. rown= rown= am ubitation a enting BC Hyd am ubitation a enting BC Hyd niad by energy Waste Incine emissions from m Waste Inc. news print= rown=	ineration at t Crown= to (Burrerd The production= or ation at the as from waste nowaste inciner ineration at ineration at t Crown=	lhe Burnaby rmelj= Burnaby Inc incinention= alion= alion= a Future Incir	incinerator: 15.7 6.15 0.00 -0.38 0.000 -0.38 inerator: 0.017 0.016 0.037 15.7 6.05 0.05 0.030 2.382	GJ/tonne GJ/tonne CG/je/tonne CG/je/tonne CG/je/tonne CG/tonne GJ/tonne GJ/tonne GJ/tonne												
Estimate Energy (Natanergy Utilized at Emission Total GHC GHG En Best-gues GHG En GHG En Son estim High estim Natanergy Utilized at Turbogan Emergy to Utilized at Turbogan	niał of this emission of the N ₂ O Emis Generation froi yy contant of wei r lasen energy by C prevention by ath of emission prever missions from 1 as estimate of total G eneration from as estimate of total Generation from y contant of wei taken energy by C warstor electricky p prevention by ath prevention by ath	on is ignored. alon= m Waste Inc seveprint= roduced= am utilization a eming BC Hyd nted by energy Waste Incine I OHG emissis missions fror m Waste Inc severprint= rown= roduced= am utilization a setting BC Hyd	ineration at i t Crown= to (Burrard The production= or ation at the as from waste waste inciner ineration at ineration at t Crown= to (Burrard The	lhe Burnaby rmelj= Burnaby Inc incinention= alion= alion= a Future Incir	incinerator: 15.7 6.05 0.000 -0.38 0.000 -0.38 inerator: 0.016 0.037 15.7 6.15 0.00 0.382 0.000	GJ/tonne GJ/tonne GJ/tonne ICO:je/tonne ICO:je/tonne ICO:je/tonne GJ/tonne GJ/tonne CJ/tonne CJ/tonne												
Estimata Energy (/ Net energy Utilized at Emission) Total GHCG GHG En Best-gues GHG En West-gues Utilized at Turbogan Energy Y	nial of this emission of the N ₂ O Emis Generation (rot yr contant of we'r learn energy by C, wardor electricky p prevention by aff prevention by aff G emission preven missions from 1 e estimate of total GHG mate of total GHG Generation (rot yr contant of we'r Learn energy by C prevention by ate	on is ignored. alon= m Waste Inc seveprint= roduced= am utilization a eming BC Hyd nted by energy Waste Incine I OHG emissis mainsions fror m Waste Inc severprint= rown= roduced= am utilization a setting BC Hyd	ineration at i t Crown= to (Burrard The production= or ation at the as from waste waste inciner ineration at ineration at t Crown= to (Burrard The	lhe Burnaby rmelj= Burnaby Inc incinention= alion= alion= a Future Incir	incinerator: 15.7 6.05 0.000 -0.38 0.000 -0.38 inerator: 0.016 0.037 15.7 6.15 0.00 0.382 0.000	GJ/tonne GJ/tonne (C/ze/tonne (C/ze/tonne (C/ze/tonne (C/ze/tonne (C/ze/tonne GJ/tonne GJ/tonne GJ/tonne												
Entimete Energy / Nat energy Ulikad at Emission Emission Total GHC GHG En Best-gues GHG En GHG En Son estim High estim High estim Nat energy Ulikad at Turbogen Emission Emission	niał of this emission of the N ₂ O Emis Generation froi yy contant of wei r lasen energy by C prevention by ath of emission prever missions from 1 as estimate of total G eneration from as estimate of total Generation from y contant of wei taken energy by C warstor electricky p prevention by ath prevention by ath	on is ignored. alon= m Waste Inc seveprint= roduced= am utilization a eming BC Hyd nted by energy Waste Incine I OHG emissis mainsions fror m Waste Inc severprint= rown= roduced= am utilization a setting BC Hyd	ineration at i t Crown= to (Burrard The production= or ation at the as from waste waste inciner ineration at ineration at t Crown= to (Burrard The	lhe Burnaby rmelj= Burnaby Inc incinention= alion= alion= a Future Incir	incinerator: 15.7 6.05 0.000 -0.38 0.000 -0.38 inerator: 0.016 0.037 15.7 6.15 0.00 0.382 0.000	GJ/tonne GJ/tonne GJ/tonne ICO:jeltonne ICO:jeltonne ICO:jeltonne GJ/tonne GJ/tonne CJ/tonne												
Estimate Energy (Net energy Utilized at Turbogen Emission) Total GHC GHG En Best-gues Low estim High estim High estim Net energy (Utilized at Turbogen Emission) Total GHC	nisi of this emission of the N ₂ O Emis Generation (rot) yr contant of we'r learn energy by C. revelor electrick p prevention by affi G emission preven mi Ssions (rom) as estimate of total GHG mate of total GHG Generation (rot) yr contant of we'r tasam energy by C energy by C specention by affi prevention by affi G emission preven	on is ignored. alon= m Waste Inc. newsprint= rown= arm utilization a letting BC Hyd letting BC Hyd letting BC Hyd niad by energy Waste Incine i CHG emissis emissions from m Waste Incines i CHG emissis emissions from m waste Incines emissions from m waste Incines emissions from m waste Incines i CHG emissis emissions from m waste Incines i CHG emissis emissions from m waste Incines emissions from emissions from	ineration at i t Crown= to (Burrard The production= aration at the as from waste incident ineration at the state incident ineration at t Crown= to (Burrard The production=	ihe Burnaby rmel)= Burnaby Inc reineration= alion= alion= a Future Incir rmat)=	Incinerator: 15.7 6.05 0.000 -0.38 0.000 -0.38 0.027 0.016 0.037 15.7 6.15 0.000 0.382 0.000 -0.38	GJ/tonne GJ/tonne GJ/tonne ICO:jeltonne ICO:jeltonne ICO:jeltonne GJ/tonne GJ/tonne CJ/tonne												
Extinuita Energy () Net energy Utilized at Torbogen Emission Total GHC GHG En Best-gues High estim High estim	nial of this emission of the N ₂ O Emis Genoralison froit ye content of wet r learn energy by C. yervention by the generation structure of emission prever missions from 1 se attinue of total GHG Generation from state total GHG Generation from the resention by aft for emission prever prevention by aft G emission prever missions from 1	on is ignored. alons m Waste Inc ewsprints rowns amutikation a mutikation a mutikation a mutikation a emissions fror m Waste Incine emissions from m Waste Incine emissions from	ineration at i a Growns to (Burrard The productions aration at the as from wasts wasts inciner ineration at a t Crowns to (Burrard The productions aration at a F	ihe Burnaby I rmel)= Burnaby Inc incluration= st	Incinerator: 15.7 6.15 0.000 -0.38 0.000 -0.38 0.016 0.037 15.7 6.15 0.000 0.382 0.000 -0.38 0.000 -0.38	GJitanne GJitonne GJitonne ICO:jeltonne ICO:jeltonne ICO:jeltonne GJitanne GJitonne ICO:jeltonne ICO:jeltonne ICO:jeltonne												
Estimate Energy (4) Uilited at Turbogan Emission Total GHC GHG Ern Best-guese High estim Vilited at Turbogen Emission Total GHC GHG Ern Emission Total GHC GHG GHG Ent Best-guese	niał of this emission of the N ₂ O Emis Generation froi yy contant of we'r learn energy by C avastor electricky p prevention by ste prevention by off G emission prever missions from 1 as estimate of total Generation froi gorden of we'r gorden of we'r gorden of we'r avastor electricky p prevention by off gorden of total G emission prever prevention by off g emissions from 1 as estimate of total C emissions from 1	on is ignored. alon= m Waste Inc severprint= moduced= am utilization a setting BC Hyd nand by energy Waste Incine of HG emission from mwaste Incine sources m Waste Incine am utilization a setting BC Hyd nied by anergy Waste Incine am utilization a setting BC Hyd nied by anergy Waste Incine I GHG emissio	ineration at i a Grown= to (Burrerd The production= aration at the aration at the aration at the station at a Fernies aration at a Fernies	the Burnaby I rmel)= Burnaby Inc Incination= stion= stion= a Future Incin rmst)= future Inciner incineration=	Incinerator: 15.7 0.00 0.382 0.000 -0.38 inerator: 0.027 0.016 0.027 15.7 6.05 0.000 0.382 0.000 -0.38 15.7 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.027 0.000 0.027 0.000 0.000 0.027 0.0000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.000	G J/tonne G J/tonne G J/tonne tCO_pe/tonne tCO_pe/tonne tCO_pe/tonne tCO_pe/tonne G J/tonne C J/tonne tCO_pe/tonne tCO_pe/tonne tCO_pe/tonne												
Estimate Energy 14 Utilized at Turbogen Emission g Emission g Emission Totel GHO GHO En Best-gues Low estim High estin Utilized at Turbogen Emission Totel GHO GHO En Best-gues Emission Totel GHO GHO En Best-gues Emission	niał of this emissio of the N ₂ O Emis Genoration froi y content of we r terem energy by C. eventor statuticky p prevention by y di g emission preven missions from 11 sestimate of total GHG Generation for we r isan energy by C. greention by sta prevention by sta	on is ignored. alon= m Waste Inc sewsprint= roown= woduced= antiditation a antiditation a antiditation a antiditation a seriasions from m Waste Incine sewsprint= rown= woduced= antiditation a setting BC Hyd hated by anargy Waste Incine antiditation a seriasions from m Waste Incine antiditation a seriasions from m Waste Incine antiditation a seriasions from woduced= antiditation a seriasions from massions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from antiditation a antiditation a antidit	ineration at i t Crowns to (Burrard The productions ar ation at the marker of the state to crowns to Crowns to Crowns productions the count of the productions the state of the state productions	Ihe Burnaby I rmel)= Burnaby Inc incheration= ation= ation= ation= ation= ation= ation= ation= ation=	Incinerator: 15.7 6.05 0.000 -0.382 0.000 -0.38 inerator: 0.016 0.037 15.7 6.15 0.000 -0.38 0.000 -0.38 0.000 -0.38	GJ/tonne GJ/tonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne GJ/tonne GJ/tonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne												
Estimate Energy (1) Net energy Utilized at Emission 1 Total GHC GHG En Energy (1) Utilized at Emission 1 Total GHC Emission 1 Total GHC Emission 2 Total GHC GHG En Best-gues Low estim	niał of this emission of the N ₂ O Emis Generation froi yy contant of we'r learn energy by C avastor electricky p prevention by ste prevention by off G emission prever missions from 1 as estimate of total Generation froi gorden of we'r gorden of we'r gorden of we'r avastor electricky p prevention by off gorden of total G emission prever prevention by off g emissions from 1 as estimate of total C emissions from 1	on is ignored. alon= m Waste Inc sewsprint= roown= woduced= antiditation a antiditation a antiditation a antiditation a seriasions from m Waste Incine sewsprint= rown= woduced= antiditation a setting BC Hyd hated by anargy Waste Incine antiditation a seriasions from m Waste Incine antiditation a seriasions from m Waste Incine antiditation a seriasions from woduced= antiditation a seriasions from massions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from antiditation a antiditation a antidit	ineration at i t Crowns to (Burrard The productions ar ation at the marker of the state to crowns to Crowns to Crowns productions the count of the productions the state of the state productions	Ihe Burnaby I rmel)= Burnaby Inc incheration= ation= ation= ation= ation= ation= ation= ation= ation=	Incinerator: 15.7 6.05 0.000 -0.382 0.000 -0.38 inerator: 0.016 0.037 15.7 6.15 0.000 -0.38 0.000 -0.38 0.000 -0.38	G J/tonne G J/tonne G J/tonne tCO_pe/tonne tCO_pe/tonne tCO_pe/tonne tCO_pe/tonne G J/tonne C J/tonne tCO_pe/tonne tCO_pe/tonne tCO_pe/tonne												
Estimate Energy (1) Net energy Utilized at Emission 1 Total GHC GHG En Energy (1) Utilized at Emission 1 Total GHC Emission 1 Total GHC Emission 2 Total GHC GHG En Best-gues Low estim	niał of this emissio of the N ₂ O Emis Genoration froi y content of we r terem energy by C. eventor statuticky p prevention by y di g emission preven missions from 11 sestimate of total GHG Generation for we r isan energy by C. greention by sta prevention by sta	on is ignored. alon= m Waste Inc sewsprint= roown= woduced= antiditation a antiditation a antiditation a antiditation a seriasions from m Waste Incine sewsprint= rown= woduced= antiditation a setting BC Hyd hated by anargy Waste Incine antiditation a seriasions from m Waste Incine antiditation a seriasions from m Waste Incine antiditation a seriasions from woduced= antiditation a seriasions from massions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from antiditation a antiditation a antidi	ineration at i t Crowns to (Burrard The productions ar ation at the marker of the state to crowns to Crowns to Crowns productions the count of the productions the state of the state productions	Ihe Burnaby I rmel)= Burnaby Inc incheration= ation= ation= ation= ation= ation= ation= ation= ation=	Incinerator: 15.7 6.05 0.000 -0.382 0.000 -0.38 inerator: 0.016 0.037 15.7 6.15 0.000 -0.38 0.000 -0.38 0.000 -0.38	GJ/tonne GJ/tonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne GJ/tonne GJ/tonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne												
Entimeta Entropy 14 Net energy 14 Utilized at Turbogen Emission p Emission p Entropies Low estim High estin Renergy 1 Net energy 1 Utilized at Turbogen Emission Total GHC GHG En Bestgues Child En Bestgues Child En Bestgues Child En	niał of this emissio of the N ₂ O Emis Genoration froi y content of we r terem energy by C. eventor statuticky p prevention by y di g emission preven missions from 11 sestimate of total GHG Generation for we r isan energy by C. greention by sta prevention by sta	on is ignored. alon= m Waste Inc sewsprint= roown= woduced= antiditation a antiditation a antiditation a antiditation a seriasions from m Waste Incine sewsprint= rown= woduced= antiditation a setting BC Hyd hated by anargy Waste Incine antiditation a seriasions from m Waste Incine antiditation a seriasions from m Waste Incine antiditation a seriasions from woduced= antiditation a seriasions from massions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from woduced= antiditation a seriasions from antiditation a antiditation a antidi	ineration at i t Crowns to (Burrard The productions ar ation at the marker of the state to crowns to Crowns to Crowns productions the count of the productions the state of the state productions	Ihe Burnaby I rmel)= Burnaby Inc incheration= ation= ation= ation= ation= ation= ation= ation= ation=	Incinerator: 15.7 6.05 0.000 -0.382 0.000 -0.38 inerator: 0.016 0.037 15.7 6.15 0.000 -0.38 0.000 -0.38 0.000 -0.38	GJ/tonne GJ/tonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne GJ/tonne GJ/tonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne												
Extinueta Energy (1) Nationary Utilized at Turbogen Emission Total GHC GHG En Best-guese High estim Utilized at Turbogen Emission Utilized at Turbogen Emission Total GHC GHG En Emission Total GHC GHG En Emission Utilized at Turbogen Emission Constant Constant Emission Constant Constant Emission Constant Cons	niał of this emissio of the N ₂ O Emis Genoration froi y content of we r terem energy by C. eventor statuticky p prevention by y di g emission preven missions from 11 sestimate of total GHG Generation for we r isan energy by C. greention by sta prevention by sta	on is ignored. alons m Waste Inc. www.prints m Waste Inc. www.srints am utilization a weiting BC Hyd ned by energy Waste Inc. m Waste Inc. www.srints m Waste Inc. m Waste Inc. m Waste Inc. m Waste Inc. M Rev. M Rev.	ineration at i a Growns to (Burrard The productions a ation at the as from wasts wasts inciner ineration at a a Gourrard The productions aration at a F ms from wasts inciner in wasts inciner	ihe Burnaby I Irmelja Burnaby Inc Inclarationa stona elona a Future Incliner inclarationa stona ationa	Incinerator: 15.7 6.05 0.000 -0.382 0.000 -0.38 inerator: 0.016 0.037 15.7 6.15 0.000 -0.38 0.000 -0.38 0.000 -0.38	GJ/tonne GJ/tonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne GJ/tonne GJ/tonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne												
Estimate Energy (1) Net energy Ulikzed al Emission Emission Emission Total GHC GHG En Energy (1) Ulikzed at Ulikzed at Emission Edit Emission Edit Emission Edit Emission Edit Emission Edit Emission Edit Emission Edit Emission Edit Edit Edit Edit Edit Edit Edit Edit	nial of this emission of the N ₂ O Emis Genoralison froit ye content of we'r leven energy by C. yerention by sta generation stecticity p prevention by yet generation prever missions from 1 as attinate of total GHG Generation from the generation by att generation of total generation of total generation generation of total generation of total generation of total generation of total generation of total generation of total generation of total generation of total generation of total generation of total generatio	on is ignored. alon= Im Waste Inc. Income print= rown= worduced= am utilization a letting BC Hyd nand by energy Waste Incinet I CHG emission am utilization a letting BC Hyd Intel by anergy Waste Incinet am utilization a letting BC Hyd Intel by anergy Waste Incinet I CHG emission from anistions from amissions from amissions from	ineration at i a Crown= to (Burrerd The production= aration at the aration at the maste inciner ineration at inciner ineration at a F maste inciner production= pro	the Burnaby I rmel)= Burnaby Inc incineration= sition= sition= sition= sition= sition= sition= sition:	Incinerator: 15.7 6.05 0.000 -0.38 0.000 -0.38 0.027 0.016 0.037 15.7 6.15 0.000 0.382 0.000 0.382 0.000 -0.38 15.7 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.027 0.016 0.000 0.027 0.016 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.027 0.016 0.027 0.016 0.000 0.027 0.016 0.027 0.026 0.027 0.026 0.027 0.027 0.026 0.027 0.027 0.026 0.027 0.027 0.026 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.020 0.000 0.027 0.027 0.020 0.000 0.027 0.027 0.027 0.020 0.000 0.027	GJ/tonne GJ/tonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne GJ/tonne GJ/tonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne (CO_jelfonne												
Estimate Energy (1) Net energy Ulikzed al Emission Emission Emission Total GHC GHG En Energy (1) Ulikzed at Ulikzed at Emission Edit Emission Edit Emission Edit Emission Edit Emission Edit Emission Edit Emission Edit Emission Edit Edit Edit Edit Edit Edit Edit Edit	nial of this emission of the N ₂ O Emis Generation (rot yr contant of we'r Isem energy by C wrator electricky p prevention by afte G emission prever missions from 1 as estimate of total Generation (rot yr contant of we'r is sen of total GHG gorden of the sen of the gorden of the sen of the set of total GHG gorden of the sen of the set set of the sen of the set of total GHG anale of total GHG mate of total GHG mate of total GHG mate of total GHG missions of Rem	on is ignored. alon= In Waste Inc. Income print= rown= worduced= am utilization a letting BC Hyd nand by energy Waste Incinet I CHG emission am utilization a letting BC Hyd Intel by anergy Waste Incinet am utilization a letting BC Hyd Intel by anergy Waste Incinet I CHG emission from anistions from amissions from amissions from	ineration at i a Crown= to (Burrerd The production= aration at the aration at the maste inciner ineration at inciner ineration at a F maste inciner production= pro	the Burnaby I rmel)= Burnaby Inc incineration= sition= sition= sition= sition= sition= sition= sition:	Incinerator: 15.7 6.05 0.000 -0.38 0.000 -0.38 0.027 0.016 0.037 15.7 6.15 0.000 0.382 0.000 0.382 0.000 -0.38 15.7 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.027 0.016 0.000 0.027 0.016 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.027 0.016 0.027 0.016 0.000 0.027 0.016 0.027 0.026 0.027 0.026 0.027 0.027 0.026 0.027 0.027 0.026 0.027 0.027 0.026 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.020 0.000 0.027 0.027 0.020 0.000 0.027 0.027 0.027 0.020 0.000 0.027	G J/tonne G J/tonne G J/tonne ICO_je/tonne ICO_je/tonne ICO_je/tonne G J/tonne G J/tonne ICO_je/tonne ICO_je/tonne ICO_je/tonne ICO_je/tonne												
Entimate Entimate Internet Utilized at Turbogen Embasion Embasion Total GHC GHG Ent Entropy Utilized at Utilized at Utilized at Entropy Utilized at Entropy Utilized at Entropy Utilized at Entropy Utilized at Entropy Utilized at Entropy En	nial of this emission of the N ₂ O Emis Generation (rot yr contant of we'r Isem energy by C wrator electricky p prevention by afte G emission prever missions from 1 as estimate of total Generation (rot yr contant of we'r is sen of total GHG gorden of the sen of the gorden of the sen of the set of total GHG gorden of the sen of the set set of the sen of the set of total GHG anale of total GHG mate of total GHG mate of total GHG mate of total GHG missions of Rem	on is ignored. alon= In Waste Inc. Income print= rown= worduced= am utilization a letting BC Hyd nand by energy Waste Incinet I CHG emission am utilization a letting BC Hyd Intel by anergy Waste Incinet am utilization a letting BC Hyd Intel by anergy Waste Incinet I CHG emission from anistions from amissions from amissions from	ineration at i a Crown= to (Burrerd The production= aration at the aration at the maste inciner ineration at inciner ineration at a F maste inciner production= pro	the Burnaby I rmel)= Burnaby Inc incineration= sition= sition= sition= sition= sition= sition= sition:	Incinerator: 15.7 6.05 0.000 -0.38 0.000 -0.38 0.027 0.016 0.037 15.7 6.15 0.000 0.382 0.000 0.382 0.000 -0.38 15.7 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.027 0.016 0.000 0.027 0.016 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.027 0.016 0.027 0.016 0.000 0.027 0.016 0.027 0.026 0.027 0.026 0.027 0.027 0.026 0.027 0.027 0.026 0.027 0.027 0.026 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.020 0.000 0.027 0.027 0.020 0.000 0.027 0.027 0.027 0.020 0.000 0.027	G J/tonne G J/tonne G J/tonne ICO_je/tonne ICO_je/tonne ICO_je/tonne G J/tonne G J/tonne ICO_je/tonne ICO_je/tonne ICO_je/tonne ICO_je/tonne												
Estimate Energy (1) Nat energy Utilized at Turbogen Embasion Total GHC GHG En Best-gues Nat energy Utilized at Turbogen Embasion Utilized at Turbogen Embasion Total GHC GHG En GHG En GHG En GHG En GHG En	nial of this emission of the N ₂ O Emis Generation (rot yr contant of we'r Isem energy by C wrator electricky p prevention by afte G emission prever missions from 1 as estimate of total Generation (rot yr contant of we'r is sen of total GHG gorden of the sen of the gorden of the sen of the set of total GHG gorden of the sen of the set set of the sen of the set of total GHG anale of total GHG mate of total GHG mate of total GHG mate of total GHG missions of Rem	on is ignored. alons m Waste Inc severyints rowns aroutization a setting BC Hyde need by energy Waste Incline armissions fror m Waste Incline emissions fror m Waste Incline severyints rowns wordiceds arm utilization a setting BC Hyd had by energy Waste Incline emission fror emissions fror emission fror emissions fror emissions fror emissions fror emissions fror emissions fror emissions from emissions from emissio	ineration at i t Crowns to (Burrard The productions ar ation at the maste incident ineration at a fin- productions t Crowns to (Burrard The productions the final from waste productions the state incident to a Paper Utilizione the Paper Utilizione the production of the final the production of the final from waste the state incident the state incident the paper Utilizione the paper Utilizione th	Ihe Burnaby rmel)= Burnaby nc incineration= stion= stion= a Future Inciner incineration= stion= zation= zation: p	Incinerator: 15.7 6.05 0.000 -0.38 0.000 -0.38 0.027 0.016 0.322 0.000 -0.38 0.000 -0.38 0.000 -0.38 0.000 -0.38 0.000 -0.38 0.000 -0.38 0.000 -0.38 0.000 -0.38 0.000 -0.38 0.000 -0.38 -0.000 -0.38 -0.000 -0.000 -0.38 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.0000 -0.0000 -0.000 -0	G J/tonne G J/tonne G J/tonne ICO_je/tonne ICO_je/tonne ICO_je/tonne G J/tonne G J/tonne ICO_je/tonne ICO_je/tonne ICO_je/tonne ICO_je/tonne												
Entimete Entimete Viikzed at Turbogen Emission Turbogen Emission Total GHC GHG En Best-goues Uw estim High estin Emission Turbogen Emission Turbogen Emission Turbogen Emission Turbogen Emission Turbogen Emission Turbogen Emission Turbogen Emission Turbogen Emission Turbogen Emission Turbogen Emission Turbogen Emission Emission Turbogen Emission Emission Turbogen Emission Turbogen Emission Turbogen Emission Emission Turbogen Emission Turbogen Emission Turbogen Emission Turbogen Emission Turbogen Emissio	nial of this emission of the N ₂ O Emis Generation front yr content of we'r terem energy by C. yr evention by sta prevention by ydi G emission preven missions from 'n seathinks of total antar of total GHG Generation from y seathinks electricky p yr evention by att prevention by att prevention by att G emission preven missions from 'n seathinks of total G emission prevention by att from the formation of the missions of Re- metric of recycled 'n	on is ignored. alon= m Waste Inc severyint= rown= arroduced= arroduced= arroduced= arroduced= arrotation of the emissions from armissions from m Waste Incine severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= r	ineration at i a Crowns to (Burrerd The productions at ation at the as from waste to comma at Crowns at Crowns a	ihe Burnaby srmel]= Burnaby inc incineration= ston= esion= a Future Inciner incineration= ston= ation= zation: p	Incinerator: 15.7 0.00 0.382 0.000 -0.38 inerator: 0.027 0.016 0.027 0.15.7 15.7 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.000 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.027 0.026 0.027 0.016 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.027 0.026 0.027	G J/tonne G J/tonne G J/tonne ICO_je/tonne ICO_je/tonne ICO_je/tonne G J/tonne G J/tonne ICO_je/tonne ICO_je/tonne ICO_je/tonne ICO_je/tonne												
Estimate Energy 10 Net energy Utilized at Turbogen Emission Emission Total GHC GHG En Best-gues Unv estim High estim Turbogen Emission Emission Emission Emission Total GHC GHG En Best-gues Low estim High estim GHG En Best-gues Low estim High estim GHG En Best-gues Low estim High estim GHG En Best-gues Low estim	nial of this emission of the N ₂ O Emis Generation froi yy content of wet r learn energy by C energy b	on is ignored. alon= m Waste Inc severyint= rown= arroduced= arroduced= arroduced= arroduced= arrotation of the emissions from armissions from m Waste Incine severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= r	ineration at i a Crowns to (Burrerd The productions at ation at the as from waste to comma at Crowns at Crowns a	ihe Burnaby srmel]= Burnaby inc incineration= ston= esion= a Future Inciner incineration= ston= ation= zation: p	Incinerator: 15.7 0.00 0.382 0.000 -0.38 inerator: 0.027 0.016 0.027 0.15.7 15.7 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.000 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.027 0.026 0.027 0.016 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.027 0.026 0.027	G J/tonne G J/tonne G J/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne												
Estimate Energy 10 Nationary Emission Emission Emission Content Emission Content Emission Content Emission Content Emission Content Emission Content Emission Energy 1 Nationary Turbogen Emission Content Emissio	nial of this emission of the N ₂ O Emis Generation froi yy content of wet r learn energy by C energy b	on is ignored. alon= m Waste Inc severyint= rown= arroduced= arroduced= arroduced= arroduced= arrotation of the emissions from armissions from m Waste Incine severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= roduced= arrotation of the severyint= rown= r	ineration at i a Crowns to (Burrerd The productions at ation at the as from waste to comma at Crowns at Crowns a	ihe Burnaby srmel]= Burnaby inc incineration= ston= esion= a Future Inciner incineration= ston= ation= zation: p	Incinerator: 15.7 0.00 0.382 0.000 -0.38 inerator: 0.027 0.016 0.027 0.15.7 15.7 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.382 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.000 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.000 0.027 0.016 0.027 0.026 0.027 0.016 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.027 0.026 0.027	G J/tonne G J/tonne G J/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne ICO-je/tonne												

1

FERROUS METAL MANAGEMENT:

Variables that can be changed by users are in bold.

1 Recycling of Metal: GHG benefit of recycled versus virgin manufacturing= (includes transportation emissions)
2 Recovery of Metal at the Burnaby Incinerator: Capture efficiency to recover ferrous metal= GHG benefit of the metal for recycling=
3 Recovery of Metal at a Future Incinerator: Capture efficiency to recover ferrous metal= GHG benefit of the metal for recycling=
3 Recovery of Metal at a Future Incinerator: Capture efficiency to recover ferrous metal= GHG benefit of the metal for recycling=
50 % -1.18 tCO₂e/tonne

GLASS MANAGEMENT:

Variables that can be changed by users are in bold.

1 Recycling of Glass: GHG benefit of recycled versus virgin manufacturing= (includes transportation emissions)

-0.37 tCO₂e/tonne

HIGH-DENSITY POLYETHYLENE MANAGEMENT:

Variables that can be changed by users are in bold.

Vari	ables that can be changed by users are in bold.		
	Moisture content of HDPE= Fossil carbon content of HDPE (dry mass basis)= Nitrogen content of HDPE (dry mass basis)= Net energy content of HDPE=	85 0	% % %N GJ/tonne
1	Energy Generation from Waste Incineration at the Burnaby Incine	rator:	
	Net energy content of HDPE=	43.3	GJ/tonne
	Utilized steam energy by Crown=	16.97	GJ/tonne
	Turbogenerator electricity produced=	0.00	GJ/tonne
	Emission prevention by steam utilization at Crown=	1.054	tCO ₂ e/tonne
	Emission prevention by offsetting BC Hydro (Burrard Thermal)=		tCO ₂ e/tonne
	Total GHG emission prevented by energy production=	-1.05	tCO ₂ e/tonne
2	GHG Emissions from Waste Incineration at the Burnaby Incinerate		
2	CO_2 emission from fossil-carbon in polyethylene=		tCO ₂ e/tonne
	Best-guess estimate of total GHG emissions from waste incineration=	3.143	tCO2e/tonne
	Low estimate of total GHG emissions from waste incineration=		tCO2e/tonne
	High estimate of total GHG emissions from waste incineration=	3.154	tCO ₂ e/tonne
3	Energy Generation from Waste Incineration at a Future Incinerato	r:	
	Net energy content of HDPE=		GJ/tonne
	Utilized steam energy by Crown=	16.97	GJ/tonne
	Turbogenerator electricity produced=	0.00	GJ/tonne
	Emission prevention by steam utilization at Crown=	1.054	tCO ₂ e/tonne
	Emission prevention by offsetting BC Hydro (Burrard Thermal)=	0.000	tCO ₂ e/tonne
-	Total GHG emission prevented by energy production=	-1.05	tCO ₂ e/tonne
4	GHG Emissions from Waste Incineration at a Future Incinerator:		
	CO ₂ emission from fossil-carbon in polyethylene=		tCO ₂ e/tonne
	Estimate of total GHG emissions from waste incineration=	3.14	tCO₂e/tonne
5	GHG Emissions of Recycled HDPE Utilization:		
	GHG benefit of recycled versus virgin manufacturing=	-1.70	tCO₂e/tonne
	(includes transportation emissions)		

LOW-DENSITY POLYETHYLENE MANAGEMENT:

Variables that can be changed by users are in bold.

	Moisture content of LDPE= Fossil carbon content of LDPE (dry mass basis)= Nitrogen content of LDPE (dry mass basis)= Net energy content of LDPE=	85 0	% % %N GJ/tonne
1	Energy Generation from Waste Incineration at the Burnaby Incineration	tor:	
	Net energy content of LDPE=	43.3	GJ/tonne
	Utilized steam energy by Crown=	16.97	GJ/tonne
	Turbogenerator electricity produced=	0.00	GJ/tonne
	Emission prevention by steam utilization at Crown=	1.054	tCO ₂ e/tonne
	Emission prevention by offsetting BC Hydro (Burrard Thermal)=	0.000	tCO ₂ e/tonne
	Total GHG emission prevented by energy production=	-1.05	tCO ₂ e/tonne
2	GHG Emissions from Waste Incineration at the Burnaby Incinerator:		
-	CO_2 emission from fossil-carbon in polyethylene=		tCO ₂ e/tonne
	Best success estimate of total CLIC emissions from wests incidentian	2 4 4 2	tCO o/toppo
	Best-guess estimate of total GHG emissions from waste incineration=		tCO ₂ e/tonne tCO ₂ e/tonne
	High estimate of total GHG emissions from waste incineration=		tCO ₂ e/tonne
3	Energy Generation from Waste Incineration at a Future Incinerator:		
	Net energy content of LDPE=	43.3	GJ/tonne
	Utilized steam energy by Crown=	16 97	GJ/tonne
	Turbogenerator electricity produced=		GJ/tonne
			100 - 11
	Emission prevention by steam utilization at Crown= Emission prevention by offsetting BC Hydro (Burrard Thermal)=		tCO ₂ e/tonne tCO ₂ e/tonne
	Emission prevention by onsetting be rivero (burrard merman)-	0.000	10022/10/1110
	Total GHG emission prevented by energy production=	-1.05	tCO ₂ e/tonne
4	GHG Emissions from Waste Incineration at a Future Incinerator:		
	CO ₂ emission from fossil-carbon in polyethylene=		tCO ₂ e/tonne
	Estimate of total GHG emissions from waste incineration=	3.14	tCO₂e/tonne
5	GHG Emissions of Recycled LDPE Utilization:		
	GHG benefit of recycled versus virgin manufacturing=	-2.25	tCO ₂ e/tonne
	(includes transportation emissions)		

FOOD WASTE MANAGEMENT:

Variables that can be changed by users are in bold.

	Carbon available for snaerobic decomposition=	0,322	kg C/dry kg
	Carbon storage factor for food waste (dry)=	0.08	kg C/dry kg
	Moisture content of food waste=	70	*
	Carbon contant of food waste (dry)=	48	%
	Nitrogen content of dry food waste=	2.6	%N
	Best-Guess Estimate of the net energy content of wet food waste=	4.0	GJ/tonne
	Low Estimate of the net energy content of wet food waste=	2.4	GJ/tonne
	High Estimate of the net energy content of wet food waster	5.5	GJ/tonne
	Carbon storage factor (wet)=	0.024	tC/wet tonne
1	Methane & Energy Implications of the Cache Creek Landfill		
	Carbon available for anaerobic decomposition=	0,120	IC/wet tonne
	Methane generation potential, L _e =	0.080	tCH ₄ /wet tonne
	Best-guess first order decay rate constant, k=	0.070	year' ¹
	Low estimate first order decay rate constant, k=	0.035	year' ¹
	High estimate first order decay rate constant, k=	0,105	year ⁻¹

	BEST-GU	ESS:					LOW-EST	IMATE:					HIGH-ES	TIMATE:				
		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Almospheric	GHG Benefit
	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	ofLFG	of LFG for	Methane	of Energy
YEAR	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization
	(tCH _e /yr)	(%)	(%)	(*)	(ICO2e/yr)	(ICO2e/yr)	(ICH ₄ /yr)	(%)	(%)	(%)	(tCO _z e/yr)	(ICO2e/yr)	(ICH ₄ /yt)	(%)	(%)	(%)	(ICO2e/yr)	(tCO2α/λt)
1998	•	• '		•			•	-	-	-		•	· ·		•			-
1999	0.00560	10	43	0	0.0603	0.0000	0.00280	15	43	0	0.0285	0.0000	0.00840	5	43	0	0.0955	0.0000
2000	0.00522	10	50	0	0.0493	0.0000	0.00270	15	50	0	0.0241	0.0000	0.00756	5	50	0	0.0754	0.0000
2001	0.00487	10	50	10	0.0368	0.0013	0.00261	15	50	10	0.0186	0.0007	0.00681	5	50	0	0.0679	0.0000
2002	0.00454	10	50	15	0.0300	0.0019	0,00252	15	55	15	0.0135	0.0010	0.00613	5	50	0	0.0611	0.0000
2003	0.00423	10	45	20	0.0280	0.0023	0.00243	15	55	20	0.0109	0.0013	0.00552	5	50	0	0.0551	0.0000
2004	0.00395	10	40	25	0.0261	0.0027	0.00235	15	50	25	0.0105	0.0016	0.00497	5	55	o	0.0446	0.0000
2005	0.00368	10	35	35	0.0209	0.0035	0.00227	15	40	35	0.0101	0.0022	0.00447	5	55	0	0.0402	0.0000
2006	0.00343	10	30	40	0.0195	0.0038	0.00219	15	35	40	0.0098	0.0024	0.00403	5	55	5	0.0321	0,0006
2007	0.00320	10	25	50	0.0151	0.0044	0.00212	15	25	50	0.0094	0 0029	0.00363	5	55	5	0.0289	0.0005
2008	0.00298	10	25	50	0.0141	0.0041	0 00204	15	30	50	0.0073	0.0028	0.00326	5	50	10	0.0261	0.0009
2009	0.00278	10	20	55	0.0131	0.0042	0.00197	15	25	55	0.0070	0.0030	0.00294	5	50	10	0.0235	0.0008
2010	0.00259	10	20	55	0.0123	0.0039	0.00191	15	25	55	0.0068	0.0029	0.00265	5	50	10	0.0211	0,0007
2011	0.00242	10	15	60	0.0114	0.0040	0.00184	15	20	60	0.0066	0.0030	0.00238	5	45	15	0.0190	0.0010
2012	0.00225	10	15	60	0.0107	0.0037	0.00178	15	20	60	0.0063	0.0029	0.00215	5	45	15	0.0171	0.0009
2013	0.00210	10	10	65	0.0099	0.0038	0.00172	15	15	65	0,0061	0.0031	0.00193	5	45	15	0.0154	8000.0
2014	0.00196	10	10	65	0,0093	0.0035	0.00166	15	15	65	0.0059	0.0030	0.00174	5	40	20	0.0139	0.0010
2015	0.00183	10	5	70	0.0086	0.0035	0.00160	15	10	70	0.0057	0.0031	0.00157	5	40	20	0.0125	0,0009
2016	0.00170	10	5	70	0.0080	0.0033	0.00154	15	10	70	0.0055	0.0030	0.00141	5	35	25	0.0112	0,0010
2017	0.00159	10	٥	75	0.0075	0 0033	0.00149	15	o	85	0.0040	0.0035	0.00127	5	35	25	0.0101	0.0009
2018	0.00148	10	0	75	0.0070	0.0031	0.00144	15	0	85	0.0039	0.0034	0.00114	5	35	25	0.0091	8000.0
TOTAL =	0.062				0,398	0.060	0.041				0.201	0.046	0.074				0.680	0.011

Best-Guess of Atmospheric Methane Emissions=	0.398	tCOze/tonne
Best-Guess of Benefit of Energy Utilization=	-0.060	tCO2e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.201	ICO ₂ e/torme
Low Estimate of Benefit of Energy Utilization=	-0.046	ICO2e/tonne
High Estimate of Atmospheric Methane Emissions=	0.680	tCO ₂ e/tonne
High Estimate of Benefit of Energy Utilization#	-0.011	tCO ₂ e/tonne

2	Long-Term Carbon Sequestration in the Cache Creek Landfill: From research by Bartaz:		
	Long term carbon sequestration from food wastee	-0.088	tCO2e/tonne
3	Immediate & Future N ₂ O Emissions from the Cache Creek Landfill:	:	
	Best-Guess Estimate of the N ₂ O from vented nitrogen ^a	1.0	%N ₂ O/emitted
	Low Estimate of the N ₂ O from vented nitrogen=	0.2	%N ₂ O/emitted

-	
Best-Guess Estimate of the N ₂ O from vented nitrogen=	1.0 %N ₂ O/emitted NH ₃ or NO _X
Low Estimate of the N ₂ O from vented nitrogen=	0.2 %N ₂ O/emitted NH ₃ or NO _X
High Estimate of the N ₂ O from vented nitrogen=	2.0 %N ₂ O/emitted NH ₃ or NO _x
Nitrogen content of wet food waste≠	0.78 %N
Best-Guess Estimate of the N ₂ O Emission=	0.038 tCO ₂ e/tonne
Low Estimate of the N ₂ O Emission=	0.008 ICO2e/Ionne
High Estimate of the N ₂ O Emission=	0.076 tCO2e/tonne

4	Methane & Energy Implications of the Vancouver Landfill		
	Carbon available for anaerobic decomposition=	0.120	tC/wet tonne
	Methane generation potential, Le*	0.080	tCH4/wet tonn
	Best-guess first order decay rate constant, k=	0,08	year"
	Low estimate first order decay rate constant, k=	0,04	year"
	High estimate first order decay rate constant, k=	0.12	year' ¹

1	BEST-GUE	ESS:					LOW-EST	IMATE:					HIGH-EST	IMATE:				
		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit
	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy
YEAR	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization
	(ICH,/yr)	(%)	(%)	(%)	(tCO ₂ e/γr)	(ICO _z e/yr)	(ICH ₄ /yr)	(%)	(%)	(%)	(ICO2e/yr)	(tCO2e/yr)	(tCH₄/yr)	(%)	(%)	(%)	(ICOze/yr)	(tCO ₂ e/yr)
1998	•	•	•	-	-		•		•	-	•	•	•	•	•	•	•	·
1999	0.00640	10	22	0	0.0943	0.0000	0.00320	15	22	0	0.0446	0.0000	0.00960	5	22	0	0.1494	0.0000
2000	0.00591	10	30	0	0.0782	0.0000	0.00307	15	35	0	0.0357	0,0000	0.00851	5	30	0	0,1189	0.0000
2001	0.00545	10	35	10	0.0567	0.0015	0.00295	15	40	10	0.0264	0,0008	0.00755	5	35	0	0.0979	0.0000
2002	0.00503	10	40	15	0.0428	0.0021	0.00284	15	45	15	0.0203	0.0012	0.00670	5	40	0	0.0802	0.0000
2003	0.00465	10	45	20	0.0307	0.0026	0.00273	15	55	20	0.0122	0.0015	0.00594	5	50	0	0.0593	0.0000
2004	0.00429	10	40	25	0.0284	0.0029	0.00262	15	50	25	0.0117	0.0018	0.00527	5	55	0	0.0473	0.0000
2005	0.00396	10	30	40	0.0225	0.0044	0.00252	15	40	35	0.0112	0.0024	0.00467	5	55	0	0.0420	0.0000
2006	0.00366	10	30	40	0.0207	0.0040	0.00242	15	35	40	0.0108	0.0027	0.00414	5	55	5	0.0331	0.0006
2007	0.00337	10	25	50	0.0159	0.0046	0.00232	15	25	50	0.0104	0.0032	0.00368	5	55	5	0.0293	0.0005
2008	0.00312	10	25	50	0.0147	0.0043	0.00223	15	30	50	0.0080	0.0031	0.00326	5	50	10	0.0260	0.0009
2009	0.00288	10	20	55	0.0136	0.0043	0.00215	15	25	55	0.0077	0.0032	0.00289	5	50	10	0.0231	0.0008
2010	0.00265	10	20	55	0.0125	0.0040	0.00206	15	25	55	0 0074	0.0031	0.00256	5	50	10	0.0205	0.0007
2011	0.00245	10	15	60	0.0116	0.0040	0.00198	15	20	60	0.0071	0.0033	0.00227	5	45	15	0.0182	0.0009
2012	0.00226	10	15	60	0.0107	0.0037	0.00190	15	20	60	0.0068	0.0031	0.00202	5	45	15	0.0161	8000.0
2013	0.00209	10	10	65	0.0099	0.0037	0.00183	15	15	65	0.0065	0.0033	0.00179	5	45	15	0.0143	0.0007
2014	0.00193	10	10	65	0.0091	0.0034	0.00176	15	15	65	0.0063	0.0031	0.00159	5	40	20	0.0127	0.0009
2015	0.00178	10	5	70	0.0084	0.0034	0.00169	15	10	70	0.0060	0.0032	0.00141	5	40	20	0.0112	0.0008
2016	0.00164	10	5	70	0.0078	0.0032	0.00162	15	10	70	0.0058	0.0031	0.00125	5	35	25	0.0100	0.0009
2017	0.00152	10	Ð	75	0.0072	0.0031	0.00156	15	0	85	0.0042	0.0036	0.00111	5	35	25	0.0088	0.0008

	2018	0.00140	10	0	75	0.0066	0.0029	0.00150	15	0	85	0.0040	0.0035	0,00098	5	35	25	0.0078	0.0007
	TOTAL =	0.056				0.502	0.062	0.045				0.253	0.049	0.077				0.826	0.010
			eric Methane Ei I Energy Utilizal			0.502 -0.062	ICO ₂ e/lonne ICO ₂ e/lonne												
			heric Methane i of Energy Utiliz			0.253 -0.049	ICO2e/tonne ICO2e/tonne												
	High Estin	nate of Atmos	sheric Methane	Emissions=		0.826	ICO ₂ e/Ionne												
	rign esun	nate of Benetik	of Energy Utiliz	:8001*		-0.010	ICO2e/tonne												
5				n in the Vanc	ouver Landfill:														
		arch by Barla carbon seque	r: stration from fo	odiwasta≃		-0.088	tCO _z e/ionne												
6			•	ons from the \ wastewater ni	/ancouver Lan		%N ₂ O/Influer	n-N											
	Low Estin	nate of the N	O from waste	water nitrogen= water nitrogen=	-		%N ₂ O/influer %N ₂ O/influer												
	Nitrogen c	onlant of well				0.78													
	Low Estim	ate of the N ₂ C	Emission=			0.008	tCO ₂ e/tonne												
	rigi com	nate of the N ₂	CINISSION-			0.076	ICO _z e/tonne												
7				at a Future La	Indfill														
	Methane g	eneration pol				0.080	tC/wet tonne tCH4/wet tonn	•											
	Low estin	nete first orde	decay rate con ir decay rate c	onstant, k=		0.035													
	High estir		er decay rate c	onstant, k=		0.105	year"												
		BEST-GU	ESS: Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit	LOM-ES		Percentage	Percentage	Atmospheric	GHG Benefit	HIGH-ES		Percentage	Percentage	Atmospheric	GHG Benefit
	YEAR	Methane Generation	Cover Material	of LFG Flored	of LFG for Energy	Methane Emissions	of Energy Utilization	Methane Generation	Cover Material	of LFG Flared	of LFG for Energy	Methane Emissions	of Energy Utilization	Methane Generation	Cover Material	of LFG Flared	of LFG for Energy	Methane Emissions	of Energy Utilization
	1998	(ICH4/yr)	(%)	(*)	(%)	(ICO ₂ e/yr)	(tCO ₂ e/yr)	(ιCH₄/γr)	(%)	(%)	(%)	(ICO ₂ e/yr)	(ICO ₂ e/yr)	(ICH4/yr)	(%)	(%)	(%)	(1CO ₂ e/yr)	(ICO ₂ e/yr)
	1999	0.00560	10	43	0	0.0603	0.0000	0.00280	15	43	0	0.0285	0.0000	0.00840	5	43	0	0.0955	0.0000
	2000 2001	0.00522 0.00487	10 10	50 50	0 10	0.0493 0.0368	0.0000	0.00270	15 15	50 50	0 10	0.0241 0.0186	0.0000	0.00756 0.00681	5 5	50 50	0	0.0754 0.0679	0.0000
	2002 2003	0.00454 0.00423	10 10	50 45	15 20	0.0300	0.0019 0.0023	0.00252 0.00243	15 15	55 55	15 20	0.0135 0.0109	0.0010	0.00613 0.00552	5 5	50 50	0 0	0.0611 0.0551	0.0000
	2004 2005	0.00395	10 10	40 35	25 35	0.0261	0.0027	0.00235	15 15	50 40	25 35	0.0105 0.0101	0.0016	0.00497	5 5	55 55	0	0.0446 0.0402	0.0000
	2006 2007	0.00343 0.00320	10 10	30 25	40 50	0.0195	0.0038	0.00219	15 15	35 25	40 50	0.0098	0.0024	0.00403	5	55	5	0.0321	0.0006
	2008	0.00298	10	25	50	0.0141	0.0041	0.00204	15	30	50	0.0073	0.0028	0.00326	5	50	10	0.0261	0.0009
	2009 2010	0.00278 0.00259	10 10	20 · 20	55 55	0.0131 0.0123	0.0042 0.0039	0.00197 0.00191	15 15	25 25	55 55	0.0070 0.0068	0.0030	0.00294 0.00265	5 5	50 50	10 10	0.0235 0.0211	0.0008 0.0007
	2011 2012	0.00242 0.00225	10 10	15 15	60 60	0.0114 0.0107	0.0040 0.0037	0.00184 0.00176	15 15	20 20	60 60	0.0066 0.0063	0.0030	0.00238	5 5	45 45	15 15	0.0190	0.0010 0.0009
	2013 2014	0.00210 0.00196	10 10	10 10	65 65	0.0099	0.0038	0.00172	15 15	15 15	65 65	0.0061 0.0059	0.0031	0.00193	5 5	45 40	15 20	0.0154	0.0008 0.0010
	2015 2016	0.00183	10 10	5 5	70 70	0.0086	0.0035	0.00160	15 15	10 10	70 70	0.0057	0.0031	0.00157	5	40 35	20 25	0.0125	0.0009 0.0010
	2010 2017 2018	0.00159	10 10	0	75 75	0.0075	0.0033	0.00149	15 15	0	85 85	0.0040	0.0035	0.00127	5	35 35	25 25	0.0101	0.0009
	TOTAL =	0.00148	10	v	75	0.398	0,060	0.00144	15		85	0.201	0.0034	0.00114	5	35	25	0.0091	0.0008
			eric Methane Er			0.398	ICO ₂ e/tonne												
			f Energy Utilizat heric Methane I			-0.060 0.201	ICO2e/tonne ICO2e/tonne												
			of Energy Utiliz sheric Methane			-0.046 0.680	ICO ₂ e/tonne ICO ₂ e/tonne												
	High Estin	nate of Benefi	of Energy Utiliz	tation=		-0.011	ICO ₂ e/tonne												
8	Long-Te	rm Carbon	Sequestratio	n at a Future	Landfill:														
		arch by Barla carbon seque	z: stration from fo	od waste=		-0.088	ICO _z e/ionne												
9			-	ons at a Futur															
	Low Estin	nate of the N	O from vented		in=	0.2	%N ₂ O/emitte %N ₂ O/emitte	d NH, or NC	⊳ _x										
		mate of the N content of wet	₂ O from venter lood waste=	d nitrogen=		0.78		d NH3 or NC) _x										
		ss Estimate of nate of the N ₂ C	the N ₂ O Emiss Emission=	ion=			tCO2e/tonne tCO2e/tonne												
		nate of the N ₂ I					tCO2e/tonne												
10	Enerov	Generation	from Waste I	ncineration at	the Burnaby I	ncinerator:													
	Best-Guer	ss Estimate of	the net energy	content of wet fo of wet food was	od wasten	4.0	GJ/tonne GJ/tonne												
				of wet food was t of wet food was			GJ/tonne GJ/tonne												
				nergy by Crown	-		GJ/tonne												
			earn energy by (earn energy by				GJ/tonne GJ/tonne												
			lurbogenerator nerator electrici	electricity produc ity produced=	ed=		GJ/tonne GJ/tonne												
			inerator electric				GJ/tonne												
				steam utilization			tCO ₂ e/tonne tCO ₂ e/tonne												
	High Estin	nate of emissi	on prevention b	y steam utilizatio y steam utilizatio	n at Crown≖	0.134	ICO2e/tonne												
				offsetting BC Hy offsetting BC H			tCO ₂ e/tonne tCO ₂ e/tonne												

	High Estimate of emission prevention by offsetting BC Hydro=	0 000	1CO ₂ e/tonne
		0.000	
	Best-Guess Total GHG emission prevented by energy production=	-0.097	(CO ₂ e/lonne
	Low Estimate Total GHG emission prevented by energy production=		tCO ₂ e/tonne
	High Estimate Total GHG emission prevented by energy production=	-0.134	1CO ₂ e/lonne
11	GHG Emissions from Waste Incineration at the Burnaby Incinerat		
	Nitrogen content of wet food waste=	0.78	
	Best-guess estimate immediate N₂O emission from waste-N≈		1CO ₂ e/lonne
	Low estimate immediate N ₂ O emission from waste-N=		ICO ₂ e/tonne
	High estimate immediate N ₂ O emission from waste-N=	0.118	tCO ₂ e/tonne
	Best-guess estimate of total GHG emissions from waste incineration=	0.001	tCO ₂ e/tonne
	Low estimate of total GHG emissions from waste incineration=		ICO ₂ e/Ionne
	High estimate of total GHG emissions from waste incineration=		tCO ₂ e/tonne
	right oscillate of total of to allisatoria north waste included and	0.100	
12	Energy Generation from Waste Incineration at a Future Incinerato	r:	
	Best-Guess Estimate of the net energy content of wel food waster	4.0	GJ/tonne
	Low Estimate of the net energy content of wet food waste=		GJ/tonne
	High Estimate of the net energy content of wet food waste=	5.5	GJ/tonne
			•
	Best-guess estimate of utilized steam energy by Crown=		GJ/tonne
	Low estimate utilized steam energy by Crown = High estimate utilized steam energy by Crown =		GJ/tonne GJ/tonne
	Best-guess estimate of turbogenerator electricity produced=		GJ/tonne
	Low estimate of turbogenerator electricity produced=		GJ/tonne
	High estimate of turbogenerator electricity produced=		GJ/tonne
	Best-Guess of emission prevention by steam utilization at Crown=	0.097	ICO ₂ e/ionne
	Low Estimate of emission prevention by steam utilization at Crown=	0.058	tCO ₂ e/tonne
	High Estimate of emission prevention by steam utilization at Crowns		tCO2e/tonne
	Best-Guess of emission prevention by offsetting BC Hydro=		tCO ₂ e/tonne
	Low Estimate of emission prevention by offsetting BC Hydro=		1CO ₂ e/lonne
	High Estimate of emission prevention by offsetting BC Hydro=		ICO ₂ e/tonne
	Best-Guess Total GHG emission prevented by energy production=	-0.097	tCO2e/tonne
	Low Estimate Total GHG emission prevented by energy production=	-0.058	ICO ₂ e/tonne
	High Estimate Total GHG emission prevented by energy production=	-0.134	1CO ₂ e/tonne
13	GHG Emissions from Waste Incineration at a Future Incinerator:		
	Nitrogen content of wet food waste=	0.78	
	Best-guess estimate immediate N ₂ O emission from waste-N= Low estimate immediate N ₂ O emission from waste-N=		1CO2e/tonne 1CO2e/tonne
	-		
	High estimate immediate N₂O emission from waste-N≍	0.118	tCO2e/tonne
	Best-guess estimate of total GHG emissions from waste incineration=	0.091	ICO ₂ e/tonne
	Low estimate of total GHG emissions from waste incineration=		tCO ₂ e/tonne
	High estimate of total GHG emissions from waste incineration=	0.155	ICO20/Ionne
14	Greenhouse Gas Emissions from Backyard Composting		
	Nitrogen content of wet food waste=	0.78	
	Best-guess estimate of the immediate N ₂ O emission factor=		% of initial-N % of initial-N
	Low estimate of the Immediate N ₂ O emission factor= High estimate of the Immediate N ₂ O emission factor=		% of initial-N
	Best-guess estimate of the immediate N ₂ O emission =		tCO ₂ e/tonne
	Low estimate of the immediate N ₂ O emission =		1CO ₂ e/tonne
	High estimate of the immediate N ₂ O emission =		(CO ₂ e/tonne
			•
	Nitrogen content of wet food waste=	0.78	%N
	Best-guess astimate of the fraction to future N ₂ O emissions=	70	% of initial-N
	Low estimate of the fraction undergoing future N ₂ O emissions=		% of initial-N
	High estimate of the fraction undergoing future N ₂ O emissions=		% of initial-N
	Best-guess estimate mass of nitrogen available for future N2O=		tonne Future N/tonne food waste
	Low estimate mass of nitrogen available for future N2O=		tonne Future N/tonne food waste
	High estimate mass of nitrogen available for future N₂O≖		tonne Future N/tonne food waste
	Best-guess estimate of the future N ₂ O emission factor=		% of Initial-N
	Low estimate of the future N2O emission factor=		% of initial-N
	High estimate of the future N ₂ O emission factor=		% of initial-N 1CO ₂ e/lonne
	Best-guess estimate of the future N ₂ O emission = Low estimate of the future N ₂ O emission =		1CO ₂ e/tonne
	Low estimate of the future N₂O emission = High estimate of the future N₂O emission =		1CO ₂ e/tonne
	g	0,008	
	Best-guess estimate Total GHG emissions from backyard composting=	0.057	1CO2e/Ionne
	Low estimate Total GHG emissions from backyard composting=		(CO ₂ e/tonne
	High estimate Total GHG emissions from backyard composting=		tCO ₂ e/tonne
		•	•
15	Greenhouse Gas Emissions from Centralized Composting		
	Best-guess estimate of the methane emission factor=		% of initial carbon
	Low estimate of the methane emission factor=		% of initial carbon
	High estimate of the methane emission factor=		% of initial carbon
	Best-guess estimate of the CH ₄ emission from centralized compositing=		tCO ₂ e/tonne
	Low estimate of the CH ₄ emission from centralized composting=		tCO ₂ e/tonne
	High estimate of the CH ₄ emission from centralized composting=	0.040	tCO ₂ e/tonne
	Restauras estimate Total GHG amissions from an-statistic another	0.077	ICO2e/Ionne
	Best-guess estimate Total GHG emissions from centralized composing= Low estimate Total GHG emissions from centralized composting=		tCO2e/tonne
	Low estimate Total GHG emissions from centralized composting= High estimate Total GHG emissions from centralized composting=		ICO2e/Ionne
	and compared to the case of the entitlements with comparison composing.	5,105	
16	Long-Term Carbon Sequestration of Compost		
	Carbon sequestration of composted food waste *		tCO ₂ e/tonne
	GHG benefit from composting food waste via sequestration=	0	tCO ₂ e/tonne

255

.

YARD WASTE MANAGEMENT:

Variables that can be changed by users are in bold.

	Mass Fraction of Grass in Yard Wastes	50	%
	Mass Fraction of Leaves in Yard Waste=	25	%
	Mass Fraction of Branches in Yard Waste=	25	%
	Carbon available for anserobic decomposition in Grass=	0.155	kg C/dry kg
	Carbon available for anaerobic decomposition in Leaves=	0,060	kg C/dry kg
	Carbon available for anaerobic decomposition in Branches=	0.082	kg C/dry kg
	Carbon storage factor for grass (dry)=	0.29	kg Cidry kg
	Carbon storage factor for leaves (dry)*	0.43	kg C/dry kg
	Carbon storage factor for branches (dry)=	0.41	kg C/dry kg
	Moisture content of grass=	60	%
	Moisture content of leaves=	20	%
	Moisture content of branches=	40	%
	Nitrogen content of yard waste (dry basis)=	3,4	%N
	Nitrogen content of yard waste (wet basis)=		%N
	Assumed anthropogenic fraction of the nitrogen content=	50	%
	Anthropogenic nitrogen content of yard waste (wet basis)#	0.94	%
	Net energy content of wet yard waste=	5,7	GJ/tonne
	Mass Averaged Carbon storage factor for yard waste (wet)=	0.206	kg C/wet kg
	Mass Averaged Carbon for decompostion in yard waste (wet)=		kg C/wet kg
	Mass Averaged Moisture content of yard waste=	45	
	Mass Averaged Carbon Content of yard waste (dry)=	47.1	*
1	Methane & Energy Implications of the Cache Creek Landfill		
	Carbon available for anaerobic decomposition=	0.055	tC/wet tonne yard waste
	Methane generation potential, L _e =	0.037	tCH_/wet tonne
	Best-guess first order decay rate constant, k=		year'
	Low estimate first order decay rate constant, k=	0.035	year ⁻¹
	High estimate first order decay rate constant, k=	0.105	year' ¹

	BEST-GI	JESS:					LOW-ES	TIMATE:					HIGH-ES	TIMATE:				
		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Bene
	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energ
EAR	Generatio	Material	Flared	Energy	Emissions	Utilization	Generatio	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilizatio
	(ICH ₄ /yr)	(%)	(%)	(%)	(1CO2e/yr)	(tCO ₂ e/yr)	(tCH ₄ /yr)	(%)	(%)	(%)	(ICOze/yr)	(tCO ₂ e/yr)	(ICH_/yr)	(%)	(%)	(%)	(ICO ₂ e/yr)	(ICO ₂ e/y
998	•						•			•	•	•	•	-	-	-		-
999	0.00258	10	43	0	0.0278	0.0000	0.00129	15	43	0	0.0131	0.0000	0.00387	5	43	0	0.0440	0.0000
000	0.00241	10	50	0	0.0227	0.0000	0.00125	15	50	0	0.0111	0.0000	0.00349	5	50	0	0.0348	0.0000
001	0.00224	10	50	10	0.0170	0.0006	0.00120	15	50	10	0.0086	0.0003	0.00314	5	50	٥	0.0313	0.0000
002	0.00209	10	50	15	0.0138	0.0009	0.00116	15	55	15	0.0062	0.0005	0.00283	5	50	0	0.0282	0.0000
003	0.00195	10	45	20	0.0129	0.0011	0.00112	15	55	20	0.0050	0.0006	0.00254	5	50	0	0.0254	0.0000
004	0.00182	10	40	25	0.0120	0.0013	0.00108	15	50	25	0.0048	0.0007	0.00229	5 ·	55	0	0.0206	0.0000
005	0.00170	10	35	35	0.0096	0.0016	0.00105	15	40	35	0.0047	0.0010	0.00206	5	55	0	0.0185	0.0000
006	0.00158	10	30	40	0.0090	0.0017	0.00101	15	35	40	0.0045	0 0011	0.00186	5	55	5	0.0148	0.0003
007	0.00147	10	25	50	0.0070	0.0020	0.00098	15	25	50	0.0044	0.0013	0.00167	5	55	5	0.0133	0.0002
800	0.00137	10	25	50	0.0065	0.0019	0.00094	15	30	50	0.0034	0.0013	0.00150	5	50	10	0.0120	0.0004
009	0.00128	10	20	55	0.0061	0.0019	0.00091	15	25	55	0.0032	0,0014	0.00135	5	50	10	0.0108	0.0004
010	0.00119	10	20	55	0.0056	0.0018	0.00088	15	25	55	0.0031	0.0013	0.00122	5	50	10	0.0097	0.0003
011	0.00111	10	15	60	0.0053	0.0018	0.00085	15	20	60	0.0030	0.0014	0.00110	5	45	15	0.0088	0.0005
012	0.00104	10	15	60	0.0049	0.0017	0.00082	15	20	60	0.0029	0.0014	0.00099	5	45	15	0.0079	0.0004
013	0.00097	10	10	65	0.0046	0.0017	0.00079	15	15	65	0.0028	0.0014	0.00089	5	45	15	0.0071	0.0004
014	0.00090	10	10	65	0.0043	0.0016	0.00076	15	15	65	0.0027	0 0014	0.00080	5	40	20	0.0064	0.0004
015	0.00084	10	5	70	0.0040	0.0016	0.00074	15	10	70	0.0026	0.0014	0.00072	5	40	20	0.0058	0.0004
016	0.00079	10	5	70	0.0037	0.0015	0.00071	15	10	70	0.0025	0.0014	0.00065	5	35	25	0.0052	0.0004
017	0.00073	10	0	75	0.0035	0.0015	0.00069	15	0	85	0.0018	0.0016	0.00058	5	35	25	0.0047	0.0004
018	0.00068	10	0	75	0.0032	0.0014	0.00066	15	0	85	0.0018	0.0016	0.00053	5	35	25	0.0042	0.0004
AL =	0.029				0.183	0.028	0.019				0.092	0.021	0.034				0.313	0.005

Best-Guess of Benefit of Energy Utilization=	-0.028	(CO2e/tonne
Low Estimate of Atmospheric Methane Emissions=	0.092	tCO2e/tonne
Low Estimate of Benefit of Energy Utilization=	-0.021	tCO2e/tonne
High EstImate of Atmospheric Methane Emissions=	0.313	tCO2e/tonne
High Estimate of Benefit of Energy Utilization=	-0.005	tCO ₂ e/tonne

2 Long-Term Carbon Sequestration in the Cache Creek Landfill: From research by Barlaz: Long term carbon sequestration from yard waste=

-0.75 tCO2e/tonne

3	Immediate & Future N ₂ O Emissions from the Cache O	Creek Landfill:	
	Best-Guess Estimate of the N ₂ O from vented nitrogen=	1.0	%N2O/emitted NH3 or NOX
	Low Estimate of the N₂O from vented nitrogen=	0.2	%N2O/emitted NH2 or NOX
	High Estimate of the N ₂ O from vented nitrogen=	2.0	%N2O/emitted NH2 or NOX
	Decomposition of the yard waste=	34	%
	Nitrogen content of wet yard waste=	1.9	%N
	Best-Guess Estimate of the N ₂ O Emission=	0.031	tCO ₂ e/tonne
	Low Estimate of the N ₂ O Emission=	0.006	tCO2e/tonne
	High Estimate of the N ₂ O Emission=	0.062	tCO2e/tonne

4	Methane & Energy Implications of the Vancouver Landfill		
	Carbon available for anaerobic decomposition#	0.055	tC/tonne food waste
	Methane generation potential, Le=	0.037	tCH ₄ /rew tonne
	Best-guess first order decay rate constant, k=	0.08	year' ¹
	Low estimate first order decay rate constant, k=	0.04	year'
	High estimate first order decay rate constant, k=	0.12	year"

- 1	BEST-GL	JESS:					LOW-ES	TIMATE:					HIGH-ES	TIMATE:				
		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Ben
	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energ
RK	Generatio	Material	Flared	Energy	Emissions	Utilization	Generatio	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilizatio
	(ICH4/yr)	(%)	(%)	(%)	(tCO2e/yr)	(tCO ₂ e/yr)	(ICH4/yr)	(%)	(%)	(%)	(tCO _z e/yr)	(ICO2e/yr)	(tCH ₄ /yr)	(%)	(%)	(%)	(ICO _z e/yr)	(ICO ₂ e/
8				-		-		•				•	-	•	•			
9	0.00295	10	22	0	0.0435	0.0000	0.00147	15	22	0	0.0205	0.0000	0.00442	5	22	0	0.0688	0.000
0	0.00272	10	30	0	0.0360	0.0000	0.00142	15	35	0	0.0164	0.0000	0.00392	5	30	0	0.0548	0.000
1	0.00251	10	35	10	0.0261	0.0007	0.00136	15	40	10	0.0121	0.0004	0.00348	5	35	0	0.0451	0.000
2	0.00232	10	40	15	0.0197	0.0010	0.00131	15	45	15	0.0093	0.0005	0.00309	5	40	0	0.0369	0.000
3	0.00214	10	45	20	0.0142	0.0012	0.00126	15	55	20	0.0056	0.0007	0.00274	5	50	0	0.0273	0.000
4	0.00198	10	40	25	0.0131	0.0014	0.00121	15	50	25	0.0054	0.0008	0.00243	5	55	0	0.0218	0.000
5	0.00182	10	30	40	0.0103	0.0020	0.00116	15	40	35	0.0052	0.0011	0.00215	5	55	o	0.0193	0.000

	2006	0.00168	10	30	40	0.0096	0.0019	0.00111	15	35	40	0.0050	0.0012	0.00191	5	55	5	0.0152	0.0003
	2007	0.00156	10	25	50	0.0073	0.0021	0.00107	15	25	50	0.0048	0.0015	0.00169	5	55	5	0.0135	0.0002
	2008	0.00144	10	25	50	0.0068	0.0020	0.00103	15	30	50	0.0037	0.0014	0.00150	5	50	10	0.0120	0,0004
	2009	0.00133	10	20	55	0.0063	0.0020	0.00099	15	25	55	0.0035	0.0015	0.00133	5	50	10	0.0106	0.0004
	2010 2011	0.00122	10 10	20 15	55 60	0.0058	0.0019 0.0019	0.00095	15	25 20	55 60	0.0034	0.0014	0.00118	5	50 45	10	0.0094	0.0003
	2012	0.00104	10	15	60	0.0053	0.0019	0.00088	15 15	20	60	0.0033	0.0015 0.0014	0.00105	5	45	15 15	0.0084 0.0074	0.0004
	2013	0.00096	10	10	65	0.0045	0.0017	0.00084	15	15	65	0.0030	0.0015	0.00082	5	45	15	0.0066	0.0003
	2014	0.00089	10	10	65	0.0042	0.0016	0.00081	15	15	65	0.0029	0.0014	0.00073	5	40	20	0.0058	0.0004
	2015	0.00082	10	5	70	0.0039	0.0016	0.00078	15	10	70	0.0028	0.0015	0.00065	5 ·	40	20	0.0052	0.0004
	2016 2017	0.00076	10 10	5 0	70 75	0.0036	0.0015	0.00075	15 15	10 0	70 85	0.0027	0.0014	0.00058	5 5	35 35	25 25	0.0046	0.0004
	2017	0.00065	10	0	75	0.0033	0.0014	0.00072	15	0	85	0.0019	0.0017	0.00051	5	35	25	0.0041	0.0004
	TOTAL =	0.031				0.231	0.029	0.021				0.116	0.023	0.036	_			0.381	0.005
		· · · · · · · · · · · · · · · · · ·	eric Methane E			0.231	tCO2e/tonne												
			f Energy Utiliza			-0.029 0.116	tCO2e/tonne tCO2e/tonne												
			heric Methane of Energy Utili:			-0.023	tCO ₂ e/tonne												
			pheric Methane			0.381	tCO ₂ e/tonne												
	High Estim	ate of Benefi	t of Energy Utili	zation=		-0.005	tCO2e/tonne												
5	Lona-Ter	rm Carbon	Sequestratio	n in the Van	couver Land	fill:													
		arch by Barla																	
	Long term	carbon seque	stration from y	ard waste=		-0.75	tCO ₂ e/tonne												
	Immodia	to & Euturo		ons from the	Vancouver	l andfill:													
•				n wastewater i			%N ₂ O/influen	-N -											
				water nitrogen			%N ₂ O/influen												
	High Estin	nate of the N	20 from waste	water nitroge	1 2	2.0	%N ₂ O/influen	I-N											
		sition of the				34													
		ontent of wet	yard waste= the N ₂ O Emiss	iona			%N tCO _z e/tonne												
		ate of the N ₂ C					tCO ₂ e/tonne												
		ate of the N ₂					tCO ₂ e/tonne												
-				at a Future L															
'			erobic decom		anomi	0.055	tC/wet tonne y	ard waste											
		eneration pot					ICH4/wet tonne					•							
	Best-gues	a first order	decay rate co	nstant, k=			year"												
			er decay rate o				year ⁻¹												
	High estim	nate first ord	er decay rate	constant, k=		0.105	year-1												
						· · · · · ·													
	1	BEST-GU	ESS:					LOW-ES	TIMATE:					HIGH-EST	IMATE:				
			ESS: Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		TIMATE: Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit			Percentage	Percentage	Atmospheric	GHG Benefit
				Percentage of LFG	Percentage of LFG for	Atmospheric Methane	GHG Benefit of Energy			Percentage of LFG	Percentage of LFG for	Atmospheric Methane	GHG Benefit of Energy			Percentage of LFG	Percentage of LFG for	Atmospheric Methane	GHG Benefit of En e rgy
	YEAR	Methane Generatio	Oxidation by Cover Material	of LFG Flared	of LFG for Energy	Methane Emissions	of Energy Utilization	Methane Generatio	Oxidation by Cover Material	of LFG Flared	of LFG for Energy	Methane Emissions	of Energy Utilization	Methane Generation	Oxidation by Cover Material	of LFG Flared	of LFG for Energy	Methane Emissions	of Energy Utilization
	YEAR	Methane	Oxidation by Cover	of LFG	of LFG for	Methane	of Energy	Methane	Oxidation by Cover	of LFG	of LFG for	Methane	of Energy	Methane	Oxidation by Cover	of LFG	of LFG for	Methane	of Energy
		Methane Generatio	Oxidation by Cover Material	of LFG Flared	of LFG for Energy	Methane Emissions	of Energy Utilization	Methane Generatio	Oxidation by Cover Material	of LFG Flared	of LFG for Energy	Methane Emissions	of Energy Utilization	Methane Generation	Oxidation by Cover Material	of LFG Flared	of LFG for Energy	Methane Emissions	of Energy Utilization
	YEAR 1998	Methane Generatio (tCH₄/yr)	Oxidation by Cover Material (%)	of LFG Flared (%)	of LFG for Energy (%)	Methane Emissions (ICO ₂ e/yr)	of Energy Utilization (ICO ₂ e/yr)	Methane Generatio (tCH4/yr)	Oxidation by Cover Material (%)	of LFG Flared (%)	of LFG for Energy (%)	Methane Emissions (tCO ₂ e/yr)	of Energy Utilization (tCO2e/yr)	Methane Generation (tCH4/yr)	Oxidation by Cover Material (%)	of LFG Flared (%)	of LFG for Energy (%)	Methane Emissions (ICO ₂ e/yr) -	of Energy Utilization (tCO ₂ e/yr)
	YEAR 1998 1999 2000 2001	Methane Generatio (ICH ₄ /yr) - 0.00258 0.00241 0.00224	Oxidation by Cover Material (%) - 10 10 10	of LFG Flared (%) - 43 50 50	of LFG for Energy (%) - 0 0 10	Methane Emissions (ICO2e/yr) 0.0278 0.0227 0.0170	of Energy Utilization (ICO2e/yr) - 0.0000 0.0000 0.0000	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00120	Oxidation by Cover Material (%) - 15 15 15	of LFG Flared (%) - 43 50 50	of LFG for Energy (%) - 0 0 10	Methane Emissions (tCO ₂ e/yr) - 0.0131 0.0111 0.0086	of Energy Utilization (ICO ₂ e/yr) - 0.0000 0.0000 0.0003	Methane Generation (ICH4/yr) - 0.00387 0.00349 0.00314	Oxidation by Cover Material (%) - 5 5 5 5	of LFG Flared (%) - 43 50 50	of LFG for Energy (%) - 0 0 0	Methane Emissions (ICO ₂ e/yr) - 0.0440 0.0348 0.0313	of Energy Utilization (tCO2e/yr) - 0.0000 0.0000 0.0000
	YEAR 1998 1999 2000 2001 2002	Methane Generatio (ICH ₄ /yr) 0.00258 0.00241 0.00224 0.00209	Oxidation by Cover Material (%) - 10 10 10 10 10	of LFG Flared (%) - 43 50 50 50	of LFG for Energy (%) - 0 0 10 10 15	Methane Emissions (ICO2e/yr) 0.0278 0.0227 0.0170 0.0138	of Energy Utilization (ICO2e/yr) - 0.0000 0.0000 0.0000 0.0006 0.0009	Methane Generatio (1CH4/yr) 0.00129 0.00125 0.00120 0.00116	Oxidation by Cover Material (%) - 15 15 15 15	of LFG Flared (%) - 43 50 50 55	of LFG for Energy (%) - 0 0 10 10 15	Methane Emissions (tCO ₂ e/yr) - 0.0131 0.0111 0.0086 0.0062	of Energy Utilization (tCO ₂ e/yr) - 0.0000 0.0000 0.0003 0.0005	Methane Generation (ICH ₄ /yr) 0.00387 0.00349 0.00314 0.00283	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50	of LFG for Energy (%) - 0 0 0 0 0	Methane Emissions (ICO ₂ e/yr) - 0.0440 0.0348 0.0313 0.0282	of Energy Utilization (tCO2e/yr) - 0.0000 0.0000 0.0000 0.0000
	YEAR 1998 1999 2000 2001	Methane Generatio (ICH ₄ /yr) - 0.00258 0.00241 0.00224	Oxidation by Cover Material (%) - 10 10 10	of LFG Flared (%) - 43 50 50	of LFG for Energy (%) - 0 0 10	Methane Emissions (ICO2e/yr) 0.0278 0.0227 0.0170	of Energy Utilization (ICO2e/yr) - 0.0000 0.0000 0.0000	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00120	Oxidation by Cover Material (%) - 15 15 15	of LFG Flared (%) - 43 50 50	of LFG for Energy (%) - 0 0 10	Methane Emissions (tCO ₂ e/yr) - 0.0131 0.0111 0.0086	of Energy Utilization (ICO ₂ e/yr) - 0.0000 0.0000 0.0003	Methane Generation (ICH4/yr) - 0.00387 0.00349 0.00314	Oxidation by Cover Material (%) - 5 5 5 5	of LFG Flared (%) - 43 50 50	of LFG for Energy (%) - 0 0 0	Methane Emissions (ICO ₂ e/yr) - 0.0440 0.0348 0.0313	of Energy Utilization (tCO2e/yr) - 0.0000 0.0000 0.0000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005	Methane Generatio ((CH ₄ /yr) - - 0.00258 0.00241 0.00224 0.00209 0.00195 0.00182 0.00182	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10	of LFG Flared (%) - 43 50 50 50 45 40 35	of LFG for Energy (%) - 0 10 15 20 25 35	Methane Emissions (tCO2e/yr) 0.0278 0.0227 0.0170 0.0138 0.0129 0.0120 0.0096	of Energy Utilization (tCO2e/yr) - 0.0000 0.0000 0.0006 0.0009 0.0011 0.0013 0.0016	Methane Generatio (1CH4/yr) 0.00129 0.00125 0.00120 0.00116 0.00112 0.00108 0.00105	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 50 55 55 55 50 40	of LFG for Energy (%) - 0 0 10 15 20 25 35	Methane Emissions (tCO ₂ #/yr) - 0.0131 0.0111 0.0086 0.0062 0.0062 0.0050 0.0048 0.0047	of Energy Utilization (ICO2e/yr) - 0.0000 0.0000 0.0003 0.0005 0.0006	Methane Generation (ICH4/yr) 0.00387 0.00349 0.00314 0.00283 0.00254 0.00229 0.00206	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 65	of LFG for Energy (%) - 0 0 0 0 0 0 0 0 0 0 0	Methane Emissions (ICO ₂ e/yr) - 0.0440 0.0348 0.0313 0.0282 0.0254	of Energy Uilitzation (tCO2e/yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006	Methane Generatio (ICH4/yr) - - 0.00258 0.00241 0.00224 0.00209 0.00195 0.00182 0.00182 0.00170 0.00158	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10	of LFG Flared (%) - 43 50 50 50 45 40 35 30	of LFG for Energy (%) - 0 0 10 15 20 25 35 40	Methane Emissions (ICO2e/yr) 0.0278 0.0227 0.0170 0.0138 0.0129 0.0120 0.0096 0.0090	of Energy Utilization (tCO2e/yr) - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0013 0.0015 0.0017	Methane Generatio (tCH4/yr) 0.00125 0.00125 0.00112 0.00116 0.00112 0.00108 0.00105 0.00101	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 50 55 55 55 50 40 35	of LFG for Energy (%) - 0 0 10 15 20 25 35 40	Methane Emissions (tCO ₂ n/yr) - 0.0131 0.0131 0.0131 0.0086 0.0086 0.0062 0.0050 0.0048 0.0047 0.0045	of Energy Utilization (ICO2e/yr) - 0.0000 0.0000 0.0003 0.0005 0.0006 0.0007 0.0010 0.0011	Methane Generation (ICH4/yr) 0.00387 0.00349 0.00314 0.00283 0.00254 0.00229 0.00206 0.00186	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55	of LFG for Energy (%) - 0 0 0 0 0 0 0 0 5	Methane Emissions (ICO ₂ e/yr) - 0.0440 0.0348 0.0343 0.0282 0.0254 0.0265 0.0185 0.0148	of Energy Utilization (tCO2e/yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007	Methane Generatio (ICH ₄ /yr) 0.00258 0.00241 0.00224 0.00209 0.00195 0.00182 0.00182 0.00170 0.00158 0.00147	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 43 50 50 50 45 40 35 30 25	of LFG for Energy (%) - 0 10 15 20 25 35 40 50	Methane Emissions (ICO2e/yr) 0.0278 0.0227 0.0170 0.0138 0.0129 0.0120 0.0096 0.0090 0.0070	of Energy Utilization (ICO2e/yr) - 0.0000 0.0000 0.0005 0.0005 0.0011 0.0013 0.0015 0.0017 0.0020	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00120 0.00116 0.00105 0.00105 0.00101 0.00098	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 50 55 55 50 40 35 25	of LFG for Energy (%) - 0 0 10 15 20 25 35 40 50	Methane Emissions (tCO2e/yr) 0.0131 0.0131 0.0086 0.0062 0.0050 0.0048 0.0047 0.0045 0.0045	of Energy Utilization (ICO2e/yr) - 0.0000 0.0000 0.0003 0.0005 0.0006 0.0007 0.0010 0.0011 0.0013	Methane Generation (ICH,/yr) 0.00387 0.00349 0.00314 0.00254 0.00254 0.00259 0.00206 0.00186 0.00167	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 55 55 55 55	of LFG for Energy (%) - 0 0 0 0 0 0 0 0 0 5 5 5	Methane Emissions (ICO2e/yr) - - 0.0440 0.0348 0.0313 0.0282 0.0254 0.0254 0.0265 0.0185 0.0148 0.0133	of Energy UBization (tCO2e(yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0002
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008	Methane Generatio (ICH./yr) 0.00258 0.00241 0.00224 0.00195 0.00182 0.00175 0.00158 0.00147 0.00137	Oxidation by Cover Material (%) - - 10 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 43 50 50 50 45 40 35 30 25 25	of LFG for Energy (%) - 0 0 10 15 20 25 35 40 50 50	Methane Emissions (ICO2e/yr) - - 0.0278 0.0227 0.0170 0.0138 0.0129 0.0120 0.0120 0.0096 0.0090 0.0070 0.0065	of Energy Utilization (ICO2eVyr) - 0.0000 0.0000 0.0000 0.0000 0.0003 0.0011 0.0013 0.0015 0.0017 0.0020 0.0019	Methane Generatio (tCH4/yr) 0.00129 0.00125 0.00120 0.00116 0.00112 0.00108 0.00105 0.00101 0.0098 0.00094	Oxidation by Cover Material (%) - - 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 50 55 55 55 50 40 35	of LFG for Energy (%) - 0 0 10 15 20 25 35 40 50 50	Methane Emissions (tCO2e/yr) - 0.0131 0.0131 0.0062 0.0062 0.0050 0.0048 0.0048 0.0047 0.0045 0.0044 0.0034	of Energy Utilization (ICO2e/yr) - 0.0000 0.0003 0.0005 0.0005 0.0006 0.0007 0.0010 0.0011 0.0013 0.0013	Methane Generation (ICH4/yr) 0.00387 0.00349 0.00314 0.00283 0.00254 0.00229 0.00206 0.00186 0.00167 0.00150	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55	of LFG for Energy {%) - 0 0 0 0 0 0 0 5 5 5 10	Methane Emissions (ICO2e/yr) - 0.0440 0.0348 0.0313 0.0282 0.0254 0.0254 0.0265 0.0185 0.0148 0.0133 0.0120	of Energy UBilization (ICO2e/yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007	Methane Generatio (ICH ₄ /yr) 0.00258 0.00241 0.00224 0.00209 0.00195 0.00182 0.00182 0.00170 0.00158 0.00147	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 43 50 50 50 45 40 35 30 25	of LFG for Energy (%) - 0 10 15 20 25 35 40 50	Methane Emissions (ICO2e/yr) 0.0278 0.0227 0.0170 0.0138 0.0129 0.0120 0.0096 0.0090 0.0070	of Energy Utilization (ICO2e/yr) - 0.0000 0.0000 0.0005 0.0005 0.0011 0.0013 0.0015 0.0017 0.0020	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00120 0.00116 0.00105 0.00105 0.00101 0.00098	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 50 55 55 55 55 50 40 35 25 30	of LFG for Energy (%) - 0 0 10 15 20 25 35 40 50	Methane Emissions (tCO2e/yr) 0.0131 0.0131 0.0086 0.0062 0.0050 0.0048 0.0047 0.0045 0.0045	of Energy Utilization (ICO2e/yr) - 0.0000 0.0000 0.0003 0.0005 0.0006 0.0007 0.0010 0.0011 0.0013	Methane Generation (ICH,/yr) 0.00387 0.00349 0.00314 0.00254 0.00254 0.00259 0.00206 0.00186 0.00167	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 50 55 55 55 55 55 55	of LFG for Energy (%) - 0 0 0 0 0 0 0 0 0 5 5 5	Methane Emissions (ICO2e/yr) - - 0.0440 0.0348 0.0313 0.0282 0.0254 0.0254 0.0265 0.0185 0.0148 0.0133	of Energy UBization (tCO2e(yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0002
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011	Methane Generatio ((CH ₄ /yr) 0.00258 0.00241 0.00209 0.00195 0.00182 0.00158 0.00182 0.00158 0.00147 0.00137 0.00128 0.00111	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 43 50 50 50 50 45 40 35 30 25 25 20 20 20 15	of LFG for Energy (%) 0 0 0 10 15 20 25 35 20 25 35 40 50 55 55 55 60	Methane Emissions (ICO2e/yr) 0.0278 0.0227 0.0170 0.0138 0.0129 0.0120 0.0956 0.0096 0.0095 0.0061 0.0055	of Energy Utilization (ICO2e/rr) - 0.0000 0.0000 0.0006 0.0009 0.0011 0.0013 0.0016 0.0017 0.0017 0.0019 0.0019 0.0018	Methane Generatio (1CH4/yr) 0.00129 0.00125 0.00112 0.00116 0.00116 0.00108 0.00105 0.00101 0.00098 0.00094 0.00098 0.00094	Oxidation by Cover Material (%) (%) (%) (%) 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 50 55 55 50 40 35 25 30 25 25 25 20	of LFG for Energy (%) - 0 0 0 10 15 20 25 35 35 40 50 50 55 55 60	Methane Errissions (tCO_priv) 0.0131 0.0131 0.0062 0.0050 0.0064 0.0045 0.0045 0.0044 0.0034 0.0032 0.0031	of Energy Ukiization (ICC2wyr) 0.0000 0.0000 0.0003 0.0005 0.0006 0.0007 0.0010 0.0011 0.0013 0.0014 0.0014 0.0014	Methane Generation (ICH4/yr) 0.00387 0.00349 0.00254 0.00229 0.00266 0.00166 0.00167 0.00150 0.00152 0.00125	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 55 50 50 50	of LFG for Energy {%) - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 10 10 10 10 15	Methane Emissions (ICO2497) 0.0440 0.0348 0.0348 0.0254 0.0254 0.0254 0.0266 0.0163 0.0148 0.0133 0.0120 0.0148 0.0197 0.0098	of Energy Utilization (tCG2e(yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0004 0.0004 0.0004
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012	Methane Generatio ((CH/yr)) 0.00258 0.00241 0.00224 0.00195 0.00195 0.00158 0.00168 0.00137 0.00158 0.00117 0.00128 0.00119 0.00119	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LFG Fiared (%) - 43 50 50 50 50 45 50 40 35 30 25 20 20 20 15 15	of LFG for Energy (%) - 0 0 10 15 20 25 35 40 50 55 55 55 60 60	Methane Ernissions ((CO2e(yr)) - 0.0278 0.0278 0.0170 0.0170 0.0138 0.0129 0.0129 0.0096 0.0096 0.0096 0.0096 0.0095 0.0061 0.0055 0.0055	of Energy Utifization (ICO2eVyr) - 0.0000 0.0000 0.0000 0.0001 0.0001 0.0011 0.0016 0.0011 0.0016 0.0017 0.0019 0.0018 0.0018 0.0018	Methane Generatio (tCH4/yr) 0.00129 0.00125 0.00112 0.00116 0.00112 0.00105 0.00105 0.00094 0.00094 0.00088 0.00085 0.00082	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 50 55 55 55 50 40 35 25 30 25 30 25 25 25 20 20	of LFG for Energy (%) - 0 0 0 10 10 15 20 25 35 40 50 50 50 55 55 60 60 60	Methane Emissions (tCO2e/yr) 0.0131 0.0131 0.0062 0.0062 0.0045 0.0044 0.0045 0.0044 0.0032 0.0031 0.0031 0.0030	of Energy Utilization (ICC/g/yr) 0.0000 0.0000 0.0003 0.0005 0.0006 0.0007 0.0010 0.0013 0.0013 0.0013 0.0014 0.0014	Methane Generation ((CH4/yr) 0.00387 0.00349 0.00254 0.00259 0.00229 0.00206 0.00186 0.00167 0.00150 0.00135 0.00122 0.00112	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 50 55 55 55 55 55 50 50 50	of LFG for Energy (%) - 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 10 10 10 15 15	Methane Emissions (ICO249/r) 0.0440 0.0343 0.0282 0.0254 0.0265 0.0148 0.0108 0.0120 0.0108 0.0120 0.0108	of Energy Utilization (ICC224/yr) - 0.00000 0.00000 0.0000 0.00000 0.00000000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2010	Methane Generatio ((CH ₄ /yr) 0.00258 0.00241 0.00209 0.00195 0.00182 0.00158 0.00182 0.00158 0.00147 0.00137 0.00128 0.00111	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 43 50 50 50 50 45 40 35 30 25 25 20 20 20 15	of LFG for Energy (%) 0 0 0 10 15 20 25 35 20 25 35 40 50 55 55 55 60	Methane Emissions (ICO2e/yr) 0.0278 0.0227 0.0170 0.0138 0.0129 0.0120 0.0956 0.0096 0.0095 0.0061 0.0055	of Energy Utilization (ICO2e/rr) - 0.0000 0.0000 0.0006 0.0009 0.0011 0.0013 0.0016 0.0017 0.0017 0.0019 0.0019 0.0018	Methane Generatio (1CH4/yr) 0.00129 0.00125 0.00112 0.00116 0.00116 0.00108 0.00105 0.00101 0.00098 0.00094 0.00098 0.00094	Oxidation by Cover Material (%) (%) (%) (%) 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 50 55 55 50 40 35 25 30 25 25 25 20	of LFG for Energy (%) - 0 0 0 10 15 20 25 35 35 40 50 50 55 55 60	Methane Errissions (tCO_priv) 0.0131 0.0131 0.0062 0.0050 0.0064 0.0045 0.0045 0.0044 0.0034 0.0032 0.0031	of Energy Ukiization (ICC2wyr) 0.0000 0.0000 0.0003 0.0005 0.0006 0.0007 0.0010 0.0011 0.0013 0.0014 0.0014 0.0014	Methane Generation (ICH4/yr) 0.00387 0.00349 0.00254 0.00229 0.00266 0.00166 0.00167 0.00150 0.00152 0.00125	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 55 50 50 50	of LFG for Energy {%) - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 10 10 10 10 15	Methane Emissions (ICO2497) 0.0440 0.0348 0.0348 0.0254 0.0254 0.0254 0.0265 0.0148 0.0133 0.0120 0.0148 0.0133 0.0120 0.0198	of Energy Utilization (tCG2e(yr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0004 0.0004 0.0004
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2006 2007 2006 2007 2009 2010 2011 2011 2013	Methane Generatio ((CH/yr) 0.00258 0.00241 0.00224 0.00195 0.00195 0.00195 0.00170 0.00158 0.00147 0.00128 0.00147 0.00128 0.00111 0.00111 0.001097	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 43 50 50 50 50 45 40 35 30 25 25 25 20 25 20 15 15 15	of LFG for Energy (%) - 0 0 10 15 25 35 40 50 55 55 55 60 60 65	Methane Ernissions ((CO2e()rr) - 0.0278 0.0277 0.0170 0.0138 0.0120 0.0090 0.0090 0.0090 0.0090 0.0095 0.0065 0.0065 0.0065 0.0053 0.0053 0.0053	of Energy Utilization (ICO2eV)r) - 0.0000 0.0006 0.0009 0.0011 0.0013 0.0016 0.0011 0.0020 0.0019 0.0019 0.0018 0.0018 0.0018 0.0018	Methane Generatio (1CH4/yr) 0.00129 0.00125 0.00120 0.00116 0.00105 0.00101 0.00098 0.00091 0.00091 0.00088 0.00082 0.00052 0.00059	Oxidation by Cover Matorial (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 50 55 55 50 40 35 25 25 20 20 20 15	of LFG for Energy (%) 0 0 0 10 15 20 25 35 40 50 55 55 55 60 60 65	Methane Emissions (tCO2ptyr) 0.0131 0.0131 0.0086 0.0086 0.0086 0.0050 0.0045 0.0044 0.0045 0.0044 0.0032 0.0031 0.0030 0.0032	of Energy Utilization (ICC2eVyr) - 0.0000 0.0005 0.0005 0.0006 0.0007 0.0010 0.0011 0.0013 0.0013 0.0014 0.0014	Methane Generation (ICFL/yr) 0.00387 0.00349 0.00254 0.00254 0.00252 0.00226 0.00165 0.00165 0.00155 0.00155 0.00155 0.00155 0.00150 0.00150	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 55 50 50 50	of LFG for Energy (%) - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 10 10 10 15 15	Methane Emissions (ICO2eVyr) - 0.0440 0.0348 0.0313 0.0282 0.0254 0.0264 0.0265 0.0148 0.0148 0.0133 0.0120 0.0185 0.0190 0.0088 0.0097 0.0088	of Energy Utilization (ICG24(yr)) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016	Methane Generatio (1CH ₄ /yr) 0.00258 0.00241 0.00224 0.00152 0.00152 0.00155 0.00155 0.00155 0.00153 0.00170 0.00137 0.00137 0.00137 0.00111 0.00111 0.00111 0.001097 0.00090 0.00090	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LFG Flared - - 43 50 50 45 40 55 30 25 25 25 20 25 25 20 16 15 10 10 5 5	of LFG for Energy (%) 0 0 0 10 5 20 25 35 40 50 55 55 55 55 55 55 55 55 55 55 55 55	Methane Emissions (ICC2e8/yr) 	of Energy Utilization (ICC-2e/v7) - 0.0000 0.0006 0.0006 0.0013 0.0013 0.0013 0.0013 0.0017 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0011 0.0017 0.0017 0.0017 0.0016 0.0016	Methane Generatio (tCH ₄ /yr) 0.00125 0.00125 0.00120 0.00112 0.00108 0.00105 0.00105 0.00041 0.00098 0.00094 0.00094 0.00098 0.00094 0.00095 0.00075 0.00075	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 50 40 35 25 25 25 25 25 25 20 20 15 15 10 10	of LFG for Energy (%) - 0 0 10 15 20 25 35 40 50 50 50 55 55 60 60 65 65 65 65 70 70	Methane Emissions (ICO ₂ eVyr) 0.0131 0.0086 0.0052 0.0050 0.0048 0.0047 0.0044 0.0044 0.0034 0.0044 0.0031 0.0031 0.0030 0.0028 0.0027 0.0026	of Energy Utilization (ICC2pelyr) - 0.0000 0.0003 0.0005 0.0005 0.0005 0.0001 0.0011 0.0013 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014	Methane Generation (tCH ₄ /yr) 0.00387 0.00249 0.00224 0.00226 0.00186 0.00186 0.00186 0.00185 0.00150 0.00152 0.00152 0.00159 0.00159 0.00059 0.00069 0.00069	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 55 55 55 55	of LFG for Energy (%) - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane Emissions (ICO ₂ eVr) 	of Energy UBitzetion 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2007 2008 2007 2010 2011 2011 2011 2013 2014 2015 2016 2015 2016	Methane Generatio (ICH ₄ /yr) 0.00258 0.00241 0.00224 0.00195 0.00195 0.00195 0.00195 0.00135 0.00137 0.00158 0.00137 0.00128 0.00119 0.00111 0.00104 0.00097 0.00084 0.00079	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) 50 50 50 50 50 50 50 50 50 50 50 50 50	of LFG for Energy (%) 0 0 10 15 20 25 35 35 40 50 55 55 55 55 55 55 55 55 55 55 55 55	Methane Ernissions (ICC2e/v) - 0.0227 0.0170 0.0120 0.0120 0.0090 0.0090 0.0090 0.0090 0.0095 0.0061 0.0095 0.0061 0.0095 0.0046 0.0043 0.0040 0.0040	of Energy Utilization (ICC)-ge/yr) 0 0000 0 0000 0 0000 0 0011 0 0013 0 0016 0 0017 0 0029 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0011 0 0016 0 0017 0 0016 0 0017 0 0016 0 0017	Methane Generatio (tCH4/yr) 0.00129 0.00129 0.00112 0.00108 0.00108 0.00101 0.00098 0.00091 0.00098 0.00098 0.00098 0.00098 0.00098 0.00099 0.00079 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ ev/yr) - 0.0131 0.0066 0.0062 0.0048 0.0048 0.0045 0.0044 0.0032 0.0031 0.0030 0.0030 0.0030 0.0030 0.0030 0.0029 0.0029 0.0026 0.0026 0.0026	of Energy Utilization (ICC-pelvy) - 0.0000 0.0003 0.0005 0.0006 0.0007 0.0010 0.0011 0.0013 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Methane Generation (ICH,/yr) 0.00387 0.00349 0.00283 0.00254 0.00229 0.00260 0.00166 0.00166 0.00150 0.00150 0.00110 0.001012 0.00110 0.00019 0.00089 0.00089 0.00089 0.00022 0.00065	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane Emission (ICO ₂ e/yr) - 0.0440 0.0348 0.0313 0.0282 0.0284 0.0282 0.0284 0.0282 0.0148 0.0148 0.0148 0.0133 0.0120 0.0108 0.0108 0.0079 0.0079 0.0079 0.0074 0.0068 0.0058 0.0058	of Energy Utilization 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016	Methane Generatio (1CH ₄ /yr) 0.00258 0.00241 0.00224 0.00152 0.00152 0.00155 0.00155 0.00155 0.00153 0.00170 0.00137 0.00137 0.00137 0.00111 0.00111 0.00111 0.001097 0.00090 0.00090	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LFG Flared - - 43 50 50 45 40 55 30 25 25 25 20 25 25 20 16 15 10 10 5 5	of LFG for Energy (%) 0 0 0 10 5 20 25 35 40 50 55 55 55 55 55 55 55 55 55 55 55 55	Methane Emissions (ICC2e8/yr) 	of Energy Utilization (ICC-2e/v7) - 0.0000 0.0006 0.0006 0.0013 0.0013 0.0013 0.0013 0.0017 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0011 0.0017 0.0017 0.0017 0.0016 0.0016	Methane Generatio (tCH ₄ /yr) 0.00125 0.00125 0.00120 0.00112 0.00108 0.00105 0.00105 0.00041 0.00098 0.00094 0.00094 0.00098 0.00094 0.00095 0.00075 0.00075	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 50 40 35 25 25 25 25 25 25 20 20 15 15 10 10	of LFG for Energy (%) - 0 0 10 15 20 25 35 40 50 50 50 55 55 60 60 65 65 65 65 70 70	Methane Emissions (ICO ₂ eVyr) 0.0131 0.0086 0.0052 0.0050 0.0048 0.0047 0.0044 0.0044 0.0034 0.0044 0.0031 0.0031 0.0031 0.0028 0.0027 0.0026	of Energy Utilization (ICC2pelyr) - 0.0000 0.0003 0.0005 0.0005 0.0005 0.0001 0.0011 0.0013 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014	Methane Generation (tCH ₄ /yr) 0.00387 0.00249 0.00224 0.00226 0.00186 0.00186 0.00186 0.00185 0.00150 0.00152 0.00152 0.00159 0.00159 0.00059 0.00069 0.00069	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 55 55 55 55	of LFG for Energy (%) - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane Emissions (ICO ₂ eVr) 	of Energy UBitzetion 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 TOTAL =	Methane Generatio ((CH,/yr) 0.00258 0.00241 0.002241 0.00224 0.00195 0.00195 0.00195 0.00195 0.00170 0.00163 0.00170 0.00137 0.00137 0.00137 0.00119 0.00111 0.00111 0.00101 0.00101 0.00100 0.00097 0.00093 0.00093 0.00079 0.00073 0.00068 0.00073	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 35 50 50 45 40 35 30 55 25 25 25 20 22 15 10 15 10 15 5 0 0 0	of LFG for Energy (%) 0 0 10 15 20 25 35 35 40 50 55 55 55 55 55 55 55 55 55 55 55 55	Methane Emissions (ICC)-gelyr) 0.0278 0.0227 0.0170 0.0128 0.0129 0.0129 0.0096 0.0096 0.0096 0.0095 0.0095 0.0065 0.0065 0.0065 0.0065 0.0056 0.0055 0.0055 0.0055 0.0055 0.0046 0.0046 0.0047 0.0037 0.0037 0.0032 0.0032 0.0032	of Energy Utilization (ICC)-getyr) - 0 0000 0 0000 0 0001 0 0010 0 0011 0 0013 0 0016 0 0017 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0011 0 0010 0 0011 0 0010 0 0011 0 0010 0 0011 0 0010 0 0010 0 0011 0 0011 0 0010 0 0011 0 0010 0 0011 0 0010 0 0011 0 0010 0 0011 0 001100000000	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00112 0.00116 0.00108 0.00101 0.00098 0.00091 0.00091 0.00088 0.00091 0.00082 0.00079 0.00074 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2007 2008 2007 2010 2011 2011 2011 2013 2014 2015 2016 2017 2016 TOTAL = Best-Gues	Methane Generatio ((CH/yr)) 0.00226 0.00224 0.00229 0.00152 0.00152 0.00152 0.00152 0.00157 0.00125 0.00117 0.00128 0.00111 0.00104 0.00097 0.00090 0.00093 0.00095 0.00095 0.00095 0.00015 0.0005 0.0005 00	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 43 50 50 50 45 40 35 30 25 25 25 20 15 15 15 15 15 15 5 0 0 0	of LFG for Energy (%) 0 0 10 15 20 25 35 35 40 50 55 55 55 55 55 55 55 55 55 55 55 55	Methane Emissions (ICC-gely) 0.0278 0.0227 0.0170 0.0138 0.0129 0.0138 0.0129 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0093 0.0046 0.0093 0.0043 0.0043 0.0035 0.0043 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0043 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0043 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0046 0.0035 0.0043 0.0035 0.0043 0.0035 0.0043 0.0035 0.0035 0.0043 0.0035 0.0043 0.0035 0.0055 0	of Energy Utilization (ICC-pet/on 0 0000 0 0000 0 0000 0 0001 0 0001 0 0011 0 0013 0 0016 0 0019 0 0011 0 0016 0 0017 0 0017 0 0017 0 0017 0 0017 0 0019 0 0017 0 0019 0 0010 0 0019 0 0010 0 0019 0 0019 0 0011 0 0019 0 0011 0 0019 0 0011 0 0016 0 0019 0 0019 0 0011 0 0016 0 0019 0 0019 0 0011 0 0015 0 0017 0 0017 0 0019 0 0016 0 0017 0 0015 0 0005 0 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 0005 00	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00112 0.00116 0.00108 0.00101 0.00098 0.00091 0.00091 0.00088 0.00091 0.00082 0.00079 0.00074 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2013 2014 2015 2016 2017 2016 2017 2018 2016 2017 2018 2019 2010 2017 2017 2017 2017 2017 2017 2017	Methane Generatio ((CH/yr)) 0.00258 0.00241 0.00299 0.00182 0.00182 0.00170 0.00158 0.00147 0.00125 0.00119 0.00125 0.00119 0.00147 0.00019 0.00090 0.00084 0.00090 0.00084 0.00073 0.00073 0.00028 0.0023 0.00058	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of L.FG Flared (%) - 4 50 50 50 45 50 40 40 35 30 25 25 25 20 20 15 15 10 10 5 5 5 0 0 0	of LFG for Energy (%) 0 0 10 15 20 25 35 35 40 50 55 55 55 55 55 55 55 55 55 55 55 55	Methane Emissions (ICC)-e/yr) 0.0278 0.0227 0.0129 0.0129 0.0129 0.0129 0.0956 0.0956 0.0957 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.00550 0.00550 0.00550 0.005500000000	of Energy Utilization (ICC)-geVin 0 0000 0 0000 0 0000 0 0001 0 0001 0 0011 0 0011 0 0011 0 0011 0 0011 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0011 0 000100000000	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00112 0.00116 0.00108 0.00101 0.00098 0.00091 0.00091 0.00088 0.00091 0.00082 0.00079 0.00074 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.000000
	YEAR 1999 2000 2001 2002 2003 2004 2005 2010 2010 2010 2010 2010 2010 2013 2016 2015 2016 2017 2018 Best-Guess Best-Guess	Methane Generatio (ICH/yr) 0.00258 0.00241 0.002241 0.002241 0.00195 0.00195 0.00195 0.00195 0.00170 0.00158 0.00170 0.00137 0.00137 0.00137 0.00137 0.00137 0.00111 0.00104 0.00097 0.00097 0.00098 0.00097 0.00098 0.00097 0.00088 0.00079 0.00008 0.00079 0.00008 0.00079 0.00008 0.00079 0.00008 0.00079 0.00008 0.00079 0.00008 0.00079 0.00008 0.00079 0.00008 0.00079 0.00008 0.00079 0.00008 0.00008 0.00008 0.00008 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.000000	Oxidation by Cover Material (%) - - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 35 50 50 50 45 40 45 40 35 30 25 25 25 25 20 15 15 10 10 10 5 5 0 0	of LFG for Energy (%) 0 0 10 15 20 25 35 35 40 50 55 55 55 55 55 55 55 55 55 55 55 55	Methane Emissions (ICC)-gelyr) - - 0.0278 0.0227 0.0128 0.0227 0.0128 0.0227 0.0128 0.0227 0.0278 0.0278 0.0096 0.0095 0.0095 0.0095 0.0095 0.0095 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0037 0.0032 0.0032 0.0183 -0.028 0.092	of Energy Utilization (ICC)-gelyr) - - 0 0000 0 0000 0 0000 0 0001 0 0013 0 0016 0 0017 0 0019 0 0011 0 0019 0 0019 0 0019 0 0011 0 0019 0 0019 0 0011 0 0019 0 0011 0 0019 0 0011 0 0019 0 0011 0 0011 0 0019 0 0011 0 0011 0 0011 0 0019 0 0011 0 0011 0 0011 0 0019 0 0019 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0019 0 0019 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0019 0 0019 0 0011 0 001100000000	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00112 0.00116 0.00108 0.00101 0.00098 0.00091 0.00091 0.00088 0.00091 0.00082 0.00079 0.00074 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2009 2010 2011 2012 2013 2014 2013 2014 2015 2016 2017 2012 2017 2021 2017 2026 2009 2010 2017 2017 2017 2016 2017 2018	Methane Generatio ((CH/yr)) 0.00226 0.00224 0.00229 0.00152 0.00152 0.00152 0.00152 0.00152 0.00157 0.00128 0.00117 0.00128 0.00111 0.00104 0.00097 0.00090 0.00093 0.000090 0.0000000000	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 43 50 50 50 45 40 35 50 25 25 25 20 20 15 15 15 15 15 15 15 15 15 5 0 0	of LFG for Energy (%) 0 0 10 15 20 25 35 35 40 50 55 55 55 55 55 55 55 55 55 55 55 55	Methane Emissions (ICC)-e/yr) 0.0278 0.0227 0.0129 0.0129 0.0129 0.0129 0.0956 0.0956 0.0957 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.00550 0.00550 0.00550 0.005500000000	of Energy Utilization (ICC)-geVin 0 0000 0 0000 0 0000 0 0001 0 0001 0 0011 0 0011 0 0011 0 0011 0 0011 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0011 0 000100000000	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00112 0.00116 0.00108 0.00101 0.00098 0.00091 0.00091 0.00088 0.00091 0.00082 0.00079 0.00074 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2003 2006 2006 2006 2007 2008 2010 2010 2010 2012 2013 2012 2013 2014 2015 2016 2017 2018 2017 2018 2017 2018 2017 2018 2017 2019 2010 2010 2010 2001 2002 2004 2005 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2008 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2009	Methane Generatio ((CH/yr)) 0.00258 0.00241 0.00229 0.00182 0.00182 0.00182 0.00182 0.00170 0.00183 0.00137 0.00137 0.00137 0.00119 0.00119 0.00111 0.00104 0.00097 0.00084 0.00073 0.00068 0.00273 0.00068 0.00273 0.00068 0.00273 0.00068 0.00273 0.00068 0.0227 0.00073 0.00068 0.0228 0.0227 0.00058 0.00073 0.00058 0.0228 0.00073 0.00058 0.0228 0.00073 0.00058 0.0228 0.00073 0.00058 0.0228 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00119 0.00058 0.00058 0.0019 0.00058 0.00157 0.00058 0.00157 0.00157 0.00157 0.00157 0.0019 0.00157 0.0019 0.00157 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.00058 0.0019 0.00019 0.00058 0.0019 0.00058 0.0019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00058 0.00019 0.00058 0.0000	Oxidation by Cover Material (%) - - 10 10 10 10 10 10 10 10 10 10 10 10 10	of L FG Flared (%) - 35 50 50 50 50 40 35 50 25 25 20 20 20 20 15 15 10 10 5 5 0 0 0	of LFG for Energy (%) 0 0 10 15 20 25 35 35 40 50 55 55 55 55 55 55 55 55 55 55 55 55	Methane Emissions (ICC-ge/yr) 0.0278 0.0227 0.0170 0.0138 0.0129 0.0138 0.0129 0.0120 0.0095 0.0005 0.0095 0.000500000000	of Energy Utilization (ICC-pet/ONE 0.0000 0.0000 0.0000 0.0000 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0015 0.	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00112 0.00116 0.00108 0.00101 0.00098 0.00091 0.00091 0.00088 0.00091 0.00082 0.00079 0.00074 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2003 2006 2006 2006 2007 2008 2010 2010 2010 2012 2013 2012 2013 2014 2015 2016 2017 2018 2017 2018 2017 2018 2017 2018 2017 2019 2010 2010 2010 2001 2002 2004 2005 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2008 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 2009 2009	Methane Generatio ((CH/yr)) 0.00258 0.00241 0.00229 0.00182 0.00182 0.00182 0.00182 0.00170 0.00183 0.00137 0.00137 0.00137 0.00119 0.00119 0.00111 0.00104 0.00097 0.00084 0.00073 0.00068 0.00273 0.00068 0.00273 0.00068 0.00273 0.00068 0.00273 0.00068 0.0227 0.00073 0.00068 0.0228 0.0227 0.00058 0.00073 0.00058 0.0228 0.00073 0.00058 0.0228 0.00073 0.00058 0.0228 0.00073 0.00058 0.0228 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00058 0.00119 0.00058 0.00058 0.0019 0.00058 0.00157 0.00058 0.00157 0.00157 0.00157 0.00157 0.0019 0.00157 0.0019 0.00157 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.00058 0.0019 0.00019 0.00058 0.0019 0.00058 0.0019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00058 0.00019 0.00058 0.0000	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10	of L FG Flared (%) - 35 50 50 50 50 40 35 50 25 25 20 20 20 20 15 15 10 10 5 5 0 0 0	of LFG for Energy (%) 0 0 10 15 20 25 35 35 40 50 55 55 55 55 55 55 55 55 55 55 55 55	Methane Emissions (ICC)-gelyr) 0.0278 0.0227 0.0129 0.0129 0.0129 0.0050 0.0090 0.0005 0.0090 0.0005 0.0000	of Energy Utilization (ICC-ge/v) 0 0000 0 0000 0 0000 0 0001 0 0013 0 0013 0 0013 0 0013 0 0013 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0011 0 0016 0 0017 0 0010 0 0011 0 0013 0 0011 0 000100000000	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00112 0.00116 0.00108 0.00101 0.00098 0.00091 0.00091 0.00088 0.00091 0.00082 0.00079 0.00074 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00150 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.000000
	YEAR 1999 2000 2001 2002 2003 2006 2006 2006 2006 2010 2010 2010 2012 2013 2012 2013 2014 2015 2016 2017 2018 2017 2018 East-Gues Low Estim. High Estim	Methane Generatio ((CH,/yr)) 0.00258 0.00241 0.00229 0.00195 0.00195 0.00195 0.00195 0.00195 0.00170 0.00158 0.00119 0.00119 0.00119 0.00119 0.00104 0.00097 0.00097 0.000097 0.000097 0.000097 0.000097 0.00009 0.000093 0.00009 0.000093 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00008 0.00009 0.00008 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00008 0.00019 0.00008 0.00019 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.0008 0.0008 0.00080	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 350 50 50 50 50 45 40 40 40 40 45 40 40 45 40 40 45 40 40 45 40 40 45 40 40 45 40 40 45 40 40 45 40 40 45 40 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	of LFG for Energy (%) 0 0 10 15 20 25 35 40 50 50 55 55 55 60 60 65 65 65 65 65 65 65 65 70 70 75 75	Methane Emissions (ICC)-gelyr) 0.0278 0.0227 0.0129 0.0129 0.0129 0.0050 0.0090 0.0005 0.0090 0.0005 0.0000	of Energy Utilization (ICC-ge/v) 0 0000 0 0000 0 0000 0 0001 0 0013 0 0013 0 0013 0 0013 0 0013 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0011 0 0016 0 0017 0 0010 0 0011 0 0013 0 0011 0 000100000000	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00112 0.00116 0.00108 0.00101 0.00098 0.00091 0.00091 0.00088 0.00091 0.00082 0.00079 0.00074 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00150 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.000000
8	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2009 2010 2012 2013 2014 2013 2014 2015 2016 2017 2012 2017 2012 2019 2010 2019 2010 2011 2012 2013 2014 2015 2016 2016 2016 2017 2016 2017 2016 2017 2016 2017 2018 2016	Methane Generatio ((CH/yr)) 	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of L FG Flared (%) - 35 50 50 50 50 40 35 50 25 25 20 20 20 20 15 15 10 10 5 5 0 0 0	of LFG for Energy (%) 0 0 10 15 20 25 35 40 50 50 55 55 55 60 60 65 65 65 65 65 65 65 65 70 70 75 75	Methane Emissions (ICC)-gelyr) 0.0278 0.0227 0.0129 0.0129 0.0129 0.0050 0.0090 0.0005 0.0090 0.0005 0.0000	of Energy Utilization (ICC-ge/v) 0 0000 0 0000 0 0000 0 0001 0 0013 0 0013 0 0013 0 0013 0 0013 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0011 0 0016 0 0017 0 0010 0 0011 0 0013 0 0011 0 000100000000	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00112 0.00116 0.00108 0.00101 0.00098 0.00091 0.00091 0.00088 0.00091 0.00082 0.00079 0.00074 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00150 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.000000
8	YEAR 1998 1999 2000 2001 2002 2004 2005 2006 2007 2008 2010 2012 2013 2012 2013 2014 2015 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2019 2010 2001 2001 2001 2001 2002 2004 2005 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2007	Methane Generatio ((CH/yr)) 0.00258 0.00241 0.00209 0.00182 0.00182 0.00182 0.00182 0.00170 0.00158 0.00147 0.00128 0.00119 0.00128 0.00119 0.00104 0.00090 0.00084 0.00090 0.00084 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00073 0.00068 0.029 0.00073 0.00073 0.00068 0.029 0.00073 0.00073 0.00073 0.00068 0.029 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00058 0.00073 0.00058 0.00058 0.00058 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00058 0.00019 0.00058	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of L.FG Flared (%) - 3 50 50 50 50 50 50 50 50 50 50 22 20 20 20 20 20 20 15 15 10 10 5 5 5 5 0 0 0 0 missions= toins= to	of LFG for Energy (%) 0 0 10 15 20 25 35 40 50 50 55 55 55 60 60 65 65 65 65 65 65 65 65 70 70 75 75	Methane Emissions (ICC)-gelyr) 0.0278 0.0227 0.0138 0.0129 0.0129 0.0056 0.0090 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0046 0.0046 0.0043 0.0040 0.0043 0.0048 0.0048 0.0048 0.0048 0.0035 0.0032 0.0133 0.022 0.183 0.022 0.183 0.022	of Energy Utilization (ICC-ge/v) 0 0000 0 0000 0 0000 0 0001 0 0013 0 0013 0 0013 0 0013 0 0013 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0011 0 0016 0 0017 0 0010 0 0011 0 0013 0 0011 0 000100000000	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00112 0.00116 0.00108 0.00101 0.00098 0.00091 0.00091 0.00088 0.00091 0.00082 0.00079 0.00074 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00150 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.000000
8	YEAR 1998 1999 2000 2001 2002 2004 2005 2006 2007 2008 2010 2012 2013 2012 2013 2014 2015 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2019 2010 2001 2001 2001 2001 2002 2004 2005 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2006 2007 2007	Methane Generatio ((CH/yr)) 0.00258 0.00241 0.00209 0.00182 0.00182 0.00182 0.00182 0.00170 0.00158 0.00147 0.00128 0.00119 0.00128 0.00119 0.00104 0.00090 0.00084 0.00090 0.00084 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00068 0.029 0.00073 0.00073 0.00068 0.029 0.00073 0.00073 0.00068 0.029 0.00073 0.00073 0.00073 0.00068 0.029 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00058 0.00073 0.00058 0.00058 0.00058 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00019 0.00058 0.00058 0.00019 0.00058	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10	of L.FG Flared (%) - 3 50 50 50 50 50 50 50 50 50 50 22 20 20 20 20 20 20 15 15 10 10 5 5 5 5 0 0 0 0 missions= toins= to	of LFG for Energy (%) 0 0 10 15 20 25 35 40 50 50 55 55 55 60 60 65 65 65 65 65 65 65 65 70 70 75 75	Methane Emissions (ICC)-gelyr) 0.0278 0.0227 0.0138 0.0129 0.0129 0.0056 0.0090 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0046 0.0046 0.0043 0.0040 0.0043 0.0048 0.0048 0.0048 0.0048 0.0035 0.0032 0.0133 0.022 0.183 0.022 0.183 0.022	of Energy Utilization (ICC-pet/) 0 0000 0 0000 0 0000 0 0001 0 0013 0 0013 0 0013 0 0013 0 0013 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0018 0 0017 0 0018 0 0017 0 0016 0 0017 0 0016 0 0017 0 0018 0 0017 0 0018 0 0017 0 0018 0 0011 0 0018 0 0011 0 0018 0 0011 0 0018 0 0011 0 0018 0 0019 0 0019 0 0018 0 0019 0 0018 0 0011 0 0018 0 0018 0 0011 0 0018 0 0011 0 0018 0 0011 0 0018 0 0011 0 0018 0 0019 0 0011 0 0018 0 0011 0 0010 0 00010 0 0010 0 00010 0 00000000	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00112 0.00116 0.00108 0.00101 0.00098 0.00091 0.00091 0.00088 0.00091 0.00082 0.00079 0.00074 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00150 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2003 2006 2006 2010 2010 2010 2010 2010 2010	Methane Generatio ((CH/yr)) 0.00258 0.00241 0.00229 0.00182 0.00182 0.00182 0.00170 0.00182 0.00170 0.00137 0.00137 0.00137 0.00137 0.00137 0.00119 0.00119 0.00147 0.00119 0.00097 0.00084 0.00073 0.00068 0.029 0.00084 0.00073 0.00068 0.029 0.00084 0.00073 0.00068 0.029 0.00084 0.029 0.00084 0.00073 0.00068 0.029 0.029 0.029 0.00084 0.00073 0.00068 0.029 0.029 0.029 0.029 0.00084 0.00073 0.00068 0.029 0.029 0.029 0.00084 0.00073 0.00068 0.029 0.029 0.029 0.00084 0.00073 0.00068 0.029 0.029 0.00084 0.00073 0.00068 0.029 0.029 0.00084 0.00073 0.00068 0.029 0.029 0.00084 0.00057 0.00084 0.00073 0.00068 0.029 0.00084 0.00073 0.00058 0.00057 0.00097 0.00084 0.00073 0.00058 0.00073 0.00058 0.00073 0.00058 0.00073 0.00058 0.00057 0.00097 0.00097 0.00084 0.00073 0.00058 0.00073 0.00058 0.00073 0.00058 0.00073 0.00058 0.00073 0.00058 0.00073 0.00058 0.	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10	of L.FG Flared (%) - 35 50 50 50 50 50 50 40 35 50 20 22 20 15 15 10 10 10 5 5 0 0 0 - 	of LFG for Energy (%) 0 0 0 10 15 20 25 35 40 50 55 55 55 60 60 65 55 55 60 60 65 55 55 60 65 55 55 55 55 55 55 55 55 55 55 55 55	Methane Emissions (ICC)-gelyr) 0.0278 0.0227 0.0138 0.0129 0.0129 0.0056 0.0090 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0046 0.0046 0.0043 0.0040 0.0043 0.0048 0.0048 0.0048 0.0048 0.0035 0.0032 0.0133 0.022 0.183 0.022 0.183 0.022	of Energy Utilization (ICC-pet/) 0 0000 0 0000 0 0000 0 0001 0 0013 0 0013 0 0013 0 0013 0 0013 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0018 0 0017 0 0018 0 0017 0 0016 0 0017 0 0016 0 0017 0 0018 0 0017 0 0018 0 0011 0 0018 0 0011 0 0011 0 0011 0 0011 0 0010 0 0000 0 00000000	Methane Generatio (tCH ₄ /yr) 0.00129 0.00125 0.00112 0.00116 0.00108 0.00101 0.00098 0.00091 0.00091 0.00088 0.00091 0.00082 0.00079 0.00074 0.00074 0.00074	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00150 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
	YEAR 1999 2000 2001 2002 2003 2004 2005 2006 2009 2010 2017 2012 2013 2014 2013 2014 2015 2015 2015 2015 2016 2017 2017 2012 2018 2017 2017 2017 2018 2017 2018 2017 2017 2018 2017 2018	Methane Generatio ((CH/yr)) 0.00226 0.00224 0.00229 0.00122 0.00155 0.00155 0.00155 0.00155 0.00155 0.0017 0.00128 0.0017 0.00128 0.00111 0.00104 0.00097 0.00090 0.00073 0.00095 0.00073 0.00095 0.00073 0.00095 0.00073 0.00095 0.00073 0.00073 0.00095 0.00073 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.000075 0.000075 0.00075 0.00075 0.00075 00	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 35 50 50 50 50 50 50 50 52 22 20 15 15 10 10 10 15 5 5 0 0 7 7 8 7 8 7 8 7 9 0 7 7 7 8 7 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9	of LFG for Energy (%) 0 0 10 15 20 25 35 40 50 55 55 60 65 65 65 65 65 65 65 65 65 70 70 75 75	Methane Emissions (ICC)-gelyr) - - 0.278 0.0227 0.0170 0.0227 0.0129 0.0227 0.0129 0.0227 0.0276 0.0056 0.0055 0.0065 0.0055 0.0055 0.0065 0.0055 0.0065 0.0055 0.0040 0.0037 0.0037 0.0037 0.0037 0.0037 0.0032 0.0032 0.0183 -0.0221 0.183 -0.025	of Energy Utilization 0 0000 0 0000 0 0000 0 0011 0 0013 0 0016 0 0017 0 0013 0 0016 0 0017 0 0019 0 0010 0 00000000	Methane Generatio (1CH4/yr) 0.00129 0.00125 0.00120 0.00116 0.00010 0.00101 0.00098 0.00091 0.00098 0.00093 0.00093 0.00093 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075	Oxidation by Cover Material (%) - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00150 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2004 2005 2007 2006 2007 2010 2010 2010 2010 2010 2011 2012 2013 2014 2015 2017 2016 2017 2019 2010 2019 2010	Methane Generatio ((CH/yr)) 0.00258 0.00241 0.002241 0.00229 0.00182 0.00182 0.00182 0.00182 0.00182 0.00182 0.00137 0.00128 0.00119 0.00128 0.00119 0.00128 0.00119 0.00073 0.00090 0.00073 0.00090 0.00073 0.00064 0.00073 0.00073 0.00064 0.029 s of Atmosph s of Benefit ate of Atmosph ate of Benefit ate of Atmosph ate of Benefit ate of Atmosph ate of Benefit ate of	Oxidation by Covor Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LFG Flared (%) - 3 50 50 50 50 50 50 50 50 50 50 22 20 20 20 15 10 10 5 5 5 0 20 20 20 15 10 10 5 5 5 0 0 0 0 0 15 10 10 5 5 5 0 20 20 20 20 20 20 20 20 20 20 20 20 2	of LFG for Energy (%) 0 0 10 15 20 25 35 40 50 55 55 60 65 65 65 65 65 65 65 65 65 70 70 75 75	Methane Emissions (ICC)-ge/yr) - - - - - - - - - - - - - - - - - - -	of Energy Utilization (ICC)-e/10 0.0000 0.0000 0.0001 0.0001 0.0011 0.0013 0.0013 0.0019 0.0011 0.0010 0.0019 0.0019 0.0011 0.0010 0.0019 0.0019 0.0011 0.0010 0.0019 0.0011 0.0010 0.0019 0.0011 0.0010 0.0019 0.0011 0.0010 0.0019 0.0011 0.0010 0.0019 0.0011 0.0010 0.0019 0.0019 0.0011 0.0016 0.0019 0.0011 0.0016 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0015 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0015 0.0016 0.0015 0.0016 0.0015 0.0015 0.0015 0.0015 0.0016 0.0020 0.0015 0.0016 0.0020 0.0015 0.0016 0.0020 0.0015 0.0015 0.0016 0.0020 0.0015 0.0015 0.0020 0.0015 0.0020 0.0015 0.0020 0.0015 0.0020 0.0015 0.0020 0.0015 0.0020 0.0016 0.0020 0.0015 0.0020 0.0015 0.0020 0.0015 0.0020 0.0015 0.0020 0.0015 0.0020 0.0015 0.0020 0.0015 0.0020 0.0015 0.0020 0.0015 0.00200000000	Methane Generatio (1CH4/yr) 0.00129 0.00125 0.001215 0.00122 0.00116 0.00018 0.00011 0.00088 0.00091 0.00088 0.00091 0.00089 0.00076 0.00075 0.00074 0.00075 0.00074 0.00075 0.00074 0.00075	Oxidation by Cover Material (%) - - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00150 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0348 0.0282 0.0284 0.0284 0.0286 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2003 2006 2007 2008 2009 2010 2012 2013 2012 2013 2012 2013 2014 2015 2017 2018 2018	Methane Generatio ((CH/yr)) 0.00258 0.00241 0.00229 0.00182 0.00182 0.00182 0.00182 0.00170 0.00183 0.00147 0.00137 0.00137 0.00137 0.00137 0.00137 0.00147 0.00119 0.00141 0.0019 0.00084 0.00073 0.00068 0.00073 0.00068 0.029 s of Atmosph s of Benefit ate of Atmosph s of Benefit ate of Atmosph s of Carbon are of Benefit ate of Atmosph s ate of A	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10	of LPG Flared (%) - - - - - - - - - - - - -	of LFG for Energy (%) 0 0 10 15 20 25 35 40 50 55 55 60 65 65 65 65 65 65 65 65 65 65 70 70 75 75	Methane Emissions (ICC)-gelyr) - - 0.0278 0.0227 0.0138 0.0227 0.0129 0.0227 0.0278 0.0228 0.0930 0.0056 0.0055 0.0055 0.0055 0.0055 0.0055 0.0046 0.0046 0.0046 0.0040 0.0040 0.0045 0.0040 0.0040 0.0040 0.0040 0.0040 0.0032 0.0032 0.0032 0.0055 0.	of Energy Utilization (ICC)_etry 0 0000 0 0000 0 0000 0 0000 0 0011 0 0013 0 0016 0 0017 0 0016 0 0019 0 0011 0 0010 0 0019 0 0019 0 0010 0 0010 0 0019 0 0011 0 0010 0 0019 0 0011 0 0010 0 0019 0 0011 0 0010 0 0010 0 0019 0 0019 0 0011 0 0010 0 0010 0 0019 0 0011 0 0010 0 0010 0 0019 0 0011 0 0010 0 0010 0 0010 0 0019 0 0011 0 0010 0 0010 0 0010 0 0019 0 0010 0 0000 0 0000 0 00000000	Methane Generatio (tCH4/yr) 0.00129 0.00125 0.00120 0.00116 0.00105 0.00116 0.00098 0.00098 0.00098 0.00085 0.00074 0.00085 0.00074 0.00079 0.00074 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079	Oxidation by Cover Material (%) - - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00150 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0348 0.0282 0.0284 0.0284 0.0286 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2003 2004 2005 2006 2009 2010 2012 2013 2014 2015 2013 2014 2015 2017 2012 2013 2014 2017 2012 2018 2019	Methane Generatio ((CH/yr)) 0.00258 0.00241 0.00229 0.00182 0.00182 0.00182 0.00182 0.00170 0.00183 0.00147 0.00137 0.00137 0.00137 0.00137 0.00137 0.00147 0.00119 0.00141 0.0019 0.00084 0.00073 0.00068 0.00073 0.00068 0.029 s of Atmosph s of Benefit ate of Atmosph s of Benefit ate of Atmosph s of Carbon are of Benefit ate of Atmosph s ate of A	Oxidation by Covor Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of LPG Flared (%) - - - - - - - - - - - - -	of LFG for Energy (%) 0 0 10 15 20 25 35 40 50 55 55 60 65 65 65 65 65 65 65 65 65 65 70 70 75 75	Methane Emissions (ICC)-gelyr) - - 0.0278 0.0227 0.0138 0.0227 0.0129 0.0227 0.0278 0.0228 0.0930 0.0056 0.0055 0.0055 0.0055 0.0055 0.0055 0.0046 0.0046 0.0046 0.0040 0.0040 0.0045 0.0040 0.0040 0.0040 0.0040 0.0040 0.0032 0.0032 0.0032 0.0055 0.	of Energy Utilization 0 0000 0 0000 0 0000 0 0000 0 0011 0 0013 0 0016 0 0017 0 0013 0 0016 0 0017 0 0019 0 0011 0 0011 0 0019 0 0019 0 0011 0 0011 0 0019 0 0019 0 0011 0 0011 0 0011 0 0019 0 0019 0 0011 0 0011 0 0011 0 0011 0 0019 0 0011 0 0011 0 0011 0 0011 0 0019 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0011 0 0010 0 0011 0 00000000	Methane Generatio (tCH4/yr) 0.00129 0.00125 0.00120 0.00116 0.00105 0.00116 0.00098 0.00098 0.00098 0.00085 0.00074 0.00085 0.00074 0.00079 0.00074 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079	Oxidation by Cover Material (%) - - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00150 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0348 0.0282 0.0284 0.0284 0.0286 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
	YEAR 1998 1999 2000 2002 2003 2004 2005 2006 2009 2010 2012 2013 2014 2013 2014 2013 2014 2015 2015 2017 2012 2018 2017 2012 2018 2019 2017 2017 2019 2018 2019 2018	Methane Generatio ((CH/yr)) 0.00226 0.00224 0.00224 0.00229 0.00155 0.00132 0.00155 0.00132 0.00175 0.00137 0.00125 0.00117 0.00125 0.00117 0.00125 0.00111 0.00104 0.00097 0.00090 0.00073 0.00095 0.00073 0.00095 0.00073 0.00095 0.00073 0.00095 0.00073 0.00073 0.00095 0.00073 0.00073 0.00095 0.00073 0.00075 0.	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10 10 10 10	of L/G ² Flared (%) - 35 50 50 50 50 50 50 52 22 20 15 15 10 10 10 15 5 5 0 0 7 7 8 7 8 7 8 7 8 7 9 0 7 7 15 15 10 10 10 10 5 5 7 7 9 0 7 7 7 8 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7	of LFG for Energy (%) 0 0 10 15 20 25 35 40 50 55 55 60 65 65 65 65 65 65 65 65 65 65 70 70 75 75	Methane Emissions (ICC)-gelyr) - 0.0278 0.0227 0.0170 0.0227 0.0129 0.0227 0.0129 0.0227 0.0278 0.0227 0.0278 0.0050 0.0055 0.0055 0.0065 0.0055 0.0065 0.0055 0.0065 0.0065 0.0065 0.0055 0.0043 0.0043 0.0046 0.0043 0.0043 0.0045 0.0043 0.0045 0.0043 0.0045 0.0045 0.005 0.005 0.005 0.027 0.027 0.027 0.005 0.005 0.005 0.021 0.027 0.027 0.005 0.005 0.021 0.027 0.027 0.005 0.005 0.005 0.021 0.021 0.021 0.027 0.005	of Energy Utilization (ICC)-givin 0 0000 0 0000 0 0000 0 0001 0 0010 0 0011 0 0013 0 0016 0 0017 0 0013 0 0016 0 0017 0 0019 0 0011 0 0011 0 0011 0 0011 0 0011 0 0010 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0011 0 0011 0 0011 0 0011 0 0011 0 0010 0 0019 0 0019 0 0011 0 0011 0 0011 0 0010 0 0010 0 0010 0 0000 0 0001 0 0001 0 0001 0 0001 0 0010 0 0000 0 0001 0 00010 0 0000 0 0001 0 00010 0 0000 0 0001 0 00010 0 00010 0 0010 0 0000 0 00000 0 0000 0 000000	Methane Generatio (tCH4/yr) 0.00129 0.00125 0.00120 0.00116 0.00105 0.00116 0.00098 0.00098 0.00098 0.00085 0.00074 0.00085 0.00074 0.00079 0.00074 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079	Oxidation by Cover Material (%) - - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0348 0.0282 0.0284 0.0284 0.0286 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2004 2005 2007 2009 2010 2012 2013 2014 2015 2017 2012 2013 2014 2015 2017 2019 2019 2010 2019 2010	Methane Generatio ((CH/yr)) 	Oxidation by Covor Material (%) - - 10 10 10 10 10 10 10 10 10 10 10 10 10	of L/G ² Flared (%) - 35 50 50 50 50 50 50 52 22 20 15 15 10 10 10 15 5 5 0 0 7 7 8 7 8 7 8 7 8 7 9 0 7 7 15 15 10 10 10 10 5 5 7 7 9 0 7 7 7 8 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7	of LFG for Energy (%) 0 0 10 15 20 25 35 40 50 55 55 60 65 65 65 65 65 65 65 65 65 65 70 70 75 75	Methane Emissions (ICC)-gelyr) - - 0.0278 0.0227 0.0129 0.0129 0.0095 0.005 0.	of Energy Utilization (ICC)-e/107 0.0000 0.0000 0.0001 0.0011 0.0013 0.0013 0.0013 0.0019 0.0016 0.0015 0.0	Methane Generatio (tCH4/yr) 0.00129 0.00125 0.00120 0.00116 0.00105 0.00116 0.00098 0.00098 0.00098 0.00085 0.00074 0.00085 0.00074 0.00079 0.00074 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079	Oxidation by Cover Material (%) - - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
	YEAR 1998 1999 2000 2001 2002 2003 2006 2007 2008 2009 2010 2010 2012 2013 2014 2015 2017 2018 2018	Methane Generatio ((CH/yr)) 0.00226 0.00224 0.00224 0.00229 0.00155 0.00132 0.00155 0.00132 0.00175 0.00137 0.00125 0.00117 0.00125 0.00117 0.00125 0.00111 0.00104 0.00097 0.00090 0.00073 0.00095 0.00073 0.00095 0.00073 0.00095 0.00073 0.00095 0.00073 0.00073 0.00095 0.00073 0.00073 0.00095 0.00073 0.00075 0.	Oxidation by Cover Material (%) - 10 10 10 10 10 10 10 10 10 10	of L/G ² Flared (%) - 35 50 50 50 50 50 50 52 22 20 15 15 10 10 10 15 5 5 0 0 7 7 8 7 8 7 8 7 8 7 9 0 7 7 15 15 10 10 10 10 5 5 7 7 9 0 7 7 7 8 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7	of LFG for Energy (%) 0 0 10 15 20 25 35 40 50 55 55 60 65 65 65 65 65 65 65 65 65 65 70 70 75 75	Methane Emissions (ICC-gelyr) - - 0.0278 0.0227 0.0173 0.0227 0.0129 0.0228 0.0228 0.0056 0.0056 0.0055 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0046 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0037 0.0052 0.0055 0.0052 0.0	of Energy Utilization (ICC)-givin 0 0000 0 0000 0 0000 0 0001 0 0010 0 0011 0 0013 0 0016 0 0017 0 0013 0 0016 0 0017 0 0019 0 0011 0 0011 0 0011 0 0011 0 0011 0 0010 0 0019 0 0019 0 0019 0 0019 0 0019 0 0019 0 0011 0 0011 0 0011 0 0011 0 0011 0 0010 0 0019 0 0019 0 0011 0 0011 0 0011 0 0010 0 0010 0 0010 0 0000 0 0001 0 0001 0 0001 0 0001 0 0010 0 0000 0 0001 0 00010 0 0000 0 0001 0 00010 0 0000 0 0001 0 00010 0 00010 0 0010 0 0000 0 00000 0 0000 0 000000	Methane Generatio (tCH4/yr) 0.00129 0.00125 0.00120 0.00116 0.00105 0.00116 0.00098 0.00098 0.00098 0.00085 0.00074 0.00085 0.00074 0.00079 0.00074 0.00079 0.00079 0.00079 0.00079 0.00079 0.00079	Oxidation by Cover Material (%) - - 15 15 15 15 15 15 15 15 15 15 15 15 15	of LFG Flared (%) - 43 50 55 55 55 50 40 35 25 30 25 25 20 20 20 20 20 25 15 15 10 0 0	of LFG for Energy (%) - 0 0 10 15 25 35 35 40 50 55 55 50 55 55 60 60 65 65 65 70 70 85	Methane Emissions (ICO ₂ eVyr) 0.0111 0.0062 0.0050 0.0062 0.0045 0.0045 0.0045 0.0044 0.0032 0.0045 0.0045 0.0045 0.0045 0.0024 0.0030 0.0028 0.0028 0.0025 0.0018	of Energy Utilization (ICO2eVyr) 0.0000 0.0003 0.0005 0.0005 0.0005 0.0006 0.0001 0.0011 0.0011 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	Mathane Generation (tCH ₄ /yr) 0.00387 0.00349 0.00254 0.00259 0.00259 0.00186 0.00186 0.00185 0.00150 0.00150 0.00150 0.00150 0.00152 0.00150 0.00152 0.00152 0.00055 0.00055 0.00055	Oxidation by Cover Material (%) - 5 5 5 5 5 5 5 5 5 5 5 5 5	of LFG Flared (%) - 43 50 50 50 50 55 55 55 55 55 50 50 45 45 45 45 40 40 35 35	of LFG for Energy (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methane (ICO2,eV)7) 0-440 0.0348 0.0313 0.0282 0.0284 0.0284 0.0285 0.0148 0.0133 0.0120 0.0185 0.0148 0.0133 0.0120 0.0108 0.0097 0.0088 0.0071 0.0064 0.0052 0.0052 0.0052	of Energy UBitzetion 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000

10 Energy Generation from Waste Incineration at the Burnaby Incinerator: Net energy content of wet yard waste= 5.7 GJ/tonne

	Utilized steam energy by Crown=	2.23	GJ/tonne
	Turbogenerator electricity produced≃	0.00	GJ/tonne
	Emission prevention by steam utilization at Crown=	0.139	tCO2e/tonne
	Emission prevention by offsetting BC Hydro (Burrard Thermal)×	0.000	ICO2e/tonne
	Total GHG emission prevented by energy production=	-0,139	tCO ₂ e/tonne
	,		•
11	GHG Emissions from Waste Incineration at the Burnaby Inci	nerator	
••	Nitrogen content of wet yard waste=		%N
	Best-guess estimate immediate N ₂ O emission from waste-N=		tCO2e/tonne
	Low estimate immediate N₂O emission from waste-N= High estimate immediate N₂O emission from waste-N=		tCO2e/tonne tCO2e/tonne
	Best-guess estimate of total GHG emissions from waste incineration Low estimate of total GHG emissions from waste incineration=		tCO2e/tonne tCO2e/tonne
	High estimate of total GHG emissions from waste incineration=		tCO ₂ e/tonne
12	Energy Generation from Waste Incineration at a Future Incin		
	Net energy content of wet yard waste=	5.7	GJ/tonne
	Utilized steam energy by Crown≖	2.23	GJ/tonne
	Turbogenerator electricity produced=	0.00	GJ/tonne
	Emission prevention by steam utilization at Crown=	0,139	tCO2e/tonne
	Emission prevention by offsetting BC Hydro (Burrard Thermai)=	0.000	tCO ₂ e/tonne
	Total GHG emission prevented by energy production=	-0.139	ICO2e/Ionne
13	GHG Emissions from Waste Incineration at a Future Incineration	ator:	
	Nitrogen content of wet yard waste=	1.9	%N
	Best-guess estimate immediate N ₂ O emission from waste-N=		tCO2e/tonne
	Low estimate immediate N ₂ O emission from waste-N= High estimate immediate N ₂ O emission from waste-N=		tCO2e/lanne tCO2e/lanne
	Best-guess estimate of total GHG emissions from waste incineration Low estimate of total GHG emissions from waste incineration=		tCO2e/tonne tCO2e/tonne
	Low estimate of total GHG emissions from waste incineration= High estimate of total GHG emissions from waste incineration=		tCO2e/tonne
14	Greenhouse Gas Emissions from Backyard Composting		
	Anthropogenic Nitrogen content of wet yard waste=	0.94	
	Best-guess estimate of the immediate N ₂ O emission factor=		% of initial-N % of initial-N
	Low estimate of the immediate N ₂ O emission factor= High estimate of the immediate N ₂ O emission factor=		% of initial-N
	Best-guess estimate of the immediate N ₂ O emission =		tCO2e/tonne
	Low estimate of the immediate N ₂ O emission =		tCO2e/tonne
	High estimate of the immediate N ₂ O emission =	0.091	tCO ₂ e/lonne
	Nitrogen contant of wet yard wasta⊭	0.94	
	Best-guess estimate of the fraction to future N ₂ O emissions= Low estimate of the fraction undergoing future N ₂ O emissions=		% of Initial-N % of Initial-N
	High estimate of the fraction undergoing future N ₂ O emissions=		% of initial-N
	Best-guess estimate mass of nitrogen available for future N ₂ O=		tonne Future N/tonne yard waste
	Low estimate mass of nitrogen evailable for future N ₂ O=		tonne Future N/tonne yard waste
	High estimate mass of nitrogen available for future N ₂ O= Best-guess estimate of the future N ₂ O emission factor=		tonne Future N/tonne yard waste % of initial-N
	Low estimate of the future N ₂ O emission factor=	0.2	% of initial-N
	High estimate of the future N ₂ O emission factor=		% of initial-N
	Best-guess estimate of the future N ₂ O emission = Low estimate of the future N ₂ O emission =		tCO2e/tonne tCO2e/tonne
	Low estimate of the future N ₂ O emission = High estimate of the future N ₂ O emission =		tCOze/tonne
	Best-guess Estimate Total emissions from backyard composting= Low Estimate Total emissions from backyard composting=		ICO2e/Ionne ICO2e/Ionne
	High Estimate Total emissions from backyard composting=		tCO ₂ e/tonne
15	Greenhouse Gas Emissions from Centralized Composting		
	Best-guess estimate of the methane emission factor*		% of initial carbon
	Low estimate of the methane emission factors		% of initial carbon
	High estimate of the methane emission factor= Best-guess estimate of the CH ₄ emission from centralized compost=		% of initial carbon tCO2e/tonne
	Low estimate of the CH ₄ emission from centralized composing=		ICO ₂ e/Ionne
	High estimate of the CH_4 emission from centralized composting=	0.073	tCO ₂ e/tonne
	Best-guess estimate N ₂ O emissions from composting=	0.068	tCO ₂ e/tonne
	Low estimate N ₂ O emissions from composting=	0.014	ICO ₂ e/ionne
	High estimate N₂O emissions from composting≖	0.173	tCO ₂ e/tonne
		0 105	tCO ₂ e/lonne
	Best-guess estimate Total GHG emissions from centralized compost		
	Low estimate Total GHG emissions from centralized composting=	0.021	tCO ₂ e/tonne
		0.021	
	Low estimate Total GHG emissions from centralized composting= High estimate Total GHG emissions from centralized composting=	0.021	tCO ₂ e/tonne
16	Low estimate Total GHG emissions from centralized composing= High estimate Total GHG emissions from centralized composing= Long-Term Carbon Sequestration of Compost	0.021 0.246	ICO _z e/lonne ICO _z e/lonne
16	Low estimate Total GHG emissions from centralized composting= High estimate Total GHG emissions from centralized composting=	0.021 0.246 -0,10	tCO ₂ e/tonne
16	Low estimate Total GHG emissions from centralized composing= High estimate Total GHG emissions from centralized composing= Long-Term Carbon Sequestration of Compost Beal-Junes of Carbon Seq. of Centralized Composited Yard Wasta =	0.021 0.246 -0,10 -0.004	tCO ₂ e/tonne tCO ₂ e/tonne tCO ₂ e/tonne
16	Low estimate Total GHG emissions from centralized composing= High estimate Total GHG emissions from centralized composing= Long-Term Carbon Sequestration of Compost Beal-Oweas of Carbon Seq. of Centralized Composted Yard Waste = Low Estimate of Carbon Seq. of Centralized Composted Yard Waste =	0.021 0.246 -0.10 -0.004 -0.20	tCO ₂ e/tonne tCO ₂ e/tonne tCO ₂ e/tonne tCO ₂ e/tonne tCO ₂ e/tonne

.

REMAINDER WASTE MANAGEMENT:

Variables that can be changed by users are in bold.

	Biodegradable fraction of Remainder#	70	*
	Moisture content of biodegradable organic-C in Remainder*	30	*
	Carbon content of biodegradable C in Remainder (dry)=	50	*
	Carbon storage factor for Remainder (wet)=	0.09	kg C/wet kg
	Nitrogen content of Remainder=	0	%N
	Estimate of the net energy content of Remainder=	11.6	GJ/tonne
	Fossil Carbon Content of Remainder =	0.060	tC/tonne Rem
1	Methane & Energy Implications of the Cache Creek Landfill		
	Carbon storage factor for Remainder (wet)=	0.090	(C/tonne
	Carbon available for enserablic decomposition=	0,155	tC/tonne
	Methane generation potential, La*	0.103	tCH_/raw

and a second sec	0.100 10.10
Best-guess first order decay rate constant, k=	0.04 year ⁻¹
Low estimate first order decay rate constant, k=	0.02 year"
High estimate first order decay rate constant, k#	0.06 year ¹

	BEST-GU	ESS:					LOW-EST	MATE:					HIGH-EST	IMATE:				
		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospharic	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefr
	Methane	Cover	ofLFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy
YEAR	Generatio	Material	Flored	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization
	(ICH_yr)	(%)	(%)	(%)	(ICO2e/yr)	(1CO ₂ e/yr)	(ICH ₄ /yr)	(%).	(%)	(%)	(tCO ₂ e/yr)	(tCO2e/yr)	(ICH ₄ /yr)	(%)	(%)	(%)	(ICO2e/yr)	(ICO2e/yr)
1998	•	•	•		•	•	•	•	•		•	•	-	•	•		-	•
1999	0.00413	10	43	0	0 0445	0 0000	0.00207	15	43	0	0.0210	0.0000	0.00620	5	43	0	0.0705	0.0000
2000	0.00389	10	50	0	0.0368	0.0000	0.00203	15	50	¢	0.0181	0.0000	0 00584	5	50	0	0 0582	0 0000
2001	0.00367	10	50	10	0.0277	0.0010	0.00199	15	50	10	0.0142	0.0005	0 00550	5	50	0	0.0549	0.0000
2002	0.00345	10	\$0	15	0.0228	0.0014	0.00195	15	55	15	0 0104	0.0008	0 00518	5	50	0	0.0517	0.0000
2003	0.00325	10	45	20	0.0215	0.0018	0.00191	15	55	20	0.0085	0.0010	0.00488	5	50	٥	0.0486	0.0000
2004	0.00306	10	40	25	0.0203	0.0021	0.00187	15	50	25	0.0083	0.0013	0.00459	5	55	0	0.0412	0.0000
2005	0.00288	10	35	35	0.0164	0.0028	0.00183	15	40	35	0.0082	0.0018	0.00433	5	55	0	0.0388	0.0000
2006	0.00272	10	30	40	0.0154	0.0030	0.00180	15	35	40	0,0080	0.0020	0.00407	5	55	5	0.0325	0.0006
2007	0.00256	10	25	50	0.0121	0.0035	0.00176	15	25	50	0.0079	0.0024	0.00384	5	55	5	0.0306	0.0005
2008	0.00241	10	25	50	0.0114	0.0033	0.00173	15	30	50	0.0062	0.0024	0.00361	5	50	10	0 0268	0 0010
2009	0.00227	10	20	55	0.0107	0.0034	0.00169	15	25	55	0.0060	0.0026	0.00340	5	50	10	0.0272	0.0009
2010	0.00214	10	20	55	0.0101	0.0032	0.00166	15	25	55	0.0059	0.0025	0.00320	5	50	10	0.0256	0.0009
2011	0.00201	10	15	60	0 0095	0.0033	0.00153	15	20	60	0.0058	0.0027	0.00302	5	45	15	0 0241	0 0012
2012	0.00189	10	15 .	60	0.0090	0.0031	0.00159	15	20	60	0.0057	0.0026	0.00284	5	45	15	0.0227	0 0012
2013	0.00178	10	10	65	0.0084	0.0032	0.00156	15	15	65	0.0056	0.0028	0.00268	5	45	15	0.0214	0.0011
2014	0.00168	10	10	65	0.0079	0.0030	0.00153	15	15	65	0.0055	0 0027	0.00252	5	40	20	0.0201	0.0014
2015	0.00158	10	5	70	0.0075	0.0030	0.00150	15	10	70	0.0054	0 0029	0.00237	5	40	20	0.0189	0.0013
2016	0.00149	10	5	70	0.0070	0.0029	0.00147	15	10	70	0.0053	0.0028	0.00224	5	35	25	0.0178	0.0015
2017	0.00140	10	o	75	0.0066	0.0029	0.00144	15	0	85	0.0039	0.0034	0.00211	5	35	25	0.0165	0.0014
2018	0.00132	10	ο.	75	0 0062	0.0027	0.00141	15	0	85	0.0038	0.0033	0.00198	5	35	25	0 0158	0.0014
OTAL #	0.050				0.312	0.050	0.034				0,164	0.041	0.074				0.666	0.014

•

.

Best-Guess of Atmospheric Methane Emissions=	0.312	tCO2e/tonne
Best-Guess of Banafit of Energy Utilization=	-0.050	tCO ₂ e/lonne
Low Estimate of Atmospheric Methane Emissions=	0.164	ICO ₂ e/tonne
Low Estimate of Benefit of Energy Ublization=	-0 041	tCO ₂ e/tonne
High Estimate of Atmospheric Methane Emissions=	0 666	tCO ₂ e/tonne
High Estimate of Benefit of Energy Utilization=	-0.014	tCO ₂ e/tonne

2 Long-Term Carbon Sequestration in the Cache Creek Landfill: From research by Barlaz: Long term carbon sequestration from Remainder#

From research by Barlaz:	
Long term carbon sequestration from Remainder=	-0.33 ICO2e/tonne

	Estimate of the N ₂ O Emission=	0 tCO ₂ e/tonne
	The potential of this emission is ignored.	
3	Intribuiate a Future 1420 Chissions from the Cache Creek Lastin.	

4	Methane & Energy Implications of the Vancouver Landfill		
	Carbon storage factor for Remainder (wet)=	0.090	tC/tonne
	Carbon available for anearobic decomposition=	0,155	tC/tonne
	Methane generation potential, L _p =	0.103	tCH_/lonne
	Best-guess first order decay rate constant, k=	0.05	year ⁻¹
	Low estimate first order decay rate constant, k*	0.025	year' ¹
	High estimate first order decay rate constant, k=	0.075	year' ¹

	BEST-GL	ESS:					LOW-ESTI	MATE:					HIGH-EST	IMATE:				
	ļ	Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit
	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	ofLFG	of LFG for	Methane	of Energy
YEAR	Generatio	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Fisred	Energy	Emissions	Utilization	Generation	Meterial	Flared	Energy	Emissions	Utilization
	(tCH_/yr)	(%)	(*)	(%)	(ICO2e/yr)	(ICO ₂ e/yr)	(tCH_/yr)	(%)	(%)	(%)	(ICO ₇ eJyr)	(ICO ₂ e/yr)	(tCH ₄ /yr)	(%)	(%)	(%)	(ICO2e/yr)	(tCO2e/yr)
1998				•	-	•	•	•	•	•	•	•	-	•	•	-	-	
1999	0.00517	10	22	0	0.0762	0.0000	0 00258	15	22	0	0.0360	0.0000	0.00775	5	22	٥	0.1206	0.0000
2000	0.00491	10	30	0	0.0650	0.0000	0.00252	15	35	0	0.0292	0.0000	0.00719	5	30	0	0,1004	0.0000
2001	0.00467	10	35	10	0.0486	0.0013	0.00246	15	40	10	0.0219	0.0007	0.00667	5	35	0	0.0865	0.0000
2002	0.00445	10	40	15	0.0378	0.0018	0.00240	15	45	15	0.0171	0.0010	0.00619	5	40	٥	0.0741	0.0000
2003	0.00423	10	45	20	0.0280	0.0023	0.00234	15	55	20	0.0104	0.0013	0.00574	5	50	٥	0 0573	0 0000
2004	0.00402	10	40	25	0.0266	0.0028	0.00228	15	50	25	0.0102	0.0016	0.00533	5	55	0	0.0478	0.0000
2005	0.00383	10	30	40	0.0217	0.0042	0.00222	15	40	35	0.0099	0.0021	0.00494	5	55	0	0.0444	0.0000
2006	0.00364	10	30	40	0.0206	0.0040	0.00217	15	35	40	0.0097	0.0024	0.00458	5	55	5	0.0366	0.0006
2007	0.00346	10	25	50	0.0164	0.0048	0.00212	15	25	50	0.0094	0.0029	0.00425	5	55	5	0.0339	0.0006
2008	0.00329	10	25	50	0.0156	0.0045	0.00206	15	30	50	0.0074	0.0028	0.00395	5	50	10	0.0315	0.0011
2009	0.00313	10	20	55	0.0148	0.0047	0.00201	15	25	55	0.0072	0.0030	0.00366	5	50	10	0.0292	0 0010
2010	0.00298	10	20	55	0.0141	0.0045	0.00196	15	25	55	0.0070	0 0030	0.00340	5	50	10	0.0271	0.0009
2011	0.00284	10	15	60	0.0134	0.0047	0.00191	15	20	60	0.0068	0.0032	0.00315	5	45	15	0.0251	0 0013
2012	0.00270	10	15	60	0.0127	0.0045	0.00187	15	20	60	0.0067	0.0031	0.00292	5	45	15	0 0233	0.0012
2013	0.00257	10	10	65	0.0121	0.0046	0.00182	15	15	65	0.0065	0.0033	0.00271	5	45	15	0.0216	0.0011
2014	0.00244	10	10	65	0.0115	0.0044	0.00178	15	15	65	0.0063	0.0032	0.00252	5	40	20	0.0201	0.0014
2015	0.00232	10	5	70	0.0110	0.0045	0.00173	15	10	70	0.0062	0.0033	0.00233	5	40	20	0.0186	0.0013
2016	0.00221	10	5	70	0.0104	0.0043	0.00169	15	10	70	0.0060	0.0033	0.00217	5	35	25	0.0173	0.0015
2017	0.00210	10	0	75	0.0099	0 0043	0.00165	15	0	85	0.0044	0.0039	0 00201	5	35	25	0.0160	0.0014
2018	0.00200	10	٥	75	0.0094	0 0041	0.00161	15	0	85	0.0043	0.0035	0.00186	5	35	25	0.0149	0.0013
TOTAL =	0.067				0.476	0.070	0.041				0.223	0.048	0.083				0.846	0.015

0.476	tCO ₂ e/tonne
-0.070	tCO ₂ e/lonne
0.223	tCO ₂ e/tonne
-0.048	tCO ₂ e/tonne
0.846	tCO2e/tonne
-0.015	tCO ₂ e/lonne
	-0.070 0.223 -0.048 0.846

5 Long-Term Carbon Sequestration in the Vancouver Landfill: From research by Barlaz:

Long term carbon sequestration from newsprint=

-0.33 tCO2e/tonne

6 Immediate & Future N₂O Emissions from the Vancouver Landfill: The potential of this emission is ignored. Estimate of the N₂O Emission= 0 tCO2e/tonne

7	Methane & Energy Implications at a Future Landfill		
	Carbon storage factor for Remainder (wet)=	0.090	tC/tonne
	Carbon available for anaerobic decomposition=	0.155	tC/tonne
	Methane generation potential, Le#	0.103	tCH_/tonne
	Best-guess first order decay rate constant, k=	0.04	year' ¹
	Low estimate first order decay rate constant, k=	0.02	year"
	High estimate first order decay rate constant, k=	0.06	year"

	BEST-GL	IESS:					LOW-ESTIMATE:							IMATE:				
		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit		Oxidation by	Percentage	Percentage	Atmospheric	GHG Benefit	· ·	Oxidation by	Percentage	Percenlage	Atmospheric	GHG Benefit
	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy	Methane	Cover	of LFG	of LFG for	Methane	of Energy
YEAR	Generatio	Moterial	Fiered	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization	Generation	Material	Flared	Energy	Emissions	Utilization
	(ICH_/yr)	(%)	(%)	(%)	(ICO ₇ e/yr)	(ICO2e/yr)	(ICH ₄ /yr)	(%)	(%)	(%)	(ICO2e/y/)	{tCO2e/yr}	(tCH_/yr)	(*)	(%)	(%)	(ICO ₂ e/yr)	(tCO ₂ e/y)
1998		-		-	-							•	•	-			•	
1999	0.00413	10	43	٥	0.0445	0.0000	0.00207	15	43	0	0.0210	0.0000	0.00620	5	43	0	0.0705	0 0000
2000	0.00397	10	50	0	0 0375	0.0000	0.00203	15	50	0	0.0181	0.0000	0.00584	5	50	0	0 0582	0 0000
2001	0.00382	10	50	10	0.0268	0.0010	0.00199	15	50	10	0.0142	0.0005	0.00550	5	50	0	0.0549	0 0000
2002	0.00367	10	50	15	0 0243	0.0015	0 00195	15	55	15	0.0104	0.0008	0.00518	5	50	0	0.0517	0 0000
2003	0.00352	10	45	20	0.0233	0.0019	0.00191	15	55	20	0.0085	0.0010	0.00488	5	50	0	0.0485	0.0000
2004	0 00338	10	40	25	0.0224	0.0023	0.00187	15	50	25	0.0083	0.0013	0.00459	5	55	0	0.0412	0 0000
2005	0.00325	10	35	35	0 0184	0.0031	0,00183	15	40	35	0.0082	0.0018	0.00433	5	55	0	0.0388	0.0000
2006	0.00312	10	30	40	0.0177	0.0034	0.00180	15	35	40	0.0080	0.0020	0.00407	5	55	5	0.0325	0 0006
2007	0.00300	10	25	50	0 0142	0.0041	0.00176	15	25	50	0.0079	0.0024	0.00384	5	55	5	0.0306	0.0005
2008	0.00288	10	25	50	0 0136	0.0040	0.00173	15	30	50	0.0062	0.0024	0.00361	5	50	10	0.0288	0.0010
2009	0.00277	10	20	55	0.0131	0.0042	0.00169	15	25	55	0.0060	0.0026	0.00340	5	50	10	0.0272	0.0009
2010	0.00266	10	20	55	0.0126	0.0040	0.00166	15	25	55	0.0059	0.0025	0.00320	5	50	10	0.0255	0.0009
2011	0.00256	10	15	60.	0.0121	0.0042	0.00163	15	20	60	0.0058	0.0027	0.00302	5	45	15	0.0241	0.0012
2012	0.00248	10	15	60	0 0116	0.0041	0.00159	15	20	60	0.0057	0.0026	0.00284	5	45	15	0.0227	0.0012
2013	0.00238	10	10	65	0.0112	0.0042	0.00156	15	15	65	0.0056	0 0028	0.00268	5	45	15	0.0214	0.0011
2014	0 00227	10	10	65	0 0107	0.0041	0.00153	15	15	65	0.0055	0 0027	0.00252	5	40	20	0.0201	0.0014
2015	0.00218	10	5	70	0.0103	0.0042	0.00150	15	10	70	0.0054	0.0029	0.00237	5	40	20	0 0 1 8 9	0 0013
2016	0.00209	10	5	70	0.0099	0.0040	0.00147	15	10	70	0.0053	0.0028	0.00224	5	35	25	0.0178	0.0015
2017	0.00201	10	٥	75	0.0095	0.0041	0.00144	15	0	85	0.0039	0.0034	0.00211	5	35	25	0.0168	0 0014
2018	0.00193	10	0	75	0.0091	0.0040	0.00141	15	0	85	0.0038	0.0033	0.00198	5	35	25	0.0158	0.0014
TOTAL =	0.058				0,355	0.063	0.034				0.164	0.041	0.074				0.666	0.014

0.355	tCO ₂ e/tonne
-0.063	tCO ₂ e/tonne
D.164	tCO2e/tonne
-0 04 1	tCO ₂ e/tonne
0.666	tCO ₂ e/tonne
-0.014	tCO ₂ e/tonne
	-0.063 D.164 -0.041 0.666

8 Long-Term Carbon Sequestration at a Future Landfill: From research by Barlez: Long larm carbon sequestration from Remainder= -0.33 tCO₂e/lonne

	Long term carbon sequestration from Remainder=	-0.33	tCO ₂ e/lonne
9	Immediate & Future N ₂ O Emissions at a Future Landfill:		
	The potential of this emission is ignored.		
	Estimate of the N ₂ O Emission=	0	ICO ₂ e/tonne
10	Energy Generation from Waste Incineration at the Burnaby Incin	erator	:
	Net energy content of Remainder≃	11.5	GJ/tonne
	Utilized steam energy by Crown=	4 55	GJ/tonne
	Turbogenetator electricity produced=		Gutonne
	Emission prevention by steam utilization at Crown=		tCO ₂ e/tonne
	Emission prevention by offsetting BC Hydro (Burrard Thermal)=	0 000	ICO ₂ e/tonne
	Total GHG emission prevented by energy production=	-0 282	tCQ ₂ e/tonne
11	GHG Emissions from Waste Incineration at the Burnaby Incinera CO ₂ emission from fassil-carbon in Remainder=		tCO ₂ e/tonne
	CO2 emission from tossi-carbon in Remainder*	0.220	(CO ² E/IDANe
	Best-guess estimate of total GHG emissions from waste incineration=	0.247	ICO ₇ e/lonne
	Low estimate of total GHG emissions from waste incineration=	0.236	tCO ₂ e/tonne
	High estimate of total GHG emissions from waste incineration=	0.257	ICO ₂ e/lonne
12	Energy Generation from Waste Incineration at a Future Incinerator;		
	Net energy content of Remainder=		GJ/tonne
	Utilized steam energy by Crown=		GJ/tonne GJ/tonne
	Turbogenerator electricity produced=	0.00	GJAonne
	Emission prevention by steam utilization at Crown=	0.282	tCO ₂ e/tonne
	Emission prevention by offsetting BC Hydro (Burrard Thermal)=	0.000	tCO ₂ e/tonne
	Total GHG emission prevented by energy production=	-0.282	tCO ₂ e/tonne
13	GHG Emissions from Waste Incineration at a Future Incinerator		
	CO ₂ emission from fossil-carbon in Remainder*	0.220	tCO ₂ e/Ionne
	Best-guess estimate of total GHG emissions from waste incineration=	0 247	tCO ₂ e/tonne
	Low estimate of total GHG emissions from waste incineration=		tCO ₂ e/tonne
	High estimate of total GHG emissions from waste incineration=		tCO ₂ e/lonne
14	GHG Emissions of Recycled Remainder Utilization: GHG benefit of recycled versus virgin manufacturing=		tCO,e/tonne
	(Includes transportation emissions)	0,0	10 Ogentiethe
15	Effect of Recycling Remainder on Forest Carbon Storage:		
	GHG implications of recycled office paper on Forestrys	0	tCO ₂ e/tonne

APPENDIX: REFERENCES

- Barlaz, M.A. 1998. Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills. Global Biogeochemical Cycles. 12(2), 373-380.
- BC Hydro. 1998. 1998 Report on the Environment. Prepared by BC Hydro Corporate Environment.
- B.H. Levelton & Associates. 1991. Inventory of Methane Emissions from Landfills in Canada. Prepared for Environment Canada. In: Environment Canada. 1999. Canada's Greenhouse Gas Inventory: 1997 Emissions and Removals with Trends. Prepared by F. Neitzert, K. Olsen and P. Collas, Pollution Data Branch, Air Pollution Prevention Directorate. En49-8/5-9E.
- Conestoga-Rovers & Associates. 1999. Vancouver Landfill Gas Management System Project I. Prepared for the City of Vancouver. (Provided by personal communication with Paul Henderson).
- Czepiel, P.M., B. Mosher, P.M. Crill and R.C. Harriss. 1996. *Quantifying the effect of oxidation on landfill methane emissions*. Journal of Geophysical Research. 101(D11), 16,721-16,729.
- de Soete, G. 1993. *Nitrous oxide from combustion and industry: chemistry, emissions, and control.* Proceedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emissions Inventories and Options for Control, Ed by A.R. van Amstel, RIVM Report No. 481507003, Bilthoven, The Netherlands, 287-337.
- Eleazer, W., W.Odle, Y.Wang and M.A.Barlaz. 1997. *Biodegradative Analysis of Municipal Solid Waste in Laboratory-Scale Landfills*. Environmental Science & Technology. 31(3), 911-917.
- EMCON Associates. 1980. *Methane Generation and Recovery from Landfills*. Ann Arbor Science. Michigan, U.S.A.
- Environment Canada. 1999. Canada's Greenhouse Gas Inventory: 1997 Emissions and Removals with Trends. Prepared by F. Neitzert, K. Olsen and P. Collas, Pollution Data Branch, Air Pollution Prevention Directorate. En49-8/5-9E.
- Environment Canada. 1997. Trends in Canada's Greenhouse Gas Emissions (1990-1995), Prepared by Jaques, A., F.Neitzert and P.Boileau, Pollution Data Branch, Air Pollution Prevention Directorate. En 49-5/5-8E.
- FAL (Franklin Associates Ltd.) 1998. Characterization of Municipal Solid Waste in the United States: 1997 Update. Prepared for the U.S. Environmental Protection Agency. EPA 530-R-98-007. In: USEPA (United States Environmental Protection Agency). 1998. Greenhouse Gas Emissions from Management of Selected Materials in Municipal Solid Waste. Report prepared by the Office of Solid Waste and Emergency Response, EPA530-R-98-013.
- FAL (Franklin Associates Ltd.) 1994. The Role of Recycling in Integrated Solid Waste Management to the Year 2000. Prepared for Keep America Beautiful Inc, Stamford, Connecticut.
- Fryling, G.R. 1966. Combustion Engineering
- GVRD (Greater Vancouver Regional District). 1999a. GVRD Solid Waste Flow Model. (Obtained by personal communication with Mike Stringer)
- GVRD (Greater Vancouver Regional District). 1999b. GVRD Corporate: 1997 Greenhouse Gas Emission Inventory and 1990 Backcast/2010 Forecast. Report prepared by the Air Quality Department.
- GVRD (Greater Vancouver Regional District). 1993a. Waste Flow and Recycling Audit. Volume 1: Waste Generation and Flow Analysis. Prepared by Resource Integration Systems in association with CH2M Hill Engineering Ltd and KPMG Peat Marwick Stevenson & Kellogg.
- GVRD (Greater Vancouver Regional District). 1993b. Cache Creek Landfill. Public Pamphlet
- Hellebrand, H.J. 1998. Emission of Nitrous Oxide and other Trace Gases during Composting of Grass and Green Waste. J Agric. Engng. Res. 69, 365-375.
- Hentz, L.H., W.E. Toffey and C.E. Schmidt. 1996. *Air Emissions from Philadelphia's Biosolids Composting Facilities*. Proceedings of the Annual Meeting of the Air & Waste Management Association. Nashville, Tennessee, June 23-26, 1996. 96-FA159.02.
- Incropera, F.P., D.P. DeWitt. 1990. Fundamentals of Heat and Mass Transfer. Third Edition. John Wiley & Sons.
- IPCC (Intergovernmental Panel on Climate Change/Organization for Economic Cooperation and Development). 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual. Paris, France.

- IPCC (Intergovernmental Panel on Climate Change). 1995. *Climate Change 1995: The Science of Climate Change*. Contribution of Working Group 1 to the Second Assessment Report of the IPCC. Cambridge University Press, United Kingdom.
- Jackson, M.J. and M.A. Line. 1998. Assessment of Periodic Turning as an Aeration Mechanism for Pulp and Paper Mill Sludge Composting. Waste Management & Research. 16(4), 312-319.
- Lopez-Real, J., M. Baptista. 1996. A Preliminary Comparative Study of Three Manure Composting Systems and their Influence on Process Parameters and Methane Emissions. Compost Science & Utilization. 4(3), 71-82.
- Mackenzie, F.T. 1995. *Global Climatic Change: Climatically Important Biogenic Gases and Feedbacks*. Biotic Feedbacks in the Global Climatic System. Edited by G.M Woodwell & F.T. Mackenzie. 22-46
- Metcalf & Eddy, Inc. 1991. Wastewater Engineering: Treatment, Disposal and Reuse. Third Edition Montenay Inc. 1999. Operating Report: Burnaby Refuse Incinerator. Prepared by R. Richter, Plant Manager.
- Moritomi, H. 1994. N₂O Emission from Industrial Facilities. CH₄ and N₂O: Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources, NIAES Workshop, 161-179.
 Perry's Chemical Engineers Handbook. 1984. Sixth Edition.
- Proctor & Redfern Ltd. and Ortech International. 1995. Estimation of the Effects of Various Municipal Waste Management Strategies on Greenhouse Gas Emissions. Environment Canada Summary Report EPS 2/AP/1.
- Robinson, W.D. 1986. The Solid Waste Handbook: A Practical Guide. John Wiley & Sons, New York.
- Sommer, S.G. and P. Dahl. 1999. Nutrient and Carbon Balance During the Composting of Deep Litter. J. Agric. Engng. Res. 74, 145-153.
- Tanaka, M., M. Miyazaki and I. Watanabe. 1994. CH₄ and N₂O Emission from Waste Disposal Facilities in Japan. CH₄ and N₂O: Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources. NIAES Workshop. 181-186.
- Tanikawa, N., T. Imai, K. Urano. 1995. *Characteristics of continuous analyzers for nitrous oxide in flue gas from municipal incinerators*. The Science of the Total Environment. 175, 189-198.
- Tchobanoglous, G., H.Theisen and S.Vigil. 1993. Integrated Solid Waste Management: Engineering Principles and Management Issues. McGraw-Hill, New York.
- USEPA (United States Environmental Protection Agency). 2000. Draft Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-1998. EPA #236-R-00-001
- USEPA (United States Environmental Protection Agency). 1999. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-1997, Report prepared by the Office of Policy, EPA236-R-99-003.
- USEPA (United States Environmental Protection Agency). 1998. *Greenhouse Gas Emissions from Management of Selected Materials in Municipal Solid Waste*. Report prepared by the Office of Solid Waste and Emergency Response, EPA530-R-98-013.
- USEPA (United States Environmental Protection Agency). 1997. Compilation of Air Pollutant Emission Factors, AP-42. 5th Edition. Supplement C. Office of Air Quality Planning and Standards. In: Greater Vancouver Regional District. 1999. GVRD Corporate: 1997 Greenhouse Gas Emission Inventory and 1990 Backcast/2010 Forecast. Report prepared by the Air Quality Department.
- White, D.M., K.L. Nebel, M. Gundappa, K.R. Ferry. 1995. NO_X Control Technologies Applicable to Municipal Waste Combustion. United States Environmental Protection Agency Summary Report.

APPENDIX: PERSONAL COMMUNICATIONS

Steve Aujla, Fraser Richmond Biocycle, (604) 220-2385, saujla@direct.ca

Chantal Babensee, Project Engineer, Contracted Services, Engineering & Construction, Greater Vancouver Regional District, (604) 436-6853, chantal.babensee@gvrd.bc.ca

Brian Carrow, Director of Marketing, ETL Recycling Services, (604) 589-4385, bcarrow@etl.canada.com Lambert Chu, Deputy Director Engineering, City of Burnaby, (604) 294-7466

Greg Cross, Deputy Director of Operations, District of Pitt Meadows, (604) 465-2435

Louie DeVent, Operations Manager, Wastech Services Ltd, (604) 521-1715, Idevent@wastech.bc.ca

John Duffy, Corporate Environment Department, B.C. Hydro Ltd, (604) 623 4391

Roger Farrant, Operations Yard, City of Abbotsford, (604) 853-5485

Richard Holt, Assistant Project Engineer, Contracted Services, Engineering & Construction, Greater Vancouver Regional District, (604) 436-6809, richard.holt@gvrd.bc.ca

Sharon Horsburgh, Waste Management Coordinator, Corporation of Delta, (604) 946-3291, shorsburgh@corp.delta.bc.ca

Mike Iviney, City of Coquitlam, (604) 933-6254, miviney@city.coquitlam.bc.ca

John MacDowell, Logistics Team Leader, Crown Packaging Ltd – Paper Mill Division, (604) 521-0741 ext262

Brent Mahood, Utilities Superintendent, City of North Vancouver, (604) 987-7155, bmahood@enigma.cnv.org

Daryl Mielty, District of North Vancouver, (604) 990-3891

Ron Richter, Plant Manager, Montenay Inc., (604) 521-1025, rrichter@montenay.com

Mike Stringer, Senior Engineer, Greater Vancouver Regional District, (604) 436-6810, mike.stringer@gvrd.bc.ca

Ron Trewern, Supervisor – Sanitation, Engineering Operations, Corporation of the City of New Westminster, (604) 526-4691, rtrewern@city.new-westminster.bc.ca

Chris Underwood, Landfill Operations Branch, City of Vancouver.

Kevin Van Vliet, Solid Waste Management - Engineering Services, City of Vancouver, (604) 873-7992, kevin van vliet@city.vancouver.bc.ca

Richard Woo, Canadian Waste, (604) 940-1127

263