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Abstract 

The assessment of the quality of any data is difficult to perform if only because of 

the subjective nature of this task, where quality may be interpreted differently from one 

scientific domain to another, viewed differently in various cultures and societies, and 

considered as a more or less chronic problem depending on the context of application. 

Data, whether employed directly or as inputs for any data analysis or modeling efforts, are 

at the base of any decision-making process, and a characterisation of their quality is 

essential in determining bias in any decision on which they are based. This thesis focuses 

on the assessment of the quality of data regularly employed in water resources engineering 

and management, in particular hydrometric data and modeling parameters. New approaches 

are proposed for the detection of three types of anomalies, outliers, shifts and trends, which 

are a persistent concern to engineers and managers alike, and have been the focus of much 

research directed at reducing bias in the estimation of water quantity and quality. Artificial 

intelligence techniques (AITs) constitute the foundations of these new approaches, which 

are designed to take advantage of the capacity of AITs to provide representative 

descriptions of data domains. Based on theoretical experiments of their performance 

relative to conventional statistical diagnostics, and on applications to real hydrometric data 

from representative watersheds in Canada, the AIT-based approaches may indeed be used 

to confirm the results from conventional approaches as well as complement and, in some 

cases, enhance them. Since the ultimate use of hydrometric data is likely as inputs to 

hydrologic, hydraulic or water quality models, applications of AITs in the simulation of 

natural processes are also explored in this work. These applications focus on inflow and 

algae concentration modeling, and demonstrate that improvements in modeling estimations 

can be gained from the description of natural processes with AIT. Throughout this thesis, 

discussions regarding the advantages and disadvantages of these AIT-based approaches are 

provided along with suggestions for future developments. 
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Chapter 1 

Introduction 

This work develops and analyzes new approaches based on artificial intelligence 

techniques (AITs) for evaluating the quality of data sequences employed in the design and 

management of water resources systems. Factors that affect the quality of data sets are 

anomalies such as 1) outliers, which are individual data having statistical properties that 

differ from those of the overall population; 2) shifts, which are sudden changes over time in 

the statistical properties of the historical records of data; and 3) trends, which are 

systematic changes over time in the statistical properties. The approaches developed in this 

thesis, based on AITs, are designed to identify these anomalies if they are present in the 

data sets under study. These approaches depart from the commonly used traditional 

approaches, often based on probabilistic and statistical methods. They are shown to 

perform similarly to the traditional approaches, and as such they confirm the validity of 

these traditional approaches and provide complementary information. These AIT-based 

approaches may further complement the traditional approaches in that they may integrate 

subjective inputs such as experts'judgment in the diagnostic process. Such information may 

be an important element in the task of evaluating the quality of data sets. The results 

presented in this work also show that the AIT-based approach may constitute an 

enhancement to traditional approaches in specific instances, that is, in the diagnostic of 

shifts and trends for multivariate cases, where more than one sequence of data are tested 

simultaneously. 

For the purpose of the design and management of water resources systems, it is 

important to be aware of anomalies in data, for they can induce a bias in the estimation of 

water quantity and quality parameters, and may consequently lead to improper water 

resource management policies or infrastructure design. The identification of these 

anomalies has always been a difficult task to undertake, especially in the case of outliers, 

and consequently only a few consistent identification procedures and guidelines exist for 

application to water resources, as well as many other domains related to the environment 

and natural resources. Yet there is a need for such identification procedures, if only because 
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of the increasing amount of data available in such domains in general. Large scale 

monitoring networks in water resources, such as those of Environment Canada or the 

United States Geological Survey, for example, have been in place for a significant period of 

time now, and space programs have also led to the production of large sources of remote 

sensing data. 

This work also presents some new developments in modeling natural phenomena, 

again through the help of AITs. Here, these techniques are integrated into well known, 

standard simulation models so as to better represent natural processes within the model 

structure in order to improve the accuracy of estimates provided by the models. This 

approach is applied to both inflow modeling and algae concentration modeling. These 

applications demonstrate the flexibility of the use of AITs, and show their potential for 

correctly describing physical mechanisms involved in natural phenomena. 

The common ground of the approaches developed in this thesis is the application of 

AITs to data quality control and modeling. When employed as they are in this work, AITs 

lead to appreciable technical innovations. An important contribution of this thesis is the 

development and exploration of the capacity of the AITs for defining knowledge bases. The 

definition of knowledge bases implies the description of the data domain with respect to 

features or patterns present in the data. An example of a knowledge base for the evaluation 

of data quality is a set of patterns, some of which are typical of those of data sequences 

affected by anomalies, and others of which are typical of those of unaffected data 

sequences. Other examples of knowledge bases may be the development of definitions that 

relate 1) surface runoff contributions to antecedent conditions of inflow, precipitation and 

temperature on a watershed for inflow modeling; and 2) algae growth and mortality rates to 

water temperature, light intensity and nutrient content for algae concentration modeling. It 

is not common practice among professionals in water resources to use AITs for the purpose 

of defining knowledge bases. This work shows that AITs can provide satisfying results 

when employed for such a purpose. It is also argued that they may offer greater flexibility, 

and possible improvement when compared with statistical methods that are also used to 

define knowledge bases. 

Chapter 2 provides a literature review on the topics of the evaluation of data quality, 

the development of simulation models and the definition of knowledge bases, and explains 
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the need for identifying new approaches, based on AITs, for addressing these topics. 

Chapter 3 provides the mathematical background related to the AITs employed in this 

work, that is: fuzzy logic, fuzzy c-means and the Kohonen neural network. This chapter 

gives a general overview of these techniques, while the specific details related to their use 

are presented in the subsequent application chapters, that is, Chapters 4 through 7. Chapters 

4, 5 and 6 are dedicated to methods of evaluating the quality of data sequences. Chapter 4 

presents the tests conducted on one variant of AITs applicable for the detection of shifts 

and trends in data sequences. This variant is compared with statistical detection tests 

commonly employed for the identification of shifts and trends, using synthetic data that 

represent hydrometric data sequences. Chapter 5 focuses on a second variant of AITs, 

which is applicable to all anomalies, that is, outliers, shifts and trends. Synthetic data 

representing hydrometric data sequences are employed to evaluate the performance of this 

variant. Chapter 6 represents the reality test, where the second variant for the detection of 

outliers, shifts and trends is applied on real hydrometric data for representative river basins 

in Canada. Chapter 7 is dedicated to the assessment of the developments for the modeling 

of natural phenomena, based on two applications: inflow modeling and algae concentration 

modeling. Chapter 8 discusses the overall results of the thesis, the advantages and 

disadvantages of the approaches presented and future work in this area. Chapter 9 provides 

the final conclusions and recommendations. 
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Chapter 2 

Literature Review 

2.1 Current Practice in Water Resources 

The study of water resources systems, or any environmental systems for that matter, 

often requires the replication through simulation modeling of the mechanisms that link a 

phenomenon of interest to its generating causes. Figure 2.1 offers the simple, traditional 

illustration of this process, where the simulation model block includes all the mathematical 

formulations that explain the behavior of some system under study. The outputs are the 

response of this model when given a set of inputs. The inputs, often called forcing factors 

in the literature, represent the constraining elements that limit the behavior of the 

mechanistic model and include data (i.e, measurements or observations) taken from the 

field, and predetermined values for the model parameters, as necessary. 

Figure 2.1. Typical model structure. 

When the outputs of the model are compared with data from the field, discrepancies 

generally appear. These differences are due to uncertainties, which Vicens et al. (1975) 

classify into two categories: natural and informational. Natural uncertainties refer to the 

difficulty in adequately describing observations from the field, either the inputs for the 

model or the data required to calibrate and verify the model. Such information may indeed 

be affected by errors or anomalies, and if these are not detected and addressed 

appropriately, they can induce a bias in the description of the data (e.g., the mean, standard 

deviation, probabilistic distribution). If the data serve as model input, the bias may 

propagate through the simulation model to the output. If the data are compared with the 

model outputs as in calibration and validation, the bias may taint the calibration and 
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validation processes. Informational uncertainties are divided into parameter uncertainties 

and model uncertainties, and refer to the difficulty with current knowledge to properly 

establish the structure of the model or to select the values of the parameters. 

This thesis introduces developments that are designed to help reduce uncertainties, 

more specifically, in the context of the application cases provided, natural and parameter 

uncertainties. The goal of this chapter is to provide relevant background knowledge 

associated with the approaches for reducing data uncertainties. The following section 

addresses data quality and the control of it through methods that detect errors or anomalies. 

Adequate control of the quality of data leads to a better description of these data and 

therefore to a reduction of natural uncertainties. The next section identifies issues related to 

modeling and methods employed to reduce informational uncertainties. The last section 

introduces artificial intelligence techniques, justifies these techniques for their use in 

reducing uncertainties and compares them with conventional methods for doing so. 

2.2 Water Resources Data Quality 

Few would contest the need for good quality data for the study of water resources 

systems. Yet, little work has been undertaken that evaluates the quality of data emanating 

from these systems, compared with the large body of work undertaken in other sectors. 

Sectors in which analysis of data quality would be very suitable are the manufacturing 

industry, health sciences, services and social sciences. This suitability is attributed to the 

fact that such sectors can offer very well controlled systems, where their physical and 

structural mechanisms are well understood, the processes and experiment protocols 

employed to observe the systems are clear, consistent and well detailed, and the inputs to 

and outputs from the systems can be fully accounted for. A l l o f these elements facilitate the 

study of data quality, for the attention may be focused mainly on finding anomalies in data, 

and not on trying to understand the mechanisms of the systems. Sometimes these systems 

can also integrate redundant measurement and control procedures, which allow cross­

checking of information to confirm the validity of the datasets. On the other hand, water 

resources systems, and many other environmental systems in fact, may be considered as 

being very far from well controlled systems. Some mechanisms of these systems may not 

be well understood (e.g., in the case of algae growth as a function of the energy and nutrient 
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factors presented in Chapter 7 of the thesis). The processes and experimental protocol for 

observing these systems may not be spatially representative and consistent over time. The 

inputs and outputs may not be fully accounted for (e.g., in the case of underground water 

transfer from one watershed to another, or of unregulated water diversions). All of these 

elements complicate the process of assessing water resources data quality, for one cannot 

be sure whether anomalies in the data set are genuinely anomalous or are the results of 

misunderstood and therefore unaccounted for mechanisms, of an inadequate observation 

approach, or of inputs or outputs that cannot be measured. Assessing data quality on such 

systems is therefore a challenging task, which is in part responsible for the limited literature 

related to the subject. In the following section, the concept of data quality analysis as 

applied in the manufacturing industry, health sciences, services and social sciences is 

presented, and then related to water resources systems. Next, a discussion of three common 

cases of anomalies affecting the quality of water resources data, outliers, shifts and trends, 

is presented. 

2.2.1 Background 

Regarding the assessment of the quality of data in water resources systems, let us 

consider as suitable two similar definitions of the term quality, one given by the American 

Society for Quality Control (ASQC, 1983): "Quality is the totality of features and 

characteristics of a product or service that bear on its ability to satisfy given needs," and 

the traditional definition as given by Farnum (1994): "Quality is the conformance to 

specifications." Satisfying these definitions implies that the data (the product) must prove 

adequate with respect to some defined attributes (specifications, features or characteristics), 

the most common of which as indicated by Wang et al. (1993), Holt and Jones (1998), and 

Brackstone (1999) as being: accuracy, relevance, completeness, coherence, interpretability, 

timeliness, and accessibility. With water resources systems, it is often difficult to reach 

high standards with respect to many of these attributes. 

Accuracy is fundamental to quality, although it can never be expected to be 

achieved absolutely. It is an attribute that somehow stands apart from the other attributes, 

which are often related to each other, although these other attributes can affect accuracy. 

Accuracy should at least be reached to a point where the risk of misinterpretation as a result 
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of the use of the data is minimized (Holt and Jones, 1998). The major constraint of this 

minimization is that exact measurements are often prohibitively expensive (Brackstone, 

1999), especially in light of the fact that the cost due to errors is very hard to quantify 

(Liepins, 1989). Errors affecting the accuracy of data measured in the field of water 

resources can be isolated, which are local errors that may occur at regular or irregular 

intervals (i.e., outliers), or persistent, which are errors that are propagated over some 

intervals (i.e., shifts or trends). Both isolated and persistent errors can either be random, 

which means that they are not the result of identifiable structures, or systematic, which 

implies that they follow some known structure (WMO, 1985). Origins of errors listed by 

Van Der Shaaf (1984) and the WMO (1985) include factors due to anything from 

malfunctioning measurement instruments (i.e., quality, technical limitations, condition) to 

errors in the processing of the data measured (e.g., coding errors, typos). These authors also 

mention that focusing on the origins of errors in order to identify them in a data set is not a 

viable option, because often measurement conditions do not allow the possibility to monitor 

the origins of errors, and some of these origins cannot be easily monitored anyway. 

Therefore, very often, the data set itself is the only available material and one can only hope 

to detect errors with respect to distinct features or patterns they exhibit in the data. The 

methods developed in this thesis are designed to address the attribute of accuracy. 

Nevertheless, the other attributes associated with data quality are briefly reviewed here. 

Relevance is the degree to which the data meet some defined needs. This attribute is 

as important as accuracy. With respect to this attribute, two topics are of interest concerning 

environmental systems: scale (temporal and spatial) and domain of study. Scale refers to 

the appropriate magnitude of the temporal (seconds, minutes, days) and of the spatial (mm, 

cm, m, km) increments in order to mathematically characterize some given phenomenon. 

The measurement network must be dense enough and observe frequently enough to provide 

a good description of the spatial and temporal variability of the phenomenon under study. 

In the areas of hydrology and hydrodynamics, Klemes (1983), Anderson and Burt (1985), 

Beven et al. (1988), and Martin et al. (1999) state that one must also consider that some 

given phenomenon may be the result of many generating causes, each possibly occurring at 

different scales, which makes the collection of relevant data a complex task. The domain of 

study refers to the proper delineation of the region where the phenomenon of interest takes 
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place, and this is a basic issue that is discussed extensively in textbooks such as Freeze and 

Cherry (1979), Robertson et al. (1988) and Maidment (1993). Relevance is achieved when 

the measurement network covers the domain adequately. Completeness indicates whether 

there are enough data in terms of both type and quantity to adequately characterize the 

natural phenomenon under study. Completeness is strongly related to the attribute of 

relevance, concerning the similar issues of scale and domain of study. Completeness also 

includes consideration of the amount of data, that is, whether the database contains all of 

the behaviors expected for the phenomenon under study or only a few specific situations 

(Anderson and Burt, 1985; Beven, 2001). Coherence reflects the degree to which data sets 

can be brought together within a broad framework. To illustrate the importance of this 

attribute, consider the work of Overton et al. (1993) and Endreny and Jennings (1999), who 

attempt to merge two databases containing water discharge and water quality parameters, 

respectively, so as to increase the volume of data available. Indeed, it might be common 

that two organizations have measurement networks in the same region, observing the same 

phenomena. One could be very interested in being able to aggregate the observations from 

the networks of both organizations so as to have a global, larger database. Overton et al. 

(1993) and Endreny and Jennings (1999) show that merging databases is not 

straightforward. The measurement networks could have been used for different purposes, 

and the issue of scale, for example, may call for adjustments in the data before they are 

merged so as to avoid incoherence. 

Interpretability, timeliness and accessibility are attributes that are considered of 

lesser importance technically, yet they should not be dismissed because they refer to the 

capacity of people to use the data. Interpretability refers to the capacity to understand the 

data at hand. This means that the database must be properly documented. Timeliness is 

related to the delay between the moment the data are measured and the moment they 

become available. Accessibility indicates whether the data are available at all. It can be 

argued that the more a database is used the more likely higher data quality can be achieved 

(Orr, 1998). The larger the user base, the greater the pressure for achieving high quality 

standards. If the database is used frequently, the users are likely gaining expertise and are 

therefore more apt to detect changes and anomalies over time. In brief, provided there is a 
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demand, a good way to maintain and improve data quality is to make the data easily 

accessible (Orr, 1998). 

As mentioned previously, accuracy is the attribute targeted by the methods 

developed in this thesis, but the other attributes must be kept in mind, for they can possibly 

affect accuracy. Accuracy is dependent on the capacity to detect errors or anomalies in 

datasets. In the sections that follow, an overview of methods used to detect anomalies such 

as outliers (isolated events) and shifts and trends (persistent events) is given. 

2.2.2 Outliers 

An outlying observation, or an outlier, is a general term that refers to either a 

contaminant, which is "any observation that is not a realization from the target 

(probability) distribution," or a discordant observation, which is "any observation that 

appears surprising or discrepant to the investigator" (Beckman and Cook, 1983). To 

summarize, outliers are individual data having statistical properties that appear to differ 

from those of the overall data population. Beckman and Cook (1983) provide an extensive 

review on the subject of outliers and classify the methods for addressing outliers as being 

either of the accommodation type or of the identification type. 

Accommodation methods attempt to dampen the effects of outliers through suitable 

modifications of the methods of analysis describing the data or of the methods estimating 

the values of model parameters. The strategy is to develop modifications that are not too 

sensitive to extreme values, which in data sets are often considered as outliers. One simple 

case, as illustrated by Pearson (2001), is to use the median absolute deviation from the 

median (MAD) instead of the standard deviation as a way of characterizing the variation of 

a sample around a reference position (mean or median). The standard deviation is the 

square of the sum of differences from the mean, and therefore magnifies the effect of 

extreme values, while the M A D considers the median absolute value of the differences 

from the median, therefore giving equal weight to both extreme and "normal" values. 

Similarly, probability-weighted moments, also called linear moments or L-moments, 

described by Hosking (1989 and 1990), are also less sensitive to outliers than standard 

moments. L-moments are linear sums of weighted components while standard moments are 

sums of components elevated to the power of the associated order (i.e., the second order 
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moments use a power of two, the third order moments use a power of three, etc.). L-

moments have often been used in water resources, specifically for frequency analysis of 

extreme events such as floods (Hosking and Wallis, 1990; Stedinger et al., 1993; GREHYS, 

1996). They have also been used specifically for the characterization or identification of 

outliers (Hosking, 1995; Zafirakou et al., 1998). Accommodation is not the preferred 

method for addressing outliers. It is not entirely reliable. It is more appropriate to identify 

outliers before they propagate through the analysis or modeling processes and induce a bias 

in the final conclusions. 

The identification or detection approach, in its simplest form, can often be reduced 

to a simple visual inspection of the data in which the data points that appear to be far from 

the range of the overall data population are considered as outliers (Collett and Lewis, 1976; 

Beckman and Cook, 1983). When the eyes cannot be trusted, statistics have been used. 

In the simplest application of statistics for identifying outliers, the points in the data 

set are considered as independent of each other. The possibly best known, and certainly 

easiest method for the detection of outliers in this situation is the application of the "3a edit 

rule," a statistical test where a point can be considered suspicious if it is located more than 

three times the standard deviation of the data set from the mean (WMO, 1985; Pearson, 

2001). The "3a edit rule," however, performs poorly under situations with multiple outliers 

(Pearson, 2001). Many other, more elaborate methods exist for the detection of outliers. In 

summary, for data sets with independent points, typical developed methods are: 1) 

graphical techniques, such as those of Bacon-Shone and Fung (1987), based on the measure 

of distances between data points; 2) statistical tests, such as those presented in Bradu and 

Hawkins (1982), Jain (1981), Kottegoda (1984), and Rosner (1975); and 3) fitting methods, 

such as those of Aitkin and Wilson (1980) or Kitagawa (1979), which find the appropriate 

parameters of assumed distributions, one for the population of normal points and one for 

the outlier population. Note that the third type of detection methods also constitutes a form 

of accommodation. These three types of methods have at least one point in common, that 

is, they require the assumption of specific distributions for the populations of normal points 

and outliers. These distributions may not always be the Normal distribution, as indicated 

and demonstrated by Kottegoda (1984). It remains that the need to assume the population 

distributions is restrictive, for cases with real data are not always in compliance with the 
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assumed distributions. Many methods, such as all of the aforementioned cited references, 

can also address situations where several outliers, not only one, are present in the data sets, 

unlike the "3a edit rule." 

Whatever the methods, the risk of false detection is acknowledged to be present. 

Masking and swamping effects respectively refer to the cases of outliers falsely detected as 

normal values and to the case of normal values falsely detected as outliers (Beckman and 

Cook, 1983). Figure 2.2 illustrates the occurrence of cases of false detection. 

0.45 n : , 

Range of values 

•—Normal population Outlier population 

Figure 2.2. Occurrence of false detection for outliers. 

If the distributions of the population of normal values and the population of outliers 

are known, there would be a very high likelihood that both distributions would in part 

overlap. The purpose of detection methods is to distinguish between normal values and 

outliers, in the simple and most common cases (i.e., statistical tests), to determine the line 

(i.e., the dashed line in Figure 2.2) between the two populations. Because the distributions 

are overlapping, there w i l l be a portion of the outliers that w i l l be judged as normal values 

(the left tail of the outlier distribution on the left side of the dashed line), and a portion of 
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the normal values that will be judged as outliers (the right tail of the distribution of normal 

values on the right side of the dashed line). Figure 2.2 presents the situation where outliers 

are larger than the normal values, but the conclusions about distribution overlapping and 

false detection also apply to situations where outliers are smaller than the normal values. 

For data sets that are multivariate or time dependent, the graphical, statistical and 

fitting methods for data sets made of independent points can also be applied. Although such 

methods do not take the dependence of the data points into account, and do not utilize 

information regarding dependence to avoid false detection. Linear regression is a common 

tool for the quantification and modeling of multivariate dependence, and can be used as a 

basis for the detection of outliers. For instance, Brown (1975), Cook et al. (1982), and 

Dempster and Gasko-Green (1981) have developed tools to analyze the residuals of linear 

regression models for the purpose of identifying outliers. Andrews and Pregibon (1978) and 

Draper and John (1981) have devised statistical measures that evaluate the influence of 

outliers in the estimation of the parameters of the linear regression models. Box and Tiao 

(1968) and West (1984) also attempt to evaluate the influence of outliers on model 

parameters, using a Bayesian analysis. Time series analysis through the use of Box and 

Jenkins models (Box and Jenkins, 1970), which are a particular form of linear regression 

models, have also provided opportunities for the detection of outliers in time dependent 

data. Fox (1972) and Ljung (1993) present tests of detection based on the analysis of the 

model parameters, while Abraham and Box (1979) analyze the influence of outliers on the 

model parameters through the use of a Bayesian analysis. Data sets showing spatial 

dependence, which is a particular case of multivariate dependence, can also take advantage 

of developments in geostatistics. Although it is not purposely designed for the detection of 

outliers, the consideration of a "nugget effect" in kriging is a common way to represent 

micro-variability and possible measurement errors (Kitanidis, 1993). It involves a slight 

modification (i.e., the addition of a Dirac function) of the semivariogram, which is an 

expression of the correlation between data points. Also, Bardossy and Kundzewicz (1990) 

present semivariograms that are specifically designed to be used for the detection of 

outliers. All of these detection methods applied for multivariate or time dependent cases 

involve some form of accommodation. Indeed some form of modeling is required, and the 

value of model parameters, and the structure of the model itself to some extent, can be 
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affected as a result of the presence of outliers. As previously mentioned, some methods are 

designed to analyze the effects of outliers on parameter values, yet their efficiency is 

dependent on the restrictions imposed on the nature of the outliers and of the normal 

values, that is, they must follow a specific distribution. In fact, with the exception of 

geostatistical techniques where the restriction is implied from the structure of the 

semivariogram, all of the techniques require some restrictive assumptions regarding the 

nature of the outliers and/or of the normal values. Of course, real data are not necessarily in 

compliance with these assumptions. Again, the risk of false detection is regularly 

acknowledged. 

The methods described in this section for the analysis of outliers quite often 

constitute fine, rigorous and elaborate mathematical developments. These strengths may 

also be viewed as a disadvantage at times, for such mathematical developments are not easy 

to introduce to a wide selection of users. First, because these developments target specific 

objectives, their inclusion in standard commercial mathematical software (SPSS, Matlab, 

etc.) is not economically appealing. Second, implementing such methods in an applied 

environment, even with the help of tools development procedures offered in mathematical 

software, requires well trained professionals with strong foundations in mathematics, 

statistics and their domain of application. In general, the transfer of these methods from 

their theoretical origins to a more applied environment is challenging. 

Applications in water resources have permitted some developments for outlier 

analysis, especially in the analysis of hydrometric observations, which are the type of data 

employed in this thesis. For example, Kottegoda (1984) employs statistical tests for the 

detection of outliers in data sequences of annual maximum floods. Hydrometric data are 

time-dependent products of impulses (i.e., precipitation) and their propagation over time. 

An easy strategy to identify a given point in the data set as an outlier is to evaluate if the 

difference between this point and the preceding one is too large to be considered as coming 

from a likely impulse (i.e., a precipitation event) for this hydrologic system. Such a strategy 

is employed by Krawjeski and Krawjeski (1989), where the threshold on the difference is 

determined manually, and by Lauzon (1993), where the threshold is based on the unit 

hydrograph associated with the hydrometric sequences of inflows. Of course such a 

strategy can be refined, and the judgment on the extent of the difference between data 
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points can also be based on a comparison with other data sets, such as those from a 

neighboring hydrometric or precipitation stations (Rassam et al., 1991). A more elaborate 

strategy is to build a model to replicate the data set under study. The model output is then 

assumed to represent the truth, and a data point is considered as an outlier if it differs from 

the model estimation by too great a margin. Examples include the work of Bennis and 

Bruneau (1993a and b), who employ Box and Jenkins models with or without the Kalman 

filter, Krawjeski and Krawjeski (1989), who use a mechanistic model, Perreault et al. 

(1991) and Nguyen (1993), who develop methods based on a combination of models, and 

Berube et al. (1987) and Rassam et al. (1991), who employ Fourier series. It should be 

noted that these models must involve some form of outlier accommodation, which means 

that steps need to be taken to make sure that outliers do not affect the determination of the 

values of the model parameters. A distinct strategy is that of Krawjeski (1987) and 

Krawjeski and Krawjeski (1989), for the detection of outliers in radar rainfall and 

hydrometric data respectively, that make use of influence functions. They use the 

developments given in Delvin et al. (1975), where the influence functions determine the 

influence of each data point in the estimation of parameters such as the mean, standard 

deviation or correlation coefficient. A data point that has a disproportionate influence is 

suspected to be an outlier. For the detection of outliers in radar rainfall and hydrometric 

data, the spatial correlation and autocorrelation are the chosen parameters, respectively, and 

the technique is quite similar to a pattern recognition tool, especially in the case involving 

radar rainfall data. The disadvantages of this strategy are that the data must follow the 

standard Normal distribution, and that the influence function does not work well with non-

stationary data, that is, when the parameters such as the mean, standard deviation and 

correlation vary over space or time. 

2.2.3 Shifts and Trends 

As is generally observed in the literature, these kinds of anomalies involve data 

sequences that evolve with time. Shifts are sudden changes over time in the statistical 

properties of the historical records of data, while trends are systematic changes over time in 

the statistical properties. As with outliers, the methods available for addressing shifts and 

trends can be divided into two categories: 1) those that attempt to accommodate the 
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presence of shifts and trends, and 2) those that are meant to detect such anomalies. 

Accommodation implies the use of models, and there are a large variety of these in water 

resources, ranging from the simple to the complex. Very often, models are not specifically 

designed to account for shifts and trends, although they can sometimes accommodate these 

anomalies. A more general discussion of simulation models is offered in Section 2.3. The 

few models that directly accommodate shifts and trends are usually Box and Jenkins 

models, and they have been widely used in water resources, particularly for the modeling of 

water inflows. The common practice in the development of such models is to first search 

for trends in the data sequences, and this can be accomplished through the analysis of 

autocorrelation coefficients, as described in such textbooks as Box and Jenkins (1970), 

Salas et al. (1980), Pankratz (1983), or Bras and Rodriguez-Iturbe (1985). Seasonal and 

other periodical phenomena (e.g., El-Nino and sun spots) can be considered as shifts 

occurring at regular intervals, and Box and Jenkins models offer the flexibility to account 

for these. The most common modeling strategy is to develop general models that include 

adequate representation of all periodic elements. Another strategy is to develop a so-called 

periodic model, which is a series of models, each one meant to be employed at a very 

specific period in time. Examples of the use of such models can be found in Pagano (1978), 

Troutman (1979), Thompstone (1983), Thompstone et al. (1985), Vecchia (1985), 

Fernandez and Salas (1986), and Bartoloni et al. (1988). When shifts occur at irregular 

intervals, one can resort to intervention analysis, which requires the use of Box and Jenkins 

models again. As illustrated in the work of Box and Tiao (1975), Hipel (1975), Lettenmaier 

(1980), Hipel et al. (1981), and McLeod et al. (1983), these models include step functions, 

which activate a specific part of the model structure when needed so as to account for the 

presence of shifts in the data sequences. Further developments with these kinds of models 

have been limited since the beginning of the 90s. Such models are restrictive, as they 

require that the data follow a specific distribution, usually the Normal distribution, although 

the Gamma distribution is also used (Fernandez and Salas, 1986). The main criticism of 

these models, which are linear regression equations, is that they are too simple to 

adequately represent complex natural phenomena such as river inflows, regardless of the 

presence of shifts and trends. Building on the concept of intervention analysis are several 

tests that allow evaluation of the potential location and amplitude of shifts. The Cumulative 
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Sum of Deviations (CUSUM) and Exponential Weighted Moving Average (EWMA) tests 

can detect changes in the statistical properties of data, usually the mean, based on the sum 

of the deviations of the data from their expected values from models. Large sums indicate a 

shift. Such tests have been applied particularly to the quality control of industrial processes, 

computer and electrical engineering applications, and in biological and biomedical studies. 

General description of the CUSUM and E W M A tests can be found in Basseville and 

Nikiforov (1993) and Farnum (1994). Applications for the detection of shifts with CUSUM 

can be found in Radharamanan et al. (1994), Mantua et al. (1997), Jarpe and Wessman 

(2000), Reynolds and Stoumbos (2000), and Khoo and Quah (2002), while E W M A has 

been applied by Prabhu and Runger (1997), Srivastava and Wu (1997), Cahn and Zhang 

(2000), and Reynolds and Arnold (2001). Farnum (1994) mentions, however, that the 

results of these tests can be affected by the model representing the data under investigation. 

An inappropriate model can lead to a bias in the results of the tests. 

As with outliers, the best strategy is to detect shifts and trends before considering 

building models that can accommodate them. The domain of water resources, particularly 

in the study of hydrometric data, has provided opportunities to develop and apply detection 

methods, although at a different time scale than that considered for the purpose of 

accommodation. The most commonly used statistical tests for the detection of shifts are the 

Student's and Mann-Whitney tests (Salas, 1993). In the presence of a shift a data sequence 

is considered as being composed of two subsets of data (i.e., one before and one after the 

shift), each coming from a different population. Both tests provide a measure of the 

distance that separates these two subsets. Both tests require that the data points be 

independent. The Student's test requires that the data set follows a Normal distribution, 

which is not a necessary requirement for the Mann-Whitney test. The disadvantage of the 

latter test is in the characteristic of its response, which is assumed to follow a standard 

Normal distribution, but its real distribution is only an approximation of the Normal 

distribution (Hirsh et al., 1993). This leads to an imprecision in the decision criteria of the 

test. Both tests also require that the presumed location of the shift is known. If this 

information is not known, a practical way to address the problem is simply to test the data 

at all possible locations of the shifts. A more refined approach is to use Bayesian analysis to 

probabilistically determine the possible location of the shift, as demonstrated for example 
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by Lee and Heghinian (1977) and Perreault et al. (1999 and 2000). The analyses performed 

by these authors require that the data follow a Normal distribution. 

For the detection of trends, the most well known test is the Mann-Kendall test, but 

the Spearman test has also been applied, for instance, by Lettenmaier (1976) on water 

quality data and by Anderson et al. (1992) on water inflow data. Both tests require that the 

data points be independent, but do not require that they follow any particular distribution. 

Like the Mann-Whitney test, the responses of both tests are presumed to follow a specific 

distribution, the standard Normal distribution for the Mann-Kendall test (Conover, 1980; 

Salas, 1993) and a numerically established distribution for the Spearman test (Conover, 

1980). 

The Mann-Kendall test has been frequently used for cases in North America. In 

water resources, a study of trends involving this test have been performed on water quality 

data (Lettenmaier, 1976; Hirsh et al., 1982; Hirsh and Slack, 1984), climatology-related 

data such as temperature and precipitation (Gan, 1992 and 1998; Gan and Kwong, 1992; 

Burn, 1994; Lettenmaier et al., 1994), and hydrometric data (Lettenmaier et al., 1994; 

Westmacott and Burn, 1997; Leith and Whitfield, 1998; Yulianti and Burn, 1998; Lins and 

Slack, 1999; Zhang et al., 2001; Cunderlik and Burn, 2002). Many of these authors also 

address the case of evaluating the amplitude of the trends. The capacity of the test for 

avoiding false detection, which is an issue that affects all statistical tests mentioned thus 

far, is also discussed to various extents in the references cited above. 

With regard to the quality of data, the important point to remember is that the 

accuracy of data sets must be achieved to the extend that the risk of misinterpretation as a 

result of the use of the data is minimized, even though high accuracy standards can be 

expensive and their benefits are difficult to quantify. Of course, accuracy is not the only 

attribute related to data quality. Relevance, completeness, coherence, interpretability, 

timeliness, and accessibility are attributes that must be kept in mind while analyzing the 

quality of data. The methods available for the analysis of anomalies such as outliers, shifts 

and trends require several considerations. All the methods require some restrictive 

assumptions on the nature of the data analyzed or their results (e.g., following a specific 

probability distribution). Accommodation methods should be used with care. They may be 

able to address the anomalies that are assumed to be present and well defined, but might not 
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be able to address anomalies that are not assumed to be present but are present nonetheless. 

The best strategy is therefore to design efficient identification methods before resorting to 

accommodation. Of course, detection methods are not totally immune to the possibility of 

performing false detection. Finally, for practical purposes, attempts should be made to 

develop tools that are easy to implement and easy to grasp by potential users. 

2.3 Modeling 

2.3.1 Overview 

As mentioned in Section 2.2, water resources models may be used to accommodate 

anomalies such as outliers, shifts and trends. The purpose of this section is to discuss issues 

related to model structure and parameter uncertainties, in order to complement Section 2.2, 

which addresses the direct source of data uncertainty. Water resources models come in 

various forms, some of which are quite general while others are designed to address very 

specific issues. The term water resources model often refers to tools for understanding 

water responses in continental areas (i.e., surface and groundwater), although atmospheric 

and oceanographic models can also be considered as water resources models, if only to 

close the Earth water cycle. As a guide, a classification of water resources models, partly 

inspired by the classification of Wurbs (1998), is offered in Figure 2.3. All cases consist of 

both simulation and optimization models, which are tools that define the system under 

study, and support decision making, respectively. Ultimately, these tools might encompass 

the whole planetary water cycle, but for now they are only applied to smaller systems for 

more specific objectives. A hierarchy exists among models. At the highest level in the 

hierarchy are atmospheric models, for water in the atmosphere, oceanographic models, for 

water in the ocean, and watershed models, for water on land. These three types of models 

should normally be inter-related, since processes at the interface between the atmosphere, 

the oceans and the land affect the water cycle. Watershed models are the direct products of 

the so-called branch of watershed hydrology, which "deals with the integration of the 

hydrologic processes at the watershed scale to determine watershed response" (Singh and 

Woolhiser, 2002). They should ideally include all individual hydrologic processes, which 

are commonly divided into two categories, surface processes and groundwater processes. 

Watershed modeling, or hydrologic modeling as a whole, is often considered an 
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information provider for a number of water resources models. Indeed, hydrologic models 

provide initial conditions for river and lake hydraulic models, water quality response 

models, biological interaction models (e.g., fish habitat models), operational models for 

water regulation infrastructures, water distribution hydraulic models, and demand 

forecasting models. 

Water resources systems: Optimization or simulation models for management 
and design 

Atmospheric models 

Watershed models 
(surface hydrology, 
groundwater) 

Oceanographic models 

River/lake hydraulics models 

Water quality models 

Biological interaction models 

Operation models for water 
regulation infrastructures 

Water distribution system 
hydraulics models 

Demand forecasting models 

Figure 2.3. Classification of water resources models. 

In the sections that follow, the emphasis is placed on watershed models and 

hydrologic models in general. These models are particularly affected by uncertainties in 

model structure and parameter estimates (See Sections 2.3.2 and 2.3.3, respectively). A 

watershed model is also used in an application case of river inflow modeling in Chapter 7. 

Section 2.3.4 is also dedicated to existing methods for accommodating such uncertainties. 

To complete the topic of modeling, some details are given on the use of artificial 

intelligence techniques for modeling purposes. 
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2.3.2 Model Structure 

The structure of a model is the mathematical formulation(s) that explain the 

behavior of the natural or artificial system under study. A model is said to be physically-

based if the mathematical formulations exactly replicate the mechanisms that rule the 

behavior of the system. At this level, the mathematical formulations are strictly established 

from the laws of physics (i.e., Newtonian physics in water resources). In contrast, a model 

is said to be empirical if the mathematical formulations provide only an approximation of 

the behavior of the system. Here, the mathematical formulations are meant only to provide 

a rough description of the behavior of the system. Most models fall between empirical and 

physically-based, depending on the level of accuracy of the mathematical formulations 

employed to describe the behavior of the system. The number of existing watershed models 

is large, as exemplified by the long list provided in Singh and Woolhiser (2002). Other 

lists, and descriptions of models can be found in Singh (1989 and 1995), and Rousselle et 

al. (1999). WMO (1975, 1986 and 1992) also list a good number of models and evaluate 

their performance. This large choice of watershed models illustrates the fertile imagination 

of developers, but also highlights the challenges such developers face with regard to the 

structure of models. 

One of the reasons for the diversity of watershed models is that they are often built 

to fulfill specific objectives, depending on the interest of the stakeholders. For example, a 

watershed model employed for agricultural management would need to have strong 

components that allow a reasonably accurate estimate of soil humidity and 

evapotranspiration, and would have to be generally more physically-based than a model 

used for hydro-energetic purposes, where often only a good evaluation of the water inflows 

at the watershed outlet really matters. Differences may be present for models that fulfill 

other particular roles also, such as to aid in flood control, the mitigation of environmental 

impacts, and forest management. Another, rather unfortunate reason for the diversity of 

models is that the structure of the model to be built is frequently dictated by the availability 

of data (Singh and Woolhiser, 2002). This reason illustrates the importance of one attribute 

of data quality: relevance. Uncertainty regarding the validity of the model structure is 

largely dependent on the validity of the data that explain the behavior of the natural 

phenomena under study. Statistical tools have been used to determine the potential 
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magnitude of the effects of input data on outputs (i.e., the relevance). A typical example in 

watershed modeling involves autocorrelation and cross-correlation analyses as described in 

Box and Jenkins (1970), Salas et al. (1980), Pankratz (1983), and Bras and Rodriguez-

Iturbe (1985). These analyses can then be used to develop time series models. These tools 

are descriptive in nature, and the importance of such descriptive tools in the future in water 

resources must be highlighted. 

As mentioned in Section 2.2.1, relevance of data is related to the issue of scale, or 

the appropriate temporal and spatial magnitude employed to characterize a given 

phenomenon. The natural processes involved in hydrology act at various temporal and 

spatial scales. Because they are less data intensive and require less computing power, the 

trend in the past has been to produce hydrologic models that are based on large scales. But 

as computer power increases, greater efforts have been made to perform studies at smaller 

scales and to develop more physically-based models. In the 80s and 90s the concerns were 

in resolving physical issues. This included the determination of the scale that provides an 

adequate account of the variability of the watershed structure (Beven, 1983 and 1989; 

Beven et al., 1988; Wood et al., 1991), or the mathematical description of natural processes 

such as infiltration or evapotranspiration (Abbott et al., 1986a and b; Anderson and Rogers, 

1987; Grayson et al., 1992a and b). The developments in these two areas were extensive, 

but authors such as Anderson and Rogers (1987), Grayson et al. (1992b), Woolhiser (1996), 

Entekhabi et al. (1999) and Singh and Woolhiser (2002) stress the need for further 

developments related to physically-based models, and one of their major issues is the need 

for appropriate (relevant) databases. The data must be representative of the phenomena 

under study, and measured to reflect an adequate scale. Of course, a measure of relevance 

can be achieved with descriptive tools such as statistics, as is commonly used on large scale 

systems, or with the descriptive tools based on artificial intelligence that are proposed in 

this thesis. 

Of particular interest in water resources is the integration of ecological features in 

the modeling process, such as, among others, the vegetal cover. Entekhabi et al. (1999), and 

Roberts (2000) indicate the importance of the vegetal cover in the hydrological cycle, as the 

photosynthesis process can greatly affect the evapotranspiration process and soil humidity. 

As another example, environmental impact studies quite often attempt to determine the 
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impacts on the fauna and flora of changes in the characteristics of water resources systems 

(e.g., water diversions). As indicated by Harte (2002), ecology is based on complex 

interdependencies, which make the development of predictive tools such as models a 

difficult task, and this is why descriptive tools such as statistics are often employed instead 

in this domain. To properly integrate ecological features in the modeling process in water 

resources, a proper description of these features must be performed and therefore powerful 

descriptive tools are required. 

2.3.3 Parameters and Calibration 

Parameters originate from the structure of the models, and therefore the validity of 

the existence of such parameters is dependent on the validity of the structure of model. 

Because the validity of the model is largely dependent on the validity of the data, the data 

quality attribute of relevance therefore affects parameter uncertainty. Data relevance is not 

the only source of parameter uncertainty, for the calibration process that determines the 

value of the parameter is also a contributing factor. 

Automatic calibration procedures are generally optimization modules that require 

the following four elements: an objective function, an optimization algorithm, a termination 

criterion and calibration data. The objective function must be minimized or maximized and 

must normally express the goodness of fit of the parameters with respect to the data. 

Probably the most common objective function is the sum of the squared difference between 

estimated and observed system response values, but Clarke (1973) indicates that such a 

function might rarely be appropriate. Diskin and Simon (1977) provide several other 

objective functions. The optimization algorithm is a search procedure that determines the 

parameter values that optimize the objective function. Reference books such as that of Rao 

(1979) or Nash and Sofer (1996) provide descriptions of optimization algorithms, many of 

them quite suitable for cases in water resources. Regardless of the optimization algorithm 

employed, the main concern is always to find the global optimum. A problem that is ill-

defined increases the risk of having the algorithm trapped in a local optimum. The number 

of local optima also increases as the complexity of the problem to be optimized increases. 

The termination criterion is a target condition, and the optimization algorithm stops 

searching when this condition is met. The criteria are imposed on the objective function 
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(e.g., the search stops when the difference between the current and previous values of the 

objective function falls below some threshold) or the parameters (e.g., the search stops 

when the difference between the current and previous values of the parameters falls below 

some threshold). The importance of the relevance of calibration data has already been 

mentioned, but completeness is also a data quality attribute to consider. A good model must 

indeed be able to provide reasonably good estimates regardless of the set of inputs. 

Therefore, the data employed in the calibration process must be of sufficient quantity to be 

representative of all the possible behaviors of the system to be modeled (Salas et al., 1980; 

Salas, 1993; Singh, 1989 and 1995). 

2.3.4 Uncertainties and Adaptation 

The common practice for accommodating uncertainties in model structure and 

parameter estimates is to rely on more than one solution or simulation result. For structural 

uncertainties, this means obtaining a global result from the consideration of several models 

instead of just one. To obtain the global result, the weighted sum of the results of all the 

considered models is the strategy employed. The weaknesses of some models in some 

particular situations can therefore be compensated for by the strengths of other models. 

Typical examples of this strategy are the studies of Ellis (1988 and 1990) that combine the 

results of several air contaminant transport models for a better estimation of the 

concentration of contaminants producing acid rain present at several sensitive geographic 

locations. The values of the weights are determined through a linear optimization 

technique. In these studies several objective functions are tested for their performance. In 

watershed modeling, comparisons such as those of the WMO (1975, 1986 and 1992) have 

shown that models usually perform similarly overall, but that significant differences can 

occur locally and therefore the combination of models might prove advantageous. Cavadias 

and Morin (1986) perform this combination with the models employed in WMO (1986), 

and show improvements in the performance in 80% of the cases, while the other 20% of 

cases produce results that are only slightly worse compared with the situations where 

models are used in isolation. Other noticeable examples in hydrology are the works of 

Perreault et al. (1991) and Nguyen (1993), who combine models so as to build overall tools 

that may better detect outliers in hydrometric series. 
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Parameter uncertainty is also addressed through the process of studying alternatives, 

also called sensitivity analysis. Once the values of the parameters have been determined, 

sensitivity analysis involves varying the values of the parameters within a range of the 

feasible values, and then seeing how those variations affect the results of the model. The 

sensitivity analysis approach is well documented and is usually employed whenever model 

calibration is involved (Anderson and Burt, 1985). A robust, well documented reference is 

the work of Beven and Freer (2001), who present recent developments in sensitivity 

analysis and integrate these in a general framework in order to address parameter 

uncertainties. This framework includes the determination of the probability distribution of 

the parameters for Monte Carlo sampling, the definition of measures of model performance 

with respect to the values of the parameter, and the determination of the distribution of the 

model response as a function of the parameters. 

Model combination and sensitivity analysis constitute valid ways to address 

structure and parameter uncertainties, respectively, although they are considered to be 

"after the fact" approaches. Indeed, these techniques attempt to reduce the effects of the 

potential deficiencies of the models. The strategy that is presented in this thesis is in the 

development of tools that attempt to find these deficiencies, so that models can be adapted 

to limit the effects of these deficiencies and hence to reduce the need for methods dealing 

with uncertainty. 

On the subject of addressing uncertainties, adaptation is another strategy that has 

been commonly used in water resources, particularly in situations that necessitate real-time 

forecasting from a model (Anderson and Burt, 1985). Adaptation is established on the 

assumption that the structure of the model is basically correct, but is relatively static and 

therefore cannot adapt to the changing conditions of the system. The solution is to use the 

model, as shown in Figure 2.1, and to add a quality control procedure and feedback 

mechanism, as shown in Figure 2.4. The quality control procedure receives the outputs 

from the model and checks the difference between these outputs and the observed values. 

To close the loop, a feedback mechanism imposes adjustments on the inputs (observed data 

or parameters), the state variables within the structure of the models, or the outputs 

themselves, so that the outputs calculated after the adjustments are closer to the observed 
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values. Several feedback mechanisms are documented in the literature, and they range from 

manual procedures to fully automated tools. 

Figure 2.4. Mechanistic model with feedback mechanism. 

Most of these feedback mechanisms are model-specific, that is, they have been 

applied only for the model for which they have been designed, but some generic methods 

exist. The simplest method adds to the current calculated output the difference between the 

previously calculated output and the observed values, as demonstrated in the work of 

Bouchard (1986) and Bouchard and Salesse (1986). A more elaborate method, proposed by 

Cavadias and Gupta (1978), Lundberg (1982), and Iritz (1988), is to add to the current 

calculated output an estimated output error as determined by a Box and Jenkins model 

based on the previous errors. One of the most elaborate, automated and widely used 

feedback mechanisms is the Kalman filter. A detailed description can be found in Lloyd 

(1984), but in brief, the Kalman filter performs adjustments based on the assumption that 

both the elements that must be adjusted and the observed values themselves are subject to 

errors. It is a refinement of the feedback mechanisms mentioned previously, which, with 

the exception of that of Iritz (1988), assumes that the observed values are free of errors. The 

Kalman filter is a recursive procedure, which updates, among other information, the 

estimation error covariance matrix of the state variables (i.e., the elements to adjust) in 

order to maintain its adjustment capabilities as the conditions of the system change. Typical 

examples of the use of the Kalman filter can be found in 1) Georgakakos (1986a and b) for 

a hydrometeorological model; 2) Lettenmaier and Burges (1976) for a water quality model; 

3) McLaughlin (1980) and VanGeer et al. (1991) for groundwater models; and 4) Kitanidis 
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and Bras (1980a and b), Bergman and Delleur (1985a and b), and Assaf and Quick (1991) 

for watershed models. The main drawback of this feedback mechanism is that it requires 

assumed values for the elements of the initial estimation error covariance matrix as well as 

the covariance matrices for the residuals in the state and measurements equations, these 

equations being the structural basis of the Kalman filter. This assumption is not readily 

apparent for any water resources system. 

Globally, it can be said that all feedback mechanisms are "after the fact" methods as 

much as those mentioned previously for addressing model structure and parameter 

uncertainties. They attempt to reduce the effects of the potential deficiencies, but do not 

provide any insights that would help to understand these deficiencies and resolve them. It 

must be noted also that feedback mechanisms, including the Kalman filter, are sensitive to 

large outliers. 

2.3.5 Modeling with Artificial Intelligence Techniques 

Neural networks, fuzzy sets and fuzzy logic are artificial intelligence features that 

have been applied in water resources since the end of the 1980s. Details regarding neural 

networks can easily be found in general textbooks such as Chen (1996) and Suykens et al. 

(1996), and more succinct summaries targeted for practitioners and researchers in water 

resources can be found in Coulibaly et al. (1999) and ASCE (2000a). Neural networks can 

be very useful in modeling a system whose structure is not well known but is assumed to be 

non-linear (Chen, 1996; Suykens et al., 1996), and have been often considered as a very 

advantageous alternative to the frequently employed Box and Jenkins models for water 

resources applications. Neural networks are simple and very flexible tools, although some 

care must be given regarding the choice of the inputs and of the network structure in order 

to ensure an efficient use of this technique (ASCE, 2000a; Maier and Dandy, 2000). ASCE 

(2000b) provides an extensive list of cases in water resources, with references, where 

neural networks have been employed. Applications include rainfall-runoff modeling 

(Achela et al. 1998; Atiya et al. 1999; Coulibaly et al. 2000; Gautam et al. 2000; Imrie et al. 

2000; Lauzon et al. 2000; Sajikumar and Thandaveswara 1999; Thirumalaiah and Deo 

1998), reservoir management (Neelakantan and Pundarikanthan 2000), surface water 

quality modeling (Chan-Yan 2000; Lek et al. 1999), groundwater and contaminant 

26 



transport modeling (Morshed and Kaluarachchi 1998), and the prediction of the onset of 

algae blooms (Maier et al. 1998; Maier et al. 2000; Yabunaka et al. 1997). All of the 

references cited above employ the backpropagation neural network algorithm, which is the 

most common neural network structure used in water resources. The backpropagation 

neural network is made of interconnected layers of neurons, including an input layer that 

receives inputs, an output layer that provides outputs, and one or more layers between the 

two that process the information. 

Details about fuzzy sets and their main derivative, fuzzy logic, can be found in 

textbooks such as Dubois and Prade (1980), Zimmermann (1991) and Terano et al. (1992), 

and general examples of their use in natural systems are given in Bardossy and Duckstein 

(1995). Fuzzy sets and fuzzy logic have been employed in a broader range of circumstance 

compared with neural networks. For instance, fuzzy sets have been employed as 

optimization tools by 1) Chang et al. (1997) and Sasikumar and Mujumdar (1998) for water 

quality management cases; 2) Fontane et al. (1997) for reservoir operation management; 

and 3) Kindler (1992) for water supply and demand management. They have also been 

employed as decision making tools in water resources by Yin et al. (1999), Bender and 

Simonovic (2000), and Despic and Simonovic (2000). For modeling purposes, fuzzy logic 

has been used for the estimation of 1) a drought index (Pesti et al., 1996); 2) infiltration 

(Bardossy and Disse, 1993); 3) precipitation (Ozelkan et al., 1996); 4) evapotranspiration 

(Franks and Beven, 1997); 5) water inflows (See and Openshaw, 1999); 6) reservoir levels 

(Russell and Campbell, 1996; Shresfha et al., 1996); 7) groundwater (Dou et al., 1995 and 

1998); and 8) algae blooms (Maier et al., 2000; Setnes et al., 1997 and 1998). • 

In the references cited above, AIT have proven to be reasonably easy to implement, 

and therefore may be attractive for practical purposes. Neural networks are indeed easy to 

use, but the structure of backpropagation neural network, which is the most commonly 

employed structure in water resources, is essentially that of an empirical model. Such a 

structure does not provide an exact replication of the behavior of the system under study 

and does not easily provide insights that would help give a better understanding of the 

system for the development of more physically-based models. Fuzzy sets are descriptive 

tools designed to establish knowledge domains. They may be used to link the various 

behaviors of a given system to observations or measurements performed on this system. 

27 



This description or mapping of the knowledge domain may then be useful for the 

development of physically-based models. Fuzzy logic is a predictive tool that is designed to 

provide a global estimate of the behavior of the system given the knowledge domain 

description established with fuzzy sets. The references cited above on the subject of 

modeling using fuzzy logic are studies that employ fuzzy sets and fuzzy logic on systems or 

parts of systems for which the knowledge domains are known or reasonably well known. 

One possible avenue of interest would be to develop adaptations of fuzzy sets and fuzzy 

logic so that they can be used on systems or parts of systems for which the knowledge 

domains are not as well known. Finally, it must be noted that AITs that are used as models 

are also subject to model structure and parameter uncertainties, as described in Sections 

2.3.2 and 2.3.3. 

It must be noted that model structure and parameter uncertainties are strongly 

related to the data. Data relevance is a quality attribute that affects the structure of the 

model. The common practice is to develop the structure of the model based on the data 

available, and therefore the data must adequately represent the behavior of the system the 

model is meant to replicate. Data completeness is a quality attribute that particularly affects 

the parameters of the model. To guarantee that the values of the parameters fairly represent 

the system under study, the data set employed to determine these values through calibration 

must contain all the possible patterns of behavior exhibited by the system. The methods 

commonly employed to address uncertainties are considered to be "after the fact" methods, 

for they only focus on reducing the potential deficiencies of the models and do not usually 

provide insights into understanding these deficiencies. Because model uncertainties can be 

directly related to data quality, the ideal approach would be to develop descriptive tools that 

help determine the value of the available data with respect to a specific quality attribute. 

Relevance and completeness are attributes to keep in mind for models, and data accuracy 

must also be considered. Indeed, measurement errors in data may introduce a bias that 

affects the evaluation of data relevance and completeness. 
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2.4 Description of Data Domains 

2.4.1 Context 

Throughout this thesis it is assumed that the quality of data sets affects model 

results. Erroneous data may propagate through a model and therefore induce a bias in the 

output. Also models are structurally developed and calibrated based on the data that are 

available. Therefore the validity of a model is ruled by the validity of the data available to 

represent the behavior of the system the model is meant to replicate. This work is directed 

toward developing tools that may be used to determine the characteristics of the data before 

they are used in the various simulation models. Figure 2.5, which is a modification of 

Figure 2.1, illustrates the process, where the inputs are pre-processed in order to evaluate 

their characteristics before they are used in a model. 

Inputs 
Input 

processor 

Figure 2.5. Typical model structure with input processor added. 

Here, the characteristics of the data are determined by identifying specific patterns 

within the domain covered by the data sets, for example, patterns of erroneous data versus 

patterns of correct data, or patterns that are linked to particular points of the data and that 

correspond to very specific responses of the system under study. This is what is referred to 

as describing the data domain. A simple illustration is given in Figure 2.6, where the 

domain of two data series (axes X and Y in Figure 2.6) is subdivided, presumably with 

respect to the response or behavior of some system. 

On one hand, the obvious task of the input processor would be to improve the 

accuracy attribute of the database by identifying erroneous data so that they are withdrawn 

or corrected before being fed to the model. On the other hand, the input processor could 

assist in the building of a model or in the development of modeling strategies. For example, 

the data might exhibit patterns that correspond to very specific responses of some water 

resources system, thereby indicating the need to develop more than one model. This implies 

a specific model for each targeted response, instead of only one model that is expected to 

29 



adequately represent all possible responses of the system. Incidentally, with some analysis, 

the input processor could also help determine the limitations of the models, that is, some 

system responses may not be adequately estimated with the model(s) available. It does not 

address data relevance or completeness, but it can offer an indication of where one stands 

with regard to these two data quality attributes. 

J Response of the system 

Y 

Figure 2.6. Subdivision of the data domain with respect to the response of the system. 

The development of tools that describe the data domain for the purpose of finding 

errors or anomalies in data such as shifts, trends and outliers is a primary contribution of 

this thesis (Chapters 4, 5 and 6). Some developments are also achieved for the description 

of the domain of model parameters, which are the other type of inputs fed to the model 

aside from the data (Chapter 7). AITs are the basis of these developments, and the reasons 

for choosing these techniques are given in Section 2.4.3 and Chapter 3. A review of a few 

descriptive tools already employed in water resources is given in Section 2.4.2. 

2.4.2 Descriptive Tools in Water Resources 

In water resources, probability and statistics have been used extensively to describe 

data. The methods presented in Section 2.2, addressing the issues of data quality in general 

and outliers, shifts and trends in particular, have their roots in probability and statistics. In 

order to complement the review in Section 2.2, a few words are needed about the other 

techniques that can be useful for the description of data with respect to the patterns they 
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exhibit: multivariate statistical analysis tools. Analysis of variance is the data description 

tool used for the development of multiple linear regression models, which are frequently 

employed in all domains of water resources. The determination of homogeneous hydrologic 

regions is an activity that has employed description tools other than analysis of variance. 

For example, Ribeiro et al. (1995) make use of canonical correlations for the determination 

of homogeneous hydrologic regions, while Birikundavyi et al. (1993) employ 

correspondence analysis, which is a specific case of principal components analysis. In 

water resources, Principal Components Analysis has also been used for the precipitation 

fields (Siew-Yan-Yu et al., 1998), the interpretation of groundwater hydrographs (Winter et 

al., 2000), and the study of snow parameters from remote sensing data (Derksen et al., 

2000), among others. The point in common among these methods, including analysis of 

variance, is that they assume that there exists an underlying structure between the variables. 

The goal of this work is to avoid making any inference about the underlying structure 

between the variables, except in the case of the presence of outliers shifts or trends, and 

therefore the methods given above are not considered. As mentioned by Dillon and 

Goldstein (1984), it is the common practice to consider such techniques as sensitive to data 

anomalies, and therefore not suitable for anomalous data. This statement is however given 

in the context of when one is not looking for data anomalies. Theoretically, there is no 

contraindication of the use of multivariate statistical tools purposely for the detection of 

anomalies such as outliers, shifts and trends. For example, application of Principal 

Components Analysis or other related factorial analyses for the detection of shifts is 

performed in Balcerowska et al. (2000) and Kruszewski et al. (2003). 

Cluster analysis does not make use of correlations, but rather establishes groups (or 

patterns) based on the distances between sequences of data. Typical applications in water 

resources of cluster analysis can be found in Burn (1990) and other subsequent work such 

as Zrinji and Burn (1994), or Burn (1997), who use it to develop the concept of "Region of 

Influence" for the determination of hydrologic homogeneous regions. Dillon and Goldstein 

(1984) mention that cluster analysis is sensitive to outliers, although this argument is based 

on application of the technique to cases where errors in the data are not expected. The work 

in this thesis shows that AITs can be structured to specifically detect errors and may fulfill 

the same purpose as cluster analysis. Cluster analysis can also be structured for the 
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detection of errors. Its disadvantage compared with AITs is that it is computer-intensive in 

the context of the applications presented in this thesis. 

2.4.3 Artificial Intelligence 

The references cited in Section 2.3.5 essentially present AITs as modeling tools, 

although they can also be employed in the description of input domains (i.e., data and 

parameters). Fuzzy sets are strictly descriptive tools. Related to fuzzy sets is a tool call 

fuzzy c-means. It is a clustering technique, performing the same function as the statistical 

cluster analysis while being less computer-intensive for cases involving large data sets. An 

application of this technique in water resources can be found in Hall and Minns (1999) for 

the determination of homogeneous hydrologic regions. The backpropagation neural 

network is not descriptive in nature, but the structure of this network involves discretizing 

the data domain, as shown in Figure 2.6. Another form of neural network, the Kohonen 

network, is a strictly descriptive tool. It is a clustering technique, and like fuzzy c-means, it 

also performs the same function as the statistical cluster analysis while being less 

computer-intensive for cases involving large data sets. Such a network has rarely been used 

in water resources so far. Examples of its use can be found in Liong et al. (2000) for the 

classification of watershed conditions, Hall and Minns (1999) for the determination of 

hydrologic homogeneous regions, Gotz et al. (1998) for the identification of river pollutant 

sources, and Bowden et al. (2002) for the study of algae blooms. 

Probability and statistics have been the basis of most developments performed for 

evaluating data quality and model structure and parameter uncertainties. This thesis 

proposes developments based on AITs as alternatives to probability and statistics in order 

to address issues such as data quality and uncertainties. Patterns in inputs (data and model 

parameters) are the subject of this study, and AITs can be structured so as to identify them. 

Descriptive AITs can be considered as performing at least as well as probability and 

statistical tools employed for the description of data. Their flexibility and ease of use may 

be deemed as attractive to researchers and practitioners in water resources. In some 

instances, the reduced computational burden of AITs compared with that of probability and 

statistical tools is a definitive asset. In the next chapter, a general description of the 

artificial intelligence technique employed in this thesis is given. 
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Chapter 3 

General Description of Artificial Intelligence Techniques 

3.1 Introduction 

AITs are presented here as alternatives to statistical and probabilistic techniques for 

addressing issues of data quality and model and parameter uncertainties. Statistics and 

probability may be very acceptable for resolving these issues, and artificial intelligence 

techniques should be considered as simply an alternative way of looking at such problems. 

The goal of this thesis is to compare these two general approaches so as to foster new 

developments in both types of techniques for a better understanding of environmental and 

hydrologic systems. 

AITs have the advantages in that they exhibit applicability, adaptability, 

implementability, and input flexibility. Applicability here means that they can be applied to 

a wide range of situations or problems. For any given purpose for which probability and 

statistics are applicable, the likelihood that tools based on artificial intelligence will be 

applicable for the same purpose is high. Adaptability refers to the possibility of employing 

AITs as stand-alone tools, which is demonstrated in Chapters 4, 5 and 6 of this thesis. Here, 

the Kohonen neural network and fuzzy c-means are applied for the study of data quality. 

AITs can also be integrated in a larger mathematical scheme, which is illustrated in Chapter 

7, where fuzzy logic is incorporated in simulation models for the determination of the 

values of model parameters with the aim of reducing parameter uncertainties. 

Implementability indicates that it is relatively easy to build artificial intelligence tools. The 

mathematics behind basic artificial intelligence techniques can be fairly easy to grasp, and 

many software products based on artificial intelligence have been developed and made 

available on the market. Artificial intelligence might also be easier to present to a wide 

audience. The tasks of practitioners and researchers include the dissemination of their work, 

in environmental impact studies for example, to a public audience, and this would include 

the description of the methods employed in work. Artificial intelligence techniques are 

based on specific features of the brain, that is, the structure (neural networks) of the brain 

and its ability to describe information (fuzzy sets). The latter feature, in particular, is a 
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concept that is widely understood by everybody, which might not be the case for statistics. 

In brief, if one feels more comfortable about the methods one employs for a study, then the 

results of this study might be better understood if not better accepted. Finally, input 

flexibility refers to the possibility for employing artificial intelligence with hard data such 

as measured observations, combined with soft data such as observations or judgment that 

cannot be quantified exactly. A simple example is the case of describing and predicting 

floods in a river, which are difficult to measure with stream gauges as they can be damaged 

or destroyed in floods, but can be qualified with reference to the field information such as 

marks on the facades of houses or tree trunks or the presence of water at specific locations 

on the floodplain. Floods can then be characterized as big, medium or small, depending on 

the height of the marks on the trunks or houses or on the extent of water in the floodplain. 

Of particular interest is the capacity of artificial intelligence techniques for use as 

descriptive tools, as mentioned in Section 2.4. They can subdivide data domains with 

respect to features or patterns present in the data, as illustrated simply in Figure 2.6. 

Specific patterns can then be identified (e.g., patterns of anomalous data versus patterns of 

normal data) and isolated if necessary. Specific modeling solutions can also be developed 

once the patterns are identified. Thus specific models may be designed for application to 

specific patterns, a strategy employed by Bowden et al. (2002) for modeling algae 

concentrations in a river, for example. The downfall of such data description tools is that 

they require much data in order to assure that all possible patterns are adequately 

represented. 

In this chapter, a general description of the artificial intelligence techniques 

employed in this work is given, and followed with an overview of the applications that are 

treated in the thesis. The adaptations of these techniques for the applications in this thesis 

are developed in the subsequent chapters as appropriate. 

3.2 General Description of the Techniques 

3.2.1 Fuzzy Logic 

Details of this technique can be found in textbooks by Dubois and Prade (1980), 

Zimmermann (1991), Terano et al. (1992), and Bardossy and Duckstein (1995). Fuzzy 

logic is the process that links the input domain to the response of some given system. Given 
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a set of inputs, a likely response is given based on the characterization of the input domains 

through fuzzy sets and predefined rules that explain the relationship between inputs and 

responses. Thus, to build a procedure based on fuzzy logic requires the characterization of 

the input and response domains through fuzzy sets, and then the derivation of the rules of 

the system. Once all domains are characterized and the rules are defined, the response of a 

given set of inputs is established as a function of the degree of fulfillment of the rules that 

apply, the combination of those rules in order to get a fuzzy response, and a deffuzification 

procedure that turns the fuzzy response into a crisp value. 

Fuzzy sets constitute a departure from classic sets on which all probability rules are 

based. With classic sets, as shown in Figure 3.1a, an element in the input domain (x) either 

belongs entirely to the set or it does not belong at all to the set. If it belongs entirely, the 

membership value («) attached to the element equals one. If it does not belong at all to the 

set, the membership value equals zero. 

*" x 
(a) Classic set (b) Fuzzy set 

Figure 3.1. Classic set (a) versus fuzzy set (b). 

A fuzzy set (Figure 3.1b) accepts that elements do not belong entirely to the set, and 

defines the membership value for these elements as being between zero and one. This 

flexibility given to the membership value offers a way to describe how people perceive 

things. A classic example that illustrates the advantage of such flexibility is the definition 

of the set of tall people. Let's assume that a person is considered to be tall definitely if he or 

she measures 1.85 m or more in height. Building a classic set on this premise means that all 

measurements equal to or greater than 1.85 m are given a membership value of one, while 

anything smaller is given a membership value of 0, including the measurement of 1.849 m. 
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With a fuzzy set, measurements equal to or greater than 1.85 m can be given a membership 

value of 1, and the smaller measurement may be given a membership value other than zero. 

For example, a measurement of 1.80 m can still be considered as fairly tall and be given a 

membership value of 0.75. In fact, the membership value can decrease linearly from 1.85 

m, and reach zero at say 1.75 m. Of course, such fuzziness in membership for a given set or 

indicator can be observed with natural phenomena. For example, a flood can be considered 

large, to some extent, or fairly small. A drought can be assumed as very severe to relatively 

mild, and an algae bloom can be viewed as very large or very small. The input domain 

(e.g., water inflow measurements) can be entirely characterized by fuzzy sets, which, as 

shown in Figure 3.2, represent different quality: very small, small, medium, large, and very 

large. 

Very small Small Medium Large Very large 

V 
* A 

L 

~ \ " T 

7_ 
Figure 3.2. Characterization of the input domain with fuzzy sets. 

The operators employed with a classic set, such as NOT, AND and OR can also be 

applied with fuzzy sets. Let's consider three fuzzy sets: A, B, and C, with their respective 

membership functions JUA(X), /UB(X) and JUC(X) over the input domain x, then for the 

complement (i.e., NOT A or A'): 

pA,(x) = \-uA(x) 3.1 

for the intersection or AND operator (A n B): 

VAnB (x) =
 m ml"A (4 MB W) 3.2 

and for the union or OR operator ( A u B ) : 

/"AWB W = max(//A (x), pB (x)) 3.3 
Also, the operator properties are respected with fuzzy sets, For example: 
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( A n B ) n C = A n ( B n C ) 3.4 

and: 

A n ( B u C ) = ( A n B ) u ( A n C ) 3.5 

The only exceptions are the following properties, which are not true for fuzzy sets: 

A n A ' = <f> (void) 3.6 

and: 

A u A - U (the entire domain or universe) 3.7 

The construction of rules, which link the input domain to the response of the 

system, are based on the operators AND and OR. Let's consider the fuzzy sets A, B, and C 

applying on variables a, b and c, respectively. Then a rule can be: IF a is A AND/OR b is B 

AND/OR c is C, THEN D, where D is the fuzzy set of the response of the system applying 

to that rule. Bardossy and Duckstein (1995) describes several simple procedures for the 

construction of rules. Chapter 7 in this thesis provides another construction procedure, 

based on the optimization of the parameters of a simulation model, and is suitable for the 

application cases presented in that chapter. For a given set of inputs, more than one rule 

usually applies. This is the consequence of the fact that fuzzy sets in the input domain are 

overlapping, as shown in Figure 3.3. If variables a, b, and c had the values indicated by 

their respective arrow, this means that all the rules built with fuzzy sets A t and A 2 for 

variable a, B2 and B 3 for variable b, and Ci and C2 for variable c would apply. The purpose 

in fuzzy logic is to determine the rules that apply in a given situation, to give each of these 

rules a weight often called a degree of fulfillment of the rule, and to combine the response 

of these rules with respect to their degree of fulfillment. The combination of responses from 

the rules gives a global response for the system under study, this global response being as a 

consequence a fuzzy set. A crisp response, that is a single value, can then be determined 

from the global fuzzy response through the use of a denazification procedure, which is the 

equivalent of getting an estimate such as the mean or the median from the probability 

distribution of the response of the system. 
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Figure 3.3. Characterization of several variables with fuzzy sets. 

The degree of fulfillment of a rule (v) is determined with respect to the operators 

employed in the rules, either AND or OR. The most common way to determine v is through 

product inference relationships: 

v(A, AND A 2 ) = (a, )//A j (a2) 3.8 

and: 

v(A, ORA 2 )=/ i A i ( f l I )+/ i A j (a 2 ) -^ A i (a , ) / i A 2 (a 2 ) 3.9 

or through min and max inference relationships: 

v(A, ANDA 2 )=min(// A | (a,) , / / A 2 (a 2 )) 3.10 

and; 

v(A, ORA 2 )=max(^ A i (a,) , / / A 2 (a 2 )) 3.11 

At times, when the structure of the system is not well known, and it is presumed that both 

A N D and OR operator can apply to a given rule, then the degree of fulfillment can be 

established as the combination of the degrees of fulfillment coming from the use of each 

operator: 
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v = yv(OR) + (l - xMAND) 3.12 

where y is the weight given the relative importance of both operators. 

The combination of the response of the rules involves determining the membership 

value (/to)of the global fuzzy response, over the response domain d. There are many ways 

of combining the rules, and they can be divided into two types: min/max combinations, and 

additive combinations. In this thesis, the additive combination referred to as normed 

weighted sum combination is employed, which is considered from experience as 

satisfactory by Bardossy and Duckstein (1995) for application to environmental systems. 

This combination method determines the membership value of the global fuzzy response as 

follow: 

A * D ( < 0 = — 3.13 
max u YvtPtiiDi(u) 

;=i 

where: 

— = l/iDi(d)Ad 3.14 

-oo 

In Equations 3.13 and 3.14, v,- is the degree of fulfillment of rule i, D, is the fuzzy response 

for rule i, and I is the total number of rules that apply for the considered set of inputs. The 

fraction ensures that the membership value for the global fuzzy response is not greater than 

1. The advantage of this combination method is that it can lead to a relatively easy 

defuzzification process. 

In the defuzzification process, the mode (max(uo(^))), mean or median of the global 

fuzzy response is sought. The value of the mean (m(D)) when the normed weighted sum 

combination is employed is determined as follows: 

i>,w(D,) 
(D) = ^ _ 3.15 m 

i=i 
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3.2.2 Fuzzy C-means 

Before describing fuzzy c-means in great detail, clustering techniques in general and 

the conventional statistical clustering techniques in particular need to be introduced. Cluster 

techniques are used to reduce the amount of data collected to a form that can be more easily 

interpreted. The goal of such techniques is to obtain a smaller number of groups or clusters 

such that data sequences located in each cluster demonstrate a certain degree of similarity 

with each other. This means that the determined clusters should display small, within-

cluster variations, as illustrated simply in Figure 3.4. 

A clear description of the conventional statistical clustering technique can be found 

in Dillon and Goldstein (1984). Let's consider N sequences of data, each sequence having .ft" 

elements or variables. The clustering analysis starts with building an N x N matrix, which 

contains elements that defines the similarity between data sequences. Generally, the 

measure of similarity considered is the Euclidian distance between data sequences. Data 

points are then assigned to C clusters according to the similarity measures through 

clustering techniques, which can be divided into two categories: hierarchical and 

partitioning. The agglomerative hierarchical techniques assume that each sequence starts 

with its own cluster, then the two closest sequences are fused together to form one cluster, 

and the process of fusing clusters, either individual sequences or groups of sequences, 

continues until all sequences are gathered into one cluster. The divisive hierarchical 

techniques perform the reverse process. They start with considering all the sequences in one 

cluster, and then divide the sequences into smaller groups repeatedly until each sequence is 

in its own cluster. The hierarchical techniques produce a clustering tree that gives the 

history of agglomeration or division of sequences, and the final number of clusters is 

determined by where the tree is cut off and by counting the number of branches that have 

been cut. Partitioning techniques are a refinement of the hierarchical techniques, where the 

sequences can move from one cluster to another so as to optimize some given criterion, for 

example, minimizing the sum of the distances between cluster centers and their respective 

sequence members. Partitioning techniques require that the number of clusters be known or 

specified. 
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• Cluster center 
< • Distance between cluster center 
-* -»• Distance from cluster center to cluster member 

Figure 3.4. Distances between clusters versus distances within cluster. 

These conventional clustering techniques can be considered as "hard" because they 

impose that each of the data sequences belongs entirely to one cluster. Fuzzy c-means is a 

partitioning clustering technique, but should be considered as a "soft" technique, because it 

allows the sequences during the optimization process to belong to some degree to more 

than one cluster, according to a membership value. Fuzzy c-means is simply an extension 

of the concept of fuzzy sets for the purpose of clustering data, and further details on this 

technique can be found in Bezdek (1981) or Hall and Minns (1999). Let's consider again TV 

sequences of data, each sequence having K elements or variables. Fuzzy c-means will 

partition these data points into C clusters, where 2 < C < K. The clustering algorithm used 

in fuzzy c-means is based on minimization of the following objective function: 

F = tt<»dl 3.16 
c=l n=\ 
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where the p's denote the membership grade for every data point, the d's denote the 

Euclidean distance between sequence n and a cluster center c, and r denotes the weighting 

parameter controlling the amount of fuzziness in the process of classification. The 

membership values indicate the extent to which the sequences belong to the clusters, and 

are constrained as follows: 

fX„ =1 for all n 3.17 

and: 

N 

0<Y,Mc,n <N for all c 3.18 

The Euclidean distance between a sequence and a cluster center is defined as follows: 

V *=i 

where Xk,n is the Ath element of sequence n, z*,„ is the Ath element of cluster c. The 

weighting parameter, r, is equal to 1 when the clustering is hard, and the clustering 

becomes softer or fuzzier as r increases from 1. For fuzzy clustering, the value of r used is 

generally 1.25 < r < 2 (Hall and Minns, 1999). 

Fuzzy c-means clustering is carried out through an iterative optimization of the 

objective function (F). It starts with an assigned number of clusters ( Q and weighting 

parameter (r). The cluster centers are initially located in the mass center of all data 

sequences. With the set of initial cluster centers, every data sequence is assigned an initial 

and equal membership grade, ju, for each cluster. The //'s are collected in the partition 

matrix, l/p\ which is a C x K matrix where p denotes the number of iterations. The cluster 

centers and membership grades for each data sequence are upgraded through an iterative 

process. This process gradually moves the cluster centers to better sets of cluster centers, 

and the iteration stops when the difference in the updated U and the previous U is less than 

a prescribed limit, e. The summary of the process is as follow: 

1. Select a number of clusters ( Q and a weighting parameter (r), and initialize the 

partition matrix, 

2. Compute a new set of cluster centers, z: 
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N 

Z «=1 for k = 1,KdccvX c = 1 , C 3.20 

3. Update the elements of the partition matrix as follows: 
- i 

(/>+!) = 3.21 c,n 

4. Repeat the second and third step, and terminate when [A"1"̂  does not differ from 

Fuzzy c-means is a clustering tool that is relatively easy to employ. Of course, since 

it involves an optimization procedure, there is always a possibility of being trapped in a 

local optimum. This places uncertainties on the validity of the calibrated clusters. This 

problem is addressed in Chapter 5. The advantage of fuzzy c-means clustering, compared 

with the conventional clustering techniques, is that it may require less computing 

capabilities. The conventional clustering techniques involve the computation of the 

distances between sequences, yielding an N x N matrix. Because the matrix is symmetric 

and the elements in the diagonal are not used, the number of required elements can be 

reduced to (N2 - N)I2. This is the largest element load for this technique. All the other 

elements required by the techniques are considered to be negligible quantities. A case with 

10,000 data sequences, which is on the order of magnitude of the number of sequences 

employed in the applications in Chapter 5, would yield around 50,000,000 elements, 

therefore requiring a computer memory of about 400 Mb. Many personal computers 

nowadays would have difficulty to supply such a memory requirement, even assuming the 

element load is not duplicated for temporary variables for the procedures used by the 

clustering software. And this is a memory requirement that applies regardless of the desired 

number of clusters, whether it is 1 or 10,000. On the other hand, the largest requirement of 

the fuzzy c-means clustering is due to the matrices containing the distances (z) and the 

membership values (U). Both are C x N matrices, yielding a total of 2NC elements. To 

achieve equivalent memory load with both the conventional clustering techniques and 

fuzzy c-means approach, this would means that (N2 - N)I2 = 2NC, or that C be equal to 

(TV- l)/4. Using the same example of 10,000 sequences, this implies that C should be equal 

[/^ by more than e. 
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to 2,500 in order for the fuzzy c-means to match the memory requirement of the 

conventional clustering technique. 

3.2.3 Kohonen Neural Network 

The Kohonen neural network, which is well described in Kohonen (1990 and 1997), 

is another clustering technique that can be used as an alternative to the conventional 

statistical clustering techniques. Neural networks attempt to replicate the structure of the 

brain, and are built with single units called perceptron as illustrated in Figure 3.5. A 

perceptron contains a neuron that processes the information received, a set of input 

synapses that feed the neuron with information from other neurons, and a set of output 

synapses which ship the.product of the neuron processing towards other neurons. The most 

commonly used neural network structure is the backpropagation network, which is a series 

of layers of neurons. The raw information is received by the input layer, which basically 

plays the role of a sensor (e.g., eyes, ears, nose, tongue or skin), and is then transferred to 

the next layer through the synapses. This movement forward goes on from one layer to the 

next, until the processed information reaches the output layer, which provides the final 

answer to any given set of inputs fed to the input layer. Because of this structure, the 

backpropagation neural network can function as a simulation model, and has often been 

used as such in water resources application, as an alternative to other empirical or 

physically-based models. 

The Kohonen network, on the other hand, is designed as a tool to analyze inputs. As 

illustrated in Figure 3.6, the Kohonen network is made of an input layer that receives the 

data and an output layer composed of several neurons often structured in a two dimensional 

plane that ultimately sorts the input information in some determined pattern. Given a set of 

inputs fed to the input layer, only one neuron on the output layer is activated, that is, it 

returns a value of 1, while all the other neurons on the output layer return a value of 0. Let's 

look at one neuron on the output layer, as illustrated in Figure 3.7, to see how it can be 

activated. 
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Figure 3.5. Schema of a perceptron. 
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Figure 3.6. Structure of the Kohonen network. 
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Figure 3.7. Connection between an output neuron and the inputs neurons. 
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As seen in Figure 3.7, each of the n neurons on the input layer receives a single value h, 

where k - 1, n (e.g., a variable or an element in a data sequence), and transfer the value 

to the output neuron j through the synapse. Each synapse is associated with a weight W)^, 

providing a vector of weights Wj for output neuron j. The output neuron calculates the 

distance Dj between its weight vector and the input vector through the usual relationship: 

3.22 

In this context, the weight vector can be considered as the mass center of the output neuron, 

and the output neuron itself can then be viewed as the center of a cluster. The neuron on the 

output layer that is activated given an input vector is the one that yields the shortest 

distance Dj. 

The values of the elements in the weight vectors need to be calibrated so that the 

network covers the whole input domain. This calibration process tends to structure the 

output layer so that the input pattern can be defined in some meaningful coordinate system 

(Kohonen, 1990), which is why the Kohonen network is also called a self-organizing map. 

The most commonly employed types of maps are the grid map (rectangular shape) and the 

hexagonal map (hexagon shape). The calibration is an iterative process, where one input 

vector is fed to the network at every iteration. The weight vector of the activated neuron on 

the output layer is fully updated at every iteration, while the weight vectors of the 

neighboring output neurons are updated to some extent. A general formula for the updating 

of the weight vector (Wj), at iteration t, following the feeding of input vector I is: 

W0) =WJ'-i)+hJ(l-WJ'-l)) 3.23 

This formulation simply drives the weight vector to be closer to the input vector, and the 

weight vector is equal to the input vector if h equals 1. The parameter h determines the 

amplitude of the updating. For the study of data involving natural phenomena, one 

appropriate function ofh would be (Kohonen, 1991): 

A y =/* 0 exp(- (^ a /a ) 2 ) 3.24 

In this expression, dj,a is the distance between the activated neuron (a) and another neuron j 

as determined on the output map (layer). When j = a, the exponential equals 1 and the value 

of hj is at its maximum value (ho). The value of hj decreases as the distance between 
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activated neuron a and neuron j increases. Parameter ho gives the magnitude of the 

updating. It has a high value at the beginning of the calibration process so as to ensure a 

rapid spreading of the output neuron over the input domain, and is reduced at every 

iterative step so that only small adjustments are performed on the weight vector at the end 

of the calibration process. Parameter a is a scaling factor on the distance, and indicates the 

extent of the output map affected by the updating. It is set at a high value at the beginning 

of the calibration process so that a large neighborhood or number of output neurons are 

significantly updated, and its value is decreased at every iterative step so that only a small 

neighborhood or number of output neurons is significantly updated, leading to only small 

refinements at the end of the calibration process. 

There are several ways to express hj aside from Equation 3.24. Another common 

way is to employ a step function, which imposes adjustments of the weight vectors of the 

neurons that are within a specific distance from the activated neuron, and no adjustment on 

the weight vectors of the neurons that are beyond this specific distance from the activated 

neuron. The measure of distance can also vary. The one employed in Equation 3.24 is the 

Euclidian distance, but the Manhattan distance can also be an option for grid maps, and the 

distance based on the number of links that separate neurons from each other can be 

employed on hexagonal maps. Existing software automates the calibration processes for the 

Kohonen network, and usually starts the calibration with the weight vectors of all the 

output neurons concentrated on the mass center of the data domain. The calibration is 

performed using a large set of input vectors, which are fed randomly to the network at the 

rate of one input vector per iteration. A large number of iterations ensures that all input 

vectors are employed a significant number of times on the average at all times of the 

calibration process (i.e., from the rapid spreading to the refinements of the map). Visually, 

with this kind of calibration process, the output layer spreads out over the input domain. A 

good example of this visualization is presented in Figure 3 in Kohonen (1990, p. 1468), 

where the results of the calibration process are shown in six 6 different steps. There, the 

output layer stretches gradually from one calibration step to the next over a two-

dimensional input domain (two variables or two elements in the input vector). On a one 

dimensional input domain, the output layer would simply stretch in the ascending and 

descending directions of the data. With more than two elements or variables in the input 

47 



vectors, the behavior of the calibration is less predictable. With n elements in the input 

vectors and n dimension in the output layer, the calibration simply sorts the data in 

ascending or descending order in every dimension. When the dimensions of the output 

layer are smaller than the dimensions of the input vector, then the calibration process can 

spread the network over the input domain in an infinite number of ways. The greatest 

advantage of the Kohonen network is that it can reduce the dimension of a given problem 

so as to provide an easier grasp of the structure of the data. Indeed, using a two-

dimensional output layer map in order to classify an M-dimension input domain (n > 2) 

facilitates the visual interpretation of the patterns or structure of the data. Now, with the 

prospect that the calibration process can spread the network in so many different ways, 

there are possibilities that some parts of the input domains or some particular patterns in the 

data may be overlooked or not adequately represented in the final network. This results in 

uncertainty about the reliability of the network similar to that about the validity of the 

calibrated clusters with fuzzy c-means. As mentioned in Section 3.2.2, this problem is 

addressed in Chapter 5. 

Like fuzzy c-means clustering, the Kohonen network approach demands less 

computer capability than the conventional clustering techniques. In fact, the largest 

memory requirement comes from the matrix that stores all the weight vectors, a matrix that 

is required also by the conventional clustering technique and fuzzy c-means approaches. In 

brief, the Kohonen network has the smallest memory requirement of all other clustering 

techniques presented. Its disadvantage, as observed by experience in the applications in this 

thesis, is that achievement of a reasonably good calibration of the weight vectors is 

computationally intensive. When memory is not an object, the calibration of the Kohonen 

network takes the longest time compared with the other techniques. 

3.3 Applications of AITs 

Here, a brief overview and the common points of the application cases investigated 

in the subsequent chapters are given. The more critical details on how the AITs are 

structured or adapted to respond to the needs of the various applications are provided in the 

appropriate chapters as needed. Chapters 4 to 6 address the problem of data accuracy by the 

development and application of detection methods for the identification of anomalies in the 
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data. Three type of anomalies are investigated, that is 1) outliers, which are individual data 

having statistical properties that differ from those of the overall population; 2) shifts, which 

are sudden changes over time in the statistical properties of the historical records of data; 

and 3) trends, which are systematic changes over time in the statistical properties. Figure 

3.8 illustrates examples of these anomalies. 

Chapters 4 and 5, each respectively provides a variant of the use of fuzzy c-means 

and the Kohonen network for the detection of shifts and trends. These variants are 

compared to conventional statistical tests of detection for an evaluation of their 

performance. The work in Chapters 4 and 5 can be viewed as an exercise in determining the 

reliability of detecting shifts and trends of both the methods proposed here and of the 

conventional tests that have been used typically. In Chapter 5, the applications of the 

Kohonen network and fuzzy c-means are also applied for the detection of outliers. In these 

two chapters synthetic data established to represent hydrometric data observed in Canada 

are employed. In Chapter 6, real data are used to demonstrate the applicability of these 

methods. 

(a) Shifts 

J 
• • 

• _ _ * _ _ » . -

(b) Trends 

(c) Outliers 
-.-. — ~ - - n r » - ; - « — — 

Figure 3.8. Description of anomalies: (a) shifts, (b) trends and (c) outliers. 
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Data accuracy is the major issue of this thesis, and the goal is to develop methods 

that allow a description of the input (i.e., data in this case) domain in such a way that 

anomalous patterns in the data, generated by the presence of outliers, shifts or trends, can 

be identified. A secondary effort is also dedicated to the issue of another source of 

uncertainty in simulation modeling, that is, the model parameters, which are another type of 

input fed to the model. In Chapter 7, fuzzy logic is employed to map the value of some of 

the parameters of models with respect to relevant indicators of the system under study. 

From this mapping, specific values of the parameters can then be determined with respect 

to the system conditions in order to obtain improved model estimates compared with those 

from the model version where the parameter values remain constant regardless of the 

condition of the system. In Chapter 7, this parameter mapping is employed on a watershed 

model to estimate water inflow and on an algae growth model to estimate algae 

concentrations in a river. 
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Chapter 4 

Classification Procedures for Detecting Anomalies 

4.1 Introduction 

This chapter proposes one approach for detecting data anomalies, more precisely 

shifts and trends. The evaluation of the approach is achieved with an experiment that 

employs synthetic data designed to replicate hydrometric observations. Such data are 

regularly considered in studies for the detection of shifts and trends. Because this approach 

cannot be applied for the detection of outliers, this type of anomaly is not considered here. 

A second approach, which is presented in Chapter 5, addresses all anomalies of interest in 

this thesis. 

Hydrometric measurement sequences can be subject to shifts and trends due to the 

effects of anthropogenic and natural changes on water inflow regimes in watersheds over 

time. In the planning and management of water resources systems, it is important to be 

aware of such patterns in order to estimate water availability as accurately as possible. 

Recently, several extensive studies, such as those of Anderson et al. (1992), Yulianti and 

Burn (1998), and Zhang et al. (2001) in Canada and Lettenmaier et al. (1994) and Lins and 

Slack (1999) in the United States, have been undertaken with the goal of determining 

whether trends, and in some cases shifts, are present in historical records of streamflow 

measurements. These studies provide a wealth of information since many stations over 

large territories are assessed. However, the authors of these studies imply that the validity 

of the results depends greatly on the accuracy of the statistical tests used for the detection of 

shifts and trends. The statistical tests also impose restrictions, for example, that data be 

independent, or that data or results of the tests follow a specific distribution, often the 

Normal distribution. Independence of the data is necessary, but the imposition of a 

distribution may lead to a bias in the results if the distribution is not adequately 

representative of reality. The application of AITs for pattern recognition does not require 

any assumption regarding the distribution of the data or the test results. 

This chapter first describes the conventional statistical detection tests in some detail, 

and develops approaches for using AITs to detect shifts and trends. In the following 
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section, a description of the experimental design and database employed for the evaluation 

and the comparison of the performance of all the methods involved, both conventional and 

artificial intelligence based, is provided. This database is comprised of univariate cases, for 

which the conventional detection tests are commonly applied, as well as multivariate cases. 

Examples of multivariate cases are sets of streamflow data from several gauging stations or 

time sequences of different variates such as streamflows and stream temperatures. A review 

and discussion of the experimental results constitute the last section of this chapter. 

4.2 Conventional Detection Tests 

4.2.1 Shifts 

The Student's and the Mann-Whitney tests can be used for detecting shifts. Given a 

sequence of individuals xt, t = 1, ...,N, that is divided into two continuous sub-sequences of 

size «i and ni ( « i + « 2 - AO, both tests assume a null hypothesis stating that both sub­

sequences come from the same population. The Student's test determines the absolute value 

of the standardized difference of the means of the sub-sequences (T), as indicated in 

Equation 4.1. 

where xx and s\ are the mean and standard deviation of sub-sequence 1, prior to the shift, 

and x2 and si are the mean and standard deviation of sub-sequence 2, posterior to the shift. 

The null hypothesis is T is greater than T\.a/2,v, which is the l-a/2 quantile of the Student's 

distribution, with v = N-2 degrees of freedom and a as the significance level of the test. For 

the Mann-Whitney test, the entire sequence is sorted in ascending order, and the mean of 

the position in the sorted sequence of the individuals of the first sub-sequence is calculated. 

Equation 4.3 shows the process of calculating this mean, which is also standardized. The 

absolute value of the absolute mean gives the value of u. Formally: 

T = 4.1 

with: 

4.2 
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( ^ 
^R(x,) — 0.5« l (n, +n2 +l) 

* = U ' / , , 0 5 4.3 
(nln2(nl +n2 + l)/\2) ' 

where R(xt) is the rank in the sorted sequence of element x,. The null hypothesis is rejected 

if u is greater than u\.a/2, which is the \-al2 quantile of the standard Normal distribution, 

with a as the significance level of the test. For both tests, the location of the shift and 

consequently the size of n\ and «2 are assumed to be known (Salas, 1993). A practical way 

to circumvent the problem of an unknown shift location is to apply the test at all potential 

shift locations, and to assume that the shift actually occurs at the location of the largest test 

value above the value of T\.a/2,v and u\.an, respectively, for the Student's and Mann-

Whitney tests. 

4.2.2 Trends 

The Mann-Kendall and the Spearman tests can be used for detecting trends. Given a 

sequence of individuals xh t = I, N, both tests assume a null hypothesis stating that there 

is no trend in the sequence. The Mann-Kendall test considers the sum (Z) of the gradients 

between each individual x,, t = 1, N-l, and all the subsequent individuals x,-, t' = t+l, 

..., N, in the sequence, as shown in Equation 4.4. 

N-l N 

Z = ZZV 4.4 

where: 

1 if xr > xt 

0 if x, = x, 4.5 

-1 if x„ < x, 

The sum of the sign of the gradients is then standardized as indicated in Equation 4.6 in 

order to give u. 

Z + m 

u = , — f 4.6 

with: 
V(z) = ~N(N-\\2N + 5) 4.7 

18 
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where m = 1 if Z < 0, and m = -1 if Z > 0. Variable V(Z) is the estimated variance for the 

sum of gradients Z, and must be slightly altered as shown in Salas (1993) when there are 

duplicates in the sequence (i.e., individuals in the sequence with the same value). The null 

hypothesis is rejected if the absolute standardized value of u is greater than u\.ari, which is 

the \-al2 quantile of the standard Normal distribution, with a as the significance level of 

the test. For the Spearman test, the sum of the difference between the actual position of 

each individual in the sequence, and its position in the sequence when it is sorted in 

ascending order, is performed, then standardized to yield quantity p, as given in Equation 

4.8. 

6Z«*,)-02 

p = \—'±-r—2 r— 4.8 
N\N2-\) 

where R(xt) is the rank in the sorted sequence of element xt. The null hypothesis is rejected 

if the absolute standardized value is greater than p\.aii, which is the \-aJ2 quantile of the 

probability distribution related to the Spearman test, with a as the significance level of the 

test. The distribution can be found in Conover (1980). The results of the Mann-Kendall test 

may be affected if the sequence exhibits a significant auto-correlation. One can account for 

this by performing the test on the pre-whitened sequence. Assuming that r is the lag-1 auto­

correlation, the pre-whitened sequence is xi-rx\, xn-rx„.\. It is suggested that one pre-

whiten the sequence if r > 0.1 (Zhang et al., 2001). 

4.2.3 Multivariate Cases 

With the exception of the Mann-Kendall test, the aforementioned tests for shifts and 

trends, as described by Conover (1980) and Salas (1993), can only assess one data 

sequence at a time. It is not possible to use these tests to assess several sequences 

simultaneously to obtain an overall diagnosis of the presence of a shift or trend in such 

cases. Hirsh et al. (1982) develop a variation of the Mann-Kendall test for the detection of 

trends that provides an overall diagnosis when applied to several data sequences. This 

variation is an extension of the traditional univariate Mann-Kendall test. Hirsh and Slack 

(1984) extend the Mann-Kendall test further to account for serial dependence between the 

data sequences. 
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4.3 Detection Tests Based on Artificial Intelligence Techniques 

4.3.1 Shifts 

The purpose of clustering techniques such as the Kohonen network is to classify the 

individuals of a data sequence with respect to some specified features. Consider a 

univariate data sequence made of individuals coming from two distinct populations, as 

would be the case if there were a shift. If this data sequence were used to calibrate a 

Kohonen network, it would be expected that the individuals from the first population would 

activate a particular region of neurons on the output map, while the individuals from the 

other population would activate other neurons. On the Kohonen network map, as shown in 

Figure 4.1, the centroids (i.e., the bold dots) of the regions affected by each population can 

be calculated the same way centroids can be determined on a topographic map, and the 

distance between centroids thus becomes an indicator of the magnitude of the shift. 

Figure 4.1. Detection of a shift with the Kohonen network. 

For this application, distances obtained from the network are divided by the maximum 

distance that can possibly be achieved by the network. This standardization, which limits 

the distance values between 0 and 1, allows comparison between distances from different 

networks, whatever their respective dimensions. Similarly, if the clusters in fuzzy c-means 

can be ordered to form a map, then centroids and standardized distances can also be 

determined. Employed as such, the Kohonen network and fuzzy c-means perform exactly 

the same function as the Student's and Mann-Whitney tests which also provide a measure 
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of the distance that differentiates two populations. For all techniques, conventional and 

artificial intelligence tests, if the location of the shift in the data sequence is not known, the 

strategy is to verify all potential locations, and the location that produces the largest 

differentiating distance is assumed to be the most likely location of the shift. Also, if there 

is no shift at all in the data set, then all techniques should produce distances equal to zero at 

all potential locations. 

4.3.2 Trends 

With trends, it is assumed that features in the data sample constantly vary over time. 

This is the equivalent of having shifts at all possible locations on the data sample. Under 

this circumstance, all techniques employed for the detection of shifts would provide 

distances that are greater than zero for all potential locations. The Kohonen network, and 

fuzzy c-means once the clusters are ordered, would also give non-zero distances at all 

locations. This means, for example, that distinct regions of the Kohonen map (or the map of 

the clusters with fuzzy c-means) would be activated by the data before and after each 

location. Therefore a measure of the presence of a trend would be the mean of these 

distances. A large mean distance would indicate the likely presence of a trend while a small 

mean distance would indicate a lesser or no trend. Another way to use the Kohonen 

network and fuzzy c-means to detect trends is by verifying how the individuals of the data 

sample are grouped in each neuron and cluster. Indeed, if either technique were calibrated 

for data that fall on a smooth curve, then the chosen weights would assign each neuron or 

cluster to only a specific part of that curve. Similarly, with a data set that represents the 

record of a trend over time, each neuron or cluster should be activated by the data coming 

from a specific period of time. By extension, specific regions of the Kohonen map (or the 

map of the clusters with fuzzy c-means) would be activated with data coming from a 

specific period of time, as illustrated in Figure 4.2. The evaluation of the mean distance or 

the data grouping represents a measure of cohesion between data. The Mann-Kendall and 

Spearman tests evaluate how each individual in the data set ranks with respect to the other 

individuals, and therefore also provide a measure of cohesion between data. 

56 



1st quarter of the sample 3rd quarter of the sample 

2nd quarter of the sample 4th quarter of the sample 

Figure 4.2. Detection of a trend with the Kohonen network. 

4.3.3 Advantages and Disadvantages 

The approaches for using AITs as detection tests are straightforward. For the 

univariate case, one data sequence is employed for the calibration of the Kohonen network 

or the clusters of fuzzy c-means, feeding only one individual of the sequence at a time. This 

calibration provides a one-dimension map. After calibration, the individuals of the same 

sequence are fed again to the Kohonen network or the clusters of fuzzy c-means, to see 

which neurons or clusters are activated and to evaluate the distance or cohesion, as 

explained in Section 4.3.1 and 4.3.2. The mapping properties of the Kohonen network 

make this technique a very suitable tool for the estimation of distance or cohesion between 

data elements. Fuzzy c-means is less suitable because it requires that the clusters be sorted 

before they are used as a map for estimating both distance and cohesion. The preliminary 

analysis of the results show that the fuzzy c-means approach used as indicated in this 

chapter is slightly inferior to the Kohonen network. The emphasis in this chapter is 

therefore placed on the Kohonen network and the comparison of its performance with that 

of the conventional statistical detection tests. In Chapter 5, a different detection strategy is 

proposed, where the use of both the Kohonen network and fuzzy c-means is suitable. 

A disadvantage of the use of AITs for the detection of shifts and trends is that there 

is no decision criterion, or threshold, such as those under the conventional statistical tests, 

to indicate, with some level of confidence, whether or not there is a shift or a trend. Here an 

approach is proposed for determining the threshold for the occurrence of a shift or trend, 
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and it is based on minimizing the number of false detections by the AIT-based detection 

tests. This approach is applied with the AITs so as to provide them with a decision 

criterion, but it is also applied on the conventional statistical tests to compare the threshold 

based on a confidence level with that based on the minimization of false detection. The 

advantage of the Kohonen network is that it easily accommodates multivariate cases, that 

is, more than one data sequence or variate, unlike most statistical tests described in Section 

4.2. For multivariate cases, one would increase the number of neurons in the input layer by 

one additional neuron per variate, and the number of weights per neuron in the output layer 

by one additional weight per variate. 

In order to calibrate the artificial intelligence techniques, there cannot be more 

parameters (i.e, weights of the output neurons for the Kohonen network and elements of the 

cluster centers for fuzzy c-means) than there are input vectors from the data sequences. 

Here, the number of parameters (i.e., the product of the number of variates and the number 

of output neurons or clusters) is restricted so that it is approximately 20% of the number of 

input vectors (i.e., the number of individuals in the data sequences). For example, consider 

a sequence of 30-individual data with two variates. For this multivariate case, the Kohonen 

network may be employed, and could accommodate six total weights (i.e., 30 individuals x 

0.20 = 6). Therefore, for the two variates, three output neurons would be possible (i.e., six 

total weights -H two variates). 

4.4 Experimental Design and Database 

Synthetic streamflow data sequences, generated by Monte-Carlo simulations, are 

used here to evaluate the performance of the tests for shifts and trends. The necessary 

random generators used in these Monte-Carlo simulations are those provided in M A T L A B . 

This Monte-Carlo approach is inspired by that of Hirsh et al. (1982), although the data type 

and method of analysis are different and several conventional tests as well as the Kohonen 

network and fuzzy c-means tests are evaluated. The means and coefficients of variation of 

the data are specified to reflect those of natural streamflow records found in Canada. These 

statistical properties could represent annual or seasonal streamflow peak and mean 

sequences. 
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The performance of each test for detecting a shift or trend is evaluated for cases that 

represent variations in (1) the length of the data sequences, (2) the coefficient of variation 

of the individuals in the sequence, and (3) the amplitude of the shifts or trends imposed on 

the data sequences. Synthetic streamflow data sequences comprised of 30, 40 or 50-

individual data sequences are used. A batch is defined as a grouping of five sets of 

sequences (each set being comprised of 10,000 sequences). Each set in a batch represents 

data for a specific variate, and experiments are conducted for the univariate case, as well as 

for cases involving two and five variates. The mean and the coefficient of variation of the 

data sequences vary uniformly between 1 and 20,000 and between 0.05 and 0.5, 

respectively. Each point in a sequence is created randomly, following a Normal 

distribution. 

In order to determine the success in detecting shifts or trends, half of the data 

sequences in each batch are corrupted each with one shift or one trend, depending on the 

test conducted, and the other half are uncorrupted. If a sequence in a set is corrupted, then 

all the corresponding sequences in the other sets (i.e., for the other variates) of the batch are 

also corrupted. For tests of shifts, the shift amplitude is chosen randomly, following a 

Uniform distribution, and can be as much as ±25% of the mean of the sequence prior to the 

shift. The location of the shift is determined randomly, following a Uniform distribution, 

and can be anywhere in the sequence except within the first and last five individuals. The 

location of the shift, when there is one, is the same for all corresponding sequences in the 

sets (i.e., for the other variates) of a batch. For tests of trends, the amplitude of the increase 

or decrease of the mean is chosen randomly, following a Uniform distribution, and can be 

as much as ±0.5% of the initial mean per time step. The direction of the trend, when there is 

one, is the same, either downward or upward, in all corresponding sequences in the sets of a 

batch. For detection of both shifts and trends, two types of batches are examined, each 

having the same sequence length (i.e., either 30, 40 or 50 individuals). In one batch, 

corruption within corresponding sequences is of the same amplitude, while in the other 

batch the amplitude of the corruption varies within corresponding sequences. Thus the 

performance of the detection tests is investigated for twelve batches of data, that is, two 

batches each for data sequences of 30-, 40- and 50-individuals, and this for both tests for 

detection of shifts and trends. 

59 



The cases examined are referenced based on identification codes presented in Table 

4.1. Each detection test is identified by two letters, which are followed by a number and a 

series of letters that represents the number of variates examined and variations in the data. 

For example, MK5BW represents the Mann-Kendall test, multivariate case where five 

corresponding sequences are tested simultaneously, in which trends of different amplitude 

exist within corresponding data sequences, and data sequences are whitened. As a memory 

aid for distinguishing the conventional statistical test from the tests using the Kohonen 

network, remember that the identification code for the latter tests always starts with a K. 

Similarly, the identification code for fuzzy c-means always starts with an F. 

Table 4.1. Cases of detection tests evaluated. 

Initials Description 
(a) Shifts 
MW Mann-Whitney test 
ST Student's test 
FS Fuzzy c-means test for shifts 
KS Kohonen network test for shifts 
(b) Trends 
SP Spearman test 
M K Mann-Kendall test 
FT Fuzzy c-means test for trends 
K T Kohonen network test for trends 
(c) Further details following the first two letters identifying the test 
1 Univariate case, one sequence tested at a time 
2 Multivariate case, two sequences tested simultaneously 
5 Multivariate case, five sequences tested simultaneously 
A Cases of shifts or trends of same amplitude within corresponding sequences 

(multivariate cases only) 
B Cases of shifts or trends of different amplitude within corresponding 

sequences (multivariate cases only) 
W Withened sequences (apply to Mann-Kendall test only) 

4.5 Results 

4.5.1 Corrupted Versus Uncorrupted Data 

The value of a detection test is determined by its capacity to differentiate between 

corrupted and uncorrupted data, in other words by its capacity to avoid false detection. 

False detection occurs when corrupted sequences are falsely identified as uncorrupted and 

when uncorrupted sequences are falsely identified as corrupted. All detection tests for shifts 
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give a measure of distance while all detection tests for trends give a measure of cohesion. 

Larger distances or cohesion, indicate larger likelihood of shifts or trends, respectively. Of 

course, the greater the amplitude of a shift or trend, the greater the likelihood of a high 

measure of distance or cohesion, although the variance of the data sequence may also affect 

the measure of the distance or cohesion. Consequently, the efficiency of detection tests is 

analyzed here with respect to the ratio of the amplitude of the corruption to the coefficient 

of variation of the data sequences (Amp/CV). Figure 4.3 provides a typical representation 

of the relationship between the average maximum distances and the Amp/CV ratio. The 

data in Figure 4.3 show the results for the MW1 case for shifts for all sequence sizes tested, 

although similar results are obtained for all other tests, conventional and AIT-based, 

applied to univariate cases, for both the detection of shifts and trends. 
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Figure 4.3. Mann-Whitney test for the detection of shifts for univariate cases. 

Figure 4.3 shows that the average maximum distances are high for both largely 

positive and largely negative Amp/CV ratios. Indeed, providing the amplitude of the shift 

or trend is significantly large compared with the coefficient of variation, one can easily see 

the corruption in a chronologically plotted data sequence. As the Amp/CV ratios decrease, 
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the average maximum distances become smaller and reach a minimum when Amp/CV = 0. 

In data sequences affected by shifts or trends of small amplitude compared with the 

coefficient of variation it becomes more difficult to visually identify the corruption. 

Importantly, Figure 4.3 shows that the average distances for data sequences with small 

Amp/CV ratios are quite close to the average distance for uncorrupted data sequences (i.e., 

Amp/CV = 0). In practice, a threshold distance value, based on a confidence level (e.g., 

95%, as shown in Figure 4.3) in the case of the conventional statistical tests, is normally 

used to distinguish between corrupted and uncorrupted sequences. A false detection occurs 

when the distance value of an uncorrupted data sequence is' higher than the threshold value, 

or when the distance value of a corrupted sequence is smaller than the threshold value. 

False detection for corrupted sequences is highly possible when the Amp/CV ratio is small. 

In an ideal situation, the distance values for uncorrupted sequences should be as close as 

possible to zero, while the distance values for corrupted sequences should be as high as 

possible, thus allowing for a clear threshold to be determined that minimizes, if not 

prevents, false detection. 

4.5.2 Setting the Threshold Values 

For conventional statistical tests, there is no indication that setting a confidence 

level at 90, 95 or 99% would provide optimal results in terms of reducing false detection. 

This confidence level is only a statistical concept that has little meaning relative to the data 

being analyzed. Here, for the Kohonen network and the conventional tests, the optimal 

threshold is set at a value that minimizes false detection expressed by the sum of 1) the 

ratio of uncorrupted sequences falsely detected as corrupted over the total number of 

sequences, plus 2) the ratio of corrupted sequences falsely detected as uncorrupted over the 

total number of sequences. In the minimization process, equal weights are given to both 

ratios, for it is just as unacceptable to falsely detect corrupted sequences as it is to falsely 

detect uncorrupted ones. This approach is necessary for the detection tests employing the 

Kohonen network, as there is no other way to determine a threshold value for these tests. It 

is also applied for the conventional statistical tests, as shown in Table 4.2 for shifts and 

Table 4.3 for trends. For the conventional tests, the most commonly used confidence level 

of 95% is also shown, for comparison sake. In Tables 4.2 and 4.3, column 1 is the detection 
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test employed, column 2 is the threshold value obtained from the minimization procedure, 

column 3 is the ratio (U, in %) of falsely-detected uncorrupted sequences, over the total 

number of sequences, column 4 is the ratio (C, in %) of falsely-detected corrupted 

sequences over the total number of sequences, column 5 is the sum of columns 3 and 4, and 

columns 6 to 9 are the same as columns 2 to 5, with the threshold values based on the 95% 

confidence level. In Table 4.2, the Us can be added to the Cs directly, because there is an 

equal proportion of uncorrupted and corrupted sequences in the database. 

Table 4.2 indicates that the conventional statistical tests perform slightly better than 

the Kohonen network, the best test being the Student's test (STl). Also, as the sequence 

size increases, the Mann-Whitney test (MWl) performs better when the threshold is chosen 

based on the minimization of false detection than when the 95% confidence level is used. 

Compared with the thresholds based on the 95% confidence level, the thresholds based on 

the minimization process result in a lower ratio of uncorrupted sequences falsely detected 

as corrupted and in a higher ratio of corrupted sequences falsely detected as uncorrupted. 

Overall, the tests for the detection of shifts perform a false detection about 30% of the time. 

Table 4.2. Thresholds for univariate cases with shifts. 

Case Optimal 95% confidence level 
Threshold False detection ratio (%) Threshold False detection ratio (%) 

U C U+C U C U+C 
(a) 30-individual sequences 
MWl 2.26 7.6 23.8 31.3 1.96 14.7 17.8 32.5 
STl 2.43 7.6 23.3 30.9 2.37 8.5 22.4 30.9 
KSl 0.31 8.6 23.2 31.8 NA NA NA NA 
(b) 40-individual sequences 
MWl 2.44 6.0 23.7 29.6 1.96 17.1 14.9 31.9 
STl 2.53 7.0 22.2 29.2 2.33 10.2 19.4 29.6 
KSl 0.29 7.7 24.1 31.8 NA NA NA NA 
(c) 50-individual sequences 
MWl 2.43 7.0 21.1 28.1 1.96 18.5 12.8 31.3 
STl 2.55 7.0 20.5 27.6 2.31 11.2 17.0 28.2 
KSl 0.27 8.0 22.3 30.3 NA NA NA NA 

Note: NA = Not Applicable. 

Table 4.3 indicates that the Kohonen network using a threshold based on the 

minimization process performs slightly better than the conventional statistical tests with 

thresholds based on the 95% confidence level. When the thresholds based on the 
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minimization process are employed, the conventional statistical tests perform as well as the 

Kohonen network. Also, it appears that whitening the sequences prior to using the Mann-

Kendall test is detrimental, as this approach results in the worst performance of all 

detection tests for trends. Compared with the thresholds based on the 95% confidence level, 

the thresholds based on the minimization process result in a higher ratio of uncorrupted 

sequences falsely detected as corrupted and in a lower ratio of corrupted sequences falsely 

detected as uncorrupted. Overall, the tests employed for the detection of trends perform a 

false detection around 40, 35 and 30% of the time, for 30, 40 and 50-individual sequences, 

respectively. The improvement of the performance as the sequence size increases in the 

cases of trends is due to the nature of the corruption or trend in that it becomes more 

obvious with time. When there is a trend, the average of the sequence is increased or 

decreased at every time step by some percentage of the initial average (0.5% per time step 

being the maximum), and this systematic modification is easier to detect in the long term 

(large sequence size) than in the short term (small sequence size). 

Table 4.3. Thresholds for univariate cases with trends. 

Case Optimal 95% confidence level 
Threshold False detection ratio (%) Threshold False detection ratio (%) 

U C U+C U C U+C 
(a) 30-individual sequences 
MK1 1.25 10.0 32.0 42.0 1.96 2.4 41.9 44.2 
MK1W 1.03 13.4 29.5 42.9 1.96 1.6 44.8 46.4 
SP1 0.23 10.6 31.3 41.9 0.36 2.5 41.6 44.1 
KT1 0.16 12.8 28.7 41.6 NA NA NA NA 
(b) 40-individual sequences 
MK1 1.34 8.6 27.6 36.2 1.96 2.4 36.5 39.0 
MK1W 1.19 10.4 26.7 37.2 1.96 1.7 39.8 41.5 
SP1 0.20 10.6 25.5 36.1 0.31 2.6 36.1 38.7 
KT1 0.14 8.4 28.3 36.7 NA NA NA NA 
(c) 50-individual sequences 
MK1 1.42 7.5 23.4 31.0 1.96 2.4 30.7 33.1 
MK1W 1.31 8.6 23.3 31.8 1.96 1.9 33.5 35.4 
SP1 0.19 8.8 22.2 30.9 0.28 2.5 30.5 33.0 
KT1 0.13 8.4 22.8 31.2 NA NA NA NA 

Note: NA = Not Applicable. 

4.5.3 Finding the Location of Shifts 

In the case of shifts, the challenge is not only in determining whether or not there is 

a shift, but also in finding the location of the shift when there is one. For the univariate 
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cases, Table 4.4 presents the success rate of all tests in identifying the location of the shifts. 

Here, the results consider only the corrupted sequences, and success of identification occurs 

when the test properly detects the presence of a shift (i.e., the differentiating distance value 

above the detection threshold) and identifies its location exactly or within ±1, 2, 3, 4, or 5 

time steps. Table 4.4 indicates that all tests exactly identify the location of the shift on 

corrupted sequences approximately 20% of the time, and within ±5 time steps slightly more 

than 40% of the time. Conventional statistical tests perform slightly better than the 

Kohonen network. The performance slightly decreases as the sequence size increases, 

because it becomes more difficult to properly identify the location of the shift as the 

number of possible locations increases. Of course, the success rate varies with respect to 

the Amp/CV ratio, that is, a sequence with a highly positive or negative Amp/CV ratio (i.e., 

a greater distance value on the average) is more likely to provide a clearer indication of the 

location of the shift than a sequence with a smaller Amp/CV ratio. When the Amp/CV is 

greater than | ± 1.75 |, the success rate of finding the exact location of the shift is 80% or 

above for all detection tests, and is 100% when identifying the location of the shift within 

±5 time steps. With small Amp/CV values, less than | ±0.25 |, the success rate of finding the 

exact location of the shift is approximately 5% for all tests, and is slightly more than 20% 

when identifying the location of the shift within ±5 time steps. 

Table 4.4. Success rate in identifying the location of the shift with univariate cases. 

Case Success rate (%) in identifying the location of the shift at pli LIS minus 
0 time 1 time 2 time 3 time 4 time 5 time 
step step steps steps steps steps 

(a) 30-individual sequences 
M W l 19 31 37 41 44 46 
STl 20 31 37 41 44 46 
K S l 17 27 32 36 39 41 
(b) 40-individual sequences 
M W l 19 30 36 39 42 43 
STl 21 31 38 41 44 46 
K S l 16 24 29 32 35 36 
(c) 50-individual sequences 
M W l 19 31 37 41 43 46 
STl 20 31 37 41 43 46 
K S l 15 24 29 32 34 36 
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4.5.4 Multivariate Cases 

Typically, an analysis of shifts and trends with a multivariate sequence is expected 

to provide a clearer response than that from analyzing univariate cases separately. As 

indicated previously, the Kohonen network can detect both shifts and trends for 

multivariate cases, and the Mann-Kendall test can detect trends for multivariate cases. In 

the case of the Mann-Kendall test, the approach developed by Hirsh and Slack (1984), 

which takes the serial dependence between sequences into account, is evaluated here. The 

results presented show that detection tests for multivariate cases indeed perform better than 

those for univariate cases. The improvement in the performance is illustrated by values of 

distance (shifts) or cohesion (trends) between corrupted and uncorrupted sequences that are 

more distinctive than those under the univariate case. Similarly to Figure 4.3, Figure 4.4 

presents the average maximum distances with respect to the Amp/CV ratio obtained from 

the Kohonen network, testing five sequences simultaneously, for the detection of shifts. 
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Figure 4.4. Kohonen network for the detection of shifts for multivariate cases. 

Again, particular attention should be given to the region with small Amp/CV ratios. The 

distances in Figures 4.3 and 4.4 are on different scales. However, the ratio of the average 
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distance for corrupted sequences (i.e., at an Amp/CV = ±0.25) and the average distance for 

uncorrupted sequences (i.e., at an Amp/CV = 0) is proportionally larger for the data shown 

in Figure 4.4 than that for the data shown in Figure 4.3. This ratio equals 1.07, 1.07 and 

1.09 for univariate 30, 40 and 50-individual sequence cases, respectively, while it is equal 

to 1.19, 1.21 and 1.22 for multivariate 30, 40 and 50-individiual sequence cases. Similar 

conclusions can be drawn for corrupted sequences with larger Amp/CV ratios versus 

uncorrupted sequences (Amp/CV = 0). This implies that there is more potential in the 

multivariate case to establish a threshold value that differentiates between corrupted and 

uncorrupted sequences, and this results in a reduced occurrence of false detection compared 

with that of the univariate case. 

Tables 4.5 and 4.6 show the percentage of falsely detected sequences for 

multivariate cases for shifts and trends, respectively. The data in Tables 4.5 and 4.6 confirm 

the reduced occurrence of false detection in the multivariate cases compared with that of 

univariate cases presented in Tables 4.2 and 4.3. 

Table 4.5. Thresholds for multivariate cases with shifts. 

Case Optimal 
Threshold False detection ratio (%) 

U C U+C 
(a) 3 0-individual sequences 
KS2A 0.42 6.9 23.6 30.5 
KS2B 0.41 9.0 21.6 30.6 
KS5A 0.52 5.1 20.1 25.3 
KS5B 0.50 6.6 14.4 21.0 
(b) 40-individual sequences 
KS2A 0.38 5.9 24.3 30.3 
KS2B 0.37 6.2 23.3 29.5 
KS5A 0.49 6.0 18.5 24.6 
KS5B 0.49 5.8 13.6 19.4 
(c) 50-individual sequences 
KS2A 0.32 8.5 21.0 29.5 
KS2B 0.32 8.7 21.2 29.9 
KS5A 0.47 6.7 17.3 24.0 
KS5B 0.45 7.4 12.0 19.4 

The results related to shifts in Tables 4.5 and 4.2 show that there is no reduction of 

false detection when two sequences are tested simultaneously (KS2A and KS2B), but the 
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reduction is definitely noticeable when five sequences are tested simultaneously (KS5A and 

KS5B). The KS5B case (i.e., where the B signifies the case with shifts of different 

amplitude within corresponding sequences) provides better results than the KS5A case (i.e., 

where the A signifies the case of shifts of same amplitude within corresponding sequences). 

This can be explained by considering the relative sizes of amplitudes of shifts. For all A 

cases a sequence with a small, difficult to detect, amplitude is combined with other 

sequences with the same small, equally difficult to detect, amplitude, making the overall 

detection of the shift on all sequences difficult. For all B cases a sequence with a small, 

difficult to detect, amplitude may be combined with a sequence with a large, potentially 

easier to detect, amplitude, making the overall detection of the shift on these sequences 

easy. Hence the overall performance of tests for the B cases is greater than that of the A 

cases. 

For multivariate tests of trends, eight possible cases can be generated from the 

Mann-Kendall test (MK2A, MK2AW, MK2B, MK2BW, MK5A, MK5AW, MK5B, 

MK5BW), and two cases can be generated from the Kohonen network (KT2A and KT2B), 

but for the sake of conciseness Table 4.6 only presents a sampling of all possible cases, 

which are considered representative. The Kohonen network cannot be used for cases of five 

sequences tested simultaneously (i.e., KT5A and KT5B) due to the restriction imposed on 

the number of output neurons with respect to the sequence size. 

Table 4.6. Thresholds for multivariate cases with trends. 

Case Optimal 95% confidence level 
Threshold False detection ratio (%) Threshold False detection ratio (%) 

U C U+C U C U+C 
(a) 30-individual sequences 
MK2B 1.23 12.0 25.8 37.8 1.96 3.9 37.6 41.6 
MK5B 1.30 10.9 17.6 28.5 1.96 4.0 30.7 34.7 
MK5BW 1.18 11.6 19.8 31.4 1.96 3.7 35.9 39.5 
KT2B 0.21 10.2 31.3 41.5 NA NA NA NA 
(b) 40-individual sequences 
MK2B 1.48 8.2 22.3 30.5 1.96 3.7 30.0 33.6 
MK5B 1.49 7.9 10.5 18.4 1.96 3.9 17.6 21.5 
MK5BW 1.31 9.3 11.2 20.5 1.96 3.4 23.3 26.7 
KT2B 0.19 6.4 31.2 37.6 NA . NA NA NA 
(c) 50-individual sequences 
MK2B 1.58 6.6 16.2 22.8 1.96 3.3 21.4 24.8 
MK5B 1.79 4.9 6.0 10.9 1.96 3.8 7.6 11.4 
MK5BW 1.58 6.3 6.5 12.9 1.96 3.5 11.7 15.2 
KT2B 0.16 7.1 25.6 32.6 NA NA NA NA 

Note: NA = Not Applicable. 
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The results related to trends in Tables 4.6 and 4.3 show that a noticeable reduction 

of false detection occurs when two sequences are tested simultaneously with the Mann-

Kendall test (MK2J3), and that the reduction is even more pronounced when five sequences 

are tested simultaneously (MK5B and MK5BW). The Kohonen network for the detection 

of trends yields no noticeable improvement in the case of two sequences tested 

simultaneously. Note that whitening the sequences before the test (i.e., the W cases) results 

in greater false detection. As was observed for the univariate case, false detection decreases 

as the sequence size increases. As was observed for the tests for the detection of shifts, for 

detection of trends, the B cases yield better results than the A cases. For all cases in 

detection of trends, the threshold values based on the 95% confidence level always lead to 

more false detection than the cases in which the threshold is based on the minimization of 

false detection. 

In the case of shifts, the approach for finding the location of the shift is more 

successful with the multivariate cases than it is with univariate cases. Table 4.7 shows the 

success rate of finding the location exactly and within ±5 time steps. In comparison with 

the results given in Table 4.4, there is no real improvement when two sequences are tested 

simultaneously (KS2A and KS2B), but the improvement is apparent when five sequences 

are tested simultaneously (KS5A and KS5B). 

4.6 Discussion and Conclusion 

The results presented are in agreement with those of Hirsh et al. (1982) with respect 

to the behavior of the detection tests, and while AIT-based tests may be thought of as 

confirming the conventional tests, one must use all of these tests with caution. Indeed, the 

rate of false detection for univariate cases of at best around 30% for shifts and trends shown 

in this work is certainly high, even from a hydrologic perspective where errors due to 

uncertainties related to data adequacy and model structures can be significant. The results 

worsen as the amplitude of the shift or the trend decreases, yet it is desirable that a 

technique be able to reliably detect shifts and trends of low amplitude, for even a small 

change of the mean in the streamflow regime can make the difference between a profitable 

and non-profitable water resources project. 
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Table 4.7. Success rate in identifying the location of the shift with multivariate cases. 

Case Success rate (%) in identifying the location of the shift at plus minus 
0 time 1 time 2 time 3 time 4 time 5 time 
step step steps steps steps steps 

(a) 30-individual sequences 
KS2A 23 32 36 40 42 44 
KS2B 22 33 38 42 44 46 
KS5A 35 45 49 52 53 54 
KS5B 39 52 57 61 63 64 
(b) 40-individual sequences 
KS2A 21 29 33 36 38 40 
KS2B 20 29 33 37 39 41 
KS5A 36 45 50 52 54 55 
KS5B 40 51 57 60 62 64 
(c) 50-individual sequences 
KS2A 20 28 32 35 37 39 
KS2B 19 27 32 35 38 39 
KS5A 36 46 50 52 55 56 
KS5B 39 51 57 61 63 65 

The performance of the detection tests is evaluated using synthetic data, which are 

designed to represent the mean and coefficient of variation of data originating from 

hydrometric measurements in Canada. No attempt has been made to add more parameters 

in the characterization of data, such as through auto-correlation to account for possible 

dependence among data points or the skewness coefficient so as to depart from the Normal 

distribution. It would require a large amount of data sequences to account for the variability 

of all these parameters, and this would greatly increase the computational burden for the 

evaluation of the detection tests. 

The results show that whitening the data, which removes the dependence among 

data points in a sequence, prior to using the Mann-Kendall test for trends leads to a 

reduction of the performance of the test. It must be admitted here that the data sequences 

employed in this application are the cause of the reduction of the performance of the test. 

Because the points in the sequences are designed to be independent of each other, there is 

thus no point in performing any whitening. 

The evaluation of the performance is accomplished with respect to the Amp/CV 

ratio, although it is not a ratio that one can readily use in practice, for one normally does 

not know the amplitude of the shift or trend in advance. This ratio is nevertheless used 
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throughout this study because it is a better indicator of the difficulty in identifying shifts 

and trends than either the amplitude of the anomaly or the coefficient of variation of the 

sequence alone. One needs only to randomly generate corrupted data sequences to notice 

that even a shift or a trend of large amplitude may not be easy to identify visually if the 

coefficient of variation is also large. Additional analyses of the performance with respect to 

the amplitude alone and the coefficient of variation alone have been undertaken, and 

confirm commonsense, that is, that the performance of the detection tests decreases as the 

coefficient of variation of the sequence increases and as the amplitude of the anomaly 

decreases. 

This application also demonstrates that the threshold values, which identify the 

separation between corrupted and uncorrupted data, may not always be optimal if based on 

a specific confidence level. It is important that these thresholds be set so as to minimize the 

occurrence of false detection, rather than to satisfy a statistical concept that has little 

meaning for the data under study. This statement challenges the common practice of using 

thresholds based on some confidence level, although this is not a new challenge. Many 

researchers and practitioners often employ several thresholds at various confidence levels 

when applying detection tests so as to evaluate a range of potential results. 

Detection tests for more than one data sequence at once are also evaluated for their 

performance in identifying shifts and trends, and results shows that these tests can provide 

more reliable diagnoses compared with those applied to only one sequence at a time. When 

the Mann-Kendall test for detection of trends is applied to a case of five sequences tested 

simultaneously, the percentage of overall false detection reduces to around 15% with 50-

individual sequences, the best case being as low as 11% (MK5B, see Table 4.6). This false 

detection rate could be considered as a reasonable error by hydrologic standards, and is 

definitely better than the best performance obtained for the univariate cases (31%, MK1, 

SP1 and KT1, Table 4.3). Whenever possible, it may be preferable to employ these 

detection tests for multivariate cases, for example, when analyzing hydrometric data from 

stations that are close to each other geographically. With a large number of hydrometric 

stations, performing a regionalisation analysis prior to the use of the detection tests may be 

beneficial, assuming the regionalisation technique is reliable and does not generate errors 

that counter the benefit of multivariate detection tests. 
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The Kohonen network and fuzzy c-means are relatively new techniques that can 

help identify patterns in data, and have been structured in this application so as to replicate 

the behavior of the conventional statistical tests. The Kohonen network, especially, 

provides similar performance to that of conventional detection tests. The AIT-based tests 

may be used to confirm the results of conventional detection tests. They also constitute an 

enhancement relative to the conventional detection tests for multivariate cases. AIT-based 

tests require more computational time than the conventional tests, but this is viewed as 

reasonable, given the large number of sequences assessed in this chapter (i.e., tens of 

thousands). In a practical context, where only a few sequences might be tested, the added 

computational burden of the AIT-based tests would be negligible. In the case of the 

Kohonen network, its advantage is its capacity to adapt for multivariate cases, which only 

one of the conventional tests for trends presented here, and none for the case of shifts, can 

do. The Kohonen network and fuzzy c-means can be structured in other meaningful ways 

for the identification of shifts and trends, and one approach for doing so is developed and 

demonstrated in Chapter 5 
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Chapter 5 
Mapping Procedures for Detecting Anomalies 

The approaches based on the Kohonen neural network and fuzzy c-means developed 

in Chapter 4 are constrained by the size of the database. The database employed to calibrate 

the weights of the output neurons or the clusters is comprised of individual sequences (i.e., 

one for the univariate cases and two to five for multivariate cases), the inputs being data 

points (i.e., one for the univariate cases and two to five for multivariate cases). The 

sequences employed in Chapter 4 are chosen to represent annual hydrologic events, leading 

to relatively few individuals per sequence, the usual amount in Canada being between 30 to 

50 annual events. As a result, the number of output neurons on the Kohonen map or the 

number of clusters in the fuzzy c-means approach must be small, limiting the task of these 

methods to roughly sorting the data in the sequence in ascending or descending order. As 

such, the Kohonen neural network and fuzzy c-means approach are not used to their full 

potential. 

In this chapter, the proposed approach is to use entire sequences as inputs to the 

AITs instead of only data points within the sequences. This implies that the AIT tools are 

calibrated on large sets of sequences instead of single sequences as previously undertaken. 

The objective of the Kohonen network and fuzzy c-means is to sort sequences with respect 

to the patterns present in them, that is, the patterns associated with the absence in sequences 

of anomalies such as outliers, shifts and trends, and patterns associated with the presence in 

sequences of anomalies of more or less large magnitude. Of course, the database is still a 

constraining factor, but since it may be comprised of a very large number of sequences, the 

number of output neurons or clusters may then be large, allowing for a relatively exhaustive 

discrimination of possible patterns present in the sequences. This approach can take a 

greater advantage of the potential of both the Kohonen neural network and fuzzy c-means, 

and can also address the case of outliers, which is not achievable with the approach 

employed in Chapter 4. In Section 5.1, the protocol of the experiment and the uncertainties 

related to the calibration process are presented. These two issues are common for the 

application to shifts and trends as well as to outliers. The case of outliers requires a 
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treatment that differs from that of shifts and trends, and thus tests for detecting shifts and 

trends are addressed Section 5.2, while those for outliers are addressed in Section 5.3. 

Section 5.4 provides the conclusions to this chapter. 

5.1 Common Elements of the Applications 

5.1.1 Protocol of Experiment 

The goal here is to develop Kohonen maps or fuzzy c-means cluster sets that could 

be used to differentiate between sequences corrupted with anomalies from those sequences 

that are uncorrupted. In addition, in the case of anomalous sequences, such maps or cluster 

sets should provide an estimate for the amplitude of the corruption and for the location of 

the corruption when this applies (i.e., shifts and outliers). This requires that the behavior of 

the maps or cluster sets be known, and therefore the calibration and validation process 

should be conducted using data sequences for which the characteristics are known. 

Synthetic data are thus employed to create the databases for both the calibration and 

validation steps so as to permit the appropriate interpretation of the maps and cluster sets. 

Of course, the databases must be as representative as possible of the real data on which the 

maps and cluster sets are to be ultimately employed. Fortunately, shifts and trends are 

relatively easy to replicate synthetically. Outliers constitute a more complex case, yet can 

be reduced to a manageable number of characteristic types. 

The calibration of a Kohonen map or fuzzy c-means cluster set make use of one set 

of data sequences for univariate cases of outliers, shifts or trends, and either two or five sets 

of sequences for multivariate cases of shifts or trends. The number of sequences in the set 

depends on the number of weights that must be calibrated. Similar to the rule established 

for the calibration process in the application in Chapter 4, the number of weights to 

calibrate must be only a fraction (e.g. 20%) of the number of available data sequences. For 

example, if one builds a Kohonen map with an output layer of 10x10 neurons, with 30-

individual sequences, this implies that the calibration of 10x10x30 = 3000 weights is 

necessary. If it is imposed that the number of weights be only 20% of the number of data 

sequences, then 15000 sequences are required for the calibration process (i.e., 3000-̂ 0.20). 

The fraction of 20% is employed here for all univariate cases involving outliers, shifts and 

trends, as it is in Chapter 4. With multivariate cases for shifts and trends, the fraction stands 
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at 20% for cases involving 2 sets of sequences, but is set at 50% for cases involving 5 sets 

of sequences so as to reduce the size of the database to a manageable proportion 

considering the computer capabilities available. For multivariate cases, as in Chapter 4, if 

one sequence in a set is corrupted, then the corresponding sequences in the other sets are 

similarly corrupted. When an anomaly is present, the sequences employed in the calibration 

are designed to exhibit no variation aside from that caused by the anomalies. Initial tests 

have shown that such structure for the sequences leads to the calibration of Kohonen maps 

and fuzzy c-means clusters that have higher performance. The main criterion in the design 

of the calibration sequences is that the differences between these sequences and those from 

the validation sets, or other real data, are minimized. 

The validation sequences are meant to be as close as possible to reality. In the case 

of shifts and trends, the sequences employed are generated in the same way as those used in 

Chapter 4. In the case of outliers, real data sequences, from hydrometric stations known to 

be of good quality and assumed to be free of outliers are used, and deliberately corrupted 

when necessary. As is the case with the calibration sets, the Kohonen maps or fuzzy c-

means clusters are fed with one set of data sequences for univariate cases of outliers, shifts 

or trends, and either two or five sets of sequences for multivariate cases of shifts or trends. 

The detection performance of the Kohonen maps or fuzzy c-means clusters is determined 

with respect to the ratio of amplitude of the corruption over the coefficient of variation of 

the sequences. The capacity of the maps or cluster sets to determine the amplitude of the 

corruption with accuracy is also established based on the validation sets. The reliability of 

these AIT in finding the location of shifts or outliers in sequences is also analyzed based on 

the validation sets. 

5.1.2 Addressing Uncertainties in Calibration 

The calibration process for both the Kohonen network and fuzzy c-means may lead 

to instances where some patterns present in the data are not adequately represented. In the 

case of the Kohonen network, the calibration sequences are fed one at a time, randomly, 

and the order by which the sequences are presented to the network may affect the direction 

in which the map unfolds. A simple example is that of two identical maps, with one 

inverted relative to the other one. In more complex situations, the map might be unfolded in 
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a way that favors some patterns to the detriment of others. In the case of fuzzy c-means, 

because the calibration involves an optimization procedure, there is the possibility that the 

final solution is trapped at a local optimum, therefore reducing the validity of the cluster 

set. To circumvent these calibration problems, more than one Kohonen map or cluster sets 

is relied upon. Similar to the application of Monte-Carlo simulations for addressing 

uncertainties, several maps or cluster sets are calibrated, and the final result of a detection 

diagnostic is based on the aggregation of the results coming from all of the available maps 

or cluster sets, as shown in Figure 5.1. Here, the maps and cluster sets are meant to provide 

estimations of the ratio of the amplitude of the corruption over the coefficient of variation 

of the sample or the location of the shift or the outliers. The aggregation procedure 

employed simply consists of averaging the estimates from all of the maps or cluster sets 

available. Because the calibration procedures for both the Kohonen network and fuzzy c-

means are rather lengthy, a total of 10 maps or cluster sets per case are aggregated. 

Figure 5.1. Aggregation of results from Kohonen network maps. 

5.2 Application on Shifts and Trends 

As a reminder, the goal of this work is to develop tools for the analysis of 

hydrometric data, more particularly annual indicators such as the annual extremes (min or 

max) or annual averages. As stated in Chapter 4, these annual indicators have been the 
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subject of numerous studies in North America, and the need for the kind of analyses 

produced in these studies can still be regularly present in practice. It must be noted that, as 

is the case of conventional statistical tests employed in these studies, the sets of Kohonen 

maps and fuzzy c-means clusters can be used for data other than those from hydrometric 

observations. The only requirement is the respect of the length limitation of the input vector 

for both the Kohonen maps and the fuzzy c-means clusters. 

In the next section, a detailed account of the databases employed for the calibration 

and validation of the maps and cluster sets is provided. The results and a discussion of 

these, respectively, are presented in the subsequent two sections. 

5.2.1 Databases 

The calibration sets of data are kept structurally simple to ease the determination of 

Kohonen maps and fuzzy c-means cluster sets. The Figures 5.2a and 5.2b are typical 

corrupted sequences of data generated for the calibration sets for shifts and trends, 

respectively. Whether the data are real or synthetic, a linear normalization is always 

performed on the data so that a sequence of points ranges between 0 and 1. This 

normalization ensures that Kohonen maps and cluster sets can be used regardless of the 

original scale of the data points. In the case of a shift, the sequence of points follow a 

straight line at some level, and the evolution is broken at some location of the sequence, 

that is, at the location of the shift. Following that, the points are still on a straight line, but 

at a different level (see Figure 5.2a). In the case of a trend, the sequence of points follows a 

straight line with either a positive or negative slope (see Figure 5.2b). The magnitude of the 

step between lines for shifts and the magnitude of the slope of the straight line for trends 

determine the amplitude of the corruption. A large step or a steep slope is representative of 

a shift or a trend of high amplitude, respectively. A small step or a mild slope is 

representative of a shift or a trend of small amplitude, respectively. In both cases, shifts and 

trends, when there is no corruption present, the sequence of points follow a straight line at 

level 0.5. This results in a difference of levels or a slope equal to zero. 
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Figure 5.2. Calibration and validation sequences for shifts and trends. 

Preliminary results show that such simple calibration data sets, where no variability 

is present aside from that caused by the corruption, lead to more reliable Kohonen maps 

and fuzzy c-means cluster sets, compared with those from calibration sets where variability 

other than that caused by the corruption is also present. The validation data sets are made of 

synthetic sequences that are meant to be as close to real data as possible, and this implies 

that variability other than that caused by corruption must be present, as exhibited by the 

continually broken lines in Figures 5.2c and 5.2d. These two figures also demonstrate the 

validity of the calibration sets. Consider the case of a real sequence of data affected with a 

shift, which after normalization is compared with a continuous straight line at level 0.5 

(representing an uncorrupted sequence in the calibration sets) and with a straight line 

broken at some location (representing a corrupted sequence in the calibration sets). This is 

the case presented in Figure 5.2c. It can be observed from this graph that the sum of the 

squared differences between the real case and the broken straight line case would be 

smaller than the sum of the squared difference between the real case and the continuous 

straight line. An output neuron on the Kohonen map or a cluster in fuzzy c-means is 

considered as activated if, among all output neurons or clusters, it yields the smallest sum 

of squared differences between the inputs and the weights associated with this neuron or 

cluster. Therefore, a neuron or a cluster that characterizes the broken straight line would be 

activated rather than the neuron or cluster characterizing the continuous straight line. This 
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argument can also be made for the case of trends, using Figure 5.2d. This explains why the 

calibration data sets can lead to the production of Kohonen maps or fuzzy c-means cluster 

sets capable of detecting shifts or trends in real data sequences or synthetic data sequences 

designed to represent reality. 

The structure of the databases employed here is similar that presented in Chapter 4, 

and again generated with M A T L A B . The performance of the maps and cluster sets is 

evaluated for cases that represent variations in (1) the length of the data sequences, (2) the 

coefficient of variation of the individuals in the sequences, and (3) the amplitude of the 

shifts or trends imposed on the data sequences. The calibration database for univariate cases 

is made of six batches of ten sets of data sequences. Three batches are for cases of shifts, 

that is, one for the 30, 40 and 50-individual sequences, respectively. Similarly, three 

batches are used in the case of trends, one for the 30, 40 and 50-individual sequences, 

respectively. Each set of sequences is employed to calibrate one Kohonen map and one set 

of fuzzy c-means clusters. Therefore, a group often maps and ten cluster sets is calibrated 

for each batch. The size of the sets vary with respect to the length of the data sequences so 

as to be in agreement with the rule regulating the data requirement for the calibration of the 

weights of the output neurons and clusters. Kohonen maps of 10x 10 output neurons as well 

as fuzzy c-means cluster sets of 100 clusters are considered, leading to the calibration of 

3,000, 4,000 and 5,000 weights for each map and cluster set, for cases of 30-, 40- and 50-

individual sequences, respectively. The number of weights must be 20% of the number of 

data sequences, and this implies that the number of sequences per set for cases of 30, 40 

and 50-individual sequences must be 15,000, 20,000 and 25,000, respectively. The 

calibration database for multivariate cases is also made of six batches of sets, three for 

shifts and three for trends, representing cases of 30-, 40- and 50-individual sequences. 

There is a total of ten groups of five sets per batch. Each group of sets is used to calibrate 

one Kohonen map and one set of fuzzy c-means clusters. Again, a group of ten maps and 

ten cluster sets is calibrated for each batch. Two sets of sequences per group are employed 

for cases of two variates, while the entire five sets of sequences are used for cases of five 

variates. For cases of 30, 40 and 50-individual sequences, the number of weights to 

calibrate either a map or a cluster set is 6,000, 8,000 and 10,000, respectively, for the cases 

of two variates. The number of weights is 15,000, 20,000 and 25,000, respectively, for the 
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cases of five variates. A number of sequences per set of 30,000, 40,000 and 50,000 is 

considered, respectively for cases of 30-, 40- and 50- individual sequences. In all 

calibration sets, for univariate and multivariate cases, 50% of the sequences are corrupted 

(i.e., magnitude of levels for shifts and slope for trends that are different from zero). 

The sequences in the validation database have characteristics that are similar to 

those of the sequences used in Chapter 4. The mean and the coefficient of variation of the 

data sequences vary uniformly between 1 and 20,000 and between 0.05 and 0.5, 

respectively. Each point in a sequence is created randomly, following a Normal 

distribution. For multivariate cases, if a sequence is corrupted, then the corresponding 

sequences in the associated sets of a group are also corrupted. For cases of shifts, the 

amplitude is chosen randomly, following a Uniform distribution, and can be as much as 

±25% of the mean of the sequence prior to the shift. The location of the shift is determined 

randomly, following a Uniform distribution, and can be anywhere in the sequence except 

within the first and last five individuals. The location of the shift, when there is one, is the 

same for all corresponding sequences in the associated sets (i.e., for the other variates) of a 

group. For tests of trends, the amplitude of the increase or decrease of the mean is chosen 

randomly, following a Uniform distribution, and can be as much as ±0.5% of the initial 

mean per time step. The direction of the trend, when there is one, is the same, having either 

a positive or negative slope, in all corresponding sequences in the associated sets of a 

group. The amplitude of the corruption, for cases of both shifts and trends, varies within 

corresponding sequences. For univariate cases, a total of 6 sets of sequences are produced, 

three for shifts and three for trends, for the 30, 40 and 50-individual sequences, 

respectively. For multivariate cases, six groups of five sets, covering shifts and trends, and 

their variability in the length of the sequences, are produced. Each set is used to validate the 

corresponding group of ten maps and ten cluster sets obtained from the calibration process. 

The number of sequences per set is 50,000 for all cases. 

5.2.2 Results 

Corrupted Versus Uncorrupted Data 

When the calibration data sets are employed to validate the Kohonen maps or the 

fuzzy c-means cluster sets the division between uncorrupted and corrupted sequences is 
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very clear. All the uncorrupted sequences activate one specific output neuron or cluster, 

while the corrupted sequences activate the other output neurons or clusters. A few 

corrupted sequences activate the output neuron or cluster dedicated to the uncorrupted 

sequence, the worst case being 0.2% of the corrupted sequences falsely detected as 

uncorrupted. These few corrupted sequences represent cases of corruption (i.e., shifts or 

trends) of very small amplitude and simply indicate that the resolution of the maps and the 

cluster sets is not fine enough to properly identify these corrupted sequences. Larger maps 

or cluster sets than those employed here would have allowed a finer discrimination of the 

possible patterns present in the sequences, making it possible to improve the identification 

of sequences with corruption of small amplitude. The issue of resolution must be noted, 

especially in the cases of shifts, where the purpose is not only to detect the shift, but also to 

locate it. Compared with cases of trends, the number of patterns to examine in the cases of 

shifts increases by a power of two. 

When the validation data sets are employed to check the performance of the 

Kohonen maps or the cluster sets, the division between uncorrupted and corrupted 

sequences is not clearly defined. A typical result for a Kohonen map is presented in Figure 

5.3. This map has been calibrated for the detection of shifts in 30-individual sequences. 

Figure 5.3a and 5.3b provide the same map, illustrated in the form of an array of values, 

with each element representing one output neuron. The number in each element of the 

arrays is the number of sequences, uncorrupted in Figure 5.3a, and corrupted in Figure 

5.3b, activating the neuron associated with that element. The data in Figure 5.3a show that 

the uncorrupted sequences activate neurons in a particular region of the array (i.e., the 

map). It is assumed that the neurons that are not activated in Figure 5.3a, shaded with the 

number in bold in the figure, are only meant to be activated by corrupted sequences, and 

indeed, these neurons are shown to be activated in Figure 5.3b by some corrupted 

sequences. The non-shaded neuron with the number in bold and in italics in Figure 5.3 is 

the one that is activated by the uncorrupted sequences in the calibration sets. 
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0 0 85 0 0 0 0 0 0 0 
0 0 150 48 o 0 0 0 0 0 
0 0 8 1325 198 47 7 0 0 0 
0 0 12 774 1732 491 113 7 0 0 
0 0 10 286 2028 1233 472 21 u 0 
0 0 17 521 940 827 677 125 0 0 
0 0 11 319 865 306 783 539 221 39 
0 0 3 175 733 472 224 398 1322 1516 
0 0 3 85 673 291 162 6 83 478 
0 0 0 , 103 1571 1323 3 6 2 77 

(a) 

0 8 60 IS 0 2 1 0 2 0 
() 27 277 210 93 67 75 65 13 0 
0 18 157 677 710 493 383 196 35 2 
0 21 ' 164 777 1122 926 684 245 31 1 
0 24 246 645 928 809 748 298 10 0 
0 75 379 767 507 387 552 363 92 13 
0 56 303 701 573 115 386 424 347 165 
2 62 273 607 605 238 97 197 641 947 
0 16 174 408 594 160 71 2 30 180 
0 1 47 340 1253 596 3 2 2 33 

(b) 

Figure 5.3. Kohonen map with (a) uncorrupted sequence, and (b) corrupted 

sequences. 

The data in Figure 5.3 show that a few corrupted sequences can be detected as such, 

because they activate neurons in the shaded areas. The bulk of the corrupted sequences, 

however, activate neurons that are also activated by uncorrupted sequences. Table 5.1 

presents the success rate of the Kohonen maps and the fuzzy c-means cluster sets for 

identifying corrupted sequences based on the differentiation between the shaded and non-

shaded neurons. The numbers in Table 5.1 are the average success rates from the group of 

ten maps or ten cluster sets, and there is very little variability from one map or cluster set to 

another. The success rate for all cases never exceeds 10%. Combined with a 100% success 

rate for identifying uncorrupted sequences, this translates to a false detection rate of both 

corrupted and uncorrupted sequences of 46% in the best case (i.e., fuzzy c-means applied to 

50-individual sequences corrupted with trends) and of close to 50% in the worst case (i.e., 

Kohonen network applied to 30-individual sequences corrupted with trends). 
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Table 5.1. Success rate in identifying corrupted sequences. 

Corruption Sequence size Success rate (%) 
Kohonen Fuzzy c-means 

Shifts 30 3.86 3.14 
40 5.13 4.33 
50 6.05 4.42 

Trends 30 0.54 0.57 
40 2.95 3.06 
50 7.87 8.32 

Differentiating uncorrupted from corrupted sequences based on a strict separation of 

regions on the Kohonen maps or of cluster sets is not attractive. As shown in the data in 

Figure 5.3, for example, the neuron in the third column from the left, second row from the 

bottom is activated by only 3 uncorrupted sequences and by as much as 174 corrupted 

sequences. Considering this neuron as a detector of corrupted sequences would have a very 

small cost in terms of false detection of uncorrupted sequences for and the benefit would be 

great in terms of adequately detecting corrupted sequences (i.e., a presumed ratio of cost to 

benefit of 3 to 174). The calibration data sets are designed to develop maps or cluster sets 

that can provide estimates of the amplitude of the corruptions, either shifts or trends, and 

the detection approach can be based on this feature. This implies the determination of 

threshold values applied on the estimates of amplitude of corruption to differentiate 

between presumed uncorrupted and corrupted sequences. 

Setting the Threshold Values 

Because the properties of the sequences in the validation sets are all known, it is 

easy to determine the average properties of the sequences activating some given neuron or 

cluster, and this for all neurons and clusters. The criterion chosen for the separation 

between uncorrupted and corrupted sequences is the ratio of the amplitude of the corruption 

over the coefficient of variation of the sequences (i.e., Amp/CV, for shifts or trends), as 

described and employed in Chapter 4. Thus all neurons on a map or all clusters in a set are 

characterized based on the average ratio of amplitude to C V of their associated sequences, 

and a typical result is that of Figure 5.4. This figure shows the evolution of the Amp/CV 

ratio over a Kohonen map established for the detection of shifts in 30-individual sequences. 

The axes in Figure 5.4 represent the output neuron number, and the scale on the right 
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indicates the range of the Amp/CV ratio. In Figure 5.4, the upper left corner of the map is 

activated by sequences corrupted by a positive shift, leading to a sudden increase in the 

mean of the sequence after the location of the corruption (i.e., positive values of the 

Amp/CV ratio, from 0 to 3), while the lower right coiner of the map is activated by a 

negative shift (i.e., negative values of the Amp/CV ratio, from 0 to -3). Of course, 

uncorrupted sequences have an Amp/CV ratio equal to zero, and should normally activate 

neurons in the middle part of the map, on the right side in Figure 5.4. 

Figure 5.4. Ratio Amp/CV for shift with 30-individual sequences. 

The aggregation of the results from a group of maps or clusters for each type of 

corruption and length of the sequences is undertaken in this work. A group of ten maps and 

one of ten fuzzy c-means cluster sets have been calibrated in the attempt to reduce the 

uncertainties from the calibration processes. The aggregation consists of evaluating the 

average of the estimates of the Amp/CV ratio from all the maps or cluster sets in a given 

group. The accuracy of the maps and cluster sets in determining the Amp/CV ratio, 

expressed as the root of the mean squared errors between the actual and estimated ratio 

(RMSE), is given in Tables 5.2 and 5.3, for cases of shifts and trends, respectively. The 

RMSE is established for each map or cluster set, and the values in the table give the 
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average of the RMSE (i.e., average of maps or cluster sets alone in the tables). The RMSE 

is also determined from the results of the aggregation of a group of maps or cluster sets 

(i.e., aggregation of maps or cluster sets in the tables). In Tables 5.2 and 5.3, the 

improvement in the RMSE provided by the aggregation of maps or cluster sets compared 

with the corresponding average of maps or cluster sets considered alone is also presented. 

Table 5.2 indicates that the estimates of the Amp/CV ratio differ from the actual ratio by 

0.4 on average, this for a ratio for which the range in absolute value goes from 0 to 3 for the 

validation data sets employed. The results in Table 5.2 show that an improvement in the 

estimates of the ratio of around 6% is provided by the aggregation of maps or cluster sets 

compared with the strategy of considering only one map or cluster set. Regardless of the 

performance obtained, the AIT-based approach proposed in this chapter is beneficial from 

the point of view of being able to determine an estimate of the amplitude of a shift in 

sequences. And from a practical point of view, the Kohonen maps and fuzzy c-means 

cluster sets are very easy to employ, once calibrated. The amplitude of a shift can be 

inferred from the results of conventional statistical detection tests, although such tools are 

not intended for that purpose. Other than the methods presented here, only Bayesian 

analysis as developed by Lee and Heghinian (1977) and Perreault et al. (1999 and 2000) 

could be applied for the estimation of the amplitude of a shift. 

Table 5.2. Estimated versus actual ratio Amp/CV for univariate cases of shifts. 

Technique Sequence size RMSE for the Improvement (%) 
Average of maps or Aggregation of maps of aggregation relative 

cluster sets alone or cluster sets to non- aggregation 
Knet 30 0.402 0.382 5.05 

40 0.385 0.363 5.80 
50 0.381 0.355 6.91 

Fuzzy 30 0.425 0.401 5.77 
40 0.412 0.385 6.35 
50 0.408 0.381 6.67 

For the determination of the amplitude of a trend, a commonly used estimator is that 

proposed by Sen (1968), expressed as: 

A = median 
j - i 

for ally < i 5.1 
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where A is the amplitude of the trend, and the xs are individuals in the data sequence. Given 

the nature of the validation data sets employed, the Amp/CV ratio is obtained when the 

estimator in Equation 5.1 is divided by the standard deviation of the sequence. In Table 5.3, 

the performance of this estimator, shown in the third column, is compared with that of the 

maps and cluster sets. For this Median estimator, the difference between the estimated and 

actual ratio ranges from 0.016 in the worst case to 0.014 in the best case on the average. For 

the case of trends, the absolute values of the Amp/CV ratio range from 0 to 0.1 for the 

validation data sets employed. The worst improvement obtained with the maps and cluster 

sets is 0.013 while the best improvement is at 0.008. There is very little improvement from 

the aggregation of maps or cluster sets relative to the strategy of considering only one map 

or cluster set. The improvement is, however, noticeable with the aggregation of maps or 

cluster sets relative to the Median estimator. Improvement increases as the length of the 

sequences increases, which is normal since it is easier to detect trends on long sequences 

than on short ones. 

Table 5.3. Estimated versus actual ratio Amp/CV for univariate cases of trends. 

Technique Sequences RMSE for the Improvement (%) of 
aggregation relative to 

Size Median Average of Aggregation the Median non-
maps or clus- of maps or aggregation 
ter sets alone cluster sets 

Knet 30 0.0161 0.0127 0.0127 20.68 0.10 
40 0.0151 0.00982 0.00981 35.22 0.13 
50 0.0143 0.00767 0.00766 46.48 0.15 

Fuzzy 30 0.0161 0.0127 0.0127 20.67 0.06 
40 0.0151 0.00982 0.00981 35.21 0.08 
50 0.0143 0.00767 0.00766 46.47 0.10 

The results in Tables 5.2 and 5.3 are an indicator of the capacity of the maps and 

cluster sets to differentiate between uncorrupted and corrupted sequences based on the 

Amp/CV ratio. The smaller the RMSEs, the smaller the likelihood of false detection 

becomes. The detection strategy employed here is identical to the one employed in Chapter 

4, and it is the determination of threshold values within the range of the Amp/CV ratio that 

minimize the risk of false detection. Both uncorrupted sequences falsely detected as 

corrupted and corrupted sequences falsely detected as uncorrupted are given equal weight 

in the minimization procedure, for it is as detrimental to perform either one of these 
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misdiagnosis. The results of this minimization procedure applied to the maps and cluster 

sets are given in Tables 5.4 and 5.5, for cases of shifts and trends, respectively. For 

comparison-sake, the Mann-Whitney and Student's tests for shifts and the Mann-Kendall 

and Spearman tests for trends are applied to the validation data sets. In the case of these 

tests, the minimization procedure for false detection is also applied. In Tables 5.4 and 5.5, 

column 1 gives the detection techniques employed, column 2 provides the threshold values, 

column 3 (U) lists the ratio of the number of uncorrupted sequences falsely detected as 

corrupted over the total number of sequences, column 4 (C) lists to the ratio of the number 

of corrupted sequences falsely detected as uncorrupted over the total number of sequences, 

and column 5 (U+C) gives the sum of columns 3 and 4. In Tables 5.4 and 5.5, the Us can 

be added to the Cs directly, because there is an equal proportion of uncorrupted and 

corrupted sequences in the database. The results shown in Tables 5.4 and 5.5 for the 

conventional statistical detection tests are similar to those presented in Tables 4.2 and 4.3, 

indicating the similarities of the data sets employed here and in Chapter 4. The results 

shown in Tables 5.4 and 5.5 for the Kohonen maps and the cluster sets come from the 

aggregation of the maps and cluster sets. 

Table 5.4. False detection ratio for univariate cases with shifts. 

Case Optimal 
Threshold False detection ratio (%) 

U c U+C 
(a) 30-individual sequences 
M W 2.18 9.1 22.1 31.3 
ST 2.38 8.3 22.5 30.8 
Knet 0.268 9.8 22.1 31.9 
Fuzzy 0.316 8.2 25.0 33.2 
(b) 40-individual sequences 
M W 2.32 7.9 21.3 29.2 
ST 2.46 8.0 20.9 28.8 
Knet 0.302 6.7 23.5 30.2 
Fuzzy 0.302 7.8 24.6 32.4 
(c) 50-individual sequences 
MW 2.46 6.5 21.3 27.9 
ST 2.60 6.4 21.0 27.5 
Knet 0.290 7.2 22.0 29.3 
Fuzzy 0.295 7.3 25.0 32.2 
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For the cases of shifts, as in Chapter 4, it appears again that the conventional 

statistical detection tests for shifts perform slightly better than the AITs (see Table 5.4), and 

the Kohonen maps also perform better than the fuzzy c-means cluster sets. The false 

detection ratio is essentially 30% regardless of the sequence length. For the cases of trends 

(see Table 5.5), as in Chapter 4, the AITs perform slightly better than the conventional 

statistical detection tests for trends. The false detection ratio is about 40% for 30-individual 

sequences, and drops to 30% for 50-individual sequences. In all cases, shifts and trends, the 

ratio of uncorrupted sequences falsely detected as corrupted is always smaller than the ratio 

of corrupted sequences falsely detected as uncorrupted. 

Table 5.5. False detection ratio for univariate cases with trends. 

Case Optimal 
Threshold False detection ratio (%) 

U c U+C 
(a) 30-individual sequen ces 
M K 1.18 11.3 30.4 41.8 
SP 0.21 12.8 28.8 41.6 
Knet 0.005 15.0 26.4 41.5 
Fuzzy 0.006 11.9 29.6 41.5 
(b) 40-individual sequen ces 
M K 1.39 7.9 28.5 36.4 
SP 0.22 8.6 27.8 36.4 
Knet 0.006 10.7 25.4 36.2 
Fuzzy 0.007 9.2 27.0 36.2 
(c) 50-individual sequences 
M K 1.42 7.7 23.2 30.9 
SP 0.21 7.7 23.1 30.8 
Knet 0.006 7.9 22.7 30.6 
Fuzzy 0.006 7.4 23.3 30.7 

Finding the Location of the Shift 

As with the Amp/CV ratio, the location of the shift can be characterized on the 

maps or the cluster sets, leading to the production of maps similar to that illustrated in 

Figure 5.4. The accuracy of the maps and cluster sets for determining the location of the 

shift can be evaluated with the RMSE comparing the estimated with actual location of the 

shift. The RMSE obtained with the maps and cluster sets considered alone as well as 

aggregated are presented in Table 5.6. Also shown are those obtained with the Mann-

88 



Whitney and Student's tests for comparison-sake. The RMSE increases with all 

conventional and AIT-based detection tests as the length of the sequences increases. This is 

explained by the fact that, as the length of the sequences increases, the number of potential 

locations of the shift increases, and accordingly the risk of missing the exact location of the 

shift also increases. The AITs provide more accurate estimates of the location of the shift 

than the conventional statistical detection tests. The conventional tests yield RMSEs from 6 

for the 30-individual sequences case to 12 for 50-individual sequences case, while the 

RMSE ranges from 5 to 10 in the case of the AITs. The last three columns of Table 5.6 

show the improvement obtained with the aggregation of maps relative to the conventional 

tests and the maps and cluster sets considered alone. The improvement due to the 

aggregation ranges from 15 to 22% when compared with the conventional tests. There is no 

significant improvement due to the aggregation compared with the maps and cluster sets 

considered alone. 

Table 5.6. R M S E for the location of the shift with univariate cases. 

Technique Sequence RMSE Improvement (%) of aggregation 
relative to 

size MW ST Average 
of maps or 

cluster 
sets 

Aggrega­
tion 

MW ST non-
aggregation 

Knet 30 6.42 6.41 5.00 4.94 22.97 22.88 1.11 
40 9.39 9.34 7.66 7.59 19.22 18.79 1.00 
50 11.96 11.86 10.18 10.05 15.97 15.23 1.28 

Fuzzy 30 6.42 6.41 5.03 4.97 22.50 22.40 1.07 
40 9.39 9.34 7.70 7.61 18.93 18.50 1.14 
50 11.96 11.86 10.26 10.14 15.23 14.49 1.15 

The results in Table 5.6 do not include the use of threshold values. The RMSE are 

those obtained from corrupted sequences without consideration as to whether the sequences 

would be detected or not as corrupted based on the threshold values. The data in Table 5.7 

accounts for the use of the threshold values. Columns 2 through 7 list the success rates for 

identifying the location of the shift exactly and up to as much as plus or minus five time 

steps from the corruption, in sequences detected as corrupted. 
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Table 5.7. Success rate in identifying the location of the shift with univariate cases. 

Case Success rate (%) in identifying the location of the shift at pli as minus 
0 time 1 time 2 time 3 time 4 time 5 time 
step step steps steps steps steps 

(a) 30-individual sequences 
M W 20 32 38 41 44 46 
ST 21 32 38 42 44 46 
Knet 4 14 24 32 38 43 
Fuzzy 5 14 23 29 35 39 
(b) 40-individual sequences 
MW 19 31 37 41 43 45 
ST 20 32 38 42 44 46 
Knet 4 11 18 25 30 34 
Fuzzy 3 11 19 24 28 32 
(c) 50-individual sequences 
MW 20 31 36 40 43 45 
ST 21 32 37 41 44 46 
Knet 2 8 16 21 26 30 
Fuzzy 2 10 16 21 25 28 

The success rates of the Kohonen maps and cluster sets in identifying exactly the 

location of the shift is close to zero, due to the rather coarse resolution of the maps and 

cluster sets. Essentially, in the determination of the values of the weights, the calibration 

procedures employed for the Kohonen maps and fuzzy c-means cluster set only lead to a 

blurred rendition of the location of the shifts. These calibration procedures accomplish a 

weighted sum of the input vectors fed to the output neurons or cluster sets, and the strongly 

weighted vectors for a given neuron or cluster may include several different locations, thus 

causing the blurring. The success rates for AITs increase as less precision is allowed with 

respect to the identification of the location of the shifts. The AIT-based tests almost have 

the same success rates as those of the conventional statistical detection tests in identifying 

the location of the shifts at plus or minus five time steps, with 30-individual sequences. The 

Kohonen maps and the cluster sets provide inferior success rates to those of the 

conventional tests, although the success rates of the AITs eventually reach and, in the case 

of the Kohonen maps, surpass those of the conventional tests when the location of the shift 

may be determined at more than plus or minus five time steps. 

The conclusions that may be made based on an analysis of the results of both Tables 

5.6 and 5.7 are that the AITs provide more accurate estimation of the location of the shift, 
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but that the use of threshold values to separate between uncorrupted and corrupted 

sequences is detrimental. Many corrupted sequences for which the AITs yield reasonably 

accurate estimates of the location of the shift are not considered in the calculation of the 

success rate presented in Tables 5.7 because they are considered as uncorrupted based on 

the threshold values. Yet some benefit may be obtained from the use of AITs based on the 

results in Table 5.6. One approach might be to use the conventional statistical detection 

tests for shifts to differentiate between uncorrupted and corrupted sequences, and then to 

use the Kohonen maps or clusters to estimate the location of the shift on the sequences 

detected as corrupted. The results of Tables 5.6 and 5.7 also highlight the finding that all of 

the detection methods, conventional and AITs alike, do not differentiate between 

uncorrupted and uncorrupted sequences in exactly the same manner. For example, there 

may be a significant number of sequences that are detected as corrupted by one method but 

not by the others. However, there are a large number of sequences that are similarly 

diagnosed (i.e., assumed uncorrupted or corrupted) by all methods, and this observation is 

demonstrated in the application of these methods to actual hydrometric data in Chapter 6. 

Multivariate Cases 

The multivariate cases require a much larger number of weights to calibrate for the 

Kohonen maps and fuzzy c-means clusters than the univariate cases, and this requirement 

ultimately affects the detection performance. The multivariate cases imply a larger number 

of patterns to differentiate than the univariate case, and this accentuates the issue of 

resolution. Also, the characterization of the maps and cluster sets based on the Amp/CV 

ratio is not as clear as with univariate cases. Unlike the univariate cases, where the 

characterization is based on the Amp/CV ratio of each of the sequences, the average of the 

Amp/CV ratio of corresponding sequences is the factor used in characterizing the output 

neurons or clusters for the multivariate case. All of these issues must be considered in the 

analysis of the results. Only the Kohonen network is tested with multivariate cases, as this 

AIT consistently provides better results than the fuzzy c-means for the univariate cases. 

Tables 5.8 and 5.9, for shifts and trends, respectively, provide the RMSE between 

estimated and actual average values of the Amp/CV ratio, and therefore can be compared 

with Tables 5.2 and 5.3. In Tables 5.8 and 5.9, the terms Knet2 and Knet5 respectively 
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refer to the cases where two and five variates are tested at once. For shifts (Tables 5.8), the 

multivariate 30-individual cases show improvement in the estimation of the Amp/CV ratio 

compared with the univariate 30-individual cases. Deterioration of the quality of the 

estimates of the Amp/CV ratio is observed with multivariate 40- and 50-individual cases 

compared with the corresponding univariate cases. It must also be noted that the 

aggregation of the maps provides better results than the maps considered alone, and the 

improvement is higher with multivariate cases than it is with univariate cases (e.g., 5 to 6% 

improvement from non-aggregation to aggregation in the univariate cases of 30-individual 

sequences versus 10% improvement for multivariate cases of 30-individual sequences). 

Table 5.8. Estimated versus actual ratio Amp/CV for multivariate cases of shifts. 
Technique Sequence size RMSE 

Average of maps alone Aggregation of maps 
Improvement (%) from 
average of maps alone 

Knet2 30 0.331 0.298 9.98 
40 0.479 0.431 10.15 
50 0.486 0.440 9.34 

Knet5 30 0.253 0.210 17.14 
40 0.496 0.460 7.27 
50 0.478 0.430 10.00 

For trends (Table 5.9), all multivariate cases constitute an improvement from their 

corresponding univariate cases in the estimation of the Amp/CV ratio. The amplitude of the 

improvement is the highest for cases with short sequences (i.e., 30-individual sequences), 

and consistently reduces for cases with increasing lengths of sequences. There is a benefit 

to using the aggregation of the maps rather than the maps alone, a benefit that is more 

noticeable with multivariate cases than it is with univariate cases. 

Table 5.9. Estimated versus actual ratio Amp/CV for multivariate cases of trends. 

Technique Sequence size 

Knet2 

Knet5 

30 
40 
50 
30 
40 
50 

RMSE Improvement (%) from 
Average of maps alone Aggregation of maps average of maps alone 

0.0106 
0.0104 
0.0087 
0.0087 
0.0089 
0.0073 

0.0104 
0.0101 
0.0084 
0.0080 
0.0082 
0.0066 

2.03 
2.29 
3.78 
8.30 
7.39 
10.06 
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Table 5.10 lists the false detection ratios obtained with all multivariate cases with 

shifts, from 30- to 50-individual sequences, with the Kohonen maps structured to test 2 or 5 

sequences at once. The improvement in the estimation of the Amp/CV ratio with Kohonen 

maps for multivariate 30-individual cases clearly translates in a reduction of the false 

detection ratio, as shown by the results in Table 5.10. The false detection ratio for 

multivariate 30-individual cases is significantly lower than any other false detection ratio 

associated with 3 0-individual sequences corrupted with shifts, including the multivariate 

cases analyzed in Chapter 4 (see Tables 4.5 and 5.4). The results shown in Table 5.10 for 

multivariate 40- and 50-individual cases are more ambivalent. The multivariate cases with 

40-individual sequences do not yield any improvement from the univariate cases. The cases 

with 50-individual sequences involving two variates tested at once with the Kohonen map 

are not any better than the univariate cases (see Table 5.4). The case where five variates are 

tested at once shows a small improvement compared with univariate cases (see Table 5.4), 

but is not as good as the multivariate case with five sequences tested at once applied in 

Chapter 4 (see Table 4.5). 

Table 5.11 provides the same information as Table 5.10, but for cases with trends. 

Aside from the Kohonen maps, the Mann Kendall test can also be applied to cases with 

more than one variate at once, and therefore its performance on the calibration sets is also 

given in Table 5.11. In Table 5.11, MK2 represents the Mann Kendall test applied to two 

sequences of variables at once, while MK5 is for the Mann Kendall test applied to five 

sequences at once. The improvement in the estimation of the Amp/CV ratio with Kohonen 

maps for multivariate cases with trends for all sequence lengths reflects an improvement of 

the use of the maps compared with any univariate cases, whether conventional tests or AITs 

are employed (see Table 5.5). The Kohonen maps applied to multiple 30-individual 

sequences perform better than the Mann Kendall test applied on the same multiple 

sequences. However, the Mann Kendall test performs better than the Kohonen maps for the 

cases with 40 and 50-individual sequences. 
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Table 5.10. False detection ratio for multivariate cases with shifts. 

Case Optimal 
Threshold False detection ratio (%) 

U C U+C 
(a) 30-individual sequences 
Knet2 0.295 7.1 15.7 22.8 
Knet5 0.290 4.0 6.8 10.8 
(b) 40-individual sequences 
Knet2 0.161 11.0 19.3 30. 3 
Knet5 0.089 9.1 22.5 31.6 
(c) 50-individual sequences 
Knet2 0.202 8.5 22.8 31.4 
Knet5 0.150 10.1 16.2 26.3 

Table 5.11. False detection ratio for multivariate cases with trends. 

Case Optimal 
Threshold False detection ratio (%) 

U C U+C 
(a) 30-individual sequences 
MK2 1.20 11.8 25.4 37.2 
MK5 1.27 10.9 18.0 28.9 
Knet2 0.006 11.6 24.8 36.4 
Knet5 0.008 8.4 17.5 25.9 
(b) 40-individual sequences 
MK2 1.40 7.9 22.1 30.0 
MK5 1.48 7.7 10.7 18.4 
Knet2 0.007 13.7 20.9 34.6 
Knet5 0.008 9.5 15.5 25.0 
(c) 50-individual sequences 
MK2 1.65 6.9 16.2 23.1 
MK5 1.72 4.5 6.6 11.1 
Knet2 0.008 8.0 19.7 27.7 
Knet5 0.007 6.3 11.4 17.8 

The capacity of the Kohonen maps to estimate the location of the shifts in the 

multivariate cases is expressed in terms of the RMSE in Table 5.12. As in Table 5.6, the 

results in Table 5.12 are established based on corrupted sequences only, whether or not the 

sequences are detected as corrupted based on the threshold values. The results in Tables 

5.12 are in agreement with those in Tables 5.8 and 5.10, that is, there is a benefit to using 

the Kohonen maps in a multivariate setting for the 30-individual cases, but no benefit is 

observed for the 40 and 50-individual cases. The RMSEs for 30-individual sequence cases 
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are smaller in Table 5.12 (i.e., multivariate cases) than they are in Table 5.6 (i.e., univariate 

cases), and the opposite is true for the 40 and 50-individual sequence cases. The benefit of 

the aggregation of maps compared with the use of maps alone in multivariate cases is also 

greater with the cases of 30-individual sequences than it is with the cases of 40 and 50-

individual sequences. 

Table 5.12. RMSE for the location of the shift with mutlivariate cases. 

Technique Sequence RMSE Improvement (%) of 
Size Average of maps alone Aggregation of maps aggregation relative to 

non-aggregation 
Knet2 30 4.72 4.55 3.61 

40 8.22 8.16 0.74 
50 11.15 11.08 0.65 

Knet5 30 4.19 3.80 9.38 
40 8.32 8.29 0.31 
50 11.24 11.21 0.30 

Table 5.13 shows the success rates in identifying the location of the shift in 

multivariate cases when the use of the threshold values is taken into account, as it is in 

Table 5.7 with univariate cases. Due to the resolution issue mentioned in this section, the 

results of the approach for identifying the location of the shift exactly or quite closely with 

Kohonen maps are poorer than those for the conventional tests. As more flexibility is 

allowed in the identification of the location of the shift (e.g., the location of a shift at plus 

or minus four or five time steps), the Kohonen maps emerge as a better option than other 

methods (see Table 5.7) for the cases of the 30-individual sequences. For the cases of the 

40 and 50-individual sequences, the use of the Kohonen maps in a multivariate setting is 

definitely a poor choice. 

The use of the Kohonen maps in a multivariate setting shows promise, as attested by 

the results obtained for cases involving 30-individual sequences. The ambivalent results 

obtained with cases for the 40- and 50-individual sequences indicates that one must be 

prudent in the determination of the structure of the Kohonen network. As the length of the 

sequences increases, and as the number of variates tested at once increases, the number of 

patterns to be represented in the map also increases, particularly in the cases of shifts where 

both the amplitude of the shift and its location must be assessed. In this application, the 

number of output neurons has been kept constant at 100 for all cases due to computing 
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capability constraints. This number should normally be a function of the length of the 

sequences and also the number of sequences tested at once so as to ensure a constant 

resolution from one case to another. The number of iterations in the calibration process 

should also reflect the sequence size and whether univariate or multivariate cases may be 

assessed. 

Table 5.13. Success rate in identifying the location of the shift with multivariate cases. 

Case Success rate (%) in identifying the location of the shift at plus minus 
0 time 1 time 2 time 3 time 4 time 5 time 
step step steps steps steps steps 

(a) 30-individual sequences 
Knet2 6 18 32 42 50 56 
Knet5 7 26 45 59 69 75 
(b) 40-individual sequences 
Knet2 2 5 10 16 21 25 
Knet5 1 4 9 13 17 21 
(c) 50-individual sequences 
Knet2 0 4 7 11 14 17 
Knet5 1 4 8 12 15 19 

5.2.3 Discussion 

The results in the previous section give case by case indications of which 

conventional statistical tests and AITs provide the best opportunity for adequately detecting 

shifts or trends. For univariate cases of shifts, conventional tests appear better suited to 

diagnose the presence or absence of a shift, although AITs as employed in this chapter 

seem better suited to determine the location of the shift when there is one, regardless of 

whether this shift is properly diagnosed as such. With univariate cases of trends, all 

methods essentially provide the same detection performance, although at the limit a very 

slight edge can be granted to AITs. The overall conclusion is that all methods, whether for 

univariate cases of shifts or trends, yield rather equivalent detection performance and 

confirm each other in their validity. If all methods are sound and valid, then one might be 

led to concluding that there is a limit to the detection capacity when only one sequence or 

variate is available for testing. Depending on the properties of the sequences (i.e., variance, 

skewness, distribution, etc.), there are instances that cannot be properly detected because 

the resolution of the tests is not sufficiently fine. This highlights the importance of 
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concurrent sequences or supporting information to aid in the detection process. Multivariate 

methods of detection demonstrate that considering more than one sequence or variate leads 

to gains in detection performance, and therefore should be used to complement and enhance 

univariate methods when one is certain that sequences can be grouped together. The 

application here shows that AITs can be suitable to assess multivariate cases, and can 

provide enhanced results relative to conventional statistical tests. 

5.3 Application on Outliers 

In an attempt to address all types of anomalies discussed in this work (i.e., outliers, 

shifts and trends), preliminary detection tests based on Kohonen maps and fuzzy c-means 

cluster sets are developed here for the identification of outliers. In hydrology, unlike shifts 

and trends, which are usually evaluated on annual sequences, the presence of outliers is 

often assessed for short time-step records, such as daily sequences of hydrometric 

observations. The presence of outliers is an important issue among managers of water 

resources systems whether for the purpose of hydro-energetic production or flood control. 

Outliers can induce a bias in the calibration of inflow prediction models employed for short 

to long-term water resources management. On an operational basis, the real-time detection 

of outliers in observations is a significant issue, because a wrongful real-time decision 

based on erroneous data can have effects that could linger for a long period of time. 

Because of the nature of outliers, the procedure for the development of Kohonen maps and 

fuzzy c-means cluster is slightly different from that in Section 5.2 for shifts and trends. The 

procedure has similar steps to those in Section 5.2, which are 1) a calibration phase to build 

the maps and cluster sets and 2) a validation phase for the evaluation of the performance of 

the detection of outliers. Conventional outlier detection methods, based on gradients 

between points in data records, as described in Krajewsky and Krajewsky (1989) are also 

considered here in the validation phase for comparison-sake. Outliers involve the 

consideration of a much larger number of possible patterns, and this affects the construction 

of synthetic data sequences for the calibration and validation processes. 

The experimental databases employed for the calibration and validation of the maps 

and cluster sets are presented in the following section. Next, the results of the experiment 

and a discussion of these results are presented. 
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5.3.1 Databases 

Outliers are aberrances that disrupt the expected pattern of the data. If one considers 

a set of points following a straight horizontal line, and it is expected according to the 

underlying processes being investigated that these points follow a straight line, then a point 

in the set would be considered as an outlier if it is significantly above or below this straight 

line. This outlier in itself creates a pattern that differs from the one defined by the set of 

points when no outlier is present. The Kohonen maps and fuzzy c-means cluster sets 

constructed here are designed to differentiate between patterns where outliers are present 

and patterns where no outliers are present, given a continuous subset of an historical record 

of data. A subset of hydrometric data points can in itself be the source of many patterns. In 

a given subset of data points with one outlier present, several patterns may exist depending 

on the location of the outlier, and its amplitude and direction (i.e., positive or negative). 

The number of patterns increases more if more than one outlier is present in the subset of 

data points. 

The calibration data sets employed here attempt to represent the diversity of patterns 

for cases where no outlier or, only one outlier, is present in the subset. Figure 5.5 illustrates 

a few examples of possible subsets of points in the calibration data sets. As in cases of 

shifts and trends, the range of values varies between zero and one for the purpose of 

reducing the scale of the problem. Real data would need to be standardized before being fed 

to the maps and cluster sets established with the calibration data sets employed here. The 

uncorrupted subsets are designed to represent expected patterns found in hydrometric 

observations, including continuous ascensions (e.g., the rise of the hydrograph, see Figure 

5a), a continuous descent (e.g., the recession of the hydrograph), the various possibilities of 

ascension followed by a recession, and the various possibilities of recession followed by an 

ascension (e.g., see Figure 5b). Simple power functions, with power coefficient between 

0.5 and 1.5 are employed to generate the data points in any given subset. The corrupted 

subsets must reflect the uncorrupted patterns, with the addition of an outlier. For corrupted 

subset, patterns may vary with respect to the amplitude of the outlier, its location (e.g., see 

Figures 5c and d), and its direction, either positive or negative (e.g., see Figures 5e and f). 

The amplitude of the outlier is determined by how far it is from the other data points in the 
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subset. The amplitude is determined randomly and can vary uniformly between 0 and 1. 

The number of possible patterns also varies with respect to the length of the subset. The 

longer the subset, the greater the number of patterns. 
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Figure 5.5. Examples of calibration sequences for outliers. 

Maps and cluster sets are calibrated for subsets containing 5, 7 or 10 data points 

(e.g., 5 to 10 daily observations of inflows or water levels). Larger maps and cluster sets 

than those employed for shifts and trends are considered here for outliers because of the 

large number of possible patterns involved. A total of 225 neurons (15x15) and clusters per 

map and set, respectively, are considered for cases with 5- and 7-point subsets, while 324 

neurons (18x18) and clusters per map and set are used for cases with 10-point subsets. This 

implies the calibration of 1,125, 1,575 and 3,240 weights per map and cluster set, 

respectively for the 5, 7 and 10-point subsets. A s with shifts and trends, ten maps and 

cluster sets are calibrated for each case (i.e., 5, 7 and 10-point subsets) to attempt to reduce 

the uncertainties inherent to the calibration procedures. Therefore, 10 calibration sets of 
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subsets are created per case, the sets containing 11,000, 16,000 and 35,000 subsets, 

respectively, for the 5, 7 and 10-point subset cases. The length of the sets is such that the 

ratio of the number of weights to calibrate versus the number of subsets equals around 

10%, as opposed to the 20% employed for shifts and trends. For all calibration data sets, an 

equal number of uncorrupted and corrupted subsets are created. 

Unlike shifts and trends, it is not easy to build synthetic validation data sets for 

outliers that are presumed to be as close as possible to reality because of all the possible 

situations that arise with hydrometric data at a short time scale. To circumvent these 

difficulties, real data sets, presumed free of outliers, are used. They are then corrupted with 

outliers for which the properties are known. The chosen data are those coming from inflow 

observations at hydrometric stations on the Mistassibi, Harricana, and San Juan Rivers (i.e., 

Environment Canada station numbers 02RD002, 04NA001 and 08HA010, respectively, 

data taken from the H Y D A T CD-ROM, version 96-1.04). The first two rivers are in the 

Province of Quebec, while the last one is in British Columbia on Vancouver Island. The 

size of the watersheds at the stations are 9,320, 3,680 and 580 km 2, respectively, and the 

distinct location of the stations ensures some diversity in terms of hydrologic behavior so as 

to demonstrate the versatility of the maps and cluster sets. A continuous 10-year record is 

taken from each of these 3 stations, and then these original records are duplicated 100 times 

each, allowing the construction of around one million subsets for all cases (i.e., 5, 7 and 10-

point subsets). The production of a large number of subsets with M A T L A B , similar to a 

Monte Carlo simulation, attempts to ensure that all possible patterns are represented. 

Before the subsets are built, the duplicated records are corrupted with outliers. A corruption 

is a value added to or subtracted from the original value of a point in the data sequence. Of 

the one million data points generated from the duplication, only 5% of them are corrupted 

in an attempt to have only one outlier per subset, when there is one present. The large size 

of the database, one million subsets, ensures nevertheless that a large number of outliers are 

available for investigation, that is, around 20,000. The outliers (i.e., the added or subtracted 

values) are designed to follow a Normal distribution of mean 0, and of standard deviation 

equal to that of the corresponding original record of data, and are added to the values of the 

data points. 
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5.3.2 Results 

For comparison-sake, two simple outlier detection methods proposed in Krajewsky 

and Krajewsky (1989) are tested here, along with the Kohonen maps and fuzzy c-means 

cluster sets. The first method is based on the gradient between two data points, that is: 

G , = 9 , - 9 , - i 5.2 

where Gt is the gradient at time t, and q, and qt.\ are the data points (e.g., daily inflows) at 

time / and r-1. It is assumed that qt is affected by an outlier i f G, is higher or lower than a 

given threshold value. The second method is a product of gradients (GPt), that is: 

GPt = G,Gl+i 5.3 

where G, and G,+\ are calculated with equation 5.2. It is assumed that q, is affected by an 

outlier i f GPt is higher or lower than a given threshold value. 

Krajewsky and Krajewsky (1989) do not commit to the determination of specific 

threshold values to distinguish between instances of corruption or non-corruption for their 

tests, denoted in this work as Test 1 for Equation 5.2 (i.e., the gradient) and Test 2 for 

Equation 5.3 (i.e., the gradient product), because of the unknown distributions of the 

responses of these tests. This is also problematic for the cases of the detection tests based 

on fuzzy c-means and the Kohonen network. A s a result, the determination of threshold 

values for all tests are determined based on the minimization of false detection, as 

performed with shift and trends in Chapters 4 and 5. Distinct threshold values are 

determined for each river to see i f there is any variability. 

From figures similar to that of Figures 5.3 and 5.4, assessment of the capacity of 

maps or cluster sets to distinguish between uncorrupted and corrupted subsets can be 

performed. Average characteristics are calculated for all output neurons in a map or clusters 

in a set based on the properties of the subsets that activate these neurons and clusters. Here 

the chosen characteristics are the location of the outlier in the subset and the ratio of the 

amplitude of the outlier to the standard deviation of the data sets (Amp/SD). To facilitate 

comparisons, the values of Test 1 and Test 2 are respectively divided by the standard 

deviation (SD) and the variance (SD 2 ) of the data sets to correspond to the A m p / S D ratio 

employed with the maps, and cluster sets. 

Table 5.14 gives the optimal false detection ratios obtained with all tests, and in 

which T is the threshold, U is the number of uncorrupted data points falsely detected as 
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corrupted over the total number of uncorrupted data points, C is the number of corrupted 

data points falsely detected as uncorrupted over the total number of corrupted data points, 

Test 1 and Test 2 are already defined, and Knet and Fuzzy are the detection tests based on 

the Kohonen maps and fuzzy c-means applied to the 5, 7 and 10-individual subsets. 

Table 5.14. False detection ratio for cases with outliers. 

Test Harricana river Mistassibi river San Juan river 
T U C T U C T U C 

Test 1 0.181 7.71 14.14 0.170 14.70 13.37 0.163 30.52 11.57 
Test 2 0.176 0.68 32.20 0.223 2.30 36.14 0.514 9.42 49.09 
Knet 5 0.269 10.39 18.65 0.035 8.81 17.14 0.132 14.52 33.15 
Fuzzy 5 0.175 10.19 17.88 0.061 6.48 16.99 0.144 12.24 34.66 
Knet 7 0.327 9.52 20.04 0.046 6.16 23.19 0.433 6.34 41.85 
Fuzzy 7 0.266 11.17 19.77 0.066 5.21 21.59 0.224 18.12 37.37 
Knet 10 0.262 9.17 29.22 0.074 4.78 35.03 0.445 10.95 48.92 
Fuzzy 10 0.216 8.34 52.27 0.091 4.17 55.34 0.467 7.78 63.39 

The results in Tables 5.14 must be interpreted in light of Table 5.15, which gives 

some basic characteristics of the river watersheds. 

Table 5.15. Characteristics of the watersheds. 

River Watershed Daily inflow (m3/s) Coefficient Average over 

area (km2) Average Standard Deviation of variation area (l/(sxkm2)) 

Harricana 3680 57.74 42.80 0.74 15.69 

Mistassibi 9320 197.89 197.44 1.00 21.23 

San Juan 580 51.20 80.46 1.57 88 .28 

The threshold value that minimizes the false detection ratio differs from one river to 

another for any given test, and this indicates that this parameter is dependent on the 

characteristics of the data under investigation. It is expected that the highest threshold 

values be obtained for the San Juan River considering the relatively high variability of daily 

inflow, that is, a high coefficient of variation or standard deviation compared with the mean 

flow. In this context, even uncorrupted instances can lead to high test values, and the 

determination of high threshold values reflects the need to consider as uncorrupted these 

high values to minimize the risk of falsely detecting uncorrupted data points as 
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uncorrupted. To conclude that threshold values are proportional to the coefficient of 

variation of the data is not appropriate though, based on the results for the Harricana River. 

The threshold values are higher for this river than those of the Mistassibi River except Test 

1, and higher than a few of those for the San Juan River, in spite of the fact that the 

coefficient of variation for the Harricana River is lower than that of the other two rivers. 

Note that the lowest false detection ratios on uncorrupted data points are encountered in the 

case of the Mistassibi River, even though its threshold values are the lowest of all rivers. A 

visual inspection of the Harricana River data shows a very smooth annual cycle with very 

little noise. Many lakes are found on the watershed of this river, for these are a common 

feature of the region where the river is located (i.e., around James Bay and Hudson Bay), 

and these seem to ensure an important routing of precipitation events. A study with more 

data sets would be recommended to provide a reliable diagnostic on the presumed unusual 

behavior encountered in the Harricana River, but this present application does highlight the 

difficulty of finding acceptable threshold values for detection tests for outliers. The 

optimization process employed here for the determination of the threshold is the 

minimization of the sum of false detection ratios, that is, the minimization of U+C (see 

Tables 5.14). However, the variability of this sum around the minimum is not overly large 

for most tests. Another alternative to the minimization approach could be to find a 

threshold such that U = C. This leads to an equal uncertainty regarding the false detection 

of uncorrupted or corrupted data points with little increase in the sum U+C (+7 in the worst 

case). It does not change the aforementioned conclusion that the threshold values of the 

Harricana River are high compared with threshold values for the other rivers. In any case, it 

is most likely preferable to use the minimization of the sum of U+C for most tests because 

this leads to smaller ratios of uncorrupted points falsely detected as corrupted. With regard 

to the issue of outliers, it is assumed that the number of uncorrupted data points in a data set 

largely exceeds the number of corrupted points, and this implies that it is preferable to be in 

a situation where the overall false detection ratio, that is, the total number of falsely 

detected points whether uncorrupted or corrupted over the total number of points, is 

minimized. If a particular test must be chosen as best, Test 1 should be selected for the 

Harricana and San Juan Rivers while the Fuzzy 5 test should be considered for the 

Mistassibi River. This conclusion regarding Test 1 remains as such even if the threshold 
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values on the Harricana and Mistassibi Rivers are increased for this test so that the U ratio 

is reduced - to the detriment of the C ratio - and are more in line with those obtained with 

the best tests based on AITs. 

On one hand, the results presented in Tables 5.14 for AITs represent the best 

solutions provided for such techniques. This involves the aggregation of maps or cluster 

sets as performed for shifts and trends in Chapter 5. Also, a given outlier obviously appears 

in more than one subset, that is, 5, 7 or 10 times depending on the size of the subsets, for a 

subset is simply a snapshot of the whole data set within a small time frame moving 

chronologically in regular time steps. The Amp/SD ratio of a targeted data point, whether 

corrupted or not, is the average of the Amp/SD ratio obtained with the a group of 10 maps 

or ten cluster sets applied on either the 5, 7 or 10-individual subsets containing this 

particular data point. Therefore, for any given data point, 50, 70 or 100 values of the 

Amp/SD ratio are averaged for the 5, 7 or 10- individual subsets, respectively. On the other 

hand, the results presented in Tables 5.14 for AITs represent the most stringent solutions 

provided by such techniques. With AIT tests, there is also the necessity to determine the 

location of the outlier, its position changing from one subset to another. Table 5.16 gives 

the success rate for identifying the location of outliers by the variants of tests based on 

AITs, and this for each river. 

Table 5.16. Success rate in identifying the location of the outliers. 

River Case Success rate (%) in identifying the location of the outlier at plus minus (time steps) 
0 1 2 3 4 5 6 7 8 9 

Harricana Knet 5 81.35 81.41 81.47 81.51 81.53 
Fuzzy 5 82.12 82.20 82.26 82.30 82.32 

Mistassibi Knet 5 82.86 85.21 85.33 85.40 85.41 
Fuzzy 5 83.01 84.14 84.23 84.28 84.29 

San Juan Knet 5 66.85 67.61 68.45 68.93 69.07 
Fuzzy 5 65.34 65.79 66.40 66.72 66.83 

Harricana Knet 7 79.96 80.40 80.45 80.50 80.53 80.57 80.58 
Fuzzy 7 80.23 80.82 80.89 80.94 80.98 81.02 81.04 

Mistassibi Knet 7 76.81 81.39 81.85 81.92 81.97 82.00 82.01 
Fuzzy 7 78.41 81.86 82.06 82.13 82.17 82.21 82.21 

San Juan Knet 7 58.15 58.40 58.70 59.02 59.30 59.49 59.54 
Fuzzy 7 62.63 64.00 64.84 65.54 66.10 66.45 66.50 

Harricana Knet 10 70.78 78.13 78.62 78.71 78.77 78.81 78.84 78.86 78.86 78.87 
Fuzzy 10 47.73 72.52 75.47 76.32 76.75 76.83 76.86 76.88 76.89 76.89 

Mistassibi Knet 10 64.97 74.15 76.43 76.92 77.03 77.08 77.12 77.15 77.15 77.15 
Fuzzy 10 44.66 67.86 72.00 73.32 73.71 73.80 73.83 73.85 73.86 73.86 

San Juan Knet 10 51.08 54.80 55.36 55.82 56.31 56.74 57.08 57.27 57.34 57.35 
Fuzzy 10 36.61 50.84 52.27 52.98 53.50 53.80 53.98 54.06 54.10 54.13 
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The results in Table 5.16 consider the outliers that have been correctly detected as 

corrupted data points based on the threshold values on the Amp/SD ratio, and the location 

of the outliers is evaluated from the 50, 70 or 100 responses provided by the maps or 

cluster sets applied to the 5, 7, or 10-individual subsets, respectively. In order to be fair to 

Test 1 and Test 2, the false detection ratio on corrupted data points (i.e., C in Table 5.14) is 

established based on the requirement that the location of the outlier be identified exactly. 

The false detection ratios for corrupted points in Table 5.14 (see Columns 4, 7 and 10) for 

AIT detection tests are equal to 100 minus the values in Column 3 of Tables 5.16 (i.e., the 

success rate in exactly identifying the location of the outliers that have been correctly 

diagnosed as corrupted points based on the threshold values of the Amp/SD ratio). This 

stringent requirement does not affect the Knet 5, Knet 7, Fuzzy 5 and Fuzzy 7 cases, for 

these cases provide the exact location of the outliers in almost all instances that are 

correctly identified as corrupted. For example, the success rate of Knet 5 for the Harricana 

River of both adequately diagnosing corruption and the location of corrupted points is 

81.35% (see the value in Row 3, Column 3 of Table 5.16). The success rate for this case of 

adequately diagnosing corruption regardless of location is only slightly higher, that is, 

81.53%) (see the last value in Row 3 of Table 5.16). For Knet 7 for the Harricana River, the 

numbers are respectively 79.96% and 80.58%, which represent a slightly lower success rate 

because of the larger number of possible locations of outliers to choose from in Knet 7 than 

in Knet 5. For Knet 10, and particularly with Fuzzy 10, the difference between identifying 

the exact location and having no regard for location is much greater for all rivers and this is 

responsible for the poor results in Table 5.14 for these two detection tests. 

The success of all tests is related to their capacity for determining the amplitude of 

outliers to some extent. The Kohenen maps and fuzzy c-means cluster sets are established 

so as to estimate this amplitude directly. Test 1 and Test 2 are not designed for this purpose, 

but can accomplish the quantification of the amplitude to some extent. Table 5.17 presents 

the RMSEs between observed and calculated Amp/SD ratios with Test 1 and Test 2. The 

RMSEs in Table 5.16 represent the best attempt at estimating Amp/SD, where a value of 0 

for Amp/SD is automatically given when the tests diagnose the data point as uncorrupted. 

Another approach, which provides worse results than those in Table 5.16, is to neglect the 

diagnostic of the tests. Here, the Amp/SD ratio is only equal to Equation 5.2 divided by SD 
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for Test 1 and to Equation 5.3 divided by SD 2 for Test 2. The results in Table 5.17 may be 

compared with those of Table 5.18, which provides the RMSEs obtained with the Kohonen 

maps and fuzzy c-means cluster sets. 

Table 5.17. Ratio Amp/SD for cases of outliers with conventional tests. 

Case RMSE for 
Harricana Mistassibi San Juan 

Test 1 0.398 0.416 0.825 
Test 2 0.463 0.469 1.666 

The most interesting point to observe from Tables 5.17 and 5.18 is the relatively 

small variability from one river to another in the RMSEs obtained from the AITs compared 

with those of Test 1 and Test 2. In spite of the difference in the statistical properties of the 

data from each river, a relative stability in the estimation of the amplitude of outliers can be 

achieved with AITs, but cannot be obtained with the conventional tests employed here, Test 

1 and Test 2. Note that the failure comes only from the estimation of Amp/SD with the San 

Juan River, which is the most difficult case due to its high variability of the daily inflows. 

When this river is neglected, and only the Harricana and Mistassibi Rivers are considered, 

then it can be said that Test 1 and Test 2 provide relatively stable estimates of the amplitude 

of outliers, although they are not as good as those provided by the AIT-based tests. The 

estimation of the amplitude of outliers might be of interest for those who want to quantify 

the effect of such anomalies on decision-making processes. Indeed, if there is a fear of 

removing potential outliers from data sequences based on detection tests because of the risk 

of false detection that would lead to the removal of valuable, uncorrupted data, then the 

development and use of outlier detection tests becomes irrelevant. Of course, if outliers are 

not removed, then they might induce a bias in the estimation of water quantity and this 

must be assessed. From the determination of the average amplitude of outliers potentially 

present in hydrometric data sequences, an evaluation of the amplitude of the bias induced 

by these outliers in the estimation of water quantity could possibly be achieved. Such 

evaluation of bias could be translated into economic consequences. A better estimate of the 

amplitude of outliers may lead to a better understanding of the bias induced by these 

outliers in the assessment of water quantity and economic effects. 
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Table 5.18. Ratio Amp/SD for cases of outliers with AIT. 

River Case RMSE for Improvement from River Case 
Average of 

maps 
Aggregation 

of maps 
Average of maps Test 1 Test 2 

Harricana Knet 5 0.333 0.315 5.62 20.86 31.98 
Fuzzy 5 0.304 0.295 2.96 25.74 36.18 

Mistassibi Knet 5 0.311 0.303 2.63 27.16 35.29 
Fuzzy 5 0.305 0.301 1.27 27.72 35.79 

San Juan Knet 5 0.375 0.361 3.58 56.23 78.31 
Fuzzy 5 0.371 0.364 1.90 55.89 78.15 

Harricana Knet 7 0.367 0.348 5.28 12.56 24.85 
Fuzzy 7 0.350 0.340 2.83 14.48 26.50 

Mistassibi Knet 7 0.345 • 0.336 2.61 19.17 28.19 
Fuzzy 7 0.345 0.340 1.40 18.27 27.40 

San Juan Knet 7 0.435 0.417 4.03 49.47 74.96 
Fuzzy 7 0.437 0.428 2.21 48.17 74.32 

Harricana Knet 10 0.399 0.383 4.00 3.73 17.26 
Fuzzy 10 0.396 0.386 2.34 2.80 16.46 

Mistassibi Knet 10 0.392 0.383 2.11 7.90 18.18 
Fuzzy 10 0.393 0.388 1.32 6.77 17.18 

San Juan Knet 10 0.505 0.486 3.79 41.07 70.80 
Fuzzy 10 0.499 0.488 2.17 40.81 70.68 

5.3.3 Discussion 

The results presented on outliers in this section must be considered carefully, for the 

detection tests are not compared using exactly the same validation data sets. Because all the 

tests can only detect single isolated outliers, cases in the validation database that would 

have involved detection of multiple outliers have been removed prior to calculating false 

detection ratios or estimating amplitudes. For Test 1 and Test 2, this involves removing 

cases where two or more outliers appear immediately after one another, and this leads to 

trimming the validation database by around 2%. For tests based on AITs, this amounts to 

removing all subsets that contain more than one outlier, yielding a reduction of the 

validation database by slightly more than 3%. It is deemed that these reductions of data 

have little impact, considering that the validation data base is made up of more than one 

million test data points. One must remember that the results focus only on the detection of 

single, isolated outliers. 

The choice of the size of the subsets has been driven by the variability in the time 

response of watersheds. The fundamental basis of pattern recognition techniques such as 

those employed here is the ability to make decisions with respect to overall picture of the 
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data. In this application, the picture is a subset of data taken within a given time frame (i.e., 

5, 7 or 10 time steps), and it is expected that subsets affected by outliers would present 

different features than those of subsets that are uncorrupted. Long subsets could possibly be 

employed on data representing slow hydrologic regimes, with long rises and recessions, 

therefore yielding rather smooth monotonic evolutions unless "spikes" like outliers are 

present. The results presented here show that 5 and 7-individual subsets are the maximum 

length admissible, at least for the watersheds investigated. The cases with the 10-individual 

subsets yield the worst performance of all tests analyzed, and they are also more susceptible 

to failure due to multiple outliers within subsets. This does not mean however that shorter 

subsets would be preferable. Test 1 can be considered as a pattern recognition technique 

working on 2-individual subsets, and indeed provides the best performance except for the 

Mistassibi River. Test 2 can be viewed as a pattern recognition technique working on 3-

individual subsets, and produces performance that is worse than AIT-based detection tests. 

The watersheds employed here with the tests have been chosen because they are deemed to 

represent most of the hydrologic regimes present in Canada. Of course, if time was not a 

constraint, it would have been preferable to evaluate the test on as many watersheds as 

possible. 

5.4 Conclusion 

The results in Chapters 4 and 5 justify the application of AIT-based tests because at 

the least they can help confirm the results obtained with conventional detection tests for 

shifts, trends and outliers. The AIT-based tests may in fact complement conventional 

detection tests, as all conventional and AIT-based tests, even though they may perform 

similarly in terms of false detection, may behave differently. For a given situation, some 

tests could provide a diagnostic of detection, while the others may conclude to no detection. 

This difference in the behavior of the tests is shown in Chapter 6, with applications on real 

hydrometric data. AIT-based tests may constitute an enhancement of conventional 

detection tests, as shown in some multivariate cases, and this should be considered a 

rationale for further developments. 

The conventional tests applied here are very simple, especially those for outliers, 

which make them very attractive for practitioners. Nevertheless, simple tests such as the 
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Mann-Withney test for shifts and Mann-Kendall test for trends are accepted widely as 

standards, and it is normal to consider them as references for comparison, in spite of the 

possibility of more sophisticated tools, depending on the anomaly under investigation. AIT-

based tests can be considered as being more sophisticated on a technical standpoint than the 

conventional tests employed here, yet do not consistently provide significant improvement 

in performance. As stated previously, for univariate cases, AIT-based tests only confirm 

and to some degree complement the results obtained by conventional tests. It would be of 

interest to evaluate a greater selection of techniques (see Chapter 2) for the detection of 

anomalies under an experiment similar to that presented in this work, in Chapters 4 and 5. 

Among other issues, the variability in the false detection performance should be given 

particular attention, for the performance of the approaches presented here is remarkably and 

consistently similar for each anomaly. It may be useful to investigate if this observation is 

true for a greater array of methods. 

With regard to AITs applied for the detection of anomalies, one must note that their 

greatest advantage is their capacity to provide a good description of data domains. This 

description implies a long calibration process, which is a disadvantage of AITs-based tests. 

The processing time, for the detection of anomalies after calibration, is also slightly longer 

for AITs than for conventional techniques, but remains negligible if one treats only a few 

sequences, as is normally the case in practice. The AIT-based approaches developed in this 

work might not provide significant improvement from other conventional methods, but 

these approaches might represent only a very limited sample of the possible strategies for 

addressing the issues of data anomalies with AITs. The AITs employed in this work are 

actually based on very simple structures, which make them very flexible and able to be 

molded in numerous ways depending on the inputs provided. There is no rule regulating 

this modeling process, the only limitation being the imagination of the user. As a result, 

much trial and error may be necessary before finding a preferred approach, and the 

approaches in this thesis may very likely represent only a few possibilities. 

Patience and perseverance is necessary in the development of AIT-based 

approaches for the detection of data anomalies. It must be noted that only simple cases have 

been evaluated here, where only one shift or trend per sequence, or one outlier per subset 

are evaluated. More complicated with multiple shifts, trends and outliers, or with 
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combinations of anomalies (i.e., shifts with trends or several outliers of a different nature) 

should be investigated, for they constitute more realistic cases. The choice of the random 

generators (i.e., Normal and Uniform) for the creation of synthetic data sequences and 

anomalies should also be revised to better reflect the reality of natural processes. It must be 

noted though that the validity of tests becomes more questionable as the cases are more 

complex, and one must therefore rely on additional information (i.e., multivariate cases) or 

more heuristic approaches (e.g., expert judgment) to provide a decision regarding the 

detection of anomalies. AITs might in fact prove very useful for the assessment of these 

complex cases. It is shown in this work that AITs may constitute an improvement beyond 

that of conventional tests for multivariate cases, and they can also integrate soft data such 

as expert judgment in the description of data domains. The use of soft data is not 

demonstrated in this work, because the author's experience would not be extensive enough 

to provide a strong expertise base. A panel of experts should be called upon for the 

development of this expertise base. Ultimately, an expert system could be built based on 

AITs, for which the detection of anomalies would be accomplished with respect to several 

requirements for the data or thresholds for the tests. 

Before developing further approaches based on AITs, it is necessary to demonstrate 

and evaluate the tests developed here using real hydrometric data in order to strengthen 

their validity. This is accomplished in Chapter 6. 
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Chapter 6 

Practical Applications of Mapping Procedures 

The purpose of this chapter is to demonstrate the applicability of the methods 

presented in Chapter 5 for real cases. The databases employed here are much smaller than 

those of the experiments of Chapters 4 and 5 and therefore permit a more specific analysis 

of the applicability of the methods assessed in this work. A more in-depth discussion of the 

validity and potential concerns regarding the application of AITs for the assessment of 

anomalies in data is offered, based on the results obtained here and in the previous chapters. 

Notably, the results highlight the value of AIT-based tests as complements to conventional 

detection tests. Two general applications, first for shifts and trends, and second for outliers, 

are presented, each with a description of the database used and a discussion of the results 

obtained. Finally, broad conclusions based on these two applications are offered. 

6.1 Application to Shifts and Trends 

6.1.1 Description of the Application Case 

The context of application here is similar to that presented in Anderson et al. (1992), 

Yulianti and Burn (1998), Zhang et al. (2001), or Cunderlik and Burn (2002), where a large 

number of hydrometric stations over a large territory are tested so as to determine regional 

patterns. The hydrometric stations chosen here come from the pool of stations employed by 

these authors, who have selected them because they measure inflows on unregulated rivers 

and have relatively long data records of assumed high quality. Consequently, comparisons 

between the results of these authors and those of this application can be made to some 

extent. In particular, this analysis is designed to be similar to that of Zhang et al. (2001), 

considering similar data sets for tests, that is, annual mean inflows and annual maximum 

daily inflows, and performing detection tests on the same periods as much as possible, that 

is, from 1947 to 1996 (50 years), 1957 to 1996 (40 years), and 1967 to 1996 (30 years). 

Table 6.1 lists the hydrometric stations employed here, the data for these stations being 

taken from Environment Canada H Y D A T CD-ROM, version 96-1.04. Most of the stations 

are located in the southern regions of Canada, with a few stations, all with relatively short 
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records, in the north around the Hudson Bay, in the western provinces and the territories 

(Northwest and Nunavut). 

Table 6.1. Hydrometric stations employed for detection tests. 

Province Station Name Period of availability (years) for 
Annual mean Annual daily max 

30 40 50 30 40 50 
NB 01AK001 Shogomoc Stream near Trans Canada Y Y Y Y Y Y 
NB 01AQ001 Lepreau River at Lepreau Y Y Y Y Y Y 
NB 01BE001 Upsalquitch River at Upsalquitch Y Y Y Y Y Y 
NS 01DG003 Beaverbank River near Kinsac Y Y Y Y Y Y 
NS 01EC001 Roseway River at Lower Ohio Y Y Y Y Y Y 
NS 01EF001 Lehave River at St. Margatets Bay Y Y Y Y Y Y 
NS 01EH001 East River at St. Margatets Bay Y Y Y Y Y Y 
NS 01EO001 St. Marys River at Stillwater Y Y Y Y Y Y 
ON 02AA001 Pigeon River at Middle Falls Y Y Y Y Y Y 
ON 02EA005 North Magnetawan River near Burk's Fall Y Y Y Y Y Y 
ON 02EC002 Black River near Washago Y Y Y Y Y Y 
QC 02NF003 Matawin & Saint-Michel-Des-Saints Y Y Y Y Y Y 
QC 02PJ007 Beaurivage (Riviere) & Saint-Etienne Y Y Y Y Y Y 
NL 02YL001 Upper Humber River near Reidville Y Y Y Y Y Y 
QC 03MB002 Rivere a la Baleine pres de l'embouchure -1 Y Y 
ON 04LJ001 Missinaibi River at Mattice Y Y Y Y Y Y 
QC 04NA001 Harricana (Riviere) & Amos Y Y Y Y Y Y 
AB 05AA004 Pincher Creek at Brodin's Farm Y Y 
AB 05AD003 Waterton River near Waterton Park Y Y Y Y 
AB 05AF010 Manyberries Creek at Brodin's Farm Y Y Y 
AB 05BB001 Bow River at Banff Y Y Y Y Y Y 
AB 05BJ004 Elbow River at Bragg Creek Y Y Y 
MN 05LJ005 Ochre River at Ochre River Y Y Y Y 
ON 05PB014 Turtle River near Mine Center Y Y Y Y Y Y 
ON 05OA002 English River at Umfreville Y Y Y Y Y Y 
MB 06GD001 Seal River below Great Island Y Y 
AB 07BE001 Athabasca River at Athabasca Y Y Y Y Y 
BC 07FB001 Pine River at East Pine Y Y 
NT 07OB001 Hay River near Hay River Y Y 
NT 07RD001 Lockhart River at outlet of Artillery Lake Y 
BC 08CB001 Stikine River above Grand Canyon Y Y 
BC 08CD001 Tuya River near Telegraph Creek Y Y 
BC 08FB007 Bella Coola River above Burnt Bridge Creek Y 
BC 08JB002 Stellako River at Glenannan Y Y Y Y 
BC 08JE001 Stuart River near Fort St-James Y Y Y Y Y 
BC 08KH006 Quesnel River near Quesnel Y Y Y Y Y 
BC 08LA001 Clearwater River near Clearwater Station Y Y Y Y 
BC 08LD001 Adams River near Squilax Y Y Y Y 
BC 08MA002 Chilko River at outlet of Chilko Lake Y Y Y 
BC 08NL007 Similkameen River at Princeton Y Y Y Y Y Y 
NT 10EB001 South Nahanni River above Virginia Falls Y 
NU 10RC001 Black River above Hermann River Y Y 
AB 11AA026 Sage Creek at Q Ranch near Wildhorse Y Y Y Y Y Y 

Note: Y stands for yes. 

For annual mean inflows, the availability of a station is determined based on the 

length of the overall records and the number of missing data within the periods of interest. 
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If more than 20% of data are missing in a given year, then this year is deemed unavailable 

for the station. The periods are not fixed in time, and therefore the data for some stations do 

not exactly fall in the time periods from 1947 to 1996 for the 50-year period, 1957 to 1996 

for the 40-year period, and 1967 to 1996 for the 30-year period, although they are close to 

these ranges. If 30 years of data cannot be gathered from 1962 to 1996, then the station is 

considered as unavailable for the 30-year period. Similarly, 40 years of data from 1952 to 

1996 for the 40-year period and 50 years of data from 1942 to 1996 for the 50-year period 

must be gathered for a station to be considered usable. For annual maximum daily inflows, 

the availability of a station is based on the length of the overall records and missing data 

within the flood periods. For a given year, if there are missing data for a large part of the 

periods where floods occur in the region where the station is located, then this year is 

considered as unusable. The number of usable years of data for the 30, 40 and 50-year 

periods is established as for the annual mean inflows. The last six columns of Table 6.1 

describe which stations are available (i.e., Y) for each period length (i.e., 30, 40 and 50 

years) and for each data set (i.e., annual mean inflows and annual maximum daily inflows). 

For the annual mean inflows, 37, 29 and 21 stations are usable for the 30, 40 and 50-year 

periods, respectively, while 43, 32 and 27 stations are usable for the 30, 40 and 50-year 

periods, respectively, for the annual maximum daily inflows. 

6.1.2 Results and Discussion 

All detection tests for univariate cases involved in Chapter 5 are applied to the data 

here, namely the Mann-Whitney and Student's tests for shifts, the Mann-Kendall and 

Spearman tests for trends, the tests based on Kohonen maps for shifts and trends, and the 

tests based on fuzzy c-means cluster sets for shifts and trends. The threshold values that 

distinguish between a diagnostic of corruption or non-corruption are those given in Tables 

5.4 and 5.5. Because conventional and AIT-based detection tests produce equivalent 

performance, the approach applied here is to not rely on only one test, but on all of them, 

that is, four tests each for shifts and trends. If a sequence is diagnosed as uncorrupted or 

corrupted by all available tests, it may be safe to assume that these unanimous diagnostics 

confirm one another as opposed to the case where the tests provide conflicting diagnostics. 

Tables 6.2 and 6.3 demonstrate this assumption for the detection tests for shifts and trends, 
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respectively, based on the validation data sets employed in Chapter 5 for univariate cases. 

Tables 6.2 and 6.3 also provide the results with respect to 30, 40 and 50-individual 

sequences, and indicate the number of sequences that activate 0, 1, 2, 3 or 4 tests. A test is 

said to be activated if it diagnoses a given sequence as corrupted. Also, the sequences are of 

course divided between uncorrupted and corrupted cases (Columns U and C in Tables 6.2 

and 6.3). For example, Table 6.2 indicates that, for the case of 30-individual sequences, 

12,715 sequences lead to the activation of all four available tests, and of these 12,715 

sequences, 85% are corrupted while the remaining 15% are uncorrupted. Therefore, based 

on the validation data sets in Chapter 5, there is an 85% chance that a given 30-individual 

sequence is actually corrupted if all four tests are activated, and this is an improvement 

from the consideration of only one test. Obviously, the results are more ambiguous when 

only half the tests are activated. 

Table 6.2. Conjoint results from detection tests for shifts. 
Number of 30-individual sequences 40-individual sequences 50-individual sequences 
tests Number of Percentage of Number of Percentage of Number of Percentage of 
activated sequences U C sequences U C Sequences U C 
0 26,083 67 33 26,468 68 32 26,444 70 30 
1 4,113 58 42 4,199 60 40 4,761 60 40 
2 4,209 49 51 4,470 44 56 4,225 45 55 
3 2,880 38 62 2,575 36 64 2,897 31 69 
4 12,715 15 85 12,288 12 88 11,673 10 90 

Note: U stand for uncorrupted sequences and C stands for corrupted sequences. 

Table 6.3. Conjoint results from detection tests for trends. 
Number of 30-individual sequences 40-individual sequences 50-individual sequences 
tests Number of Percentage of Number of Percentage of Number of Percentage of 
activated sequences U C sequences U C sequences U C 
0 28653 57 43 31223 61 39 31349 66 34 
1 2509 52 48 2091 51 49 757 54 46 
2 2978 50 50 2273 48 52 2543 49 51 
3 2086 48 52 1455 45 55 571 45 55 
4 13774 34 66 12958 24 76 14780 19 81 

Note: U stand for uncorrupted sequences and C stands for corrupted sequences. 

As a whole, the chance of detecting a shift when all four tests are activated is fairly 

high regardless of the sequence length, ranging from 85 to 90% (see Table 6.2). On the 

other hand, the chance of detecting an uncorrupted sequence when no tests are activated 

ranges only from 67 to 70%, and this is a good indication of why all tests falsely detect 

corrupted sequences as uncorrupted at a higher rate than they falsely detect uncorrupted 
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sequences as corrupted. In the best case, where sequences are considered as corrupted when 

two or more tests are activated and as uncorrupted when no test or only one test is 

activated, the false detection ratios (uncorrupted and corrupted) are essentially equal to 

those presented in Table 5.4. Similarly, the combination of the results from tests does not 

yield significant improvements in the estimation of the Amp/CV ratio or the location of the 

shift. Strictly from a performance standpoint, the combination of tests does not lead to 

improvement from the consideration of only one test. From a practical standpoint, to favor 

one specific test would not be adequate, because all tests are equally reliable or unreliable. 

The combination of tests, as applied here on the hydrometric data listed in Table 6.1, is 

designed to ensure some relatively unambiguous diagnoses (i.e., zero or four activated 

tests) for at least a few of the sequences. 

For cases of trends, similar conclusions to those stated for cases of shifts may be 

drawn. In the best case of combinations, if sequences are considered as corrupted when two 

or more tests are activated and as uncorrupted when no test or only one test is activated, 

then the false detection ratios (uncorrupted and corrupted) are essentially equal to those 

presented in Table 5.5. Also, the combination of the results from the tests would not yield 

significant improvements in the estimation of the Amp/CV ratio of the trends. The benefit 

of the combination of the tests is from the perspective that relatively unambiguous 

diagnoses (i.e. zero or four activated tests) can be obtained for at least a few of the 

sequences, although this reduction of ambiguity is less prevalent for trends than it is for 

shifts, as can be seen by the comparison of Table 6.2 with Table 6.3. 

Table 6.4 details the results obtained from detection tests for shifts when applied to 

the hydrometric data from the stations listed in Table 6.1. Table 6.4 distinguishes between 

the variables under evaluation, that is annual mean inflows and annual maximum daily 

inflows, and among the length of the data sequences. As in Tables 6.2 and 6.3, the 

sequences are grouped as a function of the number of tests they activate. In Table 6.4, the 

numbers in parentheses are the number of sequences available for tests for a given variable 

and sequence length. A large portion of the data sequences of annual mean inflows do not 

activate any of the detection tests available or activate only one test, which indicates the 

presence of very few shifts in this group of hydrometric stations. The proportion of 

sequences of annual mean inflows that activated two or more tests is quite a bit larger for 
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30-year sequences than it is for 40- and 50-year sequences. This proportion must be 

considered with caution, however, for the high proportion with 30-year sequences is in 

large part due to hydrometric stations that are not available for tests on 40- and 50-year 

sequences. As a result, there is no possibility to determine if the shifts in the 30-year 

sequences are noticeable in the 40- and 50-year sequences. The estimation of the location 

of the shifts from all tests seems to indicate that, if a shift is present in a sequence, then it 

occurs in the last 30 years (i.e., between 1967 and 1996), the most likely decade being the 

70s. The proportion of sequences of annual maximum daily inflows that activate two or 

more tests is more likely to be sustained from one sequence length to another. First, the 

number of possibly shifted sequences of annual maximum daily inflows is larger than the 

number of possibly shifted sequences of annual mean inflows. Second, this sustained 

proportion from one sequence length to another of possibly shifted sequences is also due to 

the fact that a large portion of the stations that are possibly affected by shifts are available 

for tests at all sequence lengths. This main change comes from the stations in the Atlantic 

Region, all having long data records, with a large portion of them having possibly shifted 

annual maximum daily inflows and mostly unaffected annual mean inflows. Note the large 

number of ambiguous sequences of annual maximum inflows (i.e. one to three tests 

activated). This is explained by the relatively large coefficients of variation of annual 

maximum daily inflow sequences compared with those of annual mean inflow sequences. 

All detection tests are more likely to fail to provide adequate diagnostics as the coefficient 

of variation of the data sequences increases. 

Table 6.4. Detection tests for shifts with hydrometric data. 
Number of Sequences of annual mean inflows Sequences of annual maximum daily inflows 
tests 30-year 40-year 50-year 30-year 40-year 50-year 
activated sequences sequences sequences sequences sequences sequences 

(37) (29) (21) (43) (32) (27) 
0 16 16 12 16 9 8 
1 7 5 4 5 4 5 
2 4 4 2 7 10 4 
3 1 1 1 6 3 0 
4 9 3 2 9 6 10 

Based on the estimation of the Amp/CV ratio for the AIT-based detection tests and 

on the test values obtained for conventional detection test, it is deemed that a reduction 

over time in the annual mean inflows occurs for the 30- and 40-year sequences for most 
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stations. The exceptions to this conclusion are some stations in the north (Northern BC and, 

in and around the territories), and two stations in the Great Lakes / Saint Laurence Region. 

With 50-year sequences of annual mean inflows, a slight increase over time is noticed 

consistently for stations in the Great Lakes / Saint Laurence Region and also for some 

stations in the Atlantic Region. Slight to potentially significant decreases are observed for 

all other stations. For 30-year sequences of annual maximum inflows, reduction over time 

of inflows is consistent in the southern regions (i.e., the Atlantic, Great Lakes / Saint 

Laurence, and Southern BC Regions) while an increase is noticed for the northern regions 

(Northern BC, and in and around the territories). For 40- and 50-year sequences, the 

reduction persists for the Atlantic Region and Southern BC and might be significant for 

both regions, while a mix of slight reductions and increases are observed for the stations in 

the Great Lakes / Saint Laurence Region and in Ontario and Quebec around the Hudson 

Bay. As with the annual mean inflows, if a shift is present in the sequence, it is likely that it 

has occurred recently, most specifically in the 70s. Overall, for both annual mean and 

maximum daily inflows, the most affected region is that of Southern BC with consistent, 

possibly significant reductions of inflows. 

Table 6.5 provides information of the same nature as that of Table 6.4, but this time 

with detection tests for trends. For both annual mean and maximum daily inflows, the 

number of unambiguous cases is large, that is, most sequences either activate no tests or 

activate all four available detection tests for trends. However, as seen in the results in Table 

6.3, the possibility of false detection remains high even with presumably unambiguous 

diagnostics. Many cases of sequences affected by a trend could possibly lead to inactivation 

of all tests, and many cases where no trend is present could potentially produce the 

activation of all tests. The results in Table 6.5 are deemed valid, nevertheless, for they 

mostly confirm those of Table 6.4. As mentioned in Chapter 4, detection tests for shifts and 

trends perform essentially the same function. Detection tests for shifts can be employed for 

the identification of trends, for a trend can be considered to be the result of shifts that occur 

at regular intervals. Detection tests for trends can be employed for the identification of 

shifts, for a shift involves a change in the characteristics of the data as much as a trend 

does. If the interest is in the detection of a reduction or increase in the values of inflows 

regardless of the sources (i.e., shifts or trends), then detection tests for shifts and trends can 
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be used together. Table 6.6 shows the results of employing all tests for shifts and trends, 

which means that a sequence has the possibility to activate up to 8 tests. 

Table 6.5. Detection tests for trends with hydrometric data. 
Number of Sequences of annual mean inflows Sequences of annual maximum daily inflows 
Tests 30-year 40-year 50-year 30-year 40-year 50-year 
Activated sequences sequences sequences sequences sequences sequences 

(37) (29) (21) (43) (32) (27) 
0 22 21 17 20 19 13 
1 2 2 0 3 1 0 
2 3 1 1 5 3 4 
3 0 0 1 3 1 0 
4 10 5 2 12 8 10 

The results from Tables 6.5 and 6.6 confirm the conclusions based on the data in 

Table 6.4. For annual mean inflows, consistent reductions are observed for all southern 

regions of Canada in the short to medium term (30- and 40-year), while increases are 

obtained for the northern regions in the short term (30-year). Slight reductions persist in the 

southern regions on the long term (50-year), except in the Great Lakes / Saint Laurence and 

in the Atlantic Region to some extent, where slight increases are noticed. As suggested by 

Zhang et al. (2001), interdecadal variability might be the cause of the specific patterns per 

region of ups and downs over time in the annual mean inflows. In the short term (30-year), 

reduction over time of annual maximum daily inflows is consistent in the southern regions 

(i.e., the Atlantic, Great Lakes / Saint Laurence, and Southern BC Regions) while an 

increase is noticed for the northern regions (Northern BC, and in and around the territories). 

The reduction persists for the Atlantic Region and Southern BC in the medium to long term 

(40- and 50-year), while a mix of slight reduction and increase is observed for the stations 

in the Great Lakes / Saint Laurence Region and in Ontario and Quebec around the Hudson 

Bay. 

The results presented here are in large measure in agreement with those of Zhang et 

al. (2001), who perform extensive cross-country analyses of trends on inflows. Both 

applications lead to the conclusion that Southern BC is the most affected region of the 

country with respect to changes in annual mean and maximum daily inflows. From short to 

long-terms periods (i.e., 30 to 50 years), decreases are generally observed in the southern 

regions of the country. Small regional differences can be identified between the two 

applications such as, for example, the assessment of the annual mean inflows in the 
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Atlantic Region in the long term. Admittedly the application here is based on a much more 

limited number of hydrometric stations than in Zhang et al. (2001), and this reduces the 

validity of more specific, region to region analyses. 

Table 6.6. Detection tests for shifts and trends with hydrometric data. 
Number of Sequences of annual mean inflows Sequences of annual maximum daily inflows 
Tests . 30-year 40-year 50-year 30-year 40-year 50-year 
activated sequences sequences sequences sequences sequences sequences 

(37) (29) (21) (43) (32) (27) 
0 15 14 12 13 8 8 
1 4 6 4 4 4 5 
2 3 2 1 6 8 0 
3 1 1 0 0 0 0 
4 5 1 1 2 1 1 
5 1 0 0 3 3 0 
6 0 2 0 6 1 6 
7 0 1 2 4 2 0 
8 8 2 1 5 5 7 

The results here do not lead to the conclusion that any of the detection tests 

distinguishes itself from the others, but rather that they may complement each other. With 

real data, there is no way to know for sure if the sequences are affected by anomalies, and 

consequently there is no possibility to accurately determine deficiencies in the tests. In such 

a circumstance one must rely entirely on the analytical results. In large part, the tests have 

been consistent in their behavior, that is, either they have all been activated or none have 

been activated for the majority of the data sequences presented to them. This application 

confirms that all tests are performing essentially equally and this validates the results 

obtained in Chapter 5 for synthetic data. 

6.2 Application to Outliers 

6.2.1 Description of the Application Case 

The purpose of this application is more in the evaluation of the behavior of all tests 

than in the validation of the performance of those presented in Chapter 5. Even though 

some of the tests seem to exhibit similar performance, they do not necessarily detect the 

same kind of outliers, and this is demonstrated in this section. The gradient (Equation 5.2, 

referred to as Test 1) and the product of gradient (Equation 5.3, referred to as Test 2) tests, 

as well as the detection tests based on the Kohonen maps and fuzzy c-means cluster sets for 

5-point subsets, respectively referred to as Knet 5 and Fuzzy 5, are employed here for the 
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detection of outliers on six hydrometric stations. The Kohonen maps and fuzzy c-means 

cluster sets for 7- and 10-point subsets are not considered, as they do not perform as well as 

Test 1, Test 2, Knet 5 and Fuzzy 5. Table 6.7 details the chosen stations, five of which 

record inflows, while the last one records water levels. Three of these stations are actually 

those considered in Chapter 5 for the construction of the validation database for the 

evaluation of the performance of the detection tests for outliers, although different 10-year 

periods are chosen. The choice of a station recording water level is justified to determine 

the versatility of the detection tests and their capacity to perform for different kinds of 

measurements. The hydrometric stations observing inflows are chosen so as to have 

diversity in the size and productivity of the watersheds, as shown in Table 6.7, and to 

examine the tests under different hydrologic regimes, as exhibited in Figure 6.1. 

Table 6.7. Characteristics of the hydrometric stations. 
Name Province Identifi­

cation in 
the text 

Type Period 
(in year, 

inclusive) 

Area 
(km2) 

Mean 
(m3/s or 

m) 

Standard 
deviation 

(m3/s or m) 
Coquihalla River near Hope BC C Inflow 1970/79 741 30.87 33.21 
Harricana River at Amos QC H Inflow 1970/79 3,680 59.20 48.32 
Metabetchouane River QC ME Inflow 1980/89 2,280 46.70 55.52 
Mistassibi River QC MI Inflow 1970/79 9,320 204.83 221.85 
San Juan River near Port BC S Inflow 1963/72 580 51.23 80.04 
Renfrew 
Saint-Jean Lake at Saint- QC G Level 1981/90 73,000 100.44 1.11 
Gedeon 

Figure 6.1 illustrates typical records for all the stations, namely (a) Coquihalla, (b) 

Harricana, (c) Metabechouane, (d) Mistassibi, (e) San Juan and (f) Saint-Gedeon stations. 

In terms of hydrologic regime, the Harricana station is in a northern region (i.e., Northen 

Quebec, close to James Bay) where inflows peak during the spring snowmelt, and then 

almost constantly recede until the next spring. The San Juan station is located on 

Vancouver Island, BC, where precipitation falls mostly as rain, generating a hydrograph 

that evolves with respect to the amplitude of precipitation inputs. The Coquihalla, 

Metabetchouane and Mistassibi stations are located in regions that receive regular water 

inputs, a large part as snow, and typical hydrographs for these watersheds usually contain 

two peaks, one in spring due to the snowmelt, and one in fall due to abundant precipitation 

and high soil moisture. 
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Figure 6.1. Inflows or water levels at all stations. 

From Figure 6.1, it may be concluded that the evolution of the hydro graphs come 

from natural causes. Suspicions might be raised in the case of the inflow at the Coquihalla 

station on May 25 (Figure 6.1a) and on the inflow at the San Juan station on November 26 

(Figure 6.1e), for they seem to look like spikes that could be difficult to explain considering 

the possible response time of the respective watersheds. A naked eye examination of the 

10-year period of all of the stations indicates that all the data sequences are of good quality, 

with only a few possible suspected cases of outliers. The data are taken from the 

Environment Canada H Y D A T database, and the quality indicator provided by this source 

indicates that no data points have been revised within the chosen time period for all 

stations. The data on which the detection tests are applied are considered as essentially free 
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of outliers, and this application constitutes a way to determine the kind of data that will 

induce the tests to misdiagnose uncorrupted points as corrupted. 

6.2.2 Results and Discussion 

The first issue in the application of the tests is to determine the thresholds beyond 

which test values are assumed to be indicative of the presence of outliers. For the 

Harricana, Mistassibi and San Juan stations, the threshold values employed are those 

determined for these stations in Chapter 5 (Table 5.14). The threshold values assigned to 

the Mistassibi station are also those considered for the Coquihalla and Metabetchouane 

stations, because of similarities in the hydrologic regime of the watersheds and in the 

coefficient of variation of the data. Based on the similarity of the hydrologic regimes, the 

threshold values for the Mistassibi station are also assigned to the Saint-Gedeon station. 

The coefficient of variation for the data at the Saint-Gedeon station is small, which means 

that detection tests might not be activated (i.e., diagnosing a corruption or outlier) under 

any circumstance, if the threshold values are large. The threshold values for the Mistassibi 

station are among the smallest available for all tests.It must be said that the Knet 5 and 

Fuzzy 5 tests are employed more liberally for the application case here, that is, the 

detection diagnostic is based only on the threshold value, regardless of the location of the 

outliers. The neglect of the location of the outliers for Knet 5 and Fuzzy 5 is deemed 

preferable in order to avoid any conflicting decision should there be subsets of data points 

with multiple outliers. 

The potential benefits of combining the results of all tests is examined, as 

accomplished for shifts and trends in Section 6.1. For outliers, the combination of test 

results provides a poorer performance than that of tests used alone when the validation 

database for outliers in Chapter 5 is employed. The failure to obtain better performance is 

due to the heterogeneity of the behavior of the tests. On one hand, detection tests for shifts 

and trends yields relatively uniform diagnostics, and their combination simply helps the 

decision process in the case of only a few cases causing divergence in the diagnostic. On 

the other hand, detection tests for outliers provide divergent diagnostics in many cases, and 

therefore very few clear decisions can be made based on the combination of the tests. As a 

consequence, the tests are evaluated for their performance individually for each of the 
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stations, which remains a reasonable, case-by-case task considering the small number of 

stations and the relatively small size of the time periods. 

Table 6.8 indicates the number of times each test is activated for each station, and 

the numbers must be viewed in light of the fact that, considering the length of the data 

sequence, each test has been applied a total of 3,650 times per station. Because the data are 

assumed to be essentially free of outliers, it can be presumed that a test falsely diagnoses a 

corruption each time it is activated. For the Mistassibi and San Juan stations, the data in 

Table 6.8 exhibit false detection ratios on uncorrupted points for all tests that are 

considerably similar to those presented in Chapter 5 (see Table 5.14). This could lead to the 

conclusion that there is uniformity in the behavior of the tests within stations regardless of 

the time period, although this does not hold in the case of the Harricana station, for which 

false detection ratios are quite smaller in Table 6.8 than those in Table 5.14. The false 

detection ratios for the Mistassibi and Metabetchouane stations are relatively similar, and 

this can possibly be explained by the similarities in terms of the hydrologic regime of the 

watershed and the coefficient of variation of the data. The ratios are higher for the 

Metabetchouane station than for the Mistassibi station because factors that differentiate 

these two stations might not allow direct transfer of the threshold values for the Mistassibi 

station to the Metabetchouane station. The direct transfer of threshold values from one 

station to another is even more questionable in the case of the Coquihalla station, for which 

the threshold values for the Mistassibi station lead to very frequent activation of the tests. 

At the Saint-Gedeon station, the conventional tests (Test 1 and Test 2) are activated much 

less often than the AIT-based tests (Knet 5 and Fuzzy 5), and this indicates the difference in 

the behavior from one tests to another, as illustrated in the figures that follow. 

Figures 6.2 to 6.4 present the hydrographs of selected stations and years, where the 

black dots represent the points in the data that are diagnosed as corrupted by the tests. 

There are four graphs per figure, that is, one for each test: Test 1, Test 2, Knet 5 and Fuzzy 

5. Figure 6.2 illustrates a yearly hydrograph observed at the Mistassibi station, and it can be 

seen that each detection test possesses different behavior in the diagnostic of outliers. Test 

1 and Test 2 (see Figure 6.2a and b) check the difference between data points, and the point 

under investigation is then considered as an outlier if this difference exceeds a given 

threshold. 
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Table 6.8. Activation of detection tests for outliers. 

Number of times each test is activated (i.e., diagnosis of corruption) 
Test C H M E MI S G 
Test 1 842 134 371 373 978 43 
Test 2 249 9 91 48 333 0 
Knet 5 1,131 61 434 317 507 349 
Fuzzy 5 826 102 263 204 483 211 

Figure 6.2. Activation of tests on observations at MI. 

Physically, this means that a difference is too large to be explained by the response 

of the watershed to a precipitation impulse (case of a rise) or by the capacity of the 

watershed to drain itself (case of a recession). This explains why Testl and Test 2 are 

activated during the swift rises and recessions present in the hydrograph, because only such 

events can exceed the threshold values. Test 2 is less sensitive than Test 1, because Test 2 

is based on the differences of inflows (or water levels) prior to and posterior to the point 

under investigation, while only the difference prior to the point is considered in Test 1. 

Knet 5 and Fuzzy 5 (see Figures 6.2c and d) are activated under different situations from 

those activating Test 1 and Test 2. Knet 5 and Fuzzy 5 are built to identify patterns, where 
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an outlier would disrupt the continuous progression of a given process. Assume a situation 

whereby a process would lead to discrete observations that remain constant over time (i.e., 

yielding a straight line). In this case, even an observation that only slightly departs from the 

straight line could possibly be considered as an outlier. This explains why Knet 5 and 

Fuzzy 5 can be activated by points that show little variation from the surrounding points. 

Of course, there can be situations when conventional and AIT-based tests converge to the 

same diagnostic, and this is the situation in Figure 6.2, where, at the end of November, Test 

1, Knet 5 and Fuzzy 5 are activated by a swift recession. 

Convergence in the diagnostics of tests is more noticeable in Figure 6.3, which 

illustrates a yearly hydrograph observed at the Coquihalla station. 
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Figure 6.3. Activation of tests on observations at C. 

Figure 6.3 shows that the AIT-based tests can also be activated by situations that 

normally activate conventional tests. All tests are very sensitive to small watersheds, for 

they are activated frequently on the data of the Coquihalla station, as seen in Figure 6.1, 

and also on the data of the San Juan station. These small watersheds have likely fast 

response times and frequent large precipitation impulses, creating swift rises and recessions 
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that are misleading for the detection tests, as illustrated by the number of activations during 

summer and fall in Figure 6.3. These swift rises and recessions particularly affect Test 1 

and Test 2, since they base their decision about corruption and non-corruption directly on 

differences between data points. AIT-based tests are also affected by these swift rises and 

recessions although to a lesser extent. The converse observations are made for the 

Harricana station, where inflows have a slow response time and few large precipitation 

inputs exist, producing smoother hydrographs than those on the Coquihalla and San Juan 

watersheds. As a result, all tests are activated much less often for the Harricana station, as 

indicated in Table 6.8. 

All tests are not activated often for the Saint-Gedeon station as well. This station 

measures the water level of the Saint-Jean Lake, which has a rather large retention time and 

therefore leads to very small daily variation in the level of the Lake. Test 2 is not even 

activated for the whole 10 years of data. Test 1 is activated only during spring, when the 

variation in the lake level is the highest. Knet 5 and Fuzzy 5 favor the fall season, when the 

observations of water levels are somewhat noisy. 

Figure 6 . 4 . Activation of tests on observations at G. 
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The results presented in this section show the differences in the behavior of the 

tests, and effort must be made to take advantage of these differences. Considering more 

than one approach results in a diversity of solutions, where the weaknesses of some can be 

compensated with the forces of others. Similarly to what is shown in Section 6.1 for the 

application to shifts and trends, effort should be made to build a framework by which 

several tests are employed and used to complement each other in the decision-making 

process. All tests presented here are assumed to be equally valid and could all be used in 

this framework. AIT-based tests can be sensitive to small noises, but safeguards can be 

added to them to prevent false detection in such situations. Such an application to real data 

helps to understand the strengths and weaknesses of all tests, and these can be taken into 

account in the development of a decision framework. The issue of finding an efficient 

method to determine threshold values for all tests should also be of interest. It is obvious 

from the results here that direct transfer of the threshold values from one station to another 

does not constitute an entirely satisfying solution (e.g., transfer from Mistassibi to 

Coquihalla). This method of finding thresholds should better take into account the specific 

characteristics of the data sequences under investigation, as well as associated information 

(e.g., hydrologic regime, size of the watershed). It must be said that a threshold value for a 

given station need not be constant under all circumstances. It can possibly vary with respect 

to time or specific hydrologic conditions. 

6.3 Conclusion 

This chapter shows the viability of applying AIT-based tests to real data. The largest 

disadvantage of the AIT-based tests presented in this work is the computational burden they 

exert. They take more time to implement than the conventional tests, yet they do not yield 

significant advantages in terms of performance for the detection of anomalies. However, 

AIT-based tests should not be discarded solely based on this argument, because they do 

represent a distinct alternative to conventional tests. AIT-based tests for the detection of 

outliers exhibit a definitely different behavior from the conventional tests, as attested by the 

results shown in this chapter, and the same can be said to some extent of the AIT-based 

tests for the detection of shifts and trends. AIT-based tests detect anomalies that are not 

detected by the conventional tests and vice versa. All these tests, AIT-based and 
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conventional, should be considered as a set of tools, which might be combined to enhance 

performance in detecting anomalies. 

Even though this issue has not been fully explored in this chapter, recall that the 

AIT-based tests seem to be attractive tools for the estimation of the amplitude of anomalies, 

as indicated in Chapter 5 (i.e., Amp/CV for shifts and trends, and Amp/SD for outliers). 

One may not always be interested in the strict detection of anomalies. If one does not want 

to risk making a false detection, then one can simply assume that anomalies are possibly 

present based on the estimation of factors such as the Amp/CV or Amp/SD ratio, and 

quantify the impacts on the calculation of water quantity or quality for a given water 

resources system with respect to these ratios. 
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Chapter 7 

AIT Approaches for Model Parameters 

In addition to data inaccuracies or anomalies that can greatly affect the results of a 

simulation model, uncertainties that originate from the structure or the parameters of the 

model cannot be neglected. This chapter is therefore dedicated to the issue of parameter 

uncertainties. This is in line with the material discussed in Section 2.1, which states that 

both data and parameters are inputs to models. They are therefore treated in this work 

through the same line of reasoning, that is, with focus on the description of input (i.e., 

either data or parameters) domains. Chapters 4 to 7 focus on the issue of data and parameter 

uncertainties as described in Section 2.1. A third source of uncertainties, related to the 

model structure, is not addressed here. It is outside the focus of this work, that is, the 

assessment of inputs. However, the results presented in this chapter may imply links 

between parameter and model structure uncertainties. 

The applications presented here involve two very different problems and systems. 

Nevertheless, they have two points in common: the solution employed to reduce the 

magnitude of parameter uncertainties, and the calibration process used to calibrate the 

model parameters. These two points are detailed in Section 7.1, while the applications to 

water inflow modeling and algae concentration modeling and their respective specificities 

are given in Sections 7.2 and 7.3, respectively. Section 7.4 gives the general conclusions 

that can be drawn from the results of both applications. 

7.1 Common Elements of the Applications 

7.1.1 Description of the Parameter Domain 

This chapter proposes a method that allows for a more flexible determination of the 

values of some of the parameters of a simulation model so as to help reduce the magnitude 

of uncertainty associated with model parameters. The method, which makes use of fuzzy 

logic, is based on the same line of reasoning employed for dealing with outliers, shifts and 

trends, that is, the description of the input domain, this time parameters instead of observed 

data. The description of the parameter domain is established with respect to indicators that 
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are representative of the conditions of the systems. Quite often parameters in simulation 

models are given constant values while it can be regularly assumed that they vary with 

respect to the conditions of the systems. An example is that of runoff coefficients used in 

lumped conceptual watershed models, where it is acknowledged that the values of such 

parameters would vary with respect to the level of humidity in the soil. When soil humidity 

is not observed or cannot be reliably estimated, indicators of the level of humidity in the 

soil at any given time, such as previous precipitation and inflow records, can be employed 

to determine the values for the runoff coefficients. The greater freedom given to the 

determination of the values of the parameters can therefore allow an improved replication 

of the response of the system under study. 

The modeling structure that combines the description of the parameter domain with 

a given simulation model is given in Figure 7.1. 

Figure 7.1. Hybrid fuzzy logic and simulation model. 
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Here fuzzy sets and fuzzy logic are employed in the description of the parameter domain 

for they allow a structured inference of the values of the parameters as a function of the 

values of the indicators, such as temperature or nutrient for algae concentrations. Also, they 

can easily be integrated in the structure of the simulation model, which facilitates the 

calibration process. In Figure 7.1, the domain of the indicators is described using fuzzy 

sets. Then rules that relate the parameter domain to the indicator domain can be built. For 

example, if temperature and the nutrient load are high, the algae growth rate, which is a 

parameter in the algae concentration model presented in this chapter, will have a given 

value, most likely a high one. From that point, given a set of indicator values, the 

calculation of the degree of fulfillment for each rule, the combination of the responses of 

the rules and the defuzzification process as detailed in Section 3.2 are employed to provide 

crisp parameter values (i.e., the crisp flexible parameters 1 to r in Figure 7.1). The product 

inference with the AND operator is taken for the determination of the degree of fulfillment 

of each rule. The normed weighted sum is employed for the combination of the results of 

the rules, and then the mean defuzzification is applied to yield crisp parameter values. The 

relationship that encompasses the aforementioned steps is that of Equation 3.15, repeated 

here as Equation 7.1: 

The variable mipf) is the mean of parameter pj, for j - 1, r, m(pjj) is the mean of 

parameter pj associated with rule i, and v,- is the degree of fulfillment of rule /. In the context 

of the applications in Sections 7.2 and 7.3, the degree of fulfillment of all rules can be 

known given a set of indicator values. The only unknowns of Equation 7.1 are the m(pp)s, 

and they are determined through the same calibration procedure employed on the model for 

constant parameters 1 to p in Figure 7.1. In this work, genetic algorithms are used to obtain 

the values of the constant parameters and the m(pjiVs. 

7.1 

2>, 
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7.1.2 Optimization with Genetic Algorithms 

Genetic algorithms are considered a competitive alternative to more conventional 

optimization procedures such as linear or non-linear programming, particularly when the 

optimization problem has few constraints. Unlike linear and non-linear programming 

procedures, genetic algorithms easily accept discontinuities present in the formulation of 

the problem. They are also less dependent on initial conditions as they consider more than 

one set of initial conditions simultaneously, which reduces the risk of ending the 

optimization process at a local optimum. Genetic algorithms are described in details in 

Goldberg (1989), and only the basics applied to the applications of this chapter are given 

here. The term genetic algorithm comes from the analogy between this method and biology 

and, more particularly, genetics. First, the decision variables (i.e., the flexible and constant 

parameters of the simulation model) for a given optimization problem are coded so as to be 

represented altogether by a string of characters, very much like genetic material. Quite 

often a string is made of zeros and ones so as to give a binary code. Any string has its own 

fitness or robustness value, which is the value of the objective function of the optimization 

problem obtained with the values of the parameters represented in the string. In the 

applications of this chapter, the objective function is the inverse of the sum of the square 

difference between observed and calculated outputs. Hence, a set of parameter values that 

does not lead to a good fit on the observed output yields a weak fitness value, a set leading 

to a good fit yields a strong fitness value, and a perfect fit results in a fitness value equal to 

infinity. With genetic algorithms, a population of strings is initially created and, through a 

series of operations that are equivalent to the evolution phenomena in nature, the strings are 

updated so as to produce a population whose average fitness becomes better as the 

algorithm proceeds from one iteration or generation to another. The most common 

operations are reproduction, crossover and mutation, and are repeated one after another at 

any generation (iteration). 

By the process of reproduction, an entire string at a given generation can be allowed 

to be present in the next generation. If string A B C D E is allowed to reproduce once at a 

given generation, then one string A B C D E will be present in the population in the next 

generation. This is a random procedure which gives a preference to the best fitted strings. 

The probability that a particular string i be chosen is filftot, where fj is the fitness value of 
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string i, and ftot is the sum of the fitness values of all the strings of the population. To renew 

a population of n strings for the next generation, the reproduction process must be 

conducted n times. The reproduction process is normally one with replacement, which 

means that the respective probability of the strings to be picked remains constant from one 

draft to another until a full population is built. Of course, by this process, the strongest 

strings are likely to be picked more often and therefore will likely increase the total fitness 

of the population. The reproduction process allows the population to become stronger at 

every generation, but does not perform any modification in the strings. This means that, if 

the optimum point is not represented among the strings in the population, there is no 

possibility to converge to the optimal solution. The crossover process allows modifications 

on the string or, more specifically in biological terms, allows the exchange of genetic 

material. Let's consider the following two strings: A B C D E and abcde. By the crossover 

process, first, the location of a breaking point in the strings is chosen, second, all the 

elements of the strings that are on the right of the breaking point are traded between the 

strings. For example, if the breaking point is between the second and third elements in the 

two strings above, then, after the trade, the resulting strings are: ABcde and abCDE. Thus, 

at every generation, the strings in the population are grouped by pair. Usually, for each pair, 

there is a given probability that the crossover occurs. If crossover does occur for a given 

pair, a breaking point location is chosen randomly and the trade is performed. The mutation 

process allows a change in the value of only one element in a string. For example, consider 

a particular string A B C D E and its resultant after mutation ABCDX. Obviously the 

mutation occurred on the last element of the original string. Biologically, mutations occur 

frequently and ensure the genetic diversity of a species, which, by this fact, become likely 

more resistant to diseases or other catastrophes. For optimization purposes, the mutation 

process must be considered as a safety guard against local optima. For some reasons, the 

general evolution of a population may be directed towards a local optimum, but, by the 

mutation process, new strong strings directed towards the global optima could be created 

and, through reproduction and crossover, could change the trend of the population 

favorably. Note that the reverse situation, that is to move from a global optimum to a local 

one because of mutation, can also be possible. The mutation process, like the reproduction 

and crossover processes, is also random. A mutation occurs upon a given probability, 
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which is usually low so as to ensure that the creation of the population does not become a 

pure random process, independent of the information contained in the previous generation. 

Genetic algorithms use operations that rely heavily on random procedures, yet Goldberg 

(1989) demonstrates that improvement in the overall fitness increases from one generation 

to another as long as the probability of mutation remains very small. 

To conclude, recall the procedure to follow with any optimization problem: 

1. Code the decision variables (i.e., parameters) and the objective function to be 

compatible with the use of genetic algorithms, 

2. Initially, create a random population of strings, which would be the first generation 

3. At every generation, use the reproduction, crossover and mutation phenomena to 

create a new generation, 

4. Always keep in memory the best string at every iteration, but keep updating the 

population until a defined number of generations is reached or some other stopping 

criteria are satisfied. 

7.2 Application to Inflow Modeling 

The watershed model employed in this application is based on the T A N K model, 

described among others by WMO (1992), Singh (1995), and Rousselle et al. (1999). It is a 

relatively typical model, comprised of a series of conceptual reservoirs, each of which with 

outlets that describe the fractions of water contributing to the inflow, being transferred from 

one reservoir to another or being lost through evapotranspiration or groundwater transfer. 

Originally, the parameters of this model are constant regardless of the watershed 

conditions, and this weakness is corrected with some of the parameters, through the use of 

fuzzy sets for the description of indicator and parameter domains, and of fuzzy logic for the 

determination of the parameter values that are the most appropriate for the conditions of the 

watershed. In a first step, the model is described, along with the integration of the fuzzy 

logic inference engine within the structure of the model. The database employed to test the 

model is then given, followed by the protocol of the experiment. The results and the 

ensuing conclusions are at last presented in detail. 
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7.2.1 Description of the Model 

Given the initial conditions of the watershed, a water input from a rainfall event or 

snowmelt would be routed through the surface and the ground to ultimately reach the outlet 

of the watershed. The process of vertical transfer of water from the surface to the ground 

can be defined by a vertical series of reservoirs, where the top reservoir receives the water 

input, releases some quantity for the outlet of the watershed, directs another amount out of 

the system to represent losses, and releases the remaining water to the reservoir below. The 

reservoir below accomplishes the same function as the first one for an underlying layer of 

soil, and so on. This idea of reservoirs in series is the structural basis of many of the 

existing deterministic conceptual inflow models, and it implies that the inflow at the outlet 

is the sum of sub-inflows coming from each of the reservoirs. Figure 7.2 shows a typical set 

of reservoirs in series based on the T A N K model, and which is used in this work. The 

physical meaning of each of the water transfers is provided in Figure 7.2, and the losses are 

generally considered as due to the effect of evapotranspiration or groundwater transfer that 

never reaches the outlet of the watershed. The water inflow going out through a reservoir 

sluice (0,) at time t is usually defined by a power function: 

O, = aHb

t 7.2 

where H, is the level of water in the reservoir at time t, and a and b are coefficients. To 

account for the travel time to reach the outlet of the watershed, most of the sub-inflows are 

spread over time, which is in agreement with the well established concepts of hydrographs 

and hydrograph separation as a function of the types of sub-inflows. The concepts of 

hydrographs and hydrograph separation are illustrated in Figure 7.3. The contributors to the 

hydrograph, as indicated in Figure 7.3, are the sub-inflows from the reservoirs shown in 

Figure 7.2, that is, the surface runoff, the interflow and the baseflow from groundwater. A 

discrete mathematical model of daily inflows based on such contributions can be of the 

form: 

6 Q,=-^—AiIs,+Iw,+I

gl)+el 7.3 86400 v ' ' s ' ' 

where Qt is the inflow at day t (m3/s), A is the area of the watershed (km2), ISih IWit and Igi, 

are respectively the total daily surface, interflow and groundwater contribution (m), et is a 
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residual (m /s), and the numerical constant accounts for the conversion of units of area 

(km2 to m2) and time (day to s). 

Liquid precipitation or snowmelt 

Surface 

Surface loss 
(evapotranspiration) -> Surface contribution 

Subsuface <-
loss 

Infiltration 

Groundwater, 
loss 

Percolation 

-> Subsurface contribution 
or interflow 

-> Groundwater contribution 

Figure 7.2. Conceptual reservoirs of a hydrologic inflow model. 

In the model employed here, the total surface runoff and interflow contributions are the 

sum of contributions from the previous days until day t, as defined by their respective 

hydrographs or impulse-response functions, which means that: 

,̂,=2X,-r 7.4 
r 

and: 

T 

where iSit and iWJ are the surface runoff and interflow contribution associated with day t, 

respectively, and r is the time lag. In the model, the total groundwater contribution at day t 

is simply represented by the inflow from the sluice of the groundwater reservoir at day t, as 

defined by Equation 7.2. 
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• Surface • Interflow 13 Groundwater 

Figure 7.3 . Separation of sources of inflow on an idealized hydrograph. 

As indicated in Equations 7.4 and 7.5, the surface runoff and interflow contributions 

can be represented following their respective hydrograph also referred to as the impulse-

response function. The equation of the hydrograph can be written as: 

where R, is equal to the quantity H5 in Equation 7.2, Ct is a production factor that is equal to 

a in Equation 7.2, and ft is a function that represents the hydrograph and therefore spreads 

the contribution over time. This function can be determined manually using inflow 

measurements from the watershed in conjunction with precipitation data. However, this 

procedure is inaccurate because there is no easy way to distinguish between surface inflow, 

interflow and groundwater flow just by looking at the total hydrograph. One alternative is 

to approximate the shape of the hydrograph, or ft using a triangle (Rodriguez-Iturbe and 

Valdes, 1979). The time to peak (tp) and the duration (td) of the hydrograph are enough to 

describe the shape of the triangle. This approximation is used in this work, as well as 

another, which is to consider the hydrograph as a Gamma function: 
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/,= * M ' - V * 7.7 
i » 

In Equation 7.7, a and A are functions of the time to peak (tp) and the duration (tj) of the 

hydrograph. The relationships between a, A, tp and tj are defined as: 

a - 1 

f = 7.8 

and: 

£f(t)dt = K 7.9 

In equation 7.9, AT is the proportion of the area of the Gamma function considered as part of 

the hydrograph. The whole area of the Gamma distribution is obtained only when t equals 

infinity, which is of no practical interest. Only a part of the area can be accounted for, but it 

can nevertheless be a very large part (e.g., K may equal as much as 97.5%). The 

unaccounted for part of the hydrograph is often considered negligible relative to the 

potential accuracy of the model. The Gamma function has been chosen for its similarity to 

hydrographs that are often observed in nature. Figure 7.4 illustrates some examples 

obtained with the Gamma functions for different values of tp and td. 

Obviously, inflows are triggered by water input received at the surface of the 

watershed. When there is no snow cover, the water input is simply equal to the liquid 

precipitation. When a snow cover is present, a snowmelt model must be used to determine 

the quantity of water available for runoff. One of the models employed here is described by 

the following equation: 

R, =0.01xmax(S,_,-S,,0) 7.10 

and: 

V 8 0 J 
[tmean,, ~ h )+ 0-10/^, if f >t„ ? ^ { 

S, =5 M +0.10/7^ iftmeanJ<tb 

where S, is the water equivalent of the snow pack at day t (cm), d is the degree-day factor 

(cm^C'-day"1), and tb is the base temperature (equal to 5°C for this application). Also, puq, 

psoi and tmean are the daily liquid precipitation, solid precipitation and mean temperature, 

respectively. The constant factor 0.10 before psoiit is the assumed value of snow density, in 

order to obtain the water equivalent from the solid precipitation. Equations 7.10 and 7.11 
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constitute a simple model of snowmelt which combines the degree-day method as 

described in Gray and Male (1981) and Rango and Martinec (1995), and the energy 

contribution of the rain following the relation given in Linsley et al. (1982). This snowmelt 

model is calibrated by itself so as to provide the data needed for the inflow model 

developed in this work. 

12 14 

Figure 7.4. Examples of hydrograph as obtained with the Gamma function. 

An equivalent, but slightly more complex model, described in Bouchard (1986) is 

also tested in this application. In the model, Equation 7.10 remains, but Equation 7.11 is 

replaced by Equations 7.12 through 7.15: 

|S, =S,_, - C , -SUME, -E)A+C2SUMPt +0A0PsoU if tmeanJ >0 ? ^ 

[5, =5 M +0.10 /7^, i f ^ ^ O 

with: 

It -t 

7-i max,/ min,/ 1 \1 
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SUME, = 
MAXSUME 

\fYjEt <MAXSUME 7A4 
if > E > MAXSUME 

and: 

SC/MP, = 
MAXSUMP 

if < MAXSUMP 
7.15 

if X />/i?>, > MAXSUMP 

where fmax>, and are the daily maximal and minimal temperature, respectively, and the 

elements C\, Ci, tb, MAXSUME and MAXSUMP are parameters that must be calibrated. The 

distinct features of this snowmelt model are the weighting functions, SUME, and SUMP,, 

which reduce the amount of snowmelt at the beginning of the spring season to account for 

the delay in the snowmelt process due to the energy mass contained in the snow cover. In 

Equations 7.14 and 7.15, the summations of E, and pnqi, start at the beginning of the 

snowmelt season, which is the end of March for the watersheds studied in this application. 

As with the first snowmelt model, the parameters of the second model are calibrated by 

themselves so as to provide the data needed for the inflow model developed here. 

Considering two different hydrograph shapes and two different snowmelt models 

offers the possibility to construct four different modeling scenarios. This number of 

scenarios is expanded to account for the variants of the parameter domain tested in the 

application, that is: 

1. The standard variant (S V), where there is no description of parameter domain, and 

therefore where all parameters remain constant, 

2. The flexible hydrograph variant, one indicator (HI), where the description of the 

domain of the parameters related to the hydrograph functions is performed using the 

7-day averaged inflow as the indicator, 

3. The flexible hydrograph variant, three indicators (H3), where the description of the 

domain of the parameters related to the hydrograph functions is performed using the 

7-day averaged inflow, precipitation and temperature as indicators, 
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4. The flexible soil variant, one indicator (SI), where the description of the domain of 

the parameters related to the outlet of the conceptual reservoirs is performed using 

the 7-day averaged inflow as indicator. 

Hence, considering this latter subdivision, a total of sixteen model scenarios can be 

constructed. 

With variants HI and H3, the flexible parameters are the as for the surface and 

interflow contribution rates (as,, and aWit), often called runoff coefficients, and the time to 

peak and duration for the surface runoff and interflow hydrographs (tPiS,t, tp,w,,, td,s,t and td,s,d-

As a consequence, the constant parameters are 1) the as for all the loss components 

(surface, subsurface and groundwater); 2) the as respectively related to the groundwater 

contribution to the watershed outlet, and percolation (from the intermediate to the 

groundwater reservoir); and 3) all the bs (i.e., 7 bs in total, with the one for the surface 

contribution assumed to be equal to 1). One last constant parameter is the one that sets the 

level of the groundwater reservoir on March 31 of each year, the level of the subsurface 

reservoir being always assumed to be equal to 0 on March 31. Note that the water that 

infiltrates is the remains of the precipitation once the surface contribution and loss are 

accounted for. All the flexible parameters in variants HI and H3 are related to the 

hydrograph, and the flexibility allows the implementation of the statement advocated by 

Rodriguez-Iturbe and Valdes (1979), which stipulates that the properties of the hydrograph 

vary with respect to the conditions of the watershed. For example, it can be assumed that, 

during large rainfall events, the surface runoff time to peak (tPiS) is shortened and the 

surface runoff production coefficient aSit increases. Basically, a greater part of the area of 

the watershed becomes water saturated, thus a greater part of the watershed contributes to 

the surface runoff, which explains the increased value of asj. At the same time, velocities 

increase on the surface due to the higher water depth on the surface during large rainfall 

events, and this explains the reduction of the time to peak. The reverse conclusions that 

result from small rainfall events are also true, and similar kinds of reasoning can be used to 

explain interflows. Such kinds of inferences constitute one way practitioners often use to 

adjust conceptual inflow models, and in this application, fuzzy logic performs these 

inferences based on the description of the parameter domain with respect to the indicators. 

The 7-day averaged inflow for HI and H3, plus the 7-day averaged precipitation and 7-day 
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averaged temperature for H3 are chosen as indicators because they can indirectly provide 

some insights about soil moisture, which is one important condition of the watershed that 

may not be well accounted for by the structure of the model in the standard variant (SV). 

With variant SI, the flexible parameters are the as for the surface, interflows and 

groundwater contributions to the inflows, the as for the surface, subsurface and 

groundwater loss components, and the a for the percolation. This variant has been added as 

a consequence of a preliminary analysis of the results of variants HI and H3, where it is 

noticed that the parameters that benefit most from added flexibility are the contribution 

rates (aSit and aWit). In variant SI, all the flexible parameters are contribution rates (i.e., the 

as), which are related to the movement of water within the ground. The rationale for this 

variant is that these flexible parameters can interact, for it is indeed normal to assume an 

action-reaction chain occurring among these parameters. All the flexible parameters should 

be sensitive to soil moisture conditions on the watershed, and therefore the 7-day averaged 

inflow can be employed as an indicator. 

The details of the procedure to perform the description of the indicator domain, and 

incidentally of the parameter domain through inferences with fuzzy logic are provided in 

Section 7.1.1, but below is a summary of this procedure as applied to this case of inflow 

modeling 

1. The domain of each indicator is described by Gaussian membership functions so as 

to avoid any discontinuity in the inference process, 

2. For each rule, algebraic products link the indicators together, 

3. The combination of rules is achieved using the normed weighted sum procedure, 

4. The mean deffuzification process is employed to obtain a crisp value for the flexible 

parameters. 

A crisp value for a given parameter is given by Equation 7.1, presented again in Equation 

7.16. 

7.16 

1=1 

where variable mipj) is the mean of parameter pj, for j = 1, r, mipp) is the mean of 

parameter pj sets for rule i, and v,- is the degree of fulfillment of rule /. In the context of the 
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applications, the values for the m(pp) are not known and must be calibrated the same way 

as the constant parameters in the model. 

Genetic algorithms are employed for the calibration of the parameters, based on the 

minimization of the sum of the difference between observed and calculated inflows, or 

rather the maximization of the inverse of this sum. In Equation 7.3, the difference between 

observed and calculated inflow is represented by the residual term e,. When this term e, is 

isolated in Equation 7.3, the objective function (i.e., fitness function) to be used in this 

application is: 

max ( Y e , , 1 =maxfy\Q, —— (l„ + / „ , +7 ,)P 
// ^ r ' 86400V s'' w'' 8 " J 

7.17 

7.2.2 Description of the Application Case 

The data collected on the Ashuapmushuan River, Mistassibi River and Chute du 

Diable watersheds are employed in this application. These three watersheds are located in 

the Saguenay-Lac-Saint-Jean hydrographic system in the Province of Quebec, Canada, as 

indicated in Figure 7.5. These watersheds are respectively 15,300, 9,320 and 9,700 km 2, 

which is large enough to allow inflow modeling using daily time steps. On these 

watersheds, the annual peak flood usually results from the snowmelt during spring, but 

isolated precipitation events can generate significant flow peaks during summer and fall. 

These watersheds have significantly different shapes and this results in different 

hydrological responses. Daily sequences of inflows, temperatures and liquid and solid 

precipitations are used in this application, along with the estimation of the water equivalent 

of the snowpack for all three watersheds. All sequences range from 1963 to 1994. The data 

from 1963 to 1984 are used for the calibration while the data from 1985 to 1994 are 

employed for the validation of the adaptive model. 

With three watersheds, two hydrograph shapes, two snowmelt models, and four 

variants in terms of the description of parameter domains (SV, HI, H3, and SI), a total of 

48 modeling scenarios are analyzed. The calibration process involves many parameters for 

all scenarios, and therefore can be lengthy. The strategy is to calibrate the parameters of the 

model in variant SV, for all three watersheds. In this variant, all 18 parameters are constant. 

In variants HI, H3 and SI, respectively 12, 12 and 11 parameters remain constant and are 
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given the values determined during the calibration for variant S V . Therefore only the 

flexible parameters are calibrated in variants H I , H3 and SI . The flexible parameters are 

represented by the m(p ; i)s, and the number of these latter parameters varies from one 

variant to another. With variant H I , the indicator, the 7-day averaged inflow, is described 

using 3 fuzzy sets, leading to the formation of three rules per parameter, and consequently 

to the attribution of three mipj^s per parameter. Thus, with variant H I , a total of 18 m(pjj)s 

must be calibrated to describe all 6 flexible parameters. With variant H3, the three 

indicators are each described with 2 fuzzy sets, leading to the formation of 8 rules (2x2x2) 

per parameter and the calibration of 48 m(pjj)s to describe all 6 flexible parameters. With 

variant S I , the indicator, the 7-day averaged inflow, is described with three fuzzy sets, 

leading to three rules per parameter and the calibration of 21 m(pjj)s to describe all 7 

flexible parameters. 

Figure 7.5. Saguenay-Lac-Saint-Jean hydrographic system. 
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For the evaluation of the results, the differences in the annual means and standard 

deviations between the observed and calculated inflow sequences are analyzed, and so are 

the correlation coefficient (CCRj) and the Nash (Nashj) coefficient. These criteria are 

determined annually, and their equations are as follows: 

where Q0bs.t are the observed inflows, Qcau are the calculated inflows, Qobs is the mean of 

the observed inflows, Qcal is the mean of the calculated inflows, and N is the size of the 

sample (i.e., 365). Index j refers to the year. These are both well-established criteria to 

evaluate the performance of inflow models (Bouchard, 1986). They both equal one when 

the calculated values perfectly match the observed values. Also, when the Nash criterion is 

smaller than zero, this implies that the mean of the observed inflows would be a better 

estimate of the observed inflows than the inflows calculated by the model. One last element 

to consider is the adequacy of the description of the parameter domain, and this can be 

undertaken through the analysis of the graphs showing the parameters versus the indicators. 

7.2.3 Results and Discussion 

The advantage of the flexibility of the parameters is at first measured by the gain in 

performance under the modeling variants that make use of this flexibility (HI, H3 and SI) 

compared with the modeling variant that keeps all parameters constant (SV). Tables 7.1 and 

7.2 present a detailed view of the results obtained with variant SV. In Table 7.1, the 

average absolute difference (in %) between observed and calculated annual means and 

standard deviations for the inflows are given. For example, modeling variant SV applied on 

the Mistassibi watershed, using the calibration data set, the Gamma-shaped hydrograph and 

CCRi = 7.18 

and: 

7.19 
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the snowmelt model number 1 provides estimates of inflows that lead to annual means that 

differ by 7.20% on the average from the annual means obtained from the observed inflows. 

Similarly, for this case, the calculated inflows lead to annual standard deviations that differ 

by 22.54%) on the average from the annual standard deviations obtained from the observed 

inflows. In Table 7.2, the CCR and Nash criteria values, as estimated using Equations 7.18 

and 7.19, respectively, are provided. 

Table 7.1. Means and standard deviations for variant SV. 

Watershed Data set Hydrograph 
Gamma Triangle 

Mean Standard deviation Mean Standard deviation 
(a) Snowmelt model 1 (Equations 7.10 and 7.11) 
Mistassibi Calibration 7.20 22.54 9.02 9.74 

Validation 5.12 17.98 6.18 11.50 
Chute du Diable Calibration 11.76 13.33 15.12 12.62 

Validation 13.31 8.25 19.04 8.04 
Ashuapmushuan Calibration 11.50 14.50 13.48 14.10 

Validation 10.18 7.54 11.83 8.23 
(b) Snowmelt model 2 (Equations 7.10 and 7.12 to 7.15) 
Mistassibi Calibration 7.03 11.53 9.39 10.16 

Validation 3.88 11.18 5.79 9.39 
Chute du Diable Calibration 12.07 12.29 12.70 12.04 

Validation 11.87 11.96 12.75 11.82 
Ashuapmushuan Calibration 7.80 15.17 6.77 15.27 

Validation 8.43 17.56 7.29 10.62 
Note: The values in the table are the average absolute differences (in %) between observed and calculated 
annual means and standard deviations for the inflows. 

Table 7.2. Performance criteria for variant SV. 

Watershed Data set Hydro; p-aph 
Gamma Triangle 

CCR Nash CCR Nash 
(a) Snowmelt model 1 (Equations 7.10 and 7.11) 
Mistassibi Calibration 0.896 0.773 0.941 0.848 

Validation 0.881 0.743 0.923 0.787 
Chute du Diable Calibration 0.898 0.755 0.905 0.755 

Validation 0.911 0.780 0.921 0.776 
Ashuapmushuan Calibration 0.862 0.669 0.874 0.681 

Validation 0.882 0.725 0.903 0.756 
(b) Snowmelt model 2 (Equations 7.10 and 7.12 to 7.15) 
Mistassibi Calibration 0.914 0.807 0.916 0.802 

Validation 0.901 0.786 0.902 0.785 
Chute du Diable Calibration 0.896 0.748 0.902 0.762 

Validation 0.904 0.764 0.910 0.776 
Ashuapmushuan Calibration 0.890 0.714 0.903 0.767 

Validation 0.885 0.651 0.905 0.744 
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With respect to the annual means, it can be seen that modeling variant SV is 

typically different in terms of the observed annual means by 10 to 15%, with extremes that 

range from 3.88% to 19.04%. There is no indication in the results that the model 

systematically underestimates or overestimates inflows. An assumption can then be made 

that the water input (i.e., precipitation or snowmelt) data employed in the model do not 

systematically bias upward or downward the actual quantity of water received by the 

watershed and eventually translated into inflows. The timing of the precipitation can be a 

factor of course, but otherwise a greater attention can be paid to the model structure and 

parameters to try to explain the difference between calculated and observed means. With 

respect to the annual standard deviations, it can be said that the modeling variant is 

typically different from the observed annual standard deviations by 10 to 15%, with 

extremes that range from 8.04% to 22.54% different. The results indicate that there is a 

systematic bias produced by the model, that is, the annual standard deviations from 

calculated inflows are consistently lower than those from the observed inflows. In brief, the 

calculated inflows are flatter than the observed inflows. With respect the CCR and Nash 

criteria, Table 7.2 shows that the modeling variant SV performs similarly well on the 

Mistassibi and Chute du Diable watersheds. The modeling variant SV provides a poorer 

performance on the Ashuapmushuan watershed, in spite of the fact that the differences 

between observed and calculated annual means and standard deviations (Table 7.1) are 

neither markedly worse nor better than those for the Mistassibi and Chute du Diable 

watersheds. This is indicative of the presence of a lag between observed and calculated 

inflows on the Ahuapmushuan watershed, as has been confirmed by looking at the graphs 

of observed versus calculated inflows. Indeed, the lags on the Ashuapmushuan watershed 

seem more noticeable than those on the Mistassibi and Chute du Diable watersheds. The 

lag can be attributed to a bad timing between observed precipitations versus inflows, or a 

weakness in the model in representing the behavior of the watershed. The latter reason can 

possibly be partially overcome by the description of the domain of some parameters. 

Another element to notice in Tables 7.1 and 7.2 is that the results obtained with the 

validation data sets are better than those obtained with the calibration data sets. Usually the 

contrary happens, and this is what justifies the use of validation data sets. Obviously, the 

calibration data sets present hydrologic situations that are more difficult to account for by 
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the model, and this is observed not only with the standard modeling variant (SV) but also 

with all other variants (HI, H3 and SI). As a consequence, the results that are presented in 

the following tables are determined after having merged the calibration and validation data 

sets for each watershed so as to obtain a more severe analysis of the modeling variants. It is 

also interesting to notice in Tables 7.1 and 7.2 that there is no clear winner in terms of 

performance with respect to the type of snowmelt models or hydrograph shapes used. A 

slight edge can be given to the snowmelt model number 2 over the snowmelt model number 

1, as well as to the triangular-shaped hydrograph over the Gamma-shaped hydrograph. 

Nevertheless, because of the relative equivalence of these components (snowmelt models 

and hydrograph shapes), the results are merged for the sake of simplicity. 

Hence, in Tables 7.3 and 7.4, the distinction is only made on the watersheds and the 

modeling variant. The results for modeling variant SV are presented again, and those for 

modeling variants HI, H3 and SI are given for comparison with SV. Table 7.3 is similar to 

Table 7.1, and details the average absolute differences (in %) between observed and 

calculated annual means and standard deviations for the inflows. Table 7.4 is similar to 

Table 7.2, and lists the CCR and Nash criteria values as calculated by Equations 7.18 and 

7.19. In Tables 7.3 and 7.4, the values in parenthesis represent the improvement (in %) 

produced by variants HI, H3 or SI when compared with the variant of reference (SV), for 

each watershed. A negative value in the parenthesis means a degradation of the result 

compared with variant SV. 

Table 7.3. Means and standard deviations for variants HI, H3 and SI. 

Watershed Mean Standard deviation 
SV HI H3 SI SV HI H3 SI 

Mistassibi 7.25 6.26 6.42 5.94 13.18 12.55 11.81 12.59 
(13.66) (11.45) (18.01) (4.78) (10.42) (4.52) 

Chute du Diable 13.33 11.67 11.70 9.21 11.77 12.94 11.89 12.66 
(12.45) (12.24) (30.86) (-9.95) (-0.96) (-7.54) 

Ashuapmushuan 9.74 8.87 8.86 5.67 13.58 13.29 13.22 13.47 
(8.94) (9.05) (41.82) (2.11) (2.64) (0.84) 

Note: the values in parenthesis represent the improvement (in %) produced by variants HI, H3 or SI when 
compared with the variant of reference (SV). A negative value represents a degradation of the result. 
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Table 7.4. Performance criteria for variants HI , H3, and SI. 

Watershed CCR Nash 
SV HI H3 SI SV HI H3 SI 

Mistassibi 0.912 0.925 0.926 0.933 0.797 0.814 0.827 0.833 
(1.47) (1.48) (2.33) (2.13) (3.69) (4.45) 

Chute du Diable 0.904 0.910 0.909 0.915 0.761 0.778 0.781 0.792 
(0.69) (0.55) (1.29) (2.20) (2.70) (4.05) 

Ashuapmushuan 0.886 0.899 0.898 0.914 0.711 0.737 0.748 0.778 
(1.47) (1.41) (3.19) (3.64) (5.13) (9.32) 

Note: the values in parenthesis represent the improvement (in %) produced by variants HI, H3 or SI when 
compared with the variant of reference (SV). A negative value represents a degradation of the result. 

The results in Tables 7.3 and 7.4 demonstrate that variants in which the description 

of parameter domains is applied yield better performance than the standard variant where 

all parameters are constant. The improvement is particularly noticeable for the differences 

of the annual means, where the largest improvement compared with variant SV is observed, 

the most impressive case of all being variant SI with an improvement on the order of 20 to 

40%. In terms of the performance criteria (CCR and Nash), the improvements are smaller, 

because there is little room for increases in the values of those criteria. At the start, with 

variant SV, the performance criteria values are already fairly high. Mixed results are 

observed for the case of the differences between calculated and observed annual standard 

deviations, where improvement is present for the Mistassibi and Ashuapmushuan 

watersheds and degradation of the performance affects the Chute du Diable watershed. 

Because it affects only one watershed, a systematic error of the model structure can be 

discarded and therefore the most likely reason for this degradation is assumed to be the 

calibration procedure. Overall, from a performance standpoint, the exercise of proceeding 

to a description of parameter domains is sound. The flexibility of some of the parameters 

provide the structure of the model with some flexibility to more adequately replicate the 

behavior of the system under study, and as a result, to produce estimates that are in a better 

agreement with the observed outputs. 

On the subject of parameter flexibility, one must evaluate whether the description of 

the parameter domain makes sense, and this can be undertaken through the analysis of the 

graphs of the parameter value versus the indicator value. Each variant leads to a large 

number of modeling scenarios, and therefore the analysis presented here focuses only on 

typical behavior. Such is the case of the parameter values presented in Figure 7.6, which 

applies for the Mistassibi watershed, variant HI while making use of the triangular-shaped 
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hydrograph and the snowmelt model number 1. In the figure, tp_s, td_s, tp_w, td_w, as and aw 

are respectively the surface hydrograph time to peak and duration, the interflow hydrograph 

time to peak and duration, and the surface and interflow contribution rates. Figure 7.6 

presents the parameters in both their constant values (term _cst added) and their values if 

allowed to be flexible. 
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Figure 7.6. Flexible parameters for variant H I . 

As the inflow indicator increases, soil humidity is presumed to increase as well, and 

the expected behavior from the parameter would be that the hydrograph times to peak 

become shorter, the hydrograph durations become longer, and the contribution rates, which 

are runoff coefficients, increase. The evolution of the parameter values with respect to the 

7-day average inflow, as exhibited in.Figure 7.6, roughly follow the expected behavior. 

There is no instance of scenarios that is in total agreement with the expected behavior. It 

must be noted that the hydrograph times to peak and durations are relatively insensitive 
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parameters, that is, they do not vary much with respect to the indicator. At the limit, their 

variability can almost be considered as background noise. The contribution rates are much 

more sensitive, and as a result, their disagreement with the expected behavior can be 

considered as more critical. The disagreement affects the region of the high average inflow, 

and three reasons may explain this issue. 

The first reason is driven by an error in the structure of the model, that is, the 

contribution rate does not represent a runoff coefficient, but actually a runoff coefficient 

weighted by a factor related to flood routing within the streams in the watershed. The 

runoff coefficient is affected by the movement of water within the ground, and as the 

ground becomes more and more saturated with water due to large precipitations, here 

represented by the amount of inflow, more water is then available for transfer in the streams 

of the watershed. This is why the expected evolution of the runoff coefficient as 

precipitations become more abundant is that of a monotonically increasing curve. Now, as 

the inflow increases, more water could go through the floodplain, where the roughness is 

higher than on the streambed, and this would reduce the speed by which water is evacuated 

and create retention within the watershed, thus leading to a reduction of the evacuation rate 

of water at the watershed outlet. It is a basic flood routing process that spreads the 

evacuation of water over time, and this is what the contribution rates in Figure 7.6c might 

reflect. The solution would be to structure the model so as to more clearly separate the 

process of moving water within the ground from the process of moving water once it 

reaches the streams of the watershed. 

The second reason would be the reduced number of data in the high inflow range. 

Obviously, high inflows are extreme cases and appear in smaller number in the historical 

records. In the case of the Mistassibi watershed, there is a very large number of inflow 

observations between 0 and 500 m3/s, facilitating an adequate description of the parameter 

domain in that range. The number of observation is already much more reduced in the 

range from 500 to 1000 m3/s, and only a few cases are available in the range from 1000 to 

1500 m /s. On account of the rarity of data available for the calibration process, legitimate 

doubts can be raised as to the validity of the description of the parameter domains for high 

inflows if the available data do not represent all possible conditions of the watershed. The 

third reason would be due to the calibration process, for which the only objective is to 
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minimize the difference between observed and calculated inflows, and is not designed to 

specifically retain solutions that would be deemed physically adequate. 

The first reason, related to the structure of the model, is the most likely rationale to 

explain the evolution of the parameter values with respect to inflows for variant HI. With 

variant H3, the calibration process can be a more important factor to explain the evolution 

of the parameter values with respect to the indicators. With variant H3, the description of 

the parameter domain is rarely in agreement with the behavior expected from the 

parameters with respect to the indicators, and there does not seem to be any consistent trend 

in the description of the parameter domain. A greater number of parameters (the m(p7,/)s) 

must be calibrated with variant H3 (48) compared with variant HI (18), and this even if the 

description of the parameter domain is coarser with variant H3 (2 fuzzy sets per indicator) 

than with variant HI (3 fuzzy sets for the indicator). This means that a much larger set of 

parameter values must be searched by the calibration procedure for variant H3 compared 

with variant HI. Obviously, there are many possible sets of parameter values that can 

provide satisfying answers, for variant H3 constitutes an improvement in performance from 

variant SV. However, the likelihood of finding a set of parameter values that performs well 

and leads to a physically meaningful description of the parameter domain most probably 

declines as the number of parameters to calibrate increases. 

Variant SI leads to similar conclusions as those of variant HI. Variant SI was 

added following a preliminary analysis of variant HI, for which it was noticed that the 

hydrograph time to peak and duration are not particularly sensitive parameters. The 

contribution rates are sensitive, and it is logical to allow all contribution rates within the 

model to be flexible so as to remove the possible constraints on action-reaction chains 

within these parameters, thus the creation of variant SI. Figure 7.7 presents a typical case 

for variant S1 of the evolution of the parameter values with respect to the indicator, the 7-

day average inflow. This is taken from the modeling scenario applied to the Mistassibi 

watershed, and includes the use of the triangle-shape hydrograph and snowmelt model 

number 1. In Figure 7.7, as, aw, ag, ais, a\w, aig, and ap are respectively the surface, interflow 

and groundwater contribution rates to the inflows, the surface, interflow and groundwater 

contribution rate to losses of water, and the percolation rate between the subsurface and 
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groundwater reservoir. The figure presents the parameters in both their constant values 

(term _cst added) and their values if allowed to be flexible. 

Figure 7.7. Flexible parameters for variant SI. 

The conclusions drawn about surface and interflow contribution rates to the inflows 

in variant HI can apply to the surface, interflow and groundwater contribution rates to the 

inflows in variant SI. The behavior of these parameters in the high inflow range is not in 

agreement with what would naturally be expected, and the disagreement can most likely be 

explained by the fact that these contribution rates are actually runoff coefficients weighted 

by flood routing factors. The percolation rate, as a rule, seems to follow the same behavior 

as that of the contribution rates to inflows, but can also be considered as rather insensitive 

to inflows. Indeed, there is generally little variation with respect to inflows for this 

parameter for all scenarios in variant SI. The case of the behavior of the contribution rates 
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to losses is more difficult to explain. Soil moisture, as represented by the 7-day average 

inflow, might not be a factor that is as important for these contribution rates to losses as it is 

for the contribution rates to inflows. Other meteorological factors such as air humidity and 

temperature can possibly play a definitive role in the description of the domain of these 

rates to losses. If it can be assumed that soil moisture and air moisture are positively 

correlated, this could mean that if the 7-day average inflow is high, then soil moisture is 

high and air moisture is possibly high as well. If air has high water content or is even water-

saturated, then the transfer of water from the soil to the air through direct evaporation or 

transpiration from the vegetal cover, when water is collected in subsurface and groundwater 

by the root network, can be reduced and even stopped. This may explain why the rates of 

losses decrease as the inflows increases 

In conclusion, the process of describing parameter domains provides a greater 

structural flexibility to the inflow model, which can then more closely replicate the 

observed inflows. Modeling performance is improved, and the uncertainties as to the 

adequacy of the values of the parameter are reduced. This application involves natural 

processes that are relatively well known, and therefore it has been possible to evaluate 

whether this process of describing parameter domains could lead to a description that 

would physically make sense. The results presented here demonstrate that the process could 

provide acceptable descriptions. One must not forget to carefully analyze whether the 

results from this process are influenced by the structure of the model employed, by the 

distribution of data points used as indicators (e.g., few data in a particular range of values), 

or by the calibration burden (i.e., many parameters to calibrate). 

7.3 Application to Algae Modeling 

Mechanistic models constitute a long-standing option for modeling algae 

concentrations, with numerous developments in the 1970s and 1980s that include landmark 

advances such as those of Di Toro et al. (1971) and Whitehead and Hornberger (1984). 

Chapter 6 in US EPA (1985) presents an exhaustive literature review of mechanistic algae 

modeling developments up to the middle of the 1980s, and subsequent progress has been 

accomplished, as attested by the work of Lung and Larson (1995), Cloot and Pieterse 

(1999), and Rutherford et al. (2000), for example. In these models, the evolution of algae 
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concentration is explained through budget equations based on rates, such as algae growth 

and mortality rates, the settling rate and transport rates from one river section to another, 

and the loss rate due to predators. Structure and parameter uncertainties are very prevalent 

in such models. All possible situations of algae growth and decay may not be properly 

presented in the models. In addition, the data available may not be entirely adequate (i.e., 

relevant) to represent all natural processes involved, thereby possibly further limiting the 

application of the models. It is with the uncertainties of the mechanistic approach in mind 

that researchers and practitioners have recently attempted to implement an alternative 

modeling approach based on AITs, that is, neural networks (Yabunaka et al., 1997; Maier 

et al., 1998 and 2000) and fuzzy logic (Setnes et al., 1997 and 1998). Employed as they are 

by these authors, AITs are only replacements to mechanistic models. In spite of .their 

flexibility, they constitute only black boxes that do not help understand the natural 

processes involved in algae growth and decay, and this is not in agreement with the 

objective of this thesis. 

Yet, the structure of the usual mechanistic models for the estimation of algae 

concentration allows very easy implementation of an inference engine based on fuzzy logic 

for the description of parameter domains, to the point where such descriptions are actually 

the natural extensions of these models. Similar to that of Section 7.2, this section starts with 

the description of the mechanistic model, and follows with details of the integration of the 

fuzzy logic inference engine within the structure of the model. The database employed to 

test the model is then given, followed by the protocol of the experiment. The results and the 

ensuing conclusions are at last presented in detail. 

7.3.1 Description of the Model 

In this investigation of the combined mechanistic/fuzzy logic approach, the simple 

mechanistic model extensively described in US EPA (1985) is selected. When the algae 

mass is expressed in terms of cell number per volume in this model, the budget equation is 

a differential equation relating the rate over time of the algae cell concentration (A) to the 

growth (G), mortality (A/), settling (Se) and predatory (Pr) rates. Equation 7.20 represents 

this budget equation, while Equation 7.21 details the growth rate (G). 
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dA 
= {G-M-Se-Pr)A 

dt 
7.20 

G = Goplf(T)f{L,N,C,P,S) 7.21 

In Equation 7.21, Gopt is the optimal growth rate, and _/(•) a r e weighting factors for 

temperature (7), light intensity (L) and common nutrients, that is, nitrogen (A7), carbon (Q, 

phosphorus (P) and silica (S). The multiplicative and the minimum formulations, Equation 

7.22 and 7.23, respectively, are the most commonly used ones for fiL.N, C,P,S): 

Within the natural boundaries of the relevant indicators (i.e., temperature, light and 

nutrients considered separately), all factors f\.) can vary between zero and one, leaving Gopt 

in Equation 7.21 as the sole parameter describing the volume of growth. Under ideal 

conditions, that is, when all factors equal one, then the growth rate is optimal. 

The other rates in Equation 7.20, i.e., the mortality, settling and predatory rates, are 

not described in the literature in as much detail as the growth rate. A maximum mortality 

rate (Mmax) weighted by a temperature factor is the most common formulation for the 

mortality rate. Often, this rate is also combined with the predatory and settling rates (Pr and 

Se) in order to form a global mortality rate. The settling rate is a function of the hydraulic 

conditions in the water body and the physical properties of the algae, and a typical 

formulation is the ratio of a settling velocity over water depth, yielding the equivalent of 

the Froude number. As for the predatory rate, when it is not considered constant, a common 

formulation is simply a maximum predatory rate weighted by a temperature factor. Of 

course, predators are living species as much as algae are, and as such, their concentrations 

in the water body over time could be described by a budget equation similar to Equation 

7.20, given an adequate database. Speaking of database, application of algae concentration 

models often can be constrained by the availability of relevant data. The application 

presented here is no exception, and this is another reason why the concept of describing 

parameter domains is interesting, since they may compensate for inadequate data. 

As mentioned above, all factors f\.) can vary from zero to one within the natural 

boundaries of the data. Figure 7.8 provides examples of such factors for temperature, light 

and a typical nutrient, respectively. These functions are essentially equivalent to fuzzy sets. 

f{L, N, C, P, S) = f(L)f(N)f(c)f(P)f(S) 

f(L,N,C,P,S) = mm{f{L),f{N),f{c),f{p),f{s)} 

7.22 

7.23 
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As a reminder, the purpose of a fuzzy set is to define a variable or an indicator (e.g., 

temperature, light intensity, or nutrient concentration) in its entire domain according to a 

degree of membership expressed by a value varying from zero (low membership) to one 

(high membership). 

Nutrient Concentration 

Figure 7.8. Typical weighting factors for (a) temperature, (b) light, and (c) nutrients. 

This membership is related to some given attribute, say, in the case of Figure 7.8, 

the impact of temperature on algae growth, the impact of the amount of light energy on 

photosynthesis, and the impact of the nutrient concentration on algae growth. Furthermore, 

Equations 7.22 and 7.23 represent rule inferences commonly used in fuzzy logic, namely 

the product inference and min-max inference (Bardossy and Duckstein, 1995). For purely 

mechanistic models the equation for the growth rate (Equations 7.21 and 7.22 or 7.23) can 

be considered as a fuzzy logic formulation in which there is one and only one rule about the 

impacts of the variables on this rate. In this application, the concept of rule inference based 

on Equations 7.21 and 7.22 is extended in order to accommodate more than one rule about 

the impacts of the indicators on the growth rate. This requires a change in the definition of 
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the indicators (temperature, light intensity, and nutrients), where their respective domain is 

described by more than one fuzzy set. Rules can then be constructed and combined. 

Following the denazification process, the growth rate can be expressed as: 

G = Gopl 7.24 

where m{p) is the factor/{.) that applies to rule i, and v, is the degree of fulfillment of rule i. 

To consider more than one rule adds more flexibility to the model. Indeed, each rule 

is meant to describe as accurately as possible only a specific subset of situations of algae 

growth (the combination of all rules covering the entire set of situations), while only the 

equivalent of one rule covers the entire set of situations in the purely mechanistic 

formulation. It implies that, as the data or indicator domain is more finely subdivided by a 

greater number of fuzzy sets, the higher the number of rules is, and therefore the higher the 

accuracy of the model may be. However, for any given application, the size of the database 

employed limits the number of rules that can be implemented. There cannot be more 

parameters (GjS and others) in the mechanistic/fuzzy logic model than there are data points. 

The use of fuzzy logic can also help compensate for the lack of adequate data. For example, 

in mechanistic models, solar radiance values are essential in the determination of light 

intensity effects on algae cells. In many cases, solar radiance is unavailable, but a 

combination of temperature, daily sunshine (in unit of time) and turbidity, all available 

variables in the case study presented here, can be used instead to explain light intensity. 

With fuzzy logic, no mechanism need be described since only intuitive inferences are 

involved. It is reasonable to infer that if temperature and daily sunshine are high while 

turbidity is low, then the impact of light intensity is likely to be high. Inversely, if 

temperature and daily sunshine are low while turbidity is high, then the impact of light 

intensity is likely to be low. The indicators available for the application may also be 

employed to help describe the settling rate domain. The rules for the impact of settling may 

involve the use of the inflow and the water elevation of the water body, which are adequate 

indicators to infer the settling velocity and water depth normally employed in the 

calculation of the settling rate. Combination of the rules and deffuzification in the case of 

the settling rate can lead to a formulation equivalent to Equation 7.24. 
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Several modeling formulations can be constructed, and five types are explored in 

this application, with data from a site on the River Murray in Australia. The first type 

involves a purely mechanistic formulation, that is, Equation 7.20 in its integrated form used 

with Equation 7.22. In Equation 7.20, the settling, mortality and predatory rates (Se, M, and 

Pr) are combined to form only one global mortality rate. Such a combination is often 

accomplished in practice, as is the case in the application of this work, due to the lack of 

data to allow calculation of separate settling and predatory rates (US E P A , 1985). Two 

options are examined for the global mortality rate, one which considers the global mortality 

rate constant over time and the other where the global mortality rate is weighted by a 

temperature factor JIT). The temperature factor JIT), for both the growth rate and the global 

mortality rate when necessary, is assumed to follow a skewed Normal distribution, as 

described by Lehman et al. (1975). A s for the light factor JUS) for the growth rate, the 

formulation proposed by Walker (1975), which assumes photoinhibition, is employed. In 

the River Murray case, solar radiance is not available, and is therefore replaced in Walker's 

formulation by the daily number of hours of sunshine. Finally, the classic saturation-type 

relationship, considering a half saturation constant, is used for nutrient factors (J[P), J[N)) 

for the growth rate. Several model scenarios are tested, each one with their particular 

combination of variables (temperature plus light only, temperature plus phosphorus only, 

temperature plus light plus phosphorus, etc.). 

The last four types of model formulation involve the description of the parameter 

domain. For these types, the domain of each indicator employed is divided into Gaussian-

shaped fuzzy sets, then Equation 7.20 in its integrated form is used with Equation 7.24. 

Again several scenarios are possible, depending on the combination of variables employed, 

and whether the global mortality rate is constant over time or weighted by a temperature 

factor. The second model formulation type includes all scenarios where the growth rate is 

based only on indicators related to energy input available for algae (temperature, hour of 

sunshine and turbidity). For the third type, the growth rate is based on indicators related to 

energy input and nutrients (nitrogen and phosphorus). For the fourth type, indicators related 

to energy input and nutrients are used again, but this time a distinct settling rate is 

considered, calculated using Equation 7.24, with rules based on inflow and water level data 

available for this application. The fifth type includes scenarios where the inflow is 
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considered with energy input and nutrients for the calculation of the growth rate. These 

latter scenarios are particular cases, which attempt to describe a stratification process that 

has been observed at a location downstream of the site investigated. This stratification 

process has been recently analyzed by Baker et al. (2000), and it has been assumed that this 

process could affect algae growth. Stratification may be present on the site of our case 

study, and inflow values combined with temperature values for the calculation of the 

growth can be indicative of the presence of stratification in the water body. 

In total, sixty model scenarios are tested. The calibration of the parameters of the 

models is accomplished with genetic algorithms, structured so as to minimize the difference 

between observed and estimated values of algae concentrations. In the section discussing 

results (Section 7.3.3), all these scenarios are assessed globally. 

7.3.2 Description of the Application Case 

Located in southeastern Australia, the River Murray constitutes the major surface 

water resource of the state of South Australia. Figure 7.9 illustrates this river system and 

gives a more detailed view of the region of interest for this application. Water is pumped 

from this river to several major cities of this state. As a result of many activities in the 

watershed, this river has been subject to many outbreaks of toxic cyanobacterial (blue-

green algae) blooms. At Morgan, more particularly, these outbreaks are a significant water 

supply operational problem, as a water treatment plant is located in this town and several 

cities get their water from this location. Adequate prediction of algae blooms in this 

location is therefore important for the optimal operation of the water treatment plant (Maier 

et al., 2000). 

The data used for this application are from Morgan or in its vicinity, and include 

weekly values of blue-green algae concentration (Anabaena spp., in cells/ml), water 

temperature (°C), turbidity (NTU), hours of sunshine for the day (hr), total kjedahl nitrogen 

concentration (mg/1), total phosphorus concentration (mg/1), water level (m) of the river at 

Morgan and river inflow (Ml/day) at the border between South Australia and Victoria 

(about a hundred kilometers upstream of Morgan). The period of the data used extends 

from June 1984 to November 1996, and because it is a rather short segment, the whole set 

has been used for the purpose of calibration. For calibration, other considerations must be 
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taken into account. Figure 7.10 shows the record of algae concentration and indicates how 

sensitive the models have to be in order to adequately replicate the evolution over time of 

the algae mass. Indeed, the concentration can stay unchanged for a significant period of 

time, then it increases to substantial values very rapidly and finally decreases to nearly zero 

just as rapidly. To better accommodate the models faced with such variability, daily input 

sequences from the linear interpolation of the weekly data set are provided to the models. 

Also the initial conditions, that is, the algae concentrations calculated by the models, are 

regularly updated with observed concentrations. It is a procedure that is frequently used in 

practice with iterative models such as those applied here, and helps reduce error 

propagation. 

Figure 7.9. The River Murray in South Australia and Morgan. 
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Figure 7.10. Blue-green algae (Anabaena spp.) cell concentrations at Morgan. 

7.3.3 Results and Discussion 

Table 7.5 shows the mean and standard deviation for the observed values of algae 

concentration and the mean, standard deviation and root mean squared errors (Rmse) 

obtained on the average for each type of model formulation. The Rmse is a common 

criterion of algae model performance. It is the root of the average squared differences 

between observed and calculated values. It is clear from Table 7.5 that the models, 

whatever their type, perform somewhat poorly. In the best case (type 2: mechanistic/fuzzy 

logic based on energy inputs only) the estimates of algae concentration are almost 50% 

lower on the average (see the means) and can account for only about 50% of the standard 

deviation. For this particular case, these results are not surprising. Other model 

developments have been undertaken for this river (Maier et al., 1998 and 2000) and a 

similar performance has been obtained, although their models have been subject to different 

calibration and modeling conditions. It can be said nevertheless that the means and standard 

deviations of the estimated algae concentrations are of the same order of magnitude of the 

mean and standard deviation of the observed values. Also the models do follow more or 

less the evolution of algae concentration over time, that is, a peak is often estimated by the 

model when there is one observed and a period of consistently low concentration is often 

estimated when such a period is present in the observed values. On the subject of the 
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estimation of peaks by the models, it must be noted that in almost all instances there is a 

time delay between the observed and estimated peaks. Figure 7.11 illustrates a typical 

example of delays between peaks, and it is these time lags that in part explain the high 

Rmse values presented in Table 7.5. The adequate prediction of algae concentration peaks 

for this river is a difficulty that has already been observed with other model developments 

(Maier et al, 1998 and 2000). 

Table 7.5. Indication of performance for each type of models. 
Type Form of model Constant global mortality rate Weighted j global mortality rate 

Mean St.dev. Rmse Mean St. dev. Rmse 
(Cells/ml) (Cells/ml) (Cells/ml) (Cells/ml) (Cells/ml) (Cells/ml) 

Observed data 285 1240 285 1240 
1 Pure mechanistic 80 379 1,160 115 499 1,170 
2 Energy inputs only 146 606 1,158 139 580 1,146 
3 Energy plus nutrient 129 556 1,155 130 490 1,160 
4 Distinct settling rate 142 594 1,151 113 413 1,211 
5 Stratification cases 123 529 1,151 128 510 1,181 

*Note: Models of type 2 to 5 all involve the description of parameter domains (mechanistic/ fuzzy logic models). 

Another explanation for the poor performance of the models is the variability of the 

observed algae concentrations. Algae in significant quantities are present only in periods of 

bloom, and the concentration is considered equal to zero for more than half of the time. One 

bloom event in 1992, which peaks at 25,252 cells/ml, as indicated in Figure 7.10, is 

particularly significant. No models have been able to estimate this peak well, and therefore 

this biases the evaluation of the performance. Indeed, if this event is not considered in the 

calculation of the means, standard deviations and Rmses for the models, the results in Table 

7.5 change significantly. The length of this event represents about 2.5% of the length of the 

whole data set, but when it is ignored, the Rmse for all models change from an average of 

1,164 cell/ml to 664 cell/ml, which means a diminution of 43%. The standard deviations of 

the estimated values also get closer to the observed standard deviation by 9% when this 

event of 1992 is not included. There is only a slight improvement (1%) with respect to the 

means of the estimated values of concentration. 
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Figure 7.11. Lags between observed and calculated algae concentrations. 

Note from Table 7.5 that the models involving the description of parameter domains 

(mechanistic/fuzzy logic models) provide a superior performance when compared with the 

purely mechanistic models. The means and standard deviations obtained using the 

mechanistic/fuzzy logic models are for most cases closer to the mean and standard 

deviation of the observed values than those from the purely mechanistic models. The Rmses 

are quite similar for all of the models, but this is due to the fact that all models are afflicted 

with the problem of estimating the peaks after the observed peaks. Therefore the flexibility 

gained with the mechanistic/fuzzy logic models is an advantage compared with purely 

mechanistic models. The mechanistic/fuzzy logic models are an attempt to reduce the 

structural limitations of the purely mechanistic model while keeping the physical meaning 

of this mechanistic model. Of course, a claim can be made that this mechanistic part may be 

flawed and may constitute a limit to good performance. However there also seems to be a 

limit to the gain in flexibility, as can be concluded from the comparison of the different 

types of mechanistic/fuzzy logic models tested. Indeed, between type 2 and type 5 models, 

there is an increase in the number of variables employed, which means that flexibility 

increases in going from type 2 to type 5 models. However, this addition of flexibility has 

not translated into improvement of the performance. In fact, the models of types 3 to 5 have 

produced a poorer performance than the models of type 2. An increase in flexibility implies 

164 



the use of a greater number of fuzzy rules and a greater number of parameters must be 

calibrated as a result. As the number of parameters that need to be to calibrated increases, it 

becomes more difficult for the optimization procedure to find the optimal values for the 

parameters. In this application, the same number of iterations has been imposed on the 

optimization procedure in order to find an optimal set of parameters, regardless of the 

number of parameters that need to be calibrated. A fairer treatment would have been to 

impose a number of iterations proportional to the number of parameters in order to allow a 

more exhaustive search when the number of parameters is large. This limitation imposed on 

the optimization procedure is a technical point that can explain why model performance has 

reached a limit as flexibility increase. 

Data limitations also influence the quality of estimates, and it is assumed that the 

data used in this application suffer from some flaws. First, doubts can be raised as to the 

accuracy of the data sequences, and in particular as to the accuracy of the algae 

concentration measurements. The work of Jones et al. (2000) describes the protocol for 

monitoring cyanobacteria used in the measurements of algae concentrations employed in 

this application, and it also indicates that largely erroneous measurements can be present in 

the data. It is therefore suspected that many outliers are present throughout the sequence of 

algae concentrations, the most suspicious of all potential outliers being the high peak of 

25,252 cell/ml in 1992. If this particular peak event were withdrawn from the data 

sequences for the calibration of the models, the variability of the algae concentration would 

be reduced and the calibration process might lead to models that respond better to the other 

observed algae blooms. The second possible flaw is that the sequences of data used as 

inputs in the models (i.e., temperature, hours of sunshine, phosphorus, etc.) may not be 

representative (i.e., relevant) of the algae concentration sequence. In an analysis prior to the 

development of these models, it was observed that the statistical properties of the inputs 

when there are algae blooms are not really different from those of the inputs when there are 

no algae present at all. The means, standard deviations and probability distributions of the 

inputs with algae present and those with no algae present are only slightly different. This 

implies that the same vector of inputs for a given day can be indicative of the presence of 

algae growth as well as indicative of a total absence of algae. This complicates the 
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calibration process for a model since no clear difference between algae or no algae 

situations can be made. 

There are two causes that can potentially explain why the inputs are not 

representative (relevant). The first cause is that the original data set available for this 

application is discretized on a weekly time step, and this is very likely too large of a time 

step to characterize algae growth. Indeed, algae concentrations on this river can vary 

rapidly, and so can inputs such as phosphorus, turbidity or hours of sunshine, for example. 

Daily measurements of the inputs and algae concentrations would provide a more suitable 

time step so as to capture the variability over time of all of these indicators. Unfortunately, 

only a few indicators are consistently measured on a daily basis, while the other indicators 

are measured on a weekly basis, or a longer time step. The second cause is that the data set 

is restricted only to a particular section of the river, and it is too small a domain of study. 

Obviously, algae growth occurs at other locations upstream on the river, and this 

production of algae can then be in part transported to our point of study. Therefore, the 

algae concentrations measured at Morgan, the site of study, includes algae produced on site 

and very likely algae produced upstream. Other indicators measured on site, such as 

temperature or phosphorus, cannot necessarily be indicative of the condition of algae 

growth upstream. To solve this problem, it would therefore be required to model algae 

growth at several locations in the river. 

Due to the overall adverse modeling conditions (i.e., data relevance and 

completeness, plus model structure), a large variability is observed in the description of the 

parameter domain with respect to the various results. Consequently, very much like variant 

H3 in the inflow modeling application, it is not possible to provide a graph of the parameter 

value versus indicator value that would be typical, representative, or even satisfying. At 

times, the description of the parameter domain would make sense physically, that is, it 

would adequately represent the photoinhibition phenomenon or describe the algae growth 

potential adequately (i.e., high growth at mid range temperature and low growth at low and 

high extreme temperature). At other times, the disagreement between the description and 

the expected physical reality is noticeable. In spite of the results, the concept of describing 

parameter domains should be considered as sound and valid. From a performance 
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standpoint, this concept leads to better modeling estimates compared with the modeling 

situation where the parameters are kept constant. 

7.4 Conclusions 

With respect to the two applications presented in this chapter, the following 

conclusions can be drawn: 

1. Improvement in the performance is observed for cases where the flexible 

parameters are allowed, compared with cases where the parameters are kept 

constant, due to the added modeling flexibility the description of parameter domains 

provides to the model. 

2. With favorable applications, the description of parameter domains can be physically 

sound, that is, it can be in agreement with processes observed in nature. 

3. Beware of the model structure, for it dictates the nature of the parameters, and a 

biased model structure can yield inappropriate parameters, no matter if the 

description of their domains is performed or not. 

4. Data adequacy and completeness must always be kept in mind, for they can 

influence the description of the parameter domains. 

5. The calibration procedure must be adapted so as to account for the added burden the 

description of parameter domains imposes. 

Watershed inflow production is reasonably well known physically, which allowed 

the evaluation of the behavior of the concept investigated in this chapter. In fact, the benefit 

of this concept is also apparent when applied to the estimation of algae concentration, even 

though the phenomena of algae growth and decay might not be as well known physically as 

is inflow production. The challenge would be to work on cases where the natural processes 

are not well known. This is where the concept presented in this chapter can provide the 

greatest benefit, by possibly allowing a better understanding of the natural processes 

involved, as long as the remarks above (i.e., points 1 to 5) are kept in mind. 
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Chapter 8 

Discussion 

On the matter of data quality, this thesis has mainly focused, from Chapters 4 to 6, 

on a specific attribute, accuracy, and on specific problems of accuracy: shifts, trends and 

outliers. Data adequacy and completeness are data quality attributes that are also 

highlighted in Chapter 7. In any case, this thesis is not driven solely on resolving particular 

issues of data quality. To increase awareness related to the major issue of data quality is 

certainly more important, and this work must be considered as one way of achieving this 

endeavor. This work was initially motivated by the observation that the issue of data quality 

is often overlooked in practice, in water resources. On one hand, data are precious 

commodities that are not necessarily easy to obtain from water resources systems. 

Routinely, data exist that are not entirely suitable for the intended purpose of the users, yet 

they may represent the only available information, and consequently pressure to employ 

them may be high even when their quality is in doubt. On the other hand, the task of 

building methods that can assess data quality attributes is not easy. The most difficult 

problem is not really in developing the tools, but rather in finding reference data on which 

to test these tools so as to determine their performance capabilities. The reference data can 

be real observations for which the true properties can never be known exactly. They might 

be affected by some undetected bias that affects data quality attributes. Also, the reference 

data can be synthetic data, which have been used throughout this work, and for which the 

properties are exactly known. The performance of the tools for evaluating data quality 

attributes can be determined based on the knowledge of the properties of the synthetic data. 

Unfortunately, the synthetic data might not be entirely representative of the real data they 

are meant to replicate, and this can result in a bias in the determination of the performance 

of the tools for evaluating data quality attributes. In spite of these difficulties, work 

dedicated to the evaluation of data quality attributes must continue, and this applies to 

water resources data as well as to any environmental or natural resource data. It is a 

question of prevention and cost savings. Data are the foundations of decision-making 

processes that may have large economic impacts, and are employed in mathematical tools 
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(e.g. models) that can be very expensive to develop and run. From a practical standpoint, it 

is important that reliable tools assessing data quality attributes be available. It may not be 

necessary to exactly detect errors, such as is attempted here for shifts, trends and outliers. 

At the limit, it may be enough to acknowledge the presence of flaws in data, and to evaluate 

their impacts so that proper evaluation can be made of the validity of employing specific 

mathematical tools or of the exact value of a final result of a decision-making process 

performed based on the data. 

Detection tests for shifts, trends and outliers based on AITs are developed as an 

alternative to conventional tests often employed in practice. AITs are definitely suitable 

technically for the construction of such tests. However, one must look beyond the technical 

aspects of the AITs, and focus on the basic foundations of these techniques as they relate to 

data quality control. Data quality might impose the achievement of specific quantifiable 

objectives, yet quality is not a fixed and definitive concept. The term quality may have a 

different meaning from one culture to another or from one scientific domain to another. 

Even in a specific culture or scientific domain, the necessity for quality control may differ 

from one application to another. It is with the varying perception of data quality from one 

context to another in mind that AITs have been chosen as tools in this work. Here, AITs 

fulfill a very specific task, that is, the detection of anomalies. However, their foundations, 

which rely on the description of data domains and on inference for determining system 

behavior, as well as their structural flexibility, are deemed very suitable for addressing 

concepts as vague as data quality. 

The AIT-based detection tests proposed in this work do provide acceptable 

performance in diagnosing anomalies that are equivalent to those of conventional tests. 

However, the AIT-based tests require much more effort to implement than the conventional 

tests employed in this work, and this constitutes a disadvantage from a practical standpoint. 

The AIT-based tests should not be rejected as a result of this conclusion. The applications 

presented in this work demonstrate that each of the detection tests has its own behavior, 

properly diagnosing the presence of an anomaly while, the others do not, and vice-versa. 

These distinct behaviors are particularly prevalent with detection tests for outliers, and they 

are also observed for detection tests for shifts and trends, although to a lesser extent. AIT-

based tests are valuable because they behave differently from the conventional tests. 

169 



Attempts have been made to take advantage of these distinct behaviors in Chapter 6 for the 

application to shifts and trends, and it is recommended that further efforts be made to 

develop procedures that combine the results from several tests to improve detection 

performance. In fact, these procedures might be based on AITs, where the reliability of the 

tests may be inferred based on characteristics of the data under investigation and the known 

behavior of the tests. 

It must be noted as well that the AIT-based tests have provided some positive 

results. First, they lead to improvement in detection performance for multivariate cases of 

shifts and trends, where several data sequences are tested simultaneously, compared with 

univariate cases, where data sequences are tested individually. The results highlight the 

advantage of having several sources of information, where, for example, one strongly 

shifted sequence can help in the detection of the sequences of its group for which the shift 

is less pronounced. As long as one is certain that sequences can be grouped together, then 

using tests that can be applied to multivariate cases is a more reliable option than the tests 

for univariate cases. Second, AIT-based tests appear to provide better estimates of the 

characteristics of anomalies (i.e., the location of shifts and the amplitude of shifts, trends 

and outliers, based on Amp/CV and Amp/SD ratios) than those derived from the 

conventional tests. If one does not remove anomalies in data sequences for fear of false 

detection, then one can use these estimates of location and amplitude to quantify the 

impacts of these possible anomalies when the data are employed in models or in decision­

making processes. It is expected that the accuracy of these estimates would improve if the 

resolution of the AIT-based tests is finer, that is, if the Kohonen maps have more output 

neurons and the fuzzy c-means cluster sets have more clusters. On the whole, it would be 

interesting to analyze the effects of increasing or decreasing the number of output neurons 

or clusters in the detection performance of the AIT-based tests. Possibly, false detection 

might reduce as the number of output neurons or clusters increases. Third, compared with 

other statistical techniques such as clustering, AIT-based techniques like the Kohonen 

network and fuzzy c-means would require less computer processing time and memory for 

the calibration procedure. 

Many avenues for further research can be derived from the work accomplished in 

this thesis. First AITs should be compared with other detection techniques to have a more 
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general demonstration of the utility of all techniques, AIT-based and conventional. For 

example, the domain of industrial processes, biology, medicine, and computer and 

electrical engineering profess a large confidence toward in C U S U M and E W M A tests for 

the detection of shifts. Such techniques should be investigated further, along with AIT-

based tests, for comparison sake and to see if the joint study of all these techniques may 

help in the development of more robust methods of detection. Second, only cases of single 

outliers, shifts and trends have been investigated in this work, and these do not represent 

very realistic instances of what occurs in nature. Cases involving multiple outliers, shifts 

and trends should be studied with AIT-based tests to strengthen the validity of these 

techniques. For example, CUSUM and E W M A tests can assess cases of multiple 

anomalies, and AIT-based tests should be developed as well to address these cases as well. 

It is actually possible to develop such AIT-based tests, for it is only a question of 

calibrating them to be able to consider patterns related to cases of multiple anomalies. Such 

developments have not been accomplished in this work, mainly because the restriction in 

computer capabilities has limited the calibration of Kohonen maps and fuzzy c-means 

cluster sets to within a reasonable amount of time. However, as computer capabilities 

increase, the calibration of such maps and cluster sets will become a more reasonable 

enterprise. Third, only cases of shift and trend detection in the mean of data sequences have 

been undertaken in this work. Effort should be made to develop AIT-based tests for the 

detection of shifts and trends in other statistical properties, like the variance, for example. 

Such developments would increase the versatility of AIT-based tests. Fourth, this work has 

focused on the identification of errors, yet the determination of the sources or causes of 

these errors is also an interesting topic. Determining sources or causes is however a rather 

elusive endeavor. Often, measurement stations are automatic, without human surveillance, 

and consequently there are very few mechanisms to help identify sources and causes of 

errors. Nevertheless, with a good panel of experts, it may be possible to define a knowledge 

base that details possible circumstances, whether natural or technical, by which errors in 

data can be generated. And AITs would be suitable to manipulate this knowledge base so as 

to infer possible sources and causes of errors. Fifth, and finally, it must be kept in mind the 

interest of developing decision support systems to provide decisive diagnostic on the 
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detection of outliers, shifts and trends based on the results of several techniques, whether 

conventional or AIT-based. 

This work has not only focused on data quality control methods applied to 

observations, but has also directed attention on other types of inputs, that is, model 

parameters. Positive results are obtained in this respect. Here, the descriptive power of 

AITs is employed in order to improve the performance of inflow and algae growth models. 

The characterization of the domains of parameters is accomplished, and fuzzy logic is 

employed as an inference engine to determine the values of parameters that are deemed to 

be the most suitable given the conditions of the system under study. In this work, the 

conditions considered are soil moisture in watersheds for the production of inflows, and 

energy and nutrient availability for the growth and decay of algae concentrations in a river. 

This process of describing parameter domains and of using the inference engine has 

provided some flexibility in models that would have otherwise been constrained by 

constant parameters values regardless of the conditions of the systems. The idea of 

conceiving hybrid mechanistic-AIT models is based on the fact that several physical 

mechanisms that regulate some given processes (e.g., inflows or algae concentration) are 

well known and it is therefore with relative confidence that they can be mathematically 

formulated in mechanistic models. Other mechanisms may not be as well known and 

consequently can lead to a mathematical formulation of a mechanistic model that does not 

take into account all the possible behaviors manifested by these mechanisms. The role of 

AITs as applied in this work is to offer a characterization of these lesser known 

mechanisms through the description of parameter domains and to integrate these 

mechanisms through the inference engine into mechanistic models. 

Of course, the lesser known mechanisms considered in this work are actually known 

with some degree of certainty, and could have been mathematically formulated in a 

mechanistic model with some relative confidence. The goal has been to test the validity of 

hybrid mechanistic-AIT models, and the results obtained here are encouraging. However, it 

must be noted that some balance must be achieved between the resolution of the description 

of parameter domains and the efficiency of the optimization procedure employed to 

calibrate the parameters of the models. The finer the description of parameter domains, the 

larger the number of parameters needed to calibrate, and the more difficult it becomes for 
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the optimization procedure to find the global optimum. It may also be harder to find 

optimal solutions that physically make sense as the number of parameters to calibrate 

increases. These mechanistic-AIT models should be considered as development tools, 

where lesser known mechanisms are investigated through the descriptive and inference 

powers of AITs. From the obtained results, accurate and comprehensive mathematical 

formulations can be constructed for these lesser known mechanisms. Testing these hybrid 

models on the largest number of situations, where the involved mechanisms are relatively 

well known, is needed to further consolidate the validity of this approach. 

The descriptive power of AITs, whether for characterizing patterns in data or 

defining the domains of parameters, is a key factor in the development of the techniques 

undertaken in this thesis. A possible application that emanates directly from the work 

accomplished in this thesis is the characterization of a complete database prior to using it 

for a model. Depending on the patterns present in the data, a database can be subdivided, 

and specific models can be built for each of the subdivisions. Such procedures would be 

based on the assumption that each model, which would be applied to particular conditions, 

would provide better results than a single global model calibrated with the whole database. 

In water resources, the descriptive power of AITs should be kept in mind if the trends of 

giving greater focus to ecological impacts from the management of water resources systems 

continues. These trends refer for example to concerns about water quality parameters, for 

which knowledge has been acquired and methods have been developed to characterize 

these parameters. The domain of water quality analysis offers large possibilities for 

developments, for it often involves working on smaller systems where complex biological 

features are largely present. In brief, the need for knowledge acquisition through the 

description of mechanisms and modeling development might still be relatively large for 

water quality systems. These trends also refer more and more to interactions between water 

resources and fauna and flora, so that water resources specialists should no longer talk only 

about water and energy budgets, but also about biological budgets. It is in this respect that 

efficient descriptive tools are needed. Much remains to be discovered about interactions 

between physical elements such as water resources and biological elements such as animals 

and plants, not to mention interactions between living species. And the tasks are not only to 
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provide descriptions of interactions, but also to quantify the impacts of these interactions, 

and this might be accomplished with the inference engines provided by AITs. 
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Chapter 9 

Conclusion and Recommendations 

The bulk of this work has been dedicated to the development and evaluation of an 

alternative approach to conventional methods, based on artificial techniques (AIT), for the 

detection in hydrometric data of anomalies such as shifts, trends and outliers. The results 

show that the AIT-based detection tests yield performances similar to those of conventional 

detection tests. As such, AIT-based tests can be used to confirm the results obtained by 

conventional tests, and also to complement them, because this work shows that tests behave 

differently from one another. Further work, which includes more complex cases of 

anomalies and integrates soft data such as experts' judgments, should be accomplished to 

further verify the case for AITs. The AIT-based tests already show some promise. They 

may constitute an improvement beyond conventional tests for multivariate cases, and for 

the estimation of the characteristics of anomalies, such as the location of shifts, or the 

amplitude of anomalies based on Amp/CV or Amp/SD ratios. 

As a whole, it is the descriptive power of AITs that is important to remember, as 

well as their inference power for modeling scenarios. In water resources, AITs are much 

more known for their predictive ability. The descriptive power of AITs are of course 

employed on the issue of data quality for the detection of anomalies, but has also been used 

here for the characterization of parameter domains on two modeling instances, inflow 

modeling and algae concentration modeling. Used as descriptive and inference tools, one 

particular AIT, fuzzy logic, has led to the construction of hybrid mechanistic-AIT models 

providing improved estimates of inflows and algae concentrations compared with 

traditional mechanistic models. The mechanistic part is employed to characterize the well 

known physical mechanisms of the process under investigation (i.e., inflows or algae 

concentration), while the AIT part describes presumed lesser known mechanisms. This idea 

of hybrid models should be tested with other modeling scenarios to further verify this 

approach, and eventually may be used to characterize physical mechanism that are not very 

well known. 
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In conclusion, the descriptive power of AITs should be explored further in water 

resources so as to gain expertise with these approaches and favor developments that would 

improve the ability to describe processes. Compared with other descriptive statistical 

techniques, such as clustering, AITs have the advantage of requiring less processing time 

and memory. If the need to better understand the ecological impacts of water resources 

management really becomes more important in the future, then powerful descriptive tools 

would be very useful. In terms of future research and developments related to AITs and 

data quality, below are a few suggestions that are derived from this thesis. 

1. Compare AIT-based tests with other detection techniques such as CUSUM and 

EWMA. 

2. Develop AIT-based detection procedures for cases of multiple outliers, shifts and 

trends. 

3. Develop AIT-based procedures for the detection of shifts and trends in other 

statistical properties than the mean, like the variance. 

4. Develop AIT-based procedure for the identification of sources and causes of errors. 

5. Develop decision support systems to provide more decisive diagnostic in the 

detection of outliers, shifts and trends based on the results of several tests, whether 

conventional or AIT-based. 
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