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ABSTRACT 
• r 

There are many uncertainties involved in seismic design process. Such factors as earthquake 

ground motions, variability of structural geometries and material properties, and 

approximation in analytical model contribute to the non-performance of the structure. 

Therefore, reliability methods are applied in structural engineering to assess the structural 

performance. However, seismic reliability assessment may necessitate a large number of 

performance function evaluations, each requiring a nonlinear dynamic structural analysis, 

which is a formidable, if not impossible task. In performance-based seismic design, a set of 

design parameters must be found to meet the associated target reliability levels for different 

performance objectives. This is conventionally achieved by trial-and-error using repeated 

forward reliability analysis, which is inefficient. Hence, it is desirable to develop an efficient 

and effective procedure that can reduce the colossal computational efforts, making seismic 

reliability assessment and performance-based design tractable. 

This study has explored for the first time applications of Design of Computer Experiments 

and Artificial Neural Networks for seismic reliability analysis, as well as performance-based 

seismic design, taking into account structural nonlinear dynamic behavior and all the major 

uncertainties involved. Experimental design is utilized to construct response databases for 

Neural Networks learning. Neural Networks act as a surrogate of the computer program, 

improving computational efficiency by approximating structural responses. 

Case studies have been carried out to demonstrate the applicability and efficiency of the 

proposed methods in seismic reliability assessment and performance-based seismic design. 
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C H A P T E R 1 I N T R O D U C T I O N 

CHAPTER 1 INTRODUCTION 

1.1 General 

Structural design has been traditionally based on deterministic analysis. However, 

uncertainties and randomness associated with loads, environment, materials, analysis models, 

structural details, construction workmanship and quality control, service inspection and 

maintenance, all contribute to a small probability that the structure will not perform as 

intended. Therefore, all these uncertainties and randomness should be taken into 

consideration, in the framework of probability or reliability-based design, to assure a 

sufficient safety level in design. In earthquake engineering, in particular, due to a multitude 

of random variables relating to ground motions, material and geometric non-linearity as well 

as analytical models, the behavior responses are extremely difficult to predict accurately 

during a strong earthquake motion. Structural reliability must be studied in the context of 

probabilistic seismic risk assessment, incorporating probabilistic hazard analysis, reliability 

analyses of components and system, and system risk evaluation. Among them, the crucial 

step is component and system reliability analyses, which are generally based on simulation 

techniques such as Monte Carlo simulation and its variants, since the structural responses are 

implicit functions of the intervening random variables. However, because the probability of 

failure is small, computer simulation entails a large number of performance function 

evaluations, each requiring execution of a nonlinear dynamic analysis program. Hence, the 

resulting simulation process may be time-consuming or even computationally prohibitive, 

which makes it non-feasible in most practical situations. 
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CHAPTER 1 INTRODUCTION 

In order to circumvent the computational difficulty, researchers have been studying various 

procedures to deal with implicit performance functions and attempting to expedite numerical 

simulation in reliability analysis of structures. The methods available can be categorized into 

three types: (1) Monte Carlo simulation with variance reduction techniques, (2) response 

surface methodology, (3) sensitivity-based probabilistic finite element analysis. Monte Carlo 

simulation variants, such as importance sampling, adaptive sampling and directional 

simulation, improve simulation efficiency by variance reduction techniques. They need 

estimation of the most probable failure point, which is unknown in advance. Response 

surface methods consist of approximating the actual performance function with analytical 

expressions, usually second order polynomials, fitted to selected values of the performance 

function in the neighborhood of the most likely failure point. The response surface is then 

used for failure probability estimation by means of routine reliability analysis approaches. 

Although it is conceptually simple and easy to implement, the response surface method could 

result in many iterations, for it can only approximate the performance function accurately in 

vicinity of the most likely failure point. Moreover, as the number of variables increases, it 

suffers so-called "curse of dimensionality", ie, the number of coefficients grows 

exponentially with the number of variables. Sensitivity analysis can be used to identify 

important variables, those having a greater influence on structural reliability, thus saving a 

certain amount of computational effort. Nevertheless, it is based on perturbation and is only 

accurate when the input variables have small variability, and requires many repetitions of 

deterministic analyses. 

Artificial intelligence and machine learning techniques have been developing very rapidly in 

recent years, and provide robust and effective tools for structural reliability analysis. The 

2 



CHAPTER 1 INTRODUCTION 

learning machines have the ability to adapt to the environment and learn from their 

experience. Although they have been studied extensively and applied successfully in 

computer science, electrical engineering, econometrics and other fields, their potential 

capabilities have hardly been exploited for structural reliability analysis. In this thesis, 

artificial intelligence and machine learning will be explored for seismic reliability assessment 

and performance-based seismic design. Case studies will be carried out to demonstrate their 

applicability and efficiency. 

1.2 Review of Previous Work 

Earthquake engineering has witnessed great progress in the past fifty years. Structures 

designed in conformance with seismic codes of practice have generally exhibited satisfactory 

performance during recent major earthquakes. However, much still need to be done to further 

improve structural performance and mitigate seismic damage in future earthquakes. The 

following gives a brief overview of the research work relevant to this study. 

1.2.1 Synthesis of artificial ground motions 

In earthquake resistant design or research, appropriate historic earthquake acceleration 

recordings may not be available, and artificial ground accelerograms may be required when a 

structural dynamic time history analysis is performed. A number of methods have been 

proposed to characterize earthquake ground acceleration. Spectral representation-based 

algorithms were widely used by engineers for generating artificial earthquake ground 

motions (Kanai, 1957; Tajimi, 1960; Shinozuka and Deodatis, 1988; Hwang and Huo, 1994; 

and Deodatis, 1996). Seismic ground motion had also been simulated by stochastic wave 
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CHAPTER 1 INTRODUCTION 

representation method, which took the spatial variation of ground motion into account 

(Deodatis et al, 1990). Another approach was Autoregressive Moving Average (ARMA) 

models (Polhermus and Cakmak, 1981; Chang et al, 1982; Olafsson and Sigbjornsson, 1995; 

Spanos and Zeldin, 1996). Geophysicists and seismologists usually use the Empirical 

Green's Function method for predicting target strong earthquake motions, superposing the 

records of small events and using them as Green's functions by considering the differences in 

stress drop, wave attenuation in the media, and radiation patterns between large and small 

events (Hartzell, 1978; Hadley and Helmberger, 1980; Hutchings, 1991, 1994; Haddon, 

1996). In addition, some novel approaches have been tried successfully. Wavelet transform 

was applied for analysis and simulation of earthquake ground motions (Iyama and 

Kawamura, 1999). Neural networks were successfully employed for generation of spectrum-

compatible accelerograms (Ghaboussi and Lin, 1998). 

1.2.2 Design of computer experiments 

In engineering, models are used for problem formulation and solution. Mechanistic models 

are based on well-established engineering knowledge. However, when such knowledge is not 

available, empirical models have to be built relating the input variables (predictor variables) 

to the output variables (response variables) based on observed data. They are referred to as 

response surfaces in statistics, usually in the form of second order polynomials. In order to 

construct a response surface, a certain number of representative input vectors have to be 

selected, which are the subject of experimental design. Central composite design (Box and 

Wilson, 1951) is the widely used, almost standard, classical experimental design method for 

building second order polynomials response surface. Latin hypercube sampling (McKay et 
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CHAPTER 1 INTRODUCTION 

al, 1979) was the first method introduced for computer experimental design. Later, a number 

of improved methods were proposed, such as optimal Latin hypercube design (Park, 1994; 

Morris and Mitchell, 1995), Orthogonal array-based Latin hypercube design (Tang, 1993). 

Uniform Design (Fang, 1980) was based on the concept of good lattice point, which is very 

efficient and provides good design uniformity. Some low discrepancy sequences such as 

Hammersley sequence (Hammersley, 1960), Halton sequence (Halton, 1960), Niederreiter 

sequence (Niederreiter, 1987) were also used for experimental design, since the data points 

generated are well spread and have good uniformity. 

1.2.3 Approximation models 

A variety of approximation models has been developed over the years. Response surface 

methodology (Box and Wilson, 1951) is originally developed for physical experiments, and 

has been applied widely in manufacturing industries for product improvement or process 

optimization. A second order polynomial is generally constructed by linear regression, using 

the least squares technique. Kriging is an interpolation method developed in geostatistics 

(Cressie, 1991). It is extremely flexible, and can provide accurate predictions for highly 

nonlinear problems. Multivariate adaptive regression splines (MARS) approximate the 

responses by adaptively selecting a set of spline basis functions and the coefficients through 

forward or backward regression (Friedman, 1991). Artificial intelligence and machine 

learning have undergone great progress in the last 20 years. Computational intelligence tools 

such as neural networks, radial basis function networks, Gaussian processes and support 

vector machines have been proved versatile, robust and universal approximators, and have 

found applications in a wide range of fields. 

5 
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1.2.4 Performance-based design 

Performance-based design is gaining acceptance in earthquake engineering, and has the 

potential to make significant improvement over current practice. Performance-based seismic 

design was formulated as a structural optimization problem and solved by minimizing a cost 

function subjected to performance constraints (Ghaboussi and Lin, 2000). Since earthquake 

resistant design involves randomness and many uncertainties, reliability is always one of the 

main concerns. Reliability-based framework for performance-based design was put forward, 

with lifecycle cost minimization carried out to determine the optimal design for structures 

subjected to multiple natural hazards (Wen, 2001). A computational approach for efficient 

implementation of performance-based design was proposed, in which reliability was 

calculated by Importance Sampling, with performance functions evaluated by local 

interpolation of a response database (Foschi et al., 2002). Performance-based seismic 

engineering was also discussed as to main requirements for a reliable design, suitable 

probabilistic design approach and conceptual preliminary design procedure (Bertero and 

Bertero, 2002). 

1.3 Objectives of The Research 

As seen from the foregoing review, the structural response during a strong earthquake motion 

depends on a multitude of random variables, and the behavior is very intricate and the 

response is very difficult to be predicted in a reliable manner. This is due to the uncertainty 

and randomness pertinent to the ground motion, the material, geometric and boundary non-

linearity associated with the structure, as well as the uncertainty in the computational models 

with built-in simplifying assumptions and approximations. At present, the most accurate 
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structural analysis procedure is nonlinear dynamic time history analysis. The structural 

responses during a strong earthquake are random processes, implicit functions of the 

intervening random variables. In order to perform structural reliability assessment, 

simulation approaches are generally indispensable. However, seismic reliability assessment 

may necessitate a large number of performance function evaluations, each requiring 

execution of a nonlinear dynamic analysis program, which is a formidable task in terms of 

computational time and resources. Similarly, performance-based seismic design also requires 

repetitive running of a nonlinear dynamic structural analysis program. 

To improve efficiency, some researchers have proposed using empirical models to replace 

computer code for prediction and estimation. However, most of the works are limited to 

deterministic problems: linear or nonlinear static problems with a few variables. Realistic 

earthquake engineering problems involve many random variables, with their interactions 

resulting in complex structural behavior. Therefore, a model is sought that can approximate 

accurately the input - output variable functional relationship and, as such, improve 

computational efficiency and effectiveness. To accomplish this goal, this thesis will focus on, 

(1) development of neural network-based model and corresponding software; 

(2) exploration of performance-based seismic design using neural network modeling. 

In order to demonstrate the applicability and efficiency of the proposed methods, some 

applications in seismic reliability analysis will be provided. Furthermore, case studies on 

performance-based seismic design will be presented. 
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1.4 Thesis Outline 

The thesis is organized as follows: 

Chapter 1 Introduction: The background and incentive for this study is described, the 

objectives of the research are outlined, and previous works pertinent to this study are briefly 

addressed. 

Chapter 2 Generation of artificial ground motions: Review of previous works on artificial 

ground motion synthesis is presented. Generation of non-stationary accelerograms, as well as 

spectrum-compatible accelerograms is discussed. The synthesized ground motions will be 

used as earthquake ground inputs for nonlinear dynamic time history analysis. 

Chapter 3 Design of computer experiments methodology: Experimental design methods are 

reviewed, including classical methods, random design methods and quasi-random design 

methods. The approach proposed in this research is described. Design of experiments 

techniques will be used to construct response databases for neural network training. 

Chapter 4 Artificial neural networks theory and implementation: The fundamentals of 

artificial neural networks theory are described, with multilayer backpropagation neural 

networks particularly discussed. The implementation of artificial neural networks in the 

research is detailed. 

Chapter 5 Performance-based seismic design methodology: The state of art and practice of 

performance-based seismic design is described, including the philosophy, design criteria, and 

design methods. In this study, performance-based seismic design is formulated as a structural 
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optimization problem subject to reliability constraints, with the optimum solution computed 

by gradient-free algorithms. The optimization relies on neural network modeling of the 

structural responses, which is proved efficient and effective. 

Chapter 6 Seismic reliability analyses: case studies: A number of case studies of seismic 

reliability analysis, based on response databases and neural network models or local 

interpolations, are presented. (1) A one-bay two-story reinforced concrete frame is subjected 

to earthquake excitation, and the reliability indices associated with three performance levels 

are determined, with sensitivity of reliability with respect to the random parameters studied. 

(2) A two-bay twenty-story reinforced concrete frame is adopted as an example of tall 

building, and its performances under two different levels of ground shakings are assessed. 

(3) The behavior of a bridge bent without or with seismic isolation is investigated, with lead 

rubber bearing used as the seismic deck isolator. The effect of the isolator on structural 

performances is studied. (4) A wood shear wall under strong ground motions is analyzed, 

with material non-linearity depicted by a nail hysteresis model, and the effects of nail 

spacing on structural reliability are studied. (5) An actual building structure that has been 

instrumented and experienced several earthquakes is investigated for its seismic performance 

without or with seismic retrofit. Brace type hysteretic dampers are used as seismic upgrading 

strategy. 

Chapter 7 Performance-based seismic design applications: The databases generated as well 

as the neural network models constructed in the preceding chapter, are employed for 

performance-based seismic designs. (1) For the one-bay two-story reinforced concrete frame, 

the optimal distribution of masses is determined, if the distributions of the other random 
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variables are known; (2) Under strong ground shaking, the column dimensions of the twenty-

story building are determined to meet pre-specified target reliability indices. (3) The 

diameter of the non-isolated bridge pier columns is calculated when the distributions of other 

random variables are prescribed. In the case that the bridge deck is seismically isolated, the 

dimension of the isolator is determined given the statistical information of other random 

variables. (4) The nail spacing of the wood shear wall under earthquake shaking is 

calculated. 

Chapter 8 Summary and future work: A discussion of the significance of this study for 

seismic reliability assessment and performance-based seismic design is presented. Some 

recommendations for future further study are briefly outlined. 
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CHAPTER 2 GENERATION OF ARTIFICIAL 
GROUND MOTIONS 

2.1 Introduction 

With the development of computer technology and advances in numerical modeling of 

modern complex structures, it becomes feasible for practicing engineers to perform nonlinear 

dynamic time history analysis of structures subjected to ground motions. As long as the 

computational model for the structure and the adopted ground motion time histories are 

appropriate, such an approach has shown its superiority both in accuracy and efficiency as 

compared to other methods (Atkinson, 1998). It is then necessary to have accelerograms that 

represent the type of seismic excitation expected at a site. Structural engineers tend to take 

advantage of any historically recorded accelerograms for the given site, or borrow some 

strong ground motion recordings from other regions and scale the magnitudes if there are not 

such records for the site under consideration. This approach seems plausible, but some 

cautions must be taken. For a region with high seismicity, there are some recordings of 

ground motions, but those records are representative of the actual past earthquakes, and they 

will never repeat in the future, in other words, they may not represent future earthquake 

ground motions. On the other hand, historic records for a given site with low seismicity are 

usually scarce. To use strong ground motions from other regions blindly, without any 

assessment of the similarities and differences between the two sites as regard to seismic 

source mechanism, wave propagation path and local site characteristics could lead to severe 

errors in predicting structural responses. Nobody knows to what extent the adopted records 

approximate the expected future ground motions of the specific site of interest. Moreover, 
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the complexity and uncertainty involved in the structural behavior require that a number of 

ground motions be used in assessing the responses to ensure a safe and economical design. 

Hence, structural analysts must resort to artificial ground motion synthesis. Earthquake 

ground motion is influenced by such factors as source mechanism, magnitude, epicentral 

distance, travelling path geology and topography, and local soil conditions, to name a few. 

Since historical strong ground motion records may be few, it is difficult to generate 

accelerograms that can serve as realizations of future earthquake records. Visually, there are 

obvious differences between the actual ground motion records and artificially simulated 

ones. However, numerous studies on structural responses have showed that the simulated 

ground motions are equivalent to the recorded ground motions, as long as the simulated ones 

include approximately the same amplitude and frequency content and are of nearly the same 

duration as the real ground motions (Atkinson, 1998). There are basically two methods for 

simulating ground motions: the engineering approach and the seismological approach. 

Seismologists and geophysicists are interested in understanding the earthquake mechanism 

and reproduction of the faulting process and wave propagation in heterogeneous media. They 

generate ground motion based on a physical model that takes into account seismic moment, 

stress drop, fault rupture process, fault dimension and orientation, travel path geology and 

local site amplification as well as topographical effects. A slip function is postulated to 

model the rupture process and the Elastoaynamic Representation Theorem is employed to 

compute the ground motion. As this approach incorporates all the major factors which affect 

earthquake ground motion, it can accurately reflect the source effect, wave propagation effect 

and local site condition, and it is very useful for site-specific simulations. 

12 
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However, engineers who are only interested in the prediction of the structural responses 

during future earthquakes, require that the synthetic accelerograms roughly result in the same 

structural responses as the real event or at least, when generated in a large ensembles, the 

results can be used to estimate an accurate probability distribution of the effects. Based on 

this distribution, a reliable seismic safety assessment can then be made. Whether or not the 

ground motions are due to the same faulting process or geological travel path as the 

anticipated real event is secondary. As earthquake spectra are often used by engineers in 

seismic analysis and design, it is desirable to employ artificial ground motion accelerograms 

compatible with the given design spectra. From the perspective of earthquake engineering, it 

would be better to combine these two approaches to generate site-specific accelerograms, ie., 

to model the ground motion as a non-stationary random process while taking into account the 

seismic source mechanism, wave propagation in heterogeneous media and local soil 

condition. 

2.2 Review of Ground Motion Simulation Methods 

A number of approaches have been proposed for the generation of synthetic ground motions. 

The most general methods are: (1) analytical or geophysical models, such as using a semi-

empirical Green's function; (2) spectral representation method, based on random process 

theory; (3) frequency-wave number spectra representation of spatial variability of seismic 

ground motions; (4) auto-regressive moving average (ARMA) model; (5) wavelet model; (6) 

neural networks model. It is well known that earthquake ground motions are very 

complicated in nature, and for engineering applications, it is not necessary to reproduce the 

expected ground motions in order to depict their characteristics sufficiently. What need to be 
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done is to identify and determine the ground motion parameters that are of engineering 

importance, and describe the characteristics of the ground motions in terms of these key 

parameters. To this end, three major factors are considered of primary significance and 

should be taken into consideration to obtain a proper ground motion time history, namely, the 

peak amplitude, the frequency content and the strong motion duration (Kramer, 1996). The 

construction of the model should be based on probabilistic seismic hazard evaluation of the 

site under consideration, especially for some large and important structures, taking into 

account uncertainties in seismic source, wave travel path geology and local soil conditions. 

Both non-stationarity in amplitude and frequency is preferred to be encompassed, as 

earthquake ground motion is in essence a non-stationary process. The objective here is to 

provide a brief description of ground motion synthetic methods. For details, please refer to 

the literatures mentioned. 

2.2.1 Empirical Green's function method 

One of the most reliable methods for predicting strong ground motions from a large 

earthquake is the empirical Green's function method. Theoretical Green's function, applied to 

seismology, is a mathematical expression that depicts the effect of the Earth geological 

structure on seismic waves generated by a micro-earthquake. It is of minor practical value as it 

can only be calculated for a simplified subsurface geological structure, which does not reflect 

the real profile. The idea of the empirical Green's function was originally introduced by 

Hartzell (1978), as it was found that the Green's function resembles the actual recordings from 

micro-earthquakes. Thus, these records of micro-earthquakes, so-called empirical Green's 

functions, can be used to simulate strong ground motion anticipated at a given site. Usually, 
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actual recordings of micro-earthquakes (Richter magnitude 2 to 3) are employed to compute 

the ground motions of a moderate or large earthquake with magnitude 6 to 8. The advantage 

of this method is to exploit not only the common propagation path and local site effects, 

shared by small events and the target event, but also the source effects possessed by the small 

events within the fault area of the target event. 

The empirical Green's function method exploits the records of small events instead of the 

theoretical Green's functions. It is desirable that the small events should be as small as 

possible to be assumed as a point source in the fault. However, the smaller the events are, the 

more difficult it is to obtain accurate seismic records. As such, most of simulations by the 

empirical Green's function method have been made using aftershocks, which are not so small 

events as compared to the target event. 

Figure 2.1 gives a schematic illustration of the empirical Green's function method. For 

simulating earthquake strong ground motions, a finite fault model has to be employed. A 

causative fault plane is usually assumed based on seismological information. The fault plane is 

then discretized into many small patches, and each patch is treated as a sub-source, an 

impulsive point source. For each sub-source, its rupture model, slip function and the Green's 

function have to be defined. The acceleration at a site of interest is then calculated by 

superposing the arrival of the earthquake waves in a proper temporal and spatial sequence 

from all the sub-sources, which may have different rupture parameters and Green's functions. 

If no empirical Green's functions are available, the alternative method used is to stochastically 

simulate small event motions based on a seismological spectral model and make summation of 

small events in the same manner as with the empirical Green's functions. For further details, 
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see Hartzell (1978), Boore (1983), Papageorgiou and Aki (1983), Hutchings and Wu (1990), 

Hutchings (1991, 1994), Zeng (1994), Haddon (1996) and Kamae et al (1998). 

The empirical Green's function method has the following limitations: (1) Small magnitude 

aftershock records are needed from the same seismic source as the strong target motion. (2) 

The small events and the large event should share the same fault mechanism, travel path 

geology and local site conditions. (3) It can only be applied for soil with linear behavior as 

superposition is implied. To allow for nonlinear soil effect, ground motions at bedrock are 

generated first; then a nonlinear soil dynamic analysis has to be employed to calculate the 

surface ground motions. 

The empirical Green's function method is frequently applied by seismologists or geophysicists 

for prediction of site-specific strong ground motion, and its focus is on truly modeling the 

geophysical features of the earthquake process (i.e. faulting process and travel path geology 

effect). This method is often too restrictive to be used for predicting structural responses, 

because the detailed information concerning the fault rupture and geology is highly uncertain 

in real applications, if available. 

Figure 2.1 A schematic diagram of empirical Green's function method 
(Kramer, 1996, Fig.8.24, pp. 344) 
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2.2.2 Spectral representation method 

Structural engineers usually apply stochastic process theory to simulate ground motions. 

White noise was the simplest ground motion model used in the earlier stage of earthquake 

research. It has been observed, however, that the ground motion generally has a strong 

segment that can be modeled as a stationary process. A filter was proposed to white noise 

(Kanai, 1957, Tajimi, 1960), which resulted in a ground motion power spectral density 

function (co) as follows, 

hg represents the critical damping ratio of the ground; 

S0 is a constant giving the power spectral density of the white noise. 

For firm ground, the following values were suggested: cog = 15.6 rad/sec, and hg = 0.6. 

Since, in this model, the power spectral density is proportional to o)~2 in the high frequency 

range, and it has a stationary peak in the neighborhood of a)g, both of which are the 

characteristics of an actual earthquake, it is widely used for generation of artificial ground 

motions. However, earthquake ground motion is non-stationary in time and heterogeneous in 

space. As noted early, the intensity, duration and spectral characteristics are the three major 

properties of ground motion. The simulated ground motion can be considered as the product 

(2.1) 

where cog denotes the predominant frequency of the ground; 
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of a stationary random process multiplied by a modulation function to reflect the non-

stationarity, 

a(t) = f(t)-w(t) (2.2) 

where aft) denotes the non-stationary ground acceleration; 

/(t) denotes the modulation function; 

w(t) denotes a stationary process with specific power spectral density S(ta). 

Given the power spectral density S(<y), the stationary random process w(i) can then be 

synthesized as follows, 

w{t) = £ yJ2S(a)k )AG) cos(<V + A) (2-3) 

in which Aco = (a>u -a>,)/N, 

OJU and to, are the upper and lower bounds of circular frequency co; 

N is the number of frequencies considered; 

cok =u), +(k-0.5)Aco (k=l, 2, ...N) 

<l>k (k = 1, 2,..., N) is a set of random phase angles uniformly distributed over the 

interval (0, 2 n ) 

It is observed that the earthquake ground motion generally has three distinct segments, ie., 

the build-up segment, the strong motion segment and the decay segment. The modulation 

function is used to embody the non-stationarity of ground motion. Many functions have been 

proposed in the literature. Some of them will be discussed later. 
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2.2.3. Frequency-wave number spectra method 

Spatial variation of earthquake ground motion is one of the important issues to be considered 

in the seismic design of spatially extended structures, some examples including long-span 

bridges, pipelines, underground structures, etc. The frequency-wave number spectra (FK 

spectra) can fully describe seismic wave that propagates coherently through a site. The FK 

method was introduced by Capon (1969), with the power spectra and cross spectra calculated 

by Fourier technique. The application of Fourier Transform to a sequence in space leads to the 

wave number spectrum. The application to a series of time histories recorded along a straight 

line in space results in the frequency-wave number spectrum, which comes from two 

successive application of the ID Fourier Transform. For a 2D stationary homogeneous 

stochastic wave u(x,y,i) with zero mean value, its autocorrelation function is defined as, 

Ku (g, ij, T) = E\u{x, y, t)u(x + Z,y + rj,t + T)] (2.4) 

where x and y are the space variables; 

t is the time variable; 

£ and TJ are the space increments in the x-direction and y-direction respectively; 

r is the time increment. 

If the triple Fourier transform of Ruu (£,/7,r) exists, the frequency-wave number spectrum of 

w(x,_y,/)is calculated as, 

S..(*:,,*,,®} = 7 ^ £ £ £ ^ ( £ 7 . r ) ^ (2-5) 
\2.7V) 00 CO 

where kx is the wave number in x-direction; 
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ky is the wave number in y-direction; 

CD is the frequency; 

and the inverse transform is given by, 

Ruu(4,rj,T) = £XX*Suu(kx>ky,<o)exp(ikxZMkyri + i<OT)dkxdkyd<o (2.6) 

A closed-form analytical FK spectrum of the displacement field at the free surface of an elastic 

half space was derived based on a point source subject to a double couple, and then it was 

employed for simulation of ground motion displacements (Deodatis et al, 1990). The FK 

spectrum was utilized to evaluate spatial correlation characteristics in terms of the cross-

spectral density function and the spatial coherence function. The synthesis was carried out 

numerically using the Fast Fourier Transform (FFT) technique to perform the inversion from 

the frequency wave number domain to the time space domain. The simulation is an extension 

of spectral representation, and the followings are from Deodatis et al (1990), 

u(x,y,t) = V2£ZZ X T^AIA^Jy^co^AkyAcor2cos(Ixkxlx + Iykyb/+oj,t + ) 
/ ,=l / y =l /=! 7,=±17,=±1 

(2.7) 

where kxlx = lxAkx ,lx = l,2,...,yVx; 

co, =IAG>;1 = 1,2,. ..,N; 

x=kxuINx,Ak. :y =kyuINy,Au) = couIN; 

is a random phase angle uniformly distributed over (0,2 ;r). 
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It was assumed in the above that the frequency wave number spectrum is significant only in 

the following region defined by, 

— k < k < k —fc < k < k -co < 0) <6J 

xu — x xu' yu — y — yu' w — — u 

2.2.4 Autoregressive moving average (ARMA) model 

The ARMA method is a time series analysis approach that synthesizes ground motion by a 

multi-step discrete equation, the coefficients of which may be time varying to introduce non-

stationary behavior. The ARMA model describes a linear relationship between the present and 

past values of a time series Zk and a white noise shock WR as, 

Zk - a , Z w - . . . . - a p Z k _ p = Wk-btW^-...-bqWk_q (2.8) 

where Zk,Zk_x,..Zk_pare the variable values at time k#,(k-l)#,...( k-p)St; 

a^,...ap are the autoregressive coefficients; 

Wk,Wk_},..Wk_q are the noise values at time k#,(k-l)<5ir,...( k-q)5t; 

bx,..bq are the moving average coefficients ; 

St is the time increment; 

In Chang et al (1982), the Box-Jenkins approach (Box and Jenkins, 1976) was applied for 

identification of suitable ARMA models and optimal estimation of modeling parameter values. 

As the Box-Jenkins procedures are strictly valid for stationary time sequences, a moving 

window approach was employed by dividing the non-stationary target accelerograms into 

short equal segments and analyzing each segment individually. Further, goodness of fit was 

evaluated by examining the statistics of the residual sequences and comparing with those of 
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discrete white noise. A second-order autoregression first-order moving average model 

ARMA(2,1) and a fourth-order autoregression first-order moving average model ARMA(4,1) 

were found to best fit the target accelerograms. 

Ellis et al (1990) applied time series for generation of site-dependent accelerograms. The 

target accelerograms were analyzed to estimate the ARMA model parameters and a set of 

regression relations were derived relating the model parameters to the physical variables of the 

site, such as earthquake magnitude, epicentral distance and site geology. For simulation of 

site-specific ground motions, a stationary time series was first generated, then it was re-

digitized to add non-stationary frequency content, and subsequently it was multiplied by the 

standard deviation envelope to yield an artificial accelerogram non-stationary in amplitude and 

frequency content as well as being consistent with the site physical conditions. The advantage 

of the their procedure is that the time invariant parameters are related to physical variables at 

the site. Moreover, confidence intervals for the model parameters can be used to generate an 

ensemble of earthquake ground motions corresponding to the mean, mean plus one standard 

deviation for design purpose. 

The deficiency of such a model is that the physical interpretation of the coefficients in the 

equation is not obvious, and these coefficients must be determined by fitting with some target 

earthquake accelerograms. Still, another shortcoming is that the coefficients should be time 

varying for truly non-stationary process but this could render the model rather complicated and 

even unmanageable. For applications of ARMA models in earthquake motion simulations, 

references are made to Polhermus and Cakmak (1981); Chang et al (1982); Nau et al (1982); 
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Gersch and Kitagawa (1985); Cakmak et al (1985); Olafsson and Sigbjornsson (1995); Spanos 

andZeldin (1996). 

2.2.5 Wavelet transform method 

Wavelet transform is a mathematical tool that is widely used in electrical and electronic 

engineering for signal processing, and it transforms sequential data in time axis such as 

earthquake accelerograms to spectral data in both time and frequency domain. Therefore, a 

wavelet transform provides information on non-stationary time-dependent intensity of 

motions regarding a particular frequency of interest. One of the attractions in wavelet 

transform which is unavailable in Fourier transform is that the wavelet coefficients derived 

from time-sequential acceleration data represent the components of energy input in time and 

frequency domain. Iyama and-Kawamura (1999) applied wavelet transform to earthquake 

ground motion analysis and developed the relationship between wavelet coefficients and 

energy input, ie., energy principles in wavelet analysis were derived. By using the principles, 

the time-frequency characteristics of the 1995 Kobe earthquake ground motions were 

analyzed, and time histories of energy input for various ranges of frequencies and epicentral 

distances were identified. Furthermore, a technique to simulate earthquake ground 

accelerations by wavelet inverse transform was developed on the condition that target time-

frequency characteristics were specified. Structural response to the synthesized accelerations 

was compared with the target values, which showed satisfactory correlation between wavelet 

coefficients and the energy responses in both the time and the frequency domains. Wavelet 

transform is a powerful analytical tool to identify the ground motion characteristics in both 
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time and frequency domain, and further studies in this area are expected to explore the 

potentials of the wavelet transform in earthquake engineering. 

2.2.6 Neural network model 

Ghaboussi and Lin (1998) proposed a method to generate artificial earthquake accelerograms 

from the pseudo-velocity response spectra using neural networks. A two-stage approach was 

employed. First, Fast Fourier Transform was utilized to calculate the Fourier spectrum of a 

given accelerogram. Then, a replicator neural network was applied as a data compression tool 

to reduce the dimensionality of the discrete Fourier spectrum. The compressed discrete Fourier 

spectrum can be conversely decompressed and inverse Fourier Transform was carried out to 

obtain the associated ground motion. A multi-layer feedforward neural network was employed 

to map from the pseudo-velocity response spectrum to the compressed Fourier spectrum. 

Finally, the target accelerogram was obtained by combining the multi-layer feedforward 

neural network with the retrieval part of the replicator neural network. Ghaboussi and Lin's 

proposal was applied to a sample of 30 recorded earthquake accelerograms and exhibited 

potential for future applications. 

2.3 Generation of Non-stationary Ground Motion 

In this thesis work, a program was written to generate non-stationary ground motion 

accelerogram based on spectral representation method. These accelerograms were then used 

in structural reliability analysis. The procedure is described in what follows. 
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2.3.1 Determination of ground motion spectral characteristics 

The Kanai-Tajimi acceleration spectrum is employed to model the stationary power spectral 

density function of the acceleration time history (for clarity, it is repeated here), 

^(«) = K H 2 * , o * A a (2-1) 1 1 (cog - co ) + 4hgco cog 

where So is a constant determining the intensity of acceleration, 

cog and hg are the predominant frequency and damping ratio of the ground. The values 

suggested in Deodatis (1996) for three different soil conditions were used in this study, 

as shown in Table 2.1. 

Table 2.1 Kanai-Tajimi spectrum parameters 
Soil Type Frequency cog (rad/sec) Damping ratio hg 

Rock or stiff soil 8* 0.60 
Deep cohesionless soil 5* 0.60 
Soft to medium clays and sands 2.4̂ - 0.85 

At zero frequency, the Kanai-Tajimi acceleration power spectrum is not equal to zero, and 

this is inconsistent with actual earthquake records. By applying the Kanai-Tajimi spectrum, a 

significant low frequency component is imparted into the ground motion. In order to model 

the earthquake motion realistically, the low frequency components must be cleared from the 

Kanai-Tajimi spectrum. This is achieved by passing a high-pass filter to the spectrum. 

Several filters have been proposed to modify the Kanai-Tajimi spectrum, two of them being 

the Clough-Penzien filter (Clough and Penzien, 1993) and the Sine-square filter (Shinozuka 

et al, 1994). 
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Clough and Penzien proposed the following filter, which substantially attenuates the low 

frequency components, 

\Hh(cof- (2.9) 

(ffl2-ffl2)A+4A>2»2 
where a>h and hh are the fundamental frequency and damping ratio of the filter, which are 

selected to ensure the desired frequency content of the earthquake motion. The recommended 

values in Deodatis (1996) were reproduced in Table 2.2 below, 

Table 2.2 Clough-Penzien filter parameters 
Soil Type Frequency (rad/sec) Damping ratio hh 

Rock or stiff soil 0.87T 0.60 
Deep cohesionless soil 0.5;r 0.60 
Soft to medium clays and sands 0.24;r 0.85 

The Sine-square spectrum was introduced to modify the Kanai-Tajimi spectrum. It is a high-

pass filter, which was claimed to take into account the shear dislocation type seismic source 

effect (described by a ramp-type slip function), and is formulated as follows, 

, „ , , ,2 fsin 2(<»772) OXTT/T 
1 ' V A 1.0 6)>7ZIT 

where T is the dominant rise time of the ramp function. 

(2.10) 

A comparison of Kanai-Tajimi spectrum, Clough-Penzien spectrum and the sine-square 

spectrum is shown in Figure 2.2 (a)g =12 rad/sec, hg =0.6) 

The power spectrum density function for the stationary process is then given by, 

S(a>) = Srr(a)\Hk{a>)\2 (2.11a) 
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S(co) = SKT(o))\Hs(o>)\2 (2.11b) 

2 Kanai-Tajimi 

o 5 10 15 20 25 30 35 40 45 50 

Frequency (racVsec) 

Figure 2.2 Comparison of Kanai-Tajimi, Clough-Penzien and Sine-square spectrum 

2.3.2 Generation of a stationary process 

A stationary earthquake accelerogram, which incorporates the subsoil frequency content, can 

be generated by superposition of simple harmonic waves with power spectrum S(co) and 

random phases using Equation (2.3). 

2.3.3 Selection of modulation function 

Seismic ground motion is non-stationary, and it generally has three stages, a build-up stage, a 

strong motion stage and a decay stage. The above-generated stationary process has to be 

amplitude-modulated to mimic the time evolution of a real motion. A number of modulation 

functions have been proposed, and three of them used in this study are described as follows. 
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(1) Jennings modulation function 

Jennings et al (1968) proposed a modulation function in the form, 

/(0 = 1.0 
exp[ta0.1(/-/2)/(f<,-/2)] 

0 < t < U 

tx<t<t2 (2.12) 

The selection of proper constants ti, t2 has been discussed by Jennings, who pointed out that 

the modulation function is dependent on the magnitude of the earthquake, the distance from 

the causative fault and the focal depth, and proposed the following expressions for ti, t2 

relative to earthquake magnitude M and ground motion duration ta. 

ti = [0.16-0.04(M-6)]ta (2.13.a) 

t2 = [0.54-0.04(M-6)]t d (2.13.b) 

t d = 1 0 ( M - 2 . 5 y 3 . 2 3 ( 2 1 3 c ) 

Figure 2.3 displays the modulation function curve for earthquake with magnitude M = 7.0. 

Figure 2.3 Jennings modulation function 
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(2) Amin and Ang modulation function 

Amin and Ang (1968) proposed the following modulation function, 

/(OH i.o 

0 < / < t 

(2.14) 
exp[-c(f-f 2)] 

The selection of proper constants ti, t2 has been described by Jennings, ti is estimated around 

2-4 sec, and t2 may be taken as 4 sec, 15 sec and 35 sec, respectively, for earthquakes with 

magnitudes 6, 7 and 8. The selection of c is based on the focal distance (Solnes,1997). 

(3) Hsu and Bernard modulation function 

Hsu and Bernard (1978) suggested the following modulation function, 

where to is the time instant when the earthquake motion attains its peak. Figure 2.4 shows the 

shape of this modulation function for to = 5.0 s 

f(t) = (t/t0)exp(l-t/t0) (2.15) 

1.2 i 

1 ^ 

0 5 10 15 20 25 30 
Time (sec) 

Figure 2.4 Hsu & Bernard modulation function 
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2.3.4 Generation of a non-stationary artificial ground motion 

The final non-stationary earthquake motion is obtained by applying the modulation function 

to the stationary earthquake acceleration process, ie. 

«(0 = /(/MO (2.2) 

A ground motion accelerogram generated using Amin & Ang modulation function with PGA 

= 0.2g is shown in Figure 2.5 

A ground motion accelerogram generated using Hsu modulation function with PGA = 0.2g is 

shown in Figure 2.6. 

Artificial Ground Motion 

0.2 -i 1 1 

0.15 1 

-0.2 J 

T (sec) 

Figure 2.5 Artificial ground motion generated using Amin & Ang modulation function 
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Artificial Ground Motion 

o 
co 

o o < 

T (sec) 

Figure 2.6 Artificial ground motion generated using Hsu modulation function 

Sometimes, it is desired that the artificial ground motion have two strong components, and 

this is accomplished by the following modulation function, 

/(>) = 
r A exp 

r 
+ c 

t-U 
exp 

V *2 11 J 

(2.16) 

where c is the ratio of the second peak amplitude to the first peak amplitude; 

t0 is the time instant when the first peak occurs; 

r; is the start time of the second strong component; 

t2 is the time instant when the second peak occurs; 

A ground motion accelerogram that is composed of a main shock and an aftershock with 

PGA = 0.2g is shown in Figure 2.7 
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Artificial Ground Motion 

T (sec) 

Figure 2.7 Artificial ground motion with two strong components 

The above simulation approach employs a simple power spectrum to account for the spectral 

characteristics of earthquake ground motion. A modulation function is utilized to reflect the 

non-stationarity of earthquake process. Implicitly the seismogenic source is assumed as a 

point source, so it can only be used to generate far-field earthquake. The advantage of this 

method is that it is easy to implement, and can approximately allow for the local site effect. 

However, the seismic faulting mechanism is not considered in the model, and the phase 

angles are assumed uniformly distributed over [0, 2n\ which is not consistent with real 

earthquake motions whose frequency contents may vary with time and phase angles are 

usually not uniformly distributed. 
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2.3.5 Baseline correction 

Numerical integration of digital accelerograms (recorded or artificial) in time domain often 

results in non-physical shifts in velocity and displacement time histories. This is natural for 

artificially generated accelerograms, as they are synthesized based on a power spectrum, with 

no physical constraints imposed on. Generally, this phenomenon has hardly any influence on 

seismic response of structures subjected to those artificial ground motions, as the inertial 

forces are calculated based on acceleration time history. However, this issue has to be 

addressed for spatially extended structures, since the discrepancy in absolute displacements 

at different points of structure can lead to damage or even failure of the structure. Besides, it 

is necessary to correct the artificial accelerograms used for shake table test, for the hydraulic 

actuators have limited displacement scope. 

There are many methods available to perform correction of digital accelerograms to 

eliminate the unrealistic velocity or displacement drift. Trifunac (1971) applied a time 

domain filter, the Ormsby filter to the acceleration time history. A number of frequency 

filters were used for processing earthquake records, such as elliptical filters (Sunder and 

Conner, 1982; Sunder and Schumacker, 1982) and Butterworth filters (Converse, 1992). A 

method based on Lagrange multipliers was proposed by Trujillo and Carter (1982). In this 

thesis, the following procedure is adopted, 

(1) Integrate the accelerogram a(t) to obtain the velocity time series v(t); 

(2) Fit a quadratic polynomial to the velocity time history v(f) by least squares 

technique, v(f) = c0 + cxt + c 2/ 2; 

(3) Remove the derivative c, + 2c2t from the accelerogram a(t); 
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(4) Calculate the Fourier spectrum of accelerogram a(t) by Fast Fourier Transform 

(FFT), A(a)); 

(5) Apply a causal high-pass Butterworth filter, h(coi) = l/yjl + (a)c I co)4 , to A(co); 

(6) Perform Inverse Fast Fourier Transform (IFFT) of A(a)to obtain a(t)&s the 

corrected accelerogram; 

(7) Calculate A(co) by FFT to a(t), and compute V(co), the velocity Fourier Spectrum; 

(8) Apply a causal high-pass Butterworth filter, h(co) = 1/̂ /1 + (coc Ico)4 , to V{co); 

(9) Perform IFFT of V{<x>) to obtain v(t) as the final velocity time series; 

(10) Calculate V(co) by FFT to v(t), and compute D(ai), the displacement Fourier 

Spectrum; 

(11) Apply a causal high-pass Butterworth filter, h(co) = \ / yjl + (o)c / a))4 , to D(co); 

(12) Perform IFFT of £>(<y)to obtain d(t)z& the final displacement time series; 

In the above, the corner circular frequency is taken as ac =27ifc = 2^x0.05 = O.br, to 

remove the long period components whose period is in excess of 20 sec. 

A ground accelerogram and the associated velocity and displacement time histories prior to 

baseline correction are presented in Figures 2.8(a)(b)(c), while the corresponding time 

histories after processing are displayed in Figures 2.8(d)(e)(f). The units of acceleration, 

velocity and displacement are, respectively, m/sec2, m/sec and m. 
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Acceleration time history 

< 

Time(sec) 

Figure 2.8(a) Acceleration time history before baseline correction 

Velocity time history 

0.3 

Time(sec) 

Figure 2.8(b) Velocity time history before baseline correction 

Displacement time history 

-60 

Time(sec) 

Figure 2.8(c) Displacement time history before baseline correction 
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Acceleration time history 

2 

Time(sec) 

Figure 2.8(d) Acceleration time history after baseline correction 

Velocity time history 

Time(sec) 

Figure 2.8(e) Velocity time history after baseline correction 

Figure 2.8(f) Displacement time history after baseline correction 
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2.4 Simulation of Ground Motion Compatible With Response Spectrum 

In practical engineering applications, engineers are generally required to perform seismic 

resistant design in accordance with a certain mandatory code. The seismic design ground 

motion for a given site is specified in the form of design response spectrum, which is an 

idealization of the response of a linear single degree of freedom oscillator subject to a set of 

ground motions. To carry out nonlinear dynamic analysis, it is often preferable to use ground 

motion time histories compatible with the code design spectrum or response spectrum 

provided by the client. A program was developed in this study to generate earthquake motion 

time histories compatible with the code prescribed design spectrum or user specified 

response spectrum. The procedure is described as shown in Fig.2.9. The idea of adjusting 

power spectrum density function was suggested by Gasparini and Vanmarcke (1976). The 

response spectrum is calculated by direct integration (Paz, 1997). Baseline correction can be 

done in the same way as outlined in subsection 2.3.5. 

A stationary acceleration time history is first generated based on an assumed spectral density 

function, and Equation (2.3) is applied to produce a stationary ground motion time history. 

Subsequently, a modulation function /(f) is applied to the stationary time history w(t) as in 

Equation (2.2) to obtain a non-stationary time history a(t). Two modulation functions were 

implemented, namely, Amin & Ang function Equation (2.14) and Hsu & Bernard function, 

Equation (2.15). 

The 1997 U. S. Uniform Building Code design spectrum has been implemented as the default 

design spectra. The design ground motion is specified as corresponding to a 5% damped 

elastic response spectra as shown in Figure 2.10. The seismic coefficients C a and C v are 
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given in Table 2.3. For soil profile type SF, site-specific geotechnical investigation and 

dynamic soil response analysis should be carried out to determine the proper seismic 

coefficients. 

Sa(g) 

I • 

To T s 

Figure 2.10 UBC Design response spectrum 

Table 2.3 Seismic coefficients C a and C v 

Soil Seismic Zone Factor Z 
type Z = 0.075 Z = 0.15 Z = 0.20 Z = 0.30 Z = 0.40 

C a C v C a C v C a C v C a C v C a C v 

SA 
0.06 0.06 0.12 0.12 0.16 0.16 0.24 0.24 0.32Na 0.32NV 

SB 0.08 0.08 0.15 0.15 0.20 0.20 0.30 0.30 0.40Na 0.40NV 

Sc 0.09 0.13 0.18 0.25 0.24 0.32 0.33 0.45 0.40Na 0.56NV 

SD 0.12 0.18 0.22 0.32 0.28 0.40 0.36 0.54 0.44Na 0.64NV 

SE 0.19 0.26 0.30 0.50 0.34 0.64 0.36 0.84 0.36Na 0.96NV 

In the above, N a and N v are two near-source factors. The N a factor applies to the acceleration 

controlled portion of the design spectrum, and the N v factor applies to the velocity controlled 

portion of the design spectrum. N a has a value from 1 to 1.5, and N v has a value froml to 2, 

depending the seismicity of the faults and the relative location of the active faults. 
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Read the target acceleration response spectrum (T, 

r 

Initialize the power spectrum density function S(co) 

r 

Generate a stationary acceleration time history w(f) 

r 
Generate a non-stationary acceleration time history a(t) 

r 

Calculate the response spectrum Sa(T,g) 

Compare the target response spectrum (T, with the 
calculated response spectrum Sa(T,%) 

Yes 
End 

No 

Update the power spectrum density function S(co) 

S(a»= S(co) 

F i g . 2 . 9 Flowchart to generate response spectrum compatible ground motion time history 
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A ground motion acceleration time history compatible with UBC design spectrum for Z = 

0.20 and soil type Sc is shown in Figure 2.11. 

Artificial Ground Motion 

-0.3 1 ! 

-0.4 
T (sec) 

Figure 2.11 UBC Design spectrum compatible artificial ground motion accelerogram 

2.5 Summary and Discussion 

Earthquake ground motion is one of the most important uncertainties that significantly affect 

structural behavior; hence, the success of seismic resistant design using time history analysis 

depends largely on the appropriate selection of strong ground motion acceleration time 

histories. A sufficient number of accelerograms are needed to assess the variability in 

structural responses as the result of uncertainty in earthquake motions. A number of methods 

that have been proposed in the past for artificially synthesizing earthquake ground motion 

accelerations were briefly reviewed. Seismologists and geophysists usually are interested in 

simulating the physical faulting process, and they simulate earthquake motions based on 
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physical models of the earthquake process. Structural engineers, on the other hand, are more 

concerned with the effects of ground motions on structural responses. Response spectrum 

compatible ground motion accelerograms are generally the preferred choice in seismic 

resistant analysis and design, whether or not the generated ground motion can represent the 

anticipated future earthquake is secondary. No matter what approach is used, the three major 

factors of ground motion should be allowed for, namely, the intensity, the frequency content 

and duration. It is recommended that the simulation be based on probabilistic seismic hazard 

analysis of the site, especially for a large or important structure, as too many uncertainties are 

involved in the earthquake process. 

A program was developed in this study to generate non-stationary ground motions using 

spectral representation. A baseline correction algorithm was devised to process the 

synthesized accelerogram. The generated ground motions will be used as ground excitations 

in structural analysis to calculate structural responses. Three ground parameters (PGA, 

predominant frequency and duration) have been identified so that they can be manipulated 

later in response database construction. A response spectrum compatible ground motion can 

also be generated using the code design spectrum or response spectrum provided by the 

client. 

With the development of engineering seismology and earthquake engineering, more 

knowledge about earthquakes is to be achieved. It is expected that in the future, more 

seismological information will be incorporated into artificial ground motion simulation, and 

realistic earthquake ground motion can be predicted based on probabilistic seismic hazard 

assessment of the region of interest. As the earthquake resistant design code is changing its 
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philosophy toward performance-based design, in order to preserve the operational integrity 

of critical structures after a major earthquake in addition to life safety, structural design is 

subject to requirements that are more stringent. In order to produce a safe and economical 

design, structural engineers must model the ground motion and structural behavior 

realistically. Thus, it is compulsory to synthesize as realistically as possible reliable ground 

motions that the structure may experience during its intended lifetime. It is envisioned that 

realistic prediction of earthquake ground motion at a given site will be possible with further 

advances in seismology and earthquake engineering. 
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CHAPTER 3 DESIGN OF COMPUTER 
EXPERIMENTS METHODLOGY 

3.1 Introduction 

The analysis and design of modern engineering projects often involves computer-based 

simulations. In the past, new product design was usually achieved, to some extent, on basis 

of physical experiments on prototypes or models. However, this type of experiments may be, 

in general, costly and time-consuming. With the great advancements in computer technology, 

computer simulations are instead used extensively in a variety of areas, such as engineering 

design, industry manufacturing, etc. However, even with today's most advanced computers, 

it is still expensive and time-consuming to do simulations of large and complex engineering 

systems for design optimization and reliability analysis. Hence, approximate approaches, 

based on computer experimental design and response modeling, are being employed to 

reduce the computational expense and running time to an acceptable level, without 

sacrificing prediction accuracy. 

Prior to an approximate response model being constructed, the design variables (input 

variables) and the response variables of interest (output variables) must be selected 

judiciously. First, a sample of combinations of the design variables is generated during an 

experimental design phase. An appropriate computer program is then run for each 

combination in the sample, obtaining the corresponding responses. Next, a response model is 

developed to map the input - output functional relationship. Finally, the response model is 

used as a surrogate model that is sufficiently accurate to substitute the actual response during 
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design optimization or reliability analysis. Thus, building approximations for computer 

simulations involves four steps: 

(1) Problem specification; 

(2) Experimental design; 

(3) Response modeling; 

(4) Applications of response models; 

In the following, computer experimental design methods currently available are briefly 

reviewed, followed by the design approaches proposed in this study and their 

implementations. A summary concludes with comparisons regarding the advantages and 

disadvantages of various experimental design methods. 

3.2 Review of Methods for Design of Computer Experiments 

Prior to building a response model, a database of representative input - output pairs must be 

created. The data points should be carefully selected so that they cover the design space as 

uniformly as possible. The problem of choosing a suitable sample of design variables is the 

subject of Design of Experiments (DOE), a branch of Statistics. Classical DOE is developed 

for physical experiments that are subject to noise, so replications at some points may be 

necessary for estimation of the error due to noise. Central Composite Design is a typical 

classical experimental design. As physical experiments are costly and time-consuming, the 

designs are made parsimonious to reduce the experimental overhead. A linear or quadratic 

polynomials response surface is usually built. As the number of data points grows 

exponentially with dimension, it is impossible to apply it to high-dimensional problems. It is 
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neither practical nor accurate to model the intricate behavior of a large and complex system 

using this modeling technique. 

Space-filling Designs are proposed for computer experiments to overcome the above-

mentioned drawbacks. The data points are chosen to scatter uniformly throughout the design 

space so that as much information as possible can be obtained from the computer simulation. 

Sacks et al. (1989) thoroughly discussed computer experimental design. They outlined the 

differences between physical experiments and computer experiments. Furthermore, they 

treated the deterministic output from computer experiment as the realization of a random 

process, and used a Kriging model for prediction. Koehler and Owen (1996) systematically 

presented two main statistical approaches to computer experiments, one based on Bayesian 

statistics, while the other based on sampling techniques. Latin Hypercube Design (McKay et 

al, 1979) was the first approach introduced for computer experiments, which will be covered 

in the next section. Orthogonal Array Design was proposed to improve upon a Latin 

Hypercube Design (Owen, 1992). Orthogonal-Array (Hedayat, et al, 1999) based Latin 

Hypercube Design was developed by Tang (1993). Park (1994) applied the integrated mean 

square error criterion to Latin Hypercube Design to generate Optimal Latin Hypercube 

Design. Morris and Mitchell (1995) employed the max-min distance criterion given in 

Johnson et al (1990) to construct & Max-min Latin Hypercube Design. Simulated annealing 

was employed to maximize the minimal inter-point distance so that the data points were 

spread as far as possible from each other. Fang (1980) applied number-theoretic methods for 

experimental design to generate a Uniform Design. A generating vector is needed for 

constructing a uniform design, and in a high dimensional case, this design needs 

considerably fewer samples than other methods. Ye (1998) created an Orthogonal Latin 

45 



CHAPTER 3 DESIGN OF COMPUTER EXPERIMENTS METHODOLOGY 

Hypercube Design in which two columns of the Latin Hypercube are orthogonal. 

Kalagnanam and Diwekar (1997) used Hammersley Sequence Sampling for experimental 

design. Hammersley Sequence is a kind of Low Discrepancy Sequences, which places data 

points evenly in the unit hypercube. It provides a design with better uniformity than Latin 

Hypercube Design. Simpson et al (2001) compared different experimental design methods, 

namely, Latin Hypercube Design, Orthogonal Array Design, Uniform Design and 

Hammersley Sequence Design. Based on two engineering problems, it was concluded that 

Uniform Design performs well when the sample size is small whereas Hammersley Sequence 

Design exhibits better behavior in the case of large sample sizes. 

3.2.1 Central composite design 

Central Composite Design (CCD) is a fractional factorial design that is composed of a central 

point, corner points of a hypercube, and additional "star points" which are situated on the 

axes and have a distance of a from the origin, a may take values on the interval [1.0,Vs], 

where s is the number of variables (in statistics, it is termed factors). When a=1.0, the 

design is called center-faced Central Composite Design. Central Composite Design is a 

three-level design that enables a quadratic polynomial response surface to be built. 

Altogether 2s+2s+l data points are needed while a full second-order polynomial response 

surface has (s+l)(s+2)/2 coefficients to be determined. A Central Composite Design for 3 

variables is shown in Table 3.1 
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3.2.2 Latin hypercube design 

Latin Hypercube Sampling (LHS) is a stratified Monte Carlo simulation method. The 

probability range [0.0,1.0] for each random variable is divided into n equal intervals, within 

which a random number P, (i = l,...,n) is generated. Then the corresponding random variable 

values are obtained by the inverse of the cumulative distribution function F(x), ie., Xj = 

F''(Pi), where Pi denotes the probability value for the i-th interval and Xi represents the 

corresponding random variable value. Latin Hypercube Design (LHD) is the application of 

Latin Hypercube Sampling in s dimensions with random combination of the n random 

variable levels. A Latin Hypercube can be written as a matrix of n rows and s columns (n is 

the number of samples and s is the number of variables). Each column is a random 

permutation of the n levels of the associated variable. A Latin Hypercube Design of 10 

combinations for two variables is shown in Table 3.2 and plotted in Figure 3.1 

Table 3.1 Central Composite Design for three variables 
Sample No. X, X2 X3 

1 0 0 0 
2 a 0 0 
3 -a 0 0 
4 0 a 0 
5 0 -a 0 
6 0 0 a 
7 0 0 -a 
8 1 1 1 
9 1 1 -1 
10 1 -1 1 
11 1 -1 -1 
12 -1 1 1 
13 -1 1 -1 
14 -1 -1 1 
15 -1 -1 -1 
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Where in the table, -1,0 and 1 indicate, respectively, the lower bound, the mean and the 

upper bound of the variable. 

Table 3.2 Latin Hypercube Design for two variables 
Sample No. x , x 2 

1 0.02 0.66 
2 0.15 0.23 
3 0.23 0.52 
4 0.31 0.73 
5 0.47 0.35 
6 0.56 0.01 
7 0.62 0.83 
8 0.71 0.46 
9 0.83 0.12 
10 0.94 0.93 
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0.4 

0.3 

0.2 

0.1 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 3.1 A Latin Hypercube Design for two variables 

In the above, each variable is scaled to the interval [0,1]. 
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Latin Hypercube Design is easy to construct, and each variable is sampled at n levels. When 

the data points are projected into any single dimension, there are exactly n different points. 

This is a desirable attribute for deterministic computer experiments, as the data points do not 

overlap, which minimizes any information loss. Nonetheless, since the data points are 

randomly spread in the design space, some points may cluster at certain regions, leaving 

voids at other regions. This situation should be avoided in all practical situations. A few 

approaches have been proposed to address this issue of non-uniformity. 

3.2.3 Uniform design 

Uniform Design resulted from application of number-theoretic methods for design of 

experiments. Readers are referred to Fang et al (2000) for the mathematical theory and 

details. The essence of the number-theoretic method is to choose data points in such a way 

that they scatter uniformly in the s-dimension unit hypercube. The generation of a Uniform 

Design is outlined as follows (Fang and Wang, 1994). 

Suppose the dimensionality is s, and n data points are to be generated. Let (n; hi, ..., h s) be 

a vector with integral components satisfying 1 < /*, < n,ht hj(i * j),s<n and the greatest 

common divisors (»,/».) = 1, / = !,...,s. Let 

(3.1) 

The k-th element of i-th variable xfa can also be calculated by 

(3.2) 

where (n; hi,..., h s) is termed the generating vector. 
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A Uniform Design for two variables each of which has 21 levels is shown in Table 3.3 and 

plotted in Figure 3.2. The generating vector adopted is (21; 1, 13). 

Once the generating vector is known, it is easy to generate a Uniform Design. Compared to 

other methods, Uniform Design is more economical as it needs far fewer points especially 

for high-dimension case. 

Table 3.3 A Uniform design for two variables with 21 levels 
Sample No. Xi x 2 

1 1/42 25/42 
2 3/42 9/42 
3 5/42 35/42 
4 7/42 19/42 
5 9/42 3/42 
6 11/42 29/42 
7 13/42 13/42 
8 15/42 39/42 
9 17/42 23/42 
10 19/42 7/42 
11 21/42 33/42 
12 23/42 17/42 
13 25/42 1/42 
14 27/42 27/42 
15 29/42 11/42 
16 31/42 37/42 
17 33/42 21/42 
18 35/42 5/42 
19 37/42 31/42 
20 39/42 15/42 
21 41/42 41/42 
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0 1/5 2/5 3/5 4/5 1 

Figure 3.2 A Uniform Design for two variables with 21 levels 

Note that the generated data points are in the unit hypercube I' = (0,1)', and they must be 

transformed in the following way to the design space for practical application. 

- X\ +
 x k t W ~ %\) 

where X^ = k-th sample of i-th variable in design space; 

xfa. = k-th sample of i-th variable in unit cube space; 

(3.3) 

X\ = lower bound of i-th variable; 

X" = upper bound of i-th variable; 
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3.2.4 Low discrepancy sequence design 

Low discrepancy sequences such as Halton sequence, Hammmersly sequence, Sobol 

sequence, Faure sequence, and Niederreiter sequence are used for numerical integration, 

optimization and computer simulation. They form the family Quasi-Monte Carlo Methods. 

The data points generated by low discrepancy sequences have asymptotically uniform 

distribution. 

3.2.4.1 Hammersley sequence design 

The principle of Hammersley sequence (Hammersley, 1960) is briefly outlined below. For 

mathematical details, readers are referred to Niederreiter (1992). 

Each nonnegative integer k can be expanded using a prime base p : 

k = a0+alP + a2p2 +... + arpr (3.4) 

where a, e [0, p -1]. 

Let define a function of k, 

*,(*) = ̂  + -V.... + -^r <3-5) P P P 

If p = 2, the corresponding sequence <J>2(£) is termed Van Der Corput sequence. 

Hammersley sequence is generated as follows, 

Let s denotes the dimension of the design space, and s-l distinct prime number bases are 

selected, denoted by pl,p2,...,ps_x, the k -th s - dimensional Hammersley sequence is 

given by the following vector, 
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[ ^ . * F , ( * ) , * / 2 ( * X . . . . * ^ - , ( * ) ) (3-6) 

where n indicates the number of sample points, and PuP2,-;Ps-i are the bases for dimension 

2, 3,..., s respectively, with px <p2 <... < . 

A Hammersley Sequence Design for two variables is shown in Table 3.4 and plotted in 

Figure 3.3. The number of data points is 20 with a base of 2. 

Table 3.4 A Hammersley Sequence Design for two variables 
Sample No. Xi X 2 

1 1/40 0.50000 
2 3/40 0.25000 
3 5/40 0.75000 
4 7/40 0.12500 
5 9/40 0.62500 
6 11/40 0.37500 
7 13/40 0.87500 
8 15/40 0.06250 
9 17/40 0.56250 
10 19/40 0.31250 
11 21/40 0.81250 
12 23/40 0.18750 
13 25/40 0.68750 
14 27/40 0.43750 
15 29/40 0.93750 
16 31/40 0.03125 
17 33/40 0.53125 
18 35/40 0.28125 
19 37/40 0.78125 
20 39/40 0.15625 

53 



CHAPTER 3 DESIGN OF COMPUTER EXPERIMENTS METHODOLOGY 
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Figure 3.3 A Hammersley Sequence Design for two variables 

A Hammersley sequence is easy to generate, and it provides a low discrepancy sequence 

with good uniformity. As before, the generated points are in the unit hypercube Is = (0,1)*, 

and they must be transformed to the design space by Equation (3.3) for practical application. 

3.2.4.2 Halton sequence design 

Halton sequence (Halton, 1960) is similar to Hammersley sequence, and the procedure to 

generate Halton sequence is as follows, 

a) Choose s distinct prime numbers px,p2,--,Ps for each dimension, 
with/7, <p2 <...<ps; 

b) Express the integer fusing a prime base /?, (/' = 1,2,...,5)as Equation (3.4), and 

calculate the function Opi(k)&s Equation (3.5); 

c) The k - th s - dimensional Halton Sequence is given by the following vector, 
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(O AW *(k),...,Q ,.(!)) (3.7) 

where pi,p2,...,psare the bases for dimension 1,2,3,..., s respectively, with 

Pl<Pl<-<Ps-

A Halton Sequence Design for two variables with /?, =2,p2 =3 and n = 20 is shown in 

Table 3.5 and plotted in Figure 3.4 

Table 3.5 A Halton Sequence Design for two variables 
Sample No. X 2 

1 0.50000 0.333333 
2 0.25000 0.666667 
3 0.75000 0.111111 
4 0.12500 0.444444 
5 0.62500 0.777778 
6 0.37500 0.222222 
7 0.87500 0.555556 
8 0.06250 0.888889 
9 0.56250 0.037037 
10 0.31250 0.370370 
11 0.81250 0.703704 
12 0.18750 0.148148 
13 0.68750 0.481481 
14 0.43750 0.814815 
15 0.93750 0.259259 
16 0.03125 0.592592 
17 0.53125 0.925926 
18 0.28125 0.074074 
19 0.78125 0.407407 
20 0.15625 0.740741 
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Figure 3.4 A Halton Sequence Design for two variables 

As before, the generated points are in the unit hypercube Is = (0,1)*, and they must be 

transformed to the design space by Equation (3.3) for practical application. 

3.3 Experimental Design Implementation in This Study 

The classical experimental design methods were developed for physical experiments. Since 

at most three levels are considered for each variable, they are customized for constructing 

second order polynomials response surfaces. As the number of coefficients grows 

exponentially with the number of variables, they are useful only when the dimensionality is 

relatively small. Latin Hypercube Design may result in clustering of data points in some 

regions leaving voids elsewhere, especially when the sample size is small. Although Uniform 
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design is very efficient and can produce a design with good uniformity, the design lacks 

flexibility as it involves looking up a deterministic design table. Low discrepancy sequences 

have asymptotic uniformity, whereas the degree of uniformity of finite sequences is not 

clear. Hence, a number of approaches for computer experimental design have been proposed 

in this thesis and are discussed hereby. 

3.3.1 Grid design 

When the number of variables is small, it is advantageous to employ the Grid Design. It is a 

full factorial design with all data points uniformly scattered in the design space. The total 

s 
number of data points is given by n = JJl,, where s is the number of variables, and lj is the 

i=l 

number of levels for variable Xi . The user can control the number of levels for each variable. 

For an important variable, more levels may be specified, whereas for a less important 

variable, fewer levels are needed. Although it is easy to implement, the total combination is 

too large when the number of levels for the variables is large. A Grid Design for three 

variables each of which has three levels is shown in Table 3.6. In the table, -1, 0 and 1 

indicate respectively, the lower bound, the mean and the upper bound of a variable. All the 

data points need to be transformed into the original space for practical application. 
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Table 3.6 A Grid Design for three variables 
Sample x 2 x 3 

1 -1 -1 -1 
2 -1 -1 0 
3 -1 -1 1 
4 -1 0 -1 
5 -1 0 
6 -1 0 1 
7 -1 1 -1 
8 -1 1 
9 -1 1 1 
10 0 -1 -1 
11 0 -1 
12 0 -1 1 
13 0 0 -1 
14 0 0 
15 0 0 1 
16 0 1 -1 
17 0 1 
18 0 1 1 
19 1 -1 -1 
20 1 -1 
21 ,1 -1 1 
22 1 0 -1 
23 1 0 
24 1 0 1 
25 1 1 -1 
26 0 1 0 
27 0 1 1 

3.3.2 Grid-based optimal design 

An optimal design based on grid is proposed as follows. For each variable, the number of 

levels 1; (i = l,...,s) is specified, so the unit hypercube is divided into rectangular blocks. In 

addition, the number of samples in each block is prescribed. An algorithm is devised to 

maximize the minimum distance between any two points in every block. This approach 

ensures that the entire design space is covered and there is the pre-specified number of data 
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points in every block, which is the desired property of an experimental design. Such a design 

for two variables, each of which has five levels, is displayed in Figure 3.5. 

1.00 

0.80 

0.60 

0.40 

0.20 

0.00 
0.00 0.20 0.40 0.60 0.80 1.00 

Figure 3.5 A Grid-based Optimal Design for two variables 

As before, the generated points are in the unit hypercube Is = (0,1)*, and they have to be 

transformed to the design space by Equation (3.3) for practical application. 

3.3.3 Optimized Latin hypercube design 

Since the data points in a Latin Hypercube Design may scatter non-uniformly in the design 

space, some points may be clustered in a certain region. To overcome this shortcoming, it is 

desirable to optimize the Latin Hypercube Design so that the neighboring data points are kept 

at a minimal distance apart. To this end, an Optimized Latin Hypercube Design has been 

proposed in this study. For a unit hypercube of dimension s that contains n data points, there 
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are n sub-cubes each of which has a volume of 1/n. Thus the side length of each sub-cube is 

Vl /n . This is the distance criterion adopted in this study for two adjacent points. As it is 

found that most good designs are symmetric or nearly symmetric, more data points than 

needed are generated through Latin Hypercube Design. Then the data points that have a 

distance less than a certain limit are merged. Finally, sorting is carried out to find the 

specified number of data points that have the largest inter-point distances. The pseudo code 

for generating Optimized Latin Hypercube Design is outlined as follows. 

a) Generate a Latin Hypercube with lie data points, more than the number of points 

needed n, and a = no / n ; 

Do while (dm < dmin ) 

Do I = 1,11c 

Calculate inter-point distance d, 

Ifd<dm,thendm = d; 

If d < 0.5dmin, merge these two points; 

End Do 

1.05dmin 

If (dmi„ > 0.75 sVT7n), then exit 

End Do 

c) Sort the design points according to the inter-point distance, eliminate one of the two 

points which are too close. Repeat this process until the specified number of data 

points is obtained. 

a 
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An Optimized Latin Hypercube Design for two variables with 25 samples is given in Table 

3.7 and plotted in Figure 3.6. 

Table 3.7 An Optimized Latin Hypercube Design for two variables 
Sample No. x , X 2 

1 0.491425 0.413191 
2 0.034870 0.920369 
3 0.598705 0.870449 
4 0.356883 0.908647 
5 0.440257 0.231409 
6 0.896336 0.511703 
7 0.082090 0.309849 
8 0.206978 0.792904 
9 0.885799 0.304578 
10 0.135979 0.069002 
11 0.882969 0.757601 
12 0.335790 0.625134 
13 0.474810 0.072808 
14 0.708869 0.618938 
15 0.661865 0.393954 
16 0.917636 0.118527 
17 0.278858 0.381604 
18 0.284570 0.173540 
19 0.489135 0.647998 
20 0.754425 0.057946 
21 0.668308 0.211304 
22 0.785505 0.884717 
23 . 0.115413 0.541039 
24 0.965401 0.936214 
25 0.025384 0.703390 

As before, the generated points are in the unit hypercube Is = (0,1)% and they have to be 

transformed to the design space by Equation (3.3) for practical application 
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Figure 3.6 An Optimized Latin Hypercube Design for two variables 

3.4 Summary and Discussion 

Computer simulations using response representation are used extensively in science, 

engineering and industry. The design of experiments constitutes an indispensable 

prerequisite, and the success of the computer simulation depends to a great extent on the 

appropriateness of the experimental design. 

Classic experimental design methods are aimed for physical experiments, to build simple 

response surface in the form of linear or quadratic polynomials. Since physical experiments 

are costly and time-consuming, the designs are usually parsimonious to reduce the 

experimental efforts. Central Composite Design is the most popular and almost standardized 
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classic experiment design method. It is widely used for constructing second-order 

polynomials response surface. 

In classical experiment design, the approximate function is parametric, namely, linear or 

quadratic polynomials. This is a model-driven approach. In real life, such a simple model is 

incapables of modeling complex systems. Thus the classic experiment design is not suitable 

for computer experiments. During the past years, space-filling designs have been proposed to 

answer the needs of computer simulation, where the mathematical model is not known in 

advance. This is a data-driven approach. Computer experiments allow the user to try 

different models. The model can be very flexible, linear or nonlinear; parametric, semi-

parametric or non-parametric. The model should be adaptive, allowing a good fit to the 

available data and ensuring a good generalization. 

Latin Hypercube Design was the first approach introduced to address computer experimental 

design. It is a stratified Monte Carlo method, such that variables at different levels are 

sampled with the same chance. Because the samples generated by Latin Hypercube Design 

are not uniformly distributed and may show congregations in some areas and voids 

elsewhere, other methods are proposed to overcome the problem. Uniform Design is the 

application of number-theoretic methods in statistics. It provides an experimental design with 

good uniformity and equidistance. It is a very efficient design in which the number of 

samples is far fewer than those needed for other methods if the number of levels is large. 

Nevertheless, it is usually generated by looking up a design table. Low discrepancy 

sequences are used for numerical integration, optimization and simulation. The sequence 

is a set of points that are uniformly scattered over a unit hypercube asymptotically. They 
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seem to be promising tools in experiment design as regards the good uniformity of the data 

points they generate, especially when the sample size is large. 

A Grid-based Optimal Design and an Optimized Latin Hypercube Design have been 

proposed in this thesis to improve design uniformity by optimization based on the max-min 

criterion (to maximize the minimum inter-point distance) or controlling minimum inter-point 

distance. In the former approach, the user can control the number of levels for each variable, 

and every block has the same number of data points. The latter method is based on 

progressively merging the data points whose distance is below a certain limit and then 

sorting the database for the required number of data points. The generated designs cover the 

entire design space and exhibit good uniformity. 
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CHAPTER 4 ARTIFICIAL NEURAL 
NETWORKS THEORY AND 
IMPLEMENTATION 

4.1 Introduction 

Artificial Neural Networks (ANN) are computational devices composed of many highly 

interconnected processing units. Each processing unit keeps some information locally and is 

able to perform some simple computations. The networks as a whole have the capability to 

respond to input stimuli and produce the corresponding response, and to adapt to the 

changing environment by learning from experience. 

There are a number of artificial neural network paradigms. Among them, the most widely 

used are the Multilayer Backpropagation Neural Networks (Multilayer Perceptrons, MLP) 

and the Radial Basis Function Networks (RBFN). Generally speaking, the Multilayer 

Backpropagation Neural Networks encompass the following basic elements: (1) an input 

layer whose neurons receive inputs from external sources, and send the signals to the neurons 

of the subsequent layer; (2) one or several hidden layers whose neurons receive inputs from 

neurons of the preceding layer, perform some calculations, and broadcast their outputs to the 

neurons of the next layer; (3) an output layer whose neurons process the inputs and produce 

the final responses; (4) the connecting weights between the neurons of the adjacent layers 

which embody the strengths of connection; (5) a transfer function (activation function) for 

processing the inputs to a neuron; (6) a learning rule employed to train the networks; (7) 

training data, the set of examples from which the networks learn the functional relationship 

between inputs and outputs. 
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An artificial neural network must be trained prior to practical application. The neural 

network is presented a set of examples, and from these examples it discovers the underlying 

mapping from the input space to the output space. A learning rule must be employed, and the 

weights are iteratively adjusted to reconstruct the presented examples. After the neural 

network has been well trained and tested, it has learned the functional dependencies and is 

able to respond to a unseen input pattern and predict the corresponding output. A well-

trained neural network can perform either causal mapping (from causes to effects) or inverse 

mapping (form effects to possible causes). 

Artificial neural networks possess some distinctive properties not found in conventional 

computational models. Traditional computing models are based on predefined rules 

(equations, formulas, etc.) that clearly specify the problem. The program follows an explicit 

step-by-step procedure to compute the desired outputs. This is feasible when the rules that 

define the problem are known in advance. In most cases, there are only observational data of 

the problem, while the underlying rules relating the input variables (independent variables, 

predictor variables) to the output variables (dependent variables, response variables) are 

either unknown or extremely difficult to discover. Under these circumstances, artificial 

neural networks exhibit their superiorities, and they have the following favorable attributes, 

(1) Inherently parallel structure which can tackle complex problem by many massively 

connected simple processing units; 

(2) Ability to learn and generalize from experience and examples; 

(3) Robustness when dealing with noisy or incomplete input data; 

(4) Adaptivity to new information. 
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Artificial neural networks have been proven to be effective computational tools for a great 

variety of tasks such as pattern recognition, classification, signal processing, system 

identification, estimation and prediction, analysis and design, data compression, adaptive 

control and optimization. They are continuously finding new applications in a spectrum of 

diverse fields such as science, engineering, medicine, business, and industry (Kumar and 

Topping, 1999). In the next two sections, the fundamentals of MLP and RBFN, as well as 

their implementations in this study will be discussed. 

4.2 Multilayer Backpropagation Neural Networks 

4.2.1 General 

Multilayer Backpropagation Neural Network is one of the well known and the most widely 

used artificial neural networks paradigms. The network is composed of an input layer, one or 

several hidden layers and one output layer of neurons. The neurons of adjacent layers are 

interconnected by weights that indicate the strength of connectivity. The input layer neurons 

do not perform any calculations, and they just receive signals from the outside environment. 

The presence of a series of hidden layers and the adoption of nonlinear transfer function 

enable the network to learn complex nonlinear functional mapping between the input 

quantities and output quantities. The network must be trained by presenting a set of training 

input-output pairs. This is achieved by carrying out optimization in an attempt to minimize 

the training error through weight updates. During operation of the network, the data flow 

from input layer forwards to output layer. Each neuron computes the weighted sum of its 

inputs and subtracts a threshold. The result passes a nonlinear transfer function and the 

output from the neuron is produced. Then the neuron output is sent to the neurons of the 
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subsequent layer. This process is repeated for every following layer of neurons, and the 

outputs from neurons of the last layer serve as the network predictions. 

4.2.2 Artificial neuron model 

Artificial neuron is the basic building block of the complex neural network system. Its 

operation determines the function of the entire network. A schematic diagram of artificial 

neuron is illustrated in Figure 4.1. 

The neuron receives inputs from the neurons of the preceding layer Xi, X 2 , ... X„, calculates 

the weighted sum of the inputs and subtracts a threshold 0j, ie. ^JVijXi -0 , . Then the 

neuron passes this outcome through a nonlinear transfer function f(.) and produces the 

n 

1=1 

neuron output as, 

X 

x„ 

Figure 4.1 A schematic diagram of an artificial neuron 

n 

(4.1) 
i=i 
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where Xi, i = 1,2,... ,n are the inputs to neuron j; 

Wy denotes the weights connecting neuron j and preceding neuron i; 

0j denotes the threshold of neuron j; 

Yj denotes the output from neuron j; 

f(.) is the nonlinear transfer function, usually logistic function fix) = 1.0/(l+e"x) (Figure 4.2) 

or hyperbolic tangent function f(x) = tanh(x). 

1.5 -

1 -
logistic 

function ( J ^ 

— " • o 

5 " 3 - 1-0.5 -

-1 -

-1.5 -

1 3 ! 

Figure 4.2 Transfer function 

4.2.3 Network architecture 

Generally, a Multilayer Backpropagation Neural Network is made of an input layer of 

neurons, one or several hidden layer of neurons and an output layer of neurons. The 

neighboring layers are fully interconnected by weights. A typical layout of a three-layer 

neural network is illustrated in Figure 4.3. The network shown consists of an input layer with 

five neurons, a hidden layer with three neurons and an output layer with two neurons. The 

input layer neurons receives information from the outside environment and transmits them to 
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the neurons of the hidden layer; the hidden layer neurons process the incoming information 

and extract useful features to reconstruct the mapping from input space to output space; and 

the output layer neurons produce the network predictions to the outside world. 

Prior to being applied for prediction, the neural network architecture (the number of hidden 

layers, and the number of neurons in each layer) must be set up, then a set of training 

samples are used to train the network so that it learns the functional relationship between the 

input variables and the output variables. At the start of training, the weights are randomly set 

Input layer Hidden layer Output layer 

Figure 4.3 A typical Multilayer Backpropagation Neural Network 

to some small real numbers. Then the examples are presented to the network and a forward 

pass operation is performed. Each neuron calculates the weighted sum of its inputs and 

transmits the result through a transfer function from which the neuron output is obtained. The 
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typical transfer function is the sigmoid function. The data flow forwards layer by layer. The 

outcomes from the output neurons serve as the network estimates. The discrepancies 

between the target outputs and the predicted outputs measure the training error. In order to 

achieve satisfactory estimation, the weights of the network must be adapted to minimize the 

training error, and this is done by a backward pass of the error, which is called error 

backpropagation. The network error is passed backwards from the output layer to the input 

layer, and the weights are adjusted based on some learning strategies to reduce the network 

error to an acceptable level. After the network is well trained, all the weights are frozen, and 

the network can be applied for prediction. 

4.2.4 Training strategies 

The training of artificial neural networks is an unconstrained optimization process: to find 

the optimal neural network parameters, the connecting weights, so that the network errors on 

the training examples are minimized. Any unconstrained optimization method can be used 

toward this end. The optimization methods can be categorized into two classes: the 

deterministic method and the stochastic method. The deterministic class comprises first-order 

methods such as gradient descent and second-order methods such as Newton's method. The 

stochastic method is based on random search, such as simulated annealing and evolutionary 

algorithm. Backpropagation algorithm will be discussed in the following section, while other 

training methods will be briefly mentioned. 
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4.2.4.1 Backpropagation algorithm 

The backpropagation learning method is an approximate gradient descent method. The 

amount of learning is proportional to the difference (delta) between the target output and the 

computed output, so it is also called delta rule. Rumelhart et al (1986) extended it to 

multiplayer feedforward neural networks, and named it error-backpropagation or 

generalized delta rule. The following discusses the backpropagation algorithm for training 

multiplayer neural networks. 

Consider a three-layer neural network as shown in Figure 4.3. Assume that the number of 

neurons in the input layer, hidden layer and output layer are I, J and K respectively. Let 

Xf be the p-th input to the i-th neuron of the input layer, I ? be the p-th network input to the 

j-th neuron of the hidden layer, H ? be the p-th output from the j-th neuron of hidden layer; 

Ik

p be the p-th input to the k-th neuron of the output layer, and Yk

p be the p-th output from 

the k-th neuron of the output layer; hence, we have the following expressions, 

(4.2) 

(4.3) 
j 

(4.4) 

(4.5) 

where Wfl denotes the weight connecting i-th input neuron to j-th hidden neuron; 

Wy denotes the weight connecting j-th hidden neuron to k-th output neuron; 

/(.) denotes the transfer function. 
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Suppose the p-th desired output for the k-th neuron of the output layer is Tk

p, and then the 

sum of squared error over all neurons of the output layer is defined as follows, 

^ Z Z C 7 / " 1 * ' ) 2 (4-6) 
*• P K 

The backpropagation algorithm minimizes the above error functional by incremental 

updating the weight in proportion to the instantaneous gradient of the error with respect to 

the corresponding weight. 

For the weights connecting the hidden layer to the output layer, 

r)F 
AWh. = -tj-=- (4.7) 

* dW^ V ' 

where rj represents the learning rate which indicates the rate of change of the weight. 

Using the chain rule of derivative, we can rewrite the above equation as, 

= -Yn/'UDH? (4.8) 
p 

Let Sk

p = (77 - Yp)f(Ip), then Equation (4.8) can be written as 

A ^ = / / Z W (4-9) 
p 

For hidden neurons, there are not target outputs. In order to apply the same principle to the 

neurons in the hidden layers, the error must be backtracked to the hidden layer neurons. The 

weight update rule for the weights Wfi is again formulated as, 

r)F 
AW, = -rj—— (4.10) 
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Using the chain rule of derivatives, the above equation can be rewritten as, 

P k 

p t 

(4.11) 
p 

where 5 /=/ I ( / ; )2:^. 
k 

If there is more than one hidden layer, the same procedure can be applied to each hidden 

layer by backtracking the error. The selection of learning rate is problem-dependent, and 

requires experience and experimentation. If the learning rate is too large, we might overshoot 

the minimum; on the other hand, if it is too small, the convergence will be slow. Initially all 

weights should be set to small random values to prevent neuron saturation in the early 

training stage which results in slow learning. 

In the classical backpropagation method, the training is fast at the beginning, but at a flat 

region of the error surface, the progress is very slow. In order to circumvent this drawback, a 

momentum term can be added, 

in which g indicates the iteration number. 

To be more effective, it is more reasonable to adapt the learning rate and momentum rate 

during the training process (Hagan, 1996). 

AW(g) = -rjVE(g) + aAW(g -1) (4.12) 

J?(g) = 
S"(g-i) 
CT7]( g-1) 

E(g)>s-E(g-1) 
E(g)<s-E(g-1) 

(4.13) 
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where £ = 0 . 7 , a= 1.05, e =1.04 

4.2.4.2 Other training algorithms 

A number of fast training methods can be used to speed up the learning process (Shepherd, 

1997). Among them, the conjugate gradient method and second-order methods such as 

Quasi-Newton method, Levenberg-Marquardt method, model-trust region strategies are 

worth mentioning. Compared to the first-order approaches, these methods need more 

calculations in each iteration. The fast training methods are not general, as their efficiency 

highly depends on the problem under consideration. 

4.2.5 Performance evaluation 

After the network has been trained, the network error is minimized to a certain lower level. 

However, a lower training error does not imply a lower generalization error. To make sure 

that the network is well trained and it has the capability to generalize, a subset of examples 

have to be presented to the network, with the network outputs compared to the target outputs. 

The testing errors indicate the extent of generalization error when the network is put to use. 

If the testing errors are considered acceptable by the user, then the training stage is complete. 

The network topology is kept fixed, and the network weights are frozen. The network is 

ready for application. 

4.2.6 Neural networks implementation in this study 

4.2.6.1 Data preparation 
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Since neural network generalizes by learning from examples presented to it, its ability of 

generalization is strongly affected by the training data. Hence, generation of sufficient 

number of training examples is extremely important. The training examples must cover the 

range from the lower bounds to the upper bounds of all input variables and distribute 

uniformly over the whole design space. The data should be comprehensive, representing 

particular features of the entire variable population. 

If the input variables have a large dimensionality, it may be advantageous to apply some 

statistical methods such as Principle Component Analysis or Factor Analysis to select a 

smaller set of important input variables. That will reduce the number of instances required 

for network training and accordingly the network complexity. 

During training of network using backpropagation algorithm, the network weight change is 

proportional to the derivative of mean square error with respect to the weight under 

consideration. Since the derivative tends to have a smaller value as the absolute value of the 

weight goes up, it is customary to scale the input variables into a small range, for instance, 

[-1.0,1.0] in order to speed up training. A simple linear normalization function is used, 

U = -l.0 + 2.0(X-Xl)l(Xu-Xt) (4.14) 

Where U denotes the normalized value of input variable X; 

X, denotes the lower bound of input variable X; 

Xu denotes the upper bound of input variable X; 

The normalization of output variables depends on the range of the transfer function, the 

sigmoid transfer function has a lower and an upper output limits, which are 0.0 and 1.0 for 
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logistic function, or -1.0 and 1.0 for hyperbolic tangent function. Usually linear 

transformation works well, albeit a nonlinear transformation may be conducive if the data are 

clustered. Thus in this work, the output variables are first transformed in the following, 

S = \n(Y) (4.15) 

where Y denotes the target value of output variable. 

Then S is normalized within the values of 0.1 to 0.9 (for logistic function), or -0.9 to 0.9 (for 

hyperbolic tangent function), 

F = 0.1 + 0.8(5-ln7/)/(ln7B -In7,) (4.16a) 

F = -0.9 + 1.8(1S'-lny j)/Ony,-ln7 l)' (4.16b) 

Where V is the normalized target value of output variable Y, 

Yl denotes the lower bound of output variable Y; 

Yu denotes the upper bound of output variable Y; 

4.2.6.2 Topology of the network 

The architecture of the neural network must be determined before training. The number of 

input variables and the number of output variables are determined by the problem 

specifications. It is recommended to reduce the number of input variables based on 

experience and engineering judgment, as too many inputs will make the model complex as 

well as slow down the learning process. Though there are theorems that guarantee that 

multiplayer feedforward neural networks with (at least) two hidden layers are capable of 

approximating any nonlinear function within a desired accuracy (Hornik, 1991), no general 
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guidelines are available to select the appropriate topology of the networks. Generally, a trial-

and-error approach is followed to find the best network structure. Several networks with 

different architectures are trained and tested, and the best one with the least test error is used 

for application. 

The hidden layer plays a crucial role in the neural network performance. It enables the 

network to model complicated nonlinear relationships and to capture the features underlying 

the inputs and the outputs. An optimal number of neurons in the hidden layer are required. A 

network with few neurons may not be able to capture the complex underlying relationship 

between inputs and outputs, thus it cannot generalize well to unseen data. On the other hand, 

too many neurons tend to result in over-fitting of the training data, ie, the model is too 

complicated to be reliably inferred from a limited amount of training data, hence the network 

prediction will be poor in spite of a very low training error. There is no general rule for 

choosing the optimal number of neurons in the hidden layer. It is problem dependent, and to 

some extent, it hinges on the amount and the quality of the training data. In a word, it must 

be large enough to be able to model the complicated nonlinear mapping while small enough 

to ensure a good generalization. In addition, the number of neurons should be so small that 

the number of weights is fewer than the number of training instances. Some heuristic 

approaches can be applied to improve on the initial architecture. One hidden layer is usually 

adopted. There are two algorithms available: cascade algorithm and pruning algorithm. In 

cascade algorithm, we start with a simple architecture with only a few hidden neurons, and 

evaluate the performance by parallel training and testing. If the training error is high, more 

hidden neurons are added. The process is repeated until at some step the testing error begins 

to increase. In pruning algorithm, we start from a complex architecture with many hidden 
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neurons, and evaluate the network performance by parallel training and testing. If over-fitting 

occurs, the neurons in the hidden layer are reduced until the training error is reduced to an 

acceptable level. 

In this work, one hidden layer is adopted and the number of neurons in the hidden layer is 

determined by cross validation. There are two types of cross validation, leave-one-out cross 

validation and multi-fold cross validation (Cherkassky, 1998). The model selection 

procedure is outlined in the following pseudo code. 

(1) Set the initial number of neurons to half the number of input variables, H, =112; 

(2) Set the maximum number of neurons to Hu = (N^ -1) /(/ + 2); 

(3) DoH=H„Hu 

If (H = H,), initialize the weights to some random small values; 

If (H * H,), initialize the weights connecting the newly added neuron to 

input neurons and output neurons; 

Divide the training dataset into five subsets; 

Don =1,5 

Train the network using four of the five datasets and use the rest for 

testing; 

Calculate the training sum square error SSE"rajn, and the testing sum square 

error SSE"est; 

Calculate the error criterion 

ECa=WSSE^/(N^-Nw)) + ]otiSSEi,/Nml) 

End Do 
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Calculate the average EC" = - £ £ C „ 
5 n=l,5 

End Do 

(4) Select the number of neurons as H which has the minimal EC" 

where / denotes the number of input variables; 

SSE^n denotes the training sum square error; 

SSE^ denotes the testing sum square error; 

Ntrain denotes the number of training examples; 

Ntest denotes the number of testing examples; 

Nw denotes the number of network weights; 

The network with the minimum EC value is selected as the best network structure. 

4.2.6.3 Training 

There are two training modes, batch mode and pattern mode. In a batch mode, the entire set 

of training examples is presented to the network, and the network output for every input 

vector is computed. Then the mean square error of the network is calculated and the network 

weights are adjusted backwards using error backpropagation. In a pattern mode, every 

example is presented to the network and the corresponding network error is calculated, then 

the network weights are adjusted backwards based on the error from that example alone. 

Usually batch mode is preferred due to the following reasons: 

(1) Pattern mode training needs more weight updates and thus is slower, since weights 

must be changed for every example; 
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(2) In a pattern mode, the ordering of examples has an impact on the training. Examples 

presented at the end of training have more influences than those presented at the 

beginning. The network tends to " forget the past ". While in a batch mode, the order 

of presentation does not make a difference; 

(3) Batch mode provides a more accurate measurement of weight changes on the 

average. 

The network has to be trained many epochs (the presentation of the entire training dataset to 

the network is termed an epoch) before the network error decreases gradually to a stable 

value. The training time depends on such factors as network topology, the number of hidden 

layers, and the number of neurons in each layer, the training data as well as the nature of the 

input-output relationship. The training can be stopped when the iteration limit is reached, or 

the training error has reached a predefined error limit. 

In this study, batch mode training was adopted and the weights obtained from previous 

training were kept. The following procedure was employed for the final training, with the 

optimal number of neurons determined by the above model selection. 

(1) Divide the training dataset into two subsets, namely, training dataset (80% of the 

total data) and the test dataset (20% of the total data); 

(2) Train the network using the training dataset and evaluated its performance with 

the testing dataset; 

(3) If the error for a certain testing case is large the predefined threshold, put it into 

the training dataset, meanwhile, the case with the smallest error in the training 

dataset is put into the testing dataset; 
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(4) Repeat the training process until both the training root mean square relative error 

(RMSRE) and the testing RMSRE are reduced to the acceptable limit, or the 

number of iteration is exhausted. 

4.3 Radial Basis Function Networks 

4.3.1. General 

Radial Basis Function Network (RBFN) is composed of a linear combination of radial basis 

functions, whose output is symmetric about its center and decays monotonically with the 

distance from the center. It is another neural network paradigm for function approximation 

and classification. A typical radial basis function is the Gaussian function. 

(̂x) = exp 
r2 

J 

(4.17) 

where x denotes the input variable vector; 

c denotes the center of the function (vector); 

r denotes the radius of the function (scalar); 

||«|| is a vector norm. 

A radial basis function network comprises linear combination of a set of radial basis 

functions, and it can be expressed in the following form, 

M 

**) = (4.18) 
j=0 

where ^0(x) = 1.0; 
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M is the number of radial basis functions; 

Wj denotes the j-th weight; 

(fijix) denotes the j-th radial basis function. 

If a Gaussian function is selected as the radial basis function, then Equation (4.18) becomes, 

Figure 4.4 illustrates a radial basis function network with three layers, ie, an input layer, a 

hidden layer and an output layer. 

The neurons in the input layer receives information from the outside world and transmit them 

to the hidden layer neurons, which perform a nonlinear transformation of the input vector by 

means of radial basis function. The outcomes from the hidden neurons are linearly combined 

with the coefficients (weights) and exported as the network output. 

4.3.2. Radial basis function network training 

The design of Radial Basis Function Network involves selection of proper radial basis 

function, determination of the number of hidden neurons and network training. Usually the 

Gaussian function is chosen as the radial basis function, but others such as multiquadratic 

function, Cauchy function, and thin-plate splines are used in some applications. Once the 

type of radial basis function and the number of neurons are established, training is performed 

to determine the values of network parameters. Recall in Equation (4.19), there are three 

parameters for each hidden neuron, namely, the center vector c ; , the radius rj and the weight 

y(x)=^wjexp -
M 

J 

(4.19) 
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Wj, (j = 0,1,2,...,M), where Mis the number of hidden neurons. There are two ways of 

training a RBFN, viz, supervised training or two-stage training. 

Output layer 

Hidden layer 

Input layer 

Figure 4.4 A schematic Radial Basis Function Network 

Supervised training of RBFN is similar to the training of Multilayer Perceptron. The values 

of the parameters are adjusted to minimize the sum-of-squares error, 

(4.20) 
n=l k=\ 

where P is the number of samples; 

K is the number of outputs; 

tl denotes the target value of k -th output corresponding to the input vector x"; 
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yk (xn) denotes the calculated value of k -th output corresponding to the input vector x"; 

If gradient descent is employed as the training algorithm, the following update rule can be 

used for adjusting the values of the model parameters (Ghosh et al, 1992), 

&wk/ ~ 7i ifk ~yk(x"))0j (*") (4.21) 

Ac, = 7 a ^ ( x " ) f c - ^ £ ( r ; -*(*")>•'* (4-22> 

2 
X" - C , | | K 

Ar, = ̂ (*")"" 3 ' " ' -y*(x")>»* (4-23) 

where 77,, n2, rj3 are the learning rates. 

Two-stage training involves unsupervised training of radial basis function centers and radii, 

followed by training of the weights. The training of centers is accomplished by K-means 

learning, a type of competitive learning in which the Euclidean distances between a certain 

input vector and all the centers are calculated, and the center with the minimal distance gets 

the privilege to update. The pseudo code for this algorithm is listed as follows, 

(1) Initialize the centers by randomly assigning input vectors to them; 

(2) Do n = 1, number of samples 

Doj= l ,M 

Calculate ds = - c j 

End Do 

Find the neuron j which has the minimal dj, and nj = n}. +1; 

Update the center c™w = (ntf" + x")/(ny +1); 
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End Do 

The radii of neurons play a very important role as they determine the quality and smoothness 

of the mapping function. All neurons may have the same value or each neuron has its own 

value. When the same value is used for all neurons, it can be set as a multiple of the average 

distance among the centers of all neurons. When each neuron has its own radius, the value is 

usually taken as 1.5 to 2 times the average distance between the neuron center and the 

centers of some nearest neighbors. 

After the basis parameters (centers and radii) have been determined, the weight values can be 

determined by solving a system of linear equations. Based on the available training data, 

Equation (4.18) yields, 

<S>W = T (4.24) 

where O denotes the design matrix, with element corresponding to n-th sample and j-th 

neuron given by ^;(x"); 

W denotes the weight vector; 

T denotes the target output matrix, with element corresponding to n-th sample and 

k-th output variable given by tk ; 

The above equation can be solved by singular value decomposition as, 

W = (®T<&yxQ>TT (4.25) 
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4.3.3. Radial basis function networks implementation in this study 

In this study, a RBFN was implemented in order to compare its performance with that of a 

multilayer perceptron (MLP). K-means learning was employed to train the neuron centers, 

and the radius of a certain neuron was set to ]/y/~2 of the largest distance between it and 

some of its nearest neighbors. Gradient descent was adopted for training of the network 

weights. 

RBFN has found wide applications in pattern recognition, signal processing, nonlinear 

system identification and medical diagnosis, etc. owing to their universal and smooth 

functional approximation capabilities. Compared to a MLP, a RBFN needs more memory for 

storing the centers, radii and weights, so it is more susceptible to the curse of dimensionality. 

4.4 Summary and Discussion 

Artificial intelligence and machine learning have witnessed great advancements and found 

applications in a wide range of fields. Multilayer feedforward neural networks and radial 

basis function networks have been discussed. The common feature of these computational 

learning models is that they are able to learn the underlying complex input-output functional 

relationship given a collection of training data, and they can adapt to a changing 

environment. 

Multilayer perceptron and radial basis function networks have been implemented in this 

work for seismic reliability analysis and design optimization. They will be employed as a 

surrogate model in lieu of the more expensive and time-demanding computer code, as the 

cost of a precise solution is much higher compare to an approximate one with impreciseness 
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within the range of acceptability. By doing this way, the computational efficiency is greatly 

improved, which will be verified by subsequent case studies of seismic reliability analyses 

and applications in performance-based seismic design. 
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CHAPTER 5 PERFORMANCE-BASED SEISMIC 
DESIGN METHODOLOGY 

5.1 Introduction 

Earthquakes constitute one of the major natural hazards to society. The past seismic data 

show that strong earthquakes resulted in great human casualties and large economic losses 

around the world. The failures of infrastructure, such as buildings, bridges, highways, dams, 

etc. during severe ground motions were responsible for these fatalities and losses. Generally, 

major casualties were concentrated in densely populated regions with poorly built facilities 

vulnerable to earthquakes, while major economic losses were located in areas with modern 

industrial and commercial developments. Thanks to advancements of earthquake engineering 

in the past decades, human casualties have been reduced significantly during severe 

earthquakes. This demonstrates, in part, the success of modern seismic resistant design 

philosophy and engineering practice. On the other hand, earthquake resistant design still 

faces many challenges and difficulties. The 1989 Loma Prieta earthquake, the 1994 

Northridge earthquake and the 1995 Kobe earthquake witnessed enormous economic losses 

and exposed further deficiencies in seismic resistant design and construction. The huge 

economic losses can be ascribed to the following reasons: 

(1) Due to industrialization and urbanization, cities are expanding constantly as more people 

work and live in large cities. Many of these densely populated cities possess high seismic 

hazards, as they usually are situated close to the boundaries of tectonic plates or in 

regions with soft subsoil. 
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(2) Most of the existing buildings and other constructions in the seismic zones were designed 

and constructed in conformance with past code of practices, which are deemed incapable 

of withstanding the expected ground motions by modern seismic codes. All those sub

standard buildings and facilities need to be retrofitted up to the current standard. 

Unfortunately, owing to the lack of adequate funding, seismic rehabilitation of these 

buildings and structures may not be accomplished in time, leaving them as the target of 

next earthquakes. 

(3) The basic philosophy of the modem seismic design code aims to accomplish the 

following goals: a) to resist a minor earthquake without damage; b) to resist a moderate 

earthquake without structural damage, but nonstructural components may suffer from 

some damage; c) to resist a strong earthquake without collapse to ensure life safety, but 

the structure and non-structural components may experience severe damage. However, 

the emphasis of the code is to provide life safety for the public by preventing collapse of 

the structures under severe earthquakes, whereas economic losses due to property 

damages and business interruptions are secondary. Though three objectives are stated in 

the code, only the life safety goal has been explicitly executed, and no specific 

procedures have been provided in the code for explicit evaluations of other performances, 

like the vulnerability of non-structural elements, contents, equipments, etc., which can 

cause more economic losses than the structural damage, even for a moderate earthquake. 

(4) The complexity of the structural behavior during a strong ground motion is not fully 

accounted for by the code approaches. To implement the seismic design, the code 

specifies a ground motion criterion, usually in the form of a seismic zone factor and a 
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design spectrum. For simple and regular structures, an equivalent static force method is 

provided where only the first vibration mode is allowed for. The elastic seismic forces 

are established based on the seismic zone, the structural importance, and the site 

condition. The seismic design forces are determined empirically by taking advantage of 

the inelastic structural behavior and ductility to reduce the elastic seismic forces to a 

design level. For large and complex structures, the modal decomposition response 

spectrum method or nonlinear dynamic time history analysis are generally recommended, 

but only some guidelines are given in the code for reference (NBCC, 1995). 

Consequently, most of the buildings have been designed based on an oversimplified 

analysis approach, without elaborate modeling of the structural behavior and the effects 

of non-structural components. During a strong earthquake ground motion, the responses 

of the structure are strongly nonlinear owing to stiffness degradation as well as strength 

deterioration. Hence, a nonlinear dynamic analysis should be carried out to realistically 

capture the actual behavior of the structure. Though there are some commercial software 

packages available for this purpose, the analysis process is highly dependent on the 

analyst's capability to accurately model the structural system. In addition, nonlinear 

dynamic time history analysis requires representative ground accelerograms for the site. 

Engineers routinely use historically recorded accelerograms without paying much 

attention to the seismic background. For some regions, there are historic recordings 

available for ready usage, nevertheless, they represent past earthquakes and may never be 

recorded in the future. For a site without historical recordings, the adoption of 

accelerograms recorded in other regions can lead to unfathomable errors in structural 

response predictions. 
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(5) Even though the seismic resistant design is carried out based on the state-of-art method, 

the goal can only be achieved through proper detailing and good quality assurance during 

construction. During the 1994 Northridge earthquake and the 1995 Kobe earthquake, 

some steel moment-resistant frames that are generally considered as ductile systems 

underwent brittle damages, especially in the field-welded beam-column joints. Those 

damages were caused by poor detailing of the connection where the moments at the web 

of beams could not be completely transmitted to the column, leading to stress 

concentration in beam flanges. Some other failures were attributed to desultory 

inspection and poor workmanship during construction (Mazzolani and Gioncu, 2000). 

(6) Structural maintenances throughout the service life play an important role for structures 

that may subject to future seismic ground shakings. Some buildings are renovated during 

their service life for other usage with their seismic resistance sacrificed instead of 

strengthened, and could become the easy target of an upcoming earthquake. 

(7) Seismic ground motion is one of the most important and less understood factors, due to 

the randomness and uncertainty involved. Obviously, the present code design spectrum 

cannot fully describe the expected seismic loading for a structure. In general, the code 

provisions give a macro-zonation at a country level, with the single design spectrum 

roughly corrected by considering the local site soil conditions. This approach is deficient 

in that the actual site seismic conditions are not clearly accounted for, such as magnitude, 

distance to potential seismic sources, attenuation law, site soil stratification, etc. 

Probabilistic seismic hazard assessment of the site is crucial for a successful seismic 

resistant analysis and design. Moreover, the recent earthquakes drew engineers attention 
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to an important aspect of ground motions that was ignored in the past, ie., the differences 

in ground motions from far-source and near-source earthquakes. The tremendous 

damages indicated that the earthquake action model employed in the present code, based 

on the ground motions recorded in far-source regions, could not be used to depict the 

earthquake effects in near-source regions. 

Based on lessons we have learned from the last major earthquakes, the structural engineering 

community commenced to reexamine the seismic design philosophy and engineering 

practice, to find out the deficiencies in the current code of practice, and to propose 

procedures to remedy the drawbacks inherent in the present code. Performance-based seismic 

design has been put forward as the cornerstone of the next generation code. 

SEAOC's Vision 2000: Performance-based Engineering of Buildings and BSSC's NEHRP 

FEMA 273: Guidelines for the Seismic Rehabilitation of Buildings have laid the foundation 

of performance-based seismic engineering by introducing multiple performance goals, design 

criterion associated with each performance level, and refined analytical procedures for 

performance evaluations. It is generally agreed that: (1) The traditional way of design 

focuses mainly on life safety, which is basically a single level design. The protection of 

integrity of building contents and prevention of business interruption are also equally 

important for some critical buildings. Hence, a multiple design performance levels should be 

employed based on the function and contents of the building after the strike of a severe 

earthquake, in order to reduce damages and maintain functional continuity. (2) Multiple 

levels of earthquake ground motions need to be adopted, accounting for diverse hazards 

imposed on the structure throughout its service life. (3) Refined and sophisticated numerical 
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procedures need to be developed to realistically evaluate the intricate responses of the 

structure. (4) Seismic design should be carried out in the framework of reliability-based 

design in order to reliably satisfy the multiple performance goals by taking into account 

various uncertainties and randomness involved in the seismic design process. (5) Extensive 

experiments have to be undertaken to validate effective detailing, and rigorous supervision is 

to be dictated to guarantee the construction quality. (6) From an economic perspective, 

earthquake resistant design should be based on whole-life cost-benefit analysis, allowing for 

all major factors involved in the design, construction, and maintenance of the building as 

well as probable maximum losses due to failures of the building and its contents during an 

earthquake. 

5.2 Performance-based Seismic Design 

5.2.1. Multiple performance objectives in SEAOC Vision 2000 

Performance-based seismic design implies that multiple target performance objectives are 

expected to be satisfied when the structure is subjected to earthquake ground motion of a 

certain intensity associated with that performance level. In SEAOC's Vision 2000: 

Performance-based Engineering of Buildings and BSSC's NEHRP FEMA 273: Guidelines 

for the Seismic Rehabilitation of Buildings, four performance levels have been proposed, as 

shown in Table 6.1. The two systems of performance levels are quite similar to each other, 

albeit different terminology is utilized. In NEHRP, acceptance criteria for Life Safety and 

Collapse Prevention performance levels are defined at the component level. The performance 

levels recommended by SEAOC Vision 2000 for different types of buildings under distinct 

ground motion intensities are shown in Figure 5.1. Buildings are categorized according to 
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their occupancy and use, namely, basic facilities, essential/hazardous facilities, and safety 

critical facilities. It is expected that, after a severe ground shaking, buildings for emergency 

response and essential public service should have a low probability of being damaged 

beyond the limit which affects their normal function, and those facilities which house 

hazardous materials such as poisonous chemicals or radioactive materials should have an 

lower damage level to prevent any disastrous releases. For a moderate earthquake, all 

ordinary buildings should undergo limited user-acceptable damages to reduce economic 

losses and business interruptions. 

Four distinct ground shaking intensities are specified in SEAOC Vision 2000, namely, 

frequent earthquake with a return period of 43 years, occasional earthquake with a return 

period of 72 years, rare earthquake with a return period of 475 years, and very rare 

earthquake with a return period of 970 years. The earthquake scenario should reflect the 

probable seismic hazards of the site under consideration. 

Though Both SEAOC and NEHRP have made the first step toward the development of 

performance-based design procedures, there are still a lot to do for its full growth. Ground 

motion characteristics such as near-field velocity pulse effects and duration are not accounted 

for in the provisions. An explicit serviceability evaluation procedure must be developed to 

estimate structural damages. Also, an approach needs to be elaborated to evaluate the 

possible damages to non-structural members and building contents, for instance, costly 

equipment and motion-sensitive instrument, hazardous substance container, etc. More refined 

and sophisticated analytical models need to be established in order to realistically simulate 

the structural behavior and its surroundings throughout strong ground shaking. Apart from 
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performance evaluation at component level, performance acceptance criteria are also 

required at system level, considering the systematic behavior of the structure as a whole, and 

the integrity of the structure during strong ground motion. 

Performance Objective 

EarWiqtKlte OpiAnd Operational life Safe Cofcpt* 
ProDabilHy 

frequent 

Occasional 

law 

Vary Rare 

^^^^^^^^^^^^^ 

PerForr 

HHHHHB 

Figure 5.1 SEAOC Vision 2000 performance levels (SEAOC, 1995) 

5.2.2. Performance-based seismic design criteria in this study 

At present, most seismic codes merely consider one design earthquake: a rare, severe 

earthquake with a return period of 475 years. Though three performance levels are specified, 

only one performance level, life safety, is explicitly executed. Even this performance level is 

poorly implemented. A standard design spectrum is defined for the whole country, and 

elastic base shear is calculated by adjusting the spectrum on the basis of local peak ground 

acceleration, structural importance and site soil conditions. The design base shear is 

calculated as a fraction, 1/R, of the expected elastic base shear. The R factor is determined 

based on engineering judgment and observations of structural performances during past 

earthquakes. In this way, the code tries to achieve the life safety level by qualitatively 
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Table 5.1 Performance level definitions in NEHRP and SEAOC (Hamburger, 1996) 

Performance definitions 

Descriptions 
NEHRP SEAOC 

Descriptions 

Operational Fully 
Operational 

No significant damage has occurred to 
structural and non-structural components. 
Building is suitable for normal intended 
occupancy and use 

Immediately 
Occupancy 

Functional 
Only very minor damage has occurred. 
The building retains its original stiffness 
and strength. Nonstructural components 
operate, and the building is available for 
normal use. Repairs, if required, may be 
instituted at the convenience of the 
building users. The risk of life-
threatening injury during the earthquake 
is negligible. 

Life Safety Life Safety 
Only minor structural damage has 
occurred. The structure retains nearly all 
its original stiffness and strength. 
Nonstructural components are secured, 
and if utilities are available, most would 
function. Life-safety systems are 
operable. Repairs may be instituted at the 
convenience of the building users. The 
risk of life-threatening injury during the 
earthquake is very low. 

Collapse 
Prevention 

Near Collapse 
Significant structural and nonstructural 
damage has occurred. The building has 
lost a significant amount of its original 
stiffness, but retains some lateral strength 
and margin against collapse. 
Nonstructural components are secure, but 
may not operate. The building may not be 
safe to occupy until repaired. The risk of 
life-threatening injury during the 
earthquake is low. 
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limiting damage to structural components. Hence, no attempts have been made to rigorously 

assess the safety margin against failure by this approach. After the last earthquakes, it is 

generally recognized that damage control should be included as an integral part of seismic 

design. Since it is economically unjustifiable and technically infeasible to design all 

structures to withstand the severe earthquake without any damage, it is agreed that an 

ordinary structure should be able to resist a moderate earthquake with user-acceptable 

damage in non-structural elements as well as building contents, and structural damages 

should be reparable. In the event of severe earthquake, the structure should be able to 

dissipate the input seismic energy by inelastic deformations, though the structural damages 

may be irreparable, its integrity must be maintained to ensure the life safety of the occupants 

through collapse prevention. In case that the owner would like to pay extra expenses for 

enhanced performance beyond the minimum code requirements for continued operation of 

the building even after a strong earthquake, the engineer should provide an optimal design 

with higher reliability in performance but lower overall cost. In this study, different 

performance objectives will be defined corresponding to different levels of ground motions. 

A framework for performance-based design is proposed. 

5.2.2.1 Multiple seismic hazard levels 

Earthquake ground motion is the most important factor affecting seismic design, since it 

involves lots of uncertainties and randomness. A successful seismic design hinges largely on 

the appropriate characterization of the earthquake motions. After the last earthquakes, it is 

commonly agreed that multiple seismic hazards should be considered for performance-based 

design. How many levels of earthquakes need to be allowed for and the characteristics of the 

earthquake motions depend on the location of site to all potential sources of earthquakes, the 
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seismic features of each source, and the travel path geology from each source to the site as 

well as site soil stratification and properties. The characterization of the possible seismic 

hazards at the site can be rationally achieved in the framework of probabilistic seismic risk 

assessment. 

One phenomenon worthy of attention is the recently observed differences between near-

source ground motions and far-source ground motions. The design methods in most seismic 

codes nowadays are based on recordings from far-field earthquakes that can not be used to 

properly delineate near-source motions, which is one of the reasons for the tremendous 

economic losses in recent near-field earthquakes. The major differences between them are as 

follows (Mazzolani and Gioncu, 2000): 

(1) Near-source ground motions are of short-duration and pulsate in acceleration, 

velocity and displacement, while far-source ground motions are cyclic with longer 

duration; 

(2) Near-source ground motions have significant vertical component, while horizontal 

components dominate far-source ground motions; 

(3) Near-source ground motions have very high velocities; 

(4) The effect of directionality of wave propagation is substantial for near-source ground 

motions, while local soil stratification has a great influence for far-source ground 

motions. 

A seismic region around the site can be subjected to ground shakings of different intensities, 

low, moderate or severe. A low earthquake occurs frequently, but it will cause no structural 

damage or slight non-structural damage. A moderate earthquake happens occasionally, and it 
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may give rise to moderate or even heavy non-structural damage as well as reparable 

structural damage. A severe earthquake rarely takes place; nevertheless, its occurrence may 

result in heavy structural damage or even collapse. The seismic hazard levels are disputable, 

as they depend on the site seismicity as well as other socio-economic factors. In contrast to 

SEAOC definitions, the earthquake hazard levels mentioned in Mazzolani and Gioncu (2000) 

are: (1) frequent, with a return period of 8-10 years; (2) occasional, with a return period of 

20-30 years; (3) rare, with a return period of 450 years; (4) very rare, with a return period of 

over 970 years. It seems that the frequent earthquake and the occasional earthquake defined 

in SEAOC are not so distinct. When probabilistic seismic risk assessment of the site is not 

carried out, four levels of earthquakes are suggested in this study: (1) frequent minor 

earthquake, with probability of exceedance of 90% in 50 years (return period 22 years); (2) 

occasional moderate earthquake, with probability of exceedance of 50% in 50 years (return 

period 73 years); (3) rare major earthquake, with probability of exceedance of 10% in 50 

years (return period 475 years); (4) very rare severe earthquake, with probability of 

exceedance of 5% in 50 years (return period 970 years). For a very important structure, as 

for example a nuclear power plant, a maximum probable earthquake is defined as an 

earthquake with probability of exceedance of 2% in 50 years, with corresponding return 

period of 2475 years. If probabilistic seismic hazard assessment is performed, ground 

motions corresponding to earthquake scenarios specific and appropriate to the site will be 

considered and used for design. This level of earthquake normally will only be used for 

design of essential or critical structures. 
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5.2.2.2 Multiple performance objectives 

Performance-based seismic design should be carried out by transparently satisfying multiple 

performance levels corresponding to multiple hazards with the corresponding target 

reliabilities, based on accurately modeling structure responses using sophisticated numerical 

procedures. The target reliability indices depend on occupancy, importance and consequence 

of non-performance of the structure after an earthquake. They can be obtained by back-

calculating reliability of existing structures. ISO "General Principles on Reliability for 

Structures" should be referred to in determining the proper values, taking into account 

owner's requirements and the economic impacts. The target reliability indices mentioned 

later on are for illustration purpose only. In SEAOC Vision 2000, inter-story drift ratio (the 

ratio of the difference of lateral displacements of adjacent floors to the story height) is 

adopted as the performance criterion. The recommended limits for the four performance 

objectives are respectively, 0.2% (Fully Operational), 0.5% (Operational), 1.5% (Life Safety) 

and 2.5% (Near Collapse). There are no universally accepted limit values, and they must be 

determined according to building function and owner demand. Aside from story drift ratio, 

other criteria should be adopted for performance evaluation. Four performance objectives are 

suggested in this study. (1) Serviceability: for a frequent minor earthquake, a structure is in 

the elastic range, so the non-structural components are checked for possible damages and 

building contents examined for normal functioning. An inter-story drift ratio limit of 1/500 

may be adopted with target reliability index between 1.5-2.5. The maximum floor 

acceleration may need to be checked for some motion-sensitive instrument. (2) Capability: 

for an occasional moderate earthquake, a structure may work in the elasto-plastic state. The 

structure is assumed to suffer reparable damages, with non-structural elements moderately 
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damaged. The yield strengths of major structural components are to be examined for 

evaluation of local structural damages. An inter-story drift ratio limit of 1/200 may be used. 

The target reliability index for this limit state can be set as 2.0-3.0. (3) Stability: for a rare 

strong earthquake, a structure is presumed to work in ultimate state. The structure may suffer 

moderate damages but still maintains its integrity. The ultimate strengths of major structural 

components are to be investigated for structural stability. An inter-story drift ratio of 1/100 

may be set as the limit. The target reliability index for this limit state can be set as 2.5-3.5. 

(4) Survivability: for a very rare, severe earthquake, a structure is at the edge of collapse with 

a kinematical mechanism formed. The structure is heavily damaged and need demolition 

afterwards. The drift ratio limit of the entire structure could be 1/50. In order to guarantee the 

safety of the occupants, the ductility of the whole structure is checked for collapse 

prevention. The target reliability index for this limit state could be specified as 3.0-4.0. 

The performance levels, earthquake hazard levels, story drift limits and the suggested target 

reliability indices are summarized in Table 5.2. 

Table 5.2 Performance objectives 

Performance level 
Probability of 

exceedance in 50 
years 

Story drift ratio limit Target reliability 
index 

Serviceability 90% 1/500 1.5-2.5 
Capability 50% 1/200 2.0-3.0 
Stability 10% 1/100 2.5-3.5 
Survivability 5% 1/50 3.0-4.0 

5.2.2.3 Structural analysis approach 
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Time history analysis is the only method that is able to reveal the actual behaviors of the 

structure during an earthquake. A mechanical model of the structure is built by a realistic 

modeling of material nonlinear hysteresis, member connections, non-structural component 

effects and soil-structure interaction. Some historic acceleration recordings or simulated 

ground motions that are deemed representative of the future earthquake motions are selected, 

based on the site seismic risk assessment. The structural responses are obtained by numerical 

integration of the equations of motion. The difficulty of the method consists in appropriate 

modeling the structure and its environment, as well as choice of proper earthquake 

accelerograms. As earthquake motion involves many uncertainties, a spectrum of 

accelerograms should be selected considering a variety of possible earthquake scenarios. 

Although time history analysis is not used widely in current engineering practice, it is 

believed that it will be indispensable in the upcoming years, as performance-based seismic 

design becomes the backbone of the code of the next generation. 

5.2.2.4 Seismic design criteria 0 

Four seismic design criteria are employed corresponding to the foregoing four performance 

objectives. 

(1) Stiffness design criterion 

To control damage to non-structural components and building contents, and ascertain that the 

structure works in the elastic range under a minor earthquake, the rigidity of the structure 

must be checked. Inter-story drift ratio is usually adopted for this purpose, with the limit state 

function in the following form, 
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G = 9 0 - e (5.1) 

where G 0 denotes the inter-story drift ratio limit; 

6 denotes the computed maximum inter-story drift ratio; 

There is not a fixed value of inter-story drift ratio limit, as it depends on the nature of the 

non-structural elements and the requirement of the user. A commonly accepted value varies 

between 0.1%-0.3%. 

For some delicate or precise instrument housed in the building, it may be necessary to check 

the maximum floor acceleration or velocity to assure their normal functioning. The 

corresponding limit state function can be expressed in the following forms, 

G = A 0 - A m a x (5.2) 

G = V 0 - V „ , (5.3) 

where A 0 denotes the acceptable acceleration at the floor level; 

.Amax denotes the computed maximum floor acceleration; 

V 0 denotes the acceptable velocity at the floor level; 

denotes the computed maximum floor velocity; 

The acceleration limit or the velocity limit depends on the requirements of the building 

contents, which can be obtained from the manufacturers. For this level of serviceability limit 

state, the target reliability index could be set about 1.5-2.5, as the consequence of failure is 

not disastrous. 
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(2) Yield strength design criterion 

Strength design plays a pivotal role in traditional structural design, and it will continue to be 

a major part in performance-based seismic design. Under the action of an occasional 

moderate earthquake, a structure may enter the inelastic range, all potential plastic hinges 

need to be examined for their probable yield strengths, and non-hinge zones checked to 

preclude unanticipated hinges forming. The limit state functions can be formulated as, 

where M y is the yield moment capacity of member and M is the computed moment. The 

possible over-strength of the members should be considered for real representation of the 

yield strengths. 

The stability of columns and beams with thin-wall section must be checked for possible local 

buckling. 

In addition, the story yield ratio should be checked to prevent week story mechanism, the 

limit state of which can be expressed as, 

G = M y - M (5.4) 

G = 1 0 - V / V 
* max ' " y 

(5.5) 

in which V1^ is the computed maximum i-th story shear force; 

Vy is the i-th story shear capacity. 

(3) Ultimate strength design criterion 
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The ultimate strengths of major structural components need to be evaluated as in 

conventional design. The principle of capacity design should be employed to establish a 

viable plastic structural failure mechanism. On one hand, the demand on flexural strengths 

can be realistically evaluated by nonlinear dynamic time history analysis of the structure 

ends of members are estimated by assuming plastic behavior at those sections, with over-

strength considered due to variability of material properties and hardening effect. The shear 

strengths must also be checked to prevent any premature brittle failure. The stability of 

columns and beams must be checked to preclude global buckling. 

In this case, the limit state function can be written as, 

subject to possible earthquake ground excitations. On the other hand, the bending strengths at 

G = M p - M (5.6) 

G = V p - V (5.7) 

G = M b - M (5.8) 

G = N b - N (5.9) 

where M p denotes the probable moment capacity; 

M denotes the computed moment demand; 

V p denotes the shear strength capacity; 

V denotes the computed shear force; 

M b denotes the moment capacity of a beam to prevent buckling; 

N b denotes the buckling capacity of a column; 

N denotes the applied axial load on a column; 
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For this level of capability limit state, the target reliability index could be set between 2.5 and 

3.5. Beam should be allocated a smaller target reliability compared to column and joint. In 

any circumstance, the limit state regarding shear strength and buckling should have a higher 

reliability relative to bending strength, as the failures tend to be sudden without warning. 

(4) Ductility design criterion 

Ductility is the ability of the structure to dissipate input earthquake energy through 

undergoing high inelastic deformations without significant strength degradation at some 

predefined locations. During a strong earthquake, life safety is assured in a well-designed 

structure, as a kinematical mechanism will be formed to prevent collapse. Both the global 

displacement ductility and the local member rotational ductility need to be assessed for a 

transparent ductile design. The local ductility is checked to prevent plastic deformation from 

being concentrated in some members. The structural global ductility is the manifestation and 

collective behavior of members' local ductility. The global ductility demand and the local 

rotational ductility demands can be computed by inelastic dynamic time history analysis. The 

global displacement ductility capacity can be evaluated by push-over analysis based on the 

assumption that a global kinematical mechanism is formed with plastic hinges developed at 

the ends of beams and the bottom of columns, and is defined as, 

H A = A U / A y (5.10) 

global displacement ductility; 

the roof displacement when a kinematical mechanism forms; 

the roof displacement when the first beam plastic hinge forms; 

where, u.A = 
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Member local rotational ductility can be evaluated based on the ultimate rotational capacity 

of the plastic hinge. The rotational ductility is calculated from moment-rotation curve 

assuming an elastic-perfectly plastic behavior, and defined as follows, 

n e=e u/e y (5.ii) 

where, u.e = local rotational ductility; 

9 U = the ultimate plastic rotation; 

0 y = the rotation at the yield moment; 

Both the local rotational ductility at the component level and the global displacement 

ductility at the system level should be examined in order to provide the structure with 

sufficient ductility. The limit states are in the following forms, 

G = u £ - n A (5.12) 

G = H°-n 9 (5-13) 

where u,° denotes the structural displacement ductility capacity; 

| i A denotes the required structural displacement ductility; 

u,g denotes the member rotational ductility capacity; 

u.e denotes the required member rotational ductility; 

There is no widely accepted global ductility limit as well as local ductility limit, since they 

depend on the structural type and configuration, material, member connections, foundation 

type, site condition, etc. For this level of survivability limit state, the target reliability index 
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should be set around 3.0-4.0 or even higher, as the consequence of failure due to overall 

collapse would be catastrophic. 

5.3 Implementation of Performance-based Seismic Design 

5.3.1 Reliability and performance-based seismic design 

In Bertero and Bertero (2002), it is defined that performance-based seismic design is 

"consisting of selection of design criteria and structural systems such that at the specified 

levels of ground motion and with defined levels of reliability, the structure will be damaged 

beyond certain limiting states or other useful limits". In other words, the essence of 

performance-based design is to control damages due to different levels of hazard by 

controlling structural responses, with defined levels of reliability. As a result, performance-

based design encompasses proper determination of multi-level earthquake ground motions 

corresponding to the site seismic risks, and definition of multiple performance criteria 

associated with each level of seismic hazard according to the minimum code requirement as 

well as the enhanced requirements specified by the owner. As such, the designer must 

employ multi-level design criteria and execute elaborate structural analysis to realistically 

evaluate the structural performances, so that all the performance objectives are satisfied with 

the specified confidence and accordingly the whole-life cost is minimized. All the work can 

only be accomplished in the framework of reliability-based optimum design, in view of the 

great amount of uncertainties involved in the entire design process. 

Li and Foschi (1998) introduced a general Inverse Reliability Method for estimation of 

design parameters corresponding to given target reliabilities with multiple constraints. The 

109 



CHAPTER 5 PERFORMANCE-BASED SEISMIC DESIGN METHODLOGY 

approach had been applied successfully to solving some inverse reliability problems in 

earthquake engineering and offshore engineering. Foschi et al (2002) proposed a 

computational approach for efficient implementation of performance-based design, and 

several case studies were presented to illustrate its applicability. Bertero and Bertero (2002) 

emphasized that performance-based seismic design should be carried out in the format of 

probabilistic design. A reliability-based framework for performance-based design was put 

forward in Wen (2001), where minimum lifecycle cost criteria were adopted to determine the 

target reliability for structures under multiple natural hazards. 

The successful implementation of performance-based design hinges on satisfying the code 

and the owner's requirements by fulfillment of multiple performance objectives under 

multiple levels of hazard with minimum cost. Owing to the great amount of uncertainties 

involved in the design process, reliability assessment of the structural design is deemed 

indispensable; therefore, performance-based design should be carried out in the format of 

reliability-based design, with the solution obtained by optimization. 

5.3.2. Performance-based seismic design using neural networks 

In this study, performance-based seismic design will be formulated in the context of 

reliability-based design, and the design parameters are to be calculated by structural 

optimization. Neural networks will be employed to expedite the optimization process, by 

improving computational efficiency. 

Besides the basic requirements of the seismic code, the designer must also satisfy the 

requirements specified by the owner with predefined target reliability levels. Higher 
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reliability implies higher initial cost, lower maintenance cost and lower expected damage 

cost for the same earthquake motion. This can be achieved by maximizing the expected 

benefit and minimizing the expected whole life cost. In the absence of benefit, the criterion 

of minimal lifecycle cost should be adopted. After the owner and the designer have reached 

an agreement on multi-level performance objectives and the corresponding target 

reliabilities, the design can be formulated as a structural optimization problem in the 

following form, 

Find the design parameter vector Xa to minimize the objective function 

V=Z(Pl-fik(X4)) +C(XJ (5.14a) 

subject to Xi < X d < X» (5.14b) 

in which B[ - the target reliability index corresponding to k-th performance objective; 

Bk(Xd)= the calculated reliability index corresponding to k-th performance 

objective associated with design parameter vector Xa; 

C(Xd) = a cost function defined in terms of the design parameter vector Xa; 

Xi = the vector of lower bounds of design parameter vector Xa; 

X u = the vector of upper bounds of design parameter vector Xa; 

Structural optimization will be applied to calculate the optimal design parameter vector 

through minimizing the objective function. The optimization can be effected by executing an 

optimization program linked to a reliability analysis sub-program and a structural analysis 

sub-program. Such type of software is not available on the market. Even if such a program 

were ready to use, a large and complex structure under strong seismic excitation would 
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require, during the optimization process, a large number of structural analyses and reliability 

assessments. To reduce the computing effort and to improve computational efficiency, use 

will be made of approximation models that can provide acceptable accuracy and in the same 

time save computational demand. Neural networks will be employed as a surrogate for the 

expensive and time-demanding structural analysis needed in the reliability assessment and 

the optimization for performance-based seismic design. 

The stochastic structural response is a major concern in performance-based design. In this 

study, the probabilistic response is estimated by fitting a series of its deterministic values to a 

proper probability distribution. A database of input variables is generated first. For a given 

input variable combination, the nonlinear dynamic structural response is calculated using 

program CANNY (Li, 1996) based on a set of ground motion accelerations that are 

characterized by the common ground parameters. Then the probability distribution of the 

response is found by fitting the response data to an appropriate distribution (Lognormal 

distribution or Extreme Value I distribution) with the mean and standard deviation obtained. 

This process is repeated for all the combinations in the input variable database. Finally, there 

exist a response database for the mean value and one for the standard deviation. Two neural 

networks will be trained, one for the mean value and the other for the standard deviation, and 

they will be used for seismic reliability analysis. 

Performance-based design is formulated above as a constrained optimization problem, and 

can be solved in general by any constrained optimization approach. Since the structural 

responses are very complicated for a strong ground excitation, with peaks and troughs due to 

resonance, gradient-based methods may encounter convergence difficulties or even diverge. 
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Gradient-free algorithms such as simulated annealing (Kirkpatrick et al, 1983), genetic 

algorithm (Goldberg, 1989), trust region method (Byrd, et al, 1987, 1988; Conn et al, 2000), 

Tabu search (Glover, 1989, 1990; Glover and Laguna, 1993, 1997; Corne et al, 1999; 

Karaboga and Pham, 1999), particle swarm algorithm (Eberhart and Kennedy, 1995; 

Kennedy and Eberhart, 1995; Kennedy et al, 2001), or other random search tools may be 

more suitable in this circumstance. 

5.4 Summary and Discussion 

Performance-based design has been established as the mainstream for structural design in 

seismic regions after reexamination of the philosophy and engineering practice of current 

seismic design by the structural engineering community, because of the colossal economic 

losses in the last earthquakes. SEAOC Vision 2000 and FEMA 273 have laid the groundwork 

of performance-based design by specifying multiple levels of hazard and multiple 

performance objectives as well as presenting refined numerical analytical procedures. 

However, there are still a lot to do for implementation of performance-based in routine 

seismic design. The realistic determination of the characteristics of future earthquake ground 

motion on the basis of seismic hazard at the site is a pivotal first step for a successful seismic 

design, with the participations of geotechnical engineers and seismologists essential and 

conducive. The multiple performance objectives and the corresponding target reliability 

levels subject to different hazards have to be decided collectively by the owner, structural 

engineer and municipal authority. The structural design should be carried out based on 

realistic modeling of the structure and its environment. Sophisticated structural model has to 

be elaborated by reflecting the nonlinear behavior of the members, connections and soil-
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structure interaction, as well as the effects of non-structural components and building 

contents. Nonlinear dynamic time history analysis should be resorted to so that the real 

responses of the structure are calculated. The structural detailing must rely on well-proven 

engineering practice or extensive experimental verification. Strict construction quality 

control and rigorous inspection throughout the whole process are necessary for realization of 

the design. Effective maintenance and timely rehabilitation of the structure during its service 

life will be required to keep its performance up to the standard and reduce time-dependent 

risks. 

Many uncertainties are involved throughout the design process as regard to the ground 

motion, material property, structural configuration and detailing, analytical model, 

construction and maintenance. It is critical to consider all the major uncertainties to 

guarantee that the design objectives are met with a certain confidence. Hence, performance-

based design should be implemented in the context of reliability-based design, with the 

design parameters computed by optimization. 

A performance-based design framework has been proposed in this study. Four performance 

objectives are described corresponding to four levels of seismic hazard. Four design criteria 

are discussed as to structural stiffness, yield strength, ultimate strength and ductility. Because 

of the complicated responses of the structure when it is subjected to earthquake motions, 

reliability assessment and optimal design generally are computational intensive and time 

demanding. In order to improve computational efficiency and reduce the work burden, neural 

networks are applied to find a mapping of the input-output functional relationship, and are 
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employed as the surrogate for the computer code in the design process, making a 

computationally prohibitive task tractable and executable. 

Performance objectives are accomplished by optimization of an objective function that may 

include cost, making a design technically dependable and economically beneficial. It is 

expected that greater structural reliability will be achieved in performance-based design for 

structures with various performance requirements, and economic values of the buildings and 

their contents will be protected. With progressive developments of this "controlled design" 

procedure, it is envisioned that performance-based design will be applied widely in the near 

future for rehabilitation of existing structures and creation of new buildings, with design 

implemented in a cost-effective manner and risks well controlled. 
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CHAPTER 6 SEISMIC RELIABILITY 
ANALYSES: CASE STUDIES 

6.1 Introduction 

Five case studies are now presented for seismic reliability assessment of structures. 

(1) A low two-story reinforced concrete frame was used as a first example of an existing 

building. The responses of interest were the maximum floor drift and the maximum roof 

drift. 

(2) A twenty-story reinforced concrete structure was used as an example of a high-rise 

building, with its seismic performances evaluated for two levels of earthquakes. The 

responses chosen were the maximum values of roof displacement, roof acceleration, 

inter-story drift ratio of the 15th floor, the inter-story drift ratio of the 5th floor, base shear 

force and base overturning moment. 

(3) A bridge bent without or with seismic isolation was assessed for its seismic performance 

subjected to two levels of ground shakings. The maximum values of displacement at the 

cap beam, column base moment, column base shear and column ductility, and beam 

moment and beam ductility, were selected as the responses. 

(4) A wood shear wall, for which the influence of the nail spacing on structural performance 

was investigated. 
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(5) An actual instrumented building that has experienced three earthquakes and suffered 

damage was evaluated for its seismic performance, if it were subjected to a ground 

shaking similar to the Northridge, California earthquake of 1994. 

6.2 Description of The Nonlinear Dynamic Analysis Program 

Any nonlinear dynamic analysis program can be used for calculation of structural response. 

In this thesis, a general-purpose 3D nonlinear static and dynamic structural analysis program, 

CANNY (Li, 1996), was used. The material nonlinearity is embodied by a lumped plasticity 

model. For geometric nonlinearity, P-A effects can be included. The structural system is 

discretized into an assembly of massless elements. Altogether, seven types of element are 

available, ie., beam element, column element, shear panel element, link element, support 

element, cable element and isolation element. The mass can be lumped at structural joints or 

concentrated at the center of gravity on each floor when a rigid diaphragm is assumed. 

The program can be used for analyzing structural responses due to dead, live, wind and 

seismic load. Nonlinear static pushover analysis for structure subject to monotonic or cyclic 

loading can be undertaken with a limit on roof displacement or base shear specified. 

Nonlinear dynamic analysis is conducted step by step in the time domain using either 

Newmark's P method or Wilson's 0 method. 

A number of hysteresis models are built in the program for description of member nonlinear 

force-displacement (moment-curvature) behavior when subjected to cyclic loading. Uniaxial 

hysteresis models are devised to simulate the inelastic behaviors of uniaxial bending, shear 

and axial tension or compression. Multiple axial spring models can be used to simulate the 

117 



CHAPTER 6 SEISMIC RELAIBILrTY ANALYSES: CASE STUDIES 

flexural behavior of reinforced concrete column under the action of varying axial load and 

biaxial bending. Biaxial shear models are developed to approximate the column biaxial shear 

deformation or the lateral stiffness of a layered rubber bearing under bi-directional lateral 

loads. 

This program was selected as it uses the hard disk as virtual memory to store the stiffness 

matrix and to conduct the analysis, with no limitation as to the size of the problem. It can 

perform nonlinear dynamic analysis of a structure quickly, and there is a library of hysteresis 

models available to choose. 

6.3 Case Study 1: A Two-story Reinforced Concrete Plane Frame 

6.3.1. Description of the structure and ground motion 

W i (300x750) 

(400x500) 
4.0m 

W 2 (300x750) 

4.0m (400x500) 

777 

9.0m 

Figure 6.1 Reinforced concrete plane frame geometry 
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A one-bay, two-story reinforced concrete plane frame is selected as a first example of an 

existing structure for seismic reliability assessment. The dimensions of the frame are shown 

in Figure 6.1. It has a span of 9.0 m and story height of 4.0 m. All the columns have cross 

section 400 x 500 mm, while the beams have cross section 300 x 750 mm. The columns are 

rebars (As = 2040 mm2) at the top and the bottom. The weights on the roof and the floor are 

denoted by W, and W 2 respectively. 

For seismic retrofit of an existing structure, reliability assessment needs to be carried out to 

evaluate its performance under seismic excitation, in an effort to identify the weaknesses and 

propose strengthening measures. It was assumed that the earthquake occurrence could be 

described as a Poisson process with arrival rate v - 0.01/year, and the PGA had a 

Lognormal distribution with coefficient of variation (COV) 0.6, with design PGA (return 

period 475 years) ad = 400cm/sec2. 

symmetrically reinforced using 5#25 steel rebars (As = 2550 mm2), and the beams have 4#25 

Pa(a>ad) = 1.0- exp(-vPe(a >ad)) = 1/475 (6.1) 

or 

PJa>ad) = 
2.10748234e-3 

= 0.210 (6.2) 
0.01 

The corresponding Normal variate for the event is fie = 0.803 

Since olna = Jln(l + Va

2) = 0.6, or Va = 0.658 (6.3) 

And ad = a =exp(PeJlnfl + Va

2)) = 400 cm/sec2 (6.4) 
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So a 
400,1 i + v: 

exp(8e^ln(l + Va

2)) exp(0.803* 0.6) 
478.8869452 o n n , 2 = 300 cm/sec 

And <7 =aV= 300 x 0.658 = 200 cm/secf 
a a 

(6.5) 

(6.6) 

Hence, the earthquake peak ground acceleration is assumed to have a Lognormal distribution 

with a mean 300 cm/sec2 and a standard deviation 200 cm/sec2. 

Due to the high uncertainties associated with the expected earthquake ground motion, the 

seismic ground shaking was presumed to be characterized mainly by three parameters (PGA 

A, predominant ground frequency cog and duration T d ) that have probability distributions 

as given in Table 6.1. 

Thirty random combinations of A g , cog and T d were generated via Latin Hypercube 

Sampling as given in Table 6.2. Based on the combinations, thirty ground motion 

acceleration time histories were synthesized using the Hsu & Bernard modulation function 

(where to was taken as 0.2Ta). 

Table 6.1 Case study 1: Ground motion parameters distributions and statistics 
Parameter Distribution Mean Standard deviation 

AX (cm/sec2) Lognormal 300 200 

co g (rad/sec) Normal 7.50 2.00 

Td (sec) Normal 40.0 10.0 

6.3.2. Construction of the response databases 

To build response databases for neural network training, five variables were chosen as input 

variables, namely, steel yield strength fy, concrete compression strength f'c, modulus of 
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elasticity of concrete Ec, weight on the roof Wt and weight on the floor W2. Though f'c and 

Ec were correlated, they were treated as independent variables. The bounds are given in 

Table 6.2 Case study 1: Ground motion parameter combinations 
Ag (cm/sec2) co g (rad/sec) Td (sec) 

214.635 "7.177 2.987 
106.379 7.389 29.572 
286.670 5.858 54.089 
326.559 8.806 37.919 
430.634 5.320 39.631 
326.075 , 8.299 52.725 
246.511 9.708 47.239 
421.700 10.769 38.375 
102.975 7.575 38.375 
55.258 4.649 37.577 

362.672 8.849 54.033 
388.662 6.607 24.269 
214.214 9.857 44.706 
137.108 9.478 41.971 
588.179 6.579 43.697 
740.161 11.666 32.187 
239.109 9.796 11.623 
130.679 9.465 46.306 
512.112 8.369 25.356 
219.398 9.566 36.272 
243.753 8.640 55.202 
140.709 8.068 28.331 
156.997 6.076 38.223 
225.254 8.736 39.924 
212.679 10.082 50.279 
811.417 5.902 40.164 
126.201 5.976 30.247 
879.899 7.015 42.378 
607.912 5.997 67.593 
666.123 8.602 46.157 

Table 6.3. Two responses were selected as the output variables, viz., the displacement at the 

floor D 2 , and the displacement at the roof D,. Latin Hypercube Sampling was applied to 

generate a design of 150 combinations of the five input variables (fy,fc,Ec,W1,W2). Then, 
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for every combination of the input variables, the program CANNY was run to compute the 

corresponding responses D 2 , D, for the 30 synthesized ground acceleration time histories. 

Subsequently, for each response, its mean and standard deviation were calculated based on 

the 30 values for the 30 artificial ground accelerograms. Finally, for every response, two 

response databases were created, one for its mean and the other for its standard deviation. 

Altogether, four response databases were constructed. Appendix A shows just the first 10 

combinations and the corresponding responses. 

The cross-peak tri-linear model CP3 was adopted to simulate the hysteresis behavior of the 

reinforced concrete members, with its hysteresis skeleton curve shown in Figure 6.2. This 

model can be used to simulate the post-yield unloading stiffness degradation and strength 

deterioration. 

Figure 6.2 Cross peak tri-linear hysteresis model CP3 (Li, 1996) 
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Table 6.3 Case study 1: Input variable bounds 
Variable Lower bound Upper bound 

/ v(MPa) 300 500 

/;(MPa) 15 45 

£ c (MPa) 19500 25500 

W1 (KN) 280 370 

w2(m 360 540 

6.3.3. Reliability assessment 

Based on the aforementioned four response databases, four neural networks were trained, for 

the mean and standard deviation of the two responses, as the earthquakes were changed 

according to Table 6.2. The neural network-training program was run to learn the unknown 

functional dependencies between the five input variables (fy,fc,Ec,W1,W2) and the four 

output variables (D2, SD2 ,D,,SD1). 

Hereafter, neural network relative error is defined as, 

Ok-Yk 

with root mean square relative error (RMSRE) given by, 

RMSRE = k=l 

where Ok denotes the target output for the k-th example; 

Yk denotes the neural network output for the k-th example; 

P denotes the number of examples. 

(6.7) 

(6.8) 
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In this case, of the 150 examples, 120 were used for training and 30 were used for testing. 

The number of hidden neurons and network RMSREs for the four responses are given in 

Table 6.4, with the relative error statistics for every response shown in Table 6.5. 

Table 6.4 Case study 1: Neuron numbers and neural network RMSREs 
Response Neuron number Training Testing 

5 0.017 0.024 

6 0.021 0.020 

D, 4 0.015 0.015 

$D1 
3 0.019 0.015 

in the table, Z)7 denotes the mean value of roof displacement D i ; 

SDl denotes the standard deviation of roof displacement D i ; 

D2 denotes the mean value of floor displacement D2; 

SD2 denotes the standard deviation of floor displacement D2; 

Table 6.5 Case study 1: Neural networks training relative error statistics 
Relative error Mean Standard deviation 

e(D2) -0.0008 0.0185 

e(SD2) 0.0002 0.0152 

efD,) 0.0004 0.0197 

e(SDl) -0.0008 0.0224 

During reliability analysis, the input variables were postulated to have the following 

probability distributions and statistics as shown in Table 6.6. 
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Table 6.6 Case studyl: Input variable probability distributions and statistics 
Input variable Distribution Mean Standard deviation 

/y(MPa) Lognormal 400.0 30.0 

/;(MPa) Normal 30.0 4.5 

£ c (MPa) Normal 22500.0 1000.0 

W,(KN) Normal 360.0 24.0 

W2(KN) Normal 450.0 30.0 

Three limit states were examined in this study corresponding to three performance levels, ie., 

collapse prevention, life safety and normal function. For each combination, the 

displacements over the 30 records were fitted to a Lognormal distribution. Thus, the roof 

displacement D, and the floor displacement D 2 were expressed as, 

D, 

1 + 

exp\ 1 
In 

r (S >A 

7 + 1 

D2 = 

1 + 

expl R ln\ ° D 2 1 + 

(6.9a) 

(6.9b) 

where Rn is a random variable with Standard Normal distribution. 

If the responses were fitted to an Extreme Value-I distribution, then the responses could be 

calculated by inverse transform as, 

D,=D,-^—SLfr + bi(-bip)J 

D2=D2 

— y/6SD2 [y + ln(-lnp)J 

(6.10a) 

(6.10b) 

125 



CHAPTER 6 SEISMIC RELAIBILrTY ANALYSES: CASE STUDIES 

where Euler constant y = 0.5772; 

pis a random variable with uniform distribution over the interval [0,1]. 

(1) Collapse prevention limit state 

For the limit state of collapse prevention, one failure mode was considered in respect to the 

roof displacement as indicated by the following performance function, with the displacement 

limit set to 3% of the building height. The associated reliability indices by mean of 

Importance Sampling (IS) and Monte Carlo Simulation (MCS) are shown in Table 6.7, with 

responses calculated by Neural Networks (NN) and Local Interpolation (LI) (Foschi et al, 

2002). 

G = 0.240-D1(fy,f'e,Eo,W„Wa) (6.11) 

Table 6.7 Case study 1: Reliability indices for collapse prevention limit state 

Performance function 
IS MCS 

Performance function NN LI NN LI 

G = 0.240 -D, 1.828(1.826) 1.767(1.780) 1.825(1.821) 1.769(1.782) 

Note: The values in parentheses are based on Extreme Type-I distribution. 

(2) Life safety limit state 

For the limit state of life safety, three failure modes were considered in regard to the roof 

displacement, the floor displacement as well as the inter-story drift between the roof and the 

floor, as indicated by the following three performance functions. The drift limit was set to 

1.5% of the height of the story or building. The associated reliability indices by IS and MCS 
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for the three failure modes, as well as the system reliability are given in Table 6.8, and the 

responses were calculated by NN and LI. 

G, =0.120-D1(fy,fc,Ec,W1,W2) (6.12a) 

G2 =0.060-D2(fy,f;,Ec,W1,W2) (6.12b) 

G3 =0.060-[D1(fy,f'c,Ec,W1,W2)-D2(fy,fc,Ec,W1,W2)] (6.12c) 

Table 6.8 Case study 1: Reliability indices for life safety limit state 

Performance function 
IS MCS 

Performance function NN LI NN LI 

Gj = 0.120 -Dj 0.937 (0.741) 0.887 (0.671) 0.935 (0.740) 0.887 (0.675) 

G2 = 0.060 -D2 
0.719 (0.418) 0.690 (0.420) 0.722 (0.423) 0.694 (0.423) 

G3 = 0.060-(Dj-D2) 0.625 (0.399) 0.614 (0.398) 0.623 (0.398) 0.614 (0.399) 
System reliability .N/A N/A . 0.052 (-0.356) 0.030 (-0.339) 

Note: The values in parentheses are based on Extreme Type-I distribution. 

N/A = Not available 

(3) Functionality limit state 

For this limit state, three failure modes were considered regarding the roof displacement, the 

floor displacement and the inter-story drift between the roof and the floor. The three 

performance functions are listed below, with the displacement limit set to 0.5% of the height 

of the story or building. The associated reliability indices by IS and MCS for every failure 

mode, as well as the system reliability are presented in Table 6.9. 

G, =0.040-D,(fy,f;,Ec,W„W2) (6.13a) 

G2 =0.020-D2(fy,fc,Ec,W1,W2) (6.13b) 
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G3 =0.020-[Dl(fy,fc,Ec,W1,W2)-D2(fy,fc,Ec,W1,W2)] (6.13c) 

Table 6.9 Case study 1: Reliability indices for functionality limit state 

Performance function 
IS MCS 

Performance function NN LI NN LI 

G} = 0.040-D, -.511 (-.475) -.511 (-.464) -.510 (-.472) -.507 (-.461) 

G2 = 0.020-D2 
-.480 (-.414) -.587 (-.476) ..479 (-.406) -.582 (-.471) 

G3 = 0.020-(D,-D2) -.091 (-.102) -.061 (-.093) -.084 (-.100) -.056 (-.089) 
System reliability N/A N/A -1.499 (-.555) -1.529 (-.513) 

It can be observed from the above results that, subject to the probabilistic earthquake ground 

motion and the assumed variable statistics, the performances of the structure can be 

considered as below standard. Though collapse is less likely to happen (with probability of 

failure about 2%), life safety of the occupants cannot be guaranteed (with probability of 

failure about 50%), to say nothing of normal operation (with probability of failure more than 

90%). Hence, it needs to be retrofitted up to standard based on the assumed seismic hazard. 

For comparison with Neural Networks, another approximation scheme, Local Interpolation 

was also employed. It was found that Local Interpolation took more time than Neural 

Networks, as for each query point (the point whose response is sought), it involves searching 

the response database for some nearest neighbors and estimating the response by 

interpolation, which is time consuming especially for a large database. It can also be seen 

that, in general, the reliability prediction based on Lognormal distribution is at about the 

same level as that of Extreme Value-I distribution. 

6.3.4. Sensitivity analysis 

Sensitivity analysis was conducted to evaluate the influence of each variable on reliability 

index, based on which the important variables can be identified. Only the collapse prevention 

128 



CHAPTER 6 SEISMIC RELAIBILITY ANALYSES: CASE STUDIES 

limit state was considered for this purpose, with responses fitted to Lognormal distribution. 

The results were given in Table 6.10, in which each mean was varied up and down by 5% 

while the others kept unchanged. 

Table 6.1,0 Case study 1: Variation of reliability index with statistical parameters 
Variable Parameter Parameter value Reliability index 

380 1.755 
400 1.808 

/,(MPa) 420 1.860 /,(MPa) 
4 1.807 

°(fy) 20 1.807 
40 1.804 

28.5 1.782 
tff'c) 30.0 1.825 

/ c ' (MPa) 
31.5 1.870 

/ c ' (MPa) 0.3 1.934 
<*(f.) 3.0 1.820 

6.0 1.786 
21375 1.940 

rl(Ec) 22500 1.807 

£ c (MPa) 23625 1.671 £ c (MPa) 23625 1.671 £ c (MPa) 
225 1.820 

a(Ec) 450 1.815 
1000 1.807 
342 1.854 

rfWi) 360 1.807 

Wj (KN) 378 1.757 Wj (KN) 378 Wj (KN) 
3.6 1.811 

a(Wx) 7.2 1.811 
18.0 1.809 

427.5 1.841 
»(W2) 450.0 1.807 

472.5 1.772 
4.5 1.808 

<j(W2) 9.0 1.808 
22.5 1.808 

Based on the above results, it can be concluded that the mean values of the five input 

variables are important for the reliability evaluation, while their standard deviations are not 

so important as the reliability index is not sensitive to the variation of the standard deviations. 
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ju( fy ) and ju( f'c) have a positive influence on reliability, whereas n(Ec), p(M,) and 

ju(M2) have a negative impact on reliability. 

6.4 Case Study 2: A Tall Reinforced Concrete Frame 

6.4.1 Description of the structure 

The structure under investigation is a two-bay, twenty-story reinforced concrete frame 

(Figure 6.3), taken as an example of a tall building. The story height is 4 m, and each bay is 8 

m. The beams have a constant cross section 350mm x 700 mm. The columns have varied 

cross sections along the height of the building: from stories 1 to 7, BjxH,; from stories 8 to 

14, B2xH2; from stories 15 to 20, B3xH}. The reinforcement ratio for the beams and 

columns is assumed about 1%. 

6.4.2 Construction of the response databases 

Fifteen random variables were selected as the input variables, and they were, 

• peak ground acceleration, Ag; 

• predominant ground frequency, cog; 

• earthquake strong motion duration, Td; 

• distributed vertical load on beam, q; 

• steel yield strength, fy; 

• concrete compression strength for columns from story 1 to 7, fcl; 

• concrete compression strength for columns from story 8 to 14, fc2; 
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concrete compression strength for columns from story 15 to 20, fc3; 

concrete compression strength for beams, fb; 

cross section width of columns from story 1 to 7, B, ; 

cross section depth of columns from story 1 to 7, H,; 

cross section width of columns from story 8 to 14, B2 ; 

cross section depth of columns from story 8 to 14, H2; 

cross section width of columns from story 15 to 20, B3 ; 

cross section depth of columns from story 15 to 20, H3; 

| < 8 m H « 8 m »| 

Figure 6.3 Geometry of tall building 

The lower bounds and upper bounds of these variables for constructing an experimental 

design, are given in Table 6.11. 
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Table 6.11 Case study 2: Input variable bounds 
Input variable Lower bound Upper bound 

A (cm/sec2) 10 980 

cog (rad/sec) 7t 1271 

Td (sec) 1 60 

q (KN/m) 15 60 

/ „ ( M P a ) 400 450 

/ c l ( M P a ) 35 45 

/ c 2(MPa) 25 35 

/ c 5 ( M P a ) 15 25 

/6(MPa) 15 25 

2?, (mm) 700 1000 

/f, (mm) 900 1200 

52(mm) 500 700 

H2 (mm) 700 900 

^(ram) 400 500 

//^ (mm) 500 700 

Six response variables were selected; namely, the maxima of the roof displacement D20> the 

roof acceleration A20, the 15th story drift ratio 615, the 5th story drift ratio 0S, the base 

overturning moment M and the base shear force V. Hammersley sequence sampling was 

adopted to generate 300 combinations of the fifteen input variables. For every combination 

of the input variables, the program CANNY was run to compute the desired responses for 

twenty synthesized ground acceleration time histories (characterized by the three ground 

motion parameters, ie., Ag, cog and Td). Next, for each response, its mean and standard 

deviation were calculated based on the values for the twenty artificial ground accelerograms. 

Appendix B shows just the first 10 combinations and the corresponding responses. 

The CANNY tri-linear model CA7 was employed to simulate the hysteresis behavior of the 
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reinforced concrete members, as this model can delineate stiffness degradation, strength 

deterioration and pinching behavior of reinforced concrete. Its hysteresis skeleton curves are 

shown in Figure 6.4. It was assumed that shear strengths were sufficient for both the columns 

and beams, so the elastic model ELI was used for shear calculations. 

.fy 

4'm 

XJ" 

~~l ^u*^**^ • • j — * « 

::::::::: ::::::::::::::::::::::::: 

•D 

Y* 

tiFy 
(a) Unloading Stiffness Degradation 

00 Strength Deterioration (<0 Pinching Behavior 

Figure 6.4 CANNY tri-linear hysteresis model (Li, 1996) 
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6.4.3. Reliability assessment 

6.4.3.1 Neural networks training 

Twelve neural networks were trained for the mean and standard deviation of the six 

responses. Of the 300 combinations, 240 were used for training and 60 were used for testing. 

The number of hidden neurons and network RMSREs for the twelve responses are presented 

in Table 12, with the relative error statistics for every response given in Table 6.13. 

Table 6.12 Case study 2: Neuron numbers and network RMSREs 
Response Neuron number Training Testing 

9 0.011 0.030 

e 9 0.015 0.039 

•^20 
7 0.009 - 0.017 

$A20 4 0.032 0.040 

o15 
9 0.015 0.024 

$915 
6 0.020 0.032 

G5 

7 0.011 0.019 

7 0.017 0.034 

M 8 0.010 0.026 

sM 
9 0.017 0.040 

V 9 0.008 0.022 

Sy 8 0.020 0.037 

In the table, D 2 0 , S D 2 0 denote the mean and standard deviation of roof displacement D20; 

A 2 0 , S A 2 0 denote the mean and standard deviation of roof acceleration A 2 0 ; 

015, S9 1 5 denote the mean and standard deviation of the 15th story drift ratio 6l5; 

95, S 6 5 denote the mean and standard deviation of the 5th story drift ratio 0S; 

M,SM denote the mean and standard deviation of base overturning moment M; 
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V,SV denote the mean and standard deviation of base shear V; 

Table 6.13 Case study 2: Neural network training relative error statistics 

Relative error Mean Standard deviation 

e(D20) -0.0060 0.0178 

£(^D2o) 0.0158 0.0304 

s(A20) 0.0001 0.0120 

s(SA20) 0.0099 0.0295 

e(0„) -0.0056 0.0202 

e(S6l5) 0.0016 0.0209 

e(G5) -0.0079 0.0193 

0.0016 0.0197 

e(M) 0.0006 0.0158 

e(SM) -0.0003 0.0246 

e(V) 0.0028 0.0123 

e(Sv) -0.0004 0.0247 

Two limit states were considered in this study corresponding to two performance levels, 

serviceability limit state and ultimate limit state. The responses were fitted to a Lognormal 

distribution as follows, 

D 
D 20 

20 

1 + 'D20 

exp\ 

f f 
°D20 

2\ 

R In 1 + °D20 

[1 < ^20 j 
J 

(6.14a) 

^20 -

K D20j 

x20 

1 + 'A20 

exp\ 

\ A2o J 

f f 
°A20 

2\ 

In 1 + °A20 vi L  A20 -J J J 

(6.14b) 
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ol5 = 
9 15 

1 + 
rs v 

\ 915 J 

exp\ 

f f 2\ 
In 1 + ^015 

[i < 915 J ) ) 

05 = 
o5 

1+ 
rs v 

expl 
f f fs } 2\ 

bi In 1 + 
fs } bi \ < 65 j J ) 

(6.14c) 

(6.14d) 

M 
M 

rexpl 

J + 
M J 

R 
• 

In 1 + 

V = exp\ 

J + 

f ( fs } 2^ 
In 7+ 1 1 { U J J J 

< v J 

(6. He) 

(6.141) 

in the above, Rn is a random variable with standard Normal distribution. 

If the responses were fitted to Extreme Value-I distributions, then the responses could be 

calculated by inverse transform as, 

^o-D20-^^[Y+ln(-lnp)] D„ = D, 

A20 = * 2 o - ^ ^ f r + lnf-lnp)] 

915 ~ 915 ~ 
7T ^S, 015 fr + ln(-lnp)J 

0s=es-^-^fr + ln(-lnp)J 

(6.15a) 

(6.15b) 

(6.15c) 

(6.15d) 
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_ |7y 
M =M -——^-[y + lnf-lnpJJ (6.15e) 

n 

V = V-±A}L[r + ln(-lnp)] (6.15f) 
n 

where Euler constant y = 0.5772; with p is a random variable with uniform distribution over 

the interval [0,1]. 

6.4.3.2 Two levels of design earthquakes 

Two levels of earthquake, a frequent minor earthquake for serviceability limit state 

evaluation and a rare strong earthquake for ultimate limit state evaluation, were considered. 

(1) The earthquake for serviceability limit state 

Assume that occurrence of a minor earthquake can be characterized by a Poisson process 

with arrival rate of v = 0.10/year, and the probability of exceedance of the design earthquake 

ad in 50 years is 50% (annual probability of exceedance 0.013767), then 

Pa(a>ad) = 1.0-exp(-vPe (a>ad)) = 0.013 767 (6.16) 

or 

P.(a >ad) = 0 0 1 2 8 6 2 = 0.13863 (6.17) 
' d 0.10 V J 

The corresponding Normal variate for the event is Be = 1.086 

For this earthquake, assume its peak acceleration has a Lognormal distribution with 

coefficient of variation 0.6, and that the design earthquake is set at 0.15g, or 147.15 cm/sec2, 

°ina = Jl»0 + Va

3) = 0.6, or Va = 0.658 (6.3) 
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Since ad = . ° exp(0e Jln(l + V2)) = 147.15 cm/sec2 (6.18) 

o _ I47.15Jl + V* 176.170535 _ . 2 

So a = * = P2 cm/sec2 (6.19) 
eapf & + Vl)) e x P ( J- 086 *0.6) 

And oa = aVa =92 x 0.658 = 61 cnVsec2 (6.20) 

Hence, the earthquakes peak ground acceleration is assumed to have a Lognormal 

distribution with a mean 92 cm/sec2 and a standard deviation 61 cm/sec2. 

(2) The earthquake for ultimate limit state 

For this level of earthquake, assume that occurrence of the earthquake can be modeled by a 

Poisson process with arrival rate of v = 0.01/year, and the design earthquake ad with a 

return period of 475 years is 0.4g, or, 392.4 cm/sec2. As the annual risk is given by, 

Pa(a >ad) = 1.0-exp(-vPe(a > ad)) = 1/475 (6.1) 

or 

. 2.10748234e-3 „ „ f l 7 , 0 ,, 
P(a>ad) = = 0.210748 (6.2) 

0.01 

The corresponding Normal variate for the event is Be = 0.803 

For this earthquake, assume that its peak acceleration also has a lognormal distribution with 

coefficient of variation 0.6, then, 

olna = Jln(l + V2

a) = 0.6, or Va = 0.658 (6.3) 

Since ad = , ° exp(Be Jln(l + Va

2)) = 392.4 cm/sec2 (6.21) 
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So a 
392.4^1+ V2 _ 469.788 

= 290 cm/sec2 (6.22) 
exp(/3eylln(J + Va

2)) exp(0.803* 0.6) 

And aa = aVa = 290x 0.658 = 191 cm/sec2 (6.23) 

Thus, the postulated earthquake peak ground acceleration has a Lognormal distribution with 

a mean 290 cm/sec2 and a standard deviation 191 cm/sec2. 

6.4.3.3 Reliability assessment for serviceability limit state 

The roof displacement, the roof acceleration, the 15th story drift ratio and the 5th story drift 

ratio were evaluated for this limit state. The roof displacement limit was set to 1/400 of the 

total building height, with the acceleration limit set to 2.0 m/sec2. The story drift ratio limit 

was set to 0.0025 (1/400). The probability distributions and statistics of the input variables 

were given in Table 6.14. The statistics of steel yield strength and concrete compressive 

strengths were calculated so that the lower bound and upper bound of each variable (Table 

6.11) cover the range from mean - 3*standard deviation to mean + 3*standard deviation. It 

was assumed that the dimensions were well controlled, so a COV of 1% was used. The 

performance functions are expressed as the followings, 

G, = 0.200 -D 20 (6.24a) 

G2 =2.000-A l20 (6.24b) 

G3 =0.0025-0, 15 (6.24c) 

G4 =0.0025-65 (6.24d) 

139 



CHAPTER 6 SEISMIC RELAIBILrTY ANALYSES: CASE STUDIES 

Reliability analysis was carried out using IS and MCS, with the responses estimated by 

neural networks trained beforehand. The responses were fitted to two distributions, ie, 

Lognormal distribution and Extreme Value-I distribution (reliability index in parenthesis). 

The results are presented in Table 6.15. 

It can be seen that for the specified performance criteria, the structure may be considered to 

maintain normal operation under the considered earthquakes if a minimum target reliability 

index was set to be 1.5. Compared to the 5th story, the 15th story has a lower reliability, 

which implies that more deformation occurs at the higher stories of the structure. Whether 

the responses have a Lognormal or an Extreme value-I distribution, the reliability estimates 

are quite similar. 

Table 6.14 Case study 2: Input variable probability distributions and statistics 
(Serviceability limit state) 

Input variable Distribution Mean Standard deviation 
Ag (cm/sec2) Lognormal 92.0 61.0 

a)g (rad/sec) Normal 571 7t 

Td (sec) Normal 20.0 5.0 
q (KN/m) Normal 45.0 4.5 

/„ (MPa) Lognormal 400.0 10.0 

L, (MPa) Lognormal 40.0 1.5 

/ „ , (MPa) Lognormal 30.0 1.5 

L, (MPa) Lognormal 20.0 1.5 

A (MPa) Lognormal 20.0 1.5 

B, (mm) Normal 900.0 9.0 
H, (mm) Normal 1100.0 11.0 

B7 (mm) Normal 600.0 6.0 

H2 (mm) Normal 800.0 8.0 

B, (mm) Normal 450.0 4.5 
H3 (mm) Normal 600.0 6.0 
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Table 6.15 Case study 2: Reliability index for serviceability limit state 
Performance 
function 

Neural networks Performance 
function IS MCS 

G, = 0.200 -D20 
2.173 (2.168) 2.168 (2.170) 

G2 = 2.000 -A20 
2.083 (2.079) 2.071 (2.076) 

G3 = 0.0025-01S 
1.576(1.576) 1.551 (1.552) 

G4 = 0.0025-0, 1.854(1.840) 1.815 (1.815) 

6.4.3.4 Reliability assessment for ultimate limit state 

The roof displacement, the 15th story drift ratio, the 5th story drift ratio, base overturning 

moment and base shear force were evaluated for this limit state. The roof displacement limit 

was set to 1.0% of the building height, with the story drift ratio limit set to 1.0%. The base 

shear capacity mean was assumed to equal to 10% of the total floor weight of the structure 

as: 45x16x20x0.1 = 1440KN, and the COV of base shear capacity was assumed 10%. The 

base overturning moment resistance depends on the column axial forces that are varying 

during the earthquake, so it is very difficult to estimate. For illustration purpose, it was 

assumed that the base moment capacity had a Normal distribution with mean 54000 KNm 

and standard deviation 5400 KNm. The probability distributions and statistics of the input 

variables were given in Table 6.16, with the performance functions expressed as follows, 

G,= 0.800 -D20 (6.25a) 

G2= 0.010-015 (6.25b) 

G3 = 0.010 - 05 (6.25c) 

G4=M0-M (6.25d) 
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G5=V0-V (6.25e) 

Again, reliability analysis was carried out using IS and MCS, with the responses estimated 

by the neural networks trained in advance. As before, the responses were fitted to two 

distributions: Lognormal and Extreme Value -1. The results are presented in Table 6.17, 

with values in parentheses corresponding to Extreme Value -1 distribution. 

From the above calculations, it can be observed that the reliability predictions are close to 

each other, no matter whether the responses have a Lognormal or an Extreme Value-I 

distribution. In compared with the 5th story, the 15th story has a lower reliability, the 

implication of which is that more deformation occurs at the upper stories of the structure. 

Table 6.16 Case study 2: Input variable probability distributions and statistics 
(Ultimate limit state) 

Input variable Distribution Mean Standard deviation 
Ag (cm/sec2) Lognormal 290.0 191.0 

cog (rad/sec) Normal 5n 7t 

Td (sec) Normal 30.0 5.0 
q (KN/m) Normal 45.0 4.5 

/„ (MPa) Lognormal 400.0 10.0 

L, (MPa) Lognormal 40.0 1.5 

(MPa) Lognormal 30.0 1.5 

(MPa) Lognormal 20.0 1.5 

fh (MPa) Lognormal 20.0 1.5 

B, (mm) Normal 900.0 9.0 
H, (mm) Normal 1100.0 11.0 

By (mm) Normal 600.0 6.0 

H2 (mm) Normal 800.0 8.0 

B, (mm) Normal 450.0 4.5 

H3 (mm) Normal 600.0 6.0 
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Table 6.17 Case study 2: Reliability index for ultimate limit state 
Performance 
function 

Neural networks Performance 
function IS MCS 

G, = 0.800-D20 
2.727 (2.768) 2.884 (2.874) 

G2 = 0.010 -e15 
2.057 (2.086) 2.160 (2.162) 

G3 =0.010-e5 
2.298 (2.333) 2.395 (2.394) 

G4=M0-M 2.543(2.571) 2.648 (2.623) 
G5=V0-V 2.322 (2.345) 2.442 (2.443) 

6.5 Case Study 3: A Bridge Bent Without or With Seismic Isolation 

6.5.1 Description of the structure 

A bridge bent without or with seismic isolation was studied for its seismic performance. The 

geometry of the bridge with four Lead Rubber Bearing (LRB) isolators is shown in Figure 

6.5. The two round columns have a diameter D (mm). The height of the cap beam from the 

ground is 8 m, with a rectangular section BxH (B is fixed to D + 500, H = 1500 mm). 

The bearings have a square section (width Br) with a round lead plug of diameter Br I 4, 

and their height is assumed to be 0.4 Br The reinforcement ratios of the column and beam 

are assumed 1.25% and 1% respectively. 

6.5.2. Construction of the response databases 

In the case without isolation, five variables were selected as the input variables, namely, peak 

ground acceleration A, predominant ground frequency cog, strong motion duration Td 

(Figure 6.6), column diameter D, and vertical load on the bearing Q. In the case with 

isolation, a sixth variable, the width of the isolators Br was added. The lower bounds and the 

upper bounds of the variables are given in Table 6.18. 
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Six variables were chosen as the output variables, ie., the maxima of displacement at the cap 

beam A, column base moment Mc, column base shear Vc, column ductility beam 

moment Mh, and beam ductility jub. 

Isolator, width B r 

Figure 6.5 Bridge bent with isolation Figure 6.6 Modulation function 

Table 6.18 Case study 3: Input variable jounds 
Input variable Lower bound Upper bound 

Ag (cm/sec2) 20 1960 

cog (rad/sec) 71 1071 

Td (sec) 1 60 
D (mm) 1500 2100 
Q (KN) 1200 3600 
Br (mm) 500 1000 

Optimized Latin Hypercube Design was adopted to generate 200 combinations of the input 

variables, including all the data points on the boundary. For every combination of the input 

variables, twenty artificial earthquake accelerograms (characterized by the three ground 

motion parameters, ie., Ag, cog and Td but with different phases) were generated and the 

program CANNY was run to compute the corresponding responses. Then, for each response, 

144 



CHAPTER 6 SEISMIC RELAJBILITY ANALYSES: CASE STUDIES 

its mean and standard deviation were calculated based on the values for the twenty artificial 

ground accelerograms. Finally, for every response, two response databases were constructed, 

one for its mean and the other for its standard deviation. Appendix C shows just the first 10 

combinations and the corresponding responses. 

The CANNY tri-linear model CA7 was also employed here to simulate the hysteresis 

behavior of the reinforced concrete members. The degrading bilinear model BL2 was 

adopted to describe the nonlinear behavior of the isolators, with the hysteresis skeleton curve 

shown in Figure 6.7. The shear modulus of rubber is taken as 1.0 MPa, with the yield 

strength of the lead plug set to 10.0 MPa (Priestley and Calvi, 1996). The yield displacement 

was assumed 10% of the isolator height, and the post-yield stiffness was taken as 1/3 of the 

initial stiffness. 

6.5.3. Reliability assessment 

6.5.3.1 Neural networks training 

Twelve neural networks were trained for the mean and standard deviation of the six 

responses. Of the 200 combinations, 160 were used for training and 40 were used for testing. 

The number of hidden neurons and the network RMSREs for the twelve responses are given 

in Table 6.19 for the bridge without isolation and Table 6.20 for the bridge with isolation. 

The relative error statistics for every response are shown in Table 6.21. 
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Figure 6.7 Degrading bilinear model (Li, 1996) 

Table 6.19 Case si tudy 3: Neuron numbers and network RM SREs (without isc 
Response Neuron number Training Testing 

A 12 0.018 0.024 
5 0.026 0.039 
8 0.012 0.024 

12 0.027 0.033 

K 9 0.014 0.028 

6 0.045 0.060 

9 0.020 0.040 

3 0.024 0.030 

10 0.019 0.025 

8 0.040 0.046 

Mb 4 0.024 0.025 

10 0.033 0.030 

Where A,SA denote the mean and standard deviation of displacement A; 

Mc,SMc denote the mean and standard deviation of column moment Mc; 
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Vc,SVc denote the mean and standard deviation of column shear force Ve; 

Jic^^ denote the mean and standard deviation of column rotational ductility pc ; 

Mb,Sm denote the mean and standard deviation of beam moment Mb; 

Mb>Sfi> denote the mean and standard deviation of beam rotational ductility jub; 

Table 6.20 Case study 3: Neuron number and network RMSREs (with isolation) 
Response Neuron number Training Testing 

A 10 0.017 0.020 
11 0.021 0.034 
10 0.019 0.030 

7 0.046 0.044 

K 9 0.015 0.021 

8 0.041 0.040 

~Pc 12 0.016 0.022 

7 0.026 0.029 

Mb 
7 0.019 0.031 

10 0.025 0.041 

Mb • 10 0.015 0.034 

Spb 
7 0.032 0.040 

Two limit states were investigated that correspond to two performance levels, serviceability 

limit state and ultimate limit state. With the responses fitted to a Lognormal distribution, they 

can be calculated as follows, 

A = expl 

7+ ^ 
i R„ i 

11 
In 7 + \U 

AJ J 
(6.26a) 
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M = 

1 + 

exp\ R. - In 
( (S ^ 

J + \ ^Mc (6.26b) 

Vc = 

7 + 

exp\ R, 7 + (6.26c) 

7 + 

ex/? 
s 

2^ 
In 1 + fJC 

[ i I J J 

(6.26d) 

7 + 

ex/? 7? 1 
2\ 

(6.26e) 

Mb 

1 + 
Mb J 

exp\ R 

1 
In 7+ ^ (6.26f) 

In the above, Rn is a random variable with standard normal distribution. 
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Table 6.21 Case study 3: Neural network training relative error statistics 
Relative error Without isolation With isolation Relative error 

Mean Std dev Mean Std dev 
e(A) 0.0000 0.0220 0.0017 0.0176 

e(SJ -0.0004 0.0305 -0.0017 0.0265 

s(Mc) -0.0017 0.0164 -0.0011 0.0213 

*(SMc) -0.0036 0.0289 -0.0021 0.0460 

e(Vc) -0.0021 0.0179 0.0011 0.0162 

B(SVC) -0.0018 0.0632 -0.0015 0.0406 

e(Hc) 
-0.0003 0.0254 0.0019 0.0176 

0.0042 0.0269 0.0014 0.0270 

s(Mb) -0.0027 0.0235 0.0044 0.0235 

e(Sm) -0.0020 0.0433 -0.0021 0.0460 

-0.0019 0.0244 0.0036 0.0199 

e(Spb) 0.0010 0.0321 -0.0019 0.0336 

Type-I distribution, then 

(6.27a) 

(6.27b) 

(6.27c) 

(6.27d) 

(6.27e) 

(6.27f) 

As in previous examples, if the responses were fitted to an Extreme 

they could be calculated as, 

A = A -^-^-fr + ln(-lnp)J 
n 

— JEs 
Mc =MC-2L-ML[r + in(-inp)j 

7t 

V<=Vc-^-*-[y + ln(-lnp)] 
n 

Mc=Mc~ ^Sf* f / + In(-lnp)] 
7t 

— J6S 
Mb =Mb-?-^L[y + ln(-lnp)] 

n 

Mb =Mb —f/ + ln(-lnp)J 
n 
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where Euler constant y = 0.5772; and p is a random variable with uniform distribution over 

the interval [0,1]. 

6.5.3.2 Two levels of earthquakes 

Two levels of earthquake were considered in this case. One was a minor earthquake for 

serviceability limit state, and the other was a major earthquake for ultimate limit state. 

(1) The earthquake for serviceability limit state 

Assume that occurrence of a minor earthquake can be characterized by a Poisson process 

with arrival rate of v = 0.05/year, and the probability of exceedance of the design earthquake 

ad in 50 years is 50% (annual probability of exceedance 0.013767), then 

Pa(a>ad) = 1.0-exp(-vPe (a >ad)) = 0.013 767 (6.16) 

or 

Pe(a>ad)=°°13862 = 0.277253 (6.28) 
' " 0.05 

The corresponding Normal variate for the event is Be = 0.591 

For this earthquake, assume its peak acceleration has a Lognormal distribution and 

coefficient of variation 0.6, and that the design earthquake is set to ad = 180 cm/sec2, then 

° l n a = yll"(l + Va

2) = 0.6, or Va = 0.658 (6.3) 

Since ad = ° exp(Be^ln(l + V2)) = 180 cm/sec2 (6.29) 

180jl + V2 215 499 , 
So a = — ; = = 151 cm/sec2 (6.30) 

exp(Bejln(l + V2 )) exp( 0.591* 0.6 ) 
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And aa = aVa = 151 x0.658 = 99 cm/sec2 (6.31) 

Hereby, the earthquake peak ground acceleration has a Lognormal distribution with mean 

151 cm/sec2 and standard deviation 99 cm/sec2. 

(2) The earthquake for ultimate limit state 

Assume that occurrence of earthquake can be modeled by a Poisson process with arrival rate 

of v = 0.01/year, and the design earthquake with a return period of 475 years is 

ad = 440 cm/sec2, then the annual risk is given by, 

PJa>ad) = 1.0-exp(-vPe(a > ad)) =1/475 (6.1) 

or 

. 2.10748234e-3 n ^ i n n A O ,£ n . 
P„(a>ad) = = 0.210748 (6.2) 

0.01 

The corresponding Normal variate for the event is 6e = 0.803. 

&,na = ylln(l + Va

2) = 0.6, or Va = 0.658 (6.3) 

Since ad = ° exp(0eJln(l + V2)) = 440 cm/sec2 (6.32) 

So a = 4 4 ° f ^ = 5 2 6 ' 7 7 = 325cm/sec2 (6.33) 
exp(Bjln(l + Va

2)) exp(0.803* 0.6) 

And aa = aVa =325x0.658 = 214 cm/sec2 (6.34) 

Hence, the earthquake peak ground acceleration has a Lognormal distribution with mean 325 

cm/sec2 and standard deviation 214 cm/sec2. 
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6.5.3.3 Reliability assessment for serviceability limit state 

The displacement at the cap beam was checked against the limit that was set as 1/200 of the 

height. The distributions and statistics of the input variables were given in Table 6.22, with 

the performance function in the following form, 

G = 8.0/200 -A(Ag,a)g,Ts,D,Q) (6.35a) 

or G = 8.0/800-A(Ag,(og,Ts,D,Q) (6.35b) 

where A denotes the cap beam lateral displacement. 

Table 6.22 Case study 3: Input variable probability distributions and statistics 
(Serviceability limit si .ate) 

Input variable Distribution Mean Standard deviation 

Ag (cm/sec2) Lognormal 151.0 99.0 

cog (rad/sec) Normal 571 71 

Ts (sec) Normal 20 5 
/J(mm) Normal 1800 90 
Q(KN) Normal 2400 240 

Br (mm) Normal 750 7.5 

(1) Bridge bent without isolation 

In this case, reliability analysis was conducted by IS and MCS, with responses calculated by 

neural networks and a Local interpolation scheme. The results are given in Table 6.23. 

Table 6.23 Case study 3: Reliability index for serviceability limit state without isolation 
Performance 
function 

IS MCS Performance 
function NN LI NN LI 

G = 8.0/200-A 2.101(2.096) 1.526(1.517) 2.104(2.101) 1.536(1.510) 

Note: The values in parentheses are based on Extreme Value-I distribution 
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(2) Bridge bent with isolation 

In this case, reliability analysis was also carried out with IS and MCS, and the results were 

presented in Table 6.24, where the mean of Br was set to 750 mm with a COV of 0.01. 

Table 6.24 Case study 3 Reliability index for serviceability limit state with isolation 
Performance 
function 

IS MCS Performance 
function NN LI NN LI 

G = 8.0/200-A 3.760(3.719) 3.471(N/A) 3.860(3.812) 3.800(3.823) 

G = 8.0/800 -A 2.063(2.067) 1.896(2.002) 2.064(2.068) 1.882(1.872) 

The sensitivity of reliability index (G = 8.0/800 - A) with respect to the mean of Br was 

investigated and plotted in Figure 6.8, in which the COV of Br was assumed 0.01. 

It can be observed from Table 6.23 and Table 6.24 that, for serviceability limit state, the 

reliability level of the isolated bridge where the lateral displacement limit is set to 1/800 of 

its height, is about the same as that of the non-isolated bridge where the lateral displacement 

limit is set to 1/200 of its height; hence, seismic isolation can greatly improve the bridge 

performance. The analysis using neural networks takes less time compared to Local 

Interpolation, as Local Interpolation involves searching the whole database and ranking the 

closest neighbors to the query point. 

It can be seen from Table 6.23 and 6.24 and Figure 6.8 that the reliability indices are 

approximately the same, whether the response is fitted to Lognormal or Extreme Value-I 

distributions. Figure 6.8 shows that the reliability index decreases as the isolator mean width 

increases. This is explained by the fact that, as the isolator mean width increases, so does its 
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stiffness; therefore, more inertial force is transmitted to the bridge bent from the deck, which 

results in larger displacement. 

3 A 1 1 1 1 1 
500 600 700 800 900 1000 

Isolator mean width B (mm) 

Figure 6.8 Variation of reliability index with B r (mm) 

6.5.3.4 Reliability assessment for ultimate limit state 

Strong earthquakes were applied for reliability analysis of the ultimate limit states. The 

probability distributions and statistics of the input variables are given in Table 6.25. 

(1) Bridge bent without isolation 

In this case, five performance functions were evaluated regarding cap beam displacement, 

column moment, column shear, column ductility, and beam moment. They are given below, 

Table 6.25 Case study 3: Input variable probability distributions and statistics 
(Ultimate limit state) 

Input variable Distribution Mean Standard deviation 

Ag (cm/sec2) Lognormal 325.0 214.0 

o)g (rad/sec) Normal 571 

Td (sec) Normal 30 5 
/J(mm) Normal 1800 90 

g(KN) Normal 2400 240 

Br(mm) Normal 750 7.5 
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G, = 0.2-A(Ag,cog,Td,D,Q) (6.36a) 

G2 =MU -Mc(Ag,cog,Td,D,Q) (6.36b) 

G3 =VU -Vc(Ag,a>g,Td,D,Q) (6.36c) 

G4=p0-pc(Ag,cog,Td,D,Q) (6.36d) 

Gs =My -Mb(Ag,cog,Td,D,Q) (6.36e) 

where A denotes the cap beam lateral displacement; 

Mu and Mc denote the column ultimate moment capacity and seismic demand; 

V„ and V c denote the column ultimate shear capacity and seismic demand; 

u,0 and u.c denote the column hinge rotational ductility capacity and seismic demand; 

My and Mb denote the beam yield moment capacity and seismic demand; 

In the above equations, the cap beam lateral displacement limit was set to 2.5% of the height, 

and the assumed statistics of other variable are presented in Table 6.26. 

Table 6.26 Case study 3: Random variable probability distributions and statistics 
Random variable Distribution Mean Standard deviation 

Mu (KNm) Normal 8900.0 445.0 

Vu (KN) Normal 2250.0 112.25 

Ho Normal 12.0 1.2 

Mv (KNm) Normal 16000.0 800.0 

Importance Sampling and Monte Carlo simulation were conducted for reliability calculation, 

with the responses fitted to Lognormal distribution and estimated by neural networks. The 

results are presented in Table 6.27. 
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Table 6.27 Case study 3: Reliability index for ultimate limit state without isolation 
Performance function IS MCS 

Gj = 0.2-A 2.368 2.438 

G2=MU-MC 
2.255 2.589 

G,=K-Ve 
2.242 2.506 

2.265 2.283 
G5=My-Mb 

5.218 Not done 

(2) Bridge bent with isolation 

Reliability analysis was also carried out with Importance Sampling and Monte Carlo 

simulation, with the responses estimated by neural networks. The results are presented in 

Table 6.28, where the mean of Br was set to 750 mm with a coefficient of variation 0.01. 

Table 6.28 Case study 3: Reliability index for ultimate limit state with isolation 
Performance function Reliability index 

G, = 0.2-A 3.606 (MCS) 

G2=MU-MC 
3.588 (MCS) 

G3=VU-VC 
3.716 (MCS) 

G4=M0-Mc 6.000* (IS) 

G5=My-Mb 
5.123" (IS) 

Note: * number of samples = 5000000, coefficient of variation of probability of 

failure = 36.55% 

** number of samples = 5000000, coefficient of variation of probability of 

failure = 18.62% 

For performance functions G 4 and G 5 , as the reliability indices are very high, even 

Importance Sampling simulation with sample size 5,000,000 yielded poor reliability 

estimates. 
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The sensitivity of reliability index to the mean of Br was investigated (G, =0.2-A) and 

plotted in Figure 6.9, in which the coefficient of variation of Br was assumed as 0.01 of its 

mean. 

3 .j , , , , 1 

500 600 700 800 900 1000 

Isolator mean width (mm) 

Figure 6.9 Variation of reliability index with isolator width mean Br 

To achieve the same level of reliability as the non-isolated case, the displacement limit was 

set to 1/250 of the height, and the assumed statistics of other random variables were modified 

as given in Table 6.29. The results of reliability analysis are presented in Table 6.30. 

Table 6.29 Case study 3: Random variable probability distributions and statistics 
Random variable Distribution Mean Standard deviation 

Mu (KNm) Normal 6230.0 311.5 

Vu (KN) Normal 1668.75 83.4375 

Mo Normal 1.5 0.15 
Mv (KNm) Normal 12000.0 600.0 
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Table 6.30 Case study 3: ] Reliability index for ultimate limit state with isolation 
Performance function IS MCS 

G, =0.032-A 2.505 2.569 

G2=MU-MC 
2.184 2.410 

G,=K-Ve 
1.734 2.530 

G4=\i0-\ic 
2.091 2.124 

G 5 = M y - M b 
4.754 Not done 

The above calculations show that, for ultimate limit state, seismic isolation can significantly 

improve seismic performance of the bridge bent by reducing the inertial force transmitted to 

the pier from the deck. In both cases, the bending capacity of the cap beam is far greater than 

the seismic demand. In comparison of Table 6.27 with Table 6.30, it can be seen that, to 

achieve the same level of reliability, the capacities in the isolated bridge can be reduced to 

different extents for different performance criteria. As addressed before, the reliability index 

decreases with increase of isolator mean width, which has been explained previously. This 

example is similar to the bridge design in Dicleli (2002) where hybrid seismic isolation was 

used. 

6.6 Case Study 4 : A Wood Shear Wall 

6.6.1 Description of the structure 

Wood shear walls are typically used for residential construction in North America (Figure 

6.10). It is composed of framing members and sheathing panels that are connected with the 

frame members by means of nails or screws. In this case study, the wood shear wall under 

investigation has a height of 2.4 m and a width of 2.4 m, with 12 mm thick Oriented Strand 
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Board (OSB) sheathing panels on one side and vertical elements (studs) spacing of 400 mm. 

The sheathing panels are connected with the frame using common 50 mm long nails. 

.Framing 
Member 

A 

_Sheathing Panel 

-Fastener 

Figure 6.10 Wood shear wall construction 

6.6.2 Random variables 

The response of a wood shear wall during an earthquake depends on several factors: (1) the 

characteristics of the ground shaking, such as the peak ground acceleration, duration and 

frequency content; (2) the mass carried by the wall; (3) the nail and its interaction with the 

wood media; (4) the nail spacing around the periphery of the wall and in the interior of the 

wall. In this case study, four variables were selected as the input variables, namely, the peak 

ground acceleration Ag, the mass on the wall M, the nail spacing along the perimeter e1 

and the nail spacing in the interior e2, with the probability distributions and statistics given 

in Table 6.31. 
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Table 6.31 Case study 4: Random variable probability distributions and statistics 
Random variable Distribution Mean Standard deviation 

et (m) Normal 0.050 0.0050 

e2 (m) Normal 0.120 0.0120 
M (KN.sec /̂m) Normal 6.0 0.6 

Ag (m/sec2) Lognormal 0.927 0.556 

The earthquake considered was that of Landers, Joshua Tree Station, 1992, with its peak 

acceleration adjusted according to the statistics of Table 6.31. The distribution of Ag is 

consistent with a design acceleration of 0.25g at a return period of 475 years. The earthquake 

was assumed to occur, on average, once every 10 years. The coefficient of variation of Ag 

was assumed as 0.6. 

6.6.3 Performance evaluation 

Two responses were selected to evaluate the structural performance: the drift of the top of the 

wall A and the nail tearing force V. 131 combinations of the input variables were generated 

and the structural responses were calculated by a software package DAP3D developed at the 

University of British Columbia for 3-dimensional analysis of wood frame structures. This 

software can perform nonlinear dynamic analysis of an arbitrary wood frame structure, 

taking into account the hysteresis behavior of the nails in the wood medium. Appendix D 

shows just the first 10 combinations and the corresponding responses. Based on the response 

databases, two neural networks were developed for the responses. Of the 131 examples, 104 

were used for training and 27 were used for testing. The hidden neuron numbers and network 

RMSREs for the two responses are given in Table 32, with the relative error statistics for 

every response shown in Table 6.33. 
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Table 6.32 Case study 4: Neuron number and network RMSREs 
Response Neuron number Training Testing 

A 13 0.011 0.029 
V 6 0.045 0.045 

Table 6.33 Case study 4: Neural network training relative error statistics 
Response Mean Standard deviation 

e(A) 0.0034 0.0163 
e(V) 0.0005 0.0453 

The performance criteria were embodied by the following performance functions, 

G1=H/200-A(e1,e2,M,Ag) (6.37a) 

G2=V0-V(e„e2M,Ag) (6.37b) 

where V0 was the nail force capacity in terms of sheathing edge tearing, which, from test, 

was assumed normal with a mean of 1.05 KN and a standard deviation of 0.105 KN. 

Reliability analysis was conducted with Importance Sampling and Monte Carlo simulation, 

with the responses estimated by neural networks. The results are presented in Table 6.34. 

Table 6.34 Case study 4: Reliabi ity indices for wood shear wall 
Performance function IS MCS 

Gj =H/200-A(e]te2,M,Ag) 2.663 2.778 

G2=V0-V(e1,e2,M,Ag) 2.524 2.843 

The effects of the e, and e2 on reliability index associated with performance function 

Gj = H /200-A(eJte2,M,Ag) were investigated by varying et or e2 independently while 

keep the distributions of other variables unchanged, as shown in Figure 6.11 and Figure 6.12. 
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Figure 6.11 Variation of reliability index 
with respect to e, 

Figure 6.12 Variation of reliability index 
with respect to e2 

It can be observed from the above figures that as e, changed from 0.070 m to 0.010m (a 

reduction of 85.7%), the reliability index increased from 2.578 to 2.814 (a growth of 9%); 

whereas the reliability index increased from 2.647 to 3.511 (a growth of 32.6%) as 

e2 changed from 0.125m to 0.025 m (a reduction of 80%). It seems that it is more effective to 

improve reliability by decreasing the nail spacing in the interior of the wood shear wall. 

6.7 Case Study 5: A n Instrumented Structure for Earthquake Response 
Measurement 

6.7.1 Description of the structure 

This example structure is an actual building, a Holiday Inn located in the city of Van Nuys, 

California. It is a seven-story reinforced concrete frame-slab structure with a height of about 

20 m, which has 8 bays in the longitudinal direction and 3 bays in the transverse direction. 

The typical floor plan is about 19m by 46 m, as shown in Figure 6.13. It was designed and 

built in the 1960s, and since has experienced three earthquakes, ie., 1971 San Fernando, 1987 

Whittier and 1994 Northridge events. Instruments operated by the California Strong Motion 

Instrument Program (CSMTP) recorded the structural responses during these earthquakes. For 
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details of the related information, readers are referred to Rahmatian (1997). The aim of this 

study is to investigate the influences of different components of ground motion on structural 

performance, and compare the seismic performance of the structure before and after a 

seismic retrofit. The retrofit strategy suggested here are steel cross brace dampers along 

longitudinal axes A and D, between transverse axes 4 and 6; and along transverse axes 1 and 

9, between longitudinal axes B and C. 
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Figure 6.13 A typical floor plan of the Holiday Inn (Ventura et al, 2002) 

6.7.2 Ground motions 

It was assumed that the building was subjected to the same ground motions recorded at the 

ground floor level due to the Northridge earthquake (CSMTP record channel 1, 13, 15, 16). 

163 



CHAPTER 6 SEISMIC RELAIBILrTY ANALYSES: CASE STUDIES 

The ground motions had four components, in longitudinal direction, transverse direction, 

vertical direction and a rotational component in the horizontal plane. The peak values for the 

longitudinal, transverse, vertical and rotational components were, respectively, 444.5 

cm/sec2, 408.9 cm/sec2, 295.2 cm/sec2 and 0.0954 rad/sec2, sampling interval being 0.02 sec. 

For application purpose, the peak values were scaled to 1.0 or -1.0, and they were plotted in 

Figure 6.14. 
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(a) Longitudinal accelerogram 
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Figure 6.14 Holiday Inn earthquake ground motions, Northridge 1994 
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(c) Vertical accelerogram 

Time(sec) 

(d) Rotational accelerogram 

Figure 6.14 Holiday Inn earthquake ground motions, Northridge 1994 (continued) 

(1) The longitudinal and transverse components 

The longitudinal and transverse components are supposed to have the same peak design 

value. Assuming that occurrence of the earthquakes can be modeled by a Poisson process 

with an arrival rate of v = 0.05/year, and that the design earthquake ad with a return period 

of 475 years is 4.400 m/sec2, 

Pa(a>ad) = J.0-exp(-vPe(a>ad)) = 1/475 ' (6.1) 

and from which the probability of exceeding the design acceleration during an event is, 
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. 2.10748234e-3 n n „ . j n * „ P„(a>ad) = = 0.042149646 (6.2) 

The corresponding Normal variate for the event is Be = 1.726 

Assuming that the peak accelerations have a Lognormal distribution with coefficient of 

variation 0.6, then 

= ̂ ri(l + V2

a) = 0.6, or Va = 0.658 (6.3) 

ad = . ° exp(BeJln(l + V2)) = 4.400 m/sec2 (6.38) 

4.400Jl + V2 5.267756398 , . 2 

a = v — = = 1.870 m/sec (6.39) 
exp(Bjln(l + Va

2)) exp(1.726* 0.6) 

aa = aVa = 1.870 x 0.658 = 1.230 m/sec2 (6.40) 

Thus, the postulated peak horizontal ground acceleration during events has a Lognormal 

distribution with a mean 1.870 m/sec2 and a standard deviation 1.230 m/sec2. 

(2) The vertical component 

The vertical component is supposed to have a peak design value of 2/3 of the horizontal peak 

value. Again, assume that occurrence of the earthquakes can be modeled by a Poisson 

process with arrival rate of v = 0.05/year, and that the design earthquake ad with a return 

period of 475 years is 2.930 m/sec2. As before, 

Pa(<* >aJ = 1.0-exp(-vPe(a >ad)) = 1/475 (6.1) 

or 
n , . 2.10748234e-3 
PJa>a,) = = 0.042149646 (6.2) 

e d 0.05 
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The corresponding Normal variate for the event is Be = J. 726 

Assuming again that the peak acceleration has a Lognormal distribution with coefficient of 

variation 0.6, then 

^ina = JWl + Va) = 0.6, or Va = 0.658 (6.3) 

ad = . ° exp(Be Jln(l + V2)) = 2.930 m/sec2 (6.41) 

2.930^1 + Va

2 3.507846874 i 
a = v — = = 1.245 m/sec (6.42) 

exp(PeJln(l + V2 )) exp(1.726* 0.6) 

aa = aVa = 1.245 x 0.658 = 0.819 m/sec2 (6.43) 

Thus, the postulated peak vertical ground acceleration during an event has a Lognormal 

distribution with a mean 1.245 m/sec2 and a standard deviation 0.819 m/sec2. 

(3) The rotational component 

Following the same procedures and assuming the design peak rotational acceleration of 0.1 

rad/sec2, the postulated peak rotational ground acceleration during an event has a Lognormal 

distribution with a mean 0.0425 rad/sec2 and a standard deviation 0.0280 rad/sec2. 

6.7.3 Random variables 

A structural analysis model has been calibrated by Ventura et al (2002), so only the 

uncertainties associated with ground motions are considered. The peak values of the four 

ground motion components, A^.A^.A^A^, were selected as the random variables for the 

structure before seismic retrofit; and an additional random variable, the hysteretic damper 
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sectional area, A d , was chosen for the structure after seismic retrofit. The variable bounds 

before and after retrofit are given in Table 6.35 and 6.36. The distributions and statistics of 

the random variables were listed in Table 6.37. 

Table 6.35 Case study 5: Input variable bounds (before retrofit) 
Random variable Lower bound Upper bound 

(m/sec2) 0.100 4.900 

A m (m/sec2) 0.100 4.900 

A x z (m/sec2) 0.100 4.900 

A g r (rad/sec ) 0.005 0.120 

Table 6.36 Case study 5: Input variable bounds (after retrofit] 
Random variable Lower bound Upper bound 

A ^ (m/sec2) 0.100 9.000 

A ^ (m/sec2) 0.100 9.000 

A „ (m/sec2) 0.100 9.000 

A, (rad/sec') 0.002 0.200 

Ad (mm2) 1500 15000 

Table 6.37 Case study 5: Input variable probability distributions and statistics 
Random variable Distribution Mean Standard deviation 

A ^ (m/sec2) Lognormal 1.870 1.230 

Agy (m/sec2) Lognormal 1.870 1.230 

A x z (m/sec2) Lognormal 1.245 0.819 

A g r (rad/sec2) Lognormal 0.0425 0.0280 

Ad (mm2) Normal 9000 90 

6.7.4 Performance evaluation 

6.7.4.1 The structure before seismic retrofit 

(1) Reliability analysis 
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Eighty combinations of the four random variable values were generated using Optimized 

Latin Hypercube Design, and for each combination, CANNY was run to calculate the 

structural responses: roof drifts, story drift ratios, base moments and base shear forces. Only 

the roof drifts were used in reliability assessment. The time step integration was carried out 

using Newmark's method, and viscous damping (5%) was assumed proportional to mass and 

instantaneous stiffness. Appendix E shows just the first 10 combinations and the 

corresponding responses. Finally, for each response, a neural network was trained and used 

for reliability assessment. Of the 80 examples, 64 were used for training and 16 were used 

for testing. The hidden neuron number and network RMSREs for the two responses are given 

in Table 38, with the relative error statistics for every response shown in Table 6.39. 

Table 6.38 Case study 5: Neural network training RMSREs (before retrofit) 
Response Neuron number Training Testing 

A, 4 0.022 0.023 

D, 6 0.030 0.035 

Table 6.39 Case study 5: Neural network training error statistics (before retrofit) 
Response Mean Standard deviation 

Dx -0.0001 0.0222 
0.0020 0.0315 

where Dx denotes roof longitudinal displacement; 

Dy denotes roof transverse displacement; 

The roof displacements were evaluated against the serviceability limit state and the life 

safety limit state. For the serviceability limit state with drift limit of 1/200 of its height, the 

following performance functions were used, 

169 



CHAPTER 6 SEISMIC RELAffilUTY ANALYSES: CASE STUDIES 

G, = 0.100-Dx(Agx,Agy,Agz,Agr) 

G2 = 0.100-D/A^.Agy.A^.A^) 

(6.44a) 

(6.44b) 

and for the limit state of life safety with drift limit of 1/100 of building height, the 

performance functions were, 

G^O.IOO-DJA^A^A^) 

G2 =0.200-Dy(Agx,Agy,Ag2,Agr) 

(6.45a) 

(6.45b) 

The reliability analysis was conducted by Importance Sampling and Monte Carlo Simulation, 

with structural responses estimated using neural networks and Local Interpolation. The 

results were given in Table 6.40 for serviceability limit state and Table 6.41 for life safety 

limit state. 

Table 6.40 Case study 5: Serviceability reliability indices (before retrofit) 

Performance function 
IS (104) MCS (105) 

Performance function NN LI NN LI 

G^O.IOO-DJA^A^A^AJ 0.385 0.282 0.414 0.365 

G2=0.100-D/Agx,Agy,Agz,Agr) -0.038 0.098 -0.066 0.122 

CPU time (sec) 10 15 25 70 

Table 6.41 Case study 5: Life safety re iability indices (before retrofit) 

Performance function 
IS (105) MCS (106) 

Performance function 
NN LI NN LI 

G^OJOO-DJA^A^A^) 1.644 1.577 1.821 1.815 

G2 =0.200-Dy(Agx,Agy,Agz,Agr) 0.914 1.079 1.363 1.313 

CPU time (sec) 50 135 195 690 
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From the tables, it seems that for the serviceability limit state, the reliability in the 

longitudinal direction is higher than that of the transverse direction. The low reliability 

indices show that the structure is relatively flexible, as it is a column flat slab system with 

low lateral stiffness. The reliability prediction based on Neural Networks is a somewhat 

greater than that from Local Interpolation, with the latter taking more time. As it takes 2525 

seconds to run CANNY once, reliability assessment using Monte Carlo simulation by 

integrating RELAN and CANNY would take 2525x105 seconds (2922 days) on a Pentium III 

500 MHz PC. For the life safety limit state, again, the reliability index in the longitudinal 

direction is higher than that of the transverse direction. The reason might be that the 

transverse direction has a larger radius of rotation, which is susceptible to strong rotational 

ground motion. Neural Networks takes far less time than Local Interpolation in reliability 

calculation. A direct Monte Carlo simulation using CANNY dynamic analysis would take 

2525x106 seconds (29224 days) on a Pentium III 500 MHz PC. Neural Networks exhibit 

robustness compared to Local Interpolation. Both are utilized with Importance Sampling, 

after the estimation of a "design point", as described. When the reliability is high, the design 

point could be far away from the mean value point, which renders Local Interpolation less 

effective as there might be fewer data around the design point. 

(2) Influences of the different components of ground motion 

The influence of each variable on structural performance was studied by varying its mean 

and keeping its coefficient of variation constant 0.66, while the statistics of other variables 

were kept unchanged. The results were shown in Figure 6.15, where the solid line 

corresponds to performance function G, = 0.200-Dx and the dashed line is associated with 
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G2 = 0.200 -Dy 

(a) Variation of reliability index with respect to A 

(b) Variation of reliability index with respect to A 
gy 

(c) Variation of reliability index with respect to A 
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Figure 6.15 Variation of reliability index with respect to ground motion components 

It can be seen from above that peak longitudinal acceleration has a great influence on 

longitudinal response, while peak transverse acceleration has a significant effect on 

transverse response. The peak vertical and rotational accelerations have no obvious impact 

on longitudinal response, though they have a slight effect on transverse response. 

6.7.4.2 The structure after seismic retrofit 

(1) Reliability analysis 

After the Northridge earthquake, the Holiday Inn suffered different levels of damage, and 

was repaired afterwards. Several options were available for seismic retrofit, such as adding 

shear walls, installing steel frames, upgrading with base isolation, providing energy 

dissipation devices, etc. In this study, steel cross brace type dampers with hysteretic damping 

(Huang et al, 2002) were used as the retrofit scheme, as they added little weight to the 

structure and were simple to erect. The yield strength was assumed 350 MPa. 

0.04 0.045 0.05 

Peak rotational acceleration 
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96 combinations of the five input random variables were generated by Optimized Latin 

Hypercube Design (Appendix E), and CANNY was run for each case. Finally, for each 

response, a neural network model was built for reliability analysis. Of the 96 examples, 76 

were used for training and 20 were used for testing. The hidden neuron number and network 

training RMSREs for the two responses are given in Table 42, with the relative error 

statistics for every output variable shown in Table 6.43. 

Table 6.42 Case study 5: Neuron number and network RW [SREs (after retro 
Response Neuron number Training Testing 

Dx 
3 0.025 0.026 

Dy 4 0.036 0.036 

Table 6.43 Case study 5: Neural network training error statistics (after retrofit) 
Response Mean Standard deviation 

Dx 
0.0002 0.0256 

Dv 
0.0001 0.0378 

Reliability analysis was carried out using Monte Carlo simulation, and the variation of 

reliability index with respect to damper mean area were plotted in Figure 6.16 and Figure 

6.17, where the standard deviation of the area was assumed 1% of its mean. The performance 

functions for serviceability limit state were as follows, 

Gj =0.100-Dx(Agx,Agy,Agz,Agr,Ad) (6.46a) 

G2= 0.100-D/A^.A^.Av.A^.AJ (6.46b) 

and for life safety limit state as, 

G, = 0.200-Dx(Agx,Agy,Agz,Agr,Ad) (6.47a) 

G2 = 0.200 - Dy( Agx,Agy,Agz,Agr,Ad ) (6.47b) 
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Figure 6.16 Variation of reliability index with respect to damper mean area A d 

(Serviceability limit state) 

In the above, the solid line corresponds to performance function G, = 0.100-DX and the 

dashed line is associated with G2 =0.100-Dy. 
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Figure 6.17 Variation of reliability index with respect to damper mean area A d 

(Life safety limit state) 

In the above, the solid line corresponds to performance function G, =0.200- Dx and the 

dashed line is associated with G, = 0.200 -Dv. 

It is can be seen that as the mean damper sectional area A d increases, the reliability in the 

longitudinal direction grows steadily when A d is greater than 7000 mm2; though it decreases 
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slightly when A d is less than 7000 mm2; on the contrary, the reliability increases with A d 

when A d is less than 9000 mm2, it decreases afterwards. Overall, the reliability of the 

retrofitted structure is improved compared to that of the original structure. Since the dampers 

in the two directions have the same cross sectional area throughout the height of the building, 

the reliability in the transverse direction begins to decrease after some point. This is due to 

the increasing rigidity, resulting in more inertial forces that compromise the benefit of 

increasing the damper size. To accomplish a better performance, the damper size should be 

optimized along the two horizontal directions as well as in the vertical direction. 

(2) Influences of the different components of ground motion 

The influence of each variable on structural performance was again investigated by varying 

its mean by -10% to 10% and keeping its coefficient of variation constant 0.66, while the 

statistics of other variables were kept unchanged. Only the life safety limit state was 

considered. The results were shown in Figure 6.18, where the solid line corresponds to 

performance function Gt=0.200-Dx and the dashed line is associated with 

G2 = 0.200 -Dy. 
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(b) Variation of reliability index with respect to A 
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Figure 6.18 Variation of reliability index with respect to ground motion components 
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It is observed that the peak longitudinal acceleration has a significant influence on 

longitudinal performance, while the peak transverse acceleration affects the transverse 

performance substantially. The peak vertical acceleration and peak rotational acceleration 

have minor effects on both the longitudinal and transverse performances. 

6.8 Reliability Assessment: Summary and Conclusions 

In view of the many sources of uncertainties inherent in earthquake resistant design, 

reliability analyses need to be undertaken in the design process by properly taking into 

account those uncertainties. Five case studies of structural seismic reliability analyses were 

presented to demonstrate the applicability and effectiveness of the proposed approach. Two 

levels of performances, serviceability and ultimate limit state, are generally assessed for the 

corresponding two levels of earthquakes. The examples proved the near impossibility of 

performing seismic reliability assessment by means of standard Monte Carlo simulation, 

using nonlinear dynamic analysis directly. The case studies illustrate, instead, that the 

reliability assessment can be carried out, quickly and accurately, by using Designed 

Experiments and Neural Networks trained with databases of responses of the structural 

system, under probabilistic seismic ground excitation. The results also demonstrate that 

Neural Networks are more robust and efficient than local regression methods of interpolating 

responses. Powered by this tool, structural engineers can accomplish the seismic design 

objectives with explicit reliability, which will assure life safety and mitigate seismic risks by 

reducing possible damage. 
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CHAPTER 7 PERFORMANCE-BASED 
SEISMIC DESIGN APPLICATIONS 

7.1 Introduction 

Performance-based seismic design requires that for multiple seismic hazards, multiple 

performance criteria be satisfied explicitly with specified reliability levels. Because many 

uncertainties are involved, performance-based design should be carried out in the framework 

of reliability analysis, by taking into consideration the effect of all major uncertainties, in 

order to achieve the pre-defined design objectives. Among all the uncertainties, the 

earthquake ground motion is the most important and it is not well understood. As the input to 

structural analysis, its appropriate characterization ultimately determines the success of a 

seismic design. The intricate structural response under excitation of ground shaking depends 

on the inelastic behavior of the structure and its connections, the influence of non-structural 

elements and building content, soil-structure interaction, as well as the analytical model 

based on assumptions and simplifications. The real response of the structure can only be 

estimated using stochastic nonlinear dynamic analysis. In this manner, both the uncertainties 

in structural capacities and seismic demands can be considered, so that seismic design can be 

undertaken within a transparent and realistic methodology. 

In the present state of practice of seismic design, the uncertainties in structural capacity and 

seismic demand are generally unaccounted for. The seismic capacity is usually estimated by 

a nonlinear static analysis (pushover analysis) in which only the fundamental mode is 

allowed for, with the response obtained by monotonic incremental lateral loading. The elastic 
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analysis conducted according to the codified procedure does not consider the intrinsic 

uncertainties and the computations do not reflect the actual structural behavior. The resulting 

designs may have an uncertain reliability level, certainly quite variable across design 

conditions. 

Performance-based design aims at improving the procedure by attempting to meet 

performance requirements with specified reliabilities. Thus, the design is formulated as an 

optimization problem in the context of reliability-based design. Stochastic nonlinear dynamic 

structural responses are implemented within reliability analysis when the structure is 

subjected to a probabilistic earthquake. Design parameters are sought by minimizing the 

objective function defined in Equation (5.14). There are two ways of solving this problem: a) 

the reliability analysis can be conducted using FORM or simulations; or b) a reliability index 

database can be generated in terms of the design parameters, with a neural networks model 

subsequently built, and used for optimization. Gradient-free algorithms will be relied on for 

the optimization due to the possible highly nonlinear behavior of the structure. 

Four applications are presented to illustrate the applicability of the proposed method. These 

correspond to the same examples discussed in the previous chapter, ie., a two-story 

reinforced concrete frame, a tall reinforced concrete building, a bridge bent without or with 

seismic isolation, and a wood shear wall. Advantage is taken of the response databases and 

trained neural networks developed beforehand. Multiple seismic hazards are considered, with 

multiple performance objectives. 
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7.2 A Two-story Reinforced Concrete Frame 

7.2.1 Description of the structure 

The structure has been discussed in Chapter 6, a two-story reinforced concrete frame. It is 

subjected to the same probabilistic earthquake ground shaking, and the mean weight on the 

roof Wj and the mean weight on the floor W2 are the design parameters to be calculated, 

allowing for each one a coefficient of variation of 0.05. 

7.2.2 Random variables 

The steel yield strength fy, the concrete compressive strength f'c, the concrete elastic 

modulus Ec, the weight on roof W,, and the weight on floor W2, were selected as the five 

input variables. The response variables were the drift at the roof D, and the drift at the floor 

D2. The probability distributions and statistics of the input variables were as shown in Table 

7.1. 

Table 7.1 Reinforced concrete plane frame: Input variable probability 
distributions and statistics 

Input variable Distribution Mean Standard deviation 

/ v(MPa) Lognormal 400.0 30.0 

/JOVlPa) Normal 30.0 4.5 

£ c (MPa) Normal 22500.0 1000.0 

fF,(KN) Normal ? 0.05^ 
W2(KN) Normal ? 0.05W, 
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7.2.3 Performance-based design formulation 

For this probabilistic strong ground shaking, the limit state of collapse prevention was 

evaluated, as indicated by the following two performance functions, 

In the above, the drift limit was set to 3% of the story height from ground. Dt and D2 were 

assumed Lognormally distributed, and estimated by means of neural networks that were 

developed in the previous chapter. The target reliability indices for the two modes were set to 

P| =1.800 and p2 = 1.500, respectively. 

7.2.4 Results 

Two approaches were used for the optimization problem, depending on how 6/Xd ) was 

obtained. 

(1) Conventional approach 

By this approach, the reliability index is calculated each time by using standard method like 

FORM and Importance Sampling. The design parameters and the achieved reliability indices 

were found to be, 

Gl=0.240-Dl(fy,fc,Ec,W1,W2) (7.1a) 

G2=0.120-D2(fy,f'c,Ec,W1,W2) (7.1b) 

W,=370.5KN, B, =1.799; 

W2 = 426.7KN, B2 =1.500. 
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(2) Neural network approach 

Two reliability index databases were constructed by running RELAN (Foschi et al, 2002) for 

combinations of W, and W2, while keeping the coefficients of variation constant as 0.05. 

Appendix F shows just the first 10 combinations of the databases. Two neural networks were 

then developed for the two reliability indices 6, and B2. The design parameters and the 

achieved reliability indices were obtained by optimization, 

W,=367.0KN, Bj =1.800; 

W2 =455.8KN, B2 =1.500. 

It can be seen that the two approaches produced roughly the same answer. Though building 

reliability index databases involves some more time, it is compensated by savings during the 

actual optimization. This approach using B neural networks will show its superiority as the 

number of design parameters increases. 

7.3 A Tall Reinforced Concrete Building 

7.3.1 Description of the structure 

This structure has been discussed in Chapter 6. It is a two-bay, twenty-story reinforced 

concrete frame, with story height of 4 m and span of 8 m. The beams have a constant cross 

section 350 mm x 700 mm. The column cross sections vary along the height of the building: 

from stories 1 to 7, BjxH,; from stories 8 to 14, B2 xH2; from stories 15 to 20, B3xH3. 
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7.3.2 Random variables 

As before, fifteen input random variables were considered and, for clarity, they were listed 

below, 

(1) peak ground acceleration, Ag; 

(2) predominant ground frequency, cog; 

(3) earthquake strong motion duration, Td; 

(4) beam distributed vertical load, q; 

(5) steel yield strength, fy; 

(6) concrete compression strength for columns from story 1 to 7, fcl; 

(7) concrete compression strength for columns from story 8 to 14, fc2; 

(8) concrete compression strength for columns from story 15 to 20, fc3; 

(9) concrete compression strength for beams, fb; 

(10) cross section width of columns from story 1 to 7, B, ; 

(11) cross section depth of columns from story 1 to 7, H,; 

(12) cross section width of columns from story 8 to 14, B2; 

(13) cross section depth of columns from story 8 to 14, H2; 

(14) cross section width of columns from story 15 to 20, B3; 

(15) cross section depth of columns from story 15 to 20, H3; 

184 



CHAPTER 7 PERFORMANCE-BASED SEISMIC DESIGN APPLICATIONS 

The probability distributions and statistics of the fifteen input random variables were given in 

Table 7.2, where B,,H ltB2,H 2,B3,H 3 were selected as the design parameters, and the 

column dimensions were assumed well-controlled with COV 0.01. 

7.3.3 Performance-based design formulation 

Six structural responses were studied, namely, the roof displacement D20< the roof 

acceleration A20, the 15th story drift ratio 01}, the 5th story drift ratio 05, the base 

overturning moment M and the base shear V. They were assumed to have Lognormal 

distribution and calculated using the neural networks developed in Chapter 6. For the six 

ultimate limit states, the following performance functions were considered, 

G, = 0.800-D20 (7.2a) 

G2 = 4.900 -A20 (7.2b) 

G3= 0.0 JO -915 (7.2c) 

G4= 0.010 -65 (7-2d) 

G5=M0-M (72e) 

G6=V0-V (7-2f) 

For illustration purpose, Mg was assumed Normally distributed with mean 54000 KNm and 

standard deviation 5400 KNm; and V0 was assumed Normally distributed with mean 1440 

KN and standard deviation 144 KN. 

The target reliability indices for the six performance functions were specified as, 

p| = 3.000 ;{32 = 2.500; ft =2.500 ;ft = 2.500 ;p; = 2.500 ;ft = 2.500 
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Table 7.2 Tall building: Input variable probability distributions and statistics 
Input variable Distribution Mean Standard deviation 

4, (gal) Lognormal 290.0 191.0 

eog (rad/sec) Normal 5TC 7C 

Td (sec) Normal 30.0 5.0 
q (KN/m) Normal 45.0 4.5 

/„ (MPa) Lognormal 400.0 10.0 

/ . , (MPa) Lognormal 40.0 1.5 

/ , , (MPa) Lognormal 30.0 1.5 

L, (MPa) Lognormal 20.0 1.5 

/„ (MPa) Lognormal 20.0 1.5 

B, (mm) Normal ? 0.0 IB, 
i / , (mm) Normal ? 0.01H, 
i?2 (mm) Normal ? 0.0IB\ 
H2 (mm) Normal ? 0.01H2 

5, (mm) Normal ? 0.0 IB3 

H3 (mm) Normal ? 0.01H3 

7.3.4 Results 

Sixty-four combinations of the six design parameters BltH,,B2,H2,B3,H'3 were created. 

Six reliability index databases were constructed for the six performance functions using 

RELAN, maintaining the coefficients of variation of B,, Ht, B2, H2, B3, H3 as 0.01. 

Appendix G shows the first 10 combinations of the reliability index databases. Next, six 

neural networks were developed for the six reliability indices. Finally, the design parameters 

and the achieved reliability indices were found by optimization as, 

B, = 830mm, H, = 1129mm; 

B2 = 536mm, H2 = 747mm; 

B3 = 497mm,H3 = 608mm; 
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8, = 2.952, 82 = 2.525, B3 = 2.505, B4 = 2.543, B5 = 2.923, B6 = 2.574 

7.4 A Bridge Bent Without or With Seismic Isolation 

7.4.1 Description of the structure 

This is the same bridge outlined in Chapter 6. It has two round columns connected on top by 

a cap beam, which is 8 m above the ground. In the case of seismic isolation for the deck, four 

identical Lead Rubber Bearing isolators are put on the cap beam. The performance of this 

bridge bent without or with seismic isolation, for two levels of earthquake, is studied. 

7.4.2 Bridge bent without seismic isolation 

7.4.2.1 Random variables 

In this case, five variables were selected as the input variables, namely, peak ground 

acceleration Ag, predominant ground frequency cog, strong motion duration Td, column 

diameter D, and vertical load on the bearing Q. The probability distributions and statistics 

of the variables were given Table 7.3, where the values in parenthesis were for ultimate limit 

state. 

Table 7.3 Bridge bent: Input variable probability distributions and statistics 
(without seismic isolation) 

Input variable Distribution Mean Standard deviation 

Ag (cm/sec2) Lognormal 151.0(325.0) 99.0 (214.0) 

cog (rad/sec) Normal 5TC K 

7 ; (sec) Normal 20 (30) 5 
D(mm) Normal 1800 18 

0(KN) Normal 2400 240 
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7.4.2.2 Performance-based design for serviceability limit state 

The displacement at the cap beam was evaluated against a limit of 1/200 of its height from 

ground, based on the following limit state function, 

where the displacement A was assumed to have a Lognormal distribution and estimated by 

the neural networks developed in Chapter 6. 

The design parameter was the mean of the column diameter, D, assuming the standard 

deviation as 1% of the mean. The target reliability index was specified as B' = 2.000. From 

optimization, the value of the design parameter and the achieved reliability index were found 

to be, 

D= 1754mm, 0 = 2.000 

7.4.2.3 Performance-based design for ultimate limit state 

This limit state was supposed to be associated with the state of collapse prevention. The 

displacement at the cap beam was evaluated against a limit of 1/40 of its height from ground, 

as indicated by the following limit state function, 

in which the displacement A was assumed to have a Lognormal distribution and estimated 

by neural networks. 

G = 0.04-A(Ag,cog,Ts,D,Q) (7.3) 

G = 0.200-A(Ag,co g,Ts,D,Q) (7.4) 
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The design parameter was again the mean of the column diameter, D, with a standard 

deviation fixed at 1% of its mean. The target reliability index was specified as P' =2.500. 

From optimization, the value of the design parameter and the achieved reliability index were 

found to be, 

D = 1953mm, B = 2.500 

7.4.3 Bridge bent with seismic isolation 

7.4.3.1 Random variables 

In this case, six variables were selected as the input variables, namely, peak ground 

acceleration A , predominant ground frequency cog, strong motion duration Td, column 

diameter D, and vertical load on isolators Q, and width of the isolators Br. The probability 

distributions and statistics of the variables are given in Table 7.4, in which the values in 

parenthesis correspond to ultimate limit state. 

Table 7.4 Bridge bent: Input variable probability distributions and statistics 
(with seismic isolation] ) 

Input variable Distribution Mean Standard deviation 

Ag (cm/sec2) Lognormal 151.0(325.0) 99.0 (214.0) 

cog (rad/sec) Normal 5TC 71 

Td (sec) Normal 20 (30) 5 
£>(mm) Normal 1800.0(?) 18.0(0.01 D) 
G(KN) Normal 2400 240 

5r(mm) Normal ? 0.0IB; 
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7.4.3.2 Performance-based design for serviceability limit state 

The displacement at the cap beam was evaluated against a limit of 1/800 of its height from 

ground, as indicated by the following limit state functions, 

where the displacement A was assumed to have a Lognormal distribution and estimated by 

neural networks. 

The design parameter was the mean of the isolator width, Br, assuming the standard 

deviation to be 1% of the mean. The target reliability index was specified as B' = 2.000. By 

optimization, the value of the design parameter and the achieved reliability index were found 

to be, 

Br= 795mm, B = 2.000 

7.4.3.3 Performance-based design for ultimate limit state 

The displacement at the cap beam was evaluated against a limit of 1/250 of its height from 

ground, and the column base moment was assessed against the yield capacity My, in terms 

of the following limit state functions, 

G = 0.010- A(Ag ,o)g,Ts,D, Q, Br) (7.5) 

G, = 0.032-A(Ag,a)g,Ts,D,Q,Br) (7.6a) 

G2=My-Mc(AG,G>g,Ts,D,Q,Br) (7.6b) 
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where the displacement A and Mc were assumed to have a Lognormal distribution and 

estimated by neural networks, while My was the yield moment of column which was 

assumed to have a Normal distribution with mean 5800 KNm and standard deviation 290 

KNm. 

The design parameters were the means of the column diameter D and the isolator width Br, 

assuming the standard deviations to be 1% of the means. The target reliability indices were 

specified as B\ = B'2 = 2.500. 

Two approaches were used to solve the problem, ie, one was the conventional approach and 

the other was based on reliability index database and neural networks. 

(1) The conventional approach 

In this approach, the reliability index is calculated by standard methods such as FORM or 

Importance Sampling. From optimization, the values of the design parameters and the 

achieved reliability indices were found to be, 

D = 1765mm, Bt =2.507; 

B r = 748mm, B2 =2.502 

(2) Neural network approach 

Two reliability index databases were constructed by running RELAN for combinations of the 

design parameters, while keeping the coefficients of variation constant; and Appendix H 

shows the first 10 combinations of the databases. 
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Two neural networks were respectively built for the two reliability indices: B, and B2. By 

optimization of the same problem, the design parameters and the corresponding achieved 

reliability indices were found to be, 

D= 1758mm, /?, =2.500; 

Br = 779mm, B2 =2.500 

The results are very close to the results obtained with the conventional approach. Though 

construction of reliability index databases takes somewhat more time, the calculation of 

design parameters is very fast. 

7.5 A Wood Shear Wall 

7.5.1 Description of the structure 

This wood shear wall structure has been introduced in Chapter 6. It is a 2.4 m high and 2.4 m 

wide wall, with 12 mm thick OSB sheathing panels attached to the frame using common 50 

mm long nails. The spacing of the vertical members is 400 mm. The structure is subjected to 

the same earthquake as before (Joshua Tree Station earthquake with amplitude adjusted). 

7.5.2 Random variables 

The neural networks developed in the preceding chapter were used. The four input variables 

were the nail spacing along the perimeter e,, the nail spacing in the interior e2, the mass 

carried by the wall M, and the peak ground acceleration Ag. Two responses were the wall 

192 



CHAPTER 7 PERFORMANCE-BASED SEISMIC DESIGN APPLICATIONS 

drift A and the nail edge tearing force V. The probability distributions and statistics of the 

input variables were presented in Table 7.5. 

Table 7.5 Wood shear wall: Input variable probability distributions and statistics 
Random variable Distribution Mean Standard deviation 

e, (m) Normal ? O.le, 

e2 (m) Normal ? 0.1e2 

M (KN.secVm) Normal 6.0 0.6 

Ag (m/sec2) Lognormal 0.927 0.556 

7.5.3 Performance-based design 

The design parameters were the mean of e,, e,, and the mean of e2, e2, so that the target 

reliability indices were met as B\ = B2 = 2.5 for the following performance criteria, 

G1=A0-A(e1,e2M,Ag) (7.7a) 

G2=V0-V(e„e2M,Ag) (7.7b) 

where Ag denotes the drift limit which was set to 1/200 of the wall height, 12.0 mm; 

V0 denotes the nail edge tearing capacity that was assumed Normal with a mean of 

1.05 KN and a standard deviation of 0.105 KN; 

The optimization was conducted using the conventional approach, in which FORM and 

Importance Sampling were utilized for reliability calculation. The design parameters and the 

corresponding achieved reliability indices were found to be, 

el = 0.058m, Bt =2.570; 

e2 = 0.128m, B2= 2.570 
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7.6 Summary 

Four performance-based seismic design applications have been presented illustrating the 

applicability and efficiency of the proposed method for performance-based seismic design. 

The proposed method allows for uncertainties in earthquake demands, and seismic design 

can be carried out in the framework of reliability-based design, so that multiple performance 

requirements can be satisfied with specified reliability levels. 
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CHAPTER 8 SUMMARY AND 
FUTURE WORK 

8.1 Summary 

In earthquake resistant design, multiple performance criteria must be satisfied with pre-

specified reliabilities, and structural responses are evaluated based on probable earthquakes 

that may occur during the service life of the structure. The many uncertainties inherent in the 

design process are not explicitly coped with in current codified recommendations. Therefore, 

the achieved reliability level is not known and likely non-uniform across different design 

situations. 

This thesis has presented a methodology for 1) reliability assessment and 2) performance-

based design. It is based on computer simulations utilizing neural networks for the evaluation 

of structural responses. 

As the primary uncertainty in seismic design, earthquake ground motion needs to be properly 

characterized. The ground motion model should take account of all the major factors that are 

of engineering significance. To this end, three parameters are identified to characterize the 

ground accelerogram, namely, the peak ground acceleration, the frequency content and the 

duration. Non-stationary ground acceleration time history is synthesized by multiplying a 

modulation function with a stationary stochastic process that is generated on the basis of a 

power spectrum. To prevent spurious displacement and velocity shift, a baseline correction 

method has been devised to process the synthesized accelerogram. The goal of the artificial 

ground motion generation is not to suggest a new approach, but to produce an ensemble of 
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artificial ground accelerograms that share the same seismic parameters, in an attempt to 

consider the uncertainty in ground shaking for seismic analysis and design. The generated 

artificial accelerograms are used as inputs to a nonlinear dynamic structural analysis program 

to compute the responses of a structure. 

In order to build the neural network models for seismic reliability assessment, response 

databases have to be constructed in advance as the training data for neural network. This can 

be accomplished by virtue of design of experiment techniques. A new experimental design 

method is proposed in this study. First, a design is generated with more data points than 

needed using Latin Hypercube Sampling, then a minimum inter-point distance is set and the 

data points whose distance is less than the threshold are merged. The process is repeated until 

the inter-point distance threshold grows to a certain limit. Finally, the data points are sorted 

according to distance with one of the pair of close points eliminated, until the required 

number of data points is left. This method proves effective and efficient as the minimal inter-

point distance is controlled, thus enforcing the uniformity of the design. 

Neural networks are proposed for seismic reliability analysis and performance-based design. 

Multiple layer neural networks are employed that has one hidden layer of neurons. The 

optimal number of neurons is determined by cross validation. The data are divided into five 

equal groups. The neural network is trained five times, and each time four of the subsets are 

used for training and the remaining one for verification. Both training errors and verification 

errors are calculated. A criterion based on the training error and verification error is used for 

measurement of network goodness. The network with the minimal criterion value is judged 

as the optimal network. Finally, the optimal network is trained by shuffling the data in the 
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training dataset and the testing dataset. Any sample in the testing dataset with an error larger 

than a threshold is put into the training dataset, while the same number of samples in the 

training dataset that have the least error are put into the testing dataset. The training process 

is repeated until the training error is reduced to a certain limit or the limit on iteration is 

reached. By doing this way, all the critical data points are included in the training dataset, 

ensuring that the underlying functional relationship is well represented by the neural network. 

Performance-based seismic design is explored by mean of neural networks in the framework 

of reliability-based design. The purpose of this approach is to take into consideration all the 

major uncertainties in the design, to improve the computational efficiency, and to satisfy 

multiple performance criteria with preset reliability levels when the structure is subjected to 

multiple seismic hazards. Four performance levels are proposed, namely, serviceability limit 

state, capability limit state, stability limit state and survivability limit state corresponding 

respectively to four levels of earthquakes, ie, a frequent minor event, an occasional moderate 

event, a rare major event and a very rare event. Design criteria are outlined for each 

performance level. A framework for performance-based seismic design is outlined, in which 

performance-based seismic design is formulated as an optimization problem, with an 

objective function minimized to obtain the design parameters. 

Five case studies on seismic reliability of structures are presented to illustrate the proposed 

method. A two-story reinforced concrete frame is used as the first example of existing 

building, and its seismic reliability is assessed in relevance to a probabilistic earthquake. A 

twenty-storied reinforced concrete frame is utilized as a representative of a tall building, and 

its seismic performances corresponding to two levels of earthquakes are evaluated. A bridge 
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bent without or with seismic isolation is studied as the third example, in which two levels of 

earthquakes are considered and seismic reliabilities of the bridge without or with seismic 

isolation are calculated. The results show that the reliability can be greatly enhanced by 

seismic isolation. As the fourth example, a wood shear wall is investigated regarding its 

seismic performance. The final example is concerned with an actual instrumented structure 

that has experienced three earthquakes and suffered damages. The seismic performance of 

this building during possible future earthquake is studied. The case studies prove the 

applicability and efficiency of the proposed approach, which can reduce the computational 

burden in seismic analysis and thus providing a promising tool for seismic reliability 

assessment. 

Performance-based seismic design applications are provided to illustrate the proposed 

approach, where design of experiments and neural networks are used. Two methods can be 

used to find the optimum design parameters, one is the conventional approach that utilizes 

FORM and Importance Sampling for reliability analysis, and the other is the P database 

approach where databases of the reliability indices are created first in terms of the design 

parameters and then neural networks of the reliability indices are built. The pre-constructed 

response databases and neural network models are taken advantage of for this purpose. In the 

case of the two-storied reinforced concrete frame, the maximum masses that can be carried 

on the roof and the floor are calculated. For the tall building in the ultimate limit state, the 

mean values of the column dimensions are calculated to meet the predefined target reliability 

levels. The mean of the column diameter of the bridge without isolation is calculated, 

whereas the means of column diameter and isolator width are optimized for the bridge with 

isolation. The optimal spacing of nails is found in the case of wood shear wall. These case 
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studies prove the applicability of the proposed method for performance-based design by 

means of optimization to achieve the multiple performance objectives. 

It is concluded that designed experiments and neural networks provide a robust and efficient 

tool in seismic reliability analysis and performance-based design, improving the simulation 

of real behavior of a complex structure and reducing the computational burden. 

8.2 Future Work 

This thesis work has explored seismic reliability assessment and performance-based seismic 

design using designed experiments and neural networks, however, the fields covered are so 

extensive that some issues are left for future developments in both theories and applications. 

• Earthquake ground motions, as the excitations to structure, need to be properly 

characterized in order to realistically predict the structural responses, provided the 

structural model is able to simulate the actual behavior of the structure. At present, there 

is not such a ground motion model that can accurately predict the future earthquake at a 

given site with high degree of reliability. Emphasis should be placed on the high 

uncertainty involved. Further works needs to be done in this direction, as the success of 

earthquake resistant design, to a large degree, hinges on appropriate characterization of 

the future ground motions at a specific site. 

• Though uncertainties in the seismic demand are taken into account by means of making 

assumptions of the distributions of the input variables and estimating the responses using 

neural networks, the uncertainties in the structural capacity are hard to deal with. 

Numerical procedures must be developed to evaluate the uncertainties in relation to 
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moment, shear and axial strengths of member subjected to complex loadings, and global 

displacement ductility of structure, as well as member plastic hinge characteristics and its 

rotational ductility, etc. 

• Design of experiments is indispensable for response database construction. Albeit some 

efforts have been made in this regard, there is more room for exploration in order to 

achieve an efficient and uniform experimental design. 

• Multilayer neural networks and radial basis function networks are explored for seismic 

reliability assessment and performance-based design. Other machine learning paradigms 

such as Gaussian process (Williams, 1995; Rasmussen, 1996; Neal, 1997), and support 

vector machines (Vapnik, 1998, 2000) need to be investigated, or new learning methods 

need to be innovated for further improvement and development of this approach. 

• The optimization for performance-based design is slow when the number of design 

parameters is relatively large. Faster algorithms need to be developed to expedite the 

optimization process. 

• Performance-based seismic design should be undertaken in the format of reliability-based 

design, with the design parameters determined through lifecycle cost benefit analysis. 

The decision making process involves political, economic, societal and technical factors. 

Both theory and application need further development to facilitate its successful 

implementation in practical engineering projects, where structural safety is guaranteed 

with potential hazards well assessed and risks well managed. 
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Appendix A 

Database for the two-story reinforced concrete frame 

1. Database of the input variable combinations 

fy(MPa) f;(MPa) Ec(MPa) W,(KN) W2(KN) 

394.384 25.212 22173 307.79 435.15 
415.878 28.848 22870 375.62 493.47 

381.933 27.984 22751 354.41 471.60 

378.513 39.612 24779 363.44 452.97 
390.501 27.984 22751 364.07 498.06 

388.632 30.180 23148 381.50 414.63 

421.400 36.336 24225 375,62 513.18 

421.400 25.356 22194 320.18 406.53 
392.496 42.420 25170 401.45 468.90 
383.194 26.796 22515 291.41 455.40 

2. Database of the responses 

D3(m) SD3(m) D2(m) SD2(m) 

0.083 0.071 0.051 0.048 

0.089 0.082 0.052 0.054 
0.09 0.087 0.052 0.056 

0.079 0.078 0.047 0.052 
0.087 0.084 0.052 0.056 
0.082 0.076 0.047 0.048 

0.083 0.077 0.050 0.053 

0.072 0.061 0.042 0.041 

0.084 0.083 0.049 0.054 

0.074 0.068 0.046 0.049 
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Appendix B 

Database for the tall reinforced concrete building 

1. Database of the input variable combinations 

<°s T s q fy C 4 4 fb Bi Hi B 2 H 2 B 3 H 3 

10 22 20.7 24 408 35 25 15 15 713 910 506 705 402 504 

13 12 40.3 33 417 36 26 16 16 726 920 512 710 404 509 

16 31 7.56 42 425 37 27 16 16 739 931 519 716 407 513 

19 7.6 27.2 51 434 38 28 17 17 752 941 525 721 409 518 

22 26 46.9 16.8 442 39 28 17 17 765 951 532 727 412 523 

26 17 14.1 25.8 451 40 29 18 18 778 962 538 732 414 527 

29 35 33.8 34.8 401 41 30 19 18 791 972 545 737 417 532 

32 5.3 53.4 43.8 409 42 31 19 19 804 982 551 743 419 537 

35 24 3.19 52.8 418 43 31 20 19 817 993 558 748 421 541 

39 15 22.9 18.6 426 44 32 20 20 830 1003 564 754 424 546 

2. Database of the corresponding responses (mean value) 

D 2 0 •̂ 20 e„ e5 
M V 

0.005001 0.159223 0.0121 0.009 8.49E+02 21.68 
0.009044 0.184871 0.0223 0.0167 1.52E+03 40.49 
0.006888 0.203147 0.0193 0.0128 1.13E+03 36.41 
0.025976 0.250284 0.0612 0.0452 4.17E+03 96.77 
0.006775 0.36076 0.0171 0.0131 1.22E+03 33.34 
0.018344 0.473205 0.0399 0.0338 3.31E+03 81.45 

0.00671 0.32982 0.0219 0.0133 1.14E+03 43.47 

0.036875 0.388779 0.0885 0.0676 5.71E+03 141.62 

0.018662 0.428509 0.0478 0.0375 3.34E+03 102.68 

0.017346 0.652247 0.0384 0.0324 3.11E+03 79.97 
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3. Databases of the responses (standard deviation) 

JD20 ^ A 2 0 s e i 5 

0.001526 0.022897 0.0032 

0.002704 0.034733 0.0063 

0.001176 0.029231 0.0034 
0.007111 0.03689 0.0178 
0.002096 0.068635 0.0045 
0.00584 0.071256 0.0109 
0.002717 0.060925 0.0051 
0.014607 0.051566 0.0275 

0.005389 0.061194 0.0115 
0.004441 0.110517 0.0066 

$95 SM 
sv 

0.0024 2.47E+02 5.38 

0.005 5.09E+02 10.32 
0.0023 2.56E+02 5.57 
0.0107 1.08E+03 19.53 
0.0035 4.05E+02 8.72 
0.0101 1.00E+03 20.19 
0.0039 4.47E+02 8.87 
0.0251 2.13E+03 36.07 
0.0096 1.01E+03 23.69 
0.009 7.66E+02 12.91 
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Appendix C 

Databases of the bridge without or with seismic isolation 

1. Database of the input variable combinations 

A , (gal) o g (rad/sec) Ts(sec) D(rnm) Br(mm) Q (KN) 

47.3 8.3 46.45 2067 873 3142 

67.9 22.4 33.61 1608 555 1658 

228.7 3.7 7.42 1767 845 1829 

627.8 18 27.05 2033 680 1854 

702.5 27.1 40.83 1740 663 2168 

197.2 30.3 2.87 1821 967 2849 

271.5 19.8 7.66 1721 597 2967 

369.3 18.1 51.35 1704 680 1767 

376.3 12.2 32.72 1692 543 2616 

34 15.2 22.17 1668 727 1932 

2. Responses (mean) database for bridge bent without seismic isolation 

A(m) M c (KNm) VC(KN) He M b (KNm) H b 

1.5478 6567.751 1685.356 88.7234 5923.284 0 3542 

2.8191 10481.97 2686.742 61.6259 9401.672 0 6043 

0.6442 12910.6 3321.84 51.532 11813.51 0 5659 
1.2087 18468.42 4734.917 96.6833 16472.42 0 8465 
1.439 5563.964 1427.193 82.5027 5010.298 0 2885 

2.2794 8811.976 2259.199 130.6768 7917.119 0 4988 

0.2215 10449.36 2642.931 17.7033 9270.353 0 4361 

0.813 13464.31 3451.355 65.0327 12104.14 0 5846 
0.1733 3624.891 928.498 9.9191 3330.208 0 1705 

0.2636 3995.262 1019.045 15.1239 3681.271 0 1961 
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3. Responses (standard deviation) database for bridge bent without seismic isolation 

SA(m) SMc(KNm) SVc(KN) ^ Mb (KNm) 

0.0004 243.91 57.767 0.0298 183.478 0.0121 

0.0006 139.467 33.711 0.0389 102.272 0.0028 

0.002 518.08 131.827 0.1268 439.568 0.0288 

0.0069 105.144 84.351 0.5428 1185.951 0.0262 

0.0284 54.383 30.166 1.8965 244.438 0.0151 

0.0017 585.322 143.612 0.1109 453.483 0.0288 

0.008 129.36 52.568 0.5282 350.509 0.0228 

0.0051 410.695 116.739 0.3351 535.487 0.0347 

0.0108 41.454 29.104 0.6957 243.132 0.0153 

0.0003 74.579 18.397 0.0188 54.603 0.0014 

4. Responses (mean) database for bridge bent with seismic isolation 

A(m) M c (KNm) VC(KN) Mb(KNm) U b 

0.0126 1098.438 249.9 0.0347 926.658 0.0186 

0.0121 699.679 171.1 0.0517 719.342 0.0194 

0.0781 4220.083 1032.32 0.6905 3489.402 0.1534 

0.1147 5354.663 1270.148 0.5442 4164.677 0.1679 

0.0938 4357.546 1075.5 0.7858 3788.365 0.1612 

0.0239 2232.411 546.755 0.2663 1951.901 0.054 

0.0831 2665.8 659.856 0.4351 2291.845 0.0788 

0.0647 2691.394 664.914 0.4609 2287.903 0.0781 

0.115 2737.568 673.086 0.4807 2320.041 0.0809 

0.0074 471.07 112.983 0.029 540.318 0.0142 
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Responses (standard deviation) database for bridge bent with seismic isolation 

SA(m) SMc(KNm) 

0.0036 271.644 
0.0038 99.738 
0.0136 440.268 
0.0281 632.524 

0.0212 579.226 

0.0056 393.488 

0.021 321.78 

0.0136 314.446 

0.0399 324.316 
0.0016 90.662 

SvoCKN) 

62.498 0.0086 
26.661 0.0118 
107.2 0.0978 

156.214 0.0874 

152.06 0.1822 

92.972 0.0727 

80.52 0.0722 

78.103 0.0726 

81.263 0.0733 
21.678 0.0056 

Sivib (KNm) 

197.867 0.004 
92.098 0.0025 
331.833 0.0217 
488.48 0.0284 

615.21 0.034 

325.443 0.0152 
321.954 0.0183 
231.165 0.0154 

317.919 0.0206 
62.415 0.0016 
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Appendix D 

Response database of the wood shear wall 

el(m) e2 (m) M 
(KNs2/m) 

A * 2 

(m/sec ) 
A(mm) V(KN) 

0.01 0.025 2 0.5 0.343 0.3006 

0.01 0.025 2 1 0.695 0.2983 

0.01 0.025 2 1.5 1.04 0.3026 

0.01 0.025 2 2 1.388 0.3521 
0.01 0.025 2 2.5 1.717 0.3853 

0.01 0.025 4 0.5 0.933 0.4988 

0.01 0.025 4 1 1.652 0.674 

0.01 0.025 4 1.5 2.532 0.5028 

0.01 0.025 4 2 3.367 0.5753 

0.01 0.025 4 2.5 4.065 0.4914 
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Appendix E 

Response database of the Holiday Inn 

1. Response database of the Holiday Inn before seismic retrofit 

Ax (m/sec2) Ay (m/sec2) Az (m/sec2) A R (rad/sec2) D x(m) Dy(m) 

0.1 0.1 0.1 0.005 0.005694 0.007909 

0.1 0.1 0.1 0.12 0.006339 0.007562 

0.1 0.1 4.9 0.005 0.005459 0.008592 

0.1 0.1 4.9 0.12 0.005999 0.008365 

0.1 4.9 0.1 0.005 0.011515 0.329426 

0.1 4.9 0.1 0.12 0.010811 0.344291 

0.1 4.9 4.9 0.005 0.012482 0.27927 

0.1 4.9 4.9 0.12 0.009658 0.29652 

4.9 0.1 0.1 0.005 0.22921 0.090296 

4.9 0.1 0.1 0.12 0.215678 0.090498 

2. Response database of the Holiday Inn after seismic retrofit 

A x 

(m/sec2) 
A Y 

(m/sec2) 
A z 

(m/sec2) 
A R 

(m/sec2) Ad (mm2) D x(m) D Y (m) 

0.1 0.1 0.1 0.002 1500 0.00403 0.003481 

0.1 0.1 0.1 0.002 10500 0.002024 0.002666 

0.1 0.1 0.1 0.2 1500 0.004296 0.00395 

0.1 0.1 0.1 0.2 15000 0.002181 0.005977 

0.1 0.1 9 0.002 1500 0.004151 0.003832 

0.1 0.1 9 0.002 15000 0.002267 0.003439 

0.1 0.1 9 0.2 1500 0.004493 0.004541 

0.1 0.1 9 0.2 15000 0.002393 0.00748 

0.1 9 0.1 0.002 1500 0.014179 0.450605 

0.1 9 0.1 0.002 15000 0.002889 0.350399 
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Appendix F 

Reliability index database for the two-story reinforced concrete building 

w, W 2 P. P2 

310.000 390.000 o.ooo 2.020 

310.000 403.300 1.675 2.003 
310.000 416.700 1.648 1.987 

310.000 430.000 1.621 1.972 

310.000 443.300 1.595 1.955 

310.000 456.700 1.570 1.939 

310.000 470.000 1.546 1.922 

310.000 483.300 1.523 1.905 

310.000 496.700 1.500 1.889 
310.000 510.000 1.480 1.873 
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Appendix G 

Reliability index database for the tall building 

1. Input variable combinations 

B, (mm) H, (mm) B2(mm) H2(mm) B 3 (mm) H 3 (mm) 

836 1008 590 778 407 591 
812 984 574 787 410 626 

787 1008 556 777 455 585 

784 1027 579 779 460 648 

850 979 586 839 409 600 

787 971 597 837 404 635 

805 954 562 803 466 567 

763 1029 578 814 477 640 
844 992 603 775 425 577 
829 1038 609 757 409 642 

2. Reliability index database 

p, P 2 
Ps P 4 

Ps P 6 

3.032 2.874 2.047 2.256 2.857 2.669 

2.981 2.758 2.209 2.189 2.908 2.659 
2.914 2.811 2.265 2.237 2.782 2.685 

2.897 2.507 2.581 2.262 2.749 2.690 
2.974 2.786 2.084 2.189 2.843 2.601 
3.054 2.767 • 2.339 2.254 3.063 2.774 
2.923 2.851 2.288 2.194 2.844 2.719 

2.962 2.463 2.672 2.313 2.772 2.692 

2.946 2.881 2.059 2.226 2.809 2.690 

3.011 2.641 2.228 2.281 2.798 2.661 
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Appendix H 

Reliability index database for the bridge bent with isolation 

D(mm) Br(mm) ft P 2 

1550.000 550.000 2.210 3.801 
1550.000 616.700 2.082 3.641 
1550.000 683.300 1.906 3.449 
1550.000 750.000 1.644 3.161 
1550.000 816.700 1.360 2.546 
1550.000 883.300 1.229 1.735 
1550.000 950.000 1.190 1.102 

1633.000 550.000 2.491 3.763 

1633.000 616.700 2.422 3.650 
1633.000 683.300 2.277 3.522 
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