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ABSTRACT 

The objective of the present study is to characterize the dispersion of small, spherical particles 

(mainly heavy particles) in a quasi two-dimensional axisymmetric pancake-like vortex. The 

velocity field for a pancake vortex is substituted into the Maxey-Riley (1983) equation, and the 

resulting equations of motion are solved numerically, in non-dimensional form, for a given set of 

parameters. 

The particles' characteristics that are of primary importance are their density and their diameter. 

In general, the particles considered are denser than the surrounding fluid. Therefore they move 

away from the vortex centre with time. The Stokes number, a function of the particle diameter 

and density, measures the sensitiveness of the particle to the surrounding velocity field. The 

lateral dispersion of the particles is examined for different values of the Stokes number, ranging 

from 10"' to 10. 

The analysis is first conducted in the 2D horizontal plane of the vortex. By looking at the 

dynamics of individual particles, it is shown that particles of the same size and density cannot 

accumulate in the core of the vortex, but they can do so in the outer region of the vortex, 

increasing the possibility of flocculation. In addition, if the Stokes number is large enough, 

particles initially located in the central region of the vortex are able to overtake particles initially 

located further from the vortex centre. 

The analysis of the concentration profiles in the horizontal plane of the vortex, when the flow is 

initially seeded with a homogeneous distribution of particles of the same size and density, shows 

that accumulation of particles takes the form of a concentration wave that grows and travels away 

ii 



from the vortex centre. The larger the Stokes number is, the faster the particles are ejected, but 

optimal accumulation occurs for intermediate values of the Stokes number (St ~ 1). Also, for 

large Stokes numbers (St ~ 10), overtaking is observed. It occurs at very early times and 

substantially modifies the dispersion process, causing a second peak of concentration to appear. 

Just before the second peak of concentration detaches itself from the first one, a very high local 

concentration is observed, because the catch-up phenomenon adds up to the local accumulation of 

particles. Further calculations show that overtaking is associated with a very high probability of 

collision between the particles, so that, in reality, flocculation is expected to play an important 

role for large Stokes numbers. 

The analysis is extended to the settling of heavy particles through the vortex. A 3D study shows 

that the second peak of concentration observed in the case of large Stokes numbers (Sr ~ 10) 

will not occur unless the vortex thickness is large enough. 
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1. REVIEW OF THE INFLUENCE OF VORTEX STRUCTURES ON 

THE DISPERSION OF PARTICLES 

1.1 General introduction 

Many turbulent flows of practical interest involve the dispersion of particles, drops and bubbles. 

Applications range from power production to pollution control. A s it has been shown in recent 

years, the particle dispersion is highly influenced by the large-scale coherent structures of the 

flow, and namely by vortical flow structures. As Hunt (1991) reports in his review of industrial 

and environmental flows, vortices are sometimes generated in flows where they do not usually 

exist, in order to enhance mass and heat transfer [as in the Oxford dialysis machine, where 

channels have undulating walls to generate recirculating flows]. In a patented process ( A L C A N 

International Ltd. 1988), vortices are generated by baffle plates in the turbulent flow along a 

channel of liquid aluminium containing small particles; these vortices capture the particles as they 

travel over the baffles and then deposit them farther down the channel, holding them in 

suspension for longer than they would be otherwise. 

The vortical structures that are present in free shear flows such as mixing layers, jets and wakes 

have received wide attention. These vortices (especially the primary quasi two-dimensional 

vortices) are real actors in the dispersion process. In recent years, progress has been made in 

enlarging the two-dimensional study to a more complete and realistic three-dimensional view, 

partly thanks to advances in computational capabilities. Also, some recent studies have included 

the effect of the particles themselves on the flow (on the stability of the flow in particular). This 

'two-way coupling' becomes relevant when the particle concentration is high enough for 

interaction to occur. Even when the two-way coupling is taken into account, studies usually stick 

to a sufficiently dilute particulate phase, for which collisions between particles do not need to be 
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integrated. The studies to be mentioned in this review are essentially two-dimensional, though, 

they do not include the feedback of the particles oh the flow, and they mainly consider the 

dispersion of heavy particles. 

The usual way to approach such problems is first to choose and model a vortical flow, or to 

numerically generate such a flow. Then, the particle dynamics is integrated. The Maxey-Riley 

(1983) equation has been used extensively to describe the particle dynamics, but one has to be 

aware of the assumptions used to derive the Maxey-Riley equation. In fact, most of the studies 

have used simplified versions of this equation by only considering bubbles or heavy particles. 

The ratio of the fluid density to the particle density is indeed an important parameter, as well as 

the Stokes number, which is the ratio of the aerodynamic response time of the particle to the 

characteristic flow time scale, and the Froude number, when gravity is included. Experimental, 

numerical and analytical work has enabled some insight into the dispersion process occurring in 

different types of flows -in free shear flows in particular- and into the role played by the non-

dimensional parameters just mentioned. 

1.2 Basic definitions 

1.2.1 Particle 

The term 'particle' will refer to a self-contained body, with maximum dimension ranging from 

OA/um to 10cm, separated from the surrounding medium by a recognizable interface. It has to 

be distinguished from the term 'particle' as used by the nuclear physicist. 

The particle can either be in the solid, liquid or gaseous phase. We might refer to the particle as a 

rigid sphere, a drop or a bubble, correspondingly. The term 'fluid particles' refers to both drops 
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and bubbles. A particle is said to be heavy if its density is larger than the density of the 

surrounding fluid. The particles considered will be heavy particles, unless stated otherwise. 

Moreover, it will be assumed that the particles considered are rigid, have a spherical shape, and 

that they are passive (i.e. passively transported by the flow). 

1.2.2 Vortex 

• Vorticity 

The vorticity field a> of a flow with velocity distribution u is the curl of the velocity 

distribution: a> = V x u . Vorticity is a local measure of how fast the fluid elements rotate about 

themselves. 

a> is a vector, each component having the dimension of a frequency. In the case of two-

dimensional flows which are confined to a horizontal plane (uz = 0) , the vorticity vector only 

has one non-zero component coz in the direction perpendicular to that plane. 

A very specific example is now examined in order to apply the concept of vorticity: that of a body 

of fluid in solid body rotation ud(r,6,z) = Qr (e.g. a cup of coffee centred on a turntable and 

gradually spun up to speed). In this case, the vorticity everywhere is a constant (equal to twice the 

angular velocity of each infinitesimal fluid element about the centre of the turntable). Indeed, 

each particle rotates about its own axis at the same angular velocity as it rotates around the centre 

of the turntable. 
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Note that the fact that a fluid is rotating at a large scale does not necessary imply that the vorticity 

is locally non-zero, and that even i f the streamlines of a flow are not curved, the flow itself may 

be rotational. 

• Vortex 

There is not a definition on which everybody agrees, but it is generally admitted that a fluid 

vortex should be a region of concentrated vorticity. It should be pointed out that this definition 

does not cover all cases. 

Organized vortex structures are systematically produced in free shear flows (Figure 1.1). In a 

mixing layer, where two fluids having a different mean velocity are in contact, instabilities 

develop and lead to the formation of vortices. A vortex pairing phenomena is observed. A 

different phenomenon is observed in the wake of a bluff body. Vortices of opposite sign form on 

each side of the body and move downstream in a regular organized pattern (they do not pair). 
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Figure 1.1 Drawings representing vortices developing in a mixing layer 
and in the wake of a bluff-body (Crowe et al. 1995) 

Even at the small scale, the turbulent flow may consist of small recognizable vortices, which 

interact, grow and dissipate. Some conceptual models even say that turbulence is in fact a 

collection of vortices. On the other hand, vortices are also observed at the large scale of 

geophysical flows. For instance, in the ocean, vortices named meddies originate from the 

Mediterranean Sea and travel west, transporting unusually high amount of salt into the Atlantic 

(Armi et al. 1989). Moreover, many Karman vortex streets have been observed in the atmosphere 

in the wake of islands. Figure 1.2 shows a street of cloud vortices in the wake of Selkirk Island, 

Chile (a 33 square mile island that rises over a mile above sea-level). 
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Figure 1.2 Cloud vortices observed in the wake of Selkirk Island (left), Chile, by Landsat 7, 
September 1999 (photograph courtesy NASA). 

1.2.3 Dispersion and its traditional approach 

The term 'dispersion' refers to the mixing, spreading and transport of the particles (Figure 1.3). 

Mixing Spreading Transport 

Figure 1.3 Drawing representing the concepts of mixing, spreading and transport, 
associated with the concept of dispersion (Crowe et al. 1993). 
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The traditional approach 

Turbulence is usually considered as the key mechanism responsible for the mixing and spreading 

of particles in a fluid flow. Turbulence is decomposed into a mean velocity and a superimposed 

fluctuation component: 

u = U + u 

The fluctuating component u is usually approximated by a random process, and assumed 

isotropic. The particle dispersion is then treated as a diffusion process. The problem then centres 

on finding a suitable dispersion coefficient to use in the equations of motion. 

A popular method for including particle dispersion in a numerical model is the Monte Carlo 

approach. In this approach, a local velocity fluctuation is selected randomly for each particle. The 

velocity experienced by the particle is the sum of the mean velocity and the fluctuation velocity. 

This approach is far from being satisfying when organized structures are involved because the 

effect of those structures are ignored, even though they play an important role in the particle 

dispersion process. 

The velocity field: u = U +u 

should be substituted by: u = U +Ularge_scale s!ructures + u 

where the effect o f the large scale structures on the particle dispersion is important. 
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1.3 Model based on the Stokes number 

The importance of large scale organized vortex structures as the controlling mechanism in the 

dispersion process has been demonstrated by numerous numerical and experimental 

investigations, making it clear that the traditional approach of treating particle dispersion as a 

diffusion process has little relevance for flows exhibiting these structures. 

Crowe et al. (1985) investigated turbulent free shear flows and analyzed the influence of the 

large-scale structures on the dispersion of the particulate phase. Their two-dimensional vortex 

dynamics simulations of a turbulent mixing layer demonstrated the tendency of very small 

particles to closely follow the fluid elements, as the dominant Stokes drag force dictates their 

dynamics. Very heavy particles, on the other hand, were barely affected by the forces exerted 

upon them by the fluid, due to their large inertia. However, they observed that intermediate size 

particles were ejected into the free stream and were strongly dispersed, sometimes more than the 

fluid particles themselves. This mechanism was observed to be most effective when the 

aerodynamic response time of the particles was of the same magnitude as the characteristic flow 

time associated with the vortical structures. Chung and Troutt (1988) demonstrated the same 

effects in axisymetric jets, while Chein and Chung (1987) observed that vortex pairing events 

result in even higher lateral dispersion rates. 

Crowe et al. (1985) developed a conceptual model of particle dispersion that accounts for 

entrainment by the vortices and the centrifugal effect in the rotating vortices based on the Stokes 

number (St). They defined the Stokes number as the ratio of the relaxation time zA to the time 

associated with the fluid motion in the vortex TF : 
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St = ^- (1.1) 

The relaxation time, also known as the aerodynamic response time, is defined as: 

where pp is the material density of the particles, d is the particle diameter and p. is the 

dynamic viscosity of the fluid. It expresses the time it takes the particle to respond to unsteady 

forcing by fluctuating fluid velocities. More specifically, this is the time it would take for a 

particle released from rest in a flow to achieve 63% of the free stream velocity, assuming Stokes' 

drag law is applicable. 

The time associated with the fluid motion is: 

T F = — (1.3) 
XJ 

where L is the characteristic length scale of the vortex and U a representative velocity. The 

Stokes number is therefore expressed as: 

St = ^- = ^ . (1.4) 
Tf \SpL 

The Stokes number measures the responsiveness of the particles to the flow. This simple 

conceptual model predicts that small particles ( S t « l ) essentially track the fluid flow and 

therefore spread and mix as the fluid elements. Larger particles (St~l) are entrapped by the 

vortices and centrifuged beyond the vortex, effecting a spreading rate exceeding that of the fluid 

particles. Even larger particles will pass through the vortex structures with little change in their 
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trajectory, due to their large inertial resistance to changes in the flow. In other words, the degree 

of dispersion depends on the Stokes number. An illustration is provided by Figure 1.4. 

Vortex 
Structure 

0 

Intermediate 
Size Parties© 

St -1 

Figure 1.4 Model based on the Stokes number (Crowe, Gore and Troutt 1985) 

1.4 Review of experimental and numerical work - focus on heavy 
particles 

Both numerical and experimental studies have verified the appropriateness of the Stokes number 

as the scaling factor for particle dispersion in large-scale structures. 

Several shear flow configurations have been studied experimentally: mixing layers (Kamalu et al. 

1989; Lazaro & Lasheras 1989, 1992; Wen 1990; Kiger & Lasheras 1995), plane wakes (Yang 

1993) and axisymetric jets (Longmire & Eaton 1992; Hardalupas et al. 1989). Those experiments 

mainly focused on the dispersion of heavy particles whose density is large compared to the fluid 

density. Under these conditions, the dynamics of heavy particles is dominated by the drag force 

and is therefore easier to analyze. All the experimental investigations agree on the fact that: 
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large scale vortices play a prominent role on the dispersion of particles 

particles characterized by an intermediate Stokes number are preferably dispersed 

highly non-homogeneous and strongly response time dependent dispersion patterns could 

result from the action of the vortices. 

These results were confirmed by numerical experiments. The cases of a wake and of a mixing 

layer are now considered as an illustration. 

1.4.1 In wakes: demixing, focusing 

Photographs of a bluff body wake flow (Figure 1.5) clearly illustrate the high degree of non-

homogeneity in particle distribution when the Stokes number is intermediate (Figure 1.5 b). 

Particles are indeed focused into thin regions, and do not disperse homogeneously, contrary to 

what is intuitively expected when dealing with turbulent flows. The comparison between Figure 

a) and Figure b) shows that particles of intermediate Stokes number tend to migrate away from 

the centre of the vortex structures, whereas particles of small Stokes number are dispersed 

throughout the vortex structures. 

The focusing effect was confirmed by mathematical calculations which demonstrated that for a 

Stokes number close to one, there is a one-dimensional attractor in the dynamical system 

governing the particle motion (Bums, Davis & Moore 1999). 
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a) 

b) 

Figure 1.5 Photographic results for a bluff body wake flow containing particles with a) 
very small Stokes numbers and b) intermediate Stokes numbers (Yang 1993) 

Numerical simulations of the particle dispersion in a plane wake downstream of a thick plate 

(Figure 1.6) are in agreement with the experimental results. Again, the patterns obtained are 

closely correlated with the Stokes number. The focusing that occurs with particles of intermediate 

Stokes number is quite significant. The conventional wisdom concerning the utility of the wake 

flow as a mixing process is therefore, under certain conditions, incorrect. 
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x / s 

Figure 1.6 Numerical simulations of the particle dispersion in a wake flow: a) St=0.01, 
b) St=1.0, c) St=10, d) St=100 (Tang et al. 1992) 

1.4.2 In mixing layers: formation of large scale particle streaks 
between successive vortices 

In mixing layers, both numerical simulations and flow visualization experiments demonstrate the 

ejection of heavy particles from the vortex centres and the formation of large-scale particle 

streaks in the braid regions between successive vortices (Longmire & Eaton 1992, Wen et al. 

1992). 
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In Figure 1.7, uniform size particles (St=0.1, 1, 10, 50) are released at a constant rate into a 

simulated plane mixing layer. Particles with a Stokes number in the order of one are centrifuged 

to the boundaries of the vortex structures, yielding the larger spread. 

n 
» 

* • 
-* 

-» 
-u 
-w 

St=0.1 

-ft -ft 

zoo 

Figure 1.7 Particle dispersion in a simulated plane mixing layer (Chein and Chung 1988) 
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The particle streaks between the vortices are closely aligned with the extensional direction of the 

stagnation point flow field (Martin & Meiburg 1994) and dominate the dispersion process. Using 

an idealization of the spatially periodic mixing layer as a row of point vortices, it was 

demonstrated that the formation of these concentrated particle streaks proceeded with maximum 

efficiency for a Stokes number close to one, in agreement with experimental and numerical 

observations of preferential particle dispersion at Stokes number of order unity. 

Since the braid region was shown to be so important for the particle dispersion process, Marcu & 

Meiburg (1996) analyzed the effects of the concentrated and strained counter-rotating streamwise 

vortices that are known to form in that region (Corcos & Lin 1984), to gain some insight on the 

role played by those three-dimensional secondary vortex structures. The flow field was modeled 

by two superimposed rows of Stuart vortices of opposite sign, with an additional two-dimensional 

strain field corresponding to the extensional strain field created by the evolving spanwise Kelvin-

Helmholtz vortices. Equilibrium points for the particles, as well as their stability criteria, were 

determined analytically, both in the absence and in the presence of gravity. 

In addition, two specific mechanisms were identified: the stretching and folding of the particle 

streaks (Wen et al. 1992). The stretching is associated with the regions of high velocity gradients 

(i.e. high shear) on the boundaries of adjacent vortex structures, where particles concentrate. The 

folding is associated with the pairing of adjacent large-scale vortices (Figure 1.8). 
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Stretching of Particle Streaklines 
Near Boundaries of Vortices 

Folding of Particle Streaklines 
During Vortex Pairing 

Figure 1.8 Stretching and folding of the large scale particle streaks forming 
in between successive vortices of a mixing layer (Wen et al. 1992) 
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1.4.3 Summary 

Experimental and numerical investigations with heavy particles agree on the facts that: 

1- Large scale organized vortex structures are a controlling mechanism in the dispersion 

process 

2- The particle dispersion patterns produced by the vortices may be highly non-

homogeneous and strongly dependent on the Stokes number 

3- The particles that are the most likely to be concentrated near the outer edges of the 

vortex structures are those of intermediate or relatively large size (i.e. lateral particle 

dispersion is maximum for an intermediate particle Stokes number). 

Note: 

It is often said that particle dispersion is maximized for an intermediate Stokes number, 

conveying the idea that the particle phase is optimally dispersed throughout a region. 

However, as discussed above, in the wake of a bluff body, particles of intermediate Stokes 

number tend to focus on lines at the edge of the vortices. Therefore, it is more appropriate to 

think in terms of 'lateral dispersion' rather than in terms of 'optimal dispersion'. 

Indeed, particles with a small Stokes number mix and spread as the fluid particles, whereas 

those with an intermediate Stokes number are ejected and those with an even larger Stokes 

number are barely affected and therefore not laterally dispersed. 
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1.5 Analysis of the motion of individual particles in idealized 

representations of the flow field 

Several studies analysed the motion of individual particles in idealized representations of the flow 

field. A few examples are provided here. 

• Noting that the global features of bubble and particle dispersion were dominated by their 

dynamics in three distinctly different regions of the flow field: the viscously dominated 

vortex core, the outer region of the vortices and the stagnation zones, Raju & Meiburg (1997) 

considered idealized representations of these flow regions (in order: a solid body vortex: 

r 1 
(ue = —; ur = 0), a point vortex: (ug = — ; ur = 0), and a stagnation point zone (ux - y , 

2 2r 

uy = x)). This study provided the basis for the present research project. The particle 

dynamics was integrated via the Maxey-Riley equation, across the entire spectrum of density 

ratios, from light to heavy particles, and history effects were neglected. The governing fourth 

order system obtained was reduced to two second-order equations for all three model flows. 

The two governing parameters were the Stokes number and the density ratio. These 

simplifications enabled the authors to make analytical progress in terms of the quantification 

of ejection/entrapment trends and accumulation behaviour. For a solid body vortex, an 

optimal ejection or entrapment was found to occur for intermediate values of the Stokes 

number, as the difference between the inward and outward forces reaches a maximum. This 

optimal Stokes number is a function of the density ratio (but hasn't been expressed 

analytically). For a point vortex flow, up to three different regimes, corresponding to three 

different force balances, were found. Optimal accumulation was observed for intermediate 

Stokes number. In the stagnation point flow, a criterion for optimal accumulation was found 

in the case of heavy particles, but light particles did not exhibit optimal behaviour. 
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• Rows of Stuart vortices have been used as a representation of mixing layer vortices 

(Ganan-Calvo and Lasheras 1991, Tio et al. 1993a and 1993b) and a non-linear dynamical 

systems approach was applied in studying the behaviour of the particle. The authors observed 

that if gravity was moderate, the particles could stay suspended above or below the mixing 

layer, in which case trajectories were periodic, quasi-periodic or chaotic. On the other hand, 

when gravity was dominant, sedimentation occurred. 

• As mentioned earlier, two superimposed rows of Stuart vortices of opposite sign were 

used to model the counter-rotating streamwise vortices present in the braid regions between 

vortices (Marcu & Meiburg 1996). 

Note: Stuart vortices are a particular flow model based on the solution to the steady two-

dimensional Euler equations. They describe a periodic flow of liked-signed vortices. The 

dimensionless streamfunction of the Stuart vortices is: 

= — ln[cosh(2;r(y - y0)) - &cos(27r(z - z0))] (1.5) 

where (z0,y0) denotes the location of a vortex centre. The parameter k determines the 

degree to which the vorticity is concentrated in the vortex cores. For k - 1, the flow is that 

induced by a row of corotating point vortices, while for k = 0 we have a uniform shear layer 

with a tanh velocity profile. 

• The dynamics of heavy particles in Burgers vortices was also addressed (Marcu, Meiburg 

& Newton 1995). It provided some useful information regarding two-phase turbulence. 

Indeed, Burgers vortex-like structures are prominent in the small scales of turbulence. The 

flow field of a Burgers vortex was modeled as: 
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r uz = 2Az 

ur - -Ar 

2nr 

1 
(1.6) 

where uz, ur and ue are the axial, radial and circumferential velocity components, 

respectively, r the distance from the vortex centre, and A the non-dimensional strain 

parameter (1/A is also known as the vortex Reynolds number). 

In the absence of gravity, the vortex centre is a stable equilibrium point for particles up to a 

critical value of the Stokes number: 

as the inward drag force created by the radially inward fluid motion overcomes the 

destabilizing centrifugal force. For Stokes number exceeding the critical value, particles 

asymptotically approach closed circular orbits. When gravity is considered, the centre is not 

an equilibrium point anymore, but the location of one or three other equilibrium points is 

calculated and their stability is determined. 

Although the most complete quantitative data will always be provided by direct numerical 

simulations and experimental measurements, the analysis of simplified flow models enables 

investigation into the interaction of several important mechanisms in isolation. As such, it 

potentially contributes to the understanding and ultimately the modeling of such data. In the 

present study, a simplified flow model of a pancake vortex is considered. The dispersion of 

particles in pancake vortices has not been studied yet, as far as the author knows. 

St = \6K 2A 
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1.6 The case of light particles 

Fewer studies have focused on the dispersion of light particles, such as bubbles, in vortical flows. 

In particular, numerical simulation of bubble motion is difficult because of the sensitivity of the 

bubble acceleration to the flow acceleration, and because of the need to include the effect of 

pressure and Reynolds number on the bubble size and shape. Anyhow, it is well known that, 

contrary to heavy particles, light particles tend to migrate towards the vortex centres. The Maxey-

Riley equation (Equation 2.13) taken in the limit of vanishing small density ratio shows indeed 

that the acceleration of the bubbles is centripetal. Stuart's calculations (1967) also demonstrated 

that bubbles migrate towards the vortex centre, when a Stuart's vortex is considered. 

21 



2 RESEARCH OBJECTIVES AND THE CORRESPONDING 

EQUATIONS OF PARTICLE MOTION 

2.1 Research objectives 

2.1.1 About pancake-like vortices 

The horizontal extent of pancake vortices is large compared to their vertical extent. They are 

observed in stratified fluids like oceanic and atmospheric flows, where vertical motions tend to be 

inhibited. Mesoscale atmospheric vortices can be generated by horizontal shear of the horizontal 

wind - for instance when flow passes terrain obstacles such as mountains and islands while the 

vertical ascent over the obstacle is inhibited by a stable atmospheric stratification. Pancake 

vortices are also observed in many laboratory experiments that investigate the decaying 

turbulence generated by moving rakes, grids or bluff bodies in a stratified fluid. 

A quantity called the internal Froude number, defined as Frt = , is generally introduced to 

LN 

estimate whether the milieu is stratified enough to enable such vortices to form. L is the 

characteristic length scale of the vortex, U a representative velocity, and /V the local buoyancy 

frequency of the fluid. N is related to the density gradient as: 
dz 

7 

Where g stands for the gravity intensity, pf for the fluid density, z for the vertical coordinate. 

The lower the internal Froude number is, the stronger the stratification is. 
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When they interact with each other, pancake vortices generally increase in size and decrease in 

number. Their emergence in stratified flows has some analogies with the self-organizing process 

observed in purely two-dimensional flows (McWilliams 1984). Still, coherent vortices in 

stratified flows do have a three dimensional structure and a certain thickness. Shearing forces 

generated by the viscosity diffuses the vorticity. The thickness of pancake-like vortices increases 

in time, corresponding to a decrease of strength due to vertical diffusion of momentum. 

2.1.2 General obj ectives - methodology 

The objective of the present study is to characterize the dispersion of particles (mainly heavy 

particles) in a quasi-two-dimensional axisymetric pancake-like vortex. Contrary to most studies, 

there is no mean flow in addition to the flow generated by the vortex: the action of the vortex 

alone is considered. Under this circumstance, scenarios where particles with a large Stokes 

number are entrained by the mean flow while being barely affected by the vortex are not possible. 

For the purpose of the study, an idealized representation of the velocity field of an isolated 

pancake-like vortex will be considered. Then, the particle dynamics will be integrated into it via 

the Maxey-Riley equation, the generic equation of motion. The equations of motion for the 

problem will thus be derived, the assumptions will be presented, and the neglect of some effects 

justified (Chapter 2). Turbulence and its effects will not be included. 

In the first place, some well known scenarios will be reproduced, showing in particular the 

influence of the density ratio and of the Stokes number on individual particles (Chapter 3). Then 

the particle dynamics will be explored further, by first studying the dynamics in the horizontal 

plane (Chapters 4 and 5). This approach assumes that the particle motion in the vertical is 

decoupled from its horizontal motion. The relevance of this approach will be discussed, and 
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numerical results will be presented. Chapter 4 focuses on the motion of individual particles, 

whereas Chapter 5 addresses the case where the flow is initially loaded homogeneously with a 

large number of particles (of uniform size). The time evolution of the concentration profiles in the 

horizontal is examined, revealing some interesting features. Then, the vertical motion will be 

fully integrated in the study (Chapter 6). As the particles settle, their distribution in the horizontal 

is modified by the presence of the vortex. The concentration profiles obtained as a result of the 

settling through the vortex are examined. 

A semi-analytical approach 

Insight into the dynamics of particles has been gained in the past by analyzing the motion of 

individual particles in idealized representations of the flow field (see section 1.5). The same 

approach is applied here. 

The advantage of considering an idealized representation of the flow field instead of simulating a 

realistic (and therefore non-analytical) flow field is that not only can the forces acting on the 

particle be approximated in the equation of motion, but that these forces can be expressed 

analytically. Because the flow field is not an unknown anymore, the equations of motion depend 

only on the particle position and velocity and on some key governing parameters. These 

simplifications enable analytical progress in the quantification of ejection/entrapment trends for 

instance, and facilitate the evaluation of the different forces involved. 
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2.2 Analytical model of the vortex flow field 

2.2.1 Analytical model of the velocity profile 

For the purpose of this study, a steady quasi-two-dimensional axisymetric pancake-like vortex is 

considered. A cylindrical coordinate system is introduced for a convenient analysis of the flow: r 

is the radial coordinate, 0 is the azimuthal and z the vertical upward coordinate. ' z = 0' 

corresponds to the symmetry plane of the vortex. The velocity distribution inside the vortex is 

modeled as follows (Beckers et al. 2001).: 

M 0(r,z) = -^exp(-r2)exp(-^-y) (2.1) 
2 2A 

ur = u2 = 0 (2.2) 

A is a non-dimensional constant called the thickness of the vortex. Its value is determined 

experimentally by taking some measures of the vertical profile of the velocity field. 

In the 2D study of particle motion in the horizontal plane of a pancake vortex, Equation 2.1 can 

be simplified to: 

ue(r,z) = c^-exp(-r2) (2.3) 

z2 

with c(z) = e x P ( - ^ " ) • (2-4> 

Note that we'll write c(z) = c for convenience. In the two-dimensional study, c will be taken as 

the constant 1. Figure 2.1 shows the velocity and vorticity profdes associated with the vortex. 
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Figure 2.1 Idealized velocity and vorticity profiles of an isolated pancake-like vortex, in 
its 2D horizontal plane of symmetry (the velocity and vorticity, usually expressed in the 
S.I. units, are presented in their non-dimensional form here). 

The velocity profile was derived from experimental observations (Beckers et al. 2001). For 

illustration, Figure 2.2 shows the result of a particle tracking experiment carried out in an isolated 

pancake like-vortex. The trend of the velocity profile observed (an initial increase in the 

azimuthal velocity with distance from the vortex centre, followed by a decrease) is in agreement 

with the model. 

26 



Figure 2.2 Velocity field found by following tracer particles 
in time (Beckers et al. 2001) 

2.2.2 Note on the non-dimensionalization 

All the variables have been non-dimensionalized in the model for the velocity field (Equations 

2.1 and 2.2). The distances r and z have been non-dimensionalized by the characteristic length 

scale L, defined by the radial position in the vortex plane where the vorticity changes sign. 

Beckers et al. (2001) estimated L from experimental cross-sections. As for the velocity scale, it 

is estimated by: 

U = LcoM (2.5) 

X = LA is the (dimensional) experimentally observed thickness of the vortex and coM the 

(dimensional) maximum value of the vertical vorticity. 
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2.2.3 Details of the derivation of the idealized velocity field 

The velocity profile of the pancake vortex was derived from experimental observations by 

Beckers et al. (2001). They in fact modeled the time evolution of the velocity field as well, but 

that aspect will not be considered in the present study. Many observers reported cases of pancake 

vortices that were surprisingly robust in geophysical environments (McWilliams 1985, Armi et al. 

1989). 

To derive this expression, Beckers et al. first assumed a zero vertical velocity. This is a relevant 

first order approximation since the motion in strongly stratified flows is quasi-two-dimensional. 

They also assumed axisymmetry (— = 0) and incompressibility of the flow (V.w=0), 

89 

implying the absence of a radial fluid motion (ur = 0). Using the method of separation of 

variables, they wrote: 
ue(r,z) = G(r)H(z). (2.6) 

Their experimental observations suggested that the radial distribution of the vertical vorticity 

fitted well with the a - profile, introduced by Carton et al. (1989): 

coz(r) = (l-^ara)exV(-ra) (2.7) 

with the specific value a = 2: 

tvz(r) = (l-r2)exp(-r2). (2.8) 

This distribution corresponds to a vortex core of positive vorticity surrounded by a ring of 

negative vorticity (see Figure 2.1). Experiments also showed that the distribution of the planar 

flow field in the vertical direction was Gaussian in shape. This type of distribution arises naturally 

when diffusion acts on a layer with initially zero thickness. Given those experimental 

observations, Beckers et al. opted for: 
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G(r) = ^exp(-r 2) 

1 z 2 

H{z) = , exp( T) 
Jbtrf 2A 2 ' 

(2.9) 

(2.10) 

which leads to the expression of the azimuthal velocity proposed earlier, except that the constant 

(V2^A2) 1 used to normalize the Gaussian distribution is dropped in our model (Equation 2.3). 

This constant accounts for the fact that, for a given vortex that one follows in time, the thicker the 

weaker (i.e. the larger A is, the smaller the velocity involved is). This constant is dropped given 

that the evolution of the vortex with time won't be considered, and that it is more intuitive to have 

the velocity in the horizontal plane independent on A (i.e. the thickness of the vortex). This way, 

the characteristic velocity is completely independent of the thickness A of the vortex, and 

corresponds to the actual typical velocity (which makes more sense physically). 

The expression for the velocity field is very similar to the one used by Bonnier et al. (2000) to 

interpret the density profiles they obtained inside the vortices present in the far wake of a sphere 

towed through a stratified fluid: 

r 1 r1 z 2 

exp(- ( l— —)), 
r 2 r z max max max 

(2.11) 

where U , r m a x and z m a x were determined experimentally. 
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2.3 Assumptions that simplify the dynamics 

In order to evaluate the forces acting on the particles, we will assume that: 

• the particles have a spherical shape 

• particle-particle interactions, as well as the action of the particles on the flow itself, are 

negligible (dilute regime assumption); if the particle concentration was high, a multi­

phase flow system approach would be necessary. 

The only forces considered are: 

• the forces from the fluid-particle interactions 

• the gravity effect (or buoyancy force) 

Therefore, this study considers the one-way coupling from the fluid to the particle as the 

prevailing actor of the dispersion. 

2.4 The Maxey-Riley equation 

2.4.1 Presentation of the equation 

Under the assumptions presented in section 2.3, the dynamics of the particle is governed by the 

Maxey-Riley equation (1983), the general form of which is presented in this section: 

Particle = Stokes + buoyancy + pressure + virtual + Basset 
Acceleration drag force gradient force mass history term 

Assuming that the particle diameter is small compared to the flow scale, the Faxen correction 

terms can be neglected (indeed, a small particle diameter implies that the velocity curvature has 
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negligible effect on the calculation of the drag force on the sphere at low particle Reynolds 

number, which is what the Faxen correction terms stand for). 

Neglecting the Faxen correction terms, the different terms of the equations are: 

dvp 

• Particle acceleration term: Vp„ —— 

Stokes drag: 37tdju\u(x,t) - vp (t)\ 

• Buoyancy force: V(pp~Pf)g 

Pressure gradient term: Vpf 

Du 

Dt 

Virtual mass: 

(or added mass effect) 

-Vp(— \u(x,t)-v(t)] 
2 dt / J *=V> 

Basset history term: - — 7id2u f 
7 r Jo 

d /dT[vp(T)-u(x,T)]__ ( ( ) 

\np(t - T)V] 2 

•dx 

v p is the particle velocity, V its volume, d its diameter and pp its density, whereas u , pf 

and p are the velocity, density and dynamical viscosity of the fluid respectively. 
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The equation reads: 

5 L 
dt 

. 3 f ^ [ 5 R 0 ] + 0 _ % + M « l + I ^ [ j i R 0 ] - * £ t r. 
Vpp n  6 n Dt In rlt 1 ^  n IVn Jo I 

Du 

Dt 2pdP 

d / dr[-M{x,t)] 

n p(t-f)v 
dr 

Particle Stokes buoyancy pressure virtual Basset 
Acc. drag force gradient force mass history term 

or, in non-dimensional form: 

(2.12) 

dv l r , ( l - £ ) _ . 
p = —[w(x,01-^—^ e„+S 

dt St Fr 2 z 

Du 

~Dt 
+ • 

5 dr-,-

2 dt 
[w(x ,0] -95(^) | 

Particle Stokes buoyancy pressure virtual 
Acc. drag force gradient force mass 

d/dr[-w{x,T)\ 

\TC p.{t-r)v '2 

dr 

Basset 
history term 

(2.13) 

where w(x,t) = u{x,t)-vp{t) and the terms in square brackets are evaluated at x - xp(t) or 

x = xp{r). 

The governing parameters are: 

ppd2U 
the Stokes number 57 = — 

Pr 
the density ratio 5 = —L-

the Froude number Fr = ^ 

The exact expression of the governing parameters will be given later in the case of a particle 

evolving in a pancake like vortex (section 2.5.2). 
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As Maxey and Riley pointed out, it is important to note the distinction between the two different 

d 
time derivatives. The derivative — is used here to denote a time derivative following the moving 

dt 

sphere: 

\ 

t 

h=xM) 

d r_ i f <3w,. _ -

D 

On the other hand, — is used to denote the time derivative following a fluid element. For 

instance, the fluid acceleration as observed at the instantaneous centre of the sphere is given by: 

Du: 

Dt 

fdut - ^ 
—- + u.Vu 

AO v dt - ( 0 

2.4.2 Significance of the different terms 

The Stokes drag, the virtual mass and the Basset history term account for the drag acting on the 

particle: 

• the Stokes drag is the drag corresponding to steady motion at the instantaneous velocity 

• the virtual mass contribution (or added mass effect) arises because acceleration of the 

particle requires acceleration of the fluid surrounding the body. 

• the Basset history term adjusts the particle acceleration by taking into account the past 

acceleration on the particle motion, including the effect of the conditions that prevailed 

during development of the flow. Its form results from diffusion of vorticity from the 

particle (Cliftetal. 1978). 
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The pressure gradient force accounts for the acceleration of the displaced fluid (i.e. the force a 

fluid sphere of the same size would experience in absence of the particle). 

The buoyancy force accounts for the effect of gravity on the particle. 

About the added mass term 

To account for the fluid mass being accelerated, the mass of the body is increased, giving rise to 

the added mass term. For a sphere, the added mass is half the mass of the fluid displaced by the 

Pf 
body, hence the coefficient 1 / 2. The added mass is proportional to the density ratio 8 = , 

P? 

and therefore has a negligible effect when the carrier fluid is of low density compared to the 

particle. 

Some authors (Manton 1974; Auton 1981) have replaced the acceleration following the particle 

by the acceleration following a fluid element in the added mass term, i.e. — by — . In fact, the 
dt Dt 

distinction between the two is negligible given the low particle Reynolds number approximation 

used to derive the Maxey-Riley equation. Regardless, the term — will be kept for the added 
dt 

mass term, unless stated otherwise. 
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Neglect of the Basset history term 

The Basset history term is expected to increase the drag force when: 

• the particle is accelerating or decelerating (unsteady motions) 

• the Reynolds number for the relative motion is low (Clift at al. 1978). 

However, some studies have shown that the history effects are less important as originally 

thought: 

• the Basset history term initially decays as t 2 and later as r~2(Mei et al. 1991a, 1991b, 

Mei and Adrian 1992, Mei 1994; Lovalenti and Brady 1993a, 1993b, 1993c, 1995; Chang 

and Maxey 1994) 

• departure from Stokes flow lessens the history effect 

In the two-dimensional study, where gravity is absent, we expect this term to be negligible, 

especially if the particle is not released from rest but with an initial velocity corresponding to the 

ambient fluid velocity. Moreover, the Basset history term is proportional to the density ratio 8, 

so the heavier the particle, the smaller this term is. 

Therefore, given that the thesis focuses on the case of heavy particles, the Basset history term will 

be neglected. The only terms that are really important in the present case are the particle inertia, 

the drag, and the gravity terms. 

The neglect of the Basset history term will be justified afterwards (Appendix B): its magnitude 

will be evaluated and compared to that of the drag term, showing that it is at least seven orders of 

magnitude smaller than the drag term. 

35 



2.4.3 Assumptions of the Maxey-Riley equation-corresponding 

restriction imposed on the parameters (St.S) 

The Maxey-Riley equation is based on some assumptions (see explanations in Appendix C). 

1. Assumption 1: Re „ = — — | v - w | « 1 (2.14) 
p y I " I d i m ensionless 

The particle Reynolds number is small compared to one so that the flow can be 

approximated to a Stokes flow. 

d d U 
2. Assumption 2: (—) 2 R e , = « 1 (2.15) 

L Lv 

The ratio of the particle diameter squared times the characteristic velocity scale to the 

product of the kinematic viscosity of the fluid and of its characteristic length scale (i.e. 

the gradients of the velocity U) is assumed small compared to one. Re^ stands for the 

flow Reynolds number. 

d 
3. Assumption 3: — « 1 (2.16) 

The particle diameter is assumed to be small compared to the characteristic length scale 

of the fluid motion 

It seems reasonable to impose at least that the following inequalities be satisfied: 

- < 1 ( T 3 a n d — <10 2 . (2.17) 
L v 
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Now: (2.18) 

implying: StS < 5.6* W -3 
(2.19) 

In other words, the product (St 8) should be of order 10 3 or less for the Maxey-Riley equation 

to be applied. As a consequence, the present study will mainly focus on the case of heavy 

verified for a wide range of Stokes number. Light particles will only be looked at for simple 

verifications. 

Restrictions imposed by the physics 

By looking at a variety of flows for which particle dispersion is involved, we notice that, usually, 

significant values of St are obtained only for heavy particles (small 8), so that the product St 8 

is relatively small. This restriction on the parameters (St 8) is similar as the one imposed by the 

assumptions of the Maxey-Riley equation. 

2.4.4 Extension to finite values of the particle Reynolds number 

The Maxey-Riley equation is normally restricted to flows with particle Reynolds numbers that are 

small compared to one. It is nevertheless possible to model the departure from the Stokes regime 

(when the inertial effects become comparable to the drag effects) in the Stokes drag term. 

Corrections are indeed available for this term (and are used in the present study). They are 

described below. 

particles in air for which the density ratio 8 is about 10 4 . That way, the assumptions will be 
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Unfortunately, it is not possible to model the departure from the Stokes regime for the other 

terms. The best thing to do seems to limit the study to situations where the inertial effects are not 

prevailing, implying that the Stokes number shouldn't be too large. 

Please note that the influence of the particle Reynolds number on the particle dynamics is 

expected to be small anyway. 

Model of the departure from the Stokes drag 

Strictly speaking, the following corrections apply only to rigid spheres, but they will be used for 

fluid particles as well. An empirical multiplicative factor fx is introduced in the drag coefficient 

cD. This factor fx is the ratio between the actual steady drag force and the Stokes drag defined 

for Re^ = 0 . 

Oseen correction to the Stokes drag for Re p < 0.01 

Usually, fx is taken to be equal to 1 for the limit of creeping flows. Oseen (1910) noted a 

difficulty in applying this creeping flow equation to particles in unbounded media. Indeed, the 

ratio of the neglected inertia terms over the retained viscous terms is of order 0(Rep (—)) where r 

is the distance from the particle, so that the expression of the drag coefficient is valid only for a 

distance r < — from the particle. Oseen proposed an approximation coming from linearizing 
Re 

the inertia terms instead of neglecting them: 

24 3 3 
cD = (1 + — Re.) , i.e. f. = 1H Re . (2.20) 

Re„ 16 " 1 16 " 
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Correction of the drag term for 0.01 < Re p < 20 

In the range 0.01 < Kep < 20, the correction coefficient is given by Clift et al. (1978) as: 

/ ^ l + O .n iSRe / 0 8 2 - 0 0 5 1 0 8 * 5 ' ' . ( 2 . 2 1 ) 

It takes into account the effect of the wake behind the sphere on the drag. 

2.5 The equations of motion of a particle in a pancake vortex 

2.5.1 Presentation of the equations of motion of a particle in a pancake 
vortex 

The system of coordinates was chosen so that the horizontal plan (x,y) or (r, 6) corresponds to 

the symmetry plan of the vortex. The gravity vector is assumed to be perpendicular to the 

horizontal plan. Integrating the analytical model of the pancake vortex velocity field into the 

Maxey Riley equation leads to the following non-dimensional equations of motion: 

in polar coordinates: 

r ( l + - ) - = - — - - - ^ 6 » exp(-r 2) - (-) 2 S exp(-2r2) + (1 + - ) 0 
2 r St r 4 2 2 

< (1 + -) — (r2 6) = — (-r2 e x p ( - r 2 ) - r 2 0) + -S(\-2r2)rrexp(-r2)--\zzr2 exp(-r2^ 
2 dt St 2 4 4A 2 ' 
5 " 1 * 

(l + -)z = --z-(l-S)g 

• dr , " d2r 
where r = — and r = —-dt dt2 

(2.22) 
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- in Cartesian coordinates: 

(\ + ̂ -)x = ^ ( ~ y exp(-r2) - x) - (|)2 8x exp(-2r2) + {-)8{2x xy + 2yy2-y+ ^f) exp(-r2) 
2 St 2 2 4 A 

\<\ + ̂ )y = \-£xexp(-r2) -y) -£)2Sy exp(-2r2) -fys(2xy y+ 2 'xx2 - x+ ̂ ) e x p ( - r 2 ) 
1 2 or 2 2 4 A 

(2.23) 

In the radial equation (i.e. the equation for r), the first three terms on the right hand side of the 

equation favour inward motion, whereas the last term favours outward motion. 

(See Appendix A for the equations that use — , the acceleration following a fluid element, 
Dt 

instead of f^i, the acceleration following the particle, in the added mass term.) 
dt 

2.5.2 The governing parameters (A , St, 5 and Fr) 

There are four governing parameters in Equations 2.22 and 2.23. However, in the 2D study, it is 

only the Stokes number (50 and the density ratio (S) that play a role on the particle 

dynamics and the dispersion process. The effect of gravity and the influence of the vortex 

thickness are addressed in the 3D study (Chapter 6). 

40 



The aspect ratio A 

A 
This is the non-dimensional thickness of the vortex: A = — . It describes how the planar flow 

L 

field changes along the vertical axis. It is indeed the standard deviation of the Gaussian 

distribution that the planar flow field exhibits along the vertical axis. 

As previously discussed, c is not an independent parameter since it directly depends on the aspect 

ratio: c = c A ( z ) . 

The Stokes number 

In the present study, the Stokes number is: St = zAQ. where Q denotes the characteristic 

rotation rate in the horizontal plane considered. Given the definition of the characteristic length 

and velocity scale, Q, can be written as Q = — = coM (coM being the maximum value of the 
L 

vertical vorticity observed experimentally in the horizontal plane z=0, at the centre of the vortex). 

d2 U 
As a result: St = x , Q = (2.24) 

" lSvS L 

p d2 

or tf = - £ _ Q > (2.25) 
\%p 

4,z Re/ ... ™ U L 

—Y — with R e , = — 
L 1 8 * £ f v 

or St = (-) 7 7 ^ : with R e / = — (2.26) 

St is the only parameter that depends on the particle diameter (it varies as the diameter square 

d2) and is therefore independent of all the other parameters. 
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The density ratio 

Due to the stratification of the background flow field, 5 varies with z according to: 

S = S0(l——Lz) (2.27) 
g 

with 8, PfO the density ratio at z = 0, z the dimensionless elevation, and N the local o 
PP 

buoyancy frequency of the fluid, determined by calculating the density gradient: 

(2.28) 
p dz 

SQ varies as the inverse of the particle density pp. Because it is the only parameter that depends 

on the particle density, it is independent of all the other parameters. 

In fact, it has been observed that the core of pancake vortices coincides with an intensification of 

the background stratification (in both the laminar and turbulent regime). This pinching of the 

isopycnals accounts for a hydrostatic balance with the pressure drop in the vertical direction 

(Bonnier at al. 2000). This local intensification of the density gradient is also observed in 

geophysical applications like in the core of a cyclone, even though the earth's rotation has to be 

taken into account. Still, in rotating systems, the geostrophic balance replaces the centrifugal 

balance in the horizontal direction. Whereas cyclonic submesoscale vortices are characterized by 

a core of low pressure like in our model, anticyclonic submesoscale eddies have a core of high 

pressure. To maintain a balanced state, the background stratification has to be smoothed (i.e. the 

isopycnals are further apart), leading to a homogeneous core, as observed, for example, by Armi 

etal. (1989). 

This being said, the local intensification of the density gradient is negligible for the present study. 
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The Froude number 

The Froude number expresses, in non-dimensional form, the relative importance of inertial forces 

and gravitational forces for the particle motion. Large Froude numbers describe a particle motion 

dominated by inertia, for which gravity is not important. As the Froude number decreases, gravity 

becomes more important for the dynamical behaviour of the particle. The Froude number only 

affects the vertical motion. 

In the equations of motion (Equations 2.22 and 2.23), the gravity term scales as the inverse of the 

Froude number squared: 

Fr2 U2 La g = ^ r = - ^ - = - ^ T (2.29) 
M 

The Froude number is the only parameter that depends on the gravity. Let's point out that the 

Froude number that Beckers et al. (2001) referred to in their study of pancake-like vortices in 

stratified flows was the 'internal Froude number' (see section 2.1.1). The internal Froude number 

does not belong to the parameters of the present study. 

Possible values of the different parameters 

The purpose here is to get an idea about the values of the Stokes number, Froude number and 

particle Reynolds number that can be obtained in nature. Two sets of values will be considered. 

• The first one is taken from the experiments carried out by Beckers et al. (2001). Beckers 

was not studying the particle dispersion but the evolution of pancake-like vortices in 

water with: 
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U = 2.3 cm s 1 

1 = 3 cm 

v = 1.02*l(T6 m2 s'1 

• The second set originates from the experimental values given by Yang (1993). It 

corresponds to the study of the particle dispersion in the coherent vortex structures 

present in the wake flow of a bluff body (in air): 

(7 = 3.3 ms~x 

L = 3 cm 

v = 1.5*l(T5 m2 s'1 

The Stokes number 

The Stokes number in the horizontal plane is: 

• For set #1: St = — * 4*104 *— . 
ISvS L 8 

• Forset#2: St = «4*10 5 * — . 
\8vS L 8 

If we consider particles of diameter d = 30jum and of density p = 2.4 g cm'3: 

• For set #1: 8 = IO-1 => 5*r«4*10"4 

• For set #2: ^ = 10̂ * => St « 4 

In particular, it illustrates the fact that it is reasonable to consider large values of the Stokes 

number only for heavy particles in gas (when 8 
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The Froude number 

U 
• For set #1: Fr = - = = » 0.04 , 

U 
• For set #2: Fr = —f= « 6. 

As a result, we expect the effect of gravity to be much more significant in the first example. 

The particle Reynolds number 

The particle Reynolds number is given by: 

d v n — u\ 
R e , = — L - 2 !• (2.30) 

v 

It has to be reasonably low (small compared to one) for the Maxey-Riley equation to be valid. 

But, as mentioned earlier, values up to 20 will be allowed. Now, under reasonable initial 
condition for the particle velocity, |vp - w| is less than the local fluid velocity, and a first 

approximation would be: Re < . If d = 30jum, this translates as: 
v 

• For set #1: R e p < 0.67 

• For set #2: R e p < 6 . 6 . 

2.5.3 Importance of the initial conditions 

The relaxation time rA (i.e. the time after which the particle velocity is not affected by the initial 

velocity), is proportional to the Stokes number, since the later is the ratio of the relaxation time to 

the time associated with the vortex motion. It follows that the smaller the Stokes number, the less 
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important the initial conditions are. Also, the lighter the particle, the more sensitive it is to the 

initial conditions, as the equations and the simulations will show. 

2.6 The bubble case 

The purpose here is to give some idea of the specificities of the bubble behaviour in vortical 

flows. It is mainly given for reference, given that the bubble case is barely addressed in this 

project (it mainly focuses on heavy particles). 

The behaviour of bubbles in vortical flows is really different from that of heavy particles (almost 

opposite). The density ratio 5 therefore plays a key role in the particle dynamics. In addition to 

the difference in dynamics due to the density ratio, the equations of motion for a bubble slightly 

differ from that for a heavy particle, as it is going to be shown now. 

2.6.1 General form of the equation of motion of a bubble 

The Maxey-Riley equation of motion retains the same form for bubbles, except for the history 

term, and under the assumption that they are small and non-deforming. In fact, bubbles tend to 

grow and change in shape as they are accelerated towards the vortex axis (Chahine 1995). Still, 

assuming that they are non-deforming is a reasonable assumption in flows where the length scale 

of the bubble is small compared to the flow length scale, and when a large surface tension exists 

which keeps the spherical shape. 
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2.6.1.1 The history term 

Morrison and Stewart (1976) have derived the term that replaces the history term in the case of 

bubbles. This new term depends on the time rate of change of the relative velocity 

Another difference with the equations for solid spheres is to be mentioned: the drag force on a 

bubble in low Reynolds number flows is 1 that of a particle o f the same size. The origin of this 
3 

coefficient can be explained as follows. 

For a rigid particle, the only boundary conditions that need to be considered at its interface with 

the carrier fluid are the velocity boundary conditions (the normal and tangential velocity in each 

phase are equal at the interface). For fluid particles, additional boundary conditions are required: 

the normal and shearing stresses are required to be balanced at the interface separating the two 

fluids. The equation expressing the continuity of tangential stress across the interface makes use 

of the viscosity ratio: K - — . This ratio shows up in the calculation of the drag coefficient, 

(w(x,t) = u(x,t)-vp(t)). For flows in which the frequency of the oscillatory motion of the 

carrier fluid is small, the Basset term can be neglected. 

2.6.1.2 Modification of the steady drag force term 

which is, in the case of small particle Reynolds numbers (Stokes regime): 

8 ,2 + 3ic 
) (2.31) 

Rep 1 + K 

the drag force being: 

FA drag 

1 d 
(2.32) 

47 



2*8 
For a bubble: K = 0 and cn = , 

3*8 
whereas, for a rigid sphere: K —> c o and cD = . 

Re, 

2 
Therefore: cD(bubble) = —cD(rigid sphere) 

3 
or St (bubble) =—St( rigid sphere). 

Q 
For a water drop in air, for instance: K « 55 so that = 99.40%: the error 

cD (rigid sphere) 

involved is less than 1%. The influence of the viscosity ratio will not be taken into account in the 

simulations. 

On the other hand, the influence of the particle Reynolds number on the drag will be treated the 

same way it is treated in the case of rigid spheres. Note that, in practice, the drag on bubbles or 

drops is increased due to their deformation and to the presence of surfactants at their interface. 

2.6.2 The modified Stokes number as the relevant parameter 

For bubbles, the relevant parameter is no longer the Stokes number but the modified Stokes 

number: St'= S*St. Indeed, in the equation of motion (see equations 2.22 section 2.4.1), the 

coefficient in front of the acceleration term is + i s much bigger than 1 in the case of 

bubbles. Correspondingly, the drag term is weaker than in the case of rigid spheres. To account 

for this, it is appropriate to divide each term of the equation by —. The drag term parameter 

becomes St'= S * St. 
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2.6.3 Sensitivity to the acceleration of the fluid 

Bubbles are very sensitive to the acceleration of the fluid (i.e. to the pressure term), whereas it has 

no effect on the motion o f very heavy particles. This extra sensitivity to pressure effects plays a 

dominant role in the dynamics of bubbles. The pressure gradients are felt three times as much as 

in the case of fluid elements, causing the bubbles to accumulate in regions of low pressure. 

Neglecting the history term and given that 5 » 1, the equation o f motion is indeed (in 

dimensional form): 

8 dvp _ 2 18vff r - „ 

~2~dt~~l>~~d1 [ff(*.0-*,(0L , w -*s+* 
Du 

~Dt (0 
(2.33) 

so that 

dvp _ 4 18vr_. 

dt ~ 3 d7 
u(x,t)-vp(t)} -2g + 2 

Dii 
Dt 

+ ̂ -[ii(x,t) ]i=jE 

dt 
(2.34) 

and given that, for low particle Reynolds numbers: Du 
Dt 

a [ £ ^ ^ j ; the equation reduces to: 
dt 

dvp 24 v\ I 
—L = —r\ii{x,t)-vn{t)\ - 2 f + 3 
dt d2 1 " W J*=i,(o s 

Dii 

Dt 
(2.35) 
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3 SIMPLE ANALYSIS OF LIGHT AND HEAVY PARTICLE 

MOTION IN THE 2D HORIZONTAL PLANE OF A PANCAKE 

VORTEX 

3.1 Validity of the 2D approach 

3.1.1 Significance of the 2D approach 

Strictly speaking, the three-dimensional approach is the only correct approach to treat the 

problem. Indeed, unless the particle is neutrally buoyant and doesn't have any initial vertical 

velocity, it will either rise or fall. By doing so, the background velocity field in which it evolves 

changes, because the vortex does have a vertical structure. So, it's important to keep track of the 

vertical movement of the particle. 

Nevertheless, we'll start by considering the dynamics of the particle in the horizontal planes of 

the vortex (mainly its symmetry plane), as if the movement was taking place at a constant 

elevation z , or at least assuming that the particle motion in the horizontal is decoupled from its 

vertical motion. This assumption is reasonable if the vertical motion is negligible compared to the 

thickness of the vortex, in the time interval considered. 

Therefore, strictly speaking, the results presented below only apply to a vortex configuration 

where the horizontal component of the fluid velocity field is independent of the elevation. Doing 

so, we actually ignore the real three-dimensional structure of the pancake vortex, but we still deal 

with the horizontal fluid velocity that characterizes the pancake vortex. 
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3.1.2 Possibility of a quasi 2D motion 

3.1.2.1 Residence time of a particle 

A particle that is not neutrally buoyant will either fall or rise. Therefore there is a limited time 

interval during which the vortex can affect the particle in order to enhance or delay settling or to 

create non-uniformities in the particle concentration field. To get an idea of the magnitude of this 

time interval, one can compute the residence time of a particle (i.e. the time a particle stays in the 

vortex structure). 

In the present study, the residence time (called settling time rs in the case of heavy particles) is 

simply related to the steady forcing by gravity. It is defined as the amount of time it takes a 

particle falling/rising with its terminal velocity to go through the pancake like vortex. The total 

width of the vortex is w=2A (A designating the thickness of the vortex: see section 2.2.1). 

The settling time is given by: 

The terminal velocity Uterm is the velocity a particle would achieve i f it were falling/rising under 

the action of buoyancy and drag, in a still fluid. It is obtained in a non-dimensional form by 

setting the particle acceleration to zero in the equation for the vertical motion: 

St Fr2 
(3.2) 

z = 0 => z = -(\-5) 
St 

Fr2 
(3.3) 

Hence: 
St 

Fr2 
(3.4) 
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In dimensional form: 

TT TT\\ X\ S T TT h x\ppd2§ 
u

l e r m = U |1 - S\ —Y or Uterm =\1-S\ - f -
Fr' ' 1 18// 

(3.5) 

™ wFr2 1 ISuw 
Therefore: rs = or T* = . (3.6) 

U\l-S\St 5 1-5 pd2g K } 

Note: the calculation of the terminal velocity would be more complicated for high particle 

Reynolds numbers. 

3.1.2.2 Conditions for a quasi 2D motion 

Role of the parameters Fr, St and 5 

1 2 
Preliminary remark: Since the drag term is proportional to — and the terminal velocity to d , 

d2 

the smaller the particle, the closer its trajectory will be to the two-dimensional motion of the fluid 

particles. 

The two-dimensional approximation will be valid if, in the time interval considered, the 

movement of the particle in the vertical is negligible compared to its horizontal motion. Under 

reasonable initial conditions, we expect the horizontal velocity of the particle to be of the same 

order as the characteristic velocity of the fluid motion: U . So, the vertical displacement will be 

negligible if U[erm « U. 

St 
Because CA = U\\ - 8\ 

"Fr2 
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Uterm
 K < U *s equivalent to: 

\\-S\St 
Fr2 « 1 • (3.7) 

It's interesting to note that all of the three key parameters (Fr, St and 8) play an important role 

here. Grossly speaking, the horizontal motion will be all the more prevailing as: 

the particle is close to neutral buoyancy (8 = 1) 

it has a small Stokes number 

it has a large Froude number. 

Under those conditions, the vertical motion of a particle is negligible compared to the vertical 

extension (thickness) of the vortex, so that the velocity profile of the vortex in which it evolves 

does not change much. The two-dimensional approach is justified in that case. To be more 

precise: given that the sensitivity of the velocity profile of the vortex with respect to the elevation 

depends on the elevation itself, how much the particle is allowed to move in the vertical will also 

depend on the chosen elevation. The further from the horizontal plane of symmetry, the more 

restricted the vertical motion has to be for the two-dimensional approach to still be valid. 

If it is assumed that a particle is released on the horizontal plane of symmetry and is allowed a 

maximum displacement Az = 0.1A' in the vertical, the corresponding variation in velocity is: 

c(z = 0)-c(z = 0.1xA) = _ e x p ( _(0-lxA) 2

 x Q 5 % 

c(z = 0) 2A2 

To ensure that the displacement in the vertical is less than Az, and given that the vertical velocity 

is smaller than Uterm , it is sufficient to impose that the time interval [0;T] on which the particle's 

movement is tracked satisfies: 
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UlermT<Az i.e. T<Tsup=-^ 
sup 

_Az Fr2 Az _ 1 18//Az 
S U P „ , S l l _ J f l c * TT ll J f l „ J2 w \-SStU \-8 pPd2g 

On the other hand, the time interval should be large enough to allow the particle to actually move 

in the horizontal plane. In other words, it should be at least larger than the characteristic time of 

the fluid motion: 

The non-dimensional time limits are: 

and r =^SS. = T -= ^ — 
s u p Q"1 S U P Z \\-8\.St L 

In other words, the vertical displacement of the particle will be reasonably small and the its 

horizontal movement reasonably significant if: 

TM< < T < rsup 

which requires that: 

7:nf<rsup, i. e. ( 1 " ^ 2 8 , < i . 
p S \8vUAz 

For the two sets of experimental values previously considered, the Froude number is: 
• Set#l: Fr = - ^ = « 0 . 0 4 . 

• Set#2: Fr = - ^ L * 6 , 
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the inequality Tin{ < T reads: 

• For set #1: 
(l-S)d2 

8 
<9.5*10 - 1 0 « 1 0 ' ,-9 

• For set #2: 
(\-8)d2 

< 2.7* 10 1-6 

8 

With particles of diameter d = 30 pm, it implies: 

• For set #1: q - g ) 

8 
<l => 8>-: 

2 

the particle density should be less than twice that of the fluid (water). 

For set #2: 
8 

< 3027.5 => £ > 3 . 3 * 1 0 ,-4 

the particle density should be less than 3000 that of the fluid (air). 

In practice, those restrictions are less dramatic, especially when dealing with flows of higher 

Froude number. Also, the vertical velocity of the particle has been over-estimated here. Indeed, 

the small-scale turbulence processes have been ignored, as well as the possibility of having a 

particle with an irregular shape or a rough surface. The associated friction forces have not been 

taken into account, so the actual fall or rise velocity of many particles of interest (marine snow 

and floes for example) is slower than Uterm . Therefore, the two-dimensional approach is expected 

to be valid for a broader range of parameters. For this reason, the two-dimensional motion of all 

kinds of particles (regardless of their density or their Stokes number) will be investigated, 

keeping in mind that, strictly speaking, the results obtained are valid only in the case of a fluid 

velocity field independent of the elevation - which corresponds to a vortex having an infinite 

vertical extension. 
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3.2 Equations of motion in 2D 

Gravity is assumed to be perpendicular to the horizontal planes of the vortex (therefore, it does 

not intervene in the equation for the horizontal motion). 

3.2.1 General case 

-in cylindrical coordinates 

(1 + f )- = - ^ I - 7 ^ ^ x p ( - r 2 ) - A 2 J e x p ( - 2 r 2 ) + (l + f)6'2 

2 r St r 4 2 2 

L(i+f)4^2^) = v ^ r 2 e x P ( - r 2 ) - r 2 ^ + 7 ^ 1 - 2 r 2 ) r ' : e x P ( - r 2 ) 

2 at St 2 4 

(3.8) 

-in Cartesian coordinates (x, y, z): 

( 1 + f } " = Jt (~f y 6 X P ( _ r 2 } " * } " ( f } 2 & 6 X P ( _ 2 r 2 } + ( f ) ^ ^ + ^ 2 - ^ ) e x p ( - r 2 ) 

(3.9) 

c normally depends on the chosen elevation (see section 2.2.2) but is a constant in the 2D 

approach. Assuming the particle remains in the horizontal plane z = 0, c is in fact equal to 1. 
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3.2.2 Simplifications in the case of very heavy particles 

The particles are defined as heavy if S < 1, and very heavy if S «1. In the limit case of very 

heavy particles (8 « 1), the equations of motion become: 

r 1 r *2 

- = + e (3.10) 
r St r 

^-(r2 9) - ~ ( ^ r 2 exp(-r 2) - r1 6) (3.11) 
at St I 

or, in Cartesian coordinates: 

r •• i , c , 2 

< 

x = —(--yexp(-r')-x) (3.12) 

^ = ̂ - ( ^ e x p ( - r 2 ) - ^ ) (3.13) 

3.3 Implementation in Matlab 

After rewriting the system as a first order ODE, it is solved for a given set of parameters 

(including the Stokes number, the density ratio and the initial conditions). The solver adjusts the 

time step so that the error tolerance is satisfied. 

Note: all the results are expressed in terms of dimensionless quantities. 
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3.3.1 Choosing the solver: stiff or nonstiff problem? 

Matlab provides a variety of initial value ODE (Ordinary Differential Equation) problem solvers. 

The solver ode45, a one-step solver based on an explicit Runge-Kutta (4,5) formula, the 

Dormand-Prince pair, is generally recommended for nonstiff differential equations (differential 

equations are said to be nonstiff when the different time scales involved in the problem are of the 

same order). Solving the equations of motions with ode45 turned out to be computationally 

intense, in particular for particles with small Stokes numbers. On the other hand, when the stiff 

differential equations solver ode 15s is used instead (a multi-step, variable order solver based on 

the numerical differentiation formulas (NDFs)), the resolution time is greatly improved. This 

suggests that the problem is actually stiff for low Stokes numbers. Even though a stiff solver 

needs to do more computations at each time step, it takes longer time steps than a nonstiff solver 

when used on a stiff problem, so that it actually solves the problem faster. (To be more precise, 

the stiff solver uses a variable time step: small while the fast time scale is important and then 

larger when it becomes insignificant.) 

To assess the stiffness of the equations, the eigenvalues of the Jacobian matrix of the system are 

calculated. The problem is non-stiff as long as none of the eigenvalues of the Jacobian is large 

and negative (compared to the other eigenvalues). Because the system is non-linear, the Jacobian 

matrix is not a constant but a function of the variables (x, y, x, y), so that the only thing we can 

do is to examine the eigenvalues at different time steps, for a given simulation. It is observed that, 

as the Stokes number decreases, the Jacobian matrix has a pair of negative and large eigenvalues. 

As a consequence, even though it appears that both stiff and non-stiff solvers give the same 

numerical answer, the stiff solver ode 15s will be preferably used. 
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3.3.2 Error tolerance 

As previously discussed, the stiff solver uses a variable time step: small while the fast time time 

scale is important and then larger when it becomes insignificant. Beginning at the initial time with 

initial conditions, it steps through the time interval, computing a solution at each time step. If the 

solution for a time step satisfies the solver's error tolerance criteria, it is a successful step. 

Otherwise, it is a failed attempt; the solver shrinks the step size and tries again. Because the time 

step can be longer than with a nonstiff solver, the accuracy delivered might not be as good. To 

improve the accuracy, tighter relative and absolute error tolerances are imposed: a relative error 

tolerance of 10"9 and an absolute error tolerance of 10~12 are used, unless stated otherwise. This 

roughly means that all solution components will be correct up to 9 digits, except those smaller 

than threshold 10~12. It implies in particular that the correctness of the solution is not as good 

whenever the position x or y or the velocity u or v is smaller than 10~12. If that were the case too 

often, that would mean that the scaling of the solution is not suitable for the problem. 

3.3.3 Parameters of the simulation 

The parameters of the problem are 

• the Stokes number St 

• the density ratio 5 

• the initial conditions: 
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1) the location (x0,y0) of the particle at t = 0 : four initial positions will be mainly 

considered: A (0,0) corresponding to the vortex centre; B (1/V2 ,0) corresponding to 

the distance at which the azimuthal velocity ue is maximum; C (1,0) corresponding to 

the distance at which the vorticity coz changes sign; D (A/2 ,0) corresponding to the 

distance at which the vorticity coz is minimum (see Figure 3.1). 

2) the velocity (u0,v0) of the particle at / = 0 : only two different initial velocities will 

be investigated: the case where the particle is released from rest (M0,V0) = (0,0) and 

the case where its velocity is equal to local velocity of the unperturbed fluid: 

vp{t = 0) = u(xp(t = 0)). 

For convenience, we'll use the following format to represent the set of parameters used in the 

simulation: [St - 8 - xp(t = 0) - vp(t = 0)], where v (t = 0) will either be noted as 0 or u , 

xp(t = 0) as A, B, C or D (the exact coordinates will be indicated otherwise). For instance: 

[0.1 -1.5 - C - ii] means that the particle is characterized by a Stokes number of 0.1, a density 

ratio of 1.5, and is released at the location (x0,y0) = (1,0) with the local velocity of the fluid. In 

addition, T will indicate the time span of the simulation. 
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—•— azimuthal velocity of the fluid : u theta 
vertical vorticity of the fluid : omegaz 

1.5 2 2.5 
r: distance from the vortex center 

Figure 3.1 Fluid velocity and vorticity profiles in the horizontal. The four recognizable 
points are: A (r-0): centre of the vortex; B (r = l/V2) distance at which ue is 

maximum; C (r = 1): distance at which a)z changes sign; D (r = V2) : distance at 

which O), is minimum 

3.4 Equilibrium point and its stability 

A point (r, 6, z) is called a fixed point or an equilibrium point if the velocity and the acceleration 

of the particle at that particular location are zero. 
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3.4.1 Case of very heavy particles 

As shown by the equations of motion (Equations 3.12 and 3.13), the only equilibrium point is at 

the vortex centre (x = y = 0). Also, r = 0 admits no other solution than 6 = 0, so there's no 

stable limit circle. To know about the stability of the centre, the equations are linearized around 

the vortex centre according to: exp(-r 2) « 1 for r « 1: 

" 1 c ' 
X = ~St(~2y~X) ( 3 ' 1 4 ) 

In complex coordinates, the system becomes: 

Z+aZ-ia-Z = 0 (3.16) 
2 

with Z = x + iy and a- — e R+* (strictly positive real number) 
St 

The eigenvalues are: 

A,7 = -—± — *Ja2 +2iac 
1 2 2 2 

(3.17) 

A simple geometrical argument can prove that: Re(V«2 + 2iac) > a, so that one eigenvalue is 

strictly positive. As a consequence, the vortex centre is unstable for heavy'particles, regardless of 

the Stokes number: the centrifugal force overcomes the inward drag. 
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3.4.2 General case 

Again, by considering the system in Cartesian coordinates (Equation 3.9), it appears that the only 

equilibrium point is the vortex centre. The linearization of the system gives: 

(i+1); = _L(_£ j, _ i) _ Cj-y sx - fys& 
St 2' 2 2 

0+f>H<§*->>-<f>J*+(X> 

(3.18) 

(3.19) 

In complex coordinates, the system becomes: 

• 
aZ+ L3Z+yZ = 0 

8 c c c 1 
with a = l + —, B = a-i—8 , y = (—)(— 8 - ia) and a = —. 

2 4 2 2 St 

The complex eigenvalues are: 

2a 

which is proportional to: 

. f l + ^ ± J « ' - 4 ) ^ + ^ ) - / ( f a + f ) ) 

(3.21) 

The solution is of general form: Z = c ,^ ' + c2e^' 

The second term represents an initial transient, whereas the first term reflects the long-term 

behaviour. 
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One eigenvalue has always a strictly negative real part. The other one has a strictly negative real 

part if and only if: 

The roots are -2 and 1. Given that 8 is a positive parameter, the only solution is 8 > 1. 

Therefore, the vortex centre is: 

a stable fixed point for light particles (8 > 1) 

an unstable fixed point for heavy particles (8 < 1) 

a neutrally stable fixed point for neutrally buoyant particles (8 = 1). 

If the particle was to evolve in the core of the vortex only (solid body rotation vortex), the 

distance of the particle from the vortex centre would decay exponentially in the case of light 

particles, whereas it would grow exponentially in the case of heavy particles. 

Du du 
Note: If the system that uses instead of — in the added mass term is considered instead (see 

Dt dt 
Appendix A), the same conclusion is found. 

Simulations show indeed that the centre of the vortex is an equilibrium point for any set of 

parameters (St, 8...) since a particle released at the centre without any initial velocity remains at 

the centre. Figure 3.2 illustrates what happens when a heavy particle and a light particle are 

released close to the centre (at the cross position (xO; yO) - (0.1;0)) and with the initial velocity 

equal to the local fluid velocity. 

(3.22) 

i.e. 82 +8-2>0. (3.23) 
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The heavy particle does not come back to the centre: the equilibrium point is unstable. 

The light particle comes back to the centre: the equilibrium point is stable. 

Heavy particle (delta=0.l) released close to the vortex center 
2, . , 

200 400 600 GOO 1000 
time t 

1.5 

1 

0.5 

y o 

-0.5 

-1 

-1.6 

-2 

trajectory 

0 
X 

Light particle (delta=lu) released close to the vortex center 
0.15, . , . , 

0.1 

0.05 

y 0 

-0.05 

-0.1 

trajectory 

"I-

10 15 20 25 30 
time t 

-0.1 -0.05 0 0.05 0.1 0.15 
X 

Figure 3.2 Coordinates (x, y and r) and trajectory of a heavy particle (2 upper graphs) 
and a light particle (2 lower graphs) after they are released at the cross position, close to 
the vortex centre. The corresponding parameters are: 

[St-S- xp (t = 0) - vp (t = 0)]=[1 - 0.1 - (0.1;0) - u ], T = 1000. 

and [St-S-xp(t = 0)-vp(t = 0)]=[1 -10-(0.1;0)-w], T = 30. 
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3.5 Influence of the density ratio 

3.5.1 Light particles versus heavy particles 

Simulations also show that, whatever their initial position is: 

heavy particles always tend to go away from the vortex centre 

light particles go towards the vortex centre 

This is in agreement with the fact that heavy particles are ejected due mainly to the centrifugal 

effect, and light particles go towards the vortex centre, where the pressure is the lowest. 

3.5.2 Case of light particles with a large Stokes number 

A large Stokes number means that the inertia of the particle is important. Therefore, light 

particles will probably tend to overshoot while getting closer to the centre. That is indeed what 

we observe. Figure 3.3 illustrates the trajectory of a light particle having a density ratio of 100 

and a Stokes number of 1, whereas in Figure 3.4 the density ratio is still equal to 100 but the 

Stokes number is now equal to 100. The trajectories obtained differ significantly. In the first case, 

the oscillation is about one point: the vortex centre, and the overshoot is very small. In the second 

case, the oscillation is more complex, the overshoot is more important. 
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x position 
— y position 
— r: distance tram the vortex center 
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time t 

40 50 -0.2 0 0.2 0.4 0.6 0.8 1 
x coordinate 

Figure 3.3 Coordinates (x, y and r) and trajectory of a light particle with a small Stokes 
number: [St - 8 -xp(t = 0)-vp(t = 0)] = [1 - 1 0 0 - 5 - 0 ] , T = 50. 

time t x coordinate 

Figure 3.4 Coordinates (x, y and r) and trajectory of a light particle with a large Stokes 
number: [St-8-xp(t = 0)-vp{t = 0)] = [100-100-5-0] , T = 50. 

On the other hand, a heavy particle with a large Stokes number is expected not to be substantially 

affected by the vortex, at least for some time (see chapter 4). 
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3.5.3 Ability of neutrally buoyant particles to track fluid particles 

We now come back to the non-linearized system, (with — instead of — in the added mass 
Dt dt 

term). If it is assumed that the particle follows a circle: r = r0, the radial equation gives: 

| ( £ ) 2 £ e x p ( - 2 r 0

2 ) = (1 + f J*?' (3.24) 

I 38 ' ' c 
so that 9 = ± J 9 fluid, with 9 fluid = - exp(-r2). (3.25) 

V 2 + 8 2 

Only the positive value of the rotation rate makes sense physically, though. 

On the other hand, the azimuthal equation gives: 
9 = 9 fluid. (3.26) 

Therefore, the two equations agree only in the case of neutrally buoyant particles (8 = 1). From 

this, two conclusions can be drawn. First: that, contrary to neutrally buoyant particles, buoyant 

and sinking particles cannot follow a circular trajectory. Second: that neutrally buoyant particles 

that follow a circular trajectory will actually track the fluid particles. In fact, this is the case as 

• • • 

soon as the initial velocity matches that of the fluid. Indeed, if, at t = 0, r = 0 and 9 = 9 fluid, 

the radial force acting on it is identically zero, as shown by the radial equation of the system (the 
original one or the one that usesĵ L instead of — in the added mass term) and the particle will 

Dt dt 

follow a circular trajectory. A neutrally buoyant particle is now released with a zero initial 

velocity (Figure 3.5). The particle quickly goes on a circular trajectory, even though its initial 

velocity doesn't match the local fluid velocity. Its angular velocity also quickly adjusts to that of 

the surrounding fluid. This shows that neutrally buoyant particles are able to track fluid particles. 
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time t x coordinate 

Figure 3.5 Coordinates (x, y and r) and trajectory of a neutrally buoyant particle after it is 
released with zero initial velocity with the following parameters: 
[St-8-xp(t = 0)-vp(t = 0)]=[10-l-(l;0)-0],r = 100. 

In fact, particles with a very small Stokes number (i.e. very small particles) also end up tracking 

the fluid flow (i.e. go around a circle at the same rotation rate as that of the fluid). 

3.6 Influence of the initial velocity 

The effect of the initial velocity is supposed to depend on St and 5 : 

the smaller St is, the smaller the effect of the initial condition is (because the particle 

relaxation time - time it takes it to adjust to the fluid velocity - is small) 

the lighter the particles, the more they are affected by the initial conditions (because 

they are particularly sensitive to the acceleration of the fluid) 
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Comparative simulations illustrate how the influence of the initial velocity on the particle 

trajectory varies with respect to the parameters St and 8 (Figure 3.6). Particles are released from 

the position xp(t — 0 ) = ( 1 ; 0 ) . The graphs on the left show the particle trajectory after it is 

released with zero initial velocity. On the right, the particle is released with the local fluid 

velocity. 

The first two rows of graphs correspond to the case of a heavy particle (8 = 0 . 1 ) 

with St=10 and St=100 respectively. The trajectory is perturbed only for the large 

value of St. 

The latter two rows of graphs correspond to the case of a light particle (8 = 1 0 0 ) 

with St=10 and St=100 respectively. The trajectory is more perturbed than for the 

heavy particle, and all the more when the Stokes number is big. 

Figure 3.7 shows that, for the last combination of parameters considered (8 = 1 0 0 , St=100), the 

difference in trajectory is related to a difference in the amplitude of the oscillation of r (the 

distance from the vortex centre). 
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Figure 3.6 Trajectories of particles released from xp(t = 0) = (1;0), with zero initial 
velocity (left) or with the local velocity (right), for different combinations of parameters. 
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u= 0 u = uf 

time t time t 

Figure 3.7 Trajectories (top) and coordinates (bottom) of a light particle with a large 
Stokes number released with zero initial velocity (left) and with the local initial velocity 
(right). 

In the rest of the thesis (Chapter 4 to Chapter 7), heavy particles with density ratio 8 = 4*10" 

and Stokes number St = 0.1, St = 1 and St = 10 respectively are considered. For such heavy 

particles, the particle trajectory is not really affected by the value of the initial velocity (the 

particle could either be released from rest or with the local fluid velocity). Nevertheless, note that 

particles will be released with the local fluid velocity in the two-dimensional study (Chapters 4 

and 5), since we are not so much interested in the initial stage for the two-dimensional study, and 

that they are released with a zero initial horizontal velocity in the three-dimensional study, since it 

is believed to be the closest to the real problem of particle settling through a pancake vortex. 
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4. DYNAMICS OF HEAVY PARTICLES IN THE 2D HORIZONTAL 

PLANE OF A PANCAKE VORTEX 

From now on, heavy particles with density ratio S = 4*10~4 and Stokes number St = 0.1, 

St = 1 and St = 10 respectively are considered. These characteristics are derived from the 

laboratory investigation of the particle dispersion by the coherent vortex structures present in the 

wake of a bluff-body, by Yang (1993). In his study, he used solid spherical glass beads in air. 

The ratio of the particle diameter to the flow characteristic length scale (which has to be specified 

in the computer program to evaluate the particle Reynolds number) is, by choice: 

(Equation 4.1 respects the assumptions of the Maxey-Riley equation and the fact that the diameter 

varies as the square root of the Stokes number). 

What we know or suspect: 

• the particles will be ejected from the vortex centre because they are heavy 

• heavy particles concentration may increase considerably at the edges of large-scale 

vortices (Tang et al. - 1992): this has to be verified and quantified 

Simulations show that the particles always move away from the vortex centre, and that the 

ejection rate decreases as they are ejected. But a more detailed analysis is necessary to quantify 

the ejection rate, understand what forces are involved, and see what the overall result is when the 

flow is seeded with a large number of particles. This is the point of Chapters 4 and 5. 

(4.1) 
L 
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Note 1 

Some of the facts presented in this section have already been investigated by Raju and Meiburg 

(1997), who studied the core region and the outer region of the vortex separately. The interesting 

aspect of the present study, which integrates the core region and the outer region in a single 

velocity profile, is therefore to see how the patterns observed for particles in the outer region 

differ from the ones observed for particles which have evolved in the core region before entering 

the outer region. Some results obtained by Druzhinin (1994) are also used or verified. In 

particular, a wave propagating phenomenon will be visualized in the concentration field, the 

existence of which has been argued by Druzhinin (1994). 

Note 2 

Particles are released with the local fluid velocity (see section 3.6 for comments about the role of 

the initial velocity). 

r * 
4.1 The ejection rate (- or r): general trend 

r 

The term 'vortex core' will refer to the central region of the vortex where the fluid velocity can be 

approximated by a solid body rotation (because of the viscosity of the fluid). The radial position 

r = 1 / V2 will be considered as the upper limit of the core region. The region outside the core will 

be referred to as the outer region (see Figure 4.1). 
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Figure 4.1 Fluid vorticity and velocity profiles in the horizontal, with the distinction 
between the vortex core region and the outer region. 

A heavy particle is now released very close to the vortex centre (Figure 4.2). The radial velocity 

(dr/dt) is computed as the particle is getting ejected. Three different Stokes number are 

considered: 0.1, 1 and 10. 

0 5 1/sqrt(2) 1 2.5 

Figure 4.2 Radial velocity of the particle with respect to its radial displacement (r). The 
particle is released at (xO;yO) = (0.01;0) i.e. very close to the vortex centre, with a 
different Stokes number each time. 
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The line drawn indicates the upper limit of the vortex core region. Roughly speaking, the core 

region is associated with an increase of the radial velocity, whereas the outer region is 

associated with a decrease of this radial velocity. Also, a particle with a smaller Stokes number 

reacts quicker to the change in the velocity profile. 

4.2 Forces involved in the radial direction 

As mentioned in section 3.2.2, for very small values of the density ratio, the main forces are due 

to inertia and drag. The simplified equations written in the Cartesian coordinates are: 

** 1 c ' 
x = — (--yexp(-r2)-x) (4.2) 

y = ^(^xexp(-r2)-y) (4.3) 

The full equation for the radial displacement is: 

(l + ̂ )r =~r+(l + ̂ )rb ~^Sr0 exp(-r2) - ( | ) 2 £rexp ( -2r 2 ) (4.4) 

• 
r l r ' 2 

(in its simplified version: — = h 6 (4.5) 
r Str 

the equation for the azimuthal direction being: 

(l + ^ )^ ( r 2 r3) = ̂ ( f r 2 e x p ( V ) - r 2 6 » ) + ^ ( l - 2 r 2 ) r r e x p ( - r 2 ) ) (4.6) 
2 at St 2 4 

The left hand side of Equation 4.4 and the last term of the right hand side are the inertial term 

(radial acceleration plus centrifugal term), the first term on the right hand side is the drag term, 

and the other terms are negligible and come from pressure gradient force and virtual mass. 

76 



For simplification, the left hand side is called 'the acceleration term', the Stokes drag 'the drag 

term' and the rest of the terms 'the centrifugal term'. 

+ = [ ~ r ] + [(l + |)r6> -^r<9exp(-r 2 ) - ( | ) 2 ^rexp(-2r 2 ) ] 

acceleration drag centrifugal term (4.7) 

So, how do the forces involved evolve as the particle is getting ejected? 

If we neglect the effect the pressure gradient force and of the virtual mass, the only term which 

the fluid velocity profile impacts directly on is the azimuthal drag term, and therefore the rotation 

rate of the particle and the centrifugal term of the radial equation. It is all the more the case that 

the Stokes number is small, since a larger drag means that the particle responds better to the fluid 

velocity. In the core region, where the azimuthal fluid velocity increases as the particle is ejected, 

the rotation rate of the particle is expected to increase (because of the drag term), and the 

centrifugal term with it. On the other hand, in the outer region of the vortex, the rotation rate is 

expected to decrease, as well as the centrifugal term. 

Figure 4.3 gives the absolute values of the forces mentioned above, for a Stokes number 

St = 0.1, St = 1 and St = 10, and for a particle released successively in the core region and in 

the outer region. It is observed that the centrifugal force can increase while the particle is in the 

core region, that it decreases as the particle evolves in the outer region, and that it's all the more 

true when the particle has a small Stokes number. It is worth noting that, as the Stokes number 

gets larger, one does not see a monotonic increase of the centrifugal force, but rather a decrease 

followed by an increase. 
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Figure 4.3 Logarithmic plots of the absolute values of the 'acceleration', the 'drag 
force' and the 'centrifugal force', with respect to time. On the left: particle released 
close to the centre (evolving first in the core region). On the right: particle released on 
the lower limit of the outer region (and therefore evolving exclusively in the outer 
region) 

Figure 4.3 also illustrates that for a Stokes number less than one, there is an initial balance 

between the 'acceleration force' and the 'centrifugal force' (the drag force indeed is zero since 

the initial velocity of the particle is set to be equal to the local fluid velocity). This initial balance 

is quickly replaced by a balance between drag and centrifugal forces (the solid line being 

superimposed on the dash dot line). On the other hand, for a Stokes number of 10, the initial and 
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final balances are the same but there is an intermediate regime in which the acceleration term and 

the drag term are in balance. The transition between the intermediate regime and the final regime 

is sharp. 

Thus, fundamental qualitative differences exist between the cases St = 0.1 and St = 1 on the 

one hand, and the case St = 10 on the other hand. In addition, the bigger the Stokes number is, 

the weaker the influence of the vortex on the particle, and therefore the longer the intermediate 

regime is (indeed, the centrifugal term directly reflects the influence of the vortex on the particle 

and it would be zero in the absence of a vortex). Figure 4.4 shows an enlargement of graph c l ) of 

Figure 4.3, for a better illustration. 
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Figure 4.4 Absolute values of the 'acceleration', the 'drag force' and the 'centrifugal 
force', with respect to time, for a particle with St=10 released close to the vortex 
centre. 
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Summary 

In the case of a very heavy particle, the inertia (acceleration and centrifugal terms) and the drag 

are the only important forces. In the initial stage, the acceleration force balances the centrifugal 

force, whereas in the final stage, the drag balances the centrifugal force. An intermediate regime 

where drag balances the acceleration force exists for particles having a sufficiently large Stokes 

number. The intermediate regime corresponds to the regime where the particle is 'not affected' by 

the presence of the vortex. 

4.3 Analytical results for a small Stokes number (St < 1) 

For small values of the Stokes number (St < 1), Druzhinin (1994) derived the general form of the 

equation for the radial velocity for a particle having a Stokes number small compared to unity, in 

a two-dimensional axisymmetrical vortex of velocity ue as: 

r = St<£). (4.8) 

r , 2x 
Since: u0=—exp(-r ) (4.9) 

we get: r = —r exp(-2r2) (4.10) 
4 

sothat: r = — r (l-4r 2 )exp(-2r 2 ) (4.11) 

Therefore r = f(r) (4.12) 

St 
where f(r) = (—fr (1 - 4r 2)exp(-4r 2). (4.13) 

80 



We can predict in particular that for small Stokes numbers, the radial acceleration is positive for 

r < 0.5, is zero for r = 0.5 and negative for r > 0.5. This is in agreement with what is 

observed (see Figure 4.2). Of course, it would be nice too to derive an analytical expression of the 

radial acceleration for the case of a larger Stokes number, but that is much more difficult. 

4.4 Particle dynamics in the core region 

As illustrated in Figure 4.2, the radial velocity varies linearly with the distance form the vortex 

centre in the core region. The ratio (dr/dt)/r -which represents the ejection rate- is a constant. This 

constant seems to be highest for St=l. Figure 4.5 illustrates this effect on particles having a 

Stokes number equal to 0.01, 0.1, 1, 10 and 100 respectively, which are released close to the 

centre, at (xO;yO) = (0.01;0), with the local fluid velocity. A plateau region is observed on the 

graph for the ejection rate. It indicates that the ratio (dr/dt)/r can be approximated by a constant 

most of the time the particle is in the core region (after the transient has died away). 

Note about the initial ejection rate 

It's worth noting that the larger the magnitude of the Stokes number is, the larger the initial 

ejection rate will be. The initial ejection rate will not be considered in this section. 

Note about the St=100 case 

The case St= 100 is not significantly different from the other cases even though the particle seems 

not to be affected by the vortex. Due to its strong inertia, the particle is ejected far from the vortex 

centre, but then its radial velocity quickly decays: the particle finally goes on a circular trajectory. 

The particle's motion is very slow at that stage, since the fluid velocity itself is very small at such 

a large distance from the vortex centre. So, strictly speaking, there is no case for which one can 
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say the particle is ejected 'out of the vortex'. It makes sense since the vortex does not have a clear 

extent in the horizontal direction (there is no radial position for which the azimuthal fluid velocity 

is strictly equal to zero). 

r(f), x(t) and y(t) Particle trajectory . 3 [(dr/dt)/r](t) 
x 10 

-.0.02 i 

50 100 

100 

50 100 

100 

50 100 
time 

Figure 4.5 Left: distance from the vortex centre r, Cartesian x and y coordinates, with 
respect to time. Centre: trajectory of the particle (x position versus y position). Right: 
ejection rate (dr/dt)/r with respect to time, (a) St=0.01, (b) St=0.1, (c) St=l, (d) St=10, (e) 
St=100. Particles released at (x0;y0) = (0.01;0), with the local fluid velocity 
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Case of a small Stokes number 

For small values of the Stokes number (St <\), as previously discussed, Druzhinin (1994) 

derived the general form of the equation for the radial velocity, for a particle evolving in a two-

dimensional axisymmetrical vortex: 

In the vortex core region: U g = £ e x p ( - r 2 ) « ^ (4.14) 

So that, according to Druzhinin's calculations, the ejection rate can be approximated by : 

r St 
- = — (4.15) 
r 4 

The ejection rate as computed by Equation 4.15 is very close to the one obtained in the 

simulations with a Stokes number St=0.01 and St=0.1 (Figure 4.5). Equation 4.15 therefore is a 

good approximation for the ejection rate of particles having a small diameter. 

The ejection is optimal for an intermediate Stokes number 

When the values of the ejection rate in the plateau region of the simulations are compared (Figure 

4.5 and Table 4.1), it appears that the ejection rate grows significantly as the Stokes number 

increases from small values to intermediate values, and slowly decays when the Stokes number is 

further increased. The ejection rate in the core region of the vortex is therefore optimal for an 

intermediate value of the Stokes number. This is clearly visualized in Figure 4.6. 

St 0.01 0.1 1 10 100 

Ejection rate 

(approximation) 

2.5*10A(-3) 2.5*10A(-2) 1.4*10A(-1) 1.1*10A(-1) 5*10A(-2) 

Table 4.1 Ejection rate in the core region for different Stokes numbers. 
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Figure 4.6 Logarithmic plot of the ejection rate in the vortex core region, with respect to 
the Stokes number, as observed on simulations. (From data points corresponding to St = 
0.01, 0.05, 0.1, 0.5, 1, 1..5, 2, 2.5, 3 5, 10, 50, 100.) 

Link with the linear analysis of the equations of motion 

The ejection/entrapment trend in the core region of the vortex can be evaluated by linearizing the 

equations of motion around the vortex centre. The linearization leads to equations of motion that 

are identical to the ones obtained by Raju & Meiburg (1997) when solving the case of a solid 

body rotation. This is not surprising since the velocity field of the pancake vortex linearized 

around the vortex center is equivalent to a solid-body rotation: 

ug =-rexp(-r2) « c - f o r r « l . (4.16) 

The solution is of the form: 

Z = c/1' + c2eXl' (4.17) 

The asymptotic ejection/entrapment rate is given by the real part of the largest eigenvalue: 

Re(/t,), whereas its imaginary part corresponds to the asymptotic rotation rate of the particle. 
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Both rates depend on St, 8 and c, and there is a value of the Stokes number for which the 

ejection/entrapment is optimal. 

For reference, the exact expression of the real and imaginary parts of Xx are: 

Re(A,) = -
1 1 

(2 + 8) (2 + 5)42 
9_ 
16 

(fl*-c*S-^c2S2) + J(a2-c

25- — c252)2 + 4a2c2(\ + ^)2 

16 

(4.18) 

Im(A,) = c8 
• + 

1 1 

(8 + 45) (2 + 5)42 16 
-(a2-c2S- — c252) + , (a2-c25- — c252)2 + 4a2c2(\ + -)2 

16 

(4.19) 

For reference, the exact expression of the real and imaginary parts of X2 are: 

Re(A2): 
1 1 

(2 + 5) (2 + 5)42 16 
(a2-c25- — c252) + J(a2-c25- — c252)2 +4a2c2(\ + -)2 

16 

(4.20) 

Im(A2) = 
cS 1 1 

(8 + 45) (2 + 5)42 16 
-(a2-c25- — c252) + , (a2-c25- — c252)2 +4a2c2(l + -)2 

16 

(4.21) 

The contour plot of Re(/L,) illustrates that for light particles (8 > 1, 8 being fixed), there is a 

value of the Stokes number for which the entrapment rate is maximized (Figure 4.7). On the other 

hand, for heavy particles (8 < 1), and for a given density ratio delta, there is a Stokes number for 

which the ejection rate is maximized. This Stokes number is of intermediate value (~1). 
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Figure 4.7 Contour plot of the real and imaginary parts of the eigenvalues Xl and X2. 

Moreover, for a very small value of the density ratio S, as the Stokes number is increased, lots of 

contour lines of the ejection rate are crossed till we get to an intermediate value of the Stokes 

number (St~l), implying a 'rapid growth' of the ejection rate. On the other hand, less contour 

lines are crossed when the Stokes number is further increased from an intermediate to a large 

value, implying a 'slow' decay of the ejection rate. Thus, the linear analysis is able to predict the 

evolution of the ejection rate observed in the simulation (Figure 4.6). 

Nevertheless, the velocity field can be approximated by solid body rotation only as long as the 

particle remains close to the vortex centre. Because the calculated entrapment/ejection rates are 

asymptotic rates, they may or may not be reached depending on whether the particle is in this 

region for a long enough time. Simulations indicated that for the heavy particles considered, the 

ejection rate had time to reach a constant value, so that the analytical ejection rate given by 

Re(/l1) is observed. 
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Closer look at the ejection scenario: comparison between the St=l and St=10 cases 

The cases St=l and St=10 are now compared. The ejection rate in the plateau region is roughly 

0.14 for the first case and 0.11 for the second. Obviously, the difference is significant but slight. 

So, how does that affect the particle trajectory? 

a) r(t) b) dr/dt c) (dr/dt)/r 

t ime t time t t ime t 

Figure 4.8 a) Radial position, b) radial velocity and c) ejection rate, with respect to time, 
for 2 particles of Stokes number St=l and St=10. 

Figure 4.8 shows the radial position, velocity and ejection rate of two particles: one having a 

Stokes number of 1 and the other having a Stokes number of 10. They are released very close to 

the vortex centre, at the same initial position, with the local fluid velocity as their initial velocity. 

As mentioned earlier, the radial velocity increases because of the solid-body rotation-like fluid 

velocity in the core region of the vortex, and decreases in the outer region of the vortex or in the 

'transitional region' (depending on the Stokes number). 

The St=l particle reaches the upper-limit of the core region r = l/V2 before the St=10 particle 

(at t=33.96, slightly before the other (t=34.47)). Therefore, in terms of the overall ejection 

performance, the St=l particle achieves better ejection at those early times. 
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But, in fact, 4 stages can be distinguished. 

1) Very early stage-1<0.1 - the 2 cases are undistinguishable 

Initially dr/dt=0 so there is no drag in the radial direction. Since the Stokes number only affects 

the drag term in the equations of motion, and since the two particles are released in the same 

conditions (same initial position and velocity), the difference between the two cannot be 

observed. 

2) Early stage - 0.1< t <10 - stronger ejection for St=10 - doesn't last long. 

The St=10 particle is ejected further at this stage. What happens is that the St=10 particle is still 

affected by the initial conditions, whereas the St=l particle is able to adjust more quickly to the 

fluid velocity because of the stronger drag that applies on it. That is also apparent on the 

trajectory. The St=l particle goes way more significantly on a circular trajectory, whereas the 

St=10 particle is going further from the vortex centre under the influence of its initial velocity 

vector. 

3) Intermediate stage - 10 < t < 30 - stronger ejection for St=l 

As stressed previously, in the core region, after the initial transient has died away, the ejection 

rate is stronger for intermediate Stokes numbers. Even though the St=10 particle was initially 

ahead, the St=l particle catches up, due to its larger ejection rate. 

4) Late stage -1 > 30 - ejection a lot stronger for St= 10 — till it reaches large radius 

The particles are now gone or almost gone from the core region. The St=l particle is soon caught 

up. Indeed, in the outer region of the vortex, the ejection is stronger for increasing values of St (as 

will be discussed in the next section). But, as a result, the St=10 particle quickly reaches a region 

where the fluid velocity is very small. As a result, its radial velocity decreases. At some point, its 
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radial velocity even gets smaller than that of the St=l particle, which, at that time (t~90), is still in 

a region where the fluid velocity is larger (i.e. the centrifugal effect is stronger). In other words, 

the St=l particle 'is slowly ejected', whereas the St=10 particle is ejected initially more strongly, 

and then slows down, since it is 'already' at the 'edge' of the vortex. 

As a result, the fact that there is an optimal ejection rate for intermediate Stokes numbers is 

expected not to have such a significant influence on the overall dispersion, because of what is 

happening later in the outer region. 

Possibility of accumulation in the vortex core region? 

It is interesting to investigate the possibility of accumulation because that would, in reality, lead 

to the possibility for particles to flocculate, which has great impact on the dispersion and is of 

relevance for many environment related problems. 

f 
Because: — = Re(/l1) > 0, the radial velocity increases with the distance from the vortex centre, 

r 

so the further the particle is from the vortex centre, the larger its radial velocity is. Therefore, no 

accumulation or overtaking is possible with particles having the same characteristics (same 

A,). 

Possibility of overtaking and accumulation for particles of different characteristics? 

Because the ejection rate depends on the particle characteristics, it is worth investigating the 

possibility of overtaking of a particle by another particle released closer to the centre but having a 

larger ejection rate. Three particles having Stokes numbers equal to, respectively: SV, =0.1, 

St2 = 1 and St3 =10, and a density ratio 8 = 4*10"4, are considered (Figure 4.9). Let rO,, 
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r02, r03, A,, Aj and A 3 be their initial position and ejection rates in the core region. Particle #2 

has the largest ejection rate (intermediate Stokes number). It is released the closest to the centre: 

r0 2 = 0.05 and rO, = r0 3 =0.125 

Assuming the simple law: r(t) ~ r0exp(A/) can be applied (which is a crude approximation 

given that it neglects the influence of the initial conditions), overtaking of particle #1 by particle 

#2 and of particle #3 by particle #2 are supposed to happen at t « ^°^r^—logO^) a 7 33 a n ( j 

t « 1 ° g ( r ° 3 ) - 1 ° g ( ^ ) « 22.90 respectively. 

radial position r(t) radial position versus radial velocity 

- St=0.1 
- St=1 

st=to 
Simulation time 

2.5 

Figure 4.9 Radial position with time (left) and radial velocity with respect to radial 
position, for three particles of Stokes number Stx = 0.1, St2 =1 and St3 = 10 . The first 

and third particles are released at the radial position rO, = r0 3 = 0.125 and the second 

particle at r02 = 0.05 . 

Results presented in Figure 4.9 illustrate that particle #1 is overtaken by particle #2 at t « 8.58, 

which is consistent with the prediction, whereas particle #1 is not able to overtake particle #3, 

contrary to what simple predictions tell. This is due to the fact that the larger the Stokes number 
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is, the larger the initial ejection rate is. Moreover, particle #3 (St3 = 10) is released further than 

particle #2, and therefore receives a stronger initial impulse (since its initial azimuthal velocity is 

set to be equal to the local fluid velocity and the fluid velocity increases with the distance from 

the vortex centre). The predictive calculation, which ignores the initial stage, is not able to 

accurately predict the radial displacement of particle #3. 

The fact that two particles of different characteristics (either diameter or density) can get closer 

to each other while being ejected implies that particles will likely accumulate in an experiment 

involving a large number of them, resulting in some inhomogeneities. 

Brief assessment of the situation at the upper limit of the core region (r = l/V2) 

0.09 

0.0B 

0.07 

0.06 

0.05 
e 
6 

0.04 

0.03 

0.02 

0.01 

° ° 0 5 1/sqrt(2) 1 1 5 2 2 5 

r 

Figure 4.10 Radial position versus radial velocity for 3 particles of Stokes number 
St=0,l, St=l and St=10, released at the same position, close to the vortex centre at 
(*0;>>0) = (0.01;0). 
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2.5 

Figure 4.11 Rotation rate with respect to the radial position for the same 3 particles as in 
the Figure 4.9. 

As Figures 4.10 and 4.11 illustrate, at r = l/-j2: 

the radial velocity of the particle increases with the Stokes number 

particles with small Stokes number have already felt that they are in the 

transitional region to the outer region: their radial velocity decreases 

the rotation rate decreases with the Stokes number (the bigger the particle, the 

slower the rotation) and is smaller than the fluid rotation rate, except for particles 

having a small Stokes number - in which case the rotation rate of the particles is 

equal to that of the fluid elements. Also, the St=10 particle surprisingly rotates 

faster than the fluid elements at some later stage. 
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Conclusions - the core region of the vortex 

1) After the initial transient has died away, the radial velocity obeys the law: 

r 
— = const(St,S) > 0 . 
r 

2) There is no accumulation of particles in the vortex core region with particles of the same 

characteristics. 

3) The ejection rate is maximum for an intermediate Stokes number (St~l), but it is 

certainly not that significant for the later stages; the overall dispersion is expected to be 

more affected by what is happening later in the outer region. 

4) There is a possibility of accumulation and creation of inhomogeneities in the core with a 

pool of particles having different diameters or density. 

5) When reaching the upper-limit of the core region, the radial velocity has already started 

to decrease for particles with a Stokes number St < 1, since they can 'feel' they are in 

the transitional region; particles with a bigger Stokes number are less sensitive to the 

fluid flow and react later. 
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4.5 Particle dynamics in the outer region 

This section deals with particles that are released at r = 11 (referred to as point B in Figure 

3.1 section 3.3.3), and therefore evolving exclusively in the outer region of the vortex. 

4.5.1 Ejection rate 

In the outer region, the ejection is stronger for increasing values of the Stokes number (Figure 

4.2 section 4.1). Particles with a small Stokes number are slowly ejected, whereas particles with a 

large Stokes number are initially ejected a greater extent, but then they cannot evolve much 

anymore, since they are already at the 'edge' of the vortex. 

Contrary to what was observed in the core region, the radial velocity decreases as the particle is 

ejected (apart from the very early stage where the particle starts from a zero radial velocity and is 

given an initial impulse of angular momentum). The decrease of the radial velocity is due to the 

fact that the azimuthal velocity of the fluid decreases with the radial distance, so the angular 

momentum of the particle obtained from the surrounding fluid tends to decrease as the particle is 

moving away from the vortex centre. 

4.5.2 Possibility of accumulation (St=0.1/1) or overtaking (St=10) 

As a consequence of the decrease of the radial velocity, a particle initially further from the vortex 

centre could be overtaken by a particle of the same characteristics initially located closer to the 

vortex centre and therefore having a bigger initial angular momentum. 
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To investigate the possibility of overtaking, the case of two particles of the same characteristics 

(density ratio 8 = 4*10"4 and same Stokes number) is considered:. Particle #1 is released from 

(xO;yO) = (1.0;0) and particle #2 from (xO;yO) = (1.5;0). 

Will particle #1 catch up particle #2? 

The cases of three different Stokes numbers (St = 0.1, St = 1 and St = 8) are successively 

considered, on a long simulation time: t= 10000 (Figure 4.12). The following is observed: 

St = 0.1 

Particle #1 has initially more momentum. Its radial displacement is slowly getting closer to that 

observed for particle #2, which it reaches asymptotically. 

St = l 

As the Stokes number is increased, the inertia of the particles increases and the time it takes for 

particle #1 to reach the displacement of particle #2 decreases. For the intermediate Stokes number 

of one, their radial displacements are indistinguishable (except at a very early stage, of course). 
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St = 8 

For bigger Stokes numbers, particle #1 overtakes particle #2 at a very early stage and is quickly 

ejected further. In other words, overtaking occurs. 

Therefore 

• For a pool of identical particles with a Stokes number smaller than one, we can expect 

accumulation of particles occurring at a certain radius. 

• On the other hand, with a pool of particles with a Stokes number of 8, there might be 

overtaking, which, in turn, might qualitatively change the dispersion process. 
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r(t) 
x 1D -3 

r versus (dr/dt) 

St=0.1 
simulation time: 
t=1000D 

5000 
time t 

Figure 4.12 On the left: distance from the vortex centre with time r(t); on the right: 
distance from the vortex centre (r) versus the radial velocity (dr/dt). From top to bottom: 
St=0,l; St=l; St=8. 
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4.5.3 Qualitative difference between St=0.1/1 and St=10 

In section 4.5.2, it was found that there is a qualitative difference in the dynamics of the particles 

depending on whether their Stokes number is larger or smaller than one. This qualitative 

difference is also apparent in the graph of r(t) and has to be linked to the difference in the balance 

of forces that takes place in the radial direction, as discussed in section 4.2. 

Figure 4.13 (a, b, c) illustrates the radial displacement with time, as well as the balance of forces, 

for a particle having a Stokes number of 0.1, 1 and 10 respectively. The radial displacement for 

St=10 is qualitatively different from that corresponding to the two other cases. It is the existence 

of an intermediate regime where drag balances the centrifugal force that introduces a 

qualitatively different law for r(t), and that enables a particle to overtake a particle having the 

same characteristics. 

Note also that the radial velocity increases with the Stokes number. The larger the Stokes number 

is, the farther away from the vortex centre the particles accumulate. 
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Figure 4.13 Semi-logarithmic plot of the radial displacement with respect to time (left) 
and logarithmic plot of the absolute values of the forces involved in the radial direction 
(right): the 'acceleration', the 'drag force' and the 'centrifugal force' 

[fl + f ) " = [ - ^ ] + [(l + l ^ ^ - ^ ^ e x p K ^ - ^ ^ e x p ^ 2 ) ] 

acceleration drag centrifugal term 

a)St=0.1;b) St=l;c) St=10. 
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4. CONCENTRATION PROFILES IN THE HORIZONTAL 

PLANE OF A PANCAKE VORTEX 

A large number of particles are seeded on a large area that goes beyond the vortex core region, on 

a regular grid (step dx = dy) of a disc of radius [0 3]. The initial distribution is thus 

homogeneous. 

As with previous simulations, particles are released with the local fluid velocity. The 

concentration is calculated as the average number of particles per unit area for each annular 

region dr (see Figure 5.1). It is non-dimensionalized by a reference level c0, where c0 is the 

uniform particle concentration existing at the beginning. The time evolution of the concentration 

profiles for St = 0.1, St = 1 and St — 10 successively will be examined in this chapter. 

(S1=0.1 , T=200) r position (St=0.1) 

Figure 5.1 Graph presenting how the concentration profiles are calculated. On the left: 
particle distribution pattern. On the right: concentration profile in the radial direction. The 
concentration is calculated for each annular region as the number of particles per unit 
area. 

Note 

The influence of the particles on the background fluid flow will be neglected, even though the 

concentration might get quite high in some regions of the flow field. 
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5.1 Snapshots of concentration profiles 

In the following figures, snapshots of the dispersion patterns were obtained after seeding the fluid 

with 5026 particles (with a corresponding initial concentration c0 =177 particles per unit area). 

On the other hand, the concentration profiles, which require more particles to be accurate, were 

calculated for 5 * 107 particles. Advantage was made of the axisymmetry of the problem by 

calculation the trajectories of only 4001 particles, initially located along a radius [0 4], and 

deducting from that the concentrations that would correspond to a case involving 5*107 

particles. (Solving the problem for 5 * 107 particles directly would have been much too expensive 

computationally.) The corresponding particle concentration was calculated on annular regions of 

width dr = 0.025 

Snapshots are given for each three cases: 

- St=0.1: at T=0, 10, 20, 50, 100, 200, 500 and 1000 

- St=l: at T=6, 10, 20, 50, 100, 200,'500 and 1000 

- St=10: at T=4, 6, 7, 8, 10, 20, 50, 100, 500 and 1000 

Comments will follow (section 5.2). 
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St=10 
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Comments and comparisons are provided in section 5.2. 

Note about the case St=10. 

Contrary to what is observed for the two cases St=0.1 and St=l, two fronts in the concentration 

profde are present for St=10, after time T = 7. The first peak (the closest to the vortex centre) 

has the same origin as the ones observed for St=0.1 and St=l. The second peak is due to the fact 

that particles initially located in the core region overtake particles which are initially further from 

the vortex centre, thus creating a second front of accumulation. At the time of the catch-up 

(around T = 7), the local particle concentration reaches an 'abnormally' high value. Just after the 

catch-up, the concentration at the first peak decreases as the second peak detaches itself from the 

first one. Then, it increases again due to the increase in particle accumulation with time. 
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5.2 Comments 

Overall time evolution of the concentration profiles 

For each Stokes number, the particle concentration decreases with time in the core region of the 

vortex but local accumulation of particles occurs in the outer region (as stressed in section 4, only 

in the outer region can particles of the same characteristics accumulate). A peak of concentration 

develops with time, grows and travels away from the vortex centre with the particles. It takes the 

form of a concentration wave whose crest is travelling to increasingly larger radii. 

Note that this phenomenon would be different if the fluid velocity profile was different. 

Development and travelling of the peak of concentration 

The crest is initiated at approximately r = 1 for all three cases (Figure 5.2 and Figure 5.3). This 

result can be derived analytically for St=0.1 (see section 5.3). 

Once the peak of concentration has appeared, it travels away from the vortex centre, at a faster 

rate as the Stokes number increases (Figure 5.3). As a consequence, the larger the Stokes 

number is, the farther particles accumulate away from the vortex centre. This is due to what 

happens in the early stage essentially (t<100), since the radial velocity of the crest is similar for 

all three cases at later times. 

Note: If the flow were to be seeded with an inhomogeneous pool of particles in which those three 

Stokes numbers were present, we would observe the juxtaposition of the different peaks of 

concentration, each travelling away from the vortex centre at a different velocity. Note that the 

result would be different if the interactions between the particles were taken into account. 

109 



'"-M^^WS'" 

St=0.1 , T = 100 
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Figure 5.2 Particle distribution (left) and concentration profile (right) for St=0.1 and 
T=100. 

Radial position of the peak of concentration 

1D0 20D 300 400 500 600 700 800 900 1000 
time t 

Figure 5.3 Radial position (r) of the peak of concentration, with respect to time, for each 
three cases: St=0.1, St=l, St=10. Precision: dr=0.1. Corresponds to the case of 5.107 

particles seeded on the disc of radius [0 4]. 
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The accumulation is the most dramatic for St=l 

As illustrated by Figure 5.4, the concentration peak is the highest for an intermediate Stokes 

number (St=l), except during the initial stage of the simulation, when it is the highest for a large 

Stokes number (St=10). For a given time, the accumulation for St=0.1 is not as significant as for 

St=l since the accumulation process takes longer for smaller Stokes numbers. Still, the 

accumulation is not the largest for St=10, since a second peak of concentration appears in that 

case, preventing optimal accumulation at one single radial position from the vortex centre. The 

reason why particles with a large Stokes number efficiently accumulate at early times is that, 

because of their large inertia, there is an intermediate regime where drag balances the radial 

acceleration (section 4.2), which allows them to quickly reach large radii and accumulate. The 

peak of concentration increases and then decreases very significantly around T = 7, when the 

catch-up happens. 

Value of the concentration at the peak, with respect to time 

cmax 
/cO 25 

time t 

Figure 5.4 Value of the concentration at the peak, with respect to time, for each three 
cases: St=0.1, St=l, St=10. Corresponds to the case of 5.107 particles seeded on the disc 
of radius [0 4]. 
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Limitation of Figure 5.4 

Note that the values of the concentration given in Figure 5.4 depend on the choices made for the 

evaluation of the concentration (computed presently on annular regions of width dr=0.01). The 

point of Figure 5.4 is not so much in providing actual values of the peak of concentration but in 

providing a base for the comparison between the three cases: St=0.1, St=l and St=10. 

Conclusion 

Apart from the early stage, inhomogeneities are the strongest for intermediate Stokes numbers. 

Similarities / dissimilarities between the cases St = 0.1 and St = 1 

The concentration profdes observed for St = 0.1 and St = 1 are similar, and show that it just 

takes 10 times longer for the St = 0.1 particles to achieve the same result (see Table 5.1 and 

Figure 5.5 for the comparison between the case St = 0.1, T = 103 with the case St = 1, 

7 = 102). 

c 
max 

1 T = 101 r = io 2 r = io3 T = 104 r = io5 

67 = 0.1 1.08 — 1.62 1.1 4.31 1.7 5.48 2.1 5.86 2.3 

St = \ 1.62 1.3 4.31 1.7 5.48 2.1 5.86 2.3 5.76 2.5 

67 = 10 3.75 1.7 3.10 2.1 4.00 2.3 4.23 2.5 7.67 2.9 

Table 5.1 Maximum value of the concentration observed (i.e. height of the peak of 
concentration) and the corresponding radial position rj, for St=0.1, 1, 10, at different 
times T. The corresponding simulations involved 1962 particles only, seeded on a regular 
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grid (of step dx = dy = 0.12, implying cO « 69.39 particles per non-dimensionalized 
unit area) and the concentration given was calculated on rather broad annular regions 
dr = 0.2. Despite it is a rather rough computation, it still shows the qualitative features 
of the peak of concentration. 

St=1 , T= 100 

Figure 5.5 Particle distribution (left) and concentration profile (right) for St=0.1 and 
T=1000 (top), and for St=l and T=100 (bottom). 

However, significant dissimilarities do exist between the two cases. The particle dynamics are not 

equivalent. Even though in both cases we end up with a core region devoid of particles, framed 

by a thin annular region where particles accumulate, in the case St=l the exterior of this annular 

region is relatively undisturbed compared to the St=0.1 case (see Figure 5.5). 
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Also, in the stage that precedes the formation of the annular region of high particle concentration, 

the particles are substantially more dispersed in the case St=0.1 than in the case St=l (Figure 5.6). 

iBilillilSilllifi 

St=0.1 , T= 100 

St=1 , T= 10 

Figure 5.6 Particle distribution (left) and concentration profile (right) for St=0.1 and 
T=100 (top), and for St=l and T=10 (bottom). 

These observations reinforce the idea that optimal accumulation occurs for St=l, and that the 

differences between St=0.1 and St=l are not just a matter of time. 

Case St=10 

The snapshots presented earlier (section 5.1) indicate that the St=10 case differs from cases with 

Stokes numbers smaller than 1. This is linked to that fact that only for sufficiently large Stokes 

number, an intermediate regime, where drag balances the radial acceleration term (inertial term), 
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exists. The 'catch up' that it gives rise to is visually noticeable. Particles located initially in the 

core region are expelled quickly in the outer region, instead of accumulating with the other 

particles on the annular region of high particle concentration. A s a result, the patterns created are 

not as inhomogeneous as the ones obtained for cases where the catch-up is absent (i.e. where the 

Stokes number involved is smaller). 

In figure 5.7, three different colours are used to visualize the 'catch up ' phenomenon. Particles 

located initially in the centre (r < 1) are in blue, those located in the intermediate ring 

(1 < r < 2) are in yellow, and those located in the outer ring (2 < r < 3) are in pink. The 

particles in the centre quickly form a blue ring that extends beyond the yellow particles. 

Main conclusion: 

Inhomogeneities are the strongest for intermediate Stokes number (St~l). 
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Figure 5.7 Particle distribution for St=10, at T=0, 4, 6, 8, 10, 20, 30 and 50, for 32761 
particles seeded uniformly on the disc r < 3 at T=0. Particles are in blue if they were 
initially in the disc of radius 1, in yellow if they were in the annular region 1 < r < 2, 
and in pink if they were in the annular region 2 < r < 3 . Those figures visualize the 
'catch up' phenomenon. 
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5.3 Analytical results for small Stokes numbers ( St < 1) 

As presented earlier, Druzhinin (1994) derived some analytical results for particles having a 

Stokes number that is small compared to unity (St < 1). In particular, in the case of a sufficiently 

small concentration of particles (such that their influence on the carrier flow can be neglected), he 

notes that the evolution of the concentration field c(r,t) is described by: 

This equation shows that the time scale for the increase or decrease of the concentration with time 

1 L 2 

is At (—) . In that respect, the process is getting more efficient as 5*/ is increased (while 

dc St 8 . 2 , _ 
— + (cue) = 0 
dt r dr 

(5.1) 

with c(r,t = 0) = c0(r). (5.2) 

St u, o 

remaining small compared to one). 

Druzhinin gives the general form of the solution of this Cauchy problem as: 

c(r,t) = c0(r0)*( »e(>o) 

u2

e(r) ) 
(5.3) 

the function r0 (r, t) being implicitly defined by: 

(5.4) 

Since the fluid velocity for the type of vortex addressed in the present study is: 

e 
(5.5) 
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the following equation is obtained: 

^ + -^(c^M~2r2)) = 0 (5.6) 
dt r dr 4 

The solution is: 

c(r,0 = c 0 (r 0 )*(^)exp(r 2 - r 0

2 ) (5.7) 
r 

with r0 (r, t) being implicitly defined by: 

rexp (2w 2 ) St 
—- -du=—t. (5.8) 

Jr„ i, A. 

In the following, it is assumed that the initial concentration is homogeneous. The time derivative 

of the concentration is then: 

£ = 2<3%-r0'). (5.9) 
dt dt r 

dr 
From the expression of r0 (r, t), it appears that —- < 0 and that r0 (r, t) is a strictly decreasing 

dt 

function of time such that r0 (r, t =.0) = r. 

Therefore: 
r dc 

> 0 > 0 
dt 

< 
dc 

<0 <0 

for r0 > 1 

for r 0 < 1. (5.10) 

Consequences: 

Equation 5.10 means that the concentration of particles decreases with time everywhere within 

the region r < 1 (and not only in the core region r < 1/V2 , as it could have been thought), and 
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that, at any location outside this region, the concentration initially increases with time and then 

decreases. The further from the vortex centre, the longer it takes for rQ to 'cross' the value 1 and 

therefore for the concentration to start decreasing. 

As mentioned by Druzhinin for a similar type of 2D vortex, these equations result in a traveling 

concentration wave starting from uniform particle concentration. This phenomenon was 

r 
illustrated by Druzhinin (1994) in the cases of a circular flow (ua = r—; u=0) and of a 

0 2(1+ r2) r 

r 1 
Rankine vortex (u6 = — if r < 1 and ue = — if r > 1; ur = 0). Note that both the particle 

2 2r 

inertia and the vortex structure are of significance for the generation of the concentration waves. 

It would be interesting to address the case of the Lamb-Oseen vortex 

1 r2 

(ug = [1 - exp( -)] , where 8 stands for the core size and is determined by the balance 
2K r 28 

of strain and viscous diffusion) or of a co-rotating pair of point vortices in a future study, for 

instance. 

In the case addressed by the present study, it is expected that the crest will develop at t = 0 at the 

r location where the temporal increase of the concentration is maximal, i.e. at r such that 

f<!x'.< = °> = 0-
or dt 

(5.11) 

= !"(-VC0(l-2r2)exp(-2r2)) 
or 2 

= 4Stc0r(\-r2) (5.12) 

which is zero at r = 1. 
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Therefore, the crest of the concentration wave initially develops on the circle r = 1. This is in 

agreement with the simulations for St = 0.1 (see snapshots section 5.1). 

The fact that it is at the same position r = 1 that the initial temporal increase in concentration is 

maximal (—(—) = 0) and that it is the edge of the region where concentration decreases 
dr dt 

dc dc 
(— < 0 for r0 < 1 and — > 0 for r0 > 1) suggests that a steep front develops initially at 

dt dt 

r = 1. 

Summary 

For small Stokes numbers (St < 1): 

• A traveling concentration wave starting from uniformly particle concentration develops 

in the 2d field. The crest initially appears at r = 1. 

• The time scale on which the concentration varies is inversely proportional to the Stokes 

number, so that formation of the traveling wave is more efficient as the Stokes number is 

increased. But this argument is valid only for sufficiently small Stokes number. 

Given that particles having a large Stokes number (therefore a large inertia) are not as much 

influenced by the vortex, we can predict that there is an intermediate value of the Stokes 

number for which the process (and the creation of inhomogeneities) is the strongest. 
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5.4 Concentration profiles: conclusions 

• When particles are initially seeded homogeneously, the particle concentration decreases 

with time in the core region of the vortex but local accumulation of particles occurs in the 

outer region, taking the form of a concentration wave whose crest is travelling to 

increasingly larger radii. This phenomenon depends both on the particle inertia (Stokes 

number) and on the fluid velocity profile. 

• In the present study, for small Stokes numbers, the crest initially develops at a radius 

r = 1. 

• For intermediate times (7 = 102, J = 103 and T = 104), the concentration peak is the 

highest in the case St=l. 

• A closer look at the particle distributions shows that inhomogeneities are the strongest for 

intermediate values of the Stokes number. 

Notes 

1) The magnitude of the concentration peak grows with time. However, it should be noted that, as 

the concentration gets locally high, some other effects such as the action of the particles on the 

flow itself should be considered. 

2) On the annular region where particles accumulate, flocculation may be expected to occur. For 

instance, two particles colliding could agglomerate into one bigger particle. The Stokes number 
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corresponding to this larger agglomerated particle would be larger than the initial Stokes number 

for the two initial particles. As a result, the dispersion process would be more complex. 

5.5 Extrapolation for the 3D case 

The 3D case considers a flow that is seeded with a homogeneous pattern of particles that are 

allowed to settle down through a pancake vortex. The presence of the vortex will create some 

inhomogeneities, the characteristics of which we can roughly predict given the results of the two-

dimensional study and knowing the settling velocity of the particles (section 3.1.2.1) For the 

particles considered since chapter 4, the time it takes them to settle through the vortex is of order 

0(1000) for St=0.1, of order 0(100) for St=l and of order 0(10) for St=10. Therefore, the 

radial position of the peak of concentration and its magnitude can roughly be evaluated from 

Figure 5.8 and Figure 5.9. 

The final radial position of the concentration peak that will appear as a consequence of the 

presence of the vortex is expected to be around 1.6 or 1.7 for all three cases. Likewise, the 

maximum concentration involved is of the same magnitude in all three cases. Therefore, we do 

not predict a high sensitivity to the Stokes number for the dispersion patterns created by 

the vortex during particle settling. The St=10 case should be a little different qualitatively 

though, since particles in that case are in the early phase where overtaking occurs, as discussed in 

section 4.5.2, 4.5.3 and 5.2. Results of the actual 3D simulations are presented in section 6.2.3. It 

includes a comparison with the present predictions. 
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Radial position of the peak of concentration 
4 I i i — i 1 1 1 1 1 r 

I St=0.1 I 

Approximate values predicted for the output of 
the 3d case where homogeneously s e e d e d 
particles settle through the vortex 

r 

0.5 -

0 I i i i i i i i i i . 
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time t 

Value of the concentration at the peak, with respect to time 
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time t 

Figures 5.8 and 5.9 Approximate predictions of the radial position of the concentration 
peak and of the maximum concentration involved, when a homogeneous pattern of 
particles is let to settle down freely through the vortex. 
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6. THE 3D STUDY 

6.1 Role of the gravity on the dispersion 

In a still fluid seeded with a homogeneous pool of particles, gravity cannot create concentration 

gradients, because it uniformly accelerates all the particles without creating any velocity 

differences among them. Therefore, it is not necessary to study the effect of gravity itself. 

However, gravity can affect the appearance of concentration inhomogeneities through 

interactions with the effects of a vortex. 

When gravity has a component in the horizontal plane, its interactions with the velocity field of 

the vortex give rise to an interesting particle dynamics. When gravity does not have any 

component in the horizontal plane, it merely affects the vertical motion of the particles, on which 

the vortex has no effect since a pancake vortex has no vertical velocity component: uz = 0. In 

that case, why don't we just forget about the vertical motion? 

However, the vertical motion must be still considered since the background velocity field in 

which the particle evolves changes as it rises or falls. The vortex has a vertical structure. In 

particular, a particle can escape from the vortex. So, it's important to keep track of the vertical 

movement of the particle, in the general case, unless the motion is quasi two-dimensional. 
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6.2 Sinking of a planar distribution of particles through a pancake 

vortex 

6.2.1 Description of the 'experiment' 

The settling of a planar distribution of a homogeneous pool of particles initially seeded above the 

pancake vortex is now investigated. 

In the previous chapter, the particle dynamics in the horizontal plane of symmetry of the vortex 

was considered, assuming the motion was two-dimensional. In Chapter 6, the dependence of the 

fluid velocity profde on the elevation is taken into account (through the variable 'c'): 

r z 2 

ue{r,z) = c—exp(-r2) with c(z) = exp(—^-), c ei? +*. 

Unless stated otherwise, a vortex of thickness A = 0.3 will be considered. The symmetry plane 

of the pancake vortex corresponds to the elevation z=0. Particles are released above the pancake 

vortex, in the plane z 0 = 1, where the velocity induced by the vortex is still very small. Indeed, 

for a thickness A = 0.3, the maximum velocity at z 0 = 1 is 8.29 * 10 - 4, i.e. of order 0(10~3). 

On the other hand, the maximum velocity at z=0 is 2.14*10"', i.e. of order O(10_1) . Because 

all of the particles have the same Stokes number, they experience the same buoyancy force and 

therefore settle at the same vertical velocity. All of the particles are released with zero initial 

horizontal velocity - contrary to the precedent chapter - so that initial conditions have the 

possibility to influence the particles motion, but with a vertical velocity equal to the settling 

velocity. This is believed to be the closest to the real problem of the settling of particles through a 

pancake-like vortex. 
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Neglect of the history term 

The history term modifies the short-term behaviour of the particle, especially if it is released from 

rest. Indeed, the history term represents the sensitivity of the drag to acceleration, so if 

acceleration is important, the,history term might play a role. Nevertheless, it can be neglected in 

the present study (see section 2.4.2 and Appendix B for explanations). 

6.2.2 Parameters at stake 

The velocity profile is given. The vortex thickness (A = 0.3) will be allowed to vary only in 

section 6.2.5. The density ratio is fixed (as it has been since Chapter 4): 8 = 4*10~4. So there 

are 2 parameters to consider: the Stokes number (St), and the settling velocity. If particles settle 

quickly, they will not substantially be affected by the vortex. On the other hand, if they settle very 

slowly, the vortex will have time to perturb the particle settling. 

The settling velocity was calculated in section 3.1.2.1 as: 

St 
Ulenn =U\l-8\— 

term \ r-> 2 

Fr 

As with previous simulations, the experimental values from Yang's experiment (1993) will be 

used. The Froude number is equal to 8. For each Stokes number, the (non-dimensional) settling 

velocity and the time it takes for particles to settle at this velocity from the elevation z = 1 to the 

elevation z = -1 is: 

126 



St=0.1 

St=l 

St=10 

T = 1280.51: order 0(1000) 

T = 128.051: order 0(100) 

T = 12.8051: orderO(10) 

6.2.3 Results 

The following simulations involve 5025 particles initially located on a grid of step 

dx = dy = 0.075 on the disc of radius 3 (as for the visualizations for the 2d study). Particles are 

given enough time to settle from z=l to approximately z=-10. Figure 6.1 gives both the snapshots 

of the particle distribution during the settling and the final planar distribution at the exit of the 

vortex (z = -10). 

Figures 6.2 through 6.5 present a more detailed analysis of the evolution of the concentration 

profile during settling. 
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St=0.1 Snapshots during the settling 
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Figure 6.1 Settling of particles through a pancake vortex. From top to bottom: St=0.1 
(T=2500), St=l (T=250) and St=10 (T=25). Left: snapshots of the particle distribution 
during the settling; right: final planar distribution at the exit of the vortex (z = -10). 
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In agreement with the predictions of section 5.5, the planar distribution of the particles at the exit 

of the pancake vortex is almost identical for the cases St=0.1 and St=l: the vortex core is 

completely free of particles up to the approximate radial position r=1.2 for St=0.1 and r=l.l for 

St=l (Figure 6.2). Particles have mainly accumulated at r=1.415 for St=0.1 and r=1.425 for St=l 

(Figure 6.2 and Figure 6.3). 

It is interesting to note that this radial position corresponds to the distance (r = *Jl) at which the 

vorticity co2 is minimum in the horizontal planes of the pancake vortex (see Figure 3.1). But there 

is no general rule to derive from this given that the influence of the thickness of the vortex (A) 

has not been taken into account. The fact that particles accumulate at this specific distance from 

the vortex centre is probably only true for the particular case considered (A = 0.3). 

On the other hand, for St=10, the particles have not had the time to be fully expelled from the 

vortex core (Figure 6.2). Although a ring of accumulated particles has had the time to form, it is 

not as dramatic as that for Stokes numbers of 0.1 or 1. Figures 6.4 and 6.5 also illustrate that 

whereas the planar distribution of the St=0.1 and St=l particles remains identical after the 

particles have passed the level z = -1, it is not the case for the St=10 particles. The St=10 

particles are still under the influence of the vortex when they reach the elevation z « -3 . The 

peak of concentration keeps travelling away from the vortex centre and keeps growing, due to the 

large inertia of the particles, even though the velocity involved by the vortex at that point is very 

small (compare Figure 6.2 and 6.3). The vertical profiles obtained for particles being steadily 

seeded (section 6.2.4) will also show that the action of the vortex on the St=10 particles is long-

lasting. 
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Figure 6.2 Concentration profiles in the radial direction, at about z « -3 , for each three 
cases: St=0.1 (T=2500), St=l (T=250) and St=10 (T=25). 
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Figure 6.3 Concentration profiles in the radial direction, at about z « -10, for each 
three cases: St=0.1 (T=8000), St=l (T=800) and St=10 (T=80). 
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Radial displacement of the concentration peak during settling 

1 1.5 
Radial position (r) of the concentration peak 

Figure 6.4 Radial displacement of the concentration peak that forms during settling 
through the pancake vortex, with respect to the elevation z, for each three cases: 
St=0.1,St=l andSt=10. 
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Figure 6.5 Value of the concentration peak (cmax/cO) during settling, for each three 
cases: St=0.1, St=l and St=10, with respect to the elevation z. 
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Note 

For St=10, the second peak of concentration that appears in the 2D case as a result of a catch-up 

does not have the time to form in the 3D case. Nevertheless, it appears when the vortex is thicker 

(see section 6.2.5 for a vortex of thickness A = 0.5). 

6.2.4 Extrapolation for particles being steadily seeded 

The case where the flow is continuously seeded with particles at the elevation z=l can be trivially 

deducted from the previous case (that of the settling of one planar distribution of particles only). 

Vertical profiles will be examined. 

The vertical profiles 

In Figure 6.6, two figures are presented for each Stokes number considered. The first one (left) 

gives the position of all particles located in the slice of width \dy\ < 0.01. Although it would be 

nice to get more particles represented to get a more refined vertical profile, it is not possible to 

consider a too wide slide because of the optical errors it would imply (indeed, all particles are not 

in the same vertical plane but are represented as such on the graph). The problem also is that the 

result depends on the slice considered (the axisymmetry of the solution is ruined by the fact that 

particles are initially distributed on a rectangular grid: see Figures 6.7 and 6.8). Nevertheless, this 

first slice enables visualize that the smaller the Stokes number is, the wider the lateral 

disturbed area is. 

The second figure (right) gives a more refined profile by juxtaposing the position of all particles 

located in the slide of width \dy\ < 0.1, in the same vertical plane (only their distance from the 

vortex centre is considered). For St=0.1 and St=l, the vertical profile looks like an inverted 
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funnel. The vortex acts as an umbrella with respect to the particle settling. For St=10, the 

'umbrella effect' is significantly weaker. Particles are able to go through the central region of the 

vortex. Also, particles keep being ejected even after exiting the vortex (z 1): the long-lasting 

influence of the vortex is due to the inertia of the particles. 
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Figure 6.6 Vertical profiles of the particle distribution during settling through a pancake 
vortex. From top to bottom: St=0.1, St=l, St=10. Left: result for a slice \dy\ < 0.01. 
Right: profile obtained by juxtaposing the radial position of all particles located in the 
slide \dy\ <0.1. 
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Figure 6.7 On the left: final distribution of the particles in the horizontal plane for St=10. 
On the right: zoom that qualitatively shows to what extent two vertical slices a) and b) 
taken at different angles through the distribution can lead to different results. Slices a) 
and b) are not equivalent (see Figure 6.8) since the initial particle distribution is not 
perfectly axisymmetric. 

St=10 Slice a) St=10 Slice b) 

Figure 6.8 Two vertical slices taken from the same experiment (St=10, see Figure 6.7). 
The difference in angle is pi/8. The fact that the two slices are not equivalent reminds us 
that the solution is not perfectly axisymmetric. 

135 



Role played by the Stokes number on the umbrella effect 

As illustrated in Figure 6.6, the vertical profiles change dramatically when the value of the Stokes 

number switches from 1 to 10. Intermediate cases are presented in Figure 6.9. They show that 

St=l is a threshold value beyond which the action of the pancake vortex as an umbrella for the 

particle dispersion weakens. The qualitative change of the vertical profiles that occurs at St=l 

corresponds to a change in the particle dynamics, as explained in section 5. 

St=1 Distribution (juxtaposed vertical slices) Distribution (juxtaposed vertical slices) 

St=5 
1 

Distribution (juxtaposed vertical slices) 
4!BflHIII!IMHS! 

Distribution (juxtaposed vertical slices) 

Figure 6.9 Vertical profiles for St=l, St=2, St=5 and St=10. 
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6.2.5 Influence of the vortex thickness: A 

Up to this point, the vortex thickness (A = 0.3) was not allowed to vary. In this subsection, the 

final concentration profiles of particles settling through a vortex of thickness A = 0.2, 0.3, 0.4 

and 0.5 respectively are examined (Figures 6.10 to 6.13). 

(Particles are now released from a higher initial position (z=2 instead of z=l) to be sure that the 

vortex is let to act fully on the particles trajectories, even in the case of a vortex of thickness 

A = 0.5). 

The concentration profiles illustrate that: 

in the case of a very flat vortex (A = 0.2), particles with a Stokes number of 10 end up 

being located closer to the vortex centre than the particles with a smaller Stokes number. 

This is the opposite of what is usually expected. Moreover, the particles with a Stokes 

number of 10 have not had the time to concentrate as much as the particles with a smaller 

Stokes number. 

As the vortex thickness increases, it is the particles with the largest Stokes number that 

tend to be located farther from the vortex axis centre. The peaks of concentration get 

more dramatic as well. 

The second peak of concentration that was observed in the 2D study (section 5) as a 

result of the overtaking phenomenon for particles having a Stokes number of 10 is 

present only if the vortex is thick enough (A>0.4). When the vortex thickness is 

A = 0.4, the peak of concentration observed at the exit of the vortex for a Stokes 

number of 10 is exceptionally high. It is due to the overtaking phenomenon. 

The 2D analysis has made it easy to interpret these different concentration profiles. 
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Figure 6.10 Final concentration profiles (in the radial direction) 
after particles have settled through a pancake of thickness A = 0.2, 
for each three cases: St=0.1, St=l and St=10. 
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Figure 6.11 Same as Figure 6.11 but with a vortex thickness A = 0, 
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Final concentration profiles (lambda=0.4) 
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Figure 6.12 Same as Figure 6.11 but with a vortex thickness A = 0.4 
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r position 

3.5 

Figure 6.13 Same as Figure 6.11 but with a vortex thickness A = 0.5 

139 



7. DISCUSSION 

This study can be considered as a first step toward an understanding of the role played by 

pancake vortices in particle dispersion. The study could be extended in different ways. 

First, it would be of practical interest to address the case of particles having a smaller density (i.e. 

a larger density ratio 8 ), while still having a relatively large Stokes number (so that the particle 

motion is substantially different from that of a fluid element). To be able to do so, one has to find 

a way to relax the assumptions of the Maxey-Riley (1983) equation. 

Besides, it would be interesting to address the case of other vortex structures (Lamb-Oseen 

vortex, spiral vortex...) and compare the results for the propagation of the concentration wave. 

Note that the case of a Rankine vortex was addressed by Druzhinin (1994) in the case of small 

Stokes numbers. 

Also, the study does not include the interactions between particles. However, those interactions 

are expected to play an important role in the regions of high particle concentration. In particular, 

flocculation would probably affect the dispersion process in reality. This issue is discussed in the 

following. 

The flocculation of particles depends on the collisions between particles, caused by their relative 

motion. This relative motion may be caused by Brownian movement, by fluid movement giving 

rise to velocity gradients, or by particle motion due to an external force (e.g. gravity). 

Flocculation is important in many industrial processes such as pulp and paper, mining and water 

and wastewater treatment. The aggregates that would form as a result of collisions between 

particles would be characterized by a larger Stokes number than that of the primary particles. As 

such, they would move away from the vortex centre faster, and they would fall faster as well. 

Flocculation could result in a pool of particles exhibiting a continuous distribution of Stokes 

numbers. 
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The incorporation of the whole flocculation process in the numerical model is beyond the scope 

of this thesis. Nevertheless, it is possible to relate the likelihood of flocculation as a function of 

radius to the concentration profiles obtained in section 5 for the study of particles evolving in the 

2D horizontal plane of the vortex. The case of the orthokinetic flocculation caused by the 

velocity gradient in the horizontal plane is considered (the particle settling will be neglected 

here). 

Likelihood of the orthokinetic flocculation 

Principle 

The flocculation caused by velocity gradients is called orthokinetic flocculation. In the present 

study, the velocity gradient of the carrier fluid in the horizontal plane is responsible for relative 

motion of particles: a particle located at a point with high tangential velocity tends to move faster 

than one at a point with low velocity. If the particles are close enough together, their different 

velocities will eventually cause them to come into contact. The likelihood of orthokinetic 

flocculation will be addressed in the following. 

Assumptions 

Rapid flocculation is assumed, i.e. there is no surface force repulsion between the particles, and 

every collision leads to aggregation. Also, flocculation is assumed to be relatively non-important: 

the collision rate is calculated as if no previous flocculation had happened. If the analysis proves 

that the rate of collision is significant under certain conditions, then it will give an idea of the 

conditions in which flocculation is expected to significantly change the results of the simulations. 
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The rate of collision 

The derivation of the rate of collision in the 3D case by Ives (1977) is adapted to the 2D case. 

Two particles i and j are considered, j being treated as the collector. If their centre lies within a 

distance inferior to R.j = rt + r, (where rt and r, are the radius of the particle i and j), the 

particles collide. The flow rate that comes to the j particle through the imaginary section of length 

2Rij (Figure 7.1) is: 

(7.1) 

with R = RiJ=ri + rj 

du 
and — is the local velocity gradient in the radial direction. 

dr 

Zone of collision 

0 

r x 

Figure 7.1 Definition sketch for othokinetic flocculation in 2D. 
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Q is the 2D flow rate, so for c(. particles per unit area, the rate of collision of i-particles with the 

j-particle is: 

CiifXm = 2ci(r)\*xAr + x))dx (7.2) 

dNt . 
If there are c. particles per unit area, the rate of collision — (number of collisions per unit 

dt 

area and per unit time) of i-particles with the j-particles is: 

dN, , fR du 
— ^ ( r ) = 2c,(r)c,(r) f x(—(r + x))dx. (7.3) 

dt J 0 dr 

du 
Substituting the expression for — in the horizontal plane of symmetry of the vortex (Figure 7.2) 

dr 

and taking into account the time dependence of the concentration profiles gives: 

dN; ,. fR I - , 

——(r,0 = c,0,0c. (r,0 x\\-2(r + xy exp(-(r + xf)dx 
dt J o 1 

(7.4) 

Note: all the variables are dimensionless in this expression. In particular, x and R, which 

measure some lengths, are the ratios of the actual distances to the length scale of the vortex. 

Then, given that the pool of particles is initially homogeneous, and assuming that the 

characteristics of the particles (diameter, number of particles) remain constant despite the 

flocculation phenomenon, the rate of collision is: 

dN fdlL . . 
—(r, 0 = c(r, 0 x 1 - 2(r + JC) exp(-(r + x)yJx. 
dt Jo 

(7.5) 

where d is the particle diameter, and c the local concentration of the particles, given by the 

concentration profiles (assuming that the initial concentration c0 is known) (see section 5). 
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Cl _3 I 
As in previous simulations: — = 2*10 yjSt (see Chapter 4). Also, it is assumed that a total 

L 

number of P = 10000 particles are initially released on the disc of radius [0 3] (the 

corresponding concentration is c0 = 353 particles per unit area). Note that the collision rate 

varies as the initial concentration squared, and the results obtained will have to be modified if the 

initial concentration is given a different value (to get the value of collision rate for a number of 

particles P' different from P, just multiply the given collision rate by (P'f P)2). 

Results 

Equation 3 shows that the parameters that are of primary importance are: 

the particles concentration c(r,t) 

du 
the velocity gradient —(r) (see Figure 7.2) 

dr 

and the diameter of the particle d oc 4 St 

The collision rate is proportional to c2{r,t), and approximately proportional to d2 oc St. 

0.6 
Velocity gradient 

0.6 
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0.4 
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- \ 
-

0.2 

0.15 : \ 
r \ f \ 

0.1 

0.05 : \ 1 

\ 

•• V 
0 V , 1 1 T - — i i 
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r 

Figure 7.2 Profile of the absolute value of the velocity gradient in the radial direction, in 
the horizontal plane of symmetry of a pancake vortex. 
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collision rate (dN/dt) 
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0 0.5 1 1.5 2 2.5 3 3.6 4 

r 
0 0.6 1 1.6 2 2.6 3 3.6 4 
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-1 1— -1 1— 
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0 0.5 1 1.5 2 2.5 3 3.6 4 0 0.6 1 1.5 2 2.5 3 3.6 4 

Figure 7.3 Profiles of the particle concentration and of the collision rate in the radial direction for 
St=l and T=0,10, 50, 100, 500 and 1000. 
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Results of the simulations show that the collision rate's variation in the radial direction closely 

follows that of the concentration, hence a peak of the collision rate developing and following the 

peak of concentration (Figure 7.3). The value of the collision rate at the peak is represented on 

Figure 7.4, for St=0.1, St=l and St=10. It increases with the Stokes number, and with time (in the 

overall). The radial profile of the velocity gradient modulates the value of the collision rate. In 

particular, for St=l and St=10, the value of the collision rate at the peak starts to decrease at late 

times because the value of the velocity gradient tends to get quite small at the radial position 

reached by the peak. 

Also, for St=10, the collision rate reaches a very large value at early times since a relatively high 

peak of concentration develops at a location where the velocity gradient is relatively large, thus 

creating optimal conditions for particle collision to occur. The peak of the collision rate goes as 

high as 236.5 (i.e. three orders of magnitude larger than for St=l) at r = 1.4875 and T = 7. It 

corresponds to the very moment where particles initially located in the central region of the 

vortex catch up particles initially located farther out, thus causing the local concentration to reach 

a relatively large value (see Chapter 5). 
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Figure 7.4 Evolution of the maximum of the collision rate , in the radial direction, 

dt 
with respect to time, for St=0.1, St=l and St=10. 

To measure the impact of the flocculation on the pool of particles, it is necessary to evaluate the 

number of particles that are expected to collide. Considering only the annular region where the 

collision rate involved is the highest (the region of the peak), and assuming that this region is 

dN 
roughly located at rO ~ 1.6, is of width dr = 0.05, and that (rO) « 20, the number of 

dt 

particles colliding per unit time is: 

2(— (r0))(/r((r0 + dr)2 - (rO)2)) * 20 
dt 

20 particles are expected to collide in that region per unit time. Therefore, for a time span T=100, 

2000 would be expected to collide, which represents a fifth of the total number of particles 

(P = 10000). 
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Conclusion 

As the particles go away from the vortex centre and accumulate, the rate of collision increases 

locally. However, the increase of the rate of collision is limited by the fact that the gradient of 

velocity -which is at the origin of particles collision- decreases significantly at large radial 

positions. 

The scenario is more complex for particles having a large Stokes number (i.e. a large diameter). 

In that case, the rate of collision can reach very high value, especially at early times where some 

particles catch-up others. Therefore, flocculation is expected to have a significant impact in the 

dispersion process for large Stokes numbers (St ~ 10). 
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8. CONCLUSIONS 

The dispersion of small, spherical particles in a quasi-two-dimensional axisymmetric pancake­

like vortex has been investigated numerically by substituting the velocity field for a pancake 

vortex into the Maxey-Riley (1983) equation of motion. The particles considered are heavy (i.e. 

denser than the surrounding fluid) with a fixed density. 

In the first place, gravity was neglected. The analysis of the particle motion in the horizontal 

plane of symmetry of the vortex agreed with previous studies on the fact that: 

1- contrary to light particles, heavy particles move away from the vortex centre 

2- the Stokes number, which depends on both the particle size and density and measures the 

effect of the particle inertia relative to the drag, controls the dispersion process. Particles 

with a small Stokes number tend to follow the fluid elements. The larger the Stokes 

number, the further the particles are ejected. Also, when the flow is seeded with a large 

number of particles, inhomogeneities are created by the accumulation of particles in some 

regions of the vortex. Inhomogeneities are strongest for intermediate Stokes numbers 

(St~l) in general. 

Also, by studying the dynamics of individual particles, it was found that particles of the same size 

and density cannot accumulate in the core region of the vortex, but they can do so in the outer 

region of the vortex. In addition, if the Stokes number is large enough, particles initially located 

in the central region of the vortex are able to overtake particles initially located farther from the 

vortex centre. 
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The flow was seeded with a homogeneous distribution of particles of the same size and density. 

The analysis of the concentration profiles in the horizontal plane of the vortex showed that 

accumulation of particles takes the form of a concentration wave that grows and travels away 

from the vortex centre, at a faster rate for larger Stokes numbers. The peak of concentration is the 

highest for intermediate values of the Stokes number (St~l). For large Stokes numbers 

( i S r~10 ) , overtaking is observed visually. It occurs at very early times and substantially 

modifies the dispersion process, causing a second peak of concentration to appear. Just before the 

second peak of concentration appears, an exceptionally high peak of concentration is observed as 

a result of overtaking. Note that the characteristics of the concentration wave dependent on both 

the particles inertia (i.e. on the Stokes number) and on the vortex structure. 

The analysis was then extended to the 3D case where particles settle through the vortex. The 

study showed that the second peak of concentration observed in the case of large Stokes numbers 

( ~ 10) will not occur unless the vortex thickness is large enough. There is an intermediate 

value of the thickness ( A = 0.4) for which particles with a large Stokes number are just brought 

to the point of overtaking, hence a high peak of concentration. 

In reality, flocculation is expected to play an important role in regions of particle accumulation. 

The likelihood of orthokinetic flocculation was assessed, and was found to be exceptionally high 

for particles with a large Stokes number at the moment of overtaking. 
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APPENDIX A 

Equations of motion with a modified added mass term 

In the Maxey-Riley (1983) equations, some authors have replaced the acceleration following the 

du Du 
particle (— ) in the added mass term by that following a fluid element ( ). 

dt Dt 

By doing so, the equations of motion of the particles evolving in the pancake vortex are: 

In polar coordinates: 

(1 + - ) - = -—-- - ( - ) 2 ^ exp(-2r2) + (l + ^ )6 
2 r Str 2 2 F V ' V 2 

(1 + | ) ^ ( r 2 9) = - V r 2 exp(-r2) - r2 6) 
1 at St 2 

5 " 1 * 
(l + - ) z = - — z - ( l - ^ 

In Cartesian coordinates: 

a + | )^^( -^exp( -r 2 ) - ; ) - | (^) 2 &exp(-2r 2 ) 

(1 +1 )y = ̂ (|*exp(-r 2) - ^ - |(|)2<^exp(-2r2) 

8 " 1 • 
(1 + - ) * = - - * - ( ! - * ) * • 
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APPENDIX B 

Justification of the neglect of the Basset history term 

The objective of this section is to check and make sure that the neglect of the Basset history term 

is justified. This can be done by taking the solution to the simplified equations of motion and 

using it to calculate the corresponding Basset history term. This term will then be compared to the 

drag term. 

The Basset history term (B.H.T.) is equal to: 

The function under the integral is diverging when x —» / . To be able to calculate the integral 

numerically, for a given time t, one has to transform the integral. 

By setting x2 = t - x , the integral becomes: 

>*-2*x*dx 
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The value of — [ H ( X , Z " ) ] is evaluated at regular, small time steps r ; = t - xf, between 0 and t, 

such that Ar = 0.01. It is then multiplied by the corresponding 

dx = xM - Xi = (^]t - ri+l) - (^]t - r(. ) . Finally, all the i - terms are added together to get an 

approximation of the integral. 

The case of a particle having a Stokes number of 1, released at (x0;y0) = (0.01;0) in air, with 

the local fluid velocity, is now considered. The value of the different parameters is kept consistent 

with the rest of the thesis (<5 = 4*10 - 4, v = \0'5m2s~i, p = 10 - 5Nsnf2, U=3.3 m s~\ 

L=0.03 m). First, we make sure that the time step A r = 0.01 is sufficiently small for the integral 

to converge, by comparing the value of the Basset history term found for that time step with the 

one found for Ar'= 0.001, at t=100 (Table B.l). 

AT = 0.01 Ar'= 0.001 

B.H.T. in the radial direction (t= 100) - 6.5392 *10 - 1 0 - 6 . 5 3 8 7 * 1 0 - ' ° 

B.H.T. in the azymuthal direction (t=100) -1.3956 *10 - 9 -1.3955*10 - 9 

Table B.l Comparison of the value of the Basset history term obtained, at t=100, with a time step 
AT = 0.01, with that obtained with a time step Ar'= 0.001. 

The values found for the Basset history term are very close to each other in both cases, so we 

will keep the time step equal to A r = 0.01. 
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Figure B.l presents the absolute value of the Basset history term compared to that of the drag 

term. The figure illustrates that the magnitude of the Basset history term is negligible compared to 

the drag force term. It is seven orders of magnitude smaller approximately (Figure 1). 

Therefore, the neglect of the Basset history term (mentioned in section 2.4.2) is justified a 

posteriori. 

drag 
B.H.T. 

time t 

Figure B . l Absolute value of the drag term and of the Basset History term, with respect 
to time, in the case of a particle of Stokes number St=l, released at (x0;y0)=(0.0T;0) with 
the local fluid velocity. 
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APPENDIX C 

Origin of the Maxey-Riley equation's assumptions 

In deriving the equation (Maxey-Riley - 1983), the force on the sphere was evaluated by 

separating the flow field into two components: the undisturbed and the disturbed flows. In order 

to obtain a simple form of the force acting on the sphere from the undisturbed flow, the particle 

diameter has to be small compared to the characteristic length scale of the fluid motion (referred 

to as Assumption 3 in section 2.4.3: — « 1 ) . In order to obtain a simplified equation for the 

L 

force due to the disturbance flow, the convective terms were neglected, implying Stokes flow, 

which requires the particle Reynolds number based on the slip velocity to be small: 

Re, 
d.v„ -ii 

« 1 

or p U d I- -Re„ = — v„ — u 
P I dim ensionless 

« 1 Assumption 1 (section 2.4.3) 

Also, the ratio of the particle diameter squared times the characteristic velocity scale to the 

product of the kinematic viscosity of the fluid and of its characteristic length scale -which is 

representative of the gradients of the velocity U- has to be small compared to one: 

d d 2£/ 
(y)2 Re / = —— « 1. Assumption 2 (section 2.4.3) 

159 



As long as — « 1, Re f = — can be large up to 0(—) while Re « 1 is still satisfied (as 
L v d p 

long as Iv - u\ is small compared to U). 

The assumption of a zero Reynolds number for the relative motion actually enables many effects 

to be neglected. For finite values of the Reynolds number, corrections such as the Oseen 

d\v - u\ 
correction to the Stokes drag, of order 0(Re ) = 0(—• -) for rectilinear motion, will have 

v 

to be considered. Some other corrections would also intervene if the particle were to spin, but we 

won't look at spinning particles in this project. 
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