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A B S T R A C T 

Strength parameters and intrinsic properties of sand are very important for engineering design. It 

is well known that such properties depend on factors including grain size distribution, fines 

content, mineralogy and grain shape. Recently, several authors have sought to establish a 

relation between the constant volume friction angle, as well as the maximum and minimum void 

ratios, and the roundness of the sand grains. Little information exists on well-rounded sands. A 

series of triaxial tests were performed on a uniformly graded, well-rounded coarse sand (R=0.81). 

Interpretation of the results confirms the available relations, and provides a link between the data 

on commonly found sands (0.2<R<0.7) and glass beads (R=1.0). Additionally a comparison of 

drained and undrained triaxial test data indicates § M C = § P T * (j>cv, (J)cv = § M O i § M 0 = (j)PT + 3° and 

(j)cv is very similar to § r e p. 

The behaviour of the well-rounded sand is modelled using the critical state soil mechanics 

constitutive model, NorSand. The results show that the parameters needed for the model fall 

within the expected range of values, and that NorSand captures both the drained and undrained 

response of the sand in triaxial testing. However, the volumetric coupling coefficient N, shows an 

unusual value indicative of unusual dilation of this sand. To account for this, a modification of the 

flow rule is proposed. 

In addition, the NorSand constitutive model is implemented in the commercially available software 
« 

FLAC. For this, the standard method used within FLAC, F=0, will not work. But by solving F = 0 

it is possible to introduce any critical state soil mechanics (CSSM) constitutive model. This 

approach is described in detail for two selected CSSM models, Original Cam Clay and NorSand. 
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C H A P T E R I: INTRODUCTION 

The engineering study of soils requires a knowledge of the stress-strain behaviour of the material 

and its intrinsic properties, such as maximum and minimum void ratios and strength parameters. 

The constant volume friction angle is of particular interest, given the importance of this parameter 

to engineering analyses. In the case of coarse-grained soils, factors including grain size 

distribution, fines content, mineralogy and grain shape all influence the intrinsic properties such 

as void ratio and friction angle. Recent efforts have sought to correlate the influence of the grain 

shape, quantified by an index value of roundness (R), on these intrinsic properties of sands. 

Several authors have found that the minimum and maximum void ratios, as well as the constant 

volume friction angle, decrease as the roundness of the particles increases. Most of the studies 

make reference to sub-angular to rounded sands (0.1<R<0.7), and to perfectly spherical glass 

beads (R«1). It transpires that few data are published for the intervening grain shape given by 

well-rounded sands. 

In addition, numerical modelling is more commonly used in engineering design, as well as for 

behaviour prediction of soils and structures. Different constitutive models of varying complexity 

have been developed in order to capture soil behaviour. These models have been implemented 

in simple codes such as Visual Basic for Applications (VBA) or in more complex commercially 

available software. 

This study addresses the influence of grain shape on the behaviour of sands: more specifically, it 

examines the influence of roundness on properties such as minimum and maximum void ratio, 

and the angle of shearing resistance. Additionally, the NorSand constitutive model is evaluated 

for its ability to capture the behaviour of a well-rounded sand. 

Given the focus of the research, a laboratory testing program was undertaken on a uniformly 

graded, well-rounded coarse sand, referred to as "Badger sand", in order to determine its 

properties. The roundness of Badger sand was quantified, and its strength properties established 

from analysis of the response to drained and undrained loading in triaxial compression. The 

findings were related to, and then compared with, available data for sands in the literature. 

The comparison makes reference to the state of the art on the quantification of various friction 

angles used to characterize the response to shearing, including the constant volume friction 

angle, phase transformation friction angle and maximum contraction friction angle, among others. 
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The NorSand constitutive model was used to predict the behaviour of Badger sand. NorSand has 

been able to capture the behaviour of sands such as, Erksak sand (Jefferies and Shuttle, 2005), 

Brasted sand (Jefferies and Shuttle, 2002) and Ticino sand (Shuttle and Jefferies, 1998) which 

are more angular sands than Badger sand. An objective of this study is to verify that NorSand is 

also able to capture the behaviour of well-rounded sands, such as Badger sand. 

1.1. Purpose of the study 

The main objectives of this study are: 

• Measure physical properties of Badger sand grains, such as roundness, and the grain 

assembly, such as minimum and maximum void ratio. 

• Determine strength parameters of Badger sand, including the angle of repose, failure 

envelope friction angle, phase transformation friction angle, maximum contraction 

friction angle and constant volume friction angle. 

Correlate the roundness of Badger sand with its extreme void ratios, and constant 

volume friction angle, and contrast those findings with relations for sands in the 

literature. 

• Compare the relative magnitude of the different friction angles obtained for Badger 

sand, and examine the implications for characterization of well-rounded sands. 

Determine the elastic, plastic and critical state properties of Badger sand for modelling 

purposes. 

• Capture the behaviour of Badger sand with the NorSand constitutive model within 

FLAC. 

To meet these objectives, a triaxial testing program was undertaken and the results obtained 

used to establish parameters for the sand that were verified through comparison with findings 

reported in the literature. Finally, parameters needed for the NorSand constitutive model are 

obtained. 
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1.2. Organization of the thesis 

In Chapter II a literature review is presented explaining the drained and undrained behaviour of 

sands, defining the different friction angles mobilized during laboratory testing and introducing two 

concepts for characterization of the grain shape, namely, roundness and sphericity. In addition, 

the concept of critical state soil mechanics (CSSM) is defined and a description provided for three 

constitutive models (Original Cam Clay, Modified Cam Clay and NorSand) that are based on the 

C S S M . 

Chapter III describes the sand used for this research and the program of laboratory testing 

undertaken in the graduate geotechnical laboratory at UBC. Results obtained from the laboratory 

testing program are also presented. 

A discussion and analysis of results is presented in Chapter IV. First is a discussion of the 

parameters obtained from tests on the well-rounded badger sand described in Chapter III, 

followed by a comparison of those results with values for other sands found in the literature. 

Finally the NorSand model is used to fit the tests, and the parameters needed for modelling 

purposes are obtained and discussed. 

A summary of these findings and the companion conclusions is given in Chapter V. 

In addition the implementation of NorSand within FLAC (Fast Lagrangian Analysis of Continua) is 

explained in Appendix A. First a brief description of the FLAC program is presented, followed by 

an explanation of the steps taken to code the NorSand model. 
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CHAPTER II: LITERATURE REVIEW 

The shear strength of a sand depends on several factors, including the type of loading (triaxial 

compression, triaxial extension, plane strain), type of drainage (drained or undrained), initial state 

(loose or dense), and initial fabric. Recently, it has been shown that the so-called intrinsic 

characteristics of sands are also a function of the shape of the grain particles. In order to capture 

the behaviour of sands, several constitutive models have been proposed. In this chapter, first, a 

general description of sand behaviour is given, followed by a definition of the various friction-

related angles mobilized during the shearing of a sand specimen, after which the concepts of 

roundness and sphericity are reviewed. Then a description is provided of different constitutive 

models, starting with Original Cam Clay, followed by Modified Cam Clay, which are the first 

Critical State Soil Mechanics constitutive models, and finally a description of NorSand, the first 

CSSM constitutive model able to capture the real behaviour of sands. 

2.1. Behaviour of sands 

2.1.1. General stress-strain behaviour of soils 

The general stresses and strains on a soil element are shown in Figure 2.1. Stresses acting 

perpendicular to the planes in the 1,2,3-direction are an' , a 2 2' and a3 3', respectively. The 

stresses oy are determined using the suffix i to indicate the direction of the normal stress to that 

plane and the suffix j to indicate the actual direction of the stress. The stress matrix can be written 

as: 

<7 1 2 ' °"13' 

c r 2 1 ' <J22 °"23 ' 2.1 

° 3 l ' °Z2 °"33'_ 

where aVj' is symmetrical and c r 1 2 ' = c r 2 1 ' , o - 1 3 ' = <7 3 1' and <T 3 2 '= <7 2 3 ' , hence six independent 

components are needed to describe the stresses on a soil element. 

Similarly, the stress increment is written as: 
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• • • 
cr 

1 
12 13 

• • • 
22 23 

• • • i 
32 a 33 

where cnf is symmetrical and is the difference in effective stress due to the load increment 

applied to the element. 

When the load increment is applied, the displacement of the element is decomposed in three 

parts comprising, displacement, rotation and distortion, and the corresponding strain increment 

can be written as: 

£ 11 S 12 S 1 

£ 21 ^22
 E 2 

^ 31 ^ •*-> ^ i '32 ° 33 

2.3 

where EJJ' is symmetrical. 

It is possible to find the principal stresses and strains in three orthogonal planes, where no shear 

stress or strain occurs. The stress matrix can be written as: 

0-1 

0 
0 

0 
0 2.4 

where 1, 2 and 3 are the principal stress directions. The matrix for the stress increment and strain 

increment can be written under the same form, but the principal directions are not necessarily the 

same as the principal stress directions. 

2.1.2. Triaxial testing 

Compression triaxial tests are widely used to characterize the strength of soils. A cylindrical 

specimen is typically subjected to an hydrostatic confining pressure (cr0'= a3') and then sheared 

by means of an axial load (o-0'+A<r'= a-.,'). Axial displacement is measured as the specimen 

deforms; volumetric strain is measured if the test is performed under drained conditions, or pore 

water pressure if the test is undrained. 
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Figure 2.1: Effective stresses on a soil element 

As the sample is loaded, it is possible to obtain a relation between stress and strain. The slope of 

the stress-strain curve gives the Young's modulus (or elastic modulus), given by: 

2.5 

When the element in Figure 2.1 is subjected to an isotropic stress, the volumetric change, s„ is: 

dV 
2.6 

where V 0 is the initial volume of the element and dV is the change in volume. 
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The general strains in an elastic element having constant isotropic elastic stiffness are given by: 

s2 = — (- vAcr1'+A<T2'-v /Ao"3') 2.7 

£ 3 = — (- vA<r^-vAcr2'+Acr3') 

where, v is the Poisson's ratio. 

The volumetric strain is the sum of the strains in the three principal directions, and is given by: 

sv = + s2 + e3 2.8 

From the principal stress matrix (Eq. 2.4), the mean effective stress, p', and deviator stress, q, 

are defined by: 

g-= ^[{a:-crzf +{a2-a3f + (a3'-a,f\ 

Stress and strain invariants should be work-conjugate, meaning that the stresses and strains 

components and the invariants can be used interchangeably in the equation of work. Hence: 

Work done per unit volume -qs g + p'sv = (T\ + <y'2 s2 + a'3 s3 2.10 

Where sq and sv are the shear strain increment and volumetric strain increment, respectively. 

Special care is needed when choosing the shear strain component in 3-D. As the volumetric and 

shear strains are separated, it is necessary to find a work conjugate expression for the shear 

strain increment, as the volumetric strain increment is already a strain invariant (Eq. 2.8). 

Rearranging Equation 2.10, the shear strain increment is given by Equation 2.11: 
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where = {2a^-a2'-03'/3) ar>d s 2 and s 3 are found by cycling rotation. 

By replacing the principal stresses, the work-conjugate shear strain can be written as: 

)£*- 2 sin <?£-> + 2.12 

Where 6 is the Lode angle. For triaxial compression, 6 = 3 0 ° . This thesis invokes stresses and 

strains found in triaxial compression, where <J2'=(T3'. Hence, the mean effective stress and 

deviator stress are given by: 

Similarly, the volumetric strain for triaxial compression is given by: 

2.14 

The total mean stress and deviator stress are given by: 

p = p'+u 2.15 

q = q' 

where u is the pore water pressure. 

The bulk modulus, K, is defined as the ratio between the change in mean stress and change in 

volumetric strain. It represents the change of size at constant shape and is given by: 



where p' is the mean effective stress rate (from Eq. 2.13) and sv is the volumetric strain rate 

(from Eq. 2.8). 

The shear strain is given by: 

2.17 

The shear modulus represents the distortional part, ie, the change in shape at constant volume 

and it is independent of drainage conditions. G is given by: 

3G = 2.18 

Finally, the stress ratio, r| is defined by: 

i = q/p' 2.19 

Figure 2.2 shows a typical stress-path in the q-p' space for the drained and undrained triaxial 

compression test. Replacing the deviator stress in the mean effective stress, the equation for the 

drained stress-path is: 

P = 2.20 

This equation corresponds to a slope of 1:3 for drained triaxial compression tests (A -> C ). 

For an undrained condition, as the sample is loaded, the pore water pressure starts increasing, 

and the stress path follows A -> B. The difference between the drained and the undrained mean 

stress (D -> B ) is equal to the pore water pressure, u. 

At failure, a relation is found between the mean effective stress and the deviator stress given by: 

q = Mp' 2.21 
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The friction angle in triaxial compression, <j>tc, assoc iated with M is given by: 

sin<ztto = 
3M 

6 + M 
2.22 

2.1.3. Triaxial behaviour of sands 

Figure 2.3 shows a typical response of (a) loose and (b) dense sand specimens, under drained 

and undrained loading. 

For the loose spec imen, the void ratio-confining pressure combination is above the critical state 

line, which will be defined in details later in this chapter, (point A) . If the specimen is tested in the 

drained condit ion, the stress-path follows a 1:3 slope and ends in the critical state line (from A to 

C) . For an undrained condition, the stress-path goes from A to B. The difference between the 

drained and the undrained stress-path corresponds to the pore pressure generated during 

undrained shear. A s seen in Figure 2.3 the drained strength is higher than the undrained 

strength. For dense sand spec imen, the drained stress path follows the same 1:3 s lope and 

exhibits a peak friction angle, and then goes back (following the same path) and stops at the 

critical state (point F). The undrained stress path ends at point E showing, in this case , a higher 

strength than the drained case . 

Finally in the u-lnp' space, a loose spec imen starts above the critical state line (point A) and 

f inishes at C for a drained condition and at B for an undrained condition. A dense sample starts at 

the left of the critical state line (point D), shows a decrease in void ratio as the spec imen contracts 

and then an increase in void ratio as the specimen dilates and ends up in the critical state line 

(point F). 
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Projection of CSL 

q=Mp' 

A 
< • p' 

Po'= 03' 

Figure 2.2: Drained and undrained stress path for compression triaxial test 

(«): ' ' W) 
Figure 2.3: Drained and undrained stress-strain response for (a) loose sand specimens (b) dense 

sand specimens (from Mitchell and Soga, 2005) 
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2.2. Definition of friction angles for sands 

As sand specimens are sheared, different friction angles are mobilized at each state; peak or 

residual friction angle for dense sands, critical state friction angle, and phase transformation, 

among others. Some authors have given conflicting definitions to these angles. Hence some 

confusion exists when trying to determine them from laboratory testing. The intent of this section 

is to define each of these angles and clearly identify them in order to be able to obtain the values 

from laboratory testing programs. Consider first the most commonly reported friction angles, 

namely, angle of repose, constant volume friction angle and peak friction angle. Thereafter a 

description follows of the maximum contraction friction angle, phase transformation friction angle 

and maximum obliquity friction angle. 

2.2.1. Angle of repose (§ r e p ) 

Little information is found in the literature about the angle of repose. Some authors have given 

definitions and have tried to establish which factors influence its value. 

After the Dictionary of Earth Sciences (2003) the angle of repose is defined as the "maximum 

angle at which unconsolidated material can stand. Various factors determine this angle, including 

particle size and angularity, the degree of interlocking between particles, and pore water 

pressure." 

In order to measure the angle of repose, dry material is deposited as loose as possible through a 

funnel and the angle of the resulting heap is then calculated. Miura et al (1997) performed several 

tests to determine the angle of repose (0rep) of four granular materials (two sub angular sands 

and two rounded materials, glass beads) and the factors influencing its value. They found it 

decreases as the volume of material used increases, increases with the time elapsed to form the 

heap and increases with the roughness of the base plate upon which the heap is formed. The 

latter finding was corroborated by Chik and Vallejo (2005). 

The relation between the angle of repose and the angle of internal friction of granular materials is 

somewhat intriguing. Miura et al (1997) demonstrated that "the angle of repose of sand is 

equivalent to the angle of internal friction mobilized under low confining pressure within a thin 

surface sliding layer which is at the loosest state." This statement is in accordance with the 

observation of Lambe and Whitman (1979) that the angle of repose is approximately equal to the 

internal friction angle for very loose sands at very low confining pressures. 
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2.2.2. Critical state or steady state friction angle ((j)Cv) 

Roscoe et al (1958) defined the critical state as "the state at which a soil continues to deform at 

constant stress and constant void ratio". Similarly, Poulos (1981) defined the steady state as "the 

state in which a mass of particles continuously deforms at constant volume, constant normal 

effective stress, constant shear stress and constant velocity". Independent of the given definition, 

the critical state or steady state friction angle can be seen as a material property; it is a 

combination of the particle-to-particle friction angle and the degree of interlocking that can occur 

with zero overall volume change during continued shear deformation. This angle is related to the 

critical void ratio, e c (Lambe, 1979). 

Negussey et al (1988) performed ring shear tests on Ottawa sand, a tailings sand, granular 

copper, lead shot and glass beads in order to determine the effects of initial density, particle size 

and shape, gradation and confining stress, on the value of <j>cv. They found that value of the 

critical state friction angle is independent of the previously mentioned factors. This finding is 

supported by Verdugo (1992) who found that the critical state friction angle is independent of the 

initial state of the soil. Also Chu (1995) concluded from his tests on Sydney sand that the critical 

state friction angle is independent of the initial void ratio, but claimed it is a stress level dependent 

parameter, specially at low confining pressures; the higher the confining pressure, the lower the 

critical state friction angle. 

2.2.3. Peak friction angle ((j)p) 

A peak friction angle is obtained from tests on dense samples (as shown in Figure 2.3). Grain 

properties, including angularity and grading, exert an influence on the values of (|>p (see 

Table 2.1). A more angular and well graded soil has a higher peak friction angle. 

Table 2.1: Effect of angularity and grading on peak friction angle (from Lambe and Whitman, 

1979) 

Shape and Grading Loose Dense 

Rounded, uniform 30° 37° 

Rounded, well graded 34° 40° 

Angular, uniform 35° 43° 

Angular, well graded 39° 45° 
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The peak friction angle is the sum of the interparticle friction, rearrangement, crushing and 

dilation as shown in Figure 2.4 (Mitchell and Soga , 2005). This angle is not a material property 

s ince it depends on the density of the sample and stress-path (Bolton, 1986). Peak friction angle 

increases when the void ratio and the mean effective stress decrease. A lso , the peak friction 

angle is related to the rate of dilation of the soil. By correlating data of peak friction angle and 

constant volume friction angle, for 17 soils, Bolton (1986) found a relation between relative 

density (Dr) and the mean confining pressure, expressed as the relative dilatancy index, l R , given 

by: 

lR = Dr(Q - In p')- R 2.23 

where values of Q=10 and R=1 give the best fit. Further in triaxial compression he found that the 

peak friction angle and the constant volume friction angle are related through 2.24. 

3 /c 2.24 
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Figure 2.4: Contributions to shear strength of granular soils (from Mitchell and S o g a , 2005) 

' In the figure, <j>'crit corresponds to <j>Cv, <l>'m corresponds to <t>'p, and f f corresponds to the 
interparticle friction angle 
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2.2.4. Maximum contraction friction angle (<j>MC) 

The term "characteristic state" was proposed by Luong (1980) to define the point where the 

volumetric deformation passes from contraction to dilation, ie, sv = 0. This state was also 

defined as "maximum contraction state" by Negussey et al (1988). Kirkpatrick (1961) found that 

the maximum contraction friction angle is unique for each sand. However, Negussey et al (1988) 

found that this angle is not unique and varies with density and confining stress level; this last 

finding is further confirmed by Chu (1995). 

The stress ratio at the characteristic state is given by: 

where <j>MC is the friction angle mobilized at the characteristic state or maximum contraction state 

and it is an intrinsic property of the material tested. The subscript "MC" (for maximum contraction) 

was chosen instead "CS" (characteristic state) for a better distinction with the critical state or 

constant volume friction angle defined later in this chapter. It is attributed to the point at which 

interlocking between particles ceases and the disruption of interlocking starts. The characteristic 

state is independent of the initial void ratio, anisotropy and grain size (Luong, 1980). More studies 

performed by Luong in monotonic triaxial tests, showed that the characteristic state is also 

independent of the stress path imposed on the specimen. 

For drained triaxial tests under constant confining pressure, the characteristic state separates two 

regions in the behaviour of sands. A "subcharacteristic" region (or contraction), where the stress 

ratio rpq/p' is smaller than T | M C , which is the stress ratio at maximum contraction, and a 

"surcharacteristic" region (or dilation), where TJ > r/MC . In the subcharacteristic region, as the soil 

is loaded, the change in volume is due to interlocking of the sand particles. In the 

surcharacteristic region, Luong states that "the characteristic state merges with the critical state", 

a claim that is discussed, together with the concept of a phase transformation angle, in Chapter V 

with reference to the results obtained in this research. 

2.25 
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2.2.5. Phase transformation friction angle ( § P J ) 

The state at which the response of the sand, in undrained tests, transforms from positive excess 

pore water pressure to negative excess pore water pressure is termed phase transformation by 

Ishihara et al (1975), see Figure 2.5. It corresponds to the maximum excess pore water pressure. 

The phase transformation state is very important for assessing the risk of liquefaction and limited 

liquefaction in loose (contractive) sand samples. 

Several authors have shown the stress ratio at the phase transformation point is independent of 

the initial void ratio (Vaid and Chern, 1985), confining stress and loading, and hence it is unique 

for a sand. This finding is confirmed by Negussey et al (1988) who showed that the phase 

transformation friction angle is independent of the density of the specimen. However, in contrast 

Chu (1995) showed that the phase transformation state changes with the initial confining stress 

and the initial void ratio of soil. 

Finally Luong (1980) suggested that the maximum contraction friction angle established in 

drained tests is the same as the phase transformation friction angle from undrained tests. These 

findings are confirmed by Chu (1995). However, Negussey et al (1988) suggested that this 

condition is valid only for loose specimens. 

2.2.6. Maximum obliquity friction angle ((j>Mo) 

The failure envelope or maximum obliquity friction angle corresponds to the state where the 

effective stress ratio is maximum, ie, (a^ '/<r3 ' ) m a x . In undrained tests, at strains larger than that at 

the phase transformation friction angle, the stress path climbs up and approaches the maximum 

obliquity line tangentially until the end of the test. It has been shown that the maximum obliquity 

friction angle is dependent on the angularity of the sand grains and the depositional structure (Al 

Hattamleh, 2005). Vaid and Chern (1985) observe the failure envelope "represents the upper limit 

of all undrained effective stress paths, excluding cases when liquefaction occurred". They 

suggested that the maximum obliquity friction angle is unique for each sand and that it is 

independent of the initial state before undrained shearing. Vaid and Eliadorani (1998) suggested 

that the maximum obliquity state in drained triaxial tests is the instant of instability. Figure 2.5 

shows a schematic representation on the maximum obliquity friction angle and the phase 

transformation friction angle. 

16 



p' 

Figure 2.5: Maximum obliquity friction angle and phase transformation friction angle 

2.3. Definition of roundness and sphericity 

In this section, two concepts are introduced; sphericity (a 3-D phenomenon) and roundness (a 2-

D phenomenon). These terms have been in use for many years, and different definitions can be 

found in the literature. 

2.3.1. Sphericity 

From the Dictionary of Earth Sciences (2003), "Sphericity can be determined by examining the 

relation between the long (L), intermediate (I), and short (S) axes of the particle, the maximum 

projection Sphericity, yj, being given by the expression: 

2.26 
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Krumbein (1941) observed sphericity (S) as: "Fundamentally the shape is a measure of the ratio 

of the surface area of a particle to its volume. For practical purposes this ratio is difficult to 

measure, and the actual measurement is expressed in terms of the ratio of the volume of the 

particle to the volume of its circumscribing sphere. The cube root of this ratio is called the 

sphericity of the particle." He considered the long (a), intermediate (b) and short (c) axes as 

mutually perpendicular intercepts, as shown in Figure 2.6, which yields: 

Hx/ehbc [be 
S = 3 V / " = 3 — 2.27 

E q . 2.26 and 2.27, for a volumetric calculation of sphericity, are different. However, taking the 

particular cases of a perfect sphere and an elongated grain, the values of S are equal and both 

between 0 and 1. 

For a perfect sphere: L = l = S = a = b = c , 

s - ^ f l - l « d r - £ l - i 

For an elongated grain: L = 21 = 4 S and a = 2b = 4c, 

S-sjl-0.5 and „ = 3^=0.5 

Santamar ina and C h o (2004), defined sphericity as a two-dimensional problem: "Sphericity is 

quantified as the diameter ratio between the largest inscribed and the smallest circumscribing 

sphere". This latest expression was defined by Mitchell and S o g a (2005) as an "Inscribed circle 

sphericity" given by: 

2.28 
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2.3.2. Roundness 

From the Dictionary of Earth Sciences (2003), the Roundness Index (RI) is defined as "the 

average radius of curvature of the corners of a particle, divided by the radius of the maximum 

inscribed circle for a two-dimensional image of the particle." 

Krumbein (1941) defined the roundness (R) of a particle as "a measure of the curvature of the 

corners and edges expressed as a ratio to the average curvature of the particle as a whole, 

independent of its form. For practical purposes the "average curvature" is expressed in terms of 

the inscribed circle drawn on a projection of the particle in a plane." 

Santamarina and Cho (2004), defined roundness as: Roundness is quantified as the average 

radius of curvature of surface features relative to the radius of the maximum sphere that can be 

inscribed in the particle." 

The three previous definitions are the same and are given by: 

2.29 

max 

Other definitions for roundness are also available but are less used; they are presented for 

completeness in Equations 2.30 and 2.31 (Mitchell and Soga, 2005): 

Radius of curvature of the most convex part 
2.30 

0.5(longest diameter through the most convex part) 

Radius of curvature of the most convex part 
: 2.31 

Mean radius 

Powers (1953) proposed a classification table with six intervals to define the roundness of 

particles, as shown in Table 2.2. 
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Figure 2.6: Measurement of pebble diameters. Left, the b-axis in position; center, the c-axis in 
position; right, the pebble in perspective (from Krumbein, 1941) 

Table 2.2: Categories of roundness (from Powers, 1953) 

Grade Terms Class Interval Geometric Means 
Very Angular 0.12-0.17 0.14 

Angular 0.17-0.25 0.21 

Subangular 0.25-0.35 0.30 

Subrounded 0.35-0.49 0.41 

Rounded 0.49-0.70 0.59 

Well Rounded 0.70-1.00 0.84 

Several authors have studied the influence of particle shape on material properties such as 
minimum and maximum void ratios. It has been observed that e m i n and e m a x decrease with 
increasing roundness of the particles. Superimposed in Figure 2.7 are the relations found by 
Youd (1973), Shimobe and Moroto (1995) and Santamarina and Cho (2004). All three of them 
obtained the values of roundness using the method described by Powers (1953), corresponding 
to Equation 2.29. Inspection shows that the values found by Santamarina and Cho define an 
upper limit for the void ratios and the values of Youd define a lower limit. 
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Youd (1973) reported the values of e m i n , e m a x and R for specimens of Ottawa Sand, Del Monte 

White Sand, Monterey Sand, Lapis Lacustre Sand and Crushed Basalt, all of them having a 

coefficient of uniformity C u = 1.4. 

Shimobe and Moroto (1995) found a relation between e m a x and R for uniform samples with a 

coefficient of uniformity Cu < 2 based on results obtained with materials as sand, gravel, glass 

beads and sand mixed with glass beads, given by: 

e m a x = 0.642 /r 0 3 5 4 2.32 

Based on observations of 54 specimens of angular-crushed and natural-rounded sands, 

Santamarina and Cho (2004), proposed a relation between the roundness of the particles and the 

values of e m i n and e m a x , defined in Equation 2.33. 

* 0.154 „ 0.082 
e m a y =0.554 + and e m i n = 0.359 + 2.33 

1.6 

0.2 

0.0 1 1 1 1 
0 0.2 0.4 0.6 0.8 1 

R o u n d n e s s , R 

Figure 2.7: Relations between roundness and minimum and maximum void ratios 
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2.4. Critical State Soil Mechanics 

Soil exists in a large variety of densities, going from very loose to very dense, and the stress-

strain and volumetric behaviour depend on those variations. Many constitutive models for soils 

exist where for each density, the model has to recalibrate, (ie, each soil density has a different 

parameter set). It is more convenient to introduce a constitutive model able to capture and predict 

the behaviour of soils at different void ratios. This section introduces the concept of Critical State 

Soil Mechanics (CSSM) and two of the most important and well known constitutive models, 

Original Cam Clay (Roscoe, Schofield and Thurairajah, 1963) and Modified Cam Clay (Roscoe 

and Burland, 1968). For convenience, before discussing C S S M consider first general concepts of 

plasticity. 

2.4.1. General plasticity concepts 

All elasto-plastic models comprise four main components: 

i) elastic properties, 

ii) a yield surface which is the locus of stresses leading to plastic strain, 

iii) a hardening/softening rule, which determines the size of the yield surface, and 

iv) a flow rule which specifies the direction of the plastic strain increment vector. 

Each of these terms is considered separately together with other plasticity concepts. The 

definitions are given below: 

- Elasticity: 

All plasticity models assume elasticity at very small strains. Elasticity is associated with 

recoverable strains and a 1:1 relation between stresses and strains, ie, if we know the strain level 

we also know the stress level. 

- Yield surface, F: 

In simple words, the yield surface is the interface between an elastic and an inelastic region. 

Yielding is associated with the occurrence of an irrecoverable, ie plastic, volumetric strain 

increment e% and an irrecoverable, plastic, shear strain increment e% . 
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It was proposed that the yield surface must intersect the NCL in order to have an end, or cap. A 
cap implies that the model yields in isotropic compression. Hence, the Mohr-Coulomb criterion 
could not be seen as a yield surface. Finally a curved yield surface which closes was proposed as 
for example, Figure 2.15. That is the start of critical state soil mechanics. 

- Normality: 

Taking a point A on the yield surface, as shown in Figure 2.9, there exist three options. When a 

stress increment is applied, the first option is that a stress increment combination moves 

toward E in the elastic zone. In this case all strains are elastic and no plastic work is done. The 
second option is that the stress increment combination moves from A toward P into the plastic 
zone. In that case plastic work is done and energy is dissipated. Finally, the third option is that the 
stress increment makes A move toward Y, along the tangent to the yield surface. In this case no 
work is dissipated. Equation 2.34 is the definition of normality. 

W = p,ef+qef! =0 

q_ 
2.34 

Figure 2.10 shows the normality condition. With normality, the principal stress and principal strain 
increment are aligned and the net strain increment vector is normal to the yield surface at the 
stress state corresponding to the present yielding. 

- Plastic potential surface, Q: 

For each combination of stresses a vector of plastic strains can be drawn. The curves formed by 

orthogonal plastic strain increment vectors : are called plastic potentials. After 

Poorooshasb et al (1966), "the plastic potential curves for a given value of e should form a family 
of geometrically similar curves." The plastic strain increments are defined as: 
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where A.s is a scalar which depends on the mode of yielding and determines the incremental 

magnitude and Q is the plastic potential surface. 

If the yield surface (F) and the plastic potential surface (Q) are the same, then the material is 

obeying the postulate of normality or associated flow. 

- Hardening rule: 

The hardening rule defines how the size of the yield surface changes with increasing plastic 

shear strain If the yield surface becomes larger, the material is hardening and if the yield 
v j 

surface becomes smaller, the material is softening. 

- Dilatancy: 

Stress-di latancy (or flow rule) relates the st resses and strains increments of a soil . Dilatancy was 

first defined by Reynolds in 1885 as "dilatancy consists in a definite change of bulk, consequent 

on a definite change of shape or distortional strain, any disturbance whatever causing a change 

of volume and generally dilatation. ... A medium composed of grains of any possible shape, 

possessed this property of dilatancy, so as long as one important condition was satisf ied... . Th is 

condition is, that the medium should be continuous, infinite in extent, or the grains at the 

boundary should be so held as to prevent a rearrangement commencing". Two definitions of 

dilatancy are widely used in North Amer ica , the absolute and the rate of dilatancy. Jefferies and 

Been (2005) defined the absolute dilatancy as "dilation is the change in volumetric strain incurred 

s ince the initial condition" given by: 

2.36 
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The rate of dilatancy is defined as "dilation is the ratio of rate (or increment) of volume change 

with rate (or increment) of shear strain and given by D . This is shown in Figure 2.11. 

When normality was applied to the Mohr-Coulomb yield surface, dilatancy larger than the ones 
measured in real soils were found, given that the dilation angle was equal to the friction angle, as 
shown in Figure 2.8. 
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Figure 2.11: Difference between rate and absolute definitions of dilatancy (adapted from Jefferies 
and Been, 2005) 

26 



2.4.2. The critical state 

Before the soil mechanics was established as a subject, Reynolds (1885), found that by placing 

sand and water into "thin india-rubber balloons", the sand tended to change in volume as the bag 

was squeezed. This observation was reproduced by Casagrande (1936) at MIT in Cambridge 

MA, who showed experimentally doing drained shear box tests in sands, that "dense sand 

expands and very loose sand reduces its volume". In addition, Casagrande found that 

irrespective of the initial density of the sand, loose and dense sands ended up at the same 

ultimate shear resistance (r u / () and void ratio. He defined this ultimate void ratio as the "critical 

void ratio". Later on, Roscoe et al (1958) took Casagrande's idea of "critical void ratio" and 

defined the critical state of soils as "the state at which a soil continues to deform at constant 

stress and constant void ratio". Two ideas appeared from this definition, the first is that at the 

critical state the soil reaches a constant void ratio (or the "critical void ratio") and the second is 

that this constant void ratio does not change as shearing continues. 10 years later, supervised by 

Casagrande, Castro (1969) preformed stress controlled triaxial tests on loose sand samples 

achieving systematically a steady state of deformation at the end of the tests. He defined this 

state as "steady state line". Finally, Poulos (1981) formalized Castro's idea and defined the 

steady state as "the state in which a mass of particles continuously deforms at constant volume, 

constant normal effective stress, constant shear stress and constant velocity". The locus of mean 

effective stress and void ratio combination at the steady state is referred as the steady state line 

for undrained tests. 

There has been much discussion on whether the critical and steady state are the same (Alarcon-

Guzman et al (1988), Oyenuga and Tisot (1989), Been et al (1991), Chu and Lo (1992), Verdugo 

(1992), and Negussey and Islam (1993), among others). Review of the literature seems to 

suggest that the only difference between them is in how they are measured; Poulos (1981) 

suggested that the steady state is measured in undrained tests on fully saturated contractive 

sand samples and the critical state is obtained from drained tests on dilative sand samples. Been 

et al (1991) showed that for Erksak 330/0.7 sand, the critical and steady state are the same. This 

finding is confirmed by Chu (1995). 

For critical state soil mechanics, it is assumed that the critical state and the steady state are the 

same and unique (as discussed later in this Chapter). The concept that when sheared, soils 

reach the already defined critical state locus is the framework for CSSM. 

C S S M models are based on two ideas, formally termed axioms: 

27 



- Axiom 1: "A unique locus exists in q, p', e space such that soil can be deformed without limit at 

constant stress and constant void ratio; this locus is called the critical state locus (CSL)". This 

axiom can be mathematically represented by Equation 2.37. In simple words, Eq. 2.37 means 

that there exists (3) a function C, at a constant mean effective stress, such that (B ) the 

volumetric strain rate and ( A ) the change in volumetric strain rate must be zero in order to be in 

the CSL for every (V ) shear strain. 

3C(e,q,p'). 3sv=0^ev=0 2.37 
p'=0 

where C( ) is the function that defines the CSL which at the critical state has a unique value 

function of the void ratio and the mean effective stress. This condition is equivalent to the one 

proposed by Roscoe et al (1958) in terms of dilatancy, where the dilatancy and the rate of 

dilatancy must be zero(D = 0) and (D = 0) at the critical state. 

The Second Axiom is stated as: 

- Axiom 2: "The CSL forms the ultimate condition of all distortional processes in soil, so that all 

monotonic distortional stress state paths tend to this locus". 

e -» ec as sq - > oo V tj > M 2.38 

This condition is equivalent to Casagrande's idea that as shear strains develop, the void ratio 

tends to the critical void ratio. 

It is usual to idealise the critical state locus (CSL) as a straight line in the e-lnp' space, however 

this is not a condition. It is just a mathematical simplification; the critical state locus can be 

curved. 

The CSL in the e-lnp' space is usually written as: 

ec=r-A\npc' 2.39 

where r corresponds to the void ratio at p' = 1kPa, X is the slope of the CSL and pc' is the mean 

effective stress at the critical state. This is shown in Figure 2.13. 
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Data on Erksak sand (Been et al 1991) and Toyoura sand (Ishihara, 1993) suggest that the CSL 

is not a straight line in the e-ln(p') plane. Figure 2.12 shows data on Erksak sand where the 

critical state line curves at around 1MPa. Been et al (1991) suggested that this break point is 

given by some breakage of the grains. Verdugo (1992) discusses this idea by showing that if the 

critical state line is plotted in a bi-linear manner, the curvature of the CSL happens at a lower 

stress. In addition Verdugo shows that the critical state line is linear at higher stresses when 

plotted in a linear scale. The shape of the critical state line is not of real importance for the void 

ratio-mean stress combinations used in practice. 

For C S S M the important condition is that the CSL has to be unique. Authors such as Been et al 

(1991), Verdugo (1992) and Ishihara (1993) found an apparent unique CSL for Erksak and 

Toyoura sand. However, some authors have suggested that the CSL is not unique and depends 

on triaxial compression or extension, or initial fabric (for example, Vaid et al, 1990, Negussey and 

Islam, 1994). Been (1999) discussed the arguments given by the different authors in order to 

clarify the non-uniqueness of the CSL. He suggests that special care is needed when defining the 

critical state. The confusion arises when considering the critical state at the phase transformation 

point, defined by Ishihara et al (1975) also called pseudo or quasi steady state (Alarcon et al, 

1988 and Zhang and Garga, 1997). As well, Jefferies, 1999, states that the critical state is defined 

by dilatancy equal zero but also the rate of dilatancy must be zero, and that choosing the phase 

transformation point as the critical state is a mistake given that this second condition is not 

satisfied. This topic is not the intent of this thesis, but it is important to recognize that the 

uniqueness of the CSL is not universally accepted. For the development of C S S M constitutive 

models, a unique CSL has been assumed. 

As shown in Figure 2.2, in the stress space, the CSL is also unique and defined as: 

q = Mp' 2.40 

where, for triaxial condition, M is given in terms of the friction angle by Eq. 2.22. Note that 

uniqueness requires a unique locus, not constant M in the rt-plane or with p'. 

It is important to state that constant M does not mean a constant friction angle. For constant 

friction angle M varies with the Lode angle, 6, which represents the intermediate principal stress, 

a2 • For triaxial compression, 0 has a value of 30° and for triaxial extension 0 = -30°. Plotting the 

Lode angle against the dilatancy for plane strain condition, it is found that 9 is not constant. 

Hence, there is no unique M p s (Jefferies and Shuttle, 2002). The question is how M varies with 

the Lode angle. Data on Brasted sand shows that for plane strain, M varies between the Mohr-
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Coulomb criterion and the Matsuoka-Nakai criterion. For constant friction angle, the Mohr-
Coulomb criterion is given by Equation 2.41. 

. M = (3S)/[cos 0(1 + 6/M ( c) - Jz sin&\ 2.41 

For triaxial tests, there are different ways to find the value of M. For loose sand specimens, M is 
found as the value of the stress ratio at the end of the test. However, for dense sand specimens, 
as they dilate, the critical state can be reached only at very large strains. A different approach to 
find the critical stress ratio, M, for dense samples was proposed by Bishop (1966). M can be 
obtained by plotting the maximum stress ratio, r / m a x against the dilation, D m i n

2 , of several drained 
tests. At the critical state Dmin=0, hence, taking the best fit between the points and projecting to 
Dmin=0, M is obtained as the value of rjmax at Dmin=0. 

2.4.3. Original Cam Clay formulation 

Original Cam Clay was first introduced by Roscoe, Schofield and Thurairajah (1963) and is based 
on plastic work dissipation. Consider an element where the only stresses acting on it are the 
principal effective stresses, oV, a 2 ' and a 3 ' . If the sides of this element shorten by the strains E I , E 2 

and E 3 , respectively, due to the applications of these stresses (Figure 2.14), then the work per unit 
volume is given by: 

W = a/£1 + a2 E2 + cr3'£3 2.42 

Here, two assumptions have been made. The first is that the effective stresses are constant 
during the strain increment and that the change of area and volume of the element is not affected 
by the small strains. 

Using work conjugate stress and strain invariants: 

• • • • • 
Work done per unit volume=g£p + p'ev = a\ e^ + a'2 £2 + <*'z £z 2-10) 

and translating Equation 2.42 for a triaxial condition, the total rate of working per unit volume on 
the soil skeleton can be divided in an elastic and a plastic component as: 

2 Peak dilatancy is D m i n because of the dilation-negative convention 
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W =We+Wp =qeq+p,£v 
2.43 

where the subscript "e" means elastic and "p" means plastic. Here, the elastic part of the work is 

stored as strain energy (as long as the soil remains in the the K-line (Figure 2.13)) and the plastic 

part is dissipated. Another assumption is made here for Original Cam Clay, all deviatoric energy 

is dissipated, ie, the elastic shear modulus is infinite. 

In Figure 2.13, assuming a movement from A to Q, there is a plastic part ( A to P ) and an elastic 

part ( P to Q). The change in volumetric strain can be written as: 

• _ °A - e g ^ e 2.44 
1 + e 1 + e 

Considering the equation of the K-line as: 

e = eK - * - lnp ' 2.45 

where eK is the void ratio for a particular K-line taken at 1 kPa. 

Differentiating Equation 2.45 and replacing in Equation 2.44, 

«• 1 *, 
sv = p' 2.46 

v p' 1 + e 

The elastic bulk modulus is given by: 

*=1^ 2.47 
P' K 

As shown in Equations 2.8 and 2.17, the volumetric and shear strains are linear and can also be 

decomposed in elastic (P to Q ) and plastic (A to P) components. Hence, the plastic rate of 

working can be written as: 

Wp=q£P+p'£P 2 4 8 
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Dividing by the mean effective stress and the plastic shear strain increment in order to make the 
plastic work rate dimensionless, we have that the dimensionless plastic work rate is just the sum 
of the plastic dilation rate (Dp) and the stress ratio (q/p'), as shown in Equation 2.49: 

2.49 

Original Cam Clay assumes that the dimensionless plastic energy dissipation rate is constant and 
equal to M. 

' / * 

Equation 2.49 is consistent with the idea that at the critical state, dilatancy ,£?/ eg , is equal to 

zero and the stress ratio r| is equal to M. 

Hence, rearranging Equation 2.49 gives a stress-dilatancy relation for Original Cam Clay: 

In order to know when the plastic yielding occurs, a yield surface is needed. To derive the yield 
surface, two assumptions are needed; normality and the previous stress-dilatancy relation 

From the definition of stress ratio q = rjp' (Eq. 2.19) and taking the differential, the change in 

shear stress can be written as: 

Dp =M-rj 2.50 

(Eq. 2.50). 

q = p'r]+rjp' 2.51 

Where rj is the change in stress ratio. From normality: 

2.52 
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Figure 2.12: Shape of the CSL (from Jefferies and Been, 2005) 
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Substituting Equation 2.51 in Equation 2.52 and rearranging: 

••£- + _ J L _ = 0 2.53 

Substituting Equation 2.50 in Equation 2.53 and integrating, 

ln(p.) +JL = C 2.54 

The value of the constant C can be determined by substituting the value of In(p') when r p M (ie, 

the critical state), the yield surface for Original Cam Clay can be written as: 

-2- = 1-ln M 2.55 

where pc' is the pressure where the current elastic line meets with the CSL. pc' indicates the size 
of the yield surface. The shape of the yield surface for Original Cam Clay is shown in 
Figure 2.15. 

Equation 2.55 can be written as: 

F = In p'M 2.56 

The condition F=0 means that the stresses are on the yield surface. 

2.4.4. Modified Cam Clay formulation 

Original Cam Clay was the first mathematical model able to predict the behaviour of clays. Only 
three material properties are needed which makes it very simple to use. However, in the late 
1960's some problems were found with the predictions given by OCC. First of all, for a condition 
of isotropic consolidation, OCC predicts shear strains. Secondly, OCC overestimates the values 
of the strain increments for changes of the stress ratio at small strains and finally OCC seems to 
overpredict the values of the coefficient of earth pressure at rest (Roscoe and Burland, 1968). 
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Because of that Modified Cam Clay was developed. Nowadays, Modified Cam Clay is the most 

widely used advanced constitutive model. Commercial codes as ABAQUS, PLAXIS, CRISP and 

FLAC have MCC as built-in constitutive models. 

To obtain the expressions for MCC, Roscoe and Burland (1968), proposed a new expression for 

the work dissipation. Assuming that under isotropic stress there is no shear strain and that at the 

critical state the plastic volumetric strain is equal to zero, they defined: 

( ' } 
2 ( . \ 2" 

ep + Ms? 2.57 
V J K ) 

Equation 2.57 ensures that at the critical state the work dissipation rate with respect to total 

plastic strain is equal to the isotropic state for a given mean effective stress (Burland, 1965). 

Combining Equation 2.57 and the work equation for OCC (Eq. 2.48), 

qsp+p'ep =p' 
( ' ") 

2 2" 

£P + Msp 2.58 
V J V ) 

and rearranging, the stress-dilatancy relation for Modified Cam Clay is given by: 

„P sp M2-n2 

The same procedure used to find OCC yield surface can be used to find the yield surface of 

Modified Cam Clay. Applying normality and integrating Equation 2.59, we have: 

p' M 
—,=—2 5- 2.60 
P c M2+TJ2 

MCC yield surface is an ellipse passing through the origin and the size is controlled by p c 
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Figure 2.14: Work done in a quadrilateral element 

Figure 2.15: Original Cam Clay yield surface 

36 



Figure 2.16 shows the shape of Modified Cam Clay yield surface. This new yield surface takes 

into account the shear distortion without plastic volumetric change. 

Work hardening or softening plastic models change the size of their yield surface with plastic 

strain. The stresses must stay on the yield surface during plastic strain or else the stress point 

would be in illegal space (ie, beyond the yield surface). The consistency condition is the name 

given to the condition that a loading stress starts and finishes on the yield surface, and is given 

by: 

This is shown in Figure 2.17. 

Differentiating the equation of the yield surface, F, (Eq. 2.55), the consistency condition is given 

by: 

rj = M\ Pc_ 
Pc' 

Bl 
p' 

2.62 

The first term of the previous equation is the hardening rule as it controls the size of the yield 

surface via pc'. It is obtained by differentiating the CSL: 

e^r-AtoPc1 (Eq. 2.39) 

Pc' 

(1 + e)gf 
A- K 

2.63 

Figure 2.18 shows a four steps-loop in order to solve plasticity models. 

37 



Figure 2.16: Modified Cam Clay yield surface 
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Impose plastic 
strain increment 

Add elastic strain 
increments 

Calculate plastic yield 
surface hardening 

Derive new stresses 
using consistency 

condition 

Figure 2.18: Four-step loop to solve plasticity models 

2.4.6. Stress - dilatancy 

The stress-dilatancy definition was presented earlier and the relations for Original Cam Clay 
(Eq. 2.50) and Modified Cam Clay (Eq. 2.59) have already been discussed; OCC has a linear 
relation between stress and strains and MCC has a nonlinear form. However this topic must be 
discussed in more detail. 

Taylor (1948) examined shear box tests on sands, and first attempted to separate the strength of 

soils into the true friction angle between particles, 0M, and the dilation produced by the shearing. 

<f>M was found to be a function of the mineralogy of the material, the properties and roughness of 

the surface and the size of the load per particle. Rowe (1962) by means of idealized packing of 
rods and spheres, proposed a stress-dilatancy (for triaxial compression) relation given by: 

2.64 
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where K is given by: 

1 + s i n ^ 
K = - —f- • 2.65 

1 - s in^ f 

where is an angle of soil friction, given by: flfl < fa < <j>cv. Rowe showed that fa was equal to 

<zS/( at the minimum porosity and increased towards <j>cv at the maximum porosity. When Rowe's 

theory was applied to real soils, it was found that when K was computed using fa = $ , the 

predicted strains were too small, and when K was computed using fa = 0CV, they were too large. 

Hence, K has to be related to fa and not to $ f l because K has to evolve with strain, ie, has to 

relate the stress ratio to strain increment ratio. 

Rewriting Equation 2.64 in terms of the stress ratio (q/p'), 

e\ _ 37(2 + K) -9 (K- l ) 
• 2 /7 (K- l ) -3 (2K + l) 2 6 6 

£q 

Using the expression of the friction angle, (j), as a function of M (Eq. 2.22) and rewriting 

Equation 2.65 as, 

3 - M . 

the stress-dilatancy relation proposed by Rowe can be written as: 

9(M - n) 
~ 9 + 3M - 2Mrj 2.68 

As well, Wroth (1965) performed simple shear tests on 1mm steel balls and assumed a work 

dissipation postulate. He suggested that work has to be done by some external force in order to 

deform a sample. This energy has to be enough to supply three components; a frictional 

component, a volume change component and a pressure change component. In his work, the 

relation between the input and the output work is related to a constant M which is given by 

Equation 2.22 but the angle of friction is <j>cv . 
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Based on experimental observations, the simple O C C dilatancy D p = M-r| did not match sand 

well. Nova (1982) proposed a new stress-dilatancy relation given by: 

Dp = ^LZ± 2.69 
1-A/ 

He introduces a new material property, a volumetric coupling coefficient, N, found by plotting the 

maximum stress ratio against the minimum dilatancy. The slope of the line is equal to (1-N) as 

shown in Figure 2.19. Values of N have been found to be equal to 0.37 for Erksak sand and 0.30 

for Brasted sand. It is important to note that for N=0 the previous flow rule reduces to the Cam 

Clay one. 

Recently, Li and Dafalias (2000) proposed a stress-dilatancy relation given by: 

Dp =D0(Mj:-T])/M 2.70 

Replacing D 0 by M/(1 - N), the previous equation is the same as the flow rule proposed by Nova, 

but using a changing Mi rather than a constant M. In this case, Mj is used to follow the same 

principle than Rowe with his evolving friction angle (j>f. Table 2.3 shows a summary of the 

described flow rules. 

Table 2.3: Stress-dilatancy relations (from Been and Jefferies, 2004) 

Theory Relation 

Cam Clay Dp Mj - ij 

Modified Cam Clay Dp = {M2 -7]2}/2T] 

Nova 1982 Dp = (M - ?/)/(l - N) 

Li and Dafalias 2000 Dp =D0(Mj -V)IM 

Rowe 1962 Dp = 9 (Mj - 77)/(9 + 3Mj - 2M,ij) 

The idea of a M, in the flow rule that evolves with strain has been adopted by many recent 

authors. Table 2.4 shows the expressions found for the changing Mj by different authors. 
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Table 2.4: Relations of Mj after different authors (from Been and Jefferies, 2004) 

Originator Relation 

Manzari and Dafalias 1997 Mj = M + m [(/ 

Li and Dafalias 2000 Mj = M exp(rm//) 

Jefferies and Shuttle 2002 Mj = M - . 

The NorSand constitutive model will be used in this thesis, then the relation obtained by Jefferies 

and Shuttle, 2002, will be explained in details later in this chapter. 

Figure 2.20 shows the comparison of these four flow rules for a value of M,=1.25. 

Figure 2.19: Nova's stress-dilatancy rule (from Been and Jefferies, 2004) 
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Figure 2.20: Comparison of stress-dilatancy relations 

2.5. Critical state model for sands 

Many constitutive models must be calibrated at the in situ void ratio. Hence, every time density 

changes, another set of parameters is needed and the model has to be re-calibrated. In CSSM 

models, the parameters are not associated to any particular value of initial void ratio. Hence the 

same set of parameters is able to capture the behaviour of soils regardless of the initial void ratio. 

However, C S S M as Original Cam Clay and Modified Cam Clay primarily work for "well-behaved, 

insensitive" clays (Lade, 2005) and they are not able to predict dilation and strain softening as it 

occurs in dense sands. Hence to model sands, new constitutive models were developed. The 

intent of this section is to briefly describe the main model groups and the new constitutive models 

for sands, between the 1970's and 1993 where Jefferies developed NorSand, the first CSSM for 

sands. 

Lade (2005) divided the available constitutive models in eight groups. The characteristics of the 

best known groups will be briefly described next. 
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Elastic models are probably the simplest models available, and the simplest elastic models are 

based on isotropic elasticity. Isotropic elasticity is defined by a single value of Young's Modulus 

and a single value of Poisson's Ratio. More complex elastic models are the Transversely 

isotropic, Orthotropic and Hyperbolic (in these type of models, principal strains are in the same 

direction as the principal stress increments). 

Elastic-plastic models comprise elasticity, a yield surface, a hardening rule and a flow rule. These 

models are associated with irrecoverable strains. The most popular plasticity model is Mohr-

Coulomb, followed by Tresca and Von Mises. Only Mohr-Coulomb is suitable to model sands. 

Critical state models have already been presented and discussed. Typical critical state models 

are Original Cam Clay and Modified Cam Clay for clays, and NorSand for sands. 

Double hardening models comprise two yield surfaces; one yield surface yields in shear and the 

other yields in isotropic compression. 

A summary of the constitutive models for sands is presented in Table 2.5a and Table 2.5b. In 

Table 2.5a the different attributes of the models, such as shape of failure surface and yield 

surface, associated or non-associated flow rule and type of hardening parameter are presented. 

In Table 2.5b the capabilities of each model, such as, prediction of drained softening, large stress 

reversals, cyclic loading, pore pressure and 3D behaviour are presented. In addition the type of 

tests needed to obtain the input parameters and the number of parameters needed for the model 

are presented. 
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Table 2.5a: Constitutive models for sands (extracted from Lade, 2005) 

Model .Failure surface Yield surface 
Plastic 

potential' 
Hardening , 
parameter 

Hyperbolic Mohr-Coulomb NA NA NA 

Mohr-Coulomb Mohr-Coulomb = failure surface 
Non-

associated 
None 

DiMaggio-Sandler 
Curved extended 

von Mises 
Elliptical cap Associated 

Plastic volumetric 
strain 

Lade and Duncan 
Smooth triangular, 

conical 
Smooth triangular, 

conical 
Non-

associated 
Plastic work 

Darve Mohr-Coulomb NA NA NA 

Hypoplastic 
Smooth triangular, 

conical 
NA NA NA 

Fuzzy set plasticity 
Smooth triangular, 

conical 
Smooth triangular, 
conical & oct. plane 

Non-ass. and 
associated 

Plastic work 

Lade 
Smooth triangular, 

conical 
Smooth triangular, 

conical & sphere, cap 
Non-ass. and 
associated 

Plastic work 

PLAXIS hardening Mohr-Coulomb 
Curved Mohr-

Coulomb & ellipt. cap 
Non-ass. and 
associated 

Plastic vol. & 
shear strain 

MONOT 
Smooth triangular, 

conical 
Smooth triangular, 

conical & sphere, cap 
Non-ass. and 

associated 
Plastic vol. & 
shear strain 

MIT-S1 
Smooth triangular, 

conical 
Distorted lemniscate 

Non-
associated 

Plastic vol. & 
shear strain 

Single hardening 
Smooth triangular, 

conical 
Tear-drop shaped 

Non-
associated 

Plastic work 

Sinfonietta classica 
Smooth triangular, 

conical 
Tear-drop shaped 

Non-
associated 

Plastic vol. & 
shear strain 

Disturbed state 
concept/hierarchical 

Smooth triangular, 
conical 

Tear-drop shaped 
Non-ass. or 
associated 

Plastic vol. & 
shear strain 

Generalized 
plasticity 

Smooth triangular, 
conical 

Elliptical cap 
Non-

associated 
Plastic vol. & 
shear strain 

NorSand 
Smooth triangular, 

conical 
Bullet-shaped (OCC) Associated Plastic work 
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Table 2.5b: Constitutive models for sands (extracted from Lade, 2005) 

Model 
Drained 

softening 

Laige 

stress 

5 ^reversal -

Cyclic 

loading 

Realistic pore 

pressures 

Realistic 3D 

behaviour 

Experiments for 

parameter 

determination 

Number of 

parameteis 

Hyperbolic No No No No 
Y e s , away 

from failure 
3 triaxial compression 7 

Mohr-Coulomb No No No No No 3 triaxial compression 5 

DiMaggio-

Sandler 
No No No No No 

3 triax. comp. , 

1 Iso. comp 
10 

Lade and 

Duncan 
No No No No Y e s 3 triaxial compression 9 

Darve No Y e s Y e s No No 
Triax. comp & ext., 

cyclic tests 
16 

Hypoplastic Y e s Y e s Y e s Y e s Y e s 
Triax. comp & 

Ko-comp. 
8 

Fuzzy set 

plasticity 
Y e s Y e s Y e s Y e s Y e s 

Triax. comp. & 

Iso. C o m p . 
13-20 

Lade Y e s No No Y e s Y e s 
3 triax. comp., 

1 Iso. comp. 
14 

PLAXIS 

hardening 
No No No Y e s Y e s 

3 triax. comp., 

1 Iso. comp. 
11 

M O N O T No Y e s Y e s Y e s Y e s 
3 triax. comp. , 

1 Iso. comp. 
21 

MIT-S1 Y e s Y e s Y e s Y e s Y e s 

C U Triax. comp. 

C D Triax. comp. 

Iso./Ko-comp. 

Ko-comp. with meas. 

lateral stresses 

13 

Single 

hardening 
Y e s Y e s Y e s Y e s Y e s 

3 triax. comp., 

1 Iso. comp. 
12 

Sinfonietta 

classica 
No No No Y e s Y e s 

3 triax. comp., 

1 Iso. comp. 
17 

Disturbed state 

concept/hierarc 

hical 

Y e s No No Y e s 
Y e s , requires 

3D test 

3 triax. comp. , 

1 Iso. comp. 
15 

General ized 

plasticity 
Y e s Y e s Y e s Y e s Y e s 

2 C D or C U triax. comp. 

& 1 cyclic test 
15 

NorSand 
Y e s , for 

O C soil 
No 

Y e s , 

undrained 
Y e s Y e s 

2 C D triax. comp 

2 C U triax. comp. with 

Iso. comp. 

7 
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2.6 Critical state models for sands and NorSand 

Critical state constitutive models such as Original Cam Clay and Modified Cam Clay are able to 

capture the behaviour of soils, mostly clays, at different densities. However, those models are not 

able to predict the dilation and softening as it occurs in dense sands. NorSand is a C S S M 

constitutive model, developed by Jefferies in 1993, able to capture the softening and dilatancy 

behaviour of sands by introducing a new parameter, the state parameter and by postulating an 

infinity of normal consolidation loci (NCL). 

NorSand is used later in the thesis to simulate triaxial compression tests. This model was chosen 

because it is convenient given that it needs only few parameters (7) compared with other more 

advanced soil models, as shown in Table 2.5a and Table 2.5b. Also, as with all C S S M models, 

NorSand is developed from ideas rather than curve fits, which enables new concepts and ideas to 

be tested. However, sometimes some fits may not be as good as from models based on curve 

fits, as the predictions are constrained by its rules. 

The idea of Infinity of NCL was first introduced by Ishihara et al (1975). They suggested that 

given that in a sand an infinity of void ratios can be obtained, an infinity of NCL exist. Jefferies 

and Been (2000) supported the idea with experimental data. Four samples of Erksak sand were 

tested at different void ratios. They performed load/unload tests for each sample and found that 

each isotropic loading line can be seen as a true NCL. Figure 2.21 shows the concept of infinity of 

NCL. Infinity of NCL can be viewed as infinity of yield surfaces and each NCL can be viewed as a 

hardening law for an associated yield surface. This means that instead of one NCL, as used in 

O C C and MCC, with an infinity of NCL, the void ratio e and the CSL are uncoupled in NorSand. 

Hence, as any soil can exist over a wide spectrum of NCL, the void ratio is no longer sufficient to 

define the state of a soil, two parameters are introduced in NorSand, the state parameter, vy, and 

the overconsolidation ratio, R. 

2.6.1. The state parameter and overconsolidation 

The use of void ratio or relative density does not tell us how the soil is going to behave, given that 

dilation or contraction depends not only on the void ratio, or relative density, but also on the 

stress level. That is why the state parameter is so useful in determining whether the soil sample 

will dilate or contract when sheared. Been and Jefferies (2004) showed that samples with similar 

relative densities and different stress levels behaved differently, while samples with same state 
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parameter but different void ratios and stress level, had similar behavior, confirming that the 

behaviour of sands under shear loading depends on the state parameter. 

The state parameter, relates the void ratio of the soil in e-ln(p') space with the void ratio at 

critical state. \y is defined as the distance between the actual void ratio and the void ratio at the 

critical state for the same p', and is given by; 

y/ = e-ec 2.71 

where e is the actual void ratio and e c is the critical void ratio at the same p'. If the state 

parameter is positive, then the soil sample will contract with shear and if the state parameter is 

negative the soil will dilate with shear. 

From stress-dilatancy theory and experimental observation it is evident that peak dilatancy is 

related to the state parameter. This will be shown later when the parameter x will be defined and 

determined for the NorSand constitutive model. 

While NorSand was the first C S S M for sand, many models are now based on the state 

parameter, implicitly or not, such as Manzari and Dafalias (1997), Wan and Guo (1998), Gajo and 

Wood (1999) and Collins and Muhunthan (2003). 

For completeness the over-consolidation ratio, R, is also defined. R represents how close the soil 

is to its yield surface. It is important to note that here, R is defined using the mean stress, typical 

for constitutive models, and not the vertical stress, more usual in engineering practice. 

Figure 2.21 shows the difference between overconsolidation and state. 

2.6.2. NorSand formulation 

This section introduces the original 1993 version of NorSand for triaxial compression. The later 

modifications incorporated into the simulations shown in Chapter V are described later. 

The NorSand and Original Cam Clay formulations are very similar; they both lie in stress 

dilatancy. NorSand uses the plastic shear strains to control the hardening rule. As explained 

before, this does not work with MCC because for a q=0 condition there is no shear strain. 
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NorSand uses the two axioms of CSSM described above. However with the introduction of the 

state parameter, Axiom 2 can be re-stated as: 

y/ -> 0 as sg - > o o 2.72 

The deduction of the yield surface equation is the same as for Cam Clay. From Nova's flow rule 

and substituting in Equation 2.53, 

P' | (1-M)>7 = 0 

p' M - rjN 
2.73 

Integrating Equation 2.73, it is possible to obtain again Equation 2.54, by taking N=0. In this case, 

the integration constant C is taken as the value of p' when rpM. Here, p' is taken as the image 

condition (denoted by pi', see Figure 2.22 ) and it is used to scale the size of the yield surface, 

similar to the use of pc', to size the yield surface in OCC. Hence, 

M 
= 1 - In 

IP/ 
2.74 

The introduction of p,' is required as with the introduction of the state parameter, the yield 

surfaces no longer intersect the critical state (see Figure 2.22) as they did with O C C . 

For convenience, the yield surface is written as: 

F = ln 
Pi' p'M 

2.75 

for N=0 and as: 

M_ 
N 

1 + (/V-lj-?_ 
V 11 Pi' 

( N / N - 1 ) 

2.76 

for N*0. 
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Sample in over 
consolidated state 

In p 

Figure 2.21: Difference between state parameter and overconsolidation, and infinity of NCL (from 

Jefferies, 1993) 

The original version of NorSand (Jefferies, 1993) uses Nova's flow rule (Eq. 2.69) 

D ' = f ^ (Eq.2.69) 
1 - N 

To relate the image stress with the soil's void ratio, NorSand uses the Second Axiom of critical 

state theory. Rearranging the equation of the yield surface and differentiating, for N=0, the 

consistency condition is given by: 
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From Axiom 2, the hardening law expressed in dimensionless form is: 

Pi' = H BL 
P' max V 

EL 
P' 

2.78 

where, 

for N=0 and: 

for N*0. 

exp ( -Dmin /M) 
2.79 

(pr 
V P / m ax 

= (l + ^ , . / V / M ) ( N - 1 / w ' 2.80 

It has been found that there exists a strong relation between the minimum dilatancy, Dp

in (ie, 

value close to the peak stress ratio) and \\i„ the value of \\i at the image state, shown in 

Figure 2.23 and given by: 

where % is a model property and it usually lies between 2.5 and 4.5 for triaxial compression (with 

a common value of 3.5), the image state is related to \\i by: 

i//, = i// + A \n(p, 'Ip') 2.82 

Rearranging the yield surface equation (Eqs. 2.75 and 2.76), for N=0: 
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= exp(rj/M -1) 2.83 

and for N*0: 

(pr) 
V 

1-A/77/M) 
( « - l ) / N 

2.84 
I 1-/V j 

From Equation 2.81 and substituting the value of x by 3.5, Equation 2.79 can be written as: 

^ - =exp(-3.5^,/M) 
^ J m a x 

2.85 

for N=0 and for N*0 as: 

p', 
= (l + 3.5y/,/V/M)(w~ 1/W) 

2.86 

By reproducing experimental data, a better fit has been found if the hardening rule depends on 

the shear stress level using an exponential function (Jefferies and Shuttle, 2002), 

^ = H e x p ( l - / 7 / M | 
V P' Vmax V 

EL 

P'J 
2.87 

where H is a model parameter, which is a function of the state parameter. 

In NorSand, isotropic elasticity is assumed. Elasticity parameters are defined by a shear rigidity lr 

and a constant Poisson's ratio as: 

K=l 2(1+K) 

2.88 

p' r 3(1 - 2K) 

Table 2.6 shows a summary with the equations of the original version of NorSand. 
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Table 2.6: Summary of equations for NorSand (from Jefferies and Been, 2005) 

Aspect of NorSand Equations 

Internal model parameters y/j = y/ + A ln(p, '/p') where y/ = e - ec 

Critical state e c = r - A In p' 

Yield surface 

F = In 
Pi' 

+ - 2 - - 1 for N=0 
p'M 

F = n- M_ 

N V * Pi' 

(W/W-1) 

for N*0 

Hardening rule 

jL = H exp(l - ri/M 
rPi' 

V P /max 

= e x p ( - j ^ / M ) forN=0 
^ P /max 

(1 + xviN I / w ) ( w ~ 1 / w ) for N*0 
V P /max 

Stress dilatancy 
M -TJ 

1 - /V 

Elasticity fr 
p' 

A modification of the original version of. NorSand was suggested (Jefferies and Shuttle, 2002) 

where the N parameter was equal to zero. The incorrect sand dilatancy from. N=0 is accounted for 

by allowing M to evolve with shear strain, similar to the idea of Rowe where <j)f evolves from ^ to 

<j)cv with shear strain. 

Rearranging Equation 2.69 the expression for Mj is given by: 

M, = M + A/Dmin 2.89 

Substituting the relation for maximum dilatancy (Eq. 2.81) in Equation 2.89, 
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M, = M/{n-XtcN\v,l\/Mlc) 2.90 

Typical values of N and %tcare found to be around 0.3 and 3.5 respectively. Hence Mj is finally 

given by: 

M, = M ( 1 - V , | / M t e ) 2.91 

This later modification of the flow rule is used in this thesis. 

2.6.3. Determination of NorSand parameters 

In order to describe the NorSand constitutive model, 7 properties are needed and 2 initial soil 

state parameters. The properties needed to describe the model are shown in Table 2.7 and the 

procedure to obtain them is summarized next. More detail is given in Jefferies and Shuttle, 2005. 

Table 2.7: Properties needed to describe the NorSand constitutive model and their typical range 

for sand (from Jefferies and Been, 2005) 

Property Typical 
Range Remark 

C S L 
r 
X 

0.9-1.4 
0.01 - 0.07 

Altitude of CSL, defined at 1 kPa 
Slope of CSL, defined on base e 

Plasticity 

M,c 

H 

X 

1.2-1.5 

50 - 500 
2 .5-3 .5 

Critical friction ratio, triaxial compression as 
reference condition 

Plastic hardening modulus for loading 
Relates minimum dilatancy to v|/ at D m i n 

Elasticity 
Ir 
V 

200 - 800 
0.1-0.3 

Dimensionless shear rigidity 
Poisson's ratio 

Initial Soil State 
R 

-0.3-0.15 
Overconsolidation ratio (R=1 for NC soils) 

State parameter 

55 



The critical state parameters in the e-ln(p') space, r and A. are obtained from drained and 
undrained tests on very loose reconstituted sand samples at different confining pressures. In that 
case, the samples will contract and reach the CSL in the e-ln(p') space at strains within the limits 
of the triaxial device. As the critical state of sands is an intrinsic state and does not depend on the 
initial soil structure, using reconstituted samples is fine. Loose samples are preferred instead of 
dense samples, given that these later dilate and do not reach the critical state, sometimes at 25% 
strain and are prone to localize. M t c is obtained from the end of test condition of the drained tests 
and can be confirmed by the stress-dilatancy plots. 

A couple of very dense drained test are necessary to estimate the maximum dilatancy of the soil 
(Dmin). As the incremental elastic strains are zero at peak strength, from a stress-dilatancy plot (r| 
vs Dm i n), it is possible to obtain Dm i n. 

As the critical state line is known, as well as the initial void ratio of the samples, the state 

parameter is easy to find using y/ = e - ec. 

The plastic hardening parameter, H, is obtained by fitting the results obtained by the drained 
triaxial tests and iterating to have the best match. H is fabric dependent and hence, not an 
intrinsic parameter. Based on previous calibrations H is found to be either a constant value or 
linearly related to the state parameter, vy, under the form H = a - by/ . 

X t c is a constant for each sand and is defined as the slope of the plot plastic dilation at 

peak strength and the initial state parameter from drained tests on dense samples, ie 

Dmin = XtcVi • 

The elastic property Ir is calculated by obtaining the shear modulus from bender elements during 
the triaxial tests. If bender elements are not included unload-reload cycles can be performed. The 
Poisson's ratio is assumed to be between 0.15 to 0.2. 

Finally, Table 2.8 shows a summary of the CSSM constitutive models. 
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Table 2.8: Summary of C S S M constitutive models 

C S S M 

model 
Yield surface Hardening rule 

Stress-di latancy 

rule 

Original 

C a m Clay 
= 1 - l n 

M 
p\' _ (l + e K P 

Pc' *•-< 
DP =M-rj 

Modif ied 

C a m Clay 

p' M2 

Pc' M2+rj2 

p' c ' _ (l + e K P 

Pc *--K 

DP M2-n2 

NorSand 

(1993) 
* - = 1 - l n 
M (JL) 

KPI J 

— = H exp(l - TJ/M) 
pr \ 

fp/'V 
^ P /max I P JJ Dp = M-n 

1 - /V 

NorSand 

(2002) 
-2- = 1 - ln 
M, 

— = H exp(l - TJ/MJ 
pr \ 

H) -
\ P /max 

I P ' J J 
£ P D = MT -rj 
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C H A P T E R III: M A T E R I A L P R O P E R T I E S 

In order to characterize the sand and establish parameters needed for the NorSand constitutive 

model, a series of tests were performed in the Graduate Geotechnical Laboratory at UBC. First, a 

description of the sand is given with reference to attributes of the grains and grain size distribution 

curve. Second, the strength of the sand is reported with reference to triaxial tests on reconstituted 

specimens. 

3.1. Description of the soil 

The soil used for this study is a silica sand that was used by Raju (1995) for geosynthetic pullout 

tests, and produced by the Badger Mining Corporation. For convenience, this sand is 

subsequently referred to as "Badger Sand". 

Figure 3.1 shows the grain size distribution of Badger sand. The sand is a uniformly graded 

coarse sand with no fines, a coefficient of uniformity of 1.3 and a coefficient of curvature of 1.1. 

After the Unified Soil Classification System (USCS), Badger sand classifies as S P - a poorly 

graded sand. Particle sizes are between 0.6 mm and 2 mm, with a D 5 0 of 0.87 mm. The particles 

shape is well-rounded (Figure 3.2). The specific gravity is G s = 2.65 and the color varies from light 

brown to dark brown. Table 3.1 summarizes the properties of the grain size distribution of Badger 

sand. 

Table 3.1: Properties of the grain size distribution curve 

Soil 

Description 

D., 

(mm) 

D 

(mm) 

D -

(mm) 

D30 I D 1 S I D 1 0 

(mm) ; (mm) : (mm) (Dro,Dv.) 
c, 

!Plo • / D .o ' D, 0 ) 

Uniformly 

graded with 

little or no fines 

0.95 0.91 0.87 0.83 0.76 0.72 1.3 1.1 
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3.3.1. Extreme void ratios 

The minimum and maximum void ratios were determined according to ASTM D 4253-93 and 

ASTM D 4254-91, respectively, as shown in Figure 3.3. In each case, knowing the volume, the 

weight and the specific gravity of the sand, it is possible to calculate the void ratio. 

The maximum void ratio was obtained using Test Method B of ASTM D4254. This method is 

applicable to soils for which 100%, by dry mass, of the particles pass a 19 mm (3/4-inch) sieve. A 

thin-walled tube of inside diameter of about 0.7 times the inside diameter of the mold is placed 

inside the mold and the dry sand is poured inside the tube. The tube is then quickly removed 

allowing the particles to slide inside the mold and not to drop. Upon leveling the surface, the mass 

of the mold plus soil is recorded. This procedure was repeated 6 times, yielding an average 

e m a x = 0.69 (see Table 3.2). 

Table 3.2: e m a x calculations for Badger sand 

Test 
Mass of mold + 

soil (g) 
Mass of soil (g) 

(g/cm") 

1 8046.0 4431.0 1.56 0.70 

2 8060.9 4445.9 1.57 0.69 

3 8049.9 4434.9 1.56 0.70 

4 8045.0 4430.0 1.56 0.70 

5 8051.3 4436.3 1.56 0.69 

6 8049.2 4434.2 1.56 0.70 

average 1 58 0 69 

The minimum void ratio was obtained by placing the dry sand inside the mold. It was leveled and 

a surcharge plate was placed on top, making sure the surface of the plate is in full contact with 

the sand. The mold was then attached to a vibrating table, with a guide sleeve on the mold in 

order to apply the surcharge, and vibrated at 60 Hz for 8 min. Finally the surcharge and guide 

sleeve were removed and 10 height measurements were taken of the surcharge plate. Knowing 

the volume and mass of the sand inside the mold it is possible to determine e m i n . The procedure 

was repeated 4 times yielding an average value of 0.49 (see Table 3.3). 
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Table 3.3: e m j n calculations for Badger sand 

Test 
Mass of mold + 

soil + cap (g) 

Mass of 

soil (g) 
H (cm) H, (cm) V (cnr) 

Pmax 

(g/cm ) 
e m i n 

M H H H I 

1 9319 359 2.078 12.10 2224.06 1.78 0.49 

2 9146 3786 2.700 11.47 2109.61 1.79 0.48 

3 9350 3990 1.934 12.24 2250.52 1.77 0.49 

4 9368 4008 1.944 12.23 2248.62 1.78 0.49 

average 1 78 0 49 

Values obtained for the maximum and minimum void ratio were very repeatable. It is important to 

note that the range of le=em a x-em i n is only 0.2, which is a somewhat narrow and unusual value for 

sands. For example, Ottawa sand is also a rounded sand with a C u = 1.1 but e m i n = 0.5 and 

e m a x = 0.8, hence le = 0.3. It appears that the minimum void ratio obtained for Badger sand is 

within the expected values, although the maximum void ratio is perhaps slightly lower than 

expected. 

Cubrinovski and Ishihara (2002) measured the minimum and maximum void ratios of about 300 

soils including clean sands, sands with fines and silty soils. They found a correlation between e m i n 

and e m a x for clean sands (as Badger sand) given by: 

e m a x =0.072+ 1.53em i n 3.1 

Similarly, from tests on 17 crushed sands from Georgia, 16 natural sands, and materials such as 

glass beads, granite powder and Syncrude tailings, Cho et al (2005) found a correlation between 

e m a x and e m i n taking into consideration the coefficient of uniformity C u , given by: 

e m a x =1 .35e m i n + 0 .15 (C u - 1 ) 3.2 

Also, Shimobe and Moroto (1995), established a relation, based on 182 data points on uniform 

samples ( C u < 2), where 

/e_ = 0.574e m a x -0 .198 3.3 

and le is the difference between the maximum and the minimum void ratios (le = e m a x - e m i n ] 
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Each of these three relations is reproduced in Figure 3.4, together with the data for Badger sand. 

The generally good agreement with Cho et al (2005) and Shimobe and Moroto (1995) is 

attributed to their consideration of grain size, as it is known that the minimum and maximum void 

ratios increase as the particle size decreases. 

Figure 3.3: e m a x and e m i n determinations 

Figure 3.4: Correlations between minimum and maximum void ratio 
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3.3.2. Angle of repose 

The angle of repose was determined according to ASTM C1444-00. As defined in Chapter II, the 

angle of repose is the angle of a heap formed by dry sand deposited as loose as possible before 

the heap starts flowing. 

A funnel with an internal diameter of discharge spout of 9.54 mm was used to pour the sand onto 

a metal plate, using a constant drop height of 38.1 mm. A stopper was initially placed in the tip of 

the funnel nozzle, and the funnel filled with sand. The stopper was then removed, allowing the 

sand to drop. When the tip of the sand cone formed on the base plate entered the funnel nozzle, 

the test was stopped. The diameter of the resulting cone was measured at 4 different locations 

and the angle of repose calculated using Equation 3.4 (see Figure 3.5). 

<j>rep = tan 

where: H is the height of the cone (38.1 mm); 

D A is the average diameter of the test determinations; and, 

d is the internal diameter of the funnel nozzle (9.54 mm). 

The procedure was repeated 10 times obtaining an average value of the diameter of the cone of 

136.9 mm. The angle of repose obtained was ^ r e p = 30 .9 ° . 

3.3.3. Roundness and sphericity 

The roundness of Badger sand grains was obtained using the definition given in Equation 2.29 

proposed by Youd (1973), Shimobe and Moroto (1995), and Santamarina and Cho (2004). The 

method described by Santamarina and Cho (2004) was used to calculate the sphericity of Badger 

sand. It involves analysis of a two-dimensional image, from microscopic enlarged pictures of the 

individual grains, and was considered entirely suitable for these small rounded particles. 

After the law of large numbers, if a sample is selected with simple random sampling, the mean of 

the sample will approach the mean of the population as the sample size grows. When calculating 

the mean value of a sample, it is important to know the confidence interval and the sampling error 

to indicate the accuracy of the sample mean as an estimate of the true population mean (Lemay, 

2005). 

2H 

DA-d 
3.4 

63 



Figure 3.5: Angle of repose of Badger Sand 

As a rule of thumb, before taking a sample, it is commonly accepted that the strong law of large 

numbers applies with a number of elements equal to 30 or more (Moore and McCabe, 2003). 

Hence, as the sand grains are not expected to vary much, 30 particles of Badger sand were 

taken randomly and the sphericity and roundness calculated using Equations 2.28 and 2.29 (see 

Figure 3.6). 

s =

 r m a x a n d ft = N (Eqs. 2.28 and 2.29) 

vmin 

Values of 0.77 and 0.81 respectively (see Tables 3.5 and 3.6), classify the Badger sand as a well-

rounded sand (after Powers (1953) and Table 2.2) 

The variance of a sample is calculated as: 

n-1 

3.5 

6 4 



were x is the mean value of the sample, n -1 is taken to calculate the variance given that this is 

the variance of a sample of size "n" and it is not the variance of the entire population. Hence, the 

variance obtained for the 30 particles of Badger sand was 0.006 and 0.011 for roundness and 

sphericity respectively. 

The standard deviation (cr) is obtained by taking the square root of the variance. For Badger 

sand, the values are 0.078 and 0.1 for roundness and sphericity respectively. 

The confidence interval is the maximum difference between the observed sample mean x and 

the true value of the population, and it is given by: 

x±t-^= 3.6 

where t is taken from Table 3.4: 

Table 3.4: Relation between t for a 95% confidence and size "n" of a sample 

n 10 20 30 

t 2.228 2.086 2.042 

Replacing the values obtained for Badger Sand in Equations 3.5 and 3.6, the sampling error 

obtained for a 95% confidence interval for 30 particles of Badger sand is ± 0.028 and ± 0.039 

for roundness and sphericity, respectively. Hence, it is possible to report, with 95% confidence 

that the mean values of roundness (R=0.81) and sphericity (S=0.77) obtained from the 30 

particles are between (0.782, 0.838) and (0.731, 0.809). The Badger Mining Corporation reported 

values of R=0.8 and S=0.75 following the method of Krumbein/Sloss, which is in very good 

agreement with the values obtained with the Santamarina and Cho approach. 

Table 3.5: Sphericity of Badger sand 

Number of | Mean Value ] Variance j Standard 

Particles ' : Deviation 

Confidence interval 

10 0.75 0.007 0.084 0.059 

20 0.77 0.011 0.105 0.050 

30 0.77 0.011 0.105 0.039 
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Table 3.6: Roundness of Badger sand 

Number of 

Particles 

Mean Value Variance Standard 

Deviation 

Confidence interval 

10 0.80 0.005 0.071 0.053 
20 0.81 0.007 0.084 0.040 
30 0.81 0.006 0.075 0.028 

Figure 3.6: Sphericity and roundness after Santamarina and Cho, 2004 
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3.2. Triaxial testing program 

3.2.1. Description of the triaxial equipment 

The triaxial apparatus used at UBC is shown in Figure 3.7. A schematic diagram is shown in 

Figure 3.8. The cell pressure (P1) and back pressure (P2) are applied to the specimen through air 

hoses from the pressure regulator. The cell pressure and pore water pressure acting on the 

specimen are measured with pressure transducers (T1 and T2 respectively). An LVDT (Linear 

Variable Differential Transformer) measures axial deformation of the test specimen. Change in 

volume is deduced from the change in water level in a pipette using a differential pressure 

transducer (D). An external load cell and a frictionless (continually air leaking) seal on the loading 

ram ensure an accurate measurement of the deviator stress. 

3.2.2. Data acquisition system 

The triaxial apparatus uses a "National Instrument AT-MI016x" 16-bit high speed data acquisition 

card for signal input. Five A/D channels are used; one for each transducer, one for axial load, one 

for volume change and one for axial displacement. One D/A channel is used for stress controlled 

tests to control the electro-pneumatic system. 

The channels in this card are connected to a computer and software is used to monitor axial 

displacement (from the LVDT), volume change (from DPT), effective confining pressure (from 

pressure transducer), deviator stress (from load cell) and pore water pressure (from pressure 

transducer). 

3.2.3. Calibration of the system and measurement resolutions 

All readings on the computer are in mV. Hence it is necessary to apply a known pressure, force 

or displacement, in order to obtain the appropriate calibration factors, and thereby transform the 

mVA/ excitation signal into engineering units. The calibration of the pressure transducers was 

done through a DPI (Differential Pressure Indicator) which reads the pressure applied in kPa, 

connected to the transducer. The LVDT was calibrated through a micrometer, reading the 

displacement in mm and reading the associated voltage on the computer. The calibration of the 

cell pressure was calculated by reading the load.applied to the load cell through a proving ring (in 
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Figure 3.7: Triaxial apparatus 

Load cell 

L V D T 

Lr"n-

Data 
acquisition 

system 

Figure 3.8: Schematic diagram of UBC triaxial apparatus 
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kgf) and on the computer (on mV). Finally the calibration of the volumetric deformation pipette 

and differential pressure transducer was done by letting water drain from the pipette and 

recording the volume of water in mL, reading the mV in the computer and the head of water in the 

pipette. 

3.2.4. Preparation and testing of the specimen 

Specimens were reconstituted using a water pluviation technique; a known dry mass of sand is 

boiled with de-aired water and then deposited in the membrane lined cavity of a split mold filled 

with de-aired water. This technique ensures complete saturation of the sand as the grains are not 

in contact with air. Prior to the preparation of the sample, it is important to saturate all the lines in 

the triaxial apparatus. For that, a pressure of around 120 kPa was applied for 24 hours from the 

pressure regulator to the reservoirs of the triaxial frame (P1 and P2). 

A step by step preparation of the sample is explained below: 

• Boil a known dry mass of sand and water. Let it cool, and apply vacuum in order to 

dissolve the air bubbles trapped in the sand. 

• Boil the porous stones for 10 minutes and let them cool to room temperature. 

• Grease the O-rings. 

• Build up a dummy specimen with the aluminum sample and the loading cap used in the 

test. Take reference height to determine later the height of the specimen. 

• Saturate drainage line from the sample and place bottom porous stone. 

• Put the membrane and an O-ring around the pedestal. Place split mold steel jacket 

around the pedestal and stretch the membrane over its top. 

• Apply a small vacuum to the jacket (-20 kPa) and fill it with de-aired water. 

• Prepare the picnometer, fill it with de-aired water then put the stopper with glass stem 

and fill it with water. Invert the flask and fill the jacket with the sand. When the jacket is 

filled with sand to the desired height and touches the exit tip, the flow of sand will stop. 

The nominal dimensions of the samples are about 125 mm in height and 63 mm in 

diameter. 

• Carefully remove all the excess sand. This must be dried and weighed to compute the 

relative density of the sample from subtraction. 

• Carefully place the top cap with the top porous stone into the jacket in contact with the 

sand surface. Measure height. Snap the membrane and fit the O-ring, being careful to not 
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have air bubbles between the membrane and the top cap. Make sure that the top cap is 

leveled. Take height measurement again. 

• Apply vacuum of -20 kPa through the drainage line (the sample now stands because of 

the vacuum and not the jacket). Take measurement of height. Remove the steel jacket 

and measure the diameter (top, middle, and bottom) and height of the specimen. 

Figure 3.9 shows the shape of the sample before placing in the triaxial chamber. 

• Carefully assemble triaxial chamber and fill the chamber with de-aired water. 

• Close the vacuum valve and take the final height measurement and place the specimen 

in the triaxial apparatus. 

• On the computer, take offset values, being sure that the cell pressure and pore pressure 

transducers are opened to air. 

• Connect a line from the specimen to the cell pressure transducer and connect the air 

hose to the specimen through the reservoir at its top. 

• Apply a small pressure to the sample (30 kPa); this action will allow water to flow through 

the lines to get rid of the air bubbles and connect the drainage line to the pore pressure 

transducer. 

• Check the Skempton B value by opening the drainage valve from the sample and 

increasing the cell pressure step by step until a target pressure is reached checking the B 

value at each time. 

When a B value greater than 98% is obtained, apply the back pressure in order to impose the 

effective stress desired for the test, carry out the consolidation phase and then finally perform the 

triaxial test. A rate of displacement of 0.02 inch/min (about 0.5 %/minute) was used for every test 

allowing drainage of the specimen at the base only. A picture of the final shape of one test 

specimen is shown in Figure 3.10. 

3.3. Triaxial test results 

The objective of the triaxial test program is to obtain properties and thereby establish parameters 

of Badger sand for the critical state soil model, NorSand. As explained in Chapter II, the 

parameters needed are critical state parameters (r and X), elastic parameters (G and v) and 

plastic parameters (M, H and x). 
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3.3.1. Test description 

Five triaxial compression tests were performed at UBC: two consolidated undrained (CU) tests at 

confining pressures of 100 kPa and 150 kPa, and three consolidated drained (CD) tests at 

confining pressures of 50 kPa, 100 kPa and 150 kPa. Test codes and characteristics are 

summarized in Table 3.7. 

Table 3.7: Codes and characteristics of tests 

Code Cell Pressure Void Ratio Drainage 

After Consolidation 

e.: (DR%) 

CUP100 100 0 624 (33%) Undrained 

CUP150 150 0.620 (35%) Undrained 

CDP50 50 0.623 (34%) Drained 

CDP100 100 0.624 (33%) Drained 

CDP150 150 0.620 (35%) Drained 

The initial void ratio of all five tests is very similar, which shows the reconstitution method was 

very repeatable. It was not possible to obtain specimens looser than 33% relative density after 

consolidation, considered indicative of a loose state, yet one that is close to that of a medium 

dense state (DR > 35%), which is attributed to the shape of the sand particles. As they are well-

rounded particles, any minor disturbance yielded a rearrangement of the grains and densification 

of the sample. Therefore, although it was intended to test loose specimens, all the specimens 

showed an initial dilative behaviour of the sand. Hence, the steady state or critical state line was 

very difficult to achieve. Studies have shown that even after 25% to 30% strain, dilative 

specimens have not reached the steady state (Sivathayalan, 2000). 

3.3.2. Void ratio determination 

The determination of void ratio for each test was made by measuring the height and cross-

sectional area of the specimen. The height was obtained by comparison to a dummy sample of 

known height. The cross-sectional area was obtained by filling the steel jacket (which had the 

membrane snapped and vacuumed), with de-aired water. By calculating the mass of water inside 
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Figure 3.9: Sand sample before testing (dummy sample) 



the jacket, corrected for temperature, and the height of water, the average diameter of the 

specimen obtained was 63.38 mm and was taken as a constant for every test. 

3.3.3. Triaxial test results 

The variation of deviator stress and volumetric strain, with axial strain, for the three drained tests 

is shown in Figure 3.11. The specimens are very stiff at strains less than 0.5%, and the maximum 

strength is reached at about 10% axial strain. With reference to the volumetric strain, the sand 

contracts until the maximum volumetric strain is reached (or maximum contraction), at about 1% 

axial strain, and then dilates until the test was terminated prior to reaching the critical state. Note 

the final rate of dilation in all tests is very similar, which is attributed to the very similar initial void 

ratio of the specimens. Interestingly, CDP100 contracts more than CDP150. As CDP100 is 

slightly looser than CDP150, it is possible that the void ratio-confining pressure combination 

made CDP100 more susceptible to contraction. 

Figure 3.13 shows the void ratio observed in all five tests. The open circle indicates the void ratio 

at the end of the test. The drained tests clearly show a little contraction before the sample starts 

dilating through to the end of the test. Given the density of the specimens and the low confining 

pressures, all the samples dilated, hence obtaining the critical state line (CSL) was not 

straightforward. 

Figure 3.12 shows the deviator stress and the pore water pressure for the two undrained tests. 

Again, the specimens are very stiff at strains less than 0.5%, then the slope reduces after 1% 

axial strain, and the higher the confining pressure, the higher the strength of the specimen. The 

tests initially tend to contract, generating a positive value of excess pore water pressure, until 

they reach the maximum pore pressure (or phase transformation) at about 1% axial strain, which 

is consistent with the maximum contraction points found for the drained tests. The sand then 

tends to dilate. Hence the excess pore water pressure decreases until the tests are stopped. A 

steady state condition was not reached as the sand continued to dilate until the end of the test. 

Figure 3.14 shows the stress path for the five triaxial tests in q-p' space. Both undrained tests 

show an initial contraction, where the pore pressure increases, until they reach the phase 

transformation point (defined by Ishihara et al (1975) as the maximum excess pore water 

pressure), and then dilate until the end of the test. The drained tests follow the expected 1:3 

slope, reaching the peak angle of friction and then softening for the rest of the test. 
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Figure 3.11: Triaxial (CD) test results: a) deviator stress and b) volumetric strain 
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Figure 3.12: Triaxial (CU) test results: a) deviator stress and b) excess pore pressure 
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3.3.4. Shear modulus 

Additional triaxial tests on specimens of Badger sand, that were reconstituted by moist tamping, 

were reported by Golder Associates (2004). By attaching bender elements to the specimen and 

recording the shear wave velocities as the specimen was tested, it was possible to obtain the 

value of the shear modulus as a function of the confining pressure (see Figure 3.15). The relation 

obtained between shear modulus and mean stress is: 

G m a x = 9.35 (p')° 4 7x 1000 (MPa) 3.7 

It is well recognised that the specimen reconstitution method determines the fabric of a sand 

specimen, hence the value of G m a x from a water pluviated specimen will be different to the G m a x 

obtained from moist tamped specimens. However, as elasticity parameters are needed later in 

this study (see Chapter V), this finding is reported, in order to establish a value for the same well-

rounded sand rather than assuming a value believed appropriate to Badger sand. 



CHAPTER IV: ANALYSIS OF RESULTS 

The parameters derived from the UBC triaxial testing program described in Chapter III, are 

somewhat unusual for a silica sand, given the relatively low friction angles and a difference 

between extreme void ratios equal to 0.2. Also, in contrast to many sands, the grains are very 

rounded. In order to determine if the approaches used to describe typical sands are able to 

capture the behaviour of rounded sands such as Badger sand, results obtained from the triaxial 

tests are analyzed and discussed. Properties for Badger sand are determined: some of the 

properties are measured, and others are curve fitted with the help of the NorSand model. 

4.1. Friction angles results from triaxial test program 

The angles were obtained following the definitions given in Chapter II. In summary, the angle of 

repose, (<|>rep), is calculated by measuring the angle of the heap formed when sand is deposited 

as loose as possible. The peak friction angle, (§ p ) , is obtained from drained tests on dense sand 

samples. The maximum contraction friction angle, ((j>Mc), is obtained from drained tests and 

corresponds to the point where the incremental volumetric strain changes from contractive to 

dilative. The phase transformation friction angle, (<|)PT), is measured in undrained tests and 

corresponds to the maximum pore water pressure. Finally, the maximum obliquity, ( § M 0 ) , is the 

state of maximum effective stress ratio, ie, ( o y / o y ) in undrained tests. 

4.1.1. Constant volume friction angle (<j)Cv) 

In order to obtain the critical state friction angle, loose specimens must reach the critical state 

within the strain limitations of the test. As explained in Chapter III, although loose tests were 

planned, it was not possible to obtain specimens looser than the critical state line by the water 

pluviation method: the relative densities were 34%, 33% and 35%, for tests CDP50, CDP100 and 

CDP150, respectively (see Table 3.7). The same phenomenon was found by Vaid and Chern 

(1985) with Ottawa sand (which is also a rounded sand). The minimum relative density they 

obtained by the water pluviation method was DR=30%. In addition, Golder Associates used the 

moist tamped specimen reconstitution method, which is supposed to give the loosest possible 

state with no success; the sand specimens were always denser than the critical state. Dense 
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samples dilate and the critical state is reached at very large strains. Studies have shown that 

even after 25% to 30% strain, dilative specimens have not reached the critical state 

(Sivathayalan, 2000). The tests on Badger sand were carried to a maximum strain of 15%, so, the 

critical state was not reached by the end of the tests. Hence, another approach is needed to 

determine the critical state friction angle for Badger sand. 

It is possible to establish the critical stress ratio, M, from the D m i n versus r |m a x plot from several 

drained triaxial tests. As D=0 at the critical state, taking the best fit through the points as a basis 

for extrapolation, and taking r|max at Dm i n=0, M t c can be obtained (Bishop, 1966). The advantage of 

the method is that it does not require triaxial test data at large strain. Values for CDP50, CDP100 

and CDP150 are plotted in Figure 4.1. It may be seen that the best fit through these three drained 

tests gives a straight line. Projecting this line to Dmin=0 the value of M c r i t was found to be equal to 

1.13, which corresponds to a constant volume friction angle of 28.4° 

Figure 4.2 shows the plot r| versus D p , for CDP100. M c r i t can also be estimated by plotting the 

stress ratio versus the dilatancy for the drained tests and projecting the post peak r\ line to the 

critical state Dp=0. This procedure is most accurate if the tests approach the critical state. The 

values obtained from the three drained tests on Badger sand, were about 1.125, 1.13 and 1.133 

for CDP50, CDP100 and CDP150, respectively. 

Hence from the two methods described above a good estimate of the critical state friction angle 

for Badger Sand is <j>cv = 28.4°. 

Following the ASTM method described in Chapter III, the angle of repose obtained for Badger 

sand was 30,9°. This value agrees with Fannin et al (2005), who reported an angle of repose for 

Badger sand of 31° following the method described by Bolton (1986). This method consists in 

excavating the toe of a heap formed by loose dry sand. 

It is generally assumed that the angle of repose corresponds to the internal friction angle of a 

material. Cornforth (1973) suggests that (j)Cv can be predicted by performing a static angle of 

repose test on dry sand. However, for Badger sand the angle of repose is 2.5° higher than the 

critical state friction angle (see Table 4.5). Many factors such as amount of material, rate of 

pouring of the material and surface roughness influence the value of the angle of repose (Miura et 

al, 1997). As well, properties such as grain size and angularity influence the value of <j)rep. 
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Figure 4.2: Stress dilatancy plot for CDP100 
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4.1.2. Peak friction angle (fyp) 

The peak friction angles for the three drained tests are reported in Table 4.1; the peak friction 

angles for Badger sand are very similar, with an average value of (j>p=29.4°. Bolton (1986) 

proposed a relative dilatancy index, lR, given by Eq. 2.23. 

IR =DR(Q-\np')-R (Eq. 2.23) 

This relative dilatancy index was obtained considering 17 different sands for confining pressures 

between 150 kPa and 600 kPa. Table 4.1 shows the values obtained for Badger sand using 

Q=10andR=1. 

Table 4.1: Relative dilatancy index for Badger sand 

Test DR p (kPa) ; L 3IF (|)peak ~" (bp.. ,..-<|>rv 

CDP50 0.34 50 1.07 3.21 29.7 28.4 1.0 

CDP100 0.33 100 0.78 2.34 29.4 28.4 1.0 

CDP150 0.35 150 0.75 2.25 29.1 28.4 0.7 

As well, Bolton (1986) suggested a relation between the peak friction angle, the constant volume 

friction angle and the relative dilatancy index, given by (Eq. 2.24). 

I'p rev <t>cv ~ 3 / P (Eq. 2.24) 

From Table 4.1 the difference between Bolton's prediction and the values of Badger sand is 

approximately 1.5°, which suggests that the peak friction angle might be lower than expected. 

Similarly, Bolton (1986) suggested a relation between l R and the rate of dilatancy given by: 

de 
= 0.3/ R 4.1 

1 ; 
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Table 4.2 shows the predicted values with Equation 4.1 and the values obtained for Badger sand. 

Again, the predicted values are larger than the ones obtained with the triaxial tests. 

Table 4.2: Rate of dilatancy for Badger sand 

Test MH| |mHfl i p ! (kPa) 
(.- drJ 
{ de\ -J '• 

CDP50 0.34 50 0.19 U.J2 

CDP100 0.33 100 0.17 0.23 

CDP150 0.35 150 0.19 0.23 

It is known that maximum strength is related to maximum dilatancy and that maximum dilatancy is 

affected by initial density and effective stress. From Table 4.2 the rate of dilatancy obtained for 

the three triaxial tests on Badger sand is very similar, which is consistent with the very similar 

values of peak friction angle. It will be shown later in this Chapter that the dilatancy of Badger 

sand is unusual, which may contribute to the iow values of peak friction angle obtained with the 

triaxial tests. 

4.1.3. Maximum contraction friction angle (<J>Mc) 

Table 4.3 shows the values obtained for the maximum contraction friction angle for Badger sand 

found with the triaxial tests, which are very similar. Miura et al (1998) found that the angle of 

maximum contraction and the friction angle at failure depend on the void ratio extent 

(le = e m a x - em i n) and the angularity of the grains; as l e and angularity increase (or roundness 

decreases), <j>MC and (j>cv increase. 

Table 4.3: Maximum contraction friction angle for Badger sand 

Test D R (%) it ) 
1 v /max 

(""i''0y) (., 

C D P 5 0 34% 0.12 2.51 25.4 

C D P 1 0 0 3 3 % 0.25 2.63 26.7 

C D P 1 5 0 3 5 % 0.21 2.50 25.4 

(average) 25.8 
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They reported the values of <j>MC and 0rep as shown in Figure 4.3. The values for Badger sand 

are added to that database. The maximum contraction angle plots between the proposed 

boundaries and links sands with glass beads. 
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Figure 4.3: Relation between angle of repose and maximum contraction friction angle (after Miura 

etal, 1998)3 

4.1.4. Phase transformation friction angle ((j)PT) 

Table 4.4 shows the values of the phase transformation friction angles obtained at the point 

where the pore water pressure is maximum for CUP100 and CUP150. 

3 

After Miura et al (1998), Natural s a m p l e s are se lected from natural s a n d , Uniform s a m p l e s and G r a d e d 

s a m p l e s are reconstituted s a n d s a m p l e s , and L .W.A . (Light Weight Aggregates ) and G l a s s b e a d s are 

artificial granular materials. 

83 



Table 4.4: Phase transformation friction angle for Badger sand 

Test DR (%) (.u;)m 3 X (kPa) 

CUP100 3% 35.3 25.5 

CUP150 35% 55.7 25.6 

(average) 25 6 

There has been considerable discussion of the uniqueness of (J)Cv, §PT and § M C in the literature. 

Further debate has addressed whether or not the critical state friction angle, steady state friction 

angle, maximum contraction friction angle and phase transformation friction angle are the same. 

The following is a summary, by authors, in chronologic order: 

• Kirkpatrick (1961) suggested that (bMC is a unique parameter for each sand. He also 

suggested that (bMc and t|)cv are the same, and independent of the specimen behaviour 

(contractive or dilative). 

Luong (1980) performed triaxial compression and extension tests on various cohesionless 

materials. He found that the maximum contraction friction angle is independent of stress path, 

initial porosity, grain size and anisotropy. He also found that, for contractive specimens, <j)Cv 

and (bMc are the same. 

• Vaid and Chern (1985) performed monotonic and cyclic triaxial tests on Ottawa sand and a 

mine tailings sand. They found that the phase transformation and the steady state line are the 

same for contractive specimens, and that <bPT is a unique property. 

• Negussey et al (1988) performed ring shear tests on medium Ottawa sand and fine and 

coarse copper particles. They found that <j)Cv is independent of normal stress, density, and 

grain size, and hence a unique parameter. They suggested that for loose samples, §Cv and 

(bMc are the same and that (bMc decreases with initial relative density and increases with 

increasing confining pressure. As well, they found that <bpT and (bcv are the same and that (j)PT 

is a unique property of sands, independent of density and effective stress. 
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Oyenuga and Tisot (1989) performed triaxial tests and direct shear box tests to measure (j)PT 

and t|)Mc, and ring torsion tests to measure <bCv with Fountainebleau sand and three Moselle 

sands. They found that <|)cv is independent of grain size distribution, effective stress and 

density. As well they suggest that (bCv and (bMc are the same. 

• Vaid et al (1990) performed triaxial tests Ottawa sand. They found that the phase 

transformation friction angle and the steady state friction angle are the same and a unique 

property for contractive sand specimens but are different for dilative sand specimens. They 

found that <j)PT is a unique property of a sand for contractive specimens, independent of initial 

void ratio, consolidated state and mode of loading. 

• Chu (1995) performed a different triaxial test in order to reach the critical state with dense 

sand specimens of Sydney sand. The procedure is to isotropically consolidate a dense sand 

sample and shear it to failure at constant confining pressure. When failure is reached, a 

constant volume condition is imposed. A full description of the procedure is found in Chu and 

Lo (1993). With this procedure they ensured homogeneous deformations and that the critical 

state was reached in the homogeneous zones. They observed that the critical state friction 

angle is stress level dependent, the higher the confining pressure, the smaller the friction 

angle, but independent of the initial density. The same conclusion was found for the phase 

transformation and maximum contraction friction angle but these angles are also dependent 

on the initial density of the specimen. As well, Chu (1995) found that for contractive soils, tj)cv, 

<t>PT and (bMc are the same. However for dilative specimens (b P T and §MC are the same but 

different from (bCv-

Table 4.5 provides a summary of the different friction angles obtained during the triaxial testing 

program for Badger Sand. The values of M,c and their corresponding angle of friction are reported 

for different states; repose, failure envelope, maximum contraction, phase transformation and 

constant volume. From Table 4.5 the two numbers for Badger sand are very close and 

indistinguishable within the experimental resolution of the triaxial tests. 
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Table 4.5: Different friction angles for Badger sand 

State M,, '< .b (••) 
itiiiiliS 

Repose 1.24 30.9 

Maximum obliquity (MO) 1.13 28.4 

Maximum contraction (MC) 1.02 25.8 

Phase transformation (PT) 1.01 25.6 

Critical state (CV) 1.13 28.4 

From Table 4.5 the maximum contraction friction angle is practically the same than the phase 

transformation friction angle. However, the constant volume friction angle is higher than the 

phase transformation friction angle (or maximum contraction friction angle) and is equal in 

magnitude to the maximum obliquity friction angle. These results are consistent with the findings 

of Chu (1995). Additionally, the maximum obliquity friction angle is equal to the phase 

transformation friction angle plus 2.8°. This finding agrees with Sivathalayan (2000). As Badger 

sand always had a dilative behaviour for the void ratio - mean stress combination presented in 

the triaxial testing (see Figs 3.11 and 3.12), it seems reasonable to have a different value for the 

angle of friction for the phase transformation state and the constant volume state. 

Typical values of critical state friction angles for sands stated in chapter II range between 30° and 

39° (see Table 2.1). Hence, the values found for Badger sand are lower than commonly found. 

Also, the angle of repose and the constant volume friction angle measured for Badger sand are 

different. Similarly, the values of the peak friction angle were found to be lower than expected. 

Additionally, as explained in Chapter III, the values of the minimum and maximum void ratio were 

somewhat unusual. In order to be confident that the values found for Badger sand in the triaxial 

tests are correct, these atypical results are now compared with values of other sands found in the 

literature. 

4.2. Comparison of Badger sand properties with literature 

As reported in Chapter III, the minimum and maximum void ratios found for Badger sand are 

unusual: e m i n = 0.49 and e m a x = 0.69, yielding l e = e m a x - e m i n = 0.2, which is a very low value for 

sands. Table 4.6 summarizes values of roundness, minimum and maximum void ratio and l e for 

different materials, with roundness ranging from 0.2 to 0.6. As suggested by Shimobe and Moroto 

(1995) and Cubrinovski and Ishihara (2002), the values of e m i n and e m a x increase with decreasing 

the roundness of the particles, and le = e m a x - e m i n increases with decreasing roundness. 
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Table 4.6: Values of roundness and void ratio for various sands (from Youd, 1973) 

Material R e n ,A 1 

Ottawa sand 0.60 0.704 0.408 0.296 

Lapis Lustre sand 0.44 0.754 0.460 0.294 

Monterey sand 0.39 0.772 0.469 0.303 

Del Monte sand 0.27 0.971 0.503 0.468 

Crushed basalt 0.20 1.190 0.700 0.490 

In order to determine if the values of the maximum and minimum void ratios found for Badger 

sand are reasonable, 30 particles were taken randomly, and following the procedure explained in 

Chapter III and Eqs. 2.28 and 2.29 of Santamarina and Cho (2004), the sphericity and roundness 

were determined. Average values of S = 0.77 and R = 0.81 were obtained, as shown in Table 3.5 

and Table 3.6. This value of roundness classifies Badger sand as a well rounded sand (Powers, 

1953, Table 2.2). 

Figure 4.4 shows the relations for the minimum and maximum void ratios defined by Santamarina 

and Cho (2004), Shimobe and Moroto (1995), and Youd (1973). A clear tendency of decreasing 

void ratios with increasing roundness is appreciable, converging to a null slope as roundness 

approaches a value of 1. As well, the difference between e m a x - e m i n decreases with increasing 

roundness. Youd (1973) reported materials with roundness between 0.17 and 0.60. Shimobe and 

Moroto (1995) correlated e m a x and the roundness from 76 different materials; they reported values 

of roundness between 0.1 and 0.7 for sands and a roundness of 1 for glass beads. As well, 

Santamarina and Cho (2004) reported values of roundness between 0.2 and 1 from natural and 

crushed sands. The values of R, e m i n and e m a x obtained for Badger sand are included, and lend 

confidence to the general trend in the data. 

Santamarina and Cho (2004) found that the constant volume friction angle of granular materials 

depends on the shape of the particles. Based on observations of 54 specimens they measured 

(bcv as the angle of repose for materials with roundness between 0.1 and 1 and proposed: 

rcv=42-^7R 4.2 

The values of (j>Cv and (J)repose are added to the database, showing an excellent agreement with the 

proposed relation (Figure 4.5). 
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Generally, the values of mobilized friction angles given in Table 4.5 indicate the range of friction 

angles for Badger sand is very narrow: the difference between the maximum obliquity and the 

phase transformation friction angle is i j > M 0 - < j > P J = 2.8° . Table 4.7 shows the values of <j>M0 and 

4>PT for Fraser River sand (Vaid and Eliadorani, 1998), which is an angular sand, and Ottawa 

sand which is a rounded sand (Vaid and Chern, 1985). Data for the rounded Badger sand appear 

in excellent agreement with the findings for Ottawa sand. 

Table 4.7: Friction angles for Ottawa sand and Fraser River sand 

Material 0MO <I>PT 0MO ~-<PPT 

Ottawa sand 31.5° 29.4= 2.1° 

Fraser River sand 37° 32° 5.0° 

This interpretation of the data for Badger sand and comparison with the literature, confirms the 

shape of the grain plays an important role in governing intrinsic parameters of granular materials. 

As the roundness of the particles increases, the maximum and minimum void ratios decrease, as 

does the difference l e =e m a x -emin- Also, the constant volume friction angle decreases as the 

roundness of the particle increases. In addition, it seems that for rounded sands the difference 

between the mobilized friction angles is smaller than for angular sands. 
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4.3. Analysis of NorSand results 

As explained in chapter II, the NorSand constitutive model has seven input parameters; two 

critical state parameters (r and X), three plastic parameters (M t C i H and xtc) and two elastic 

parameters (Ir and v). 

The critical state parameters, r and X, are ideally obtained from drained and undrained tests on 

very loose reconstituted sand samples at different confining pressures. M t c is obtained from the 

end of test condition of very loose triaxial drained tests or Bishop's r\-D plot for dense specimens. 

The plastic hardening parameter, H, is a fabric dependent parameter and is obtained by fitting the 

curves and iterating to have the best match. It is found that H is directly related to the state 

parameter, vy. 

Xtc is found by plotting the state parameter at image condition, v|/|, versus the minimum dilatancy 

D m i n . It is believed that x is also a fabric dependent parameter. 
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The elastic property Ir is obtained from bender elements during the triaxial tests. If bender 

elements are not included an unload-reload cycle can be performed. 

Poisson's ratio, v, is measured in laboratory tests and is about 0.2 and is typically assumed 

between 0.1 and 0.2. Generally a value of v close to 0.1 is used for modelling purposes. 

4.3.1. Comparison between triaxial data and NorSand model for Badger sand 

Figure 4.6, Figure 4.7 and Figure 4.8 show the comparison between the three drained triaxial 

tests (CDP50, CDP100 and CDP150, respectively) and the predictions with NorSand. The 

parameters used for the fittings are described later and a summary table is presented at the end 

of this chapter. 

The peak deviator stresses predicted by NorSand are larger than the ones obtained with the tests 

(for CDP50 and CDP150), and they are very similar for the CDP100 test. Nevertheless the initial 

stiffness and final trends show on average a good fit, capturing the drained behaviour of the 

Badger sand. The main purpose of the comparison between the triaxial data and the model is to 

obtain the parameters needed to describe the behaviour of Badger sand by having a reasonable 

fit to all the tests and not one really good fit and the others poor. 

Similarly, for the volumetric strain, the model predicts more contraction than the real data, but the 

rate of dilation of the sand is captured until the 10% axial strain. 

A better fit for the initial stiffness and the contraction of the sand can be found by increasing the 

hardening parameter, H, as shown in Figure 4.9. However, the rate of dilation is not captured, the 

model showing a lower rate than the triaxial data. 

Also, Figure 4.10 and Figure 4.11 show the fitting for the undrained tests with the same 

parameters used to fit the drained tests. In this case, the deviatoric stress predicted by NorSand 

is smaller than the one obtained by the triaxial tests. Also, the test data show less pore water 

pressure than the prediction with NorSand, hence the difference in strength. However, for both, 

deviatoric stress and pore water pressure NorSand is able to capture the behaviour of Badger 

sand for the strains up to 10%. 

90 



Figure 4.6: Comparison of deviator stress and volumetric strain between triaxial data and 

NorSand model for CDP50 
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Figure 4.7: Comparison of deviator stress and volumetric strain between triaxial data and 

NorSand model for C D P 1 0 0 
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Figure 4.8: Comparison of deviator stress and volumetric strain between triaxial data and 

NorSand model for CDP150 
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Figure 4.10: Comparison of deviator stress pore water pressure between triaxial data and 

NorSand model for CUP100 
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Figure 4.11: Comparison of deviator stress pore water pressure between triaxial data and 

NorSand model for CUP150 
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Figure 4.12: Comparison of deviator stress pore water pressure between triaxial data and 

NorSand model for CUP100, for R =2 
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The preceding figures show a good fit to dilation rate but a poor fit for the initial contraction. A 

better fit for the undrained tests can be obtained by raising the overconsolidation ratio to 2. The 

comparison between the predicted values and the triaxial test for CUP100 is shown in Figure 

4.12. This change makes the predicted deviatoric stress increase and fit the triaxial data almost 

perfectly. In the case of the excess pore water pressure, the prediction with NorSand shows more 

contraction (less than the case where R=1), but the final trend shows a perfect fit. 

4.3.2. Determination of NorSand parameters 

Critical state parameters 

The average value of M t c equal to 1.13 obtained using the method described by Bishop (1966) 

was used to fit the three drained and the two undrained tests the best. 

Badger sand only dilated for the void ratios - confining pressure used in these tests, the critical 

state line in the e-lnp' space has been estimated with the help of NorSand. r and X were found to 

be equal to 0.697 and 0.0105 respectively, giving the equation for the Critical State Line in the e-

Inp' space equal to e = 0.697 - 0.0105 x ln(p'). This equation ensures that the tests start and end 

at the left of the CSL. Even if the critical state friction angle associated to Mlc=1.13 is smaller than 

typical values for quartz sands, it is consistent with the values proposed by Santamarina and 

Cho, as explained before. 

Figure 4.13 shows the place of the Critical State Line (CSL) estimated with the help of NorSand, 

in relation to the void ratios obtained during the lab tests. As said before, the critical state line 

remains above the tests which confirms that the samples were not loose, hence, after a short 

contraction they started dilating. Tests CDP100 and CDP150 are very close to the estimated CSL 

at the end of the tests. However, CDP50 is far away from the CSL as the two undrained tests are. 

Plastic parameters 

The value of the hardening parameter, H, used to fit the triaxial tests on Badger sand was taken 

constant and equal to 200. As the state parameter varies very little for the tests performed on 

Badger sand it is difficult to determine whether H should vary with Higher values of H could 

have matched better the triaxial results but in that case the rate of dilation would have been off as 

shown in Figure 4.9. 
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From the drained tests, a relation between the plastic dilation 

initial state parameter was determined and is equal to: 

( • / ' ^ si j sp

q at peak strength and the 
V J 

D M I N = 3.6^ 4.3 

Theoretically, Dmm = 0 at <// = 0. The best fit line in Figure 4.14 has a (9e"s) intercept which is 

practically 0, which reconfirms the approach. 

From Figure 4.14 the value of Xtc can be determined as the slope of the line, hence: 

Z,c = 3 - 6 4.4 

On the other hand, as explained in Chapter II, the slope of the line of Figure 4.1 (r|m a x vs -Dm i n) is 

(l - N), hence for Badger sand the value of N is found to be equal to 0.63. Typical values of N 

and x for sands are about 0.3 and 3.5, respectively. Given those values, the later version of 

NorSand described in Chapter II assumes that N><x=1.0. Hence, the flow rule described in 

Equation 2.91. However, given the values obtained for Badger Sand (N=0.63 and % i c = 3.6), the 

product between N and % is equal to 2.3. 

In order to capture the behaviour of Badger sand, and given the unusual values found for N the 

flow rule has been modified to fit these tests. Instead of the conventional flow rule described in 

Chapter II, the flow rule used is Mj - M(\-y//Mlc) for i/s positive (or loose state) and 

M, =M ( l + 2.3 </y/M,c) for if/ negative (or dense state). The fits in Figure 4.6 to Figure 4.11 

show that this modified flow rule is able to capture the stress-strain behaviour of Badger sand. 
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Figure 4.15 shows the stress-dilatancy behaviour for CDP100 compared with the stress-dilatancy 

predicted using the modified flow-rule for NorSand. The figure shows a very good agreement 

between the predicted and the values measured for this test. As found by Been and Jefferies 

(2004) for Erksak sand, the graph is approximately linear, showing a natural reverse as the stress 

ratio reaches the maximum, as expected for dense sand samples. Again, this plot confirms that 

the value of <j)Cv obtained by Bishop's method is reasonable. If we assume that § P J in undrained 

tests is actually the constant volume friction angle, the rebound line of Figure 4.15 should end up 

at r p 1.06, which seems extremely unlikely. 

Finally the properties determined for the Badger Sand are summarized in Table 4.8. As stated 

previously, the critical state parameters, r and A, were deduced from the fits with the NorSand 

model and the lab test data. M t c was obtained with the methods of Bishop and stress-dilatancy. 

The elastic parameters were obtained from a test with bender elements and assuming a 

Poisson's ratio of 0.15. Finally the plastic parameters were deduced by iterating and finding the 

best fit in order to be consistent with all the other parameters. With this parameter combination, 

the average error between the initial void ratio obtained from the triaxial tests (e0r) and the one 

obtained by fitting (eot) is 0.01, which is with the accuracy expected from the lab testing. 

Most of the parameters obtained to fit Badger sand fall all between the expected values 

(Table 2.7). M is lower than expected and the parameter N is higher than normal values, hence 

the change in flow rule described above. As well, the dilatancy of Badger sand is unusual (Figure 

4.6 to Figure 4.11) which explains the low values of peak friction angles obtained in the drained 

tests. 

As a general conclusion it is possible to say that Badger sand is a very unusual sand; the values 

of e m i n , e m a x , <|>cv , <!>PT, <|>MC and peak friction angles are lower than expected values for sands. 

However, these values were confirmed and explained by the shape of the sand grains, which, 

after Powers (1953) classifies Badger sand as a well-rounded sand with a roundness of R=0.81. 

As R increases, e m i n , e m a x , <|)cv , §PT and § M C decrease. Peak strength is related to maximum 

dilatancy. The dilatancy for Badger sand is also unusual which explains the low peak friction 

angles obtained in the drained tests. Finally, the NorSand constitutive model is able to capture 

the behaviour of Badger sand and confirm that the value of <|>cv obtained by Bishop's method is 

correct and it is different from the phase transformation friction angle. 
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Table 4.8: Parameters summary of NorSand 4 for Badger sand 

MEP50 CDP100 CDP150 wmmm- Comments 
0.697 0.697 0.697 0.697 0.697 at 1 kPa 

X 0.0105 0.0105 0.0105 0.0105 0.0105 base e 

M,. 1.13 1.13 1.13 1.13 1.13 
H 200 200 200 200 200 
7. 3.6 3.6 3.6 3.6 3.6 

Ir 1184.6 822.0 1200.0 831.8 664.7 Ir = G/p' 
G (MPa) 59 82 99 81 . 99 G = 9.35(p')0 4 7 

V 0.15 0.15 0.15 0.15 0.15 
E (MPa) 136 189 228 187 228 

R 1 1 1 1 1 
M' -0.043 -0.033 -0.036 -0.037 -0.034 

e 0 r -e 0 l 0.011 0.008 0.012 0.012 0.010 

4 Details of the implementation of NorSand in FLAC are shown in Appendix A. 
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C H A P T E R V : S U M M A R Y A N D C O N C L U S I O N S 

This research examines the properties of a well-rounded sand, in order to characterize it for 

purposes of numerical modelling. The silica sand is produced by the Badger Mining Corporation. 

The Badger sand is a uniformly graded coarse sand, for which C u = 1.3 and C c = 1.1 and 

D50=0.87 mm. The general intent is to contrast properties of Badger sand with those of other 

sands, and determine if the different available tools are able to capture the behaviour of well-

rounded grains such as Badger sand. For this,, the main objectives of this study were: 

• ' Measure the physical properties of Badger sand grains, such as roundness, and the 

grain assembly, such as minimum and maximum void ratio. 

• Determine the strength parameters of Badger sand, including the angle of repose, 

failure envelope friction angle, phase transformation friction angle, maximum 

contraction friction angle and constant volume friction angle. 

• Correlate the roundness of Badger sand with its extreme void ratios, and constant 

volume friction angle, and contrast those findings with relations for sands published in 

the literature. 

• Compare the relative magnitude of the different friction angles obtained for Badger 

sand, and examine the implications for characterization of well-rounded sands. 

Determine the elastic, plastic and critical state properties of Badger sand for modelling 

purposes. 

• Capture the behaviour of Badger sand with the NorSand constitutive model. 

A series of three drained and two undrained triaxial tests was performed at the graduate 

geotechnical laboratory of UBC, with complementary studies using the NorSand constitutive 

model and FLAC. A summary of the main results and findings is presented below. 
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Image analysis of the sand grains yielded a roundness R=0.81 and S=0.77. Values of the 

minimum and maximum void ratio obtained by following the ASTM method are e m i n = 0.49 and 

em a x= 0.69. Friction angles established for Badger sand tests are as follow: 

Angle of repose: <|>rep = 30.9° 

Maximum obliquity: <|>MO = 28.4° 

Maximum contraction: <t>MC = 25.8° 

Phase transformation: <)>PT = 25.6° 

Constant volume : <)>CV = 28.4° 

The angle of repose was obtained following the ASTM method for a loose heap of sand. Triaxial 

tests were performed on specimens reconstituted by water pluviation. All specimens had a 

relative density less than DR = 35%, indicative of a loose state, yet one close to that of a medium 

dense state (DR>35%). All triaxial specimens exhibited considerable dilation. Accordingly, the 

constant volume friction angle was determined using the method proposed by Bishop (1966): it 

requires plotting the values of the maximum stress ratio, ^ m a x , and the dilatancy, D m i n , for drained 

tests, and taking the best fit through the points. It is possible to obtain the critical stress ratio, M, 

as the value of the maximum stress ratio, T i m a x , at Dmin=0. A second method was used to confirm 

the value of the critical state friction angle: for each drained test, M was obtained by plotting the 

stress ratio versus the dilatancy, D p , and projecting the post peak r\ line to Dp=0. The maximum 

contraction friction angle was obtained from the stresses related to the point where the behaviour 

of the sand passed from contractive to dilative in the three drained tests. The phase 

transformation friction angle was obtained from the stresses corresponding to the maximum pore 

water pressure in the undrained tests. The maximum obliquity friction angle was measured from 

the maximum effective stress ratio in the two undrained tests. 

The NorSand constitutive model was used to fit the triaxial tests on Badger sand. A summary of 

the parameters used is presented in Table 5.1. 
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Table 5.1: Summary of Badger sand parameters 

Parameter Badger sand Remark 

r 0 697 At 1 kPa 

X 0.0105 Defined in base e 

M 1.13 In triaxialcompression 

H 200 

X 3.6 
G 9.35(p')u"'xl000 MPa 

V . 0.15 Assumed 

R 1 Assumed 

As all the reconstituted test specimens were dilatant, the critical state parameters in the e-ln(p') 

space, r and X were obtained with the help of NorSand and ensuring that the CSL stays to the 

right of the end of test condition. H was found by iteration, x was found as the slope of the line in 

the v|/-Dm i n plot of the three drained tests. The relation of G with the mean effective stress was 

found using bender elements attached to the specimen and provided by Golder Associates. 

From the results presented above, the following conclusions can be stated: 

1. For Badger sand it was not possible to reconstitute specimens looser than 33% relative 

density, with the method of water pluviation, which is consistent with the experience of 

Vaid and Chern (1958) for Ottawa sand. 

2. For Badger sand the maximum contraction friction angle (25.8°) appears equal to the 

phase transformation friction angle (25.6°), and occurs at the same axial strain of about 

1% to 1.5%. 

3. For Badger sand the maximum contraction friction angle (25.8°) appears equal to the 

phase transformation friction angle (25.6°), and they are both different from the 

constant volume friction angle (28.4°). This finding is in agreement with that of Chu 

(1995). 
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4. For Badger sand the maximum obliquity friction angle (28.4°) is greater than the phase 

transformation friction angle (25.6°), by approximately 3°. This finding is consistent with 

the observation of Sivathayalan (2000). 

5. The constant volume friction angle (28.4°) was found to be lower than the angle of 

repose (30.9°). 

6. For Badger sand the maximum obliquity friction angle (28.4°) was found equal in 

magnitude to the constant volume friction angle (28.4°). 

7. Notwithstanding the limited number of triaxial tests, an excellent agreement was found 

between the roundness (0.81) and constant volume friction angle (28.4°) of Badger 

sand, and a corresponding relation between R and <bCv proposed by Santamarina and 

Cho (2004). The latter relation is based on the assumption that the critical state friction 

angle is equal to the angle of repose. 

8. For Badger sand, em a x=0.69 and emin=0.49, which is a very narrow range. A very good 

agreement was found between the roundness (0.81) and these extreme void ratios, 

and the relations proposed by Youd (1973), Shimobe and Moroto (1995), and 

Santamarina and Cho (2004). 

9. Most sands exhibit a roundness of 0.2 < R < 0.7. In contrast, glass beads are nearly 

perfect spheres (R = 1.0). There is little information on well-rounded sands 

0.7 < R < 1.0 in the literature, and the experimental data suggest these well-rounded 

sands exhibit somewhat unusual values for the angle of friction which can be attributed 

to grain shape. Accordingly, the Badger sand data provide a valuable link between data 

for commonly found sands and glass beads; they also serve to build confidence in 

empirical relations based on a quantification of grain shape. 

10. The parameters used to fit Badger sand with NorSand fall between the expected 

values. 
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11. The volumetric coupling coefficient from Nova's flow rule, N, has an unusual value for 

Badger sand, equal to 0.63. As well % has a value of 3.6. As the product Nx% is 

different from 1, a modification of the flow rule is proposed for Badger sand, given by: 

M, = M(l + 23y//Mlc) for ¥ < 0 

12. Peak strength is related to maximum dilatancy, and Badger sand was found to exhibit 

unusual dilatancy, which is believed to explain the unusually low friction angles found in 

the triaxial tests. 

13. NorSand is able to capture reasonably well the behaviour of Badger sand, and 

therefore is believed to confirm the validity of the value of M deduced from the triaxial 

tests. 
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APPENDIX A: NORSAND MODEL IMPLEMENTATION 

In order to capture the behaviour of the Badger Sand and use it later for modelling purposes, a 

new constitutive model will be implemented within FLAC (Fast Lagrangian Analysis of Continua); 

NorSand. As explained in Chapter II, NorSand is able to realistically capture the dilatancy of 

sands through use of the state parameter. NorSand, unlike Original or Modified Cam Clay, is also 

able to simulate strain softening which is very important for dense sands. 

As discussed in Chapter II, the Critical State Soil Models, Modified Cam Clay (MCC), Original 

Cam Clay (OCC) and NorSand are very similar in concept. Modified Cam Clay is already a built-

in constitutive model in FLAC, written as a FISH function. Hence the approach used here is to 

take the MCC FISH function, adapt this function to OCC and verify the approach used. Then 

modify the function to NorSand. The only difference between MCC and OCC is the shape 

(equation) of the yield surface. Hence, the Modified Cam Clay yield surface is modified in order to 

obtain the Original Cam Clay model. Because of the different yield surface shape, different 

methodologies are used. Finally, as OCC and NorSand have the same yield surface but different 

hardening rules, the next step is direct. 

This chapter explains the process followed to create the NorSand constitutive model function in 

FLAC, starting from Modified Cam Clay, continuing with Original Cam Clay and ending with 

NorSand (Figure A.1). The FLAC results are then compared with the results obtained with an 

Excel Visual Basic for Applications (VBA) (Jefferies and Shuttle, 2005) to verify that the FLAC 

function is working properly. 

A.1. Fast Lagrangian Analysis of Continua (FLAC) 

A. 1.1. General description of FLAC 

FLAC is a two-dimensional computational program that analyses the stress-strain response of 

solids subjected to static and dynamic states of load. FLAC's explicit finite difference formulation 

has been widely applied to model geotechnical and mining problems, and it is one of the most 

widely used programs world-wide for geotechnical stress-strain analysis. The FLAC program is 

able to simulate large deformations of continuous media, groundwater flow and pore water 

pressure dissipation. Interface elements are also available in FLAC, allowing simulation of the 
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separation of materials or slipping between them. FLAC also includes structural elements, such 

as cables, beams and reinforcing strips, among others, that behave in conjunction with the 

continuous media. Five optional features are also available to analyze specific problem types; 

dynamic analysis, thermal analysis, two-phase flow analysis, creep material behaviour and the 

ability to code user defined models (UDM) in C++ and compile them as dynamic link libraries 

(dll's). Well executed numerical models allow us to improve our understanding of the behaviour of 

soil and structures under the effect of different types of loading (static or dynamic). 

FLAC (Version 5.0) has 11 built-in constitutive models for continuous elements. The constitutive 

models are: Null, Isotropic Elastic, Mohr-Coulomb, Modified Cam Clay, Transversely Isotropic 

Elastic, Drucker-Prager, Ubiquitous-joint, Strain Hardening/Softening, Bilinear Strain-

Hardening/Softening Ubiquitous-joint, Double-yield, Hoek-Brown. However, none of these models 

are able to realistically capture the behaviour of sands under general paths; Mohr-Coulomb 

predicts the dilatancy wrong and the strain hardening/softening model only allows cohesion, 

dilation and friction angle to change with strain level. 

A.1.2. FLAC nomenclature 

Figure A.2 is an example of a FLAC model showing all the commonly used terms. The soil body 

is formed by a grid (or mesh) of quadrilateral elements (or zones) that behave depending on the 

constitutive model, forces and boundary conditions assigned to them. 

A zone, or element, is the smallest quadrilateral domain where changes in stresses, fluid flow or 

heat transfer are calculated. Each zone is divided into four triangular subzones which are 

superimposed, as shown in Figure A.3. Each zone has four grid points (or nodes) associated with 

the four corners of the quadrilateral and each grid point is defined by a pair of x- and y-

coordinates. 

Each zone of the entire grid behaves depending on the constitutive model assigned to it. 

Constitutive model means a model which describes the deformation and strength behaviour of 

the simulated material. Some examples of constitutive models already included in FLAC are 

Elastic-Plastic, Mohr-Coulomb and Modified Cam Clay. Constitutive models and material 

properties can be assigned independently to every zone of the model. 

The periphery of the grid is called the model boundary. Boundary conditions to the model can be 

applied as fixed boundaries (displacement restraint), stress boundaries or excavations. 

Excavations have the Null constitutive model assigned to them where no properties are assigned. 
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Figure A.1: General flow chart 
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^^^T^^ ^̂ ^̂ ^̂  ^d^^^ 
fixed 
bottom 
bouadarv 

Figure A.2: Example of FLAC model (from FLAC Version 5.0 Manual) 

Figure A.3: FLAC zone divided in 4 triangles; triangular element with velocity vectors; nodal force 

vector (from FLAC Version 5.0 Manual) 
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Structural elements, such as cables, beams or interfaces are used to represent the interaction of 

structures. Interfaces are used to simulate separation or sliding between elements and beams 

and cables are used to represent, for example, reinforcement in a wall. 

A.1.3. Sign convention and units in FLAC 

In FLAC, positive normal stresses and strains indicate tension and extension respectively, and 

negative normal stresses and strains indicate compression. Conversely, the sign convention for 

pore pressure is: positive pore pressure indicates compression and negative pore pressure 

indicates tension. For gravitational force, positive gravity will make an element move downward 

and negative gravity makes an element move upward. 

Figure A.4 shows the sign convention for positive shear stress components in FLAC and their 

associated shear strains. Positive shear stresses and strains are clockwise 

The system of units for mechanical parameters used by FLAC is shown in Table A.1. 

Table A.1: System of units used by FLAC 

Length m m m cm ft in 

Density Kg/m J 10 Kg/m" 1 0 b K g / m J . 10 b g/cm J slugs/ftJ snails/in'3 

Force N KN MN Mdynes lbf lbf 

Stress Pa kPa MPa bar lbf/ff psi 

Gravity m/sec2 m/sec^ m/sec^ cm/sec^ ft/sec2 in/sec2 

Stiffness Pa/m kPa/m MPa/m bar/cm lbf/ftJ lb/in" 

. , . . /ft sec 2 , . . . . /Dsei 

where, islug = 1 and 1sna;/ = 1 
ft in 
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y 

'yx 

•xy 'xy 

'yx 

-> x 

Figure A.4: Positive shear stress (or strain) convention and associated distortion (from FLAC 

Version 5.0 Manual) 
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4.1.4. FISH in FLAC 

FISH is a programming language created by Itasca which allows FLAC users to code and define 

new functions and variables (the User Defined Model (UDM) option is not required to use FISH). 

An example of a FISH function which initializes the mean effective stress for the 'camclay' 

constitutive model is presented below. 

def camclay_ini _p 

loop i (1,izones) 

loop j (1 Jzones) 

if z_model(i,j)='camclay' then 

mean_p=-(sxx(ij)+syy(i,j)+szz(i,j))/3.-pp(i,j) 

z_prop(i,j,'cam_cp')=mean_p 

end_if 

endjoop 

endjoop 

end 

FISH functions start with the command DEFINE and end with the command END. Within the 

FISH function other functions can be called and created. In the previous example, the FISH 

function loops through all the elements and initializes the mean effective stress to each zone. 

FISH functions can be embedded in a normal FLAC data file or entered directly from the 

keyboard. 

The FISH language can also be used to implement new constitutive models within FLAC. A 

constitutive model is defined by the statement CONSTITUTIVEMODEL <n> where n is the 

number associated to the constitutive model. It will be executed as a built-in constitutive model, 

and will be called four times for each FLAC zone (1 time for each triangle shown in Figure A.3). 

Inside the constitutive model, new variables can be created and other FISH functions can be 

called. 

However, one of the disadvantages of the constitutive models implemented with FISH is that it 

takes a long time to run. For larger problems, where simulation speed is important, the UDM in 

C++, which runs at the same speed as FLAC, is a better option. 
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A.2. FLAC finite difference formulation5 

The basic FLAC formulation consists of three conditions; Newton's law of motion, a stress-strain 

equation and a general finite difference formula.Taking a simple mechanical example, where a 

force (F) is applied to a mass (m) , causing a displacement (u), velocity f ^ l and acceleration 

ydt2 , 
, as shown in Figure A.5, from Newton's law of motion, 

dt 

For a continuous body, Equation A.1 can be written as: 

P — - = t

j - + pg, A.2 
dt dXj 

where, p is the mass density, 

x, is the coordinate vector (x,y) 

er,y are the components of the stress tensor, and 

gi is gravitation. 

In addition to the law of motion, a continuous solid must obey a stress-strain relation. For an 

elastic material this is: 

2 
<J,J ^o-ij +\Sij\K--G\ekk + 2Geij\At A.3 

where, 5^ is the Kronecker delta, 

e,y is the strain rate component (Equation A.5), 

K and G are the bulk and shear modulus, 

5 This is a summary of the FLAC User's Manual, for the full explanation, please refer to this 
manual. 
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At is the time step, and 

:= means "replaced by". 

Equation A.3 can be generally written as: 

' ay := M 
v j 

A.4 

where, M () is the functional form of the constitutive law, 

K is a history parameter depending on the constitutive law, and 

en = -
diij duj 

+ 
dXj dx. 

A.5 

where, ui are the velocity component. 

In the finite difference method, each derivative in the equations of motion and strain are replaced 

by an algebraic expression relating variables at specific locations of the grid. 

From the Gauss divergence theorem, the finite difference equation for all elements is given by 

(Figure A.3): 

\n,fdS= \—dA A .6 

where: £ is the integral around the surface, S; 

n, is a unit normal to the surface; 

f is a scalar, vector or tensor; 

dS is an incremental arc length; 

A is the surface area of the element; 

I is the integral over the surface area, A; and 
•w 

dx, is a position vector. 
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Taking the average value of the gradient of f as: 

df \ 1 r df 

dX; / A JA dX: 
dA A.7 

Substituting in Equation A.6 and approximating the integral through a sum over three sides of a 

triangular zone, the gradient can be written as: 

df 
A.8 

where AS is the length of the side of the triangle. 

Substituting the average velocity vector in each side of Equation A.8, the strain rates can be 

written as nodal velocities for the triangular sub-zone as (Figure A.3): 

~ d x ~ ^ 2 A ^ 

.(a) ..(*>) ̂  
Ui + Ui |n yAS A . 9 

dUj dUi 
+ 

dx j dXj 
A.10 

As for volumetric strains, they are averaged over each pair of triangle and the deviatoric stresses 

remain unchanged. Area weighting is used to obtain the new stress tensor from the strain-rate 

tensor. 

A ( e ) + A W 
A.11 

where: o-£a) is the isotropic stress in triangle (a); and 

A ( a > is the area of triangle (a). 
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Once all the stresses are calculated, the nodal forces are obtained from the traction acting on the 

sides of each triangle; each node receives two forces (one from each side of the triangle as 

shown in Figure A.3). Hence, 

F, = lâ <1>S(1)+n<2)S(2>) A.12 

At each node of the grid, the forces (from applied loads and gravity) of all the quadrilaterals are 

summed in order to obtain the net force vector ^ F, . If the node is not in equilibrium, it will be 

accelerated according Newton's second law of motion: 

, (f+Af/2) . (r-Af/2) 

= U i +yF(»M A.I 3 
^ 1 m 

Finally, Equation A.13 is integrated to determine the new coordinate of the grid point, given by: 

. (f+Af/2) 

X , ( ( + A f ) = x ( " + U , - At ^ 14 

In order to have a stable solution, the time-step chosen to solve the problem must be smaller than 

the critical time-step given by: 

k i Ax A.15 
At < — 

C 

where: Ax is the element size, and 

C is the maximum speed at which information can propagate, and is given by: 

C - ^ L l A , 6 

For a triangular zone of area A, considering the shortest propagation distance as/4 /x m a x , and 

taking At = 1, C2p = K + 4G/3 and the zone mass a s m z = pA, the mass of a zone is given by: 

(K + 4G/3)Ax 2

a x A 1 7 

A 
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Finally, as the grid point mass is one third of the zone mass, and the node mass is the sum of the 

masses of the grid points connected to the node, the mass of a node is given by: 

Figure A.5: Force acting on a mass 

A.3. Summary of standard plasticity implementation 

All elasto-plasticity models have four components, elasticity, a yield function which defines the 

stress combination for which plastic flow takes place, a hardening/softening function which 

controls the size of the yield surface and a flow rule which specifies the direction of the plastic 

strain increment vector. 

Plasticity models considered in this thesis are formulated in terms of effective stresses. For the 

triaxial conditions used in the rest of this analysis all stresses and strains are principal values and 

128 



the shear component is not considered, the vertical direction is the direction of maximum principal 

stresses and strains. The two horizontal directions are both the direction of minimum stresses 

and strains. For triaxial conditions, the stress components used are the mean effective stress 

(/>') and the deviator stress [q), defined as 6: 

A.19 

The volumetric and shear strains are: 

2s3 

A.20 

The volumetric and shear strain increments, sv a n d ^ must be work-conjugate (Equation 2.10), 

and are defined as: 

s, + 2s3 

A.21 

The specific volume (equal to 1 + void ratio) is defined as: 

A.22 

where V is the total volume of the soil and V s is the volume of solid particles. The incremental 

relation between volumetric strain and specific volume is: 

A.23 

1 Using the FLAC sign convention explained in A. 1,3. 
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From basic plasticity theory, the total strain increment can be decomposed into elastic and plastic 

components and that only the elastic part contributes to the stress increment. Hence, 

•* V V V 

. • • A.24 
£ = £ e + P 

q q q 

Changes in stress are associated with the elastic strain only. Therefore from Hooke's law, the 

increment of mean effective stress and deviator stress is given by: 

A.25 
q = 3Gs q 

where K is the bulk modulus and G is the shear modulus, which can be written in terms of the 

Young's modulus, E, and the Poisson's ratio, v, as: 

K = E 

3(1 -2v) 

E A.26 

2(1 + ") 

Rearranging Equation A.24, and substituting in Equation A.25: 

p =KSV-K£P 

. . • 
q = 3Geq-3Gsp 

The plastic flow is written as: 

dQ 

A.27 

A.28 
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where Q is the potential surface of the constitutive model and As is the plastic volumetric 

multiplier. 

For associated flow, the yield surface, F, and potential surface, Q, are identical and Equation 

A.28 may be written as: 

dp' 

~p -
A.29 

A.4. Modified and Original Cam Clay in F L A C 

Modified Cam Clay is a built-in constitutive model in FLAC. It is an incremental 

hardening/softening elastoplastic model including a particular form of non/linear elasticity and the 

behaviour is governed by volumetric plastic strain. Given that Modified Cam Clay already exists, 

the NorSand function development in FLAC will start from MCC. An intermediate step will be 

coding Original Cam Clay. Given that only the yield surface changes between both Cam Clays, 

O C C is a test that the proposed methodology works with FLAC. 

A.4.1. Modified Cam Clay formulation 

The Modified Cam Clay formulation is based on a combined shear and volumetric yield function 

(a closed yield surface) and an associated flow rule. In the FLAC version of Modified Cam Clay 

an elastic guess for the stress increment is first computed from the total strain increment. If the 

stresses violate the yield criteria, plastic deformation takes place and only the elastic part of the 

strain increment contributes to the stress increment. The stress increment is evaluated and 

corrected using the plastic flow rule to ensure that any stresses initially outside the yield function 

are end on the yield surface. 

The shape of the yield surface of Modified Cam Clay is shown in Figure 2.16 and is defined by: 

131 



F = q2+M2p'(p'-pcn') A.30 

where M is the ratio q/p' at the critical state line and pcn' is the consolidation pressure of the 

current yield surface. For Modified Cam Clay, the yield condition F = 0, is represented by an 

ellipse passing through the origin, with horizontal axis pcn', and vertical axis M Pen' 

Differentiating F with respect to p' and q: 

^ = M 2 (2p ' -p O T ' ) = C a 

dp 

8F_ 

dq 
= 2q = Cb 

A.31 

Replacing Equation A.31 in Equation A.29, the flow rule for Modified Cam Clay is given by: 

sp =AsM2(2p'-Pcn') 

ep=As2q 
A.32 

Replacing Equation A.32 into Equation A.27, the incremental mean pressure and deviator stress 

are: 

p' = K 
( • 
sv — AsCa 

q = 3G\ 
A.33 

For each step FLAC substitutes the new stresses into the yield surface by adding to the old 

stresses the stress increment, as shown in Equation A.34. 

p'w = p'° + p' 

qN=q°+q 
A.34 
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where the subscript N refers to the new converged stresses and O to the old ones. Substituting 

Equation A.33 into Equation A.34: 

p'N = p " - 4 K C a 

q" =.q'-Zs3GCb A.35 

where p'1 and q' are the elastic guesses defined by: 

A.36 
q' =q°+3G£a 

Substituting p'N and qN in F(qN,p'N)= (qNf + M2p'N {p'N-pcn'N)= 0 , the equation to find As 

is given by: 

aX\ +bAs+c = 0 A - 3 7 

where: 

a = (/WKCa)2 +(3GC 6)2 

ft = - (KC a C a +3GC b Ci) A.38 

c = ^ ' . P " ' ) 

Equation A.37 is a polynomial of degree 2which is easy to solve. From the two roots obtained the 

smaller must be retained. 

At each step, the new specific volume is updated by: 

v = v 
V J 

A.39 

and preconsolidation pressure is updated by: 
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Pcn'N = P, 
A — K 

V N 
A.40 

J 

where X is the slope of the normal consolidation line in e-lnp' space, and K is the slope of the 

elastic swelling line in the e-lnp' space. 

The tangent bulk modulus is then updated using: 

One of the idealizations of Cam Clay is that it is rigid in elastic shear. However Finite Element and 

Finite Difference programs do not allow such a condition. Hence, the shear modulus is calculated 

from K and Poisson's ratio, as: 

and the new elastic trials are calculated. Figure A.6 shows the flow chart for the model. Note that 

in Figure A.6 the yield surface is hardened after the new stresses are calculated. Hence, the yield 

surface is one step in arrears. 

A.4.2. Original Cam Clay formulation 

The shape of the yield surface for Original Cam Clay is shown in Figure 2.15 and is given by: 

A.41 
K 

G = 
3(1 - 2v)K 

2(1 + v) 
A.42 

A.43 

where pc' is the critical mean effective pressure given by: 

Pc' = exp(1.0) 
A.44 
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Elastic guess <7/(-

Compute elastic guesses for p'1 and q by adding the total 

strain increment to the old stresses (Eq. A.36) 

flp'.p'')>o 

Is yield exceeded? 

yes 

Yielding in shear 
Solve F = 0 with Eq. A.37 to find As 

(choose smaller root) 

Calculate sp and sP (Eq. A.29) and calculate p'N and q N by 

subtracting the plastic correction (Eq. A.35) from the elastic guess. 

Update zone parameters, and obtain zone volumetric strain 

and zone specific volume (Eq. A.39). 

Obtain new preconsolidation pressure (Eq. A.40) and update the 

tangential bulk modulus (Eq. A.41) 

Calculate the new shear modulus; if v =t 0 update 

usinn Fn A 4? otherwise G = nnnst 

Calculate p' and q using the new elastic stresses 

Figure A .6 : Flow chart model Modif ied C a m Clay fish function 
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The yield surface for Original Cam Clay is non-linear, so a solution to Equation A.37 is not 

possible. Hence a different approach was used to derive parameter Xs for OCC. In this case, 

instead of solving F = 0, the more usual plasticity approach of using the consistency condition is 

applied by solving F = 0 . 

Differentiating Equation A.43: 

8F \ 8F * 8F • , 

SF = — P'+— <7+ — Pc A.45 dp' dq dp, c 

F = J L _ l P . + £ _ £ £ _ A.46 
Mp' Mp' p' pc' 

Differentiating Equation A.46 with respect to p': 

dF 1 

dp' p' Mp2 

Multiplying Equation A.47 by Mp': 

dp' 

As well, from Equation A.46: 

A.47 

dF- = M-rj = Dp A.48 

^ = 1 A.49 
dq 

It is possible to swap between Equation A.47 and A.48 because F = 0 (if F ^ 0 this will not 

work). 

Replacing in the plastic flow (Equation A.29), the volumetric and shear plastic strains for O C C 

are: 
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P p A.50 
£q ~ As~ - As 

dq 

Substituting A.50 in Equation A.27, the mean stress increment and deviator stress increment are: 

p' = K sv-AsD 

q = 3G\ 
f . ^ 

V J 

A.51 

For Original Cam Clay, the consistency condition is applied by setting F = 0 instead of using 

F = 0, and pc' is allowed to harden during each load step and so convergence is obtained with 

the current yield surface. 

The hardening rule is given by: 

Pc' = pc'l±^£} A.52 
A - K 

Hence, using Equation A.50, 

^ = H£P =H(M-TJ)AS A.53 

Pc' 

where H is the hardening parameter given by H = ^1 + E^. 
A - K 

P ' ' 
Substituting —— from A.53, and p'and q , from A.51, in Equation A.46 and applying the 

Pc' 

consistency condition the solution for A is: 
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The flow chart for the Original Cam Clay fish function is presented in Figure A.7. In Figure A.7 the 

terms in bold font have changed from Figure A.6 (MCC). 

Figure A.8 shows the comparison between the VBA Code and the fish function for Original Cam 

Clay, for the input parameters presented. It is possible to observe that the results show an 

excellent agreement. Hence, the formulation proposed is able to model Original Cam Clay 

correctly. 

A.5. NorSand Formulation in F L A C 

NorSand is similar to Original Cam Clay in that it has the same shape of yield surface. The 

original version of the NorSand constitutive model (Jefferies, 1993) is described in Chapter II. The 

changes to NorSand in this work are described below. 

The yield surface for Norsand is shown in Figure 2.22 and is given by: 

F = ln 
Pi' 

+ 1 
M,p' 

A.55 

The size of the yield surface is controlled by p;, which varies with hardening and Mj is related to 

the state parameter as: 

M, = Mte 

f 
1- ¥ 

V J 
A.56 

where M t c is the critical stress ratio under triaxial compression condition. 

In the case of NorSand used in this study, Mj is not constant so will become a variable, hence 

when differentiating Equation A.55 the term associated with M, must be added as: 
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Compute elastic guesses for p'0|d and qQid 

f(<7„; ./ ./ ' 'rtjl - 0 

(Eq A 43) 

Is yield exceeded'? 

yes 

Yielding in shear 

Solve F 0 with Eq A 54 to find 

Calculate s p and ep (Eq. A.50) and calculate p'N and q N by 

subtracting to the elastic guess the plastic correction (Eq. A.35) 

Update zone parameters, and obtain zone volumetric 

strain and zone specific volume (Eq. A.39) 

Obtain new preconsolidation pressure (Eq. A.40) 

and update the tangential bulk modulus (Eq. A.41) 

Calculate the new shear modulus; if v * 0 update 

using Eq. A.42, otherwise G = const. 

Calculate p' and q using the new elastic stresses 

Figure A.7: Original Cam Clay fish function, flow chart 
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Figure A.8: Comparison of deviator stress and volumetric strain for Original Cam Clay, between 

VBA code and FLAC results 
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• DF • dF dF • dF • , 
F = Mi+—-p +—q+ -p, A.57 

8M, dp' dq dp; 1 

However, M, is a second order term that can be eventually neglected to come back to: 

• 8F \ dF • dF ' , 
F = —p + —q+ — Pi A.58 

dp dq dp. 

Hence F can be written as: 

•F=^_VPl+PL_Pl A.59 
Mp' Mp' p' Pi' 

Differentiating Equation A.59 with respect to p': 

dF 1 q 

dp' p' MjP

2 

Multiplying Equation A.60 by M,p': 

dp' 

Differentiating Equation A.59 with respect to q 

A.60 

- = M,-ij A.61 

^ = 1 A.62 
dq 

Replacing in Equation A.29, the plastic volumetric strain increment and the plastic shear 

volumetric increment are: 

£P =As(Mi-,j) 
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A.63 

Re-writing the yield surface equation (Eq. A.55) as: 

exp 
v M , , 

P_ 
Pi' 

A.64 

the hardening rule is given by: 

H exp 
v Mi j 

(P/'/P')ma> 
iPi'lP') 

A.65 

where: 

XV i 
M, 

A.66 

and: 

y/j = y/ — A A.67 

H is a constant for each sand and y/ is the state parameter. 

Replacing in Equation A.59, As is calculated as: 

ZGsq+Ks„Dh 

36 + Hexp 
{ Pi'lp' 

^•Mj+KiMj-rjf 
A.68 

A flow chart for NorSand is presented in Figure A.9. 

Finally, the results obtained for Norsand with FLAC and the VBA Code are compared. The input 

parameters used are presented in the following table and are taken from the parameters found for 
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Ticino sand (Shuttle and Jefferies, 1998). Two extreme states are presented, an extremely loose 

state, where the state parameter is 0.15, and a dense state where the state parameter is -0.2. 

The results are presented in Figure A. 10 and Figure A.11, respectively, showing an excellent 

agreement. The NorSand fish function is presented in Appendix B. 

Table A.2: Parameter summary for NorSand model 

Parameter Dense Loose Remark 

r 0.962 0.962 At 1 kPa 

0.0248 0.0248 Defined in base e 

M 1.23 1.23 In compression 

H 115-420M/ 115-420v|/ 

X 3.5 3.5 
G 50 50 MPa 

V 0.2 0.2 

V. -0.2 0.15 
100 100 kPa 

Ko 1 1 
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Compute elastic guesses for p'0id and q0id 

Calculate pi'/p' (Eq. A . 6 4 ) , \Vi (Eq. A . 6 7 ) 

and (pi7p')max (Eq. A . 6 6 ) 

rfo»d P'M ) - 0 

(Eq A 5b) 

Is yield exceeded? 

yes 

< , > ' Yielding in shear", ' „' • 

Solve F 0 with Eq A 6 8 to find 

Calculate sp and EP (Eq. A.63) and calculate p'N and q N by 

subtracting to the elastic guess the plastic correction (Eq. A.35) 

Update zone parameters, and obtain zone volumetric 

strain and zone specific volume (Eq. A.39). 

Update the tangencial bulk modulus (Eq. A.41) 

Calculate the new shear modulus; if v * 0 update 

using Eq. A.42, otherwise G = const 

Calculate p' and q using the new elastic stresses 

Figure A.9: NorSand fish function flow chart 
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Figure A.10: Comparison of deviator stress and volumetric strain for NorSand, between VBA 

Code and FLAC results for a loose state 
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A P P E N D I X B: N O R S A N D FISH FUNCTION 

FISH version of NorSand model 
September, 2005 
Pascale Rouse Master's Thesis 

set echo off 
def nor_sand 

constitutive_model 110 
f_prop m_g m_k m_m m_kappa mjambda mjDi m_p1 m_v0 m_poiss 
f_prop m_e m_ep m_v m j m_q m_ind m_kc 
f_prop m_psi m_hard m_chi m_gamma 
float $sum_p $sum_q $sum_e $sum_ep $p $q $tk $tg $mm $pc $p1 
float $e1 $e2 $sh2 $s11i $s22i $s33i $s12i $ds11 $ds22 $ds33 $ds12 
float $fs $sa $sb $sc $ba $bb $bc $boa $sqr 
float $alam $alam1 $qn $pn $add $v $vk $maxg $ming 
float $hard $pold $qold $dP $dQ $eta $fs2 $pi2 $eta2 $pi3 $pidot 
float $pt1 $pt2 $pt3 $pt4 $pt5 $pcrit 
float $Mp $pi $pip $psi $psii $chi $ec $gamma $mvp 
int $pind 
Case of mode 

Initialisation section 

Case 1 
; — data check — 

if m_poiss < 0.0 then 
nerr = 126 
error = 1 

endjf 
if m_p1 = 0.0 then 

m_p1 = 1.0 
endjf 
if m_p1 < 0.0 then 

nerr = 126 
error = 1 

end_if 
if m_pi < 0.0 then 

nerr =126 
error = 1 

endjf 
if m_kappa = mjambda then 
. nerr =126 

error = 1 
endjf 
if m_kappa = 0.0 then 

nerr= 126 
error = 1 

endjf 
; — initialize current bulk modulus — 

if m kc = 0.0 then 
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m_kc = m_k 
end_if 

; — initialize current shear modulus — 
if m_g = 0.0 then 

if m_poiss # 0.0 then 
m_g = 3.0*m_kc*(1.0-2.0*m_poiss)/(2.0*(1.0+m_poiss)) 

endjf 
endjf 

Case 2 

Running section 

zvisc = 1.0 
if m jnd # 0.0 then 

mjnd = 2.0 
end_if 
$pind = 0 

; — define constants locally — 
$tk = m_kc 
$tg = m_g 
$mm = m_m 
$p1 = m_p1 
$e1 = $tk + 4.0 * $tg / 3.0 
$e2 = $tk - 2.0 * $tg / 3.0 
$sh2= 2.0 * $tg 
$hard=m_hard 
$chi=m_chi 

;— calculate old stress invariants, etc — 
$pold = -(zs11 + zs22 + zs33) / 3.0 

; — OLD deviatoric stresses — 
$ds11 = zs11 + $pold 
$ds22 = zs22 + $pold 
$ds33 = zs33 + $pold 
$ds12 = zs12 

; — Qold sqrt(3.0 * J2) — 
$qold = sqrt(1.5*($ds11*$ds11+$ds22*$ds22+$ds33*$ds33)+3.0*$ds12*$ds12) 

;— get new trial stresses from old, assuming elastic increments — 
$s11 i = zs11 + (zde22 + zde33) * $e2 + zdel 1 * $e1 
$s22i = zs22 + (zdel 1 + zde33) * $e2 + zde22 * $e1 
$s33i = zs33 + (zdel 1 + zde22) * $e2 + zde33 * $e1 
$s12i = zs12 + zde12*$sh2 

;— zone volumetric strain accumulation 
$sum_e = $sum_e + zdel 1 + zde22 + zde33 

; — mean pressure — 
$p = - ($s11 i + $s22i + $s33i) / 3.0 

; — deviatoric stresses — 
$ds11 =$s11i + $p 
$ds22 = $s22i + $p 
$ds33 = $s33i + $p 
$ds12 = $s12i 

; — sqrt(3.0 * J2) — 
$q = Sqrt(1.5*($ds11*$ds11+$ds22*$ds22+$ds33*$ds33)+3.0*$ds12*$ds12) 
$eta=$qold/$pold 

;— Critical Void Ratio and State Parameter from old stresses — 
$ec=m_gamma-m_lambda*ln($pold) 
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$psi=($v-1.0-$ec) 
Definition of Mp — 
if $psi>0.0 then 

$Mp=$mm*(1.0-$psi/$mm) 
else 

$Mp=$mm*(1.0+$psi/$mm) 
end_if 
Definition of NorSand parameters — 
$pi=exp(($eta/$Mp)-1.0) 
$psii=$psi-m_lambda*(1.0-$eta/$Mp) 
$pip=exp(-m_chi*$psii/$Mp) 

- check for yielding — 
$fs =ln(1.0/$pi)+$eta/$Mp-1.0 
if $fs > 0.0 then 

- yielding in shear — 
$dP = $p - $pold 

$dQ = $q - $qold 
$pt1 = $dQ 
$pt2 = $dP * ($Mp-$eta) 
$pt3 = 3.0 * $tg 
$pt4 = $tk * ($Mp-$eta)*($Mp-$eta) 
$pt5 = m_hard * $Mp*$pold*($pip/$pi-1.0)*exp(1.0-$eta/$Mp) 
$alam = ($pt1 + $pt2) / ($pt3 + $pt4 + $pt5) 

$sa = 3.0 * $tg 
$sc = $Mp -$eta 
$sb = $tk * $sc 
$pind = 1 
if $alam < 0.0 then 

$alam = 0.0 
endjf 
$qn = $q - $sa * $alam 
$pn = $p - $sb * $alam 

- new stresses — 
if $q = 0.0 then 

$add = $pn - $p 
zs11 = $s11i - $add 
zs22 = $s22i - $add 
zs33 = $s33i - $add 
zs12 = $s12i 

else 
zs11 = ($ds11 / $q) * $qn - $pn 
zs22 = ($ds22 / $q) * $qn - $pn 
zs33 = ($ds33 / $q) * $qn - $pn 

• zs12 = ($ds12/$q)*$qn 
endjf 
$sum_p = $sum_p + $pn 
$sum_q = $sum_q + $qn 
$sum_ep = $sum_ep + $alam * $sc 
zvisc = 0.0 
mj'nd = 1.0 

else 
- no failure at all — 

zs11 = $s11i 
zs22 = $s22i 
zs33 = $s33i 
zs12 = $s12i 
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$sum_p = $sum_p + $p 
$sum_q = $sum_q + $q 

endjf 
— update zone parameters — 

if zsub > 0.0 then 
m_p = $sum_p / zsub 
m_q = $sum_q / zsub 
m_e = m_e + $sum_e I zsub 
m_ep = m jap + $sum_ep / zsub 
$v = m_vO * (1.0+m_e) 

— data check — 
if $v < 1. then 

nerr= 167 
error = 1 

endjf 
if m_p > 0.0 then 

error = 0 
else 

nerr = 168 
error = 1 

endjf 
if m_kc > m_k then 

nerr=169 
error = 1 

endjf 
— update shear modulus — 

if mjDoiss # 0.0 then 
constant Poisson's ratio — 
m_g = 3.0*m_kc*(1.0-2.0*m_poiss)/(2.0*(1.0+mjpoiss)) 

else 
constant G, check upper and lower bounds (nu=0 or 0.5) 
$maxg = 1.5*m_kc 
$ming = 0.0 
if m_g > $maxg then 

m_g = $maxg 
else 

if m_g < $ming then 
m_g = $ming 

endjf 
endjf 

endjf 
; — reset for next zone 

$sumj3 = 0.0 
$sum_q =0.0 
$sum_ep =0.0 
$sum_e = 0.0 

endjf 
Case 3 

Return maximum modulus 

cmjnax = m_k + 4.0 * mjg / 3.0 
smjnax = m_g 

Case 4 
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; Add thermal stresses 

ztsa = ztea * m_kc 
ztsb = zteb * m_kc 
ztsc = ztec * m_kc 
ztsd = zted * m_kc 

End_case 
end 
opt nor_sand 

FISH function to initialize initial specific volume 
and tangent bulk modulus 

def set_vO 
loop i (1,izones) 

loop j (Ijzones) 
if model(ij) = 110 then 

pO = -(sxx(i,j)+syy(i,j)+szz(i,j))/3.-pp(i,j) 
if pO > 0.0 then 

ec = m_gamma(i,j) - m_lambda(i,j)*ln(pO) 
m_v0(i,j) = m_psi(i,j) + ec + 1.0 

else 
nerr =170 
error =.1 

endjf 
endjf 

endjoop 
endjoop 

end 
opt nor_sand 
set echo on 

The fish function for NorSand will be updated and available for download from the UBC 
Geotechnical web site [ http://www.civil.ubc.ca/research/qeotech/analytical.htm ]. 
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