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Abstract 

The aspiration of this thesis is to provide a tool for engineers in making rational decisions 

based on the balance between cost and safety. This objective is accomplished by merging 

the optimization and reliability analyses with sophisticated finite element models that 

predict structural response. In particular, two state-of-the-art reliability-based design 

optimization approaches are implemented in OpenSees, a modern and comprehensive 

finite element software that has recently been extended with reliability and response 

sensitivity analysis capabilities. These new implementations enable reliability-based 

design optimization for comprehensive real-world structures that exhibit nonlinear 

behaviour. 

This thesis considers the problem of minimizing the initial cost plus the expected cost 

of failure subject to reliability and structural constraints. This involves reliability terms in 

both objective and constraint functions. In the two implemented approaches, the 

reliability analysis and the optimization evaluation are decoupled, although they are not 

bi-level approaches, thus allowing flexibility in the choice of the optimization algorithm 

and the reliability method. Both solution approaches employ the same reformulation of 

the optimization problem into a deterministic optimization problem. The decoupled 

sequential approach using the method of outer approximation (DSA-MOOA) applies a 

semi-infinite optimization algorithm to solve this deterministic optimization problem. An 

important feature of the DSA-MOOA approach is that a convergence proof exists in the 

first-order approximation. The simplified decoupled sequential approach (DSA-S) 

utilizes an inequality constrained optimization algorithm to solve the deterministic 

optimization problem. The DSA-S approach is demonstrated to result in a consistent 

design, which lacks the convergence proof but requires less computational time than the 

DSA-MOOA approach. 

The gradients of the finite element response with respect to model parameters are 

needed in reliability-based design optimization. These gradients are obtained using the 
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direct differentiation method, which entails the derivation and implementation of 

analytical derivatives of the finite element response. The potential negative effect of 

response gradient discontinuities due to sudden yielding events is stressed in the thesis. 

The problem is remedied through the use of the smooth material model and a section 

discretization scheme. Object-oriented programming is utilized when extending 

optimization and sensitivity capabilities to OpenSees. The superior extensibility and 

maintainability features of this approach are emphasized. 

A numerical example involving a nonlinear finite element analysis of a three-bay, six-

storey building is presented in the thesis to demonstrate new implementations in 

OpenSees. Three cases are studied: a linear pushover analysis using elasticBeam 

elements, a nonlinear pushover analysis using beamWithHinges elements, and a nonlinear 

pushover analysis using dispBeamColumn elements with fibre sections. This thesis also 

touches on practical experiences by comparing two implemented approaches, two 

gradient computation methods, and linear and nonlinear analyses. The experience of 

speeding up the convergence procedure by removing inactive constraints and scaling the 

involved functions is also discussed. 
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Chapter 1 Introduction 

The primary objective of structural engineering is a structural design that represents an 

optimal balance between cost and safety. Traditionally, this problem has been addressed 

through experience, trial and error, and ad-hoc comparisons of different designs. In these 

approaches, a comprehensive exploration of design alternatives is not performed, and 

uncertainties are not accounted for in a refined and consistent manner. In recent decades, 

the optimization theory has been developed to find the optimal design in the 

mathematical framework of minimizing an objective function subject to constraints. The 

intention of this thesis is to implement, demonstrate, and improve state-of-the-art 

algorithms for finding safe and optimal designs, as well as apply these implementations 

to real-world structures exhibiting nonlinear behaviour. 

A number of reliability-based design optimization (RBDO) approaches has been 

developed, such as response surface methods as well as gradient-free and gradient-based 

algorithms. These may be utilized to minimize the total volume or the total expected cost 

of the structure subject to structural reliability constraints, to maximize the structural 

safety subject to a given structure cost, or simply to achieve a target structural reliability. 

The approaches adopted in this thesis are to employ sophisticated structural models, as 

well as advanced reliability methods, to account for uncertainty. 

In simulations of structural behaviour, unavoidable uncertainties are present in the 

material, geometry, and load parameters, as well as in the model itself and the analysis 

procedures. These uncertainties can be significant in determining the performance of a 

structure and must be accounted for to ensure safe and reliable structures. Reliability 

methods have been devised to estimate the probability of response events for random 

structural properties and loads (Ditlevsen & Madsen, 1996). Reliability methods such as 

first-order reliability methods and importance sampling are employed in this thesis to 

evaluate structural reliability in RBDO analyses. 
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The finite element method is currently the leading-edge approach for numerical 

simulations of structural behaviour. It is of considerable interest to incorporate 

sophisticated finite element models into the RBDO analysis. Furthermore, this thesis 

addresses the need for implementation of state-of-the-art optimization techniques in a 

finite element code that is in widespread use. Flexible software architecture is required to 

accommodate the extensive interaction between optimization, reliability, and finite 

element modules of the software. OpenSees - open system for earthquake engineering 

simulations - (McKenna et al., 2004), is ideal for this purpose. This is an object-oriented, 

open-source software that is freely available from http://opensees.berkeley.edu. It serves 

as the computational platform for the prediction of structural and geotechnical responses 

for the Pacific Earthquake Engineering Research Center (PEER). Recently, OpenSees 

was extended with reliability and response sensitivity analysis capabilities (Haukaas & 

Der Kiureghian, 2004). This allows reliability analyses to be conducted in conjunction 

with static and dynamic inelastic finite element analyses, with random material, 

geometry, and load parameters. 

A novelty of this thesis is the use of the object-oriented programming approach to 

develop a library of software components (tools) for optimization analysis. This approach 

provides a software framework that is easily extended and maintained. Indeed, the 

decoupling optimization approaches considered in this thesis take advantage of the 

object-oriented approach, in which solution algorithms for reliability and optimization 

problems are readily substituted by future developed solution algorithms. 

1.1 Reliability-Based Optimization Problems 

A specific structural design is characterized by particular values of design variables. By 

definition, the values of the design variables are assumed to be at the discretion of the 

designer. They typically represent geometrical dimensions and material strengths, and are 

collected in the vector x. The random variables of the structural problem, such as 

material, geometry, and load parameters, are collected in a separate vector v. It is noted 

2 

http://opensees.berkeley.edu


that d e s i g n v a r i a b l e s m a y r e p r e s e n t d i s t r i b u t i o n p a r a m e t e r s o f t h e r a n d o m v a r i a b l e s . F o r 

i n s t a n c e , t h e d e s i g n e r m a y w i s h to o p t i m i z e t h e d i m e n s i o n s o f a g i r d e r c r o s s - s e c t i o n . 

H o w e v e r , t h e d i m e n s i o n s a r e u n c e r t a i n d u e t o i m p e r f e c t w o r k m a n s h i p , e t c . H e n c e , o n l y 

t h e m e a n o f t h e s t r u c t u r a l d i m e n s i o n s i s at t h e d i s c r e t i o n o f t h e d e s i g n e r . S i m i l a r l y , i n 

s o m e c a s e s t h e d e s i g n e r m a y h a v e c o n t r o l o v e r t h e d i s p e r s i o n o f t h e p r o b a b i l i t y 

d i s t r i b u t i o n o f a r a n d o m v a r i a b l e t h r o u g h t o l e r a n c e s p e c i f i c a t i o n s to t h e m a n u f a c t u r e r o f 

t h e c o m p o n e n t . 

R B D O c a n b e c l a s s i f i e d i n t o t h r e e b r o a d p r o b l e m c a t e g o r i e s : (1) m i n i m i z a t i o n o f t h e 

s t r u c t u r a l c o s t o r v o l u m e s u b j e c t to c o n s t r a i n t s o n s t r u c t u r a l p r o p e r t i e s a n d / o r r e l i a b i l i t y ; 

(2) m a x i m i z a t i o n o f s t r u c t u r a l r e l i a b i l i t y s u b j e c t to c o n s t r a i n t s o n c o s t a n d / o r s t r u c t u r a l 

p r o p e r t i e s ; a n d (3) m i n i m i z a t i o n o f t h e d i s c r e p a n c y b e t w e e n s t r u c t u r a l r e l i a b i l i t y a n d 

s p e c i f i e d t a r g e t r e l i a b i l i t y s u b j e c t to s t r u c t u r a l c o n s t r a i n t s a n d p o s s i b l e c o s t c o n s t r a i n t s . 

I n t h e first c a t e g o r y o f p r o b l e m s , t h e c o s t m a y i n c l u d e t h e e x p e c t e d c o s t o f f a i l u r e i n 

a d d i t i o n t o t h e i n i t i a l c o s t . T h e t o t a l c o s t i s w r i t t e n a s c, =c0+ cfp^, w h e r e c 0 i s t h e 

i n i t i a l c o s t o f t h e d e s i g n , c f i s t h e p r e s e n t c o s t o f f u t u r e f a i l u r e , 1 a n d pj- i s t h e 

p r o b a b i l i t y o f f a i l u r e . T h e r e l i a b i l i t y o f t h e s t r u c t u r e i s d e f i n e d a s l-pf. T h e f a i l u r e 

p r o b a b i l i t y i s o b t a i n e d f r o m e i t h e r a c o m p o n e n t r e l i a b i l i t y p r o b l e m o r a s y s t e m r e l i a b i l i t y 

p r o b l e m , a s d e s c r i b e d i n C h a p t e r 2. It s h o u l d b e n o t e d that t h e c o s t a n d p r o b a b i l i t y o f 

f a i l u r e g e n e r a l l y d e p e n d o n d e s i g n v a r i a b l e s : ct = c , ( x ) = c 0 ( x ) + c f ( x ) / ? ^ ( x ) . S e v e r a l 

p r o b l e m s a r e i d e n t i f i e d i n t h i s c a t e g o r y : 

. x = a r g m i n j c 0 (x) + C[(x)pf(x) | f ( x ) < 0 } (1.1) 

x = a r g m i n { c 0 (x) + cf(x)pf(x) I f ( x ) < 0 , Pf(x)<pf } (1.2) 

1 c{ is obtained for the case of continuous compounding by Sexsmith (1983): c f = c f f u t u r e • u l(i + u), 

where c f f u t u r e is the future cost, / is the real interest rate (excluding inflation), and U is the rate of 

occurrence of the Poisson process that describes the hazard. 
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arg mm Co(x) + ̂ ck(x)Pk(x) | W^O, pk(x)<pk 
(1.3) 

where x* is the optimal design, f is the vector of structural constraints, p0 denotes the 

target probability, K denotes the number of failure modes, and ck and pk are the cost of 

failure and the probability of failure of the kth failure mode, respectively. An example of a 

structural constraint is / • - d -d0, where d is a structural dimension and do is the 

prescribed upper bound of d. 

The view adopted in this thesis is that the problem in Eq. (1.1) is the fundamental 

problem in RBDO. Eq. (1.1) seeks to minimize the total expected cost, which implicitly 

includes structural reliability, in light of various constraints to ensure an esthetical and 

functional design. This strategy finds its analogy in the field of decision analysis 

(Benjamin & Cornell, 1970), where rational decisions are made based on the expected 

utility of the decision alternatives. Consequently, the optimal balance between cost and 

safety is achieved. Theoretically, no constraint on the reliability is needed, provided that 

the cost of failure is appropriately defined. However, defining the appropriate cost of 

failure is a key problem in modern RBDO. The cost of failure potentially includes the 

value of human life and other intangible costs. For this reason it is useful to introduce Eq. 

(1.2), which includes a reliability constraint to ensure that the design conforms to 

minimum safety requirements. 

Eq. (1.3) addresses problems where multiple failure modes are possible, each with 

individual failure costs. This is different from Eqs. (1.1) and (1.2), where multiple failure 

modes may be present in the system reliability 1 - pj-, but where the failure cost is 

associated with the global system failure. A weakness of the formulation in Eq. (1.3) is 

the implicit assumption of independence between failure modes, which is rarely satisfied 

in practice. 

Simplified versions of the problems in Eqs. (1.1) to (1.3) are obtained by minimizing 

only the initial design cost: 
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x*=argmin{ c 0 (x ) | f(x)<0 } (1.4) 

x*=argmin{ c 0 (x ) | f (x) < 0, pf(x)<pf } (1.5) 

These problems are frequently addressed in engineering practice because they avoid the 

need for assessing the failure cost. In fact, Eq. (1.4) denotes the well-known deterministic 

(non-RBDO) design optimization problem for which uncertainty is not accounted. 

Relative to Eq. (1.4), the problem in Eq. (1.5) introduces a safety constraint for which the 

reliability analysis is required. This is, conceptually, the simplest R B D O problem. 

The second category of R B D O problems is identified as 

x*=argmin{ pf(x) | f (x) < 0 } (1.6) 

x*=argmin{ pf(x) | f(x)<0, c 0 ( x ) < c } (1.7) 

x*=argmin{ p f(x) | f (x) < 0, c0(x) + c((x)pf(x)<c } (1.8) 

where c is the prescribed upper bound of the cost. A n extended set of problems is 

formulated by replacing pf (x) with max pk ( x ) ; namely, the maximum failure 

probability over all failure modes. The problems in Eqs. (1.6) to (1.8) then turn into min-

max type problems. 

The problem in Eq. (1.6) seeks to maximize the reliability given structural constraints. 

While this is sometimes referred to as the inverse reliability problem in the literature, we 

reserve this term for a problem introduced below. In Eqs. (1.7) and (1.8) the initial cost 

and the total expected cost are introduced as constraints. Hence, these two equations are 

counterparts to Eqs. (1.5) and (1.2), respectively. However, although Eqs. (1.7) and (1.8) 

represent the "flipped" version of Eqs. (1.5) and (1.2), they are not equivalent problems. 

That is, the optimal design achieved by addressing Eqs. (1.8) and (1.2) is generally 

different. 

The third category of R B D O problems contains what is referred to as inverse reliability 

problems (Der Kiureghian et al., 1994; L i & Foschi, 1998). Here, the discrepancy 
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between structural reliability and prescribed target reliability is minimized, subject to 

constraints: 

x *=argmin{ ^ ( x ) - ^ | f (x) < 0 } (1.9) 

x*=argmin{ \pf(x)-pf\ | f(x)<0, c 0(x)<c } (1.10) 

x *=argmin { \pf(x)-pf\ | f (x) < 0, c0(x) + cf(x)pf(x) < c } (1.11) 

In addition, an extended set of problems is formulated by replacing pj- (x) - with 

m a x ^ (x) - pk |, where pk (x) is the failure probability of failure mode k. Ideally, the 

value of the objective function of Eqs. (1.9) to (1.11) at the design point is zero. This 

would imply that target reliability is achieved and that constraints are satisfied. However, 

it may not be possible to achieve the reliability l-P/ for given structural/cost 

constraints. In fact, Eqs. (1.9) to (1.11) are related to the problems in Eqs. (1.6) to (1.8), 

which seek maximization of reliability rather than convergence to a target reliability. For 

instance, Eq . (1.6) results in design variable values that minimize failure probability, 

while Eq . (1.9) potentially results in design variable values that provide a less safe 

design, but that complies with the prescribed reliability 1 - pj-. 

In this thesis, the first category of R B D O problems is considered. This choice is 

founded on our belief that the principles of rational decision-making should form the 

basis for R B D O . Moreover, we address the problem for a single failure event in Eq . (1.2). 

Ideally, the problem in Eq . (1.1) should be addressed. However, the difficulties in 

obtaining the "true" cost of failure make this problem less practical. The problem in Eq . 

(1.3) is not considered in this thesis, because only one failure cost is assumed. 

1.2 Solution Algorithms 

In this thesis it is assumed that the problem in Eq . (1.2) is defined in terms of a finite 

element model. Specifically, the design variables x and the random variables v are 
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specified in terms of the input parameters of the finite element model. In this situation, a 
number of challenges are present when attempting to solve Eq. (1.2): 

Challenge 1. The failure probability pf(x) must be computed using reliability 

methods that are coupled with the finite element analysis. This type of analysis is 
termed the finite element reliability analysis and may be challenging in itself. A 
number of reliability methods exists, all approximate. The choice of method 
influences the choice of optimization algorithm and its behaviour. The failure 
probability is a nonlinear function of x, regardless of whether the limit-state 
function is linear. Moreover, the failure probability may not be continuously 
differentiable. 

Challenge 2. The structural response may be nonlinear, which is the case under 
consideration in this thesis. The nonlinearities of the structural response and the 
failure probability cause the objective function and constraint functions to be 
nonlinear as well. 

Challenge 3. The objective function, constraint functions, and the limit-state 
function are implicit functions expressed by structural responses from the finite 
element analysis. 

Challenge 4. The most effective algorithms to solve Eq. (1.2) are gradient-based. 
That is, they require the gradient of the objective function and constraint functions 
with respect to x to be computed accurately and efficiently. Unless a 
reformulation technique is employed, the gradient of the failure probability and 
possibly the finite element response must be computed. The gradient computation 
may be both analytically problematic and computationally costly. Additionally, 
inaccuracies in the gradients lead to convergence problems in the optimization 
analysis. 

Challenge 5. In this thesis, we typically consider problems including 10-100 design 
variables and 10-500 random variables. It is imperative that the solution 
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algorithms provide feasible computation times as the number of variables grows. 
This is known as the high-dimensional problem. 

We conclude that candidate algorithms to address Eq. (1.2) must be assessed according to 
their efficiency, accuracy, and convergence robustness. In recent years, significant 
research efforts have been assigned to solve this RBDO problem. Consequently, a 
number of algorithms is available. In the following we briefly review the main 
approaches and comment on their performance relative to the challenges listed above, 
before arriving at the approaches adopted in this thesis. 

A broad class of algorithms used to address Eq. (1.2) is termed gradient-free. Their key 
characteristic is that derivatives (gradients) of the objective function and constraint 
functions are not required in the analysis. Instead, the algorithms evaluate the objective 
and constraint functions at a number of trial points in the space of design variables. 
Several classes of gradient-free algorithms are available to solve RBDO problems. One 
example is genetic algorithms (Itoh & Liu, 1999; Thampan & Krishnamoorthy, 2001). 
Analogous to principles of natural genetics, these algorithms are evolutionary 
computation techniques. The key to genetic algorithms is the representation of a design as 
a set of binary numbers. A set of designs is termed a population. The first population is 
established randomly, through a user-defined number of candidate solutions. The 
objective of the procedure is to improve the population (the set of designs) in a manner 
similar to genetic operations in real nature. Three genetic operators (reproduction, 
crossover, and mutation) are used to create a new population (generation). During this 
process, the candidate solutions with the better designs are selected as parents to produce 
the next generation with improved design. The more genetic operations are present, the 
better solutions are achieved. Usually, the user stops the optimization at a predefined 
maximum number of operations. 

In the following we address the advantages and disadvantages of generic algorithms 
based on their performance relative to the aforementioned challenges: 

1. The failure probability is computed using any available finite element reliability 
methods. 

8 



2. Genetic algorithms are applicable to complex and nonlinear RBDO problems. 

3. Genetic algorithms have the ability to couple with the finite element analysis. 

4. Genetic algorithms avoid the convergence problems caused by inaccurate or 
discontinuous response gradients because of their gradient-free properties. 

5. Genetic algorithms are computationally expensive and converge slowly since they 
require many more objective function evaluations than some alternative 
techniques. Their computational effort increases rapidly as the number of design 
variables increases. Therefore, genetic algorithms are not suitable for high-
dimensional problems. 

The optimal solutions are not highly accurate because the representation of design 
variables as binary numbers does not allow high accuracy. Genetic algorithms 
have been suggested to narrow down the optimal solution region, followed by a 
traditional optimization method to identify a more precise optimum. 

Genetic algorithms are able to address problems with continuous and discrete 
design variables. An example of a discrete design variable is the cross-section 
type within a class of steel cross-sections. The problem with discrete design 
variables is not considered in this thesis. 

The response surface method is an alternative to the gradient-free algorithms. The use 
of response surface methods is generally contemplated in problems where the objective 
function, and possibly the constraints, is not explicitly defined. This is indeed the case in 
Eq. (1.2). Even when cost functions are explicitly defined, a reliability analysis is 
required to obtain the probability of failure. In the response surface method, the value of 
the function in question is evaluated using a number of realizations of the design variable 
vector x. An explicit algebraic continuously differentiable expression is then used to fit to 
these points in the space of design variables. The reformulated optimization problem is 
then solved using standard nonlinear gradient-based optimization algorithms. The 
gradients are readily found because response surfaces are simple algebraic expressions. 
An important advantage of the response surface method is that sensitivities of the 
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functions themselves are unnecessary. Hence, the response surface method may be 
termed quasi gradient-free. 

As an example of a response surface method, Gasser and Schueller (1998) approximate 
the failure probability using an exponential function dependent on the design variables. 
This approximation makes the failure probability numerically continuous. Torczon and 
Trosset (1998) use an algebraic function to approximate the objective function in the 
optimization problem. The approximate functions are constructed from numerous 
evaluations of the objective function. Eldred et al. (2002) employ approximate functions 
for both the objective function and the limit-state function. 

Response surface methods have the following advantages and disadvantages relative to 
the challenges listed above: 

1. The failure probability is computed using any available finite element reliability 
method. 

2. Response surface methods are numerically robust since the reformulated failure 
probabilities, objective functions, or limit-state functions are explicit and 
continuous and can be solved using standard nonlinear optimization algorithms. 
However, more sampling points are required for approximating the highly 
nonlinear functions in RBDO problems. 

3. Response surface methods have the ability to couple with the finite element 
analysis. 

4. Response surface methods can solve complex problems involving discontinuous 
functions in optimization since continuous functions are used to replace the 
original discontinuous functions. 

5. The accuracy of the optimal solution depends on the accuracy of the 
approximation to the original problem. The efficiency of the optimization process 
relies on the computational time of constructing response surface, which is 
dependent on design variables. The numerical effort increases tremendously with 
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the increase in the number of design variables. Therefore, response surface 
methods are not suitable for high-dimensional problems. 

Response surface methods are likely to find a global minimizer rather than simply 
identifying a local minimizer. 

Although gradient-free algorithms and response surface methods are viable 
alternatives, gradient-based algorithms are the most efficient in solving Eq. (1.2). In fact, 
traditional nonlinear optimization techniques are gradient-based. A variety of gradient-
based algorithms is proposed in the literature. These algorithms are categorized into 
nested bi-level approaches, mono-level approaches, and decoupled sequential 
approaches. Enevoldsen and Sorensen (1994) solve Eq. (1.2) using the nested bi-level 
approach. This is the "brute force" approach, in which the standard nonlinear 
optimization algorithm is employed and the failure probability is evaluated each time the 
values of the objective function and of the reliability constraint are needed. (Hence the 
name nested bi-level.) A noteworthy feature of the work by Enevoldsen and Sorensen 
(1994) is that the first-order reliability method (FORM) is utilized to evaluate the failure 
probability. This is a reasonable approximation unless the limit-state function is strongly 
nonlinear. However, in nonlinear finite element reliability analyses, which are the case 
under consideration in this thesis, strong nonlinearities may be present. The nested bi-
level approach requires the objective function and constraints to be continuous and to 
have first-order derivatives with respect to optimization variables. An advantage of using 
FORM analysis is that the gradient of the failure probability with respect to design 
variables is available, as shown in Chapter 2. 

The nested bi-level approach has the following advantages and disadvantages relative 
to the challenges listed above: 

1. Failure probability is practically limited to the FORM analysis. 

2. Additional computational costs are required to determine the optimal design for 
highly nonlinear functions in RBDO problems. 

3. The nested bi-level approach has the ability to couple with finite element analysis. 
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4. The gradient discontinuity problem may cause non-convergence or slow 
convergence. 

5. The computation time is large since reliability analyses must be performed in each 
step of the optimization analysis. Therefore, the nested bi-level approach is not 
suitable for high-dimensional problems. 

Madsen and Friis Hansen (1992) and Kuschel and Rackwitz (2000) develop the mono-
level approach to improve the nested bi-level approach. Since the FORM analysis on the 
inner reliability level is actually an optimization problem itself (see Chapter 2), it is 
substituted by its first-order optimality conditions. In this manner, the reliability problem 
becomes an additional constraint in the RBDO problem. The reformulated optimization 
problem is then solved using standard nonlinear optimization algorithms in the 
augmented space of design variables. The mono-level approach has the following 
features: 

1. The failure probability is computed using the FORM analysis. Extensions to 
second-order reliability methods are possible but are rather expensive. 

2. Additional computational costs are required to determine the optimal design for 
the highly nonlinear functions in RBDO problems. 

3. The second order derivative of the limit-state function is necessary even when 
using first-order optimization algorithms. This makes the RBDO for nonlinear 
structures impossible since the second order derivative of structural response with 
respect to model parameter is rarely available in the finite element analysis. 

4. The gradient discontinuity problem may cause non-convergence or slow 

convergence. 

5. The reformulated optimization has a greater number of design variables than the 
original one because of additional constraints from the reliability analysis. The 
reformulated problem may be too big to be solved for high-dimensional problems. 
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Standard optimization algorithms without any links to an external code are used 
since the inner reliability level is eliminated. 

The explicit transformation between the original space and the standard normal 
space of random variables is required in the mono-level approach. 

. The mono-level approach is only applicable for the component reliability problem 
and separable series systems, which do not have correlation between different 
failure modes. 

A "direct" mono-level approach was developed by Chen et al. (1997) and generalized 
by Wang and Kodiyalam (2002) and Agarwal et al. (2003). In this approach design 
variables are defined as the mean values of some random variables. Furthermore, FORM 
reliability analysis is employed. Under the assumption of uncorrelated random variables, 
a direct relationship is established between the design variables and the approximation 
point in FORM analysis (this will later be termed the most probable failure point) for 
fixed target reliability. The reformulated optimization problem is a deterministic 
optimization problem not requiring a reliability analysis. It is solved using a standard 
nonlinear optimization solver. This direct mono-level approach is appealing for several 
reasons: 

1. The failure probability evaluation is not required in the reformulated deterministic 
optimization analysis. 

2. Additional computational costs are required to determine the optimal design for 
the highly nonlinear functions in RBDO problems. 

3. Only first-order derivatives of the structural response with respect to design 
variables are required. They are available from the finite element analysis. 

4. The gradient discontinuity problem may cause non-convergence or slow 
convergence. 

5. The direct mono-level approach is efficient in the absence of a reliability analysis 
in the optimization analysis. The computational cost is approximately the same as 
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in the deterministic optimization analysis (without adding additional constraints). 
Therefore, this approach is applicable to high-dimensional problems. 

• The transformation between the original space and the standard normal space of 
random variables does not have to be explicit. 

The direct mono-level approach can only deal with mutually independent random 
variables. A further study of correlated random variables is required. 

Finally, we arrive at decoupled sequential approaches, some of which are considered to 
be state-of-the-art solution algorithms. One decoupling approach is developed by Du and 
Chen (2002) and Agarwal and Renaud (2004) to improve the nested bi-level approach. 
Reliability and optimization analyses are performed separately and sequentially. That is, 
a deterministic optimization is executed to obtain a new design without re-computing the 
reliability. Then, the failure probability is updated by performing a reliability analysis for 
the new design. The process is repeated until a consistent design is obtained. The term 
decoupled is used because the analyst may freely select different methods for the 
reliability and optimization problems. This is different from the mono-level approach 
where FORM reliability analysis is implicit. The decoupled bi-level approach has the 
following advantages and disadvantages: 

1. The failure probability is computed using any available reliability methods since 
the reliability analysis is decoupled from the optimization analysis. 

2. Additional computational effort is required to determine the optimal design for 
highly nonlinear functions in RBDO problems. 

3. The decoupled bi-level approach has the ability to couple with finite element 
analysis. 

4. The gradient discontinuity problem may cause non-convergence or slow 
convergence. 
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5. The decoupled approach is more efficient than the nested bi-level approach 
because the number of reliability evaluations is significantly reduced. Therefore, 
this approach is applicable to high-dimensional problems. 

• It is easy to code and to combine the reliability analysis with any optimization 
software without having to reformulate the problem. 

The true local optimal solution cannot be guaranteed because the failure 
probability is always computed for a previous design. 

Further improvements of the decoupled approach are developed by Kirjner-Neto et al. 
(1998), Der Kiureghian and Polak (1998), and Royset et al. (2001a). Most notable of 
these improvements is a decoupled sequential approach utilizing the method of outer 

approximations (Polak, 1997) to solve several RBDO problems. Royset et al. (2001b, 
2002, & 2004a) further develop the methodology to solve Eq. (1.2). In this approach, Eq. 
(1.2) is reformulated as a semi-infinite optimization problem (Polak, 1997). This 
reformulated problem has proven to be identical to the original problem, when FORM 
analysis is used to compute the failure probability. Moreover, a heuristic scheme is 
implemented to improve the reliability estimate. The term semi-infinite comes from the 
fixed number of design variables and the infinite number of reliability constraints in the 
reformulated problem. This approach has the following advantages and disadvantages: 

1. The failure probability is computed using any available reliability methods since 
the reliability analysis is completely decoupled from the optimization analysis. 

2. Additional computational costs are required to determine the optimal design for 
the highly nonlinear functions in RBDO problems. 

3. The decoupled sequential approach has the ability to couple with the finite 
element analysis. 

4. The gradient discontinuity problem may cause non-convergence or slow 
convergence. 
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5. This approach is more efficient than the nested bi-level approach. However, this 
approach requires an infinite number of reliability constraints to achieve the 
"true" optimal solution. This is not attainable in practice. Usually, the user stops 
the optimization at a predefined accuracy and obtains an approximate solution. 
Therefore, this approach is applicable to high-dimensional problems. 

The method of outer approximations has proofs of convergence (Kirjner-Neto et 
al., 1998). This implies that there is a convergence proof for the decoupled 
sequential approach when the limit-sate function is linear in the space of random 
variables. 

In this thesis we implement the decoupled sequential approach in OpenSees and apply 
it to structures that exhibit nonlinear behaviour. This approach is termed the decoupled 

sequential approach by the method of outer approximations (DSA-MOOA). We also 
implement a simplified decoupled sequential approach (DSA-S) by combining the 
problem reformulation of DSA-MOOA with the findings of Du and Chen (2002) and 
Agarwal and Renaud (2004). In the DSA-S approach, the reformulated optimization 
problem is an inequality constrained optimization problem (Polak, 1997) with a single 
reliability constraint, as opposed to the infinitely many constraints of the DSA-MOOA 
approach. The DSA-S approach has the same properties as the DSA-MOOA approach 
when facing the aforementioned challenges 1-5. However, while the DSA-S approach is 
more efficient than the DSA-MOOA approach, it lacks the convergence proof of the 
DSA-MOOA approach. 

In additional to the above methods, Royset and Polak (2004b) develop the decoupled 

sequential approach by sample average approximations to solve the RBDO problem in 
Eq. (1.2). Failure probabilities are here computed using Monte Carlo or importance 
sampling. The first-order derivative of the failure probability with respect to design 
variables is obtained analytically and computed using Monte Carlo or importance 
sampling. The original RBDO problem is reformulated as an inequality constraint 
optimization problem and solved using standard optimization algorithms. The number of 
samples increases as the design approaches the optimal design point. Royset and Polak 
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(2004b) prove that the optimization algorithm converges with the optimal design when 
the number of samples approaches infinity. This approach has the following advantages 
and disadvantages: 

1. Failure probabilities are computed using Monte Carlo sampling and importance 
sampling. 

2. Additional computational costs are required to determine the optimal design for 
the highly nonlinear functions in RBDO problems. 

3. This approach has the ability to couple with the finite element analysis. 

4. The gradient discontinuity problem may cause non-convergence or slow 
convergence. 

5. The computational cost is higher than in the DSA-MOOA approach since the 
sample average approximations use Monte Carlo sampling or importance 
sampling to compute the values and gradients of failure probabilities. The number 
of sampling points increases as the design nears the optimal stage. Therefore, this 
approach is still applicable to high-dimensional problems. 

• The sample average approximations have proofs of convergence even if the limit-
sate function is nonlinear in the space of random variables. 

1.3 Thesis Organization 

Following the introduction, the fundamentals of finite element reliability analysis and 
optimization theory are introduced in Chapters 2 and 3, respectively. Chapter 2 reviews 
the concept of finite element reliability and describes FORM, the second-order reliability 
method, Monte Carlo sampling, and importance sampling. Chapter 3 presents the 
inequality constraint optimization problem and the semi-infinite optimization problem, as 
well as their corresponding first-order necessary optimality conditions. The Polak-He 
algorithm and the method of outer approximation algorithm are also described in this 
chapter. 
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Chapter 4 describes the finite element software, OpenSees, which is extended with 

reliability analysis capability. The element, section, and material objects used in this 

thesis are emphasized in this chapter. The reliability analysis module adds the 

ReliabilityDomain and ReliabilityAnalysis objects to the original OpenSees. The former 

defines the random variables and their correlation. It also maps the values of the random 

variables into the finite element model. The latter includes eight analysis types and 

several analysis tools. 

Chapter 5 introduces the sensitivity analysis capability in OpenSees. Two main 

response sensitivity methods, the finite difference method and the direct differentiation 

method, are two analysis tools in OpenSees. The direct differentiation method is stressed 

in the chapter by briefly describing its equation derivation and several implementation 

issues. Chapter 5 ends with a section on the continuity of response gradients. The 

potential negative effects of discontinuous structural responses are observed and 

remedied using two methods: the smooth material model and the section discrimination 

scheme. 

Chapter 6 presents the problem reformulation and algorithms of the DSA-MOOA and 

DSA-S approaches. The reformulated optimization problem is identical to the original 

RBDO problem when the limit-state function is linear in the space of random variables. 

The applications of the method of outer approximation and the Polak-He algorithms are 

described in detail in this chapter. The optimization capability of OpenSees is extended 

through the addition of several objects defining all functions involved in the optimization 

problem. Moreover, two analysis types (DSA-MOOA analysis and DSA-S analysis) and 

several analysis tools are added. 

Chapter 7 presents a numerical example involving a nonlinear finite element analysis 

of a three-bay, six-storey building to demonstrate the new implementations in OpenSees. 

Three cases are studied: a linear pushover analysis using elasticBeam elements, a 

nonlinear pushover analysis using beam WithHinges elements, and a nonlinear pushover 

analysis using dispBeamColumn elements with fibre sections. The case studies focus on 

convergence performance and computational time. This chapter also presents practical 
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experience by comparing two implemented approaches, two gradient computation 
methods, and linear and nonlinear analyses. Speeding up the convergence procedure by 
removing inactive constraints and scaling the functions involved are also discussed. 

Chapter 8 summarizes the major findings of this thesis and points to areas of future 
study. Appendix A offers the detailed software implementation used in the thesis, while 
Appendix B contains a user guide to the new implementations. 
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C h a p t e r 2 F i n i t e E l e m e n t R e l i a b i l i t y A n a l y s i s 

Since the introduction of limit-state design in the early 1980s, reliability methods have 
been masked by partial safety coefficients in prescriptive design code requirements. 
Direct usage of reliability methods has only been observed in special projects, such as 
offshore structures and nuclear power plants. This paradigm is changing with the 
introduction of performance-based engineering. Over the past several decades, analytical 
and numerical models have drastically improved the engineers' ability to predict 
structural performance. However, such predictions can only be made in a probabilistic 
sense. Unavoidable uncertainties are present in model parameters and in the numerical 
model itself. Reliability analysis and probabilistic methods are therefore rapidly 
becoming required tools in engineering practice. This chapter presents reliability analysis 
in conjunction with nonlinear finite element models to make probabilistic predictions of 
structural response. Such analysis is required to solve the reliability-based design 
optimization (RBDO) problem in Eq. (1.2). 

The name finite element reliability stems from the combination of advanced reliability 
methods with finite element analysis to estimate the probability of exceeding prescribed 
structural response criteria. As mentioned in Chapter 1, the structural model is defined in 
terms of vector v of random variables and vector x of deterministic design variables. The 
structural response of interest is collected in a vector d, which depends upon random and 
design variables: d=d(x,v). A failure criterion is prescribed in terms of the response 
quantities d by means of a limit-state function g(d). Conventionally, a negative outcome 
of the limit-state function, g < 0, is defined as a failure, while a positive outcome, g > 0, 
is defined as safe. A typical limit-state function employed in this thesis is expressed by a 
threshold d and a response quantity d in the form 

g(d(x,v)) = d-d(x,v) (2.1) 
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We observe that when the response d exceeds the threshold d, the limit-state function 

becomes negative, as required by the syntax rules. It is emphasized that response 

quantities d may represent displacements, stresses, strains, etc. 

The reliability problem described by a single limit-state function is termed the 

component reliability problem. If failure is prescribed by the joint state of several limit-

state functions, the reliability problem is referred to as a system reliability problem. 

In the component reliability problem, the probability of failure pf (x) is defined by the 

integration of the joint probability density function (PDF) / ( v ) of the random vector v 

over the failure domain in the space of random variables: 

pf(x)= jjfWdv (2.2) 

g(d(x,v))<0 

The failure probability depends on the design variables x. In addition, we note that the 

failure probability does not change i f the limit-state function is arbitrarily scaled using a 

finite positive number. This is important for later developments. 

Analytical solutions to Eq . (2.2) are generally not available, and approximate methods 

are employed to evaluate the failure probability. In these reliability methods, it is 

common to transform the problem into the standard normal space. That is, the original 

random variables v are transformed into a vector u of uncorrelated standard normal 

random variables. The Nataf model (L iu & Der Kiureghian, 1986) is an example of such 

a transformation. Tx is denoted as the transformation for a given design vector x and 

replace the random vector v by T~x (u). We then obtain the equivalent limit-state function 

g(d(x, v)) = g(d(x ,r x
_ l (u))). The joint P D F of u is the joint standard normal P D F (p(u). 

Hence, the reliability problem is re-defined in the standard normal space as: 

pf(x)= J]Wu)rfu (2.3) 
g(d(x,u))<0 

For system reliability problems with limit-state functions gk, ke {l,2,...,K], the failure 

domain is specified as a series system, a parallel system, or a general system. In a series 
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system, failure occurs when any components (limit-state functions) fail. That is, the 
failure domain is defined by the union of failure domains of components: 

Ug*(d(x,u))<0 (2.4) 

Conversely, the failure domain of a parallel structural system is defined by the 
intersection of failure domains of all components: 

r|g*(d(x,u))<0 (2.5) 

For a general system, the definition of the failure domain involves both union and 
interaction operations. 

2.1 First-Order and Second-Order Reliability Methods 

The first-order reliability method (FORM) approximates the integration boundary 
g(d(x,u)) = 0 using a hyperplane in the standard normal space. The ideal point to 

linearize the limit-state function is denoted as u* and is the point on the hyperplane 
closest to the origin: 

u*(x) = argmin{||u|| | g(d(x,u)) = 0} (2.6) 

u* is the point in the failure domain with the highest probability density and is therefore 

termed the most probable point (MPP). Often, Eq. (2.6) is defined with the inequality 

constraint g(d(x,u)) < 0 in place of the equality constraint. This is acceptable, as long as 

the origin is in the safe domain. This is the case for most practical problems, where the 

failure probability is much less than 0.5. 

Searching for the MPP in Eq. (2.6) is an optimization problem in itself. This 
optimization process requires the first-order derivative of the limit-state function to be 
continuous in the standard normal space u. One effective algorithm for searching for the 
MPP is the iHLRF-algorithm (Hasofer & Lind, 1974) (Rackwitz & Fiessler, 1978) 
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(Zhang & Der Kiureghian, 1997), which is gradient-based and employs a line search 
scheme. In addition, Eq. (2.6) with an inequality constraint formulation can be solved 
using the Polak-He algorithm (Polak, 1997) or using standard nonlinear optimization 
algorithms such as NLPQL (Schittkowski, 1985) or NPSOL (Gill et al., 1998). The latter 
algorithms, however, are not specialized for the present case of one constraint. 

Reliability 
Analysis 
Module 

Initialize variables u, x 

Transform u-> v 

Evaluate g(d(x,v)) 

Evaluate 
dg _ dg dd dv 
du dd dv du 

Take a step 
= u' + step size x search direction1 

.Convergence check. 

JYeT 

dd/dv Finite 
Element 
Analysis 
Module 

Post processing 
p,(x)«3>(-

Figure 2.1 MPP searching algorithm in finite element reliability analysis 

Haukaas and Der Kiureghian (2004) employ the iHLRF algorithm and the Polak-He 

algorithm to find the MPP for finite element reliability problems. The outline of the 

search algorithm is shown in Figure 2.1. The search algorithm requires a transformation 

between the original v-space and the standard normal u-space. The value of limit-state 

function g and the gradient dgldu are evaluated in this algorithm. They are used in 

finding a search direction and a step size. The figure also shows the interaction between 

the search algorithm and the finite element code. The finite element analysis module is 
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repeatedly updated with new realizations of the random variables v. In return, the finite 
element analysis module produces the response d and the response gradients dd/b\. The 
need for response derivatives is due to the need for the gradient of the limit-state function 
in the standard normal space. The chain rule of differentiation yields: 

dg_=dg_ddd^_ 
du dd dv du 

where dg 13d is easily found because g is a simple algebraic expression in terms of d, 

dd/dx are the response gradients, and dv/du is the Jacobian matrix from the probability 

transformation. 

The distance from the origin to the MPP in the standard normal space is called the 
reliability index /?: 

B(x) = \\u(x)\\ (2.8) 

The FORM approximation of the failure probability reads: 

pf(x)*<b(-fi(x)) (2.9) 
where O(-) is the standard normal cumulative distribution function. 

The second-order reliability method approximates the limit-state function using a 
quadratic surface that passes through the MPP. Breitung (1984) offers a simple formula 
to compute the component failure probability based on such a quadratic surface 
approximation: 

m-l 

•^(^^^(Ax^no + AxK/x))-"2 (2.10) 
7=1 

where Kj(x),j-\,...,m-\ are the principal curvatures of the limit-state surface 

g(d(x,u)) = 0 at the MPP. 
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2.2 Monte Carlo and Importance Sampling 

Monte Carlo sampling is an alternative method used to approximate the failure 

probability pf{\). Monte Carlo sampling generates a family of simulated points U i , 

u/v, which are statistically independent standard normal random variables. The indicator 

function /(u,.) corresponding to each simulated point is established using the following 

rule: /(u,) = 1 whenever g(d(x,u)) < 0, and 7(u(.) = 0 otherwise. Monte Carlo sampling 

gives an approximation of the component failure probability pf (x) by: 

P/W-TFZAu,) (2.11) 

The quality of the solution of Monte Carlo sampling is measured using the coefficient 

of variation (c.o.v.) of the probability estimate: c.o.v. = ^(1- pf(x))/(N- pf (x)). Monte 

Carlo sampling is stopped at the user-defined number of samplings, or when the 
coefficient of variation achieves a specified target, for example 2%. 

In order to estimate small failure probabilities accurately, crude Monte Carlo sampling 
requires a large number of simulations. This is because the sampling distribution of crude 
Monte Carlo sampling is centered at the mean point, while failure events are inclined to 
occur in the tail region of the probability distributions. 

Importance sampling improves the efficiency of Monte Carlo sampling by centering 

the sampling distribution near the failure domain. Usually, this centre is selected as the 

MPP from FORM analysis. Importance sampling generates a family of simulated points 

ui, uw with the probability density h(u). All simulated points are statistically 

independent standard normal random variables. h(u) is a joint PDF and nonzero in the 

failure domain. Importance sampling gives an approximation of component failure 

probability pf(x) using: 

p f ( x ) , l ± I ( U i ) ^ A (2.12) 

25 



where <p(-) is the standard normal PDF (Ditlevsen & Madsen, 1996). The coefficient of 

variation of failure probability in importance sampling is defined by: 

c.o.v. (2.13) 

Importance sampling is efficient and requires fewer simulations than Monte Carlo 
sampling since the sampling distribution is centered on the MPP, where failure 
realizations are frequently encountered. 

2.3 Gradient of the Failure Probability 

When gradient-based algorithms are employed in RBDO, it is important to note whether 
the derivative of the failure probability can be computed and whether it is continuous. 
The answers to these questions are not straightforward. In fact, the "brute force" 
application of gradient-based algorithms, such as the mono-level approach explored by 
Enevoldsen and Sorensen (1994), requires the gradient of failure probability with respect 
to design variables to be available. In FORM analysis, an analytical formulation of 
dpf /dx is possible. Eq. (2.9) is differentiated to obtain: 

dp, 
=^[ i - = - d 44- a ^p)=- d 4<piP) (2.i4) ox ox ox ox op ox 

The derivative of the reliability index is: 

dP _ 1 dg (2.15) 
dx |Vug| dx 

where V u g is the by-product of FORM analysis and dg/dx = (dg / dd\dd / dx) is readily 

obtained by utilizing response sensitivities from the finite element code (Hohenbichler & 
Rackwitz, 1986) (Bjerager & Krenk, 1989). However, the derivative of the failure 
probability in Eq. (2.14) cannot be proven to be continuous. This is because in a 
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reliability problem, the MPP may jump to a different location on the limit-state surface 
g=0 due to an infinitesimal perturbation of the design variables. This jump leads to a kink 
on the function pf (x) in the x-space. In effect, the gradient of the failure probability in 

the x-space is discontinuous. 

Having demonstrated that the derivative of the failure probability in FORM is possible 
to obtain but is not continuously differentiable, we move to the case of sampling analysis. 
Formulae for the sensitivity of failure probability from sampling became available only 
recently. In Royset and Polak (2004b), indicator functions 7(u(.) in Eqs. (2.11) and (2.12) 

are replaced by the joint standard normal cumulative distribution function. Then, the 
reformulated failure probability is differentiated. The sensitivity of the failure probability 
is expressed through the joint standard normal PDF and evaluated using Monte Carlo or 
importance sampling. 

It is important to note that not all gradient-based algorithms that address the problem in 

Eq. (1.2) require the gradient dpf Idx. In fact, as will be shown in subsequent chapters, 

the algorithms implemented in this thesis circumvent the problem of actually computing 
this gradient by using an augmented design variable to take place of the failure 
probability. 
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Chapter 3 Optimization Theory and Algorithms 

This thesis implements two decoupled sequential approaches to solve the reliability-based 
design optimization problem expressed in Eq. (1.2). These approaches profit from the 
advantages of both mono-level and bi-level approaches that were discussed in Chapter 1. 
The optimization problem in Eq. (1.2) is reformulated to enable the use of the method of 
outer approximation (MOOA) for semi-infinite inequality optimization problems, or the 
use of the Polak-He algorithm for ordinary inequality constraint optimization problems 
(Polak, 1997). This chapter defines the fundamental concepts of the optimization theory, 
which forms the basis for the subsequent problem reformulation and the corresponding 
solution algorithms. 

3.1 Inequality Constrained Optimization Problem 

This section introduces the first-order optimality conditions and the Polak-He algorithm 
that builds upon them for solving the deterministic inequality constrained optimization 
problem of the form 

x* =argmin{ F(x) \ f(x)<0 } (3.1) 

where x* is the design point, F(x) is the objective function, andf[x) is the maximum 
value of the n -dimensional vector of constraints f(x) (Polak, 1997): 

/(x) = max f(x) (3.2) 

3.1.1 First-Order Optimality Conditions 

A candidate solution to any optimization problem must satisfy the optimality conditions 
of the problem. These are generally necessary conditions, but they are not sufficient to 
guarantee that the optimal point has been found. Moreover, optimality conditions can 
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only indicate whether a local minimum has been found. This is a fundamental problem 
with any optimization algorithm; only through engineering insight and repeated searches 
from different starting points, among other strategies, can we confidently state that the 
global optimal point has been found. The problem is schematically illustrated in Figure 
3.1, where it is shown that an objective function may have a local as well as a global 
minimum. It is easy to imagine that the search algorithm may "get stuck" at the local 
minimum, without realizing that another point is the actual solution to the optimization 
problem. A repeated search with a new start point may reveal the global solution. 

Objective function 

Local minimum Global minimum 

Design variable 

Figure 3.1 Local and global optimal points 

Optimality conditions are not only convergence criteria for the optimization algorithm. 
They are often used to construct search algorithms to solve the optimization problem. 
This further motivates the following exposure of optimality conditions for different 
optimization problems. 

For pedagogical purposes, first consider a deterministic optimization problem without 
constraints: 

x* = argmin{ F(x)} (3.3) 

An optimality condition for this problem is clearly VF = 0, where VF = dF/dx is the 

gradient of the objective function. This is equivalent to the requirement that a function 

with one variable have a zero derivative at extremum points. 
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Next, consider a deterministic inequality constrained optimization problem with one 

constraint: 

x* =argmin{F(x) | /(x)<0} (3.4) 

where J[x) is the constraint. Note that a problem with the equality constraint f\x)=0 may 

be reformulated into an inequality constrained problem with two constraints, f(x) < 0 

and - /(x) < 0. In other words, we introduce two inequality constraints for every 

equality constraint. 

Contours of the 
objective function 

X2 

=0 />0 

Figure 3.2 Constrained optimization problems 

For the constrained optimization problem in Eq. (3.4), the gradient of F(x) need not 
vanish at the solution point (refered to as the design point). Instead, two cases are 
possible: (1) the constraint is not active at the design point, in which case 

VF = 0 (3.5) 
at the design point; (2) the constraint is active at the design point, in which case the 
gradient of the objective function is proportional to the gradient of the constraint at the 
design point. Figure 3.2, in which the minimization of an objective function with two 
design variables is considered, clarifies this concept. The contours of the objective 
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function are shown as circles, while the constraint l i m i t / = 0 is shown as a line. The solid 

arrows in the figure depict the gradients of objective functions and constraint functions at 

certain points. A t the design point x* gradient vectors VF and Vf are clearly parallel, 

although they point in different directions. This orthogonality at the design point between 

the gradient of the objective function and the gradient of the constraint is written as 

MoVF = -MiVf (3.6) 

where ju0 and / i , are positive constants. 

The two optimality conditions in Eqs. (3.5) and (3.6) are combined into one equation 

by first defining an auxiliary function termed the "Lagrange function:" 

Z(x) = / i 0 F ( x ) + / i 1 / ( x ) (3.7) 

where ju0 and //, are denoted Lagrange multipliers. The method of Lagrange multipliers 

is a traditional method of enforcing constraints in an optimization problem. This method 

requires the derivatives of the Lagrange function with respect to the design variables to 

be zero: 

V X = / / 0 V F + //, V / = 0 (3.8) 

With the additional requirement that either fj.\ - 0 or f -0, both of the above cases 

(active and inactive constraint) are included. First, considering the case where the 

constraint is active at the design point, Eq . (3.8) can be turned into Eq . (3.6) by let t ing/= 

0 and //, > 0 . Second, considering the case where the constraint is inactive, Eq . (3.8) can 

be turned into Eq . (3.5) by setting ju\ = 0. In conclusion, the optimality conditions for the 

problem in Eq . (3.4) read 

V I = 0 and / / , / = 0 (3.9) 

where / / , / = 0 implies that either px or / must be zero. Addit ionally, we must have 

f<0, Mo>0, and A>0. 

Turning to the case of multiple inequality constraints, the optimization problem reads 
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x* =argmin{ F(x) | f(x)<0 } . (3.10) 

where f(x) is the vector of constraints. In this case, one positive Lagrange multiplier is 
introduced for each constraint. Consequently, the Lagrange function reads 

L(x) = ju0 F(x) + //, /,(x) + fi2Mx) + »- + fin fn(x) = fi0 F(x) + uf(x) (3.11) 

where u. is the n-dimensional vector of Lagrange multipliers. The optimality conditions 
for this case are referred to as the Karush-Kuhn-Tucker conditions, which take the form 

VL = 0 and uf = 0 (3.12) 

again with f < 0, ju0> 0, and \i > 0 . These are the first-order optimality conditions for 

the inequality constrained optimization problem in Eq. (3.1). We note that 

VZ = p0VF(x') + uVf(x*) (3.13) 

Additionally, we require that //0 + //, + fi2 H h /un = 1 for the reason of normalization, 

and that all involved functions F and f are continuously differentiable (Polak, 1997). 

3.1.2 The Polak-He Algorithm 

The use of optimality conditions to obtain corresponding solution algorithms is addressed 
by Polak (1997). The Polak-He algorithm is presented for the case of multiple objective 
functions, where the objective is to minimize the maximum of the objective functions, 
subject to multiple constraints. In this thesis we apply the algorithm to two cases: (1) one 
objective function with one constraint; and (2) one objective function with multiple 
constraints. We start with the more general latter case. The Polak-He algorithm based on 
the first-order optimality conditions is introduced below. 

Polak-He Algorithm 

Parameters. Select parameters 0<a<l, 0</?<l, 0<S, 0<y. 

Input Data. Input the initial design XQ. 
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Step 0. Set i' = 0. 

Step 1. Compute the search direction vector h. (see below). 

Step 2. Calculate the step size A, along the search direction h(. using the Armi jo rule 

(see below). 

Step 3. Update the design x / + 1 = x(. + Athn replace / by / + 1, and go to Step 1. 

Step 1 computes the search direction vector h. by solving a quadratic sub-optimization 

problem, which is the combination of the first-order optimality conditions in Eq . (3.12). 

where / ( x ) + = max{0,f(x)}. Eq . (3.14) minimizes a quadratic function dependent on 

Lagrange multipliers p0 and \i, subject to the linear constraint 

ju0 + px + ju2 + • • • + //„ = 1. This problem is solved in a finite number of iterations, and its 

solutions are ju*0 and u.*. Then, the search direction vector h, is computed using 

The Armi jo rule used in Step 2 is a line search scheme, which applies a merit function 

in the step-size selection. Ideally, the step size is determined at the minimum merit 

function since this leads to an optimal rate of convergence. The merit function in this case 

is 

M(xi,xi + B%) = max{F(xi + B\)-F(xi)-rf(xXJ(^ + B\)-f(xX} (3.16) 

where s is an integer to be introduced shortly. The step-size selection must meet the 

requirement of M(xi,xi + Bshi)<aBs0i. In Eq . (3.16), the parameter s is an integer 

starting from the initial value 0. The parameter s increases or decreases by unit steps until 

an acceptable and maximum step size is found. Finally, the appropriate step size Xt is set 

equal to the maximum value of Bs and corresponding to the minimum merit function: 

(3.15) 
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A,.=max{ fi' | M(xi,xi+Pshi)<apsei } (3.17) 

The inequality constrained optimization problem in Eq. (3.1) is a nonlinear 

optimization problem. Theoretically, it requires an infinite number of iterations (step 1 to 

3) to converge to an optimal solution. This is not applicable to practical problem solving. 

Usually, the Polak-He algorithm is terminated when a user-defined precision s {e.g., 
10"6) is reached. When two adjacent solutions are very close (||x,+1 -x(.||<s), the merit 

function M(x (.,x (+1) and/or the value of sub-optimization #(x(.) in Eq. (3.14) is 

sufficiently close to zero, the Polak-He algorithm is stopped, resulting in an approximate 
optimal solution. 

It can be shown that solutions generated by the Polak-He algorithm are optimal for the 

inequality constrained optimization problem. Solution x, from the Polak-He algorithm 

approaches the optimal solution x* as the number of iterations approaches infinity. Since 
the Polak-He algorithm is developed from the first-order optimality conditions, the 
optimality conditions in Eq. (3.12) are satisfied automatically at the point of optimal 
solution. In the meantime, the sub-optimization problem in Eq. (3.14) also reaches the 
minimum value, i.e., 9(x*) = 0. 

3.2 Semi-Infinite Optimization Problem 

This section describes the first-order optimality conditions and the MOOA algorithm for 
solving the semi-infinite optimization problem of the form 

x*=argmin{ y0(x) | ^(x)<0 } (3.18) 

where y/0(x) is the objective function, and y/(x) is the maximum value of the n-

dimensional constraints (Polak, 1997). The objective and constraint functions y/ are 

defined by 

^(x) = max y/j(x) (3.19) 

34 



and y/., j = {0,1,n} is given by 

^ . ( x ) = max^, (x ,y) (3.20) 

where the function <f>. (x, y) is determined by the design vector x and the extra argument 

y , which are all points in the domain Y . , i.e., y e Y . . The design vector x is finite-

dimensional, but the number of functions ^ 7(-,y) is infinity because of the infinite 

number of points y in the domain Y . . That is the reason for the term "semi-infinite." A n 

example of function ^ . (x ,y) is the negative value of limit-state function - g ( x , u ) , in 

which x is the design vector, u is the random vector (namely point y ) , and domain Y y is 

the standard normal space. As mentioned in Chapter 2, a positive outcome of the limit-

state function ( g > 0) is defined as safe; hence the constraints -g (x ,u ) < 0 ensure a safe 

structure. 

3.2.1 First-Order Optimality Conditions 

First-order optimality conditions for semi-infinite optimization problems require the 

involved functions <f>j to be continuously differentiable. Addit ionally, the domain Y , must 

be bounded and closed. Similar to Eq . (3.12), the necessary optimality conditions for 

semi-infinite optimization problems are 

0 e J > , V ^ . ( x * ) and fjMjy/J(x) = 0 (3.21) 
7=0 7=0 

where x* denotes the optimal design, and Lagrange multipliers / / 0 , • • • , / / „ are positive-

defined. Addit ionally it is required that / / 0 + + ju2 H \- jun = 1 for the reason of 

normalization (Polak, 1997). 

The optimality conditions in Eq. (3.21) require that at least one constraint ^ ( x * ) be 

active at the optimal design point. Therefore, the value of this constraint must be zero 
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(y/j(x*) = 0), while the corresponding Lagrange multiplier must be larger than zero 

(jUj > 0) . This situation is illustrated in Figure 3.2, where the constraint /= 0 is active at 

the design point x*, and the objective function reaches minimum in the mean time. 

3.2.2 M e t h o d o f O u t e r A p p r o x i m a t i o n A l g o r i t h m 

The M O O A algorithm solves the semi-infinite optimization problem by repeatedly 

solving a series of inequality-constrained problems. In these inequality-constrained 

problems, progressively more constraints are used to get a gradually more accurate 

solution (Polak, 1997). A discretization method is used to discretize the domain Y , and 

produce more constraints, in which case, the domain Y 7 is discretized into ./V number of 

sub-domains Yj<N c: Y . . For example, a domain [0,1] is descretized as the sub-domain 

{0, 1/4, 2/4, 3/4, 1} when 7V= 4. These approximate sub-domains YjN are sequentially 

constructed as the algorithm progresses. Then, the semi-infinite problem is approximated 

as an inequality constrained problem with N constraints. When N equals infinity, the 

solution of the inequality-constrained problem is the optimal solution of the semi-infinite 

problem. 

Using the above discretization method, we approximate Eqs. (3.19) and (3. 20) for a 

natural number N= 1, 2, 3, . . . as 

^ ( x ) = max y/j<N(x) (3.22) 

if/ j N(x) = max ^,(x,y) (3.23) 

Similar to the Polak-He algorithm, the approximation to the merit function in the 

Armijo rule is denoted in the following: 

M w ( x ' , x " ) = m a x { ^ ( x " ) - ^ ( x , ) - ^ ( x ' ) + , ^ ( x " ) - ^ ( x ' ) + } (3.24) 

where y > 0 is a parameter, and y w ( x ) + = max{0,y/N(x)}. 
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In addition, a quadratic sub-optimization problem 0N(x) is constructed to obtain a 

search direction h 

eN(x) = mmMN(x,x + h) (3.25) 
h 

where MN(x,x + h) comes from the following definitions: 

MN(x,x + h) - maxjy/o N (x,x + h)-y/0N(x)-7V/N(x)+, fiN(x,x + h)-y/N(x)+} (3.26) 

fiN(x,x + h) = max(/7A,(x,x + h) (3.27) 

^ . „ ( x , x + h) = m a x j ^ x , y ) + ( V x ^ x ^ (3.28) 

The search direction h is defined as 

7=0 

The solutions to the sub-optimization problem in Eq . (3.25) are Lagrange multipliers 

/ / 0 , • • • , / / „ , which satisfy the requirement /u0+/ui+/J2+—hfj.n =1 . Then, the search 

direction h is computed using Eq . (3.29). 

Method of Outer Approximations Algorithm 

Input Data. Input the initial discretization number No, the initial design xN , the 

tolerances <7N = rN -OA/N2 and sNJl = pk - pN, where 0 < p< 1. 

Step 0. Set N = N0. 

Step 1. Inner approximation: F ind a point y j<N in the domain Y . . 

Step 2. Constraints expansion: Collect all appropriate points yjN and update the 

constraint set using the corresponding constraint y/j (x N , y .<N). 

Step 3. Outer approximation: Find an approximate new design x^+i. 
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Step 4. Replace N with N + 1 and go to Step 1. 

Step 1 employs the Polak-He algorithm to solve the following inequality constrained 

optimization problem: 

YJ,N =argmin {^,(x„,y) } (3.30) 

The solution to Eq. (3.30) is a point yJN in the domain Y . . This step is an inner 

optimization problem and is terminated when a user-defined tolerance crN is satisfied. 

In Step 2, all points yjk, (j = \,•••,«, k = l,---,N) from Step 1 are collected. If the 

requirement max{o, (j)j(xk,yJJl)\>£Ntk is satisfied, the corresponding constraint 

</>j(xk,y jk) is added to the constraint set of the semi-infinite optimization problem. 

Step 3 computes an approximate new solution xyv+i of the following inequality 
constrained optimization problem using the Polak-He algorithm: 

xN+t =argmin{ y0,*+i(x) I ^ + . ( x ) ^ ° } (3-31) 
which satisfies 

0* + 1(x„ + 1)>-r„ (J.32) 

^ + . ( x „ + l ) < r „ (3.33) 

with 0N+i(-) and ^ + , ( 0 defined in Eqs. (3.25) and (3.23), respectively. 

As a nonlinear optimization problem, the semi-infinite optimization problem requires 

an infinite number of iterations (steps 1 to 4) to converge to an optimal solution. In 

general, the MOO A algorithm is terminated when a user-defined precision e (e.g., 10"6) 

is reached. In this thesis, when two adjacent solutions are very close (| |x / + l -x ( . | | < s), the 

MOOA algorithm is stopped, resulting in an approximate optimal solution. 

After an iteration of MOOA, Step 3 finds a solution xN+l of the approximate inequality 

constrained problem. As the discretization number /V increases, the MOOA algorithm 
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results in a gradually more accurate solution. The optimal solution x* is reached when N 

equals infinity. A t the design point x * , the first-order optimality conditions in Eq . (3.21) 

are satisfied; namely, at least one constraint is active at that point, and the value of the 

objective function reaches its minimum. 
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Chapter 4 The OpenSees Software 

The OpenSees software framework (McKenna et al., 2004) serves as the computational 
platform for research within the Pacific Earthquake Engineering Research (PEER) Center 
and is rapidly gaining users internationally. Its source code, documentation, and 
executable files are freely available on the web site http://opensees.berkeley.edu. 

OpenSees was originally designed to compute the response of nonlinear structural and 
geotechnical systems using finite element techniques. Haukaas and Der Kiureghian 
(2004) extended OpenSees with reliability and response sensitivity capabilities for 
nonlinear finite element analysis. This chapter introduces nonlinear finite element 
analyses and reliability analyses in OpenSees. The response sensitivity analysis is 
discussed separately in Chapter 5. 

The object-oriented programming approach was employed in the development of 
OpenSees. The introduction of object-oriented programming has brought with it a 
revolution in software development (Deitel & Deitel, 1998). This revolution is based on 
the notion of standardized, interchangeable software components. These components are 
called objects or, abstractly, classes. Objects are instantiated at run-time based on 
specifications made by the developer in the corresponding classes. Each class, and hence 
object, may contain member functions and member data. Detailed specification of the 
member functions and data members is found in class interfaces. Class interfaces contain 
key information necessary to understand an object-oriented software framework. Class 
interfaces also facilitate the transparent nature of object-oriented programming. Their 
structure is common to all object-oriented software. Armed with the knowledge of 
universal syntax rules of the programming language such as C++, a user is able to 
understand the software architecture of a specific object-oriented framework. Such 
software design has extensibility and maintainability as its integral feature. The 
programming language C++ is employed in this thesis for the purpose of object-oriented 
programming. 
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4.1 Nonlinear Finite Element Analysis 

This section introduces the OpenSees software framework for the nonlinear finite 
element analysis as detailed in the OpenSees Command Language Manual (Mazzoni et 
al., 2005). Element, section, and material objects used in this thesis are emphasized, as is 
the fundamental knowledge needed for the case studies in Chapter 7. 

OpenSees consists of a set of modules, which create a finite element model, specify an 
analysis procedure, analyze the model, and output the results. A complete finite element 
analysis involves four main types of objects, as shown in Figure 4.1. The ModelBuilder 

object establishes the finite element model by defining the nodes, elements, loads, and 
constraints. The Analysis object performs simple static linear analyses or transient 
nonlinear analyses. The structural response, such as the displacement history at a node or 
the entire state of the model at each load step, is recorded and output by the Recorder 

object. The Domain object stores the model created by the ModelBuilder object and 
provides model information for the Analysis and Recorder objects. 

Holds the state ofthe model 
at timet and (J + dt) 

ModelBuilder—> Domain <—( Analysis 
Constructs the objects in Moves the model from 

the model and adds state at lime t to slate at 

them to the domain. time t + dt 

Recorder 
Monitors userde ined 
parameters in the model 
during the analysis 

Figure 4.1 Principal OpenSees objects (Mazzoni et al., 2005) 

Figure 4.2 shows the relationship among elements, sections, and materials. In general, 
a structure is comprised of many elements. Each element is divided into several sections, 
while each section consists of several materials, such as steel and concrete materials. 
Elements, sections, and materials have their own properties, which are described in the 
following paragraphs. Hence, the structures created by them can exhibit different types of 
behaviour, such as linear elastic and nonlinear behaviour. 
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Figure 4.2 Element, section and material relationship (Mazzoni et al. 2005) 

One type of element objects is the elastic beam-column element, elasticBeamColumn, 

which is described by the following main parameters: cross-section area A , Young's 
Modulus E, and the second moment of area I. Moreover, there are basically two types of 
nonlinear beam-column elements: the displacement-based element, dispBeamColumn, 

and force-based elements, including beamWithHinges and nonlinearBeamColumn. The 
beamWithHinges element follows the flexibility formulation and contains an elastic 
interior and two plastic hinges at the each ends. The parameters to construct this element 
are pre-defined sections at two ends, ratios of the hinge length to the total element length, 
cross-sectional area A , Young's Modulus E, and the second moment of area I. The 
parameters A , E, and / are used for the elastic interior, which has linear-elastic properties. 
Two plastic hinges represent the inelastic regions, in which forces and deformations are 
sampled at the hinge midpoints using mid-point integration. A nonlinearBeamColumn 

element spreads the distributed plasticity along the element and follows the force 
formulation. A dispBeamColumn element is a displacement-based beam-column element, 
which has distributed plasticity with linear curvature distribution. To describe these two 
elements, pre-defined sections and a number of integration points along the element are 
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required. The integration along the element is based on the Gauss-Lobatto quadrature 

rule, with two integration points at the element's ends. 

A section object defines the stress resultant force-deformation response at a cross 

section of a beam-column or of a plate element. There are three types of sections: elastic 

section, defined by material and geometric constants; resultant section, which is a general 

nonlinear description of force-deformation response (e.g. moment-curvature); and fibre 

section, which is discretized into smaller regions for which the material stress-strain 

response is integrated to produce resultant behaviour (e.g. reinforced concrete) (Mazzoni 

et al., 2005). A fibre section has a general geometric configuration formed by sub-regions 

of simpler, regular shapes (e.g. quadrilateral, circular, and triangular regions) called 

patches. In addition, layers of reinforcement bars can be specified. The subcommands 

patch and layer are used to define the discretization of the section into fibres. Individual 

fibres, however, can also be defined using the fibre object. During generation, the fibre 

objects are associated with material objects, which enforce Bernoulli beam assumptions 

(Mazzoni et al., 2005). Two examples of fibre sections are shown in Figure 4.3 to 

describe a circular section and a rectangular section. 

Figure 4.3 Fibre-section examples (Mazzoni et al., 2005) 
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There are several material objects in OpenSees. This thesis uses the uniaxialMaterial 

object, which represents uniaxial stress-strain or force-deformation relationships 
(Mazzoni et al., 2005). As a uniaxialMaterial object, the Elastic-Perfectly Plastic (EPP) 
material constructs an elastic-perfectly plastic uniaxial material object. Several 
parameters used in this object are tangent E, yield stress or force in tension FyP, and 
yield stress or force in compression FyN. By setting FyP = 0, the Elastic-Perfectly Plastic 

material can be used to simulate concrete material, as shown in Figure 4.4. The steel 
material, SteelOl, is used to construct a uniaxial bilinear steel material object with 
kinematic hardening and optional isotropic hardening (Mazzoni et al., 2005). This 
material needs the following parameters: yield strength Fy, initial elastic tangent E, and 
hardening ratio a . This material object is also illustrated in Figure 4.4. 

stress or 
force 

EPP 

FyP 

FyN 

strain or 
deform. 

stress or 
force 

SteelOl 

FyV-

A-Fy 

strain or 
deform. 

Figure 4.4 Elastic-perfectly plastic material (FyP =0) and SteelOl material 

4.2 Reliability Analysis 

This section focuses on the implementation of the reliability analysis based on the work 
of Haukaas and Der Kiureghian (2004). A ReliabilityDomain object was added to the 
Domain object, while a ReliabilityAnalysis object was included in the Analysis object of 
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OpenSees. An overview of some of the objects/classes in the reliability analysis module 
is shown in Figure 4.5. 

ReliabilityDomain 

randomVariable 

correlation 

random VariablePositioner 

parameterPositioner 
i — 

performanceFunction 
I 

modulatingFunction 

filter 

spectrum 
T 

ReliabilityAnalysis 

probability Transformation runFORMAnalysis 

gFunEvaluator runSORMAnalysis 
i 

gradGEvaluator runSamplingAnalysis 
i 

searchDirection runOutCrossingAnalysi 
i 

i 
stepSizeRule 

runFOSMAnalysis 
i 

rootFinding runSystemAnalysis 
i 

meritFunctionCheck runGFunVizAnalysis 
i 

reliabilityConvergencCheck runFragility Analysis 

startPoint ! 1 

1 i 
findDesignPoint 1 i 

i \ i \ 
i "Analysis Types' 

randomNumberGenerator 

i \ i \ 
i "Analysis Types' 

findCurvatures 

i \ i \ 
i "Analysis Types' 

1 j 

"Analysis Tools" 
Figure 4.5 Software framework for reliability analysis in OpenSees 
(Triangle symbol denotes the relationship between base class and 

subclasses, while the diamond symbol denotes analysis tools) 

Three categories of classes are present in Figure 4.5. First, the ReliabilityDomain 

contains model data. A randomVariable object creates random variables in several ways, 
by given the random variable type, the mean, the standard deviation, etc. A correlation 

object specifies the correlation coefficient between random variables. A 
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randomVariablePositioner object and a parameterPositioner object map random 
variables and parameters into a finite element model. A performanceFunction object 
defines the limit-state function, also called the performance function, using an expression. 
This expression may include random variables, design variables, and the structural 
response from the finite element analysis. To create stochastic ground motion input in 
OpenSees, the discretized random processes is used as a time series object. A 
modelatingFunction object, a filter object, and a spectrum object are used to simulate this 
random process. 

The next category in Figure 4.5 is the "analysis tools," used for reliability analysis in 
OpenSees. This framework of analysis tools makes use of the concept of object-oriented 
programming, which allows the "base classes" to promise feature that is implemented by 
the "sub-classes." In this manner, several implementations are made available for each of 
the analysis tools. For instance, a number of sub-classes are available to evaluate the 
limit-state function, and OpenSees only executes the sub-class that is specified by the 
user. This illustrates the extensibility feature of OpenSees: new algorithms to perform 
various analysis tasks are implemented without modifying the software framework. 

A probabilityTransformation object transfers random variables between the original 
space and the standard normal space. The Nataf model is applied in the current 
implementation. A gFunEvaluator object computes the value of limit-state functions for a 
given realization of the random variables. A gradGEvaluator object evaluates the 
gradients of limit-state functions with respect to the random variables. Currently, two 
alternatives are available: the finite difference method and the direct differentiation 
method. Both are described in Chapter 5. A serachDirection object computes the search 
direction vector when finding the most probable point (MPP) in the algorithm. Current 
implementations include the iHLRF algorithm, the Polak-He algorithm, the sequential 
quadratic programming algorithm, and the gradient projection algorithm. A stepSizeRule 

object obtains an appropriate step size along a search direction using the line search 
scheme. A simple algorithm uses the fixed step size throughout the search, and the 
alternative algorithm employs the Armijo line search algorithm. A rootFinding object is 
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used by the gradient projection search algorithm to visualize the limit-state surface. A 
meritFunctionCheck object checks the value of merit function and determines the 
suitability of a step size. A reliabilityConvergenceCheck object checks the convergence 
when searching for the MPP. One criterion determines the closeness of the MPP to the 
limit-state surface; another criterion determines how closely the gradient vector points 
towards the origin in the standard normal space. A startPoint object provides the starting 
point when searching for the MPP; it can also serve as the centre of the sampling density 
in an importance sampling analysis. Usually, the analysis starts from the mean of the 
random variables, the origin of the standard normal space, or user-defined values. A 
findDesignPoint object searches for the MPP using a step-by-step search scheme. The 
search direction is determined by the serachDirection object, and the trial point is 
determined by computing the step size along this search direction using a line search 
scheme. A randomNumberGenerator object is used in the sampling analysis. The 
standard library function in the programming language C++ is used in this object. A 
findCurvature object is required in the second-order reliability analysis. It finds the 
curvatures of the limit-state surface at the MPP. 

The third category in Figure 4.5 shows eight analysis types in the reliability module of 
OpenSees. The users are required to specify some necessary analysis tools before 
executing these analysis commands. OpenSees prints corresponding information to a file 
or a computer monitor, thereby allowing the users to monitor the reliability analysis 
process. Following a successful analysis, OpenSees outputs the results into a user-
specified file. In this thesis, the first-order reliability analysis (runFORMAnalysis) and 
the importance sampling analysis (runSamplingAnalysis) are employed in case studies in 
Chapter 7. 
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Chapter 5 Response Sensitivity for Nonlinear Structures 

Response sensitivity is essential in reliability-based design optimization (RBDO) when a 
gradient-based approach is employed. Reliability analysis requires the gradient of the 
limit-state function with respect to the random variables when searching for the most 
probable point. The optimization analysis requires the gradient of the objective function 
with respect to the design variables to satisfy the first-order optimality conditions. When 
it comes to the optimization of real-world structures, where the finite element method is 
employed, the RBDO algorithms require finite element response sensitivities to be 
available. 

Two response sensitivity methods are described in this chapter: the finite difference 
method (FDM) and the direct differentiation method (DDM). The derivations below 
follow Haukaas and Der Kiureghian (2004, 2005). The negative effects of the response 
gradient discontinuity are remedied using two methods, smooth material models and 
section discretization, which make possible the RBDO for nonlinear structures. 

5.1 Finite Difference Method 

The FDM consists of perturbing the values of model parameters, re-evaluating structural 
responses, and finally obtaining a finite difference estimate of the gradient vector. A 
typical equation of the FDM is 

dF(G) _ F(0 + Ad) - F{6 - AO) 
86 ^ 2A0 

where 6 is the model parameter representing a material, geometry, or load parameter, 

F(9) is the response function evaluated by the finite element analysis, and AO is the 

perturbation. This form of the FDM requires two additional executions of the response 

function for each parameter. 
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A simplified FDM is the forward finite difference method, which is similar to Eq. 
(5.1), but requires only one additional execution of the response function for each 
parameter. It has the form: 

dF(O)F(0 + &e)-F(e) 
80 A0 

Eqs. (5.1) and (5.2) indicate that the FDM is not efficient because of additional 
executions of the response function for each derivative. In addition, the accuracy of the 
gradient depends on the selection of the perturbation factor of each parameter, which is a 
challenging task. 

5.2 Direct Differentiation Method 

The DDM consists of analytically differentiating the response equations and 
implementing them inside the finite element code. Therefore, the DDM computes 
response sensitivities alongside the response estimate without additional response 
computations. The DDM differentiates the equilibrium with respect to a genetic model 
parameter 0. For inelastic static analyses, the equilibrium equation requires internal 
forces P"' to equal external loads P„EX' at a pseudo-time tn. 

= p r (5-3) 

where F'n"' is a function of the displacement vector u„ , and the subscript „ denotes a 

quantity at time tn. By differentiating Eq. (5.3) with respect to 9 and rearranging, we 
obtain: 

T , 3u„ ap;*' a p ; ( , 

" 80 80 80 '"• f,xed K } 

where K n = 8P'n"' I8\xn is the algorithmically consistent stiffness matrix, and 8un 180 is 

the desired displacement sensitivity for reliability and optimization analyses. 8un/80 is 
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solved after every convergence of the equilibrium Eq. (5.3). The computation of dun 180 

is efficient since Eq. (5.4) is linear with respect to 8xxnl80. 

The derivative of internal force for the fixed current displacement appears in Eq. (5.4) 

and is assembled over all elements based on the strain-displacement matrix B, the stress 

vector a, and the element stiffness matrix k. 

d P f | _ M f n + R r . a ^ , + R r . j^. ~« 
QQ lu„ fixed ~KJJn\ lu„ fixed ° « + D « K « QQ lu„ fixed " r r > n K n QQ \e„ fixed JUX W - - V 

where U denotes assembly over all elements, and Q.el denotes the domain of each 

element. The differentiation of the element integration is also required in the assembly. 

When parameter 0 represents material properties, the derivative of the internal force is 

assembled from derivatives of stress at each material point for the fixed current strain. 

Then, Eq. (5.5) can be simplified as follows: 

^ i ^ = u k » : ^ A - d * (5.6) 

Two important issues are considered in the implementation of the DDM. First, the 

response sensitivity 8un/80 must be solved at each load increment for inelastic 

materials since sensitivity computations require history variables and their derivatives to 
be computed and stored at each increment. In each sensitivity computation, the material 
routine is called twice because the derivative of the stress 8a/80\c flxed in Eq. (5.6) is 

conditioned upon fixed strain at the current increment only. The first call obtains the 
derivative of the stress conditioned upon fixed stain, and the second call computes and 
stores unconditional derivative of the history variables when displacement and strain 
sensitivities are obtained. 

Second, 8a I80 \E fixed must be assembled over all inelastic material points to compute 

8Vn

nl/80\u flxed since all components of the displacement sensitivity 8u/d0 are 

generally not zero. The strain sensitivity 8s 180 in the finite element domain is not zero, 

and thus da I'80\z fixed is also not zero at all material points after the first load step 
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because deldO enters the derivatives of the history variables. For further details, see 
Haukaas and Der Kiureghian (2004). 

5 . 3 Object-Oriented Implementation in OpenSees 

The FDM and the DDM are implemented in OpenSees based on the object-oriented 
software architecture. Figure 5.1 shows the framework of response sensitivity in 
OpenSees. The finiteDifferenceGradGEvaluator utilizes the GfunEvaluator object to 
compute the value of limit-state functions for perturbed parameters and then to calculate 
the response gradient using the FDM. The OpenSeesGradGEvaluator makes use of the 
DDM implementation in OpenSees. Two new classes are applied to sensitivity 
computations: the sensitivity algorithm and the sensitivity integrator. The sensitivity 

algorithm computes response sensitivities with respect to all desired parameters. 
Currently, two options are available for the sensitivity algorithm: the computeAtEachStep 

gradGEvaluator 

OpenSeesGradGEvaluator finiteDifferenceGradGEvaluator 

GFunEvaluator 

Sensitivity Integratoi Sensitivity Algorithm 

dynamic static :omputeAtEachStep computeByCommand 

Figure 5.1 The framework of response sensitivity in OpenSees 
(Triangle symbol denotes the relationship between base class and 

subclasses, while the diamond symbol denotes analysis tools) 
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option is used in all dynamic analyses and all inelastic analyses, while the 
computeByCommand option is used in elastic static analyses. The sensitivity integrator 

assembles the right-hand side of Eq. (5.4) for each parameter for either static analysis or 
dynamic analysis. 

The DDM computes response sensitivities at each equilibrium state of an inelastic 
static analysis. After the finite element analysis converges at a pseudo-time t„, the 
sensitivity algorithm is used to compute response sensitivities and update the tangent 
matrix. The sensitivity algorithm iterates over all parameters for which response 
sensitivities are desired, and performs the following operations: First, parameter 9 in the 
finite element domain is "activated" to obtain correct contributions from element, section, 
material, node, and load objects. Second, the sensitivity integrator assembles the right-
hand side of Eq. (5.4) and collects contributions from the objects of the finite element 
domain. Next, Eq. (5.4) is solved to obtain the displacement sensitivity du/89, and the 
results are stored in the node objects. Finally, all material objects are called by the 
sensitivity integrator to store unconditional derivatives of history variables through 
element and section objects. Stain sensitivities are computed based on the displacement 
sensitivity by using ordinary kinematic equations. 

As part of the finite element reliability analysis, the reliability module maps random 
variables and design variables to the finite element module and receives structural 
responses and response sensitivities from the finite element module. The mapping 
procedure updates the value of model parameters in the finite element model each time 
new random variables and design variables are available. It also identifies parameters to 
ensure that correct contributions to response sensitivity computations are assembled. 
Three member functions are used in the classes containing desired model parameters: a 
member function identifying the parameters, a member function updating the value of the 
parameters, and a member function activating the parameters for response sensitivity 
computations. 

Two objects are involved in the mapping procedure: the randomVariablePositioner 

object (as part of the reliability analysis) and an object (e.g., a material object) in the 
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finite element domain. The randomVariablePositioner object makes use of the object 

from the finite element domain as its data member. The detail mapping procedure is 

described as follows. First, the setParameter method in the finite element object creates a 

link between relevant random variables and the parameter in the finite element object. 

Then, when the reliability analysis updates the random variables in the finite element 

model, the update method of the randomVariablePositioner object and the 

updateParameter method of the finite element object are called upon update the values of 

the model parameters using new random variables from the previously created link. 

5.4 Continuity of Response Gradients 

In the nonlinear finite element analysis it is common to employ material models with 

sudden transitions from elastic to plastic response. As discussed' in Haukaas and Der 

Kiureghian (2004), this may lead to discontinuities in response sensitivities. This also has 

an adverse effect on the convergence to the most probable point in reliability analysis. In 

this thesis we emphasize the potential negative effect of the optimization analysis. In fact, 

the effect of gradient discontinuities due to sudden transitions from elastic to plastic 

response is dramatically detrimental to the performance o f the optimization algorithm. 

This is because (1) the proof of convergence of the optimization algorithms requires 

continuously differentiable limit-state functions; (2) the discontinuities in the gradient 

may cause the algorithm to stall; and (3) the abrupt changes in the gradient may cause i l l -

conditioning (even though it is theoretically acceptable) and hence slow convergence to a 

solution. This leads to the conclusion that the issue of gradient discontinuities is even 

more important in the R B D O analysis than in the search for the most probable point in 

the stand-alone reliability analysis. It is stressed that the nonconvergence or slow 

convergence problems are expected since the assumption of continuous differentiability 

is violated. In fact, all standard nonlinear programming algorithms wi l l experience 

difficulties when applied to such inappropriate problems. 
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In the following subsections, two remedies are introduced to solve discontinuity 
problems in response sensitivities. 

5.4.1 Smooth Material Model 

To avoid gradient discontinuities at yielding, the original bi-linear material model is 
replaced with a smoothed version developed by Haukaas and Der Kiureghian (2004). The 
bi-linear material model contains an elastic range and a plastic range. Unloading is 
assumed to be elastic. The tangent stiffness is E in the elastic range and aE in the plastic 
range, where 0 < a < 1. The yield strength Fy identifies at the transition between elastic 

and plastic states. In the smooth material model, a circular segment is used to smooth the 
transition between the elastic and plastic response state. The tangent stiffness of the 

stress/force A 

original bi - linear model smoothed material model 

Figure 5.2 Bi-linear steel material model smoothed with circular segment 
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circular segment coincides with those of the elastic and plastic ranges at intersection 

points. The smoothed stress-stain curve and its tangent stiffness are thus continuous. The 

circular segment starts from y-Fy in the stress-strain curve, where the parameter is 

0 < y < 1. Figure 5.2 illustrates how the bi-linear steel material model is smoothed with a 

circular segment. Haukaas and Der Kiureghian (2004) also show that the overall response 
does not change significantly as a result of smoothing. They recommend the selection of 
parameter y > 0.8 to avoid results that differ significantly from those obtained with the 
bi-linear model. 

It is demonstrated in Haukaas and Der Kiureghian (2004) that the smooth material 
model leads to continuity in response sensitivities. To compute response sensitivities 
using the DDM approach, Haukaas and Der Kiureghian (2004) differentiate the DDM 
equations for the smooth material model and implement them in OpenSees. They also 
present several examples to show that the smooth material model successfully avoids the 
response sensitivity discontinuity problem in the reliability analysis. 

5 . 4 . 2 S e c t i o n D i s c r e t i z a t i o n S c h e m e 

The section discretization scheme discretizes the element cross-section into smaller 
regions or fibres. The uniaxial material response for each fibre is integrated to produce 
approximately smooth behaviour. The use of this section discretization scheme makes the 
nonlinear structural response "approximately continuously differentiable" to meet the 
requirement of the RBDO algorithms. 

The section discretization scheme takes advantage of the fibre section object in 
OpenSees. The fibre section is ideal for defining a reinforced concrete section: 1-2 top 
and bottom fibres of the concrete cover using normal strength concrete, 10-20 side fibres 
of the concrete cover using normal strength concrete, 10-20 fibres of the concrete core 
using higher strength confined concrete, and several layers of reinforced bars. Examples 
of such fibre section are shown in Figure 4.3. 
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The section discretization scheme makes the structural response approximately 
continuously differentiable. During the finite element analysis, individual fibres pass the 
yield point and enter the plastic range one by one. Each fibre is only a small part of the 
whole cross section. The discontinuity of one fibre affects the property of the whole 
section, but the effect becomes progressively smaller as the number of fibres in the whole 
section increases. Thus, theoretically, the discretized cross section possesses continuous 
properties when the section is discretized by an infinite number of fibres. Practical studies 
in this work suggest that approximately 20 fibres are sufficient to avoid convergence 
problems. It is emphasized, however, that a smooth material model must be employed for 
the reinforcing steel, since this is represented by a single fibre layer that is not affected by 
an overall increase in the number of fibres in the cross-section. 
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Chapter 6 Implementation of Reliability-Based Design 

Optimization 

Two decoupling approaches for reliability-based design optimization (RBDO) problems 
are implemented in this chapter: a decoupled sequential approach using the method of 
outer approximations (DSA-MOOA) and a simplified decoupled sequential approach 
(DSA-S). The two approaches employ the same problem reformulation, which is 
presented below. The algorithms that are used in the DSA-MOOA approach and the 
DSA-S approach are also detailed. Finally, OpenSees is extended in light of these 
optimization capabilities through object-oriented programming. 

6.1 Problem Reformulation 

The RBDO problem in Eq. (1.2) minimizes the initial design cost plus the expected cost 
of failure subject to reliability and structural constraints. Let x be the vector of design 
variables. Then, this problem takes the form (see Chapter 1) 

x*=argmin{ c0(x) + cf(x)pf(x) | f (x) < 0, pf(x)<pf } (6.1) 

where c0 (x) is the initial cost of the design, cf (x) is the present cost of future failure, 

pf (x) denotes the probability of failure for one failure event, f (x) are deterministic 

constraints, and pf is the upper bound on the probability of failure. 

The solution algorithm for Eq. (6.1) requires the functions involved, c0(x), cf (x), and 

f (x), to be continuous, and the constraint set f (x) to be closed and bounded. Since the 

failure probability pf(x) is involved in both the objective and constraint functions, the 

failure probability is also required to be continuous. Royset et al. (2002) have proven that 
this is the case in realistic design problems. 
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The problem in Eq. (6.1) is computationally difficult since the failure probability, 
which depends on the design variables, is defined in terms of a high-dimensional integral 
over the domain of random variables. Royset et al. (2002) replace the failure probability 
pf (x) with parameter a, which is updated during the optimization analysis to develop a 

computationally feasible problem. This parameter is included in an augmented design 

vector x = (x,a) and appears as an added constraint of a reformulated optimization 

problem, which reads: 

x = argmin|c0(x) + cf (x)a | f(x) < 0, pf{x) = a, 0 < a < p ̂  j (6.2) 

Royset et al. (2002) have proven that Eqs. (6.1) and (6.2) have identical global optimal 
solutions when some assumptions are satisfied. 

Because the gradient of the true failure probability is unavailable, it is problematic that 
the failure probability still appears among the constraints. This is addressed by making 
use of concepts from the first-order reliability method (FORM). As outlined in Chapter 2, 
the FORM estimate of the failure probability is p/= 0(-/?), where the reliability index 6 is 
the minimum distance from the origin to the limit-state surface g=0. To this end, the 
equality constraint pf (x) = a in Eq. (6.2) is replaced by constraint y/ - 0, where ip is 

the negative value of the minimum of limit-state function g within a hyper-sphere of 

radius - <X>_1 (a). Hence, the problem is now reformulated into the form 

x = arg min{ c0 (x) + cf (x)a | / , (x) < 0, y/(x) = 0,0<a<p} (6.3) 

where 

^(x) = - min {g(x, u)} (6.4) 
ueB(0,r) 
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with B ( 0 , r ) = {u | ||u||<r}, where r = - 0 '(a).1 It should be stressed that this 

reformulation is motivated by the desire to cast the optimization problem in a semi-

infinite form, thereby allowing it to be solved using the method of outer approximations 

(DSA-MOOA). This is because the constraint y/ = 0 in fact represents an infinite number 

of constraints, one for each point within the hyper-sphere. In this thesis we also 

demonstrate that a simplified approach (DSA-S) can be used to solve the problem by only 

including one constraint to enforce y/ = 0. 

If a FORM approximation of the failure probability is acceptable, then the 

reformulation of the constraint pf (x) = a in terms of the function y/ is correct should 

the parameter r be equal to - O - 1 (a). However, when the limit-state function g(x,u) is 

prescribed in terms of response quantities from a nonlinear finite element analysis, then 

the limit-state function is nonlinear. To account for such nonlinearity, a correction factor / 

is introduced: r = - O - 1 (a) t. The start value of the auxiliary variable t is unity, and it is 

updated during the optimization analysis. 

Eq. (6.3) is a semi-infinite optimization problem with equality constraints. As 

described in Chapter 3, the available algorithms address problems with inequality 

constraints. Hence, a more suitable problem formulation is obtained by converting the 

equality constraint into an inequality constraint: 

x = argmin(c0(x) + c f (x)a | f(x)<0 ,^(x)<0,0<a< p j (6.5) 

Royset et al. (2002) have proven that replacing the equality constraint in Eq. (6.3) by an 

inequality constraint does not alter the solution. This proof assumes that the failure cost is 

positive, and that the origin in the standard normal space is in the safe domain. The 

1 The solution algorithm requires that the solution domain of Eq. (6.3) remain fixed. This is obviously not 

the case because r varies in the optimization process. In the computer implementation, this problem is 

solved by applying the u = ru transformation, where u is the solution domain that remains a ball of unit 

radius, namely u e B(0,1). 
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former assumption is trivially satisfied, and the latter one is generally satisfied due to the 

high reliability of structures. 

Eq. (6.5) is the final reformulation of the original problem. If the limit-state function is 

linear or i f the F O R M approximation of the failure probability is acceptable, then t is set 

at 1 and the reformulated problem in Eq. (6.5) has the same solution as the original 

problem in Eq. (6.1). This is proven by Royset et al. (2002). Moreover, the method of 

outer approximation (MOOA) algorithm to solve the semi-infinite problem in Eq. (6.5) 

has convergence proofs (Polak, 1997). Hence, we are guaranteed to find a converged 

solution for our final approximate problem in Eq. (6.5). 

However, the first-order approximation of the reliability problem may be a poor 

assumption when the limit-state function is highly nonlinear. That is, in nonlinear finite 

element reliability problems, the parameter a from the first-order approximation does not 

equal the probability of failure pf(x) from a more precise reliability analysis (for 

example, importance sampling). To be able to deal with these cases, we solve the final 

approximate problem through updating the value of the parameter t. The parameter t 

starts from unity and is updated during the optimization analysis to account for the 

nonlinearity in the limit-state function. In this manner, approximate solutions are 

obtained with increasing accuracy as the algorithm proceeds. Specifically, the parameter / 

is updated by multiplying with the correction factor 0~l(a)/0~l(pf(x)). The philosophy 

behind this update is that i f pf (x)>a, then the constraint y/ < 0 in the final approximate 

problem allows the limit-state surface {u | g(x,u) = 0} to come too close to the origin in 

the u-space, thus requiring the radius of the ball associated with y/ to be increased. The 

increase of the ball radius is obtained by increasing t. If p^ (x)<a, then the limit-state 

surface is required to be too far away from the origin in the u-space by the constraint 

y/ < 0, and the size of the ball must be reduced (i.e., t is reduced). 
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6.2 DSA-MOOA Approach 

In this thesis we employ solution algorithms that are termed "decoupled" and 

"sequential." The justification for the decoupled characterization is that any reliability 

method can be used to obtain a more precise estimate of the failure probability than the 

FORM analysis. The justification for the sequential characterization is that the 

optimization analysis in Eq. (6.5) and the reliability analysis in Eq. (6.4) are solved 

repeatedly and in sequence to address the bi-level problem in Eq. (6.1). The reliability 

constraint is updated for each optimization analysis in Eq. (6.5). It is stressed that the 

decoupled approach allows flexibility in the choice of optimization algorithm and 

reliability computation method. 

In this section we present the implementation of the DSA-MOOA approach developed 

by Kirjner-Neto et al. (1998) and Royset et al. (2002). It makes use of the problem 

formulation in Eq. (6.5). Figure 6.1 presents a flow chart of the DSA-MOOA algorithm, 

which consists of iterations at several levels. Upon the initialization of design x and 

parameters a and t, the top level iteration includes three tasks: 

Al. Update design vector x and auxiliary variable a. 

A2. Compute failure probability pf(x) using a method that is more accurate than 

FORM. 

A3. Update parameter t. 

This procedure is repeated until the design vector x, the auxiliary design variable a, and 

the parameter t stabilize. Usually, 5 to 15 iterations (Al to A3) are needed to reach a 

satisfactory solution. 

Task A l consists of obtaining updated values of x and a by solving the semi-infinite 

optimization problem in Eq. (6.5). The user can choose any suitable algorithm for this 

purpose. The MOOA algorithm is employed in the current OpenSees implementation. In 

this algorithm, the ball B(0,1) is discretized into a finite number of points, ui, u2, UN, 
in the following manner: approximate the constraint y/ < 0 by N constraints 
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g(x,-3> \a)-t -uy)>0, j-\,2,...,N and solve the resulting standard nonlinear 

inequality constrained problem. In task Al , the MOOA algorithm consists of three 

iteratively performed tasks (B1-B3): 

x o ' Pf p, £\, £2 

i = 0, j = 0 t0=l a0=pf, x0=(x0,a0) 

Al - Update design x and variable a 

BI - Inner approximation 
min{g(x,u)|||u||2 -[-®-\a)tf <0] 

ŷ(x) = -g(x,-<D-'(a)fu>) 

B2 - Constraints expansion 

if y/j(x)> pJ -pN 

1 V O O 
B3 - Outer approximation 

min j?0(x) + cf (x)alf(x) < 0,y/(\,a) < 0,0 < a < pf\ 
(x,a) 

7 = 7 + 1 

Yes 
X /+ i» ai+i 

A2 - Compute failure probability pf 

1 t„aM,p(xM) 

A3 - Update parameter / 
tM=tp~\aM)/0-l(pAxM)) -1, 

Optimal design 

Figure 6.1 Flow chart of DSA-MOOA approach 

62 



B l . Inner approximation: Obtain the minimum value of the limit-state function 

within the ball B(0, - <J>~' (a) t) and the corresponding random vector u 7 using the Polak-

He algorithm. In this thesis, the negative value of the limit-state function at the vector u j 

is denoted as y/. Terminate the Polak-He algorithm when tolerance - aN is satisfied. 

Here, oN = 0.1/ N2 is a user-defined series, aN —> 0 as N -> oo. 

B2. Constraints expansion: Update the constraints by accumulatively storing 

solutions Uj from task Bl for which solution y/j exceeds pj - pN, where p is a user-

defined parameter usually set at 0.5. In this manner, the number of constraints 

represented by y/ < 0 evolves during these iterations. We have observed that these 

constraints are simply a collection of points Uj for which the limit-state function is 

required to stay positive in task B3. 

B3. Outer approximation: Solve the constrained optimization problem in Eq. (6.5) 

using the Polak-He algorithm. The number of constraints in this problem is equal to the 

number of structural constraints, plus the N constraints added by the previous item and 

the single constraint a<pf. The result is a new augmented design vector x = (x,a). 

According to proofs presented by Polak (1997) for the MOO A algorithm, an "exact" 

solution is found if the discretization number N approaches infinity. 

Tasks B l , B2, and B3 are repeated until the optimality conditions are satisfied 
according to a user-defined precision tolerance. Typically, 75 to 150 iterations are 
required to find the optimal solution. These tasks are described in further detail in 
subsections 6.2.1-6.2.3, in which we focus on the connections between the particular 
problems discussed in this chapter and the general algorithms discussed in Chapter 3. 

One important advantage of DSA-MOOA approach is reiterated, namely that the 
reliability and optimization calculations are decoupled, thus allowing flexibility in the 
choice of optimization algorithm in task A l and reliability computation method in task 
A2. In addition to the MOO A algorithm, Polak (1997) provides a pre-defined 

discretization scheme to solve the semi-infinite problem in task A l . Similarly, the user is 
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free to estimate the failure probability in task A 2 by selecting a suitable computational 

reliability method such as the second-order reliability method, Monte Carlo sampling, or 

importance sampling. This selection depends on the desired accuracy in satisfying the 

probability constraint pf (x) < pf. For example, an importance-sampling scheme with a 

required 1-2% coefficient of variation of the sampling result is an appropriate choice i f 

the user wants a high degree of confidence that the reliability constraint is satisfied. 

Typical ly, users require the structural reliability to be very high. In effect, the failure 

probability pf (x) is very small. The D S A - M O O A approach may experience numerical 

difficulties caused by the potential difference in orders of magnitude between a and the 

other design variables x. For this reason, in our implementation the parameter 

6 = - 0 ~ ' ( a ) is used in place of a. With reference to Eq . (2.9), we note that b is a 

substitute for the reliability index B, in the same way that a is a substitute for the failure 

probability pf(\). In conclusion, the optimization in D S A - M O O A approach is over the 

design vector (x, b). 

6.2.1 B l - Inner Approximation 

Given design x and parameters a and t, task B l solves the fol lowing reliability problem: 

Uj - u* = argmin|g(x ,u) | ||u||2 - r2 < 0 j (6.6) 

where r = -<b~\a)-t. This problem is equivalent to Eq . (6.4). The result is a random 

vector u*, or u, (for / h discretization point). The corresponding constraint 

y/j - -g(x, rUj) is the minimum of the limit-state function within a ball o f radius r. 

The Polak-He algorithm described in Chapter 3 is used to solve Eq . (6.6), an inequality 

constraint optimization problem with a single constraint. The fact that there is only a 

single constraint simplifies the optimization process. The values and gradients of 

functions Fand/in Eq . (3.1) are 
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F(x, u) = g(x, u), VF(x, u) = Vg(x, u) 

/(x,u) = /1(x,u) = ||u||2 - r 2 , V/,(x,u) = 2u 

(6.7) 

(6.8) 

The first step searches for the direction vector h, by solving a quadratic optimization 

problem #,.(x) in Eq. (3.14), subject to linear constraint =1. By setting 

and substituting Eqs. (6.7) and (6.8) into Eq. (3.14), this sub-optimization 

problem can be simplified as 

0,(x) = - mm{]f (x, u,) - \]f (x, u,.) - f(x, u,)+ + /, (x, u,)] 

+ ^[Vg(x,u,.) + /i1[2u,.-Vg(x,u,.)]|2 

(6.9) 

Eq. (6.9) can be solved by V0! /V//, = 0, and has the following solution: 

b/-(x,u i)-/(x,u <) + +/;(x,u,.)]-lvg(x,u /)[2u i. - Vg(x,u,)] 
rf= T — " ( 6 - 1 Q ) 

-[2u,-Vg(x,u,)] 2 

0, 

Mi =1 Mi 

Figure 6.2 nx solutions for inner approximation using the Polak-He algorithm 

whenever the right-hand side of Eq. (6.10) has a value in [0,1]. Otherwise, the solution of 

Eq. (6.9) is either //* =0 or p.* = 1, whichever yields the lowest value for the objective 
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function in Eq . (6.9). Three types of solutions are illustrated in Figure 6.2. Final ly, the 

search direction is 

h,. = -i[a-A/1')-Vg(x,ul) + 2 ^ u / ] (6.11) 
o 

The second step finds an appropriate step size Xt along the search direction h(. using 

the Armijo rule. Then, the random vector u, + 1 is replaced by u / + 1 = u, + A,h,. and is used 

as the input data for the next iteration. 

For fask B 1 , the Polak-He algorithm requires an infinite number of iterations before it 

converges to the optimal solution u*. However, we terminate the Polak-He algorithm 

when user-defined tolerance -<JN =-0.l/N2 is satisfied. N starts from 1 and goes to 

infinity, so aN starts from the larger tolerance 0.1 and goes to 0 as Af increases. Since 

high accuracy is only needed when approaching the design point, a high tolerance in the 

beginning of task B1 is acceptable and can save computational time. 

6.2.2 B2 - Constraints Expansion 

Task B2 first collects the u y and y/j(x) from the inner approximation (task B l ) into a 

matrix. For N discretization points, we have an JV-column matrix, in which each column 

contains random variables u y and y/j (x) of the form 

u, u, uN (6.12) 
_̂ i(x) ••• ifj(x) ••• y/N(x)_ 

Second, task B2 assembles the reliability constraints set y/(x), which includes the 

constraint y/0(x) at the origin (u 0 = 0 ) in the whole assembling procedure. The reason to 

include the constraint at the origin is to make sure ^ 0 ( x ) = - g ( x , 0) < 0 , i.e., 

g(x, 0) > 0 , which is the requirement of problem reformulation in subsection 6.1. Task 

B2 updates reliability constraints by accumulatively storing solutions u ; when y/j(x) 
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exceeds pj - pN. p e (0, 1) is a user-defined parameter set at 0.5 in the current 

implementation. pJ - pN is a positive series and approaches zero when j approaches TV". 

Finally, the reliability constraint set y/(x) has the following form: 

y/(x) = 
u 0=0 u, 

^0(x)<0 y/i(x)>pi-pN ••• xl/j{x)>pJ-p" ••• iyN(x)>0 
(6.13) 

In this manner, the number of constraints represented by (̂x) evolves with the 

increase in the number of discretization points. These constraints are simply a collection 

failure domain 
g<0, Vj>0 

safe domain \ X 
g>0, V j < 0 X 

Figure 6.3 Reliability constraints set y(x) 
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of points u y for which the limit-state function is negative in task B2 but is required to 

stay positive in task B3. Hence, the result of task B2 is an expanded constraints set ip(x), 

which enters task B3 for outer approximation. From the above description, we know that 

the number of columns of matrix (̂x) is less than or equal to N+l. Figure 6.3 illustrates 

the procedure used to assemble reliability constraints set y(x) by collecting all of the 

points in the failure domain in the standard normal space. 

6.2.3 B3 - Outer Approximation 

Given the objective function c0(x) + cf(x)a, m deterministic constraints f(x)<0, n 

reliability constraints y/(x) < 0, and an extra constraint a< pf, task B3 solves Eq. (6.5) 

and updates design x and parameter a. This task is also solved using the Polak-He 

algorithm. As opposed to task Bl, the number of constraints in task B3 is greater than 

one. In fact, the number of constraints increases during the analysis. According to Polak 

(1997), in the Polak-He algorithm a quadratic sub-optimization problem with linear 

constraints must be solved to obtain the search direction h ( . This is currently addressed 

by linking the quadratic programming software LSSOL (Gill et al., 1986) to OpenSees. 

For a fixed number (q=m+n+\) of constraints, Eq. (6.5) is an inequality-constrained 

problem. If the Polak-He algorithm is applied to task B3, functions F and / in Eq. (3.1) 

have the following form: 

Obj etive function F(x) = c0 (x) + c{ (x)a 
Deterministic constraints / , (x) = / (x), • • •, fm (x) = fm (x) 

_ _ _ _ _ _ (6.14) 
Reliability constraints fm+l (x) = \p0 (x), fm+2 (x) = xpx (x), • • •, fm+n (x) = y n_x (x) 

Extra constraint fm+n+x (x) = a - pf 

The first step searches for the direction vector h(. by solving a quadratic optimization 

problem 
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0, = -mm{Morm)+ + Mj[f(*X -f(x,0]+^|KvF(x,.) + / i y Vf(x, . ) | 2 | (6.15) 

where / (x)= max / (x), / (x ) + .= max {0,/(x)}. Note that 0, is a quadratic problem 
7=IU q] 

dependent on Lagrange multipliers (p0,px,---,pq) subject to linear constraints 

p0+ px +••• + pq =1. Eq. (6.15) cannot be solved in the same way as Eq. (6.9) in the 

inner approximation, so it is instead solved using the quadratic programming software 

LSSOL (Gill et al., 1986) or the Matlab OPTM toolbox (Matlab, 1999). LSSOL is used 

in the current implementation of OpenSees since it is a collection of FORTRN 77 

subroutines and is faster than the equivalent "Quadprog.m" in the Matlab code. In this 

thesis, the constrained least-squares problem "LS2 Type Objective Function" is used and 

stated in the following form: 

T 1 II • • 2 

minimize F(u) = g \i + — b - Gu | 
2 (6.16) 

subject to L - | c f - u 

where \i = [p0, p{, •••,pv]T, general constraints C = [l, 1, •••,l] ? + l , vectors L and U are 

the lower and upper bounds for all the variables and general constraints, respectively: 

L = [0, 0, ••-,l]r

+ 1 and U = [l, 1, •••,1]^|. The constraints in Eq. (6.16) are equivalent to 

the constraints in Eq. (6.15): 

0<Mj<l, j = 0,\,-,q 
(6.17) 

Mo +Ml + — + Mg

 = 1 

We refer to G as the least-square matrix and to vector b as the vector of observations, 

here b = 0. The objective function in Eq. (6.16) is equivalent to the objective function in 

Eq. (6.15), given the following vector g r and matrix G : 
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g' 

G = dx, 
dFCxJ 

da, 

/ ( ! , ) +-/ 7(x,.) 

ax,. 

da, 

5x,. 

5a, 

(6.18) 

LSSOL can solve Eq. (6.15) in a finite number of iterations and find the solution to 

u* =[/u*0, //, •••,//* ]T . Finally, the search direction is 

h,. = - iL ;VF(x , ) + X^V/7.(x,.)j (6.19) 
7=1 

The second step finds an appropriate step size Xt along the search direction h,. using 

the Armijo rule. Then, a new design is found by x,.+1 = x. + X.h. and used as input data 

for the next iteration. 

Like the inner approximation, the Polak-He algorithm may require an infinite number 
of iterations before it converges to the optimal solution x* for Eq. (6.5). In our analysis, 
we terminate the Polak-He algorithm when 

-crN<0N+l(xN+l)<O (6.20) 

0 < ^ + l ( x „ + l ) < o - „ (6.21) 

with 0N+l(-) and W+1(-) defined in Eqs. (3.25) and (3.23), respectively. The definition of 

<Jn=0.\/N 2 is the same as for the inner approximation, which starts from larger 

tolerance and goes to 0 as N increases. This is reasonable here since the accuracy of the 
semi-infinite optimization algorithm gradually increases with the increase in the 
discretization number and since high accuracy is only required when approaching the 
design point. 

In task B3 we need to evaluate three functions and their gradients with respect to the 
augmented design variable vector x: the objective function, structural constraint 
functions, and reliability constraint functions. 
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d[c0(x) + cf(x)a] df(x) dy/(x) _ dy/(x) dd 
dx dx dx dd dx 

(6.22) 
d[c0(x) + c{(x)a] 8f(x) dy/(x) _ dy/(x) dd 

da da da dd da 
where y/ is the negative value of the limit-state function g, dy/ldd is easily found 
because g is a simple algebraic expression in terms of d, and dd/dx are response 
gradients. Again, the existing FDM or DDM implementations in OpenSees are used to 
obtain the required response gradients. 

In conclusion, the MOOA algorithm solves a series of inequality-constrained problems 

in tasks BI and B3. As the discretization number N increases, the MOOA algorithm 

results in a gradually more accurate solution x. The optimal solution x* is reached when 

/V equals infinity. At the optimal point, the value of the objective function reaches its 

minimum, and the first-order optimality conditions in Eq. (3.21) are satisfied. Therefore, 

one of reliability constraints is active and equal to zero at the optimal point. This means 

that the reliability analysis finds the most probable failure point (MPP) at the optimal 

design point, shown in Figure 6.3. 

6.3 DSA-S Approach 

This section develops a DSA-S approach by combining the problem .reformulation in 
Section 6.1 with the findings of Du and Chen (2002) and Agarwal and Renaud (2004). 
However, the reformulated optimization problem is defined as an inequality constrained 
optimization problem with a single reliability constraint as opposed to infinite constraints 
in the DSA-MOOA approach. In this study, a deterministic optimization problem in Eq. 
(6.5) is first solved to find a new design x. Second, a reliability analysis is performed to 
update the reliability constraint based on the new design x. This sequential iteration is 
repeated until a consistent design is obtained. 

Convergence cannot be proven mathematically for the DSA-S approach, since the 
failure probability used for the deterministic optimization analysis is obtained from the 
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last iteration. However, the DSA-S approach is still attractive because a consistent design 

is obtained at a considerably lower computational cost. The computational time of 

discretization in the DAS-MOOA approach is saved since there is only one reliability 

constraint. Another advantage of the DSA-S approach is the decoupling of the reliability 

and optimization calculations. It is flexible in selecting optimization algorithms and 

reliability computation methods. 

X 0 > Pf ^ 1 ' ^2 

1 = 0, j = 0, f 0 =l a0=pf, x n =(x n ,a 0 ) 

C I - Update design x and variable a 

D l - Deterministic optimization analysis 

min^0(x) + cf(x)a|f(x) < 0,y/(x,a) < 0,0 < a < p j 

x,a 
D2 -Reliability constraint update 

min{g(x,u)|||u||2 -[-®-\a)t]2 <o} 

^(x) = -g(x , -0 _ l (a) /u) 

u, ^(x) 

Yes 

X /+ l ' a i + l 

C 2 - Compute failure probability p (x) 

i tnaM,pf{xM) 
C 3 - Update parameter t 

tM=t,*-\aM)/<l>-l(j>f(xM)) 

i - i +1 
No Yes 

Optimal design 

Figure 6.4 Flow chart of DSA-S approach 
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Figure 6.4 presents a flow chart of the DSA-S approach, which consists of iterations at 
several levels. Upon the initialization of design x and parameters a and t, the top level 
iteration includes three tasks: 

CI. Update design vector x and auxiliary variable a. 

C2. Compute failure probability pf(x) using a method that is more accurate than 

FORM. 

C3. Update parameter t. 

Tasks C2 and C3 are same as tasks A2 and A3 in the DSA-MOOA approach. The top 
level iteration is repeated until design vector x, auxiliary design variable a, and parameter 
t stabilize. Usually, 5 to 15 iterations (CI to C3) are needed to reach a consistent 
reliability based design. 

Task CI updates values of x and a in two steps: deterministic optimization analysis and 
reliability constraint update. These are described in tasks Dl and D2, respectively. In the 
current implementation, the Polak-He algorithm is employed to solve these two tasks. 

Dl . Deterministic optimization analysis: The inequality constrained optimization 

problem in Eq. (6.5) is solved using the Polak-He algorithm. The constraints in this 

problem include several structural constraints, one reliability constraint ipCx) < 0, and 

an extra constraint a<pf. The result is a new augmented design vector x = (x,a). 

During the first iteration, the random variables are set equal to their mean values, and 

parameter a is set as pf. The Polak-He algorithm is terminated when user-defined 

tolerance s is satisfied. Task Dl is similar to task B3 in the DSA-MOOA approach with 

only one reliability constraint and fixed high tolerance. Task Dl also needs to solve a 

quadratic sub-optimization problem with linear constraints using the quadratic 

programming software LSSOL (Gill et al., 1986) or Matlab OPTM toolbox 

"Quadprog.m " (Matlab, 1999). 

D2. Reliability constraint update: Obtain the minimum value of the limit-state 

function within the ball B(0, - O - 1 (a) t) and the corresponding random vector u using 
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the Polak-He algorithm. Then, the reliability constraint is updated with the new random 

vector u. Terminate the Polak-He algorithm when the user-defined tolerance s is 

satisfied. Task D2 is similar to task BI in the DSA-MOOA approach with fixed high 

tolerance. 

T a s k s D l a n d D 2 a r e r e p e a t e d u n t i l b o t h d e s i g n v a r i a b l e s a n d r a n d o m v a r i a b l e s a r e 

c o n s i s t e n t . I n o t h e r w o r d s , t h e c a l c u l a t i o n s a re t e r m i n a t e d w h e n ||x,.+1 -x,.|| < s, 

u/+1 -u(.||<£ a n d / o r i>iE, w h e r e s i s a p r e d e f i n e d p o s i t i v e p a r a m e t e r a n d ie i s t h e 

m a x i m u m n u m b e r o f i t e r a t i o n s . T y p i c a l l y , 3 to 10 i t e r a t i o n s ( D l t o D 2 ) a r e r e q u i r e d to 

find a n o p t i m a l s o l u t i o n . 

6.4 Object-Oriented Implementation in OpenSees 

I m p l e m e n t a t i o n o f R B D O p r o c e d u r e s f o r f i n i t e e l e m e n t a p p l i c a t i o n s p o s e s a n u m b e r o f 

c h a l l e n g e s to t h e s o f t w a r e d e v e l o p e r . F i r s t , t h e s o f t w a r e m u s t b e a b l e to i n c o r p o r a t e n e w 

d e v e l o p m e n t s a n d f e a t u r e s a s r e s e a r c h p r o g r e s s e s . S e c o n d , t h e i n t e r a c t i o n b e t w e e n t h e 

f i n i t e e l e m e n t , r e l i a b i l i t y , a n d o p t i m i z a t i o n p r o c e d u r e s m u s t b e r o b u s t a n d e f f i c i e n t . F o r 

i n s t a n c e , it i s r e q u i r e d tha t r e a l i z a t i o n s o f r a n d o m v a r i a b l e s a n d d e s i g n v a r i a b l e s b e 

r e p e a t e d l y m a p p e d i n t o t h e finite e l e m e n t m o d e l . A d d i t i o n a l l y , t h e r e s p o n s e a n d r e s p o n s e 

g r a d i e n t s m u s t b e a c c u r a t e l y a n d e f f i c i e n t l y c o m p u t e d i n t h e f i n i t e e l e m e n t m o d e l a n d 

r e t u r n e d to t h e r e l i a b i l i t y a n d o p t i m i z a t i o n a l g o r i t h m s . O p e n S e e s h a s t u r n e d o u t to b e a n 

i d e a l s o f t w a r e p l a t f o r m f o r t h i s p u r p o s e . T h i s i s m a i n l y d u e to t h e o b j e c t - o r i e n t e d 

s o f t w a r e a r c h i t e c t u r e that t h r o u g h o u t t h e e v o l u t i o n o f O p e n S e e s h a s k e p t f o c u s o n 

m a i n t a i n a b i l i t y a n d e x t e n s i b i l i t y . 

T o i m p l e m e n t t h e R B D O , five n e w o b j e c t s w e r e a d d e d i n t o t h e ReliabiltyDomain, 

w h i l e t w o n e w a n a l y s i s t y p e s (runDSA-MOOAAnalysis a n d runDSA-SAnalysis) w e r e 

a d d e d to t h e o r i g i n a l ReliabilityAnalysis o b j e c t . A s s h o w n i n F i g u r e 6 . 5 , t h e p r e s e n t 

o p t i m i z a t i o n w o r k a d d s designVariable, designVariablePositioner, objectiveFunction, 

costFunction, a n d constraintFunction o b j e c t s to t h e Reliability Domain. A designVariable 
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object defines design variables by given their start points. A designVariablePositioner 

object is used to map the design variables into structural properties in the finite element 

model. The objectiveFunction, costFunction, and constraintFunction objects are user-

defined expressions. A costFunciton object is used to create functions that are 

subsequently combined into an expression for an objectiveFunction object. A 

constraintFunction object may be expressed using various quantities including design 

variables and structural response quantities from an OpenSees finite element analysis. 

ReliabilityDomain 

designVariable costFunction obj ecti veFunction 

constraintFunction designVariablePositioner 

Figure 6.5 New objects for optimization analysis in ReliabilityDomain 

(The diamond symbol denotes analysis tools) 

In Figure 6.6, two new "analysis types" added to OpenSees are named runDSA-

MOOAAnalysis and runDSA-SAnalysis. They are the orchestrating algorithms introduced 

in this thesis. The runDSA-MOOAAnalysis is the top level of the DSA-MOOA approach 

and is responsible for obtaining the optimal design by orchestrating tasks A l to A 3 . The 

runDSA-SAnalysis is the top level of the DSA-S approach and is responsible for 

obtaining the optimal design by orchestrating tasks CI to C3. 

Three new "analysis tools" are also implemented: NonlinSinglelneqOpt, 

NonlinMultilneqOpt, and LinMultilneqOpt. These are so-called base classes that promise 

features but do not contain actual implementations. Any number of sub-classes may be 

implemented to perform the promised features. This illustrates the extensibility feature of 

OpenSees: new algorithms to perform various analysis tasks can be implemented without 

having to modify the software framework. The base class NonlinSinglelneqOpt promises 

to solve tasks B l and D2. The sub-class implemented for this base class is named 

PolakHeNonlinSinglelneqOpt. Similarly, the base class NonlinMultilneqOpt promises to 
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solve tasks B3 and Dl . The current subclass implementation is 
PolakHeNonlinMultilneqOpt. As mentioned above, in tasks B3 and Dl a quadratic sub-
optimization problem with linear constraints is solved to find the search direction. This is 
fulfilled by the base class LinMultilneqOpt. Currently, subclass LSSOLLinMultilneqOpt 

is available in the implementation of OpenSees. 

Reliability Analysis 

runD S A-MOO AAnaly sis runDSA-SAnalysis 

NonlinSinglelneqOpt NonlinMultilneqOpt 

PolakHeNonlinSinglelneqOpt PolakHeNonlinMultilneqOpt 

evaluateFun evaluateGradFun evaluateFun LinMultilneqOpt evaluateGradFun 

LSSOLLinMultilneqOpt 

Figure 6.6 Software framework for optimization analysis in OpenSees 
(Triangle symbol denotes the relationship between base class and 

subclasses, while the diamond symbol denotes analysis tools) 

The category of "analysis tools" also contains classes such as evaluateFun and 
evaluateGradFun. The evaluateFun object evaluates the values of objective functions, 

76 



cost functions, and constraint functions. The evaluateGradFun object evaluates the 
gradients of objective functions, cost functions, and constraint functions. 

Optimization module 

evaluateFun evaluateGradFun 

[c0(x) + cf(x)a],fj(x) d[c0(x) + cf(x)a] dfjjx) 
dx ' dx 

1 

NonlinMultilneq ^—^ runDSA-MOOAAnalysis / 
Opt runDSA-SAnalysis 

Pf>f: 
dy/ 
~dx~ Pf 

u , x u , x 

Reliability Finite element 
module . dd dd . module 

d,—,— 
du dx 

Figure 6.7 Interaction between optimization, reliability, and finite element module 

Of particular interest in this implementation is the interaction between the above 
algorithms and the existing analysis tools in OpenSees. Implementations were already 
available to map random variables u and design variables x into the finite element model 
and the reliability module, as well as to obtain response and response sensitivities. Figure 
6.7 schematically shows the interfaces among the optimization algorithm, the finite 
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element module, and the reliability module in OpenSees. Given design vector x and 

random vector u, the finite element module can compute response d and response 

sensitivities dd/du and dd/dx with respect to random variables and design variables, 

respectively. The reliability module can return failure probability pf, limit-state function 

value g , and gradients dg I du with respect to random variables and dg I dx with respect 

to design variables. Function in Figure 6.7 is the negative value of limit-state function 

g. Inside of the optimization module, evaluateFun and evaluateGradFun objects can 

provide the values and gradients of the objective functions, cost functions, and constraint 

functions. Response sensitivity methods F D M and D D M in Chapter 4 are used to 

compute such gradients. 
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Chapter 7 Numerical Examples and Case Studies 

In this chapter, the new implementations in OpenSees are demonstrated by performing 
reliability-based design optimization (RBDO) of a real-world structure. The structure 
under consideration is a six-storey reinforced concrete building that serves as a design 
example in the Canadian Concrete Design Handbook (Cement Association of Canada, 
1995). Three structural models are considered: (1) a linear elastic model, where the 
elements are modelled using the elasticBeam element of OpenSees; (2) a nonlinear 
model, where the elements are modelled using the beamWithHinges element of 
OpenSees; and (3) a nonlinear model, where the elements are modelled using the 
nonlinearBeamColumn element of OpenSees with fibre-discretized cross-sections. The 
response of the building is assessed using the static "pushover" analysis. The limit-state 
function is specified in terms of the total drift of the structure. The objective is to 
minimize the total expected cost of the design, given structural constraints and reliability 
constraints. Moreover, this study compares the convergence performance and the 
computation time for the algorithms and structural models presented herein. In particular, 
convergence problems may occur in the algorithms that address the inner and outer 
approximation problems described in the previous chapter. For example, a scaling of the 
involved functions is required when the Polak-He algorithm is used to address these 
problems. We also observe that the computational time is increased when redundant 
(inactive) constraints are added. Such experience from the hands-on optimization analysis 
is valuable for users of the developed software and is reported below. 

7 . 1 S i x - S t o r e y D u c t i l e M o m e n t R e s i s t i n g F r a m e 

Consider a six-storey reinforced concrete frame building located in Vancouver, Canada 
(Cement Association of Canada, 1995). The building has seven bays with 6m spacing in 
the North-South (NS) direction and three bays (two office bays with 9m spacing and a 
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central 6m corridor bay) in the East-West (EW) direction. The interior columns are all 

500 x500mm, while the exterior columns are all 450 x450mm. The beams of both NS and 

EW frames are 400mm wide x 600mm deep for the first three storeys and 400 x550mm 

for the top three storeys. Concrete with mean strength fc = 30MPa is used throughout, 

and the reinforcement has mean yield strength fy - 400MPa. The Canadian Concrete 
Design Handbook (1995) specifies that the frame is designed as a ductile moment 
resisting frame with R = 4.0, where R is the ductility force modification factor that 
reflects the capacity of a structure to dissipate energy through inelastic behaviour. 
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Figure 7.1 Ductile moment-resisting frame model 
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This thesis aims to optimize the design of the columns and beams of this ductile 
moment resisting frame. For this purpose, we consider linear and nonlinear pushover 
analyses of the second EW frame. The finite element model and the applied loads are 
illustrated in Figure 7.1. 

The load case of "l.Oxdead load + 0.5xlive load + l.Oxearthquake load" is considered 
in the analysis. We consider dead loads and live loads as deterministic. The lateral loads 
from ground motion have lognormal distribution. Their means and coefficients of 
variation are shown in Table 7.1. 

Table 7.1 Vertical loads and lateral loads (c.o.v. indicates the coefficient of variation) 

Loads Mean c.o.v. Type Description 
H 28490 kN 0.15 lognormal random lateral load on floor 1 
H2 48950 kN 0.15 lognormal random lateral load on floor 2 
H3 70070 kN 0.15 lognormal random lateral load on floor 3 
HA 89100 kN 0.15 lognormal random lateral load on floor 4 
H5 109780 kN 0.15 lognormal random lateral load on floor 5 
H6 131890 kN 0.15 lognormal random lateral load on roof 
Pi 108000 kN N/A N/A deterministic vertical load 
Pi 105000 kN N/A N/A deterministic vertical load 
Pi 96000 kN N/A N/A deterministic vertical load 
P4 184000 kN N/A N/A deterministic vertical load 
Ps 178000 kN N/A N/A deterministic vertical load 
P6 182000 kN N/A N/A deterministic vertical load 

7.1.1 Case 1: Elastic Analysis using elasticBeam Elements 

In earthquake engineering it is common to assess the structural capacity using inelastic 
pushover analysis. As a reference, a linear elastic analysis is also performed. In this 
thesis, the elasticBeam element of OpenSees is used for the linear elastic analysis. This 
type of element contains a linear elastic material model, without any yield limit. The 
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"equal displacement principle" shown in Figure 7.2 is employed to compute the total 

inelastic displacement de, subject to the lateral seismic force V. The solid line in the 

figure denotes the inelastic response. The corresponding linear system, signified by the 

dashed line, applies equivalent lateral seismic force Ve = VxR and results in the same 

displacement de. 

Correspoinding linear system 

dJR de d 

Figure 7.2 Equal displacement principle 

In the linear case, 12 design variables are collected in the vector 

x = (bx,hx,b2,h2,b^,hi,bA,hA,b5,h5,b6,h6), as defined in Table 7.2. A total of 48 random 

variables describing the loading and material properties are collected in the vector 

\ = (Hi,H2,Hi,H4,H5,H6,£42), where H\, H2, H3, HA, H5, and H6 are the 

equivalent lateral loads from the first storey to the roof, respectively. E\ to £ 4 2 represent 

the modulus of elasticity of the concrete material for all 42 elements. We assume that all 

random variables are lognormally distributed with the means and coefficients of variation 

listed in Table 7.3. Random variables H\ to H$ are correlated with the correlation 

coefficient of 0.7, while random variables E\ to £ 4 2 are correlated with the correlation 

coefficient of 0.7. 
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Table 7.2 Definition and initial values of design variables for Cases 1 and 2 

Variable Initial Value Description 
0.45x0.45m width and depth of exterior columns of first three stories 

b2X Jl2 0.45x0.45m width and depth of exterior columns of top three stories 
63x hi 0.50x0.50m width and depth of interior columns of first three stories 
64 X / l 4 0.50x0.50m width and depth of interior columns of top three stories 
bs x /z5 0.40x0.60m width and depth of first three stories' beams 
be* he 0.40x0.55m width and depth of top three stories' beams 

Table 7.3 Statistics of random variables in Case 1 (c.o.v. indicates the coefficient of 
variation, and cc. indicates the correlation coefficient) 

Variable Mean c.o.v. cc. Type Description 
Hx 4x28490 kN 0.15 lognormal equivalent lateral load on floor 1 
H2 4x48950 kN 0.15 lognormal equivalent lateral load on floor 2 
# 3 4x70070 kN 0.15 

0.7 
lognormal equivalent lateral load on floor 3 

H4 4x89100 kN 0.15 
0.7 

lognormal equivalent lateral load on floor 4 
H5 4x109780 kN 0.15 lognormal equivalent lateral load on floor 5 
He 4x131890 kN 0.15 lognormal equivalent lateral load on roof 

E\ ~ E42 24648 MPa 0.15 0.7 lognormal modulus of elasticity of concrete 

The reliability problem for the frame is defined in terms of the limit-state function 

g(d(x,v)) = 23.1x0.02-rfroof (7.1) 

where 23.1m is the height of the frame, 0.02 is the maximum limit of the drift ratio, and 

dT00{ is the roof displacement. 

In this thesis, our objective is to achieve a frame design that minimizes the total 
expected cost, given specific constraints. For this purpose, we model the initial cost of 
design and the cost of failure in terms of the total volume of the members. The cost of 
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failure is assumed to be five times the volume of the members. This leads to the 
following objective function: 

where L, represent the total length of the members in each of the six categories identified 
in the design vector, while hi and hi are cross-sectional dimensions. The reliability 
constraint is prescribed as pf(x) < 0.00135, which implies a minimum reliability index 

of 3.0. The structural constraints are prescribed to be 0 < 6„ hi and 0.5 < 6,//z, < 2 to 
ensure positive dimensions and appropriate aspect ratios, where / = [1, 2, 3, 4, 5, 6]. 

A stand-alone finite element reliability analysis using elasticBeam elements was 
performed. For initial values of the design variables in Table 7.2 and mean realizations of 
the random variables in Table 7.3, the lateral displacement at the roof level was 238mm. 
The corresponding drift ratio was 238/23100 = 1.03%, which was less than the limit of 
2%. A first-order reliability analysis (FORM) resulted in a reliability index 8= 3.646 and 

r 

corresponding failure probability pf(x0) = 0.000133, which is acceptable according to 

the prescribed reliability constraint. The total expected cost of the initial design in terms 
of volume was 54.062m3. 

The first optimization analysis was performed using the DSA-MOOA approach. This 
approach starts from the semi-infinite optimization analysis (task Al), which iteratively 
updates the constraints represented by ip and obtains improved designs for / = 1. These 
were identified earlier as tasks B l to B3. In this case, the limit-state function was linear, 
since a linear relationship exists between the random variables and the response quantity 
droof. Convergence was achieved within 1 to 3 iterations for task B l , and within 1 to 10 
iterations for task B3. After discretizing the ball using the method of outer approximation 
(MOOA) algorithm by 75 points—after 75 loops of task B l to B3—the algorithm 
repeatedly produced the same design. This was taken to indicate convergence. At the 
optimal design there were five reliability constraints. The tolerance of this solution to the 
"true" converged solution was crN =0.1/ 752 =1.78xl0"5. The total expected cost was 
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reduced from 54.062m3 to 38.701m3, while the failure probability was 0.00135, which 
satisfied the reliability constraint. Then, an importance sampling analysis based on the 
new design variables was performed in task A2 to get the "real" failure probability with a 
2% coefficient of variation of the sampling result. The results were 38.71 lm 3 for the total 
cost and 0.00140 for the failure probability. This difference was acceptable, and the 
RBDO was stopped after one top level of iteration (tasks A l and A2). This was due to the 
linear nature of the problem. 

The second optimization analysis was performed using the DSA-S approach. The 
algorithm started with task CI, which sequentially completed a deterministic 
optimization analysis and then found a new reliability constraint for t = 1. These were 
identified earlier as tasks Dl and D2. Similar to the DSA-MOOA approach, the 
convergences within tasks Dl and D2 was achieved quickly—within 1 to 30 iterations for 
task Dl and within 1 to 6 iterations for task D2—since the limit-state function was linear. 
We used the same tolerance as with the DSA-MOOA to judge whether convergence was 
achieved (i.e., s = 0.1/752 =1.78xl0"5). The optimal design was achieved after three 
loops of tasks Dl and D2. The DSA-S approach and the DSA-MOOA approach gave the 
same design: the total expected cost was 38.701m3 and the failure probability was 
0.00135. In the next task, C2, we got the same solution as in task A2 in the DSA-MOOA 
approach using importance sampling with a 2% coefficient of variation of the sampling 
result. We accepted this as the optimal design and terminated the analysis. 

Table 7.4a Results from RBDO analysis for Case 1 

t bx h\ bi hi bi b4 
ht, bs hs 

1.000 0.45 0.45 0.45 0.45 0.5 0.5 0.5 0.5 , 0.4 0.6 
0.236 0.471 0.213 0.426 0.358 0.716 0.294 0.588 0.311 0.622 

Table 7.4b Results from RBDO analysis for Case 1 (continued) 

t be he a P c0 +c(a cQ+cfp 

1.000 0.4 0.55 0.000133 0.000141 54.062 54.064 
0.261 0.522 0.00135 0.00140 38.701 38.711 
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Tables 7.4a and 7.4b show the results obtained from the two implemented approaches. 

The presented results include the value of the 12 design variables, the auxiliary parameter 

a, the failure probability pf from the importance sampling with a 2% coefficient of 

variation, and the total expected costs corresponding to a and pf. The first rows show 

the values of the initial design, while the second rows show values of the optimal design. 

The two approaches produced the same solution, although the D S A - M O O A approach 

guaranteed convergence with a first order approximation, while the D S A - S approach did 

not. 

0.00 0.08 0.16 0.24 0.32 0.40 0.48 

Roof Drift (m) 

Figure 7.3 Structural responses for Case 1 (load factor versus roof displacement) 

at: (1) the mean point of the initial design; (2) the M P P of the initial design; (3) 

the mean point of the optimal design; and (4) the M P P of the optimal design. 
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Figure 7.3 shows the structural response of four characteristic realizations of design 
variables and random variables. The response at the mean realization of the random 
variables for the initial (original) design is shown as the thin solid line. As expected, this 
response is linear. At the most probable failure point (MPP) of the initial design, the 
structural response is still linear, but reaches the 2% of drift limit 0.462m, as prescribed 
by the limit-state function. The structural response at the mean realization of random 
variables for the optimal design is shown as the thick solid line. The response is linear, 
but has a larger displacement than in the initial design, which is consistent with the 
failure probability of the structure increasing from 0.000133 to 0.00135. Finally, the 
structural response at the MPP of the optimal design is linear and reaches 2% of the drift 
limit. The optimal design has an acceptable reliability, but a lower total expected cost. 
This serves as an indication of the usefulness of the RBDO approach. 

Table 7.5 Comparison of computational time for Case 1 

DSA-MOOA DSA-S 
DDM FDM DDM FDM 

g 555 8559 147 1227 
g with dg/du 80 N/A 8 N/A 
g with dg/dx 347 N/A 58 N/A ' 

Importance Sampling 112486 112607 

It is of interest to compare the computational cost of two implemented approaches, 
particularly with respect to which method is being used to compute the response 
gradients, the direct differentiation method (DDM) or the finite difference method 
(FDM). For this purpose, Table 7.5 lists the number of calls to the limit state function, 
which is a key indicator when studying computation time. The DDM method is much 
more efficient in computing gradients than the FDM method. For example, the DSA-
MOOA approach requires 555 single limit-state function calls, 80 limit-state function 
calls together with the computation of dg/du, and 347 limit-state function calls together 
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with the computations of dg/dx. Thus, altogether 982 limit-state function calls are 

required for the DDM method. On the other hand, the FDM method computes the 
gradient using one extra limit-state function evaluation for each random variable and 
design variable. Thus, the total number of limit-state function calls required for the FDM 
method is 555, as well as 80 times the number of random variables (48) and 347 times the 
number of design variables (12). Finally, 8,559 limit-state function calls are required, 
which is much more than needed for the DDM method. The two approaches require a 
similar number of simulations to compute the failure probability using importance 
sampling, shown in the last row of Table 7.5. 

The DSA-S approach, which requires 213 (147+8+58) limit-state function calls, 
appears to be more efficient than the DSA-MOOA approach, which requires 982 limit-
state function calls for the DDM method. The key reason for this is that only one 
reliability constraint is maintained in the DSA-S approach, while the DSA-MOOA 
approach expands reliability constraints step by step when discretizing the ball with more 
points. 

7.1.2 Case 2: Nonlinear Analysis using beamWithHinges Elements 

In this section we perform a nonlinear pushover analysis by using the beam WithHinges 
element of OpenSees. We consider the plasticity to be concentrated at over 10% of the 
element length at the element ends. The elastic properties are integrated over the beam 

plastic hinge linear elastic plastic hinge 

left node o 0 0 

0.1Z 0.81 0.12 

-O right node 

Figure 7.4 beamWithHinges element 
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interior, which is considered to be linear elastic. Forces and deformations of the inelastic 

region are sampled at the hinge midpoints. A bi-linear or smooth uniaxial material is used 

in the plastic hinge region to model the moment-rotation relationship. A typical 

beamWithHinges element used in this thesis is illustrated in Figure 7.4. 

As in the linear case, 12 design variables shown in Figure 7.2 are collected in the 

vector x = (bl,hi,b2,h2,bi,hi,b4,h4,b5,h5,b6,h6). 48 random variables are collected in 

the vector v = (Hl,H2,Hi,H4,H5,H6,E],---,E42) to describe loading and material 

properties. We assume that all random variables are lognormally distributed with the 

means and coefficients of variation listed in Table 7.6. Random variables H\ to H$ are 

correlated with the correlation coefficient of 0.7, and random variables E\ to £42 are 

correlated with the correlation coefficient of 0.7. The limit-state function and the 

objective function are as defined in Eqs. (7.1) and (7.2). The reliability constraint and 

structural constraints are as prescribed for the linear structure. 

Table 7.6 Statistics of random variables for Case 2 (c.o.v. indicates the coefficient of 

variation, and c.c. indicates the correlation coefficient) 

Variable Mean c.o.v. c.c. Type Description 

H- 28490 k N 0.15 lognormal lateral load on floor 1 

H2 48950 k N 0.15 lognormal lateral load on floor 2 

# 3 70070 k N 0.15 
0.7 

lognormal lateral load on floor 3 

H4 89100 k N 0.15 
0.7 

lognormal lateral load on floor 4 

H5 109780 k N 0.15 lognormal lateral load on floor 5 

H6 131890 k N 0.15 lognormal lateral load on roof 

E\~ E42 11097 M P a 0.15 0.7 lognormal modulus of elasticity of concrete 

A stand-alone finite element reliability analysis was performed. The bi-linear material 

model was employed to model the plastic hinges. The stiffness of cross-section was 

evaluated by EI = Ebb? / 1 2 , where b and h were the width and the depth of the section, 
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and the value of E was smaller than in the linear case because of considering concrete 

cracking. For all columns, the yield stain ey = 0.84, and the strain hardening factor 

a -0.5. For all the beams, the yield stain sy =0.52, and the strain hardening factor 

a - 0.3. At the mean realization of the random variables in Table 7.6 and with the initial 
design in Table 7.2, the lateral displacement at the roof level was 131mm. The 
corresponding drift ratio was 131/23100 = 0.57%, which was less than the limit of 2%. A 
reliability analysis using the FORM resulted in a reliability index /? = 3.536 and the 
corresponding failure probability pf(\0) = 0.000203, which satisfied the prescribed 

reliability constraint. The total expected cost of the initial design was 54.080m . 

The first optimization analysis was performed using the DSA-MOOA approach with 
the bi-linear material model. As outlined previously, the algorithm starts with the semi-
infinite optimization analysis (task Al). In this case, the convergence within task B3 was 
achieved for the first few iterations, namely when the number of constraints represented 
by ip was low. However, the algorithm in task B3, the PolakHeNonlinMultilneqOpt, 

exhibited progressively slower convergence as the number of constraints increased. In 
fact, this problem made the algorithm grind to a halt. The presence of gradient 
discontinuities due to sudden yielding events of the bi-linear material models was taken 
to be the reason for this problem. 

As a remedy to the above problem, a smoothed version of the bi-linear model 
introduced in Chapter 5 was substituted. A circular segment in a normalized stress-strain 
plane that started at 80% of the yield strength, y - 0.8, was employed to smooth the bi­
linear material as illustrated in Figure 5.2. Remarkably, the analysis proceeded without 
any of the convergence problems described above. Convergence was achieved within 1 to 
6 iterations for task BI, and within 1 to 65 iterations for task B3. This led us to conclude 
that the presence of a non-smooth response surface due to sudden yielding events was a 
serious impediment to the performance of the algorithm. Similar problems were also 
observed in the stand-alone reliability analysis. However, in our experience the problem 
was significantly amplified in the optimization analysis context. 
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After discretizing the ball in the MOOA algorithm by 75 points, or after 75 loops of 

tasks Bl to B3, the algorithm repeatedly produced the same design. At the design point, 

there were 12 reliability constraints. The tolerance of this solution to the "true" converged 

point was aN = 0.1/752 =1.78xl0"5. The total cost was reduced from 54.080m3 to 

37.108m3, and the failure probability was 0.00135, which satisfied the reliability 
constraint. In the next task, A2, importance sampling based on the new design variables 
was performed to get the "real" failure probability with a 2% coefficient of variation of 
the sampling result. The results were 37.127m3 as the total cost and 0.00146 as the failure 
probability. The difference between the two failure probabilities (0.00135 from task A l 
and 0.00146 from task A2) shows the nonlinearity of the structure. In task A3, parameter 
/ was updated, and the top level of the iteration (tasks A l to A3) was repeated. After two 
more loops of tasks A l to A3, the differences of failure probabilities between task A l and 
A2 were reduced and accepted, and the RBDO was stopped. The final total cost was 
37.197m3, and the failure probability was 0.00135. 

The second optimization analysis was performed using the DSA-S approach with the 
smooth material model. The algorithm started with task CI. Convergence was achieved 
within 1 to 109 iterations for task Dl , and within 1 to 13 iterations for task D2. We used 
the same tolerance to judge the consistent design (i.e., e = 0.\/752 = 1.78xl0"5). The 
consistent design was achieved after four loops of tasks Dl and D2. The DSA-S approach 
and the DSA-MOOA approach gave the same design: the total cost was 37.108m and the 
failure probability was 0.00135. In the next task, C2, the DSA-S approach produced the 
same solution as task A2 in the DSA-MOOA approach using importance sampling with a 
2% coefficient of variation. As in the DSA-MOOA approach, the top level of iteration 
(tasks CI to C3) was repeated for two more loops, producing consistent designs. The 
optimization procedure was stopped at the total cost of 37.197m3 and the failure 
probability of 0.00135. 

Tables 7.7a and 7.7b show the results obtained from the two implemented approaches. 
The presented results include the value of 12 design variables, the auxiliary parameter a, 
the failure probability p from the importance sampling with a 2% coefficient of 
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variation, and the total expected cost corresponding to a and p . The first rows show the 

values of the initial design, while the following rows show values of the optimal design. 

In each of these iterations, the parameter t is updated to account for nonlinearities in the 

limit-state function. After the first iteration, the value of t was updated as 

1.0xO_1(0.00135)/O"'(0.00146) = 1.0077. The analysis was carried out for two more 

iterations. No appreciable difference in the design was observed. In the last row of the 

table, a and p converge to the same acceptable value, 0.00135. In effect, the objective 

functions have reached the minimum value: 37.197m3. Hence, the design variables in the 

last row of the table can be accepted as the optimal design. 

Table 7.7a Results from RBDO analysis for Case 2 

t bx hi bi h2 h h b4 
/?4 b5 hs 

1.000 0.45 0.45 0.45 0.45 0.5 0.5 0.5 0.5 0.4 0.6 
1.0077 0.246 0.491 0.200 0.399 0.316 0.631 0.289 0.577 0.323 0.645 
1.0089 0.246 0.492 0.200 0.400 0.316 0.632 0.289 0.578 0.323 0.646 
1.0086 0.246 0.492 0.200 0.400 0.316 0.632 0.289 0.578 0.323 0.646 

Table 7.7b Results from RBDO analysis for Case 2 (continued) 

t be he a P c0 +c{a c0+c{p 

1.000 0.4 0.55 0.000203 0.000219 54.080 54.085 
1.0077 0.246 0.492 0.00135 0.00146 37.108 37.127 
1.0089 0.246 0.492 0.00135 0.00137 37.186 37.189 
1.0086 0.246 0.492 0.00135 0.00135 37.197 37.197 

It is observed that the two approaches obtain an improved design that is close to the 
final solution already after the first top-level iteration. This can also be seen in Figures 
7.5, where the total expected costs (objective function) are plotted as the function of the 
iteration number. This phenomenon shows that the structure is not highly nonlinear and 
that the implemented approaches are effective in dealing with the nonlinear problem. 
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0 1 2 3 
Loops of Top Level 

Figure 7.5 Evolution of the total expected cost for objective functions for 

Case2 (l)c0(x) + cf(x)a and (2) c0(x) + c{(x)p(x) 

Figure 7.6 shows the structural response for four characteristic realizations of design 
variables and random variables. The response at the mean realization of random variables 
of the initial (original) design is shown as the thin solid line. As expected, this response is 
close to linear, because no significant damage (yielding) is anticipated for this realization. 
At the MPP of the initial design, however, substantial yielding occurs. This is reasonable, 
since this realization represents failure. Third, the structural response at the mean 
realization of random variables for the optimal design is shown as the thick solid line. 
This response has larger displacement than the initial design. Finally, the structural 
response at the MPP of the optimal design is also shown. Again, significant nonlinearity 
in the finite element response is observed. This response is similar to that of the initial 
design, but it is not equal to it. This is reasonable, because the limit-state function is 

93 



0.00 0.08 0.16 0.24 0.32 0.40 0.48 

Roof Drift (m) 

Figure 7.6 Structural responses for Case 2 (load factor versus roof displacement) 
at: (1) the mean point of the initial design; (2) the MPP of the initial design; (3) 
the mean point of the optimal design; and (4) the MPP of the optimal design. 

altered by changes in the structural design. The apparent lower value of the stiffness at 
the MPP of the optimal design is explained as follows: for the optimal design a greater 
reduction of the stiffness is required to "achieve" failure (i.e., to obtain the MPP). Again, 
we observe that the optimal design has an acceptable reliability and a reduced total 
expected cost. This serves as an indication of the usefulness of the RBDO approach. 

Table 7.8 compares the computational cost of the two implemented approaches. The 
data in the table come from the first iteration, and are almost the same as the data from 
the second and third iterations. The DSA-S approach, requiring 6,195 limit-state function 
calls, appears to be more efficient than the DSA-MOOA approach, requiring 22,730 
limit-state function calls using the FDM method. We have observed that the nonlinear 
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case requires significantly more effort than the linear case, which only requires 1,227 and 

8,559 limit-state function calls. For the linear case, updates in design do not dramatically 

change the corresponding MPP of the reliability analysis. There are only five reliability 

constraints after 75 loops of tasks B l to B3. For the nonlinear cases, however, the MPP 

of the reliability analysis clearly changes when a new design is found. In addition, in 

nonlinear cases there are 12 reliability constraints after 75 loops of tasks B l to B3. 

Table 7.8 Comparison of computational time for Case 2 

D S A - M O O A by F D M DSA-S by F D M 

g 22730 6195 

Importance Sampling 109436 109342 

7.1.3 Case 3: Nonlinear Analysis using dispBeamColumn Elements and fibre 

Sections 

In this section we perform a nonlinear pushover analysis by using the dispBeamColumn 

element and the fibre section of OpenSees. To describe a better curvature distribution 

along the element, one original element was divided into four elements, with four 

integration points along each element. Each column and beam section was discretized 

into about 20 fibres to give an "approximately continuous" structural response. A l l of the 

fibres were described using the bi-linear concrete material. In this case, an 

elasticPerfectlyPlastic material is used as the concrete material by setting FyP as 0, as 

shown in Figure 4.4. For the reinforced bars of these sections, the smooth steel material 

was used, as shown in Figure 5.2. Typical fibre sections of columns and beams are 

illustrated in Figure 7.7. 

In this nonlinear case, 18 design variables are collected in the vector 

x = (6 , ,h x , b 2 , h 2 , b 3 , h 3 , b A , h A , b 5 , h 5 , b 6 , h ( ) ,A x ,A 2 ,A 3 ,A A ,A 5 ,A 6 ) . In addition to b and h 
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defined in Cases 1 and 2, this case has the area of steel bars A as design variables. The 
definitions and initial values of b, h, and A are described in Table 7.9. 

unconfined concrete 
" 20 fibers N 

confined concrete 
20 fibers 

reinforced steel layer 

\ unconfined concrete 
2 fibers 

Column Fiber Section Beam Fiber Section 
Figure 7.7 Typical fibre sections for columns and beams 

78 random variables for the loading and material properties are collected in the vector 
V =

 C^l'" ' ' - ^ 6 ' feel''"'' fees ' ^ eel»" *' ^ecS >fcl>'">fcU> ^ c l ' " " ' ^ c l 4 ' fy\'''"' fy 14 ' ^ 1 ' " " " ' ^ 1 4 ) • 

We assume that all random variables are lognormally distributed with the means and 

coefficients of variation listed in Table 7.10. The random variables are correlated with the 

correlation coefficient of 0.7 in several groups. More specifically, we have eight random 

variables for confined concrete strength f ' c c and eight random variables for modulus of 

elasticity of confined concrete Ecc. They are assigned to eight types of columns: first 

three-storey columns and top three-storey columns on four axes A, B, C, and D. We also 

have 14 random variables for unconfined concrete strength f ' c and 14 random variables 

for modulus of elasticity of unconfined concrete Ec. They are assigned to eight types of 

columns and six types of beams: first two-storey beams, middle two-storey beams, and 
top two-storey beams. In addition, we have 14 random variables for steel bars strength 
/ and 14 random variables for modulus of elasticity of steel E assigned to eight types 

of columns and six types of beams. 
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Table 7.9 Definition and initial values of design variables for Case 3 

Variable Initial Value Description 
b\x h\ 0.45x0.45m width and depth of exterior columns of first three stories 

A\ 0.003m2 half of the area of reinforced bars of exterior columns of 
first three stories 

0.45x0.45m width and depth of exterior columns of top three stories 

A2 
0.003m2 half of the area of reinforced bars of exterior columns of top 

three stories 
63 x hi 0.50x0.50m width and depth of interior columns of first three stories 

A3 0.003m2 half of the area of reinforced bars of interior columns of first 
three stories 

64X hi, 0.50x0.50m width and depth of interior columns of top three stories 

A4 
0.003m2 half of the area of reinforced bars of interior columns of top 

three stories 
65X hs 0.40x0.60m width and depth of exterior columns of first three stories 

A5 
0.0024m2 area of reinforced bars of first three stories' beams 

64X h4 0.40x0.55m width and depth of exterior columns of top three stories 
A6 

0.0024m2 area of reinforced bars of top three stories' beams 

The limit-state function was as defined in the same way as in Eq. (7.1). The objective 
function was described in terms of the total volume of the members. Because of the price 
difference between two materials in the current market (the price of steel bars per cubic 
meter was 100 times the price of the concrete per cubic meter), the volume of steel bars 
was accounted for by using its equivalent concrete volume, which was equal to 100 times 
the actual volume of the steel bars. Again, the cost of failure was assumed to be five 
times the initial volume. This led to the following objective function: 

( (*,*, + 100 • 2 • A,) • L, + XL(b,h, + 100 • A,) • L, ) 

+ ^ ( x ) • 5 • ( X ; = 1 f M + 100 • 2 • A,) • L, + ZlsWt + 1 0 0 • 4) • Li ) 

where Z, represents the total length of the members in each of the six categories identified 

in the design vector. The reliability constraint was still prescribed as pf(x) < 0.00135. 
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The structural constraints were prescribed as 0 < bt, ht and 0.5 < bilhh < 2 to ensure 

positive dimensions and appropriate aspect ratios, where / = [1, 2, 3, 4, 5, 6]. The 

structural constraints for the area of steel bars were 0.01-6,72,< Ai < 0.02-b^ for 

columns, where i = [1, 2, 3, 4], and 0.008 • b,h, < A, < 0.02 • bihi for beams, where i - [5, 

6], to ensure appropriate reinforced bar ratios. 

Table 7.10 Statistics of random variables for Case 3 (c.o.v. indicates the coefficient of 
variation, and cc. indicates the correlation coefficient) 

Variable Mean c.o.v. c c Type Description 
Hx 28490 kN 0.15 lognormal lateral load on floor 1 
H2 48950 kN 0.15 lognormal lateral load on floor 2 
# 3 70070 kN 0.15 0.7 lognormal lateral load on floor 3 
H4 89100 kN 0.15 

0.7 
lognormal lateral load on floor 4 

H5 
109780 kN 0.15 lognormal lateral load on floor 5 

He 131890 kN 0.15 lognormal lateral load on roof 

fcc\ fcc% 39MPa 0.15 0.7 lognormal confined concrete strength 

Ecc\ ''' EccS 9750 MPa 0.10 0.7 lognormal 
modulus of elasticity of 
confined concrete 

fc \ "' fc\A 30 MPa 0.15 0.7 lognormal unconfined concrete strength 

Eel "'EC\4 15000 MPa 0.10 0.7 lognormal 
modulus of elasticity of 
unconfined concrete 

fy\ "' fy\A 400 MPa 0.15 0.7 lognormal steel bars strength 

E\ "'E\4 200000 MPa 0.05 0.7 lognormal modulus of elasticity of steel 

A stand-alone finite element reliability analysis was performed. At the mean realization 
of the random variables in Table 7.10, with the initial design in Table 7.9, the lateral 
displacement at the roof level was 168mm. The corresponding drift ratio was 168/23100 
= 0.73%, which is less than the limit of 2%. A reliability analysis by the FORM resulted 
in a reliability index /? = 3.120 and the corresponding failure probability 
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pf(x0) = 0.000903, which satisfied the prescribed reliability constraint. The total 

expected cost of the initial design was 130.753m3, which was larger than Case 1 and 2, 
since in this case we considered the area of reinforced bars. 

With the experience of solving convergence problem in Case 2, we were confident in 
solving the nonlinear problem using dispBeamColumn elements and discretized fibre 

sections. First, we performed an optimization analysis using the DSA-MOOA approach. 
The semi-infinite optimization analysis (task Al) converges quickly: within 1 to 5 
iterations for task B l , and within 1 to 21 iterations for task B3. The results show that 
discretized concrete fibre sections, together with the smooth steel material, can achieve a 
"continuous" structural response. After discretizing the ball by 75 points, or after 75 
loops of task B l to B3, the algorithm repeatedly produced the same design. At the 
optimal design there were 17 reliability constraints. The tolerance of this solution to the 
"true" converged point was aN =0.1/752 = 1.78xl0'5. The total cost was reduced from 

130.753m3 to 85.221m3, and the failure probability was 0.00135, which satisfied the 
reliability constraint. Next, an importance sampling based on the new design variables 
was performed to get the "real" failure probability with a 2% coefficient of variation (task 
A2). The results were 85.327m3 for the total cost and 0.00160 for the failure probability. 
This difference between the two failure probabilities (0.00135 from task A l and 0.00160 
from task A2) shows the nonlinearity of the structure. The parameter / was updated in 
task A3, and the top level of iteration (task A l to A3) was repeated. After two more loops 
of tasks A l to A3, the RBDO was stopped when the differences in failure probabilities 
between tasks A l and A2 were reduced to an accepted level. The final total cost was 
85.663m3, and the failure probability was 0.00135. 

The second optimization analysis was performed using the DSA-S approach. The 
approach began from task CI. Convergence was achieved within 1 to 88 iterations for 
task Dl , and within 1 to 17 iterations for task D2. We used the same tolerance as in the 
DSA-MOOA approach to judge the consistent design (i.e., e = 0.\/752 =1.78xl0'5). An 
optimal design was achieved after five loops of tasks Dl and D2. The DSA-S approach 
and the DSA-MOOA approach produced the same design. The total cost was 85.221m3, 
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and the failure probability was 0.00135. In the next task, C 2 , the D S A - S approach 

produced the same solution as task A 2 of the D S A - M O O A approach using importance 

sampling with a 2% coefficient of variation. A s the D S A - M O O A approach, the top level 

of iteration (tasks C I to C3) was repeated for two more loops and the designs were 

consistent. The entire optimization procedure was stopped at the total cost of 85.663m 3 

and failure probability of 0.00135. 

Table 7.1 l a Results from R B D O analysis for Case 3 

t 6, hx b2 h2 h U /?4 b5 hs 
1.000 0.45 0.45 0.45 0.45 0.5 0.5 0.5 0.5 0.4 0.6 

1.0177 0.224 0.449 0.181 0.362 0.306 0.611 0.286 0.572 0.334 0.668 

1.0182 0.225 0.450 0.182 0.363 0.306 0.612 0.287 0.573 0.335 0.670 

1.0182 0.225 0.450 0.182 0.363 0.306 0.612 0.287 0.573 0.335 0,670 

Table 7.1 l b Results from R B D O analysis for Case 3 (continued) 

t be he A, A2 A3 A4 A5 
A6 

1.000 0.4 0.55 0.003 0.003 0.003 0.003 0.0024 0.0024 

1.0177 0.334 0.524 0.0010 0.0007 0.0019 0.0016 0.0029 0.0014 

1.0182 0.335 0.526 0.0010 0.0007 0.0019 0.0016 0.0029 0.0014 

1.0182 0.335 0.526 0.0010 0.0007 0.0019 0.0016 0.0029 0.0014 

Table 7.1 l c Results from R B D O analysis for Case 3 (continued) 

t a P c 0 +c(a c0+c{p 

1.000 0.000903 0.000941 130.753 130.778 

1.0177 0.00135 0.00160 85.221 85.327 

1.0182 0.00135 0.00136 85.652 85.655 

1.0182 0.00135 0.00135 85.663 85.663 
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Tables 7.11a, 7.11b, and 7.11c show the results obtained from the two implemented 
approaches. The presented results include the value of 18 design variables, the auxiliary 
parameter a, the failure probability pf from the importance sampling with a 2% 

coefficient of variation, and the total expected costs corresponding to a and pf. The first 

rows show the values of the initial design, while the following rows show the values of 

the optimal design. In each of these iterations, parameter t was updated to account for 

nonlinearities in the limit-state function. After the first iteration, the value of t was 

updated as 1.0xO"1(0.00135)/O"1(0.00160) = 1.0177. The analysis was carried out for 

two more iterations. No appreciable difference in the design were observed. In the last 

row, a and pf converge to the same acceptable value 0.00135. In effect, the objective 

functions have reached the minimum value, 85.663m3. Hence, the design variables in the 
last row were accepted as the optimal design. 

(1) Original mean point 
(2) Original MPP 

— — (3) Optimal mean point 
— - (4) Optimal MPP 

0.00 0.08 0.40 0.48 0.16 0.24 0.32 
Roof Drift (m) 

Figure 7.8 Structural responses for Case 3 (load factor versus roof displacement) 
at: (1) the mean point of the initial design; (2) the MPP of the initial design; (3) 
the mean point of the optimal design; and (4) the MPP of the optimal design. 
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Figure 7.8 shows the structural response of four characteristic realizations of the design 
variables and random variables. The responses at the mean realization of the random 
variables and at the MPP of the random variables for the initial (original) design are 
shown as the thin solid line and the thin dashed line, respectively. The structural 
responses at the mean realization of the random variables and at the MPP of the random 
variables for the optimal design are shown as the thick solid line and the thick dashed 
line, respectively. The figure shows similar properties to the nonlinear case, using 
beamWithHinges elements in Case 2. 

Table 7.12 Comparison of computational time for Case 3 

DSA-MOOA DSA-S 
DDM FDM DDM FDM 

g 5471 40415 1300 7618 
g with dg/du 91 N/A 33 N/A 
g with dg/dx 1547 N/A 208 N/A 

Importance Sampling 109436 101848 

Table 7.12 compares the efficiency of the FDM and DDM methods, as well as the 
computation cost of the two implemented approaches, by measuring the number of calls 
to the limit state function. We came to the same conclusion as in the linear case: using the 
DDM method to compute the gradients is much more efficient than using the FDM 
method, regardless of which optimization approach is adopted. 

As shown in Table 7.12, the DSA-S approach, requiring 1,541 (1,300+33+208) limit-
state function calls, appears to be more efficient than the DSA-MOOA approach, 
requiring 7,109 (5,471+91+1547) limit-state function calls using the DDM method. This 
nonlinear case requires much more computational effort than the linear case, 213 and 982 
limit-state function calls, respectively. However, the number of limit-state function calls 
is almost the same as that required in the nonlinear Case 2. 
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7.2 Practical Experience from Case Studies 

This section describes in further detail the observations and practical experiences that 
have been gained from the case studies presented above. Comparisons are made between 
two implemented optimization approaches (DSA-MOOA and DSA-S), between the FDM 
and the DDM methods, and between linear and nonlinear pushover analyses. We also 
make the observation that the convergence of the optimization procedure is significantly 
improved by removing inactive constraints or by properly scaling the functions involved. 

7 . 2 . 1 C o m p a r i s o n o f T w o O p t i m i z a t i o n A p p r o a c h e s 

Both the DSA-MOOA and the DSA-S approaches are gradient-based algorithms and 
decoupled sequential optimization approaches. The reliability analysis and the 
optimization analysis are decoupled in them, so the users have the flexibility to choose 
any available reliability methods and optimization algorithms according to their 
requirements. However, the two approaches have different behaviours with regards to 
convergence performance and computational time. 

The two approaches use the same problem reformulation. The original problem and the 
reformulated problem are proved to be identical in the first-order approximation. The 
DSA-MOOA approach considers the reformulated problem as a semi-infinite 
optimization problem and solves it using the MOOA algorithm, which has a converged 
solution when using an infinite number of reliability constraints. On the other hand, the 
DSA-S approach considers the reformulated problem as an inequality constraint 
optimization problem and solves it using the Polak-He algorithm, which can only find a 
consistent design without the proof of convergence. According to case study results, the 
two approaches can achieve the same solution if the analysis is stopped at the same 
tolerance. 

When the two approaches' convergence speed is compared, it can be seen that the 
DSA-S approach is much faster than the DSA-MOOA approach: the former only needs 

1 0 3 



-20% of limit-state function calls of the latter. The DSA-S approach solves the final 
optimization problem using a single reliability constraint, while the DSA-MOOA 
approach expands the reliability constraints step by step by discretizing the ball with 
progressively more points to achieve a gradually precise solution. Hence, 80% of the 
computational time in the DSA-MOOA approach is used to deal with the discretization of 
points and a progressively larger reformulated problem. 

In conclusion, the DSA-S approach is effective and accurate enough. However, if this 
approach fails in the converge procedure, the user has to rely on the DSA-MOOA 
approach, which is reliable but slow. 

7 . 2 . 2 C o m p a r i s o n o f T w o G r a d i e n t C o m p u t a t i o n M e t h o d s 

Two methods of computing response sensitivities in OpenSees are used in case studies: 
the FDM and the DDM. This section compares the two methods in light of three 
requirements: consistency, accuracy, and efficiency. 

Consistency refers to the computed sensitivities being consistent with the 
approximations made in computing the response itself. In the DDM, consistency is 
ensured through differentiating time- and space-discretized finite element response 
equations (Haukaas & Der Kiureghian, 2005). The computation of the structural response 
and the response gradient are both conducted in the finite element analysis. On the other 
hand, the FDM simply computes the ratio of the structural response difference and 
perturbation. 

Accuracy is important to response sensitivity, since the convergence of reliability and 
optimization algorithms depend on it. The sensitivities computed by ordinary finite 
difference may not be sufficiently accurate to guarantee convergence of the solution 
algorithms (Haukaas & Der Kiureghian, 2005). The DDM ensures better accuracy than 
the FDM, since the DDM evaluates the exact derivatives of the approximate finite 
element response. 

104 



Efficiency is an important requirement in computation, since sensitivities are 
repeatedly computed in the solution algorithms. In the DDM, the response sensitivities 
for each parameter are obtained from a linear equation upon convergence of the finite 
element response (Haukaas & Der Kiureghian, 2005). The additional time used by the 
gradient calculation in the DDM is less than the time required by another nonlinear finite 
element analysis. Instead, the FDM method requires one more nonlinear finite element 
analysis with perturbed parameter values for each random variable and design variable. 
Hence, the computational time by the FDM equals the number of random/design 
variables multiplied by the computational time for a single finite element analysis. 

The DDM method requires a one-time consolidated effort to derive differentiation 
equations and implement them in the finite element program. However, once we have it, 
the DDM method is more accurate and efficient than the FDM method. 

7.2.3 Comparison of Linear and Nonlinear Analyses 

Usually the users choose between linear or nonlinear pushover analyses according to their 
requirements and their analysis ability. The comparison in this section shows the possible 
results and computational cost for each selected case. This comparison can serve to guide 
the users when making the decision about which analysis method to choose. 

Table 7.13 presents the comparison between initial and optimal reliability indexes for 
the three cases. All three initial reliability indexes are greater than 3.0 regardless of the 
analysis model. This implies that the initial design is safe but may not be optimal. 
Following the RBDO analysis, the reliability indexes go down to 3.0, which is the lower 
bound of the reliability constraint. 

The optimal total costs of nonlinear cases are lower than those for the linear case. This 
is reasonable, since the linear analysis is based on the "equal displacement principle" and 
results in equivalent results, while nonlinear analyses offer more "exact" results. 
However, from the structural design point of view, the results of the linear analysis are 
also acceptable. 
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Table 7.13 Comparison of linear and nonlinear cases 

Case 1: Case 2: Nonlinear Case 3: Nonlinear 
Linear (beam WithHinges) (dispBeamColumn + fibre) 

Initial reliability index 3.646 3.536 3.121 
Optimal reliability index 3.0 3.0 3.0 
Initial total cost 1.0 1.0 1.0 
Optimal total cost 0.715 0.688 0.651 
Number of top level of 1 3 3 
iteration 

1 

Number of limit-state 
function calls in first 982 7047 7109 
iteration 

We have also compared computational costs for linear and nonlinear cases. In the 
linear case, the DSA-MOOA and the DSA-S analyses require only one iteration to 
achieve an acceptable design, while in the nonlinear cases three iterations are required. In 
the first iteration the linear case calls 982 limit-state function calculations, which is about 
15% of the number of limit-state function calls required by the nonlinear analysis (about 
7,000 calls). Hence, the linear analysis is much more effective than the nonlinear 
analysis. For the linear case, with the updating of the design the corresponding MPP of 
the reliability analysis does not change dramatically. In addition, there are only five 
reliability constraints after 75 loops of tasks B l to B3. On the other hand, the MPP of the 
reliability analysis for the nonlinear cases changes apparently when a new design is 
found. In addition, there are 12 to 17 reliability constraints after 75 loops of tasks B l to 
B3. 

In conclusion, nonlinear analyses produce "exact" and trustworthy optimal designs, 
while the linear case is effective and its results are also acceptable. It is advisable to 
conduct a linear analysis for an optimal design first. If the user really needs a more 
"exact" design, the nonlinear analysis can start from the results of the linear analysis. 
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7 . 2 . 4 A c t i v e a n d I n a c t i v e C o n s t r a i n t s 

There are three categories of constraints in the reformulated optimization problem: the 

deterministic constraints f (x) < 0 , reliability constraints if/ < 0 , and constraints pf < pf . 

At the optimal design point, the limit-state function is g(d(x,u)) = 0 , which satisfies the 

reliability constraints y/ = -g < 0 , making these reliability constraints active. In Tables 

7.4, 7.7, and 7.11, all failure probabilities at the optimal design reach the upper bound 

pf =0.00135, so this constraint is also active. 

However, by observing the optimal results, we find that some of the deterministic 

constraints are not active. For example, in the nonlinear case using dispBeamColumn 

elements and fibre sections only two types of constraints are active in six types of 

constraints. In this case, we define the following six constraints: 

b>0 h>0 
b/h<2 b/h> 0.5 (7.4) 

A* * Pminbh As < pmaxbh 

where p m i n and p m a x are the lower and upper bounds of longitudinal reinforcement 

ratios. Only two categories, b/h> 0.5 and As>pminbh, are active. When all of the 

inactive deterministic constraints are removed, the final results are the same as those of 

the full constraints, but the computational time is reduced to about 60-80% of the original 

time. The reduction in time stems from the reduced size of vector g and matrix G in the 

L S S O L analysis. In the two implemented approaches, the time is saved in tasks B3 and 

D l . 

In summary, removing inactive constraints can speed up the optimization procedure. 

Once the user finds that some inactive constraints are violated in the analysis, the user 

can stop the analysis and add the constraints back into the optimization to make sure that 

the solutions are correct. 
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7 . 2 . 5 A c c e l e r a t i o n o f C o n v e r g e n c e P r o c e d u r e b y P r o p e r S c a l i n g 

Both tasks B1/D2 and B3/D1 apply the Polak-He algorithm to solve an optimization 
problem. The Polak-He algorithm requires the computation of the values and gradients of 
the objective function, deterministic constraints, and reliability constraints. It has been 
observed that the different ways to define these functions can affect the convergence 
speed. 

Without scaling, the objective function is about 50m3 to 130m3, the deterministic 
constraints are between 0.5 and 2, and the reliability constraints are about 0.2 to 1.0. 
These values are not in the same order of magnitude. For the nonlinear analysis, task 
B1/D2 requires about 1 to 10 iterations to converge, while task B3/D1 requires several 
hundred or even thousand iterations to converge. This convergence speed is not 
acceptable. If a scaling is applied (scaling all involved functions—objective function, 
deterministic constrains, and reliability constraints) to approximately the same order 10° 
= 1.0, the new convergence performance in task B1/D2 remains same, but the 
computational cost of task B3/D1 is reduced to less than one hundred iterations (and 
often less than 10 iterations). Originally, the functions involved in task B1/D2 had the 
same order, so scaling did not affect these tasks. The benefit of task B3/D1 is apparent 
because only 10% of the original computational time is required. 

The gradients of objective and constraint functions cannot be scaled directly. It may not 
be possible to conduct proper scaling for both the functions and their gradients. Scaling 
the values of functions to 1.0 can approximately scale the gradient in the order of 10°. 
This is better than the value of function in the order 102 and the gradient in the order 104. 
The bigger the difference between the vector and the matrix cells in LSSOL, the more 
"ill-conditioned" the problem becomes. This is a general problem that cannot be fixed 
easily. It is recommended to do scaling in the beginning of the process, when defining all 
of the functions. 

As mentioned in Chapter 6, another scaling skill can be used to speed up the 

convergence procedure. Parameter 6 = -0 _ 1(a) is used in place of parameter a. With 
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reference to Eq . (2.9), parameter b is a substitute for the reliability index /?, in the same 

way as parameter a is a substitute for failure probability pf (x). This parameter 

replacement avoids numerical difficulties caused by the difference in orders of magnitude 
between a and other design variables x. Hence, the optimization in the DSA-MOOA 
approach is over the design vector (x, b). 

In summary, the convergence procedure in the RBDO can be accelerated by properly 
scaling the functions involved and by using the reliability index to take the place of the 
failure probability in the optimization. The benefit of this scaling is apparent, because it 
only takes 10% of the original time. 
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Chapter 8 Conclusions 

8.1 Summary of Major Findings 

In this thesis we implement two reliability-based design optimization (RBDO) 
approaches in the object-oriented software framework OpenSees. The total expected cost 
is minimized in the optimization process subject to constraints on structural properties 
and component structural reliability. The implementations comprise a merger between 
reliability, optimization, and finite element techniques. This enables the RBDO of 
comprehensive real-world structures that exhibit nonlinear behaviour. Our work provides 
a tool for engineers in making rational decisions based on the balance between cost and 
safety in engineering practice. 

The fact that the failure probability in terms of a high-dimensional integral is involved 
in the objective and constraint functions violates two basic requirements of the standard 
nonlinear optimization solver: all involved functions must be evaluated in a finite time 
and must be continuously differentiable. In this thesis, the first requirement is satisfied by 
evaluating the probability of failure using efficient approximation methods such as the 
first-order reliability method and importance sampling. The second requirement is 
satisfied by making use of smooth material model and discretized cross-sections. 

This thesis proposes two decoupled optimization approaches: the DSA-MOOA and the 
DSA-S. These are efficient, robust, and versatile tools for solving RBDO problems. In 
both of them, the required reliability and optimization calculations are decoupled, thus 
allowing flexibility in choosing optimization algorithms and reliability computation 
methods. The original optimization problem is reformulated as a deterministic 
optimization problem, which is identical to the original problem in the first order case. 
The DSA-MOOA considers the reformulated problem as a semi-infinite optimization 
problem and solves it using the method of outer approximation. The DSA-S considers the 
reformulated problem as an inequality constrained optimization problem and solves it 
using the Polak-He algorithm. This simplified algorithm is demonstrated to provide the 
same optimal design as the DSA-MOOA approach for the cases considered. 
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The solutions of the two approaches are based on the first-order approximation to the 
failure probability. If the users accept this failure probability, the analysis is stopped, 
resulting in an optimal design. However, for the problem with nonlinear limit-state 
function, the new design and failure probabilities are updated using a higher-order 
reliability method (such as importance sampling) to take into account the nonlinear 
structural behaviour. The parameter t is employed to fulfill the nonlinearity 
approximation process. Starting from unity, the parameter t is updated during the 
optimization analysis to account for the nonlinearity in the limit-state function. 

An effective, accurate, and consistent response sensitivity analysis is essential in 
gradient-based optimization algorithms. For the finite element analysis, we need the 
gradients of the structural response with respect to model parameters. Two gradient 
evaluation methods, the finite difference method (FDM) and the direct differentiation 
method (DDM), are employed in this thesis. The DDM method requires the derivation 
and implementation of analytical derivatives of the finite element response. Once we 
have the DDM implementation in the finite element software, the DDM method is more 
accurate and efficient than the FDM method, which requires an additional nonlinear finite 
element analysis for each random variable and design variable. 

The key difficulty resolved in the implementation is the negative effect of response 
gradient discontinuities due to sudden yielding events. The possible response gradient 
discontinuities for nonlinear structures cause non-convergence or slow convergence in 
the optimization analysis as well as in the first order reliability analysis. Two remedies 
are applied in this thesis: the smooth material model builds a "continuously 
differentiable" response, and the section discretization scheme results in an 
"approximately continuously differentiable" response. Hence, the requirement of 
standard nonlinear optimization algorithms is satisfied and the nonconvergence problem 
is avoided. 

The new implementations results in a modern and comprehensive software, OpenSees, 
with RBDO capacities. Object-oriented programming was utilized when extending 
OpenSees' reliability, optimization, and sensitivity capabilities. The superior extensibility 
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and maintainability features of this programming type are emphasized. Originally, 
OpenSees has employed four principal objects—ModelBuilder, Domain, Analysis, and 
Recorder—to perform the finite element analysis. OpenSees is then extended with the 
ReliabilityDomain and the Reliability Analysis object to perform reliability analysis. This 
thesis further extends OpenSees with optimization capacities by adding several objects to 
ReliabilityDomain and establishing two new analysis types, DSA-MOOAAnalysis and 
DSA-SAnalysis objects. The reliability domain contains all functions involved in the 
optimization problem and maps the design variables into the finite element model. The 
analysis part includes two RBDO approaches and several analysis tools. The extended 
OpenSees has the capacity to perform finite element analysis, reliability and sensitivity 
analyses, and the optimization analysis for comprehensive real-world structures 
exhibiting nonlinear behaviour. 

A numerical example involving a nonlinear finite element analysis of a three-bay, six-
storey building is used to demonstrate the implementations/In particular, the need for a 
continuously differentiable response with respect to the finite element model parameters 
is emphasized. The linear pushover analysis using elasticBeam elements does not 
encounter any convergence problems in optimization. The nonlinear pushover analysis 
using beamWithHinges elements cannot converge using the traditional bi-linear steel 
material model. This issue is cured by using the smooth steel material model, in which a 
circular segment starting at 80% of the yield strength is employed to smooth the bi-linear 
material. The nonlinear pushover analysis using dispBeamColumn elements with fibre 

sections avoids the non-convergence issue by utilizing smooth steel materials and 
discretized concrete fibre sections. 

The observations and practical experiences are summarized following numerical case 
studies. It was found that the DSA-MOOA and the DSA-S can achieve the same solution. 
Yet, while the DSA-MOOA can theoretically prove its convergence, the DSA-S cannot. 
When convergence speeds were compared, it was found that the DSA-S only needed 
about 20% of limit-state function calls required by the DSA-MOOA. Thus, the DSA-S 
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can find an optimal design more effectively. However, if this algorithm fails in the 
convergence procedure, the user must use the more reliable DSA-MOOA. 

It was observed that the linear case required only 15% of limit-state function calls used 
by nonlinear analyses. Nonlinear analyses produced more "exact" optimal designs, but 
the linear case was more effective while also producing acceptable results. It is thus 
suggested that the linear analysis be conducted first to find an optimal design. If a more 
"exact" design is then required, the nonlinear analysis can begin from the results of the 
linear analysis. 

Some of the deterministic constraints were observed to be inactive in the optimization 
process. Removing them can speed up the optimization procedure and save about 20-40% 
of the original computational time. If the user finds that some inactive constraints are 
violated in the analysis, the user can stop the analysis and add these constraints back into 
the optimization again to make sure the solutions are correct. 

Finally due to the use of the Polak-He algorithm, which only has linear convergence 
properties, it is necessary to scale all involved functions properly (including the objective 
function, deterministic constrains, and reliability constraints) to approximately the same 
order 10°= 1.0. The benefit of this scaling is apparent in the optimization loop, since only 
10% of the original computational time is used. Another scaling is also suggested, 
namely using the reliability index instead of the failure probability as the auxiliary 
variable in the analysis. This is because the failure probability is too small and does not 
appear in the same order of magnitude as the design variables. In summary, the 
convergence in the RBDO can be accelerated by properly scaling the involved functions 
and by using the reliability index instead of the failure probability. 

8 . 2 F u r t h e r S t u d i e s 

A real-world structure is actually a general system reliability problem. Der Kiureghian 
and Polak (1998) first attempted to deal with the series structural system, and the RBDO 
for series reliability system were finally solved in Royset et al. (2001a, 2001b, 2002, & 
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2004a). Based on the experience obtained in this thesis, the implementation of series 
system problems in the reliability constraints can be achieved in the future work. 

The analysis in this work is limited to static pushover finite element analysis. When 
considering dynamic finite element analysis, time-variant reliability analysis must be 
used to evaluate the failure probability. An available time-variant reliability analysis 
method is the mean out-crossing reliability analysis. Furthermore, cyclic loading may 
cause the degradation of the structural response. The application of RBDO to such 
problems represents an important challenge for further work. 

The definitions of initial costs and future costs are here made in terms of structural 
volume or weight. More detailed cost computations are desirable. For instance, it is of 
interest to include the present cost of future events. Such realistic considerations could be 
an interesting future study. 

In this thesis, we noticed the importance of proper scaling, which speeds up the 
convergence procedure and avoids the nonconvergence problem. However, we only 
scaled the values of the involved functions at the beginning of the analysis. In addition, 
we did not know how to scale the gradient properly. It is thus suggested to develop an 
automatic scaling scheme to scale both the value and the gradient, and scaling them at 
each optimization step in future work. 
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Appendix A: Detailed Software Implementation 

This appendix contains detailed software implementations of the reliability-based design 
optimization (RBDO). These implementations include ways to call Fortran routines from 
C++, methods of building LSSOL.LIB, and prerequisites to extending OpenSees with the 
RBDO capabilities. 

A l : Calling Fortran Routines from C++ 

In the Polak-He algorithm, a Fortran 77 program (LSSOL) is used to solve a sub-
optimization problem and to find the search direction. Therefore, a technique to call 
Fortran routines from OpenSees (in C++) is required. This section introduces several 
methods to implement this mix-program technique, focusing especially on how to pass 
and return variables and arrays between C++ and Fortran. 

1. The extern "C" directive is used to declare the external Fortran subroutine LSSOL in 
C++. 

#ifdef_WIN32 
extern "C" void LSSOL(int *m, double *c, double *A, double *obj, double *x); 
#else 
extern "C" void lssol_( int *m, double *c, double *A, double *obj, double *x); 
#endif 

where m is an input variable, c is an input one-dimensional array, and A is an input 
two-dimensional array. They are passed from C++ to Fortran, obj is a returned 
variable and x is a returned one-dimensional array. Both of them are returned from 
Fortran to C++. Note that variables and arrays listed above are only examples and are 
not complete. 

2. When C++ calls Fortran, the reference to Fortran symbols is specified in lowercase 
letters, since C++ is a case sensitive language, but Fortran is not. 
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3. C++ passes the variables by value, while Fortran passes them by reference. It is 
necessary to specify in the C++ that the Fortran subroutines expect call-by-reference 

arguments using the address-of operator & (Gobbo, 1999). An example of passing the 
variable m = 10 from C++ to Fortran and returning the variable obj - 20.0 from 
Fortran to C++ is below: 

// Define the variable m and obj 
m=10; 
obj = 0.0; 
// Call LSSOL 
#ifdef_WIN32 

LSSOL(&m, &obj); 
#else 

lssol_(&m, &obj); 
#endif 

As a returned variable, obj = 20.0 is then used directly in C++. 

4. C++ passes arrays using pointers, while Fortran passes them using references. In 
addition, C++ stores arrays in a row-major order, whereas Fortran stores arrays in a 
column-major order. Finally, the lower bound for C++ is 0, but for Fortran it is 1 
(Gobbo, 1999). For instance, given an array "fun," the Fortran array element fun(l,l) 
is the same as the C++ array element fun[0][0]; the Fortran array element fun(6,8) 
corresponds to the C++ array element fun[7][5]. An example of passing one-

"2.1 2.3" 
2.2 2.4_ 

C++ to Fortran and returning one-dimensional array x = [3.1 3.2] from Fortran to 

C++ is below: 

// Preparing input data for LSSOL 
c[0]= 1.1; c[l]= 1.2; 
A[0] = 2.1; A[l] = 2.2; A[2] = 2.3; A[3] = 2.4; 
x[0] = 0.0; x[l] = 0.0; 
// Call LSSOL 
#ifdef WIN32 

dimensional array c = [l.l 1.2] and two-dimensional array A from 
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LSSOLfe, A, x); 
#else 

lssol_(c, A, x); 
#endif 

As a returned array, x[0] = 3.1 and x[l] = 3.2 is then used directly in C++. 

All Building LSSOL.LIB 

LSSOL is complied using Intel(R) visual Fortran compiler for Windows, standard 
edition, which is freely available from the Intel website 
http://wwwdntel.com/software/products/compilers/dow Compiling 

LSSOL requires the following procedure: 

1. Download and install "Microsoft Visual Studio.NET" and 'Tntel(R) Software 
Development Tools." 

2. Run "Microsoft Visual Studio.NET." Set the project type, template, and name of 
project workspace in the following way: 

File —* New —> Project... 
Project Types: Intel (R) Fortran Projects 
Templates: Static library 
Name: LSSOL 

3. Set the library wizard when you see "Welcome to the Fortran static library wizard." 
Make sure that the option "Prevent the insertion of linker directives for defaults 
libraries" is not selected. 

Library Settings: Additional features 
• Prevent the insertion of linker directives for defaults libraries 

4. Copy LOSSL files to folder ".ALSSOL," and add LSSOL files into the workspace. 

Solution Explorer - LSSOL 
LSSOL —• Source Files —• Add —• Add Existing Item ...—»• Add all files 

5. Set Fortran libraries. 
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LSSOL —* Properties —> Fortran —> Libraries: 
Use Common Windows Libraries: Yes 
Use Portlib Library: Yes 
Disable Default Library Search Rules: No 

6. Compile LSSOL through "Build -+ Build LSSOL." The result is a library 

LSSOL.LIB (Size: 1,337 KB), which is saved in the folder "..\LSSOL\debug." 

7. Backup four LIB files below from 'Tntel(R) Software Development Tools." The 

• following libraries are required when compiling OpenSees. 

IFCONSOL.LIB (Size: 7 KB) 
IFWIN.LIB (Size: 30 KB) 
LIBIFCORE.LIB (Size: 955 KB) 
LIBIFPORT.LIB (Size: 412 KB) 

A3: Extending OpenSees with RBDO Capacity 

Install Tcl/Tk (which is needed to run OpenSees) 

1. Uninstall any previous versions of Tel 

2. Download the installation file for Tcl/Tk 

3. Run the installation by running the "exe" file downloaded in step 2 

4. Install Tel in the folder C:\Program FilesYTcl 

5. Restart the computer 

Install CVS software (required to download OpenSees from the CVS repository) 

1. Download files cvs-1 -11 -5.zip and cvslOgin.bat 

2. Unzip cvs-1-1 l-5.zip and run the installation file cvs-1.1 L5.exe 

3. Restart the computer 
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Download OpenSees code from the "official" CVS repository in Berkeley 

1. Open a DOS window (e.g.; Start > Programs > Accessories > Command Prompt) 

2. "cd" into the folder where you have put the "cvslogin.bat" file 

3. Execute "cvslogin" command 

4. Note that steps 2 and 3 above can be replaced by issuing the following commands: 

set CVS_RSH=ssh 
set CVSROOT=:pserver:anonymous@opensees.berkeley.edu:/usr/local/cvs 
cvs login 

5. When prompted, provide the password "anonymous" 

6. Go to the directory where you want to put the OpenSees code 

7. Give the command "cvs checkout OpenSees" 

Later, when updating the code with the most recent changes in the CVS repository, you 
can follow steps 1 to 6 and then give the command "cvs -q update -d" (-q is used to 
suppress output, -d is used to check out any new directories). It may be a good idea to do 
this "directory by directory" in the SRC directory. The command "cvs diff' is used to list 
differences between local files and the CVS repository files. When doing updates, the 
following abbreviations are used to identify the actions taken for each file: 

M ~ local copy has been modified 
P — merged changes on server with the local copy 
C — conflict with what's on server and the local copy 
U — check a new file that is not part of local copy 

Compile the "official" OpenSees version 

1. Make sure the "include path" for tcl.h is correct in the projects damage, database, 
domain, element, material, recorder, reliability, and openSees by doing the 

following: 

a) Right-click on the project and choose "Settings > C/C++ > Preprocessor" 
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b) Select "Settings for: All Configurations" 

c) In "Additional include directories" the last statement should be "c:\Program 
Files\tcl\include" 

2. Include tcl84.lib in the openSees project by doing the following: 

a) Right-click on the project and choose "Settings > Link > Input" 

b) Select "Settings for: All Configurations" 

c) In "Additional library paths," include "c:\Program Files\tcl\lib" (make sure to 
have a comma between the different paths) 

Press F7 to compile. If many error messages appear, try to press F7 again to "clean 
up." 

Add new and/or improved files from the UBC team 

Put all files listed in Tables A.la, A.lb, and A.lc into their respective directories. For 
new classes, remember to include the files in the appropriate project according to the 
"location of file" provided in the Tables A.la, A.lb, A.lc,. 

How to identify the difference between local files and the "official" version at 

Berkeley 

There are two ways of identifying the difference between the files that have been 
modified by the "UBC team" and the official Berkeley files: 

1. Download the files, include them in local OpenSees version, and use the "diff" 
feature of CVS to see the differences. (Give the command "cvs diff in the relevant 
directory.) 

2. Search for the text string "UBC Team." All UBC team modifications are marked with 
this stamp. 
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Include the For t ran l ib rary " L S S O L . L I B " 

1. Copy the following files into the directory: Win32/l ib: I F C O N S O L . L I B , IFWIN.L IB, 

L I B I F C O R E . L I B , and L IB IFPORT.L IB . 

2. Copy the file L S S O L . L I B into the Win32/lib/debug and Win32/lib/release directories. 

3. Add the L S S O L library to the project settings by doing the fol lowing: 

a) Right-cl ick on the "opensees" project and choose "Settings > L ink > General" 

b) Select "Settings for: A l l Configurations" 

c) In "Object/library modules" add the filename L S S O L . L I B 

Table A . l a New and modified classes for extending R B D O (Classes that do not exist in 

the "of f ic ia l " version are marked with *) 

Project Locat ion of file Fi les 

classTags.h 

OpenSees Source commands.cpp 

Header commands.h 

Reliabil ity analysis/types DSA_MOOAOpt imizat ionAnalys is .cpp* 

DSAMOOAOpt im i za t i onAna l ys i s . h * 

DSA_SOptimizat ionAnalysis.cpp* 

DSA_SOptimizat ionAnalysis.h* 

domain/components ReliabilityDomain.cpp 

Reliabil ityDomain.h 

ConstraintFunction.cpp* 

ConstraintFunction.h* 

CostFunction.cpp* 

CostFunction.h* 

Design Variable.cpp* 

Design Variable.h* 

Design VariablePositioner.cpp* 

Design VariablePositioner.h* 

ObjectiveFunction.cpp* 

ObjectiveFunction.h* 
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Table A. lb New and modified classes for extending RBDO (continued) (Classes that do 
not exist in the "official" version are marked with *) 

Project Location of file Files 
Reliability analysis/designPoint NonlinSinglelneqOpt.cpp* 

NonlinSinglelneqOpt.h* 
PolakHeNonlinSinglelneqOpt.cpp* 
PolakHeNonlinSinglelneqOpt.h* 
NonlinMultilneqOpt.cpp* 
NonlinMultilneqOpt.h* 
PolakHeNonlinMultilneqOpt.cpp* 
PolakHeNonlinMultilneqOpt.h* 
LinMultilneqOpt.cpp* 
LinMultilneqOpt.h* 
LSSOLLinMultilneqOpt.cpp* 
LSSOLLinMultiIneqOpt.h* 

analysis/gFunction GFunEvaluator.cpp 
GFunEvaluator.h 
OpenSeesGFunEvaluator.cpp 
OpenSeesGFunEvaluator.h 

analysis/sensitivity GradGEvaluator.fi 
FiniteDifferenceGradGEvaluator.cpp 
FiniteDifferenceGradGEvaluator.h 
OpenSeesGradGEvaluator.cpp 
OpenSeesGradGEvaluator.h 

FEsensitivity Sensitivity Algorithm.cpp 
tcl TclReliabilityBuilder.cpp 

Element Information.cpp 
TclElementCommands. cpp 

dispBeamColumn DispBeamColumn2d.cpp 
beamWithHinges BeamWithHinges2d_bh.cpp* 

BeamWithHinges2d_bh.h* 
TclBeamWithHingesBuilder.cpp 

elasticBeamColumn ElasticBeam2d_bh.cpp* 
ElasticBeam2d_bh.h* 
TclElasticBeamCommand.cpp 
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Table A.lc New and modified classes for extending RBDO (continued) (Classes that do 
not exist in the "official" version are marked with *) 

Project Location of file Files 
Material uniaxial SteelO lepsy.cpp* 

Steel01_epsy.h* 
SmoothSteelOlepsy.cpp* 
SmoothSteel01_epsy.h* 
ElasticPPMaterial_Fy.cpp* 
ElasticPPMaterial_Fy.h* 
SmoothElasticPPMaterial_Fy.cpp* 
SmoothElasticPPMaterialFy.h* 
TclModelBuilderUniaxialMaterialCommand.cpp 

section FiberSection2d.cpp 
RCFiberSection2d.cpp* 
RCFiberSection2d.h* 
TclModelBuilderSectionCommand.cpp 
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Appendix B: User's Guide to Optimization Analysis 

This appendix contains the user guide to new implementations of the reliability-based 
design optimization (RBDO). It is a complement to the user guide to reliability and 
sensitivity analyses in Haukaas and Der Kiureghian (2004). The optimization commands 
used in this section have the same format as in Haukaas and Der Kiureghian (2004). An 
example of a command is: 

commandName argl? arg2? arg3? <arg4? ...> 

A question mark after an argument indicates that an integer or a floating-point number 
should be provided; otherwise, a character string is given. Optional arguments are 
enclosed in angular brackets (Haukaas & Der Kiureghian, 2004). Note that all mentioned 
tasks (A1-A3, B1-B3, C1-C3, and D1-D2) in this appendix are described in detail in 
Chapter 6. 

Bl: RBDO Modeling 

This section describes how to define design variables and functions involved in the 
RBDO analysis. The object mapping design variables into the finite element domain is 
also introduced. 

A design variable object defines design variables by giving their start points through 
the following command: 

design Variable tag? startPt? 

The tag argument indicates the identification number of the design variable. These 
objects must be ordered in a consecutive and uninterrupted manner. The startPt 

argument allows the user to specify a value for the design variable to be used as the start 
point in the search for the design point (Haukaas & Der Kiureghian, 2004). 
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A design variable positioner object is used to map the design variables into structural 
properties in the finite element model through the following command: 

designVariablePositioner tag? -dvNum dvNum? (...parameter identification...) 

The tag argument indicates the identification number of the design variable positioner. 
The dvNum argument indicates the identification number of the pre-defined design 
variable. The parameter identification alternatives in the command are exactly the same 
as in the random variable positioner command in Haukaas and Der Kiureghian (2004). 

A constraint function object defines constraint functions using user-defined 
expressions through the following command: 

constraintFunction tag? "expression" 

The tag argument indicates the identification number of the constraint function. The 
expression must be enclosed in double quotes and can be any analytical expression that 
can be evaluated by the Tcl interpreter (Welch, 2000). This function may be expressed by 
various quantities including random variables, design variables, structural response 
quantities from an OpenSees finite element analysis, and parameters defined in the Tcl 
interpreter (Haukaas & Der Kiureghian, 2004). The syntax used in this command is the 
same as that in the performance function command in Haukaas and Der Kiureghian 
(2004). An example of syntax for design variables is {d_l}, which means the first design 
variable. 

A cost function object defines cost functions using user-defined expressions through 
the following command: 

costFunction tag? "expression" 

The tag argument indicates the identification number of the cost function. The 
expression has the same properties as that in the constraint function command. However, 
only design variables and parameters defined in the Tcl interpreter are employed as 
quantities in this expression. 
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An objective function object defines objective functions through combing the 
previously defined cost functions. Currently, the standard type of objective function is 
available for this object in OpenSees. The corresponding command reads: 

objectiveFunction tag? -type standard -costFunctions costNuml? costNum2? 

The tag argument indicates the identification number of the objective function. A 
standard objective function is created in the following way: objective function = 1st cost 
function + failure probability x 2 n d cost function, where the failure probability is passed 
from the ReliabiltyDomain each time the objective function object is called. 

B2: Analysis Tools 

Before a RBDO analysis is executed the user must create an aggregation of necessary 
analysis components or tools. Which analysis components are needed depends on the 
analysis type. The order in which the tools are provided is of importance, since some 
tools make use of other tools. The user will be notified by an error message if 
dependencies are violated (Haukaas & Der Kiureghian, 2004). 

A nonlinSinglelneqOpt object is created to be responsible for solving nonlinear single 
inequality constrained optimization problems. This object promises to solve the tasks Bl 
and D2. The corresponding command reads: 

nonlinSinglelneqOpt PolakHe -alpha argl? -beta arg2? -gamma arg3? -delta 

arg4? 

This type of optimization problem is solved by the Polak-He algorithm. In the Polak-
He algorithm, argl denotes the parameter alpha (default = 0.5), arg2 denotes the 
parameter beta (default = 0.8), arg3 denotes the parameter gamma (default = 2.0), and 
arg4 denotes the parameter delta (default = 1.0). 

A linMultilneqOpt object is responsible for solving linear multi-inequality 
constrained optimization problems. The corresponding command reads: 
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linMultilneqOpt LSSOL 

In order to find the search direction for tasks B3 and D l , a quadratic sub-optimization 
problem with linear constraints must be solved. This sub-optimization problem is fulfilled 
by the linMultilneqOpt object. Currently, a Fortran 77 program LSSOL is called to solve 
this problem and is the available implementation of this object in OpenSees. 

A nonlinMultilneqOpt object is created to be responsible for solving nonlinear multi-
inequality constrained optimization problems. This object promises to solve tasks B3 and 
Dl . The corresponding command reads: 

nonlinMultilneqOpt PolakHe -alpha argl? -beta arg2? -gamma arg3? -delta 

arg4? 

This type of optimization problem is solved using the Polak-He algorithm. A quadratic 
sub-optimization problem with linear constraints must be solved in this object to find the 
search direction. Therefore, a linMultilneqOpt object must be created before the 
nonlinMultilneqOpt object can be instantiated, argl to arg4 are user-defined parameters 
used in the Polak-He algorithm and have the same definition as the parameters in the 
nonlinSinglelneqOpt object. 

B3: Analysis Execution and Results 

Two analysis types are available in the optimization module of OpenSees. This section 
describes the corresponding commands to execute them. Required analysis tools must be 
specified prior to using any of these commands. During the course of a RBDO analysis, 
status information may be printed to a file or to a computer monitor. The complete results 
from a successful analysis are printed to an output file whose name is specified by the 
user, as show below (Haukaas & Der Kiureghian, 2004). 

A DSA-MOOA analysis object is the top-level of the DSA-MOOA approach and is 
responsible for obtaining the optimal design by orchestrating tasks A l to A3. This object 
is executed using the following command: 
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runDSAMOOAOptimizationAnalysis outputfilename -betaO argl? -targetCost 

arg2? -maxIterOuter arg3? -maxlterlnner arg4? -numSimulation arg5? -

targetCOV arg6? 

The order of arguments is arbitrary, argl denotes the lower bound of failure 
probability (default = 3.0), arg2 denotes the target total expect failure cost, arg3 denotes 
the maximum number of iterations on top level (A1-A3), and arg4 denotes the maximum 
number of iteration in task B3. arg5 and arg6 are input parameters necessary for 
importance sampling in task A2. arg5 denotes the maximum number of simulations 
(default = 106), while arg6 denotes the target coefficient of variation (default = 2%). The 
nonlinSinglelneqOpt, HnMultilneqOpt, and nonlinMultilneqOpt objects must be created 
before the DSA_MOOAAnalysis object is created. The results in the output file are self-
explanatory, including the optimal design as well as reliability index and total expected 
failure cost. 

A DSA-S analysis object is the top level of the DSA-S approach and is responsible for 
obtaining the optimal design by orchestrating tasks CI to C3. This object is executed 
using the following command: 

runDSASOptimizationAnalysis outputfilename -betaO argl? -targetCost arg2? -

maxIterOuter arg3? -maxlterlnner arg4? -numSimulation arg5? -targetCOV 

arg6? 

The input data and the results of this analysis type are exactly same as those in the 
DSA-MOOA analysis, expect for arg3 and arg4. arg3 denotes the maximum number of 
iterations of top level (C1-C3), while arg4 denotes the maximum number of iterations in 
taskDl. 
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