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Abstract 

Artificial Neural Networks (ANNs) provide a quick and flexible way to create models for 
streamflow forecasting and have been shown to perform well in comparison with conventional 
hydro logical models. This research applied multi-layer feedforward error backpropagation ANNs 
for real-time reservoir daily and hourly inflow forecasting. The proposed A N N models are trained 
by the Levenberg-Marquardt Backpropagation (LMBP) technique, coupled with an early stop 
method to avoid overfitting. A dataset partition method, which keeps the statistical properties of 
the training and the monitoring datasets as close as possible, is introduced to avoid under fitting. 
The method redistributes input/output patterns, in term of streamflow magnitude, into the training 
dataset and the monitoring dataset by breaking down the time series of the original data into 
subsets. The research introduced several indicators to cope with the snowmelt affected streamflow 
forecasting and overcome the limitation of snow information availability. 

The performance of the daily time step A N N model is compared to an operational conceptual 
model (UBC Watershed Model) and a one time step lag model. The hourly time step A N N models 
are compared to a black-box model: Multi-Input Single Output Linear Model (MISOLM). The 
overall results of the research show that the A N N technique is practicable and effective for 
real-time streamflow and flood forecasting; the A N N models have higher simulation accuracy 
than the other referenced models. 

The models developed have been implemented in B C Hydro. The real-time test of the models 
showed that A N N is a promising method for snowmelt affected streamflow and flood forecasting. 
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CHAPTER 1 Introduction 

1.1 Background 

BC Hydro (BCH) is the third largest electric utility in Canada and its main activity is the 

production of electricity. Most of BCH production is used to meet the domestic load in BC, with 

some export and import to neighboring electricity markets in the US and Alberta. The capacity of 

the integrated hydroelectric system is about 11,500 MW, 87% of which is hydroelectric. Between 

43,000 and 54,000 gigawatt-hours of energy is generated annually from 32 hydroelectric facilities 

and 2 thermal power plants. 

BCH benefits from its hydroelectric power system by having a high degree of flexibility in its 

production activities. The economics of hydroelectric plants depend mainly on the reservoir's 

storage capacity, dam height and the magnitude and timing of inflows. Accurate forecasts of 

reservoir inflows enable BCH Planning, Scheduling & Operation Shift Engineers (PSOSE) to 

better manage and optimize the operation of their system and it helps them in making decisions on 

how to allocate the production of hydroelectric and thermal plants, on how much energy to buy or 

sell, and to control and regulate floods. 

Currently, BCH uses the UBC Watershed Model (UBCWM), which is a conceptual hydro logical 

model and has been integrated into BCH's River Forecast System (RFS), to forecast daily inflows 

to a number of reservoirs. The UBCWM requires an extensive knowledge of the geographical and 

the physiographical properties of a watershed, hydrological/thermal dynamics knowledge, and 

most important of all, the architecture of the model. To derive the inflow forecasts, BCH 

hydrologists and shift engineers need to be familiar with both basin-specific hydrological 

information and the model itself. The UBCWM calibration is usually a lengthy process that has to 

be repeated on regular basis. 
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In its current state, the RFS is only capable of generating daily inflow forecasts for the next five 

days. The first limitation of RFS is that it has only one model. It does not have an alternative way 

to forecast streamflow or to crossly verify forecast results. The second limitation of RFS is that the 

inflows are calculated as daily averages and not on an hourly basis. The lack of accurate 

representation of the hourly fluctuations of inflow within a day will often causes problems for 

real-time operation of reservoirs during flash flood events, particularly for small reservoirs. The 

third limitation of RFS is that it is very complex and can only be operated by hydrologists in the 

Hydrology & Technical Services at B C H , while the users of the forecast results, PSOSE, who are 

not hydrologists, may need to repeat the analysis frequently for daily and hourly inflow forecasting 

during rapidly changing situations. 

The application of a commercial streamflow forecasting system is infeasible due to the time and 

the significant amount of money that would need to be spent on developing and adapting such a 

system. Many hydrological models and systems are currently used worldwide for streamflow and 

flood forecasting. These models have been developed mainly by research institutes, universities 

and government agencies. NWSRFS (NOAA, USA), MIKE FLOOD (DHI, Denmark) and EFFS 

(Delft, Netherlands) are some of the famous systems. It is well known that hydrological models are 

site specific, and most of hydrological models are developed for specific physiographic and 

hydrologic regimes in specific areas. Thus, commercial river flow forecast systems do not satisfy 

the needs of application in a specific area. The adaptation of an existing forecasting system to 

match a specific case would require extensive effort and knowledge of the watershed. The 

adaptation of a commercial streamflow forecasting tool to B C H would need a considerable 

amount of work. 

To overcome the deficiencies of RFS, especially the second and third limitations, and to shorten 

the development period as much as possible, BCH's PSOSE initiated this research project with the 

intent to use an Artificial Neural Network (ANN) technique to check i f it would be feasible and 

possible. There were three reasons that encouraged them to use A N N technique. Firstly, the 

2 



PSOSE group already uses an ANN technique to forecast hourly load and they are familiar with 

the technique and happy with its results. Secondly, our preliminary research on streamflow 

magnitude classification by using the Semi Supervised Support Vector Machine (S VM) technique, 

which is a kind of ANN technique, provided meaningful results. Lastly, BCH is licensed to use 

MetrixND that contains a powerful neural network tool box. MetrixND allows rapid development 

and implementation of ANN models and uses several fast training algorithms that can result in a 

rapid training and learning process. 

1.2 Objectives of this Research 

The overriding objective of this research project is to develop a flood forecasting tool that could be 

used to forecast floods at an hourly time step and meet the needs of PSOSE for their real-time and 

near-term operations. The tool could be based on ANN or any other promising technique, with the 

aim of eventually integrating it into the BCH's RFS. It was hoped that the methodologies 

investigated in the research would lead to the design of a flood forecasting tool that would be easy 

for PSOSE to understand and use. Inherent in this goal is the development of a prototype tool that 

will allow fast and accurate flood forecasts; and explore the best procedure to guide future 

application of the ANN technique to additional hydro-plants. Five sub-objectives were set for the 

research: 

• Identify the most suitable flood forecasting technique and the architecture that is easy to 

understand, and fast in development, implementation and real-time streamflow forecasting; 

• Develop a model which yields an acceptable operational accuracy for flood forecasting; 

• Identify the main variables that have the largest effect on the accuracy of flood forecasts in the 

BCH system; 

• Carry out a case study using the model, compare it with other potential techniques and present 

the results to BCH hydrologists and shift engineers for their review; 

• Recommend how the model and/or tool could be integrated into an operational flash flood 

forecasting system at BCH. 
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1.3 Organization of the Thesis 

Chapter 2 provides a literature review on flood forecast techniques with a special focus on the 

Artificial Neural Networks (ANN) technique. The literature review explores in detail the 

application of A N N in snowmelt runoff modelling. Chapter 3 provides the history of A N N and the 

mathematical background related to the A N N employed in this study. Chapter 4 provides a brief 

introduction to the case study watershed, data availability, and the criteria used to judge model 

performance. It also illustrates the applications of the A N N technique in a case study watershed for 

daily streamflow forecasting, and compares the A N N models performance with the U B C 

Watershed Model ( U B C W M ) . The chapter also illustrates an application of A N N for hourly 

streamflow forecasting, and it compares the A N N performance with the Multi-input Single Output 

Linear Model (MISOLM). Chapter 5 provides the conclusions and recommendations for future 

research. 
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C H A P T E R 2 L i t e r a t u r e R e v i e w 

2.1 Conventional Flood Forecasting Technique 

Streamflow forecasting, which is a special field of hydrology, can be divided into two categories, 

namely storm event forecasting and continuous streamflow forecasting. Storm event forecasting 

focuses on the peak discharge, total volume of flood flow, or discharge temporal distribution of a 

single storm event. The continuous streamflow forecasting predicts the streamflows over time. 

Most streamflow forecasting methods rely on hydrological models. Storm event forecasting 

involves the event models, and continuous streamflow forecasting uses continuous models. Both 

event and continuous models are deterministic models, in which a given input of precipitation 

must produce a fixed output of runoff in a certain physical setting: its output is determined by the 

input (Jones, 1997). The deterministic models could be black-box, conceptual, or physically-based 

models. Jones (1997) summarized the classification of hydrological models as shown in Figure 2.1. 

In terms of model spatial discretization, lumped models, which include semi-distributed 

conceptual and black-box models, have been widely used in real-time streamflow forecasting, 

while physically based distributed models are rarely used in real-time flood forecasting. 

Black-box models have long been used as efficient flood forecasting tools. These models attempt 

to predict overall catchment response and the process involved is based on the interpretation of the 

observed response of a catchment (Sivapalan et al, 2003). The models are generally derived from 

the analysis of historical data. Sherman devised an extremely valuable method, Unit Hydrograph 

(UH), for determining the flood hydrograph in 1932. The Sherman UH and its later variants are 

widely used and may be found at the heart of many modern and highly sophisticated computer 
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(grid or unit areas) (large sub-areas) distributed distributed 

Figure 2.1 The classification of hydro logical models (Jones, 1997) 

models (Jones, 1997). The Sherman UH variants include Instantaneous Unit Hydrograph (IUH), 

Synthetic Unit Hydrograph (SUH), Geomorphic Instantaneous Unit Hydrograph (GIUH) and 

Nash Unit Hydrograph. The Unit Hydrograph approach is based on linear and time-invariant 

assumption of rainfall-runoff processes. Since Sherman introduced the concept of UH, linear 

system analysis has played an important role in applied hydrology, in rainfall-runoff modelling 

and in flood routing. Black-box models that fall in this category include Simple Linear Model 

(Nash and Foley, 1982), Linear Perturbation Model (Nash and Barsi, 1983), Multiple Input/Single 

Output Linear Model (Kachroo and Liang, 1992), Nearest Neighbour Linear Perturbation Model 

(Shamseldin and O'connor, 1996). The application of black-box models also involves, in 

modelling terminology, model calibration. Black-box model calibration is generally a process of 

solving a matrix equation by least square method, and it also uses optimization techniques for 

specific types of black-box models. A more systematic way to develop black-box model can be 

referred to the downward approach. It focuses on determining input-output relationships from 

datasets in an efficient manner with little interest in what is happening within the system and why 

this is happening (Sivapalan et al., 2003). The approach starts from analyzing relationship between 

6 



input and output, then refines the model by increasing model complexity to further interpret 

input-output relationships. The model structure is inferred from data rather than being 

preconceived from physical processes. Young (2002) developed a stochastic downward approach, 

called data-based mechanistic approach, and consequently a low-order nonlinear model, to 

modelling streamflow with limited set of rainfall-runoff data. The downward approach may fully 

take advantage of a given set of information. Therefore, the derived model should have good 

performance in real-time streamflow forecasting. 

Conceptual models try to represent rainfall-runoff processes in a simplified way including 

empirically calculated components. Compared with black-box models, conceptual models are 

more complex. These models produce a single output, the streamflow, but usually do not simulate 

other hydrological variables like infiltration and groundwater level (Institute of Hydrology 

Modelling Group, 1999). The models in this category include Xinanjiang model (Zhao, 1984), 

Sacramento Model (Burnash, 1995), TANK model (Sugawara, 1995), UBC Watershed Model 

(Quick, 1995), TOPMODEL (Beven, 2000). Conceptual models employ parameters to represent 

certain part of the rainfall-runoff processes. Some parameters are predetermined by either a 

physical theory or watershed characteristics, while other parameters need to be calibrated and/or 

optimized. The parameter optimization, either automatic or empirical optimization, tries to make 

simulated streamflow match observed streamflow as close as possible by interactively altering 

parameters. Inevitably, optimization could contain potential pitfalls: (1) different optimization 

methods may identify different set of parameter; (2) different people may end up with different 

optimal parameter sets; (3) skill is required in selecting initial value and suitable range for each 

parameter. The optimized parameters become merely grist to the calibration mill and may 

compensate for model structure error, resulting in an inaccurate representation of the catchment 

processes (Sivapalan et al., 2003). Recent debates on conceptual models argue that although there 

are numerous conceptual models around and being developed along with significant 

improvements in model calibration, we are still nowhere near solving the problems related to 

arbitrary model structure and a priori estimation of parameters, that hamper predictions (Sivapalan 
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et al., 2003). Conceptual models dominated most of the research conducted during the last century, 

but failed to solve many problems of identifying, estimating and validating models (Young, 2002). 

The physically-based distribution models use 'theoretical' equations for rainfall-runoff related 

processes. For example, the models use the Richard equation for water movement in unsaturated 

zones, St. Venant equation for streamflow routing and the Kinematics wave equation (simplified St. 

Venant equation) for hillslope runoff routing. The distributed models use spatially distributed 

parameters and variables to deal with the spatial heterogeneity of watershed and spatial variability 

of input information. The distributed models can simulate many hydrological components (e.g. 

surface runoff, groundwater level) and analyze the hydrological impact of many factors such as 

land use changes. Due to the model complexity and relatively high number of parameters at each 

grid, it is impractical to use distributed model in real-time streamflow forecasting. 

2.2 Artificial Neural Networks (ANN) Technique 

Artificial Neural Networks (ANN) are well known, massively parallel computational tools that 

have exhibited excellent performance in solving various complex and highly non-linear science 

and engineering problems due to their ability to recognize relationships between model input(s) 

and output(s). Although the prototype ANN was introduced in the early 1940s, it was not until 

early 1980s did it begin to experience a resurgence of study and application. The resurgence was 

mainly caused by the rediscovery of a mathematically rigorous theoretical algorithm: the error 

backpropagation learning rule (Rumelhart et al., 1986) for a multilayer ANN training, and the 

emergence of powerful digital computational tools. Since the early 1990's, ANNs have been 

successfully used in hydrology-related areas such as rainfall-runoff modelling, streamflow 

forecasting, ground-water modelling, water quality, water management policy, precipitation 

forecasting, hydrologic time series, and reservoir operations (ASCE Task Committee, 2000 I). A 

comprehensive review of the application of ANNs in hydrology can be found in ASCE Task 

Committee (2000 I and II). 
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Almost all researchers show that ANN models are superior to conceptual hydrological models 

such as SAC-SMA (Gupta et al., 1997), PREVIS (Coulibaly et al., 2000), Storage routing model 

(Xu and Li, 2002), Tank and NAM (Tingsanchali and Gautam, 2000), CRR model (Jain et al, 

2004) and GIUH (Zhang and Govindaraju, 2003) in the way of modelling accuracy or efficiency 

statistics such as Root Mean Square Error, Nash-Sutcliffe Coefficient of Model Efficiency, 

Coefficient of Correlation, volume error etc. 

ANNs are also more tolerant to noisy input information and are more stable and consistent than 

other types of black-box model like ARMA, ARMAX (Nayak et al., 2004; Chang and Chen, 2001; 

Coulibaly et al., 2000; Chang et al., 2004; Xu and Li, 2002; Tingshanchali and Gautam, 2000), 

ARIMA (Chang et al., 2002), SLM, LPM, NNLPM (Shamseldin, 1997; Rajurkar et al., 2004), 

NLP (Laio et al., 2003) and FSM, MSM (Sajikumar and Thandaveswara, 1999). 

While most researches are focused on rainfall-runoff modelling, some researches are focused on 

snowmelt streamflow simulation (Coulibaly et al., 2000; Zealand et al.,1999; Tokar and Johnson, 

1999). There are also small number of researchers who are focused on flood peak forecasting 

(Smith and Eli, 1995) and rainfall-runoff mechanism analysis (Gautam et al, 2000). 

All researches take a case study watershed as a lumped unit. Many watersheds of varying size and 

climate have been studied. ANNs have been applied in watersheds that vary from as small as 

0.5255km2 (Gautam et al., 2000) to more than thousands of square kilometers (26200km2, 

Rajurkar et al., 2004; 19270km2, Zealand et al., 1999; 18000km2, Shamseldin, 1997) all around the 

world. The time step for the streamflow forecasting varies from 10 minutes (Gautam et al., 2000) 

to one month (Sajikumar and Thandaveswana, 1999). All of these applications have proved that 

ANNs are adaptable and versatile. 

There are three types of ANNs that are used in hydrological modelling: the three-layer 

feedforward error Backpropagation Neural Network (BPNN), the Radial Basis Function (RBF) 
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and the Recurrent Neural Network (RNN). The most frequently used ANN models are BPNN 

model (Rajurkar et al., 2004; Kim and Barros, 2001; Gautam et al., 2000; Coulibaly et al., 2000; 

Zealand et al., 1999; Shamseldin, 1997; Jain et al., 2004; Sudheer et al., 2003; Xu and Li, 2002; 

Tingsanchali and Gautam, 2000; Laio et al., 2003). BPNN is characterized by conceptually simple 

algorithm, enough capacity for practical problems and lots of existing implementation tools. In 

recent years, more and more researches began to use the RBF (Moradkhani et al, 2004; Lin and 

Chen, 2004; Chang and Chen, 2001) and the RNN (Zhang and Govindaraju, 2003; Chang et al., 

2004). The RBF model is easy to build and train due to the number of hidden nodes that can be 

determined during the training process. RBF training avoids the empirical trial-and-error 

processes in BPNN architecture selection. The single most drawback of RBF is that it tends to use 

a lots of hidden neurons, which means that RBF tends to memorize input patterns and therefore 

looses the generalization ability. For RNN, its feedback feature is analogous to the time delay that 

is usually encountered in rainfall-runoff processes. By using RNN, researchers don't need to use 

the trial and error method to determine how many rainfall inputs are lagged. Therefore, RNN 

generally uses much less number of inputs than BPNN, and consequently its architecture is simple. 

The shortcoming of RNN is that the RNN training is relatively difficult to pursue due to its 

feedback features, as RNN should be trained at a very low learning rate to keep the training 

process stable. 

Recent researches tend to try new types of ANN architecture, such as hybrid ANNs. These new 

architectures include Self-organization Radial Basis Function ANN (Moradkhani et al, 2004), 

Neuro-fuzzy Network (Nayak et al., 2004), and Dynamic Feedback/Recurrent Network (Chiang et 

al., 2004). 

The application of ANNs in streamflow modelling can be categorized into two groups, 

non-updating mode and updating mode. The updating mode uses previous observed streamflow as 

model input while non-updating mode doesn't. The ANN models, which run in non-updating 

mode, are a kind of rainfall-runoff model. It is obvious that the models run in updating mode 
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should have higher modelling accuracy than those run in non-updating mode due to the high 

autocorrelation (ACF) of streamflows. The ability of using recent streamflow in modelling is one 

of the basic advantages of ANN models. Actually, ANN models can accept any kinds of input 

information, both quantitative and qualitative. 

2.3 The Application of ANN in Snowmelt Runoff Modelling 

This literature review found that the research on the use of ANN for snowmelt runoff modelling is 

limited and that the existing researches have shown the robustness of ANN in this area. One of the 

earliest publications (Tokar and Johnson, 1999) in this area showed that daily ANN model that 

uses daily precipitation, temperature and snow water equivalent (SWE) as inputs provides a high 

degree of accuracy when compared with a regression model and with a simple conceptual model. 

Their results indicated that temperature is an important indicator for snowmelt runoff simulation. 

As summarized by ASCE task committee, ANN models have equal or better performance than 

conceptual hydrological models, like the WATLAB and the SAC-SMA models, particularly in 

snow affected streamflow simulations. 

Zealand et al. (1999) compared standard Feedforward Backpropagation Network with the 

conceptual Winnipeg Flow Forecasting System (WIFFS) in Namakan Lake sub-watershed 

(19,270km2) of the Winnipeg River Basin (Canada) for sub-monthly (weekly) streamflow 

forecasting. In the neural network model, past and forecasted total weekly precipitation, average 

weekly temperature and past weekly streamflow were used as inputs. When the two models were 

compared fairly and unbiasly using the same input information, ANN performance was marginally 

better than that of the WIFFS model. They optimized the ANN inputs by adding "period of year" 

and the accumulative precipitation, and deleting relatively insignificant input by sensitivity 

analysis. The optimized ANN model for 1, 2, 3 and 4 week ahead forecasting were found to 

perform better than those reached using the WIFFS model. The research also indicated that 

improvements in performance of the ANN model in simulation were only marginal as training 

time increases from 10 minutes to 2 hours. Coulibaly et al. (2000) compared the performance of 
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standard multilayer feedforward neural network with PREVTS, which is a conceptual model, and 

autoregressive moving average with exogenous inputs (ARMAX) model for daily reservoir inflow 

in the Chute-du-Diable watershed (9700km2) in North Quebec, Canada. The ANN model used 

forecasted maximum, minimum and mean temperature, precipitation, snowmelt and past reservoir 

inflow and precipitation to forecast one day ahead reservoir inflow. The common trial-and-error 

method was employed to select the number of hidden neurons. Early stop technique and LMBP 

were used to train the ANN. The research indicated that ANN has a substantially better prediction 

accuracy than the other two models; and a low deterioration of prediction performance with the 

increase in the forecast lead-time. The research also showed that the early stop technique provides 

faster training than training to complete convergence and it also secures the network against 

overfitting. 

2.4 Recent Progress in Application of ANN in Hydrology 

Researches on application of various ANNs (BPANN, RBF, recurrent ANN and cascade 

correlation algorithm) have proven that ANNs are robust modelling tools for the complex, highly 

non-linear and somewhat difficult to model hydrological processes. ANNs were also found to be 

superior to both conceptual hydrological models and black-box models. In the last two years, 

researches in this field have moved to a new phase that is characterized by hybrid ANNs, ANN 

architecture comparison and the effort to relate ANNs to physical processes. 

2.4.1 Hybrid ANN Model 

Moradkhani et al. (2004) built a hybrid ANN model (SORB) by combining two ANN architectures: 

Self Organizing Feature Map (SOFM) and Radial Basis Function (RBF), for one-step ahead 

streamflow forecasting. The key feature of SORB compared with the original RBF is that SORB 

uses SOFM to get all RBF parameters, which include node center and the Gaussian function 

parameter. RBF can be considered as a three-layer network in which each hidden node is thought 

of as a center of a category of input patterns. The RBF calculates the similarities between input 

patterns in each hidden node and fires hidden nodes in different degree by an activation function. 
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The weighted sum of hidden nodes outputs will form the RBF output. The number of centers 

(hidden nodes) of RBF are generally chosen by the researcher or by using a k-mean clustering 

technique. In SORB, the number of centers and parameters of RBF are derived from SOFM. 

SOFM is used to classify the input patterns into several typical or representative patterns. The 

representative patterns are identified by pattern center and standard deviation and, then, they are 

adapted by RBF of SORB. SORB was used to develop a one-step ahead daily streamflow forecast 

model for the Salt River (10,000km2), which is a sub-watershed of the lower Colorado River. The 

authors (Moradkhani et al., 2004) concluded that SOFB is superior to linear regression model, the 

BPNN and the Self-Organizing Linear Output Map (SOLO). 

Rajurkar et al. (2004) developed a non-updating hybrid ANN model by coupling BPNN with a 

Simple Linear Model (SLM) which imitates Unit Hydrograph theory and uses a response function 

to calculate runoff from rainfall. In the ANN model, runoff is first estimated by the SLM according 

to rainfall, then refined by adding rainfall as another input to the ANN with the idea that ANN can 

handle non-linear component in rainfall-runoff processes. The application of the model in six 

catchments worldwide showed that the approach is very useful in modelling the rainfall-runoff 

relationship in the non-updating mode. 

ANNs and fuzzy logic approaches have been proven to be efficient when applied individually. The 

growing interest in combining them have lead to a successful application of neural-fuzzy 

architecture in signal processing and related areas. Fuzzy models are a structured quantitative 

estimator where the system behavior is described by natural language. Fuzzy architecture 

combines rule based systems and fuzzy control algorithms to describe complex non-linear 

processes. Chang and Chen (2001) introduced fuzzy concept into RBF to explain its behavior. The 

behavior of hidden nodes, which calculates the similarity between input patterns and the center of 

a category of patterns (typical patterns), can be represented by the 'IF' statement in a fuzzy rule; 

the connections between hidden layer and output layer represent the 'THEN' part of a rule. Nayak 

et al. (2004) applied Adaptive Neuro-Fuzzy Inference System (ANFIS) in Baitarani River, India 
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for daily streamflow modelling. The neuro-fuzzy model was coupled with fuzzy inference and 

was trained by a method which is a combination of gradient descent and least square estimate 

method. The results indicated that ANFIS forecasted streamflow preserved the statistical 

properties of the original streamflow and had good performance in terms of various statistical 

indices. The author also showed that: (1) ANFIS performance is better than ARMA but similar to 

BPNN; (2) transforming inputs to normally distributed time series by Wilson-Hilferty 

transformation improves ANFIS performance. 

2.4.2 Physical Processes Inherent in ANN Model 

After significant success in the applications of ANN in various aspects of hydrology, the 

motivation to get rid of the black-box nature of ANN and explain ANN in the hydrology 

terminology starts to emerge. Recent researches were focused on relating ANN behavior to 

physical processes, relating ANN architecture to existing hydrological theory or even determining 

the ANN architecture based on geomorphologic information. 

Zhang and Govindaraju (2003) demonstrated how geomorphologic information could be 

incorporated into ANN architecture. In their research, Geomorphologic Instantaneous Unit 

Hydrograph (GIUH) provided a theoretical basis for part of the architecture of 

Geomorphologic-based ANN (GANNs). They interpreted the number of hidden nodes of a 

three-layer BPNN by the number of possible paths in GIUH and therefore, it can be determined by 

geomorphologic information. The weights of connections between hidden layer and output layer 

are represented by path probability in GIUH theory and determined by geomorphologic 

information. The weights of connections between input layer and hidden layer are analogous to the 

transient holding time when compared with GIUH theory. The inputs to GANN are current and 

past rainfall excess. The number of previous rainfall excesses data points was determined by 

trial-and-error method. The application of GANN in two small watersheds in southern Indiana 

showed that the GANN is superior to GIUH. What is meaningful in the research is that the GANN 

has changed the black-box nature of ANN, as it evaluates ANN from a purely empirical model to, 
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somewhat, physically based model. 

Pan and Wang (2004) derived UH from weights of network. They employed dynamic recurrent 

neural networks (also: State Space Neural Networks, SSNN) for hourly time step flood forecasting 

in Wu-Tu watershed (204km2) in Taiwan. The research built connection between physical 

concepts and ANN parameters by deriving UH from weights of network. The research revealed 

the physical concept in networks, which is traditionally thought to be a black-box model as it lacks 

any physical meaning of the weights. The performance of SSNN for short term rainfall-runoff 

forecasting indicated that the dynamic recurrent network is an appropriate tool. 

Jain et al. (2004) showed that ANN is able to capture certain physical behavior of rainfall-runoff 

processes. They applied a three-layer BPNN with four hidden nodes in Kentucky River Basin 

(10239km2, USA) to simulate five hydrological processes simultaneously and compared the ANN 

model with the Conceptual Rainfall Runoff model (CRR). The CRR model consists of two 

components and has the ability to simulate total flow, base flow, surface flow, soil moisture and 

infiltration processes simultaneously. The comparison between ANN behavior (hidden node 

output) and output of CRR model was done by means of correlation analysis and graphical 

comparison. The comparison indicated that both the ANN model and CRR are good and the 

performance of the ANN model is better than that of CRR model. The ANN model captures 

different components of the physical rainfall-runoff process being modelled through its massively 

distributed structure. Those four hidden nodes in the ANN model were found to model different 

components of a hydrological process individually. The inference from the study strongly suggests 

that an ANN model is not necessarily a black-box model as it is able to capture certain physical 

behavior of rainfall-runoff processes. 
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CHAPTER 3 Introduction to ANN 

An A N N is an information processing system that has certain performance characteristics in 

common with biological neural networks. ANNs have been developed as generalizations of 

mathematical models of human cognition or neural biology (Fausett, 1994). For engineering 

problems, neural networks are a powerful tool for modelling in which the explicit form of the 

relationship among inputs and outputs are unknown. 

3.1 History of A N N 

The development of A N N dates back to 1943, motivated by a desire to try both to understand the 

brain and to emulate some of its strengths. Fausett (1994) indicated that Warren McCulloch, a 

neurophysiologist, and Walter Pitts, a mathematician, modelled a simple neural network with 

electrical circuits and proposed the notion of threshold logic units. Their model, the 

McCulloch-Pitts neuron, is generally regarded as the first neural network. The threshold logic 

means that if the weighted sum of inputs to a neuron is greater than the threshold then the unit will 

be fired (Figure 3.1). 

Figure 3.1 Diagram of McCulloch-Pitts neuron 

The 1950s and 1960s were the first golden age of ANN. The period is characterized by the 

introduction of several neural networks learning rules. The famous one is the delta rule, which 
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adjusts the weights to reduce the difference between the neural network output and desired output 

in terms of Least Mean Squared Error (LMSE). The delta learning rule for a single-layer neural 

network is a precursor of the error backpropagation learning rule for multilayer net. 

The 1970s were a quiet period in ANN history. There were two reasons that have caused the 

disinterest. The first one was the failure of single layer perceptron network, while the second one 

was the lack of a general method of training a multilayer net. 

The early 1980s saw resurgence of neural network sparked off by Hopfield. Hopfield developed a 

network called content addressable memories that can store several patterns, like human face, and 

recall successfully stored patterns by whole or partial pattern. His studies showed the power of 

ANN. Other milestones in this period were the Boltzmann machine and backpropagation training 

algorithm (BP). The BP idea of propagating information about error at the output units back to the 

hidden units was first discovered in 1974. It was rediscovered and popularized by Rumelhart, 

Hinton and Williams in 1986. The algorithm is a generalized delta rule. 

Recent interest in ANN can be attributed to two reasons. The first, is the training technique that has 

been developed for more sophisticated network architecture and is able to overcome the 

shortcomings of the early simple neural network. The second, is high-speed digital computer that 

makes the training and simulation of neural processes more feasible. 

3.2 A Brief Introduction to ANN 

3.2.1 Introduction 

An ANN is a massively parallel-distributed information processing system that has certain 

performance characteristics resembling biological neural networks of the human brain (Haykin, 

1994). A neural network is characterized by its architecture that represents the pattern of 

connection between nodes, its method of determining the connection weights, and the activation 

function (Fausett, 1994). Like the human brain, a typical ANN consists of a set of nodes (neurons), 
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each generates an output value or activation determined by the sum of the inputs to the node. 

Nodes are then organized as a layer. Several layers connected one to another form an ANN. The 

first layer is called the input layer and the last layer is the output layer. The layers in between the 

input and the output layers are hidden layers. ANN can be classified into three classes according to 

the number of layers: single layer neural net (perceptron), bi-layer neural net and multi-layer 

neural net (multilayer perceptron). 

The multilayer perceptron is the most common and useful neural net. The number of nodes in each 

layer is not fixed. The number of nodes in the input and the output layers are problem specific 

while the number of nodes in a hidden layer is determined by a trial-and-error procedure. The 

nodes in neighboring layers are fully connected by links. The connection between two nodes is 

weighted so that the significance of each input to a node is either emphasized or inhibited. It is the 

weights that determine the characteristics of the node. Different network models can be made to 

change their behavior to fit for different applications by modification of weights. The arrangement 

of neurons into layers and the connection patterns within and between layers is called the net 

architecture. Two basic paradigms for neural networks can be observed: feedforward net (Figure 

3.2) and recurrent net (Figure 3.3). 

Input Hidden Output 
Layer Layer Layer 

R nodes S nodes 

Figure 3.2 Architecture of feedforward neural network 
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Figure 3.3 Architecture of recurrent neural network 

Figure 3.2 shows a three layer feedforward neural net model. In feedforward net, information is 

passed from input layer to hidden layer(s) then output layer, or say, output of one node is fed to 

another layer of nodes. The input layer receives the input variables (or input vector P, or input 

pattern) from the research problem. The input vector may consist of quantified information that is 

thought to affect the output. Vector Y is the neural net output vector that consists o f values 

simulated or predicted by the neural net. The single most difference between feedforward and 

recurrent neural nets is that in recurrent networks (Figure 3.3), the output of a node is an input o f 

both other nodes and itself, thus allowing feedback. 

Multi layer nets can learn any continuous mapping to any arbitrary accuracy. Kolmogorov 

mapping neural network existence theorem states that a feedforward neural network with three 

layers o f nodes (input, hidden and output nodes) can represent any continuous function exactly 

(Fausett 1994, Charpter 6.1). Furthermore, for a neural net with bias terms, a sigmoid layer and a 

linear output layer are capable of approximating any function with a finite number o f 

discontinuities (Demuth and Beale, 2004). The three-layer feedforward A N N has been the most 

successful for practical applications in various fields and is the most commonly used in practice. 
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3.2.2 Algorithm of Feedforward ANN 

The basic element of an ANN is nodes (neurons), which include input nodes, hidden nodes and 

output nodes in corresponding layers. The input nodes do nothing but pass input information p, to 

hidden nodes. Hidden nodes and output node(s) calculate the weighted sum St of inputs to itself, 

then transfer the weighted sum by an activation function f(S,) and give node output Uj=f(Sj). In 

Figure 3.2, suppose there is only one output node, P = {px,p2,---,pr) is input vector, 

U = (u\,u2,---,us) is output vector by hidden nodes, Wn is weight matrix representing the weight 

ws,r which connects the node s in hidden layer and node r in input layer. The output of hidden layer 

is: 

U = f{WnP + Bh) or 

ff 

u2 

= f 

X 

W l , l W l ,2 

W 2 , l W2,2 

W

% \ Ws,2 

P\ V 
W2,r P2 + 

b2 

W 

s,r J 
. P r . A . ) 

(3.1) 

(3.2) 

where Bh = {bx,b2,• • •, bs) is bias term for hidden nodes. With the hidden nodes output on hand, the 

ANN output is: 

Y = f{W23U + B0) or 

Y = f m w2 

or 
r -, \ \ 

s _ J 

(3.3) 

(3.4) 

where W23 = (w1,w2,--,ws) is weight vector representing the weights between hidden nodes and 

output node (one node in output layer); B0 is bias term associated with output nodes. 

The function f(.) is an activation function. In practical situation, same activation functions are used 

for all nodes in a layer, although it is not required. Generally, hidden nodes use nonlinear activation 

function to take advantage of a multilayer net. The form of an activation function determines how 
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a node responds to the total input information it receives. The most commonly used activation 

function is the sigmoid function. They take the form of binary sigmoid function as shown in Figure 

3.4: 

/ ( x ) = — ( 3 . 5 ) 

or bipolar sigmoid function as shown in Figure 3.5: 

/ M = - ^ - T - l (3-6) 1 + e 

Figure 3.4 Binary sigmoid function F igure 3.5 Bipolar sigmoid function 

Linear activation function or identity function f(x) =x could also apply to input nodes and output 

nodes. The sigmoid function is a bounded, monotonic, nondecreasing function that provides 

simple relationship between the value of the function at a point and the value of the derivative at 

the same point. This dramatically reduces the burden during network training. 

3.3 Error Backpropagation for Neural Network Training 

3.3.1 The Types of T ra in ing 

Broadly speaking, there are two categories of training, supervised and unsupervised training. 

Supervised training can be called ANN model calibration in the hydrologic terminology. In 

supervised training, both the input patterns and target outputs are provided. The training is 

accomplished by presenting a sequence of training patterns, and comparing their resulting output 

against the target output. Weights of an ANN are then adjusted to minimize the difference between 
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the calculated and targeted outputs according to certain learning algorithms. In unsupervised 

training, a network is provided with input patterns but without target output patterns. The network 

itself then decides what features it should use to group the similar input patterns together. The 

typical member of each group does not need to be specified. The neural net will produce a 

representative pattern, which is the center of the group of patterns, for each cluster formed. This is 

often referred to as self-organization or clustering. 

3.3.2 The Error Backpropagation Training Algorithm 

The error backpropagation (BP) training algorithm is one of the most important and widely used 

techniques for neural network training. The BP algorithm makes it easy to find the network error 

gradient for a given pattern. It was created by generalizing the Widrow-Hofif learning rule to 

multilayer network and non-linear differentiable transfer function. Actually, the BP algorithm is 

used almost exclusively with feedforward multilayer neural network using continuously valued 

nodes. Based upon the Mean Squared Error and the Gradient Decent methods, the BP algorithm 

uses input vectors and corresponding output vectors to train a network until it could approximate a 

function (i.e. associate input vectors with specific output vectors). The BP algorithm involves two 

steps. In the first step, input information goes forward from input layer to hidden layer(s) then 

reaches the output layer. The error signal at the output layer could be obtained easily by comparing 

ANN output with target output. In the second step, the error signal at the output layer is propagated 

backward to the hidden layer(s) and input layer, weights are adjusted according to the error signal 

of related nodes. 

The BP learning algorithm aims at finding the optimal weight matrices and bias vector that 

minimize the total error generated by all patterns in the training dataset. The total error always 

takes the form of squared difference between desired and actual output: 

where P is the number of training patterns, N is the number of nodes in output layer, u is the ANN 
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output at the output layer, and C is the desired output. When neural net has only one output neuron, 

the error function is simplified to: 

2 ,=i 

The basic BP learning algorithm updates network weights and bias in a direction in which the total 

error decreases most rapidly along the gradient: 

dEp 

A P W U = ( X — (3-9) 

where a is learning rate, w, . is weight of the connection between node / and j in neighboring two 

layers, node j is located in former layer, while node / is located in later layer. The updated network 

weights, w* •, can be expressed as: 

W i j = w u + a S i u j (3-10) 

where 8t is error signal, when a node is an output node: 

<5,.=M;(1-W,.)(C,.-W;) (3.11) 

or when a node is a hidden node: 

<*/= "/(!-«/)X5*W*.<- (3.12) 
h 

where h is the number of nodes in the output layer. 

The standard BP algorithm is a gradient descent algorithm, as is the delta rule. There are a number 

of variations on the basic algorithm which are based on other standard optimization techniques 

such as the Conjugate Gradient method, the Quasi-Newton method and the LMBP (a more general 

training method). Quasi-Newton and standard BP learning algorithms are two special situation of 

LMBP. Matlab Neural Net Toolbox has implemented a number of these variations. In practice, the 

LMBP is faster and finds better optima for a variety of problems than other methods (Demuth and 

Beale, 2004). 

The main problem associated with BP algorithm is that it is not guaranteed to find a global 
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minimum. In fact, once a minimum has been reached, it is difficult to determine whether it is a 

global minimum or not. An effective way to avoid this problem is training the ANN with several 

sets of initial weights and biases, then choose the best result. The BP algorithm does not have the 

ability to incrementally learn from training patterns, therefore preventing the incremental 

accumulation of knowledge. 

3.4 Advantages and Disadvantages of ANN 

3.4.1 Advantages of ANN 

The basic advantages of ANNs are that they are tools that are data-driven, flexible and easy to 

handle non-linear processes. ANN has the ability to determine which model input is critical, so 

that there is no need for prior knowledge about the relationships among the variables being 

modelled. When developing neural network models, it is not necessary to know much knowledge 

about watershed characteristics and hydrological processes; and it is not needed to know the 

statistical characteristics of the input and output data. Furthermore, the non-stationarities in the 

data, such as trends and seasonal variations, are implicitly accounted for by the internal structure 

of the ANNs (Maier and Dandy, 1996). Due to the flexibility of ANN, different kinds of data can 

be included in an ANN model, both qualitative and quantitative (Xu and Li, 2002). Owing to the 

fact that ANNs do not need firm understanding of hydrological theory and watershed 

characteristics, the model calibration is relatively simple compared with other kinds of lumped 

hydrological models (Xu and Li, 2002). ANNs are highly parallel systems and contain many 

identical and independent components that can be executed simultaneously, often making them 

faster than alternative methods (Zealand et al., 1999). When an ANN has suitable architecture, it 

will be relatively insensitive to noisy data, unlike ARMA-type models. Therefore, an ANN model 

has the ability to determine the underlying relationship between model inputs and outputs, 

resulting in good generalization capability (Zealand et al., 1999). 

3.4.2 Disadvantages of ANN 

The black-box nature of ANNs and, therefore, inability to explain the reasoning for a result in a 
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useful way is their single most significant weakness. The optimal network architecture as well as 

the optimal internal network parameters are somewhat problem dependent. The need for selecting 

a number of neural network parameters based on trial-and-error or rule-of-thumb characterizes 

ANNs' other inherent weakness (Tingsanchali and Gautam, 2000). For BPNNs, they require lots 

of supervised training with lots of input-output pairs. Additionally, the current training algorithm 

does not guarantee that the network will converge to a global optimization. Because the learning 

algorithms are based on gradient decent, the training processes are easily trapped into a local 

minimum. Finally, BPNNs can not cope with major changes in the system because they are trained 

on a historical dataset and it is assumed that the relationship learned will be applicable in the future 

(Zealand et al., 1999). 

3.5 Important Issues Related to the Application of ANN 

3.5.1 Generalization vs. Number of Hidden Nodes 

In ANN applications, the number of input and output nodes is completely determined by the 

research problem itself while the number of hidden nodes is arbitrary. In general, more hidden 

nodes will provide an ANN greater capacity to capture the underlying relationships in training data. 

Imrie et al. (2000) indicated that too many hidden nodes will encourage each hidden node to 

memorize fluctuations in the training data that are not representative of the system being simulated, 

and thereby diminishing the generalization capabilities of the network. Zealand et al. (1999) 

showed that selecting too many hidden nodes will increase the training time but without 

significant improvement on training results. Generally, the best generalization ability is achieved 

when the fewest nodes are used. 

The selection of a suitable number of hidden nodes is a tradeoff between an ANN model error and 

its generalization ability. The selection process is more an art than a science (Tingshanchali and 

Gautam, 2000). But Fausett (1994) still suggested a systematic way for the selection of hidden 

nodes. The general practice is to determine the number of hidden nodes by trial-and-error based on 

a total error criterion (ASCE Task Committee on Application of Artificial Neural Networks in 
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Hydrology, 2000 I). 

3.5.2 Generalization vs . Training Time 

For an ANN model, the longer it is trained, the smaller the error on training data could be achieved. 

ANN training should maximize its generalization ability rather than minimize the error on training 

dataset. So it is not necessarily to continue training until the neural network's error on training 

dataset reaches minimum. A common technique used to determine the appropriate training time is 

the early stopping technique. The technique uses two datasets, training and monitoring datasets, 

during training. The training algorithm adjusts the weights and biases according to training dataset. 

In certain interval during the training, the weights and biases are applied to calculate the 

simulation error on the monitoring dataset. As the training proceeds, the error on the training 

dataset will decrease constantly while the error on monitoring dataset will decrease in the initial 

phase then increases at a certain point. After this point, the network is starting to memorize the 

training pattern and starts to lose its ability for generalization. At this point, the early stop 

technique will stop the training. The early stopping technique was successfully implemented into 

the MATLAB Neural Network Toolbox. Recent researchers (Coulibaly et al., 2000; Imrie et al., 

2000; Lin and Chen, 2004; Xu and Li, 2002) showed that early stop technique is a more systematic 

method to avoid overfitting, or to get maximum generalization ability. 

3.5.3 ANN Input Selection 

In the application of ANN, the selection of training data is important for the successful application 

of the ANN model (Xu and Li, 2002). Although an ANN is a data driven black-box model and the 

physical processes inherent in a research problem are often ignored, the physical processes are still 

important for the selection of ANN inputs. Through the learning process, ANN recognizes the 

relationship, both direct and indirect, between the inputs and the desired output values. It is 

obvious that the closer the relationships between inputs and outputs, the easier the training. So the 

relationship between inputs and desired outputs is the first priority in choosing the input variables. 

The firm understanding of physical processes, which determine how a set of input information is 
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transformed into system output (quantity and timing of streamflow), will also help to choose input 

variables that have the most closest relationship to outputs. 

The second issue associated with ANN inputs is providing ANN with as many patterns as possible. 

Once a network has been trained, the general relationship between the inputs and outputs 

contained in the training dataset has been obtained by the ANN architecture, the weights and 

biases. The network will generalize for new input data, which are within the scope of training 

dataset. On the other hand, the network will not necessarily generalize properly for the patterns 

located out of the range of the training dataset. To improve network performance, it is important 

that the training dataset provides a full and accurate representation of the problem domain 

(Zealand et al., 1999). For real-time streamflow forecasting, therefore, it is strongly advisable to 

include more data in the training dataset; in particular the peak flows with extreme large values. 

Even so, it is still advisable to retrain the model once a new dataset becomes available (Xu and Li, 

2002). 

The methodology of selection of ANN input involves autocorrelation analysis, cross-correlation 

analysis, physical considerations, and trial-and-error process. A sensitivity analysis can be used to 

determine the relative importance of a variable (Maier and Dandy, 1996). 

3.5.4 Input Data Preprocessing (Scaling) 

An ANN is theoretically able to handle raw data. However, without properly transforming the 

input data, the training process and the training result may not be the most efficient one. If 

variables in the training dataset vary greatly in magnitude, the weights and biases have to adapt to 

the difference in magnitude. The resulting weights and biases are not necessarily reflecting the 

importance of the input variables and will make the training algorithm runs inefficiently. Input 

data preprocessing/scaling is an efficient way to solve the problem. The commonly used scaling 

methods include: (i) linear transformation, (ii) statistical standardization, and (iii) mathematical 

functions. The linear transformation scales input into certain range between 0 and 1 or even 0.15 
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to 0.85. Scaling inputs down to range between 0.15 to 0.85 rather than 0 to 1 will take advantage of 

the most dynamic range of activation function and will give an ANN certain extrapolating ability. 

Nayak et al. (2004) and Sudheer et al. (2003) indicated that transferring input variable to normally 

distributed time series by the Wilson-Hilferty method will improve overall ANN performance. 

Smith and Eli (1995) transferred a hydrograph into Fourier series with 21 coefficients that were 

simulated by an ANN model. The authors found that the prediction of the entire hydrograph to be 

very accurate for multiple storm events. Imrie et al. (2000) showed that a cubic polynomial 

activation function in output layer will increase ANN extrapolation ability. 
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CHAPTER 4 Case Study and Results 

4.1 Case Study Watershed, Data and Model Evaluation Criteria 

4.1.1 Case Study Watershed —Cheakamus River above Daisy Lake Dam 

To explore the applicability of ANN to flood forecasting, the Cheakamus River above the Daisy 

Lake Dam was selected as a case study watershed. The catchment is a coastal watershed located in 

southwest British Columbia, Canada. The drainage area of the Cheakamus River is about 945km , 
2 2 

while the drainage area above Daisy Lake Dam is 721km . The glacier in the area is about 68km 

or 9% of the case study area. The drainage basin of the Cheakamus River catchment and its general 

topographic features are shown in Figure 4.1. 

The length of the catchment is about 12km along NNE-SSW and 36km along NE-SE. The 

elevation of the catchment varies from 379m to 2739m with a median elevation of 1375m (Figure 

4.2). The northwest of the catchment is higher than the other parts of the watershed. 

The Cheakamus River originates from Cheakamus Lake and flows to the Squamish River at the 

confluence near Brackendale, and then the Squamish River flows into Howe Sound, which is part 

of the Pacific Ocean. 

The Cheakamus Project (Daisy Lake Dam) is a small hydropower plant built in 1957 and is 

operated by BCH. The Daisy Lake reservoir is approximately 6km long and 4300 hectares with 

storage capacity of 46,000,000m3. The storage within the normal reservoir operation range of 

elevation 364.9m to 377.27m is about 40,000,000m3. Power releases are discharged into the 

Squamish River upstream of its confluence with the Cheakamus River. Non-power releases from 

Daisy Lake Dam are discharged into the Cheakamus River. 
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Figure 4.1 Cheakamus River catchment (BC, Canada) 
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Figure 4.2 Hypsometric curve of Cheakamus catchment 

Climate in the Cheakamus basin is dominated by the Pacific air masses, and is characterized by hot 

and dry summer and rainy winter. The confrontation of the Pacific air mass with the west-facing 

mountain slopes results in extremely prolonged rainfall in winter. The average annual total 

precipitation in Cheakamus watershed is 1944 mm (Upper Cheakamus DCP, 1986-2001). The 

precipitation in winter (October to January) is about 55% of the total annual precipitation; while it 

is only 15% in the period from June to September. In terms of average monthly precipitation, 

November is the highest (335mm) and July is the lowest (68mm) as shown in Figure 4.3. 

Snowpack in Cheakamus corresponds to its precipitation and temperature characteristics. In 

general, snow begins to accumulate in December and reach maximum in April. The snowmelt 

processes generally last for three months in the period of May to July. 

The temperature in Cheakamus varies with seasons. The daily average temperature varies between 

-23 °C and 35 °C. January is the coldest month with monthly average temperature of-2.3 °C while 

August is the hottest month with average temperature of 15.1 TJ. Figure 4.4 shows the mean, 

maximum and minimum daily temperature in each month at the Upper Cheakamus DCP. 
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Figure 4.3 Monthly precipitation statistics at upper Cheakamus DCP (1986-2001) 
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Figure 4.4 Daily temperature statistics at Upper Cheakamus DCP (1986-2001) 

The average annual inflow to the Daisy Lake Reservoir is 49m3/s. The monthly average inflows 

vary within the range of 20 to 115m3/s, and are mainly affected by snowmelt. The monthly inflows 

from May to August vary from 68 to 115 m /s while the other months' vary from 20 to 43m /s. 

Figure 4.5 shows the similarity of monthly average inflow and temperature. Consistent with 

temperature, the lowest mean daily inflow occurs in January (20m3/s) and the highest mean daily 

inflow occurs in June(115m7s). 
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Figure 4.5 Comparison between monthly average inflow and temperature 

Floods may occur in Cheakamus watershed at any time of a year (Figure 4.6), but floods with high 

magnitude mainly occur in the early winter season. There are three types of floods in the 

Cheakamus watershed: rainfall floods, snowmelt floods and rain-on-snow floods. The snowmelt 

runoff builds up the base flow and are similar to sinusoidal curve with one peak in each day. The 

snowmelt floods increase and decrease in a flat and fixed pattern, while the rainfall floods and 

rain-on-snow floods are flashy. It is relatively difficult to identify the rain-on-snow floods from the 

rainfall floods. The rain-on-snow floods are usually unexpectedly big in magnitude. The record 

highest flood occurred on November 11th, 1990, with a daily inflow of 647.8m3/s and a return 

period of about 50 years. 
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Figure 4.6 Historical daily inflow of Daisy Lake Reservoir 
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4 . 1 . 2 Data for Case Study 

Historical daily precipitation, daily streamflow discharge and daily average temperature were 

obtained from BCH. The daily data cover the period from October 1, 1986 to September 1998 

corresponding water year (October to September) 1987 to 1998. The daily data in the period of 

1987 to 1995 are BCH well quality controlled official data that have been used in BCH RFS and 

the Water Use Planning process. The data in water year 1997 and 1998 are less quality controlled 

data. The daily precipitation and temperature data are observations of the Upper Cheakamus DCP 

(CMU), while the Daisy Lake inflow data were calculated by the reservoir mass balance equation. 

Historical hourly precipitation, temperature, and Daisy Lake inflow used to train and test the 

hourly time step models were also obtained from BCH. The hourly data cover the period from 

October 1986 to September 1995. The hourly data are raw data and have not been quality 

controlled. The hourly precipitation and temperature are observations at the Upper Cheakamus 

DCP (CMU), the Daisy Lake inflows were calculated by the reservoir mass balance. The quality 

control of the hourly data, especially the inflow data was done by applying a moving average 

method and manual modification. 

4 . 1 . 3 Model Evaluation Criteria 

The evaluation and inter-comparison of different models or different sets of parameter are made by 

statistical indices comparison and hydrograph visual check. The statistical indices used in this 

research include the Root Mean Squared Error (RMSE), the Nash-Sutcliffe Coefficient of Model 

Efficiency (CE), the Mean Absolute Error (MAE), the volume error (Vol.%), the coefficient of 

correlation (R), and the parameters of linear regression between observed and simulated 

streamflows (m and b). The values of the indices are calculated according to Equations 4.1 to 4.5. 

The ideal values of the evaluation indices are shown in Table 4.1. 

(4.1) 
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±\Qsilt)-Q0M 
CE = \-^-n (4.2) 

t\Qobs(t)-Q0J 
t=l 

MAE = ~1L\Qs^)-QoM (4-3) 
n ,=i 

Vol.% = ^ x 100 (4.4) 

Qsim {t) = ™-Qobs{t) + b (4.5) 

where (9s.m is simulated streamflow (m3/s); go 6 s is observed streamflow (m3/s) and Qobs is mean 

of the observed streamflow (m3/s). 

Table 4.1 Best value for model evaluation criterion 

Statistical Indices Abbreviation Ideal Value 

Root mean squared error RMSE 0.0 

Nash-Sutcliffe coefficient of model efficiency CE 1.0 

Mean absolute error MAE 0.0 

Volume error Vol.% 0.0% 

Coefficient of correlation R 1.0 

Linear regression parameter m 1.0 

Linear regression parameter b 0.0 

The CE is widely used to evaluate hydrologic model performance. It evaluates how close the 

simulated hydrograph matches the observed hydrograph. The CE varies from negative infinity to 

1.0 corresponding to the worst and best agreement of hydrographs. The negative values of CE 

indicate that the observed mean is a better predictor than the model. Among these statistics, the 

RMSE and CE are usually the first two choices. 
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4.2 Daily A N N Model 

4.2.1 Introduction 

This case study intends to grasp the general knowledge of the ANN technique, explore the detailed 

application procedures, and find the factors that affect the runoff in the study watershed. The 

research intends to find if the ANN technique could be applicable in BCs small watersheds, 

especially those watersheds that are affected by snowmelt. In this case study, the ANN technique 

is applied to simulate the daily Daisy Lake inflow and compared with the UBCWM and a simple 

model (Qt+i^Qt) labeled as One Step Lag Model (OSLM), because both quality controlled daily 

data and the UBCWM can be easily obtained from BCH. 

The application of the ANN model to simulate the daily streamflow involves four major steps: the 

ANN inputs selection, the input information preprocessing, the ANN architecture selection and 

model training. The ANN model used in this research is the Feedforward Error Backpropagation 

Neural Network with one hidden layer. The only parameter of the ANN architecture that needs to 

be determined is the number of hidden nodes. 

Data in water year 1987 to 1990 were used to validate the ANN model. Data in water years 1991 to 

1995 were used for model training/calibration, while the data in water years 1997 and 1998 were 

used for the ANN model performance monitoring during the training process as the early stop 

ANN training technique was used. 

4.2.2 ANN Inputs Selection 

The power of an ANN model stems from its ability of mapping input patterns to output patterns 

provided that the relationships between them do exist. It is obvious that the actual relationships 

between inputs and outputs are very important for an ANN model to perform properly. The 

relationship may be direct or indirect, linear or non-linear, single-to-single or multiple-to-single 

form. There are no mathematically rigorous ways to select appropriate input variables. The 

knowledge on hydrological processes, cross-correlation analysis, auto-correlation analysis and 
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sensitivity analysis are generally employed to select an A N N model's inputs that could best 

represent the streamflow. The initial A N N model input variables were chosen according to the 

cross-correlation analysis between daily streamflow and precipitation (or temperature), and the 

autocorrelation (ACF) analysis o f streamflow itself. These analysis techniques w i l l indicate the 

direct relationship between streamflow and precipitation (or temperature, past streamflow). 

Figure 4.7 shows the A C F of streamflow (Q). The A C F decreases with the increase of the lag days. 

The correlation between streamflows in two successive days, Q, and Qt.i, is as high as 0.93. Figure 

4.7 clearly indicates that past streamflows are strong indicator of future streamflows. The 

autocorrelation analysis just shows the single-to-single relationship and could only suggest past 

streamflows are good indicators. It is difficult, however, to determine how many past streamflow 

information is good due to the complexity o f multiple-to-single relationship. The complexity is 

caused mainly by the combination and the joint distribution of past streamflows. In this research, 

streamflows of past two days, Q, and Q,.i, were chosen as the initial past streamflow information 

to forecast the streamflow at t+1. The two streamflows are highly correlated to future streamflow 

and could inform the A N N model about the streamflow trends. 

10 12 1 4 16 18 20 
Lag time (Days) 

Figure 4.7 Streamflow autocorrelation ( A C F ) analysis 

Figure 4.8 shows the cross-correlation between streamflow and other information such as 

precipitation, maximum daily temperature and minimum daily temperature. Figure 4.8 indicates 

that precipitation at lag 0, 1 and 2 days, which correspond to pt+i, pt and /?,./, have positive 

correlation with streamflow Q,. Hence, for day t+1 the daily precipitations, p,+i, pt and are 
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thought as the initial precipitation indicators. The small value of cross-correlation between 

streamflow and precipitation does not necessarily mean that precipitation is not important, it is 

caused by the large number of zero precipitation data. The cross-correlation between streamflow 

and precipitation is relatively high in flood period (refer to sub-section 4.3.2). 

The temperature affects streamflow indirectly by changing the form of precipitation (e.g. rainfall 

or snowfall) and melting the snowpack, which consequently changes the watershed water storage 

(5). The rainfall-flood response time is about 6~10hrs in the case study watershed, and 

accordingly the value of the temperature-flood response time should be longer. When considering 

that the streamflow indicators, Q, and Qt.i, already contain the effects of past temperature, the 

temperature indicators selected are only future daily maximum temperature (Tmax,+i) and daily 

minimum temperature (Tmint+i). 

0.6 

_0 2 i 1 1 1 1 1 1 1 1 1 • 1 

0 2 4 6 8 10 12 14 16 18 20 
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—•—Q~Tmax • Q~Tmin - ± - Q ~ P - • - Q - S 

Figure 4.8 Daisy Lake inflow cross-correlation analysis 

The case study watershed is heavily affected by snowmelt runoff especially in the summer. 

Previous applications of ANN used the snow water equivalent (SWE) or snowpack information as 

an indicator (Zealand et al., 1999; Coulibaly et al, 2000). Due to the low accuracy and 

representative of the snowpack data, it was not chosen as indicator in the research. Because of the 

availability of a model for SWE calculation in the case study watershed, and the high uncertainty 

associated with the SWE calculation results, SWE was not chosen as indicator in the research too, 
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while a new indicator, water storage trend (S), was introduced in this research. S is calculated by: 

S{t +1) = S{t) + p(t + \)-q(t + \)-E (4.6) 

Where p is the daily precipitation (mm), q is the daily streamflow volume in terms of runoff height 

(mm) and E is the daily evaporation (mm). 

In summary, the initial input indicators selected for one day ahead (t+1) streamflow forecasting 

are the future precipitation (p,+i), the future temperatures (Tmaxt+i, Tmint+i), the past 

precipitations (p,, /?,_/), the past streamflows (Q,, Qt.i) and the past water storage (St). The initial 

inputs selected were further refined by sensitivity analysis which was focused on the number o f 

past precipitation and streamflow data points. 

4.2.3 ANN Inputs Preprocessing 

The preprocessing o f A N N inputs includes information encoding and scaling. The encoding is 

used for non-digital and non-continuous information, therefore it has nothing to do with this 

research. This research used the simplest linear transformation to scale input information down to 

0.15 to 0.85, which is considered to be the most dynamic range of the sigmoidal activation 

function. The equation used for scaling is: 

v „ e t v =0.15 + v ° " ~ v - i " x0 .7 (4.7) 
V — V • 

max mm 

Where v0id is the original hydrometric data value, vmin is the minimum o f the original input time 

series and vmax is the maximum of the original input time series. 

The input preprocessing methods, such as logarithm transformation and Wilson-Hilferty 

transformation, were not adopted, as these transformations w i l l dramatically change the statistical 

properties o f the input and the output data, and wi l l distort the physical relationship inherited in 

rainfall-runoff processes. For example, the logarithmic transformation w i l l mask the most 

important high flows and expose the low flow data. 
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4.2.4 A N N Tra in ing 

The ANN model training is a process of adjusting the ANN weights. The training process tries to 

find a set of parameters (weights) that makes the ANN simulated streamflows match observed 

streamflows as close as possible. In an ANN application, the training is also a process of 

determining the ANN architecture in terms of number of hidden nodes. The number of hidden 

nodes is generally found by training the ANN with different number of hidden nodes, then 

choosing the ANN with the best average performance. In this research, ANN training was also 

used to find the best combination of input indicators by means of sensitivity analysis. Due to the 

large number of weights and the gradient descent training algorithm, training could be easily 

trapped by a local minimum. To avoid this problem, training was repeated many times with 

different initial weights. Each training gives a set of parameter, then the set of parameters which 

best simulate validation dataset was chosen as the final set of parameters. 

In this research, the training data were divided into three parts namely training dataset (1991 -1995), 

monitoring dataset (1997-1998) and validation dataset (1987-1990). The early stop technique was 

used in the ANN training. 
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Figure 4.9 ANN input indicator sensitivity analysis 

Figure 4.9 shows the ANN input indicators refinement process, or the ANN inputs sensitivity 

analysis. The sensitivity analysis was focused on choosing the number of past precipitations and 
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streamflows. The P and Q in Figure 4.9 are precipitation and past streamflow, respectively. The 

number following P and Q are the number of precipitation and streamflow indicators used. The 

figure indicates that the ANN models using four precipitations and two or three streamflow 

records (P4Q2 and P4Q3 ) perform better than others. The difference between P4Q2 and P4Q3 is 

negligible while the ANN model using two past streamflow indicators is slightly better when the 

number of hidden nodes is less than seven. For the sake of simplicity and better generalization 

ability, two past streamflow indicators are thought to perform better. The P4Q2 ANN model for 

daily streamflow forecasting is shown in Equation 4.8 and Figure 4.10. The model has nine input 

indicators. 

t+l,l min. + 1 , 
St) (4.8) 

Tminl+I 

Q,-i Q, Tmax.+I 

s 
Pt-2 1 p,-l Pt °t 

1 P , + l 1 
t-2 t-l t 

1 1 
i t+1 

Current time 

Figure 4.10 The input indicators to daily time step ANN model (ANN9-5-1) 

Figure 4.11 shows the trial-and-error process that is used to choose the number of hidden nodes. 

For a fixed combination of input indicators, those ANNs with different number of hidden nodes 

were trained and the ANN performance on validation dataset was calculated in term of RMSE. 

The best ANN performance is chosen from the results of many trainings to draw the curve. As 

shown in Figure 4.11, the P4Q2 ANN model has the best performance when the number of hidden 

nodes is five. The comparison among the models also indicates that P4Q2 model with five hidden 

nodes was the best one. The P4Q2 ANN model with five hidden nodes is denoted as ANN9-5-1 

model, in which 9 represents nine input indicators, 5 represents five hidden nodes and 1 means that 

the ANN model has only one output node representing the forecasted streamflow. 
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4.2.5 A N N M o d e l Tra in ing Results 

Table 4.2 lists the ANN9-5-1 model training results for training, monitoring and validation 

datasets. The modelling results indicate that ANN9-5-1 model's overall performance in the 

watershed is good. In the model validation period (1987-1990), ANN9-5-1 model's streamflow 

simulation error, in terms of MAE, is 5.22 m3/s or 11.1% of the average streamflow in the period. 

The low MAE reflects that the model has low average modelling error for various streamflow 

situations (e.g. high flows and low flows, or flows in different seasons). In the validation period, 

the model has a high CE of 0.95, which indicates the simulated and observed hydrograph matches 

each other very well; the model simulates the total runoff volume at a very low percent error of 

0.3%. For summary, the ANN9-5-1 model's high performance on modelling streamflow value, 

shape of hydrograph and total volume of runoff indicates that the model is good for the research 

watershed. 

The comparison of various statistic indices between model calibration and validation periods 

(Table 4.2) shows that ANN9-5-1 model performance is consistent in the two periods, and 

indicates that the model will have the same performance on future datasets. ANN9-5-1 model's 
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MAE statistics are 6.98 and 5.22m3/s (Table 4.2) for calibration and validation periods, 

respectively. The MAEs are equivalent to 11.1% and 12.5% of average streamflow in the two 

periods, respectively. The model also has similar CEs, 0.93 and 0.95, in calibration and validation 

periods, respectively. Beside the MAE and CE statistics, the total runoff volume simulation error 

values, 0.3% and 1.2%, in the two periods are also close to each other. 

The similar performance of the ANN9-5-1 model in calibration and validation periods indicates 

that the ANN training neither over fits nor under fit the calibration dataset. The over fitting will 

cause the model to perform bad on validation dataset, while the under fits will cause the model to 

perform on validation dataset in a uncertain way. This further indicates that the ANN training 

method, LMBP coupled with early stop technique being adopted in the research, is a practical and 

good method for ANN training. 

Table 4.2 ANN9-5-1 model training results 

Y E A R Duration 
Mean of 

Obs. 
(cms) 

R M S E 
(cms) 

C E m 
b 

(cms) 
r 

M A E 
(cms) 

Vol.Er. 
(%) 

1987 1986/10/01-87/09/30 51.1 8.92 0.96 0.94 3.47 0.978 5.54 0.7 
1988 1987/10/01-88/09/30 46.0 8.44 0.95 0.90 2.56 0.976 5.02 -4.3 
1989 1988/10/01-89/09/30 43.4 7.80 0.95 0.94 3.31 0.976 4.8 1.7 
1990 1989/10/01-90/09/30 47.3 9.80 0.92 0.94 4.19 0.962 5.54 3.0 
1991 1990/10/01-91/09/30 66.0 14.3 0.96 1.00 2.75 0.98 8.44 3.9 
1992 1991/10/01-92/09/30 56.6 12.6 0.92 0.92 5.3 0.959 7.1 1.1 
1993 1992/10/01-93/09/30 45.8 9.6 0.95 0.94 4.16 0.975 5.36 3.4 
1994 1993/10/01-94/09/30 53.5 12.0 0.92 0.92 5.23 0.962 6.8 2.0 
1995 1994/10/01-95/09/30 56.3 10.2 0.96 0.93 3.96 0.979 5.86 0.5 
1997 1996/10/01-97/09/30 61.5 14.4 0.91 0.86 5.45 0.959 8.31 -5.5 
1998 1997/10/01-98/09/30 53.1 9.75 0.94 1.01 1.72 0.973 5.92 4.3 

Calibration 
Validation 

1991-1995 
1987-1990 

55.6 
46.9 

11.9 
8.85 

0.95 
0.95 

0.96 
0.93 

3.62 
3.35 

0.973 
0.973 

6.71 
5.22 

2.2 
0.3 

Table 4.2 also shows that the ANN9-5-1 model performance is consistent between years in the 

model calibration and validation period (1987-1995). The CEs for those years vary from 0.92 to 

0.96. The MAEs for those years vary from 10.2% to 12.8% of corresponding average annual 

streamflow. The total runoff volume simulation errors vary in a small range of-4.3% to 3.9%. The 

consistent high performance of ANN9-5-1 model in nine years indicates that the model has 
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adapted to the complicated non-linear rainfall-runoff mechanism in the research watershed. 

Figures 4.12 to 4.15 present the hydrograph comparison of observed streamflow and ANN9-5-1 

model simulated streamflow for validation dataset (1987-1990). The figures show that simulated 

hydrographs match observed hydrographs very well. The good match of the two hydrographs 

explains the high CEs of each validation year in Table 4.2. The watershed is characterized by: (1) 

rainy winter and dry summer, (2) average low streamflow in winter and high streamflow in 

summer and (3) snowpack highly affects the streamflow. It is shown by Figures 4.12 to 4.15 that 

the ANN9-5-1 model simulates low flows (about 10-20m3/s), medium flows (20-50m3/s) and high 

flows (>50m3/s) equally well. The model does not show obvious simulation bias for low, medium 

and high flows. This indicates that the ANN9-5-1 model has adapted to the runoff patterns which 

can be roughly classified into groundwater runoff, soil water runoff and snowmelt runoff. It is one 

of the signals that indicates the ANN9-5-1 model has adapted to the non-linear rainfall-runoff 

response in the watershed. 

As discussed in section 3.2, the ANN architecture provides an ANN model with the power to 

simulate a system or represent any continuous function exactly (Fausett 1994, Charpter 6.1). The 

system/function can be linear or non-linear. The research in this section shows that a simple ANN 

model with three layer and nine nodes in hidden layer could handle the non-linear and complicated 

rainfall-runoff response in the case study watershed with an acceptable accuracy. The ANN 

training method (LMBP and early stop technique) used in the research makes the parameter set 

that resulted from training to have the biggest generalization ability for future data. In other words, 

this makes the performance of an ANN model on the training (calibration) dataset and validation 

dataset as equal as possible (Table 4.2). 

The high performance of the ANN9-5-1 model also benefits most from one of its features, which 

dictates that an ANN model could use any kind of information as model input. As shown by 

Equation 4.8, the ANN9-5-1 model uses streamflow in past two days as model input. Obviously, 
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the streamflow input will strongly show the model current watershed and streamflow conditions. 

The two streamflow inputs have the possibility to show the model the streamflow trend as well as 

streamflow magnitude. Taking past streamflow information into an ANN model provides the 

model higher starting modelling accuracy than conventional rainfall-runoff models, which do not 

use past streamflows, the most accurate and valuable information, as model input. 

The watershed water storage trend (S) being introduced in ANN9-5-1 model takes the most 

advantages of available high quality data (precipitation, streamflow and evaporation) and informs 

the model about the relative water storage in the watershed. S has less uncertainty than snowpack 

information and SWE, which have been used in previous snowmelt runoff simulation (Zealand et 

al., 1999; Coulibaly et al., 2000). Using S in the model increases the model input information 

quality and facilitates the model getting higher modelling accuracy. 
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Figure 4.12 ANN9-5-1 model validation hydrograph (1987) 
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Figure 4.13 ANN9-5-1 model validation hydrograph (1988) 
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Figure 4.14 ANN9-5-1 model validation hydrograph (1989) 
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Figure 4.15. ANN9-5-1 model validation hydrograph (1990) 



4.2.6 ANN, UBCWM and OSLM Performance Comparison 

As shown in chapter 4.2.5, the ANN performance was good in the case study watershed. To judge 

the ANN model performance in a more detailed way, this research compared the ANN 

performance with that of other two reference models, UBCWM (Quick, 1995) and OSLM. The 

performance of the two reference models were calculated and compared with that of the ANN 

model as shown in Figures 4.16 to 4.18 and in Table 4.3. The UBCWM and ANN9-5-1 models 

used the same type of hydrometric and climatic information from same hydrometric station. The 

two models used data in the same period for calibration and testing. The OSLM does not involve 

any calibration and validation due to its model structure (Qt+i=Q,). Both the OSLM and 

ANN9-5-1 models used past streamflow as input. The ANN9-5-1 model performance 

improvement, compared to the OSLM, comes from the ANN technique and the additional 

indicators used. Figures 4.16 and 4.17 show the RMSE and MAE comparison among the three 

models. The bar chart indicates that the ANN modelling error is constantly less than that of 

UBCWM and OSLM in both training period (1991-1995) and the validation period (1987-1990). 
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Figure 4.16 ANN, UBCWM and OSLM performance comparison (RMSE) 
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Figure 4.17 ANN, UBCWM and OSLM performance comparison (MAE) 

Figure 4.18 shows that the ANN modelling efficiency CE is greater than that of the other two 

reference models. The CEs of the ANN model are greater than 0.9 in all the calibration and 

validation years, and the average CE in the training and the validation periods are all 0.95, which is 

greater than the average CE for the UBCWM in either the calibration (0.86) or the validation 

periods (0.84). The OSLM modelling efficiency is higher than that of UBCWM in six out of nine 

years. The bad modelling efficiency of the OSLM on 1990 and 1991 data is caused by the large 

number of floods in those two years. The comparison of CE between UBCWM and OSLM 

indicates that the UBCWM performs better than the OSLM in flooding periods. But in non-flood 

periods, the UBCWM performance is lower than the OSLM, while for the ANN model , its 

performance is consistent in both high and low flow periods. 
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Figure 4.18 ANN, UBCWM and OSLM performance comparison (CE) 
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Table 4.3 Statistics comparison among ANN9-5-1, UBCWM and OSLM 

YEAR Duration Mean 
ofObs. RMSE MAE CE 

(YY/MM) (cms) ANN UBC OSLM ANN UBC OSLM ANN UBC OSLM 
1987 1986/10-87/09 51.12 8.92 17.08 18.63 5.54 10.32 8.38 0.96 0.84 0.81 
1988 1987/10-88/09 45.95 8.44 16.52 10.29 5.02 11.07 5.75 0.95 0.81 0.92 
1989 1988/10-89/09 43.38 7.80 12.60 12.35 4.80 8.17 6.64 0.95 0.88 0.88 
1990 1989/10-90/09 47.28 9.77 13.57 20.83 5.54 8.41 7.55 0.92 0.85 0.66 
1991 1990/10-91/09 66.01 14.29 26.34 50.56 8.44 12.99 17.71 0.96 0.86 0.49 
1992 1991/10-92/09 56.61 12.55 17.02 15.59 7.10 10.85 8.66 0.92 0.85 0.88 
1993 1992/10-93/09 45.78 9.63 17.77 16.81 5.36 10.34 6.93 0.95 0.83 0.85 
1994 1993/10-94/09 53.45 12.03 17.15 16.70 6.80 11.35 8.36 0.92 0.85 0.86 
1995 1994/10-95/09 56.32 10.21 13.32 12.97 5.86 8.87 7.21 0.96 0.93 0.93 
1997 1996/10-97/09 61.54 14.43 22.30 8.31 11.09 0.91 0.80 
1998 1997/10-98/09 53.08 9.75 14.21 5.92 7.84 0.94 0.88 
Cal. 1991-1995 55.64 11.89 18.82 26.56 6.71 10.88 9.77 0.95 0.87 0.74 
Val. 1987-1990 46.93 8.85 15.08 16.12 5.22 9.49 7.08 0.95 0.84 0.82 

Note: UBC represents UBCWM 

Figures 4.19 to 4.22 present the hydrograph comparisons of the ANN9-5-1 model and UBCWM 

for the validation dataset (1987-1990). Figures 4.23 to 4.26 are the same comparisons for the 

calibration dataset. As discussed in 4.2.5, the ANN9-5-1 model simulated hydrographs match 

observed hydrographs very well in various aspects. The UBCWM simulated low flows in autumn 

to spring are good, but it does not simulate the high flows in snowmelt season as good as low flows. 

The UBCWM simulated flows in snowmelt season deviate from observed flows in various 

patterns. In 1988, the UBCWM constantly underestimates streamflows; while in 1989 it 

overestimates streamflows. In 1987, it underestimates streamflows for about one month then 

overestimates streamflows for about two months. The bad performance of UBCWM in snowmelt 

season indicates that its model structure or its parameters are not properly set for snowmelt runoff 

modelling. Assuming that UBCWM's structure and parameters are good, its bad performance are 

still showing that the model is too sensitive to low quality data, or it does not have the ability to 

adapt to watershed status quickly, or it does not have enough feedback mechanism to keep the 

model runs on the right track. 

The ANN9-5-1 model is not sensitive to noisy input information by nature and it does not show 
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UBCWM's drawbacks. Recall that a hidden node of an ANN model calculates the weighted sum 

of inputs to itself, then transfers the weighted sum by a sigmoidal function (Equation 3.1 or 3.2, 

and 3.5 or 3.6). The sigmoidal function (Figure 3.4 or Figure 4.5) is bounded and its output does 

not change so much when its input, which is the weighted sum of ANN model input, is changed 

dramatically. For example, the binary sigmoidal function's output will change from 0.9820 to 

0.9997 when the weighted sum of ANN model inputs changes from 4 to 8. So for an ANN model, 

the noisy inputs will cause this weighted sum at a node to change in a big range first, but the node's 

output will be smoothed out by the sigmoidal function. The ANN architecture and algorithm will 

filter certain parts of noisy inputs, which make an ANN model insensitive to noisy input by nature. 

The ANN9-5-1 model is even more insensitive to low quality information (e.g. snowpack, snow 

water equivalent) by using high quality data (e.g. precipitation, previous streamflow, evaporation). 

The ANN model uses most recent watershed status information (e.g. streamflow, water storage 

trend) to forecast streamflow for the next time step. Compared with UBCWM, the ANN9-5-1 

model has more accurate forecast starting point, it is more suitable for real-time streamflow 

forecasting. 

In terms of flashy flood simulation, Figures 4.19 to 4.26 show that UBCWM's performance is 

better than its performance on snowmelt runoff simulation. However, when compared with that of 

ANN9-5-1 model, UBCWM's performance on flashy flood simulation is less successful than 

ANN9-5-1 model. UBCWM tends to underestimate major floods (e.g. the two flood events in 

February and March 1987; one flood event in November 1988; two flood events in November and 

December 1990; five major flood events in 1991, etc.). UBCWM simulated major flood events 

recession processes are slower than the observed ones (e.g. one flood event in November 1989; 

five flood events in 1991). The performance of the UBCWM indicates that it does not fully capture 

the runoff components and runoff routing processes. Some of the runoff components control the 

volume of a flood and the baseflow of flood peak while the runoff routing will affect the 

streamflow rising and recession speed and the magnitude of peak. For summary, UBCWM does 

not reflect some parts of the runoff mechanism in the case study watershed. The hydrograph 
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comparison between UBCWM and ANN9-5-1 models indicates that ANN9-5-1 model reflects the 

runoff mechanism or the non-linear rainfall-runoff responses better than UBCWM in the 

watershed. The ANN9-5-1 model is more dynamic than UBCWM in streamflow forecasting in 

various regimes. 
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Figure 4.19 Hydrograph comparison (validation, 1987) 
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Figure 4.20 Hydrograph comparison (validation, 1988) 
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Figure 4.21 Hydrograph comparison (validation, 1989) 
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Figure 4.22 Hydrograph comparison (validation, 1990) 
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Figure 4.23 Hydrograph comparison (calibration, 1991) 
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Figure 4.24 Hydrograph comparison (calibration, 1992) 



Figure 4.25 Hydrograph comparison (calibration, 1993) 
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Figure 4.26 Hydrograph comparison (calibration, 1994) 
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4.2.7 ANN Mode l Onl ine Test 

The ANN9-5-1 model has been implemented in BCH by Frank Weber who is a hydrologist at BCH. 

All the testing data were retrieved from BCH database. The UBCWM simulation results were 

obtained from the its River Floods System (RFS), which is operated by BCH hydrologists. Table 

4.4 shows a comparison of statistical indices between the ANN9-5-1 model and the UBCWM for 

data in the period from October 2002 to September 2004. Figures 4.28 and 4.29 are testing results 

for 2003 and 2004 Daisy Lake inflows. 

Table 4.4 ANN9-5-1 model online testing results 

YEAR Duration Mean of 
Obs. 

RMSE 
(cms) 

MAE 
(cms) CE 

(YY/MM) (cms) ANN UBCWM ANN UBCWM ANN UBCWM 
2003 2002/10-03/09 45.63 9.31 16.76 5.40 12.28 0.93 0.78 
2004 2003/10-04/09 48.86 11.63 22.50 6.75 17.34 0.95 0.82 

As illustrated in Table 4.4, the performance of the ANN9-5-1 model in the online test is better than 

the UBCWM. The CEs of the ANN9-5-1 model are all greater than 0.93 in two of the online 

testing years, while CEs of the UBCWM are only 0.78 and 0.82, respectively, which is 0.14 less 

than that of the ANN9-5-1 model. The RMSEs and MAEs show similar performance difference 

between the two models. MAEs of the ANN9-5-1 model, which are less than half the values of the 

UBCWM, are about 13% of corresponding annual average discharge. The relatively low ratios 

between MAE and annual average discharge indicate the high modelling accuracy of the 

ANN9-5-1 model. The higher performance of ANN9-5-1 model in calibration and validation will 

guarantee that it will perform better than the UBCWM. 

The results listed in Tables 4.3 and 4.4 indicate that the ANN9-5-1 model's performance is 

consistent in terms of CE, MAE or RMSE in all the three periods: calibration, validation and online 

testing periods; while the UBCWM performance has certain degradation. The CEs of the 

ANN9-5-1 model in the three periods were 0.95, 0.95 and 0.94, respectively. The-CEs of the 

UBCWM decreased from 0.87 (calibration) and 0.84 (validation) to 0.80 in the online testing 
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period. The MAEs of the ANN9-5-1 model are consistently 11-14% of the average inflow in the 

corresponding period. But for the UBCWM, its MAEs were 20% of average flows in calibration 

and testing periods, and 27% and 35% for the two online testing years. The reason for UBCWM 

performance deterioration is that the calibration and validation datasets are well quality controlled 

data and have been verified by various departments in BCH, while the 2003 and 2004 data are 

real-time data with much less quality control. The UBCWM performance subject to noisy input, 

consequently, has lower performance in real-time forecast situation. The ANN9-5-1 model is not 

so sensitive to noisy input (refer to subsection 4.2.6) as UBCWM. It is expected that the 

ANN9-5-1 model has consistent performance in calibration, validation and real-time forecast. 

Figures 2.28 and 2.29, which correspond to Table 4.4, are the ANN9-5-1 and UBCWM 

hydrograph comparison for 2003 and 2004 water years. The figures graphically show the 

performance of the two models in various streamflow regimes. The figures show that UBCWM 

constantly overestimates streamflow in snowmelt season, while the ANN9-5-1 model simulated 

hydrographs match the observed hydrographs very well. The performance of the two models in the 

snowmelt season in the two years is the same as that in calibration and validation datasets. The 

performance of the two models in simulating low flows is the same. The performances of the two 

models in simulating flashy floods is also similar to the performance during calibration and 

validation. The UBCWM underestimates the October 2004 flood (Figure 4.29). It also can not 

simulate well the flood recession limb. Figure 4.29 shows that ANN9-5-1 model's performance on 

the flashy flood is better than the UBCWM. The model online test results prove the conclusion in 

subsection 4.2.6. 

It can be concluded that (1) the ANN9-5-1 model performance is higher than the UBCWM in 

model training/calibration, validation and online testing periods; (2) the ANN9-5-1 model adapts 

to the non-linear rainfall-runoff processes in the case study watershed more than UBCWM; (3) 

ANN9-5-1 is a reliable model that has been proven by the consistency of model performance in the 

training, validation and online testing periods; (4) the ANN9-5-1 model is insensitive to noisy 

65 



input data, therefore, it is more suitable for real-time streamflow forecasting; (5) the watershed 

water storage trend (5) is a good indicator for an ANN model to simulate snowmelt induced 

streamflow. The successful application of the ANN9-5-1 model in the case study watershed 

indicates that ANN technique, coupled with the model input selection and proper model training 

method, is a practical and a good option for BCH's small hydro plants streamflow forecasting. 
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Figure 4.28 ANN9-5-1 and UBCWM online test for 2002-03 Daisy Lake inflow 
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Figure 4.29 ANN9-5-1 and UBCWM online test for 2003-04 Daisy Lake inflow 
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4 . 3 Hourly Time Step ANN Model 

One of the objectives of the research was to design ANN model(s) to forecast the hourly flood 

discharge for the next six hours. The most common approach for carrying out such a forecast is to 

build a one-step ahead forecasting model, and use the model repeatedly for multi-step ahead 

forecasting. In this research, separate ANN models were built for 1, 2, 4 and 6-hour lead-time 

flood forecasting. In real-time flood forecasting, a 3-hour lead-time streamflow forecast can be 

derived by using the 2-hour and 1-hour lead-time models. Because the UBCWM in BCH RFS is a 

daily time step model and can not provide hourly time step streamflow forecast, a black-box model, 

the Multi Input Single Output Linear Model (MISOLM), was selected and compared with the 

6-hour lead-time ANN model. 

4.3.1 Tra in ing and Testing Datasets for the ANN Models 

The ANN models, which were used for the hourly streamflow forecasting, were trained only by 

flood events for the purpose of best model performance for flood forecasting rather than low flow 

forecasting. The inclusion of high and low flow in the training dataset will result in an ANN model 

that performs poorly for flood forecasting but it could be good for average situation. Thirty flood 

events in the period October 1986 to September 1998 were chosen to develop the ANN models. 

All the flood events have a peak flow that exceeds 100m3/s. Figure 4.30 shows the 30 selected 

flood events, the 30 floods are plotted on the same figure one after another in a sequence showed in 

Table 4.5. Table 4.5 lists the start time, end time and peak of each flood event. 
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Table 4.5 Flood events selected for A N N models training and testing 

Flood Begin End Peak Flood Begin End Peak 

No. mm-dd-yy mm-dd-yy (cms) No. mm-dd-yy mm-dd-yy (cms) 

F l 01-10-87 01-14-87 335 F20 04-25-92 05-02-92 265 

F2 03-03-87 03-08-87 276 F27 06-10-94 06-16-94 188 

F3 05-10-87 05-16-87 387 F33 07-25-95 07-30-95 226 

F4 06-11-87 06-16-87 284 SI 10-25-86 10-30-86 111 

F7 10-31-88 11-08-88 318 S2 05-26-88 05-30-88 166 
Model 

F9 11-08-89 11-12-89 496 S5 10-17-89 10-27-89 130 
training 

F10 12-02-89 12-05-89 319 S6 06-02-90 06-05-90 143 

F12 10-24-90 10-29-90 486 S7 12-02-93 12-06-93 174 

F13 11-08-90 11-15-90 740 S9 12-17-94 12-22-94 148 

F15 02-01-91 02-06-91 279 S10 01-29-95 02-03-95 150 

F17 08-26-91 09-03-91 722 S l l 02-19-95 02-22-95 192 

F19 04-14-92 04-19-92 189 

F6 05-10-88 05-19-88 226 F25 02-28-94 03-05-94 270 

Model F14 11-22-90 11-25-90 578 S3 01-29-89 02-01-89 143 

testing F16 08-07-91 08-12-91 333 S8 12-09-93 12-15-93 185 

F23 10-18-92 10-27-92 419 
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The partition of dataset (streamflow and corresponding input pattern) into training, monitoring and 

testing datasets is done by a special way. First, flood events were divided into two groups. The 

first group, which contains the first 23 flood events on Figure 4.30, was used to train the ANN 

models. The second group, which contains the last seven flood events on Figure 4.30, was used to 

test the ANN models. The testing floods were chosen by the peak magnitude, occurring time in 

terms of month and whether they were single or multiple peak events. Second, to utilize the early 

stop technique in ANN training, the 23 training floods were further separated into training dataset 

and monitoring dataset by a special method. The method first sorts the combos of streamflow and 

corresponding input pattern by streamflow. Then the method selects one combo from every five 

successive combos as a monitoring dataset, and the remaining combos were used as training 

dataset. 

Although streamflows are continuous time series, the dataset partition method was still applicable 

due to the inherent nature of the feedforward ANN. Before discussing the inherent nature of the 

ANN models, several features of the conventional hydrological models are presented as below for 

comparison with that of ANN models. The future streamflow (e.g. next time step) in a 

conventional hydrological model (e.g. UBCWM) is calculated by: 

Q = f(xl,-,xn,sl,-,sm) (4.9) 

where observed hydro metric data, s ],..., sm are model internal states, each state is 

calculated by xi, ...,x„, past state and model parameters. In a model calibration process, the model 

parameters will be changed/adjusted repeatedly, randomly or iteratively depending on the 

calibration method. As a result, the input pattern to a conventional hydrological model (Equation 

4.9) at a time step can only be fully determined during the calibration process. Therefore, the 

hydrological model input time series (e.g. precipitation) must be kept unchanged in its original 

sequence during all the calibration process. In an ANN model, the future streamflow is determined 

by: 

Q = f{x„-,xn) (4.10) 

where x/, ...,x„ is an input pattern formed by observed precipitation, evaporation, temperature, past 
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streamflow or a combination of these (e.g. water storage trend S). The function (Equation 4.10) has 

a simple form, and its arguments have nothing to do with model parameters. All the ANN inputs in 

the pattern have nothing to do with past model output information (e.g. the ANN9-5-1 model, 

Equation 4.8). Furthermore, all the ANN model inputs have nothing to do with model parameters. 

Once an ANN model (Equation 4.10) has been determined, its input pattern at any time step is 

known before the model training (calibration) process. The ANN calibration can be thought of as a 

kind of multivariate regression analysis. Therefore, we could rearrange and sort the observed 

streamflows and their corresponding input patterns without losing any information related to the 

runoff calculation. Figure 4.31 shows the streamflow of training, monitoring and testing datasets. 

The dataset partition method makes patterns, in terms of streamflow magnitude, evenly distributed 

in training and monitoring datasets. The testing dataset keeps its original time series form for the 

validation hydrograph comparison. 
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Figure 4.31 The partition of streamflow into training, monitoring and testing dataset 

4.3.2 Hourly Time Step ANN Models 

Based on the ANN theory and its application for daily streamflow forecasting, four hourly time 

step ANN models were developed. The models used past and future hydrometric and climate 

information and watershed water storage trend as inputs. According to the current weather 

prediction techniques, the estimated average precipitation or temperature in several time steps 

(future several hours) is obviously more accurate than the value at individual finer time steps. 
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Therefore all the hourly time step ANN models used an average value for the future one to six 

hours. Because the hourly temperature change is usually slower than that of precipitation, and for 

the sake of simplicity, all ANN models used average temperature for both the future and the past. 

4.3.2.1 One-hour lead-time ANN model (ANN-1) 

The one hour lead-time ANN model is shown by Figure 4.32 and Equation 4.11. The model takes 

advantage of the past streamflow input indicators QU] and Q,.2, because the coefficient of 

correlation between Q,+i and Qt.i is 0.96. The rainfall-flood response (the main precipitation to 

flood peak) time in this watershed is about six hours, the precipitation at t-4 and t-5 are considered 

as good input indicators. Subsequent precipitations are not considered as an input for the model, 

because (1) the past streamflow indicators already contain or summarize most of past information; 

and (2) the model should be made as simple as possible. The precipitation in the past four hours 

will affect the magnitude of future streamflow, and for the sake of simplicity, the model uses the 

average precipitation (Pt ,_3) in the past four hours as input indicator. The water storage trend (S,.i) 

will definitely feed the ANN models with the soil moisture information. 
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Figure 4.32 One-hour lead time ANN model (ANN-1) structure 

Therefore, the forecasted streamflow Q,+1 for time step t+1 can be expressed as: 

Ql+l = f(pt+x, P>,<-^, P,-4, P,-5, Tl+X, TVs, , Q,_2, ) (4.11) 

Where: 
t Time step; 

Qi Quality controlled Daisy Lake hourly inflow (m3/s); 
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H o u r l y p r e c i p i t a t i o n ( m m ) at U p p e r C h e a k a m u s s t a t i o n ( C M U ) ; 

A v e r a g e p r e c i p i t a t i o n at C M U i n t h e p a s t 4 h o u r s ( m m ) ; 

A v e r a g e t e m p e r a t u r e at C M U i n f u t u r e 1 h o u r s ( ° C ) . Its v a l u e is e s t i m a t e d i n 
r e a l - t i m e f o r e c a s t i n g ; 

A v e r a g e t e m p e r a t u r e at C M U i n p a s t 6 h o u r s ( ° C ) ; 

H o u r l y w a t e r s h e d w a t e r s t o r a g e t r e n d ( m m ) . R e f e r to E q u a t i o n 4 . 6 . 

T h e c r o s s - c o r r e l a t i o n b e t w e e n Qt+i a n d p r e c i p i t a t i o n a n d p a s t s t r e a m f l o w s a r e l i s t e d b e l o w : 

Pt-S Pl-4 Pt,,-, P,+i Qt-2 0,-> 
0.48 0.47 0.44 0.3 0.93 0.96 

T h e c r o s s - c o r r e l a t i o n b e t w e e n Qt+i a n d p a s t s t r e a m f l o w i n d i c a t o r s , Qt.i a n d Qt.2, is as h i g h as 0 . 9 3 

a n d 0 . 9 6 . T h e h i g h c r o s s - c o r r e l a t i o n v a l u e s i n d i c a t e that p a s t s t r e a m f l o w s , Q,.i a n d Qt.2, a r e s t r o n g 

i n d i c a t o r s f o r t h e A N N m o d e l , a n d c o n s e q u e n t l y s e c u r e t h e h i g h m o d e l l i n g a c c u r a c y . T h e 

c r o s s - c o r r e l a t i o n b e t w e e n Qt+i a n d p r e c i p i t a t i o n i n d i c a t o r s v a r y f r o m 0 .3 to 0 . 4 8 . W h e n 

c o n s i d e r i n g t h e s h o r t t i m e s t e p a n d t h e i n d i r e c t r e l a t i o n s h i p b e t w e e n s t r e a m f l o w a n d p r e c i p i t a t i o n , 

t h e v a l u e s o f c r o s s - c o r r e l a t i o n b e t w e e n Q,+i a n d p r e c i p i t a t i o n a r e s t i l l a c c e p t a b l e . 

4.3.2.2 Two-hour lead time ANN model (ANN-2) 

T h e t w o - h o u r l e a d - t i m e A N N m o d e l is s h o w n i n F i g u r e 4 . 3 3 a n d E q u a t i o n 4 . 1 2 . 

T t-5 T,+J, i+2 

|̂  Pt.t-2 ^ Pl+1, t+2 

| Pt-S Pt-4 | Pt-3 | Qt-2 
1 Q"' 1 

1 1 Q,+2 

t-5 t-4 t-3 t-2 t - l t 1 1 
i t+1 

t+2 

Current time 

Figure 4.33 T w o - h o u r l e a d t i m e A N N m o d e l ( A N N - 2 ) s t r u c t u r e 

T h e f o r e c a s t e d s t r e a m f l o w Qt+2 f o r t i m e s t e p t+2 c a n b e e x p r e s s e d a s : 

— 1 3 

6 ,=o 
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Q,+2
 = f{Pt+U+2 , Ptjt-2 , p,_3 , P,_4 , P,_5 ,Tl+l,,+2 ,T,,,-S , Q,_x, Q,_2,) (4.12) 

Where: 

- 1 0, 
Pt+\,t+i = — 2_,PM Average precipitation at CMU in the future 2 hours (mm); 

2 ,=i 

- 1 ^ 
P 1,1-2 = — 2_,P,-i Average precipitation at CMU in the past 3 hours (mm); 

3 ,=o 

_ 1 2 

Tt+\,t+2 = — ̂ Tt+i Average temperature at CMU in the future 2 hours (°C); 
2 ,=i 

— 1 5 

T,,,s = —^T^j Average temperature at CMU in the past 6 hours (°C). 
6 ,=o 

The cross-correlation between Qt+2 and precipitation and past streamflows are: 

Pl-5 P,-4 Pi-3 PPi P/2 Ql-2 

Ql+2 0.49 0.48 0.47 0.45 0.33 0.89 0.93 

4.3.2.3 Four-hour lead time ANN model (ANN-4) 

The four-hour lead time ANN model is shown in Figure 4.34 and Equation 4.13. 

T, ,1-4 l 

•] 
P1+1, 1+4 Tt+I, 1+4 

Pt-3,t-5 | S,_, 

Ql-2 Qui 

Pt-2 , Pt-1 , P, + 
t-5 t-4 t-3 t-2 t-l t | t+1 t+2 t+3 t+4 t i m e 

Current time 

Figure 4.34 Four-hour lead time ANN model (ANN-4) structure 

The forecasted streamflow Q,+4 for time step t+4 can be expressed as: 

Q,+4 = f{P<+U+< , P,, P,_x, P,_2 , P 1-3,1-5 ,f:+y+A , T ,,,-A , £>,_,, Q,_2 , 5f_, ) (4.13) 

where: 
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Average precipitation at CMU in the future 4 hours (mm); 

Average precipitation at CMU in hours t-3 to t-5 (mm); 

Average temperature at CMU in the future 4 hours (°C); 

Average temperature at CMU in the past 5 hours (°C). 

The cross-correlation between Ql+4 and precipitation and past streamflows are: 

PP3 P,-2 Pt-X P, Pf* Q.-2 

0.54 0.48 0.47 0.45 0.4 0.81 0.85 

4.3.2.4 Six-hour lead time ANN model (ANN-6) 

The six-hour lead-time ANN model is shown in Figure 4.35 and Equation 4.14. The model is 

characterized by its long lead-time that almost matches the length of the rainfall-flood response 

time (the time from main precipitation to flood peak). This means that the six-hour lead-time (t+6) 

streamflow is determined by the current watershed state and the future precipitation. The water 

storage trend (S,.j) and the streamflow (Qt-i) are obvious good indicators of the current watershed 

state, while the additional streamflow information (Qt.i and Qt-i) were used to inform the ANN 

model about streamflow trends. The precipitation data were chosen as input indicators due to the 

following considerations: 

• The streamflow indicators and the water storage trend indicator do not totally summarize the 

concurrent precipitation information; 

• Past streamflows do not show the ANN model long term streamflow trend due to the 7-hours 

temporal difference between Q,+6 and Qt.i, 

• Due to the rainfall runoff lag time, precipitation is a good indicator that shows the ANN model 

short term trend. 

— 1 5 

— 1 4 

4 1=1 
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T,, t-4 
1 

Q,-3 Qt-2 Q,-i 
Pt-4 | Pt-3 I Pt-2 - A-/ I A 

(+/, (+6 Pt+1, t+6 

it+6 

t-4 t-3 t-2 t-l t i t+1 t+2 t+3 t+4 t+5 t+6 
time 

Current time 

Figure 4.35 Six-hour lead time ANN model (ANN-6) structure 

The forecasted streamflow Q,+6 for time step t+6 can be expressed as: 

where: 

— 1 6 

P,+u+6 = — ^ P l + i Average precipitation at CMU in the future 6 hours (mm); 
6 ,=i 

— 1 6 

T,+i,,+6 = —^Tt+j Average temperature at CMU in the future 6 hours (°C); 
6 ;=i 

— 1 4 

Tt,,-4 = —^T^j Average temperature at CMU in the past 5 hours (°C). 

The cross-correlation between Q,+6 and precipitation and past streamflow are: 

Pt-A Pt-3 Pt-2 Pt-\ Pt P/6 0-3 Qt-2 Qt-v 

Q l + 6 
0.49 0.50 0.50 0.49 0.48 0.46 0.66 0.71 0.76 

The cross-correlations between Q t + 6 and past streamflow (Q,-3, Qt-2, Qt-i) vary from 0.66 to 0.76. 

They are obviously smaller than the cross-correlation between Q,.j and Q t + i (0.96). This will 

definitely determine that the modelling accuracy of 6-hour lead-time ANN model is lower that that 

of 1 -hour lead-time ANN model. 

4.3.3 Hour ly T ime Step A N N Models T ra in ing Results 

The hourly time step ANN models were trained by the same techniques and procedures as what 

have been used in the daily time step ANN model. Table 4.6 lists the statistics of the training 
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results for the 1, 2, 4 and 6-hour lead-time models. The statistics were calculated according to the 

training dataset. The optimal number o f hidden nodes for the models was three or four. The 

modelling error, in terms of RMSE and MAE statistics, increases with the increase in lead-time. 

RMSEs on the training dataset vary between 5.98 and 17.4 m 3/s corresponding to 1 and 6-hour 

lead-time models, respectively. The MAEs on training dataset varied between 3.08 and 10.3 m 3/s 

corresponding to 1 and 6-hour lead-time models, respectively. The coefficients o f model 

efficiency (CE) for the four models are greater than 0.97, and increase with the decrease in 

lead-time. The relatively high CE values illustrate the good performance of the A N N models on 

the training dataset. Recall that the training dataset was partitioned into two parts by a special 

method. The training dataset was restored to its original time series form, namely the observed 

hydrograph. Figures 4.36 to 4.39 show the comparison between simulated and observed 

hydrographs for 1, 2, 4 and 6-hour lead-time models. The figures indicate that A N N recognizes the 

relationship between the input indicators and streamflow. It can be observed that the simulated 

streamflow matches the observed streamflow very closely. 

Table 4.6 Hourly time step model training results 

ANN 
model Lead time ANN 

architecture 
Mean of Qobs 

(cms) 
RMSE 
(cms) CE R MAE 

(cms) 
Volume error 

(%) 
ANN-1 lhr 9-3-1 120 5.98 0.996 0.998 3.08 -0.25 
ANN-2 2hr 10-4-1 121 9.04 0.992 0.996 4.85 0.43 
ANN-4 4hr 10-4-1 123 14.5 0.979 0.990 8.19 0.09 
ANN-6 6hr 12-4-1 123 17.4 0.970 0.985 10.31 0.05 

Note 1: Format of ANN architecture is I-H-O. I is the number of input nodes, H is the number of 
hidden nodes, O is the number of output nodes. 

Note 2: The difference in "Mean of Qobs " value is caused by the size of training dataset. Although 
all the models are tested by the same 7 testing floods, the size of testing dataset for each 
model is slightly different due to the difference in input pattern. Given a flood time series 
and corresponding precipitation and temperature, when forming ANN input pattern, 
several streamflow data at both end of flood can not be used to train ANN models. 
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Figure 4.36 ANN-1 performance on 23 training flood events 
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Figure 4.37 ANN-2 performance on 23 training flood events 
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Figure 4.38 ANN-4 performance on 23 training flood events 
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Figure 4.39 ANN-6 performance on 23 training flood events 
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Table 4.7 Hourly time step ANN models testing results 
ANN 
Model Lead time ANN 

architecture 
Mean of 
obs. (cms) 

RMSE 
(cms) CE R MAE 

(cms) 
Volume 
error% 

ANN-1 lhr 9-3-1 123 5.29 0.996 0.998 3.05 -0.14 
ANN-2 2hr 10-4-1 124 8.12 0.991 0.996 4.83 0.53 
ANN-4 4hr 10-4-1 123 14.0 0.973 0.987 8.60 1.3 
ANN-6 6hr 12-4-1 125 18.8 0.951 0.977 11.9 1.89 

Table 4.7 shows the test results for one, two, four and six-hour lead-time ANN models. The 

optimal number of hidden nodes is three or four for those models. The RMSE and MAE statistics 

increase with the increase of lead-time, with the six-hour lead time model having the biggest 

modelling error of RMSE 18.8 m3/s, or 15.0% of mean observed streamflow. The models' CE and 

R statistics decrease with the increase of lead-time, CEs for all of the models are greater than 0.95. 

The high values of CEs illustrate the good performance of the ANN models on the test floods. 

Figures 4.40 to 4.43 show the good agreement between observed and simulated hydrographs on 

the seven testing flood events. The simulated hydrograph matches the observed hydrograph very 

well for floods of different magnitudes. It also indicates that the ANN models can give a good 

match for the flood rise and recession limbs, and for single and multiple peak events. 
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Figure 4.40 ANN-1 performance on seven testing flood events 
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Figure 4.41 ANN-2 performance on seven testing flood events 
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Figure 4.42 ANN-4 performance on seven testing flood events 
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Figure 4.43 ANN-6 performance on seven testing flood events 
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4.3.4 Performance Compar ison Between A N N and M I S O L M 

In this research, the Multi-Input Single Output Linear Model (MISOLM, Kachroo and Liang, 1992, 

refer to Appendix A) was selected as a reference model and compared with the six-hour lead-time 

ANN model (ANN-6). 

To compare the MISOLM with the ANN-6 model, the input indicators used by ANN-6 model were 

also used by MISOLM as initial model inputs. In the MISOLM calibration, a trial-and-error 

process was adapted to refine the input indicators. The effort was focused on finding the best 

combination of the input indicators. The final MISOLM input indicators were the same as the 

model shown in Equation 4.15 and Figure 4.44. The MISOLM used the same flood events, which 

were also used by the ANN-6 model, for model calibration and testing. 

C , I t+6 T<+1. t+6 I 

Qt-i Qt-i 

Pt-5 Pl-4 I Pt-3 I P,-2 | Pt-1 I Pt • | , | , I Qt+6 , 

—i—i—I—I—I—I——I—I—I—I—I—I— 
t-5 t-4 t-3 t-2 t-l t » t+1 t+2 t+3 t+4 t+5 t+6 

time 

Current time 

Figure 4.44 MISOLM inputs for 6-hour ahead streamflow forecasting 

The forecasted streamflow Qt+6 for time step t+6 can be expressed as: 

e,. .a-2 .s M) (4.i5) 

Where t is time step in hour, p is precipitation, Q is streamflow, S is water storage trend and Pl+u+6 

and Tl+l l+6 are average precipitation and temperature for the future 6 hours. 

Table 4.8 lists the MISOLM model calibration and testing results and the corresponding ANN 

model results. The MISOLM has average coefficient of model efficiency (CE) of 0.93 and 0.90 in 

calibration and testing periods, respectively. It simulates the flood rising limb, recession limb and 
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timing reasonably well in most test floods (Figure 4.45). The only exception is that the MISOLM 

underestimates part of the recession limb for the second last floods. The MISOLM testing error 

(MAE) is 17.8m /s, which is 14.2% of the average observed streamflow. In general, the MISOLM 

is an acceptable model for the case study watershed under consideration. The comparison between 

the ANN-6 and the MISOLM performance shows that the ANN-6 model is better than the 

MISOLM in all statistics. The MAE of the ANN-6 model is less than that of the MISOLM by about 

5.9m3/s, and consequently, CE of the ANN-6 model is 0.05 higher than MISOLM. Figure 4.45 

compares the hydrographs of test floods generated by the two models. The ANN-6 model 

generated hydrograph is more in agreement with the observed hydrograph than that generated by 

the MISOLM, particularly for the last two floods. The good performance of the ANN-6 model on 

all testing floods indicates that the ANN-6 model adapts to flood events well and performs well on 

floods that are different in magnitude. It was also noticed that the ANN-6 model tolerates noisy 

inputs more than the MISOLM. Figure 4.45 shows that MISOLM can not simulate the rising and 

recession limb of the last two flood events very well. The MISOLM simulated hydrograph 

deviates from observed one in a bigger range than ANN-6 model. Although the ANN-6 model 

simulated hydrograph shows certain fluctuation, the comparison of performance between ANN-6 

and MISOLM indicates that the ANN-6 model is insensitive to noisy data. 

Table 4.8 The calibration and testing results of the MISOLM and ANN-6 models 

Model Calibration Mean of RMSE CE R MAE Volume Model /Testing obs.(cms) (cms) CE R (cms) error (%) 
MISOLM Calibration 124 25.9 0.934 0.967 15.9 2.57 
MISOLM Testing 125 27.4 0.897 0.950 17.8 3.18 
ANN-6 Testing 125 18.8 0.951 0.977 11.9 1.89 

Note: both models are 6-hour lead-time model. 
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Figure 4.45 ANN-6 and MISOLM performance comparison on testing flood events 

Table 4.9 lists the peak simulation results of the ANN-6 and the MISOLM. The two models 

simulated 8 out of 9 peaks with percentage error less than or equal to 20%. The ANN-6 simulated 

7 out of 9 peaks with percentage error less than 10%. The ANN-6 simulated the peak of the biggest 

flood (No.3) much better than MISOLM. The comparison of peak simulation indicated that the 

ANN-6 is better than MISOLM although MISOLM is not bad. 

Table 4.9 The peak simulation results of the MISOLM and ANN-6 models 

Peak 
No. 

Observation 
Q p e a k ( c m s ) 

AN M-6 MISOLM Peak 
No. 

Observation 
Q p e a k ( c m s ) Q p e a k ( c m s ) Error (%) Q p e a k (cms) Error(%) 

1 225.7 180.5 -20.0 182.6 -19.1 
2 191.0 180.0 -5.8 194.0 1.6 
3 578.4 589.5 1.9 499.9 -13.6 
4 326.2 357.3 9.5 315.6 -3.3 
5 257.4 279.6 8.7 255.4 -0.8 
6 418.6 383.1 -8.5 335.9 -19.8 
7 269.6 295.4 9.6 285.6 5.9 
8 143.0 142.6 -0.3 154.0 7.7 
9 185.2 112.7 -39.1 113.0 -39.0 

Note: Peaks in this table correspond to Figure 4.45 

In conclusion, the hourly time step ANN models had good performance on either training or 
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testing datasets, on either high flows or low flows; their performance on peak flow simulation was 

also very good. The performance comparison between the ANN-6 and the MISOLM showed that 

ANN-6 was better than MISOLM. 
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CHAPTER 5 Conclusion and Recommendation 

ANNs have a dynamic and flexible architecture and simple computing elements that can be used to 

solve practical problems with natural mechanism. This research had successfully applied a 

three-layer feedforward ANN architecture, with an error backpropagation training algorithm and 

an early stop training technique, to build ANN models to forecast daily and hourly reservoir 

inflows. The results, from the ANN training, validation and real-time testing, indicate that the 

ANN is a promising tool for both real-time daily streamflow and hourly flash flood forecasting. 

Compared to sophisticated conceptual hydrological models, such as the UBCWM, the principal 

advantages of the ANN technique are that the model can be built much more easily and it is much 

faster and less cumbersome to calibrate than a conceptual model. Furthermore, the ANN9-5-1 

model was shown to perform better than the UBCWM in both streamflow simulation and in 

real-time forecasting. The comparative results obtained from the ANN-6 model and MISOLM 

provide evidence that (1) the ANN model can provide accurate representation of the nonlinear and 

dynamic features of the modelled system; (2) the ANN model tolerates noisy data and have higher 

degree of reliability than other models; and (3) the ANN model can offer higher modelling and 

forecasting accuracy than MISOLM. 

When an ANN model is used for streamflow forecasting, this research found that there are several 

issues that are very important to consider. Firstly, adequate knowledge of the physical processes 

involved (the rainfall-runoff process in this case) is important for ANN model inputs selection. It 

is obvious that ANN model inputs, which have real physical relationships with the output, will 

facilitate ANN model training and improve its performance. Secondly, having a sufficient amount 

of training data and appropriate partition of data into a training, monitoring and validation datasets 

are important for the ANN to give reliable results. The datasets should cover the full range of the 

rainfall-runoff mapping space. Otherwise, the ANN model will focus on the processes that 

dominate the training dataset. Appropriate division and clustering of the dataset is a technical 
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maneuver to insure that hourly ANN models have similar performance on the training, monitoring 

and validation datasets, and have biggest generalization ability for future data. Finally, the LMBP 

combined with the early stop technique was found to perform best for the feedforward ANN 

training. Training the ANN with different initial weights and biases was found to be a good 

practice in helping to achieve better results, although it does not guarantee a global optimal 

solution. Compared with the LMBP, it was found that Genetic Algorithms (GA) were not a 

practical method for ANN training, although GA could theoretically reach a global optimal 

solution. The attempt at coupling GA with a mathematically rigorous ANN training method to 

train ANN was not successful in this research. 

When using the ANN model developed in this research, water storage trend, S, need to be 

calculated continuously. For real-time hourly streamflow forecasting, S at the end of a day (or at 

the beginning of a day) should be calculated on a daily time step by daily data to take advantage of 

the relatively high quality daily data. At other times within a day, S could be calculated by 

modifying S at the beginning of a day. This method has the least chance to accumulate errors in S 

calculation. 

Quality control of all ANN input information was found to be very important. Although an ANN 

model is more tolerant of noisy inputs than other models, it is always advisable to make all input 

information as accurate as possible. The hourly models developed did not use most recent 

streamflow (Q,) as input, but they used Q,.i as input. This deliberately selected streamflow input 

information will provide the user with one more hour to quality control past streamflow data 

during real-time flood forecasting. 

In this research, the ANN models were calibrated and tested by following a strict procedure 

followed by hydrologists. It is expected that the performance of the ANN models with future data, 

should be similar to that obtained with historical data, provided that the input information is 

adequately long and of good quality, and provided that the rainfall-runoff mechanism does not 
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change as a result of human activities or climate change. The ANN models need to be tested using 

real-time data. Whenever new major flood data are available, the ANN model should be retrained 

to accommodate the new information. The current hourly time step ANN models are not 

necessarily good for pure snowmelt streamflow forecasting because the models were trained 

mainly on flashy flood events. 

It is likely that the ANN models will be used in other watersheds in British Columbia. The single 

most important issue in adapting an ANN to a new watershed is that the ANN should be trained 

using a dataset for that particular new watershed. Other issues, such as model input selection, 

dataset partition, training and testing can be done by the procedures proposed and outlined in this 

thesis. 

Historical streamflow, precipitation and forecasted future precipitation are good indicators for 

rainfall-runoff simulation, while past temperature, forecasted future temperature and computed 

watershed water storage trend are good indicators for snowmelt affected runoff simulation. It is not 

recommended that snow pack information and snow water equivalent be included as input 

indicators to the ANN models due to data quality, data availability, and the uncertainty caused by 

the additional modelling needed to calculate the snow-water equivalent. 
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A P P E N D I X A : A n I n t r o d u c t i o n to M I S O L M 

Kachroo and Liang (1992) introduced a Simple-Input Linear Model (SLM) as a naive model 

against which the performance of more sophisticated rainfall-runoff model. SLM postulates a 

linear time invariant relationship between rainfall pt and discharge qt at the watershed outlet. 

SLM simulates unit hydrograph (UH) in rainfall-runoff mechanism. The rainfall-runoff 

relationship can be expressed as: 

a , = G ^,Pjh,_j+1 +e, (A-l) 
j=t-m+\ 

where G is the gain factor (i.e. amplification) of the system, et is a error term, m is the 

memory /UH length of the system and hi is a set of discrete pulse response ordinates such that: 

m 

5>,=1 (A-2) 

1=1 

Combining G and hi together and supposing the number of observations is n, equation (A-l) can 

be rewritten in matrix form: " 9, " " Pi 0 0 ei 

°2 p2 Pi • 0 
V 

e2 

= pm Pm-\ • •• Pi 
h2 + 

Pm+i Pm • •• Pi em+l 

. q n . _ Pn P«-\ • Pn-m+l _ _ en _ 

or vector form: 

Q = P H + E (A-4) 

The least squared error solution for H is: 

92 



H = (PTP) P T Q (A -5) 

Multivariate Regression (MR) is a simple mathematical method that can be used to simulate the 

relationship between system inputs and output. The linear regression takes the form of: 

q . ^ h ' X i (A-6) 
;=i 

where qt is the system output time series (at time t), X\ is the input time series, h' is the 

coefficient for the i'h input. (A-6) can be written in vector form: 

Q ^ / z ' X 1 +--- + h"X" ( A - 7 ) 

where Q = [<?, - qJ,X"=[x? - . 

The Multiple-input Single-output Model (MISOLM) is a mixture of SLM and MR model. It 

combines (A-4) and (A-7) together and takes the form of: 

Q = PH + A ' X ' +--- + h"Xn + E ( A - 8 ) 

or 

Q = [p X 1 ••• X " 

can be easily solved by least squares method with a similar form as (A-5). 

MISOLM can takes rainfall and other information related to runoff as model input. 

H 
h] 

h" 

+ E (A -9) 

93 



APPENDIX B: Brief Introduction to UBC Watershed Model 

The UBC Watershed Model (UBCWM) was mainly developed by Dr. M.C. Quick of University of 

British Columbia. The model is designed primarily for mountainous watersheds and calculates the 

total contribution from both snowmelt and rainfall runoff. A separate calculation can also be made 

of runoff occurring from glacier covered areas. The model is widely used in British Columbia and 

other areas, including the Himalayas in India and Pakistan. A detailed description of UBCWM can 

be found in Quick (1995). The following is a brief description of the UBCWM by Quick (1995). 

B.l An Overview of UBCWM 

UBCWM, as a streamflow modelling system, has seven major components which form a logical 

subdivision of the hydro-meteorological modelling and evaluation process, and these components 

are: 

(1) The meteorological sub-model, which distributes the input data to all elevation zones of the 

watershed. This distribution process is the most important part of the total modelling 

process because (a) it controls the total volume of moisture which is input to the model, and 

(b) it specifies the variation of temperature with elevation, which controls whether 

precipitation falls as rain or snow and also controls the melting of the snowpacks and 

glaciers. 

(2) The soil moisture sub-model controls the evaporation losses and the subdivision of the 

rainfall and snowmelt into the four components of runoff, which are fast, medium, slow and 

very slow components. The components can be thought of as surface, or near surface runoff, 

interflow, and upper and lower groundwater runoff. The model computes the soil moisture 

deficit and it is this deficit which controls the non-linear subdivision of rain and melt into 

the runoff components. The non-linear hydrologic response of the watershed is therefore 

determined by this soil moisture budgeting. There is also a flash runoff mechanism which 

operates when rainfall exceeds a certain threshold, and this produces increased fast runoff 
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response. 

(3) The watershed routing sub-model determines the time distribution of runoff. Each of the 

four components of runoff determined by the soil moisture sub-model are subjected to 

storage routing using either cascades or single linear reservoirs. Because these reservoirs 

are linear, conservation of mass is guaranteed and an accurate water budget is maintained. It 

has been found that this linear routing works well because the non-linear watershed 

response is handled by the soil moisture sub-model. Typically the time constants for this 

time distribution are of the order of one day or less for the fast component, five to ten days 

for the medium component, thirty to fifty days for the slow, upper groundwater component 

and one hundred to two hundred days for the very slow, lower groundwater component. It is 

because these time constraints are so distinctly different that it is possible to carry out a 

successful calibration of these components. 

(4) The output and evaluation sub-model is designed to give flexible access to many aspects of 

the calculated watershed behavior. This information can be examined either in numerical 

format or graphically and, in addition, the data can be analyzed statistically. Part of this 

statistical output is used by the calibration sub-model. 

(5) The semi-automatic calibration sub-model requires some user guidance to ensure that 

parameters are restricted to reasonable ranges. The calibration process is a constrained 

iterative search optimization which evaluates a maximum of four parameters at a time. Each 

of the three primary sub-models, meteorological, soil- moisture and time distribution, are 

sequentially optimized within the constraints set by the operators. 

(6) The updating sub-model is based on a combination of feedback information from flow 

measurement and snow cover data from snow course or satellite. Both error sources must 

indicate a similar correction requirement before an adjustment is made. 

(7) The routing sub-model, based on the UBC Flow Model, combines watershed flows and 

routes these flows through a river, lake and reservoir system. 
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B.2 Summary of UBCWM Structure 

The UBCWM is designed to operate on a variable time step which can range from one hour to 24 

hours, depending on the availability of the meteorological data inputs of maximum and minimum 

temperatures and precipitation. From these inputs the model calculates estimates of daily 

watershed outflows. Additional information is available on the accumulation and depletion of 

snowpack, the soil moisture status, the various soil and groundwater storage values and 

information on the contributions to runoff from various portions of the watershed and various 

surface and sub-surface components of runoff. 

The basic structure of the model depends on a division of the watershed into a number of elevation 

bands. The elevation increment and the area for each band must be specified. The model has been 

used for watersheds ranging from a few square kilometers up to areas of several thousand square 

kilometers. The factors influencing choice of watershed size are the available streamflow 

reference data for calibration and the available meteorological data base. 

In general, the meteorological data base is sparse for most of the mountainous regions modelled. In 

the majority of situations the meteorological data is from valley stations. As a result of these data 

constraints, an important aspect of the UBCWM is the elevation distribution of data. Functional 

relationships are specified describing the variability of temperature lapse rates. The temperature 

lapse rate is a key relationship because it influences the precipitation distribution, and also is very 

significant in determining snowmelt rates at various elevations. Precipitation inputs are made 

functionally dependent on elevation and on temperature regime. This functional variation of 

precipitation automatically recognizes that precipitation undergoes greater grographic 

enhancement in winter than it does during warm summer rainstorms. The importance of these 

temperature and precipitation gradients is illustrated in the examples of watershed calibration. The 

general structure of the UBCWM is indicated in Figure B1. 

The response of the watershed to snowmelt and rainfall is controlled by a soil moisture model. The 
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soil moisture status of each area-elevation band control the subdivision of the total snowmelt and 

rain input into the various components of watershed runoff response. These components of runoff 

can be characterized as fast, medium, slow and very slow runoff, and they may be conceptually 

thought of as representing surface runoff, interflow and superficial and deep groundwater 

components. The total snowmelt and rain input to each watershed band is subdivision on a priority 

basis, for example, a first priority is the satisfying of and soil moisture deficit which arises 

continuously because of evaporative demand. 

Each component of runoff undergoes delay before reaching the outflow point of the watershed. 

These delays, or time distribution runoff, are achieved by using unit hydrograph routing. The 

various delay processes, or time distribution processes, can be thought of in terms of cascades of 

linear reservoirs. 

For detailed algorithms used to describe the processes involved in the runoff process, please refer 

to Quick (1995). 
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A P P E N D I X C: Source Code 

C.l Source Code for ANN Models Training 

%Matlab program for ANN model training. Jian Li, September 2004 
%The program uses Levenberg-Marquardt Back Propagation training method: trainlm 
%and Early Stop technique. The program call a subroutine, outputffs, during training. 
%Arguments of the program: 
%nlnput: number of ANN inputs, it is also the number of ANN input nodes 
%nNodes: number of hidden nodes 
%nlter. training times 
%fn: file name for training results 
%Default file needed for ANN training: 
%File name of input pattern: input.txt 

%File name of observed streamflow(dcsircd ANN output): output, txt 

function d=tramfTs(nInput,nNodesH,nIter,fri) 

global statindices weight 12 biasH weight_23 biasO maxl mini maxO minO outputlessthan; 
global fmtHW fmtHB outputpath; 

nRows=4434; % number of historical data for 1 h lead-time ANN model 
outputpath=fn; 
outputpath=[outputpath,'_']; 
outputlessthan=12; 
outputpoint=2; 
ndatadiv=[2673 668 1093 4434];%1 hour ahead model, number of rows for calibrati 
verification and testing 

stat_indices=zeros(nIter, 13); 
weight_12=zeros(nNodesH,nInput,nIter); 
biasH=zeros(nNodesH, niter); 
weight_23=zeros(nIter,nNodesH); 
biasO=zeros(nIter, 1); 
rangeI=zeros(n!nput,2); 
rangel(:,2)=l; 

fmtHW="; 
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for n=l:nlnput 
fmtHW=[fmtHW,'%10.6f ']; 

end 
fmtHW=[fmtHW,'\r\n']; 

fmtHB="; 
for n=l:nNodesH 

fmtHB=[fmtHB,'%10.6f ']; 
end 
fmtHB=[fmtHB,V\n']; 

%%%scale_min=0.15 ;scale_max=0.85 
filename=outputpath; 
filename=[filename,'output.txt']; 
fid=fopen(filename, V ) ; 
myOO=fscanf(fid,'%f,[ 1 ,nRows]); 
status=fclose(fid); 
%plot(l :nRows,myOO); 

filename=outputpath; 
filename=[filename,'input.txt']; 
fid=fopen(filename,'r'); 
%%ndatadiv=fscanf(fid,'%d',[ 1,4]); 
myII=fscanf(fid,'%f,[nInput,nRows]); 
status=fclose(fid); 
ndatadiv( 1,2)=ndatadiv( 1,1 )+ndatadiv( 1,2); 
ndatadiv( 1,3)=ndatadiv( 1,2)+ndatadiv( 1,3); 
%plot(l :nRows,myII(l,:)); 

maxI=max(myH'); 
minl=min(myll'); 
maxO=max(myOO'); 
minO=min(myOO'); 
tmp_l=(maxl-minl)/l .4*0.3; 
tmp_0=(maxO-minO)/l .4*0.3; 
maxl=maxl + tmpl; 
minl=minl - tmpl; 
maxO=maxO + tmp_0; 
minO=minO - trnpO; 

for n=l :nRows 
myO(n)=(myOO(n)-minO)/(maxO-minO); % scale to 0.15 to 0.85 



for m=l:nlnput % modify here 
myl(m,n)=(myll(m,n)-minl(m))/(maxl(m)-minl(m)); 

end 
end 

myltr=myl(:,l:ndatadiv(l,l));my0tr=my0(l:ndatadiv(l,l)); % 6 year's data trainning 
v.P=myI(:,ndatadiv( 1,1)+1 :ndatadiv( 1,2));v.T=myO(ndatadiv( 1,1 )+l :ndatadiv( 1,2));% 2 year's 
data for vailidation 
t.P=myI(:,ndatadiv(l,2)+l:ndatadiv(l,3));t.V=myO(ndatadiv(l,2)+l:ndatadiv(l,3));% 4 year's 
data for testing 
obsO=myOO(ndatadiv( 1,2)+l :ndatadiv(l ,3)); 

net=newff(rangeI,[nNodesHJ],{'logsigVpurelin'}/trainlm'); 
net.layers {1} .initFcn='initnw'; 
net.input Weights {1,1} .initFcn='initnw'; 
net.biases {1,1} .initFcn-rands'; 
net.biases {2,1}. initFcn-rands'; 
%% end of initialize. 
%% begin the training loop 

for itr = 1 : niter 
itr 

net=init(net); 
%net.trainParam. show= 10; 
net.trainParam.lr=0.1; 
net. trainParam. epochs=300; 
%net.trainParam.goal=0.05; 

net=train(net,myltr,my0tr,[],[],v,t);% Early stop 
%net=train(net,myltr,my0tr); % no early stop 
Y=sim(net,t.P); 

%=== restore to orginal value = 
calO=minO + Y.*(maxO-minO); 

if nlter==l 
% nn0=[0 87 135 231 135 231 87 159];%for 6 hour ahead model. 

%nn0=[0 88 136 232 136 232 88 160];%for 6 hour ahead model. 
%nn0=[0 241 97 145 241 145 97 169];%2 hour ahead org. 
%nn0=[0 234 90 138 234 138 90 162];%2 hour ahead -7. 
nn0=[0 235 91 139 235 139 91 163];%1 hour ahead -6. 
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forn=3:8 
nnO(n)=nnO(n)+nnO(n-1); 

end 
for n=l:7 

figure(n); 
nn=nn0(n)+1: nnO(n+1); 
plot(nn,calO(nn),nn,obsO(nn)); 
xlabel('timestep'); 
ylabel('discharge(cms)'); 
legend('ANN','Observed'); 

end 
figure(8); 

end 
%=== Mean square error = 
e=calO-obsO; 
MSE=mse(e); 

RMSE=sqrt(MSE); 
MAE=mae(e); 

%=== Model Coefficent of efficency === 
mean_target=mean(obsO);% Mean of test value 
CE= 1 -MSE/mse(obsO-mean_target); 
[m,b,r]=postreg(calO,obsO);% post trainning regression 

% percentage errors 
percent_e=(e./obsO).*100; %%element in metrix e devided by coresponding element in metrix 

calO 

nNeg=0;n20=0; 
[indexl,index2]=size(calO); 
for n=l:index2 
if(calO(n)<0) 

nNeg=nNeg+l; 
end 
if(abs(percent_e(n))<=20) 

n20=n20+l; 
end 
end 

maxE=max(e'); 
minE=min(e'); 
Vol_E=(mean(calO)-mean_target)/mean_target* 100; 
maxpercentE=max(percent_e'); 
minpercentE=min(percent_e'); 
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%%store the parameters 

stat_indices(itr,:)=[RMSE,CE,m,b,r,MAE,nN^ 
E]; 

weight_12(:,:,itr)=net.IW{l,l}; 
biasH(:,itr)=net.b{l}; 
weight_23(itr,:)=net.LW{2,l}; 
biasO(itr)=net.b{2}; 

if mod(itr,outputpoint)==0 
outputffs(nInput,nNodesH,itr); 

end 

end 
%%end of bath training 

%data Output 
filename=outputpath; 
filename=[filename,int2str(nlnput)]; 
filename=[filename,int2str(nNodesH)]; 
filename=[filename,'l_']; 
filename= [ filename, int2 str(nlter)]; 
filename=[filename,'.txt']; 

fid=fopen(filename,'w'); 
fprintf(fid,'ANN=% 1 d% 1 d l\r\n',nInput,nNodesH); 
fprintf(fid,'No RMSE CE m b r MAE Negn20 

maxE\tminE\tmaxPE\tminPE\tVolE\r\n'); 
for n=l: niter 

fprintf(fid,'%3d %7.3f %6.3f %6.4f %5.2f %5.3f %5.2f %2d %3d 
%5. lf\t%6.lf\t%6.2f %6.2f %7.2f\r\n',n,stat_indices(n,:)); 

end 

for n=l: niter 
if stat_indices(n, 1 )<outputlessthan 

fprintf(fid,'\r\nNo.%3d Weights IW\r\n',n); 
fprintf(fid,fmtHW,(weight_12(:,:,n))'); 

fprintf(fid,'Bias for hidden layer\r\n'); 
fprintf(fid,fmtHB,biasH(:,n)); 

fprintiTfid,'Weights L W W ) ; 
fprintf(fid,fmtHB,weight_23(n,:)'); 
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fprintf(fid,'Bias for output layer\r\n'); 
fprintf(fid,'%8.4f\r\n',biasO(n)); 

end; 
end 
d=l; 

%End of main program for ANN training 

function outputffs(nInput, nNodesH,niter) 

global statindices weight_12 biasH weight_23 biasO maxl mini maxO minO outputlessthan ; 
global fmtHW fmtHB outputpath; 

%data Output 
filename=outputpath; 
filename=[ filename, int2 str (nlnput)]; 
filename=[filename,int2str(nNodesH)]; 
filename=[filename,'l_']; 
filename=[ filename, int2 str(nlter)]; 
filename=[filename,'.txt']; 

fid=fopen(filename,'w'); 
fprmtfT fid/ANN=% 1 d% 1 dl \r\n',nInput,nNodesH); 
fprintf(fid,'No RMSE CE m b r MAE Negn20 

maxE\tminE\tmaxPE\tminPE\t Vo lE\r\n'); 
for n=l: niter 

fprintf(fid,'%3d %7.3f %6.3f %6.4f %5.2f %5.3f %5.2f %2d %3d 
%5.1 f\t%6.1 f\t%6.2f %6.2f %7.2f\r\n',n,stat_indices(n,:)); 

end 

for n=l: niter 
if stat_indices(n,l)<outputlessthan 

fprintfiTid/VAn No.%3d Weights IW\r\n',n); 
fprint^fid^mtHW^weight^C:,:^))'); 

fprintnTid/Bias for hidden layer\r\n'); 
fprintf(fid,fmtHB,biasH(:,n)); 

fprintf(fid,'Weights LW\r\n'); 
fprintf(fid,fmtHB,weight_23(n,:)'); 

fprintf(fid,'Bias for output layer\r\n'); 
fprintf(fid,'%8.4i\r\n',biasO(n)); 

end; 
end 
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fprintfJfid,V\npremnmx parameters. The min and max for each input is:\r\n'); 
fprintiTfid;%8.2f,minI);fprintiTfid,' «=min_for_input\r\n'); 
fprintf(fld,,%8.2f,maxI);fprintITfld,, «=max_for_input\r\n'); 
fprintf(fid,,0/o8.2f %8.2f «=min_and_max_for_output',minO,maxO); 
fclose(fid); 

%End of subroutine outputffs 

C.l Source Code for MISOLM Model Calibration 

use imslfPO 
use linsolgenint 
use rand_gen_int 
use error_option_packet 

implicit none 

double precision, allocatable :: A(:,:),X(:),Y(:),RES(:) 
double precision, allocatable :: PQ(:,:),Cal(:) 
CHARACTER*30, iName(10),oNameOBS, oNameUH, oNameData 
CHARACTER* 100, StaName 
REAL Area 
Integer nYear, nCal, yy,mm,dd,hh,dt 
integer nFile,nTimestep 
Integer nUH( 10) 

Integer n,i,j,k,uh,nBeg,iPflag,NCA,NRA,LDA 
CHARACTER*404, cTmp 
Integer y0,m0,d0,h0,dt0,nRec 

!= = = = = = = = = = = Read general information data file: GIF.txt 
Open (unit=l, FILE=,GIF.txt',STATUS=,old') 
read (l,*)StaName Idescription of the file 
read (l,*)StaName !Watershed name 
read (1, *)Area ! Area 
read (l,*)nFile, nCal,nYear,nTimestep Inumber of model input, number of year of calibration 

Idata, number of year of data, number of data in each year 
read (l,*)yy,mm,dd,hh,dt 
read (l,*)(nUH(n),n=T,nFile) !memory/UH length 
read (l,*)oNameOBS Ifile name of observed streamflow 
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do 10 n=l,nFile Ifile name of each input 
read( 1 ,*)iName(n) 

10 continue 
read (1 ,*)oNameUH !UH file name 
read (1, *)oNameData ! Output file name 
close(l) 
! =end of reading GIF.txt 
NRA=nCal*nTimestep 
NCA=0 
do 20 n=l,nFile 

NCA=NCA+nUH(n) 
20 continue 

Allocate 
(A(NRA,NCA),X(NCA),Y(^ 
tep)) 
do 30 n=l,nFile 

write(*,*)' Reading file:'//trim(iName(n)) 
OPEN (UN1T=1, FILE=iName(n),STATUS='old') ! open and read each input file 
read(l,*) cTmp ! conmment 
read(l,*) ipflag Isign for precipitation or not (0/other) 
read(l,*) yO,mO,dO,hO,dtO,nRec 
if(yy.ne.yO .or. mm.ne.m0) then 

write (*,*)'begin time error when reading', iName(n) 
end if 
if(nRec .ne. nYear*nTimestep) then 

write(*,*)Total time step error when reading',iName(n) 
end if 
if(iPflag.eq.O) then ! precipitation data 

do40i=l,nRec 
read (l,*)yO,mO,dO,hO,PQ(i,n) 

40 continue 
else lother data 

do50i=l,nRec 
read (1 ,*)y0,y0,m0,d0,h0,PQ(i,n) 

50 continue 
end if 
CLOSE(l) 

30 continue lend of reading input data 

write(*,*)' Reading file:7/trim(oNameOBS) IRead observed streamflow data 
OPEN (UNIT=1, FILE=oNameOBS,STATUS='old') 
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read(l,*) cTmp ! conmment 
read(l,*) yO !sign for precipitation or not (0/other) 
read(l,*) yO,mO,dO,hO,dtO,nRec 
if(yy.ne.yO .or. mm.ne.mO) then 

write (*,*)*begin time error when reading', oNameOBS 
end if 
if(nRec .ne. nYear*nTimestep) then 

write(*,*)'Total time step error when reading',oNameOBS 
end if 
do 60 i=l,nRec 

60 read (l,*)yO,yO,mO,dO,hO,PQ(i,nFile+l) 
close(l) 
1 end of reading input file 
!A11 data is stored in to PQ(:,:), the last column is observed discharge 
!the other columns are input date from each of the input file. 

n=maxloc(nUH, 1) 
n=nUH(n) 
do 70 i=l,n-l 

do 70j=l,nFile 
A(ij)=0.0 

70 continue 

j=l 
do 80 n=l,nFile 

do90i=l,nUH(n) 
do 100 k=i,NRA 

A(k,j)=PQ(k-i+l,n) 
100 continue 

j=j+l 
90 continue 
80 continue 
!= = = = = = = = = = = = = = = = = = = = =cnd of generating A, the coefficient matrix. 
! A consist of the data for calibration, each inputs was expanded to several column(s) 
! according to the memory length. 

do 110n=l,NRA 
Y(n)=PQ(n,nFile+l) 

110 continue 
!= = = = = = = = = = = = = = = = = = = = =end of generating Y, for AX=Y, every thing is ready 
!= = = = = = = = = = = = = = = = = = = = =to solve the equation: 
Write(*,*)' Begin to calibrate...' 
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LDA=NRA 
CALL D L S Q P v R ( N P v A , NCA, A, LDA, Y, 0, X, RES, k) 
Write(*,*)' Finish calibrating.' 
!= = = = = = = = = = = = = = = = = = = = = end of solving AX=Y 
IResidue RES=B-AX 

n=maxloc(nUH, 1) 
n=nUH(n) 
do 120 i=l,n-l 

Cal(i)=0.0 
120 continue 

do 130 n=n,nRec 
Cal(n)=0.0 
uh=l 
do 140 i=l,nFile 

nBeg=n 
do 150j=l,nUH(i) 

Cal(n)=Cal(n)+PQ(nBeg,i)*X(uh) 
uh=uh+l 
nBeg=nBeg-l 

150 continue 
140 continue 
130 continue 
!= = = = = = = = = = = = = = = = = = = = = end of calculating model output 

write(*,*)' Output...' 
open (unit=l, file=oNameUH,Status='unknown') 
n=l 
write (l,*)'Catchment: '//trim(StaName) 
write (l,*)'The Calibrated UH for Each Inflow(input)' 
write (1,*) nFile,' <=Number of input' 
do200i=l,nFile 

write(l,*) trim(iName(i)),' ', nUH(i),' <=memory length' 
do210j=l,nUH(i) 

write(l,*)X(n) 
n=n+l 

210 continue 
200 continue 
close(l) 

open (unit=l, file=oNameData,Status='unknown') 



write(l,*)'OBC Cal' 
n=nFile+l 
do 220 i=l,nRec 

write( 1,'(1 x,fl0.3,1 x, fl0.3)')PQ(i,n),Cal(i) 
220 continue 
close(l) 

! output results 
cTmp='(lx' 
do310n=l,NCA 

CTmp-trim(CTmp)//', 1 x,f7.2' 
310 continue 
cTmp=trim(cTmp)//')' 

open (unit=l, file-A.txt', status-unknown') 
do 320n=l,NPvA 

write (l,cTmp) (A(n,i),i=l,NCA) 
320 continue 
write (1,*)'YRES' 
do330n=l,NRA 

write (I,'(f8.2,lx,f8.3)') Y(n),RES(n) 
330 continue 
write (l,*)'X(i)=' 
do 340n=l,NCA 

write(l,*) x(n) 
340 continue 
write (l,'("n=",i2)')k 
close(l) 

Deallocate (A,X,Y,RES,PQ,Cal) 
write (*,*)' Finish.' 
END 


