
A R E I N F O R C E M E N T L E A R N I N G A L G O R I T H M F O R OPERATIONS 

PLANNING O F A H Y D R O E L E C T R I C P O W E R M U L T I R E S E R V O I R S Y S T E M 

by 

A L A A E A T Z A Z A B D A L L A 

B.Sc. A i n Shams University, 1984 

M . A . S c . Katholieke Universiteit Leuven, 1990 

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L M E N T O F 

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F 

D O C T O R O F P H I L O S O P H Y 

in 

T H E F A C U L T Y O F G R A D U A T E S T U D I E S 

( C I V I L E N G I N E E R I N G ) 

T H E UNIVERSITY O F BRITISH C O L U M B I A 

Apr i l 2007 

© Alaa Eatzaz Abdalla, 2007 



ABSTRACT 

The main objective of reservoir operations planning is to determine the optimum 
operation policies that maximize the expected value of the system resources over the 
planning horizon. This control problem is challenged with different sources of 
uncertainty that a reservoir system planner has to deal with. In the reservoir operations 
planning problem, there is a trade-off between the marginal value of water in storage and 
the electricity market price. The marginal value of water is uncertain too and is largely 
dependent on storage in the reservoir and storage in other reservoirs as well . The 
challenge here is how to deal with this large scale multireservoir problem under the 
encountered uncertainties. 

In this thesis, the use of a novel methodology to establish a good approximation of the 
optimal control of a large-scale hydroelectric power system applying Reinforcement 
Learning (RL) is presented. R L is an artificial intelligence method to machine learning 
that offers key advantages in handling problems that are too large to be solved by 
conventional dynamic programming methods. In this approach, a control agent 
progressively learns the optimal strategies that maximize rewards through interaction 
with a dynamic environment. This thesis introduces the main concepts and computational 
aspects of using R L for the multireservoir operations planning problem. 

A scenario generation-moment matching technique was adopted to generate a set of 
scenarios for the natural river inflows, electricity load, and market prices random 
variables. In this way, the statistical properties of the original distributions are preserved. 

The developed reinforcement learning reservoir optimization model ( R L R O M ) was 
successfully applied to the B C Hydro main reservoirs on the Peace and Columbia Rivers. 
The model was used to: derive optimal control policies for this multireservoir system, to 
estimate the value of water in storage, and to establish the marginal value of water / 
energy. The R L R O M outputs were compared to the classical method of optimizing 
reservoir operations, namely, stochastic dynamic programming (SDP), and the results for 
one and two reservoir systems were identical. The results suggests that the R L model is 
much more efficient at handling large scale reservoir operations problems and can give a 
very good approximate solution to this complex problem. 
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GLOSSARY 

Agent A learner or controller or decision maker 

Age of the agent The number of iterations performed by the agent 

Capacity The rated power output of a power plant, normally measured in M W 

Demand The rate at which electric energy is delivered to or by a system, 

generally expressed in M W , or averaged over a period of time (e.g., 

M W h ) 

Energy The amount of electricity produced or used over a period of time 

usually M W h 

Environment The thing that the agent interacts with to provide a control signal. It 

could be a real system or a model of the real system. 

Episode Trial or iteration or cycle. Represents the planning period. Each episode 

ends at a terminal time period T 

Greedy policy A policy that follows always the best action 

6 - greedy policy A policy that follows the best action with probability e while 

exploring new actions with probability 1- e 

Planning horizon The number of stages / time periods 

Operating reserve A specific level of reserve power should be available at all times to 
insure reliable electricity grid operation. 

Step size Learning rate parameter a 

Sub-time step The time step is divided to a number of sub-time steps to capture the 

variation in certain parameters or variables at a shorter time increment 

Time step The planning period T is subdivided to number of periods which are 

called the time steps or stages t 

Target A desirable direction to move in the next step 

Terminal stage The last period in an iteration (the end of the planning horizon) 
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1. INTRODUCTION 

1.1. Background 

In British Columbia, there are large number of dams distributed throughout the 

different basins and watersheds of the province. Most of the large dams in B . C . serve 

hydroelectric power purposes. The British Columbia Hydro and Power Authority ( B C 

Hydro) operates a hydro dominated power generation system that includes 30 

hydroelectric generating stations providing approximately 90 per cent of the system 

installed capacity (11,100 M W ) . These plants can be placed into four main groups: Peace 

system (2 plants) producing about 34% of the energy requirements, Columbia system (3 

plants) producing 31%, Kootenay Canal and Seven M i l e generating stations producing 

13% and the remaining 23 plants that supply about 16% of the energy production. The 

balance of energy requirements is supplied from two thermal generating facilities and 

from energy purchases. The B C Hydro integrated system produced about 54,000 

gigawatt-hours in 2004. 

The main hydroelectric storage facilities in the B C Hydro system are: the Will is ton 

reservoir (39.4 bi l l ion m 3 ) on the Peace River and the Kinbasket reservoir (14.8 bi l l ion 

m 3 ) on the Columbia River. The two reservoirs provide multi-year storage and 

accordingly, they are used for the strategic and long-term operations planning of the 

B C Hydro system. 

The reservoir systems in B . C . provide many important benefits in addition to 

hydroelectric power production. These include: domestic and industrial water supply, 

flood control, and recreation. During the operation of these reservoir systems, conflicts 

may arise between some of these uses, particularly in periods of sustained drought or 

storage deficits. Also , new pressures have been imposed on the reservoir system due to 

expanding energy needs, increasing water demands, and growing public awareness of 

environmental issues. In addition, publicly owned reservoir systems often have to deal 

with complex legal agreements (e.g. Columbia River Treaty), fisheries, and non-power 
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release requirements, Federal/Provincial regulations (e.g. water licenses), and pressures 

from different interest groups. Recently increased attention has been given to improving 

the economic and operating efficiency of the existing reservoir systems. 

The electrical transmission network in British Columbia is interconnected with 

Alberta and Western U S systems. These interconnections allow for the purchase and sale 

of electricity in the wholesale electricity market, and therefore complicate the reservoir 

operations planning problem, since it must incorporate maximizing the profit from energy 

transactions in these two markets. 

The complexities of the multipurpose, multiple reservoir systems generally require 

that release decisions be determined by an optimization and/or simulation model. 

Computer simulation models have been applied for many years, as powerful tools in 

reservoir systems management and operation. These models are descriptive of the 

behavior of the system (e.g. releases, storage), given a specified scenario (e.g. the 

sequence of flow data, storage, demands, priorities, and constraints); and they are able to 

illustrate the changes resulting from alternative scenarios. They are also useful in 

examining the long-term reliability of a proposed operating strategy when combined with 

Monte Carlo analysis. However, they are not well suited to develop the optimal strategy, 

particularly for large-scale systems. 

Prescriptive optimization models on the other hand, offer the capability to 

systematically derive optimal solution given a specific objective and a set of constraints. 

The operating policies developed with optimization procedures often need to be checked 

with a simulation model in order to ensure their feasibility. 

In B C Hydro, the operations planning process is carried out using several simulation 

and optimization models. This modeling system is divided in terms of time horizons. The 

cascaded operations planning modeling hierarchy in B C Hydro is categorized as follows: 

- Long-term operations planning (strategic planning, 1-6 years in monthly time-steps). 
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- Medium-term operations planning (strategic/tactical planning, up to 12 month period 

in hourly to weekly time-steps). 

- Short-term operations planning (tactical planning, for one week in hourly to daily 

time-steps). 

- Real-time operations planning (1 hour-1 week in hourly time-steps). 

For long term planning, a marginal cost model ( M C M ) has been developed in-house 

at B C Hydro by Druce (1989, 1990), and kept up to date. The model applies Stochastic 

Dynamic Programming (SDP) to calculate the monthly marginal value of water stored in 

the Will is ton reservoir, the largest reservoir in the system, over a planning period of 4 to 

6 years. The SDP model takes into account the uncertainties in inflows and market prices. 

The calculated marginal value of water stored in the Wil l is ton reservoir is then used as a 

proxy for the long-term system marginal cost. A s well , the model develops a probabilistic 

forecast of B C Hydro system price signals, reservoir storage volumes and expected spills. 

Shawwash et al. (2000) developed a short-term optimization model (STOM) that is 

used by B C Hydro operation engineers to determine the optimal hourly generation and 

trading schedules while meeting system demands. The model applies a linear 

programming technique in which the inflow, prices, and system loads are deterministic 

within the short-term period. The model has been modified and extended to the medium-

term generalized optimization model ( G O M ) that is capable to handle longer planning 

periods ranging from hourly to monthly time-steps. The model also allows for variable 

time steps that can be specified on daily, weekly, and monthly intervals, and to include 

sub-time steps within a time step. Hence, G O M has the advantage of capturing variations 

in load, market prices, and generation schedules for shorter periods within the time step 

during weekdays or weekends. 

Nash (2003) developed a stochastic optimization model for the Columbia and Peace 

reservoir systems (aggregated to two reservoirs). The model consists mainly of two 

sub-models. In the first model, which is the long-term model, the monthly storage value 

function and the marginal values of water derived by a D P - L P based model are passed to 

the second model. The second model is the shorter-term model that applies a stochastic 
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linear programming with recourse algorithm (SLPR) in which the inflows, prices, and 

demands are defined by a scenario tree. The storage value curves generated by the long-

term model are used as terminal value functions in the shorter-term model. The outputs of 

the shorter-term model for the two aggregated reservoir systems are the refined marginal 

values over the shorter periods and the operating decisions for each period. The present 

research work builds upon, extends, and enhances the above techniques and develops a 

new approach to solve the operations planning problem for multireservoir systems. 

1.2. Problem Statement 

The main objective of reservoir operations planning is to determine the release 

policies that maximize the expected value o f the system resources over the planning 

period. This objective is generally achieved by maximizing the value of the energy 

produced while meeting firm domestic demands and taking into consideration the value 

of stored water at the end of the planning horizon. The reservoir operating strategy should 

provide answers to these questions at every decision point in time: when and how much 

water to store or release and when, where, and what quantity of energy to trade in the 

competitive wholesale electricity market while meeting the firm domestic demands and 

non-power requirements. 

This control problem is challenged with three main sources of uncertainty with which 

a reservoir system operator has to deal with. The main sources of uncertainty are the 

inflows to the reservoir system. The system operation policy has to protect against 

situations of shortage where the system is unable to meet the demands in a dry year. Also , 

it has to be capable to store any sudden increase in the inflow while avoiding wasteful 

water spills. In addition, there is uncertainty in forecasting electricity demand that w i l l 

affect the amount of energy generated since the firm demand must be met regardless of 

cost. There is also uncertainty in market prices that varies seasonally, daily, and between 

weekdays and weekends. 
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The marginal value of water represents the value of an extra increment of storage in a 

given reservoir ($/m 3). In the reservoir operations optimization problem, there is a trade

off between the marginal value of water and the present market price. If the market price 

is higher than the marginal value of water, then it is more profitable to sell energy. On the 

other hand, when the market price is lower than the marginal value of water, then it is 

more profitable to purchase energy from the market. The marginal value of water is equal 

to the derivative of the value of water function with respect to storage. The optimal use of 

the water in the reservoir corresponds to the point that minimizes the sum of immediate 

and future costs. This is also where the derivatives of the immediate cost function and 

future cost function with respect to storage become equal (Pereira et al. 1989). 

To derive a set of realistic control policies and better estimate the value of system 

resources, there is a need to integrate B C Hydro's main reservoir systems into a single 

model that takes into consideration the uncertainties in the inflows, market prices, and the 

system load. This integration is essential to allow for the effect of interactions between 

the different reservoir systems on the amount of total energy produced by the system. The 

value of water in a given reservoir is a function of the storage level in that reservoir and 

those in other reservoirs. Thus, the value of water in storage in any reservoir cannot be 

established unless assumptions are made about the other storage variables in the system. 

In this research, the main hydroelectric power generation facilities of B C Hydro system 

are included in a long/medium term stochastic optimization model. These hydroelectric 

power generation facilities are located on several independent river systems, for example, 

Peace River ( G . M . Shrum and Peace Canyon) and Columbia River (Mica, Revelstoke, 

and Keenleyside). 

1.3. Goals and Objectives 

The main goal of this research work is to develop and implement a long/medium term 

stochastic optimization model that serves as a decision support tool for the operations 

planning of the B C Hydro's reservoir systems. The model should be able to: 
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• Handle the dimensionality problem of this large-scale stochastic problem in an 

efficient manner, 

• Provide forecasts of the expected value of revenues, energy generation, and 

expected market transactions (imports/exports), 

• Model several river systems within the B C Hydro system, 

• Address the main uncertainties in the operations planning problem (inflow, 

market price, and demand), 

• Provide the marginal value of water for the major reservoirs, and 

• Deal with variable time steps and be able to address different objective functions. 

To achieve these goals, several objectives were identified: 

1. Acquire an in-depth understanding and knowledge of the reservoir operations 

planning problem in general and of B C Hydro's reservoir systems in particular. This 

was achieved by thoroughly investigating the modeling environment at B C Hydro 

and other hydroelectric power generation entities. Special attention was given to 

integrating the generalized optimization model ( G O M ) with the stochastic 

optimization model. 

2. Carry out an extensive review of the literature on reservoir optimization 

techniques with a particular emphasis on stochastic optimization techniques. This 

literature review was extended to include state of the art techniques developed and 

applied in the fields of machine learning and artificial intelligence environments. The 

aim of the literature review was to assess the merits and the drawbacks of the 

different optimization techniques and their potential to handle the complexity and the 

dimensionality problems of the large scale, stochastic, multiperiod, multireservoir 

operations planning problem. 

3. Formulate the stochastic optimization model that addresses the uncertainties in 

inflow, system load, and market prices. 
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4. Investigate and develop the Reinforcement Learning (RL) technique with 

Function Approximation and Sampling techniques, an approach, that is becoming 

popular and seems to offer the promise of handling large scale stochastic problems 

5. Test the performance of the R L model and develop an algorithm to implement it 

for the optimization of the operation of B C Hydro's main reservoir systems. 

1.4. Organization of the thesis 

This chapter presented the motivation, goals and the focus of the thesis. Chapter 2 

reviews the different techniques and approaches in handling the reservoir optimization 

problem cited in the literature. Chapter 3 introduces the main concepts and 

computational aspects of using reinforcement learning (RL) . Chapter 4 describes the 

methodology and the mathematical formulation adopted in the development of the 

R L R O M model. Chapter 5 presents the results of applying the R L solution methodology 

for a single reservoir and testing the extended two reservoir problem. The model was then 

implemented on B C Hydro's main reservoir system on the Peace and the Columbia 

Rivers. Chapter 6 provides conclusions and recommendations for future research work. 
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2. LITERATURE REVIEW 

The literature review carried out in this research is presented herein from two 

perspectives: modeling approaches and optimization techniques. The modeling 

approaches commonly applied to the reservoir optimization problem can be grouped into 

two main categories: Implicit Stochastic optimization and Explicit Stochastic 

optimization. In terms of the optimization techniques, the reservoir optimization models 

can be classified as: 

• Deterministic models including: Linear programming, Network Flow, 

Multiobjective, N o n Linear programming, and Dynamic Optimzation Models, 

• Stochastic optimization models including: Dynamic, Linear, Dual Dynamic 

Programming, Chance Constrained and Reliability Programming, 

• Heuristic models including: Genetic Algorithms, Artif icial Neural Networks, 

Fuzzy Programming, etc... 

2.1. Modeling Approaches 

Deterministic analysis of reservoir operational problems has several computational 

advantages over the stochastic analysis. Ignoring the stochasticity of the system 

simplifies the model resulting in more efficient performance; however this simplification 

introduces a bias in the results. Loucks et al. (1981) state that: "Deterministic models 

based on average or mean values of inputs, such as stream flows, are usually optimistic. 

System benefits are overestimated, and costs and losses are underestimated i f they are 

based only on the expected values of each input variable instead of the probability 

distributions describing those variables". 

Reservoir optimization models can be useful tools for identifying and evaluating the 

impacts of various alternative system operations. Yet, these models are not likely to be 

very useful unless they consider the uncertain conditions affecting the future performance 

of those systems. This includes the uncertain future demands imposed on those systems, 

the uncertain future costs of those systems and the uncertain quantities and qualities of 
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the flow within those systems. Assumptions made regarding each of these sources of 

uncertainty can have a major impact on system planning and operation. These facts have 

served to motivate the development of stochastic models, models that take into 

consideration at least some of the important sources of uncertainty and their impacts on 

system design and operation. 

Implicit 'stochastic reservoir optimization models optimize over series of random 

variables assuming perfect knowledge of the future. Multiple regression analysis of the 

results of the deterministic optimization model can be applied to generate operational 

rules. However, Labadie (1998) claims that regression analysis can result in poor 

correlations that may invalidate the operating rules. 

Explicit stochastic optimization models deal with the probabilistic nature of random 

variables directly, rather than dealing with deterministic sequences. Accordingly, the 

optimization is performed without assuming perfect knowledge of future events. The 

benefit o f this approach is to better quantify the impact of the uncertainty in the random 

variables and consequently come up with better reservoir management decisions. 

However, this approach is more computationally expensive than the implicit optimization 

approach. 

Most of the explicit stochastic optimization models assume that unregulated inflows 

are the dominant source of uncertainty in the system and can be represented by 

appropriate probability distributions. These may be parametric or nonparametric based on 

frequency analysis. Other random variables that may be defined include: market prices 

and demands. Unregulated natural inflows may be highly correlated spatially and/or 

temporally. Explicit stochastic models use probability distributions of stream flow. This 

requires two main simplifications to keep the dimensionality of the problem manageable. 

First, discretization of the probability data, and second, relatively simple stochastic 

models are usually used (e.g., lag-1 Markov model). Most inflow sequences show serial 

correlation (Pereira et al., 1999), and are represented in modeling inflows by a lag-1 

autoregressive or multivariate model. 
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2.2. Optimization Techniques 

A broad array of mathematical models has been applied for the optimization of 

reservoir systems operations and management. The choice of the modeling technique 

relies largely on the characteristics of each application. The following sections briefly 

review optimization methods that are widely used to solve the reservoir system 

optimization problem, with a focus on the techniques that are applied in multireservoir 

systems. Y e h (1985) and Labadie (1998, 2004) presented a comprehensive in-depth state 

of the art review of the optimization techniques used in reservoir operation and 

management. 

2.2.1. Deterministic Optimization Models 

2.2.1.1. Linear Programming Models 

One of the most favored optimization techniques in reservoir system models is linear 

programming (LP). L P requires that all the constraints and objective function be linear or 

be "linearizable" by applying one of the available linearization techniques, such as 

piecewise linearization or Taylor series expansion. L P models guarantee convergence to 

global optimal solutions. In addition, for large-scale reservoir optimization problems 

where the number of variables and constraints are large, decomposition techniques such 

as Dantzig-Wolf or Bender decomposition technique can be used to accelerate the 

solution process (Yeh, 1985). L P problem formulation is easy and L P problems can be 

readily solved by applying commercially available L P solvers. 

Turgeon (1987) applied a monthly mixed integer L P model for site selection of 

hydropower plants to be built. Hiew et al. (1989) applied L P technique to an eight 

reservoir system in northern Colorado. 

Shawwash et al. (2000) presented an L P short term optimization model (STOM) , 

which has subsequently been developed to determine the optimal short term schedules 
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that meet the hourly load and maximizes the return to B C Hydro resources from spot 

transactions in the Western U . S . and Alberta energy markets. Currently, the model is 

used in B C Hydro by the generation operations engineers to optimize the scheduling of 

the main reservoir systems. The authors state that using the model to develop the 

optimized schedule contributed between 0.25-1.0% in the form of additional revenue 

from sales and in the value of additional stored water. The authors indicate that one of the 

major benefits of using L P is the derived sensitivity analysis data that can be obtained 

from the simplex dual variables. A s an example, the dual variable of load resource 

balance equation provides the system incremental cost at each time step. This information 

can be used in planning spot trading schedules and in real time operation of the system. 

Other applications of the L P technique to the reservoir operations problem include: 

Martin (1986), Piekutowski et al. (1993), and Crawley and Dandy (1993). 

2.2.1.2. Network Flow Models 

Network flow models ( N F M ) have been applied in a broad range of water resource 

applications, as they are easy to formulate and efficient to solve. A reservoir system is 

represented as a network of nodes that are linked by arcs. Nodes could represent storage 

or non-storage points of confluence or diversion and arcs represent releases, channel 

flows, and carryover storage. This representation also has the advantage of easily 

defining piecewise linear functions through the specification of multiple links between 

nodes. F low bounds and unit costs are defined by the flow limits and slopes of each linear 

piece (Labadie, 1997). 

Lund and Ferreira (1996) applied a network flow algorithm to the Missouri River 

multireservoir system. The multireservoir system is optimized for a period of 90 years in 

monthly time steps. The authors concluded that system operation rules could be inferred 

from deterministic optimization applying a long hydrologic sequence. 

Shawwash et al. (2000) observed that some of the methodology's limitations were 

encountered when using arcs to describe flow patterns in a complex system, such as B C 
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Hydro's, that includes a combination of very large and very small reservoir systems, were 

encountered. 

2.2.1.3. Multiobjective Optimization Models 

Labadie (1997) presented two approaches for dealing with multiobjective 

optimization problems. In the first approach, the primary objective is represented in the 

objective function while treating the other objectives are treated as constraints at desired 

target levels (epsilon method). The second approach assigns weights to each objective 

(weighting method). 

Can and Houck (1984) applied a preemptive goal programming (PGP) approach to a 

four reservoir multipurpose system in the Green River Valley, Kentucky. In their 

comparative study with other L P models the authors concluded that P G P allows the 

flexible expression of policy constraints as objectives and it performed well compared 

with a more data intensive L P optimal operating model. The basic concept of P G P is to 

set aspiration levels (targets) for each objective and prioritize them. Attainment of the 

goals is sought sequentially. A significant advantage of P G P is that it does not require 

any penalty-benefit function, reducing the need for a detailed economic analysis. 

However, one drawback of P G P is that it does not allow trading a small degradation in a 

high priority objective for a large improvement in a lower priority objective (Loganathan 

and Bhattachatya, 1990). A s goal programming (GP) relies on achieving predetermined 

target values, the global optima for objectives may not be explored. 

2.2.1.4. Nonlinear Programming Models 

Non-linear programming (NLP) is not as popular as L P and dynamic programming 

(DP) in solving reservoir systems optimization problems. The reason is basically because 

the optimization process is slow and can return inferior and non-optimal solutions. 

However, in cases where a problem cannot be realistically linearized, it may be solved as 

a N L P problem particularly with inclusion of hydropower generation in the objective 

function and/or the constraints. Labadie (1997) indicates that the most powerful and 

12 



robust N L P algorithms available to solve reservoir system optimization problems include: 

Sequential Linear Programming (SLP), Sequential Quadratic Programming (SQP), 

Method of Multipliers ( M O M ) , and the Generalized Reduced Gradient Method (GRG) . 

Recent applications of N L P to hydropower reservoir operations include: Tejada-

Guibert et al. (1990), Arnold et al. (1994), and Barros et al. (2003). Barros et al. (2003) 

applied N L P model to a large scale multireservoir system in Brazi l . This multiobjective 

optimization problem was solved applying L P and S L P using a Taylor series expansion. 

The authors concluded that the N L P model is the most accurate and suitable for real-time 

operations than the L P model. 

2.2.1.5. Dynamic Programming Models 

Dynamic programming (DP) is another powerful optimization technique that has been 

used extensively to solve reservoir system optimization problems. Unlike L P and N L P 

techniques that simultaneously solve the problem for all time periods, D P algorithms 

decompose the original problem into sub-problems that are solved sequentially over each 

stage (time period). D P formulation requires the definition of a set of state variables to 

describe the system state at the beginning of each stage and a set of decisions that 

transform the current stage state to the next one. D P has the advantage of handling 

nonlinear, nonconvex, and discontinuous objective and constraint functions. However, a 

major problem that limits the application of D P to large-scale multireservoir systems is 

the exponential growth in computation time as the number of discretized state variables 

increases. This is widely known as the curse of dimensionality (Bellman, 1957). 

One of the earliest applications of deterministic D P to reservoir operation was by 

Young (1967), who studied a finite horizon, single reservoir operation problem. 

Various extensions have been developed to overcome the curse of dimensionality in 

applying dynamic programming application to reservoir operation. Larson (1968) 

introduced incremental dynamic programming (IDP). The IDP procedure starts with a 

trial solution and the recursive D P equation examines adjacent states around the current 
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solution. If better values are obtained, then the current solution is updated. Jacobson and 

Mayne (1970) developed a Differential Dynamic Programming (DDP) technique that 

uses analytical solution rather than discretization of the state space. Murray and Yakowitz 

(1979) extended this approach to constrained problems. Johnson et al. (1993) introduced 

the Coarse Gr id Interpolation technique. This technique relies on using larger 

discretization intervals. Solution accuracy is retained by interpolating within a coarser 

grid structure. 

2.2.2. Stochastic Optimization Models 

2.2.2.1. Stochastic Dynamic Programming Models 

Stochastic dynamic programming (SDP) is a powerful tool for studying 

multireservoir system operation because the stochastic nature of inflows and the 

nonlinear energy generation functions can be modeled explicitly. Interestingly, Yakowitz 

(1982) found that the first application of SDP preceded the application of deterministic 

D P by more than a decade. Lamond and Boukhtouta (1996, 2001) and Lamond (2003) 

presented a survey of stochastic reservoir optimization methods and models. 

A multireservoir, multiperiod SDP model is formulated by considering the 

multiperiod optimization in stages. Each stage corresponds to one period. Release 

decisions are made to maximize current benefits plus the expected benefits from future 

operation, which are represented by a recursively calculated cost to go function. Solution 

of the SDP model for a multireservoir system yields the "cost-to-go" function and a 

release policy decision rule for each time period as a function of the system state 

variables. 

Since optimization is performed conditionally on all discrete combinations of the 

state vector, the specter of the curse of dimensionality arises. For a multireservoir model 

with m discritization levels for n reservoirs, computational time and storage requirements 

are proportional to m". 
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The state variable typically includes the volume of water in reservoirs and sometimes 

a description of current, or forecasted hydrological conditions (Kelman et al., 1990). A 

periodic Markovian process typically describes reservoir inflows in SDP models. The 

choice of the inflow state variable in an SDP model depends on the system's 

characteristics as well as the information available for decision-making. In addition, 

computational considerations often influence how hydrologic information is represented 

in SDP. Huang et al. (1991) applied four types of representations of the inflow state 

variable to the Feitsui reservoir SDP optimization model in Taiwan. The authors found 

that using previous period inflows resulted in superior performance compared to the use 

of the present period inflows. Piccardi and R. Soncini (1991) found that policies derived 

from an SDP model without a hydrologic state variable resulted in simulated performance 

similar to that of policies derived using the previous period's inflow, although the SDP 

and simulation agreed more closely when the previous period's inflow were employed. 

Tejada-Guibert et al. (1995) examined the value of hydrologic information in SDP 

multireservoir models by using different hydrological state variables for the Shasta-

Trinity subsystem of the Central Val ley project in California. Then, the SDP policies 

were compared using a simulation model assuming that the current inflows were known. 

The authors applied four types of models with different inflow state variables, and 

concluded that the value of using sophisticated inflow forecasting depends on several 

system characteristics, including the relative magnitude of water and power demands and 

the severity of the penalties on shortages. Turgeon (2005) applied a parametric approach 

to represent the inflows by a linear autoregression (AR) model, used to solve the SDP 

reservoir management problem. Instead of using the traditional lag-1 models, the author 

stated that there are many advantages in considering multilag autocorrelation of inflows. 

To avoid an increase in state space, the multilag autocorrelation of inflows was 

represented by the conditional mean of the daily inflow. 

The use of SDP to optimize multireservoir systems is usually accompanied by the 

assumption that various natural inflows are not cross correlated. This results in solutions 

that provide a rough estimate of the optimal design or operation policy. To handle this 
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problem, Y e h (1985) suggested the separation of the D P optimization and stream flow 

generation, or using an aggregation/decomposition methods similar to those proposed by 

Turgeon(1980). 

a) Dynamic Programming with Successive Approximation 

The Dynamic Programming with Successive Approximation (DPSA) method consists 

of breaking up the original multi-state variable problem into a series of one-state variable 

sub-problems in such a manner that the sequence of optimizations over the sub-problems 

converges to the solution of the original problem. Davis et al. (1972) used the D P S A to 

determine a local feedback policy for each reservoir for a network of reservoir-hydroplant 

complexes in parallel. Pronovost and Boulva (1978) have used Davis ' method to obtain 

an open-loop policy, which gives near optimal results rather than local feedback to 

eliminate the drawback of this method. Turgeon (1980) concluded that to obtain an open-

loop policy solution, the successive approximation method must be solved repetitively at 

the beginning of each period that may be computationally costly. 

b) Aggregation and Decomposition SDP 

Turgeon (1980) introduced the aggregation and decomposition method consisting of 

breaking-up the original n-state variable stochastic problem into n stochastic sub-

problems of two-state variables that are solved by SDP. The final result of this method is 

a suboptimal global feedback operating policy for the system of n reservoirs. 

Furthermore, Turgeon (1980) assumed that the electrical energy generated by any plant is 

a constant times the turbine releases. Accordingly, instead of utilizing the reservoir 

storage as a state variable, a potential energy term is created for treating the nonlinearity 

of the power generation function. 

Turgeon (1980) applied the D P S A and the aggregation/decomposition methods to a 

network of 6 reservoir hydroplant complexes. In his comparative study he concluded that 

the later gives a better operating policy with the same time and computer memory 

requirements. In addition, the computational effort of the aggregation/decomposition 
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method increases linearly with the number of reservoirs since for each additional 

reservoir, only one additional D P two-state problem has to be solved. 

Valdes et al. (1992) applied this technique to the 4 reservoir lower Caroni 

hydropower system in Venzuela. Disaggregation was performed both spatially and 

temporally, resulting in daily operational policies from the monthly equivalent reservoir 

policies. Saad et al. (1994) incorporated neural networks to improve the disaggregation 

process and to account for nonlinear dependencies between the system elements. The 

method was successfully applied to finding long-term operational policies for Hydro-

Quebec's 5 reservoir hydropower system on the L a Grande River. Labadie (1997) 

indicated that the main problem with the use of state aggregation/decomposition methods 

is the loss of information that occurs during the aggregation process. 

c) The Principle of Progressive Optimality 

Turgeon (1981) presented an algorithm based on the principle of progressive 

optimality of Howson and Sancho (1975), for which the state variables do not have to be 

discretized. He applied the technique to an example consisting of four hydropower plants 

in series to determine the optimal short time scheduling for multireservoir system 

consisting of 4 hydropower plants. The algorithm does not have the recursive equation in 

terms of the optimal value function and might be considered as a multidimensional 

continuous version of the IDP procedure. 

This approach has the advantage of dealing with discontinuous return functions and 

with hydropower production functions that do not have to be linearized or approximated 

by convex linear functions. Also , there is no problem of dimensionality since only one -

trajectory of the reservoir storage must be stored in the computer memory. A s this 

iterative procedure is a function of the selected initial solution, Turgeon (1981) proposed 

the use of D P S A with a very coarse grid of the state variables to obtain a good trial 

trajectory before using this approach, which can then be solved by a direct search 

method. 
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d) SDP with Function Approximation 

The discretized "cost-to-go" function can be approximated by a continuous function. 

Since an approximate value for the cost-to-go function is only calculated at the 

discretized state values, the value of the function at other points can be estimated by 

interpolating nearby grid points. Several authors explored the reduction in computational 

effort possible when multivariate polynomials or piecewise polynomial functions are 

employed in SDP algorithms (Foufoula-Georgiou and Kitanidis (1988); Johnson et al. 

(1989); Johnson, et al 1993; Tejada-Guibert et al (1993), and Lamond (2003). Tejada-

Guibert et al. (1993) concluded that computational savings are possible; mainly because: 

(1) the improved accuracy of higher order functions which results in good solutions even 

with a coarse state space discretization and (2) efficient gradient-based optimization 

algorithms can be used to compute better approximations to the optimal solutions. 

Johnson et al. (1993) applied a high order spline function to approximate the cost-to 

go function so that a coarse discretization of the state space could be used. The spline is 

constructed of individual multivariate cubic polynomials, each defined over a sub-region 

of the state space domain. The spline coefficients were determined by requiring that the 

spline be able to interpolate the cost function values at each state space grid point. This 

approach proved to be successful in reducing the solution time for a system with two to 
t 

five reservoirs. Tejada-Guibert et al. (1993 and 1995) applied these piecewise cubic 

functions to approximate the cost-to-go function for the five hydropower plants of the 

Shasta-Trinity system in North California. He also recommended the use of a sampling 

SDP algorithm suggested by Kelman et al. (1990) as an attractive approach to describing 

the distributions and temporal correlations of inflows. 

Lamond (2003) applied a piecewise polynomial approximation of the future value 

function for a single hydroelectric reservoir model. The authors concluded that the 

adopted method is faster than both discrete D P value iteration and a continuous D P 

method using splines on a fixed grid. Also , they suggested that spline approximation is 

not well suited when the rewards are piecewise linear. 
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Lamond and Boukhtouta (2005) applied the neuro-dynamic programming approach 

(NDP) of Bertsekas and Tsitsiklis (1996) to approximate the cost-to-go function by a 

neural network. They applied the N D P to compute an approximate optimal policy for the 

control of a single hydroelectric reservoir with random inflows, concave, piecewise linear 

revenues from electricity sales taking into account the head variations and the turbine 

efficiency. Their N D P approach is based on a backward induction of a feed forward 

neural network with an input layer, hidden layer and a single output layer to approximate 

the future value function. 

Lamond and Boukhtouta (2005) concluded that the N D P approximation architecture 

gives very smooth approximate functions, which allowed the use of a coarse 

discretization of the state and the inflow variables in the training step of the neural 

functions. Their findings reinforce and confirm Bertsekas (2001) claims that N D P can be 

impressively effective in problems where the traditional D P methods would be hardly 

applicable. 

2.2.2.2. Stochastic Linear Programming 

Stochastic linear programming (SLP) deals with uncertainty in the model parameters 

by considering a number of scenarios. Each scenario describes the values of the uncertain 

parameters and their probability of occurrence. The primary advantage of scenario-based 

stochastic models is the flexibility it offers in modeling the decision process and in 

defining scenarios, particularly when the state dimension is high. However, the difficulty 

with this modeling approach is that an ample number of scenarios result in a large scale 

linear programming problem, which in turn requires special solution algorithms that rely 

mainly on decomposition approaches. 

Stochastic linear programming with recourse (SLPR) utilizes scenarios to represent 

the uncertainty in model parameters in the form of stages. The S L P R in its simple form 

subdivides the problem into two stages. The first stage decisions are proactive or 

planning decisions, which are made with certainty, while the second stage decisions are 

reactive or operating decisions. Accordingly, S L P R models support the "here and now 
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decision", while providing a number of "wait and see" strategies depending on which 

scenario unfolds. These models are non-anticipative: in each stage, decisions must be 

made without knowledge of the realization of random variables in future stages. 

When each inflow scenario is treated deterministically, the deterministic variables 

represent the set of first stage decisions and the stochastic variables represent future 

release decisions corresponding to a specific scenario. It should be noted that only the 

first stage decisions are actually implemented, since the future decisions are not known 

with certainty. Following the implementation of the first stage decisions, the problem is 

then reformulated starting with the next period decisions, and solved over the planning 

horizon. 

The first applications of two-stage and multi-stage S L P to reservoir management 

(Pereira and Pinto, 1985, 1991) used the Benders Decomposition Method (Benders, 1962: 

V a n Slyke and Wets, 1969). This method is powerful because it allows a large-scale 

problem to be solved iteratively. Moreover, using this technique in a nested form allows 

multi-stage problems to be decomposed by both scenario and decision period (Birge, 

1985). 

Jacobs et al. (1995) applied S L P using Benders decomposition to a three reservoir 

hydropower system in Northern California. Decomposition of the linear programming 

problem into smaller network flow optimization problems resulted in significant 

computational savings over attempts at direct solution. 

Dantzig and Infanger (1997) combined Benders decomposition (Benders, 1962) with 

the importance sampling technique to reduce the variance of the sample estimates. The 

dual of the multistage formulation measures the impact of future responses, which is fed 

back to the model's present time in the form of cuts. These cuts are sequentially added at 

different stages of the multi-stage dynamic system. Dantzig and Infanger (1997) indicated 

that thesecuts constitute a set of generated rules that guide the control problem to balance 

between present and future costs and drive the system away from future infeasibilities 

and towards optimality. Kracman et al. (2006) developed a multistage multiobjective S L P 
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reservoir planning model for the Highland Lakes system in Texas applying generated 

scenarios using a quantile sampling technique. The authors state that this scenario 

generation technique, which was adopted, preserves the spatial correlation of the random 

inflows. 

2.2.2.3. Stochastic Dual Dynamic Programming 

Stochastic Dual Dynamic Programming (SDDP) developed by Pereira (1989) 

represents an interesting mix of stochastic linear and dynamic programming optimization 

techniques. S D D P solves a multidimensional stochastic dynamic programming problem 

and it approximates the future cost function (FCF) as a piecewise linear function. Unlike 

conventional SDP, which discretizes the state space and solves the F C F for all points, 

S D D P samples the state space and solves the D P problem iteratively. The S D D P 

approach, as presented by Pereira et al. (1999), is described in the following paragraphs. 

The first phase starts with a backward recursion calculation of the F C F . The slope of 

the F C F around a given state is calculated by solving a series of one stage LPs for each 

inflow scenario. The slopes of the F C F at the different states are estimated from the dual 

variable of the mass balance constraint, as these multipliers represent the change in the 

objective function value with respect to storage (df /dS). The resulting cost-to-go, which 

is based on the highest value in each state (convex hull), represent a lower bound for the 

actual F C F . In the second phase a Monte-Carlo simulation is performed in a forward pass 

which simulates the system operation using the release policy calculated so far. Similar to 

the backward recursion calculations, a set of one stage L P problems has to be solved for 

each inflow scenario. The upper bound of the F C F is estimated as the mean of the Monte 

Carlo simulation results. To address the uncertainty around the true expected value of the 

cost function, Pereira et al. (1999), used the 95% confidence intervals to estimate the 

confidence limits around the true values. 

The Optimal solution is obtained i f the lower bound of the F C F lies inside the 

confidence limits. If not, a new iteration with backward and forward calculations has to 
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be performed adding additional sets of states (additional cuts or plans to the F C F ) . The 

states that the simulation passes through are used in the new backward recursion. 

It should be noted that the planes obtained in each iteration are retained and the new 

planes are added to the set generated so far. This is in contrast to the conventional SDP 

where a new cost-to-go table has to be developed in each stage. 

Pereira (1989), and Pereira and Pinto (1991) applied the S D D P to a hydrothermal 

scheduling problem in Brazi l . Rotting and Gjelsvik (1992) applied the S D D P to seasonal 

planning for system of 35 reservoirs in a 28 river systems, which represents a part of the 

Norwegian hydropower system. The system is operated to minimize the thermal 

operating costs while considering the terminal value of water storage. They concluded 

that the S D D P procedure is successful and convergence of the algorithm is obtained with 

a saving in run time over the basic SDP approach by a factor of 16. Halliburton (1997) 

however, states that: "convergence is questionable for both the U . S . Bonneville Power 

Administration (BPA) and New Zealand systems". He summarized the difficulties with 

S D D P as: non convergence, long C P U time, difficulties in setting the large number of 

interacting penalties, and the inability to handle certain type of constraints (non convex, 

applying across a number of time periods, etc...). 

2.2.2.4. Chance-Constrained Programming and Reliability Programming 

Chance-Constrained Programming (CCP) considers the probability conditions on 

constraints. Typically, the probability of satisfying a constraint is required to be greater 

than a threshold value. These constraints have the impact of tightening the restrictions on 

reservoir releases at the desired risk levels, thereby encouraging more conservative 

operational strategies. C C P converts a stochastic type problem to a deterministic-type 

one, and then solves the deterministic equivalent. 

Loucks and Dorfman (1975) concluded that the use of chance constraints leads to 

overly conservative rules for reservoir operation. Takeuchi (1986) invoked a C C P model 

to solve a real-time reservoir operation problem. The chance-constraints were set on the 
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probability of the reservoir becoming empty. Changchit et al. (1989) combined C C P with 

goal programming to operate a multiple reservoir system. 

Y e h (1985) concluded that C C P formulations neither explicitly penalize the constraint 

violation nor provide recourse action to correct constraint violations as a penalty. Hogan 

et al. (1981) warned that the practical usefulness of C C P is seriously limited and it should 

not be regarded as substitution for stochastic programming. Labadie (1997) indicated that 

the C C P does not represent the true risk that must be estimated by performing Monte 

Carlo analyses on the proposed operational policies. 

Colorni and Fronza (1976) initiated the application of reliability programming (RP) to 

the reservoir management problem that was regarded as an extension to the C C P . In their 

model, risk was accounted for by choosing different probability values that constrain the 

degree of satisfying the contracted release. Reznicek and Cheng (1991) expressed the 

probability of the constraints as decision variables and were therefore incorporated in the 

objective function. 

2.2.3. Heuristic Models 

Heuristics methods are criteria, methods, or principles for deciding that among 

several alternative courses of action are the most effective in achieving certain goals 

(Pearl, 1984). Heuristic algorithms cannot guarantee global optimum solutions, however 

they are well-suited to problems that are difficult to formulate and solve by applying 

algorithmic methods (e.g. non-linear-nonconvex functions). Genetic algorithms (GA) and 

artificial neural networks are the most commonly used heuristic methods for the reservoir 

operations planning problem. 

Recently, Ant Colony Optimization ( A C O ) algorithms, which are evolutionary 

methods based on the foraging behavior of ants, have been successfully applied to a 

number of benchmark combinatorial optimization problems (Dorigo et al., 2000). A C O 

was inspired by the behavior of ants in finding the shortest route between their nest and a 
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food source. Jalai et al. (2006) applied ant A C O to the Dez reservoir in Iran for a finite 

horizon and a single time series of inflows. The authors concluded that the A C O 

algorithm provided improved release policies as compared with another G A model. The 

same conclusion of A C O outperforming the G A algorithm was found by Kumar and 

Reddy (2006) who applied A C O to a multipurpose reservoir in India. 

2.2.3.1. Genetic Algorithm 

Genetic algorithm (GA) is a powerful population oriented search method based on the 

principle of Darwinian natural selection and survival of the fittest. G A performs 

optimization through a process analogous to "the mechanics of natural selection and 

natural genetics" (Goldberg, 1989). 

Genetic algorithms deal with a population of individual candidate solutions 

(strings/chromosomes), which undergo changes by means of genetic operations of 

reproduction through selection, crossover, and mutation operations. These solutions are 

ranked according to their fitness with respect to the objective function. Based on their 

fitness values, individuals (parents) are selected for reproduction of the next generation 

by exchanging genetic information to form children (crossover). The parents are removed 

and replaced in the new population by the children to keep a stable population size. The 

result is a new population (offspring) with normally better fitness. After a number of 

generations, the population is expected to evolve artificially, and the (near) optimal 

solution w i l l be reached. The global optimum solution however cannot be guaranteed 

since the convexity of the objective function can't be proven. The G A adjusts populations 

of release rule structures based on values of the fitness (objective) function values 

according to the hydrologic simulation model results. 

Wardlaw and Sherif (1999) successfully applied G A to a four-reservoir system in 

which a global optimum was achieved. The authors concluded in their evaluative study 

that G A provides robust and acceptable solutions and could be satisfactorily used in real

time operations with stochastically generated inflows. Haung et al (2002) applied a 

genetic algorithm based-stochastic dynamic programming to cope with the 
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dimensionality problem in a parallel multireservoir system in northern Taiwan to derive a 

joint long-term operation policy. Haung et al (2002) concluded that although the use o f 

GA-based SDP may be time consuming as it proceeds from generation to generation, the 

model could overcome the "dimensionality curse" in searching solutions. Reis et al. 

(2005) proposed a hybrid genetic algorithm and linear programming approach for 

multireservoir operation planning. Their model handled the stochastic future inflows by a 

three stage tree of synthetically generated inflows. They applied their approach to a 

hypothetical hydrothermal four reservoir system and compared the results with a S D D P 

model. The authors concluded that the hybrid scheme offers some computational 

advantages over the S D D P model. However, it is computationally more time consuming. 

2.2.3.2. Artificial Neural Networks 

A n artificial neural network ( A N N ) is a model inspired by the structure o f the brain 

that is well suited to complicated tasks such as pattern recognition, data compression and 

optimization. In neural network terminology, a formal neuron simulates the behavior of 

the biological neuron whose dendrites collect the energy from its input signals and whose 

axon transmits a signal to other neurons. In the formal neuron, the energy from the 

dendrites is presented by a weighted sum of the input variables, and the axon 

transmission is represented by applying a transfer function to the weighted sum of inputs. 

The training of the A N N is usually performed using a gradient-type back propagation 

procedure, which determines the values of the weights on all interconnections that best 

explain the input-output relationship. 

A N N has been used within SDP models to approximate the "cost-to-go" function 

with fewer sampling points. Saad et al. (1994) applied an A N N to the long-term 

stochastic operation of the hydroelectric multireservoir system of Quebec's L a Grande 

River. The neural network was trained to disaggregate the storage level of each reservoir 

of the system for an aggregated storage levels for the system. The inputs to the network 

are the aggregated storage levels determined by SDP for the aggregated reservoirs. The 

neural network is trained by applying a large number of equally likely stream flow 
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sequences. Saad et al. (1994) concluded that in comparison with the principal 

components approach, A N N is more efficient. 

Raman and Chandramouli (1996) used A N N to obtain optimal release rules based on 

initial storage, inflows, and demands for Al iyar reservoir in Tamil Nadu, India. The A N N 

was trained by applying the results of a deterministic D P model. Raman and 

Chandramouli (1996) concluded that simulation of operation with rules obtained by the 

trained A N N outperformed those produced by linear regression analysis, as well as 

optimal feedback rules obtained from explicit stochastic optimization using SDP. 

2.2.3.3. F u z z y P rogramming 

Several researchers have used fuzzy set theory and fuzzy logic to deal with 

uncertainties associated with the reservoir operation problem. Fuzzy set theory is 

generally used to describe imprecision and vagueness. In fuzzy logic, variables are partly 

represented by several categories and the degree of belongingness to a set or category can 

be described numerically by a membership number between 0 and 1.0. Russell and 

Campbell (1996) used fuzzy logic to derive operating rules for a hydroelectric plant, 

where the inflow and price of energy can vary. Tilmant et al. (2001) developed a fiizzy 

SDP approach with fiizzy objectives and fuzzy intersections between immediate and 

future release decisions consequences. Mousavi et al (2004) developed a technique called 

fuzzy-state stochastic dynamic programming (FSSDP) for reservoir operation that 

considers the uncertainties in the hydrologic variables and the imprecision due to variable 

discretization as fiizzy variables. The transition probabilities are considered by defining a 

fuzzy Markov chains. 

2.3. Sampling Techniques 

In the applications of stochastic programming models for the reservoir optimization 

problem we are usually faced with the problem of how to represent the random variables 

(inflow, demand, prices). The problem becomes rather complex with multivariate random 

vectors, particularly i f these vectors are correlated. Generation of data trajectories or 
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scenarios represents the most challenging and time consuming part of the solution of 

stochastic optimization problems. The objective is to generate trajectories or scenarios 

that best approximate the given distribution of the random variables in a computationally 

manageable way in the optimization model. Different sampling-based approaches have 

been proposed to handle the problem of generating scenarios. A number of these methods 

have been presented by Kaut and Wallace (2003). The following is a brief overview of 

the generation of data trajectories and sampling methods. 

2.3.1. Time Series Models 

Time series models are intended to replicate the spatial and temporal structure of the 

random variables. Examples of time series models include: Autoregressive models, 

Moving Average Models, and Bayesian Vector Autoregression model ( V A R ) . Many of 

the reported applications of SDP in reservoir management models use lag-1 

autoregressive or multivariate model. The use of time series to generate data trajectories 

involves selecting a model and estimating its parameters. These two steps add to the 

uncertainty of the analysis. Vogel and Stedinger (1988) have documented that errors 

arising from parameter estimation often overwhelm issues of model choice. 

2.3.2. Conditional Sampling 

Because of its simplicity, conditional sampling is the most popular method for 

generating scenario trees in stochastic programming. It is based on approximating 

probability measures by empirical ones generated by random samples. Because of 

computational restrictions, these samples cannot be very large, so the empirical measures 

can be poor approximations of the original ones. Pennanen and K o i v u (2002) show that 

modern integration quadratures provide a simple and attractive alternative to random 

sampling. These quadratures are designed to give good approximations of given 

probability measures by a small number of quadrature points. Loretan (1997) applied 

principal component analysis to reduce the dimensionality of the scenario tree. Sampling 

from principal components, allows correlated random vectors to be obtained. 
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2.3.3. Sampling from Specified Marginals and Correlations 

Many techniques are available to generate random samples from univariate 

distributions (Devroye, 1986). These techniques are not applicable in sampling 

multivariate vectors particularly i f they are correlated. In the case of multivariate 

distributions, some algorithms were developed assuming the correlation matrix and 

marginal distributions (beta, lognormal, Pearson, e tc . . ) are fully specified (e.g. Cario and 

Nelson, 1997). Other algorithms sample correlated random variables applying partially 

specified multivariate distributions (e.g. Lur i and Goldberg 1998). However the user 

specifies the marginal moments. The various algorithms also differ in the degree to which 

dependencies among variables are specified. Most algorithms require only the correlation 

matrix, but a few require higher order product moments. Parish (1990) presented a 

method for generating random variables from multivariate Pearson distribution, with the 

knowledge of all product moments to the fourth order. 

2.3.4. Moment Matching 

This method relies on describing the marginal distributions by their moments (mean, 

variance, skewness, kurtosis, etc.) as well as a correlation matrix, and possibly other 

statistical properties. Hoyland and Wallace (2001) developed a scenario generation 

algorithm, which constructs multi-dimensional scenario trees with specified moments and 

correlations, by solving a single, very large, least squares problem. To improve the speed 

of the solution procedure, Hoyland et al. (2003) introduced a new algorithm that speeds 

up the procedure by decomposing the least squares problem into n univariate random 

variables, each satisfying a specification for the first four moments. Then, the different 

marginal distributions were combined so that the joint distribution satisfies the specified 

correlations and moments by applying a Cholesky decomposition and a cubic 

transformation in an iterative procedure. Lurie and Goldberg (1998) applied a similar 

multivariate decomposition approach but starting with parametric marginal distributions 

instead of the marginal moments. 
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Although Hoyland et al. (2003) could not guarantee convergence to their proposed 

procedure, they concluded that their experience shows that it would converge i f the 

moment's specifications were possible and there were enough scenarios. They also stated 

that a potential divergence or convergence to the wrong solution is easy to detect. 

Accordingly, there is no risk of ending up using the incorrect tree in the optimization 

procedure. In terms of computer time, they found trees with 1000 scenarios representing 

20 random variables took less than one minute. 

2.3.5. Path Based Methods 

These methods start by generating several data paths (or fans), which can be done 

through the use of parametric or nonparametric methods as suggested by Dupacova et al. 

(2000). In many application areas there exist advanced continuous and discrete time 

stochastic models and historical time series that serve to calibrate these models. A global 

scenario generation can be achieved with the calibrated model, by simulating many 

sample paths. These models employ a specified type of probability distributions. 

Nonparametric methods can be applied to large families of probability distributions, 

which cannot be indexed by a finite dimensional parameter (distribution free methods). 

The next step is to delineate the initial structure of the scenario tree, i.e. the number of 

stages and the branching scheme. The additional step to build the scenario tree includes 

applying ad hoc methods, by cutting and pasting the data paths in an intuitive way. The 

other possibility, as proposed by Birge and Mulvey (1996), is to apply cluster analysis in 

a multi-level clustering or bucketing scheme that exploits the whole sequences of 

observed/simulated data. 

2.3.6. Optimal Discretization 

Pflug (2001) developed a method for constructing a scenario tree with optimal 

discretization on the basis of a simulation model of the underlying stochastic process by 

using a stochastic approximation technique. This method is different from other methods 
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described earlier in that it constructs the whole scenario tree at one time. However, the 

method deals only with univariate processes. 

2.3.7. Scenario Reduction 

This method involves developing a much smaller number of scenarios, and it 

determines a scenario subset of prescribed cardinality or accuracy and a probability 

measure based on this set that is the closest to the initial distribution in terms of a natural 

probability metric. A l l deleted scenarios have probability zero. Romisch and Heitsch 

(2003) presented two new algorithms for computing optimally reduced probability 

measures approximately. One advantage of the reduction concept is its generality. N o 

requirements are imposed on the stochastic data processes (e.g. the dependency or 

correlation structure of the scenarios, the scenario probabilities or the dimension of the 

process). 

2.3.8. Interior Sampling Methods 

Interior sampling is an another class of sampling methods in which several samples 

are used at different steps of a particular optimization procedure, for example to estimate 

function values, gradients, optimality cuts, or bounds, corresponding to the second-stage 

expected value function. Higle and Sen (1991) suggested stochastic decomposition 

methods. Infanger (1994) applied importance sampling that generates samples within the 

L-shaped algorithm for stochastic linear programming. Importance sampling is typically 

presented as a method for reducing the variance of the expected estimate of a stochastic 

variable by carefully choosing a sampling distribution. 

2.4. R L Approach 

Conventional optimal control methods, dynamic programming for instance, suffer 

from the 'curse of dimensionality', wherein the large dimensionality of the system at 

hand and the exponential growth of its possible states prohibit the attainment of an 

30 



optimal solution even using the fastest computers available today, and most likely in the 

future. The literature survey conducted has revealed that this area of research is still very 

active, as new solution techniques are being investigated and developed. 

One possible angle from which the problem can be tackled is through the use of 

machine learning techniques from the field of artificial intelligence (A l ) , particularly 

Reinforcement Learning (RL) . R L has two key advantages over conventional control 

methods: the potential for learning how to control a larger system in a shorter time, and 

the ability to do so with or without a formal model of the system. Reinforcement learning 

(RL) has adapted key ideas from various disciplines namely: machine learning, 

operations research, control theory, psychology, and neuroscience to produce some very 

successful engineering applications (Sutton and Barto 1998). 

R L overcomes the curse of dimensionality through the use of function approximation, 

which allows R L to use much larger state spaces than classical sequential optimization 

techniques such as dynamic programming. In addition, using sampling, R L can be 

applied to large-scale problems where it is too complicated to explicitly evaluate and 

enumerate all the state transition probabilities. Modern reinforcement learning could be 

applied to both trial and error learning without a formal model of the environment, and to 

planning activities with a formal model of the environment, where an estimate of the 

state-transition probabilities and immediate expected rewards could easily be evaluated. 

Sutton and Barto (1998), Bertsekas and Tsitsiklis (1996) state that: " R L has become 

popular as an approach to artificial intelligence because of its simple algorithms and 

mathematical foundations and also because of a series of successful applications". Sutton 

(1999) concluded that this approach has already proved to be very effective in many 

applications as it has produced the best of all known methods for playing backgammon 

(Tesauro, 1995), dispatching elevators (Crites at al. 1996), job-shop scheduling (Zhang 

W . and Dietterich 1996), and assigning cellular-radio channels (Singh and Bertsekas 

1996). 
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Ernst et al. (2003) applied R L for power systems stability control. Abdulhai et al. 

(2003) applied R L for true adaptive traffic signal control. In the water resources sector 

the application of this approach has been very limited. Wilson (1996) applied the R L 

technique in the real-time optimal control of hydraulic networks. Bhattacharya et al. 

(2003) successfully applied the R L technique in real time control (RTC) to Delfland 

water system in the Netherlands, which includes Delft, Hague, and part of Rotterdam 

covering an area of about 367 k m 2 and consisting of about 60 polders with 12 pumping 

stations. Bhattacharya et al. (2003) concluded that in all applications involving some sort 

of control functions (urban drainage systems, polder water level maintenance, and 

reservoir operation), R L has substantial potential. 

R L is a machine learning approach that can be used to derive an optimal control 

strategy. R L concerns the problem of a learning agent interacting with its environment to 

achieve a goal (Sutton, 1999). The agent continuously maps situations to actions so as to 

maximize a reward signal. The learner is not told what to do, as in most forms of machine 

learning techniques, but instead must discover which actions yield the most rewards by 

trying them (Sutton, 1999). These two characteristics, trial and error search and delayed 

reward, are the two most important distinguishing features of reinforcement learning. 

2.5. Conclusions 

The literature" review carried out shows that this area of research is still very active 

and that different optimization approaches and modeling techniques are being tried for 

dealing with the reservoir systems optimization problem. The review shows that 

employing an explicit stochastic optimization approach would be the most advantageous 

since it provides the best representation of this complex problem. The main obstacle that 

needs to be addressed and resolved, however, is the high dimensionality of the problem. 

From this literature review, it can be concluded that D P algorithms remains a very 

powerful technique for handling the nonlinear, stochastic large-scale reservoir 

optimization problem. Among the numerous efforts attempted to alleviate the curse of 
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dimensionality problem, which is aggravating the large-scale SDP method, function 

approximation techniques and/or sampling techniques resulted in some successful 

applications in the multireservoir hydropower generation operations planning problem. 

One promising approach addressing the possibility of combining these two techniques 

(function approximation and sampling techniques) within an SDP formulation is the 

Reinforcement Learning (RL) technique. The following chapter presents the main 

concepts and computational aspects of R L techniques. 
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3. THE REINFORCEMENT LEARNING APPROACH 

3.1. Introduction 

Reinforcement learning (RL) is a computational approach for learning from 

interactions with an environment and from the consequences of actions to derive optimal 

control strategies. R L has adapted key ideas from various disciplines namely: machine 

learning, operations research, control theory, psychology, and neuroscience (Sutton and 

Barto, 1998). R L has become popular as an approach to artificial intelligence because of 

its simple algorithms and mathematical foundations (Bertsekas and Tsitsiklis, 1996) and 

because of a number of successful applications in different domains, e.g. control 

problems, robot navigation, economics and management, networking, games, etc... 

(Sutton, 1999). 

The successful applications of R L surveyed and the key advantages that R L offers in 

handling large-scale problems provided the motivation to research the possibility of 

applying this approach to solve the large-scale problem of operation planning of 

multireservoir systems. 

The following sections of this chapter introduce the main concepts and computational 

aspects of the R L methods and presents the distinguishing features and elements of the 

R L approach including the trial and error learning of policies, the concept of delayed 

rewards, and the exploration and exploitation of policies. The chapter also focuses on the 

three main classes of methods to solve the R L problem, namely, (1) dynamic 

programming algorithms and its relation with Markovian decision process ( M D P ) and the 

Bellman principle of optimality, (2) Monte Carlo methods, and (3) the Temporal-

Difference learning methods. More advanced R L methods that unify the basic ideas of 

the above three methods are also described; these include the eligibility traces and 

function approximation, and generalization. More comprehensive reviews of R L can be 
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found in Sutton and Barto (1998), Kaelbling et al. (1996), and Bertsekas and Tsitsiklis 

(1996). 

3.2. Reinforcement Learning Approach versus Dynamic Programming 

Dynamic Programming (DP) is a very powerful technique for handling sequential, 

nonlinear, and stochastic optimization problems. D P guarantees the attainment of optimal 

solutions to M D P s . However, D P requires that values of the transition probabilities and 

the transition rewards of the system be calculated. The transition probabilities and the 

expected immediate rewards are often known as the theoretical model of the system. For 

large scale systems that involve several stochastic variables, constructing the model of 

the environment is quit a difficult task. Gosavi (2003) states that: "Evaluating the 

transition probabilities often involves evaluating multiple integrals that contain the 

probability density functions (pdfs) of random variables. It is for this reason that D P is 

said to be plagued by the curse of modeling". 

Compared with D P methods, linear programming methods (LP) can also be used to 

solve M D P s . Sutton and Barto (1998) indicated that L P becomes impractical at a much 

smaller state space (by a factor of about 100) and concluded that for the largest problems, 

D P methods are the only feasible and practical solution methods. 

For D P problems, assuming a system with m state discretization and n reservoirs, the 

computational time and storage requirement is proportional to m". Consider the case of a 

system with hundred state discretization for each of two reservoirs, the number of 

possible state combinations in one period is 100 2=10 4. This exponential increase in the 

state space is often known as the curse of dimensionality (Bellman, 1957). Assuming that 

there are five possible actions for each state, the transition probability matrix of each 

action would consist of 5 x 1 0 4 x 10 4 = 5 x 10 8 elements. A s this simple example shows, 

it is obvious that for such problems with large state space, storage of the transition 

matrices w i l l be a difficult task indeed. 
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Obviously, the two main problems limiting the capabilities of D P are the excessive 

memory needed to store large tables and the very long computation time required to f i l l 

those tables. One possibility to tackle these problems is through the use of machine 

learning techniques from the field of artificial intelligence (A l ) , particularly 

Reinforcement Learning (RL) . R L offers two key advantages in handling problems that 

are too large to be solved by conventional control methods: 

1. The ability to solve M D P s with or without the construction of a formal model of the 

system. B y using sampling (simulation), R L can be applied to large-scale problems that 

are too complicated to explicitly evaluate and enumerate all the transition probabilities 

and the expected immediate rewards of the system. This way R L provides a way to avoid 

the curse of modeling. 

2. The potential for learning how to control a larger system. R L can overcome the 

curse of dimensionality through the use of function approximation methods. For small 

scale problems, R L stores the elements of the value function in lookup tables called Q-

Tables (tabular methods). However, as the state space increases, R L can use function 

approximation methods, which require the use of a limited number of parameters to 

approximate the value function of a large number of states. The following figure 

highlights the difference in the methodology between the D P and R L . 
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Optimal Solution Approximate - Near 
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Figure 3.1. Reinforcement Learning and Dynamic Programming comparison 

(adopted from Gosavi, 2003) 

3.3. Reinforcement Learning Problem Formulation 

R L concerns the problem of a learning agent that relies on experience gained from 

interacting with its environment to improve performance of a system over time. The 

learner (or the decision maker) is called the agent and the object it interacts with is called 

the environment. The environment could be a simulator of the system or the real system. 

Both the agent and the environment constitute a dynamic system. 

Unlike supervised learning techniques, which require examples of input-output pairs 

of the desired response to be provided explicitly by the teacher, the learning agent is not 
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told what to do. Instead, the agent must continuously learn from the consequences of its 

actions. The agent perceives how well its actions perform by receiving a reward signal. 

This reward signal indicates that the agent should do or how to modify its behavior 

without specifying how to do it. The agent uses this signal to determine a policy that 

leads to achieving a long term objective. This trial and error interaction with the 

environment and the delayed rewards are the two main distinguishing features of the 

reinforcement learning method. 

3.3.1. R L Basic Elements 

The main components of a R L algorithm are: an agent, an environment and a reward 

function. The interaction between the agent and its environment can be modeled within 

the framework of Markov Decision processes. The agent and the environment interact in 

a sequence of discrete time steps, t - 0, 1, 2, 3, . . . . A t each step the agent receives some 

indication of the current state of the environment, st G S, where S is the set of all states 

and then it selects an action at e A, where A is a finite set containing al l possible actions. 

The agent interacts with the environment and receives feedback in the form of a 

stochastic transition to a new state st+i and receives a numerical reward r(si,at) as defined 

by the reward function. Through this delayed reward and guided search process, the agent 

learns to take appropriate actions that maximize the cumulative rewards over time 

(Sutton, 1999). A schematic representation of the agent-environment interaction is 

presented in Figure 3.2. 

State 
st 

Environment 
(Simulator/Real System) 

Reward 

Agent 
(Decision Maker") 

Act ion 
a, 

Figure 3.2. Agent-Environment interaction in R L 
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3.3.2. Exploration/ Exploitation 

One of the key aspects of reinforcement learning is that the learner needs to explicitly 

explore its environment in its search for good rewards. The feedback that the agent 

receives from its environment indicates how good the action was, but it does not indicate 

whether it was the best or the worst action possible (Sutton and Barto, 1998). 

Accordingly, two conflicting objectives arise during the action selection process. One 

objective is to achieve high-valued short-term rewards by selecting actions that are 

already known to be good (exploit). On the other hand, the agent has to explore new 

actions for better action selections in the future. 

Two popular methods for balancing the exploration and exploitation in R L are the £-

greedy and softmax action selection rules. In the e-greedy method, the learner behaves in 

a greedy way most o f the time (by selecting the highest estimated action value), while a 

non-greedy exploratory action w i l l be taken every now and then with a small probability 

£ (by selecting a random action uniformly regardless of its value). The advantage of the 

e-greedy method is that, in the limit and as the number of trials increases, every action is 

sampled an infinite number o f times. The probability o f selecting the optimal action 

converges to greater than 1-e (Sutton and Barto, 1998). The disadvantage of the e-greedy 

method, however, is that in the exploration process it chooses equally among all actions, 

regardless of the estimated value of the chosen action. The result is that the learner could 

choose equally between the worst action and the second best action in the exploration 

process. 

In the softmax action selection method, the action selection probabilities are ranked 

according to their estimated values. The greedy action is then selected as the one with the 

highest action selection probability, and all other actions are then weighted proportionally 

to their estimated action values. Frequently, the softmax method uses a Gibb or 

Boltzmann distribution to choose the probability of an action a, P{a): 
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where Q(a) and Q(b) are the estimated action values and tis a temperature parameter that 

controls the probability distribution. Higher temperatures result in actions with equal 

probability of selection (exploration). On the contrary, low temperatures cause a greater 

difference in the probability of selecting actions according to their estimated values 

(exploitation). Gradually, the temperature r decreases over time to limit the exploration 

process. 

3.3.3. Return Functions 

One can distinguish two main types of R L tasks: episodic and continuous tasks. In 

episodic tasks, the horizon represents a finite number of steps in the future. There is a 

terminal state where the episode ends. On the other hand, in continuous tasks, the horizon 

represents an infinite sequence of interactions between the environment and the agent. 

The goal of the agent is to maximize the accumulated future rewards, and the return 

function Rt is a long term measure of such rewards. In the case of finite horizon tasks, the 

return is the sum of the rewards from the beginning to the end of the episode: 

where T is the number of stages in the episode, Rt is the reward received after t time 

steps. For continuous tasks, the infinite horizon discounted model takes the long-term 

rewards into account by discounting the rewards received in the future by discount factor 

y, where 0< y<\. The return function then becomes: 

Rt = r t + l + r t + 2 + r t + , +.... + rT (3.2) 

K,=rt+l+yrt+2 + f r t + 3 + (3.3) 
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where k is the number of time steps in the future. The discount rate determines the 

present value of future rewards. If y- 0, the agent is said to be myopic and only considers 

immediate rewards. A s y increases, the returns increase and the agent gives more 

consideration to future rewards. In the mathematical formulation of the reservoir 

operation planning model presented in chapters 4 and 5, it is assumed that the current 

period rewards is realized at the end of each time period, accordingly the discount factor 

^is applied to both of the present period and the future rewards. In the following sections 

the focus w i l l be on discounted rewards as this approach is more appropriate to reservoir 

operation problems. 

3.3.4. Markovian Decision Process (MDP) 

R L relies on the assumption that the system dynamics can be modeled as a Markovian 

decision process (MDP) . A n environment is said to satisfy the Markovian property i f the 

signal from its state completely captures and summarizes the past outcomes in such a way 

that all relevant information are retained. In general, the response of the environment at 

time t+1 to an action taken at time t depends on past actions. The system dynamics can 

be defined by specifying the complete probability distribution: 

Ps/r = Pist+i = s'>r,+i =r\st,at,rt,st_„at_l,....,r],s0,a0} (3.4) 

for all s', r and all possible values of past events: st, at, rt, , rj so, ao-

The M D P framework has the following elements: state of the system, actions, 

transition probabilities, transition rewards, a policy, and a performance metric (return 

function). M D P involves a sequences of decisions in which each decision affects what 

opportunities are available later. The Markov property means that the outcome of taking 

an action to a state depends only on the current state. If the state and action space in a 

M D P are finite then it is called a finite Markov decision process. 
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If the state signal has the Markov property, then the environment's response at t+1 

depends only on the state and the action representations at t. The environment's dynamics 

of the M D P can be defined by the transition probability: 

Pi' = PiSt+\ = AS' = S>a'= Q} (3-5) 

where p"ss., is the probability of moving to state s' for a given state s and action a. and the 

expected value of the immediate reward: 

K' = E{r,+x \s, = s,a= a, st+l = s'} (3.6) 

These two quantities, p°> and R°s. completely specify the most important aspects of 

the dynamics of an M D P process. 

3.4. Reinforcement Learning Algorithms 

The goal o f R L algorithms is either to evaluate the performance of a given policy 

(prediction problems) or to find an optimal policy {control problems). In prediction 

problems, the value function (state-value function) for a given policy n is estimated as 

follows: 

V*(s) = Ex{Rt\st =s}=E„{Y^k=(irkrt+k+x\st =*} (3.7) 

where policy ;ris a mapping from states s & S to the probability of selecting each possible 

action. This mapping is called the agent's policy 7t, where n(s,a) is the probability of 

taking an action a when the agent is in state s. In control problems, the value function 

(action-value function) for policy ;ris defined as follows: 

Qn(s,a) = EK {Rt s, =s,ai=a} = EK (^°k=0/rl+lc+] \s, =s,at= a} (3.8) 
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where Q\s,a) is defined as the expected return starting from state s, taking action a, and 

thereafter following policy K. The recursive relationship property of value functions 

between the value of state s and the value of its possible successor states is: 

V*(s) = E„{Rt st=s} = £ V ( s , « ) £ / & [ / f t + yV*(sj],Vse S (3.9) 

Equation (3.9) is the Bellman equation, which states that the value of state s must be 

equal to the discounted value of the expected next state plus the expected reward along 

the way. The value function V\s) is the unique solution to the Bellman equation. The 

policy 7t is better than the policy rt i f V\s) > V^is) for all s&S. The optimal policy 

which has a better value function than other policies is defined as: 

V\s) = maxV*(s), VseS (3.10) 
K 

The optimal action-value function Q*(s,a) in terms of V*(s) is: 

Q * (s, a) = En {r / + 1 + yV * (s')\st =s,at=a} = Y, K' [K' + ^ (*')] (3.11) 
s' 

Once we have the optimal value function V* for each state, then the actions that 

appear best after a one-step search w i l l be optimal actions. Hence, a one-step-ahead 

search yields the long-term optimal actions. Wi th Q*, the agent does not have to do a 

one-step-ahead search: for any state s, it can simply find any action that maximizes 

Q*(s,a). The action-value function effectively memorizes or stores the results of all one-

step-ahead searches. It provides the optimal expected long-term return as a value that is 

locally and immediately available for each state-action pair (Sutton and Barto, 1998). 

The following sections describe the fundamental three classes of methods for solving 

the R L problem. These methods are: dynamic programming (DP), Monte Carlo 

techniques ( M C ) and the temporal difference learning methods (TD). Dynamic 
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programming is a planning method, which requires a model of the environment (Model-

based), whereas the M C and T D methods are learning methods, which can learn solely 

from basic experience without using a model of the environment (Model-free). 

3.4.1. Dynamic Programming Methods (DP) 

Dynamic programming provides the theoretical foundation of R L algorithms. D P 

methods are used to solve M D P s , assuming a perfect knowledge of the model of the 

environment. The key idea of D P methods is the use of value functions and the Bellman 

equation of optimality recursively to guide the search for optimal policies. D P methods 

are bootstrapping methods, as they update one estimate of the value function based on 

the estimate of a successor states. The two most widely used D P methods for calculating 

the optimal policies and the value functions are the policy iteration and the value 

iteration. The following is a brief overview of these two methods. 

The policy evaluation method refers to the iterative computation of the value 

functions V" for a given policy K. Initial values of all states are assumed V£ and 

successive approximation of the value function is obtained by applying the Bellman 

equation as a recursive update rule: 

<- + }Tk*(s%VszS,a = K(s),k = 0,1,2,... (3.12) 
a s' 

In practice, and for practical considerations, a stopping criteria for the iterative 

process is commonly used when the term m a x r e S |F t + 1(5 , )-K i(5 ,) | is sufficiently small 

(Sutton and Barto 1998). 

The estimated action-values are used as a basis to find a better policy. If the action-

value QK(s,a) > VK (s) for some a^7i(s), then action a is taken and the policy is 

changed to 7f where n'(s) = a. This process of taking greedy actions with respect to the 

current policy is called policy improvement. The new greedy policy ;r ' is given by: 
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it\s) <- a r g m a x £ J f t [ / f t + yV*(s')] 
a / 

(3.13) 

where argmax denotes the action a at which the value function is maximized. 

a 

Combining the policy evaluation step with the policy improvement step yields the policy 

iteration algorithm. Thus we can obtain a sequence of improved policies and value 
E I E I E 

functions: itQ -^V" ->itx —tV** —> it —>F*. Where E denotes policy evaluation and 

I denotes policy improvement. 

Another way of solving M D P s is the value iteration algorithm. Similar to the policy 

iteration method, the value iteration also combines the policy improvement step and the 

policy evaluation step. However, in the value iteration algorithm the policy evaluation 

step is truncated after one sweep over the state space and is followed by a policy 

improvement step. The value iteration estimates the optimal policy directly as the 

maximum to be taken over all actions: 

V^^m^PfAK' + rVd^)], V s e S (3.14) 

The policy iteration and value iteration methods converge in the limit to the optimal 

value function V*(s) due to the contraction property of the operator (3.14) (Bertsekas and 

Tsitsiklis, 1996). 

3.4.2. Monte Carlo Methods (MC) 

A s stated earlier, D P methods require that a model of the environment be available, 

including transition probabilities and the expected immediate rewards. However, in many 

cases the exact model of the system is not known and in other cases, such as large scale 

systems, constructing the model could be a difficult task indeed. In such cases, learning 

the value function and the optimal policies directly from experience could be more 

efficient. M C methods estimate the value function from the experience of the agent. This 
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experience is gained by sampling sequences of states, actions, and rewards from on-line 

or simulated interaction with an environment. 

M C methods use the mean return of many random samples to estimate the expected 

value function VK and the action-value function QK. A s more samples are observed, their 

average return converges to the expected value of the value function. A sample return is 

the sum of the rewards received starting from state s or a state-action pair (s, a), and that 

follows policy K until the end of a learning episode. A s complete returns can only be 

obtained at the end of such episodes, M C methods can only be defined for finite horizon 

tasks. 

One can design M C control methods by alternating between policy evaluation and 

policy improvement for the complete steps of the episode. Observed returns at the end of 

the episode are used for policy evaluation and then for improving the policy of all visited 

states in the episode. There is one complication that arises in this method however; the 

experience gained by interaction with the environment contains samples only for the 

actions that were only generated by policy TC but the values of all other possible actions 

are not included in the estimate. Those values are needed for comparing alternatives in 

the policy improvement step. Therefore, maintaining sufficient exploration is a key issue 

in M C control methods. There are two approaches to assure that the agent is selecting all 

actions often, namely on-policy and off-policy control methods. 

In on-policy control method, the agent uses a soft stochastic policy meaning that 

7t(s,a) > 0 for all s <= 5 and all ae A to evaluate and improve the performance of the 

same policy. The agent commits to continuous exploration and tries to find the best 

policy in the process. 

The other approach is the off-policy method: the agent uses one policy to interact with 

the environment and generates a behavior policy. Another policy which is unrelated to 

the behavior policy is evaluated and improved, and is called the estimation policy. A n 

advantage of this approach is that the agent learns a deterministic (e.g., greedy) optimal 
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policy (estimation policy) while following an arbitrary stochastic policy (behavior policy) 

thereby, ensuring sufficient exploration in the process. 

M C methods differ from D P methods in two main ways (Sutton and Barto 1998): 

First, they operate on sample experience. Therefore, they can be used for direct learning 

from interaction with the environment without a model. Second, they do not bootstrap; 

i.e. they do not build their value estimates for one state on the basis of the estimates of 

successor states. 

3.4.3. Temporal Difference (TD) 

Temporal difference (TD) learning methods represent a central and key idea to R L . 

T D methods are considered as a class of incremental learning procedures specialized 

where a credit is assigned to the difference between temporally successive predictions 

(Sutton 1988). 

The T D methods combine the ideas of D P and M C methods. Similar to M C methods, 

the T D approach can learn directly from real or simulated experience without a model of 

the environment. T D methods share with D P the bootstrapping feature in estimating the 

value function (Sutton and Barto 1998). 

However, T D methods have some advantages over the D P and M C methods. T D 

methods use sample updates instead of full updates as in D P methods. The agent observes 

only one successor state while interacting with the environment rather than using values 

of all possible states and weighing them according to their probability distributions. 

Accordingly, learning the optimal policy from experience does not require constructing a 

model of the environment's dynamics. 

In addition, unlike M C methods, T D methods do not need to wait until the end of the 

episode to update their estimate of the value function. The simplest versions of such 

algorithms are usually referred to as one-step T D or TD(0). TD(0) wait only for the next 

time step to update their estimates of the value function based on the value function of the 
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observed state transition V(st) and the immediate rewards received from the environment 

rt+j. The following update is performed on each time step: 

V(st)^V(st) + at[rM + yV(st+x)-V(st)} (3.15) 

where Ot is a step-size parameter, 0 < 0Ct < 1 which represents the learning rate. The 

update rule presented above computes a stochastic approximation o f the VK, which states 

that: 

New Estimate <— Old estimate + Step size . [Target - Old estimate} (3.16) 

The target for the T D update is rt+1 + yV(st+i). The term [Target - Old estimate] 

represents the error in the estimate or the temporal difference between two successive 

evaluations of the value function. This error is reduced by taking a step toward the target. 

The step-size can be defined as lln where n is the number of samples generated. This 

stochastic approximation algorithm which produces a sequence of estimates of V(st) such 

that the error —> 0, is based on an old algorithm (Robbins and Monro, 1951). 

For any fixed policy 7t, the T D algorithm is proven to converge to VK in the limit with 

probability 1 i f the step-size decreases according to the stochastic approximation 

conditions: ^ " 0 « v =°° ond ^~_0

a? <°°- The first condition guarantees that the steps 

are large enough to overcome any initial conditions or random fluctuations. The second 

condition guarantees that eventually the steps become small enough to assure 

convergence. (Sutton and Barto 1998). 

In the case of the control problem, i.e. estimation of the action values Q(s,a), T D 

methods are used for the evaluation or the prediction part o f the policy iteration 

algorithm. A s with the M C methods, sufficient exploration is required to assure 

convergence which again can be achieved applying either the on-policy or the off-policy 

approaches. 
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3.4.3.1. SARSA 

The name S A R S A is attributed to the update rule that is applied in this algorithm 

which follows the sequence of events: current state (st), current action (at), resulting 

rewards (rt+i), next state (st+i), and next action (al+i). S A R S A is an on-policy T D control 

algorithm that learns and improves QK for policy n, which selects and follows its actions. 

K is e-greedy regarding the estimated Q so far. The update rule that is performed at each 

time step is: 

Q(st ,at)<- Q(st ,at) + a[rl+l + yQ(st+x, at+x) - Q(st ,a,)] (3.17) 

This update is done after every transition from a non-terminal state st. If st+i is 

terminal, then Q(st+i, at.i) is defined as zero. Similar to TD(0), S A R S A converges with 

probability 1 to an optimal policy and action-value function as long as all state-action 

pairs are visited for an infinite number of times and the policy converges in the limit to 

the greedy policy. 

3.4.3.2. Q-Learning 

Q-learning, first introduced by Watkins (1989), is regarded as one of the 

breakthroughs in R L . The simplest form of the g-learning algorithm, which is the one 

step tabular ^-learning, is based on the temporal difference method TD(0). In this 

method, the elements of the estimated action-value function are stored in a so called Q-

table. The agent uses the experience from each state transition to update one element of 

the table (Sutton 1999). 

The Q-table has an entry, Q(s,a) for each state s and action a. After taking action ah 

the system is allowed to transition from state st to the next state st+j. The immediate 

reward received as a feedback from the environment is used to update the (9-table for the 

selected action. The next time step action value estimate Q(st+i,at+i) used in the update is 

selected according to the £-greedy policy. This is achieved by selecting the next state-
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action as the one with the maximum estimated value most of the time and, with a small 

probability ( l - £ ) , a random exploration action is selected. 

The following is a procedural list o f the Q-Learning algorithm: 

Initialize Q(s,a) arbitrarily (to any feasible values) 

Repeat for each episode: 

Initialize s 

Repeat for each step in the episode: 

Choose a from s using policy derived from Q (e.g. e-greedy) 

Take action a, observe r, s' 

Q(s, a) <- Q(s, a) + a[r+ ymzx Q(s\a) - Q{s, a)] 
a 

S <— S 

until s is terminal 

If every state-action pair is visited infinitely often and the learning rate decreased 

over time, the Q-values converges to Q* with probability 1 (Sutton and Barto, 1998). 

g-Learning is an off-policy algorithm in the sense that the agent tries to learn the value of 

the optimal policy while following an arbitrary stochastic policy which is independent of 

the policy followed by the agent. A n example including sample numerical calculations 

using the g-learning method is presented in Appendix A . 
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3.4.3.3. Eligibility Traces 

Monte Carlo methods perform updates based on the entire sequence of observed 

rewards until the end of the episode. On the other hand, the one-step T D methods use 

the immediate reward and the sample next state estimate to perform the update. In 

between the one step and full episode backup, there are «-step possible backups, 

based on rc-steps of discounted truncated returns R" and the discounted estimated 

value of the rcth next state f Vt(st+^). The rc-step return is defined as: 

K = rM + + + rV,+n + f'\Vt+n) (3.18) 

The n-step backups are still T D methods as they still change an estimate based on 

an earlier estimate: 

K M <- V,(sl) + a[R"-Vl(sl)] (3.19) 

One step further is to compute the updates of the estimated value function based 

on several n-step returns. This type of learning is denoted by TD(X) algorithm, where 

X is an eligibility trace parameter (trace-decay parameter), where 0 < X < I. The 

TD(A) algorithm averages the «-step backups each weighted proportionally to X"'1. 

The backup of this A-return is defined as: 

Rf={l-^Tn^~^n)
 (3-20) 

It is obvious from the above equation that by setting the X = 1, we get the M C 

updates, whereas by setting X = 0 we get the one-step TD(0) updates. 

K M <- VXs^ + c^Rf-VXs,)] (3.21) 
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A simpler and more efficient way of implementing the TD(/t) method is the 

backward view TD(X) learning algorithm. This algorithm introduces an additional 

memory variable associated with each state at each time step called the eligibility 

trace (et). A n eligibility trace is a temporary record of the occurrence of an event, 

such as visiting a state or taking an action. This variable specifies the eligibility of a 

particular event in updating the value function. A t each time step, the eligibility trace 

for all states decay by yX except for the visited states in that time step which is 

incremented by 1 as follows: 

In other words, eligibility traces can be thought of as weighted adjustments to 

predictions occurring rc-steps in the past; more recent predictions make greater weight 

changes. The TD(0) error or temporal difference at time step t is denoted as St is 

calculated as follows: 

On every time step, all the visited states are updated according to their eligibility 

trace: 

Although eligibility traces require more computation than TD(0) methods, they offer 

significantly faster learning, particularly when rewards are delayed by many steps. TD(X) 

is proven to converge under stochastic approximation conditions with probability 1 

(Tsitsiklis, 1994). Figure 3.3 presents a schematic comparison of the D P , M C , and T D 

ebackup methods and the calculation of the value function. 

(3.22) 

(3.23) 

Vl+x(st)<r-VXs,) + adte,(s) (3.24) 
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Dynamic Programming Simple Monte Carlo 

Figure 3.3. Comparison of Different R L Approaches (Adopted from Sutton and Barto 1998). 



3.5. Function Approximation 

When the state space is finite, the most straightforward D P approach is to use a 

lookup table to store the value function for each state or state-action value combination. 

In reality, the state space could be quite large or even infinite and could include 

continuous variables. B y using model free R L methods one can avoid the need to 

construct the transition probability matrix. However, this does not solve the problem 

completely as the large memory and long time needed to fill in the elements of the 

lookup-tables still represents a problem. In such cases using look-up tables does not yield 

practical results. 

R L overcomes this problem by applying generalization and function approximation 

techniques. Here, estimating the g-values for unvisited state-action pairs require 

generalization from those states that have already been visited. Function approximation 

can be done in a number of ways, such as: (1) function fitting (neural networks and 

regression), (2) function interpolation (K-nearest-neighbors and Kernel methods), and (3) 

state aggregation (Gosavi 2003). Watkins (1989) used the Cerebeller Mode l Articulation 

Controller ( C M A C ) and Tesauro (1995) used back propagation for learning the value 

function in backgammon. 

A s an example, consider applying function fitting techniques for a M D P with A 

actions in each state, for state s e S: 

The idea is to store the g-factors for a given action as a function of the state index. 

Assumming s is a scalar; the function fa(s) can be approximated by: 

Thus instead of storing each Q-value for action a, we only need to store the values for 

the set of parameters: A, B, C. The Q-value for state s and action a is represented by the 

Q(s,a) -fa{s) (3.25) 

fa(s)=A+Bs + C.s2 (3.26) 
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value fa(s). Obviously, less storage space is needed and a large state space can thus be 

handled. 

3.6. On-Line and Off-Line 

R L methods can be implemented in two modes: on-line and off-line. The on-line 

mode consists of using an R L driven agent directly on the real system. This mode is 

particularly interesting when it is difficult to model the system or when some phenomena 

are difficult to reproduce in a simulation environment. Moreover, and as the agent is 

learning continuously, it can adapt quickly to changing operating conditions. The main 

drawback o f the on-line mode is that the agent may jeopardize system stability because at 

the beginning of the interaction no experience is available to the R L agent to adequately 

control the system. 

One solution to this problem is to first let the agent interact with a simulation 

environment (off-line mode). The R L agent then can be implemented on the real system 

where it would benefit from the experience it has acquired in the simulation environment 

and w i l l be able to improve its behavior from interaction with the real system. 

Alternatively, one may extract off-line learned policies and implement them in the real 

system without any further learning. 

On-line and off-line implementation of R L should be differentiated from the on-line 

and off-line R L algorithms. In on-Line R L algorithms, similar to S A R S A , the agent is 

learning and improving the same policy that it is following in selecting the actions. On 

the other hand, with an off-policy algorithm such as Q-learning, the agent is gaining 

useful experience even while exploring actions that may later turn out to be non-optimal. 
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3.7. Summary 

This chapter provided an overview of R L and its main algorithms. The classification 

of the methods presented is intended to give the reader an idea about the different 

dimensions o f R L . B y using sampling and function approximation techniques, R L has the 

potential to be applied to larger systems than any other classical optimization technique. 

Modern reinforcement learning methods could be applied to both trial and error learning 

without a formal model of the environment, and to planning activities with a formal 

model of the environment, where an estimate of the state-transition probabilities and 

immediate expected rewards can be easily evaluated. 

The introduction of R L into the water resources systems domain is relatively new. 

However, the advantages that R L offers in dealing with large-scale problems, makes it a 

promising area o f research in that field. A R L based approach is adopted in this research 

work to develop a stochastic optimization model for the solution of the multireservoir 

operation planning problem as described in the following chapter. 
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4. REINFORCEMENT LEARNING MULTIRESERVOIR 

OPTIMIZATION M O D E L (RLROM) D E V E L O P M E N T 

4.1. Introduction 

In general, the reservoir operation planning problem for a hydro dominated power 

system, such as the B C Hydro system, is to find the optimal operation strategy for each 

time period during the planning horizon that maximizes the long term value of resources 

while serving the domestic load in British Columbia and thereby to minimize the cost of 

electricity to the ratepayers in the Province. This objective can be accomplished by 

coordinating and optimizing the use of all available generation resources while taking 

advantage o f market opportunities. 

Releasing more water now could result in high immediate benefits, but with less 

water left in storage for the future there would be less benefit in the future. On the 

contrary, releasing less water now could result in gaining more benefits in the future. 

Accordingly, the decisions taken in any given planning period w i l l affect both the present 

return and the opportunities that could be available in the future. The challenge then is to 

link the present decisions with their future consequences. The approach followed in this 

research work for solving this problem relies on the concept of the marginal value of 

water ( M V W ) . B y definition, the M V W represents the incremental value of water in 

storage expressed as dollar per cubic meter second-day ($/cms-day). 

Optimal dispatch from hydro plants is established when the trade-offs between the 

present benefits, expressed as revenues from market transactions, and the potential 

expected long-term value of resources, expressed as the marginal value of water stored in 

the reservoirs, are equal. Accordingly, as long as the value of releasing water is higher 

than the value of storing water in the reservoir then the operator's optimal planning 

decision is to continue generation. 

57 



Another implication of applying the water value concept is that hydro plants are 

dispatched based on their expected water value in storage. Within the B C Hydro system, 

the multiyear storage capability of the G M Shrum Dam on the Peace River and M i c a 

Dam on the Columbia River projects and their large production capabilities dictate the 

need for a much higher level of coordination in planning the operation of these two 

particular basins, than with smaller projects. Ignoring inter-basin and system 

dependencies on the Peace and Columbia basins could lead to unrealistic operations 

modeling for the entire system. For this reason, it is important to be able to model the 

Peace and the Columbia basins and their interaction with the electricity markets in detail 

to truly reflect an optimal integrated system operation. The two reservoirs operation 

cannot be optimized separately as the benefits obtained from the operation of one 

reservoir cannot be directly specified as a function of the storage level in that reservoir 

alone. Rather, it is a function of both plants ( G M Shrum and Mica) . The challenge then is 

to model this large-scale multireservoir system in an integrated manner while addressing 

the different sources of uncertainty in a way that a large-scale stochastic program can 

handle. 

To solve this large-scale problem, a stochastic optimization model for the operations 

planning of a multireservoir hydroelectric power generation system is proposed. In this 

research work, the methodology adopted follows a Reinforcement learning (RL) artificial 

intelligence approach. The following sections describe the methodology followed in the 

development of the proposed Reinforcement Learning Reservoir Optimization Model 

( R L R O M ) . The details of the mathematical formulation and the solution algorithm of the 

reservoir optimization problem are presented in the following sections. 
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4.2. Mathematical Formulation 

The primary objective of the proposed R L R O M model is to develop a set of system 

operation planning strategies that maximize the overall value of B C Hydro resources at 

every time period over a planning time horizon given the uncertainty in the forecasted 

domestic load, the forecasted market prices, and the random natural inflows. The main 

operation planning decisions consist of: the timing and quantities of import and export, in 

addition to the timing, location and quantity of water to store or draft from the reservoirs. 

Another significant outcome of the operation planning model is to establish the M V W in 

storage for the main multiyear storage reservoirs in the B C Hydro system. The 

established M V W obtained from the R L R O M model can potentially be used for 

estimating target storage values in the medium term optimization models. Moreover, the 

calculated marginal values can be used in making tradeoff decisions using the clearing 

prices for short term wholesale energy market transactions. Marginal values of water are 

determined from the derivative of the value function with respect to storage ($/cms-d). 

The following notation is used in the mathematical formulation of the R L model: 

J Number of reservoirs included in the R L Model , where {j e l,...,J} , 

Q Number of scenarios of random variables, where {a)€ 1,...,Q}, 

T final time period in a cycle (iteration or episode), 

N Iteration number or the age of the agent, 

Nmax M a x number of iterations, 

{Sj} A set of discretized storage volume for reservoir j, where Sj = {s\,s2j,...,s"J} 

in cms-d, 

rij Number of state discretization for reservoir j , 

d Number of actions, 

{A} Set of actions, where At ={a],a?,...,af}, 
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t Current time period (stage) in a cycle (iteration or episode), where t e {1, . . . , 

T}, 

Sj, Storage volume in reservoir j at beginning of the period t in cms-d, 

Sj , + 1 Storage volume in reservoir j at end of the period t in cms-d, 

s' State vector representing a possible combination of different storage 

increments of the different reservoirs within the state space 

where,s = (s[] ,s'^,..,s'J), with z\ e {\,...,rij}forj=l,..., J i n cms-d, 

a, Act ion (decision variable): forward sales (pre-sales) at time period t, where a 

e { ai,ci2,..., ad} in M W h , 

Ijt Local natural inflow to reservoir j in period t for scenario ax where 

a) e {1,.., £2} in cms, 

L® System load at time period t for scenario co in M W h , 

P® Market price at time period t for scenario coin $-Canadian/MWh, 

QT Turbine releases from reservoir j during period t in cms, 

Qs Spi l l flow from reservoir j during period t in cms, 

rt (s\ a) Rewards of taking action at and transition to state at end of period t in $-

Canadian, 

Q, (s\a) Q-value function when the system state is s't and action at is selected at the 

beginning of time period t in cms, 

/, (s') Expected value function when the system state is s't in the beginning of time 

period (stage) t in $-Canadian, 

y Monthly discount factor of future rewards, 

cXn Learning rate (step size) parameter in iteration n, where n e {1, . . . , N}, 

e Vector of random events that influence the operation of the multireservoir 

system, where e = ( 7 ( U , Z ( U , P ( y ) , 

en Exploitation rate in iteration n (probability of random action in E -greedy 

policy), 
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n Policy, decision making rule, 

nis1) action taken in state s' under deterministic policy 7t, and 

71 (s\ a) probability of taking action a in state s' under stochastic policy n. 

4.2.1. SDP Formulation 

One possible way to solve this reservoir optimization Markovian Decision Problem 

(MDP) is to apply one of the traditional SDP techniques, such as the value iteration 

technique. This formulation involves a sequence of decisions in which each decision 

affects what opportunities are available in the future. For any given time period and at 

any starting state, the outcome from applying an action to a state depends only on the 

current state. Also , the effects of the outcomes are not deterministic. 

The basic structure of the SDP algorithm can be characterized by: 

t Discrete time, 

st State variable, 

at Control; decision to be selected from a given set, 

rt Reward signal, 

e Set of random variables, and 

T Horizon. 

The mathematical formulation of the reservoir optimization problem can be expressed 

as follows: 

Objective function: 

ft 0,') = Max E{y[rt (s't ,a„e,) + fl+] (s'+1)]} (4.1) 
a. 

Constraints: 

- A s . , <*,,,<*;,, V / e J , V s e S 

a\<a, <a" Vae A 

(4.2) 

(4.3) 

(4.4) 
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where C j - and Clj are the elements of the matrices representing the hydraulic 

connection between the reservoirs in terms of the turbine outflow and spill outflow 

respectively from reservoir j' to reservoir j. C7^ and C ^ = 0 i f there is no physical 

hydraulic connection between the reservoirs, C j - and Cfj=\ \fj-f, and C j - and Cs

fj=-\ 

for V/' 7' and reservoir j is physically connected to reservoir j'. 

For any given system state, the objective is then to maximize the expected long term 

value of resources resulting from the reservoir operating decisions taken in the current 

period and for decisions that could be made out in the future. 

Equation (4.2) represents the set of constraints describing the continuity of flow for 

each reservoir (/') considering the physical setting of any reservoir (jr) within the river 

systems. In case the storage exceeds the maximum limit the reservoir spills. The 

minimum storage is treated as a soft constraint and storage below the minimum storage 

constraint is penalized. 

Equation (4.3) represents the upper and lower limits on the storage constraint. 

Equation (4.4) represents the constraints on the upper and lower limits on the decision 

variable. 

4.2.2. R X Formulation 

Similar to the conventional SDP methods, the mathematical formulation of the R L 

model is cast as a Markovian Decision Problem. The theoretical basis of the R L 

approach, as presented in the previous chapter, formed the foundation for the 

methodology adopted in the development of the reinforcement learning multireservoir 

optimization model ( R L R O M ) . In the proposed algorithm, the agent (controller) first 

interacts with a simulation environment that models the real reservoir system, to learn the 

optimal control policies (Figure 4.1). Once the agent learns the optimal value function, it 

can use its knowledge at any time period and in any given system state to control the 
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system or to estimate the M V W . Alternatively, the agent can keep on learning 

continuously as it controls the system, and it can adapt quickly to changing operating 

conditions and keep on updating and enhancing its knowledge about different operating 

conditions of the system. 

Scenarios of random variables 

Action 
a, 

Environment 
(( iOM) 

' Agent 
( R L Algorithm) ^ 

Observe Feedback 
r,(s',a), s't+i 

Figure 4.1. R L agent-environment interface in learning mode 

In this research, a reinforcement learning (Q-Learning) algorithm which relies on the 

stochastic approximation of the value iteration is adopted. The main idea of the proposed 

R L formulation is to apply a sampling technique while performing the iterations rather 

than computing the expected rewards and the transition probabilities. The transition state 

s'l+i and rewards r,(s,a) are generated from the state-action pair (st,a,) by simulation. This 

R L formulation can be regarded as a combination of value iteration and simulation. 

Accordingly, rather than estimating the value function for each state (Equation 4.1), one 

can compute a value for each state-action pair which is known as the Q-value or Q-factor 

applying the following Q-Learning formula: 
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Q? ( / , a) = Q?-1 (s\a) + a, j t f r , ( / , a) + max g ( V a)] - Q?~l ( / , a ) j (4.5) 

where N is the iteration number and t is the time period (stage). It should be noted that the 

discounting is applied to both of the current and future rewards as it is assumed in the 

model formulation that the rewards of each time period are realized at the end of each 

period. The details of the R L R O M model components and the proposed solution 

algorithm are described in detail in the following sections. 

The proposed R L R O M model is linked to a Generalized Optimization Model ( G O M ) 

for the hydroelectric reservoir optimization model as described in section (4.2.10). A t 

each time period, the agent sends a signal to G O M describing the state of the system s't 

and the action it has taken at. G O M returns an estimate of the rewards rt(s',a) that 

informs the agent how well it did in selecting the action, and it generates a set of 

transition states . The R L agent controls the forward sales (presales) decisions, and 

based on these decisions, G O M determines the optimal system operation in terms of the 

release and generation strategies. This agent-environment interaction process is 

performed at each time period over the planning horizon and for a set of generated 

scenarios that models the uncertainty in electricity load, market prices, and natural 

inflows. The stochastic modeling of these random variables is described in detail in 

section (4.2.8). 

While the main concern is to establish the optimal control strategies and the M V W of 

water in the two main multiyear storage reservoirs, linking the R L model with the G O M 

model allowed the inclusion of more reservoirs in the optimization process. The model 

optimizes the operation of the five main plants within B C Hydro system, namely: G M 

Shrum, Peace Canyon, M i c a , Revelstoke, and Keenleyside. Therefore, the operation 

planning decisions developed by the R L algorithm encompasses the major plants within 

the B C Hydro system. 
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4.2.3. State Space 

A t any time period, the state of the system is typically expressed as the amount of 

available storage in each reservoir at the beginning of that time period. The reservoir 

storage variable used to represent the system state is defined by a J dimensional space. 

The continuous storage of reservoir j is discretized to nj discrete storage values. The state 

space can be represented as a cartesian product of all state combinations as follows: 

{s\,...,s:}®...®^\,...y/} 

It is assumed that the number of discretized states for reservoir j is constant during the 

T periods of the planning study. 

4.2.4. Action (Decision Variable) 

The decision variable considered in developing the R L model is the forward sales 

(pre-sales) to/ from the U S and Alberta markets. The decision variable (a,) is discretized 

at each time period to dt decisions. For each time period, the forward sales are subdivided 

into three categories namely: peak, high, and low to capture the effects of price variations 

during the heavy load hours ( H L H ) and light load hours ( L L H ) . 

Traditionally, the turbine release from each reservoir is the common choice of the 

decision variable in stochastic reservoir optimization models. However, in this form of 

the simulation based optimization of the reinforcement learning model, the turbine 

releases are calculated during the interaction process between the agent and the 

environment ( G O M ) . In the proposed R L model formulation, the turbine releases from 

the different reservoirs are based on the current state of the agent, the presale decision 

and the adopted scenario of the random variables. 

One of the main advantages to the choice of presales as the decision variable is that it 

reduces the dimensionality of the problem. This is mainly due to the fact that presale is a 
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system variable which is independent of the number of the reservoirs involved in the R L 

model. In comparison, i f the turbine releases were used as decision variables in the R L 

framework that increase the dimensionality of the decision space by many orders of 

magnitude. 

4.2.5. Exploration/Exploitation Rate 

One possibility for the agent is to pick the action with the highest Q-value for the 

current state- this can be defined as exploitation. A s the agent can learn only from the 

actions it tries, it should try different actions ignoring what it thinks is best, some of the 

time- and this can be defined as exploration. A t the initial stages of the learning process, 

exploration makes more sense, as the agent does not know much. The adopted equation 

for estimating the probability that the learning agent should select the best action in the 

algorithm developed herein is proposed by Michael Gasser, (2004). The equation states 

that: 

e = \-e^ (4.6) 

where: 

£ = exploitation rate, 

N = the number of iterations or the age of the agent, and 

^ - exploitation parameter. 

It is clear that as the number of iterations increases, the exploitation rate increases. 

Eventually, when the number of iterations gets larger, the agent w i l l tend to select the 

greedy actions, and these actions represent the policy learned by the agent. Figure (4.2) 

presents the exploitation rate as a function of the agent's age. 

4.2.6. Learning Rate 

The learning rate a controls the step size of the learning process. In fact, it controls 

how fast we modify our estimates of the action-value function. Usually, the iterations 
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start with a high learning rate that allows fast changes in the Q-values and then the rate 

gradually decreases as time progresses - as shown in Figure (4.2). This is a basic 

condition to assure the convergence of the Q-Learning approach as identified by Sutton 

and Barto (1998). The adopted formulation in the developed model is a polynomial 

learning rate as given by Even-Dar and Mansour, (2003) as follows: 

a=VN¥ (4.7) 

where: 

7V = Number of iterations (the age of the agent), 

\j/= Parameter, where (0.50,1.0). 

0.5 

0.4 

0.3 
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0.1 

0.0 i 1 1 1 1 1 r 
0 20 40 60 80 100 120 140 160 180 200 

Iteration 

Figure 4.2. Learning rate and exploitation rate 

4.2.7. Rewards 

The reward function rt(s',a) is very important in the communication process 

between the environment and the agent. It helps the agent to learn how to perform actions 

that w i l l achieve its goals. Depending on the reward signal received from the 

environment, the agent perceives how well it did in selecting the action. Generally, the 
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objective is to maximize the sum of the reinforcements received from the environment 

over time. In the multireservoir problem we are dealing with is an infinite time horizon 

problem, therefore a discount factor, j, is introduced. In the multireservoir model, the 

agent should learn the operation policy ^(s1) that maximizes the benefits from taking 

action at when the agent is in state s'. 

^»=Z; = 0 A + * + 1 (4.8) 

A t each time period, and based on the current state of the system and the agent's 

decision regarding forward sales, the optimization model ( G O M ) determines the optimal 

control strategy that maximizes the benefits. The reward function, which is selected to 

maximize the value of resources, is calculated at the end of each time period. The details 

of the G O M optimization model are presented in section 4.2.10. 

4.2.8. Stochastic Modeling of Random Variables 

In modeling multireservoir hydro-electric power generation system, we are interested 

in establishing the optimal operation planning strategies and the expected value/marginal 

value of the resources given the uncertainty in natural inflows, electricity demand, and 

market prices. This problem is complicated because of the multidimensional probability 

distribution of the random variables and their inter dependencies. One approach to fit the 

marginal distribution of the random variables is to use time series autoregressive models. 

In these models, the autocorrelation of the random variables are modeled by a continuous 

Markov decision process. 

The methodology adopted in this research relies on approximating the continuous 

distributions and stochastic processes by discretization to a number of scenarios rather 

than the Markov description of the stochastic variables. 

To represent the inflow, electricity load, and market price random variables, a 

moment matching ( M M ) scenario generation approach developed by Hoyland et al. 
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(2003) has been adopted. In this approach, the marginal distributions are described by 

their first four moments (mean, variance, skewness, and kurtosis). In addition, the 

correlation matrix is also specified. The method generates a discrete joint distribution that 

is consistent with the specified values of the marginal distributions and the correlation 

matrix. 

The moment matching algorithm first decomposes the multivariate problem to 

univariate random variables that satisfy the first four moments for each random variable. 

Then, it applies an iterative procedure that involves simulation, decomposition and 

various transformations to preserve the original marginal moments and the correlation 

matrix. The details of the algorithm are given by Hoyland et al. (2003). 

Historical stream flow records for the Peace and the Columbia rivers are used to 

estimate the distribution properties of the inflow random variable. Considering the case of 

the Peace and the Columbia River systems and assuming a monthly time step in the 

R L R O M model, the number of random inflow variables for one year w i l l be twenty four, 

as inflow in each month is considered as a random variable. First, the first four moments 

and the correlation matrix for the twenty four variables are calculated. Then, this 

information is fed as an input to the M M model. The generated inflow scenarios, If, 

represents the cross and serial correlation between the inflows at the different time 

periods for the two river systems for one year. The outcome of this process is a reduced 

(manageable) number of inflow scenarios that preserve the properties of the original 

distributions. 

In the Pacific Northwest, electricity price variations are correlated to runoff volumes 

in the northwest. In dry years, power production falls and prices increase accordingly, 

while in wet years, there is more power available and prices decrease proportionally. 

Also , prices vary to a large degree across the day. Therefore, the average forecasted 

market prices are adjusted to reflect the relationship between runoff volumes and market 

prices. This relationship is represented by a regression relationship between the Dalles 

monthly runoff volume in the U S and the Mid-Columbia market price. The following 
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approach was adopted to represent the price variability in the R L R O M model. First, a 

stochastic variable for the annual Dalles runoff volume was introduced in the moment 

matching scenario generation model in addition to the twenty four inflow variables of the 

Peace and Columbia inflows. Then, the scenarios generated for the Dalles runoff were 

correlated to the heavy load hour ( H L H ) and light load hour ( L L H ) price factors 

(multipliers) using polynomial regression relationships. Finally, the average price forecast 

for the Mid-Columbia was multiplied by the H L H and L L H price multipliers to generate 

the H L H and L L H prices for the scenarios. 

B C Hydro's system load forecast was estimated using a Monte Carlo energy model. 

The load forecast is mainly impacted by: (1) the economic growth measured by the gross 

domestic product (GDP) , (2) electricity prices billed to B C Hydro's customers, (3) 

elasticity of the load with respect to electricity prices and economic growth, and (4) 

energy reduction due to demand side management (DSM) . The continuous distribution of 

the B C Hydro system load forecast is represented by the values of the median (P50) and 

the two quantiles (P5 and P95). Starting from these three points, the expected value and 

the variance of the forecasted load are then estimated using the method of Pearson and 

Tukey (1965). Then, a Monte Carlo simulation was carried out, using a Log-Normal 

probability distribution, to generate several thousand scenarios. The generated scenarios 

were then aggregated in a histogram with a specified number of intervals that represent 

the required probably distribution. Based on the generated data, the first four moments 

and the correlation of the electricity load with the inflow and price variables were 

estimated and used in the moment matching algorithm. The details of the data used, the 

results, and an analysis of the scenario generation process is presented in chapter 5. 

4.2.9. Lookup Tables and Function Approximation 

During the experimental and testing phase of the R L R O M model development, the 

state space was discretized into a small number of points. The state space in this case is 

the reservoir storage levels for the different reservoirs. For this limited number o f state 

space variables, the learning process for the Q-values was implemented using lookup 
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tables. Lookup tables are used to store and update the function representing the value of 

water in storage at each time period. A t each time period, and for each discrete point on 

the state space, there exist a row of entries in the lookup table. The elements of each row 

are: reservoirs storage s', action at, reward value rt(s \ a) and Q-value Qt(s', a). 

In real applications of multireservoir optimization, the number of grid points grows 

exponentially as the number of reservoirs increases. This results in a much larger state 

space and the use of lookup tables becomes impractical. Accordingly, some sort of 

function approximation is required, which w i l l enable the calculation of the future value 

function ft+i{sr) at any point within the state space without the need to store every value. 

Two properties of this function need to be considered in the development process. First, 

the storage value function is typically a concave nonlinear function. Second, the target 

storage (end of period storage) of each reservoir is a function of the storage levels in 

other reservoirs. 

In this research work, two alternative techniques for function approximation were 

investigated. The first approach is a function fitting approach using polynomial 

regression. A n alternative function fitting approach was tested using a linear interpolation 

technique. However, instead of using one function to approximate the entire state space, 

it was divided into a finite number of segments or pieces using a piecewise linear (PWL) 

interpolation technique. The following figure illustrates an example of approximating the 

concave nonlinear value of water in storage function with four linear pieces. 
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Figure 4.3. P W L approximation of storage value function 

A s an example, sijit represents the third break point of reservoir 1 storage at time t for 

a given storage level of the other reservoirs. Similarly, ntjjj is the slope of the third 

segment of the P W L function of reservoir 1 at time t, and so,3,t represents the intercept of 

the curve with the storage axis. During the testing and development phase, the advantages 

of using P W L formulation over nonlinear formulation were noticeable in terms of more 

stability in the results and also faster implementation in the R L R O M model. The faster 

implementation is mainly attributed to the way that A M P L mathematical programming 

language handles P W L functions. In A M P L , P W L functions are defined by: a set of 

breakpoints (grid points of the state space), the slope of the different segments, and the 

intercept. In the course of the iterations, for any target storage point on the state space, the 

P W L function approximation is implemented to calculate the storage value function for 

the multidimensional state space as presented in Figure 4.4 in a 3D view. The P W L 

function deals with one state variable at a time. A s an example, consider the case of the 

value function being a function of the storage value in two reservoirs (for example: G M S 

and Mica) . First, P W L functions are constructed for the different storage grid points of 

M i c a as a function o f different storage levels in G M S as shown in Figure 4.5. A t the 

target storage of Mica , a P W L curve is constructed as a function of the different G M S 
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storage grid points. This P W L function was then used to evaluate the value of water in 

storage as shown in Figure 4.6. 

Figure 4.4. 3-D view of the P W L value of storage function as a function of 

G M S and Mica storage 
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Figure 4.5. 2-D view of the P W L value of storage function as a function of 

G M S and Mica storage 

73 



GMS Storage (cms-d) 

Figure 4.6. P W L value of storage function as a function of G M S storage at 

Mica target storage 

4.2.10. Model of the Environment 

The R L agent needs to interact with an environment while learning to control the 

system. This environment could either be the real system or a model of the system. In this 

research work, the B C Hydro generalized optimization model, G O M , was used as the 

simulation environment of the real system. The G O M model was adapted from the short 

term optimization model (STOM) developed by Shawwash et al. (2000). G O M , which 

incorporates the basic optimization formulation of S T O M , was developed to give its user 

the flexibility for a more generalized form so that it can be used over longer time 

horizons and at various time resolutions. The model is currently used at B C Hydro as an 

analytical tool that assists the operations planning engineers to simulate and optimize the 

operation planning of the integrated B C Hydro system. The primary objective of the 

model was to develop optimal system operation schedule given a deterministic forecast of 

system inflows, domestic load and market prices while maximizing the value of B C 

Hydro resources. 
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G O M is a variable time step model with the capability to model sub-time steps in 

detail. The time steps may be hourly, daily, weekly, sub-monthly and/or monthly. The 

G O M system includes a detailed hydraulic simulation that calculates the hydraulic 

balance and calculates generation and turbine limits for each time step. Sub-time steps 

may be used to further divide the time step into shorter time periods to reflect different 

load conditions within a time step, as derived from the load-duration curves. For 

example, for a time step that is greater than or equal to a week, the load-duration curves 

are used to represent both weekday and weekend load shapes. The sub-time step thus 

provides a more detailed view of the load and resource balance, and the market trade-offs 

under different load conditions (i.e. super peak load, peak load, heavy load, shoulder load 

and light load hours). The load-resource balance and trade-off optimization is performed 

for each sub-time step. 

The non-linear power generation function is represented in G O M as a piecewise 

linear surface function where the generation is calculated as a function of the forebay 

level FBjt, turbine discharge QTp, and unit availability Up Gp = /(FBp, Qrp, Up). This 

function was developed with an optimal unit commitment and loading assumption. 

Accordingly, each point on the piecewise linear surface function represents the maximum 

generation attainable given the set of turbine discharge, forebay, and the number of units 

available for commitment. The procedure, which was followed to prepare these plant 

production functions for the B C Hydro plants is described in detail in Shawwash, (2000). 

The following figure illustrates an example of the P W L function for a typical 

hydroelectric power generating plant. 
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Figure 4.7. Piecewise linear hydropower production function 

The formulation of the G O M model was modified to run interactively with the R L 

model as detailed below. A t each time step G O M receives the information from the R L 

model on the initial state of the system, it then updates the system constraints and solves 

the one stage reservoir optimization problem and then it passes the optimized results back 

to the R L model. During the learning phase of the R L agent, the information passed to the 

R L R O M model constitutes the transition state and the reward signal. In the final iteration, 

the optimal operation polices are derived, including the plant generation, market 

transactions (import/export), and turbine releases. 

Hence, linking the R L R O M with the G O M has the advantage o f capturing the diurnal 

variation in load, market prices, and generation schedules for the shorter periods within 

the time step, either during weekdays/ weekends or Heavy load hours ( H L H ) / Light load 

hours ( L L H ) . The following is a description of the G O M model formulation including the 

decision variables, constraints, and the objective function: 
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Decision Variables 

QT Turbine release from reservoir k at time period t and sub-time step h, in 

cms, 

Qs Spi l l (non-power) release from reservoir k at time period t and sub-time 

step h, in cms, 

Gk,t,h Generation from plant k at time period t and sub-time step h, in M W h , 

Sp°tus Spot transaction (import/export) to U S market at time period t and sub-

time step h, in M W h , and 

SpotAB , Spot transaction (import/export) to Alberta market at time period t and 

sub-time step h, in M W h . 

Constraints 

Hydraulic continuity equation 

^=Sj,,-\zlX;M,,,*ci+aM'cjH,*H,\2A V*,* (4.9) 

and at t=T: Sjl+i = 5 y >, (4.10) 

where: 

CT

kj and C^. are the elements of the matrices representing the hydraulic connection 

between the reservoirs in terms of the turbine outflow and spill outflow respectively from 

reservoir k to reservoir j. CT

kJ and C|.=0 i f there is no physical hydraulic connection 

between the reservoirs, CT

kj and C ^ = l i f j=k, and CT

kj and Cs

kj--\ for Vj*k and 

reservoir j is physically connected to reservoir k, 

Ht,h~ number of hours in sub-time step h at time step t and he(l,2, ...,h„), 
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Ht = number of hours in time step t. 

Storage bounds constraint 

S^-A5V,<oV,<6tr V * , / (4.11) 

where the storage is expressed as a P W L function of the reservoir forebay Fbk, 

Sk,t - f {Fbk,t). This function, which is not part of the optimization model, is used to relate 

the storage volume to the reservoir elevation (Forebay) within the G O M model. AS*,, is a 

variable representing the deviation from the minimum storage limit which is penalized in 

the objective function. In case the storage exceeds the maximum limit the reservoir spills. 

The minimum storage is treated as a soft constraint and storage below the minimum 

storage constraint ASk, is penalized in the objective function. 

Power generation constraint 

Gk,t,h = f(FBk,t,h > QrkJJ,' Uk,,,h) V*, / ,A (4.12) 

Total plant generation constraint 

G^^G^+G^OR, Vk,t,h (4.13) 

where: 

ORk = the percentage of operating reserve from plant k. The operating reserve is a 
specific level of reserve power should be available at all times to insure reliable 
electricity grid operation. 

GT - the total of plant generation and operating reserve from plant k at time period 

t, in M W h , and h sub-time step. 
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Load resources balance (LRB) constraint 

ILG

4„. +GU-Gf,J,-SpotUSiU-SpotABut =LtM Vt,h (4.14) 

where: 

G'th = the fixed and shaped generation from other small hydro and thermal plants, not 

included as a decision variables in the optimization problem. 

Gf h = the forward sales; this information is passed at each time period from the R L 

model. 

Llh = the load at time period t, and at subtime step h in M W h . 

Spot US Transactions constraint 

T ^ S p o t ^ T ^ Vt,h (4.15) 

where TyS

m = the inter-tie transmission limit from B C to the U S and T^m is the inter-tie 

transmission limit from the U S to B C . 

Spot Alberta Transactions constraint 

T?->SPotABih>TA

Ml Vt,h (4.16) 

where TAB

ax= the inter-tie transmission limit from B C to Alberta and TAB

m is the inter-tie 

transmission limit from Alberta to B C . 
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Generation limits constraint 

GMin<GT <GMax Vk,t,h ( 4 . 1 7 ) 
*./ 'k.i.1, kj v ' 

Objective Function (MaxRev): 

Maximize: {(SpotUSj + SpotABj )*Hlh *Pttl + G^ *Hlh *Pfih} 

+z^fc-«.)*^rKst K<*c*i v ' (4'18) 

where ^ is the forward market price. The MaxRev objective function maximizes the 

value of power generation at each time period t given a target reservoir level s^'1 and the 

marginal value of water MVWk

N~l estimated by the R L R O M model. The objective 

function consists of four terms: The first and second terms represent the sum of the 

revenues from the spot transactions to both the U S and the Alberta markets and the 

forward sales, where Pt,h and Pf are the spot and forward market prices at time step t 

and sub-time step h. The third term accounts for the trade-off between the short and long 

term values of water in storage as the difference between the target (end of period) 

storage calculated in iteration A M and the target storage calculated in the current iteration 

multiplied by the marginal value of water calculated in iteration N-l. The fourth term 

penalizes the violation of the minimum and maximum storage limits (ASkj), where ck is 

the penalty for violating the storage limits specified in the R L model for reservoir k. 

4.3. Solution Algorithm 

This section presents a detailed description of the solution algorithm o f the R L R O M 

model outlined in the previous sections. First, a description of the R L R O M solution 

algorithm using the tabular form for storing the Q-values is presented. This is followed by 

a description o f the function approximation algorithm that can be used for larger state 

space problems. The R L R O M model is implemented in the A M P L mathematical 
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programming language (Fourer et al., 2003). A C P L E X solver ( I L O G Inc.) implementing 

the simplex algorithm is used to solve the linear optimization problem of the G O M 

model. 

4.3.1. RLROM Model Algorithm Using Lookup Tables 

A flow chart illustrating the different steps of the model algorithm is presented in 

Figure 4.8. A detailed description of the implementation of the R L algorithm in a 

procedural form is described hereafter: 

- Divide the state space {S} to a finite number of discretized states that covers the 

range between the minimum and maximum reservoir storage. 

- Define the number of stages T and the set of actions {A,}. 

- Use a graphical user interface (GUI) to process the data sets required in the model 

runs in the specified time steps and sub-time steps. These data include the load, price, and 

the transmission limits. 

- Run a batch of G O M model jobs for each point on the state space grid for each 

stage in the planning period. Store the results of the model in a tabular form. These 

lookup tables inform the agent at each starting state and at each action what would be the 

transition state and the corresponding rewards. 

- Run the Moment Matching technique and the Monte Carlo simulation described 

earlier to generate a specified number of scenarios i 2 o f the random variables: the natural 

inflow 7^, forecasted load//" , and forecasted market priceP t

w . 

- A t the start o f the process, initialize the value function and the Q-values arbitrarily, 

or alternatively, set the values to zero for all states and state-action pairs. The R L agent 

moves forward in each iteration from stage 1 to the last stage T. To estimate the 
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Q-values, Q,(s',a), applying the Q-Learning update rule (Equation 4.5); the value 

function fl+] (s') = max Q"~] (s', a) at the end of period state s't+], the rewards rt, and the 

estimate of the Q-values Q"~x (s, a) are known from previous iteration. 

- Set the model parameters including: the discount factor % the initial values of the 

learning rate a and the exploration rate £ according to the adopted formulas described 

earlier in this chapter. 

- Set the number of cycles to Nmax. Where Nmax is chosen to be a large number that 

satisfies the convergence criteria, as described in detail in the following section. 

- Starting at the first stage, initialize the algorithm by randomly sampling the state 

space (i.e. randomly choose a point in the state space grid s'). 

- Randomly sample the stochastic variables from the scenarios generated from their 

probability distribution. 

- In the first iteration, the agent chooses action at randomly, as it has not learned yet 

any information about the Q-values. In subsequent iterations, the agent chooses the action 

at using the e-greedy policy ftt{s) derived from the learned Q-values Q^~x(s',a) where: 

fttis)G argmaxQN~ i(s',a) 
a€A ' 

- The agent interacts with the environment ( G O M model results stored in lookup 

tables) and it receives a signal depending on the chosen action and on the sampled 

scenarios in the form of the next stage state transition s'jl+l and a numerical 

reward r., ( / , a). 

- Apply the Q-Learning update rule (Equation 4.5) to estimate a new value for the Q-

values, which can be presented in a general form as: 
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New Estimate <— Old Estimate + Step Size [Target - Old Estimate] (4.19) 

Store the new estimate of these Q-values as Qt(s',a). 

- The agent moves to the selected state in the next stage, sets the target state s'+1 in 

the first time period to be the initial state s't in the second time period. Repeat the 

procedure of sampling the action at using the e-greedy policy and determine the reward 

signal and the transition state until the agent reaches the final stage. 

- A t the final stage T, the agent is at state s'T. The agent repeats the same procedure as 

in the previous stages and receives the reward signal rT (s, a) and moves to the transition 

state s[. The Q-learning update equation for the estimate of the action-value function 

applies the following equation for estimating the future value function of the next stage: 

7 ™ = (4-20) 

- The agent starts a new iteration. In this new iteration and in subsequent iterations, 

until the termination of the algorithm, the agent is always using the information it learned 

so far to update the future value function estimates (i.e. reinforce its learning of the re

values). In the beginning, the agent tends to explore more frequently, with a probability 

of (1-f), to gain more knowledge about how good or bad it is at taking the actions. Later 

on, and as the age of the agent increases, the agent becomes more greedy and it chooses 

the best action, max Qt+l (s', a), with a probability of e. However, the agent also explores 

a 

actions other than the greedy ones with a probability of (l-£). A s part of the convergence 

requirements (Sutton and Barto, 1998), the exploitation rate increases with the age of the 

agent and as the step size is decreasing (Figure 4.2). 
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- The above steps are repeated until convergence is achieved. The optimal value 

function J{s') and the optimal generated policies ?r*(s')e arg max Qt (s', a) are stored for 
' a&A 

all elements of the state space. 
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Figure 4.8. R L R O M model algorithm using lookup tables 

85 



4.3.2. The RL Model Algorithm Using Function Approximation 

The algorithm presented above has the advantage o f avoiding the calculation and 

storage of the transition probability matrix. However, as the state space and the decision 

variables increase, the use of the lookup tables to store the action-value function becomes 

impractical. This is mainly due to the fact that the memory required to store the Q-values 

becomes very large. Accordingly, the algorithm is modified to allow for the use of a 

larger number of state and decision variables. Function approximation using a piecewise 

linear function (PWL) approximation technique is used to overcome problems with the 

storage of the value functions in the R L R O M model. In this case, the state space is a 

continuous functional surface rather than a J dimensional grid. One advantage of this 

method is that the target storage at every time period is not restricted to the grid points of 

the state space. Rather, it can be any value within the state space surface. The other 

advantage of this method is that it allows linking the G O M model to interact with the R L 

model on an on-line basis at each time step. A t each time step, the agent passes the 

sampled scenarios of the random variables and the sampled state-action pair to the G O M 

model. The G O M model optimizes the operation of the reservoirs and sends back to the 

agent a signal in the form o f a next stage transition and the rewards corresponding to the 

selected action. This flexibility, o f having the target storage take any value, increases the 

chances of finding a feasible solution in the G O M model runs. This is unlike the case 

requiring that an optimal solution at the grid points be found, which in some cases results 

in infeasible runs for the G O M model. To overcome this problem, a much finer state 

space grid needs to be generated, which further increases storage requirements for these 

optimization problems. Therefore, function approximation results in a significant 

reduction in computer storage requirements and a more robust algorithm implementation 

of the proposed system. 

Figure 4.9 presents a flow chart of the R L model algorithm using function 

approximation. The flow chart indicates the interaction of the R L agent with the model of 

the environment ( G O M ) online. Figure 4.10 displays a schematic representation of the 

R L R O M model algorithm using P W L function approximation. 
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A t each time period, the marginal value of water, MVWtj (s'), is calculated as the 

derivative of the value function j\s') with respect to storage in reservoir j: 

MVWtj (s) = dft 0 ') / dsj (4.21) 

The marginal value of water is updated after each iteration, and its units is converted 

from $/cms-day to $ / M W h using a conversion factor, HKJyh as function of reservoir 

storage: HK,, (s) = GJt (s) I QTj (s) (4.22) 

where Gjtt is the plant generation in M W h and QT is the turbine discharge in cms-day. 

8 7 



( s t a r t ) 

Construct Environment Model 
[GOM] 

I 
Generate Scenarios for Random 

Variables 
Initialize Agent 

I 
Initialize Q-Table Values Arbitrarily 

Set N=\ 

— » ^ 

t=i 
Randomly Sample State Space 

T 
Sample Random Variables According to their 

Prob. Distribution 

Choose -*-Greedy Policy 

Generate Optimal Solution 

^ 
( Stop ) 

Figure 4.9. R L R O M model algorithm using Function Approximation 
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4.3.3. Convergence 

In stochastic dynamic programming, the optimality condition is reached when the 

solution is within a specified optimality tolerance. In general, the benefits of attaining the 

true optimal solution do not outweigh the time and cost of reaching the true optimal. The 

main concern in solving the stochastic reservoir optimization problem is to decide on how 

many iterations are sufficient to assure a good approximate solution. 

Reinforcement learning algorithms rely on stochastic approximation in the evaluation 

process o f the optimal value function f*(s'). Stochastic approximation is an iterative 

procedure that produces a sequence of solutions in such a way that after a finite number 

of iterations the temporal difference of the expected values approach zero with 

probability 1 (Gosavi, 2003). 

Accordingly, and as long as the Q-values are changing, we should continue to run the 

algorithm. A s the age of the agent increases, the step size parameter a decreases. When 

the step size value becomes smaller than a specified value, the algorithm could be 

stopped. A t this point the Q-values should stabilize and no change should occur for each 

state-action pair. After each iteration, of the R L R O M runs, the absolute difference 

( A ^ ) between the estimated Q-value function in iteration N and iteration N-l is 

calculated at each time period as follows: 

= \Q? (S, a) - Qf-X (s\ a)\ \ft,s\a (4.23) 

The computation terminates when the difference in the Q-values between successive 

iterations ( A g ^ ) remains constant for several iterations and consequently the Q-values 

are said to converge to the optimal solution. Gosavi (2003) also suggests other criteria to 

stop the algorithm when the policy does not change after a number of iterations, and this 

could be explored in the future. 
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4.4. Summary 

The proposed R L approach outlined in the previous chapter, led a practical model, of 

the complex multireservoir system. Instead of modeling a single reservoir , the R L R O M 

model was developed for the B C Hydro's two main river systems, the Peace and the 

Columbia Rivers. The model was formulated to establish an optimal control policy for 

these multiyear storage reservoirs and to derive the marginal value of water in storage. 

The R L R O M model is presented with two solution algorithms: the first algorithm relies 

on the use of lookup tables to store the Q-values and the second algorithm, which allowed 

the extension to handle a larger scale multireservoir problem, relies on the use of the 

function approximation technique. 

The R L R O M model considers several stochastic variables: the domestic load, market 

prices, and the natural inflows. The use of the moment matching technique for generating 

scenarios of the load, inflow and price variables has the advantage of using a limited 

number o f scenarios to represent the random variables' statistical properties, in particular 

the moments and the correlation of extensive historical time series records. 

A large-scale hydroelectric reservoir optimization model ( G O M ) based on linear 

programming was integrated with the R L R O M model. In this way, the optimization 

process was extended to include the other reservoirs on the Peace and on the Columbia 

Rivers: the Dinosaur, the Revelstoke, and the Keenleyside reservoirs. This integration 

allowed more efficient on-line interaction between the agent and the environment to be 

carried out. It also made it possible to capture the diurnal variation of the price and load 

on shorter time periods. 
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5. MODEL TESTING AND IMPLEMENTATION 

5.1. Introduction 

This chapter is structured as follows: First , a single reservoir optimization problem, 

representing a test bed for this research work was used to investigate capability of the R L 

approach to solve the reservoir operation planning problem and to gain experience with 

the R L technique. Three cases were considered to test the performance of the R L 

algorithm on problems of increasing size. 

Second, a two reservoir problem was tested using the multireservoir model 

formulation presented in the previous chapter. The objective of this test case was to 

investigate the potential use of the G O M model off-line as a model of the real system. 

Lookup tables were used to store the feedback information from G O M and the estimated 

Q-values from the R L algorithm for a subset of the full state space of the two reservoirs. 

F ina l ly , the R L R O M model was used to model the full state space and the function 

approximation R L algorithm was implemented for the B C Hydro two main reservoir 

systems. The G O M model was linked to run on-line within the R L algorithm. A case 

study is presented to demonstrate the capability of the model to solve the large-scale 

multireservoir operation planning problem. A s both of the G M S and the M i c a dams have 

multiyear storage capabilities, the model was run for a planning horizon of 36 months. 

The optimized storage value function, marginal value of energy for both of the G M S 

and the M i c a dams w i l l be presented and discussed. In addition, examples of the optimal 

control policies proposed by the R L R O M model w i l l be presented. The model output 

includes the optimized control policies for: market transactions, plant generation, and 

turbine releases for the five main plants in the Peace and the Columbia River systems. 

Initially, the model was run in training mode, where the R L agent learns the action-

value function and the optimal control policies. Once the R L agent learns the optimal 
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control policies, the model can then be used to control the monthly operations planning 

decisions. The use of the R L model to control the operation planning for reservoir 

systems w i l l be presented and discussed. 

5.2. Single Reservoir Model - Test Case 

A s a first step in investigating the capability of the R L approach to solve the reservoir 

operation planning problem, a single reservoir case was used as a test-bed. The problem 

was formulated and solved using the Q-Learning technique. The problem was also solved 

using the value iteration method of the stochastic dynamic programming (SDP) 

technique. The established optimized solution using the SDP model was used as a base 

line to evaluate the R L model results. Working on this problem provided useful insights 

about the R L approach. In addition, it was possible to gain experience on the sensitivity 

o f the model results to the various parameters used in the formulation. The following 

sections present a description of the case study, SDP and R L test model formulation, 

establishing the R L model parameters, and the model results. 

5.2.1. Problem Description 

The system considered in this case consists of one reservoir. The supply from the 

reservoir is mainly used for hydropower generation. The hydropower producer operating 

the system generates the electricity to satisfy the local demand and for sale in the open 

market. The energy yield, depending on the inflows, is variable from period to period 

throughout the year and is governed by the following probability distribution: 
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Table 5.1. Probability of inflow for the different periods 

Inflow Volume 
(Energy units) 

Probability 

Period 1 2 3 4 5 6 7 8 9 10 11 12 

10 0.10 0.15 0.30 0.25 0.10 0.15 0.30 0.25 0.30 0.25 0.30 0.10 
11 0.20 0.25 0.20 0.20 0.20 0.25 0.20 0.20 0.20 0.20 0.20 0.20 
12 0.30 0.30 0.10 0.15 0.30 0.30 0.10 0.15 0.10 0.15 0.10 0.25 
13 0.25 0.20 0.15 0.25 0.25 0.20 0.15 0.25 0.15 0.25 0.15 0.15 
14 0.15 0.10 0.25 0.15 0.15 0.10 0.25 0.15 0.25 0.15 0.25 0.30 

The power producer requires 10 units of energy over each period to satisfy its demand 

and could store as much as 12 units. A n y energy stored but not used can be stored or sold 

in the following period. A marketer is wil l ing to pay a premium price for the producer's 

energy according to the scale below, i f the producer guarantees delivery at a certain time 

of the year: 

Table 5.2. Forward market price 

Units of Energy 0 . 1 2 3 4 
Price ($) 0 1200 1000 800 800 

If the producer contracts too much of its production, leaving less than 10 units for its 

own needs, then the shortfall must be made by purchasing energy on the spot market 

(spot buy) at $1500 per unit. A n y energy held at the end of the month, which the storage 

facilities can't store w i l l be sold on the spot market (spot sell) for $500 per unit. The 

producer limits transactions on the spot market to those that are absolutely necessary. The 

objective is to maximize the expected discounted profit over the foreseeable future, with 

an effective annual interest rate of 7%. 
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5.2.2. SDP mathematical formulation 

The following notation was used in the mathematical formulation of the single 

reservoir problem: 

t Time period, where te l , . . . , r i n month/s, 

a Forward sale (contract), where a GA in units of energy, 

s Reservoir storage, where s e S in units of energy, 

i Inflow volume, where iGl in units of energy, 

L Domestic load=10 units of energy, 

U Upper storage limit in units of energy, 

Spot_Buy/ SpotSell Spot market transactions (buy/sell respectively) in unit of 

energy, 

Spot_Buy_Cost/ Spot_Sell Rev Cost of buying / revenue from selling in $, 

Exp Spot_Buy_Cost/Exp_ Spot_Sell Rev Expected value of buy cost/sell revenue in 

$, 

Cont_Rev Forward sale (contract) revenue in $, 

Pspotjuyl PsPot_seii Price of spot buy / sell in $/unit of energy, 

Pj(a) Price of forward (contract) sale in $/unit of energy, 

R Rewards in $, 

y Discount rate, 

TP(st,it,a,st+i) Transition probability of moving to state st+i for a given state s,, action 

a, and inflow /, 

TPS(st,a,st+i) Transition probability of moving to state st+i for a given state st and 

action a, where 

Exp _ Spot _ Buy _ Re v(s, ,a) = Y Spot _ Sell(s,, /,, a) * Pspol_se!l * TP(s,, /,, a, sM ) 

^.TPis^-s^L + a) V s!+l>U 

TPS(s,, a, st+l) = | TP(sl+x -s,+L + a) V U> sl+l > 10 

^TPis^-s^L + a) V *, + I <10 

and f,(st) is the value function for state s in time period t. 
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The mathematical formulation of the SDP problem is as follows: 

Policy Rewards Calculation: 

R(s,, a) = -Exp _ Spot _ Buy _ Cost(s,, a) + Exp _ Spot _ Sell _ Re v(s,, a) + Cont _ Re vis,, 

(5-1) 

where: 

i 

Exp_Spot_Buy_Cost (s„a) = SPot-Buyist^t^a)* p
spo,-buy * T P (s,,it,a,s!+1)(5.2) 

Exp _Spot _Buy _Rev(s,,a) = £ Spot _Sell(st,i,,a) * Pspol_sell * TP{s,,i,,a,st+l) (5.3) 

Contract _RQv(sna) = Pf(a)*a (5.4) 

Constraints: 

Constraint on reservoir storage (state variable): U>s, >10 (5.5) 

Constraint on forward sales (decision variable): 0 < a < 4 (5.6) 

Spot transactions (sell) constraint: i f st+i>U Spot_Sellt - st+i - U (5.7) 

Spot transactions (buy) constraint: i f st+i<lQ Spot_Buyt = 10 - st+i (5.8) 

Hydraulic continuity constraint: st+l =st+it-Lt-a (5.9) 

and U>s„, >10 
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Objective Function 

/, (sl) = mJiR(slta) + r*Yu U + i(0*rPS(s , ,a,* f + 1 )]} (5.10) 

The optimal policy nt is: 

n] (s) - arg max .fc„fl)+r*2;, l+1l/Wi(*i+.)*7P5c (5.11) 
a 

5.2.3. RL mathematical formulation 

The same set of constraints, as described above in the SDP formulation was used in 

the R L model. However, the rewards and the objective function were calculated 

differently. A s described earlier in chapter 3, the R L Q-Learning algorithm relies on 

sampling the state, action, and random variables to calculate the rewards instead of 

calculating the expected values of rewards as described above for the case of the SDP 

algorithm. Accordingly, there was no need to calculate the transition probabilities. 

Rewards in the R L formulation were calculated as follows: 

Rewards Calculation: 

rt (s,a) = -Spot _ Buy _ Cost(st, it, a) + Spot _ Sell _ Re v(s ( , /,, a) + Cont _ Re v(s,, a) 

(5.12) 

where: 

Spot _ Buy _ Cost{st, it, a) = Spot _ Buy{st, it, a) * Ps spot-buy (5.13) 

Spot _ Buy _ Re v{st, it, a) = Spot _ Sell (st 9 it, d) * P spot-sell (5.14) 

97 



Contract _ Re v(s, ,a) = Pf(a)* a (5.15) 

Objective Funct ion 

The Q-Learning update rule was used to calculate the state-action value function (Q-

Value): 

Q?(s,,a) = Qr (s,,a) + a,{rt (s„a) + y*maxQ?J(sl+l,a)]-Q?~{(s,,a)} (5.16) 
a 

From this we get: 

f,(sl) = maxQl

!(sl,a)) (5.17) 

n](s,)e argmaxQN(s,,a) (5.18) 
a 

where (s,a) is the state-action value function at time period t and iteration N, r(s,a) is 

the sampled rewards for state s and action a as calculated in Equation 5.12. 

The problem was formulated in A M P L and was solved using the Q-Learning 

algorithm described earlier in section 3.4.3.2. For comparative and evaluation purposes, 

the SDP problem was also solved using the value iteration algorithm. 

Three cases were modeled for this test problem, as follows: 

Case 1: Considering three states (10-12) and four stages. 

Case 2: Considering three states (10-12) and twelve stages. 

Case 3: Considering ten states (10-19) and twelve stages. 
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5.2.4. Solution Steps of Q-Learning Algorithm 

The following is a presentation of a step by step procedure of the Q-Learning solution 

algorithm applied in solving the single reservoir problem: 

Step 1 Set the model parameters including: the annual discount rate y= 0.07, the 

exploration rate exponent £ = 0.000045, and the learning rate exponent 0.61. The 

^ and y/ constants are used to calculate the exploitation rate and the learning rate 

respectively (equations 4.6 and 4.7). Set the number of iterations Nmax - 10,000. 

Step 2 Initialize the state-action value function (Q-Tables) to zero for all state-action 

pairs, Q,(s,a) - 0. 

Step 3 Starting at the first stage; initialize the algorithm by randomly sampling the 

state space, i.e. randomly choose a point from the discretized reservoir storage (state 

space), for examples,1 e {10,11,...,19}. 

Step 4 Randomly sample the inflow variable according to the probability distribution 

in time period one, where/, e {10,11,...,14}. 

Step 5 The agent chooses action ai (forward sales or contracts) randomly, where 

ax e {1,...,4}. In the first iteration, for all the stages te {1,...,12}the agent chooses the 

action at random as it has not yet learned any information about the Q-values. 

Step 6 The agent interacts with the model of the environment. The chosen action and 

the sampled inflow scenario are simulated. The agent receives a signal in the form of the 

transition to the next stage state sl

2 based on the hydraulic balance equation (5.9) and a 

numerical rewardr, (s,a) as calculated in equation (5.12). The rewards are calculated as 

the sum of the spot and contract sales. 
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Step 7 The learning rate a is calculated using equation (4.7). 

Step 8 Apply the Q-Learning update rule (equation 5.16) to calculate a new estimate 

for the Q-value as follows: 

2," (s,, a) = Q?~x {st ,a) + a, \rt {s„a) + y* max (sM, a)] - Q?~l (st, a)} 
a 

The first term of the equation represents the initial action-value function (Q-value) in 

this iteration (N=l) and at this time period (t=l), Q*(sx,a). The second term represents 

the reinforcement achieved to the initial estimate of the Q-value. This is calculated as the 

difference between the new Q-value{y*rx{sx,a) + maxQl(s2,a)) and the initial estimate 
a 

of the Q-value (Q\{sx,a)) multiplied by a step size (learning rate, a,). This equation can 

be represented in general form as follows: 

New Estimate <— Old Estimate + Step Size [Target (New Estimate) - Old Estimate] 

The New estimate explained above is the sum of the rewards achieved in this time 

period t and the discounted value function at the transition state in time period t+1. 

Store the New Estimate o f the Q-values as Q ' ( i „ a ) . A t this point, for stage 1 and 

time period 1 we have a new state-action estimate (Q-Value) for the visited state-action 

pair. The other state-actions remain unchanged (zero). Next visit to this state-action pair, 

may be in iteration 50, the agent uses the stored Q-value Q\{sx,a) as the Old Estimate and 

apply the same update rule to calculate the New Estimate(sx,a). The best policy 

(corresponding to the maximum Q-value) is always updated after each visit to a state and 

calculating the Q-values for the sampled state-action. 

Step 9 The agent moves to the selected state in the next time period, s\. The 

procedure of choosing random action at and determining the reward signal and the 

transition state is repeated until the agent reaches time period T. 
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Step 10 The agent starts a new iteration (N=2). A t the first time period (t=\), sample 

the state space randomly, sf. Calculate the exploitation rate £ applying equation 4.6. The 

agent chooses the action ai using the e-greedy policy. Accordingly, with probability 

£, the agent is choosing the best action estimated so far, max Q? ( j , , a). In the beginning, 

a 

the exploitation rate is small and the agent tends to explore more frequently, with a 

probability of (1-e), to gain more knowledge about how good or bad it is at taking the 

actions. Later on, and as the age of the agent increases, the exploitation rate increases 

and the agent becomes more greedy and it chooses the best action with probability £. 

Steps 3 to 9 are repeated until convergence is achieved. However, starting from iteration 

2 and in subsequent iterations, until the termination of the algorithm, the agent is always 

using the information it has learned so far to update the Q-value function estimates (i.e. 

reinforce its learning of the Q-values) applying the e-greedy policy rather than randomly 

selecting the actions as in the first iteration. The optimal value function J[s) and the 

optimal generated policies 7T*(s)e a rgmax£) , ( . s ,a) are stored for all elements of the state 
space. 

Prior to illustration and discussion of the results, the following section presents the 

process followed in establishing the parameters that were used in the R L algorithm. 

5.2.5. Establishing the parameters of the RL Algorithm 

In the initial tests of using the Reinforcement Learning technique to solve the single 

reservoir problem, a series of runs was performed to establish the appropriate settings of 

the R L algorithm parameters. The following sections present examples of the runs, which 

were performed for establishing the exploitation rate and the learning rate R L parameters. 

Case 2 (considering 3 states and 12 stages) was selected as an example to present the 

results for a fixed number of iterations N = 8000 in all runs. 
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5.2.5.1. Exploitation rate 

The effect of changes in the exploitation rate parameter was investigated first using a 

constant exploitation rate parameter e ranging from 0.2 to 1.0. For the rest of the cases a 

variable exploitation rate was used. The variable rate was expressed as a function of the 

age of the agent as outlined in Equation 4.6 with the value of parameter ranging from 

0.00001 to 0.0001. For both cases (constant and variable exploitation rate) a learning rate 

parameter y/= 0.5 (Equation 4.7) was used. Figure 5.1 presents the results for this set of 

runs for both constant and variable exploitation rates. The maximum error in the value 

function is presented as a percentage of the maximum difference from the solution 

derived by the S D P model. The results of these runs indicate that varying the exploitation 

rate with time appears to provide the best performance. 

UJ .Q.01 \ , , , , , , , , , , 

0 1 2 3 4 5 6 7 8 9 10 

Run Number 

Figure 5.1. Effect of varying the exploitation rate 

Examining the convergence behavior of the solution (as an example, at time period 

t=5 and state 5=11), Figure 5.2 shows that the expected rewards increase with increasing 

experience of the learning agent. A t the beginning of the iterations, the estimated value 

function increases significantly. However, the rate of increase gradually decreases until it 

diminishes, as the algorithm converges to the optimal solution. It is clear that when a 
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greedy policy is consistently followed, it results in a poor quality solution, compared with 

other e-greedy policies (using either a constant or variable exploitation rate with e smaller 

than 1). Following the greedy policy, the value function starts to increase and levels off 

earlier and at a lower level compared to other policies (at about 0.95 of the optimal 

solution). On the other hand, the e-greedy method is capable of reaching close to the 

exact solution. The e-greedy method performs better as the agent continues to choose the 

action randomly at a small fraction of time and therefore it has a better chance to find a 

better approximation to the optimal solution. Figure 5.3 illustrates the robustness of the 

Q-Learning method over a wide range of values for the exploitation rates parameter £ 

Iteration 

Figure 5.2. Convergence of Q-Learning solution applying different 

exploration-exploitation policies 
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Iteration 

Figure 5.3. Performance of different e-greedy policies 

5.2.5.2. Learning rate 

To establish the best value for the learning rate parameter, and to determine the 

sensitivity of the solution to the variation in the learning rate, sets of runs were performed 

using constant learning rates a of 0.15 and 1.0. Also , a polynomial learning rate was used 

(Equation 4.7) with the exponent yr ranging in value from 0.5 to 1.0. The same 

exploitation rate was used throughout the runs assuming 0.0001. Figure 5.4 

demonstrates that by gradually reducing the learning rate as the number of iterations 

increases, the model convergence to a better quality solution (lower error in the value 

function). The best results were obtained by setting ^=0.6 and the accuracy of the 

solution deteriorates i f y/ is either increased or decreased. Figure 5.4 shows that the error 

in the value function could have a V shape relationship with the learning rate, which 

stresses the importance of experimentation with these parameters prior to the adoption of 

the values for use in the R L algorithms. 
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Figure 5.4. Performance of different learning rates 

5.2.6. Results 

To examine the quality o f the solution obtained using the R L approach for the single 

reservoir problem, the results of the three test cases described earlier were evaluated. 

First, the R L model parameters for each of the three test cases were established using a 

variable exploitation rate parameter ^and learning rate parameter y/. The following table 

presents the parameters and the number of iterations used for each of the test cases. 

Table 5.3. Test cases study parameters 

Test Case Iterations Exploitation rate parameter 
(O 

Learning rate parameter 

Case 1 15,000 0.000065 0.59 

Case 2 15,000 0.000050 0.58 

Case 3 20,000 0.000045 0.61 

The convergence of the value function is presented in Figure 5.5. The results indicate 

that for all 3 test cases, the R L model was capable of converging to an optimal solution 

with a very little difference from the solution derived by the SDP model. The error in the 

value function is defined as: 
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Error = max (5.19) 

where f is) is the value function obtained using the SDP model. 

0.100 

c o 
c 
S 

UL 

ii 
I 
C 

'I 0.040 

LU 

0.080 

0.060 

0.020 

0.000 

- - - C a s e 1(3 s t a t e s a n d 4 s t a g e s ) 

— C a s e 2(3 s t a t e s a n d 12 s t a g e s ) 

C a s e 3(10 s t a t e s a n d 12 s t a g e s ) 

5000 10000 15000 20000 

Iteration 

Figure 5.5. Convergence of the value function 

The maximum relative error in the value function derived by the R L model for each 

of the three cases was: 0.0009, 0.0005, and 0.0009 respectively. For each stage, the mean 

relative error (MRE) in the R L solution was calculated and listed in Table 5.4. 

The MRE was calculated as: 

MRE,=—Y (5.20) 

The results indicate that the mean relative error does not exceed 0.04%. 

Table 5.4. Mean relative error (%) for the single reservoir R L model 

Period 1 2 3 4 5 6 7 8 9 10 11 12 

Case 1 0.03 0.04 0.03 0.04 - - - - - - - -
Case 2 0.02 0.02 0.03 0.02 0.03 0.03 0.01 0.03 0.02 0.04 0.03 0.02 

Case 3 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.04 
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The optimal value function derived by R L Q-Learning and SDP models were 

superimposed and compared. Figure 5.6 presents the study results for stages 6 and 12 of 

the single reservoir test case 3. The results indicate a close match of the value function 

obtained by the R L and the SDP models. 
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Figure 5.6. Value function obtained by R L and SDP at time periods 6 and 12 

Figure 5.7 displays the optimal forward sale policies derived by both of the R L and 

SDP models for stage 6 and stage 12. The operating policies suggested by the SDP and 

R L model were identical. A s the results presented suggest, it is more profitable to 

contract more energy, as the storage in the reservoir increases. 
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Figure 5.7. Optimal policies derived by the R L and SDP models at time periods 

6 and 12 

The results obtained indicate that for all o f the three test cases the performance of the 

R L is stable and provides a good approximation to the optimal solution. The results also, 

interestingly, show that the number of iterations required to reach convergence are not 

affected by the size o f the state space. This also provides a good measure of the 

robustness of the R L approach. Consequently, the single reservoir test case offers some 

useful insights on the potential use of the R L algorithms in handling the larger scale 

multireservoir problem, which w i l l be discussed next. 
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5.3. Two Reservoir Model - Test Case 

This test case was used as a building block for the development and the 

implementation of approach to the large-scale multireservoir problem. This case study 

provided a way to test the performance o f the algorithm in handling larger scale 

problems. The R L Q-Learning model was run for a finite number of iterations until it 

converged. Convergence was assessed in terms of the difference between the current 

solution and the previous iteration solution, as suggested by Gosavi, 2003. The derived 

R L model optimal solutions were then compared with the S D P model results. 

5.3.1. System Modeling 

The system considered in this test case consisted of the G M S generating plant at the 

Will is ton reservoir and the M C A generating plant at the Kinbasket reservoir on the Peace 

and Columbia Rivers respectively. The state variables include a subset of the full G M S 

and M C A storage volumes. The G M S storage state variable was discretized to 30 

increments covering the range from 260,000 to 410,000 cms-day, and 5 increments for 

M i c a ranging from 245,000 to 285,000 cms-day. Accordingly, the state space for each 

time period consists of 150 storage combinations for both reservoirs. In addition, a 

provision was made in the formulation to account for the system electricity demand in the 

state space. Table 5.5 presents the forecasted system electricity load and the peak load in 

the four time periods considered in the model runs, each consisting of three months. 

Table 5.5. System load and peak demand 

Period 1 2 3 4 

Load - M W h 4,983 5,362 5,804 5,872 

Peak - M W 8,820 9,720 10,458 10,219 
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To test the performance of the proposed R L multireservoir model, the historical 

inflow data for water years 1964 -1968 were used in five scenarios o f the random inflow 

variable. The monthly inflow data to the reservoirs on the Peace and the Columbia system 

and the assumed scenario probability associated with each o f the inflow sequences are 

presented in Table 5.6: 

Table 5.6. Peace system inflow scenarios (cms) 

Scenario Prob. Peace Columbia 
CO Period 

1 2 3 4 1 2 3 4 

1 0.10 1180 787 354 326 1000 570 308 272 
2 0.20 1100 644 278 258 673 582 330 267 
3 0.30 788 551 358 307 694 437 357 288 
4 0.25 1150 579 275 499 759 501 291 285 

5 0.15 823 692 342 208 718 492 312 264 

Monthly price forecasts for the U S and Alberta markets were used to represent the 

market conditions in the northwest. Table 5.7 presents the heavy load hours ( H L H ) and 

light load hours ( L L H ) price forecast corresponding to the five inflow water years. 

Table 5.7. US and Alberta market price forecast ($/MWh) 

CO 
P CO US P CO AB 

H L H L L H H L H L L H 

1 
2 
3 
4 
5 

32.78 
41.41 
36.08 
39.20 
34.18 

32.93 
40.61 
36.35 
38.97 
34.53 

34.53 
43.62 
38.01 
41.30 
36.01 

34.69 
42.78 
38.29 
41.06 
36.37 

The range of the forward transactions decision variable was discretized to 5 decisions. 

Each decision was distributed between the heavy load hours and light load hours. 
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Table 5.8. Range of forward transactions 

Period 1 2 3 4 
LLH-EVIP Minimum 57 32 48 48 

GWh Maximum 287 158 239 239 
H L H - E X P Minimum 97 107 84 111 
GWh Maximum 484 535 419 553 

where I M P and E X P are the imports and exports respectively. 

5.3.2. Results and Analysis 

The problem formulation was described in detail in the previous chapter. The R L 

model was run on a three month time step for four time periods. To simulate the behavior 

o f the real system under different inflow and release conditions, the G O M model was 

used off-line in batch mode prior to performing the R L model runs. The G O M model was 

run on a daily time step with three sub-time steps during the weekdays and one time step 

during the weekend. The purpose o f running G O M on a finer time step than the R L 

model was to capture variations in the load and prices that occur in a typical day. First, a 

batch of 15,000 runs was carried out to cover all possible combinations of: the storage 

state variable, inflow, and forward sale (decision variable) for the four time periods 

(30*5*5*5*4=15000). For each run, the G O M model generates the optimal system 

rewards and the transition state, which are then stored in lookup tables for use in the R L 

model runs. 

Values for the R L model parameters of y/- 0.5 and ^- 0.000025 were adopted for 

the model runs. The model was set to run until it converged, which was achieved after 

80,000 iterations as shown in Figure 5.8. 

I l l 



250,000,000 

UJ 

200,000,000 

150,000,000 

• | 100,000,000 
re 

50,000,000 

0 10000 20000 30000 40000 50000 60000 70000 80000 

Iteration 

Figure 5.8. Convergence of the R L model 

The R L model results were compared to the optimal solution derived by the SDP 

model. Figures 5.9 presents a sample of the optimal value functions estimated by the R L 

and the SDP models. The storage value function for different G M S storage levels is given 

on the abscissa for five M C A storage levels. The graph demonstrates the capability of the 

R L model to converge to near optimal solution with a mean relative error not exceeding 

0.0256. The results also indicate the stability of the model for the different time periods. 

The M R E for each of the four stages is given in the following table: 

Table 5.9. Percentage of Mean relative error for the two reservoirs R L model 

Period 1 2 3 4 
M . R . E (%) 2.35 2.56 2.44 2.37 
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Figure 5.9. G M S storage value function as a function of M C A storage 

The optimal operating policy obtained by the R L model was also evaluated. 

Assuming different initial storage levels for G M S and M C A and for several inflow 

scenarios, a number of simulation runs were carried out using the optimal policies at each 

stage for both the R L and the SDP model. For the different inflow scenarios and starting 

conditions, the simulation results were found to be identical to those derived by the S D P 

model. Two examples of the simulation run results are illustrated in Figure 5.10. 

Stage - Month Stage - Month 

Figure 5.10. Simulated optimal operation planning policy 
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Results from the two reservoir test model clearly demonstrated the capability of the 

R L model in solving the problem and obtaining a good approximation of the optimal 

value function. Using the G O M model, in batch mode has the merit of providing the 

feedback information needed for the R L model in an off line setting. This resulted in a 

speed up of the R L model runs. However, some infeasibility difficulties were 

encountered with this mode o f G O M runs, as the model could not always find the optimal 

solution at the grid points for the storage state space as it had a coarse grid structure. This 

problem has occurred since the feasible optimal solution may exist at any point in the 

state space that is not necessarily at an exact point of the coarse grid. Consequently, there 

was a need to use a finer grid structure. For the state space used in this study, a batch of 

15,000 G O M runs was performed. To cover the whole state space, the amount of data 

management and C P U time would increase significantly and it would become impractical 

for use in this study. This problem was dealt with during the implementation phase of the 

R L R O M as w i l l be described in section 5.4, through the use of function approximation 

instead of lookup tables. 

5.3.3. Efficiency of the R L Algorithm 

A series of runs were conducted to assess the efficiency of the R L model in terms of 

the computational speed. The run time ( C P U time) of the R L model was compared to that 

of the SDP model. Assuming s1 state discretization, t time periods, a decision variables, e 

scenarios of random variables, then the problem size becomes (s.t.a.e). The two models 

were run for different problem sizes ranging from 900 to 178200. Figure 5.11 displays 

the variation in computational time needed for the R L and the S D P models with problem 

size. The figure clearly demonstrates that the SDP model run time appears to be 

increasing quadratically as the size of the problem increases whereas the R L model has a 

linear run time relationship with the problem size. These results suggest that the R L 

model is more efficient in terms of computational time as the size of the problem 

increases larger than 150000. 
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If the SDP were to be used to solve the two reservoir problem covering: the whole 

state space assuming 59000 states, 36 time periods, 10 scenarios, and 5 actions, the 

problem size is in the order of 10 . Using a polynomial regression relationship established 

from the results presented in Figure 5.11 indicates that the estimated time for S D P to 

solve a problem of 10 6 in size would be impractical. It can be concluded from this 

analysis that the R L overcomes the dimensionality problem through the potential use of 

sampling and function approximation techniques as w i l l be presented next. 
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Figure 5.11. Comparison of the R L and SDP C P U time 
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5.4. R L R O M Multireservoir Model Implementation - Case Study 

The storage and generation facilities on the Peace and Columbia Rivers dominate the 

system operation planning function at B C Hydro. It is wel l recognized by the system 

operation planners that proper planning of the system should consider the coordinated 

operation of these two systems, and that they should be integrated together in one model. 

This section presents the results o f implementation o f the R L R O M model on B C Hydro's 

main reservoir systems on the Peace and the Columbia Rivers while addressing the 

uncertainties that are usually encountered by the system operator, namely: the natural 

inflow, the system electricity load, and the market price. A case study w i l l be presented to 

illustrate the capability of the R L R O M model to provide answers to this complex 

operation planning problem. The main outcomes of the R L R O M model are: the optimal 

control planning policy for the system, the estimated value of water in storage, and the 

marginal value of water in the main reservoirs of the B C Hydro system. The capabilities 

of the R L model to handle the dimensionality problem are also demonstrated. 

Several enhancements were made to the R L model and to the approach that was 

presented in the previous section. The moment matching scenario generation 

methodology described in the previous chapter was used to generate a finite set of 

scenarios that portrays the properties of the random variables. To deal with the larger 

state space, the R L algorithm with function approximation was used instead of lookup 

tables. The storage value function w i l l be represented by a continuous piecewise linear 

function, fls'). In addition, the formulation of the R L R O M model was modified to allow 

for on-line interaction with the G O M model at each stage in the iterations. This setup has 

provided the G O M model with the flexibility to find the optimal solution at any point on 

a continuous state space. In addition, this setup has avoided the infeasibility problems that 

were encountered in the G O M batch runs using the grid structure of the state space as 

described in section 5.3. 
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5.4.1. Description of the Case Study 

This case study considers the operation planning of B C Hydro's hydroelectric 

generating plants on the Peace River and on the main stem of the Columbia River. These 

two systems account for about 65% of the total B C Hydro generation capacity of about 

11,000 M W . The production schedules for all other hydro projects were fixed at their 

normal operation. The most significant of these resources include hydro projects on the 

Bridge River, Campbell River, and other small hydro systems and thermal generation 

plants such as Burrard and Island Cogeneration plant (ICG). 

The hydroelectric system on the Peace River is located in the northern interior of 

British Columbia and it consists of: (1) The W . A . C . Bennett dam (Williston Reservoir) 

and the G . M . Shrum generating station (GMS) and (2) The Peace Canyon dam (Dinosaur 

Reservoir) and the Peace Canyon generating station (PCN). The Peace system supplies 

approximately one third of B C Hydro's annual energy production. 

The powerhouse of the G M S generating station is equipped with 10 generating units 

with a total capacity of 2,730 megawatts ( M W ) . The average annual inflow to the 

Will is ton reservoir is about 1,080 m 3/s and its drainage area is about 68,900 k m 2 . 

Will is ton reservoir is a multiyear storage reservoir and is the largest in the Province, with 

a live storage capacity of 39,471 mil l ion m 3 . The reservoir reaches its lowest operational 

level (645 m) in A p r i l and M a y and its maximum water level (672 m) in September and 

October. 

The Peace Canyon dam is located 23 kilometers downstream of the Bennett dam with 

a generating capacity of 694 M W with 4 generating units. The Dinosaur reservoir 

inundates 9 k m 2 with a very small local natural inflow and is normally operated between 

elevations 500 m and 502.9 m. The G M S and P C N generating stations are typically 

operated in a hydraulic balance and the flow is tightly controlled during the winter season 

to manage downstream ice conditions on the Peace River. 
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The Columbia basin is situated in the southern interior of British Columbia. The main 

hydroelectric facilities on the Columbia River comprise: (1) M i c a dam (Kinbasket 

reservoir) and M i c a generating station ( M C A ) , (2) Revelstoke dam and reservoir and the 

Revelstoke generating station ( R E V ) , and the Hugh Keenleyside dam (Arrow lakes 

reservoir) and Arrow lakes generating station ( K N A ) . 

M i c a and the Hugh Keenleyside projects were constructed under the Columbia River 

Treaty and are operated to maximize the mutual benefits to Canada and the U S , with 

respect to flood control and power generation. The M i c a generating station consists of 4 

generating units with a generating capacity of 1805 M W . The Kinbasket reservoir, which 

is the second largest multiyear storage reservoir within B C Hydro system, has a live 

storage capacity o f 14,800 mil l ion m 3 . It receives an average annual inflow o f 586 m 3/s 

from a drainage basin of 21,000 k m 2 . The Revelstoke dam is located about 130 km south 

of the M i c a Dam. The Revelstoke generating station also has 4 generating units with a 

total generating capacity of 2000 M W . The drainage area upstream of the Revelstoke 

dam is about 5,500 k m 2 , and the average annual local inflow is 221 m 3/s, which is 

predominantly snowmelt driven. The maximum operating elevation is 573.0 m with a 

normal daily fluctuation of about 1.0 m. The Arrow lakes are about 230 k m long 

downstream of the Revelstoke Dam. Their drainage basin is about 10,000 k m 2 . The 

inflows to the Arrow lakes are regulated by the M i c a Dam. Arrow lakes generating 

station has 2 generating units with a capacity of 185 M W . 

Throughout this section, the Peace and the Columbia main five reservoirs/dams/ 

generating stations w i l l be referred to as: G M S , P C N , M C A , R E V , and K N A . 

5.4.2. I npu t D a t a 

This section presents a summary of the historical/ forecasted data that were used as 

inputs in the case study. Also , the physical and the operating limits for the five reservoirs 

considered in this case study are outlined. The case study is set to run on a monthly time 

step, which was then subdivided to three sub-time steps for weekdays ( W K ) and one time 
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step for the weekend (WE). Weekends include Sundays and holidays. The weekday time 

steps were split to: peak ( W K P K ) , high ( W K H I ) , and the low ( W K L O ) sub-time steps 

with 2, 14, and 8 hours respectively. The subdivision into sub-time steps enhances 

representation of the hourly variation in system load and market prices. Table 5.10 

presents the monthly hours in each sub-time step for typical months in a non-leap year. 

Table 5.10. Monthly Hours in each sub-time step 

Month Sub-time step Total Month 
W K P K W K H I W K L O W E 

Total 

October 52 364 208 120 744 

November 48 336 192 144 720 
December 50 350 200 144 744 
January 52 364 208 120 744 
February 48 336 192 96 672 
March 52 364 208 120 744 
April 48 336 192 144 720 
May 50 350 200 144 744 
June 52 364 208 96 720 

July 52 364 208 120 744 
August 50 350 200 ' 144 744 

September 50 350 200 120 720 

5.4.2.1. Inflows 

The characteristics of the local natural inflows to the five reservoirs on the Peace and 

Columbia Rivers are given in Table 5.11. The historical records considered covers 60 

water years for the period of 1940-2000. Figure 5.12 presents the average monthly inflow 

and the cumulative monthly inflows. The inflows, which mainly result from snowmelt, 

typically increase in A p r i l and May, peak in June and July, and taper off in January. 

Figure 5.13 presents the normalized cumulative distribution of the average monthly 

inflows for the five reservoirs in this study. 
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Table 5.11. Annual average reservoir local inflow characteristics in cms 

River 
Peace 

Reservoir 
Williston 
Dinosaur 

Dam 
G.M. Shrum 
Peace Canyon 

GMS 
PCN 

Average Minimum Maximum Std.Dev. River 
Peace 

Reservoir 
Williston 
Dinosaur 

Dam 
G.M. Shrum 
Peace Canyon 

GMS 
PCN 

12,940 
321 

9,158 
1 

17,197 
1,618 

1,750 
353 

Columbia Kinbasket Mica MCA 6,891 5,578 8,726 678 
Revelstoke Revelstoke REV 2,821 2,112 4,030 379 
Arrow Keenleyside KNA 4,256 2,141 5,518 834 

4000 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug S e p 

M onth 

Figure 5.12. Average monthly reservoirs local natural inflows 

Figure 5.13. Normalized cumulative monthly distribution of the average annual 

reservoirs local natural inflows 
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5.4.2.2. Market Prices 

Table 5.12 and Figure 5.14 present the average monthly market price forecast for 

each sub-time step. It was assumed that the peak and the high weekday prices are equal 

and that the weekend market prices were equal to the ( W K L O ) weekday sub-time step. 

Table 5.12. Average monthly market price in each sub-time steps ($/MWh) 

Month WKPK W K H I WKLO WE 
October 54.23 54.23 52.39 52.39 
November 58.95 58.95 54.92 54.92 
December 63.02 63.02 49.57 49.57 
January 66.13 66.13 53.08 53.08 
February 56.43 56.43 51.93 51.93 
March 54.86 54.86 50.60 50.60 
April 54.17 54.17 46.11 46.11 
May 50.78 50.78 36.54 36.54 
June 50.12 50.12 36.83 36.83 
July 54.63 54.63 43.20 43.20 
August 75.13 75.13 45.76 45.76 
September 56.89 56.89 50.51 50.51 
Minimum 50.12 50.12 36.54 36.54 
Average 57.94 57.94 47.62 47.62 
Maximum 75.13 75.13 54.92 54.92 

80 

20 1 1 1 1 1 1 1 1 1 1 1 1 

O c t Nov D e c J an F e b M a r A p r M a y Jun Jul A u g S e p 

Month 

- • - W K P K - W K H I - • — W K L O - W E P R I C E 

Figure 5.14. Average monthly market price in each sub-time step 
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5.4.2.3. Electricity System Load 

The average monthly electricity load forecast considered in the case study is 

presented in Table 5.13. This electricity load should be met mainly by the generation 

from the five hydropower plants on the Peace and Columbia Rivers and other system 

resources. The other system resources were considered fixed; however, they were shaped 

according to the historical operation pattern. Figure 5.15 displays the average monthly 

percentage of the annual load, based on 15 years of B C Hydro historical records. 

Table 5.13. Average monthly electricity system load in each sub-time step 

Month W K P K W K H I W K L O W E 
Total 

(GWh) 
October 339 2,374 1,357 783 4,853 
November 348 2,437 1,393 1,044 5,222 
December 380 2,659 1,519 1,094 5,652 
January 400 2,798 1,599 922 5,719 
February 366 2,562 1,464 732 5,124 
March 369 2,583 1,476 852 5,280 
April 310 2,168 1,239 929 4,645 
May 304 2,128 1,216 875 4,523 
June 313 2,189 1,251 577 4,330 
July 312 2,184 1,248 720 4,464 
August 305 2,135 1,220 879 4,539 
September 307 2,148 1,227 736 4,418 

c 
c 
< 
o 
0) 

10 

9.5 

9 

8.5 

8 

7.5 

9.69 9.77 

8.91 

-H 

8.99 

8.67 

7.90 

7.59 
7.70 

7.45 
- • 7r28 4X, 1 

I n . i l h II 
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Month 

Figure 5.15. Historical monthly distribution of % of system load 
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5.4.2.4. Transmission limits 

The monthly transmission limits used in the study for the imports and exports to the 

U S and Alberta markets are given in Tables 5.14 and 5.15. These limits represent the 

capacity of the transmission lines between B C and the U S and Alberta based on historical 

records. 

Table 5.14. BC-US transmission limits 

Month 

Month 

Import (MWh) Export (MWh) Month 

Month W K P K W K H I W K L O W E W K P K W K H I W K L O W E 

October 1,800 1,800 1,800 1,800 2,600 2,600 2,600 2,600 

November 1,500 1,500 1,500 1,500 2,600 2,600 2,600 2,600 

December 1,500 1,500 1,500 1,500 2,600 2,600 2,600 2,600 

January 1,500 1,500 1,500 1,500 2,600 2,600 2,600 2,600 

February 1,500 1,500 1,500 1,500 2,600 2,600 2,600 2,600 

March 1,500 1,500 1,500 1,500 2,300 2,300 2,300 2,300 

April 1,800 1,800 1,800 1,800 2,300 2,300 2,300 2,300 

May 1,800 1,800 1,800 1,800 2,300 2,300 2,300 2,300 

June 1,800 1,800 1,800 1,800 2,300 2,300 2,300 2,300 

July 1,926 1,949 1,957 1,960 2,600 2,600 2,600 2,600 

August 1,926 1,948 1,956 1,931 2,600 2,600 2,600 2,600 

September 1,926 1,942 1,948 1,930 2,600 2,600 2,600 2,600 

Table 5.15. BC-Alberta transmission limits 

Month Import (MWh) Export (MWh) Month 

W K P K W K H I W K L O W E HI W K P K W K H I W K L O WKHI 

October 560 560 560 560 700 732 744 700 

November 640 640 640 640 725 741 747 725 

December 560 560 560 560 725 757 769 725 

January 560 560 560 560 750 764 769 767 

February 560 560 560 560 725 757 769 725 

March 640 640 640 640 725 741 747 725 

April 560 560 560 560 560 586 595 569 

May 560 560 560 560 560 573 578 562 

June 560 560 560 560 560 586 595 560 

July 435 435 435 435 560 582 590 587 

August 435 435 435 435 580 606 615 584 

September 435 435 435 435 560 586 595 565 
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5.4.2.5. Forward Sales 

Based on historical records for the period of January 2000 to June 2005, a range of 

the pre-sales in the U S and Alberta markets was used in the case study. Table 5.16 lists 

the minimum and maximum monthly forward sales for each sub-time step. The negative 

sign means pre-export and the positive sign means pre-import. 

Table 5.16. Forward transactions (Pre-export and Pre-import) 

Month Minimum (GWh) Maximum (GWh) 

WKPK WKHI WKLO WE WKPK WKHI WKLO WE 

October 71 498 169 105 -50 -353 -27 -17 
November 42 293 134 84 -57 -396 -73 -46 
December 36 249 68 42 -41 -285 -98 -61 
January 40 281 97 61 -8 -59 10 6 
February 51 359 118 74 -1 -10 2 1 
March 86 601 179 112 63 441 116 73 
April 80 560 133 83 20 141 73 46 
May 82 574 176 110 16 109 95 60 
June 95 663 199 124 12 83 42 26 
July 31 214 143 90 -45 -315 -118 -74 
August 16 115 148 93 -66 -460 -36 -22 
September 82 571 205 128 -77 -539 -67 -42 

124 



5.4.2.6. Operation Constraints 

The operation and the physical limits related to reservoirs storage, turbine discharge, 

plant discharge, and plants generation are given in the Table 5.17. 

Table 5.17. Reservoirs operation and physical limits 

G M S P C N M C A R E V K N A 

Storage - cms-d Max 
M i n 

475,000 
55,000 

2,695 
2,440 

285,000 
125,000 

60,500 
58,500 

104,825 
7,850 

Turbine Discharge - cms Max 
M i n 

1,858 
0 

2,025 
0 

1,140 
0 

1,743 
0 

845 
0 

Plant Discharge- cms Max 
M i n 

1,959 
43 

1,982 
283* 

Generation - M W Max 
Min 

2,730 
58 

700 
50 

1,800 
0 

2,000 
0 

190 
0 

* P C N minimum ice flow releases are HOOcms in December and 1500 cms in 

January. 

To represent the Columbia River Treaty operation, the monthly average releases from 

K N A were used in this case study as listed in Table 5.18. 

Table 5.18. Average outflow releases from Keenleyside 

Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

KNA 
Outflow 1101 1410 1664 1812 1226 761 712 718 830 1678 2159 1742 

-cms 
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5.4.3. Scenario Generation 

5.4.3.1. Inflow, Price, and Load Scenarios 

The moment matching scenario generation technique was used to develop a number 

of scenarios that represent the same statistical properties of the historical data records for 

the inflow, price, and load variables. Based on 60 years of records, the first four moments 

(mean, standard deviation, skewness, and kurtosis) and the correlation of the monthly 

inflow for the Peace and Columbia Rivers were estimated. The Peace inflows represent 

the sum of the G M S and the P C N local inflows. The Columbia inflows represent the 

aggregated local inflows of M C A , R E V , and K N A . The statistics presented in Tables 

5.19 and 5.20 define the properties of the Peace and the Columbia inflows 24 random 

variables. 

Table 5.19. Monthly Peace system inflow statistics 

Statistics Peace Inflow 

Oct Nov Dec Jan Feb M a r Apr May Jun Jul Aug Sep 

Mean - cms 817 570 375 324 279 270 545 2512 3751 2002 1012 804 

SD -cms a 243 179 95 93 71 72 235 685 906 613 337 234 

Skew Y 0.24 0.54 -0.02 0.822 0.342 0.67 1.08 0.22 0.76 0.36 1.25 0.30 

Kurtosis K 1.56 1.80 1.50 2.18 1.62 1.94 2.67 1.55 2.07 1.63 3.06 1.59 

Table 5.20. Monthly Columbia system inflow statistics 

Columbia Inflow 

Oct Nov Dec Jan Feb M a r Apr May Jun Jul Aug Sep 

Mean -cms H 659 474 337 285 264 283 637 2044 3298 2845 1811 1030 

SD - cms a 172 144 80 69 69 80 190 490 645 606 340 234 

Skew Y 1.20 0.74 0.39 0.71 1.23 0.72 0.28 0.39 0.73 0.14 1.19 1.65 

Kurtosis K 2.93 2.05 1.65 2.00 3.00 2.01 1.58 1.66 2.03 1.52 2.90 4.23 
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A correlation analysis between the different variables was also carried out for the 

moment matching method. However, the results indicate a weak correlation between the 

Peace and Columbia inflows, and this weak correlation protects against drought 

conditions at the system level. 

Operations planners at B C Hydro carried out a regression analysis to establish a 

relationship to relate the electricity prices in the heavy load hour ( H L H ) and light load 

hour ( L L H ) prices with the annual inflow volume at the Dalles dam (located on the 

Columbia River in the US) . This relationship was then expressed in the form of price 

multipliers to inflate or deflate the average electricity market price forecast. Therefore, an 

additional random variable was added to the moment matching algorithm to generate 

scenarios representing the Dalles inflow volumes, and a set of the H L H and L L H price 

multipliers were then used to generate the market price scenarios. Table 5.21 lists the 

statistics of the Dalles inflow volumes. 

Table 5.21. Inflow volume statistics at the Dalles Dam 

Statistic Dalles Inflow 

Mean (bm3) 11 171 
SD (bm3) a 32 
Skew Y -0.03 
Kurtosis K 1.50 

A s shown in Figure 5.16 a low correlation exists between the Peace and the Columbia 

inflow at K N A and the inflow volume at the Dalles during the fall and winter months. On 

the other hand, a higher correlation exists between the Columbia inflow at K N A and the 

Dalles inflow volume during the summer months as compared with other months of the 

year. 
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Figure 5.16. Correlation between the Dalles inflow volume and the monthly 

Peace and Columbia inflows 

To express the monthly variability of the load forecast, the 5 t h , 50 t h , and 95 t h 

percentiles of the annual electricity load forecast as presented in Table 5.13 were 

considered. Table 5.22 presents the results o f using the three-point approximation method 

of a continuous variable as described by Pearson and Tukey, 1965, to estimate the mean 

and standard deviation of the electric system load. 

Table 5.22. Results of the three point approximation of the mean and the 

variance 

Statistic Percentile Load (GWh) 

5th Percentile Ps 56,046 

Median Pso 58,769 

95th Percentile P95 61,480 
Mean in 58,767 

Standard Deviation a 1,652 

A Monte Carlo simulation was then used to generate 10,000 load scenarios. 

Figure 5.17 presents the system electric load cumulative probability distribution function 

for a log-normal distribution. The probability distribution was divided into 60 increments 
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to match the number of historical inflow data sets for the Peace, the Columbia Rivers, and 

at the Columbia River at Dalles. These sixty load values were then used to estimate the 

first four moments and the load correlation with the other random variables. 

S 0.40 -
Q. 

0.30 -
0.20 -
0.10 -
0.00 — 54,000 56,000 58,000 60,000 62,000 64,000 

System Load - GWh 

Figure 5.17. Probability distribution function of forecasted system load 

5.4.3.2. Results of the Moment Matching Algorithm 

The moment matching algorithm developed by Kaut et al. (2003) was used to 

generate the set o f scenarios used in this study. The input data included the first four 

moments and the correlation matrix of the 26 variables as described above (twelve month 

Peace and Columbia inflows, the Dalles inflow volume, and the electricity load forecast). 

The algorithm was run to generate a number of scenario sets: ranging from 10 to 100 

scenarios for each of the 26 variables. To evaluate the quality of the generated scenarios, 

a comparison between the statistics of the generated scenarios and the historical data was 

carried out. The absolute mean relative error ( M R E ) metric was used in this analysis. 

Figure 5.18 presents the mean relative error ( M R E ) for the estimated four moments. 

Overall, the graph indicates that the generated scenarios preserve the statistical properties 

of the original data for the 26 variables with high degree of accuracy. The results of the 

mean are a 100% match for the mean of the historical data, even for the low number of 10 

scenarios case. For the other statistics (standard deviation, skewness, and kurtosis), 
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Figure 5.18 demonstrates that the M R E decreases with the increase in the number of 

generated scenarios. The M R E decreases to less than 5% as the number of scenarios 

reaches 30 and it further reduces to lower values as the number of generated scenarios 

increases, but with a lower rate of decrease. 

20 i 

Figure 5.18. Testing the quality of the different numbers of generated scenarios 

A s an example, a comparison of the statistics of the 30 generated scenarios of the 

Peace River inflows with the historical records are displayed in Figure 5.19. The graph 

clearly demonstrates the high degree of accuracy of the estimated four moments of the 

generated scenarios. 
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Figure 5.19. Comparison between the Peace inflow historical data and the 

generated scenarios statistics 
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5.4.4. Results of the R L R O M Model Runs 

The input data for the case study presented in section 5.4.2 and the set of scenarios of 

the random variables described in section 5.4.3 were used to run the R L R O M model. 

The model was set to run on a monthly time step for thirty six months starting from the 

beginning of the water year in October. The results of using the model for the case study 

are presented and discussed in the following sections. To assess the quality of the 

operation planning policies derived by the model, the results are presented and analyzed. 

Finally, the model was run in control mode and the results of a simulation run are 

presented and discussed. 

The following parameter setting was adopted in this case study: the exploitation 

exponent parameter 0.0125, learning rate exponent yr- 0.845, and annual discount 

rate of 8%. 

5.4.4.1. Value of water in storage 

A s stated in the previous chapter, the objective function maximizes the expected net 

revenue from the spot and forward transactions. Figures 5.20 to 5.22 present 

three dimensional (3-D) views of the value function in Canadian dollars, as a function of 

G M S and M C A storage volumes. The 3-D plots present the shape of the value of water in 

storage surface function for different months of the year, namely: December, May, and 

August. The choice of the three months was meant to represent: the winter, spring 

(freshet), and summer respectively. The graphs clearly demonstrate the dependence of the 

value function on the storage level in both of G M S and M C A reservoirs. It can also be 

seen that this dependence on the storage level varies from one month to the other. For 

example, the value function in M a y is less sensitive to the storage level in the other 

reservoir. It can also be seen that the minimum value of water in storage occurs during 

the freshet when the storage level is rapidly increasing, and the market price is low. 

The slope o f the value function surface represents the dollar value o f each unit o f 

storage in dollars per cubic meter second-day ($/cms-d). The derivative of the value 
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function with respect to the storage volume in M C A represents the marginal value of 

water in M C A . Similarly, the derivative of the value function with respect to G M S 

storage represents the marginal value of water in G M S . The marginal value of water is 

also called the shadow price or the Lagrange multiplier o f the mass balance equation for a 

reservoir (Equation 4.9). 

The steeper slopes of the storage surface value functions for December and August, 

as shown in Figures 5.20 and 5.22, indicate a high marginal value of water ($/cms-d) in 

those months compared with the corresponding values in May. This is mainly attributed 

to the high market prices and high demand during the winter months as shown in 

Figure 5.14 and Figure 5.15. Whereas in summer, the demand is low and the inflow 

hydrograph is in a receding trend, and the high marginal values is a result o f the higher 

market opportunities during the heavy load hours ( H L H ) as shown in Table 5.12. On the 

contrary, high inflows, low demands, and low market prices during the freshet results in 

flatter slopes of the storage value function as shown in Figure 5.21. 
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Figure 5.20. Storage value function in December 
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Figure 5.21. Storage value function in May 
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Figure 5.22. Storage value function in August 



To examine the value function, the December storage value is plotted, as an example, 

in a 2-D view as shown in Figure 5.23 for different increments o f G M S storage. The 

results show the decreasing slope of the value function with the increase of storage in 

Mica . This indicates the effect of the available storage volume on the value of water in 

M i c a reservoir: as the M i c a reservoir level rises the marginal value of the water 

decreases. Also , the graph demonstrates the decreasing marginal value of water in M i c a 

as more storage is available in G M S . The decreasing gap between the curves of the 

different G M S storage increments indicate a reduction in the marginal value of water in 

G M S for a given storage level in M i c a as shown in Figure 5.23. 

Figure 5.23. Mica Storage value function in December 

Figure 5.24 presents the monthly value of water in storage for different G M S 

reservoir storage increments with a storage level at 50% in M i c a reservoir (205,000 cms-

d). The results indicate that the highest storage values occur in the period o f November to 

January and the lowest storage values in the period of A p r i l to June. Wi th low storage in 

G M S in December and January, the graph demonstrates that the marginal water values 

(slope of the first segment of the storage value function) tend to be higher because: the 

electricity demand is high, inflows are low, and the Peace River ice flow constraint is 

imposed in December and January. 
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Figure 5.24. Monthly G M S storage value function with Mica reservoir at 50% 

5.4.4.2. Marginal value of energy 

One of the most significant pieces of information obtained from the model results is 

the marginal value of energy, expressed in $ per megawatt-hours ($ /MWh). A s stated 

earlier, the significance of this information is that the operation planning dispatch 

decisions are based on a comparison of the energy value with market prices. The 

marginal value of energy is obtained by converting the marginal value of water in $/cms-

d to $ / M W h using the H K factor as expressed in Equation 4.22. 

Tables 5.23 and 5.24 present the monthly range of the marginal value of energy for 

M C A and G M S in ($/MWh). For each month, the marginal value of energy is given for 

the combination of empty or full M C A storage (125,000-285,000 cms-d) and empty or 

full storage in G M S (55,000-475,000 cms-d). For the case of empty M C A reservoir, the 

summary results in Table 5.23 clearly demonstrate the impact of the storage level in G M S 

on the marginal value in M C A in almost all months with the exception of the period from 

A p r i l to June where the M C A marginal value of energy is not sensitive to the storage 

level in G M S . The distinctly high marginal values of energy in certain months could be 

attributed to the cost of satisfying the high K N A outflow releases required in those 

storage level 
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months by the Columbia treaty operation (average K N A outflow values were presented in 

Table 5.18). 

When M C A reservoir is full, it can be seen that the marginal value of energy is less 

sensitive to the available storage level in G M S . The same independence in M C A 

marginal values o f energy is noticeable during the freshet even for empty G M S storage. 

However, the influence of G M S storage on M C A marginal value of energy during the 

freshet is most noticeable in the middle range of M C A storage as shown in Figure 5.28. 

Table 5.23. M C A monthly range of marginal value of energy 

Month GMS Storage MCA Marginal Value ($/MWh) 

Empty Full 
cms-d 125,000cms-d 285,000 cms-d 

October 55,000 295.87 47.14 
475,000 173.32 43.66 

November 55,000 338.65 48.6 
475,000 224.7 44.93 

December 55,000 264.9 49.49 
475,000 141.2 43.85 

January 55,000 335.18 44.67 
475,000 126.65 37.36 

February 55,000 186.78 36.69 
475,000 86.61 27.03 

March 55,000 83.5 25.88 
475,000 53.79 14.96 

April 55,000 48.72 7.62 
475,000 42.7 4.68 

May 55,000 50.04 3.33 May 
475,000 49.72 1.72 

June 55,000 60.56 14.35 
475,000 53.62 10.18 

July 55,000 106.71 36.47 July 
475,000 103.53 35.02 

August 55,000 161.64 45.29 
475,000 138.72 44.19 

September 55,000 199.16 46.5 
475,000 141.63 44.51 
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The summary results presented in Table 5.24 show the higher G M S marginal value of 

energy when the reservoir is at low storage levels during the period September to 

January. This is mainly due to the high cost associated with meeting the Peace ice flow 

constraint in December and January (1100 and 1500 cms respectively). The lowest G M S 

marginal value occurs in the months of A p r i l and M a y where the marginal value drops to 

values close to zero $ /MWh, when both of G M S and M C A are full. 

Table 5.24. G M S monthly range of marginal value of energy 

Month MCA Storage GMS Marginal Value ($/MWh) 

Empty Full 
cms-d 55,000cms-d 475,000 cms-d 

October 125,000 231.78 41.87 
285,000 96.70 41.74 

November 125,000 440.05 42.12 
285,000 267.82 41.78 

December 125,000 461.40 41.21 
285,000 297.25 41.49 

January 125,000 349.27 37.84 
285,000 54.81 37.00 

February 125,000 200.78 26.96 
285,000 64.85 24.34 

March 125,000 94.50 11.77 
285,000 50.91 8.66 

April 125,000 47.53 1.77 
285,000 45.16 0.20 

May 125,000 48.89 0.86 
285,000 48.42 0.40 

June 125,000 53.64 23.42 
285,000 47.93 11.58 

July 125,000 65.76 42.06 
285,000 51.83 40.63 

August 125,000 64.14 42.45 
285,000 55.46 40.88 

September 125,000 128.93 42.50 
285,000 61.15 42.19 
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Figures 5.25 to 5.28 present typical examples of the marginal value of energy for 

M C A and G M S in winter, spring, and summer months - December, May , and August. 

Figure 5.25 demonstrates the sensitivity of the marginal values of energy in M C A to the 

available storage in the reservoir particularly when the reservoir drops below 205,000 

cms-d. This sensitivity is more prominent when the G M S reservoir storage is at or below 

150,000 cms-d. 

When M C A and G M S reservoirs are at their lowest levels (i.e. at 125,000 and 55,000 

cms-d respectively), M C A marginal value of energy increases rapidly. The high marginal 

value is due to the penalty for violating the minimum storage constraint to meet the 

system electricity load or the Columbia treaty operation outflow constraint at K N A . In 

general, the results suggest that at the low range of G M S and M C A storage levels, the 

marginal value of energy is higher than the average L L H market price in December. In 

such a case it would be more valuable to store water than to release it. 

275 i , 

125,000 145,000 165,000 185,000 205,000 225,000 245,000 265,000 285,000 

Mica Storage (cms-d) 

— • — G M S V=55,000 —•— GMS V-100,000 GMS V=150,000 - * - G M S _ V = 2 0 0 , 0 0 0 
- * — GMS"V=250,000 - •—GMS~V=300,000 —t— GMS_V=350,000 — GMS_V=400,000 
——GMS~V=450,000 GMS V=475,000 

Figure 5.25. M C A marginal value of energy i n December 

On the other hand, Figures 5.26 and 5.27 show that the marginal value of energy in 

G M S is more sensitive to the variation in M C A storage below a G M S storage volume of 

250,000 cms-d. The dependence of G M S marginal value of energy on M C A storage is 
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apparent when the storage in M C A is at or below 185,000 cms.d. The higher value of 

G M S energy in December is mainly attributed to the higher electricity load and the high 

market prices accompanied with the lower inflow conditions in winter as compared with 

the freshet period. The high outflow releases downstream of Peace Canyon dam (PCN) in 

December and January, are required to maintain the winter ice flow constraint and this 

also contributes to the high marginal values particularly when M C A is at or below 

145,000 cms-d. Figure 5.27 demonstrates that the variation o f the G M S marginal value 

for different M C A storage is decreasing as G M S reservoir is above 50% of its full storage 

volume (250,000cms-d). This is apparent in the decreasing gap between of the marginal 

value of energy curves for different values of M C A storage as G M S storage increases. 

Figure 5.26. G M S marginal value of energy in December 
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Figure 5 . 2 7 . G M S marginal value of energy in December 

Figures 5.28 and 5.29 display the marginal value o f energy for M C A and G M S in the 

month of May. In general, the marginal value of water is low during this time of the year 

for the full range of storage in both of M C A and G M S reservoirs. The highest M C A and 

G M S marginal values of energy occur when the M C A and G M S reservoirs are empty and 

the value of energy is about 50.0 $ /MWh. On the other hand, the value of energy drops to 

almost zero when the reservoirs are at full pool level. The low marginal value of water is 

attributed to the fact that additional storage in these reservoirs would have a high 

probability of spill during this period. Figure 5.28 demonstrates the significance of the 

change in G M S storage levels on the M C A marginal values of energy in the range from 

165,000 to 265,000 cms-d. Figure 5.29 portrays the influence of variation in M C A 

storage on G M S marginal value of energy, in particular with G M S storage in the range 

from 250,000 to 400,000 cms-d. 
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Figure 5.28. M C A marginal value of energy in May 

Figure 5.29. G M S marginal value of energy in May 

Figure 5.30 demonstrates the marginal value of energy for G M S in August. The 

higher inflows and lower electricity demand in August, as compared with December, 

result in a noticeably lower marginal value when both of M C A and G M S are at high 

storage levels. Despite the lower load in August, as compared to the winter months, the 

high marginal values when the reservoirs are low could be attributed to the high 

California market opportunities in August, particularly during heavy load hours (see 
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Table 5.12 for market price structure). Figure 5.30 illustrates the significant influence of 

M C A storage level on the G M S marginal value of energy particularly when the G M S 

storage drops below 300,000 cms-d. Above 300,000 cms-d, the marginal value is less 

dependant on the G M S storage level. 

50,000 100,000 150.000 200,000 250,000 300,000 350,000 400,000 450,000 
GMS Storage (cms-d) 

— • — M C A _V=t25,000 
— a — M C A 

_V=145,000 MCA _V=«5,000 MCA _V=185,000 — « — MCA_V=205.000 
— • — M C A _V=225,000 — I — M C A V=245.000 M C A _V=265,000 —•— M C A _V=285.000 

Figure 5.30. G M S marginal value of energy in August 

Figures 5.31 and 5.32 display the monthly M C A marginal value of energy for 

different G M S storage increments with M C A storage at 125,000 and 285,000 cms-d 

respectively. Figure 5.31 displays on the secondary y-axis the average Keenleyside 

( K N A ) outflow releases, as stipulated by the Columbia River Treaty. The impact of these 

high release requirements in the winter months combined with high electricity load, high 

market prices, and low inflows are reflected in the high marginal values during those 

months. This effect is less noticeable in the summer as the load is not high and higher 

inflows are available as compared with winter months. 

The high marginal value of energy in the summer is mainly due to better market 

opportunities, particularly in August and September as shown earlier in Table 5.12. 

Figures 5.31 and 5.32 demonstrate that, whatever the available storage in G M S and M C A 
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reservoirs, the lowest marginal values occur in Apr i l and May. Obviously, high natural 

inflows and lower electricity demand are the main reasons. Also both figures point to the 

increased sensitivity o f the M C A marginal values to the incremental change in G M S 

storage in the fall and winter months. 
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Figure 5.31. M C A monthly marginal value of energy for a low storage level at 

M C A ( M C A storage=125,000cms-d) 

Figure 5.32. M C A monthly marginal value of energy for a high storage level 

at M C A ( M C A storage=285,000cms-d) 
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Figure 5.33 demonstrates the effect of the high Columbia Treaty release requirements 

on the K N A marginal value of water in $/m 3 when the M C A reservoir is at low and at 

high storage levels. The marginal values are extracted from the shadow price of the 

hydraulic continuity constraint (storage mass balance) of the G O M model. The results 

indicate that when M C A storage level is low, the high flow releases result in significantly 

high marginal values of water at K N A . These marginal values propagate and cause an 

increase in the M C A marginal of water/energy as presented in Figure 5.31, in particular 

when the storage level at M C A is low. 

Figure 5.33. Marginal value of K N A storage constraint 

Figure 5.34 displays the monthly results of G M S marginal values of energy for a 

G M S storage level of 55,000 cms-d. Similar to M C A ' s marginal values, the results 

indicate higher marginal values during the winter months. In addition, the results indicate 

the dependence of the marginal values in G M S on the available storage in M C A during 

the winter and fall months. The highest G M S marginal values occur in November, 

December, and January in response to the high releases that are required to satisfy the 

Peace River ice flow constraint and to high market prices. The graph also indicates that 

G M S marginal value is independent of M C A storage in the spring and in early summer 

months as the storage level in the reservoir increases and when the demand is low. 
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Figure 5.34. G M S monthly marginal value of energy for an empty G M S 

reservoir storage (GMS storage=55,000cms-d) 

Figure 5.35 displays the monthly results of G M S marginal values of energy for a full 

G M S storage of 475,000cms-d. Similar to M C A , the G M S lowest marginal values occur 

in A p r i l and in May. However, when the G M S reservoir is full, the marginal values are 

not sensitive to changes in M C A storage levels almost all year around. The graph also 

demonstrates that the marginal values during July and September are in the same order o f 

magnitude as those in October and December. 
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• M C A V=125.000 M C A V=145.000 — • — M C A V=165,000 
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Figure 5.35. G M S monthly marginal value of energy for a full G M S reservoir 

storage (GMS storage=475,000cms-d) 
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To demonstrate the variation in the G M S marginal value of energy in the different 

months, the cases of empty and full M C A storage are presented. For these two cases, 

Figures 5.36 and 5.37 portray the details of the monthly variation in G M S marginal 

values of energy for the range of storage increments at G M S . The figures demonstrate the 

significant difference in G M S marginal value of energy for G M S storage below a level o f 

150,000 cms-d, for low and full M C A storage. This difference is apparent for most of the 

year, with the exception of the period from Apr i l to June. Figures 5.38 and 5.39 illustrate 

a magnified region for the results for G M S storage values above 150,000 cms-d. 

Comparing the results presented in the two figures, it can be seen that higher marginal 

values are noticeable in G M S when the M C A storage is low. This effect on G M S 

marginal value varies from month to month and decreases where G M S storage level 

increases. It also shows that the effect of M C A storage on G M S marginal value is 

minimal when the G M S storage level is high. In both cases, the highest G M S marginal 

values occur in the period from October to January. The lowest marginal values occur 

during the months of A p r i l and May. 

50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 
GMS_Storage - cms-d 

-•—Oct -•—Nov Dec —*— Jan — *— Feb —•—Mar -H—Apr 
May — —- Jun Jul Aug Sep 

Figure 5.36. G M S monthly marginal value of energy for a low storage level at 

M C A ( M C A storage=125,000cms-d) 
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Figure 5.37. G M S monthly marginal value of energy for a high storage level 

at M C A ( M C A storage=285,000cms-d) 

Figure 5.38. G M S monthly marginal value of energy for a low storage level at 

M C A ( M C A storage=125,000cms-d) 
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Figure 5.39. G M S monthly marginal value of energy for a high storage level 

at M C A ( M C A storage=285,000cms-d) 

5.4.4.3. Optimum Control Policy Analysis 

In this section, the optimized control policies for operation planning derived by the 

R L R O M model are presented and discussed. The optimized control policy includes the 

net market transactions and the operation planning of the five main reservoirs on the 

Peace and the Columbia Rivers, including the optimized plants' generation and turbine 

releases. To illustrate the optimal control policies proposed by the R L R O M model, the 

model was run using the market prices, electricity system load, and inflow scenario data 

presented in Table 5.25. 

Figures 5.40 and 5.41 present 3-D views of the net market transactions in January and 

in August. It can be seen in Figure 5.40 that the model recommends a net import policy 

when the storage volumes in M C A and G M S are low. For a M C A storage of 125,000 

cms-d, the results recommend a net import transaction regardless of the storage level at 

G M S . A s the storage levels at M C A and at G M S exceed 200,000 cms-d, the model 

suggests a net export policy since the marginal value of energy drops below the market 

price and it would be more profitable to export. 
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Figure 5.41 shows the high export policies recommended by the model in August as 

the market price in California is high in the heavy load hours. The G M S / M C A marginal 

values of energy for the case of full reservoirs are $44.51 and $42.19. When both 

reservoirs are at the 50% storage level (i.e G M S and M C A storage are: 205,000 cms-d 

and 200,000 cms-d), the marginal values of energy are: $45.93 and $50.70 respectively. 

Given that the market prices for H L H / L L H August market prices are $91 and $53, it can 

be observed that the market prices are higher than the marginal value of energy even 

during L L H s . This explains why the suggested export policies by the R L R O M model are 

almost at the limit of the inter-tie transfer capability of both of the U S and Alberta 

markets which is usually set at 2500 G W h in August. When the storage levels in G M S 

and M C A are low, the model recommends a mix of import and export depending on the 

hour of the day. Nevertheless, the system is still a net exporter even with the low storage 

levels in G M S and M C A , as the electricity demand at this time of the year is relatively 

low. 
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Table 5.25. Market price, system load, and natural inflow scenario data 

Month 
W K P K 

Market Price ($) 
WKHI W K L O WEHI W K P K 

System Load 
WKHI W K L O WEHI GMS 

Local Inflow 

PCN M C A R E V K N A 

October 65 65 60 60 7,682 7,116 5,474 6,215 810 23 279 127 179 

November 71 71 63 63 8,693 7,901 6,152 6,819 372 16 244 125 223 

December 76 76 57 57 9,121 8,253 6,426 7,377 236 17 118 59 125 

January 80 80 61 61 8,940 8,217 6,500 7,743 367 30 86 38 103 

February 68 68 60 60 8,906 8,238 6,371 7,014 197 18 90 39 103 

March 66 66 58 58 8,209 7,692 6,048 6,634 189 19 79 36 99 

April 65 65 53 53 7,382 7,005 5,549 6,031 371 20 320 183 429 

May 61 61 42 42 6,949 6,659 5,296 5,616 3,421 51 582 323 548 

June 60 60 42 42 6,710 6,428 5,070 5,519 5,001 61 2,064 897 1,264 

July 66 66 50 50 6,747 6,418 5,030 6,038 1,236 18 1,259 436 544 

August 91 91 53 53 6,977 6,675 5,175 5,556 859 19 994 305 331 

September 69 69 58 58 6,986 6,683 5,077 5,611 497 11 538 186 231 



Figure 5.41. August net market transactions 
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For the cases when the storage levels in G M S are either low or full, Figures 5.42 and 

5.43 portray the monthly net market transactions, for different M C A storage volumes. 

The results show that the net market transactions are largely dependent on the storage 

volume available in each reservoir. Figure 5.42 demonstrates that for a low G M S storage 

level, the system w i l l switch to a net importer of energy mode for the whole range of 

M C A storage in March and up to storage level of 265,000 cms-d in February. For other 

months, the net transactions are largely dependent on the available storage in M C A . 

When G M S reservoir is full, Figure 5.43 shows that the system would be a net importer 

of energy in October, January, March, and Apr i l , when the storage level in M C A is low. 

Figure 5.43 also illustrates that when the M C A reservoir is full, the highest export occurs 

in the period from August to February, whereas the lowest export transactions occur in 

the period from March to June. This is attributed to the high H L H and L L H price margins 

in the summer and winter periods, as compared with those in the spring. The high level of 

net export transactions occurs in the winter months for this scenario run as the load is 

lower than the available resources and there is a room to export. 

2500 

Mica Storage - cms-d 
• October — M — November —*— December —K—January 
m February —•— March —i—April May 
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Figure 5.42. Monthly net market transactions for G M S storage of 55,000 cms-d 
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Figure 5.43. Monthly net market transactions for G M S storage of 475,000 

cms-d 

Figures 5.44 and 5.45 display the monthly variation in net market transactions with 

different storage levels in G M S and M C A . Figure 5.44 demonstrate that for low M C A 

and G M S storage levels, the system would be a net importer of energy for most of the 

year. When the G M S reservoir is full, the system would be a net exporter of energy in all 

months except for January and March. Considering the case of a full M C A reservoir, 

Figure 5.45 shows that the system would be a net exporter of energy in all months with 

the exception of March when storage in G M S is low. In addition, Figure 5.45 illustrates 

that when the M C A reservoir is full, the net transactions are sensitive to the amount of 

G M S storage in all months except for August and January. 
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Figure 5.44. Monthly net market transactions for M C A storage of 125,000 

cms-d 
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Figure 5.45. Monthly net market transactions for M C A storage of 285,000 

cms-d 

A s indicated in the previous chapter, the R L R O M optimizes the operation of the five 

main plants on the Peace and the Columbia Rivers. The results for these plants for the 

months of January are presented next. Figures 5.46 and 5.47 display the five plants 

generation in January for different M C A storage when G M S reservoir is at low storage 
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and high storage levels respectively. Figure 5.46 shows that when the storage levels at 

M C A and at the G M S reservoirs are low, G M S generation was maintained at about 1300 

G W h in order to release water that is needed to meet the Peace River ice flow constraint 

in January (1500 cms-d), as illustrated in Figure 5.48. 

Figure 5.47 illustrates that when the G M S storage is full, M C A generation increases 

gradually as the available storage in M C A increases. The Revelstoke generation 

increases, as M C A generation increases, to maintain the hydraulic balance with M C A 

reservoir as shown in Figures 5.48 and 5.49. Keenleyside is generating up to the 

maximum limit to minimize the spill flow needed to meet the Columbia Treaty release 

requirements. The spill flow from Keenleyside is the difference between the required 

treaty releases and the maximum turbine discharge. 
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Figure 5.46. Plants generation in January at different M C A storage 

increments with G M S storage at 55,000 cms-d 
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Figure 5.47. Plants generation in January at different M C A storage 

increments with G M S storage at 475,000 cms-d 
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Figure 5.48. Plants average turbine releases in January at different M C A 

storage increments with GMS storage at 55,000 cms-d 
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Figure 5.49. Plants average turbine releases in January at different M C A 

storage increments with GMS storage at 475,000 cms-d 

5.4.4.4. Using the R L R O M model in Control Mode 

Once the R L agent learns the optimal control policy, it can then be used to control the 

operation planning of the different reservoirs given the inflow, market prices and 

electricity load at any given time period. The R L R O M model is also capable of 

predicting the operation policy for an extended period of time (for example for several 

years) based on a given forecast. To achieve this, the R L R O M model was modified to run 

in control mode, rather than in learning mode, using the learned optimal control policies. 

A t any time period and for a given starting storage level, the target storage is linearly 

interpolated between the target points of the state space. The model uses the learned 

target storage volumes, optimal forward sales, and the marginal values of water to control 

the system operation. Given this information and the forecasted inflow, market price, and 

the electricity load, the model solves the optimization problem at each time period and 

returns the optimal hydro generation schedules, turbine releases, and market transactions. 

To illustrate the results of implementing the R L R O M model in control mode, a data set of 

inflows, price, and load forecast and initial storage (or forebay) levels conditions were 

considered in the analysis. 
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Figure 5.50 presents the monthly generation of the five main plants in the study. The 

graph demonstrates that despite the lower electricity load in the months of August and 

September the plants' generation is high to take advantage of the export opportunities 

available in these months. On the other hand, in June the plants' generation reduces to 

low levels, and the model recommends the system to store more water during the freshet 

and early summer months, as there is little market opportunity, and to generate heavily 

during the winter and late summer months to take advantage of high market prices during 

these periods. 
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Figure 5.50 M o n t h l y plants generation 

Figure 5.51 displays the forecasted heavy load hours ( H L H ) and light load hours 

( L L H ) market price and the marginal value of energy for G M S and M C A in $ / M W h . For 

the periods from October to February and from August to September, the marginal value 

of energy for G M S is lower than the L L H market price. Consequently, it is more 

profitable to release water from G M S than to store it. This is reflected in the high 

generation policy adopted in these months. In the period from March to July, it is more 

profitable to generate less at L L H , as the marginal value o f energy is higher than the 

market price and to generate more during H L H where the market price is higher than the 
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marginal value of energy. The lower load and market prices explain the low generation 

during those months as it is more profitable to import and store water in periods of good 

market opportunities in the summer and in the winter months. The results presented in 

Figure 5.51 also indicate that the marginal value of energy for M C A is slightly higher 

than that for G M S for most of the year. The marginal values of energy for M C A in the 

period from March to July are even higher than the H L H market prices. This explains the 

M C A low generation pattern during this period as shown in Figure 5.50. 
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Figure 5.51. Market price and marginal value of energy 

Figure 5.52 illustrates the load resource balance, where it can be seen that the system 

is in a net import mode for the period extending from February to July, while it is in a net 

export mode for the rest of the year. 
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Figure 5.52. L o a d resource balance 

Figure 5.53 shows that about 51% of the total energy is generated by the Peace River 

system ( G M S and P C N ) and 49 % was generated by the Columbia River system ( R E V , 

M C A , and K N A ) . About 80% of the Peace generation was produced by G M S and the 

remaining 20% from P C N . The generation percentages from M C A , R E V , and K N A 

plants on the Columbia system were 42%, 52%, and 6% respectively. A detailed analysis 

of the results shows that combining the Peace and the Columbia five main plants, 

together generate about 65% of the energy needed to meet the system load. These 

percentages closely match the percentages of actual generation of the B C Hydro system 

(Making the Connection, 2000), which gives confidence in the model results. 
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Figure 5.53. Annual distribution of the five main plants generation 

To study the effect of changes in the market price forecast on the optimized trading 

policies, three price scenarios (average, low, and high) were considered with an average 

annual price of $46, $41, and $51 respectively. Using the moment matching algorithm, 

three samples were generated for the stochastic variables and were used in this analysis. 

The results are displayed in Figure 5.54, and it suggests that, for the low price scenario, 

the system would be importing and exporting in different months of the year, but it would 

be in a net importing mode (4695 GWh). Futher analysis of the results shows that the 

system was a net exporter in January and in August, and a net importer for the rest o f the 

months. This is attributed to the fact that the L L H market prices are lower than the 

marginal value of energy in all months and the H L H was also lower than the marginal 

value during the spring and fall periods where the system load is low and the market price 

is low. On the other hand, for the case of the high price scenario, the system would be in 

net exporter mode. The system is a net exporter in all months with the exception of 

March to June. As discussed earlier, when the marginal value of energy is higher than the 

market price, the model tend to release more water for export purposes. 
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Figure 5.54. Net market transactions for three price scenarios 

5.5. Summary 

The R L approach methodology, as discussed in chapter 4 was first tested for a small 

scale single reservoir operation problem, and then on a two reservoir operation problem. 

The test and convergence results were encouraging and demonstrated the potential 

capability of the R L approach to handle a larger scale multireservoir operation planning 

problem. The R L model was then expanded and linked to interact with the generalized 

optimization model ( G O M ) as the environment that represents (simulates) the real 

system. A piecewise linear function approximation technique was adapted to approximate 

the present value functions. Using this function approximation technique allowed the 

handling of a larger state space and gave the flexibility to solve the optimization problem 

at hand. The target storage levels were approximated as a continuous function rather than 

grid points in the state space, as is usually done in the conventional S D P formulation. 

Three random variables; natural river inflows, electricity load, and market prices; were 

considered. A scenario generation-moment matching technique was adopted to generate 

the inflow, load, and price scenarios. In this way, the serial and cross correlations of the 
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inflows, load, and price random variables were considered in the scenario generation 

process. 

The R L R O M model was used to optimize the operation of the B C Hydro main 

reservoir systems on the Peace and the Columbia Rivers. Two state variables for the 

G M S and M C A storage were considered. The objective of the model was to estimate the 

value of water in storage, marginal value of water/energy, and the optimal operation 

planning decisions, or control policies, including market transactions. In addition, the 

model optimizes the operation of the five main plants: G M S , P C N , M C A , R E V , and 

K N A . The model was run on a monthly time step with a number of sub-time steps to 

capture the heavy load hour ( H L H ) and light load hour ( L L H ) variation in load and in 

market prices. The R L R O M model results were presented and discussed, including the 

storage value function and the marginal value of energy/water. The optimized control 

operation policy established was also presented and discussed. A modified version of the 

model was developed which allows for use of the results from the learning phase in 

control mode. Examples of the results of using the R L R O M model in the control mode 

were also presented. 

The case study results indicate the dependence of the marginal value of energy in 

each reservoir on the available storage in other reservoirs. However, there are periods of 

time and ranges of storage levels where this dependence is not significant. Also , it was 

shown that the marginal value of energy is largely affected by the constraints imposed on 

the system operation. The impact of the ice flow constraint in the Peace River on the 

G M S marginal value of energy was clearly demonstrated. Similarly, the influence of the 

Columbia Treaty operation on the marginal value of energy for M C A was presented and 

discussed. The results of using the R L R O M model in system control mode indicate that 

the G M S and the M C A reservoirs are typically drawn down by A p r i l to May, just prior to 

the spring freshet. The drawdown process generally begins in September and October 

when inflows are low. The reservoir levels begin to increase in M a y when the turbine 

discharges are reduced due to lower system demands and increased local inflow. It 

reaches its highest annual levels in the August to September period. 
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6. C O N C L U S I O N S A N D R E C O M M E N D A T I O N S 

6.1. Summary 

Strategic planning of multireservoir operation involves taking decisions with 

uncertain knowledge of future supply (natural inflows), demand (domestic electricity 

load), and market conditions (market prices). In this research, different modeling 

approaches and optimization techniques for the operation of multireservoir systems 

operation have been reviewed. A n explicit stochastic modeling approach was found to be 

the most appropriate way to address the different sources o f uncertainty. However, a 

major obstacle to this approach, that needs to be addressed and resolved, is the high 

dimensionality of the problem. 

The research carried out, for this thesis, concluded that stochastic dynamic 

programming (SDP) is still a very powerful technique for capturing the essence of the 

sequential, nonlinear, and stochastic reservoirs optimization problems. However, SDP 

requires that the values of the transition probabilities and the transition rewards (model of 

the system) are to be calculated. For large-scale systems that involve several stochastic 

variables, constructing the system model can be a very difficult task. It is for this reason 

that D P is said to be plagued by the curse of dimensionality. One possibility to tackle 

these problems is through the use of machine learning techniques from the field of 

artificial intelligence (Al ) , particularly the Reinforcement Learning (RL) technique. 

This thesis has explored the use of R L artificial intelligence approach to solve the 

large-scale operations planning problem of a hydroelectric power multireservoir system. 

R L is a computational approach for learning from interaction with an environment and 

from the consequences o f actions to derive optimal control strategies. R L has adapted key 

ideas from various disciplines namely: machine learning, operations research, control 

theory, psychology, and neuroscience (Sutton and Barto, 1998). The application of the 

R L technique in the water resources systems domain is relatively new. However, the 

advantages that R L offers in dealing with large-scale problems, make it a promising area 
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of research in that field. Modern reinforcement learning techniques can be applied to both 

trial and error learning, without a formal model of the environment, and to planning 

activities with a formal model of the environment, where an estimate of the state-

transition probabilities and immediate expected rewards could easily be evaluated. A 

detailed review of the R L approach and its main algorithms was conducted and presented 

in this thesis. 

A R L based approach is adopted in this research work to develop a stochastic 

large-scale medium/ long term multireservoir operation planning model ( R L R O M ) . The 

objective of the model is to develop operating policies that maximizes the expected 

revenues from energy transactions in a competitive market, while considering the 

uncertainties, such as future inflows to the reservoirs and the integrated system operation 

and physical constraints. In this research, the dispatch of the hydropower generation from 

the different available resources was based on the incremental production costs, which 

were based on the concept of the marginal value of water in storage. Accordingly, the 

value of water ($/cms-day) /energy value ($/MWh) was derived as a function of the 

storage volume o f the two major multiyear storage reservoirs on the Peace and Columbia 

Rivers ( G M S and M C A ) . The uncertainties in the main random variables were expressed 

in the form of scenarios. A scenario generation-moment matching approach was adapted 

to generate a set of scenarios for the inflow, market prices, and electricity loads, that 

preserved the statistical properties, in particular the moments and the correlations of these 

multiple stochastic variables. 

A hydroelectric reservoir optimization model ( G O M ) based on a linear programming 

algorithm, which had been previously developed and was in use by BCHydro , was 

integrated with the R L R O M model. Instead of interacting with the real system, the R L 

agent used the G O M as a model of the environment to provide feedback on its actions 

and it used this information dynamically to learn the optimum control policy. 
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6.2. Conclusions 

The developed R L R O M model was successfully used to handle a large-scale 

multireservoir operation planning problem. The developed model was applied to 

B C Hydro's main reservoirs on the Peace and the Columbia Rivers. The R L R O M model 

was designed to run for a multiyear planning horizon (36 months for the case study 

considered). This allowed the development of realistic planning policies, given the large 

amount of multiyear storage in the Peace and Columbia River reservoir systems. The 

results demonstrated that the model was capable of providing realistic answers to the 

strategic planning questions, including: What is the value of water in storage in each of 

the multiyear storage reservoirs? What is the marginal value of water /energy in each of 

the multiyear storage reservoirs? What are the optimal system control decisions including 

when to buy or sell energy and how much to buy or sell; and how much energy to 

generate from each of the five plants in the system. The R L R O M model, which is 

presented in this thesis, considers the stochastic variables: domestic load, market prices, 

and natural inflows. The moment matching technique, which was used for generating 

scenarios of the inflow, price, and electricity load variables has the great advantage of 

using only a limited number of scenarios to represent the properties, correlations and 

cross correlations of an extensive time series based on historical records. 

The marginal value of water/energy for M C A and G M S obtained from the R L R O M 

model represent key information that controls the strategic store/release decisions. In 

addition, this information feeds to other B C Hydro medium and short term optimization 

models (for example: G O M and S T O M ) . The shorter term models use this information 

together with the target storage in the trade-off decisions between the shorter term and 

longer term benefits. 

A t the beginning of the runs, the model operates in a training mode and the agent is 

progressively learning the optimal value function and the optimal control policies for the 

system. Once the model results convergence, the agent knows the value function and the 

optimal control policies. A t this point, the R L R O M model can be used on a continuous 
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time bases to maintain optimum control over any time period. Another useful and 

practical application of the model is to examine the system behavior under certain 

forecasts of the random variables and to estimate the corresponding marginal value of 

energy. This sensitivity analysis is useful for understanding the effects of the changes in 

any of the random variables on the operation policy and on the marginal value of 

water/energy. For example, being able to estimate the effects o f multiyear droughts on 

system operation is of particular significance to strategic planning for operation of the 

system. 

Reinforcement Learning offered two key advantages in handling the large-scale 

multireservoir control problem: 

(1) R L provides a way to avoid the curse of modeling. B y using sampling 

(simulation), R L can be applied to large-scale problems without an explicit evaluation 

and enumeration of all the transition probabilities and their expected immediate rewards. 

(2) R L overcomes the curse of dimensionality through the use of function 

approximation methods. Those methods require a limited number of elements to specify 

a value function, instead of possibly millions o f states. 

A hydroelectric reservoir optimization model ( G O M ) based on linear programming 

was integrated with the R L R O M model. In this way, the optimization process was 

extended to include the other reservoirs on the Peace and the Columbia namely, the 

Dinosaur, Revelstoke, Keenleyside reservoirs, in addition to the main ones at G M S and 

Mica . This link, has allowed an efficient on-line interaction between the agent and the 

environment (the operator and the model) during the iterations. Also , it made it possible 

to capture the effects of the diurnal variation of the price and load on shorter time 

periods. In addition, the optimal plant generation schedules which are based on the 

optimal unit commitment and loading (represented in G O M by piecewise linear plant 

generation functions) is captured in the R L R O M model. 
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The results of the case study implemented using B C Hydro system demonstrated the 

following: 

- The major influence of the available storage in the G M S and M C A storage 

reservoirs are on the storage value, marginal value, and optimum control policy. 

However, the study also demonstrated that there are periods of time and ranges of storage 

levels in G M S and M C A where this influence is not significant. 

- The Peace Canyon River minimum ice flow constraint has a major effect on the 

release policies and on the marginal values in G M S . Similarly, for the Columbia River 

system the required Columbia Treaty operation influences the marginal value of energy 

in M C A due to the high releases required from the Keenleyside dam during certain 

periods o f the year. 

- The model backs-off plants generation levels to store water, during light load hours 

( L L H ) , to take advantage of the difference in heavy load hours ( H L H ) and light load 

hours ( L L H ) price margins and it exports more when there is a market opportunity with 

high market prices. During the summer, when the domestic loads are low, however, the 

model is heavily exporting to take advantage of the good market opportunity, particularly 

in California. 

- The moment matching scenario generation results are very encouraging. A 

sensitivity analysis on the effect of the number of generated scenarios on the mean 

relative error ( M R E ) in the moments and correlation determined the appropriate number 

of scenarios that should be used in the R L R O M model runs. The number of generated 

scenarios, which were derived, demonstrated that this is a very practical approach to 

obtaining good results, without excessive amounts of computing. 

In summary, it can be concluded that the R L approach is a very effective approach to 

the strategic planning for the operation of large-scale hydroelectric power generation 

systems. The developed methodology has the potential to significantly improve the 

operational planning for the integrated B C Hydro system. 
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6.3. Future Work 

There are a number of ways in which the techniques, developed in this thesis, could 

be enhanced and areas into which it could be expanded. The following is a proposed list 

of future related research work that could be carried out to extend and enhance this work: 

Investigate the use of multi-agent (independent/cooperative agents) and to use 

parallel processing for running the model to speed up the learning process and to 

decrease C P U time. 

Investigate other R L approaches including S A R S A , Dyna-Q and other R L 

techniques that could potentially integrate the planning and learning process. 

Future research is needed to generalize the use of the function approximation 

approach, outlined in this research. Neural networks are a possible alternative to 

the currently adopted piecewise linear function approximation technique. 

Automate the process of selecting the values of the R L parameters (learning rate 

and exploration/exploitation rate). 

Further develop the R L stochastic optimization model to be used for on-line real 

time control model. 

Extend the model to include other state variables, such as additional plants and 

check their effects on the marginal values of energy. 

Model the Columbia River Treaty operation constraints in more detail. 

Include regional transmission limits, when modeling regional loads and resources 

in the B C Hydro system. 
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APPENDIX A ^ L E A R N I N G NUMERICAL E X A M P L E 

Let us define a Markov chain with two states sj, s2 and at each state two actions aj, a2 

are allowed: 

States = {sj, s2} 

Actions: A(s,) - {an, an} , A(s2) = {a2h a22) 

Rewards: R(s,a) = r t(si, a , , ) , r t(si, ai 2 ) , r t(s 2, a 2 i) , r t(s 2, a 2 2) 

1 2 
The transition probability matrix (TPM) associated with action 1 and 2 are Pt and Pt : 

0.7 0.3 

0.4 0.6 

0.9 0.1 

0.2 0.8 

1 2 
The transition reward matrix ( T R M ) associated with action 1 and 2 are Rt and Rt : 

R 
6 - 5 

7 12 
Rf 

10 17 

-14 13 

The objective is to maximize the expected rewards. A discount factor of 0.8 is 

assumed in this example. The learning rate oris defined as: B/n(s,a), where B is a constant 

assumed 0.1 and n is the number of state-action pair visits. The exploration rate £ is 

assumed C/t, where C is a constant assumed 0.9 and t is the number of time periods. In 

the beginning, the learning agent tends to explore more and select non-greedy actions. A s 

such, it randomly select with a probability £ a different action from the action suggested 

by the policy learned so far Ms), where tt(s) = argmax a Q*(s, a). 

A s the number of episodes is getting larger, the learning agent w i l l gradually turn to 

be greedy and select the best action estimated at state s most of the time with probability 

1- £. Calculations of the first ten steps are presented in Table A . l . The following is a 

detailed description of the calculation procedure in this (2-Learning algorithm example: 
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Period 1: 

initialize al l the state-action value function (g-Table) to 0 

randomly select an initial state s, the selected state is sj 

calculate the exploration rate = C/t = 0.9/1.0 = 0.9 

randomly sample an action a with probability 0.9, the selected action is ai 

update the number of visits to state si and action ai, n(si, aj) = 1 

simulate action 1 and observe the transition to next state and the associated 

rewards. The next state is S2 and the reward r(s 1,(22) is -5. 

the learning rate a=B/n(s}, cu) = 0.1/1.0 =0.10 

update the Q-table using the 

equation: 2 0 , a) <- Q(s, a) + a[r + ymax Q(s', a') - Q(s, a)] 
a 

Q(sj, ai)^0 + 0.1 [-5 + 0.8* max{0,0} - 0] = -0.50 

Period 2: 

the current state is S2. Calculate the exploration rate e-C/t- 0.9/2.0 = 0.45 

sample the actions to select the best (greedy) action with probability 0.45 and a 

random action with probability 0.55. The selected action is 

update the number of visits to state S2 and action a2, n(s2, a2) = 1 

simulate the action and observe the transition to next state and the associated 

rewards. The next state is S2 and the immediate reward r(s2,a2) is 13 

the learning rate a = B/ n(s2, a^) = 0.1 /1.0 =0.10 

update the g-table: 

Q(s2, a2) <- 0 + 0.1 [13 + 0.8* max{0,0} - 0] = 1.30 
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.Period 10: 

the current state is S2. Calculate the exploration rate e - C/t = 0.9/10.0 = 0.09 

sample the actions to select the best (greedy) action with probability 0.91 and a 

random action with probability 0.09. The best action at state S2 is ai as (0.7>0.607),. 

select action ai 

update the number of visits to state S2 and action aj, n(s2, ai) - 2 

simulate the action and observe the transition to next state and the associated 

rewards. The next state is si and the immediate reward r(s2,ai) is 7 

the learning rate a-B/n(s2, a2) = 0.1/2.0 =0.05 

update the g-table: 

Q(s2, a / ) ^ 0 . 7 + 0.05[7 + 0.8*max{-0.103,3.016} -0 .7 ] = 1.136 
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Table A . l . Sample calculations for the Q-Learning example 

Time 
Period 

State 
Si 

Probability Matrix Reward Martix Exploration 
Rate 

DG reedy 
Action 

Selection 

Visits Simulate Action & 
Observe Feedback 

Learning 
Rate 

Q-V alues 

al a2 Rl R2 

Exploration 
Rate 

DG reedy 
Action 

Selection 
a1 a2 Trans, state reward n al a2 

SI I S2 SI | S2 SI | S2 SI | S2 

Exploration 
Rate 

DG reedy 
Action 

Selection 
a1 a2 

1 A "7 f\ ar\r\r\ n 
' 0.709933 

0.100 -0.500 0 1 s1 
s2 

0.7 
0.4 

0.3-< 
0.6 

CO.9 
0.2 

0.1 
0.8 

0 
7 

-5 
12 

10 
-14 

1 / 
13 

U.9UUU ai I 
0 

u 
0 

0 0 

2 
0.1668252 •0.4037938 

2 s1 0.7 0.3 0.9 0.1 6 -5 10 1 0 -0.5 0 2 
s2 0.4 0.6 0.2 0.8* : f 12 -14 13 a2 0 1 S2 13 0.100 0 1.30 

3 
0.2584773 0.3560084 

3 s1 0.7 0.3 0.9 0.1 6 -5 10 17 0.3000 1 0 -0.5 0 3 
s2 0.4 0.6 0.2 0.8 7 12 -14 13 a1 1 1 s1 7 0.100 0.70 1.3 

4 

0.0484106 0.9748682 

4 s1 0.7 0.3 0.9 0.1 6 -5 10 17 0.2250 a2 1 1 s2 17 0.100 -0.5 1.804 4 
s2 0.4 0.6 0.2 0.8 7 12 -14 13 1 1 0.7 1.3 

5 

0.2377849 0.1620204 

5 s1 0.7 0.3 0.9 0.1 6 -5 10 17 0.1800 1 1 -0.5 1.804 5 
s2 0.4 0.6 0.2 0.8 7 12 -14 13 a2 1 2 s1 -14 0.050 0.7 0.607 

6 
0.9477175 0.6368037 

6 s1 0.7 0.3 0.9 0.1 6 -5 10 17 0.1500 a1 2 1 s1 6 0.050 -0.103 1.804 6 
s2 0.4 0.6 0.2 0.8 7 12 -14 13 1 2 0.7 0.607 

7 
0.1759355 0.8324002 

7 s1 0.7 0.3 0.9 0.1 6 -5 10 17 0.1286 a2 2 2 s1 10 0.050 -0.103 2.286 7 
s2 0.4 0.6 0.2 0.8 7 12 -14 13 1 2 0.7 0.607 

8 
0.8248643 0.1913321 

8 s1 0.7 0.3 0.9 0.1 6 -5 10 17 0.1125 a2 2 3 s1 10 0.033 -0.103 2.604 8 
s2 0.4 0.6 0.2 0.8 7 12 -14 13 1 2 0.7 0.607 

9 
0.9071856 0.9812344 

9 s1 0.7 0.3 0.9 0.1 6 -5 10 17 0.1000 a2 2 4 s2 17 0.025 -0.103 3.016 9 
s2 0.4 0.6 0.2 0.8 7 12 -14 13 1 2 0.7 0.607 

10 
0.9071856 0.0694871 

10 s1 0.7 0.3 0.9 0.1 6 -5 10 17 0.0900 2 4 -0.103 3.016 10 
s2 0.4 0.6 0.2 0.8 7 12 -14 13 a1 2 2 s1 7 0.050 1.136 0.607 


