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MEASUREMENT OF SURFACE DISPLACEMENTS AND STRAINS 
BY THE DOUBLE APERTURE SPECKLE SHEARING CAMERA 

ABSTRACT 

In the testing of materials, structures and structural components i t is 

often desired to determine the surface displacement and strain fields due to 

some external loading. Numerous optical techniques have been developed for 

this purpose and successfully used in particular applications. Unfortunate

ly, when the surface deformation is quite large, as is usually the case in 

practical testing, most of these methods f a i l and only a few suitable opti

cal interferometric techniques w i l l work. 

Two of the recently developed techniques that seem to work are based on 

laser speckle interferometry. The f i r s t technique was described in 1972 by 

Duffy [ l ] who showed that a Double Aperture Speckle Camera (DASC) is suitable 

for measurement of a reasonably large in-plane displacement having i t s 

direction parallel to the line connecting the two apertures of the camera. 

A second technique was described in 1973 by Hung [3] . He showed that a 

Double Aperture Speckle Shearing Camera (DASSC) may be used to measure both 

the in and out-of-plane strains of planar surfaces. 

Duffy has not considered the fringe formation by DASC due to the displa

cement normal to the surface and the displacement normal to the line 

connecting the two apertures of DASC. Hung, in turn, has not considered the 

effect on fringe formation of either the in and out-of-plane displacements, 

or the in-plane strain, which is the partial derivative w,v (see Fig. 3.11 

for the definition of w,y). 

Because of the great potential of DASC and DASSC stemming from their 

a b i l i t y to measure displacements and strains over many orders of magnitude, 

a considerable effort was made to determine the fringe formation of the two 



i i i 
cameras due to a l l displacements and strains occuring in a general 

deformation of a specimen surface. 

The theoretical analysis of models of DASC and DASSC was performed and 

resulted in two "new" equations describing the fringe formation by these 

cameras. The equations take into account the effect of a l l displacements , 

and strains on the fringe formation; in addition, the equations are "symme

t r i c " and the equation governing DASSC reduces to the one governing DASC for 

the lateral shear set equal to zero. The accuracy of these equations was 

then verified by a number of simple experiments. Various ways of using the 

two cameras were proposed so that the unknown displacements and strains in 

the specimen surface may be calculated from the least number of fringe 

patterns. Computer programs based on these proposed methods were written 

and used in several experiments. In a l l instances the actual and the 

calculated displacements and strains agreed quite well. 
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1. INTRODUCTION 

1.1 Background 

There are many experimental techniques [ 7 , . . . , l l ] for determining the 

displacements and strains in materials or structural components subjected 

to various loads. Certain tests, for various reasons, must be. noncon-

tacting, i.e. i t is not possible to use stress coatings, photo-elastic 

coatings, strain gages, displacement gages or other contact probes. In such 

instances optical interferometry may often be used successfully. Its pre

vious use in practical testing had been hindered by i t s excessive sensitivity, 

the need for complicated and expensive instrumentation and i t s susceptibility 

to disturbing effects of environment. While some shortcomings remain, the 

use of optical interferometry has spread dramatically since the invention of 

the laser in the 1960's. Numerous optical interferometric techniques using 

laser generated coherent light were developed and proved extremely valuable 

for specific applications. Most of the techniques that have been developed 

for the measurement of displacements to date are, unfortunately, only sui

table for the measurement of very small displacements. Alternatively some 

techniques have been developed to measure large displacements along the line 

of sight. Therefore, there has existed a need to develop a technique for the 

measurement of the displacements and strains of the magnitudes encountered 

in practical testing. 

Duffy [l,2] described the double aperture camera and showed that i t is 

suitable for the measurement of reasonably large in-plane displacements. 

Hung [3,4,5,6] has shown that a somewhat modified double aperture camera, 

DASSC, may be used to measure in and out-of-plane strains. Other researchers 

have proven the f e a s i b i l i t y of different methods for measuring displacements 

and strains, but these methods seemed less powerful and promising than Hung's. 

This thesis objective, in 1974, was to examine the mechanism of failure 
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of wooden beams subjected to various loads and, at that time, Hung's method 

appeared to be the most suitable noncontacting experimental technique avai

lable. Subsequently, DASSC was built and i t s performance tested on a c a l i 

bration specimen. The surface strains were then calculated from the fringe 

patterns produced by the camera in the way suggested by Hung. Unfortunately, 

the calculated strains and the actual surface strains (determined by strain 

gages and d i a l gages) were in a considerable disagreement. A decision was 

made to find the cause of this disagreement, and the subsequent theoretical 

analysis of DASSC resulted in a new equation governing the fringe formation. 

The accuracy of the new equation was then thoroughly tested both experiment

all y and by computer simulation. However, the above analysis had been very 

time consuming and l e f t l i t t l e time for the actual investigation of the 

failure mechanism of wooden beams. The research which was done, though, has 

given some insight into the behaviour of wood and provides a starting point 

for other researchers considering this area of study with the use of DASSC. 

Literature Survey 

Because both optical interferometry and even coherent light interfero-

metry encompass such a great number of various techniques i t is not possible 

to review a l l of them. Instead, only the best known techniques suitable for 

measurement of displacements and strains in planar surfaces are investiga

ted- with special emphasis in the review attached to speckle interferometry. 

Hopefully, the review of a l l techniques relevant to the research pre

sented in this thesis i s complete. If an omission has been made, i t is 

quite unintentional. The techniques are reviewed in chronological order, star

ting with holographic interferometry and ending with DASSC. 
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1.2 Holographic Interferometry 

One of the f i r s t demonstrations of holographic interferometry was done 

by Powell and Stetson [12] in the early 1960's. The technique is similar to 

conventional holography, except that two exposures (and, hence, two holo

grams) of the object are recorded on the same holographic plate; the surface 

of the object is deformed or displaced between the two exposures. Upon recon

struction of the hologram, two three-dimensional images of the object are 

formed, interfere with each other, and produce a set of fringes. The fringes 

represent areas of the same change in total optical path length and, with 

knowledge of the parameters of the experimental setup, a component of the 

surface displacement along a line of sight may be calculated. Since three 

displacement components must be calculated to determine the surface defor

mation, in general, three holograms are needed. The surface strains may then 

be obtained by differentiation of the displacements. 

Since 1965 holographic interferometry has been applied successfully to 

a study of transient and steady vibration [l2,...19] and in a wide variety 

of materials testing [20,23,24,29,30,31,32] . Special techniques were deve

loped for the measurement of the wave propagation using pulsed lasers 

[25,26] . By illuminating the specimen surface by two beams inclined at 

equal angles to the surface normal, or by other means, experimenters were 

able to develop several holographic techniques for the measurement of i n -

plane displacements [27,28,33] . A number of techniques for the measurement 

of in-plane strain were developed as well [34,35,36] . 

The main advantage of holographic interferometry is i t s a b i l i t y to work 

with an arbitrary three dimensional surface. Another advantage i s , in many 

cases, i t s high sensitivity as the fringes usually represent displacements 
- 5 

of the order of 1 x 10 in. Unfortunately, such a high sensitivity makes 

this method unsuitable for ordinary engineering testing where displacements 
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of the order of 1 x 10 in. and 1 x 10 in. are commonly encountered. A l l 

holographic techniques are also quite sensitive to the disturbing effects of 

the environment. Finally, a major problem associated with using holography 

to obtain numerical measurements stems from the fact that the fringes may 

not be localized [21,22] on the specimen surface and, consequently, the 

fringe positions cannot be clearly established. 

1.3 Holographic Contouring Techniques 

There are several holographic interferometric techniques suitable for 

measurement of relatively large static or dynamic changes in the shape of an 

object. In the absence of large in-plane motion, the fringes produced by 

these techniques are related to the out-of-plane displacements of the object. 

The methods known as contouring techniques, [37,40,41,42] are based on pro

ducing an illuminated volume of space in which the apparent illumination of 

any point in that space is some function of position alone. If the function 

is known, the shape of the illuminated area of the object can be determined. 

Most optical f i e l d contouring techniques result in sinusoidal functions of 

position. Although in theory the sensitivity of such a continuous function 

is unlimited, in practice a sensitivity of one-half of the period i s used. 

There are numerous ways in which contours can be formed [38,39] . Two 

holograms can be recorded on the same plate. The object can be illuminated 

with two wavelengths simultaneously, with only one wavelength but from two 

directions, or with one wavelength but with a medium of different retractive 

index surrounding the object. Alternatively, the hologram can be recorded 

with one wavelength, developed and replaced, and both i t and the object 

illuminated with a second wavelength. The interference between the wave 

appearing to originate from the image (magnified because of the shift in 

wavelength) and the wave actually coming from the object i t s e l f causes 
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contours to appear on the image. Similar results are obtained i f the holo

gram is recorded while the object i s in a medium of one refractive index,and 

the hologram and the object then illuminated while the object is in another 

medium. 

A l l of these techniques generate Moire-type of fringes which are rela

ted to the change in shape of the object; the techniques are usually insensi

tive to the in-plane displacements. Out-of-plane displacements cannot be 

calculated from these fringes i f deformation of the object involves large i n -

plane displacements. 

1.4 Measurement of Displacements by Speckle Interferometry 

Anyone working with lasers is familiar with the speckle phenomenon which 

causes a grainy appearence of the laser illuminated surface. Laser speckle 

(or speckle pattern) is formed when coherent light i s either scattered from 

a diffusely reflecting surface or propagates through a medium with random 

refractive index fluctuations. The speckle size is usually defined as the 

s t a t i s t i c a l average distance between adjacent regions of maximum and minimum 

brightness. If a diffusely reflecting surface is imaged by a lens on a -

screen, the speckle size D s is related to the effective numerical aperture 

NA of the lens by 

X 
Ds - .6 — 

b NA 

The speckle pattern depends on the properties of the scattering surface and 

this fact i s u t i l i z e d by speckle interferometers which relate the fringes 

created by changes in the speckle pattern to the surface deformation. 

Speckle interferometers may be classified as those suitable for measurement 

of displacements smaller than speckle size and those suitable for measurement 

of displacements larger than speckle size. Alternatively, the speckle 



interferometers could be classified according to the type of light fields 

that the interferometers employ, i.e., either Las interferometers combining 

speckle and uniform fields or as interferometers combining two speckle ' 

fields. The main advantage of speckle interferometers is their a b i l i t y to 

vary their sensitivity by changing speckle size and other optical parameters 

i t is also claimed that these interferometers measure the in-plane displa

cements of the tested surface independently of any displacement taking place 

in the direction normal to the object surface. 

There are a great number of interferometric techniques u t i l i z i n g laser 

speckle .[1,2,3,4,5,6,44,45,46,47] . These techniques are used for displa

cement measurements, steady state vibration analysis and qualitative testing 

An excellent up-to-date review of existing techniques using speckle inter-

ferometry for measurement of displacements and strains has been done by 

A.E.Ennos [43] . Several of the numerous techniques w i l l now be briefly 

described. 

The speckle interferometer described by Leendertz [49] uses two illumi

nating beams incident at equal angles on either side of the normal to the 

object surface; the illuminated surface is then imaged by a lens on a photo

graphic plate. The two speckle patterns, one due to each illuminating beam, 

interfere coherently, producing fringes according to the rule 

2u sinS^ = nX 

where u, 0i 1 > n and X are defined as 

u ... in plane displacement 

e ± ... angle of illumination 

n . .. fringe number 

wavelength of illuminating light 



7 

The s e n s i t i v i t y of the i n t e r f e r o m e t e r may be changed p r i m a r i l y by changing 

the angle 6 i . The maximum all o w a b l e in-plane displacement u must be smaller 

than the apparent speckle diameter. Fringes produced by t h i s i n t e r f e r o m e t e r 

are of low v i s i b i l i t y . 

Duffy [ l , 2 ] has proven the f e a s i b i l i t y of a double aperture speckle 

i n t e r f e r o m e t e r . One beam i s needed to i l l u m i n a t e the object s u r f a c e , and 

the surface i s imaged on a photographic p l a t e by a lens having two r a d i a l l y 

opposed c i r c u l a r apertures i n i t s entrance p u p i l . To each aperture c o r r e s 

ponds a p a r t i c u l a r speckle p a t t e r n , and the two patterns i n t e r f e r e cohe

r e n t l y i n the photographic p l a t e emulsion to produce a f i n e g r a t i n g - l i k e 

g r i d over an area of each speckle. In a double exposure method two g r i d s 

are formed over the area of speckle, one g r i d corresponding to the unde-

formed surface and the other to the deformed surface. The two g r i d s add 

e i t h e r c o n s t r u c t i v e l y or d e s t r u c t i v e l y . The c o n s t r u c t i v e a d d i t i o n preserves 

the g r i d - l i k e s t r u c t u r e of the speckle whereas t h i s s t r u c t u r e vanishes i n 

d e s t r u c t i v e a d d i t i o n . The a d d i t i o n takes place over a l l speckles comprising 

the "speckled" image of the o b j e c t , and generates f r i n g e s r e l a t e d to the sur

face in-plane displacement i n the d i r e c t i o n of the l i n e connecting the two 

apertures. However, o p t i c a l f i l t e r i n g i s necessary to view these f r i n g e s . 

This i s done by i l l u m i n a t i n g the photographic p l a t e w i t h p a r a l l e l l i g h t and 

viewing i n the d i r e c t i o n of the f i r s t order d i f f r a c t e d beams. Using the 

n o t a t i o n shown i n F i g . 3.11 and employed throughout t h i s t h e s i s Duffy showed 

that a small displacement v along the y-axis causes f r i n g e s according to 

Ax s 

v(y,z) = — n(y,z) (1.1) 

Duffy d i d not consider the e f f e c t on f r i n g e formation by displacements u 

and w which may occur i n a d d i t i o n to the displacement v. This method i s 

l e s s s e n s i t i v e than the preceeding one and the f r i n g e s are of high 
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v i s i b i l i t y . It, too, is limited to the measurement of displacements smaller 

than the object speckle size and the system is further handicapped by i t s 

failure to work when slope changes exceed a certain magnitude; in addition, 

long exposures are necessary i f small apertures are used. 

Duffy has also described an alternative technique which uses one illumi

nating beam and a lens with a single aperture to image the surface on a 

photographic plate. A double exposure is used to record surface deformation. 

This recording contains a l l spatial frequencies from zero to the highest 

frequency which the aperture limited lens is capable of passing. Through 

the use of a double aperture screen optical f i l t e r i n g of the recording i s 

used to produce fringes related to the displacements along the line con

necting the two apertures; the sensitivity is determined by the separation 

of the apertures. The advantage of this method i s that the sensitivity can 

be chosen after the deformation of the object was recorded to obtain the most 

desirable fringe spacing. The disadvantage is that only a small part of the 

surface can be viewed at a time. 

Ennos [48] has demonstrated a speckle interferometric technique which 

produces fringes when the lateral component of surface displacement is grea

ter than the object speckle size. The object is illuminated by one beam 

and a double exposure photograph, one each before and after straining, is 

recorded on high resolution film. The optical transform of this recording 

is a pattern of parallel fringes of angular distribution a given as 

v 
— sina = nX m 

where m is the demagnification factor. 

The examination of the recording on a point by point basis thus yields the 

magnitude and direction of the lateral movement of the object surface. 

Alternatively, the recorded image may be spatially f i l t e r e d to yield a 
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contour map showing the surface displacement along a chosen direction. The 

technique is insensitive to displacements in the direction of the line of 

sight; however, i t too f a i l s to work when slope changes are large. The 

number of fringes that the method generates is limited and the fringes are 

usually of low v i s i b i l i t y . 

1.5 Measurement of Strains by Speckle Interferometry 

There seems to be, at present, only one speckle interferometer capable 

of direct measurements of surface strains. It is called the Double Aperture 

Speckle Shearing Camera (DASSC) and is described by Hung in several papers 

[3,4,5,6]. The camera i s the same as DASC used by Duffy except for the 

lateral shear which is produced either by placing inclined glass blocks in 

front of apertures or by defocussing, i.e. , positioning the photographic 

plate a small distance away from the focal plane of the lens. Regardless of 

how the lateral shear i s produced, Hung showed that the fringes are formed 

according to 

Ay s ( l + cos9 x)u, v + Ay scos9yV,y = - An(y,z) (1.2) 

with the notation being that of Fig. 3.11. Hung has not considered the effect 

on fringe formation by the displacements u,v and w and the strain w,y a l l of 

which, in general, are present in a specimen deformation. He then solved 

equation (1.2) for u,y and v,y "algebraically" from two fringe patterns. 

1.6 Limits of Investigation 

The work presented in this thesis i s devoted solely to the theoretical 

and experimental investigation of the use of DASC and DASSC for the measure

ment of displacements and strains in planar surfaces. The theoretical 

investigation of the fringe formation by DASC and DASSC is restricted to the 
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analysis of the simplest possible models of the two cameras. In the analysis 

the following assumptions (restrictions) are made: 

a) A small area of the specimen surface may be represented by a point 

source of light in the analysis of DASC and by two point sources 

(reflectors) when DASSC is considered. 

b) The imaging lens(es) i s negligibly thin, free of aberrations and 

coincident with the aperture plane. 

c) The only significant diffraction occurring in the camera takes place 

in the aperture(s). 

d) The specimen illumination is collimated, monochromatic and perfectly 

coherent. 

e) The recording medium (photographic plate emulsion) is negligibly 

thin and records the intensity of the incident light in a linear 

fashion. 

f) The two cameras are used only in the double exposure method. 

The results of the theoretical investigation are two equations descri

bing the fringe formation by the models of DASC and DASSC. Then, various 

ways in which the unknown displacements and strains may be determined from 

the smallest number of "photographs" made by the two cameras are considered. 

In general, the recorded fringe patterns represent partial differential 

equations which are solved here only by the f i n i t e difference method. 

Lastly some special cases are considered leading either to a set of algeb

raic equations or to an ordinary f i r s t order differential equation with a 

variable coefficient. 

The experimental work is limited to seven experiments involving various 

specimens, a l l with planar surfaces coated with a f l a t white paint to 

approximate the diffusely reflecting surface. Light of wavelength 5145 A 

provided by an argon gas laser was the only illumination used. The f i e l d 



of view (defined as /y 2 + z 2 /xg) is smaller than 1 : 5 and in most cases 

less than 1 : 10 . A l l the fringe patterns are obtained by the Fourier 

f i l t e r i n g of the photographic plate(s) made by the two cameras. 
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2. THEORETICAL PRELIMINARIES 

2.1 Introduction 

The basic concepts of geometrical and wave optics are reviewed in the 

f i r s t part of this chapter to familiarize the reader having l i t t l e or no 

background in optics with those aspects of optics which are used later in 

the analysis of DASC and DASSC. Those readers acquainted with optics and, 

in particular, interferometry may wish to proceed directly to Section 2.13 

where the basic concepts of a general coherent interferometer are developed, 

although a brief review of the whole chapter might be helpful, as the 

terminology and notation introduced here is used in the subsequent chapters. 

The chapter starts with a discussion of light waves and their representation 

and behaviour, such as reflection,diffraction and interference. The 

coherence of light is then defined and developed, an examination of some 

of the imaging properties of a thin lens follows and, in addition, various 

types of specimen surfaces are defined. In the last part of this chapter 

the properties of a general coherent interferometer are derived. Some of 

the material presented there i s original and is essential for the analysis 

of DASC and DASSC. 

So that this chapter may be kept to a reasonable length, many topics 

are discussed only briefly and, hence, the presentation may be at times 

overly simplistic. However, most topics presented here are well known and 

are discussed in depth in numerous textbooks and source books on optics 

[50, 56,60,61]. 

2.2 Light 

Visible light is a form of electromagnetic energy usually described 
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as electromagnetic waves. The behaviour of light i s governed by Maxwell's 

electromagnetic theory and quantum theory; Maxwell's theory describes the 

wave-like aspects of light, while quantum theory describes the particle

like nature of.light. 

Even though light i s an electromagnetic nature i t w i l l be represented 

here, without loss of generality, by i t s electric component only. This is 

done both to simplify the notation and because the photographic plate 

emulsion, ..used as a recording medium, is sensitive only to the intensity 

of the electric f i e l d component of incident light. 

2.3 Geometrical Optics 

There i s a class of optical phenomena which may be described without 

taking into account any hypotheses concerning the wave nature of light or 

it s interaction with material bodies. This division of optics concerned 

with the image formation by optical systems i s called geometrical optics 

since i t s description is founded almost entirely on geometrical relations. 

The laws of geometrical optics may be stated as follows: 

1. Light i s propagated in straight lines in homogeneous medium. 

2. Two independent beams of light may intersect each other and 

thereafter be propagated as independent beams. 

3. The angle of incidence of light upon a reflecting surface i s 

equal to the angle of reflection. 

4. On refraction, as is shown in Fig. 2.1, the ratio of the sine 

of the angle of incidence to the sine of the angle of 

refraction is constant, depending only on the nature of the 

media. This relationship is known as Snell's law and is 

given by 



F i g . 2.1 Refraction of l i g h t . 



Fig. 2.3 Point source. 

Fig. 2.4 Fraunhofer diffraction 
by an aperture. 

Fig. 2.5 Fresnel diffraction 
by an aperture. 



r^sincj)! = n2sinc}>2 (2.1) 

where and n 2 are the indices of refraction of the media. 

2.4 The Ray 

The ray may be defined as the path along which light travels or, 

alternatively, i t may be said that the ray is the direction in which the 

wave motion propagates. The optical length of a ray of length 1 in a 

medium of index n is defined as the product n l . For example, the optical 

length SR shown in Fig. 2.2, is given as 

SR = n j l j + n 2 l 2 + n
3 l 3 

2.5 Fermat's Principle 

This principle, sometimes called the law of extreme path, states that 

the path taken by light in passing between two points is that which i t 

w i l l traverse in the least time. 

2.6 Point Source of Light 

It can be shown that, in free space, the electric f i e l d component of 

light, E(r,t), emitted by a point source S radiating uniformly in a l l 

directions may be expressed as 

E(r,t) = ^ f (r - ct) (2.2) 

where r denotes the distance from the point source , t denotes time, and 

c is the speed of wave propagation. The point source S is shown in 

Fig. 2.3, with R being the receiving point where E(r,t) is measured. 

Solution (2.2) satisfies Maxwell's equations everywhere except at r = 0. 

This singularity is unimportant since any real source cannot have a zero 



radius. The form of f depends on the nature of the source; i f the 

source radiates a monochromatic wave then f is of the form 

f(r-.--ct). =a;:cos [k(r - ct) + ty] (2.3) 

where a .. . amplitude of radiation 

ty ... phase angle determined from the value of E(r,t) 

at r = r 0 and t = t 0 

k ... wave number 

X ... wavelength of radiation 

CO. . . . angular frequency 

2TT 
and k,c,X, and cu are related as k = — (2.4) 

A 

co = kc (2.5) 

Using equations (2.3),(2.4), and (2.5) we may write the electric f i e l d at 

R(r) in the form 

E(r,t) = ̂  cos(kr - cot + ty) (2.6) 

Equation (2.6) describes a circularly polarized electric f i e l d . If the 

f i e l d is polarized in any other way i t is necessary to introduce vector 

notation: 

n ... unit vector normal to wavefront 

k ... propagation vector defined as: k = kn 

r ... position vector 

e ... unit vector normal to propagation vector and 

oriented so that i t l i e s in the plane of 

polarization. 

With this notation a polarized electric f i e l d due to a point source may be 

written as 
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E(r,t) = ^ e cos(k.r - cot + ty) (2.7a) 

and, in general, the polarized electric f i e l d may be described by 

E(r,t) = E(r) ecos(k«r - oJt + ip) (2.7b) 

where E(r) is the amplitude of electric f i e l d at r. 

2.7 The Principle of Linear Superposition 

The theory of optical interference is based essentially on the 

principle of linear superposition of electromagnetic fi e l d s . According 

to this principle, the electric f i e l d E produced at a point in empty space 

due to n different sources is equal to the vector sum. 

The same principle holds for the magnetic f i e l d . In the presence of 

matter, however, the principle of linear superposition is only approximate

ly true. 

2.8 Diffraction 

When waves pass through an aperture or past the edge of an obstacle 

they always spread to some extent into the region which is not directly 

exposed to the oncoming waves. This phenomenon is called diffraction. 

In the study of diffraction i t i s customary to distinguish between two 

general cases known as Fraunhofer diffraction and Fresnel diffraction. 

Fraunhofer diffraction, shown in Fig. 2.4, occurs when the source of light 

and the screen on which the diffraction pattern is observed are effectively 

at i n f i n i t e distances from the aperture causing the diffraction. If 

either the source or the screen, or both, are at f i n i t e distances from the 

aperture then Fresnel diffraction occurs. An example of Fresnel 

E = Ej + E 2 + + E. 'n (2.8) 
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diffraction is shown in Fig. 2.5. 

There is no sharp line of distinction between the two cases of 

diffraction and, i f i t is at a l l possible, the Fresnel diffraction is 

approximated by the Fraunhofer diffraction as the Fraunhofer case is 

much simpler to treat theoretically. The approximation is appropriate 

only i f the actual optical path from the source to the screen and the 

optical path given by the Fraunhofer approximation differ by much less 

than the wavelength of light. 

2.9 Huygen's Principle 

This principle says that each point on a wavefront may be considered 

as being instantaneously and continuously the origin of a new spherical 

wavefront moving outward from that point. The secondary wavelets from 

a l l points along the wavefront overlap and the superposition of a l l of 

them accounts for the forward motion of the original wavefront. This 

principle is useful in the explanation of diffraction and the determination 

of diffraction patterns of various apertures. The i l l u s t r a t i o n of the 

Huygen's principle is shown in Fig. 2.6. 

2.10 Coherence 

In discussing the idea of coherence of light i t is convenient to 

consider two identical point sources Sj and S 2 at different locations, 

each radiating harmonic travelling waves of the same frequency co, as is 

shown in Fig. 2.7, and generating an electric f i e l d at point R 

Ej = — ej cos (krj - cot + ^ j ) 
1 

E 2 = — e 2 cos (kr 2 -
r 2 

cot + \p2) 
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The resultant electric f i e l d at R is given by the principle of superposition 

as 
E = Ej + E 2 

The instantaneous intensity at R is given by 

I(t) = |E| 2= ( E : + E 2).( Ei + E 2) = |E:|?+ I E2|?+ 2E 1«E 2 

and the intensity recorded over "exposure" time T>>T, (T being the period 

of light wave), i s derived in Appendix A as 

I 
r 2 

f -1 + 7 a 2 T ai a 2 

t r l j 2 l r 2 j 2 l r i j [ r 2 J 
( e i.e 2) cos (kr 1 - kr 2 + - ty2) 

= Ij + I 2 + 2 / I ^ a '( e 2) cos (krj - k r 2 + tyx - ip2) (2.9) 

The term 2 / I I ' ( e^ e 2) cos (kr 2 - kr 2 + x - ty2) is called the 

interference term, and i t s presence causes the resultant intensity to be 

greater than or less than the sum of I : + I 2 . In the derivation of 

equation (2.9) i t was assumed that the phase difference ty1 - i>z did not 

change during the "exposure" time. If the two sources behave in such a way, 

they are said to be mutually coherent. If the phase difference ty1 - ty2 does 

change in a random fashion with time during the "exposure", then the mean 

value of the cosine term would be zero and the two sources would be called 

mutually incoherent. 

The product of the unit vectors ej»e 2 depends on the relative 

polarization of the two electric f i e l d s . If the polarization of these two 

fields are mutually orthogonal, then ex • e 2 = 0. In many instances the 

two propagation vectors, k : and k 2, are nearly parallel (G i s very small) 

and, i f the two fields are circularly polarized or are polarized in the 

same way, then e^e^ = 1 and equation (2.9) is reduced to the form 



I r = Ij + I 2 + 2 /ijl/cosCkr-j - kr 2 + ̂  - ij>2) (2.10) 

Since the argument of the cosine depends on r1 and r 2 , periodic spatial 

variations in intensity occur; these variations are the familiar fringes 

that are seen when two mutually coherent beams of light interfere. If the 

two independent sources are not purely monochromatic but have, instead, 

a dominant frequency and the same f i n i t e frequency bandwidth Av, then the 

relative phase difference ty1 - ty2 w i l l remain constant over a time of the 

order of (Av) This time i s usually referred to as the coherence time, 

and the distance that the radiation traverses in the coherence time is 

called the coherence length. 

Often the two sources may be "locked" in phase with one another i f 

they are "driven" by a common driving force. In this case, even though the 

phase constant of each source may change in a random manner in time (Av) , 

where Av is now the bandwidth of the common driving force, the relative 

phase difference w i l l remain constant. 

There are several more aspects to the coherence of light that need to 

be mentioned here. In Fig. 2.8, S is a point source of monochromatic 

radiation. The two points, Pr and P 3, l i e in the same direction from the 

source; they differ only in their distance from S . The electric f i e l d 

at P 1 is Ej and the f i e l d at P 3 is E 3. The coherence between the fields E1 

and E measures the longitudinal spatial coherence at the f i e l d . Point P„ 

is at the same distance from S as Pj , but i t li e s in a different direction. 

In this case the coherence between fields Ej at Pj and E 2 at P 2 measures 

the lateral spatial coherence of the f i e l d . 

2.11 Imaging Properties of a Thin Lens 

A lens is a most common element occuring in optical systems. It i s 

made of a transparent, optically dense material, usually glass, having an 
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Fig. 2.11 Lateral magnification by a thin lens. 



index of refraction greater than one. Usually the two surfaces of a lens 

are spherical. In a simple thin lens the line through the center of the 

lens joining the centers of curvature of the lens surface is called the 

optical axis. The imaging "power" of a lens is defined by i t s focal 

length f, which is the distance from the lens at which a l l incident rays 

parallel to the optical axis w i l l meet after passing through the lens as is 

shown in Fig. 2.9 . If a thin lens is used to image a source point at 

distance x s from the lens, then the image w i l l be formed at distance x-̂  

behind the lens, as is shown in Fig. 2.10 . The two distances x s and x^ 

are related to the focal length f by the equation 

An important imaging property of a thin lens is that a l l rays emitted by S 

and passing through the lens to the receiving point R are of equal (or 

nearly equal) optical path length. 

The image size of an object is usually different from the actual size 

of the object. This imaging property of a thin lens is called the lateral 

magnification m . By considering the geometry of Fig. 2.11 , equation 

(2.12) relating the object size and the image size to the lens parameters 

is obtained. 

The minus sign in the equation (2.12) means that the image of an object is 

inverted. 

2.12 Aberrations in Optical Systems 

Optical systems in which thin spherical lenses are used have a number 

of aberrations or faults which impair or limit the imaging quality of the 

(2.11) 

(2.12) 



Fig. 2.12 Curvature of f i e l d aberration of a thin lens. 

Fig. 2.13 Generalized coherent interferometer. 
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system. The most common aberrations are spherical aberration, astigmatism, 

comma, curvature of the image f i e l d , distortion of the image, and chromatic 

aberration. A l l aberrations are analyzed in great detail in a number of 

optics textbooks and other. 

The only aberration that needs to be mentioned here is curvature of 

the f i e l d . It arises i f the object is an extended plane; in that case the 

astigmatic images w i l l not be planes but curved surfaces. For object points 

on or near the optical axis, there w i l l be sharp point-to-point representa

tion in the image plane, but, as the distance from the axis is increased, 

the sharpness of the image w i l l decrease. Each point of the object w i l l 

be represented by a blurred patch, the size of which w i l l be greater for 

greater distances from the axis. Even i f the defects of spherical 

aberration, astigmatism, and comma are corrected, this patch w i l l be the 

clsest approach to a sharp point focus. The surface containing the best 

possible focus for a l l parts of the image w i l l not be a plane but a surface 

of revolution of a curved line about the axis. An example of this 

aberration in a system using a lens with two relatively small apertures in 

it s entrance pupil is shown in Fig. 2.12 . The curvature of f i e l d 

aberration may be corrected i f more than one thin lens is used. 

2.13 Generalized Coherent Interferometer 

We w i l l consider here a coherent interferometer with one point source 



of polarized monochromatic coherent light. The schematic of the interfero

meter is shown in Fig. 2.16 . S is the point source of light, and r x , r 2 , 

... r n are the light rays passing through the interferometer and reaching 

the receiving point R. In Section 2.6 , i t was shown that these rays may 

be described by equation (2.7a). Our task is to determine the expression 

for the intensity of light which would be recorded at the receiving point 

over some "exposure" time T much greater than the period of light radiated 

by the source. The analysis w i l l eventually be restricted to the case where 

a l l rays reaching the receiving point are nearly parallel so that the 

scalar description of light may be used. The resultant electric f i e l d at 

the receiving point is given by the principle of superposition as 

n 
E r(t) = I Y~ e i c o s ^ . ^ i - bit + ty) (2.13) 

i =1 1 

The phase angle ty and the amplitude a are the same for a l l rays since they 

originate from one source. For a continuous f i e l d , the number of rays is 

i n f i n i t e and, hence, the summation sign in equation (2.13) must be replaced 

by the integral sign. Equation (2.14) results. 

E r(t) = Y7y~y e(y,z) cos [k(y,z).r(yyz) - tot. + ty] dA (2.14) 

The integration'extends over the area A(y,z) of the aperture(s), with the 

understanding that the integration i s to include only those parts of the 

aperture area which are traversed by those rays eventually reaching the 

receiving point. The optical path length of a ray, and the propagation 

vector are expressed as functions of the coordinates (y,z) of the aperture 

in the entrance pupil of the interferometer. The intensity recorded at R 

over "exposure" time T is given by 
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E r ( t ) | dt (2.15) 
0 

Let us now consider an interferometer where the light rays reaching the 

receiving point R are nearly parallel and polarized in the same way. In 

addition the optical path lengths of the rays are almost equal so that the 

"mean" optical path length r Q may be defined as the optical path length of 

a typical ray. With these assumptions, and using r 0 , we may closely 

approximate equation (2.14) by 

E r(t) cos[kr(y,z) - cot + ty] dA (2,16) 

It is now convenient to introduce the path length variation r„(y,z) defined 

as 
r e(y,z) = r(y,z) - r. (2.17) 

In Appendix B equations (2 .15),(2 .16), and (2.17) were used to derive 

equations (2.18) and (2.19) giving I r as 

r ^ a 
l r o J 

T 
2 j cos kr g(y,z) dA 

"A 
+ j sin kr £(y, z) dA 

^ A 
(2.18) 

With the use of complex notation, equation (2.18) may be written as 

Ir = a T 
l r o J 2 

ikr e(y,z) dA 
v A 

ikr e(y,z) dA (2.19) 

It should be noted that the intensity I r depends, in general, on the 

positions of the source point S and the receiving point R, since any change 

in their positions w i l l cause a change in optical path length variation 

r e ( y , z ) . 

The recorded intensity I r often varies in some reasonable fashion 
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with y±>z± thus producing a pattern of dark and bright fringes usually 

referred to as an "interference pattern". If the image formation or 

characteristics of the interferometer are known, i t may be possible to obtain 

some information about the source of light from the interference pattern, and 

indeed, most interferometers are used in this way. Various techniques are 

used to produce interference patterns which provide information about 

the source (with respect to the object's size, position, displacement, etc.). 

Reseachers usually strive to design an "ideal" interferometer which would 

be sensitive to only one particular aspect of the source or object 

behaviour which i s of interest, while being completely insensitive to the 

other aspects. Unfortunately, in most cases this cannot be achieved, and 

the object behaviour which is of interest must be "extracted" from the 

interference pattern by an additional data processing, f i l t e r i n g , etc. 



3. ANALYSIS OF THE FRINGE FORMATION BY DASC AND DASSC 

3.1 Preliminary Remarks 

In Chapter 2 the principles of physical optics were reviewed, and the 

equations describing the image formation by the generalized coherent 

interferometer were derived. Using these results, we w i l l now examine the 

image formation of three particular interferometers. In the study, the 

actual interferometers are represented by their mathematical models, and the 

object surface is represented by one or two points. The equations 

describing the image formation by these mathematical models are approximate, 

but should approach the image formation of real interferometers with 

sufficient accuracy for practical testing. 

The chapter starts with an analysis of image formation by a camera 

having one small circular aperture in i t s entrance pupil. The basic 

principles, notation, and approximations which are made here are then used 

throughout this chapter. The analysis of the Double Aperture Speckle Camera 

(DASC) and Double Aperture Speckle Shearing Camera (DASSC) follows, and the 

equations governing the fringe formation by these two cameras in the double 

exposure process are derived. 

3.2 Image Formation by a Single Aperture Camera 

The model of the camera is shown in Fig. 3.1 . The cartesian 

coordinate system x,y,z is set up with x-axis coincident with the optical 

axis of the system and the y and z-axes in the source plane. The point 

source S ( y g , Z g ) radiates a monochromatic, coherent light of wavelength X 

and amplitude a at the unit distance from S. The aberration free lens has 

a focal length f, diameter D̂ , and is negligibly thin as compared to the 

distances x g and x i . Placing the lens . immediately to the right of the 

aperture plane permits one to say that both the aperture plane and the lens 
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are at approximately the same distance x s from the source plane. The aperture 

plane is opaque, i n f i n i t e in extent, and contains a circular aperture of a 

diameter d with i t s center at (y^,0). The geometric image of S(yg,Zg) is in 

the image plane at R(y- ĉ> Z-j_c) • It is assumed that the aperture diameter d 

is very much smaller that the lens diameter D-̂  and, hence, the only 

significant diffraction in the camera occurs in the aperture i t s e l f . This 

diffraction causes the image, R, of S to be "blurred" rather than being a 

point. We wish to determine the recorded intensity distribution I r around 

the geometric image R. 

One of the imaging properties of a thin lens is that the optical path 

lengths of a l l undiffracted rays from a point source to i t s geometric image 

are equal. Thus in Fig. 3.2, which shows the diffraction in the camera, a l l 

rays from S to R are of equal optical length, that is S-l-R = S-2-R = ... . 

Since the source wavefront sw reaching the aperture is spherical, S-l = S-2 = 

... and, correspondingly, 1-R = 2-R = ... . If there were another point 

source at D(y^,Zp), similar arguments would hold; but of course S-R f D-Q, 

where Q(y^,z^) would be the image of D. Let us consider a diffracted 

spherical wavefront dw'of such curvature and orientation that i t would appear 

to originate from the point D. The optical path lengths from the wavefront 

dw to the virtual image of D at Q are a l l equal, that is 6-Q = 7-Q = ... . 

However, the diffracted wavefront dw is derived from the spherical, constant 

phase , source wavefront sw and, therefore, in general is not a wavefront of 

constant phase. At point 6 dw leads sw by the distance 1-6, at point 7 i t 

leads sw by the distance 2-7 and so on. The distances 1-6, 2-7, ...may be 

expressed in terms of the system geometry, and the intensity at point Q due 

to the diffracted wavefront dw can be calculated according to the equation 

(2.18). The analysis is restricted to those systems where 

xs» xi > y yi>ys»yD' zi' zs> zD» d» D»yA ( 3- 1) 
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Fig. 3.4 Diffraction pattern of a single circular aperture. 
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Let us now determine an approximate expression for the optical path 

length variation r e(y,z) which was defined in Chapter 2 as 

r e(y,z) = r(y,z) - r. (2.17) 

Here r(y,z) i s the optical path length from the point source S(y^,z^) in the 

source plane, through a point (y,z) in the aperture plane, to the image 

point Q(y^,z^) in the image plane; i t i s given by 

r(y,z) = S-A + dw-sw + A-Q (3.2) 

where dw-sw is the distance by which the diffracted wavefront dw leads the 

source wavefront sw and A is the aperture centre. For example, r(y,z) for 

the ray 1 i s 

r^y.z) = S-l + 1-6 + 6-Q = S-A + dWj-sw + A-Q 

If we choose r. as r n = S-A + A-Q (3.3) 

then the substitution of equations (3.1) and (3.2) in equation (3.3) yields 

r e(y,z) = dw-sw (3.4) 

It is shown in Appendix C that because of equation (3.1) the optical path 

length variation r e is very closely approximated by 

r e = r 1 - 3ys^ 

2x"j 
A ys zs 
Ay — Az 

3 z s Az cose + 1 2 

2SYS A \z 2~~ Ay s i n t (3.5) 

The radius r and angle 8 of equation (3.5) are shown in Fig. 3.3, and Ay 

and Az are defined as 

A y = yp_JLZS A z = ^ ^ (3.6) 

In Appendix F i t is shown that a l l rays reaching a point in the image plane 



35 

are nearly parallel, thereby making i t possible to disregard the vector 

nature of light in the calculation of the light intensity at that point and 

consequently, equation (2.19) may be used to calculate I r . The intensity 

is calculated in Appendix D from equation (2.19) with r •given by equation 

(3.3) and r e(y,z) given by equation (3.5). The integration i s done over 

the circular area A of the aperture with the result 

MP) = i c 

f2J 1 ( p)l (3.7) 

[ a l 2 T frrd2! 2 

I Q and p are given by 
l r oJ 2 { * J 

kd 
P = 2x ± 

/(y± -- y i c ) 2 + 

- H,? 

(3.8) 

(3.9) 

Equation (3.7) describes the recorded intensity distribution I r as a 

function of the image plane coordinates y^ and z^ . Jj is the f i r s t order 

Bessel function of the f i r s t kind. The amplitude of the distribution is 

proportional to the square of the aperture area Tfd /4 and to the amplitude 

'a' of the radiation. It decreases with the square of the source-image 

distance r Q .. I r is linearly proportional to the exposure time T. The 

distribution is of the shape shown in Fig. 3.4 and is symmetric about the 

geometric image R ( y i c > Z i c ) of the source point; here i t also attains i t s 

maximum value. The f i r s t minimum in the distribution occurs when p = 3.83 , 

and the area within this perimeter minimum is known as the Airy disk. Its 

diameter Dg is given in terms of the system geometry by equation (3.10) 

derived in Appendix E . 

D s = 2.44A^ (3.10) 

The apparent diameter of the Airy disk in the source plane is given by 



(3.11) 

As i s shown in Fig. 3.4 , the values of the maxima of the intensity 

distribution decrease rapidly with increasing distance from the centre o 

the pattern and, hence, the diffraction pattern of the circular aperture 

may be approximated by the Airy disk alone. 

The results of this section may be summarized by the following: 

When the camera with a single circular aperture in i t s entrance pupil is 

used to image a point source of monochromatic coherent light, the image 

the point source i s essentially a cir c l e , sometimes referred to as a 

speckle, of diameter D s . 

Fig. 3.5 Double aperture camera. 



The model of DASC is shown in Fig. 3.5 . With the exception of the 

two apertures, i t has the same geometry as the single aperture camera. The 

two apertures are circular, of diameter d, and their centers are at 

(xs,-D/2,0) and (xs,+D/2,0) where D is the separation of aperture centers. 

Again we wish to determine the recorded intensity distribution around 

R(y^ c,z^ c), the geometric image of S . 

The diffraction process in the two apertures is shown in Fig. 3.6 . 

The optical path length variations, r for aperture 1 and r g 2 for aperture 2, 

are derived in Appendix G as 

r e i = re 

r e 2 = r e - D6 

r e is given by equation (3.5) and 6 is given by equation (3.13). Because 

of the assumptions stated in equation (3.1), the electric f i e l d unit vectors 

are nearly parallel and equation (2.19) may again be used to calculate the 

recorded intensity distribution I . The calculations are done in Appendix H 

with the result 

I r = 4I n 

2J1(p)^|2 kD6 
cos —T- (3.12) 

In equation (3.12) I is given by equation (3.8), p by equation (3.9), and 6 L 0 

by 
y± - yic 

6 = - ~ - ^ (3.13) 

Equation (3.12) describes the recorded intensity distribution in the image 

plane as a function of the image coordinates (y-j^z-^) . The amplitude of the 

distribution i s proportional to the square of the area of the two apertures 

2 ^ and to the amplitude a' of the radiation. It diminishes with the 

square of the distance r Q from the source to i t s image and is linearly 

proportional to the exposure time T . An example of the typical shape of 



Fig. 3.6 Diffraction in a double aperture camera. 
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the distribution i s shown in Fig. 3.7 for the case of D/d = 4 . 

The envelope of the intensity distribution is of the same shape as 

that for the single aperture case shown i n Fig. 3.4 . However, because the 

intensity distribution i s modulated by the cosine term of higher frequency, 

i t causes the grid-like appearance of the speckle. This grid i s normal to 

the y£ coordinate and is centered on and symmetric about the geometric image 

Fig. 3.7 Diffraction pattern of two circular apertures. 
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of the source point. The speckle diameter D s is the same as that in case 

of the single aperture, i.e. 

D s = 2.44 A^p (3.10) 

The "grid pitch" G s in the image plane i s given by two successive zeros of 

the modulating cosine term and is calculated in Appendix I as 

G s = A ̂  (3.14) 

The apparent "grid pitch" G s s in the source plane is given by 

G S S = A ^ - (3.15) 

The result of this section may be summarized as follows: 

When a camera with two radially opposed circular apertures in i t s entrance 

pupil is used to image a point source of monochromatic coherent light, the 

image of the point source is essentially a speckle of diameter D g modulated 

by a grid of pitch G g which i s perpendicular to the line connecting the 

centers of the two apertures. 

3.4 Formation of Moire Fringes by DASC 

The equation governing the formation of Moire-type fringes by DASC in 

the double exposure process are derived here. The equations relate the 

magnitude of the in-plane and out-of-plane motion of a point source and the 

parameters of the system to the Moire fringe number n . 

During the f i r s t exposure the coordinates of a point source S are 

(0,y ,z„). We know from the preceeding section that the recorded image of S 
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FigT 3.9 General deformation of the specimen surface. 
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formed by the DASC is centered about the geometric image of S in the image 

plane at the point R(y l c> zi c) where the coordinates y^ and z^ c are given 

by equation (2.12) as 

v i c ys jxc 

The image i s a speckle of diameter D s and is modulated by a grid of pitch G s 

perpendicular to the y-axis. The elevation of this speckle i s shown in 

Fig. 3.8 . 

Between the f i r s t and second exposure of the double exposure recording 

method the specimen is deformed in a general manner. Point S , which repre

sents the specimen surface, is therefore displaced both in and out-of-plane 

and i t s new coordinates are (u,yg+v,Zg+w) as shown in Fig. 3.9 . The 

three components comprising the displacement vector of S are u,v and w 

oriented along x,y and z-axes respectively. The optical path length 

variations, r and r g 2 , occuring during the second exposure are derived to 

within an accuracy of A/30 in Appendix J as 

r e i = E [ ( e I + F)cos6 + E 2sin0] 

r e 2 = l [ ( E i " F)cos9 + E 2sin9] - D(6 - £) 

where E1,E2,F and E, are defined in Appendix J with £ given as 

5 = 
u 
X so 

ys 
X so 

u 1 
X + 

so X so D X so 
ys 
X + w 
so X so 

+ V 

X so 
y| 

xsoJ 
_w_ y s z s  

xso Xso 

I r is calculated in Appendix K with the result 
(3.16) 

x r = 4 Io 
JAP,) J ^ P P I 2 , r 2 J 1 ( p 1 h 

+ 
,kD(6 -O 

cos (3.17) 

speckle grid term 
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where p x and p 2 are given as kd / F) 2 + E 2 

kd 
P2 = — /(Ej - F) 2 + E 2 

The term 
^ 2 

is of much lower "frequency" than the speckle 
Pi P2 J 

grid term and i t s magnitude is usually smaller than that of the term 
f2J 1(p 1)'| f2J 1 ( p 2 ) ] 

Pi Ps 
Since we are interested in the recorded intensity 

pattern, I , acting as a diffraction grating, the former term may be 

thought of as a low frequency "background noise" which does not appreciably 

affect the diffractive efficiency of the speckle grid described by the term 

2J 1(P 2)i kD(6 - O 
cos 

Comparison of the speckle grid terms recorded during the f i r s t and second 

exposures reveals that the speckle grid recorded during the second exposure 

has been "shifted" by the amount £ with respect to i t s f i r s t exposure 

position. This " s h i f t " and the simplified plan view of the speckles 

recorded in the two exposures is shown in Fig. 3.10 . 

In the double exposure method the images of the object in the 

positions which i t occupied during the two exposures are both recorded on 

the same photographic plate. Usually the two exposures are of equal 

duration and, hence, the resultant image intensity distribution i s the sum 

of the two distributions, as is shown in Fig. 3.10 . The two speckles 

overlap, and in the overlaping area the two grids, each belonging to one 

speckle, add. This addition is defined here as constructive when the high 

intensity regions of one speckle overlap the high intensity regions of the 

other speckle. This occurs when 

speckle grid shift = nGc n = 0, ± 1, ± 2, 
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In a similar manner, the addition i s defined as destructive when the high 

intensity regions of one speckle overlap the low intensity regions of the 

other speckle; this destructive addition occurs when 

speckle grid shift = nGc 

1 3 
n = + — + — 

Thus, "n" indicates the type of addition which takes place in a double expo

sure method. In general, n is continuous and the product nGg is equal to 

the shift between the two grids caused by the deformation of the specimen 

surface. In particular we may write 

speckle grid shift = y^an - yn-CT, = nG„ n continuous (3.18) 

In equation (3.18) Y-̂ gj i s the speckle grid "center" position during the 

j-th exposure. Equation (3.18) i s solved for n in Appendix L with the 

result 

D 
n = -

A.xc 

1 -
2 . - 1 

ys 
XS0J 

u r y s x s + u 2xs vy s + wzs ,-
^XS0 X S0 X so 

ys zs 
vso 

+ V 

where X g Q is defined as x s o = 4 + y| + 4 + yl 

(3.19) 

Equation (3.19) may be closely approximated by 

n -
D 

A.xc 

ys ^ ys zs 
— u + v - — — w 
x s x s 

(3.20) 

The accuracy of equation (3.20) should be sufficient for any laboratory 

testing; both equations (3.19) and (3.20) are applicable as long as the 

speckles recorded during the two exposures overlap and, to ensure this, the 

displacements must be sufficiently small. Equation (3.21), which restricts 

the size of the surface displacements, was derived in Appendix M as 



The addition of the speckles recorded during the two exposures is 

shown in Fig. 3.10 . The out-of-plane component u of the displacement 

vector causes the second exposure speckle envelope to "divide" into two 

circles 2^ and 2g . The Moire fringes are formed by the addition of the 

speckle grids created during the f i r s t and second exposures. This 

addition takes place in the area which is common to speckles (circles) 1,2 

and 2 B . 

x i z i c - w 1- u 
x s x s 

z i c 

z i 5w 

M") i i mum 

1C 

x i . yic 
y . - V + U 
•'IC Xe Xq 

- u 
x± D 
x s 2xs 

2 second exposure 
speckle 

V 
f i r s t exposure 
speckle 

x i . A yic x i D 

y i c - v — + u + u — - — x s x s x s zx s 

Fig. 3.10 Elevation of the f i r s t (1) and the second (2 A,2 g) exposure 

speckles. 
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The result of this section may be summarized by the following: 

When DASC is used to record the displacement f i e l d of a specimen surface 

illuminated by a laser light, Moire fringes w i l l be produced according to 

equation (3.20) or, more accurately, according to equation (3.19). The 

surface displacements must be sufficiently small to satisfy equation (3.21). 

3.5 Image Formation by DASSC 

The double aperture speckle shearing camera (DASSC) is similar to DASC 

except for the lateral shear of the images. This lateral shear may be 

achieved either by placing inclined glass plates in front of the apertures 

or by "defocusing". Both methods of producing the lateral shear were tried 

and the defocusing method was found to be more convenient for practical 

material testing, mainly because of the ease with which the size and the 

sign of the lateral shear may be adjusted to suit a specific test. The 

schematic of DASSC employing defocusing to produce the lateral shear is 

shown in Fig. 3.11 . With the exception of the position of the photographic 

plate, the geometry of DASSC is the same as that of DASC shown in Fig. 3.5 . 

To determine the equation governing the formation of Moire fringes by 

this camera we w i l l represent the surface of a specimen by two point 

sources. The diffraction process that actually occurs in DASSC is closely 

represented by the model shown in Fig. 3.12 . The schematic shows the speci

men plane y,z and the image plane y±,z^ which are familiar from the prior 

analysis of DASC. There are, however, two more planes in the system. One 

is called the "photo" plane Y^,Z^ and i t coincides with the emulsion of the 

photographic plate located the distance y^ from the image (focal) plane; the 

other plane Y,Z is called the object plane, which is an imaginary plane 

located at x = - y , where y is such that the object plane would be focused 

by the system lens on the photo plane. The system lens(es) is represented 



Fig. 3.11 The schematic of DASSC. 



Fig. 3.12 Diffraction in DASSC. 
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by a thin lens so that the axial distances are related according to 

equation (2.11) as 

1 1 1 1 1 ,„ , ,x __ + _ = + (2.11) 
x s x ± f X s Xi 

where X g and Xi are defined as X g = x s + y 

X ± = x ± - Y i 

Let us consider an imaginary point source S(-y,Yg,Zg) in the object 

plane. The geometric image of S is in the photo plane at R ( Y i c , Z i c ) . If 

S were a real point source, then the intensity distribution around R at 

Q(Yi»Zi) would be found by considering an apparent source at D(-y,Y D,Z D), 

the geometric image of which would be at Q . This is what was done in the 

analysis of DASC previously. In the case of DASSC, the specimen surface 

is represented by two real point sources SjXC^y ^ j Z g ) and S. 2(0,yg 2 ,Zg ) . 

S 2 l i e s where the line from S to the center of aperture 1 (at y = y^ = D/2) 

intersects the specimen plane, and S 1 l i e s where the line from S to the 

center of aperture 2 (at y = - y^ = - D/2) intersects the specimen plane. 

The two real point sources Sx and S 2 are separated by the distance 

Ayc = y c ~ Yc • The choice of positions of S and S is based on the 
S o 2. o 1 1 2 

experience gained in the analysis of DASC. It is anticipated (and con

firmed later) that the somewhat blurred image of S 2 made by light passing 

through aperture 1 is :centered•about R; as is.the image of Sx -made by.light 

passing through aperture 2 . It is reasonable to expect that the intensity 

distribution around R w i l l depend greatly on the magnitude of the apparent 

speckle diameter D g gand the separation Ayg of the two real sources and 

S 2; therefore, two cases w i l l be considered. 

The f i r s t case occurs when Ay g > D g g . From the analysis of DASC i t is 

known that the intensity distribution around the geometric image of a point 

source is of negligible magnitude at distances greater than Dg/2 from the 
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geometric image. The intensity distribution around R w i l l therefore be 

produced essentially by the interference of the light radiated by S 2 and 

passing through aperture 1 with the light radiated by Sj and passing 

through aperture 2 . The interference pattern that i s produced i s shown in 

Fig. 3.13 and is similar to the one produced by DASC shown in Fig.3.7 . 

unmodulated 
speckle 

modulated 
speckle 

unmodulated 
speckle 

4 
\ 

L 1 C 
x i 
A s 

Fig. 3.13 Intensity distribution I r for DASSC with Ay s > D s s 

Because of defocusing, the envelope of the pattern has changed; however, the 

speckle grid of pitch G s is s t i l l present. Light radiated by S 2 and passing 

through aperture 2 and light radiated by Si and passing through aperture 1 



are both imaged as "blurred" unmodulated speckles similar to the speckle 

shown in Fig. 3.4 produced by a single aperture camera. These two speckles 

are not of interest in as much as they do not diffract light once the re

cording i s developed. 

In the calculation of the intensity distribution I r , computations 

similar to those done previously were made. The derivation of I r is,how

ever, more tedious as two point sources must be considered and some non

linear terms representing "blurring" of images may not be neglected. The 

calculation of the optical path length variation i s performed in Appendix N, 

and the intensity distributions are determined in Appendix 0 . The f o l l o 

wing notation was used: 

sw^j . .. source wavefront'originating from and reaching aperture i 

dŵ  ... wavefront appearing to originate from D ( - Y , Y Q , Z Q ) and 

caused by diffraction of a source wavefront in aperture i 

r e£j ... the optical path-length variation of rays radiated by 

source j and passing through aperture i 

The mean optical path length r was chosen arbitrarily as 

r Q = S 2-sw 1 2 + dWj-Q (3.22) 

r e i 2 and r g 2 j are derived in Appendix N to an accuracy of A/30 or better as 

r e i 2 = IE 2 + E ^ c o s e + K 2sin0) = r £ 

r e 2 1 = qr 2 + r(K l Cos9 + K 2sin6) - Dp 

where q,K1,K2, and p are defined in Appendix N and I • is calculated in 

Appendix 0 as 

X r = 
f " l 2 rji 

2 
rd/2 2TT . , fd/2 2TT 
| / e

l k re.rdrd9 . / /e" i k l e r dr dO 
L 0 0 0 0 

4 c o s 2 ^ (3.23) 

speckle envelope term speckle grid term 
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The integrals comprising the speckle envelope term cannot be evaluated 

directly. While some approximate solutions are certainly possible, just a 

one step integration by parts done in Appendix 0 yields results from which 

i t appears that the speckle envelope term is made up of terms having a much 

lower frequency than the speckle grid term. This is especially true for a 

small defocussing. In as much as the speckle grid i s our main interest, 

equation (3.23) describes the recorded I sufficiently well. Fig. 3.13 

shows 1^ for this case; the drawing is only an approximation of I , and i t s 

sole purpose is to show graphically what I might be like and to aid in the 

discussion of the image formation by DASSC. 

Let us now consider the situation where Ay s < D s s • ^ n this case 

light radiated by Sj and passing through apertures 1 and 2 and light radia

ted by S 2 and passing through apertures 1 and 2 a l l interfere with one 

another and contribute to I r . Since Ay s < D s s , the parameter q is 

sufficiently small so that i t may be neglected in expressions for r and 

r £ 2 i . In Appendix N r e i l and r e 2 2 are derived and the four optical path 

length differences are given as 

r = r 
ei l 

K 
lsJ 

cos0 + K2sin£ - a A + a s 

r e i 2 = £ ( K i c o s 0 + K 2sin0) 

r e 2 i = rtKjCOsB + K 2sin9) - Dp 

D 1 
r = r 

e 2 2 i 
VSJ 

cos0 + K 2sin0 Dp + a A + a c 

Also define p as 

kd / 2 2 p = — /K + K 2 l 2 
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The parameters and a g are defined in Appendix N, and the parameters f5 , 

Pj, and P 2 are defined in Appendix 0. I is derived in Appendix 0 as 

1^ = T 
2 

d/2 2rr 
e
i k remn r d r d 0 

161, 

2 0 0 
? 

p i ( p ) l 2 , 

i P J 

All 2rr 
I . / / e~ i k r e m n r dr d9 

m = 1,2 o o 
n= 1,2 

Pj + P 2cos 2 - (Dp - a A) (3.24) 

speckle grid term 

From equation (3.24) i t i s evident that the speckle grid with the same 

frequency as in the previous case i s again present. The speckle envelope 

and the actual intensity variation are rather complicated in shape; this 

fact i s not of great interest to us, however, since we are mainly interested 

in the diffractive properties of the recorded I r . Since the speckle grid 

term i s present, the intensity pattern I r may again be closely approximated 

by a diffraction grating of pitch G s over the speckle area. 

3.6 Formation of Moire Fringes by DASSC 

In this section an equation i s derived governing the formation of Moire 

fringes by the DASSC in a double exposure process. This equation relates 

the Moire fringe number n to the in and out-of-plane displacements and 

strains of a surface represented by two points. 

In the analysis of image formation by DASC the surface was represented 

by a point source of light. Even though this point source was in fact i l l u 

minated by a laser, the change in the distance between the point and the 
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laser had no effect on the recorded I r . This conclusion i s arrived at as 

follows: 

Define the terms: 

r- ... optical path length from the laser to the point S on the speci-

men surface 

Ar ... increase in r T due to the displacement of S 

... optical path length from S to point Q in the image plane 

through aperture 1 

r 2 ... optical path length from S to point Q in the image plane 

through aperture 2 

r ... increase in r, due to the displacement of S e i l c 

r^ ... increase i n r ? due to the displacement of S 

The difference in the lengths of the two optical paths (one' through each 

aperture) from the laser to the point Q in the image plane is given by 

Aj = (r^ + r ) - ( r L + r 2 ) ... difference during the f i r s t exposure 

difference during 
A 2 = ( r L + Ar L + r : + -r e i) - ( r L + Ar^ + r 2 + r e 2 ) ... 

the second exposure 

The relative change between the two optical paths due to the displacement 

of S during the time between the two exposures is given by 

A 1 2 = A 2 - Ax = (r1 + r e i ) - ( r 2 + r £ 2 ) - (^ - r 2 ) = r e i - r £ 2 

Since i t i s A 1 2 that determines the relative shift between the speckle grids 

recorded during the two exposures, i t may be concluded that the distance 

from the point S on the specimen to the laser and the change in this dis

tance due to the displacement of S has no effect on the Moire Fringe 

formation of DASC. 

The situation is somewhat different in the case of DASSC. The specimen 
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surface i s represented by two point sources S{ and S 2 illuminated by one 

driving force - the laser. This time, the changes in distances between each 

of the point sources S and S 2 and the laser, arising from the surface dis

placements and strains, w i l l have to be considered in determining the 

fringe formation. 

Define the terms: 

r^ ... optical path length from the laser to Sl on the specimen 

surface 

r L 2 ' " ' ° P t l c a l P ath length from the laser to S 2 on the specimen 

surface 

Ar ... increase in r due to the displacement of Sn Li Li 1 

Ar^ 2 ... increase in r ^ due to the displacement of S 2 

r^j ... optical path length from Sj to Q in the image plane through 

aperture i 

r increase in r.. due to the displacement of S. 
e i j i j J 

It i s sufficient, for now, to look at the case where Ay g>D g s and, there-c -

fore, we need to consider only two optical paths. One path is from the laser 

to S i and from S 2 through aperture 2 to Q in the image plane. The other 

path is from the laser to S 2 and from S 2 through aperture 1 to Q in the 

image plane. As before, let us define A and A 2 as'the differences between 

these two paths in the two exposures and A J 2 as the relative change between 

the two optical paths. 

A ! = ( r
L l

 + r*i> " ( r L 2
 + ri*> 

A 2 = < r
L l

 + A r L i + r 2 i + r e2i> - ( r L 2
 + A r L 2

 + r
1 2

 + r e 1 2
) 

A 1 2 = A 2 - Ax = A r L i - A r L 2 + r £ 2 i - r ^ 
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A similar A 1 2 could be formulated for the case Ay g < D g g . It is not 

necessary to do so, however, as the only purpose of the above exercise was 

to show the need to consider the changes in distances between points on 

the specimen surface and the laser in the analysis of fringe formation by 

the DASSC. It should be noted that the actual distances between the laser 

and points S2 and S2 are of no importance and, hence, w i l l be arbitrarily 

defined as zero; therefore, equation (3.24) need not be altered. 

When a specimen i s deformed, i t s surface i s , in general, displaced and 

strained both in and out-of-plane. The deformation changes the coordinates 

of the two points Sj and S 2 , representing the surface, as follows 

S^O.yg^Zg) S*(u,y S i+v,z s + w) 

S 2(0,y S 2,z s) + s£(u + Su,yg +v + 6v,zg+w+Sw) 

Fig. 3.14 General deformation of the specimen surface. 
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where 6u , 6v , and Sw are defined as 

du 8v 8w 
97 Ay s 6v = ^ Ay s 6w = ^ 

F ig . 3.14 shows the specimen surface with the two points Sx and S2 during 

the two exposures. The surface is illuminated by a collimated laser l ight 

with i t s orientation defined by the " i l lumination" vector . The i l lumi-

nation vector 1 i s a unit vector perpendicular to the illuminating plane 

wavefront and oriented from the specimen surface toward the laser. It 

makes angles 9 X , 9 y and 9 Z with the x, y and z axes respectively; con-

sequently 1 may be written as 

/\ S\ /N 

1 = cos9 x i + cos9yj + cos9zk 

Due to the displacements and strains, the increments Ar^ and Ar-^2 are 

given by 

/\ /\ /\ / \ 

A r L i = (ui + vj + wk) •(-. !) = -ucos0 x - vcos8 y - wcos9z 

A r L 2 = [(u .+ 6u)i + (v + 6v)j + (w + 6w)kJ • ( - 1 ) 

- (u + <5u)cos9x - (v + 6v)cos9y - (w + 6w)cos( 

ArT - 6u c o s 9 „ - 6v cos9,7 - 6wcos9„ Li l A y 

We are now in a position to calculate ^e±j and I r ; f i r s t , the case Ay s > D g s 

i s considered. r
e i 2

 a n d Tezi ' a c c u r a t e to A/10 , are derived in 

Appendix P as 
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" e i 2 2XC 

+ r 
X g X g 

+ 
fZD - Z s Z s u + 6u 

I X c 

x s x s 
(1+3,) 

w + 6wl 

X 
sin8 

s > 
+ 

+ Ar-^ - 6u cos0 x - 6v cos0y - <5wcos6z 

" e 2 i 
hi 
2XC 

+ r -J> i _ _3 — — - (1 + 3x) -
I X g X g X g X 

COS0 + 
fzD - Zg 

I X c 

Zc u 
- — — - ( l + 3 i ) 

x s x s 

w 
X g J 

sin9 + A r L i - D(p - £*) 

where E,*' is defined in Appendix P . Note that now when we are considering 

DASSC the optical path length variations ^e±2 a r e functions of both the 

displacements and their increments related to the surface strains, whereas 

when DASC was considered r • .= were functions of displacements only. 
e J-j 

I is calculated in Appendix Q as 

1̂  = Rx + R2cos y D(p - £ * ) + A* + 

+ R,sin k D(p - C*) + A * (3.25) 

I r consists of three terms containing Rj ,R2 and R3 defined in Appendix Q 

and A* is defined in Appendix P. The f i r s t term Rx may be thought of as a 

low frequency background noise; the second term R2 is likely to have the 

largest magnitude of the three terms and is modulated by the cosine term 

producing the speckle grid; f i n a l l y , the third term R3 is lik e l y to be of 

lower magnitude than the second term and i t is also modulated by a grid 
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producing term (but) of twice the frequency than the second term. 

Therefore , , i n the sense of I r a c t i n g as a d i f f r a c t i o n g r a t i n g of p i t c h 

G g , i t i s described by the term 

2 k cos — D(p - E*) + A* ,kD 
= cos 

l * \ 

P - e + 

In the above speckle g r i d term, the presence of E* and A* i s due to the 

specimen deformation that took place between the two exposures. Through a 

comparison of the speckle g r i d terms i n the two exposures i t i s obvious that 

the second exposure speckle g r i d has been " s h i f t e d " by an amount E, D 
wi t h respect to the f i r s t exposure g r i d . From t h i s ' ' s h i f t " of the speckle 

g r i d the Moire number i s c a l c u l a t e d i n Appendix R as 

n(y,z) = -
x c 

u + v - yz Ay £ (1 + c o s 0 x ) u , v -

— — cos9,T 

Xo. y 
- cost w 'y (3.26) 

Equation (3.26) i s a c l o s e approximation of a more complicated "exact" 

equation derived i n Appendix R . The "exact" equation i s of l i t t l e i n t e r e s t 

to us, though, as i t contains a number of higher order terms which c o n t r i 

bute n e g l i g i b l y to the equation; the accuracy of equation (3.26) should be 

s u f f i c i e n t f o r o r d i n a r y l a b o r a t o r y t e s t i n g . As i n the case of DASC, 

equation (3.26) i s v a l i d as long as the speckles recorded during the two 

exposures overlap. The equations c o n s t r a i n i n g the s i z e of specimen de

formation are derived i n Appendix S as 

y - D/2 
Xc (u + 6u) + v + Sv + (Xs 

(u + Su) + w + 6w 'ss (3.27a) 
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y + D/2 
u + v + 

f \ 
z 

—— u + w 
< D s s 

[ X s J . 2 . 
(3.27b) 

The addition of the speckles recorded in the double exposure process i s of 

the same nature as in DASC and therefore need not be examined again. 

Let us now consider the case Ay g < D g s . In this case the parameters 

q and 3X are so small that r £ 1 2 and r e 2 1 , accurate to A/10 and derived for 

the preceeding case (Ay s > D g s ) , may be approximated as 

r = r 
Y D - Y S Y g - y ^ u + 6 u v + Svl 

X c X c X c 

COS0 + 
ŝ J 

Z D ~ Z S 
Xc 

Zg u + fiu w + 6w"| 

X s X s X s 

sin0 + Ar-^ - 6u cos0 x - 6v cos0y - <5wcos8z 

r e 2 1 -
fYp ~ Y S _ YS + YA _ Z . 

X o X o X o X o 
COS0 + Z D - Z S Z S u 

Xc x s x s 

w 
Xe 

sin0 + 

+ A r L i - D(p - T ) 

In addition to r e i 2 and r e 2 1 , r e and r £ 2 2 were derived in Appendix P and 

the results (accurate to A/10) are presented here. 

r = r ei i 
fYD ~ Y S Y S ~ YA u 

X c 

v 
X S Xg Xg 

COS0 + fz D - z s 
X c 

Zg _u_ 
x s x s 

w 
X 

s i n e 

s> 
+ 

+ A r L i - a s + 3 n 

r e 2 2 = £ 
rYD - Y s Y s + y A u + 6u v + Svl 

X c X a Xc 
COS0 + 

••s J 

Z D ~ Z S 
Xc 

Zg u + 6u w + 6w' 

X s X s Xo J 
s m t + A r L i + a* + 3 2 2 - D( P - E*) 
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In the r e i j above, the parameters 3 1 X and 3 2 2 are defined in Appendix P 

I r is derived in Appendix Q as 

16Ir Qt + Q2cos2-2- D(p - £*) - a* + 3n- 3 2 21 (3.28) 

I r again contains the low frequency background noise term called here Qx 

and another low frequency term Q2 which is modulated so that the speckle 

grid i s produced again. Q1 and Q2 are defined in Appendix Q . The Moire 

number is obtained in Appendix R by relating the shift between the two 

exposure .speckle grid terms as 

n(y,z) = - yz 
u + v Y W + Ayc 2x„ u, + T V , y 

yz 
—2 w > i 

(3.29) 

Equations similar to equation (3.27) could be derived again. However, as 

four speckles would have to be considered, four equations of constraint 

would have to be derived. With the case Ay s < D s s of l i t t l e practical 

interest and because the system is so much more sensitive to displacements 

than to strains, i t is sufficient to use equation (3.17), derived for DASC, 

as a guide. 

The results of this section may be summarized by the following: 

When DASSC is used to record the displacement and strain fields of a laser 

illuminated specimen surface the Moire fringes w i l l be produced according 

to equation (3.26) which is applicable as long as the lateral shear 

Ay„ > D„„ . If Ay„ < D o a , the Moire fringes w i l l be produced according to 

equation (3.29). The surface displacements and strains must be sufficiently 

small to satisfy equation (3.27) for the case Ays > D s s , and equation (3.17) 

is used as a guide for the Ay s < D g s case. 
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3.7 Imaging of Real Surfaces by DASC and DASSC 

Equations (2.18) and (2.19) were derived for a coherent interferometer 

with one point source. When a real, diffusely reflecting surface i s 

considered, these, and other equations must be modified to take into account 

a l l the light reaching a point (Q) in the image plane. This i s done by 

integrating over the illuminated area of the specimen, and consequently 

equation (2.14) becomes 

E r(t) =/ / 5 e ( y a ' Z a ) cos [ k ( y a , Z a ) - r ( y , Z , y a , z a ) -cot+^(y, Z)]dA sdA a (3.30) 
A s A a

r ( y ' Z ' y a ' Z a } 

where A g is the part of the area of the specimen surface illuminated by a 

laser light, A a is the aperture(s) area, y a , z a are the aperture coordinates 

and y,z are the specimen coordinates. Note that f and ty are functions of 

the specimen surface coordinates. As in Section 2.13 we consider such an 

interferometer where a l l the rays reaching point Q are nearly parallel, and 

r Q denotes some typical object-image distance. Equation (3.30) i s then 

written as 

— cl 

E r(t) = / / — cos[kr(y,z,y a,z a) - cot + ty(y,z)] dAs dA£ (3.31) 
•̂s A a 

Assuming that a l l the points on the specimen surface reflect (radiate) 

light with nearly the same amplitude a - a , the recorded intensity 

is approximately given by 

I ^ / /e i k redA sdA £ 

A-s A a 

/ Je~ ± k r e dAs dAa 

A s A a 

(3.32) 

where r p(y,z,y a,z a) = r(y,z,y a,z a) - r a' "a' 
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We know, from the analysis of the image formation by DASC, that the 

recorded intensity distribution (due to a point source) is of a significant 

amplitude only within the speckle perimeter Dg . It is therefore sufficient 

to confine the integration over the specimen surface to an area of approxi

mately diameter D g s about the particular point under consideration. 

r„(y,z,y o,z) and iKy,z) may then be related to the (microscopic) surface 
c a. a. 

geometry, and specimen illumination, and I r is calculated from equation 

(3.32). Unfortunately, in most instances the surface geometry is not known, 

and since any real surfaces are extremely rough on the scale of an optical 

wavelength, no smooth-surface approximations are possible and i t is 

necessary to rely on statistics to derive an amplitude, intensity and phase 

of a speckle. 

The s t a t i s t i c a l properties of laser speckle patterns were studied by 

J. W. Goodman [43] and others, with results agreeing with the experimental 

observation that the "speckle pattern moves as the source is moved" [43] . 

Alternatively, i t could be said that when the surface is moved, the speckle 

pattern moves with i t , providing the illumination remains unchanged. 

Depending on the type of the motion of the speckle, the phase of the speckle 

observed at a point w i l l change accordingly. The phase variation of the 

whole speckle then may be approximated by a phase variation of a single 

"typical" point - a point source(s) used in this chapter. We may therefore 

assume that equations (3.20) , (3.26) and (3.29) derived for a point source, 

should also describe the fringe formation by the two cameras when they are 

used to image real diffusely reflecting surfaces. The results of a number 

of experiments described in Chapter 6. were found to support the validity of 

this assumption. 

The approximation of the speckle by a point source f a i l s , however, to 

explain the sensitivity of DASC or DASSC to the out-of-plane t i l t s of the 



specimen surface. It was noted and discussed by A. E. Ennos [43] who 

determined the maximum allowable surface t i l t angle as 

M 
6<r < 

(1 + M)F 

where F is the aperture ratio of the lens, (f/d), and M is the system 

magnification. Using the notation of this thesis the maximum permissible 

surface t i l t angle i s given by 

d 
6y < — (3.33) 
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4. CALCULATION OF DISPLACEMENTS AND STRAINS. 

4.1 Preliminary Remarks 

The objective of Chapter 3 was to derive an expression n(y,z) 

describing the fringe pattern due to a general deformation of a specimen 

surface. The objective of this chapter is just the opposite, namely, the 

derivation of various methods of calculating the unknown surface deformation 

from a given pattern. 

When DASC or DASSC is used to record the deformation of the specimen 

surface, the end product is a photographic recording or recordings, showing 

a fringe pattern superimposed on the specimen surface. This fringe pattern 

is in fact "our" function n(y,z). When testing materials, a reseacher 

usually has some knowledge about the size of displacements and strains that 

are li k e l y to occur during the testing. This knowledge may come from the 

theoretical considerations of the test, from direct measurements, or from 

similar testing done previously by the reseacher. Knowing that the two 

cameras form fringes according to equations (3.20) and (3.26) and having 

some knowledge about the specimen deformation, the reseacher is able to 

assign numerical values to the fringes that make up the fringe pattern. 

Often this i s a t r i a l and error procedure and, usually, only the fringe 

centers are numbered and located; i f a continuous n(y,z) is desirable, 

a suitable curve f i t t i n g technique may be used. Alternatively, n(y,z) may 

be determined with reasonable accuracy at any point on the surface with the 
2 

knowledge that the fringe density variation is close to the cos type of 

variation. In any case, n(y,z) must be uniquely "numbered" by the 

reseacher before any calculations of the unknown surface displacements and 

strains are attempted. 

It i s desirable to be able to determine the specimen deformation using 

the smallest possible number of photographs. It w i l l be shown that usually 



i g . 4.1 Normal view of the aperture plane. 

Fig. 4.2 Normal view of the specimen showing coordinate 
systems y,z and y±,z± . 
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no more than three photographs obtained by DASC or DASSC are needed, and 

in certain cases of specimen deformation only one or two photographs are 

sufficient. The calculation of the surface displacements from the 

photographs obtained by DASC w i l l be discussed f i r s t and then calculations 

involving the use of DASSC w i l l be considered. 

4.2 Use of DASC to Measure General Deformation 

The fringes are formed by DASC according to equation (3.20) which 

relates the in and out-of-plane surface displacements u(y,z),y(y,z) and w(y,z) 

to the fringe pattern function n(y,z). 

n(y,z) = Axs 

;7 U + V - W (3.20) 

Treating n(y,z) as a known function, we wish to determine the unknown 

displacements u,v ,and w. Since u,v and w are independent, three independent 

equations like equation (3.20) are required to provide a unique solution. By 

varying the parameters D,X and x g we can obtain different patterns n(y,z); 

however, these would a l l be linearly dependent. One possible way of 

producing three independent patterns n(y,z) is to "photograph" the specimen 

deformation with a camera having three aperture sets with different rotations 

in the y,z plane-as is shown in Fig. 4.1 . 

The surface displacements and the three fringe patterns obtained by 

recording the specimen deformation through the three sets of apertures are 

related by equation (4.1). 

y * y * z • 
^ u i(y i,z i) + v 1 ( y 1 , z 1 ) - w i(y i,z 1) = - -^f~ n i ( y i > z i ) ( 4- 1) 

i = 1,2,3 
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In equation (4.1) Uj ,vx , and wx are the three components of the displacement 

vector along the x,yj , and zl axes, and similarly u 2 ,v2 , and w2 are the 

displacement components along the x,y 2 , and z 2 axes and so on. is the 

aperture separation D for the case where (j) = (j)̂  . From Fig. 4.2 i t i s 

apparent that the coordinate systems y,z and y-̂  , z^ are related as 

y^ = y costj)^ + z sincf)^ (4.2a) 

z^ = - y sincj)^ + z coscj)^ (4.2b) 

At the same point on the specimen surface the displacement components u^ ,v^ , 

and ŵ  are related to the components u,v and w by 

u i(y i,z i) = u(y,z) (4.3a) 

v i ( y 1 , z 1 ) = v(y,z)coscj)i + w(y, z)sin<j>± (4.3b) 
w i ( v i > z i ) = ~ v(y,z)sin<j)i + w(y, z)cos§± (4.3c) 

where the (y^z^) are related to (y,z) by equations (4.2a) and (4.2b). 

Substitution of equations (4.2) and (4.3) in equation (4.1) yields 

a ±u(y,z) + b ±v(y,z) + ciw(y,z) = N ±(y,z) i = 1,2,3 (4.4) 

where a^ ,b^ ,c^ , and N-̂  are defined as 

Yi a i = — (4.5a) A s 

y i z i 
b ± = c o s ^ +—72- s i n ^ (4.5b) 

s 
y i z i 

c i = s l n <J>i - -T72— cosa)± (4.5c) 
x s 

Xx s 

N i ( y ' z ) = - ~tfT n i ( y i > z i ) (4.5d) 
i 

where, again, the (.y±>z±) are related to (y,z) by equations (4.2). Provided 

the determinant of the coefficients of the set of equations (4.4) is not 



equal to zero, the set may be solved for the unknown displacements u,v, and 

w for any value of (y,z). Thus, a minimum of three photographs must be 

taken and processed to obtain three fringe pattern functions n^(y,z) to 

determine the general three dimensional surface deformation. 

When the deformation of the specimen i s of a special nature, such as plain 

strain deformation where the out-of-plane displacement vanishes, i t may be 

possible to determine some displacement components from only one or two 

photographs. The examination of some of these special cases follows. 

4.3 Use of DASC to Measure Plane Strain and Plane Stress Deformation 

Under these circumstances the out-of-plane displacement u of the 

specimen surface is zero, or so small compared to the in-plane displacements 

that i t does not contribute significantly to the formation of fringes, and 

the term a^u in equation (4.4) may be neglected. Then, only two photographs 

of the deformation are required through two sets of apertures rotated by $l 

and (j> ; v(y,z) and w(y,z) may be solved from equation (4.6) 

b iv(y,z) + c i W(y,z) = N ±(y,z) i = 1,2 (4.6) 

If the magnitudes of the in-plane displacements v^ and ŵ  are of the same 
1 , 1 W-j over most of the specimen surface being 

y-j ZA 
photographed, the term j ,

2
A w-̂  may be neglected, and v. can be determined 

x s 1 

from a single photograph taken by DASC using one set of apertures rotated 

by <J>̂  . With terms involving u^ and ŵ  neglected, equation (4.1) becomes 

vi ( y i . z i ) = - n i ( y i > z i ) (4.7) 

It is obvious that v^ is given by equation (4.7) with the absolute error 
y± y±z± 

equal to the sum of the — un- and ~— w,- terms. If this absolute error is 
A S A S 



Fig. 4.4 Rotated coordinate system. 
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acceptable equation (4.7) should be used, with the understanding that i t 

may result in large relative errors at those points of the specimen surface 

where v^(y£,z^) i s small or zero. 

While equation (4.7) relates v^y^>z^) t o n^(y^z^) nothing i s 

determined about the other two displacement components u^(y^,z^) and w^(y^,z^). 

For the important case of ty^ = 0° equation (4.7) becomes 

v(y,z) - - - — n(y,z) (4.8a) 

If w(y,z) i s to be determined, rather than v(y,z), an aperture set rotated 

by ty = 90° is used and w(y,z) is determined from 

w(y,z) - - n(y,z) (4.8b) 

This time the displacement components u(y,z) and v(y,z) remain undetermined. 

Similar considerations pertaining to accuracy that were made about 

equation (4.7) apply to equations (4.8a) and (4.8b). 

4.4 Use of DASC to Measure Out-of-Plane Bending 

The out-of-plane bending of the specimen surface is usually accompanied 

by small in-plane displacements. If these displacements contribute negligibly 

y±z± 
— 2 - w i(y i,z i) 

x 
- u i(y i,z i) » |v i(y i,z i) to the formation of fringe patterns, that is i f 

over most of the specimen surface being photographed, the 

two terms involving v^ and ŵ  may be neglected in equation (4.1). Under these 

circumstances one can determine the out-of-plane displacement f i e l d quite 

accurately from one photograph of the specimen surface, by using DASC having 

a set of apertures rotated by ty = ty^_ . With the terms involving v^ and ŵ  
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neglected, equation (4.1) reduces to 

y i _ N „ * xs u i(y i,z i) = - — r n i(y i,z i) (4.9) 

y • 
The term — u±(y±,Zj) is given by equation (4.9) with the absolute error 

x s 
Y i z - i 

equal to the sum of the two neglected terms v^(y^,z^) and 2 w^y^z^) , 
y * 

This may again cause large relative errors in the calculated — u-^(y^,z^) 
x s 

term in those regions of the specimen surface where this term i s small or 

equal to zero. From equation (4.9) u^y^, z^) i s calculated as 

Ax2, n,- (y-:, z-j ) 
u i(y i,z i) - - lKyx' ± J y + 0 (4.10a) 

D i Yi 

Equation (4.10a) relates the out-of-plane displacement f i e l d u^(y^,z^) to 

the fringe pattern function n ^ y ^ j Z ^ ) . The in-plane displacements v^ and ŵ  

remain undetermined. Due to the peculiar form of equation (4.10a), a small 

error in n^(y^,z^) may cause a large error in the calculated u^ when y^ is 

small. 

For the case of <j> = 0° equation (4.10a) becomes 

Ax 2 n(y,z ) 
u(y.z) = - — - — y^o (4.10b) 

Equation (4.10b) relates the out-of-plane displacement f i e l d u(y,z) to the 

fringe pattern function n(y,z). The in plane displacements v and w remain 

undetermined. Similar considerations pertaining to accuracy that were made 

about equation (4.10a) apply to equation (4.10b). There are certainly other 

"special" cases where one or two photographs taken by DASC may be used to 

calculate some components of the specimen deformation. However, the general 

case and the two special cases ought to demonstrate sufficiently the use of 
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DASC as an experimental testing device. To test the validity of equation 

(3.20) and get the "feeling" for DASC several experiments were performed with 

a known specimen deformation. These experiments and the numerical results 

obtained from the photographs taken by DASC are presented in Chapter 6. 

4.5 Use of DASSC to Measure Specimen Deformation - Theoretical Considerations 

The fringes are formed by DASSC according to equations (3.26) or (3.29), 

depending on the size of the lateral shear used. We shall restrict our 

attention to the more practical case of Ay g > D s g , for which equation (3.26) 

is applicable. 

n(y,z) = - D y y z 

U + V 2~ w 

A X S [xs X S 

— — - COS0 V 

xc y 

Ay£ 

z 

(1 + COS9 X)u,y -

COS0, w 'y (3.26) 

Equation (3.26) relates the surface displacements and strains to the fringe 

pattern function n(y,z) and for Ay s = 0 , i t reduces to equation (3.20) . 

Equation (3.26) may be written in the form similar to equation (4 .1 ) as 

y yz Ay sX s 

— u + v 5- w -I 
x s x| D 

(1 + cos0 x)u,y -
Ay sX £ y - YA 

x s 

- cost v, 

Ay sx s 

- cost 
X X c 

w *y n(y,z) (4 .11 ) 

A set of apertures rotated by cj)̂  with respect to the y,z coordinate system 

produces a fringe pattern according to 

x s 

y i z i 
u i + v i " — X" w± + 

AysjXsi n , n n e f l , „ Ay s lX s i 7 * (1 + c o s 0 x i ) u i > y i -

COS0yi A y s i x s i 
' u y i - cost Z l WH-

I J y i 
^ X s i , . — — ni(yi,zi) D? 

y i - yAi 
x s 



This may be written in a more compact form as 

A i u i + B i v i + c i w i + D i u i > y i + Fi vi»yi + H i w i > y i = N i ( y i > z i ) (4.12) 

where the coefficients H-̂  are defined as 

Ai = Yi 

B • = 1 

C-; = - y-i z 
1 1 

D i = M 1 + cos0 x i) 

y i - y A i l 
F i = S i 

Hi = S ± 

COS0 
y i 

cosfc)zi - Xc 

N-; = -

and S^ is defined as Si = 
A y S i x

S i 
D? 

In Appendix T i t is shown that, when a l l quantities in equation (4.12) are 

transformed in the y,z system, equation (4.12) becomes 

a ±u + b ±v + c-jw + d ±u, y + e.jU, z + fj^v, + 

+ 8 i V , z + h±w,y + k±w,z = N ±(y,z) (4.13) 

In equation (4.13) the coefficients a i,b i,c i are given by equation (4.5) and 

the coefficients d^,....,^ are given by 

d-̂  = S^(l + cos0 xi) cos(j)£ 

= S^(l + cos0 xi) sincfi^ 
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= S^ [ ( r - c o s 0 z i ) sintjj^ - (s - c o s 0 y i ) cosdpj coscj^ 

S i = S i [ ( r " c o s 0 z ± ) s i n d ) : L - (s - c o s 0 y ± ) coscjjj sln<$>± 

hj_ = - S-^[(r - cos0 z^) coscj)-}. + (s - cosGy-^) sin<J>jJ cosc^ 

kj_ = - S±\_(* - cos0zi)coscj)i + (s - cos6 y^) sind)-jj sind)̂  

N ± = - — 5 5 - niCyi.Zi) 
Di 

z i 
w i t h r and s defined as r = — 

x s 

x s 

Due to a l a c k of equipment or for other reasons a s i t u a t i o n may a r i s e where 

the specimen i l l u m i n a t i o n i s i n the x,y plane, i . e . 9 Z=90° and c o s 0 z = 0 . 

For t h i s s p e c i a l , but important, case of specimen i l l u m i n a t i o n the 

c o e f f i c i e n t s f ^ g ^ j h - j ^ k ^ reduce to the f o l l o w i n g simpler forms as i s shown 

i n Appendix U. 

f x = S-£(rsin<J>-£ - scoscj)^ - sin0 x^)costj)^ 

g^ = Ŝ Crsincj)-̂  - scoscf)̂  - sin0x£)sincj^ 

h± = - S£(rcos(j>i + ssincj)i)cosc})^ 

k^ = - S-̂ (rcos(J)£ + s.sind)̂ )sincj)̂  

Since Yi Z i < -jr , . i t i s obvious that the c o e f f i c i e n t s h^ and k^ w i l l 5 

probably be very small ( e s p e c i a l l y near o r i g i n ) when compared to the other 

c o e f f i c i e n t s , consequently, the DASSC using the in-plane i l l u m i n a t i o n w i l l 

be r e l a t i v e l y i n s e n s i t i v e to the s t r a i n s w,y and w,z . 

There are three displacements and s i x s t r a i n components i n equation (4.13) 

and, i f the specimen deformation i s general i n nature, a l l nine terms 



contribute significantly. Equation (4.13) may be solved in two possible 

ways. One way is to regard strains and displacements as mutually 

independent and, consequently, nine equations (photographs) are needed to 

solve for the unknowns. The other way is to take advantage of the fact that 

equation (4.13) is really a set of partial differential equations and, i f 

the required boundary conditions are readily available, a set of three 

equations (photographs) is sufficient to solve for a l l nine unknowns. The 

most advantageous approach to solving equation (4.13) depends greatly on a 

particular test situation but, in general, the f i r s t "algebraic" method of 

solving equation (4.13) should be undertaken only for special cases, and when 

there is no point or line of known displacements (boundary condition) on the 

specimen surface. When there is a point or a line of known displacements on 

the specimen surface the second method should be used. 

4.6 Use of DASSC to Measure General Deformation (Algebraic Solution) 

Nine independent equations (photographs) could be obtained by using a 

number of aperture sets of different inclination to the y-axis and by using 

different illuminating beams associated with each aperture set, etc. In 

principle, the resultant set of nine independent equations (4.13) could be 

solved for the nine displacements and strains; however, because of the 

unavoidable errors in the determination of the camera parameters and in the 

location of the fringes, this method of solution of equation (4.13) is so 

inaccurate as to be of l i t t l e practical use. The method is reasonably 

accurate only when the specimen deformation is of a special kind, or only i f 

the strains along a particular direction are to be calculated, since under 

such circumstances fewer photographs need to be "taken" and processed. 

Using three aperture sets inclined by the same angle cj) to the y-axis, 

three illuminating beams, each assoc iated with one aperture set, and two 



photographic plates in series, one may calculate the three strain components 

from four photographs. Three of these photographs are recorded on one photo

graphic plate and one photograph i s recorded on the other plate. Fringe 

patterns in these photographs satisfy equation (4.12) as 

R(y i,z 1) + D - jU j.yj + F - j V j . y j + H i W l, y i = N i(y 1,z 1) i = 1,2,3,4 (4.14a) 

Equation (4.14a) may be solved for the three strains and the "displacement 

sum" R(y ,z 1) defined as 

R(y1,z1) = A j U l + B J V J + C L W J 

When the illumination is in the x,y plane and the aperture sets are in the 

d) = 0° position, the camera i s insensitive to w and w,y for small values 

of z; i f the term Ĥ ŵ ,̂  i s negligible, equation (4.14a) reduces to 

R(y,z) + D ±u, y + F ±v, y = N ±(y,z) i = 1,2,3 (4.14b) 

Equation (4.14b) may be solved for the two strains u, y , v,y and the 

"displacement sum" R(y,z) from three independent photographs, with the 

absolute error being most lik e l y of the same order as the terms that were 

neglected. 

4.7 Use of DASSC to Measure Plane Strain and Plane Stress Deformation  

(Algebraic Solution) 

In the case of plane stress or strain where |ux| << |vx|,|wx|, and V j 

and Wj are such that |v x| » y i z i w. over most of the specimen surface 
x s 

being photographed, the displacement sum R(y 1,z 1) to v r Therefore,'in 

addition to the three strains, a reasonably accurate v J ( y 1 , z 1 ) is also 

calculated by solving the set of four equations (4.14). If the magnitudes 

of the in-plane strains are of similar order such that |v,y| > |w,y|, and 

i f the illuminating beams are in the x,y plane and the aperture set rotations 



(J) are equal to zero, the term H^w,y i s so small that i t may be neglected 

and equation (4.14b) i s then c l o s e l y approximated by 

v + D i U, y + F ± v , y = N ±(y,z) 1=1,2,3 (4.15) 

In t h i s case, three independent photographs are s u f f i c i e n t f o r the so l u t i o n 

of v,u, y , and v , y . At those points of the specimen surface where v,v, y 

or u,y are small or zero, these v a r i a b l e s w i l l be calculated from equation 

(4.15) with a large r e l a t i v e error, but are l i k e l y to be determined every

where with an acceptable absolute error. 

4.8 Use of DASSC to Measure Out-of-Plane Bending (Algebraic Solution) 

In t h i s case of specimen deformation the out-of-plane displacements and 

st r a i n s are usually much larger than the in-plane displacements and s t r a i n s , 

so that 
I v . I . I v . z . I 

(except f o r y small) 

K'yil » K'yil ' K'yJ 

and equation (4.12) may be c l o s e l y approximated by 

A i u i + D i u i > y i = N i C y ^ Z j ) 1 = 1» 2 

» 1 v I , y i z i 
— 3 - U » 1 v I , - w x 1 

x s 
i i i » x s 

(4.16) 

:om By using two independent photographs, one may calculate• u 1 and U j j y j frc 

equation (4.16) with the absolute error being probably of the same magnitude 

as the terms that were neglected. Due to the pecu l i a r form of the 

c o e f f i c i e n t Â , a large error i n u t should be expected where yx i s small. 

4.9 Use of DASSC to Measure General Deformation 

The main purpose of deriving equation (4.13) was to show that a photo

graph taken through a set of rotated apertures displays a fri n g e pattern 



which is due to a combination of the three displacements u,v, .and w and 

the partial derivatives of these displacements with respect to both y and z. 

By using three aperture sets, each with different rotation cf) , and by using 

three illuminating beams (at least one of them not in the x,y plane), three 

independent photographs may be obtained. If there is a line of known 

displacements u,v, and w (boundary condition) on the specimen surface i t i s 

possible, in principle, to solve the set of equations (4.13). For this the 

fi n i t e difference equations w i l l be used. 

The forward f i n i t e difference analogs for f i r s t order derivatives are 

u, y(y,z) = 
u(y + A»z) ~ u(y,z) 

A u, z(y,z) = 
u(y,z + A) - u(y,z) 

where A-is the grid spacing in both y and z directions. By replacing the 

partial derivatives with these f i n i t e difference analogs equation (4.13) 

becomes 

A 
^ i 
A J 

u(y,z) + u(y + A,z) + u(y,z + A) + 
A A 

= N ±(y,z) i = 1,2,3 (4.17) 

If the displacements u,v, and w are known, for example, along the line z = z 0 

then the displacements may be found row by row from 

e ±u(y,z + A) + g ±v(y,z + A) + k±w(y,z + A) = 

N i " ( a i A _ d i " e ±)u(y,z) - i = 1,2,3 (4.18) 

: i §i k ] 

g, k 2 

e 3 § 3 k-3 

* o 

Similar equations could be written for the case of the boundary condition 

being a line y = y 0 or an inclined straight line. A set of three photographs 



obtained by a computer simulation of the DASSC was solved by using equation 

(4.18) and i t was found that solution tended to diverge rather quickly with 

increasing distance from the boundary condition line. In contrast to this, 

a f i n i t e difference scheme based on equation (4.12) was found to be much 

more accurate and only slowly diverging. As equation (4.12) involves 

partial derivatives with respect to y only, the integration starts at a 

point on the boundary condition line and progresses away along a line 

z^ = constant as i s shown in Fig. 4.4 . 

The partial derivatives in equation (4.12) are replaced by their backward 

difference analogs and, with these, equation (4.12) may be written as 

(A±A + D i ) u i ( y 1 , z 1 ) + (B ±A + F i ) v 1 ( y 1 , z 1 ) + 

(C-jA + H i)w 1(y 1,z 1) = R± i = 1,2,3 (4.19) 

where R̂  i s defined as 

R i = N i ( y 1 , z 1 ) A + D-jU^yj - A, Z l) + Fiy1 (y x - A,z x) + H ± W l (y : - A, Z l) 

(AjA + Dj) (BjA + F,) (C,A + Hj) 

(A2A + D2) (B 2A + F 2) (C 2A + H2) 

(A 3A + D3) (B 3A + F 3) (C 3A + H3) 

* 0 (4.20) 

To satisfy equation (4.20) three illuminating beams are needed and the 

DASSC shutter must have three sets of apertures inclined at the angle cf> 

with respect to the y axis. The advantage of this approach is that the 

boundary condition line C need not be straight and, since the f i n i t e 

differences are along a line, i t is possible to vary line spacing as well. 

A further advantage of this approach i s the smaller size of the equations 

and the fact that a l l three coefficients D̂ , F^, and may be adjusted 

to be of the same magnitudes by a suitable choice of the aperture 
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rotation angle <$>1 . The programming of this scheme is also simple. 

If some of the displacement fields u,v, and w are known or determined by 

other means, the terms containing the known displacement and i t s derivative 

are put on the right side of the equations and the reduced set is then 

solved; for example, i f u i s known, equation (4.19) is reduced to 

(B.jA + F i ) v 1 ( y 1 , z 1 ) + (C-jA + H i)w 1(y 1,z 1) = R± 1=1,2 (4.21) 

where R̂  is now defined as 

Ri = N i(y 1,z 1)A - A-iAujtyj .Z j ) - D iAu 1 , y i (y 1 , zj + Fiy1(y1,z1) + Riy1(y1,z1) 

(B:A + F J (CjA + Hx) 

(B2A + F 2) (C2A + H2) 
/ 0 

Once u ,v and w1 are found over the specimen area these displacements may 

be transformed into the y,z coordinate system to u,v and w , and through 

numerical differentiation (using central f i n i t e differences for example) the 

strains u,y ,u, z w,z are obtained. 

There may be other methods or choices of DASSC parameters which would 

permit solution of either equation (4.12) or equation (4.13) for a general 

case of deformation but, before any of these methods are used, their 

sensitivity to the inaccuracies in measurement of DASSC parameters and fringe 

locations should be established. In practice, the fringe locations and the 

size of DASSC parameters may be determined with only a limited accuracy, 

a fact which may make some numerical schemes rather useless. 

4.10 Use of DASSC to Measure u,u,y ,v, and v,y from Two Photographs 

When a specimen illumination is in the x,y plane and the aperture sets 

are at zero inclination to the y-axis ((J) = 0°), the terms in equation (4.12) 

involving w and w,y are often so small that they may be neglected (especially 
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for z small) and i t is then possible to solve for u and v from two independent 

photographs as follows: 

^- u + v - 1̂ w + d j U , y + f-jv, y + hjV y = Nj j = 1,2 (4.22) 
\ - 0 • \ - 0 

Replace equations (4.22) by a set of f i n i t e difference equations, using the 

forward f i n i t e difference analogs of the f i r s t derivatives which may be 

written, using f i n i t e difference notation as 

_ u i + l ~ u i _ v i + l ~ v i 
u ' y i A V ' y ± A 

With these analogs equation (4.22) becomes 

y i I . , u i + l ~ u i , f
 v i + l ~ v i „ , _ i n ( , 0 ^ — u ± + v ± + d-j + f j = Nj 3 = 1,2 (4.23) 

Equation (4.23) is solved for the unknowns U i + x and v^ + x 

" i + 1 = U 1 ± + U 2 ± U i + U 3 . V i 
(4.24) 

v i + i = v i i + V 2 i U i + V 3 i v i 

where the coefficients U ji V 3 i are given by 

U 1 ± = - r ( N 1 f 2 - N 2f x) V 1 ± = r(N xd 2 - N 2d x) 

U 2 i = - r ( f x - f 2) Z i + 1 v 2 ± = r ( d : - d 2) | i 
s s 

U 3 i = - - f
2 ) V 3 i = r ( d X - d 2 ) + 1 

with r defined as r = A / ( f x d 2 - f 2 d x ) 

In equation (4.24) the coefficients V 3 i are evaluated at y = y i . 

If, at some point y = yj , both displacements u and v are known, then u and 



v may be found elsewhere by starting at this point and evaluating the 

displacements at the point y = yj + 1 by using equation (4.24). This pro

cedure, is repeated until'.the displacements at a l l points to the right of 

are found. To find the displacements to the l e f t of yj one must solve 

equation (4.23) for u^ and v^ 

u i = H i i + H 2 i u i + i + U 3 i v i + i 

v i = I i i + li±u± + l + I s i v i + l 

where the coefficients IJ ̂  are given by 

(4.25) 

U 1 ± = s|N2(A - fj) - N,(A - f 2 ) 

U 2 i = s d, - d, + 

l 3 i = s ( f x - f 2 ) 

- i i = s - N, A x0' - d, 

v 2 i " S ? " ( d l " d2> 
X S 

n 
V 3 i = s 

with s defined as s = 1/ + d i " d 2 " ( f i - f
2 ) 

In equation (4.25) the coefficients V_3± a r e evaluated at y = y^ 

By setting i + 1 = j the displacements to the l e f t of y.. are found by 

successive applications of equation (4.25). 

In the actual experimental work a situation may arise when the two 

displacements u and v are known at two different locations; for example, 

u is known at y = yj and v is known at y = . This case is handled as 

follows: 

At point i + 2 equation (4.24) becomes 

U i + 2 = U l i + 1 + U 2 i + l U i + 1 + U 3 i + l V i + 1 

= ( U n + i + U 2 i + i U 1 ± + u 3 i + 1 v l i ) + ( u 2 i + l U z i + u 3 i + l V 2 i ) u 

+ ( U 2 i + l U 3 i + U 3 i + l V 3 i > V 
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and a similar expression could be written for + 2 . This process i s 

repeated n times until i + n = k whereupon we get 

u i + n = uk = U i k - i + U 2 k - i u i + U 3 k - i v i 
(4.26) 

v i + n = vk = V i k _ ! + V 2 k _ l U ± + V 3 k _ l V i 

The coefficients U l k _ x . V 3 k _ j are obtained by repeated use of the 

recursion relationship between coefficients + x and U ^ > V \ ± t ^ z ± + l » 

V 2£ + j and so on. From equation (4.26) i t i s possible to solve for any 

of u^ ,v^ ,u k , or v^ i f any two of these are known and, once two 

displacements at the same point are determined, displacements u and v may 

be calculated elsewhere by using equations (4.24) and (4.25). The slopes 

and strains may then be calculated numerically by using the central f i n i t e 

differences 

=
 u i + i ~ u i - i =

 v i + i ~ v i - i 
U ' y i 2A 'y 1 2A 

If the out-of-plane displacement u i s small, i t is possible to solve 

equation (4.22) for v and v, y as follows: 

y 
— u + v + d l U , + f v, = N 

7 7 (4.22) y — u + v + d 2u, y + f 2 v , y = N 2 

By multiplying the f i r s t equation by d 2 and the second equation by (-dx) and 

adding the two equations "we get 

(d 2 - d l ) u + (d 2 - d l ) v + ( f x d 2 - f 2 d l ) v , = N j d 2 - V 2 

s 

By choosing the parameters of DASSC such that the term |d2 - d J| is as small 

as possible and the term | f 1 d 2 - f 2& l \ i s as large as possible, we may 

closely approximate the above equation by 



(d 2 - d x)v + ( f j d 2 - f 2 d j ) v , = N xd 2 - N 2d t 

which may be written as 

with p(y) and q(y) defined as 

v, y + p(y)v = q(y) 

p(y) = 

q(y) = 

d 2 - d t 

f x d 2 - £ z d l 

N i d 2 - N2d,  

f l d 2 - f 2 d , 

(4.27) 

f i d 2 " f 2 d i * 0 

Equation (4.27) is an ordinary, f i r s t order differential equation with a 

variable coefficient; i t s solution [63] i s 

v(y) = 
1 

y(y) /y(t) q(t) dt + y(y 0)v(y 0) 
v y 0 

(4.28) 

where y(y) is the integrating factor y(y) = exp /p(t) dt 

In equation (4.28) v(y Q) i s a known displacement v at one point on the 

specimen surface on the line (z = z Q = constant) upon which v(y) is sought. 

Once v(y) isfound, the strain v, y(y) may be obtained by the numerical 

differentiation of v(y) or calculated from equation (4.27). After v and 

v,y are determined, the two remaining quantities u and u,y are found from 

equations (4.22). 

4.11 Use of DASSC to Measure Out-of-Plane Bending 

In the cases where the out-of-plane displacements and strains are much 

greater than the in-plane displacements and strains, equation (4.16) is 

again applicable. Equation (4.16) may be written in the standard form 

given by equation (4.29) and, since equation (4.29) is of the same type as 

equation (4.27), i t i s also solved in the same way, with the solution 

given by equation (4.30). 
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u i »yi + Pi ( y i ^ u i = ^ 1 <yi> (4.29) 

where P ^ y ^ and q^Yj) are defined as P I ( Y I ) = 

T>1 + 0 

u^y,) = 
U i ( y x ) 

y i 
/ y 1 ( t ) q 1 ( t ) dt + y x ( y 1 0 ) u 1 (y 1 0) 

v y i o 
(4.30) 

where the integrating factor P^Yj) is given by ^ 1 ^ 1 ) = e xP / Pi( f c) dt 
Yi 

In equation (4.30) u 1 ( y 1 0 ) i s the known out-of-plane displacement u x at y 1 0 

on a line (z x = z = constant) in the rotated coordinate system y 1 , z 1 where 

u 1(y 1) is being sought. 

If the out-of-plane displacement at one point of the beam surface is not 

available then two photographs are necessary for an approximate solution of 

U j and u 1 > y l . If we use two sets of apertures at <j> = 0°, the two fringe 

patterns are given by equation (4.13) as 

y y z 
— u + v - — w + dj_u,y + f;jV, v + h £ W , v = N-£ i = 1,2 (4.31) 

If the second of these equations i s subtracted from the f i r s t we get 

(d x - d 2)u, y + (f j - f 2 ) v , y + (h x - h 2)w, y = Nx - N 2 

By an appropriate choice of the DASSC parameters the term | (d1 - d 2)u, y| may 

be made much larger than the other two terms, and an approximate value of u,^ 

is then given by equation (4.33): 

i f |(dj - d 2)u, y| » \(f1 - f 2 ) v , y | , | ( h 1 - h2)w,; (4.32) 
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u »y ~ d 1 - d 2 ± 0 (4.33) 

Once u, y is calculated by using equation (4.33) i t i s substituted back in 

equation (4.31) and an approximate solution for u (except near the origin) 

In some tests, the out-of-plane bending of the specimen may be 

accompanied by quite large in-plane displacements and strains of i t s 

illuminated surface. By the use of specimen illumination in the x,y, plane 

and the aperture sets rotated by a) = 0° the camera is made insensitive to w 

and w,y and, consequently, the terms involving w and w,y in equation (4.12) 

are often negligible. When this i s the case, equation (4.12) reduces to 

equation (4.22), the solution of which was derived and discussed in 

Section 4.10 . 

4.12 Use of DASSC to Measure Plane Stress and Plane Strain Deformation 

When the specimen deformation i s of the plane stress or plane strain 

type, the out-of-plane displacement component u^ is usually very small or 

zero. If the terms involving u^ and i t s derivative(s) are so small that 

they do not contribute significantly to the fringe formation, these terms 

may be neglected in equations (4.12) and (4.13), and the displacement 

components v^ and ŵ  can be determined from only two photographs. These 

photographs could be obtained, for example, by DASSC with two illuminating 

beams, each beam being used with one of the two aperture sets which are 

rotated by the same angle (J)̂  . Use of the f i n i t e difference scheme 

discussed in Section 4.9 allows v x and wx to be calculated from equation 

(4.21) with U j and U j j y j set equal to zero. 

As mentioned in Section 4.10, when the specimen illumination is in 

the. x,y plane and the aperture sets are in cj)̂  = 0° position, the terms in 

is found by neglecting small terms involving v,v »y >w> w, and w 



equation (4.12) involving w and are often negligible; and, when i t i s 

possible, equation (4.12) with the u, u, y ,w, and w,y terms neglected 

reduces to 

V + f f V j y = Ni 

which may be written as v, y + p(y)v = q(y) (4.34) 

where p(y) and q(y) are defined as p(y) = f~ 
i 

,w - f 
E i 

Equation (4.34) is of the same type as equation (4.27) and, hence, i t is 

solved in the same way, with the solution given by equation (4.28) and the 

integrating factor given by 

y(y) = exp / P(t) dt 

Unfortunately in most practical testing, while i t is often possible to 

neglect the terms involving w and w,y , the term d i U , y is not sufficiently 

small and may not be neglected. If this i s the case, equation (4.12) 

reduces to equation (4.22), the solution of which was discussed in 

Section 4.10. 
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In the f i r s t part of this chapter the various apparatus used in the 

experimental work is described and discussed in the following-order: 

the camera; the recording system; the f i l t e r i n g system; the specimen 

loading systems; and f i n a l l y the various specimens themselves. The latter 

part of the chapter contains a description of the experimental procedure 

which was used. 

5.1 The Camera 

The photograph of the camera is shown in Fig. 5.1 and i t s schematic in 

Fig. 5.2 . The camera may function as either DASC or DASSC, depending on 

the position of the photographic plate upon which the specimen is imaged. 

The position of the photographic plate may be varied along the x-axis with 

the use of the adjustable slide. The sub-assembly of the photographic 

plate holder and the slide is shown in Fig. 5.3 . The slide, lens assembly, 

and shutter assembly are each mounted on in. diameter steel rods f i t t i n g 

into holes in the camera frame. These holes, spaced 1 in. apart, are along 

the f u l l length of the frame, and are located precisely in the centre of 

the frame to ensure the axial alignment of the camera components while 

allowing their mounting at desired heights and spacings. The lens assembly, 

uncorrected for spherical aberration, consists of three high quality lenses 

mounted in a tabular frame. The shutter assembly shown in Fig. 5.4 is 

positioned in front of the lens assembly and u t i l i z e s a rotating shutter 

to open or close various aperture sets as required in a particular experi

ment. The stationary part of the shutter assembly accomodates a number of 

interchangeable aperture plates each having apertures of various diameters. 

The camera enclosure is used to prevent any unwanted light from reaching 

the photographic plate. 



F i g . 5.1 Double aperture speckle shearing camera (DASSC). 
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F i g . 5.2 Schematic of DASSC. 
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Fig. 5 . 6 Recording system. 

Fig. 5 . 7 Filtering system. 
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Fig. 5.8, Schematic of the f i l t e r i n g system. -p-
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5.2 The Recording System 

A typical recording system is pictured in Fig. 5.6 and i t s schematic in 

Fig. 5.5 . The system consists of the camera, the optical components, the 

laser providing the specimen illumination, and the loading apparatus with 

the specimen. The camera was described in the previous section and the 

loading system w i l l be described in Section 5.4 . The laser used i s an 
o 

argon laser providing a source of coherent light of wavelength 5140 A 

delivered at a maximum continuous power of approximately .6 watts. The 

laser beam of approximately .1 in. diameter i s directed by the adjustable 

mirrors and divided by the beam splitters. Once the laser beam has been 

properly oriented, i t i s expanded by the beam expander and then collimated 

by a large diameter lens. Depending on the experiment, one or two specimen 

illuminating beams were obtained in this way. The purpose of the recording 

system is to produce one or two photographic plates storing information ' 

about the specimen deformation that took place between the two recorded 

exposures. The emulsion of the photographic plate, once i t is developed, 

contains two speckle grids, each corresponding to one exposure; as described 

in Chapter 3, the two speckle grids add and thus form a resultant grid of 

variable diffractive efficiency. 

5.3 The Filtering System 

Once the photographic, double exposure recording of the specimen 

deformation is made and subsequently developed, i t must be "processed" in 

the f i l t e r i n g system so that the various fringe patterns may be separated, 

displayed and recorded. The f i l t e r i n g system, shown in Figs. 5.7 and 5.8, 

uses again the laser as a source of light and mirrors to direct the laser 

beam. After properly oriented, the laser beam is expanded by the beam 

expander and, upon reaching a sufficient diameter, is made to converge 
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by use of a l a r g e l e n s . The photographic p l a t e c o n t a i n i n g the rec o r d i n g 

made by DASSC i s placed i n the converging l i g h t and, because i t contains 

a speckle g r i d , the re c o r d i n g d i f f r a c t s l i g h t i n a d i r e c t i o n depending on 

the speckle g r i d d e n s i t y and o r i e n t a t i o n . An opaque screen upon which the 

d i f f r a c t e d l i g h t orders are focused i s placed i n the f o c a l plane of the 

l e n s . A c i r c u l a r aperture i n the screen permits one of these d i f f r a c t e d 

l i g h t orders to pass through and be focused by the lens of the f i l t e r i n g 

system camera onto the f r o s t e d g l a s s where the specimen image may be viewed 

and recorded. As was mentioned i n the previous s e c t i o n , the speckle g r i d 

has v a r i a b l e d i f f r a c t i v e e f f i c i e n c y over the area of the recorded image of 

the specimen, and t h i s causes the i n t e n s i t y of the specimen image (formed 

by the d i f f r a c t e d l i g h t ) to vary i n some systematic manner. This l a s t image 

of the specimen (appearing on the f r o s t e d g l a s s ) i s , of course, the f r i n g e 

p a t t e r n n ( y , z ) . 

5.4 The Specimen Loading Systems 

In the experiments to be described i n s e c t i o n s 6.2 and 6.3, i n v o l v i n g 

the out-of-plane r i g i d body t r a n s l a t i o n and the in-plane r o t a t i o n of a 

p l a t e specimen r e s p e c t i v e l y , a Kinematic micro t r a n s l a t i o n t a b l e (model 

TT-102) coupled w i t h a r o t a r y t a b l e (model RT-200) was used to impose d i s p l a 

cements to w i t h i n an accuracy of ± .00025 i n . and r o t a t i o n s to w i t h i n an 

accuracy of ± .1 min. . The assembly w i t h the p l a t e specimen i s shown i n 

F i g . 5.9 . 

The schematic of the experimental apparatus used i n the out-of-plane 

beam bending experiments i s given i n F i g . 6.16 and i t s photograph i s shown 

i n F i g . 5.10 . Two C-clamps at each end of the beam were used to clamp i t 

to an aluminum channel of much greater bending s t i f f n e s s than the beam. A 

small c i r c u l a r hole was machined at the center of the channel so that the 
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Fig. 5.11 Schematic of the tensile loading apparatus. 



Fig. 5.12 Right side view of the loading apparatus. 

Fig. 5.13 Left side view of the loading apparatus. 



Fig. 5.15 Variable cross-section specimen. 
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micrometer t i p could contact and d i s p l a c e the center of the beam out of the 

plane by a known amount to w i t h i n an accuracy of approximately ± .00025 i n . 

I n a l l the remaining experiments (to be described i n s e c t i o n s 6.5 

through 6.7) the l o a d i n g apparatus shown i n F i g s . 5.11 , 5.12 and 5.13 was 

used. I t was designed so that adjustments of the specimen shape and 

p o s i t i o n could be made w h i l e the specimen was being subjected to as much as 

6000 l b s . of s t a t i c t e n s i l e a x i a l l o a d . The load was imposed by t u r n i n g the 

l o a d i n g nut which i n turn compressed a c o i l s p r i n g . The load was t r a n s 

m i t t e d to the specimen through a load s h a f t , p i n , and clamps which were 

constrained to move a x i a l l y by s t e e l b a l l s f i t t i n g i n t o V grooves made i n 

the frame and i n the s i d e of the clamps. Such an arrangement permitted an 

a x i a l movement w i t h a minimum amount of " p l a y " i n other d i r e c t i o n s . The 

l o a d i n g , however, o f t e n r e s u l t e d i n an unwanted a x i a l t r a n s l a t i o n of the 

specimen. This a x i a l t r a n s l a t i o n was monitored a t one p o i n t by a d i s p l a c e 

ment transducer (Fotonic Sensor) mounted on a kinematic t a b l e so that the 

Sensor probe could be kept a t a constant d i s t a n c e from the specimen s u r f a c e . 

By making adjustments w i t h the t r a n s l a t i o n c o n t r o l screw and observing the 

Fo t o n i c Sensor reading, we could zero out the a x i a l displacement of t h i s 

p a r t i c u l a r p o i n t . The i n i t i a l crookedness of the specimen or a small mis

alignment of the clamps a l s o caused a s m a l l l a t e r a l displacement of the 

specimen. This undesirable displacement was measured by a number of d i a l 

gages, shown i n F i g . 5.14, and minimized by adjustments made w i t h the l a t e r a l 

adjustment screws. In a d d i t i o n to the a x i a l t e n s i l e l o a d , the specimen was 

a l s o subjected to some bending caused by the asymmetry,of the l o a d i n g 

apparatus. To minimize t h i s bending deformation, a d i a l gage was used to 

measure the v e r t i c a l displacement of the centre of the supporting frame and 

t h i s displacement was then zeroed w i t h the bending c o n t r o l screw. Once a l l 

these adjustments were completed, the load increment and the instrument 



F i g . 5.17 T e n s i l e specimen w i t h the 
uniform c r o s s - s e c t i o n . 



Fig. 5.18 Wooden beam specimen. 
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readings were recorded and the second exposure of the specimen surface was 

made. 

5.5 Specimens 

A l l specimens, i n c l u d i n g the wooden beam were coated w i t h a f l a t white 

enamel p a i n t to provide a d i f f u s e l y r e f l e c t i n g s u r f a ce. D e t a i l e d d e s c r i p t 

ions of the specimens are i n Chapter 6; the p l a t e specimen used i n the 

experiments of s e c t i o n s 6.2 and 6.3 i s shown i n F i g . 5.9 and the remaining 

specimens are shown i n F i g s . 5.15 through 5.18 . 

5.6 Experimental Procedure 

The work performed i n a l l the experiments described i n Chapter 6 

fo l l o w e d , i n gene r a l , the same p a t t e r n whether DASC or DASSC was used. The 

experimental procedure can be o u t l i n e d i n the f o l l o w i n g steps: 

a) Using knowledge that the camera forms f r i n g e s according to 

equation (3.20) or (3.26) and having some idea about the s i z e of the s p e c i 

men deformation i n the intended t e s t i n g , the parameters of the camera were 

chosen so that a d e s i r e d number of independent recordings having d e s i r a b l e 

f r i n g e d e n s i t i e s could be made. 

b) The specimen was coated w i t h white enamel p a i n t to r e f l e c t the l a s 

l a s e r l i g h t d i f f u s e l y over the area of i n t e r e s t w i t h approximately the same 

i n t e n s i t y . I t was then clamped or attached i n the l o a d i n g apparatus which 

had been p r e v i o u s l y set up to accommodate the specimen. 

c) Various sensors and d i a l gages were p o s i t i o n e d and t h e i r i n i t i a l 

( f i r s t exposure) readings were recorded. With the use of a telescope w i t h 

dual c r o s s - h a i r s or some l a s e r alignment technique the center of the frame 

of DASSC was made to l i e i n the x,z plane of the specimen coordinate system. 

The o p t i c a l components that make up the camera were then mounted at the 
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required height and orientation so that they were aligned along the x-axis. 

An aluminum ruler coated with f l a t black paint and having scratch marks 

made at 1 in. increments was positioned next to the specimen (usually just 

below) so that i t s plane was coincident with the y,z plane. A frosted glass 

plate was inserted in the plate holder of the camera and the specimen with 

the ruler was illuminated by one of the collimated laser beams. The image 

of the specimen and the ruler made by light passing through a particular 

aperture set was viewed on the frosted glass, and the size of the lateral 

shear Ayi was adjusted by positioning the plate holder with the adjustable 

slide and observing the amount by which the bright images of the ruler 

scratch marks doubled. 

d) With both the room lights and the laser turned off and in the near 

or total darkness one or, i f desired, two photographic plates were inserted 

in the plate holder and the camera was then covered with the enclosure. The 

specimen was then illuminated by one illuminating beam at a time for the 

required exposure period at an appropriate shutter setting. Once the 

desired number of f i r s t exposures was made the laser was turned off and the 

specimen was loaded. After a l l the specimen adjustments described in 

Section 5.4 were made, the readings of the dial gages and other sensors were 

recorded. The specimen was again illuminated and the second exposures were 

made,using the same illuminating beams and shutter settings as in the f i r s t 

exposures. A l l exposures were usually of the same duration. 

e) The laser was turned off and the photographic plates were removed 

from the holder and developed according to manufacturers specifications. 

f) After development, the photographic plates were inserted in the 

f i l t e r i n g system (described in Section 5.3) where the fringe patterns cor

responding to the specimen deformation could be viewed and permanently 

recorded on the film. 
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g) The lateral shear Ay^ was measured on a traversing microscope 

either from the photographic plate or preferably from the film recording; 

using the film recording was easier because each recording had only one 

lateral shear corresponding to a particular aperture set. In contrast to 

this, the photographic plate contained a l l the images of the ruler scratch 

marks making i t d i f f i c u l t to identify and measure the various lateral 

shears. 

h) With the aid of a" microdensitometer the film negatives with the 

fringe patterns were scanned and, by scanning the image of the ruler too, 

i t was possible to establish the location of the fringes on the specimen 

surface. 

i) With the known fringe locations and DASSC parameters as the input 

data,an appropriate computer program was used to calculate the unknown 

specimen deformation. 
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6. EXPERIMENTAL WORK 

6.1 Preliminary Remarks 

This chapter consists essentially of two parts. The f i r s t part is 

devoted to the description and discussion of the results of a number of 

relatively simple experiments, the purpose of which was to verify 

experimentally the validity and accuracy of the equations governing the . 

fringe formation of DASC and DASSC. The second part of this chapter deals 

with several f a i r l y complicated experiments which served to test the 

f e a s i b i l i t y and accuracy of DASSC for measurement of displacements and 

strains in applications similar to those encountered in the practical 

testing of materials. In contrast to the other chapters, in this chapter a l l 

figures are placed at i t s end so that the continuity of reading may not be 

interrupted by their excessive number. 

6.2 Rigid Body, Out-of-Plane Translation of a Plate Specimen 

The purpose of this experiment was to verify the formation of fringes by 

DASC and DASSC due to the out-of-plane displacement of the specimen surface. 

For the r i g i d body, out-of-plane translation of the specimen surface, that i s 

for u = u Q , and for other displacements and strains being identically zero, 

both equations (4.4) and (4.13) governing the fringe formation by DASC and 

DASSC respectively reduce to 

a i u
0
 = Ni(y> z) (6.1) 

By using the definitions (4.5a) for a^ and (4.5d) for N^ , we may write 

equation (6.1) as equation (6.2) for DASC and as equation (6.3) for DASSC. 

ycoso)^ + zsina)i Xxs 

: — u Q = - •—n^ycoscj)^ + zsintj)^ , - ysincj)^ + zcoscj)^) (6.2) 

ycoscj)^ + zsinct^ XXg 

- u Q •= - — — n^ycoscj)^ + zsincj)^ , - ysinc})^ + zcostj)^) (6.3) 
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Two aperture sets, one rotated by 0° and the other by 90°, were used to 

photograph the out-of-plane displacements u Q of the plate. The plan view of 

the experimental setup for DASC is shown in Fig. 6.1 . 

One way to verify the fringe formation by the two cameras is to compare 

the predicted and actual fringe positions and spacings. From equations (6.2) 

and (6.3) the predicted fringe patterns for this experiment are given by 

,o D DASC: cj> = 0 n(y,z) = - u 0y (6.4a) 

* = 90° n(y,z) = - ^ | u 0z (6.4b) 

DASSC cf) = 0° n(y,z) = - J ^ J - u Qy (6.5) 

The DASC parameters for Experiment (Exp.) 19 (<$> = 0°) and for Exp. 22 

(<j> = 90°) were 

x & = 38 in. 

D = 2.5 in. 

u Q = .025 in. 

For these parameters the fringe patterns are calculated from equations 

(6.4a) and (6.4b) as 

Exp. 19: n(y,z) = - 2.164 y 

Exp. 22: n(y,z) = - 2.164 z 

Hence, for Exp. 19 the fringes are predicted to be parallel to the z-axis 

and spaced .462 in. apart, and for Exp. 22 the fringes are predicted to be 

parallel to the y-axis and also spaced .462 in. apart. The actual fringe 

patterns for these two experiments are shown in Fig. 6.2 and Fig. 6.4 . 

From the microdensitometer traces of Fig. 6.2 and Fig. 6.4 the actual 
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fringe spacing was found to be .45 in. in both cases, which is close to the 

predicted spacing of .462 in. To show a typical microdensitometer trace, we 

have presented in Fig. 6.3 the trace of the fringe pattern of Exp. 19 shown 

in Fig. 6.2 . 

The DASSC parameters for Exp. 17 and Exp. 18 (ty = 0°) were 

x g = 38 in. 

u Q = .025 in. 

Exp. 17: D = 1.25 in , Ay s = - .0257 in. , X s = 37.22 in. 

Exp. 18: D = 2.50 in. , Ay g = - .0453 in. , X g = 37.31 in. 

The fringe patterns are determined by equation (6.5) as 

Exp. 17: n(y,z) = - 1.105 y 

Exp. 18 n(y,z) = - 2.204 y 

Hence, for Exp. 17 the fringes are expected to be parallel to the z-axis and 

spaced .905 in.apart; for Exp. 18 the fringes are also expected to be 

parallel to the z-axis but spaced .454 in. apart. The fringe patterns for 

these two cases, obtained with DASSC, are shown in Fig. 6.5 and Fig. 6.6 

Note the "doubling" or "shearing" of lines and numbers in these two figures 

caused by the defocussing of the system. From the microdensitometer traces 

and after an appropriate scaling, the actual fringe spacing in Exp. 17 was 

found to be approximately .89 in., and in Exp. 18 the actual fringe spacing 

was found to be approximately .46 in. . Again the agreement between the 

predicted fringe spacing and the actual fringe spacing is acceptable. 

A computer program, WONLY.S, to calculate u from equations (6.4) and 

(6.5) was written; i t calculates u from data consisting of the parameters of 

DASC or DASSC and fringe center numbers and positions obtained from the 

microdensitometer trace. For example, the numerical data for Exp. 19 read 
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off Fig. 6.3 are given in Table 6.1 

Fringe Location (in.) Fringe Number 

- 2.56 5.50 
- 2.32 5.00 
- 2.06 4.5o 
- 1.88 4.00 
- 1.60 3.50 
- 1.40 3.00 
- 1.14 2.50 
- .94 2.00 
- .68 1.50 
- .50 1.00 
- .24 .50 

.04 .00 

.24 - .50 

.42 - 1.00 

.68 - 1.50 

.85 - 2.00 
1.14 - 2.50 
1.32 - 3.00 
1.60 - 3.50 
1.80 - 4.00 
2.02 - 4.50 
2.24 - 5.00 
2.48 - 5.50 
2.68 - 6.00 
2.96 - 6.50 

Table 6.1 Fringe data of Exp. 19 

The fringe function n i s approximated by a piecewise continuous cubic based 

on the above numerical data. For Exp. 19 this fringe function i s compared to 
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the f r i n g e f u n c t i o n p r e d i c t e d by equation (6.4a) i n F i g . 6.7 . The two 

fu n c t i o n s are i n good agreement and the a c t u a l d i f f e r e n c e between them i s 

shown by the t h i r d curve. This t h i r d curve has i t s o r d i n a t e on the r i g h t 

s i d e of the graph and the s c a l e of the " d i f f e r e n c e " curve i s u s u a l l y h i g h l y 

exaggerated. The reason f o r the exaggerated s c a l e i s that o f t e n the p l o t s 

of p r e d i c t e d and experimental ( i . e . obtained w i t h the use of DASC or DASSC) 

curves are so clo s e together that i t would be d i f f i c u l t to e s t a b l i s h the 

a c t u a l numerical d i f f e r e n c e between them. The p l o t of the displacement, 

u = u 0 v s . u, c a l c u l a t e d by WONLY.S i s shown i n F i g . 6.8 . Note that the two 

displacements are very c l o s e except near the o r i g i n where even a very small 

e r r o r i n the f r i n g e p o s i t i o n produces a l a r g e e r r o r i n the c a l c u l a t e d 

displacement. The reason f o r t h i s i s obvious from the form of equation 

Ax? n(y,z) 
u ( y , z ) = - - ^ — ^ y ^ O (4.10b) 

Therefore, i f DASC or DASSC i s used to measure the out-of-plane displacement 

i t i s e s s e n t i a l to a l i g n the camera p e r f e c t l y and to e x t r a p o l a t e the 

displacement at the o r i g i n from the displacements c a l c u l a t e d nearby. 

The r e s u l t of t h i s experiment agree very w e l l w i t h the t h e o r e t i c a l p r e d i c t i o n s 

and confirm the v a l i d i t y of the c o e f f i c i e n t a i n equations (4.4) and (4.13). 

6.3 R i g i d Body, In-Plane R o t a t i o n of a P l a t e Specimen 

The purpose of t h i s experiment was to v e r i f y the formation of f r i n g e s by 

the two cameras due to the in-plane displacements of the specimen surface. 

The in-plane displacements v and w are produced by the r i g i d body r o t a t i o n , a, 

of a p l a t e about the x-axis as i s shown i n F i g . 6.9 . A poi n t which was 

i n i t i a l l y i n the y,z plane at (0,y,z) was d i s p l a c e d between the two exposures 
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to the (0,y*,z*) position. The displacements v and w are related to the 

coordinates (y,z) of an arbitrary point by 

u = u, y = u, z = 0 

v = y * - y = y ( C O S a - 1) - Z S i n C l 

w = z* - z = z(cosa - 1) +ysina 

(6.6a) 

(6.6b) 

(6.6c) 

The partial derivatives of these displacements are 

v, y = w,z = cosa -1 

v,, - w,v = - sma 

(6.6d 

(6.6e) 

A l l partial derivatives are constant and, for a small angle of rotation a 

as in the case, the terms in equation (4.13) involving these derivatives are 

negligible. For the angle of rotation, a =2minutes, the numerical values 

of the displacements and strains are 

v(y,z) = - 1.7 x 10 7y - 5.82 x 10 *z 

w(y,z) = - 5.82 x lO'^y - 1.7 x 10 _ 7z 
.-7 V , y = W, z 1.7 x 10 

v, z = - w,v = - 5.82 x 10 -4 

(6.7a) 

(6.7b) 

(6.7c) 

(6.7d) 

A schematic diagram for the experiments done in this section is shown in 

Fig. 6.10 . DASC with three aperture sets rotated by 0°,45°, and 90° was 

used to photograph the rotation of the plate which caused the displacements 

u,v and w given by equations (6.6). For these displacements equation (4.1); 

which governs the fringe formation by DASC, becomes 

CD = 0 v - yz Xxc 

w x c 

n(y,z) (6.8a) 

<j> = 45 + 
z 2 - y 2 

/2 2/2 x' 
V + 

1 z 2 - y 2 ̂  
2/2 

Xx, 
w n(y,z) 

"s ' 
(6.8b) 
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o v z A x s 
* = 90 : - — v + w = - — - n(y,z) (6.8c) 

The actual values of displacements v and w given by equations (6.7a) and 

(6.7b) are substituted in equations (6.8) and, using the fact that the 

viewing angle in these experiments was such that 1 
< To ' w e m a y 

l x S 

neglect some small terms. Once this was done, the equations were solved for 

the fringe functions n(y,z) as 

Exp. 24 (({> = 0° ) : n(y,z) - (5.82 x 10 * ) Z Ax c 

Exp. 25 (ct = 45°) : n(y,z) = (5.82 x 10 " ) D Z Y 

Ax., /2 

Exp. 26 (<j) = 90°) : n(y,z) = (5.82 x 10 4 ) -r^- y 
A X S 

Thus for Exp. 24 the fringes are predicted to be parallel to the y-axis, for 

Exp. 25 the fringes are predicted to be straight and inclined at 45° to the 

y-axis, and for Exp. 26 the fringes are predicted to be parallel to the 

z-axis. 

The DASC parameters used for the three experiments were 

x s = 39 i n . 

D = 2.5 in. 

With these parameters the predicted fringe spacing is .536 in. - the same for 

a l l three experiments. The actual fringe patterns obtained by DASC are shown 

in Figs. 6.11, 6.12 and 6.13 . The fringes are oriented as predicted and, 

from the microdensitometer traces of these figures, the fringe spacing was 

found to be .55 in., close to the predicted spacing of .536 in. 

Let us now predict the positions and spacing of fringes formed by DASSC, 
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which for Exp. 2 considered here had the following parameters: 

x s = 32 in. 

D = 2.5 in. 

ex = 20° , ey = no° , ez = 9 0 0 

Ay s = .0608 in. 

4> = o° 
The displacements and strains given by equations (6.7) are substituted in 

equation (4.11); we can make use of the fact that the viewing angle was again 

such that < Y Q to neglect many small terms and solve the equation 

for the fringe function n(y,z) as 

Exp. 2 : n(y,z) - 2.328 z . 

For this experiment the fringes are predicted to be parallel to the y-axis 

and spaced .429 in. apart. The actual fringe pattern i s shown in Fig. 6.14 . 

The fringes are parallel to the y-axis and the fringe spacing was found from 

the microdensitometer trace to be .42 in. which compares well with the 

predicted spacing of .429 in. 

A computer program, U0NLY.S, was written to calculate v from equation 

(6.8a) with the w term neglected, or to calculate w from equation (6.8c) with 

the v term neglected. It computes the displacements from the given parameters 

of DASC or DASSC and from the fringe center numbers and positions obtained 

from the microdensitometer trace. The plot of the exact displacement v(z) 

and the plot of v calculated by UONLY.S, using data obtained by DASC, is 

shown in Fig. 6.15 . 

The results of these experiments confirm that the response of both DASC 

and DASSC to the in-plane displacements is accurately described by equations 

(4.4) and (4.13). In particular, the accuracy of the coefficients b^ and c^ 
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of equations (4.4) and (4.13) was verified. 

6.4 Out-of-Plane Bending of a Thin Beam with a Rectangular Cross-Section 

The purpose of this experiment was to verify the formation of fringes 

by DASSC due to the variable out-of-plane displacement of a specimen surface. 

A diagram of the experiment is shown in Fig. 6.16 . A thin alluminum beam 

with a rectangular cross-section was clamped at the ends and i t s center was 

displaced, by use of a micrometer, a known distance 6 out of the plane. 

In Appendix V strength of materials theory was used to derive 

expressions closely approximating the actual displacements and strains that 

occur in the vis i b l e surface of the beam. The strains in the z direction 

were not derived as the beam deformation w i l l be viewed through an aperture 

set(s) at zero inclination to the y-axis. 

The parameters of DASSC used in the beam bending experiments considered 

in this section were similar to those of Exp. 101C given here as 

beam: % x 2 x 50 in. V = .25 

x s =39.75 in. , Ay s = - .12 in. , X s = 37.84 in. 

D = 2.5 in. 

0 X = 76.8° , 0 y = 166.8° , 0 Z = 90° 

With these parameters equation (4.11) becomes 

39^75 U + V " iffo W " 2 ' 2 3 U>y + U 8 2 ^ 

+ 1.82 3 9
Z

7 5 w,y = - .00032 n(y,z) 

With the displacements and strains derived in Appendix T the above equation 

becomes 

y - 1.25 
39.75 - .919 v, y + 
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2.5 x 10 2 y 1 - 3 25 + 2 25 + 1.2 x 10 3 y 1 + 25 + 

1.9 x 10 7 yz 2 1 - 2 25 •+ 2.1 x 10 1 - 25 
w 

2.2 x 10 - 3 fy - 1.25 
39.75 

v, y 

- .919 1 - 2 25 + 1.1 x 10 6 z 2 

w, 

.00032 
n 

It i s obvious that, in the case of out-of-plane bending of beams, the fringe 

equation may be approximated by only two terms involving u and u, v . A more 

accurate approximation would involve u,u,v,v and v, v terms. Note that for 

a beam these four quantities are closely approximated by functions of y only. 

Let us f i r s t consider the use of DASC to determine the beam deformation. 

In the beam bending experiments considered here, the term involving u i s so 

much larger than the terms involving v and w that equation (4.10b) determines 

u with sufficient accuracy. 

u(y,z) 
Axf. n(y,z) 

y * 0 (4.10b) 

In Exp. 16 considered here the DASC parameters were 

beam: g- x 2 x 55 in. 

x s = 29.5 in. 

D = 2.5 in. 

6 = .50 mm = .019685 in. 

The fringe pattern of this experiment is shown in Fig. 6.17 . Once the 

fringe centers are correctly numbered and their coordinates are read off the 

microdensitometer trace, the displacement u is obtained by the use of 



117 

equation (4.10). A computer program, BEAM1.S, was written to calculate • 

u(y,z) this way, and u determined by BEAM1.S and u obtained from the strength 

of materials theory are both plotted in Fig. 6.18. The two displacements 

correlate quite well. 

When DASSC is used to "photograph" the out-of-plane bending of the beam, 

a number of ways to determine the out-of-plane displacement and slope i s 

available. We shall consider several of these and point out their advantages 

and disadvantages. 

It was shown in Section 4.8 that, for the beam bending experiments 

considered here, equation (4.11) may be accurately approximated by keeping 

only the terms involving u and u, ; hence, equation (4.11) reduces to 

equation (4.16) , which for (j) = 0° becomes 

au + du, y = N(y,z) (6.9) 

In the case of beam bending, u and u, y are essentially functions of y only 

and, therefore, the partial derivative in equation (6.9) may be replaced by 

an ordinary derivative. After some rearranging we obtain 

du a N(y) 
d 7 + d u = ^ <6-10> 

In Section 4.11 is shown that, i f the out-of-plane displacement at one point, 

y = y 0 is known, the solution to equation (6.10) is given by equation (4.32) 

with p = a/d and q = N(y)/d . This approach was used to solve for u and 

u, y in Exp. 101C. The DASSC parameters used in Exp. 101C are given on 

page 118 and the fringe pattern is shown in Fig. 6.19 . A program, OUTlM.S, 

which was written solves,equation (6.10) according tor, equation (4.30) 

with <j> = 0° . The program accepts the system parameters, displacement at one 

point, and fringe centers as data and calculates u and u, y . The graphs of 
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predicted u and u, y vs. the actual u and u, y obtained by DASSC and OUTIM.S 

are shown in Figs. 6.20 and 6.21 . Note that in both cases the agreement 

between predicted and actual values is quite good. 

In the out-of-plane displacement u is not known at any point of the 

visible part of the beam, the two photographs must be taken and use made of 

the approach of Section 4.8 . Quantities u and u, y are determined from 

equation (4.16) which for the aperture set rotation (j) = 0° becomes 

A ±u + D i U, y = N ±(y,z) i = 1,2 (6.11) 

A program, BEAM2.S, which solves equation (6.11) was written to determine u 

and u,y for Exp. 101; the system parameters were as follows: 

beam: \ x 2 x 50 in. 

x g = 39.75 in. (illumination in x,y plane) 

D = 2.5 in. ex = 76.8° Ay s = - .012 i n . Exp. 101A 

D = 1.75 i n . 9 X = 26° Ay s = - .097 in. Exp. 101B 

D = 2.5 in 0 X = 76.8° Ays•= - .12 in Exp. 101C 

The two fringe patterns for Exp. 101A and Exp. 101B are shown in Figs. 6.22 

and 6.23 . The plots of the predicted u and u, y and the experimentally found 

u and u,y (calculated by BEAM2.S) are shown in Fig.6.24 and 6.25 . Again the 

agreement between the predicted and the experimental results is good. It is 

important to note that i t is not enough to know that |u|,:|'u,y| >> | v"| , | v, y | , | w | 

,.|w',y.|. and to ensure that dj- d 2 ^ 0 ; equation (4.32) must be satisfied as 

well to obtain accurate solutions for u and u,y . For example, the combi

nation of Exp. 101A and Exp. 101B satisfies this requirement while the combi

nation of Exp. 101B and Exp. 101C does not. 

The experiments described in this section have confirmed that DASSC 

forms fringes according to equation (4.13) for the case of out-of-plane 
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bending and have thus verified the accuracy of coefficients a^ and d^ of 

equation (4.13)• 

6.5 In-Plane Stretching of a Thin Beam with a Rectangular Cross-Section 

The purpose of this experiment was to verify the formation of fringes by 

DASSC due to the in-plane displacement and straining of the specimen surface. 

The schematic diagram of the experiment i s shown in Fig. 6.26 . A thin, 

f a i r l y wide, acrylic beam with a rectangular cross-section was clamped at i t s 

ends, and a tensile load was applied between the two exposures in such a way 

that the center of the beam remained stationary while i t s ends were displaced 

a known amount. Due to the i n i t i a l crookedness of the beam, the poisson 

effect, and some misalignment of the system, the beam was also displaced out-

of-plane by a small amount. This out-of-plane displacement was monitored at 

the z = 0 line by a number of dial gages. At the point (-t/2,0,h/2) there 

was also a di a l gage which measured the displacement of this point in the z 

direction; this last displacement was caused mainly by the poisson effect. 

A strain gage was cemented to the illuminated surface of the beam and i t s 

reading served as a standard against which the strain determined experimen

tally by DASSC was compared. 

The beam deformation i s essentially a special case of the plane stress, 

and the strains of the neutral surface are related to the imposed increase V 

in the length L of the beam by 

_ V 
£yo ~ L 

£ xo = " v e y o = " vl 

Since the in-plane stretching i s accompanied by a small unknown out-of-plane 

displacement u , the displacements and strains of the illuminated surface of 

the specimen are given as 
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t _ V t 

v, y - £ y - £ y 0 " u>yy ~ ̂  ~ 2 U'yy 

v = y 
V £ 
L " 2 u'y v(0,z) = 0 

w»z ~ e z ~ ~ V£y = ~ V 

W = - V rv 
L 2 u'yy 

2 u'yy 

w(y,0) = 0 

w,v = Vz — u, 2 u'yyy 

The deformation of the beam was photographed by DASSC with the apertures at 

< -̂ jr . For these y z 
x s 9 ' x s 

0 = 0 , and the f i e l d of view was such that 

parameters and the assumed form of the displacements and strains, and the 

specimen illumination in x,y plane equation (4.11) reduces to 

u + 

v 

yz V t 
I +
 2 u'yy 

z + 
Ay s iX s i (1 + cos0 x i)u, y -

w 

•y - Dj/2 
- cost y i 

V t 
L 2 u'yy 

z t 
— Vz — u, yyy sx 

Di 
w, 

The out-of-plane displacement u caused by the i n i t i a l crookedness of the beam 

or by a misalignment of the loading mechanism was quite small, and i t s shape 

was found to be smooth and sinusoidal-like with one half period over the beam 

length. Because of these characteristics, and since the beam was thin 

(t = .25 in.), the terms %tu,y ,%tu,yy and ̂ tu,yyy are very small. Thus the 

terms involving w and w,y may be neglected from the last equation and for 

this case equation (4.11) reduces to the form 

u + v + d-ju,y + f j V . y = N ± (4.22) 
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If u and u,y are very small, so that they are also negligible, 

equation (4.22) reduces to the simple form 

v + f i V , y = N ± (6.13) 

Equation (6.13) is analogous to equation (4.34) and can be solved for v in 

the same manner. Unfortunately, in the actual testing the term d^u,y was 

found to be large in magnitude and equation (6.13) could not be used. How

ever, by a careful alignment of the loading mechanism i t was possible to 

limit the out-of-plane displacement u to magnitudes less than . 0015 in. and 
y 

for such a small value of u, the term — u is very small, and i t is them 
x s 

possible to solve for u,u,y,v, and v, y from equation (4.22) in the manner 

discussed in Section 4.10 . A computer program PLATE2.S was written to solve 

equation (4.22) this way and was used to calculate the displacements and 

strains from the data of Exp. 114C and Exp. 114D which had the following 

parameters: 
beam: h x 6 x 32 in. 

x s = 45 in. 

D 2.5 in. 

Ay s = .07 in. X s = 46.26 in. Exp. 114B 

ex = - 21.2° ey = 68.8° ez 
= 90° ' > 

D 1.75 in. 

Ay s = .14 in. x s = 48.6 in. Exp. 114C 

6 X = - 21.2° ey = 68.8° ez 
= 90° 

D 2.5 in. 

Ay s = .23 in. x s = 49.1 in. Exp. 114D 

ex = 23.7° ' ey = 113.7° ez = 90° 

v( - 3,0) = 0 

u( - 1,0) = - . 00102 in. 
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v,y(-3.625,0) = 413 x 10~ 6 

The fringe patterns obtained by DASSC are shown in Fig. 6.27 and Fig.6.28 . 

The computer plots of predicted and experimental displacements and strains, 

done by PLATE2.S are shown in Figs. 6.29 through Fig. 6.32 . The value of 

v,y(-3.625,0) calculated by the program from the two fringe patterns is 
- 6 - 6 

419 x 10 , which compares favorably with the strain gage reading of 413 x 10 

there. 

If we do not wish to neglect the out-of-plane displacement and strain, 

then three independent and properly chosen photographs are needed to solve 

for the displacements and strains. A computer program, PLATE3.S, which 

solves equation (4.14b) for u,y and v,y in the way discussed in Section 4.6 

(and for u and v by numerical intergration), was used to calculate these 

unknowns for Exp. 114B, Exp. 114C and Exp. 114D. The fringe pattern of Exp. 

114B is shown in Fig. 6.33 and the displacements and strains calculated by 

PLATE3.S are shown in Figs. 6.34 through Fig. 6.37 . This time the experiment-
- 6 

a l l y determined strain at y = -3.625 in. is 414 x 10 , which again compares 

well with the strain gage reading of 413 x 10 6 there. It should be realized, 

however, that i t is a coincidence that the two strains are this close at 

y = -3.625 in., as usually the two strains differ elsewhere by as much as five 

percent or more. 

Alternatively, the two displacements u and v and the strains u,y and v,y 

may be calculated by the f i n i t e difference method discussed in Section 4.10 . 

A computer program, FD2, based on equations (4.23), (4.24), and (4.25) was 

written and used to calculate u,v,u,y , and v,y from the fringe patterns of 

Exp. 114C and Exp. 114D. Since the program required one boundary condition 

on u and another on v, u(-:l,0) (measured by one of the dial gages) and v(-3,0) 

were used. Figures 6.38 through 6.41 show the comparison of the actual and 

calculated displacements and strains. The experimentally determined strain 
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at y = -3.625 in. i s 420 x 10 6 vs. 413 x 10 6 measured by the strain gage 

there. 

A l l three approaches used to calculate the displacements and strains for 

this particular example yield reasonably accurate solutions. If the 

displacements u(y Q,0) and v(y Q,0) are available, the program FD2 should be 

used as i t i s , in general, more accurate, easier to write and more efficient 

than the program PLATE2.S. If the displacements u(y Q,0) and v(y Q,0) are not 

available, then one must, of necessity, use the program PLATE3.S. to determine 

the two strains and the "displacement sum". 

These experiments have demonstrated the f e a s i b i l i t y of using DASSC in 

testing involving primarily the plane stress deformation and in particular 

the accuracy of the coefficient f was verified. 

6.6 In-Plane Stretching of a Beam with a Variable Cross-Section 

The purpose of this experiment was to determine the performance of DASSC 

in a more "practical" type of investigation and to test the accuracy of the 

two-dimensional solution scheme(s) for displacements and strains. Unfortunate

ly, at the time this experiment was done, the theory of the fringe formation 

by the DASSC had not yet been f u l l y developed and, hence, the experiment was 

not set up in the way which would allow accurate determination of a l l displa

cements and strains. In particular, the effect of the displacement w and i t s 

two derivatives, w,v and w,z , on the fringe formation by DASSC was not known. 

The dimensions of the acrylic specimen used in this experiment are shown 

in Fig. 6.42. Two strain gages were cemented to the illuminated surface of 

the beam at the (-3,0) and (5,0) locations to measure the surface strains 

there for later comparison with the strains obtained with DASSC. An axial 

tensile load was imposed on the specimen by the use of the same loading 

apparatus as the one described in the preceeding section and shown in Fig.6.26. 



124 

The out-of-plane displacements of the beam were measured by a set of dial 

gages. The beam center, coincident with the coordinate origin, was kept in 

the same position during the two exposures with the aid of the Fotonic Sensor. 

DASSC used in this experiment was equipped with the shutter shown in Fig. 

6.43 so that i t was possible to use two illuminating beams in the x,y plane in 

such a way that one illuminating beam was used with the inner aperture sets 

and the other illuminating beam was used with the outer aperture sets. We 

know now that the use of illumination in the x,y plane was unfortunate, as i t 

makes DASSC insensitive to the strains w,y and w,z . 

In this experiment DASSC was used to take four photographs with the 

following parameters: 

45 in. 

D = 1.75 in 

A y s 
= .0914 in. Exp. 122S1 

ex = -20.5° 6 Y = 69.5° 6 Z = 90° 

<t> = 0° 

D = 2.50 in 

A y s 
= .162 in. Exp. 122S2 

= 24° 9 Y = 114° ez = 90° 

* = 0° 

D = 1.75 in. 

A y s 
= .104 in Exp. 122S3 

= -20.5° 6 Y = 69.5° ez = 90° 

= 135° 

D = 2.5 in. 
A y s 

= .171 in Exp. 122S6 

6x = 24° ey = ii4° 0 Z = 90° 

= 135° 
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The computer program FD2, based on equations (4.24), and (4.26), was used to 

calculate u(y,0) and v(y,0) from the photographs of Exp. 122S1 and Exp. 122S2 

shown in Figs. 6.44 and 6.45. The two displacements, u(y,0) and v(y,0), and 

their derivatives calculated by FD2 are compared to those displacements and 

their derivatives determined from the dial gages and also to the f i n i t e 

element solution of this problem. These comparisons are shown in Figs. 6.46 

through 6.49 and as can be seen from the graphs, the displacements and strains 

agree quite well. 

We would now like to calculate u(y,z), v(y,z) and w(y,z). To do this, we 

need three "independent" photographs taken by DASSC having three aperture sets 

and three illuminating beams with at least one of them not being in the x,y 

plane. The three displacements may then be calculated with the use of the 

scheme discussed in Section 4.9 and based on equation (4.19). However, as was 

already mentioned, when this experiment was done DASSC was equipped with two 

aperture sets and two illuminating beams in the x,y plane were used. Thus, 

only two independent photographs are available, and therefore the scheme based 

on equation (4.23) must be used to calculate v(y,z) and w(y,z), with u(y,z) 

assumed to be known. 

The displacement f i e l d u(y,z) was set equal to u(y,0) as calculated by 

FD2 and this has introduced a small but negligible error as, obviously, 

u(y,z) ^ u(y,0) for z 4- 0 . The error is expected to be small because u(y,z) 

is caused mainly by the out-of-plane bending due to a system misalignment and 

by the crookedness of the specimen and hence the out-of-plane displacement was 

most lik e l y the same for a l l points on lines y = constant. The variation in 

u(y>z), for y = constant, is caused by the reduction of the specimen thickness 

due to the poisson effect, but this variation is small enough so that i t may 

be neglected. Since the boundary condition w(y,0) could not be found, i t was 

therefore set equal to the dial gage reading at the point (0,1) and corrected 
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for the poisson reduction of the beam half-width there. 

Using the fringe patterns of Exp. 122S3 and Exp. 122S6, shown in Fig. 6.50 

and Fig. 6.51, and the solution scheme, based on equation (4.21), we may 

calculate the displacements v(y,z) and w(y,z) over a part of one quarter of the 

beam surface shown in Fig. 6.52 . Since the specimen illumination was in the 

x,y plane, w(y,z) was not calculated accurately enough and is not shown. The 

displacement v(y,z) and i t s partial derivative v,y(y,z) are compared to the 

f i n i t e element solution in Figs. 6.53 trough 6.55 . So that we might see the 

effect of the accuracy of the boundary condition on v(y,z), two solutions for 

v(y,z) and v,y(y,z) were found. We obtained one solution by using u(y,0) and 

v(y,0) as calculated by FD2, and the other solution by using u(y,0) and v(y,0) 

as given by the f i n i t e element solution and dial gage readings. From the two 

plots i t is obvious that either of the two boundary conditions yields 

reasonably accurate v(y,z) and v,y(y,z). 

The result of this particular experiment confirm that the two dimensional 

computing schemes can produce accurate solutions for v(y,z) and v, y(y,z). 

Had the experiment been set up properly - and the computer simulation of the 

experiment confirms this - a l l displacements and strains could be calculated 

with acceptable accuracy. 

6.7 In-Plane Stretching of a Wooden Beam 

The aim of this experiment was to test the possibility of using DASC or 

DASSC to measure the surface deformation of specimens made of materials such 

as wood. The wooden beam used in this experiment shown in Fig.5. ;was 4 in. 

wide, % in. thick, and 48 in. long, with a knot of approximately 1 in. 

diameter located at the center of the beam. The beam was subjected to an 

axial tensile load using the same experimental setup as i s shown in Fig. 6.26. 

The beam center, which was coincident with the coordinate origin, was 
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maintained stationary during the two exposures with the aid of the Fotonic 

Sensor. The out-of-plane displacement u(-.5,y,0) of the shadow side of the 

beam was measured by a number of dial gages. Due to the lack of time, and 

also because of inadequate control over boundary conditions, no numerical 

calculations of displacements and strains were performed. S t i l l , the photo

graphs which were taken provide useful information about the application of 

DASC and DASSC in the testing of highly inhomogeneous materials like wood. 

DASC used to produce the photographs of Exp. 132D1 and Exp. 132D2 (shown 

in Fig. 6.56 and Fig. 6.57) had the following parameters: 

x s = 45 in. 

D = 1.75 in. 

9 X = - 22.5° ( 3 y = 67.5° e z = 90° Exp. 132D1 

ej> = 0 ° 

D = 2.5 in. 

0 X = 24.3° ( }y = 114.3 0 e z = 9 0 ° Exp. 132D2 

4> = 0 ° 

axial load increment between the two exposures was approximately 

from 1600 lb. to 1800 lb.; this corresponds to the increase of 100 l b / i n 2 in 

tensile stress. The axial load caused some out-of-plane bending which was 

monitored by the dial gages with the results 

v(-.5,0,0) = .0 i n . 

v(0,16,0) = .00226 in. 

v(0,-16,0) = -.00307 in. 

u(-.5,-7,0) = .0 in. 

u(-.5,-5,0) = -.0000787 in. 

u(-.5,-2,0) = -.0000787 in. 

. u(-.5';l,0) = -.000315 in. 
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u(-.5,4,0) = -.000394 in. 

u(-.5,7,0) = -.000866 in. 

w(-.25,0,2) = .0 in. 

The fringe patterns in photographs taken by DASC are f a i r l y simple and show 

that DASC works quite well in testing specimens having highly nonuniform 

material properties. 

DASSC was used to produce the photographs shown in Fig. 6.58 and Fig.6.59, 

corresponding to Exp. 132S2 and Exp. 132S1, for which i t had the parameters: 

x s = 45 in. 

D = 1.75 in. 

= .0488 in. Exp. 132S1 

9x = -22.5° 6 y = 67.5° ez = 90° 

= 0° 

D = 2.5 in. 

= .0878 in. Exp. 132S2 

9x = 24.3° ey = 114.3° 0 Z = 90° 

= 0° 

The two fringe patterns obtained by DASSC are extremely complex, which 

suggest that the tensile loading of the wooden beam causes a complicated 

strain f i e l d in the illuminated surface of the beam. This is most likely due 

to the "aligning" process of the wood fibers involving large changes in 

surface slopes to which DASSC is most sensitive. In this particular experi

ment, the lateral shear Ay s was obviously set too large, thus making DASSC 

too sensitive; the resultant fringe patterns were of such complexity as to be 

of no use in the quantitive analysis, since there was no hope of successfully 

numbering the fringes in these patterns. 

In future experiments of this type, the sensitivity of DASSC would have 
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to be decreased or the load increment would have to be smaller to produce 

fringe patterns which could be interpreted. An inclusion of some simple 

boundary condition, such as a clamped end, would also be helpful. 

6.8 Error Analysis 

The results of the experiments discussed in this chapter have ascer

tained that the fringe formation of DASC and DASSC is described with 

sufficient accuracy for an ordinary laboratory testing by equations (3.20) 

and (3.26), or their equivalent forms given by equations (4.4) and (4.13). 

a-̂ u + b-jV + c-jW = N-L (4.4) 

a^u + b^v + ....+' k.jw,z = (4.13) 

By using either of the two cameras in a particular experiment we obtain 

a number of fringe patterns from which the displacements and strains of the 

specimen surface may then be determined by making use of the various solution 

schemes derived and discussed in Chapter 4. However, i t must be realized 

that these displacements and strains can be calculated with only a limited 

accuracy because of the following errors: 

1. Errors caused by the approximations made in the derivation of 

equations (4.4) and (4.13). In the f i r s t approximation the real 

cameras were replaced by the physical models shown in Fig. 3.5 and 

Fig. 3.11. The second approximation involved deletion of the high 

order terms throughout the derivation of equations (4.4) and (4.13). 

To assign a numerical bound on the errors due to these two approxi

mations is very d i f f i c u l t . In principle, i t could be done by 

comparing the results obtained from equations (4.4) and (4.13) with 

those determined from some "exact" equations derived for more accurate 
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physical models of the two cameras. It was, however, more convenient 

to do this experimentally, and by a computer simulation (not discussed 

in this thesis) of the two cameras, with the results indicating that 

these errors are less significant than those discussed in the sub

sequent paragraphs. 

2. Errors in coefficients a-^,..., k-̂  caused by the inaccuracies in the 

measurement of the parameters of the two cameras. These parameters 

were usually determined with the following accuracies: 

D ... ±.005 in. 

x s ... ± .5, in. 

ex,6y,ez ... ±i? 
Ay s ... ±.001 in. 

3. Errors in (related to the Moire fringe numbers n^) caused by a 

limited accuracy with which the location of the fringe centers may 

be determined. In the work presented in this thesis the fringe 

centers were usually located within ±.02 in. from the microdensito-

meter traces. 

4. Errors in the calculated displacements and strains caused by the 

approximate nature of some of the solution schemes for the displace

ments and strains. The size of these errors depends on the particular 

solution scheme, and also on the actual location (y,z) on the specimen 

surface where the displacements and strains are being calculated. 

From the experiments and calculations that were done, and from the 

computer analysis of the two cameras, i t appears that the errors discussed 

in paragraph 2. are the greatest source of errors in the calculated displa

cements and strains. In particular, the inaccuracies in the measurements 
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of Ay s and somewhat ambiguous parameter x s cause the largest errors. This 

problem could be alleviated by making a large number of measurements of Ay s 

and then calculating and using i t s average value; the parameter x s could be 

determined more accurately from a number of simple experiments, or the 

problem with this parameter could be avoided altogether by using a more 

elaborate models of the two cameras. Such models would include two x-

coordinates, one for the aperture plane and the other for the lens, instead 

of using x s to approximate both of these coordinates. The simplest, and 

possibly the only practical way of determining the error caused by the 

inaccuracies in the camera parameters would involve the repeated use of the 

appropriate solution scheme, each time with the parameters being slightly 

changed within their range of accuracy. By examining the set of so calcula

ted numerical values of the displacements and strains an estimate of the 

accuracy of the results could be obtained. 

The comparison of the actual displacements and strains with those obtained 

through the use of the two cameras in the experiments described in this 

chapter indicates that a l l the errors discussed here are usually quite small 

and hence equations (4.4) and (4.13) need not be altered, although by 

implementing the suggestions made in this section, s t i l l more accurate 

results could presumably be obtained. 

To get some idea about the effect of experimental errors on the accuracy 

of the calculated displacements and strains, the upper and lower bounds on 

these quantities are determined. The errors are caused by inaccuracies in 

the measurement of the camera parameters and fringe locations, and by using 

their extreme values in the calculations the bounds may be established. 

This was done at one "typical" point of the specimen surface for the expe

riments 26 and 114. 
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In the case of the experiment 26, the displacement w(0.,.547) at the 

point (0.,.547) is given by equation (6.8c) as 

w(0.,.547) = - n(0.,.547) (6.14) 

The parameters of DASC that was used were measured as 

X = .000020256 in. 

x s = .39.0 ± .5 in. 

D = 2.500 ± .005 in. 

The centers of the fringes shown in Fig. 6.13 were located with accuracy of 
1 .02 in., and from the plot of n(0,z) (not shown) i t was found that -

n(.0.,.547) = 1.00 ± .05. By substituting the parameters A , j.x g, D and n(0.,.547) 

in equation (6.14), the displacement w(0.,.547) was found as 

-.000337 in. < w(0.,.547) < -.000296 in. 

With the mean value of w(0.,.547) equal to -.000316 in. this displacement may 

be written as w(0.,.547) = -.000316 ± .000021 in. The bound on w(y,z) was 

found to be of the same magnitude at the other points of the specimen surface. 

Similar calculations were done for experiment 114 which involved the use 

of DASSC. By varying the camera parameters and the fringe locations within 

their range of accuracy, and using the computer program FD2 the bounds on the 

displacements and strains were found at the point (1.0,0.0) as 

u(l.0,0.0) = -.00119 ± .00002 in. 

v(l.0,0.0) = ..00172 ± .00005 in. 

u, (1,0,0.0) = .000946 ± .000094 

v, (1.0,0.0) = .000431 ± .000017 
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At other points on the y-axis the bounds on these displacements and strains 

were found to be similar to those at the point (1.0,0.0). 

The errors in the results of the two experiments that were examined are 

reasonably small and should provide some indication about the accuracy of the 

two cameras. In the actual calculations the errors would most likely be even 

smaller due to some cancellation of errors. The errors in the other experiments 

were not calculated but should be similar to those in the experiments 26 and 

114. 



F i g . 6.2 Fringe p a t t e r n of Exp. 19. 



135 

F i g . 6.4 Fringe p a t t e r n of Exp. 22. 



Fig. 6.5 Fringe pattern of Exp. 

Fig. 6.6 Fringe pattern of Exp 



137 

in 

a 

Fig. 6.7 Predicted n (dashed line) vs. experimental n (solid line). 

Fig. 6.8 Predicted u (dashed line) vs. experimental u (solid line). 
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Fig. 6.9 Rotation of a plate about x-axis. 

Fig. 6.10 Measurement of the in-plane displacements v and w by DASC. 
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F i g . 6.11 Fringe pattern of Exp. 24. 

F i g . 6.12 Fringe pattern of Exp. 25. 



140 

Fig. 6.14 Fringe pattern of Exp. 2. 
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Fig. 6.16 Measurement of the out-of-plane displacement by DASSC. 
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Fig. 6.17 Fringe pattern of Exp. 16. 

< 

Fig. 6.18 Predicted u (dashed line) vs. experimental u (solid line). 
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F i g . 6.19 Fringe p a t t e r n of Exp. 101C 

F i g . 6.20 P r e d i c t e d u (dashed l i n e ) vs. experimental u ( s o l i d l i n e ) . 
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Fig. 6.23 Fringe pattern of Exp. 101B 
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Fig. 6.26 Measurement of the in-plane deformation by DASSC. 



Fig. 6.27 Fringe pattern of Exp. 114C 

Fig. 6.28 Fringe pattern of Exp. 114D 
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g. 6.29 Predicted u (dashed line) vs. experimental u (solid line). 
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Fig. 6.33 Fringe pattern of Exp. 114B 
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< 3 

Fig. 6.36 Predicted v (dashed line) vs. experimental v (solid line). 



153 

g. 6.39 Predicted u, y (dashed line) vs. experimental u, v (solid l i n e ) . 
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Fig. 6.40 Predicted v (dashed line) vs. experimental v (solid line). 



acrylic plate 7/16 in. thick SCALE 1 : 4 
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Fig. 6.43 Normal view of the aperture screen. 



Fig. 6.45 Fringe pattern of Exp. 122S2 
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Fig. 6.46 Predicted u (dashed line) vs. experimental u (solid line). 
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Fig. 6.49 Predicted v, y (dashed line) vs. experimental v, y (solid line). 



F i g . 6.50 Fringe p a t t e r n of Exp. 122S3 

F i g . 6.51 Fringe p a t t e r n of Exp. 122S6 





0 1 2 3 4 y ( i n . ) 5 

f i n i t e element s o l u t i o n 

experimental s o l u t i o n using the f i n i t e element u(y,0) and v(y,0). as boundary c o n d i t i o n s 

.-. . . experimental s o l u t i o n using the experimental u(y,0) and v(y,0) as boundary conditions 

F i g . 6.53 Contours of constant displacement v(y,z) i n the v a r i a b l e c r o s s - s e c t i o n specimen. M 
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f i n i t e element solution 
— — experimental solution using the f i n i t e element u(y,0) and v(y,0) 

as boundary conditions 

.... experimental solution using the experimental u(y,0) and v(y,0) as 
boundary conditions 

Fig. 6.54 Strain v, (y,l) in the variable cross-section specimen. 



1500 

f i n i t e element s o l u t i o n 

x 
~ experimental s o l u t i o n 

o 
'—•> Exp. 122S1 @ 122S2 

1000 

500 

4 y ( i n . ) 5 

F i g . 6.55 S t r a i n v, y(y,0) i n the v a r i a b l e c r o s s - s e c t i o n specimen. 
ON 
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F i g . 6.56 Fringe p a t t e r n of Exp. 132D1 

F i g . 6.57 Fringe p a t t e r n of Exp. 132D2 

F i g . 6.58 Fringe p a t t e r n of Exp. 132S2 



Fig. 6.59 Fringe pattern of Exp. 132S1. £ 
ON 
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7. CONCLUSIONS 

7.1 Summary and Conclusions 

A f a i r l y involved theoretical analysis of the image and fringe formation 

by DASC and DASSC has been undertaken. The accuracy of the resulting 

equations relating the Moire fringe number to the deformed surface displace

ments and strains was verified by several simple and controlled experiments. 

Each experiment was set up to ascertain the accuracy of one or two coeffi

cients of the fringe equations. The subsequent and more complicated experi

ments have proven the f e a s i b i l i t y of the two cameras in experiments similar 

to those encountered in the typical laboratory testing of materials or struc

tural components. With some exceptions the agreement between the optically 

determined and actual displacements and strains was good. 

It was easier.to use DASC than DASSC since the fringes formed by DASC 

are due to.the displacements only; thus, the numbering of the fringes was 

relatively easy. In fact, in some special cases the fringes are related 

directly to only one displacement component. When DASC is used no boundary 

conditions are required to calculate the displacements, and the calculation 

involves the solution of a set of at most three algebraic equations, a pro

cess which is straightforward and easy to program. That DASC is insensitive 

to the out-of-plane displacements of the specimen surface near the coordinate 

origin may be considered an advantage i f the measurement of in-plane dis-

iplacements is desired, but i t may make DASC potentially useless i f the out-

of-plane displacements near the coordinate origin are to be measured. The 

main disadvantage of DASC stems from i t s relative i n f l e x i b i l i t y as the 

sensitivity may be varied only by changing D,X or x g, the possibilities of 

which exist only in a rather narrow range. 

The attractiveness of DASSC stems from i t s great f l e x i b i l i t y since the 

sign and the size of the lateral shear may be set by an appropriate 
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positioning of the photographic plate with the adjustable slide. Thus, i f 

the specimen deformation is approximately known before the test, the lateral 

shear may be chosen so that the density of the resultant fringe pattern is 

suitable for processing. The camera is sensitive to the surface displacements 

and strains (actually to partial derivatives) and, hence, the fringe patterns 

could be used qualitatively to identify those areas of the surface where 

stress concentrations occur. The calculation of the displacements in 

special cases often involves a solution of an ordinary linear differential 

equation or, in the general case, a solution of a set of partial differ-./ 

ential equations for which the f i n i t e difference approach was found suitable. 

The solution requires a point boundary condition for the particular dis

placement in special cases and, in the general case, a line boundary 

condition for the three displacements. The solution schemes for DASSC are 

usually more complicated than those for DASC. If the required boundary 

conditions are available, the results obtained by DASSC are usually superior 

to those obtained by DASC. 

Both DASC and DASSC were found to be useful and reasonably accurate 

instruments for measurement of displacements and strains. Which of the two 

cameras is to be used depends greatly on the particular circumstances of the 

proposed test. If the boundary conditions are readily available, then DASSC 

should be used as i t is likely to provide a more accurate solution. When 

a l l displacements and strains are to be determined the illumination not 

coincident with the x,y plane must be provided and the researcher should be 

ready to do a rather large amount of programming to interpret the fringe 

patterns obtained by DASSC. On the other hand, i f the boundary conditions 

are not available or i f a researcher wishes to minimize the amount of experi

mental work and computing effort, then the use of DASC should be considered. 

The approximation of the fringe function n(y,z) by a continuous cubic 
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based on fringe centers (multiplies of .50) along a line z = z Q = constant 

was found to be satisfactory where solutions along a line z = z Q were 

sought. If a two-dimensional approximation of n(y,z) was necessary,.then i t 

was found to be sufficient to scan the fringe pattern along a number of 

lines z = constant and to approximate n(y,z) along these "scan" lines by a 

continuous cubic. The fringe number n(y,z) anywhere else was then found by 

f i t t i n g a continuous cubic along a line y = constant through the points 

where this line intersects already approximated scan lines. 

7.2 Suggestions for Future Research 

Mainly due to a lack of time two solution schemes were not tested and, 

hence, their accuracy remains yet to be experimentally verified. The f i r s t 

experiment should be such that none of the displacements u,v or w may be 

neglected and that these three displacements should be determined from three 

independent fringe patterns obtained with the use of DASC. The second 

experiment would be similar, but DASSC with at least one illuminating beam 

not in x,y plane would be used to take three independent photographs. A 

line boundary condition would have to be available and the three displace

ments u,v and w could then be calculated from the three fringe patterns by 

using the proposed f i n i t e difference scheme. 

The experimental work done in this thesis was restricted to specimens 

with one planar surface. There is no reason why DASSC could not be used to 

measure displacements and strains in specimens having shallow curved sur

faces or surfaces consisting of planar and curved surfaces. It would only 

be necessary to relate the lateral shear Ay g to the third, i.e. the x, 

dimension of the curved surface. This dependence of the lateral shear on 

the (y,z) coordinates could be easily incorporated in the computer programs 

of the f i n i t e difference schemes used to calculate displacements and strains. 
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The "depth" of the specimen surface along the x-direction would, of course, 

have to be reasonably small so that the lateral shear would not be excessi

vely large. 

Numbering of the fringes could be made easier, in some cases, i f one 

more photograph were processed than the minimum number required. With the 

knowledge of the deformations on the line boundary the fringe numbers at the 

boundary could be calculated and the fringe numbers at the neighbouring 

points could, in principle, be determined by finding that fringe number 

which would satisfy the overdetermined system of equations at those points. 

This process would be repeated until the fringe numbers of a l l points would 

be known; in fact, numbering of the fringe centers would probably be 

sufficient. 
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APPENDIX A 

DERIVATION OF EQUATION (2.9) 

2 2 

I(t) = |EjI + |E2| + 2E X.E 2 

cos (kr x - tot + ijjj) + a. cos (kr 2 - tot + i>2) + 

a 2 

l r i J l r 2 j 
(e . e 2)cos(kr 1 - tot + i(; 1)cos(kr 2 - tot + I|J 2) 

I>- = / Kt) dt 
0 

/ cos 2(kr 1 - tot + ijij) dt + 
0 ^ 2 

/ cos 2(kr 2 - tot + i>2) dt + 
0 

(e^ e 2) / cos(kr 1 - tot + ip 1)cos(kr 2 - tot + ip2) dt 
0 

Let us now evaluate the three integrals and approximate the results by making 

use of the fact that T » T . 

T 
/ cos (kr z - tot.+ ijjj) dt = 
0 

_T T _ 

2 8TT 
sin2(kr 1 - toT + i f^) - sin2(kr x + I/J 1) T 

2 

T 
/ cos 2(kr 2 - tot + tyz) dt - — 

/ cos(kr 1 - tot + i | J 1)cos(kr 2 - tot + ty2) dt = -^cos (kr x - k r 2 + i j ^ - ty2) -
0 

T 

8TT sin(kr 1 + k r 2 + 1 + i p z - 2toT) - sin(krj + k r 2 + ty1 + i p 2 ) 

cos (kr x - kr 2 + ifjj - \p2) 

With these integrals,I r is given by equation (2.9) 
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APPENDIX B 

DERIVATION OF EQUATIONS (2.18) AND (2.19) 

cos[kr(y,z) - wt + ty] = cos(kr - cot + 40coskr e - sin(kr Q - cot + ̂ )sinkr £ 

K t ) E r(t) 

2 a |[cos(kr 0 - cot + i(;)coskre - sin(kr 0 - cot + iJO sinkr e] dA 

Let us define the integrals Ej = / coskr e(y,z) dA 
A 

and E = / sinkr e(y,z) dA 

With Ej and E 2 , I(t) becomes 

K t ) = 
' a ^ 2 

[E 1cos(kr Q - cot + ty) - E 2sin(kr Q - cot + ty)~\' 

The recorded intensity I r is given by 

I r = J I(t) dt = 
0 

2 
a 

l r o J 

T T 
E 2 / cos 2(kr Q - cot + ty) dt + E 2 / s i n 2 ( k r 0 - cot + ty) dt 

0 0 

- 2E 1E 2 / sin2(kr Q - cot + ty) dt 
0 

In Appendix A i t was shown that t 2 T J cos (kr Q - cot + ty) dt - — 
0 
T 
r 2 T and similarly i t could be shown that J sin (kr 0 - 0)t + ty) dt - — 

j sin2(kr p - .cot + ty) dt = [cos2(kr 0 - cot + ty) - cos2(kr 0 + tyj] « ^ 

With these integrals I r is closely approximated by equation (2.18) 
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With the use of complex notation equation (2.18) may be written as 

equation (2.19), as is shown: 

j e i k r e ( y , z ) d A = j c o s k r e ( y ) Z ) ^ + i / sinkr e(y,z) dA 
A A A 

- ikr e(y,z) 
u n — 

A A 
/ e 1 K re (-y' z-' dA = / coskr e(y,z) dA -if sinkr e(y, z) dA 

ikr e(y,z) dA 
' A 

i k r e ( y , z ) d - fcoskr„(y,z) dA 
^ A ^ ° 

/sihkr e(y,z) dA 
A ' ' • " -

Ir = T 
2 / e l k r e ( y ' z ) d A /e 

^ A 

- ikr e(y,z) dA (2.19) 



178 

APPENDIX C 

DERIVATION OF EQUATION (3.5) 

The equations of the source (sw) and diffracted (dw) spherical wavefronts 

shown in Fig. C.l are given as 

2 2 2 2 2 2 
dw: x + (y - y D) + (z - z D) = x s + (y D - y A) + z D (C.l) 

sw: x 2 + (y - y g ) 2 + (z - Z g ) 2 = x s + (y g - y A ) 2 + z 2 (C.2) 

The equation of the diffracted ray is the equation of the line from the 

"apparent" source point D(0,yjj , Z j j ) to the point (x s,y a,z a) in the aperture. 

y^ — yj-
diffracted ray: y = — x + y D (C.3a) 

x s 

z = — ^ x + z n (C.3b) 

Fig. C.l Diffraction in a single aperture camera. 
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Huygen's principle permits us to assume that the diffracted ray originates 

from the source wavefront at the point (x 2,y 2,z 2) and reaches the diffracted 

wavefront at the point ( x ^ y ^ Z j ) . Therefore the diffracted wavefront 

"leads" the source wavefront by the distance r
e ( y a > z

a ) given by 

r e ( v a /
2 2 2 

, a. (xx - x 2) + (yj - y 2) + (z x - z 2) (C.4) 

The magnitudes of the parameters of D A S C that is to be used are such that 

x s > 30 in. 

D < 2.5 in. , y A < 

A - 2 x 10~ 5 in. 

1.25 in. 

Axc |yD - y s|,|z n - Z g | < D s s = 2.44-^— hence Ay , Az < 4 x 10 

The f i e l d of view is such that 

Let us now define the following quantities: 

a = y a " Y D 

vs J 
+ 

z a " Z D a < 4 x 10 - 2 

b = f y p - Y A ! 2 . ( Z ^ 2 

*s J 
b < 4 x 10 - 2 

Y A - y p » Z D A 

c = Ay - — Az 
x s x s 

c < 1.6 x 10 - it 

r 
x„ < 2 x 10 

d* = 3(Ay cos9 + Az sin9) |d*| < 1.6 x 10 6 

It is convenient to introduce a polar coordinate system of the circular 

aperture, as is shown in Fig. 3.3 , so that we may write y a and z a as 

y a = y A + r cost" z a = r smfc 
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The equations (C.l) and (C.3) are evaluated at the point (x 1,y 1,z 1) and the 

equations (C.2) and (C.3) are evaluated at the point ( x 2 , y 2 , z 2 ) . By 

combining these equations and using the quantities that have been defined we 

get a quadratic equation in (r e/x g) 

fr 1 
- 2 

f 

l x s J l x s J 

c + d*l 
/¥ J 

+ 2 
(/G 
^ (c + d*) - c = 0 (C.5) 

where F and G are defined as F = 1 + a 

G = 1 + b 

The solution of equation (C.5) for r e is given by equation (3.5). Its 

derivation is quite tedious as Taylor's series for the square root and seve

ra l fractions must be used to determine r e with the desired accuracy; of A./10' 

By making use of equation (3.5) i t may be shown that |r e/x s| < 1.5 x 10 5 

With the magnitude of r £ known, we see that i f r e is to be determined with 
Q 

A/10 accuracy (or r e / x s with 6.7 x 10 accuracy), the quadratic term in 

equation (C.5) is so small that i t may be neglected. This was done and i t 

was found, that the solution of the resultant linear equation is s t i l l given 

by equation (3.5). The latter solution i s much less tedious and therefore 

this approach i s used in the subsequent appendices whenever possible. 
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APPENDIX D 

DERIVATION OF EQUATION (3.7) 

Let us define the following terms: 

1 - 2x|j Ay - (D.l) 

D 2 = 1 - 3z s l 
2x2J 

Az - 'sys Ay (D.2) 

kd / 2 2~ 
/D, + D0 

(D.3) 

Using equations (D.l),(D.2) and (3.5) we may write 

kr e(r,0) = kr(D cos8 + D 2sin6) (D.4) 

The recorded intensity I r is evaluated by using equations (2.19) and (D.4) as 

Ir = 
d f 2J eikr(D l Cos0 + D 2 s i n 0 ) r d r d 6 . 
0 0 

d f 2/ e" ikr(D l Cos0 + D 2 s i n 0 ) ^ d Q 

0 0 
d/2 2TT , Z „ , N r r ± ikr(D ncos0 + D„sin0) , J Q ^d 2J!(p) 

Since J / e - 1 2 r dr d0 = —; 
- - 4 p 

0 0 

(D.5) 

(D.6) 

x r = 
d 2 

TTd 2,2 
(D.7) 

Using I Q given by equation (3.8), I may be written as 

X r = Z o 
f2J!(p) 
I P J 

(3.7) 
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APPENDIX E 

DERIVATION OF EQUATIONS (3.10) AND (3.11) 

Using equations (D.l),(D.2) and (D.3) we may write the following: 

kd 
2 2 . 2 , 2 

= Dj + D2 - Ay + Az 

With Ay and Az defined by equation (3.6), the above equation may be written 

as 

( y D
 _ y s ) 2 + ( z

D - z s ) 2 = 

2xc 
kd 

Equation (E.l) is the equation of a circl e of the radius 
f 2 x c 

kd 

(E.l) 

, and with 

the center at ( y g , Z g ) in the specimen plane. By making use of equation (2.12) 

we may put equation (E.l) in the form 

(yi - y i c) 2 + (z± - zic>2 - f?a p l 
kd p 

( E . 2 ) 

f 2 x . 

kd This time equation (E.2) is the equation of a circl e of the radius 

and with the center at (y±c>z±c) l n the image plane. From equation (E.2) 

i t i s apparent that I r is circular with i t s center at the geometric image 

R ( y ^ c , Z i c ) of the source point S ( y g , Z g ) . As shown in Fig. 3.4 , I r varies 

as 
f2J . 1 (p)l ; i t has the maximum at p = 0 , and i t s f i r s t minimum at 

f2xi 
kd 3.832 1.22 X - r 

d 
p = 3.832 . The area of the circl e of the radius 

is known as the Airy disk and i t w i l l be referred to as the '"speckle" . 

The diameter of the speckle in the image plane w i l l be called D s and the 

diameter of the apparent speckle in the specimen plane w i l l be called D s s 

The two diameters are given as 
D s = 2.44 X~f (3.10) 

Dss = 2 - 4 4 X " t (3.11) 
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APPENDIX F 

In this appendix i t is shown that the unit electric f i e l d vectors of 

a l l rays reaching a point in the image plane are nearly parallel so that 

the vector nature of the rays may be neglected in the calculation of I r . 

Image o r 
photo 
p l a n e 

Fig. F.l Unit vectors of electric fields. 

y = tany - (y f c - y 1)/x ± 

W ^ n l = lemkl l^nllcosY = cosy = 1 - \ + 

d -0625 
For the single aperture camera Y < ~ < —^2— = '0^52 and hence e

m k * e n l ~ 
2 - 5 

with the error being smaller than .0052 /2 = 1.4 x 10 

D + d 2.5 + .0625 
When DASC or DASSC is considered, Y < < = 

x± 12 

time e ̂ 'e ^ - 1 with the error being smaller than .2142/2 

s t i l l sufficiently small. 

214 and this 

.023 which i s 

(the dimensions of d,D and x^ are in inches) 
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APPENDIX G 

DERIVATION OF r e i AND r £ 2 FOR DASC DURING THE FIRST EXPOSURE. 

The optical path lengths from the apparent point source S to the point Q, 

in the image plane , are given by 

through aperture 1 : S-Q = S-sWj + d W j - s W j + d W j - Q = r 

through aperture 2 : S-Q = S-sw2 + dw2-sw2 + dw2~Q = r 2 

In a focused system the optical path lengths from the point D to i t s 

geometric image Q are a l l equal, and therefore we may write 

D-dw2 + d W j - Q = D-dw2 + dw2~Q 

dw2-Q = D - d W j - D-dw2 + dw^Q 

Using the last equation the optical path length through aperture 2 is given 

as 

S'-Q = S-sw2 + dw2-sw2 + D - d W j - D-dw2 + dwx~Q + ( S - s W j -vS-sw1 ) 

We define the mean optical path length r Q as 

r Q = S - s W j + d W j - Q 

With r Q now defined the total optical path lengths are given as 
r i = r o + dwj-swj 

r 2 = r Q + dw2-sw2 + ( D-dwx - S-sw1 ) - ( D-dw2 - S-sw2 ) 

The variations in the two optical path lengths are then given by 

r e i = r x - r 0 = dwJ-sw1 (G.l) 

r £ 2 = r 2 - r Q = dw2~sw2 + ( D̂ dw~ - S - s W j ) - ( D-dw2 - S-sw2 ) (G.2) 

We must now express r £ 1 and r g 2 in terms of system parameters. The equations 

of the source and diffracted spherical wavefronts are given as 
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dw2 

sw2 

2 
X 

2 
X 

+ (Y - y D r + (z - z D r = x; + (y D - y A ) ~ + z D (G.3) 
+ (y - y D ) 2 + (z - z D ) 2 =x 2

s + <yD + y A ) 2 + z
2
 ( G > 4 ) 

x 2 + (y - Y S ) 2 + (z - z s ) 2 = x 2 + (y s - y A ) 2 + 2
2 (G.5) 

x 2 + (y - y s ) 2 + (z - z s ) 2 = x 2 + (y s + y A ) 2 + z 2 (G.6) 

The equations of the diffracted ray are the same as before and are given by 

equations (C.3) . Note that the equations of dw2 and sw2are the same those 

of d W j and sw1 except for the sign of y A . 

r e l has been derived in Appendix C (where r e l is called r e ) , and is 

given by equation (3.5) . An examination of that equation reveals that r e 

is not a function of y A and hence we may write 

r £ l = dw1-swJ = dw2-sw2 = r e (G.7) 

r e 2 
= dw2-sw2 + ( D - d W j - S-sw1 ) - ( D - d w 2 - S-sw2 ) 

/ 2 2 2 / 2 ~ 2 2 
= r e + / x s + (y D - y A) + z n - / x s + (y s - y A) + z s 

" / x s + ( yD + y A ) 2 + ZE> + / x s + ( yS + y A ) 2 + 4 (G'8) 

Let us now define the following parameters: 

Xso = x s + yS + ZS + yA 

A = (yj " y| + 4 ~ 4>/Xso |A| < 3 x 10" 4 

e = ̂ A^D " V / X s c |e| < 3 x l O " 5 

2y Ay s/X ; 

2 I ,1 2 
SO 

f < 1.3 x 10 

With these parameters and using the Taylor's series expansion for the square 

roots in equation (G.8) and by neglecting terms smaller than A/30 we get 

AT 
X. 
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The last equation may be accurately approximated by 

r e 2 = r e - D6 (G.9) 

where 6 is given by 

6 = x _ 4 . ] z p_iys . y ^ s f p ^ f s ( G > 1 0 ) 

x s o ' x s o x s b x s o 

Note that a small change in y Q alters 6 much more than the same change in 

would; because of this, and using equation (2.12) 6 is accurately 

approximated as 

6 = - 7 1 " 7 1 0 (3.13) 
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APPENDIX H 

DERIVATION OF EQUATION (3.12) - THE FIRST EXPOSURE I r 

,2m|d/2 27T d/2 2TT 

T 
. 2 

d/2 2TT 
/ /e 
0 0 

d/2 2TT 

/ /e 
0 0 

1 + e 

ikr~ 

- i k r P 

;ik.(r e- D 6 ) r d r d G 

0 0 

d/2 27T 
r dr d0 + / /e 

0 0 
- i k ( r e - D<5) r dr d9 

1 + e LkD.6 
d/2 2TT 

/ /e 
0 0 

d/2 2TT 

/ /e 
0 0 

i k r e 

- ikr„ (H.l) 

The values of the integrals in the above equation are given by equation (D.6) 

and with 

1 + e - ikDS 1 + e ikD6 = 4cos kD6 

equation (H.l) becomes 

!r = 
[a] 2 T r ud2i 2 r 2 j 1 ( p > i 

k J ~2 [ 4 J i p J 

kD6 
cos (H.2) 

With I„ given by equation (3.8), I may be written as 

I r = 4I 0 

f2J 1(p ) l kD6 
cos (3.12) 
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APPENDIX I 

DERIVATION OF EQUATIONS (3.14) AND (3.15) 

The minima of I r given :by equation (3.12) occur when either of the terms 
2Jj(p) 2kD6 

or cos — r — is zero. The f i r s t term has already been discussed in 
P 2 

Appendix E where i t i s shown that I r may be approximated by the Airy disk of 

diameter Dg in the image plane, and of diameter D s s in the specimen plane. 

The second, cosine, term modulates the f i r s t term..so that in this case the 

resultant I r looks as is shown in Fig. 3.7 . The period of the modulation 

is called the speckle grid pitch G g and i t is calculated from two consecutive 

zeros of the cosine term. 

for y. - y i c = G s : 
kDS ^ kD(y ± - y l c ) _ kDGs 

2 2x^ 2x^ 

Ax-£ 
since k = 2TT/A G s = (3.14) 

By using equation (2.12) the apparent speckle grid pitch G g g ' i s determined' 

from the last equation as 

Ax 
G s s = ^ (3.15) 
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APPENDIX J 

DERIVATION OF r e i AND r e 2 FOR DASC DURING THE SECOND EXPOSURE 

Due to a .general deformation of a specimen, the point S representing the 

specimen surface is displaced to S , and i t s coordinates^change between 

the two exposures as 

S(0,y s,z s) + S*(u,ys + v,z s + w) 

The equations of the diffracted wavefronts dwx and dw2 , as well as those 

of the diffracted rays remain unchanged and are given by equations (G.3), 

(G.4) and (C.3) respectively. The equations of the source wavefronts swx 

and sw2 must be modified to account for the altered, second exposure 

position of S . 

sw, (x - u r + y - (y g + v) 

+ z - (z s + w) = (x, - u r + (y s + v) - y A + (z s + w) (J. 1) 

sw. (x - ur + y - (y s + y) 

+ z - (z + w) = (x s - u) + ( y s + v) + y A + (z g + w) (J.2) 

Calculations completely analogous to those presented in Appendix C w i l l 

again be done. The diffracted wavefronts lead the source wavefronts.by the 

distance r„(y„,z_) given by equation (C.4). 
6 a- d 

We now define U,V and W as 

U = u U < 1.3 x 10 - 3 for u < 1 mm - .04 in. 

v V = x 
V < 4 x 10 - k 

s 
w W = W < 4 x 10 - 4 

for v < .012 in. 

for w < .012 in. 
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r , the optical path length variation of the rays passing through aperture 

1 , w i l l be determined f i r s t . The equations (G.3) and (C.3) are evaluated 

at the point (x1,y1,z1) and equations (J.l) and (C.3) are evaluated at the 

point ( x 2 , y 2 , z 2 ) . A l l these equations are combined and we eventually get a 

quadratic equation in ( r
6 l/ x

s) 

f r e i ^ 
*s ) 

- 2 
*s J 

lA—ID ( A y _ v ) _ fp_ ( A z _ w ) _ u + 

+ /F (Ay - V)cos9 + (Az - W)sin6 + 2 
/G ŷ LZa ( A y _ V) - (Az - w) 

- u + B (Ay - V)cos9 + (Az - W)sin0 + 2Ay Z P ^ 2 4 + 2 A z *D 
x c 

2 V ZB Z4 _ 2W + 2U = 0 (J.3) 

In Appendix C i t was shown that the quadratic term may be neglected when r 

is to be determined to X/10 (or in fact to X/30) accuracy and this was done 

here too. Using Taylor's series expansions for square roots and fractions, 

the solution of equation (J.3) (with the quadratic term neglected) is found 

to accuracy of X/30 as 

r = r ei 1 -

1 -

3yi (Ay - V) - (Az - W) -

zx s , 
y c Z o 

(Az - W) - (Ay - V) -x c 

1 -

1 -

3y£ + 3z 
2xT~ 

3y2 + 3z 
2x1 

2 

2 -> 

ys - yA 

x r 

U 

COSD + 

x c 

sxnt 
J(J.4) 

Since r = d W j - s W j is this time a function of y^ , we must replace y^ in 

equation (J.4) by -y^ to get dw2~sw2 , and r £ 2 is then calculated as 

r e 2 = r e i ( y A
 _y A) + ( D _ d w ! " S-sWj ) - ( D-dw2 - S-sw2 ) 
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r e 2 = r e i ( - y A ) + A \ + (y D - y A) 2+ z 2 - / ( x s - u) 2 + [(y g + v) - y j + (zg + w) 2, 

- / x | + (y D + y A ) 2 + z
D + ' < x

s - u > 2 + [(y s + v) + y A ] 2 + ( Z g + w) 2 (J.5) 

Using Taylor's series expansions for the square roots in the above equation, 

r , accurate to A/30 was found as 

r e 2 = r e i ( - y A ) - D « S - K) (J.6) 

where £ is given by equation (3.16). With Dj and D2 defined by equations 

(D.l) and (D.2) we define E ,E 2 and F as 

1 -
3y 2 

2x|j 
_y_ y s z s w 

+ 2 
X S X S X S 

1 -
3y| + 3z| 

2x| 
y s u 
X S X S 

E 2 = D2 1 -
3 zS 1 w 

2x|J x s 

+ 
y s

z s v 

2 
X S X S 

1 -
2xi 

Z g _u_ 
x s x s 

1 -
3yf, + 3zS 1 D/2 u 

2x' 

We can now write equations (J.4) and (J.6) as 

r e l = r [ ( E x + F)cos0 + E 2sin9] 

r e 2
 = E [ ( E ! " F)cos6 + E 2sin0] - D(6 - £) 

(J.7) 

(J.8) 
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APPENDIX K 

DERIVATION OF EQUATION (3.17) - THE SECOND EXPOSURE I r 

The substitution of the second exposure optical path length variations r ei 
and r e 2 , given by equations ( J.7) and ( J . 8 ) , in equation (2.19) gives the 

second exposure recorded intensity as 

1̂  = 
d/2 2u _ d/2 2TT _ 
| / e

i k r e i r d9 dr + / / e
i k r e 2 r d6 dr 

0 0 0 0 

d/2 2TT . d/2 2TT 
/ |e~ ± k r e i r d6 dr + / / e ' ^ r d B dr 
0 0 0 0 

(K.l) 

We define px and p 2 as 
kd 

Pi =~2 /(Ej + F) 2 + E 2 

kd 
'z ~2 p, = — / ( E 1 - F ) 2 f E 

(K.2) 

(K.3) 

The integrals of equation (K.1) are evaluated as 

d/2 2TT 
/ Je± r < 2 i r d0 dr 
0 0 
d/2 2TT 
/ fe±

 r e 2 r d6 dr 
0 0 

T\d2 J ^ P , ) 

TTd̂ _ J : ( p 2 ) e+ ikD(6 - 5) 
4 p, e 

(K.4) 

(K.5) 

Using these results equation (K.l) becomes 

f Trd 1 2 — r 
Ri(Pi) , -ikD(6-£) J i ( P 2 ) l f Ji(Pi) , ikD(6- g) Ji(P 2>l 
I Pi 

+ e 
'2 J 

+ e 

Trd 1 f J ^ P i ) J I ( P 2 ) 1 
I Pi P5 

+ '2Ji(Pi)1 
I Pi J 

f2Ji(P 2)l cos 
,kD(6 - g) 

2 

(3.17) 
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APPENDIX L 

DERIVATION OF EQUATIONS (3.19) AND (3.20) 

From the form of the second exposure I r i t i s apparent that the speckle 

grid has been shifted with respect to i t s f i r s t exposure position. This 

shift produces Moire fringes and i t w i l l be now related to the camera para

meters and the displacements u,v and w. Using equations (G.10) and (3.16) 

defining 6 and £ respectively we write 

kD(6 - Q 

2 

2 xr 

kD 
2 

1 -
'•so 

yp - ys _ ys zs Z D - zs 
.2 X so X so X so X so X so 

D X so 

ys . zs 
v 1- w X so 

X so' X 
so 

1 - yi 
X + w y s z s 

so' X s o X s o 

IX + 
so X so' 

(L.l) 

During the f i r s t exposure the speckle grid "passed" through the center of 

the speckle, and hence we may write YSgl ~ Yg > where Y Sgj l s analogous to 

y^gj ; i t denotes the y-coordinate of the "center", or the f i r s t maximum of 

the modulating term, of the apparent speckle grid in the j-th exposure. 

We find Y Sg 2 > the speckle grid "center" during the second exposure, on the 

line z = Z g from 
kD(6 - O 

= 0 (L.2) 

where y n is replaced by Y Sg 2 • The solution to equation (L.2) was found as 

'Sg2 Yc + v + y i - 1 

X so 
(Is x 0 + u 2x s VYS + W Z S 
X so vso so 

- w ys
zs 

'SO 
(L.3) 

Equation (L.3) is accurately approximated as 

y s g 2 = ys ys ys zs v H u - w (L.4) 
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The Moire fringe number n is found from equation (3.18) which by using 

equation (2.12) may be written as 

Y s g 2

 y s g i v sg2 y S = - nG ss (L.5) 

n is determined from equations (L.3) and (L.5) as 

n = - Axc 

1 -
2 

X 

- 1 

so-* 

y s x s + u 2xs vy s + wzcO y s z s 

X so so vso 
- w 

*-so 
+ V (3.19) 

Equation (3.19) may be closely approximated as 

Axc 

y s u + v - ys zs w (3.20) 
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APPENDIX M 

DERIVATION OF EQUATION (3.21) 

The envelope of the speckle grid term of equation (3.17) is given by the 
2J 1(p.) 2J,(p 2) 

product . The two terms are circularly symmetric about 
Pj P 2 

their respective maxima (centers) which occur when 

P1 = 0 (M.l) 

P 2 = 0 (M.2) 

Using equations (K.2) and (K.3) defining p and p 2 the approximate solutions 

of equations (M.l) and (M.2) are given by 

Pi = 0 : YD = yDi = ̂  + v + u ^ (M.3a) 
s 

Z c 
ZD = zD.i = z

s
 + w + u ~ (M.3b) 

yS + yA 
P 2 = 0 : y D = y D 2 = y g + v + u x (M.4a) 

ZD = ZD 2
 = Z

D l
 ( M ' 4 b ) 

We denote the coordinates of the centers of the two speckles by ( y 1 C l 5 z i c l ) 

and ( y i c 2 , z i C 2 ) respectively. By making use of equation (2.12) these 

centers are determined from equations (M.3) and (M.4) as 

y±ci = ~~ym = y i c - + 

z
i c l = - ~ z

D l = z i c - w f : + u ~ (M-5b) 

x i x i Yic x i D 

y i C 2 = - ̂  y D 2 = y i c - v ^ + u ~ u ^ 2x; ( M - 6 a ) 

z i c 2
 = - ̂  ZD 2

 = z i c i <M'6b) 
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where y^ c and z^ c are the coordinates of the f i r s t exposure speckle centre. 

The limit on the magnitude of the displacements u,v and w is obtained from 

the requirement that the f i r s t and the second exposure speckles must overlap 

so that Moire fringes may be formed. We write 

-5 Dc (M.7a) 

- z- Y 

L C 2 i c ; 

-2 Dr (M.7b) 

(y. - y. Y+ (z. - z. ) V J i c i J i c ' v I C I i r 

(yica - y i c ) 2 + < zi 

Using equation (2.12) and by combining the two equations (M.7) we get 

y s ± D/2f 
v + u x c 

+ + w + u — x„ 
D xc 

< = 1.22 X-r (3.21) 
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APPENDIX N 

DERIVATION OF r_,-1 FOR DASSC DURING THE FIRST EXPOSURE 

With r Q defined by equation (3.22) as r Q = S2-sw12 + dWj-Q the four optical 

path lengths r ^ from the two point sources Sj and S 2 to the point Q in the 

image plane are given as 

S 
2 
-sw 

12 
+ d w 

l 
- s w i 2 + d w i -Q = r Q + dw r S W 1 2 

(N. 1) 

S l " S W 1 1 
+ dw1 " s w n + d W j -Q + ( S 2-sw 1 2 " S 2 " S W 1 2 ) 

ro + d w i " s w n + (s i " s w n " S 2 - S W 1 2 > (N. 2) 

- s w 2 1 + d w 2 - s w 2 1 + d w 2 
-Q + ( S 2 - s w 1 2 " S 2 " S W 1 2 

) 

In Appendix G i t was shown that dw2~Q = D-dWj - D-dw2 + dWj-Q and hence 

r2l may be written as 

r 2 1 = r Q + dw2-sw21 + ( D-dWj - S 2-sw 1 2 ) - ( D-dw2 - Sj-sw 2 1 ) (N.3) 

r 2 2 = S 2 ~ S W 2 2 + d w

2

- S W 2 2 + d w

2 " ^ + ^ S 2 ~ S W 1 2 ~ S 2 ~ S W 1 2 ^ 

= r Q + dw2-sw22 + ( D-dWj - S 2-sw 1 2 ) - ( D-dw2 - S 2-sw 2 2 ) (N.4) 

The optical path length variations r •• are then given by 

r 
e I 2 

= r ! 2 " r o = dw^sw^ (N. 5) 

r 
ei i = r i l " r o = d W j - s w ^ +(S 1-sw 1 x - S2-sw 1 2 ) (N. 6) 

r 
e 2 l = r 2 1 " r o = dw2-sw2 j + ( D - d W j - S 2 - s w 1 2 ) " ( D - d w 2 - S x-sw 2 1 ) • (N. 7) 

r 
e 2 2 

= r 
2 2 

- r 
0 

= d w - s w 
' 2 2 2 

+ ( D - d w - S - s w 
1 2 12 

) " ( D - d w 
v 2 

- S - s w 
2 2 2 

) (N. 8) 

The four spherical source wavefronts have the centers at the points 

S (0,y ,z ) and S (0,y ,z ) and pass through the aperture centers at y 

and -y^ respectively. The two spherical diffracted wavefronts have the 

center at the point D ( - Y » Y D , Z Q ) and pass through the aperture centers at 

±y A. The diffracted ray appears to originate from D ( - Y , Y T ) , Z R ) ) and passes 
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through the point ( x
sjy a» z

a) l n t n e aperture. The equations of the source 

and diffracted wavefronts and of the diffracted ray are given as 

dwx : (x + Y) 2 + (y - Y ) 2 + (z - Z D ) 2 
= 4 + ( Y D - yA> 2 + 4 (N.9) 

dw2 : (x + Y) 2 + (y - Y ) 2 + (z - V 2 = 4 + (Y D + y A) 2+ Z2 (N.10) 

sw : 
12 

x 2 + (Y " y S 2 > 2 •+ (z - = 4 + ( y S 2 - y
A>2 + 4 (N.H) 

s w n : x 2 + (y " y
S l ) 2 + (z - zs>2 = 4 + - yA ) 2 + 4 (N.12) 

sw21 : x 2 + (y - y S l> 2 + (z - *s>2 = 4 + + y A ) 2 + z| (N.13) 

sw : 
22 

x 2 + (y " y S 2 > 2 + (z - zs>2 = 4 + ( y S 2 + y
A>2 + 4 (N.14) 

y ~ Y n 
diffracted ray : y = (x + y) + Y n (N.15a) 

x s 
z = Z a " Z ° (x + y) + Z n (N. 15b) 

A s 

The case Ay g > D G G is considered f i r s t . In Section 3.5 an argument was made 

that in this case only the diffracted light from the source wavefronts sw12 

and sw 2 1 contributes significantly to I r at Q. The positions of SJDJSJ and 

S 2 are shown in Fig. 3.12 , with the coordinates of D being such that 

|S-DI < D g s. The position of the imaginary point source S was chosen so 

that (hopefully) the blurred and sheared images of the real point sources 

Sj and S 2 would both be centered about the point R, the geometric image of S. 

The subsequent analysis has shown this choice to be correct. 

The geometry of DASSC is such that the positions of Sx and S 2 are 

related to the position of S by 

y

S l = Y s - ^ ( Y s + yA> 
y s 2

 = Ys - <YS " yA> 
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Let us define (and redefine) the following parameters: 

a = 1 + 

b = 1 + 

F = 1 + a 

fy a - Y D1 
2 
+ f za - z D l 2 

1 x s 

2 
+ x s j 

r Y D - ŷ  2 
+ 

2 

{ x s 

2 
+ 

a < 4 x 10 

b < 4 x 10 

- 2 

G = 1 + b 

Ay = 

3 

Az = 
Z D ~ Z S 

r 
x l 

< 1 x 10 - l 

Ay < 4 x 10 - h 

Az, < 4 x 10 

3 < 2 x 10 

- >t 

The distances dw^-sw^j are determined in the same way as in Appendix C. 

The diffracted ray originates from the source wavefront at the point 

(x 2,y 2,z 2) and reaches the diffracted wavefront at the point (x 1,y L l,z 1) and 

therefore the distance by which the diffracted wavefront leads the 

source wavefront i s given by 

dw,- -sw,- = /(x : - x 2 ) 2 + (y 2 - y 2 ) 2 + (zx - z 2 ) : 

-elj l - " I J 

We introduce the polar coordinate systems of the two apertures 

(N.16) 

aperture 1 

aperture 2 : 

z, = 

y A + r cos9 

r sinG 

- y A + r cost 

r sin9 

r e i 2 w i ± x be determined f i r s t . The equations (N.9) and (N.15) are evaluated 
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at the point (x1,y1,z1) and the equations (N.ll) and (N.15) are evaluated 

at the point (x 2,y 2,z 2) . From these equations and equation (N.16) a 

quadratic equation in ( r e i 2 / X g ) is obtained as 

ei 2 
L. Xs J 

r r - 2 ei2 
I x s ) 

/G + — /F + 
y A - D Ay + 3i 

Y s - yA' 
xc Xc 

Az + 3i Xc 

+ 3 Ay + 3f 
rs - y A 

xc 

COS0 + Az + 3X X sJ 
sin0 + 23x 1 - /G 

/FJ 
+ 2 y A - Y D 

Ay + 
Y s - y A l 

i Xc 

ZP_ 
X c 

Az + 3 ^ + 3 Ay + 3 ^ s - y A COS0 + Az'+ 3j 

Xc 

vs; 
sin0 

+ o Y D ~ yA A . 9

 Z D . . 9 R ( Ys - y A ) ( Y D - yA> + z D z s  
+ 2 —JT~ y ^ B l x i = 

(N.17) 

The small quadratic term is neglected and by making an extensive use of 

Taylor's series we obtain an approximate solution to equation (N.17), 

accurate to A/30 as 

r e i 2 = q £ 2 + £ ( K i c o s 9 + K 2sin0) = r £ 
(N.18) 

where q,Kj and K2 are defined as 

3, 
2X 

K i = 

K2 = 

1 -

1 -

3Y ?N 
2X* 
3Z S 

Ay -
YS ZS 
xi Az 

2X|J 
YqZq 

Az - Ay xi 

We shall now determine r. 
"e2 l 

Since r is not a function of y. we may ei2 J A 3 

write dw-sw„, = dw-sw,„ = r and r is then given as 2 2 i 1 1 2 e e2i 

r e 2 i = ^e + ( P " d w i " S 2 _ s w i 2 ^ ̂  ( D'̂ dw2 - Sj-sw 2 1 ) 
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"e2 i = re + + ( Y D " V 2
 + ZD - / x s + ( yS " y A ) 2 + Z 

- / x | + (Y D + y A ) 2 + z 2 +/x|+ (y g + y A ) 2 + z s (N.19) 

Using the Taylor's series expansion for the square roots in the equation 

above,,an approximate solution for r £ 2 1 is found as 

r ^ r - Dp 
ez 1 e r 

(N.20) 

where p i s defined as 

1 -
x 2  
A s o 

YD " YS 
vso 

YS ZS D̂ ZjS 
x s o x s o 

+ Pi X so 
(N.21) 

with X S Q redefined as X 2„ = X2. + Y| + Z2, + y (N.22) 

When the case Ay s < D s g is considered the parameter 3! is such that 
— 3 

|gi| < 6 x 10 and consequently * e i z and * e 2 1 may be further approximated 

as 
r e i 2 = £ ( K ! C O S 0 + K 2sin9) 

r e 2 1 = rO^cosO + K 2sin9) - Dp 

(N.23) 

(N.24) 

To determine r * ^ = dw1~sw11 we use equation (N.16) again. Equations (N.9) 

and (N.15) are evaluated at the point (x 1,y 1,z 1) and equations (N.12) and 

(N.15) are evaluated at the point ( x 2 , y 2 , z 2 ) . From these equations, and 

equation (N.16) we obtain a quadratic equation in (r*11/Xs). 

- e i i 
l x s 

- 2 - e i i 
(. x s ) /F 

3 +

 y A - Y D 
P i X c 

Ay + B x 

YS + y A 1 Z D 
* 

Az + 
z s l 

+ /F 
YS + y A Ay + 3 ^ cos9 + Az + 3X Xc 

sine + 2 1 - 3 1 + A y ^ + 

+ Az ̂  + 3, <
YD " V y A " y A + YS YD + ZS ZD) 

X c 
.+ 23 7? 

YS + y A Ay + 3,-S? cos9 + 
1 A c 

+ Az + 3 - sin9 = 0 (N.25) 
sJ 
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With the small quadratic term neglected an approximate solution to equation 

(N.25) accurate to X/30 was found as 

r = r ei i i K I 1 cos9 + K 2sin6 (N.26) 

r i s calculated from equation (N.6) as 

r e n = r e n + S i " s w i i " S 2 " s w i 2 

= r. n  + M + <ys " y A ) : 

+ zl -/: s - x s + <ys - yA> + ZS 

An approximate solution to the equation above accurate to X/30 is given by 

r = r ei l =• cbs0 + K2sin(: - a. + a A s (N.27) 

where a A and a s are defined as 
yiYsl 

L X S 0 x s o J 

O U = = 2y A3 1 

YA 
X s o 

l + 3 
1 X 2 

A s o 

r * 2 2 = dw2~sw22 is obtained by replacing y A in equation (N.26) by -y^ , and 

r e2 2 "'"s t^ i e n r o u n d from equation (N.8) 

r = r* - e 2 2 
(y, 

n ( y A 

e n ^ A -YA) + ( D - d W j - S 2-sw 1 2 ) - ( D - d w 2 - S 2-sw 2 2 ) 

-YA) + A 2 + (Y D - y A ) 2 + Zj - /x* + (y s - y A ) 2 + z 

- A 2 + (Y D + y A) 2 + Z 2 + /x 2 + (y s + y A ) 2 + z 

An approximate solution of the last equation accurate to X/30 was found as 

r e22 £ 
D 

5>x SJ cost 
+ K2sin£ Dp + a A + a s (N.28) 
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APPENDIX 0 

DERIVATION OF EQUATIONS (3.23) AND (3.24) - THE FIRST EXPOSURE I r 

The f i r s t exposure recorded intensity for the case Ay g > D s g is determined 

f i r s t . In this case I r is produced essentially by the interference of the 

light radiated by S2 and passing through aperture 1 with the light radiated 

by Sj and passing through aperture 2. Using equation (2.19) I r is given by 

Ir = 
d/2 2TT d/2 2TT 
/ / e ± k r e i 2 r d9 dr + / / e ± k r e 2 i r d6 dr 
0 0 0 0 
d/2 2TT 
/ / e

 l k r e i 2 r d9 dr + / je ^ e 2 i r d 9 d r 
d/2 2TT 

- ikr. 
0 0 0 0 

(0.1) 

The two optical path length variations r e i 2 and r e 2 1 are given by equations 

(N.18) and (N.20) and with these equations I is calculated as 

1^ = 1 + e - ikDp 1 + e ikDp 

fd/2 277 
/ / e ± k r e r d 9 d r 
0 0 

d/2 277 
/ | e ± k r e r d9 dr 
0 0 

d/2 277 
/ /e" i k r e r d0 dr 
0 0 

d/2 277 
/ /e" ± k r e r d9 dr 
0 0 

4cos' kDp (3.23) 

Using the integration by parts equation (3.23) may be written as 

Ir- = 41, 
f2J1(p)] 

f2J1(R)^i 
R 

- 4 • 

R' -
co SOJ —5- dR 

P . 

CO 2J1(p)^|PrR^|3 f2J1(R)'J 
/ 

yo 
Ipj R 

+ PJ 
2J1(R)'| 

R 

sinco 

R̂  

R 2N 
1 - dR+ 4-co 

sinco—5- dR P . 
kDp 

cos 

P 
/ 

L"0 

R 
IPJ 

(0.1b) 

where R and CO are defined as R = d/2 

kqd< 
CO = co < 2 
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The f i r s t exposure recorded i n t e n s i t y f o r the case Ay g < D g s i s again 

calculated according to equation (2.19), but th i s time a l l the l i g h t " 

radiated by the two sources contributes s i g n i f i c a n t l y to the resultant I r 

and the i n t e n s i t y i s therefore calculated as 

Ir = 
d/2 2TT _ 

I f f e i k remn r d9 dr 
m= 1,2 0 0 
n= 1,2 

d/2 2TT 

I I Je" l k remn £ d6 dr 
0 m= 1,2 0 

n = 1,2 

(0.2) 

We now define PsPi! and p 2 2 as 

kd 
P ( K 2 + K 2 (0.3) 

_ kd 
' i l ~ ~~2~ 

kd 
522 = ~2~ 

+ Ki 

K ' l - B l ^ r ) + *2 

(0.4) 

(0.5) 

The four r •, are given by equations (N.23),(N.24),(N.27) and (N.28). By 
ex j 

making use of equations (N.18),(N.20),(N.26) and (N.16) we may write 

equation (0.2) as 

r „ N 2 

I r = ;e
lk(r2n " a A +

 + / e
i k r e d A + / e l k ( r e " ^ d A + 

+ | e
l k ( r e 2 2 + a A + a s - D p ) ^ Je~ i k ( r e n " a A + a s ) d A + j - i k r e d A + 

+ Je~ i k ( r e " ° P ) d A + | e " i k ( r e 2 2 + a A + a s - Dp) dA (0.6) 

where A i s the area of the c i r c u l a r aperture(s). Using equation (D.6) I r 

i s evaluated as 

I r = « 0 

ik(ou - ou) J, , e s ~ ̂  + J + Je ^ u v + J 2 2 e ^ v " A --ikDp i k ( a A + a s - Dp) 
11 
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J n e 

- ikCa,, - a.) s -A' + J + J e — + J e" ± k ( a A + a s " DP> ikDp 
2 2 (0.7) 

where J»J n and J 2 2 are defined as J 

11 

2 2 

Jj(p) 

P i I 
J i ( P 2 2 > 

p 
r 2 2 

To interpret equation (0.7) we assume that a l l products J m r l J k i have 

approximately the same value over the speckle area, I.e. we let J mn^kl ~ ̂  

Equation (0.7) is then put in the form 

I r - 16IQ 
f Jl(p)] 2 , 

p + P 2cos - (Dp - a A) (3.24) 

where Pj and P 2 are defined as 

k k 

P 1 = 1 + coska scoska A - 2cos—(a A + a s ) c o s — ( a A - a s) (0.8) 

P 2 = 4cos|-(a A + a s ) c o s ^ ( a A - a s) (0.9) 
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APPENDIX P 

DERIVATION OF r„,, FOR DASSC DURING THE SECOND EXPOSURE 

As shown in Fig. 3.14 , when a specimen i s deformed i t s surface i s , in 

general, displaced and strained both in and out-of-plane. The deformation 

occurs between the two exposures and i t changes the coordinates of the two 

point sources St and S2, representing the surface, as follows 

s i ( 0 » v S i ' z s ) ^ S*(u,y S i+v,z s + w) 

S 2(0,y S 2,z s) -»• S*(u+6u,y S 2 + v+6v,zs+w+6w) 

The equations of the diffracted wavefronts d W j and dw2 , and of the diffrac

ted ray(s) remain unchanged and are given by equations (N.9),(N.10) and 

(N.15) respectively. The equations of the source wavefronts sŵ ^ must be 

modified to account for the changed, second exposure positions of Sj and S 2 > 

sw n : (x - u) 2 + [y - ( y S i + v)] 2 + [z - (z g + w)J 2 = 

(x s - u) 2 + [(y S l + v) - y A ] 2 + (z s + w) 2 (P.l) 

sw i 2 : [x - (u + Su)] 2 + [y - ( y S z + v + 6v)] 2 + [z - (z g + w + 6w)] 2 = 

[x s - (u + 6u)J 2 + [ ( y S 2 + v + 6v) - y A ] 2 + £z s + (w + 6w)]2 (P. 2) 

sw 2 i : (x - u) 2 + [y - ( y g i + v ) ] 2 + [z - (z g + w)] 2 = 

(x s - u) 2 + [(y S l + v) + Y a ] 2 + (z s + w) 2 (P.3) 

sw 2 2 : [x - (u + 6u)] 2 + [y - ( y g 2 + v + 6v)] 2 + [z - (z g + w + 6w)] 2 = 

[x s - (u + 6u)] 2 + [ ( y g 2 + v + 6v) + y A] 2 + [z g + (w + 6w)] 2 (P.4) 

As i s discussed in Section 3.6 , when DASSC is considered the changes in the 

distances between each of the point sources and S 2 and the laser must be 

included in the calculation of r ej; j , and hence using equations (N.5) through 

(N.8) the second exposure r ̂  are given by 



-ei2 

-ei 1 

d W l-sw 1 2 + r u 

d w x - s W j j + ( S 1 - s w 1 1 - S 2 - s w 1 2 )+ r L l 

r £ 2 1 = dw2-sw21 +(D-dw1 - S2~sw12 ) - ( D-dw2 - —sw2 ̂  )+ r L i 

r e 2 2 = dw2-sw22 +(D-dwx - S2-sw12 ) - ( D-dw2 - S2-sw22 ) + r L2 
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(P.5) 

(P.6) 

(P.7) 

(P. 8) 

The subsequent calculations of the second exposure ^ e±^ are similar to the 

calculations of the f i r s t exposure t e i j presented in Appendix N. The 

diffracted ray originates from the source wavefront at the point (x 2,y 2,z 2) 

and reaches the diffracted wavefront at the point (,-x. ,y1,z1) with the 

distance r*•^ by which the diffracted wavefront leads the source wavefront 
e x j 

given by equation (N.16). 

The case Ay s < D g g is considered f i r s t . To determine r * 1 2 equations 

(N.9) and (N.15) are evaluated at the point (K
1>yl>z

1) a n d equations (P.2) 

and (N.15) are evaluated at the point ( x 2 , y 2 , z 2 ) . From these equations and 

equation (N.16) we obtain a quadratic equation in (r* 1 2/X g) as 

-ei2 
I X c 

- 2 -ei 2 

+ 3 , — " W 
l x s 

I Xc, J 

/F 

/F 
- 6X - U + 

y A " YD 

YS " yA Ay + B j ^ - - V 
Xc 

Xc 

COS0 + 

Ay + 3 f 
S - yA 

Az + 3 , — - W 
l x s 

- V 

sin9 

X 
Az + 

s 

+ 

+ 2 

+ 2i 

1 " / F j 
3 : + u + 

YD " yA 
X c 

Ay + 

/G 
7f 

YS " yA 
A y + Pi Y " V COS0 + 

YS " yA 

Az + 

X c 

Az + 3 , — - W 
l x s 

- w s i n 0 = 0 

+ 

(P.9) 

where U,V and W are defined as U 
u + 6u 

v + 6v 
V = 

X c 

W 

vs 
w + 6w 

U < 1.3 x 10 - 3 

V < 4 x 10 

W < 4 x 10 

- 4 
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The small qadratic term in equation (P.9) is neglected and with an extensive 

use of Taylor's series we obtain an approximate solution, accurate to X/10, 

for r e i 2 as 

r* = -±r~ + r -ei2 2XC 

fY n - Yc, Yc, - y A u + 6u v 
— ^ - ± ( l + 3 X) -

+ Sv' 
Xc x c 

coso + 

+ 
f Z D - Zg Zg u + Su 

Xe X c Xc - ( l + B,) 
w + Sw 

Xc 

s i n e (P.10) 

r * 2 1 is obtained from equation (P.10) by replacing y A by -y A , and u + Su , 

v + Sv and w + Sw by u,v and w respectively. 

r = + r 
e2i 2X0 - Xc 

Ys + y A
 u 

( l + 3.) 
V 

J / Xc coso + 

+ 
Z N - • Z Q Z Q u w' 
— - — — - ( 1 + 3) — 

x s x s x s 1 x s J 
s i n t (P.11) 

In Section 3.6 i t is shown that Ar^ 2 = A r L i - Su cos9 x - Sv cos6 y - Sw cos6 z 

and hence ^ e i z i s given by 

r e i 2 = r e i 2
 + ^ r L i " ^ u c o s ^ x -SvcosGy -5wcos9 z 

(P.12) 

r e 2 1 is given by equation (P.7) as 

+ 

r e 2 l = r * 2 l + ( ̂ "dwj - S 2 - s W j 2 ) - ( D-dw2 - S jsw2 z ) + r L 

( ( 
= r e 2 i + r L i + [ Xs + ( Y D ~ y A> 2 + Z D J " [Xs2 + ( Y D + yA> * + Z D J 

"I % f 
(x s - u) 2+ [(y s + v) + y j 2 + ( z s + w) 2 - [x s - (u + Su)] 2 + 

) V 

•» 1 
+ [(y g + v + Sv) - y A] 2+ [z s + (w + Sw)] 2 (P. 13) 

An approximate solution of equation (P.13), accurate to X/10, is obtained by 

using the Taylor's series expansions for the square roots with the result 
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re21 re21 + A r L i - D(p - C ) (P.14) 

where i s defined as 

e = 

rY sx s 

X s o ^ As o D X S 0 

Zg6w"\ 

DX 

v 

so' X 
so 

1 _ _ 2 - _ 

"•so 

6v' 

D . 
w 

X 
so 

fYgZg 6w 
n "I™ 

D J lx: 
so 

Xc 
+ 1 + 

D Y s ] 6u 6v Y S - D/2 r DYo 1 
2^1 o- xso xso D 2 

2 xsoJ 
+ 2D 

6w 

xso D 
1 + 

DYg> 

2X 
so 

+ 2D 
(P.15) 

We shal l now consider the case Ay s < D s s . Since now j 3 x j < 6 x 10 3 r * 1 2 

and r * 2 1 may be obtained from equations (P.10) and (P.11) by neglecting 

some small terms involving 3j with the result 

-e 12 = r 
Y D - Yg Yg - y A u + 6u v + 6v~\ 

X s Xc 

r z n - Zc Zc u + 6 u w + 6 w 

r = r e21 i 

X c 

Y - Y *D *S 

X s X s 

Y S + y A u 

-X c Xc X c 

-v 

X 

Xc 

cose + 

Xc 

3in8 

Z D Z S 

cos6 + 

Xc 

^S _z_ 
x s x s 

(P.16) 

w ' 

xs-
sin0 (P.17) 

r e i 2 and r £ 2 x are given by equations (P. 12) and (P.14) with r * 1 2 and r * 2 1 

given by equations (P.16) and (P.17) . r^j[ = dw1-sw1 1 is determined from 

equation (N.16). Equations (N.9) and (N.15) are evaluated at the point 

(x ,y ,z ) and equations (P.l) and (N.15) are evaluated at the point 

( x 2 , y 2 , z 2 ) . From these equations and equation (N.16) we obtain a quadratic 

equation in ( r * 1 1 / X s ) . 

•ei 1 - 2 
' T * 

r e i 1 
X c 

/ F 
- U - x c 

Ay+3. 
Ys + yA 

X a 

V Az + 



+ 3 — - w 
IXe 

+ Ay + 3, - " V1 

X c 

COS0 + Az + 3 , — - W 
XX S 

3in6 
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+ 

+ 2 
1 " 7 f J 1 xc Ay + B 1 - V A " v + Az + 3 , — - W + 

/G 
+ 2 3 7 f Ay + 3X 

YS + yA 
X c 

- V COS0 + Az + 3 , — - W 
l x s 

5in6 = 0 (P.18) 

where this time U,V and W are defined as U = U < 1.3 x 10 - 3 

V = 

w = 

A s 
V 

Xs" 
w 

xT 

V < 4 x 10 - 4 

W < 4 x 10 - if 

An approximate solution of equation (P.18), accurate to X/10, was found as 

r e n = £ 
YD " YS 

X c 

YS ~ yA u 

X q X q 

V ' 
COS0 + 

ZD ZS u 

Xs X s Xc 
w • 
Xs-

;in0 (P.19) 

r £ 1 1 is obtained from equation (P.6) as 

-ei i =
 r e n + r L i +(S 1-sw 1 1 - S 2-sw 1 2) 

( x s - u ) 2 + [(y s + v ) - y A ] 2 + (z s+w) : 

[x s - (u + 6u)] 2+ [(y s +v+6v) - y A ] 2 + [z s+(w+6w)] : 

= r e n + r L l + 

(P.20) 

An approximate solution of equation (P.20), accurate to X/10, is given by 

: e n r e i i + r
L l " a * + &n (P.21) 

where a and $ are defined as 

a = a A + u I X S O 
X ; 

S O S O 

w6w X s 

H 6u + 6v 
Xso X s o 

6v 1 
+ I X S 0 2X S 0 J 

+ 

+ Sw f
 z s yA Y s z s 6 w 1 
IX, so X so 2X S 0 J 

(P.22) 



211 

^11 a c - v 
X S Q

 x s o 

, , y A Y s x s ? 
+ ou 3 - ov 

Xso 

ZA_ +

 y A Y S +

 y A Y s l 
xso xso xso 

(P.23) 

r * 2 2 i s obtained from equation (P.19) by su b s t i t u t i n g - y A for y A , and 

u + 6u, v + 6v and w + 6w for u,v and w res p e c t i v e l y . 

f YD " Y S Y S + y A u + 6 u v + 6 v l 
r = r xc X COS0 + 

s J 

+ 
Z D - Zg Zg u + 6u w + 6w"| 

xc 

sinG (P.24) 

r e 2 2 i s given by equation (P.8) as 

-e22 = r * 2 2 + A r L + ( D - d W j - S 2-sw 1 2 ) - ( D-dw2 - S 2-sw 2 2 ) 

= r e 2 2 + A r L 2 + X s + <YD " yA> 2 + ZD " X s + <YD + y A ^ + ZD 

+ [ x s - (u+6u)] 2+ [ ( y g + v + 6 v ) + y A ] 2 + [z s+(w+6w)] : 

[x s - (u + 6u)] 2+ [ ( y s + v + 6 v ) - y A ] 2 + [z s+(w+6w)J 2 (P.25) 

Using Taylor's ser i e s expansion f or the square roots i n the above equation 

we f i n d an approximate s o l u t i o n , accurate to A/10, for r £ 2 2 as 

r _ = r*„„ + Ar T , + a* + 6 2 2 - D ( P - ?*) + A* -e22 e22 L l (P.26) 

where 3 2 2 and A are defined as 

2y AY g u + 26u 
l 2 2 = a s + u — o + ou 

+ 6v 

x 2  
Aso xso 

r y A y A Y S 

" xso Aso 

X + 
so 

2 y A Y S rs u 
Aso • xso 

Xc 

so' 
+ 

y A Y S . p
 2 y A l 

3 1 
xso X s o j 

(P.27) 

A = - 6u cos6 x - <5v cos0y -6wcos0 z (P.28) 
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APPENDIX Q 

DERIVATION OF EQUATIONS (3.25) AND (3.28) - THE SECOND EXPOSURE I r 

The second exposure I r for the case Ay s > D s s is calculated according to 

equation (0.1). Once r e i 2 and r e 2 : given by equations (P.12) and (P.13) 

respectively are substituted in equation (0.1) and the indicated 

multiplication i s done we get 

Ir = 
ikr ei2 dA /• - ikr e i 2 d A + / i 

A 
ikr e 2 1dA Je 

A 

- ikr e 2 1dA + 

- iA f - ikr + e je 
A 

e i 2 f dA / e
i k r e 2 i d A + e 1 A / e 1 K r e i 2 d A / i A r ikr. - ikr e 2 i d A (Q.D 

where A i s defined as A = k D( P - hf) + A* 

Equation (Q.2) may be put in the form equivalent to equation (3.25) 

. 2 
Ir = 

T , A 
2 -(R 1 + R 2cos z- + R 3sinA ) (Q.2) 

R l 5R 2 and R3 are defined as 

r i k r P , , ,. r - ikr Rj = je e i 2dA J e e I 2 
l k i r ^ Q I T * r " ^ " ^ • ^ > G 2 . I dA + J e e 2 1dA Je dA -

2Jcoskr* j 2 dA jcoskr*2 j dA - 2/sinkrgj 2 dA /sinkrg 2 x dA 
A A A A 

R2 = 4 

R3 = 2 

/coskrg 1 2 dA/coskr* 2 1 dA + /sinkr* x 2 dA /sinkr* 2 x dA 
A A A A 

/coskrg : 2 dA/sinkr* 2 j dA - /coskr* 2 j dA/sinkr* 1 2 dA 
A A A A 

(Q.3) 

(Q.4) 

(Q.5) 

In the case Ay s < D s s , I r is given by equation (0.2) with r e i 2 given by 

equations (P.12) and (P.16) , and r e 2 1 given by equations (P.14) and (P.17) 

r e n a n d re22 a r e § i v e n by equations (P.21) and (P.26) respectively. 



When the indicated multiplication in equation (0.2) i s done, we get 

J n e 
- ikD(p - V) + 

ik[a* + B 2 2 + A* - D( P - 5*)]] f j e- ikCB^ - a*) 
J 2 2 1 1 i : 

ikD( P - ? * ) . , - ik[a* + B 2 2 + A* - D( P - E*)V 
J 2 i e J 2 2 e 

- ikA* ̂  e + 

(Q.6) 

where J m n is defined as 

and p m n are defined as 

J (Pmn) 
Jmn mn 

1 1 

1 2 

p 2 1 

'22 

kd r YD" YS Y s - y A 
~1 

_ 
, x s x s 

kd fYD- YS Ys-YA 
2 

_ I x s 
X s 

kd f YD" YS YS + YA 
2 

_ 
- x s x s 

kd Y s + yA 
2 1 x s x s 

2 2 
fZ n - Z s Zq u w 1 

+ x s X s X s 

Xc x s J 
+ 

f Z j ) - Z g Z g u + 6u w + Sw^ 
Xs X s X c 

r z D - Z g Z g u w 
I x s 

2 

x s J + I X c X s X g 

X c J 

X S X g X g 

Z-Q - Z g Z g u + Su w + 6V 
X s J 

To interpret equation (Q.6) we assume that J m n J k i - J (and hence p m n - p) 

within the speckle area, and equation (Q.6) may then be written as 

Ir - 161, f V P > l 2 k 
Qj + Q2cos — D(p - ?*) - a* + ^ - r -

22 (3.28) 

where Qx and Q2 are defined as 

Q i = 7 1 + cos I ( B n - g 2 2 - 2a*- 2A*)cos | ( B 1 X - B 2 2) 

- 2cosk(a* + A*)cosk(B 1 1 - B 2 2) 

Q2 = cosk(a* + A*)cosk(B 1 1 - B 2 2) 
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APPENDIX R 

DERIVATION OF EQUATIONS (3.26) AND (3.29) 

The forms of the second exposure I r , for the two cases of Ay s considered, 

reveal that in each instance the speckle grid has been shifted with respect 

to i t s f i r s t exposure position. By comparing the modulating (cosine) terms 

of the f i r s t and the second exposure I r the relative shift of the speckle 

grids may be related to the surface displacements and their increments, and 

to the camera parameters. 

The case Ay s > D s s is considered f i r s t . The two modulating terms are 

given by equations (3.23) and (3.25) as 

f i r s t exposure : cos 

2 
second exposure : cos 

kDp 

D(p - E*) +• A * 

In a similar way as in Appendix L, the apparent speckle grid centers Y Sgj 

and Y Sg 2 > in the object plane, are found from the maxima of the two modula

ting terms. Y Sgi ^ s f° u nd on the line Z = Z g from 

kDp = 0 (R.D 

with Y s g l substituted for Y D . Y s g 2 is found on the line Z = Zg from 

D(p - E*) + A * = 0 (R.2) 

with Y s g 2 substituted for Y D . The solutions of equations (R.l) and (R.2) 

are given by 

Y s g i - YS 1 - 3, 
r2 , 

1 - X. so 

- l 

Y = Y + x s g 2 sgi 

'2 . 
1 - X so 

- 1 

D "so 

(R.3) 

(R.4) 

The Moire fringe number n i s related to Y s g l and Y s g 2 by 
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Y sg2 ~ Y s g i ~ N ^ D (R.5) 

Equation (R.5) was solved for n with the result 

n = 
,2 •> 

1 -
- i fY sX s Y s6v Zs6wl 

IX so DX S 0 DX S QJ 
+ v 

Yn Sv) 
1 " 2 " ~ 

X S 0
 D ^ 

w 
fY sZ s 6wl 

+ 
so D J + 

+ Su 

+ 6w 

X£ 

D 

X 

f Xso D YS 1 cos9 x + 1 H — 
•̂Xs

 2 X s o ' 
+ 6A 

X so 
D 

Ys-D/2 
cos6 v -

y X, "•so 
l + 

t 2 X s 0 J 

6v 
+ -2X so-

+ 

so 
D cos6„ - — 

z X, so 

DYr 

1 + 
2X S 0J 

6w 
2X s oJ 

(R.6) 

Once the definitions of 6u,6v and 5w are substituted in equation (R.6) i t 

may then be accurately approximated by equation (3.26) 

When the case Ay s < D s s is considered the modulating terms for the two 

exposures are obtained from equations (3.24) and (3.28) as 

k 
f i r s t exposure : 

second exposure : 

cosz— (Dp - a A) 

cos 2^D(p - £*) - a* + 
3 1 1 - B22 

Again the apparent speckle grid centers Y s g l and Y gg 2 are found from the 

maxima of the two modulating terms. These maxima occur when 

- (Dp - a ) = 0 

D( P - ?*) - a* + 1 1
 0

 2 2 = 0 

(R.7) 

(R.8) 

In equation (R.7) Y Sg X is substituted for Y n and in equation (R.8) Y Sg 2 is 

substituted for Y D . In both equations Z D is set equal to Zg . Equations 

(R.7) and (R.8) are solved with the result 
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"Sg2 Y S " 1 - X; so 

- 1 
^ i Y S ~ X s o K D 2D (R.10) 

The Moire fringe number n is obtained from equation (R.5) with Y Sg x and 

Y s g 2 given by equations (R.9) and (R.10). An approximate solution for n is 

given by equation (3.29). 
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APPENDIX S 

DERIVATION OF EQUATIONS (3.27a) AND (3.27b) 

The amplitudes of the speckle grid terms for the case Ay s > D s s are obtained 

from I r recorded during the two exposures and described by equations (3.23) 

and (3.25) . The two amplitudes are given by 

f i r s t exposure : 

second exposure : 

/e i k r e dA je~ ± k r e dA 
A A 

R„ 

When the effect of the small nonlinear term 
e x r 2 

2Xa 

on the shapes of the 

speckle envelopes is neglected the amplitudes are proportional to 
Ji(Pmn) Ji(Pkl> 

fVp)! 
P 

for the f i r s t exposure, and 
mn Pkl 

for the second exposure, 

Using equations (N.18),(P.10) and (P.11) we define P,P 1 2 and P 2 J as 

kd , „ k 
- r - (K2 + K 2) 2 (S.l) 

Pi: 

2 1 

kd 
T 

+ 

kd 

'YD " YS Yg - y A u + Su v + Sv"! 2 

Xc 

Z D - Zg Zg u+ Su 

Xc - (l + B j ) 

- (1 + B i ) 
w + Sw 

Xc 
(S.2) 

YD " YS 
Xc 

YS + yA u ^ v 1 

Xc X, Xc 
+ 

ZD ZS 
xc 

Zg u_ 
x s x s 

- (l + B x ) 
W^l 

X sJ 

(S.3) 
where Kx and K2 are defined i n Appendix N. The limit on the size of 

displacements and strains i s obtained from the requirement that a l l the 

speckles recorded in the two exposures overlap. Let us c a l l the coordinates 

of the speckle centers (maxima) as (Y1,Z1) for the f i r s t exposure, and 

(Y 1 2,Z 1 2) and ( Y2 1>Z 2 1) for the second exposure. Since f—ilP-ML_l 
"mn J 

i s 

maximum when p m n = 0 , the coordinates ( Y J , Z J ) are found from the equation 



218 

p = 0 , with Yj and Zj substituted for Y n and Z n . An approximate solution 

was found as 

(S.4a) 

(S.4b) 

When Y 2 and Z 1 2 , and YZ1 and Z21 are substituted i n the equation P12'= 0 , 

and p = 0 respectively, for Y n and , the approximate solutions of 

these equations are then found as 

Y s - y A 

Y,„ * Y c + ~ (u + 6u) + (1 + 3 x)(v + 6v) • 1 2 

Z 1 2 = Z s + ^ (u + 6u) + (1 + 3^ (w + 6w) 

Y Q + y A 

Y 2 i s Y s + - V ^ + < 1 + . 3 i ) v 

Z 2 i ~ Z S + x U + ( 1 + 3 1 ) W 

(S.5a) 

(S.5b) 

(S.6a) 

(S.6b) 

The distances between the speckle centers must be smaller than the speckle 

radius and hence we may write 

p and p 1 2 : 

p and p„ 2 1 

(Y 1 2 - Y 2 ) 2 + ( Z 1 2 - Z l ) : 

(Y - Y K + (Z - Z ) z < 
V 2 1 l' V 2 1 lJ 

S S (S.7) 

(S.8) 

Y 1 , Z 2 Z 2 x given by equations (S.4a) through (S.6b) and the definitions 

of the displacement increments 6u,Sv and 6w are substituted in equations 

(S.7) and (S.8). Since |3 | « 1 , equations (S.7) and (S.8) may then be 

closely approximated by equations (3.27a) and (3.27b). 
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A P P E N D I X T 

D E R I V A T I O N OF EQUATION ( 4 . 1 3 ) . 

DASSC using a set of apertures rotated by the angle CJĴ  forms fringes 

according to equation ( 4 . 1 2 ) . 

x c 

u i + v i ~ 2 w i 
Y i 2 ! A Y s i x s i 

W-! 

A y S i x s i fy±-yA 
D - x s 

COS6y-L V 
A y s i x s i 

i » y i D - COS0 zi 
XX 

wi»yi s i ni(yi,zi) ( 4 . 1 2 ) 

A l l terms in equation ( 4 . 1 2 ) w i l l now be transformed into y,z coordinate 

system using the transformations 

y^ = ycosd)^ + zsincj)^ 

Zj_ = - ysincj)^ + zcosd^ 

y = y^cosdK - z^sind)^ 

z = y^sincj)^ + z^coscj)^ 

The transformations of the displacement components are given by equations 

( 4 . 3 ) , and the strain components transform as 

u±,y±(y±,z±) = u, y l(y,z) = u, y(y,z)y, y i + u, y(y,z)z, y i 

= u,ycos(f>i + u^sincj)^ (T.la) 

vi>yi(yi» zi) = [v(y, z) cos<J>i + w(y, z) sin<J>i] , y i = 

= ( v , y y , y i + v, zz, y i)cos(j) i + (w, yy, y i + w, z z , y i ) s±nty± 

= v,ycos2c}).i + v, g.sincĴ coscfj-L + w,ysincj)^cos())^ + w, zsin 2cj)i (T.lb) 

w i » y i ( y i ' z i ) ='•[ " v(y,z)sin(f) i + w(y, z) coscjijj , y i = 

= " ( v , y y , y i + v, zz, y ±)sind) ; L + (w, yy, y i + w, zz, y l)cosd^ = 

= - v^sincj^costJj-L - v ^ s i n 2 ^ + w,ycos2(j)^ + WjySincj^coscj)^ (T.lc) 
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By substituting the coordinate, displacement and strain transformations 

in equation (4.12) i t becomes 

— u + (vcosd)^ + wsincj)^) - ( - vsindp-L + wcosd)^) — z

 1 ^ (1 + cos9 xi) xg D 

A y S i x s i •(u,yCOsa)^ + u, zsind)^) — - cosOyi (v, ycos 2d)-L + v, zsin(J)iCOS(J)-L + 

+ WjySincfi^cosd)^ + w, zsin2cj)^) 
A y s i x s i fZ-j 

- cost Z l ( - V j y S i n c j^cosdpi -

XX sx v , z s i n d)̂  + w,yCOS d)̂  + w, zsin<j>-̂ cos(j)£) = n-j_(y.j_, z-j_) (T.2) 

With coefficients a-j_,...,kj_ and defined in Section 4.5, equation (T.2) 

may be written as equation (4.13). 



221 

APPENDIX U 

The coefficients d^,...,^ for the case of the specimen illumination in 

x,y plane ( 0 Z = 90°) are derived here. From Fig. 4.3 (where = <p^ the 

unit vectors i , j and ii»Ji are related as 

1 = H 

j = jicosdpi - kisincJi-L 

For 8 z = 90° the angles 6 X and 9 y are related by 

cos6y = cos(90° + 0 X) = - s i n 0 x 

The unit illumination vector 1 is written in the two coordinate systems as 

1 = i c o s 8 x + jcos0y + kcos0 z 

= i c o s 0 x - j s i n 0 x 

s\ /\ /\ 
= i ^ c o s 0 x - (j^cosvj)^ - k^sincj)^) s i n 0 x 

= i ^ c o s 0 x - j ̂ sin0 xcoso)^ + k£sin0xsincj)£ 
s\ X\ / \ 

= i c o s 0 x ^ + jcos0y-^ + kcos0 z^ 

From the last two equations we get 

c o s 0 x i = cos0 x 

cos0y-L = - sinGjjCOSc})-]̂  

COS0z-L = sinGxSintj)^ 

By substituting these relationships in the expressions for dj_,...,k-j_ in 

Section 4.5 the simpler forms of these coefficients are obtained. 
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APPENDIX V 

DERIVATION OF THE DISPLACEMENTS AND STRAINS CAUSED BY THE OUT-OF-PLANE 

BENDING OF BEAMS 

Handbook of St e e l Construction [62] gives ( a f t e r change of notation and 

the coordinate o r i g i n ) the d e f l e c t i o n of a neutral surface of a t h i n 

prismatic beam with clamped ends and a point load at i t s center as 

f v 1 2 3 -
-L/2 4 y 4 0 u(y) = 6 1 - 3 y 

[L/ 2 J 
- 2 y 

1 L / 2 J 

' y i 
2 V ^ 3-

0 4 y 4 L/2 u(y) = 6 1 - 3 [L/2J + 2 y 
L/2, 

(V.la) 

(V.lb) 

where 6 i s the d e f l e c t i o n of the beam centre and L i s the beam length, u i s 

not a function of z, and since we consider only a thin beam and small 

deformations, i t may be assumed that the out-of-plane d e f l e c t i o n of the 

illuminated surface of the beam i s the same as that of the neutral surface. 

It i s apparent from F i g . V . l the bending of the beam gives r i s e to the 

in-plane displacement v as 

V = - | U , y 

Using equations (V.la) and (V.lb) v i s given as 

-L/2 ^ y < 0 v(y) 

0 « y « L/2 v(y) 

t 6 y 
12 - -2 L L/2 

t 6 y 
12 2 L L/2 

1 + 

1 -

L/2 

L/2J 

(V.2a) 

(V.2b) 

The surface s t r a i n s E y ( y ) and e z ( y ) are given as 

£y ^'y 2 ̂ 'yy 

£z = w » z = " v e y = v ~2 u>yy 

(V.3) 

(V.4) 



Fig. Out-of-plane bending of a prismatic beam. 
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where v is Poisson's ratio. The displacement w i s such that w(y,z = 0) = 0 , 

and hence w(y,z) is obtained from equation (V.4) as 

w(y,z) = Vz — u, 2 u'yy 

and using equations (V.la) and (V.lb) w(y,z) may be written as 

-L/2 4 y 4 0 w(y,z) = - 12vz t 6 
2 L2/2 1 + 

2y 

0 4 y 4 L/2 w(y,z) = - 12vz -t 6 
2 LV2 1 -

L/2, 

2 y l 
L/2J 

(V.6a) 

(V.6b) 

The partial derivatives u, v , v, v and w,y are given as 

-L/2 $ y 4 0 

0 4 y 4 L/2 

i,y 

'y 

w, 

V 'y 

6 y 
- 12 — 

V l L L/2 
t 6 12 5 — 2 L2/2 

1 + 1 7 2 

2y 1 
i + — 7 -

L/2 
o 

- 48vt — r z 
L 3 

6 y - 12 — 1 L L/2 
1 " ^ 

w, 

12 

48vt 

t 6 
2 L2/2 

6 

. 4 1 
L/2. 

(V.7a) 

(V.7b) 

(V.7c) 

(V.7d) 

(V.7e) 

(V.7f) 


