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ABSTRACT 

This thesis describes a study of the application of multi

channel deconvolution, an autoregressive f i l te r ing technique, to 

the problems of flood flow prediction. This application is divided 

into four component segments: 

1. The description of the behaviour of a multiple input, multiple 

output basin using multichannel autoregressive techniques with 

multiple lags of f in i te length. These descriptions f a l l into two 

catagories: 

a) the Weiner autoregressive technique^. 

b) minimum entropy auto regression-^. 

2. The restatement of the input/output problem as a time varying 

state-space description with a feedback mechanism for implementation 

of information having a unit time delay. 

3. The analysis and characterization of the state-space and 

autoregressive methods using standard spectral analysis techniques 

and stat i s t ica l confidence l imits. 

4. The linking of the state-space/autoregression characterizations 

for snowpack depletion and rainfal l /runoff into a f in i te state 

machine algorithm coalescing the two processes so they may be 

linked to sate l l i te information. 

Several case studies were used in which the multiple precipita

tion records and multiple flow records were characterized. These 

steady state characteristics were then updated using the Kalman 

state-space description to provide an "online", information update. 
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The snowpack depletion problem was treated as a multiple input 

( ra in fa l l , temperature, humidity), single output (snowmelt) 

phenomena and characterized by a single multichannel autoregression. 

A second class of characterizations was employed to cope with 

the "spike" arrivals caused by rapid snowmelt flowing into a single 

output. This minimum entropy^ technique is developed for "flash 

flood" prediction. 

Final ly, a f in i te state machine algorithm is developed to link 

the snowpack depletion to the ra infa l l runoff problem in such a 

way that i t can be readily linked to sate l l i te produced data streams. 

For those unfamiliar with the complex and obtuse language of 

deconvolution and control theory, the role of this thesis can be 

described by analogy: 

You have arrived in the middle of a party where the participants 

are a l l quite intoxicated. They are huddled together in small 

knots talking excitedly, but without much c lar i ty about 

decon operators, M.E.D. processes, frames and f in i te state 

machines. My role is to catch you up on the conversation and 

help you find your way to the bar. 
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Chapter 1 

• . v 
INTRODUCTION 

The problems associated with computing flood flow predictions from 

meteorologic data have occupied hydrologists for a number of years. 

Approaches to hydrologic forecasting have proliferated through recent 

years into a long and ever expanding l i s t running from purely deterministic 

models through to spectral analysis. Present in a l l time series analysis 

is a dualism between deterministic observations and theoretical formulation 

that is fundamental to a l l systems. Usually, the data available represents 

an inadequate base for thoroughly explaining the properties and limitations 

of the theoretical representation. Through the capabil it ies of high 

speed digital processors this dualism has taken on an increasingly 

intr icate network formulation making the prediction process and subsequent 

analysis expensive and complex. 

Efforts to simplify this dualism between measurement and theory to 

achieve a satisfactory compromise of s implicity and real i ty have taken 

on various forms. Typical of these is the assignment of probabil it ies 

of occurrence to the deterministic data then performing a frequency 

tabulation to separate out the stochastic var iab i l i ty in to bands of 

probabil ity. From this tabulation a "best" estimate is chosen as 

representative of the process. 

In 1960 Rudolf Kalman-| published a paper that described a way 

-to incorporate stochastic var iab i l i ty into a system model and to update 

this system as new information was received. This type of model had two 

simple parts. The model of the way the system i t se l f undergoes change 
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and a model of the measurement process that was used to monitor the data. 

The measure of agreement between the variations induced by the system model 

and those of the measuring process serve as the correcting term at each 

time of evaluation. This paradigm- provides a simple, compact scheme 

for incorporating a l l types of stochastic var iab i l i ty that could occur 

in the model. However, as in a l l formalisms, the accuracy of the i n i t i a l 

guess at the system mechanics ultimately determines the usefulness of 

the Kalman formulation. The inaccuracies in these i n i t i a l guesses can be 

the principal downfall of any simulation procedure. 

This presentation is directed towards the ra infa l l runoff problem 

from a multichannel point of view, that is having a number of gauging 

points for the precipitation records as well as flows monitored from several 

r ivers. Spec i f ica l ly , the meteorologic stations at Vancouver Airport, 

Surrey Municipal Hall&Kwantlen Park. The corresponding flows are 

recorded on the Salmon and Nicomekl Rivers and at Murray Creek, a l l 

in the lower Fraser Valley. 

From this information various " f i l t e r s " are proposed to predict 

flood flows on these rivers as a group. The f i l t e r s themselves, as 

or ig inal ly calculated are time invariant matrices of 'suitable'coefficients 

that can be updated at discrete points in time using the Kalman model. 

The f i l t e r s themselves represent the solution to a (matrix) ordinary 

d i f ferent ia l equation with constant coeff ic ients. The Kalman formulation 

allows the coefficients to become time varying subject to changes in 

the input precipitat ion. 

The various flood conditions change from time period to time period 

consequently, a set of these f i l t e r s is used for the same phenomena 
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depending on particular conditions. Thus, rather than one restricted 

form of model this approach is p lu ra l i s t i c , adapting i t se l f to the 

individual situation rather than "cal ibrating" some deterministic 

representation of the whole process. 

A BRIEF LITERATURE REVIEW: 

Various types of models have been employed in attempts to piece 

together the time variations and the l inear overview composing the 

ra in fa l l runoff problem. Typical of these is the art ic le by Hino, 

M. Journal of Hydraulics, proc. of Am. Soc. of C iv i l Engineers Vol. 

96, 1970. pp. 681. Each of these approaches develops a l inear f i l t e r 

(set of autoregressive weights) that, when convolved with the input 

precipitation at a f i n i te lag over a discrete interval, y ie ld an 

output value (flow) at some future time. Considerable time and effort 

is expended to find the correct number of lags to employ so as to 

minimize the error in estimation. Unfortunately these coefficients 

are invariant in time. Consequently, revision of these f i l t e r weights 

in response to new information is not possible. A further step 

towards this time adaptation is the situation where one takes 

an average across the sampling period and computes a second set of 

weights to compensate for the variance not explained by the f i r s t set. 

This is a popular approach to the problem, but requires considerably 

more computation. 

The application of the time varying approach to a ra infa l l - runoff 

problem is discussed by P. Young, Institute of Mathematics and Its 
f 

Applications Control Division, Dept. of Engineering, University of 



Cambridge, 1974. He employs the Kalman formulation to a simple single 

lag f i l t e r . The realization of this formulation may be simply 

represented as: 

*k = V k + e k 

where y^ = flow at k 

Ui, = rain at k 

e^ = error at k 

where is some function of a i r temperature and the difference in 

flows at any two points on a r iver. He then proceeds to continually 

update a^ using information on the actual flow as i t is received 

to correct y^. The value of a^ is changed until i ts fluctuations f a l l 

within some required tolerance. 

The advantage of this approach is that a^ is now a time varying 

parameter and responsive to changes in the new incoming information. 

The combination of autoregressive and time variation are now neatly 

combined into a single unit. An enormous amount of work has gone 

into adapting this idea to multiflow systems, employing varying numbers 

of lags in the Kalman formulation. However, the crux of the matter 

rests in finding the right model.(correct f i l t e r weights) for each 

situation. In most cases the weights do not vary a great deal, allowing 

one to pick a typical starting set and update these upon receipt of 

new information. 

This poses yet another problem typical to the forecasting of 

extreme flows. Given, that one has h i s tor ica l ly found the "best" 

set of these parameters and has a new set of precipitation values 

but no new flow information until sometime after the process has been 
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started, the question becomes: how then can one assess the c red ib i l i t y 

of these parameters, or indeed the model structure when applying the model 

to a s l ight ly dif ferent case? 

It is to this end that this model estimation is directed. To 

enable the construction of a multir iver model with multiple inputs. 

Some of the well documented geophysical techniques are borrowed and 

re-examined in the water resource paradigm. In particular the work of 

Crump, N.D., Geophysics 1974 v39, p. 1-14. 

In order to do this several concepts from spectral analysis need 

to be reformulated in terms of the runoff problem. This wi l l be done 

in a step by step manner with the suitable water resource adaptations. 
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Chapter 2 

THE CONVOLUTION PROBLEM 

The word convolution means "folding". When a signal is passed 

into a f i l t e r the output is the convolution of the signal and the 

impulse response of the f i l t e r . Similarly, when a signal (ra infal l ) 

is passed into the earth the output runoff represents the convolution 

of the input signal with the response function of the earth. Deconvol-

ution means unfolding. The deconvolution operator is one which 

produces the inverse operation to the given convolution operator. 

Consequently, when one deconvolves runoff records with a dig ital computer 

one is trying to unfold from the orginal heterogenous complex earth 

some simpler components so that its basic structure can be interpreted. 

This system deconvolution,"then separates out the effects of the data 

collection system. 

This is a problem which is different than simply separating 

signal from noise. For example consider a radar receiver that receives 

a signal masked with noise.Th.is.noise.jisgenerated by the system and 

has nothing to do with the signal. Compare this with the runoff records. 

Nearly a l l of this information contains meaningful information about the 

total system and the problem is to unfold the recorded records into 

simpler components so that one can see the contribution by primary 

events, ghost events or other causes. 

The information being considered consists of primary events or 

innovations. These innovations are, however, unpredictable. They 

occur randomly with random amplitudes. Associated with each and every 

one of these innovations is a response. This response consists of the 
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reverberations and repercussions generated by the innovation and each 

response persists for- relat ively short periods of time before damping 

out. Consequently, the resulting time series consists of a l l of these 

primary events overlapped subsequently masking the onset of each primary 

event. One wishes, therefore, to unfold these primary events. 

To enable this process one uses a measure of the information 

available. This is referred to as entropy. The ratio of the entropy 

per symbol to the maximum value i t could have is called the relative 

entropy. Viewed in terms of r a i n f a l l / runoff, the redundancy in recording 

represents the factor by which the average lengths of messages are 

increased beyond the minimum necessary to transmit the desired information. 

In natural processes, nature has bui lt in enough redundancy to overcome 

noise. However, this redundancy causes so much overlapping and mutual 

interference that i t is not possible to interpret raw records provided. 

For this type of situation the process of deconvolution in effect 

separates the new information from the redundant information as time 

progresses. This separation permits interpretation of both kinds of 

information (new and redundant). Thus both have value iii comprehending 

the basic mechanisms. 

The new information consists of primary events or innovations, 

and the redundant information, the attached responses and repercussions. 

There is one additional assumption necessary before one applies 

the deconvolution technique. This assumption is that the process is 

minimum delay. Inherent in this concept- are the following two assumptions: 

1. The deterministic hypothesis that the percolation through the layered 

earth has the same effect on a l l of these primary events, i . e . , 

each of the events is of a minimum delay shape. 
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2. The s tat i s t ica l hypothesis that these primary events are randomly 

spaced in time and have random amplitudes. 

The deterministic hypothesis assumes that the primary response 

of the basin occurs on or near the surface. This means that the surface 

responds l ike a l inear reservoir at a fixed lag and the subsurface 

behaves l ike a l inear reservoir at a different lag. However, the primary 

response for each has essentially the same formulation and appearance. 

The s tat i s t ica l position is based on the assumption that the 

primary events ( in f i l t rat ion) occur in a manner that is not systematic 

and depends on the characteristics of the individual earth layers which 

were la id down with no systematic scheme in mind. The evidence of this 

behaviour is realized in the runoff records in the form of a time series. 

The computed autocorrelation of these series averages out the non-

systematic events of the time series and preserves the systematic ones. 

These systematic variations are realizable in the amplitude (auto

correlation) spectrum of the system. In order for this condition to 

be consistent with the two primary assumptions one must combine auto

correlation with the minimum phase condition. The minimum delay condition 

can be heurist-ically argued as follows: 

As the input signal (precipitation) percolates downward through 

the layered medium of the earth, i t is deflected by the different 

density layers and correspondingly.attenuates in strength. For the flood 

conditions, or for that matter most other conditions not a l l of the flow 

is retained. Hence, the more i t is reflected the more, attenuated i t becomes. 

Therefore, the impulse in a progressing wave form appears at i ts begin

ning rather than at i ts end. This then is the condition that is defined as-

minimum delay. 
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Chapter 3 

KALMAN FILTERING AND THE 

RECURSIVE LEAST SQUARES PROBLEM 

Since 1960 the use of recursive least squares f i l te r ing has 

changed the foundations of estimation theory as i t is applied to both 

discrete and continuous problems. The addition of the recursion 

property to this well known technique is i ts f i r s t innovation since 

Gauss (1809) and LeGehdre (1806) goriginally applied i t to analyze 

observational data. This innovation came about through the presentation 

of a paper by Rudolf. Kalman..; * a control .theorist. His formulation 

allowed the unknown parameters to be described by inherently time 

variable states which in turn were described by a general set of l inear 

stochastic state equations. This departs from the classical least-

squares definition of solving for a set of time-invariant parameters 

described in a l inear set of equations. 

As a brief introduction to the idea of recursive least squares, 

one should consider the original least square problem as posed by Gauss. 

Consider the linear regression problem in which a variable x 0 is 

known to be related to n other l inearly related variables through "the 

relation 

x 0 = aixl + a 2 x 2 + . . . + a n * n , where 

a., j=l , 2 n are the n unknown constant parameters. 
3 

The variables x- are assumed to be known exactly, but x 0 is seen 

only in the presence of some noise n . If one then cal ls the observation 

x 0 y, one then has 

y = x 0 + n or, 

*1 = a i x M + ^ i + + Vnt + n y t ( 1 ' 0 ) 
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i = 1, 2, . . . k 

n • is the error associated with the f i l t e r observation. 

Suppose that this sequence of errors has the following 

s tat i s t ica l properties for i = 1 k. 

1. It is a sequence of random variables with mean zero i .e . E [ n y t ] = 0. 

2. The riy.j are uncorrected; in time and have a constant variance a 2 . 

Efn,,.,. n„,-> = o25.., where 6,.4 

1 for i = j 

^ ^ . 1 J ^ 0 for i j j 

3. The T)y. are independent of the variables x.^. 

This is the formulation of a simple well known problem. The same 

problem can be reposed from an estimation point of view so as to set 

up the recursion property. Now what is required is a "best" estimate 

of the values of the unknown parameters a^ given the information 

y.j» Xin- , x2.j x .; i=T,...,k. 

The least squares formulation of this situation is to minimize 

the sum of squares of some cost function C, where 

k r k 

h x j i a j - y i 
i=i 

Since this has only 1 parameter space (a.) the minimization with respect 
J 

•to the a., shouTd'.i be set to zero. This yields a set of l inear equations 
3 

or the "normal set of equations" as they are referred to in regression 

analysis. These then can be solved to obtain the least squares parameter 

estimate a.. 
J 

For the case where there is more than one parameter set one 

can simply rewrite (.!).'in vector form: 
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x 0 = x^a, where x^ = [ x l 9 x 2 , . . . , x ] (2.0) 

a - [a^, &2'••s a^] 

then C becomes . 

C = l\ [ x ^ a - y.f, where (3.0) 

i = T 

y i = x. T a + TI T 1 = 1,2 k (4.0) 

the normal equations become: 

v.(C a) = ^ . x J a - \\x.y. - 0 (5.0) 

i=l i=l 

is the gradient (Jacobian) of C with respect to a l l elements of a. 
a 

Provided that x-x."*" is non singular, the solution to (5.0) i s : 

= P k b k w n e r e (6-0) 

\ - i\ r-Wr1 ; b k . \\ Xly, (7.o) 

i = t 1=1 

•To extend (6.0) to a recursive form, where after k samples a^ 

is a linear sum of the estimate obtained after k-1 samples a^.-p-

plus some correction term based on the new information y^ and x^ 

received on the kth sample, one must use (7.0) so that and b^ 

can be related to P̂  -j and b^ -j through the following equations: 

V ' • Ml"? x k x k

T - (8.0) 

bk = bk_, * x k y k (9.0) 

which can be rearranged as 

pk - pk-i - Mi \ ri + \ J Mi \^ \T pk-i '10-°) 
(also called the "matrix inversion lemma") 
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To obtain a k in terms of a^-j put (8 and 9) into (6.0) to obtain: 

kk • pk-l xk U + V pk-l xfc] <12-°> 

Finally a simpler expression for (11.0) can be found by multiplying 

k k by P^ - 1 and substituting from (8.0) for P^ - 1 so that 

k k = P k Pk- l ' + x k x k T Pk-1 x k 1 + x k T Pk-1 x k _ 1 

consequently (11.0) becomes 

a k = V l " P k [ x k x k T V l ~ V k ] ( 1 3 " 0 ) 

This then is the recursion form for the original least squares form (1.0), 

The only thing missing from this structure is that i t does not make 

any use of the stat i s t ica l errors n , . in the observations. To incorpor-
yi 

ate this into (13.0) one needs only to retrace the steps used in the 

simple l inear regression development. 

This requires (1) zero mean E[a,J = o 

(2) the variance covariance matrix 

* - - J-i * 
P k = E [ a

k

a

k ] is related to P k through the simple relation P k = a 2 P ^ . 

To update a k and P̂  in (13.0) and (10.0) to y ie ld 

\ = a k _ ] - V {x k x k

T a - x k y k } (14.0) 
a* 

\ = p k - i " p k - i \ { ° 2 + x T p k - i V x k T p k - i ( 1 5 - ° ) 

This algorithm not only supplies the parameter estimates at each sampling 

instant, but provides also an indication of the accuracy of these 

-12-



estimates through the error covariance matrix P ^ ,;. This i s extremely 

useful for looking at things "on l i n e " . It also provides an estimate 

of the rate of convergence of the parameter estimates. 
* 

I f one considers the s t a t i s t i c a l interpretat ion of P ^ as an 

estimation error covariance matrix, i t . would then be i n t u i t i v e l y 
* 

reasonable to choose P n • -±. ±. -J.U ^ .u T * • ^ - J 
o c o n s i s t e n t with the level of confidence one 

has in the i n i t i a l estimate a. This i s a d i rec t l i nk with the Bayesian 

point of view, since a6 and P 0 represent the ap r i o r i s t a t i s t i c s of 

the estimate which w i l l be updated with the input yi and x 1 = t o y i e l d 
* 

the .aposteriori covariance matrix P x . This then proceeds in a 

recursive manner for each step. 

In r e a l i t y one knows l i t t l e about the parameters, in which case 

sett ing a Q = [0] i s a reasonable s ta r t . S im i l a r l y P Q i s set to large 

diagonal elements (e 10 3) ind icat ing that there i s very l i t t l e confidence 

in the i n i t i a l estimate and no idea of the cross-covariance terms. 

This interpretat ion can be applied to the correct ion term in (14.0) 

* 

\ ( V k T V i - V k J 

a 
One can say that th i s i s an instantaneous measure of the gradient of C 

P x 

at the kth instant, which i s modulated by k . Since the Gaussian 
* a 2 

s t a t i s t i c a l properties allow that P ^ w i l l be a s t r i c t l y decreasing 

function of time; th i s then allows the interpretat ion that as the 

estimate proceeds and confidence increases, the weighting decreases; 
* 

consequently, the correction reduces. P ^ then tends to " f i l t e r " 

out the inaccuracy of the observations. 

This f i l t e r i n g idea applied to the least squares algorithm 

allowed Y . C . . H 0 2 to apply th i s recursive analys is.to a multidimensional -13-



* 
p • 

stochastic approximation with the scalar gain replaced by k . This 
a2 

analogy permits an overview that the consistency of the estimates i s not 

ju s t a s t a t i s t i c a l d e f i n i t i o n , but part of the actual mechanism. It 

i s th i s l ink that unites the least squares analysis to pattern recogni

t ion and machine learning to state var iable estimation and f i l t e r i n g . 

Since the idea of least squares applied in a recursive form may 

not be a familar form of analysis a simple example from physics w i l l be 

presented to aid in c l a r i f i c a t i o n . 

Consider a body moving in a st ra ight l i ne with a ve loc i ty V_. 

One knows that the distance covered S. at any time t . i s given by 

S. = SQ + \lt. SQ i s the posit ion @ t 0 

Suppose there are k noisy observations y. of s^ (the posit ion @ t^) 

contaminated with noise n„ or n„ • 
yti y i 

Then y i = SQ + Mt- + Tji y . i = l , 2 k 

So we have a, = S : a = v 
1 O 2 

and xj.. = 1.0 and x 2 = t - the l inear least squares solut ion is 
i i 1 

t r i v i a l . 

Consider a vector form of the same problem 

where x i = [ l . t ^ 1 ; a = [ S 0 , V ] T 

Consequently, the simultaneous estimation of SQ and V by reference to 

y.j i s a 2 parameter system which can also be solved in the leas t -

squares manner. 

The fol lowing is a solut ion to a set of observations for th i s 

problem. This was presented by F. Grayb i l l 3 (1960) . His example i s 

as fo l lows: 
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For a 0 = [ 0 ] and P 0 = i 10 0 

i 0 .10 

1 0 . 0 r~ 

1 . 0 

0.1 

0 . 0 1 

0 . 0 0 1 I ' I I I I I 0 1 2 3 4 5 6 7 

Number of samples 

Figure 3 

p = r P n P i 2 ] 

P21 H22 

Number of samples 

Figure 4 
r a , stage-wise { a,p 0 = 1 0 0 . 0 

a, Po = 1 - 0 
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Here one can also see the s t r i c t l y decreasing nature of P k . 

Figure 2 shows the results in the parameter estimation. Figure 

3 shows how P k evolves. Figure 4 compares the results of the system 

when S0 is known a priori (only one unknown V) computed with different 

values of P0 (which is now a scalar, since S is known). The results 

are compared to a stage wise least squares. For P0 > 102 there is no 

real difference. 

There is one catch to this otherwise elegant algorithm. Things 

are assumed to be relat ively constant over the interval of observation. 

If this is not true, then using this analysis directly is clearly not 

a good idea. 

The next sequential step in the evolution towards the Kalman 

model was to allow the process to have a memory (ostensibly by weighting 

past values). This in i t se l f is not reasonable since a l l parameters 

are treated alike and no criterion-exists for se lect iv i ty. 

The next step in the adaptation of this regression analysis 

is to l i f t the invariance of the parameters restr ict ion. This means 

that where 

a k = a k - l ' f o r a 1 1 k ' 

one assumes that the parameters vary in a manner described by the following 

stochastic matrix 

a k = Vk-i Vi4 !k,k-i V i (16-0) 

$ k k _ 1 is a transition matrix (n x n), also written as <t>. 

k _ 1 is an (m x m) input matrix, also written^as r. 

q k .j is a vector (noise) of independent r.v. 's 

where E{qk) = 0; E{q kq k

T} = Q k \ . . 
3 
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An example of this i s^he random walk where 

a k = a k - l + q k - l 

The form of (16.0) provides additional a priori information that 

can be exploited to find a^. To demonstrate this consider the now 

familiar system 

*k = x k T a k + T 1 y k 

from which one requires a^. It is assumed that a^ wil l vary in a 

stochastic manner that can be described by (16.0). 

At the kth sampling (estimation), this additional prior infor

mation allows one to make apriori updates (predictions) called 

a k/k - l a n c * P k /k - l t 0 t ' i e estimates a^-j and covariance P|<_-| obtained 

at the k-1th sampling. 

Simply stated this means that because one knows how the true 

parameter vector wil l vary between samplings, one can use this information 

to vary the parametric estimate in a similar manner prior to the receipt 

of the new data at the kth instant. 

To demonstrate this prediction f i r s t recall that 

ECâ ] = $ a k i (from restrictions on q k) 

So an estimate of a^ prior to the new data arriving can be obtained by 

a k/k - l = • a k - l ( f l 7 - 0 ) 

where k/k-1 means k based on-k-1. 

The error is defined as (for the a priori estimate) 

a k /k - l = a k/k - l " a k f r o m ( 1 6 - 0 ) 

then from (16.0) arid "(17.0) 

a k /k - l = $ a k - l + r q k - l + * a k - l 

= $ a k - l " r q k - l 



in a similar manner (see Gelb pp. 107, 110) 

P k/k - l = $ P k - l $ T + r Q r T w h e r e (18.0) 

P k /k - l = E^ ak-1 a k - l ^ a n d ^ 1 S ^ e c o v a n a n c e matrix of the 

parameter variation disturbance in (16.0). 

One now has a correction mechanism for the system given a new 

observation plus the prediction mechanism 

a k/k - l = * § k - l 

P k / k - l * = * P k . 1 * » + r Q r T 

The formulation can be simply demonstrated by again using the 

random walk as an example, 

here $ = r = I I: identity matrix 

t h e n a k /k - l = a k - l 

P k/k - l = Pk-1 + Q 

Q is the covariance of the random walk and needs only be a diagonal 

matrix. 

One has at this point a l l of the mechanisms of the Kalman F i l ter 

as,.they are to-be.'.used in this paper. This .formulation of the state 

space representation .needs only to be linked to the deconvolution 

process to make the mechanism complete. 



Chapter 4 

STATE SPACE REPRESENTATION 

OF THE DECONVOLUTION PROCESS 

Before one can effect ively l ink the deconvolution process to the 

Kalman state space representation, an equivalence between these two 

operations must be established along with some fundamental ideas 

concerning modelling random processes. To c l a r i f y the change in formulation 

a simple c i r cu i t example has been chosen. 

L 

Figure 5. . 

Figure 5 represents a system with an input u(t) and an output 

y ( t ) . The manner in which energy is transferred from input to output 

is the solution to a pair of l inear, homogeneous, ordinary d i f ferent ia l 

equations. Formally stated the pair of ordinary di f ferent ia l equations are 

u(t) = Ldi(t) + Ri(t) input 
dt 

y(t) = Ri(t) output 

The solution H(t) represents the system response to the input u(t). 

The solution has a form 

• -P./, t 
H(t) = R/llxp L 

To make the transition between the Kalman formalism and the transfer 

function form, one need only consider the following changes: 



1 . Define state variables 

x(t) = i ( t ) ; y ( t ) = Rx(t) 

The d i f f e r e n t i a l equations become 

x(t) = -R/ L x(t) + 1 / L u(t) ( 2 0 . 0 ) 

y( t ) = Rx(t) 

There are now two things that become immediately apparent. 

F i r s t , the state space formulation permits R and L to vary as functions 

of time, whereas the transfer function formulation does not. This impli 

that in the t-space formulation there i s no e x p l i c i t solut ion for R(t) 

and L ( t ) . Secondly, the transfer function formalism has been replaced 

with a state formulation. 

In terms of the deconvolution process, the deconvolution operator 

i s equivalent to H(t). This has assumed that changes in the system 

parameters are f ixed (as are R and L). The physical system, such as the 

layered earth, does not have i t s system parameters f ixed and they do 

change with time. Consequently, to l i nk th i s evolution process of 

the parameters to the best " f i x ed " approximation provided by the decon

volution process, one needs to restate the problem in the state space 

conf igurat ion. This i s e f f e c t i ve l y done by making the appropriate 

subst i tut ions. 

I f one now returns to the Kalman system model formulation the 

restat ing of the deconvolution process in state space terms becomes 

stra ight forward. This can be done in the fol lowing manner. 

x(t ) = Ax(t) + Bu(t) where A, B, H, C are matrices ( 2 1 , 0 ) 

y( t ) .= Hx(t) + Cv_(t) . x, y, u, -v are vectors. 
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H is not the transfer function. In terms of the previous example 

x = x(t); A = -R/ L; B = 1 / l 

u(t) = u(t); C = V = 0; H = R 

Equations (21.0) are a general description of a time-varying l inear 

system. The state-space description in terms of state vector functions 

of time has replaced H(t) in the linear system. 

The solution to (21.0) can be solved as an ordinary d i f ferent ia l 

equation i f A and B are constant. This is done by analogy to the solution 

from 

x(t) = e A ( t - t o ) x ( t 0 ) +•/ e A ( t - T ) 6 u ( x ) d x 
t 0 

i f U(T) = 0 then, x(t) = e A ^ " t o ^ x ( t 0 ) 

which is similar form to H(t). 

The position of this solution containing e A ^ t - t ° ^ is the 

transition matrix which'describes the evolution of the state vector 

function as a function of time. When A, B, H, and C are not constant 

one then has to solve an associated estimation problem. 

Before embarking on the estimation problems one must also 

consider the problems associated with modelling a random process. By 

analogy with the previous, examples we consider again u(t) as the 

input to a l inear system with a transfer function denoted by T and an 

associated output y(t ) . To enable a representation of this system as 

a random white noise process driving T to y ie ld an output y, the 

following argument from Bayless and Brigham^. is presented. 

They consider the power spectral density, that is the function 

(in this case the transfer function T) whose integral over any sampling 

interval represents the contribution to the variance from that sampling, 
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to be represented as o>. There are two contributions to the variance 

in the linear system we are looking at. They are 

cj>y(w) the contribution from the output 

o>u(w) the contribution from the input 

therefore, 

<byM = |T(jw)| <)>u(w) and since u(t) can be considered 

as a white noise process, then, <t>u(w) = 1. This now implies: 

<i> (w) = |T(jw)| : for the case where <j> (w) is the variance 

contribution of a nondeterministic random process; ^(w) can be factored 

into T(jw)*T(jw). Hence, any given power spectral density can be 

factored to give T(jw). 

This means that there exists a T(jw) so that the random process 

u(t) can be represented as a white noise process driving the linear 

system T to give fy^M. As a result of this argument one can look at 

(19.0) as: 

u ( t ) - — T(jw) y(t) where u(t) is white noise. 

When translating this formulation to the state space description, 

T(jw) is replaced with a system of dif ferentia l equations and output 

equations as can, be visualized in Figure 6. 

— 1 , 

CO
 

CO
 

Figure 6 
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As has been previously noted A, B, J are generally a function 

of time. At this point the process description of (19.0) has undergone 

a two stage transformation. We have, f i r s t and foremost, allowed 

that the mean and autocorrelation of a random process u(t) can be 

modelled as a l inear system driven by white noise. Secondly, 

the transfer function representation of this l inear system has been 

replaced by the state variable description. It now remains only to 

dovetail these two attributes into the Kalman representation. 

A simplified description of the deconvolution process can be 

visualized in Figure 7. 

message x(t) } /yN 1 Z(t) . 
h(t) 

impulse 
response 

x ' ( t ) 
process ' 

h(t) 
impulse 
response 

V(t) additive 
noise 

Figure 7 

Here we wanted to find an h acting on the input Z(t) so as to minimize 

the mean square error between x(t) and x(t). 

Stated more formally: 
co 

x(t) = /h(x) Z(t-x)dx where h(x) 
— CO 

and sat is f ies the relation 

(auto correlation matr ix)* ( f i l ter response) = 

(Cross correlation of input and desired output) 

This is the class ical Weiner Hophg integral equation defined by 
co 

/ h ( x ) R z z ( t-x)dx = R z x (22.0) 
—CO 
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R z z: = autocorrelation of input 

R : = cross-correlation of input and desired output. 

Z X 
In i ts most general sense (22.0) is written as 

t 
/ h(t,x) R z z(T , k ) = R x z (t,k) with (23.0) 
to 

t 
x(t) = / h(t,i-) z ( t y r ) < h 

to 

This equation is d i f f i cu l t to solve generally and the contribution 

from Kalman was that he changed (23.0) into a non-linear di f ferentia l 

equation, whose solution determines the optimum f i l t e r . However, for 

the discrete digital case the Kalman equations take on the following 

formulation: 
x k = $ k / k _ ]

 x k - l + B k / k _ l U k ( 2 4 0 ) 

h = H k x k + V k 

This system is the same form as (22.0) with $ being the transition 

(propagation) matrix for the discrete state vector equations. In 

this case one wishes to minimize E[(x-x) T(x-x)] based on the previous 

k measurements of y (output; runoff). The sampling interval for this 

process was 1 time interval. 

Implicit in this formulation (following Crump^,1974) are the 

following assumptions. 

1. $ , B, , H. are known for a l l times k. 
K / k - l K K 

2. The driving input u^ has zero mean, known variance and is 

correlated to the additive noise v^ for a l l times k. 

E[u k] = 0; E [u k u T

k ] = Q k ^ 

E [u k v T

k ] = 0; for a l l k and j 
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Q k is a known diagonal matrix. 

The additive noise v^ has zero mean and known variance for a l l times k. 

E[v k] = 0; E [ v k V j

T ] = V k 6 k j where, 

v k is a diagonal matrix 

The i n i t i a l state vector has known mean and variance 

E[x 0] = x 0 

E[x 0 x T

0 ] = M0 

It should be noted at this point that at each time k, second order 

s tat i s t ics are required for the noise processes û , and v^. 

This is the feature that allows for non-staionarity in u^ and 

vv whose stat i s t ics change from time step to time step. 
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Chapter 5 

IMPLEMENTATION OF AN ADAPTIVE 

KALMAN FILTER TO ESTIMATING RUNOFF 

The classical Kalman formulation is suff ic ient when one has 

continuing information on the output signal (runoff). However, as is 

the case in hydrologic prediction the information on runoff stops at 

some point and the only continuum of information is the input signal 

( ra infa l l ) . Estimation of the error covariance i n i t i a l l y is not a 

problem; neither is the estimation of the system noise. Consequently, 

the implementation of the Kalman f i l t e r can be effected using only 

minor modifications to its structure. 

One begins with x^. This is not a vector in this case but 

rather a matrix describing the change in the diffusing (percolation/ 

retention) properties of the layered earth model. Therefore $ k ^ 

is the matrix describing the change in the solution form as a function 

of time and V, is the :noise?associated with this measurement. <. K 

x k = *k, k - l x k - l + V k 

To establish the historic behaviour of this system under peak 

(flood) conditions one uses the "s ignif icant" storm records from several 

years of records to establish a typical design storm. This input 

storm can be chosen to ref lect a variety of conditions. However, 

for flood prediction one would typical ly want the "worst" of the data 

set. "Worst" can imply two things. First the signal that has the 

maximum intensity over a fixed period, or secondly, the maximum duration 

and maximum intensity. These signals are multichannel, implying that 

the same storm is monitored at a number of meteorologic'stations. 
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Associated with this input signal (at a suitable time lag) 

are the resulting monitored flow records. These are also multichanneled 

( i .e . , monitored simultaneously on several different r ivers). One 

wishes to associate the output trace with the input signal in such a 

way as to characterize the system behaviour. This is done using the 

deconvolution process employing a standard Weiner f i l t e r . The Weiner 

f i l t e r is the digital operator which solves in a l inear least squares 

sense the Weiner Hopf equation (23.0). It is formulated in such a way 

that one produces a linear least squares predictive and enhanced 

stationary time series by means of a real izable, time invarient 

linear operator. (For a discussion of Weiner f i l t e r s see Robinsonj 

Chapter 6). 

One of these realizations would typical ly look l ike the following: 

m 

yt = I, A t - j u t - j ; m = h + 1 

{u }̂ are the vectors of input signals of length n at lags t - j ; j= l , 

n+1. A. . are the matrices of deconvolution operators at lags j ; 

y t is the estimated output at time t. 

In the Kalman notation: 

y k = V k + V k ' w h e r e 

m 
A,u. = T1 A' . u. . and A' is to be calculated from: k k L \ t - j t - j t 

j=l 

A ' k = \ , k-1 Ak-1 + w k 

Consequently, the system and measurement models look l ike: 

A k = * k , k-1 Ak-1 + wk s y s t e m  

y k = V k + \ measurement 
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In this problem application one has only estimates at y k 

called y k whereas the measurement process is on the input signals û . 
One, therefore, needs to rewrite the updating procedure in a somewhat 
different manner. 

m i .-

i.e. y k = £x A'1<_. ul<_^ + Vk signal estimate using deconvolution. 
j=0 

The transition then becomes 

A'k = $k, k-1 Ak-1 ; $k, k-1 = Ak 1 Ak-1 

m 
• • • * ' k = A'k \ + l\ Ak-j V j + Vk 

j-1 
From this one uses the Kalman algorithm to update Â , 

i.e., Ak = A ' k + K k [ y k - y ' k ] 

In terms of the entire process the step by step computation 
becomes as follows: 
Compute P(0): This is the matrix of terms defined by 

E[(Ak - Ak) (Ak - A k) T]. Since one does not know the exact 
solution to the differential system satisfied by Ak it suffices to use 
a diagonal matrix with terms of order 10 3 . (For the motivation behind 
this see the preliminary discussion). 

Set A = At, the deconvolution operator computed for time t. 
Now compute: 

P'k = *k, k-1 Pk-1 $ Tk, k-1 + Qk - 1 

where Qk is a diagonal matrix describing the covariance of the signal 
measurement. 
Compute: 

Kk = P'k ^k '-Vk̂ k + ' w n e r e vk i s t h e "measurement 
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of the noise in the measurement process. 

Then compute: 

K = A ' k + Kk 

where 

A ' k = »k, k-1 Ak-1 

and 
m. 

y', = A ' , u. + Y, A, . u, . 
J k k k A i k-j k-j 

j - l 

Then compute: 

p k = p , k - W k 
increment k and recompute P'. 

The Kalman equations as they are stated above are effectively 

minimizing the trace of P.,. The vector A ' k is the best projected 

estimate of A^, that is the best estimate for A^ based on the estimates 

y^_1 and the data through u ^ . The matrix P'^ is the error covariance 

matrix of the projected estimate A'^ influenced by the most recent data 

u^. Finally u'^ is the best estimate of the measurement vector u^ 

based on the samples ul<_-| and the estimates to y^. 

The nature of this discrete formulation can be visualized using 

the block diagram formulation from Crump^ (Figure 8). 

The Kalman f i l t e r diagram contains the same delay and feedback 

system as the signal model. It is also clear that the estimate A^ 

is obtained using the weighted sum of two things: 

1. The best predicted estimate A'^ 

2. The latest measurement sample u^ 

The relative weighting of these two quantities is determined by the 

system dynamics model and is invoked through the definition of $ and 
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A. • and defined by Q and V. 
K-J 

Figure 8 

Block diagram of signal model and discrete Kalman f i l t e r . 
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Computation of the Kalman F i l te r 

To aid in the visualization of the actual mechanics of the 

Kalman process a flow description of the procedure is outlined below. 

1. In i t ia l i ze the f i l t e r by defining the i n i t i a l estimations. 

P0 = M0 the covariance of the state matrix. 

x 0 = xQ X q is the i n i t i a l estimate of the state of 

the system. This corresponds to the decon

volution operator at zero lag. 

2. For each time step perform the following calculations: 

(a) Compute 

p
k
 = fkpk!kT + WkT (25-0) 

kk = PkHkT * + V k ] 
- l 

(b) Compute the updated state matrix 

xk = V k - i 

" x k : H k 

(c) Compute a new matrix P̂  

pk • p k * W k 
Increment k and repeat. 

It is also useful to re-examine 

\ = *k + kkCyk " yk] 

This is where the prediction of the next system state is computed. 

If one writes this exp l ic i t ly in the form: 

\ = *k*k-l +
 kk»k " Hk\xk] , 

one can observe the following properties: 
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1: If the model were a perfect one and there was no noise in the system 

the output would look l ike 

h  = h  = \ \ = V k V 

This means that x k = ^ x ^ - p Consequently, once the transition 

matrix $ k is obtained from the physical model, one could predict 

the state vector exactly for a l l time steps as long as y=y. If 

this is not so then k k [y k = y ' k ] is the error in the prediction of 

the state vector at the next time step. 

2. The matrix k k (Kalman gain) has useful physical properties that can 

be examined as the iteration proceeds. The optimality of this 

Kalman f i l t e r is contained in the structure and specification of 

this gain matrix. The mathematical least squares structure has 

been discussed at length consequently, an intuit ive logic should 

also be included with its properties. This can be examined from 

the form Kk = P ^ i / ^ " 1 » w n e r e R|< = H k P ' k H k T + V k a n d r e P r e s e n t s 

the noise in the system. 

To better fac i l i t a te the physical interpretation of K k, assume 

for the moment H k is an identity matrix. This assumes P k and Rk are 

n x n matrices. If R - 1 (system noise) is diagonal, (this means that 

the noise between channels is not related), the matrix Kk results 

from multiplying each column of the error covariance matrix P k by the 

inverse of the mean square measurement noise. "This implies that each 

element of Kk is essentially the ratio between s tat i s t ica l measures 

of the uncertainty in the state estimate and the uncertainty in a 

measurement."g 

Simply stated this means that the gain matrix is proportional 

to the uncertainty in the estimate, and inversely proportional to 
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the measurement noise. If the measurement noise is large and the state 

estimate errors are small, the vector (in the original equations 23.0) 

is due primarily to noise and only small changes to the state estimate 

should be made. However, a small measurement noise and a large uncer

tainty in the state estimate says that contains a great deal of 

information on the errors in the estimate. The difference between the 

actual and predicted measurement is used as the correction basis. One 

can see from the formulation of that this does indeed agree with the 

intuit ive motivation. 

As a final observation one should also consider the interpretation 

of the covariance matrix P .̂ The effect of system disturbances on 

the error covariance growth is the same as that observed when measure

ments were not available. As the s tat i s t ica l .parameters of the disturbance 

becomeilarger;-theirceffects are reflected in the"s ize" of the Q̂  matrix in (25.0) 
The more pronounced the effect of the disturbances reflected in the 

"s ize" of the matrix, the more rapidly the error covariance wi l l 

increase. This effect of measurement noise on the behaviour of the 

error covariance can be seen in 

V + f 1 = V - ) " 1 + H V \ 

where (+) means after receiving information and (-) means before 

(as used in Gelb^). Large measurement noise (R k

_ 1 is small) provides 

only a small increase in the inverse error covariance (P^ - 1 ) . Which 

means a small decrease in the error in P̂  when the measurement is used. 

These measurements, therefore, contribute l i t t l e to the reduction of 

the estimated errors. However, small errors in measurement (large 

R. _ 1) cause a large decrease in the error covariance when the measurement 
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is used. If, on the other hand, one does not have measurement noise 

the appropriate equation for i s : 

P|<(+) = ^ " Kk Hk^ P|<(-) s i n c e R k _ 1 d o e s n o t a P P e a r -

To summarize the general behaviour of the P̂  matrix one can say 

the following things: 

1. Larger measurement noise wi l l cause the error covariance to decrease 

slowly, or conversely to increase, depending on the system, the 

disturbances and the i n i t i a l value of P .̂ 

2. Smaller noise wi l l cause the f i l t e r estimates to converge on the 

true values more rapidly. 

As an i l l u s t ra t ion , the following Figure 9 from Gelb R is used. 

P 

•Vi "i-i i L 
COMPUTE 

EO.|A.2-161 

Jk.| . * k - l 

y t. 
iPUTE \H I 

COMPUTE 

E O I 

REASON ABIE NESS 
CHECKS 

COMPU 

EO 

APUTE K k I 

COMPUTE 

EO (A2 -51 

REASONABLENESS 
CHECKS 

*k-l 

UPDATED 
ESTIMATE 

j SET k 

<r6 ]• ;k'"' I COMPUTE ; t l-l I^J 

" * EO.IA.2-I7I | 

Figure 9 
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Wei tier Kalman Formulation Assumptions 

The algorithm to compute the actual multichannel deconvolution 

operator has three main assumptions and l imi tat ions governing i t s design. 

1. The time series input u ^ r a i n f a l l ) and the desired output (runoff) 

are stat ionary, which means that the i r s t a t i s t i c a l properties 

do not change with time. 

2. The approximation c r i t e r i on i s taken to be the mean square error 

technique between desired and actual output. This means that one 

determines the operator ( f 0 , f i , f2---) in such a way so as to 

minimize the mean square-error matrix between desired and actual _ 

output.,.. 

3. The operation used for signal enhancement and predict ion i s assumed 

to be a l i nea r operation on the avai lable information, or more 

f a m i l i a r l y , i t i s said to be time invar ient. This predict ive f i l t e r 

(cal led a Weiner f i l t e r ) i s a l i near least squares predict ion and 

enhancement of stationary time series by means of a r ea l i z ab l e , 

time invar iant l i near operators. 

The l ink between the Kalman approach to time varing l inear least 

squares approximation and the Weiner f i l t e r now becomes obvious. One 

can design an optimal deconvolution operator based on s im i la r sets of 

h i s t o r i c a l observations and allow the predict ive deconvolution operator 

to be modified by on- l ine (new) innovations. The change in the structure 

can be monitored through the formalism of the system model t rans i t i on 

in the Kalman f i l t e r and updated sequential ly using the Kalman measure

ment model. 
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Chapter 6 

CASE STUDIES 

The site chosen to test these predictive techniques has been 

looked at by a number of previous groups, the most recent of these 

being Sigma Engineering of Vancouver. The Surrey municipal boundaries 

roughly describe the basin being studied.. For a pictorial description 

of the basin characteristics and topologysee Figure 10, which has 

been reproduced from Taylor J.W.-jg. The Surrey d i s t r i c t as described 

in Figure 10 and as treated in Reference 15 was divided into four 

separate basins and each with its own unit hydrograph. These were 

then compared for common characteristics. 

The treatment of this same problem has been approached from a 

very different perspective. In this case the information on the 

precipitation has been treated as three separated information channels 

which are not necessarily in phase with one another. The measurements 

are taken from the Vancouver Airport, Surrey Municipal Hal l , and White 

Rock. The storm fronts generally approach from the west and in terms 

of this sensing system, are f i r s t detected at the Vancouver Airport. 

This is followed by the stations at the Municipal Hall and at White 

Rock a few hours later (depending on the storm). Consequently, there 

is a difference in both start time and intensit ies. The output 

trace sensing stations are on the ;'Nicomekl.: and Salmon Rivers and on 

Murray Creek. These three channels respond at different rates and peak 

at different discharges. Murray Creek is a low flow system fed by a 

group of gulleys. Its response is "flashy" and dissipates very quickly. 
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The Nicomekl and Salmon rivers are of roughly the same order of 

magnitude of base flow, with the response rate of the Nicomekl 

being s l ight ly faster. All three of these channels are considered 

simultaneously in time but as separate sources of information. 

The procedure for testing the predictabi l i ty of peak (flood) 

flow conditions consisted of scanning the total 72 hour precipitation 

records for the largest volume, greatest intensity, and the "design-;,., 

storm". The design storm was determined to be the one that typica l ly 

reflected the flood condition period ( i .e . , December to February). 

The design storm signals were then input to the deconvolution 

algorithm along with the peak flow records found from the three 

rivers. The resulting deconvolution operator was stored and the same 

design storm applied to predict the following twenty-four hours of 

flow. This was done using the Kalman algorithm to update the 

deconvolution operator. This can be visualized in Figure 11. 

i > . 
Ste-p l 

L J 
O 12. ta. 

^<Ad,bftcJ»i loop 

Figure 11 
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Having done this there is one further check that the updated 

deconvolution operator is from the same solution set as the original 

operator from Step 1. One then takes the deconvolution operator to 

represent a multichannel time series by i t se l f . Having done this the 

following c r i te r i a should be satisf ied by both the actual and predicted 

f i l t e r s . 

1. Their autocorrelation spectra should be similar, (since they 

. are supposed to represent the same time series). 

2. Their respective channels should be coherent up to the sampling 

frequency resolution. 

As a background to this type of test and its implications an 

explanation of the role of the autospectra and coherency are in order. 

Consider the two operators mentioned above to be two time series 

x and y, where 

x t = x,(t) 

x,(t) 

y t = 

y n ( t ) 

The autocorrelation is defined to be for the series x̂ . as 

.T, ):,(s) where;s is some later~time, and x the 

measurement at that time. This is the expected measurement between 
E { V s x t L = 

x t and X£+s. Its role, therefore, is to average out the variations in 

the series to give an overall picture as time proceeds. The case 

that is used here has multiple channels, hence there are cross correla

tion terms to be considered. These are the terms for which <b,-. is 

defined for i 4 j . 

The resulting matrix looks l ike: 

*s = E { x t+s x t T } = * i i ( s ) r * - .* 1 n (s) 

d>" . (s) d> (s) 
T n r ' v nn v ' 
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Correspondingly, the crosscorrelation between two series x and y looks 

1 i ke: 

cj> (s) = E {x t + S y t

T } i f one lets 

A (s) = E {x,(t+s)y.(t)} 
X i y j 1 J 

* v (s) 
r x y 

This matrix is the vehicle through which one can look at the degree 

of interrelation between any two time series. For means of computational 

ease <|> (s) is looked at from the frequency of occurrence domain defined xy 

by: 

• (f) = l | v -ZTrifs 

which is the Fourier, transform of the.<j> (s) representation. This 

enables one to calculate the spectral density, or the contribution to 

the variance in the series by the individual components. This provides 

easier s ta t i s t i c to characterize the differences between the two series. 

For further discussion of the implications of this procedure see Jenkins 

and Watt-. The end result of this manipulation is to examine the maximum 

power (energy) shared by these two series at any sampling rate. 

This is formally defined as the geometrical mean 

i . e . , n / x^x^ x n of the two autospectra $|<k(f) represented 

by M..(f) = /$..(f)$..(f) , where f=0, Af,., .mAf; Af=l/2m; 
J K J J KK .... ,.,. -.: 

m = number of cycles/unit time. 

In order for this top l imit to be obtained, the power (energy) 

at that frequency of sampling must have a fixed phase relationship 

with the two series being treated. If this top l imit is indeed 

attained then the two series are said to be coherent at that frequency. 
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As is usually the case with real series the phase relationships 

vary in a random fashion. If this change was completely random, then 

the bottom l imit (theoretically) is zero. The two series could then 

be said to be completely incoherent. For the majority of situations 

real i ty i s , hopefully, somewhere in between these two extremes. 

The coeff icient of coherency is defined by: 

K j k ( f ) - i K ^ f J e - j 

Its magnitude is defined as: 

ie,k(f),_ 
• J k ( f ) 
r^rfT 

, J f ) | = 4 , ( f ) = |K,.(f) 

The phase dag of the coherency.is 

e j k ( f ) = t a n _ 1 l m ( ^ k ( f ) ) = - e k j ( t ) 

R e ( * j k ( f ) ) 

The magnitude of Kk- l ies between 0 and 1. 

0.0 < |K- k(f)| < 1. 

The algorithm that computes these parameters returns the results in 

the form: 

H(f) = * n ( f ) - , . _ j K 1 2 ( f ) | ~ -

e 1 2 ( f ) V , ( f ' n 

K m' f » 

'•*nn<f» 

for the various frequencies of sampling. 

Returning to the actual problem one would be interested 

in the following terms of this matrix for 

A i t 

x . 2 t 

X 3 t 

\ t 

'st 

defined as before 
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1. One wants the coherencies 

14 s ^15 s *16 

2k 9 k 2 5 , k26 
k , k 34 s K35» 36 

2. and phase lags 

14 s 0 1 5 s 916 

Zks 625' 926 

9 G35> 636 

at the frequency (sampling rate) of up to 

f = 2^r- ; At = 1 hr ; f = .5 cycles 

If the predicted deconvolution operator is the solution to 

the same problem (basic characteristics) as the previous one the 

two operators wi l l be coherent at the same frequencies, with perhaps 

dif ferent phase lags (response rates). 

If this is not the case, either the historical characterization 

is inadequate, or the prediction is defining conditions quite different 

than normal. If this is the case then the coherencies for the predicted 

flood flows and another similar historic situation should be checked, 

using the same signal input. For either of these two cases there is 

a consistency test to apply to establish cred ib i l i ty of the predictions. 

A similar test should be run when the signals being used are 

radical ly different than the historical records, eg. the "100 year 

storm". When this signal is applied to historical data the deconvolution 

operator should be the same ( i .e . , have corresponding coherencies) 

values over several sets of data. Consequently, one can place confidence 

intervals on the predictions one makes using these operators. 
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Computation of the Confidence Bounds on Predicted Traces: 

.. 'Part .of the computation performed by the Weiner algorithm 

is the estimation of the mean square error along the trace of the 

computed operator. This can be formalized as follows: 

E { e t e t T } = E{ e i

2 ( t ) } .... E fe^ t ) e m(t) 

E{em("t)e1(t)} ••• E{em

2(t)} 

where e(t) is the error at time t; m is the number of lags. 

The trace of this 

I = tr E{e(t) e(t) T} = l\ E{ e j

2 ( t ) } 

j=l 

is to be minimum. 

This minimum is returned as a percentage. 

Unfortunately, this is only an estimate of the agreement 

with the target data set and does not provide bounds for the f i l t e r ' s 

performance using new input data. 

The innovation variance structure has been dealt with at 

length in the l i terature (see, for example, Plackett^* I960) and . 

wil l consequently be treated from a computational point of view only. 

Consider the autoregressive representation used for the Surrey data, 

i . e . , y t = A t _j u t _. + (Z is the noise) 

j=0 

Since one is now casting into the future without observation 

Z = 0. 

The variance imparted by this estimation is given as: 

Var[y] = Var[Au] + Var [Z] 

= u'Cu + a 2 u' denotes transpose 

C is the covariance of the estimator. 
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Since 

Var [u'C] = E{u'(X-y)'(X-y)'ii} = u'Vu 

where V now represents the covariance of the input (rainfal l ) 

variables. 

Note also V = a 2 I 

One can now substitute this new equality into the original Var[y] 

expression to obtain: 

Var[y] = (u 1 (X'X) _ 1 u+l)o 2 

Further to this one only has an estimate s 2 to the actual a2 and 

since the population is assumed normal, the errors are then 

distributed with a Student's t-distr ibution (see Jenkins and 

Watts^g',Chapter 3, p. 83). This is denoted by t (l--^-)' In this 

case there are n-m degrees of freedom (since i t takes m lags to 

define the process); consequently the distribution value desired is 

t n _ m ( l - |-). For the Surrey data, n=72, m=7; n-m=68 degrees of 

freedom. 

For the 95% confidence interval tgg - 2. 

The f inal form of the confidence on y looks l ike: 

y ± t 6 8 (1- f ) s /1 + u ' U ' X ) " ^ 

The average s is approximately 19.8. 

The expression /1+ u '(X 1 X) _ 1 u is 0.8 with the covariance evaluated 

at t=8. This gives a confidence band of: 

y ± 31.6 cfs at t = 8 hours. 

The covariance matrices of the u's wil l obviously change as the time 

proceeds and wil l (hopefully) settle down to some stable level . In 

this case the band settles down to approximately ±15 cfs after t=26 hours. 
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For other situations, such as the Squamish River data, the 

bands wil l vary radical ly dependent on the arrival of the flash 

flood conditions. The prediction confidence then depends on the 

similarity between the historic flood and the snowpack conditions, 

of the test situation and the new conditions and target flows. 

As has been discussed previously, the arrival of one of these 

events gives rise to an enormous error in the f i l t e r whose con

fidence band is also proportional to the new covariance of the 

signal, which wil l also be large. 

Recently a somewhat different type of deconvolution process 

has been developed that deals precisely with the arrival of these 

types of events. This minimum entropy technique was put forth by 

R. Wiggins,*, 1977. 
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Considerations: 

When applying these f i l t e r s some purely "engineering" .criteria 

should be applied. This breaks down into two simple categories, namely, 

those dealing with the external behaviour of the system and those 

concerned with its internal behaviour. 

The Weiner f i l t e r formulation of the f i l t e r design cal ls for 

the solution of the Weiner-Hopf integral equation., where the unknown 

is the impulse response function of the optimum f i l t e r . In this discrete 

case one simply solves a set of normal equations to obtain coefficients 

of this impulse response function. This impulse response describes 

the external behaviour of the f i l t e r , that i s , i ts performance spec

i f icat ions. In most cases this becomes the input to the system design. 

In discrete f i l t e r i n g , the "RLC-circuit" f i l t e r no longer applies. 

The physical information is now included in a s tat i s t ica l pro

cedure (Kalman f i l t e r ) . As a result one can now question the internal 

behaviour of the system in a systematic manner. The s tab i l i ty and delay 

characteristics are a l l a part of the internal representation and 

cannot be disregarded. The net result of this combination of the two 

processes is that one specifies the stochastic behaviour of the process 

that wi l l change over time. 

Other Applications: 

Given the ab i l i ty to systematically characterize a basin or 

basins in terms of these f i l t e r s , one obvious extension of the prediction 

capability exists. One begins by->assuming that the spatial configuration 

of the'problem looks l ike Figure 12. 
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ad nV«rs 

Figure 12 

Where 1, 2 and 3 are basins in some arbitrary region. One knows the 

precipitation and flows for 1 and 2's various rivers a, b, c, d, e, f. 

Consequently, one can define a set of general f i l t e r s describing 1 and 

2. One also knows the precipitation for 3, but the streams have not 

been gauged ( i .e. g, h, i are not gauged). One can determine from 

frequency distributions of ra infa l l a general frequency for basins 1 

and 2. The convolution of $ 1 2 ( f ) (the ra infa l l distribution) and the 

fourier transform of the predictive f i l t e r $ r j 1 2 ( f ) wi l l y ie ld a frequency 

distribution of flows for 3. Mow assume that one has some information on the 

flows in 3 either as historic data or at some future time. The predictive 

deconvolution in the Kalman algorithm wil l correct the behaviour of 

3 as i n i t i a l l y estimated from 1 and 2. 

Another characteristic can be observed from the f i l t e r s resulting 

from 1 and 2. This is the change in the phase lag over time. (The 
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time base here would be in the order of years.) The change in this 

time lag would monitor the "d r i f t " of the flow with time or rate of 

urbanization. This can be done internal ly, i . e . , for basin 1 or 2 or 

as a cross comparison between the two regions. 

Other Techniques:Compatabi1ity 

The compatabi!ity of the various types of estimation techniques 

have been explored mathematically by numerous groups of individuals. 

The results by Kalman^ show that every second order process, (that is 

a process that takes into account only those stochastic properties 

determined by their means and variances) has a proper rational spectrum. 

This spectrum has a Markov real izat ion. He also shows that the starting 

assumptions for the Weiner f i l t e r and the Kalman f i l t e r are the same. 

The fact that every process defined in this manner has a Markovian 

realization means that techniques that are autoregressive with a memory 

of only one time lag (such as CIarks-j-| method) produce results that 

represent limited approximations to the Kalman-Weiner formulation. 

Hence, one could have predictions for basin #3 from some other auto

regressive formulation and perform subsequent analysis of the results 

using the Kalman Weiner paradigm. This is attractive i f one already 

has estimation techniques established and understood for modeling par t i 

cular modes of the operation. 
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time 

Numerical Examples:  

Example. No. 1 

The system of rivers chosen for the f i r s t example is from the Surrey 

basin defined in the map (Fig.10). They consist of the Salmon and 

Nicomekl rivers along with Murray Creek. The input signals to this 

system consist of precipitation data from the stations at Vancouver 

Airport, White Rock and the Surrey Municipal Hall. 

For the actual computation of the deconvolution operator three 

channels of runoff data from 1973 flood flows were also included. 

The lags for the six channels of input data can be visualized in Figuine ,13. 

input data 
Precipitation 

0 72 hr 

1973 
flows 

+12 hr 

78 

ecedent runoff (prior to 1973 peaks), 

Figure 13 

The assumption here is that the results of the precipitation are 

lagged by a minimum of 12 hours from the flows and that the flows are 

to be shifted in a corresponding manner. 

With this set up one wishes to compute the operation that when 

convolved with the signal wi l l y ie ld the 1973 peak flood flows. 

One further assumption is made. That is that since both signal 

precipitation and signal antecedent flows are trying to predict three 

channels of information that are the same, one can either constrain the 
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output traces to be three in number, or allow them to be redundant, 

i .e . put in three traces extra. These three extra traces are the same 

as the original ones. 

This can be visualized in Figure 14. 

Precipitation 

Antecedent 
Flows 

1973 

Airport 

White Rock 

{ Municipal Hall 

NicomekT ' 

Salmon 

Murray Creek 

Nickomekl 1 
0 
P Salmon 2 
E 
R Murray Creek 3 
A 
T Nicomekl 1 
0 
R • Salmon 2 

Murray Creek 3 

73 runoff 

72 hr 72 hr 

Figure 14 

Having found this operator for the 1973 precipitation and antecedent 

flows, the new 1974 precipitation and antecedent flows are substituted 

and convolved with the operator to predict the 1974 flows, 

i . e . , 

f 74 V ( 73 ) : ' ( 74 \ 
\Signal j V Operator / ^Peaks / 

The results and a sample of the operator are shown in Figures 

The computed operator is now read into the Kalman state equations 

as the matrix representation of x^, where x^ is the leading (0-lag) 

decon operator matrix and $ = xj^ x^ the transition matrix. 

The Kalman update proceeds in the following manner. After 

each time step of prediction using the decon operator the actual flow 

values for the 1974 flows are read in. The covariance of their agree-
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ment is used to update x^. The new x^ is then convolved with the 

signal to produce the new updated flows. This simulates the "on l ine" 

situation. The resulting changes,are plotted in Figure 18a,b 

The Murray Creek trace was consistently overestimated due to the 

size of i ts peaks in comparison to the Salmon and Nicomekl." However, 

one can see the modification in the f i t by the updating mechanism. 

With suff ic ient historical data the overestimation can be simply 

subtracted out as a constant amplitude distortion. 

Discussion: Several of the general characteristics described in 

Chapters 2, 3 and 4 become immediately v is ib le. 

F i r s t , the realization of the minimum phase 

characteristic -of-each of'the matrix operators. Plots of 

the magnitude of the coefficients of the f i l t e r and the distribution with 

lag can be seen in Figures 14a,b,c. : The leading (zero) lag of 

the f i l t e r is the greatest amplitude and passes most of the information. 

This is consistent with the minimum phase condition described in Chapter 2. 

This is also important when one is using the Kalman f i l t e r program to 

update these coeff icients. Since the Kalman f i l t e r in this application 

is an error f i l t e r , i t is applied to this leading term of the deconvolution 

operator only on the motivation that this is where most information is 

carried and also accounts for most of the error. A table of the order 

of change to this computed operator for the Surrey problem is included 

in Table -1. . In terms of the new information being passed the error 

update from-the Kalman f i l t e r is overlaid on the original Weiner estimate 

modulating this smoothed estimate with the. pulse of new flow information. 

This can be easily imagined when comparing the realization of the Weiner 

f i t t ing Figures 16, 17,-18 to the change in f i t caused by Kalman 

updating (See Figures 18a, b, c ) ; 
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TABLE 1 

CHANGE IN THE LEADING LAG OF THE 

DECONVOLUTION OPERATOR AS f ( t ) 

t = 8 hours 

Channel No. 

1 0. 3655 0. 3926 -0. 6841 0. 7326 -0. 5981 -0. 2391 

2 0. 3223 0. 0639 -0. 3700 0. 1184 -0. 4052 -0. 0441 

3 0. 4378 -0. 0365 -0. 3739 0. 0221 -0. 5829 0. 0964 

4 0. 4765 -0. 1174 -0. 3051 0. 0005 -0. 0213 0. 0787 

5 -0. 1752 -0. 4881 0. 6094 0. 0746 0. 3730 0. 0218 

6 -0. 1821 -0. 4077 0. 6089 -0. 0421 0. 1774 -0. 0189 

t = 72 hours 

Channel No. 

1 0. 3644 0. 3915 -0. 6852 0. 7315 -0. 5992 -0. ,2401 

2 0. 3223 0. 0639 -0. 3700 0. ,1184 -0. 4052 -0. ,0445 

3 0. 4375 -0. 0368 -0. 3742 0. ,0218 -0. 5832 0. ,0961 

4 0. 4764 -0. 1175 -0. 3052 0. 0004 -0. ,0215 0. ,0785 

5 -0. 1740 -0. 4869 0. 6106 0. 0758 0. 3742 0. ,0230 

6 -0. 1824 -0. 4077 0. 6080 -0. 0420 0. 1774 -0. ,0189 
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Figure 18a 
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Figure 18b 



Figure 18c 



Secondly, the problems and importance of having a common reference 

point for a l l of the channels (rivers) is apparent in the realizations of 

the seventy-two hour predictions. Murray Creek is very small (in flow 

volume) compared to either the Nicomekl -or Salmon Rivers. As a con

sequence of this i t rises to peak flood conditions much more quickly 

than the other two. So what one sees is the dissipation of energy from 

Murray Creek, the peak from the Nicomekl- River and the Salmon River-

approaching its peak, a l l lagged by several hours. 

This set of three different lags can be observed in the plots of 

the lag in degrees comparing the various channels. This representation 

shows how far behind the Salmon r iver is compared to Murray Creek and how 

the -•'Nicomekl River starts ahead of the Salmon River in its energy build 

up and gradually gets into phase with i t at one point and then out again. 

For larger systems (order >_ 10 ) of rivers the phase relations become 

more complex and the power spectrum (distribution of the covariance with 

frequency) becomes more important. 

The analysis of power spectra is standard tool in any time series 

analysis and is of particular interest in this case. The plots in Figures 

19, 20, & 21 show the distribution of variance (power) with frequency 

can be readily scaled using (logarithms) so that confidence intervals 

can be imposed on the probability of a particular channel exceeding the 

maximum power for any time period. The logarithmic choice is natural 

because this type of scaling makes the changes in power proportional. 

The realization of these confidence bands for the 95% confidence region 

can be seen in Figures 22, 23, 24. 

The spectra for each channel has been smoothed using a Tukeyg (p. 91) 

window. This windows out the spurious (high) frequency osci l lat ions 

and enhances the persistent frequencies. As is apparent from Figures 25,26,27, 

-63-



Amp!ituds 

I 2. a» 4 Frequency in."days 







-67-









- 7 1 -





the confidence intervals are quite wide so that when one compares 

the actual and predicted power spectra (using the Weiner f i l t e r ) the 

band is wide enough to include the prediction also. This widely used 

mechanism is a simple test for consistency of prediction and provides 

an accurate indication of the "predictabi l i ty" of any given system. 

This is also a useful measure of the interrelation of the various 

information channels and point out relationships at different times 

that otherwise are not apparent. This and the phase relations (Fig. 28a,b,c) 

disseminate periodic components residing in the data structure. 

The same sort of analysis is valuable when performed on the f i l t e r 

i t se l f . For the case of a "three channel, four-lag f i l t e r " used here, 

the roots of this characteristic polynomial matrix can be analyzed 

in the following manner. If one performs Z-transforms on the polynomial: 

A t ^ t + A t-A> i + + Vm^-m = y t • w h e r e h e r e m = 4 

one obtains a matrix polynomial in powers of z. 

A.z° + A. , z 1 + . . . + A. m z m =0 t t - i t-m 

which has complex roots describing the eigenvalues of the system. 

The real parts of the roots describe rates of decay of the system 

and the complex position the fundamental frequency. 

A real ization of the eigenvalues of this f i l t e r are in Figure 

28d. The motivation for their calculation in this problem is to 

determine a range as a f(ft/time) describing the rate of energy 

dissipation by the system along with the range of return times of 

the system. The return time/fundamental frequency is analagous to 

the harmonic frequency for a simple pendulum. The difference in 

this case is that one is dealing with a system of pendula. 
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Figure 28a 







FILTER CHARACTERISTICS FOR SURREY BASIN 1974. 

'FUNDAMENTAL FREQ.IN HOURS 

9.348 
9.348 
3.394 
3.394 

DISSIPATION RATE IN./HOUR 

Figure 28d 



Chapter 7 

FINITE STATE MACHINES 

This approach of treating the rainfal l /runoff problem as an 

information and feedback control problem is not new. The applications 

date back several years.(See, for example, Young1 7) However, considering 

the different methodologies employed as a whole, i t would appear that 

l i t t l e has been done towards implementing the problem as a whole. 

The Kalman f i l t e r model-is tradit ional ly used by i t se l f on the 

problem without the.-:use of .the pre-optimization provided by 

the Weiner f i l t e r . When the Kalman f i l t e r is used the obvious spectral 

analysis segments should be exploited too. 

The vast majority of problems arising from the prediction 

aspects of both the Weiner and Kalman models are inherently nonlinear 

in nature. However, the structure "of both techniques lends i t se l f to 

adaptation to a " f in i te state machine"1 'mode of real ization. To examine 

brief ly the poss ibi l i ty of this formsof the structure a simple analogy is used. 

Suppose that a machine existed that had local Weiner f i l t e r s to 

describe the movement and behaviour of each of a large number of gears. 

Suppose also that a mechanism existed to switch the focus of attention 

from section to section, so that one could monitor the change from state 

to state. If one defined the Kalman formulation as the switching 

mechanism (not necessarily linear) then, the problem can be broken 

down into a set of these machines that together would describe the 

entire operation. 

In terms of the RiC c i rcu i t used originally,,the equivalent 

operation would be to have n of these simple " irreducible" mechanisms 

combined to build up to an arbitrary f in i te state machine. To focus 
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this aspect into the resource management f i e ld one need only consider 

an entire system process for a basin. This system consists of a snow 

pack (for B.C.), a precipitation system, an in f i l t ra t ion system and 

f ina l ly a runoff system. The focus of this paper has been on a small 

part of the overali problem, (one section of the c i r cu i t ) , (one state 

of the machine). The structure for a l l of these processes is the same, 

whether they are nonlinear or l inear. Consequently, the formulation and 

formalisms presented in this thesis are merely case examples for a 

f in i te state machine. This extension to f in i te state machines is discus 

in Krohn^. and in Robinson^, Ch. 5. 

To further define some of the methodology that would be employed, 

consider the problem where the nonlinear relation x is to be estimated 

s ta t i s t i ca l l y and functionally using two processes A and B. This means 

that we are looking for A and B so that A-B is the "best" approximation 

to x. This is by definit ion nonlinear because i t involves multiplying 

A and B. However, employing this idea of s tat i s t ica l machines this 

nonlinearity can be converted into a local linear problem. Assume 

one has an i n i t i a l value for A, i . e . , A 0 ; and an estimate-for B, which 

yields BQ. One now has a linear estimation problem since AQ is given 

the problem is no longer AB of unknown functions, but rather A 0BQ, B is 

now a linear, unknown. This than can be solved using linear methods. 

This means that at a local level one has constructed a l inear problem. 

Given this information one switches back to the f i r s t state with A as 

Al and a new estimate B 2 and so on. Since this has the features of a 

contraction mapping, the estimates wi l l converge to a l imiting set 

of values representing the f inal A and B. This is a well known result 

and readily applies to estimation of snowmelt given temperature and 
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precipitation records. 

The ab i l i t y to link past and present inputs is also required to 

produce current outputs. This can be done through an "asynchronous 

sequential machine". This machine does hot require a "time incrementing 

procedure to link transitions between different states. This means that 

a transition can take place following any change in inputs. On the other 

hand a synchronous machine uses a clock to in i t i a te changes. To summarize 

these procedures the methodology from Robinson^ is u t i l i zed . 

To put these ideas of using "machines" to l ink various sections 

of a problem together the synthesis mechanism is as follows: 

1. Prepare a complete description of the f inal behaviour by means 

of a transition table (or graph). 

2. Reduce this table to its shortest possible form. 

3. Synthesize the resulting network. 

Consider the following sketch to represent this network: 

1 . Figure 31 

This network in Figure 31 is composed of machines with f i n i t e states 

S 1 and S 2 , a f i n i t e number of inputs x 2 and a f i n i t e number of 

outputs y x , y . Let the time be represented by n, where n is an 

integer. This is a synchronous machine according to our def in i t ion. 
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The present output y n and the present state s p are functions of 

the present input x n and the previous state s In terms of the sketch 

n - i : 

s = s y„ _ y n 

describes the branch form states s -> s 2 . Similarly, the branch form 

S2 ~* S2 i m P l i e s 

' n - i n 

x n = x i » y n = y i 

-This can be summarized in a transition table: 

X n 

x i x 2 

s n - i s n y n s n y n 

s i y i y i 

S2 S2 y 2 
s i y

2 

let S j = 0; s 2 = 1 

x i = 0; x 2 = 1 then one has 

y i = 0; y 2 = i 

X n 

0 1 

V i s n y n 
s 
n 

y n 

0 0 0 1 0 

1 1 1 0 1 

or 

stated in Figure 32 
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Figure 32 

This is a simplified Kalman formulatien. 

The tr ick to a l l of this is determining from one of these t r a n s i t 

tion graphs how many feedback loops are necessary and what type of behav

iour should be embodied in the function generator. A general formulation 

from Robinson^ for blocks of an arbitrary number of channels can be 

seen in Figure 33. 

Figure 33 

where x n is input. 

y n is output: = function of x n and sn_p 

s n is present state = f( x

n > s

n_D) 

S n p = previous state 

D = delay in changing from one state to another (variable) 

S n D = s n ( e x c e P t w n e n transition is in progress). 

This operator would work in the following manner. 

1. A change in x -> change in s n (s n is the new internal state of 

the system). 

2. s n changes s n _ D after a delay D. 
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3. New D changes y^ (with the system entering a new internal 

state simultaneously with s n_p. 

4. s n D can cause a change in s n l ike i t did with x^. 

Thus one has an algorithm to separate nonlinear behaviour into 

linear f i l t e r s and a "machine" to control their global behaviour in a 

f in i te manner. 

In l ight of this new information from this machine structure 

the state space (Kalman) formulation takes on a unifying role 

linking the choice of f i l t e r types to the real time, "on l ine" 

situation. One has defined, therefore, a "frame". 

This "frame" has attributes that define its state {Si and S 2) 

in the example. Sx and S 2 could for this problem be the snowpack 

depletion and the rainfal l /runoff problem. Since the transition 

graph for the example and the two stage physical process are the 

same, they can be linked in a synchronous manner to a continuous 

input data stream (x l 5 x 2) from sate l l i te observations and recursively 

processed using selection c r i te r i a (arrival type) on the type of 

f i l t e r to be used. The state space formulation moves the prediction 

from Si to S 2 or, Sn_p to Sn- The outputs y^ and y 2 can be checked 

for accuracy with the next information reception and changes made 

accordingly. 

This composes a very t r i v i a l algorithm in ALGOL that 

allows for recursion. This algorithm schematically would be realized 

as follows: 
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Example #2: 

In conjunction with the evolution towards the f in i te state 

machine approach, a second example was performed 

using the Weiner f i l t e r s to predict snowpack depletion from the Mission 

area (See Fig. 29 ) using an operator computed using McBride snowpack 

depletion data. These two sets of snowpillow data were "driven" by a 

signal containing temperature, humidity and a histor ic record. This 

type of f i l t e r is s l ight ly dif ferent, in that there are three input 

signals and only one output trace. This type is called a constrained 

energy f i l t e r and is discussed by Robinson^v;PP^ 261 ,.269. The difference 

in' appearance is that the f i l t e r weights are now row vectors and the 

sum of squares of the output y t is minimized using LaGrange multipl iers. 

A realization of the agreement using Mission 1972 temp and humidity 

convolved with the McBride 1973 f i l t e r can be seen in Figure 29. 

With this result one now has set up the two stages of a "machine". 

The communication between these state machines can take on several forms. 

The simplest of these is to consider the ra infa l l runoff machine and 

the snowpack machine separately i . e . , as a pair of time invariant 

f i l t e r s which can be linked by augmenting the input of the second with 

the output of the f i r s t , eg. , finding the flow equivalent of both rain 

and snow depletion for that area and including the snow-water equivalent 

as an additional signal. However, i f one were to run this model in an 

"on l ine" situation the update on each of these models would be performed 

through the Kalman error f i l t e r thus emulating a "continuous" (discrete) 

feedback system. Such would be the case i f one was sensing the snowpack 

depletion from a sate l l i te track and then merging this with sate l l i te 
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Figure 29 

-85-



information on precipitation, temperature, etc. 

The overhead for this would be some type of pattern matching device 

(program) and a language to monitor a l l the incoming information before 

involving the various f i l t e r mechanisms. 

Example #3: 

As a f inal example of the Weiner f i l t e r s used as energy constraints 

and as a state machine, the following case study of floods on the Squamish 

River was performed. Peculiar to this particular basin is the 

contribution of rapidly melted snow, caused by a cold front and then followed 

by .'warm" turbulent a i r from a southwest direction. - (See Figure 30a). 

The majority of the melting occurs on or about the 5000 f t elevation. 

This apparently occurs only when the air is practical ly isothermal 

from the valley f loor to the 5000 f t (850 mil l ibar) range. This 

condition, when accompanied by heavy rains gives rise to flood conditions 

of short duration and high intensity. A realization of the five 

significant flood years for the month of October can be seen in Fig.30a. 

(These particular conditions are in evidence in October and in July, 

but predominate in October.) 

For this case one must budget (accumulate) snow @ 5000 f t . 

depending on temperature. This results in the temperature, precipitat ion, 

snowmelt situation as inputs and the single flood flow as output. Since 

the record variation is so rapid the Weiner f i l t e r is apt to be out-

of-phase with the actual event. Consequently, one wishes to exploit 

one further property of the error behaviour of these constrained 

energy f i l t e r s . This characteristic can be argued as follows: 
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The Weiner prediction error f i l t e r is realized in this case to 

minimize the output energy due to noise. Consequently, the amplitudes 

of the f i l t e r ' s output that are due to noise alone are small (least-

squares small). If at some time t^ in the input stream a pulse (large 

snowmelt) arrives, i t can be predicted from the past values. Therefore, 

a large error is observed in the predicted output. However, the very 

fact that this error has occurred is an accurate means of detection. 

This pulse, i t appears is very close to the fundamental frequency of 

the system, (approximately 3.2 days) and its appearance in the input 

signal indicates consistently (at least with this data) the appearance 

of a flood. This phenomenon is an extremely useful tool for situations 

where spikes are evident in the output traces. 
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Chapter 8 

OTHER CLASSES OF FILTERS 

One of the principal problems encountered with Weiner type 

deconvolution is that although i t provides signal compression, i t also 

causes, in a large number of cases, excessive amplification of noise 

components. As is apparent from the Squamish River floods, the noise 

and the arrival of large spikes (floods) dominate the traces. This 

pulse arrival also violates the minimum phase conditions required 

for a realizable Weiner f i l t e r . The use of the Weiner f i l t e r as a 

signal (seen in the large error) of the arrival of these events 

does not, however, indicate the amplitudes accurately. 

Recently, (Wiggins^, 1 9 ?/) 1 another class of deconvolution 

operators has been developed in an attempt to cope with pulse arrivals 

at varying lags. Since this technique uses the kurtosis as i ts 

optimizing c r i te r i a (as opposed to the Weiner least-squares) only 

the components contributing to large variance components are followed. 

Implicit in this phaseless formulation of the deconvolution 

process is that the selection of the norm one uses is only restricted 

by the fact that i t must represent a uniform, monotonicly increasing 

distribution. In simple terms this means that one can selectively 

redistribute the variance contributions by the observed data in any 

'suitable' manner. This implies that as long as the redistribution 

function increases with increasing variance (up to some defined cut 

off point), one can choose any transformation that appears to suit 

the data. 
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Included in this chapter are two possible reformulations of 

the deconvolution problem. This type of transformation is thus the 

direction towards which the entire unfolding process wil l move as 

more classes of transformations belonging to this type are uncovered. 

In addition to this "simplifying" of the structure, the f i l t e r 

weights are vectors and not matrices. This wil l speed up considerably 

the calculations and the adaptability to the Kalman formulation. 

Minimum Entropy Deconvolution: 

As a brief summary of the minimum entropy deconvolution (M.E.D.) 

idea and its water resource applications one needs to imagine the s i tu 

ation where the input consists only of a few large spikes which are 

separated by different time intervals while the operator i t se l f 

remains relat ively unchanged. 

In terms of the Squamish flood situation, the spikes are pulses 

of flow caused by the rapid melting of the snowpack and 5000 f t . 

These arrivals are dependent on the wind direction, temperature and 

amount of snowpack. The basin (operator) response is considered to be 

the same under a l l of these conditions. 

What the linear operator proposed by Wiggins-^ does is convert 

these signals to a "simple" appearance. "Simple" meaning that the 

output consists of a few large spikes of "unknown sign and location" 

which are in turn separated by nearly zero terms. This type of 

approach maximizes the order of these spikes or "equivalently 

minimizes the entropy of the spikes; hence the name minimum entropy 

deconvolution." i 0 
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To simplify the behaviour of this process he chooses the 

kurtosis of the samples. The kurtosis measures the contribution to 

the ta i l s of distribution of the samples; in other words, those 

spikes most deviant from the mean sample. To restate this in terms of 

the rainfal l /runoff context is straightforward. For the situation 

caused by high intensity ra infa l l accompanied by rapid melting, a spike 

arrival is seen to appear in the runoff. The intermediate lesser 

peaks are of no importance consequently one can ignore ( s tat i s t ica l ly ) 

their contribution in favour of the extreme (ta i l ) events. 

In terms of the general autoregressive formulation used 

throughout, the problem appears as follows: 

Nf 
y i j = ^ V i , j -k w h e r e 1 = 1 N S 

|<=T j = l,...,NT 

where NS are the number of trace elements and NT the number of 

time periods. (NF are the number of f i l t e r components). 

The norm (like the least squares norm) is to be found such that 

i t maximizes the variance. This is denoted as a "varimax" norm and 

has the following form: 
NS 

V (varimax norm) = I V. 
i=l 

v- = l\ yk-• I (I y2--)2 is the sum of the squares of the 

normalized variances. 

The behaviour of this norm looks l ike: 

| V = 1.0 

i M I i I i I I 
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For a single output which is everywhere zero except for a 

single spike has V=l. The more nonzero similar sized spikes 

the smaller V becomes. The derivation by Wiggins-^ of the f i l t e r 

coefficients is straight forward and appears as follows: 

9V 
Since V is to be maximum -T-F = 0 

a t k 

i-e- li " "* ~ 0' substitute this into the expression for 
i af 

k V. and one obtains: 

1 2 

P i = I j y^ • (the variance of y) 
3 

....... ay. . 
Setting f

1 J = u. . . one f ina l l y obtains: 
d l^ i , j -K 

l f * l l v i p i ?1 u i , j - * u i , j - k = J l Pi ?1 y i j u i , j - k 

which Wiggins-jg rewrites as: 

Rf = g 

R is the autocorrelation matrix consisting of a weighted sum of the 

autocorrelations of the input signals and g the cross correlation vector 

composed of a weighted sum of the cross correlations of the outputs 

cubed with the inputs. As i t stands the system is nonlinear, but 

can be solved i terat ively with an assumed f. The solution is not 

a unique one but provides an adequate estimate of the maximum. 

It is interesting to note that the effect of cubing a time 

series is similar to zeroing i t with the exception of a few of the 

largest values. The f i l t e r weights adapt themselves to finding a 
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f i l t e r shape to the spikes of the cubed outputs. From the results 

i t would appear that i f the i n i t i a l guess at f is a spike, then the 

output (runoff) spikes coincide with the actual flood spikes. The 

bursts of snowmelt in the input data seem to control the phasing or 

the delay of the output events. The way around this is to time 

shift the outputs after comparing the actual and predicted traces 

for some similar target data. 

There are several features of this process that make i t 

attractive for this type of event. If a l l of the output traces 

contain random noise (which is inevitable) then R is proportional to 

the unit matrix, meaning that the cross correlation matrix wil l have 

only one non-zero value. The same is true for the f inal output 

f i l t e r . This value is the same as the i n i t i a l estimate for f. 

Wiggins-jg demonstrates that the process is quite stable in the presence 

of large noise, i .e. i t leaves white noise unmodified. 

The most signif icant departure from the normal deconvolution 

process is the absence of the minimum phase restr ict ion on the resulting 

f i l t e r . In fact, there are no phasing requirements at a l l . This 

behaviour is also quite useful in other respects. When one views the 

predictive deconvolution f i l t e r characteristics generally, i t can be 

said that they a l l tend to amplify noise excessively. On the other 

hand, the M.E.D. (minimum entropy deconvolution) does just the opposite. 

While emphasizing the spike behaviour i t quite selectively suppresses 

bands where the signal to noise is smallest and accentuates the 

coherent signals. A sample of the type of agreement attainable from 

these spikey events is included in Figure 31. 
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As is v is ib le in Figure 33, the largest contribution to the 

variance is by the largest spike (at the top right hand corner). 

The predominant contributions to the trace is by the small amplitude 

flows seen near the origin. The algorithm to compute the weights 

approaches this maximum in 10 iterations (Figure 34) and the resulting 

f i l t e r configuration is visualized in Figure 33a. 

Further classes of transformations on the distribution of y^ 

have been investigated by 0oe-& Ulrych •(1978)-".The motivation behind the 

transformation of y. can be understood simply in terms of the normalized 

plots of variance vs. y^ below in Figure 35. 

Figure 35 

The kurtosis distributes the variation in the variance 

contributions as per Figure 36. This may, however, be too radical 

a weighting for anything other than spike inputs. The process for 

redistributing the rate at which this contribution is accumulated 

is to introduce a transformation on y such that the resulting shape 

is determined on the transformed variable z. A suitable normalization 

is introduced and then the whole process is resubstituted into the 

varimax formulation and solved for the set of f i l t e r weights f^. 
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As an example of th is , consider the transformation proposed 

by Ooe M., and Ulrych, T . ^ 

z = 1 - exp(-ay 2), where 

a = -^T7 , k a constant determining the slope. 

If one substitutes z into the varimax norm the new norm looks l ike: 

J J 3 V . 

The expansion and substitution for - r ^ — then appears l ike: 
9 t k 

Z i j ) _ 2 ̂Wa(1"z) ?! V i j - k x i j - k 

= 2(l\z)-h l\z l\z* l\ 2ay ( l - z ) x 
j J J* J 

from which one obtains a similar form: 

Rf = g as produced in Wiggins-^ to solve for f. 

This is just one of a class of norms possible for emphasizing 

different aspects of the data structure depending on conditions. As 

a comparison between the straight varimax transformation and the 

"z" transformation, plots of both are in Figure 36. 

1.0 T 

o.5 4 

Figure 36 
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Contained in this z transformation is the parameter k. 

This ultimately determines the shaping of the distribution. 

Experiments have found a stable value of k to be between 1.4 and 3. 

The choice of k is such that one wants k to "look l ike" y 2 for 

y m . Restated more formally: •'max J 

for z = 1 - e 

We want z = y 2 at y 

Since a = ^ 

ay' 

max 

a2 is the variance 

Where a, the standard deviation is such that 

0 = ymax/1.4 or 3 

This choice is on the assumption that.z is roughly l ike a normal 

distribution and 3a should approximately include the ta i l s of 

this distribution (See Figure 38). 
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Chapter 9 

CONCLUSIONS 

Each of these classes of predictive f i l t e r s perform well 

under different sets of conditions. As has been found by t r i a l and 

error, no one class does i t a l l . What has become most apparent, 

however, is the appl icabi l i ty of a l l these f i l t e r s to the state-space 

configuration and a simplicity of incorporation into f in i te state 

machines. On a modular level the f i l t e r (system) characteristics 

are simply and directly interpretable using standard spectral 

techniques. 

This assemblage of tools in the form of general algorithms 

presents a formidable assessment package for a wide variety of 

multichannel problems. Although they do not represent a l l poss ib i l i t ies , 

they do provide a viable means of assessing flood prediction from 

a multichannel point of view. 
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