
THE APPLICATION OF THE MIXED FINITE ELEMENT 

METHOD TO THE ELASTIC CONTACT PROBLEM 

by 

JORCITO TSENG 

(B.A. Sc., The University of British Columbia, 1977) 

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF APPLIED SCIENCE 

in 

THE FACULTY OF GRADUATE STUDIES 

Department of Civil Engineering 

We accept this thesis as conforming 

to the required standard 

THE UNIVERSITY OF BRITISH COLUMBIA 

January 1980 

(c) Jorgito. Tseng, 1980 



In presenting this thesis in partial fulfilment of the requirements for 

an advanced degree at the University of British Columbia, I agree 

that the Library shall make it freely available for reference and study. 

I further agree that permission for extensive copying of this thesis 

for scholarly purposes may be granted by the Head of my Department 

or by his representatives. It is understood that copying or publication 

of this thesis for financial gain shall not be allowed without my written 

permission. 

Department of Civil Engineering 

The University of British Columbia 
2075 Wesbrook Place 
Vancouver, Canada 
V6T 1W5 

Jorgito Tseng 



ii 

ABSTRACT 

The finite element method is applied in conjunction with 

Reissner's mixed variational principle to the investigation of two-dimen-' 

sional elastic contact problems. The versatility of the mixed principle 

in incorporating boundary conditions pertinent to the contact problem 

is demonstrated. 

Contact conditions are modelled by appropriate manipulations 

of boundary variables. In cases where the contact region is 

independent of the applied loading, an iterative procedure is used to 

establish the sliding and adhering portions in the contact region. 

Numerical results for displacements and stresses are independently 

confirmed by the finite element analysis in conjunction with the minimum 

potential energy principle. In cases where the contact region is a 

function of the applied loading, or progressive contact, an incremental 

formulation is employed to describe the discretized contact stages. In 

the example of a frictionless contact between a long cylinder and a 

rigid base, good confirmation is obtained from Hertz's analytical 

solution. Criteria for taking one contact stage to another are also 

outlined for frictional progressive contact. 
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NOMENCLATURE 

A list of symbols used repetitively in this thesis is given 

here. Symbols for summation indices and other conventional mathematical 

symbols are not included. 

Symbol Description 

A the flag indicating adhering condition in the computer 

program 

C the flag indicating sliding condition in the computer 

program 

d the distance between the nodes in a nodepair 

E the elastic matric relating a to e 

F a functional 

f_ the force density vector in linear elasticity 

f ,f the consistent loads on the variables T , T , 
T T xy yy xy yy 7 7 7 

respectively, of the mixed finite element model , 

J a functional 

k an elastic spring constant 

k m the multiplicative factor for A Q_ to invoke a change in 

the contact condition at the ith node pair with the mth 

increment 

L the area coordinates of a triangle 



X 

Symbol Description 

ml the direction cosines of the outward normal on S with 

respect to the x-y cartesian coordinates 

p surface traction 

AQ_ a test incremental consistent load vector 

Ag the test incremental solution vector corresponding to 

AQ 

R the cumulative consistent load vector 

r the cumulative consistent solution vector corresponding 

to R 

S a boundary of a domain 

T the differential operator matrix in the equilibrium 

equations of linear elasticity 

u the displacement vector in linear elasticity 

u,v the components of u in the x,y directions, respectively, 

of the x-y cartesian coordinates 

e the strain vector in linear elasticity 

e

X ' £y'^Xy * r , e components of e with respect to the x-y cartesian 

coordinates 

y Coulomb's coefficient of friction 

Coulomb's coefficient of kinetic friction 

u Coulomb's coefficient of static friction 
p s 

v Poisson's ratio 

$ a global coordinate function 

cj) a local coordinate function 



xi 

c Symbol Description 

o_ the stress vector in linear elasticity 

T , T , x the components of a with respect to the x-y cartesian xx yy xy 

coordinates 

fi a bounded continuum 

fi* an approximate domain of fi 

fi a subdomain of fi* or an element domain 

General Subscripts 

A,B,etc. points on a finite element model 

C that part of the boundary lying within the contact region 

F that part of the boundary lying outside the contact 

region 

n,t denotes the normal and tangential directions, 

respectively 

T that part of the boundary where surface tractions are 

prescribed 

U that part of the boundary where displacements are 

prescribed 

x in the x-direction of the x-y cartesian coordinates 

y in the y-direction of the x-y cartesian coordinates 

,x differentiation with respect to the variable x 

,y differentiation with respect to the variable y 

denotes a vector quantity 



xii 

Symbol Description 

General Superscripts 

denotes the prescribed value of the variable 

e in the element 
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1. INTRODUCTION 

1.1 Background 

In the design of many engineering structures it is very common 

to have components such as connecting rod and shaft, gear teeth in mesh, 

coming into physical contact with each other. It is important for the 

designer of these assemblies to determine the deformations and stresses 

at and near the contacting surfaces. 

Mathematical analysis of the contact problem for ideal geometric 

configurations has long been in existence. Hertz [1] first solved the 

displacement and stress distributions in the smooth contact region between 

two ellipsoidal bodies pressed together with the assumption that the contact 

region is small compared with the principal radii of curvature of the 

undeformed ellipsoids. Goodman and Kerr [2], later in their investigation 

of an elastic sphere indenting an elastic cavity, removed this restric

tion while retaining the assumptions that displacements and stresses are 

small so that the analysis was still within the framework of the linear 

theory of elasticity. Tu and Gazis [3] investigated the frictionless 

contact problem of a plate pressed between two spheres using the Hertz 

assumptions except that the radius of the contact region may not be 

small in comparison with the thickness of the plate. Such analytical 

efforts involved long mathematical developments which solved, in the 

realm of linear elasticity, unbonded contact problems between bodies 

of ideal geometric shapes. Towards the understanding of unbonded 
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contact between surfaces of more general configurations, Blackketter 

and Christensen [4] employed an approximate method in their study 

of contact between two two-dimensional nearly rectangular smooth 

elastic bodies. Although the magnitude of error in the iteration 

process was difficult to establish, the numerical values were in close 

agreement with experimental results. Goodman [5] applied the 

incremental formulation along with the Hertz assumptions to analyze 

bonded contact between normally loaded rough spheres. Relative 

slip of the surfaces in contact is prevented by the shear stresses de

veloped on the interface in contrast to the Hertz problem in which 

relative slip occurs without resistance. Many of these analytical 

solutions, especially those with incremental formulation, lend themselves 

to numerical methods. For practical situations where geometries are 

more complicated and the contact phenomenon is most likely of the 

stick-slip type, that is neither totally bonded nor unbonded, the 

need for more general numerical approaches is obvious. 

The recent advent of high-speed digital computers rendered 

the application of the finite element approach [6,7,8] possible in the 

study of the contact problem. The finite element method is very 

versatile in that it has the capability to handle various boundary 

conditions, to accommodate dissimilar materials and geometries, and 

to model different types of loads such as body forces and thermal 

stresses. Parsons and Wilson [9], with a potential energy formulated 

constant strain element, solved the frictionless contact problem between 

elastic bodies. Ohte [10] extended this method to contact problems 



3 

with friction where the irreversibility of the stick-slip phenomenon 

was modelled. At each increment of load, unknown contact forces 

were determined by an iterative procedure. Chan and Tuba [11,12] 

used a similar technique to study the effects of clearance, load and 

friction on turbine blade fastenings. Later, with a potential energy 

formulated linear strain element, Caertner [13] was able to model the 

frictional stresses by forcing the strain variables to the appropriate 

values according to the contact conditions on the interface. The 

results of this method agreed well with those obtained experimentally 

in the case of a connecting rod with a loose-fitting bushing. More 

recently, Okanoto and Nakazawa [14] introduced a technique in which 

contact elements are used to determine the contact stresses and de

formations. Numerical results of this approach showed a reasonable 

agreement with experimental data. 

In these studies the finite element method is applied in 

conjunction with the minimum potential energy principle. Investi

gations in this area with the complementary energy formulation or 

the mixed formulation have been lacking. In the complementary 

energy formulation, stresses, instead of displacements are the in

dependent variables and the mixed formulation has both the dis

placements and stresses as independent variables. In studies 

by Dunam and Pister [15], Mirza [16], Mirza and Olson [ 17,18] it was 

observed that in plane elasticity problems and particularly in stress sing

ular situations, finite element analyses applied with the mixed variational 
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principle yielded results more accurate than those from corresponding 

potential energy formulated models. Since the contact problem is a 

stress concentration problem which, exhibits a stress singularity at 

the edge of the contact region as Goodman noted, further studies on 

this problem employing the mixed method seems warranted. 

1. 2 Purpose and Scope 

In this work, the mixed finite element method is applied 

to two-dimensional elastic contact problems. Contact constraint con

ditions pertinent to the stick-slip behaviour of Coulomb friction are 

developed. 

In contact problems where the contact region is independent 

of the loading, an iterative scheme is devised for the determination 

of adhering and sliding portions of the region. In progressive 

contact problems where the contact region is a nonlinear function of 

the applied loading, an incremental approach is employed to model 

the geometric non-linearity. Fortran computer programming is used 

to obtain numerical results of displacements and stresses in each 

problem investigated. 
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2. THEORETICAL BACKGROUND 

2.1 Reissner Principle 

2.1.1 Background 

In the linear theory of elasticity, the three quantities stresses, 

strains and displacements denoted by a , e and u are related by three 

field equations:-

Equilibrium equations: 

- T T a = f . . . . .(2.1) 

Strain-displacement relations: 

T u - e . . . . . ( 2 . 2 ) 

Stress-strain relations: 

a = E_ e . . . . (2.3) 

In these equations, T is a differential operator matrix, f is a vector of 

force density components and E is the elastic matrix governed by 

material properties. It is common to combine Equations 2.2 and 2.3 

to form the stress-displacement or constitutive relations: 

a = E T u . . . . (2.4) 
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The three widely used variational principles in elasticity problems are 
7 

the principle of minimum potential energy, the principle of minimum 

complementary energy and the Reissner [19] mixed variational principle. 

In the potential energy theorem, the constitutive relations are sub

stituted into the equilibrium equations, by which the variational 

equations become equivalent equilibrium equations in terms of displace

ments. In the complementary energy theorem, however, the 

equilibrium equations restrict the class of admissable stresses and 

the variational equations become equivalent to the constitutive 

relations. The Reissner principle is a more general variational 

principle in that the resulting variational equations are both the 

equilibrium and constitutive equations. 

2.1.2 The Variational Principle 

In plane elasticity, the linear theory furnishes explicitly 

the equilibrium equations: 

- T XX, x T = f, 
x 

- T - T = f .(2.5) 
xy,x yy,y y 

and the constitutive (stressTdisplacement) equations: 
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u, - -F (T - VT ) = 0 x E xx yy 

V , - = ( V T + T ) 
y E xx yy 

u, + v, y x |(1 + V) T 
E xy 

(2.6) 

For a region A in the plane continuum bounded by a curve S, 

Equations 2.5 and 2.6 are solved subject to these boundary conditions 

on S: 

on S-p or 

u = u 

v = v 

on S U 
(2.7) 

where 

p = Six + mx *x xx xy 

p = £x + mx 
y xy yy 

and l,m are the direction cosines of the outward normal on S. 

A functional F is defined as follows: 

F = If [T U , + X v, + x (u, +v, ) - T ^ - ( X 2 + x2 

i 1 xx 'x yy 'y x y 1 'y 'x' 2E xx yy 

2vx x + 2(1 +v)x 2 )] +uf +vf ]dA xx yy xy x y 

[up x + v p y ] dS [(u-u)p x +(v-v)Py]ds 

'U . . . .(2.8) 
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Reissner's theorem states: 

Among all states of stress and displacement 
which satisfy the boundary conditions, the 
actually occurring state of stress and displace
ment within the small displacement theory of 
elasticity renders 6 F to zero. 

To illustrate the theorem, the functions u, v, T , T 
xx yy 

and T are given arbitrary variations 6u, 6v, 6T , <5 T and ST 
X y => i ' ' xx yy xy yielding the first variation of F: 

<5F = // [6T ( U , -1 (T - VT )) ^ xx x E xx yy 

+ 6 T ( V , - i ( T - VT ) ) 
yy y E yy xx 

+ 6T ( U , + V , - 2 T ) xy y x E xy 

Suf - 6vf x y 

+ Su, T + Su, T + Sv, T . + S 'V, T ]dA x xx y xy y yy x xy 

/ (p 6u+p 6v)dS - / (p 6u+p 6v 

+ (u-u) 6 p v +(v-v) Sp) ds . . . . .(2.9) x y 

Subjecting the terms containing variations of displacement 

derivatives, that is 6u, , 6u, , 6v, , and 6v, , to integration by 
x y x y 

parts yields: 
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6F = ff [6T (u, - -i- (T - VT ) 
A xx 1 'x E xx yy' 

+ 6 T (v, — F - ( T - V T ) 
yy 'y E yy xx ' 

+ 6T (U, + v, - 2 ^ 1 ^ T ) xy y x E xy 

+ 6u (-T - T - f ) 
xx,x xy,y x 

+ 6 V ( - T - x - f ) dA 
YY>Y xy,x y' 

+ f~ i C [6U ( £T + mx )+ 6V ( £ T +ITIT )]ds 
S T +S U xx xy xy yy 

+ / - (p 6u+p 6v)dS - /_ (p 6u+p 6v 

+ ( u - u ) 6p + (v - v) 6p ) ds . . . . . (2.10) x y 

According to Lagrange's lemma, the vanishing of 6F for arbitrary 

variations 6u, <5v, 6T , <5 T , and 6T furnishes the followinq 
xx yy xy 3 

differential equations in the domain and conditions on the boundary: 

u, - i (T - VT ) = 0 x E xx yy 

v, - i (.T - VT ) = 0 y E yy xx 

u ' y + v ' y " I ( 1 + v ) Txy = ° ' ' ' ' , ( 2 ' 1 1 ) 
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or 

•T - T - f 
xx,x xy,y x 

T xy,x - Tyy,Y - f y = 0 • ' • • - --C2.12) 

IT + mx - p = 0 xx yy "x 

on Sj 

IT + mx - p = 0 . . . . . (2.13) 
xy yy y 

u - u = o 

on Sy 

v - v; = 0 . . . . .(2.14) 

Therefore the vanishing of the functional 6 F is equivalent 

to the plane, elasticity problem posed by Equations 2.5, 2.6, and 2.7. 

Note that this implies only a stationary value for F, in general 

neither a minimum nor a maximum. 

In the context of calculus of variations, the Euler equations 

of the area integral in functional F are the governing differential 

equations in plane elasticity and the line integrals in functional F are 

added for the satisfaction of prescribed boundary conditions. 
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2. 2 The Finite Element Method 

The finite element method is a technique of numerical analysis 

which provides approximate solutions to continuum problems in which 

appropriate differential equations and boundary conditions are imposed 

on unknown functions, Oden [6], Zienkiewicz [7], and Oliveira [8]. 

In the formulation of the method, the bounded continuum fi 

is replaced by a domain fi* such that fi* may be subdivided into a 

number, say E, of non-overlapping subdomains, fi , called elements. 

The construction of elements is such that adjacent elements are to 

share a common boundary, the sum of the subdomains fi equals domain 

fi* and that fi* tends to the bounded continuum fi as the number of 

fi becomes large. Each element contains a family of fields which 

will constitute the approximate solution in that corresponding part of 

the continuum. For each function u sought in the problem, an approxi

mate function is assumed in each element which can be expressed as: 

n 
u G = I uf <fj® ; e = 1,2,---,E . . . .(2.14) 

k = 1 k k 

e e 

where the <j)̂  are coordinate functions defined in fi only and u^ are 

values of u or one of its derivatives at element nodes, generally points 

on the element boundary. The definition of is such that if 
e e 

U j , j = 1,2, •••,n corresponds to the value of u at the node with 

coordinates x., i = 1,2, •••,m, then 

cj>?(x.) = 1 if k = j 
K ' ; k,j = 1 , 2 , - , n . . . .(2.15) 

= 0 if k ± j 
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This ensures the linear independence of the in fie. It is common, 

however, to first choose any u containing n linearly independent 
t 

terms, for instance a polynomial, and by means of a linear transforma-
g 

tion, cast u into the form expressed in Equation 2.11. 

In the formulation of the finite element method, it is only 

necessary to assume coordinate functions defined over individual 

elements. However, for the implementation of the method, it is 

convenient to introduce functions defined over fi* such that 

e e e 
$ k (x.) = <f>k (x.) for x.efi 

= 0 for x . £ f i e . . . . .(2.16) 

Then for the entire domain, the approximate function is now 

E m 
u = • E £ uf $f . . . .(2.17) 

e=1 k=1 

The adjacent elements are made compatible by specifying that the 

values of the approximate functions be the same at coincident nodes 

(and thereby providing continuity along all common element 

boundaries). 

The nodal values, or the degrees of freedom, of each element 

is related to those of the domain fi by the relationship: 

M 
u k = . E , F fk u i • • • - ( 2 - 1 8 ) 
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where 

if node u. is coincident with u. i 

0 otherwise 

and 

M number of degrees of freedom in domain fi 

u. nodal value at nodes in domain fi . 

This is directly analogous to the well known displacement method in 

structural analysis relating local to global degrees of freedom, as 

described in detail by Bathe and Wilson [20]. 

Finally, in terms of the global degrees of freedom, the 

approximate function is expressed as: 

E m M 

Refined approximations of the sought functions may be achieved 

by subdividing the domain fi* into smaller elements, by increasing the 

number of coordinate functions per element or both. 

2.3 Application of the Finite Element Method to Reissner's Principle 

methods showed encouraging results although their mathematical 

properties were not yet well understood. Recently, generalizations, 

convergence and completeness criteria of the mixed methods have been 

studied by Oden [21], Reddy and Oden [22]. Mirza [16] extended 

u .(2.19) 

Early applications of the finite element technique to mixed 



the investigation and established the convergence and completeness 

criteria for the mixed finite element method. On these grounds, the 

basic procedures in applying the finite element technique to the 

Reissner principle will be presented here. 

The approximate solution which the finite element method 

furnishes for the differential Equations 2.5 and 2.6 and boundary 

conditions 2.7 is determined by rendering the functional F in 

expression 2.8 stationary. 

e e 

Let T and u take on approximate functions within an 

element as denoted by the superscript e : 

m 
T = £ tr. <j) . ; e = 1,2, • • «,E 

k=1 k k 

and 

n 
u = £ u. cj>. ; e = 1,2, . . . / ( 2 . 2 0 ) 

k=1 k k 

Substitutions of these into functional F yields a function F in terms 

e e 

of the element degrees of freedom x ^ and u^ . For stationarity 

the derivatives 

i f - and 

K 9 u k 

are set to zero; resulting in m+n equations. The matrix of coefficients, 

or the stiffness matrix, is symmetric and indefinite. This process is 

demonstrated in Appendix A for specific coordinate functions. 
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To form the global structure, the element stiffness matrices 

are assembled in a manner identical to the displacement method in 

structural analysis as mentioned in the previous section. In the 

potential energy approach, the addition of columns during the assem

blage of element matrices corresponds to equating the nodal displace

ments of adjacent elements and the adding of rows corresponds to the 

summing of equilibrium equations. In the mixed approach, the same 

holds true for the rows and columns corresponding to the displacements 

variables. For the stress variables, the addition of columns 

corresponds to equating the nodal stresses of adjacent elements and 

the adding of rows corresponds to the summing of constitutive 

conditions. From another angle, the process simply transforms the 

element degrees of freedom to the structure degrees of freedom. 

Boundary conditions are applied as suitable constraint 

equations or consistent right-hand-side vector entries. This is 

explained further in the appendices. The indefiniteness of the 

matrix of coefficients poses no real difficulty in solving the equations 

by the method of Gaussian elimination with partial pivoting. 
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3. APPLICATION TO THE CONTACT PROBLEM 

3.1 Contact Conditions 

Most of the everyday physical systems have forces transmitted 

to them through a mechanism commonly known as "physical contact." 

For instance, consider a ladder leaning against a wall. The ladder is 

supported by the sum total of countless electromagnetic interactions 

among the atoms in the adjacent surfaces of the ladder, the ground and 

the wall. From an engineering point of view, a submicroscopic 

analysis of such interactions is unnecessarily complicated and it is 

sufficiently accurate to lump them into a single force, the compressive 

contact force. Confining the discussion to contact between solids, 

the contact forces are very short ranged, in fact, they are negligible 

when the objects are more than a few atom diameters apart. In macro

scopic investigations, the assumption that adjacent points on surfaces 

in contact occupy the same space is therefore reasonable. 

In studies of the contact phenomenon, the problem may 

be classified into one of three categories: unbonded contact, bonded 

contact and stick-slip contact. These are just empirical descriptions 

found to hold for some surfaces and are really manifestations of the 

same event. 

Contact between well lubricated metallic surfaces may be 

modelled as unbonded. In the contact regions, the shearing com

ponent of the contact force vanishes, leaving only the compressive 
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normal pressure-.': Itfollows then relative slip can occur without 

impediment. Static equilibrium and kinematic compatibility are 

maintained in the normal direction within the contact region. 

For perfectly rough surfaces coming into contact, bonded 

conditions may govern. When resistance to relative slip occurs, 

shearing stresses will develop on the interface. If these shearing 

stresses are sufficient to prevent any relative slip between adjacent 

points on the surfaces after they have come into contact, the 

conditions developed are those of a bonded contact. Within the 

contact region, equilibrium and compatibility are maintained: in all 

directions. In other words, continuum is established between the 

surfaces in contact and all governing differential equations for a 

continuum must likewise hold true across the contact interface. 

The stick-slip type of contact is the one mostly encountered 

in daily experiences. Consider a book resting on a table. If a 

small horizontal force is applied to the book, the book may remain 

stationary. As the force increases, the book remains at rest until 

a critical value is reached at which the book slips. From static 

equilibrium considerations, it can be said that the friction force 

rises with the applied force up to the critical value called the 

maximum static friction force. Once in motion, the friction force 

typically drops to a lower level and is maintained independent of 

the speed of the slip. For a given pair of surfaces, the magnitudes 

of these frictional stresses are proportional to the normal stresses 

pressing the two surfaces together and may be expressed in these 

relations: 
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T . ^ U - T 
nt H s nn 

s 

n t k ^ k nn 

| y k l ^ |us | £ 1 , typica l ly . . . .(3.1) 

where T ^ is the static frictional shear ing stress pr ior to slip 
s 

x x is the kinetic frictional shearinq stress du r i nq slip nt. a => r-
k 

y , y. are coulomb coefficients of static and kinetic fr ict ion 
S K 

x is the normal pressure between the surfaces in 
nn 

contact. 

In the normal direct ion within the contact reg ion, static 

equil ibrium and kinematic compatibil ity are maintained. In the tangen

tial d i rect ion, the absolute value of the shearing stress is limited to 

a fraction of the compressive normal stress with its d irect ion opposite 

to the direct ion of relative motion. 

In static systems, it is plausible that some region of the 

contact are adher ing while others are s l id ing. Th i s s t i ck - s l ip type 

of contact is character ized by contact fr ict ion stresses va ry ing from 

zero to the allowable maximum. 
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3.2 The Contact Model 

The problem of contact with Coulomb friction is in essence 

a boundary variable constraint problem. A manipulation of the 

Reissner principle on the contact boundary to suit this purpose is 

presented here. 

In the plane stress problem with zero body forces, the 

differential equations are: 

0 .0 9 
9x 0 9 

~9y u 
i •) 
0 

0 0 0 3 
9y 

9 
9x V 0 

9 
3x 0 1 

,E 
V 
E 0 T 

X X 
0 

0 9 
9y 

V 
E 

1 
E 0 T 

yy 
0 

'' 9 
9y 

9 
9x 0 0 2(1+v) 

E T 
xy 

0 

>. 

. . . .(3.2) 

The functional principle for Equation 3.2 with homogeneous 

boundary conditions can be written as: 

J = II [x U , +T V , +T ( U , + V , )~-iU(T2 + T 2 -.. 

^ xx x yy y xy y x 2E xx yy 

" 2 v T x x T y y + 2 ( 1 + V ) T x y ) ] d A . . . .(3.3) 
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Taking the first variation of the functional in Equation 3.3 

and integrating by parts the variations of derivatives yields: 

6 J = / / [6T (U, - J - (T - VT )) . xx x E xx yy 

+ 6T ( V , - -JL- ( T - V T )) yy y E yy xx 

x i 2(1+v) , + 6 T (U, + V , \ - T ) xy y x E xy ' 

* 6 U ( - T - T ) 
xx, x xy,y 

+ 6 v (-T -* T. .::)•] dA 
yy.y x y * x 

+ / s [ 6 u ( A T x x + m T x y ) + 6 v ( £ T x y + m T y y ) ] ds 

. . . .(3.4) 

where S is the total boundary of the domain containing both Sy and 

V 

On Sy where the displacements are prescribed, the variations 

6u and 6 v must be zero and therefore, the integral over Sy vanishes 

Hence the stresses on Sy are unknowns and emerge as part of the 

solution. On S T where the variations 6u and 6v are not zero, 

the vanishing of 6J requires the stresses to satisfy the assumed homo

geneous conditions as natural boundary conditions. 

In the contact problem, where the contact boundary shear 

stress at a point is bounded by a fraction of the compressive normal 
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stress at the same point, it is desirable to have stresses as forced 

boundary condit ions. Hence, over the contact boundary the conditions 

are neither exclus ively displacement nor stress but mixed. The d i s 

placements on the contact boundary will become natural boundary 

condit ions. 

An inspection of the variation of the functional 3.4 shows that 

an addition of a line integral 

- /g 5 T
n n

 u * D + 6 T

n t u * 1 + T

n n

5 u * - + T nt^ u " - d s " ' ' ^ 3 , 5 y 

c 

where S c is the part of boundary in contact will achieve this end . T h u s 

a functional F def ined as: 

J - fs p u .+ p v ds . . . .(3.6) 
c y 

will require displacements be natural boundary conditions over S c and 

forced elsewhere and stresses be forced boundary condit ions .over 

S and natural elsewhere, 
c 

The Reissner pr inc ip le with non-homogeneous boundary c o n 

dit ions; may now be written as: 

F = J " fS P x U + P v V d s 

c y 

fc up +vp d S - / _ [ (u -u)p + (v -v )p Ids* 
3 F T y FU y 

+ / S u ( P x ~ P j + v ( p - p ) d S + /«. up +vp d s • • .(3.7) 
3 C T y y ^ C U y 



22 

where Sp is that part of boundary not in contact. 

S C T U S c u " S C 

S F T U S F U S F 

S c [I S p =-. S . . . .(3.8) 

subscript T denotes that part of the boundary where surface traction 

is prescribed, and subscript U denotes that part of the boundary 

where surface displacements are prescribed. 

In forming the finite element matrix equations, the element 

stiffness matrix K is the matrix of coefficients formed from differentiat

ing the domain integral with respect to the variables u, v, T

x x » T yy ' 

and T

x v ' ' n the case of an element lying on the contact boundary, 

there is an additional contribution from the boundary .integral S .̂; 

which is just one side of the element. Along Sp, the surface 

tractions are consistent loads on appropriate displacement variables 

as indicated by the boundary integral over Spy. Let f . be the con-
i 

sistent load on the displacement variable u. then f is qiven by: 
i u. 

i 

f u. = TOT, [ / S p T " P x

 + v p y d s l 

where 
u = u.(J).(s) and 

r i 
• • • • (3 • 9) 

v = y.<|>. (?) . 
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On S p y , the displacements are constrained to suit the p r e 

scr ibed condit ions. S imilarly, along S^,, the displacements are c o n 

sistent loads on appropriate stress variables over S ^ y . Let f be 
T x y j 

the consistent load on the stress variable x then f is q iven 
xyj -r 3 

by : 
x y j 

f = — — [/_ u(£x> + mx ) + v ( £ x +mx )ds] 
H x Y i

 s c u x x x y x y y y 

where 

x = -T, 4>.(s) ; x = x x x , x y y , x x y . . . . .(3.1 

On S^-j., the stresses are constrained to suit the fr ict ion 

condit ion. If the element is oriented in a local normal-tangential co

ordinate system, then the constraint condition is simply sett ing the 

tangential shear stress to a fraction of the compressive normal s t ress . 

Fur ther demonstrations are g iven in the Appendices A and B. 

In the bonded, or adher ing type of contact where the 

tangential shear stress is less than the allowable fraction of the com

press ive normal s t ress , relative slip does not occur between the 

surfaces of contact. Continuum is establ ished across the interface. 

In the case where the body is against a r ig id sur face, the normal 

and tangential displacements within the contact region are both zero. 

In the finite element model, this results in zero consistent loads on 

the stress variables on the contact boundary . 

In the s l id ing type of contact where relative slip does 

occur , the tangential shear stress is constrained to the compressive 
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normal stress multiplied by Coulomb's coefficient of friction y. When 

y is zero, the contact is unbonded. It is convenient to work in local 

normal-tangential coordinates so that both displacements and stresses 

are defined with respect to the boundary normal. Continuum is 

maintained across the region of contact in the normal direction. The 

tangential displacements of the nodes slipping relative to each other 

enter the matrix equation as consistent loads on the tangential stress 

variables. The need for an iterative procedure is obvious as the 

tangential displacements in the equation formulation should agree with 

those in solution. An iterative procedure where the displacements in 

the solution of the previous iteration are used to calculate the con

sistent loads in the present iteration is employed. It will be observed 

that convergence with such iterations is rapid. After the friction con

straint is applied on the stress variables of the nodes in contact as 

described in Appendix B, the system of equations is solved 

iteratively. Schematically, the iterative procedure may be put into 

this form: 

[K] [ 6 ^ = [f,] 

DK] [ 5 n ] = [ f n ] . . . .(3.11) 

where 

[f ] = function of [6 ,] . n n-1 

The stopping criterion is the convergence of [<$n] or [6 n ] " " " [ f ] within 

a tolerable limit. 



25 

In the stick-slip type of contact, an iterative scheme is 

employed to determine the unknown adhering and sliding regions. The 

designated contact nodes in the finite element representation are assumed 

to be adhering nodes in the first solution of the matrix equation. The 

tangential stresses at these nodes are then compared with the normal 

stresses to check against the assumption of adhesion. If at any of 

these nodes the tangential shear stress exceeds u times the compressive 

normal stress, the friction condition is applied at that node constrain

ing the stress variables. These are nodes with the 'sliding' condition. 

The re-formulated equations are solved iteratively for the displacements 

in the sliding contact region. When convergence is within tolerance, 

the conditions at the contact nodes are examined for comparison with 

the assumptions made in the previous solution step. At the nodes 

assumed to be adhering, the stresses are compared with the Coulomb 

friction condition as described above. At the nodes assumed to be 

sliding, the tangential relative slip should be in the opposite 

direction to the assumed tangential shear stress. If not, the node 

is released from the friction constraint and re-defined to be an 

adhering node. A revision in the contact condition of any contact 

node prompts the next step in the iterative scheme. A solution to the 

problem is obtained when the contact conditions in the solution coin

cide with those in the previous assumption. 

The accuracy in determining the locations of points at 

which adhering conditions change to sliding conditions is governed by 

the size of the finite element grid along the boundary of contact. 
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Suppose that on the contact boundary, there are two consecutive nodes 

at one of which the contact condition is adhering and at the other slid

ing. Since the stick-slip behaviour is a discrete change in the boundary 

condition, and the enforcement of contact conditions is performed at 

the nodes, it can only be said that in the finite element model such a 

stick-slip changeover point lies between these two nodes. An examin

ation of the stresses and the displacements between the two nodes 

shows contradictory conditions. Consider body R resting against a 

rigid boundary C. Also consider points A and B of R which lie on 

the contact boundary and that the variations in the stresses and dis

placements are" linear between them as shown in Figure 3.1. 

Figure 3.1 Adjacent adhering and sliding nodes 
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If the contact condition at A is adhering and at B is sliding then 

IT IT I A < ii,-1' IT IT L = u 1 xy yy 'A K ' 1 xy yy 'B H 

and 

u A = 0 , | U b | > 0 . . . . .(3.12) 

It follows then | T

X y / Tyy I < ^ a n c ' ! u I = u a * a n y point between A 

and B. Thus while the stresses indicate adhering behaviour, the dis

placements do not. The region over which this anomaly occurs may 

be reduced only by refining the finite element grid along the contact 

boundary. 

3. 3 Rigid Body Modes 

The following three independent rigid body modes will reduce 

the functional J in 3.3 denoting strain energy to zero: 

(iii) u = -cy, v - ex; 

T 
X X 

= o. T 
yy 

= o, T 
xy 

= 0 

: T 
X X 

= o. T 
yy 

= o. T 
xy 

= 0 

T 
X X 

= o. T 
yy 

= o. T 
xy 

= 0 
(3.14) 

The finite element approximations should exhibit the rigid 

body modes of 3.14. By specifying kinematic boundary conditions, 

the rigid body modes may be removed. A detailed eigenvalue analysis 

of stiffness matrices of mixed elements may be found in Mirza [16]. 
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For plane triangular mixed elements, the eigenvalue distribution finds 

three positive, three zero and three negative. The eigenvectors 

corresponding to the three zero eigenvalues are linear combinations of the 

rigid body modes in conditions 3.14. 

For a contact element, one side of which has the added line 

integral L; /g p x u + p vdS , the compliance with the zero strain energy 

rigid body modes is not affected. An eigenvalue test on the stiffness 

matrix of such an element, however, will yield no zero eigenvalues. 

This follows directly from the condition that prescribed displacements 

on are consistent loads on appropriate stress variables: 

Consider the eigenvalue equation (K - XI) 6 = 0 

for zero eigenvalues, if any _K 6 = 0 . . . . .(3.15) 

Since any non-zero displacement pattern 6 will cause consistent 

loads (entries in the right hand side vector), there cannot exist any 

zero eigenvalues. 

The reduced stiffness matrix of an element having constrained 

stress variables at the nodes ending line integral L in the manner 

described in Appendix B also includes rigid body modes with zero 

strain energy. It is interesting to note, however, that it possesses 

a zero eigenvalue, that is for particular rigid body modes, the required 

consistent load vectors are zero. This is a direct result of symmetriz

ing the constraint equations which leads also to a reduction in the right 

hand side vector. For example, consider an element with line integral L 
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between nodes 2 and 3 and that the tangential direction is defined by 

side 2-3. Suppose that at both nodes 2 and 3, the tangential shear 

stress variables are constrained to the normal stress variable multiplied 

by y. For the particular rigid body translation when the normal dis

placement is - y times the tangential displacements, the consistent load 

on the normal stress variables at nodes 2 and 3 is - y times that on the 

tangential stress variables. When the constraint is applied to the 

system of equations, the right hand side vector reduces to zero which 

is the zero eigenvalue equation. For the element shown in Figure A. 2 

the eigenvectors corresponding to the zero eigenvalues when y is 0.2 

and 0.3 at both nodes 2 and 3 are respectively: 

y = 0. 2 y = 0.3 

" 0.566139 " " -0. 553001 

v 1 -0. 113228 -0.165900 

T 
xx 1 

0 0 

T 
yy. 

0 0 

^ 1 
0 0 

u 2 0.566139 -0.553001 

V 2 -0. 113228 -0. 165900 

T = 0 
1 

0 

T 
y y 2 

0 0 

ET ) 
x y 2 

u 3 0.566139 -0.553001 

v 3 -0.1 1 3228 -0.165900 

T 
x x 3 

0 0 

T 0 0 

(T ) 
x y 3 

. . . .(3.16) 
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To eliminate these rigid body modes, kinematic boundary con

ditions are applied through consistent loads on the stress variables. 

While the kinematic stress variables present no real difficulty 

in incorporating prescribed displacement condition, it does warrant an 

iterative procedure in solving the matrix equation when the natural dis

placement variables are sought in the solution. As mentioned pre

viously, this follows from the need for reconciliation of the consistent 

loads on the stress variables and the displacements in the solution. 

3. H Progressive Contact 

In the previous sections, the types of contact are described 

with the assumption that the region of contact is known. The pre

determined contact region could be a stage of contact of a more general 

contact phenomenon, progressive contact. 

Consider a rubber ball squeezed between two boards. If the 

two boards are to approach each other, the contact regions formed 

between the ball and the boards will become larger. Formally, pro

gressive contact is the contact phenomenon where the contact region 

is a function of the relative approach of two bodies in consideration, 

or a function of the forces pressing them against each other. 

In the finite element method, the portions of the boundaries 

expected to come into contact are designated as the contact boundary 

on which lie designated contact nodes. In the case of two bodies 

coming into contact, these nodes on opposite sides of the contact inter

face constitute contact nodepairs. Continuous progressive contact 
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becomes discretized successive closing or opening the gaps between 

the nodes of contact nodepairs and changing the type of contact at 

nodes already in contact. The problem reduces to the determination 

of the load increments required to bring the two bodies from one con

tact stage to the next. 

Suppose that at the end of the previous load vector incre
ment A R , the contact condition at the ith contact nodepair is C 1 

m ^ m 

denoting open or closed and A* denoting adheringv or sliding conditions 

at the mth stage and that the cumulative load vector is R and the 3 m 

cumulative solution vector is r . The problem, then, is to establish 

an incremental load A R , that would cause a chanqe in the contact 
m+1 3 

condition of one and only one nodepair. 

Assuming a test load increment A Q, the system with contact 

conditions C 1 , A 1 is solved to obtain a test increment solution vector m m 

A q. Assuming linear elastic behaviour, the test load increment AQ 

must differ from the required AR , by the same factor k , goveminq 
M m+1 7 m+1 a a 

the Aq to Ar , ratio. Suppose k1 , is the multiplicative factor for M m+1 ^ K m+1 ^ 

AQ to invoke a change in the contact condition at the ith nodepair, 

then k , , the multiplicative factor for AQ to invoke a change in the m+1 ^ 3 

contact condition of the system, must be the smallest of the positive 

k1 , of all nodepairs. m+1 r 

The method of evaluation of the k1 , depends on the contact 
m+1 r 

conditions C 1 , A 1 . For C 1 open, k1 , is the factor required to m m m ^ m+1 ^ 

close the distance dj^ separating the ith nodepair. The calculation of 

.i d m is given in Appendix C. Then k m + 1 is given by 
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d" (r ) 
:m m 

m+1 d 1 (r ) - d ' ( r +Aq) m m m M ' 

(3.17) 

where d (r m +Aq) is the distance between the nodes of the ith nodepair 

evaluated after the test increment solution vector Aq. 

For C* closed, k1 is the factor required to reduce the m m+i ^ 

normal stress at the ith node to zero. Then k' , is qiven by 
m+1 a 7 

m+1 

T (r ) nn m m  

AT' (r + Aq) nn m 1 

(3.18) 

where the subscript n denotes the direction normal to the contact 

boundary. 

For C 1 closed and A 1 adhering, k ! , is the factor required m m a m+1 M 

to satisfy Coulomb's friction condition, T 

given by 

nt nn 
Then k , is m+1 

m+1 

U T (r ) + T . (r ) nn m nt m m m 

tiATnn(Aq) +AT n t (Aq) 

for 

and 

T . (r ) A T „ ( A q ) > T (r ) A T .(Aq) nt m nn 1 nn m nt m m 

m+1 

T . (r ) - y T (r ) nt m nn m m m 

[ A T n t ( A q ) - y A T n n ( A q ) j 
nn 

for 
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Tnn ( r m ) A T n t ( A ^ > T n t ( r m ' A W A ^ ( 3 ' 1 9 ) 

m 

For C m closed and A m sliding, k m + 1 is the factor required to 

reduce the tangential slip to zero. Then k m + 1 is given by 

u! (r ) 
. 1 tm m 

m+1 " -. . . . . .(3.20) 
A u ' ( r m + Aq) 

The derivations of the various k1 's are qiven in Appendix C. 
m+1 a ^ 

Having determined the multiplicative factor k , , hence the a ^ m+V 

increment load required to bring the progressive contact to the (m+1)th 

stage, the contact conditions over the contact region are updated. At 

the ith nodepair where the open or closed condition is to change, the 

appropriate boundary conditions are applied. If the nodes are to leave 

the contact region, that is the contact condition of the nodepair has 

become open, then all displacements and stresses are set to be in

dependent variables. If the nodepair has just come into contact, 

the nodes are first assumed to be adhering. That is, continuum is 

established between the nodes. In the case of contact against a rigid 

face, both the normal and tangential displacements relative to the 

rigid face are constrained to zero. Nodepairs coming into adhering 

conditions from sliding conditions and vice versa will also have their 

boundary conditions accordingly constrained as discussed earlier. 

To account for the geometrically nonlinear nature of the 

problem, the coordinates of the nodes are updated at each contact 
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stage in addition to the rectification of boundary conditions. The nodes 

in a nodepair that are in sliding contact are forced to occupy the same 

point in space by averaging their coordinates at the end of each incre

ment. The inaccuracy in determining the cumulative solution vector 

involved in this process depends firstly on the relative magnitudes 

between the incremental displacements and the size of the boundary 

elements. If the ratio of the incremental displacement to the length 

of a contact element is small, then taking the Ar to the new nodal 

coordinates is a reasonable approximation. Secondly, the coordinates 

of the nodepair not yet in contact should be such that the effect of 

coordinate averaging will be small when the nodes come into contact. 

A judicial choice of the initial nodepair coordinates should serve to 

minimize the amount of mis-match when the nodes come into contact. 

A solution to the progressive contact problem, is obtained 

when the sum of the load increments reaches the given load level. 
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4. COMPUTER PROGRAM 

A computer program is written in Fortran to solve two-

dimensional contact problems where the contact region is known. The 

mechanics of the program is illustrated in the flowchart of Figure 4.1 

followed by brief descriptions of the program components. 

The program is essentially a standard linear elastic finite 

element program with the added iteration loops LOAD - DGBAND and 

KNOCK - MAKE. 

In the LOAD - DGBAND loop, the matrix decomposition is 

performed once only. The decomposed matrix is retained for subsequent 

iterations for each of which a different consistent load vector is 

generated by the subroutine LOAD. The computing time saved is 

sizable. The criterion for convergence is that the consistent loads 

on appropriate stress variables ought to agree within a tolerable limit 

with the displacements in the solution. A good indicator of such 

convergence is the energy stored in the body at each iteration 

step. 

In the KNOCK - MAKE loop, the boundary conditions in the 

contact region are revised according to the agreement between the 

conditions on the contact boundary in the solution and the assumed 

ones. This may lead to new constraint equations on or removal of 

old ones from the previous matrix equation. The global stiffness 

matrix assembled originally is stored without any Coulomb friction : 
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friction constraints along the contact boundary. Any new set of stress 

constraints required is applied on this stiffness matrix and the awkward 

programming of removal of constraints is avoided. 

In the problems solved, the coefficient of friction u is 

taken as a constant. For many combinations of engineering materials, 

the difference between static and kinetic coefficients of friction is 

small. Furthermore, in static problems where displacements are small 

and kinetic effects are negligible, it is reasonable to use the static co

efficient of friction in the constraint model. 

Another computer program is coded in Fortran to solve two-

dimensional progressive contact problems. The flowchart in Figure 4.2 

highlighting the program is followed by brief descriptions of some 

program components. Note that several subroutines appear also in 

Figure 4.1. 
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Descriptions of subroutines in Figure 4.1 

LAYOUT 

BANDWH 

CALER 

LININT 

BUILD 

MAKE 

DGBAND 

LOAD 

EXPAND 

TOUCH 

COFRIC 

KNOCK 

Geometric, material and loading data input 

Calculates bandwidth of global stiffness matrix 

Calculates the stiffness matrix of each element 

Adds to the stiffness matrix of each contact element 
the contribution from the line integral L 

Assembles the global stiffness matrix in a two-
dimensional array and discards the rows and 
columns corresponding to homogeneous displace
ment boundary conditions 

Re-assembles the global stiffness matrix from a two-
dimensional array form to a one-dimensional triple 
bandwidth form 

Solves symmetric noh:-positive definite matrices by 
Gaussian elimination using partial pivoting 

Calculates consistent loads on the stress variables 
using displacements in the solution of the previous 
iteration step 

Inserts into the solution the previously removed 
homogeneous boundary conditions 

Examines the contact conditions against those assumed 
and revises them for the next loop if necessary 

Multiplies the rows and columns corresponding to the 
T variables on sliding nodes by y and adds them 
to^the rows and columns corresponding to the x 
variables at the same nodes v v 

Discards the rows and columns corresponding to 
the x variables on slidinq nodes, xy 3 



Figure 4.1 Flowchart for computer program to solve contact problems 
with a fixed contact region 



Desc r i p t i on of Sub rou t i ne s in F i gu re 4.2 

SET 

PDIST 

PDIST2 

KN 

CUMU 

Sets cumulat ive loads, cumulat i ve s t res ses to zero 

Ca lcu lates the d i s tance between the nodes of contact 
nodepa i r s not yet in contact 

Ca lcu lates the new d i s tance between the nodes of 
contact nodepa i r s not yet in contact a f te r the 
app l i cat ion of the load increment AQ 

Ca lcu lates the mul t ip l i ca t i ve factor k n for the test 
load increment to take the system from one state of 
contact to the nex t 

Ca lcu lates the cumulat ive load v e c t o r , cumulat ive 
s t res ses and updates the coord inates of the nodes 
of the model to account for the geometric n o n -
l i nea r i t y 
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START 
STOP 

SET 

LAYOUT 

B A N D W H 

G A L E R 

L IN INT 

S E T U P 

EXPAND 

C U M U 

K N 

PDIST2 

DGBAND 

PD IST 

Figure 4.2 Flowchart for computer program to solve progressive 
contact problem 
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5. SAMPLE PROBLEMS 

Results from investigations of several contact problems are 

presented here. The method employed is the mixed finite method 

described previously in Section 3.2. The mixed element used 

herein has linear interpolating functions for both its displacement and 

stress variables. The structure in each problem is modelled by 

finite element grids. Elements not having one of their sides forming 

part of the contact region follow the original formulation of Resissner's 

principle. Those lying on the contact region have added contribution 

to their stiffness matrices arising from the boundary integral along 

the contact boundary. Some results obtained from investigations 

using the potential energy formulation are also presented for 

comparison. 

5.1 Sliding Block 

Consider the problem setup in Figure 5.1. 



H2 
y 

/ -
/ 

/ 

k 
-AAA-

- W -

Q 

/ / / ? 

<— I -
"7 7" 

h 

E = 21000.ksi 
v = 0.3 

k = 200. ksi/ in. 

Figure 5.1 A sliding contact problem 

The unit thickness block has a Young's modulus of elasticity 

E and a Poisson's expansion factor v. The coefficient of friction 

between the block and the rigid base is y . The elastic foundation 

attached to the left side has a continuum spring constant k. Suppose 

y is sufficiently small such that when the uniform loads Q and P are 

applied, the frictional stress developed on the bottom face is not 

enough to prevent displacement. The problem is then a contact 

problem of the sliding type. Three different examples of this problem 

are considered in the following. 



43 

Problem A 

The sliding contact problem is first investigated with Coulomb's 

coefficient of friction set to zero, that is, a frictionless compressive 

contact problem. This problem is very simple but was included 

essentially to debug the program. 

The data chosen are: 

y = 0 . 0 

Q = 40.0 ksi 

P = 0.0 ksi 

h = 1.0 in 

I = 1.0 in. . . . . ( 5 . 1 ) 

Because the exact solution is expressable by the linear inter

polating functions used within each element, the simplest 1 x 1 finite 

element grid shown in Figure 5.2 is used. The uniform load Q is 

lumped at nodes A and C as consistent loads. Similarly, the elastic 

spring foundation becomes lumped springs at nodes A and B. 

For this problem, the exact solution is obtained with no 

iteration. Consider the equation of constraint, T = y x , on the 
M ' xy K y y ' 

stress variables lying in the contact region. When y is zero, the 

x x y variables are zero and are eliminated altogether in the process of 

static condensation along with the consistent load formed from the u 



y 

\ V\A 

10Qk/ i n ^ x y = ^ y y 

Figure 5.2- The 1x1 mixed finite element grid for Problem A 

displacements at the same nodes. The results which are exact are 

given in Table 5.1. A , B , C , and D refer to the corners on the 

finite element model in Figure 5.2. 

Table 5.1 

Numerical Results for Problem A: A Frictionless Contact Problem 

A B C D 

u (in.) 0.0 0.0 1.904761 9 x 1 0 _ 3 1. 9047619x10~ 3 

v (in.) -5. 71 42857x1O" 4 0. 0 - 5 . 7 1 4 2 8 5 7 X 1 0 " 4 0.0 

0. 0 0.0 0.0 0. 0 

T y y ( k s i ) 
-40.0 -40. 0 -40.0 -40.0 

x x y (ksi) 0. 0 0. 0 0. 0 0. 0 
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Problem B 

The following problem has a block displacing relative to the 

rigid base. It is not sliding against it in the sense that no compressive 

stresses exist to keep the block in compressive contact with the base. 

The purpose of this exercise is to exemplify the convergence in the 

iterative process to determine the displacements along the contact 

boundary. 

The data chosen are: 

y = 0 . 2 

Q = 0.0 ksi 

P = 40.0 ksi 

h = 1.0 in 

1 = 1.0 in . . . . .(5.2) 

Again, because the exact solution can be expressed by the 

assumed functions in the finite element, the 1x1 grid is used in the 

investigation as shown in Figure 5.3. 

The results to the sliding problem B are tabulated in Table 5.2. 

The subscripts A, B, and D refer to the corners on the finite element 

model in Fiqure 5.3. The columns of values for the f ' s are the COn-
lS T 

sistent loads on the particular stress variable calculated from the 

appropriate displacements from the previous iteration. For instance. 
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\ W 
A 

100.k/in 

A w 
/I A A 
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10O.k/in I x y z P l y y 
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Figure 5.3 The 1 x 1 mixed finite element grid for Problem B 

f B in the 3rd iteration is evaluated from /.-.^u ds where u is the 
x BD xy 

linear interpolation of u^ and u^ in the second iteration. Note also 

that f on side BD has a zero contribution from the v displacement 
Tyy 

because it is a prescribed zero displacement but has a y times f 
Txy 

contribution resulting from the static condensation process. 

It is observed that it takes only a few iterations to obtain a 

stationary approximation of the solution vector. Even with the un

realistic initialization of the f^'s to zero, the rate of convergence is 

rapid. 



TABLE 5.2 (a) 

Numerical Results for Problem B: A Sliding Contact Problem Without Normal Stress 

Iter. No. Strain Energy ( k - i n 
u.(in.) v B ( i n . ) T (ksi.) 

x x c 

x (ksi.) 
V V B 

x (ksi.) 
x y D 

0 

1 

2 

3 

4 

4.038091703588185 

4.038095233362261 

4.038095238095234 

4.038095238095234 

4.038095238095237 

-0.20018556 

-0.20000012 

-0.20000000 

-0.20000000 

-0.20000000 

^0.03996418 

{0.00003709 

0.00000002 

0.00000000 

0.00000000 

-40.039067 

-40.000026 

-40.000000 

-40.000000 

-40.000000 

0.11133697 

0.00007457 

0.00000005 

0.00000000 

0.00000000 

0.02226739 

.0.00001291 

0.00000001 

0.00000000 

0.00000000 

Exact 4.038095238095238 -0.20000000 0.00000000 -40.000000 0.00000000 0.00000000 

TABLE 5.2 (b) 

Iter. No. 
u B (in.) u Q (in.) 

f (kip.) 
x y B 

f (kip.) 
T 

f (kip.) f (kip.) 

0 -0.19981444 -0.20171792 0.0 0.0 'o .o 0.0 

1 -0.19999988 -0.20190464 -0.100224465 -0.100541715 -0.020044893 -0.020108343 

2 -0.20000000 -0.20190476 -0.100317460 -0.100634860 -0.020063480 -0.020126972 

3 -0.20000000 -0.20190476 -0.100634920 -0.100634920 -0.020063492 -0.020126984 

4 -0.20000000 -0.20190476 -0.100317460 -0.100634920 -0.020063492 -0.020126984 

Exact -0.20000000 -0.20190476 -0.100317460 -0 . 100634920 -0.020063492 -0.02012984 
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Problem C 

Combining Problems A and B, a general sliding contact 

problem is generated. The data chosen for this problem are: 

u = 0 . 2 

Q = 40.0 ksi. 

P = 40.0 ksi. 

h = 1.0 in. 

I = 1.0 in. . . . .(5.3) 

This problem has no simple solution and therefore it is solved 

with a number of finite element grid of progressive refinement as shown 

in Figure 5. 4. 

For each finite element grid, the solution is obtained iteratively. 

The convergence with iterations is illustrated in Table 5.3 where the 

numerical results obtained for the strain energy in the block from each 

finite element grid are tabulated. Again, a rapid rate of convergence 

with iteration is observed. 

To show the convergence of strain energy with finite element 

grid refinement the values of strain energy from the fifth iteration are 

plotted against the number of elements per unit height in Figure 5.6. 

The somewhat oscillatory converging manner in the grid refinement 

process is characteristic of results obtained with the mixed method as 



}—w 20.k 

} W 
1 0 0 . k / i n X x y ^ I y y 

10.k 20.k 1Qk 

1 W-
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20. k 

V - 1 0 . k 

« * - 2 0 . k 
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1 X 1 

2 X 2 

A X 4 

l \ IM\ l \ l \ l\KK 

8 X 8 

Figure 5.4 The mixed finite element grids for Problem C 
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opposed to the monotonic convergence associated with the boundedness 

of potential energy formulations. The normal and shear stresses on 

the bottom face of the block are shown in the Figure 5. 7 . At the 

trailing end of the block where there is a stress reduction and near 

the leading end where there is a stress concentration, the finer grids 

reveal the stress gradients more dramatically. 

Although this problem has no exact solution, a rough compar

ison can be obtained by considering the limiting case of a rigid block. 

Consider the free body diagram of the rigid block in Figure 5.5. 

-± ± ±e-

spr ing 
react ion 

R 

Q 

t x y z JJlyy 

tyy = A-

I y y = B 

Figure 5.5 Free body diagram of the rigid block problem 
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Since there are only three equilibrium equations, there can 

only be a linear approximation for the unknown normal stress distri

bution on the bottom face. For a unit block, the unknowns are 

given by 

R = Q - y P 

A = P( 1 + 3 * F ) 

B = P( 1 - 3y ) . . . . . ( 5 . 4 ) 

Included in Figure 5.7 is a plot of this stress distribution (shown dashed) 

for the purpose of comparison. In the finite element model this block 

is relatively rigid in comparison to the spring, hence the 1x1 grid 

solutions is in good agreement with the rigid block solution. 

Although the exact continuum solution to the problem is unknown, 

the boundary conditions that must be satisfied by such a solution are 

definite. For instance, along the bottom edge BD, the vertical dis

placement v should be zero. However, in the present method, this 

condition is a natural boundary condition and therefore is only achieved 

in the limit of zero element size. The actual numerical convergence of 

the displacements at B and D are shown in Table 5.4. Also shown for 

comparison are the vertical displacements at A and C. It is seen that 

V g and V p are about 8 percent of v^ and v^,. The deformed shape of 

the block as obtained from the 8x8 grid is shown in Figure 5.8. 
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y 

N u m b e r of e l e m e n t s H i gh 

Figure 5.6 Strain energy versus grid size for Problem C 
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x ( i n ) 

Figure 5.7 Stress d istr ibut ions on the contact face for Problem C 



TABLE 5.3 

Numerical Results for Problem C: A Sliding Contact Problem with Normal Stress 

Iter.No. 

Strain Energy (k-in.) 

Iter.No. ' 1x1 2x2 4x4 8x8 

0 

1 

2 

3 

4 

0.52467207 

0.052482976 

0.052482998 

0.052483002 

0.052483003 

0.012431459 

0. 016296002 

0. 016318660 

0. 016318819 

0.016318826 

0.012253379 

0.016706516 

0.016749069 

0.016749315 

0.016749316 

0.011973734 

0.016672901 

0.016715101 

0.016715100 

0.016715100 

TABLE 5.4 

Numerical Results for Problem C: Convergence of Displacements with Grid Refinement 

GRID v B ( 1 0 4 in.) v D ( 1 0 V l . ) v A ( 1 0 4 in.) v c ( 1 0 4 in.) 

1x1 

2x2 

4x4 

8x8 

- 4 . 0388415 

-2.4680971 

-2 .2220836 

-1.9649921 

-5 .1975942 

-1 .1409362 

-0 .9702678 

-0 .5083620 

-19 .686294 

-17.795228 

-17 .754885 

-17.963476 

-8 .3809920 

-9 .2390954 

-9.1502081 

- 9 .1980224 

EXACT + 0.0 0.0 - -

4= 



Figure 5.8 The deformed block in Problem C 
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5. 2 Stick-Slip Problem 

Consider the problem set up in Figure 5.9. 

y 

Q 

* y *V >y y y y 

E , ^ 

I X y z L l t y y 

Tin. 

~7 7—7—7—7—7—7—7—/ J> ' / 
< 2.in. » 

Q - 20. ks i 

E = 21000. k s i 

V = 0-3 

Figure 5.9 A stick-slip contact problem 

The unit thickness block under the uniform load Q will expand 

in the x-direction as a result of Poisson's effect. Depending on 

Coulomb's coefficient of friction, frictional stresses will develop on the 

bottom of the block. The stresses may be sufficient to prevent 

slippage in some parts of the contact region (adhering portion), while 

at other parts slippage does occur (sliding portion). This problem 

then as different from the sliding problem, has unknown boundary 

conditions in the contact region. 



57 

For comparison, the problem is investigated by both the 

mixed finite element model and a potential energy formulated finite 

element, namely the quadratic strain triangular element (QST). The 

method of iteration for the mixed element described in Section 3.2 is 

used to determine the points at which adhering conditions change to 

sliding conditions and the displacement and stress patterns thereof. 

The method for the QST is the one used in previous works 

for potential energy formulated finite element models. In this pro

cedure, frictional stress is applied as consistent loads on the tangential 

displacement variables. The stresses are a fraction, as the Coulomb 

friction condition requires, of the normal stresses extracted from the 

solution of the previous iteration. Schematically, the iterative pro

cedure may be put into the same form as Equations 3.11: 

[K] [ 6 , ] = [f,] 

[K] [ 5 n ] = [ f n ] • • . .(5.5) 

where [f ] = function of [ 6 , ] . 1 n n-1 

When [ 6 n ] T [ f n ] has converged within a tolerable limit, the iteration stops. 

Since the displacement variables are associated with the forced boundary 

conditions, an adhering condition at a node is modelled by an elimination 

of the normal and tangential displacement variables and sliding condition 

is modelled by the elimination of the normal displacement variable while 

retaining the tangential displacement variable as a degree of freedom. 



58 

Noting the line of symmetry in the problem, only half the block 

needs to be modelled. The grids 1x1, 2x2, 3x3, 4x4, and 6x6 for half 

the block are used for both the mixed element and the QST investigations. 

The 1x1 grids are shown in Figure 5.10. 

For ease of comparison, the grids 1x1, 2x2, 3x3, 4x4, and 6x6, 

are used for both the QST and the mixed element investigations (for one 

half of the problem). 

The iterative approximations of contact conditions on the 

bottom face of the block with the 6x6 finite element grid for u =0.10 

are tabulated in Table 5.5. The points A, B, C, D, E, F, and C refer 

to the consecutive grid points lying on the contact boundary with point A 

at the centre line of the block and point G at the outer edge of the 

block. From the third iteration on, as in the case of the mixed element 

and fourth in the case of the QST, adjacent adhering and sliding nodes 

are found to be nodes B and C. In general it is observed that it takes 

fewer iteration for the mixed element than the QST to reach the same 

results using the same grid.,. Also tabulated-is the \i = 0.15 case. 

The adhering-sliding changeover point is found to be a 

function of Coulomb's coefficient of friction \i. The adhering and slid

ing regions approximated with different finite element grids are tabulated 

in Table 5.6. The results show good agreement between the mixed 

element and the QST. 

In Figures 5.11, the strain energy in the block is plotted 

against the grid size at different values of the two methods. In 

the QST plot, the adhering curve showed a monotonic convergence from 



>x ,u 

I 

MIXED MODEL 

1 a d h e r i n g : u = 0 , 

s l i d i n g : X x y
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t v= 0 
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I a d h e r i n g : u = 0 , 
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The QST and mixed finite element grids for the 
stick-slip problem 



TABLE 5.5 

Boundary Condition Results for Stick-Slip Contact: Comparison between QST and 
Mixed Element in the Determination of the Adhering-Sliding Changeover 

Point with Iteration Convergence 

QST MIXED 

Iter. y = 0.10 

No. a b c d e f g a b c d; e f g 

0 A A A A A A A A A A A A A A 
1 A A A A S S s A A A S S S S 
2 A A A S S S s A A S S S S S 
3 A A S S S S s A A S S S S S 
4 A A S S S S s 

Iter. y = 0.15 

No. a b c d e f g a b c d e f g 

0 A A A A A A A A A A A A A A 
1 A A A A A S s A A A A A S A 
2 A A A A S S s A A A A S S s 
3 A A A A S S Sv A A A A S S s 



TABLE 5.6 

Boundary Condition Results for Stick-Slip Contact:CConfparisoh between QST and 
Mixed Element in the Determination of the Adhering-Sliding Changeover 

Point with Iteration Convergence 

QST MIXED 
\ x 

u N. 
0 .1 .2 . 3 .4. :. 5 .6 .7. .8 . 9 1.0 • 0 . 1 .2 . 3 .4 .5 .6 .7 • 8 .9 1.0 

. 05 A s s A S s 
/10 A s s A S s 2 

X 

.15 A s s A A s 2 
* 20 A A s 

.05 A S S s A S S s 

.10 A S S s A S S s 3 
X 

.15 A A S s A A S s 3 

.20 A A A s 

.05 A S s S : s A S S S s 

.10 A S s S s A A s s s 4 
X 

.15 A A s s s A A A s :S 4 

.20 A A A A s A A A A s 

.05 A S '• S S S s s A s S S s S s 

.10 A A A A S s s A A A A S ' S s 6 
x 

.15 A A A A S s s A A A A S S s 6 
.20 A ' A A A A A s A A A A A S A 
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Figure 5.11 

1 2 3 4 5 6 

Number of E l e m e n t s H igh 

Strain energy versus grid size for the finite element model 
for the stick-slip problem: (a) mixed element 
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Figure 5.11 Strain energy versus grid size for the finite element 
model for the stick-slip problem: (b) QST 
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below as predicted by the potential energy theorem. When frictional 

sliding is allowed to occur, such a behaviour is not observed. In the 

mixed element plot, apparent convergence from above is observed for 

all levels of y . A reasonable agreement is found between the two 

sets of results. 

The stress distributions on the contact face at different 

values of y obtained from the 6x6 grid analyses with both the OST and 

the mixed method are plotted in Figures 5.12.. Also shown in 

Figure 5.13 is a plot of a x x x distribution on the center line of the 

block at different values of y . Again, they indicate good agreement 

between the two methods. 

Again, as it is with the sliding problem, the exact continuum 

solution to the problem is unknown, but the boundary conditions that 

must be satisfied by such a solution are definite. The numerical con

vergence of the displacements associated with natural boundary conditions 

at B and D are shown in Table 5.7 for y = 0.10. It is seen that v D 

and are, respectively, about 3 and 4 percent of v ^ and v^,. The 

convergence of the stresses x and x to the stress free condition 
xx xy 

at C and that of x x y to zero at A and B by argument of symmetry are 

shown in Table 5.8 also for y = 0.10. They are about 2 percent of 

x which are also tabulated for the purpose of comparison. The x x B 

deformed shape of the block as obtained from the 6x6 grid is shown 

in Figure 5. 14. 
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Stress d istr ibut ions on the contact face for the finite 
element models for the st ick-s l ip problem: (a) shear 
stress 
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x ( i n ) 

Figure 5.12 Stress distributions on the contact face for the finite 
element models for the stick-slip problem: (b) shear 
stress 



x ( i n ) 
Figure 5.12 Stress distributions on the contact face for the finite 

element models for the stick-slip problem: (c) normal 
stress 
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Figure 5.12 Stress distributions on the contact face for the finite 
element models for the stick-slip problem: (d) normal 
stress 
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Figure 5.13 

M I X E D 

y 

40. ksi 

1.0£>- >t- i ^ f 

o-o p 
^xy= j j t y y 

"7~7—7—7—7 

0.0 1.0 

The T x x distribution on the centre line of the block for 
the stick-slip problem: (a) mixed element 



Figure 5.13 The T x x distribution on the centre line of the block for 
the stick-slip problem: (b) QST 



TABLE 5.7 

Numerical Results for Stick-Slip Contact: Convergence of 
Displacements with Grid Refinement 

GRID 
v B ( 1 0 4 in.) v D ( 1 0 4 in.) v A ( 1 0 4 in.) v c ( 1 0 4 in.) 

2x2 - 0 . 026837 -1 .010900 -18.219505 -19 .626840 

3x3 - 0 . 0 3 9 8 2 7 - 0 . 837304 - 1 8 . 291 595 -19.640766 

4x4 0.114818 -0 .076521 . -18 .255615 -19.641686 

6x6 0.049041 -0 .672582 -18 .279924 -19 .605969 

EXACT 0.0 0.0 - -

TABLE 5.8 

Numerical Results for Stick-Slip Contact:. Convergence 
of Stresses with Grid Refinement 

GRID x (ksi.) 
i x x c 

x (ksi.) x y c 

T (ksi.) 
X>A 

T (ksi.) 
x y B 

T (ksi.) x x B 

2x2 -1 .171252 - 0 . 1 8 7 8 5 4 0.799319 -1 .147168 - 7 . 951464 

3x3 -0 .002095 - 0 . 6 5 2 5 3 4 -0 .449692 -0 .818124 -9.773741 

4x4 -0 .593755 -0.228151 0.134665 -1 .002770 -10 .501745 

6x6 -0 .152562 - 0 . 2 2 3 8 2 4 -0 .233440 -0 .082713 -10 .65878 

EXACT 0. 0 0.0 0.0 0.0 -
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The system of equations of the finite element model is linear 

with respect to the loading and nonlinear with respect to Coulomb's 

coefficient of friction y . Hence the position of the adhering-sliding 

changeover point on the contact face is independent of the applied 

loading but dependent on y . 

5. 3 Frictionless Progressive Contact Problem 

The problem of a long, solid cylinder under a uniform line 

load resting on a rigid base is considered here. The contact formed 

between the deformed cylinder and the base is assumed frictionless. 

Shown in Figure 5.15 is a schematic axial view of the problem setup. 

I P 

/ / / / / / / / 

I x y = P^yy '• JJ = 0.0 

Figure 5.15 A progressive contact problem 
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This problem belongs to the class of geometrically non-linear 

problems, Martin [23], Hartz and Nathan [241, Kawai [25]. For large 

and small deformations alike, the conditions on the contact boundary will 

vary as a function of the applied loading P. It is the concern of this 

exercise to determine the size of the contact region, the stress distributions 

thereof, and the relative approach between the cylinder and the base in 

relation to the applied loading. 

The method described in Chapter 3 is used in the investiga

tion. Although the incremental formulation can accommodate large de

formations, the analysis is restricted to small deformations for which 

comparison solutions are more readily available. 

The linear displacement, linear stress mixed element is applied 

with the incremental formulation to the plane strain problem. Since the 

problem in question is frictionless, the contact boundary is strictly a 

Sy boundary involving the normal displacement and a S-p boundary in

volving the tangential stress. Hence the original form of Reissner's 

principle may be employed in the element stiffness formulation. For 

numerical comparison results, the mixed element is replaced by the 

corresponding displacement element, the constant strain triangle, CST 

and the problem is re-solved. For analytical comparison results. 

Hertz's solution to the frictionless contact between two identical long, 

solid cylinders is presented. By symmetry, the two cylinder problem 

may be reduced to the one shown in Figure 5.15. The assumption in 

Hertz's solution is that the contact region is small in comparison to 

the radius of the sylinder. The grids for the finite element analyses 

are shown in Figure 5.16. 
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Figure 5.16 The CST and mixed finite element grids for the pro
gressive contact problem 
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The finite element solutions are shown graphically against 
_ 3 

the Hertz solution. The deformations are of the order 10 times the 

diameter of the cylinder. The contact region created under such 

deformations has its width up to 9 percent of the cylinder diameter. 

In Figure 5. 17 , the contact width, b, obtained with grid B, 

is plotted against the applied loading P. The agreement is reasonable 

since the number of elements used is few. The relative position of 

the CST curve with respect to the Hertz's agrees with the results 

obtained by Yamada [26]. 

Figure 5.18 shows the plot of the relative approach between 

the cylinder and the rigid base as a function of the applied loading. 

Again, the mixed element seems to yield closer numerical results to 

the Hertz solution than the CST solution. 

The normal stress distributions in the contact region at two 

values of P plotted against a contour of the Hertz solution are shown 

in Figure 5.19 . Comparison curves are difficult to show in this 

instance due to the large increments of load taken as a consequence of 

the coarse nature of the finite element grids. Also, the validity of 

the Hertz solution becomes doubtful when the contact width is beyond 

10 percent of the cylinder diameter. Therefore, on the one hand, the 

small deformations will keep the number of contact nodes few and on 

the other hand, the larger deformations will reduce the accuracy of 

the Hertz solution. Bearing these in mind, the results obtained in

dicate that the mixed element applied in conjunction with the incre

mental formulation yields reasonable numerical results to the geometric 

non-linear progressive contact problem. 



77 

160. 

140. 

120. 

.8. 100. 

Q_ 

cn 
c 

-a 
a 
o 

80 

"O 
CD 

CL 

< 

60 

MIXED 
CST 

HERTZ 

A : GRID A 

B : GRID B 

.04 .08 .12 .16 
Contact Width b ( in . ) 

.20 

Figure 5.17 Applied loading versus the size of contact width 
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Figure 5.18 Applied loading versus relative approach 
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problem 



80 

6. CONCLUSIONS 

The problem of contact between elastic bodies requires differ

ent boundary conditions on the contact interface depending on the type 

of contact under investigations. In frictionless and adhering types of 

contact, the boundary conditions contain either prescribed displacements 

or prescribed stresses, respectively. In the case of contact against 

a rigid base, the boundary conditions are homogeneous either in dis

placements or stresses. The more general problem, contact with 

friction, is best modelled by a constraint on the surface shear stress 

in relation to the normal stress. This calls for, in the variational 

principle, the association of stress variables with forced boundary con

ditions. Also implied in the mixed formulation is the association of 

displacement variables with natural boundary conditions. 

Reissner's Principle is able to accommodate such require

ments by a suitable manipulation of the boundary integrals in the 

energy functional. When an approximation solution is sought using 

the mixed finite element method, the friction constraint leads to linear 

constraint equations on the tangential shear stress and normal stress 

variables on designated contact nodes on the contact boundary. The 

non-homogeneous displacements will enter the right-hand side vector, 

rendering the necessity for an iterative scheme. For the problems 

investigated, only several iterations were needed to achieve good 

agreement between the displacement input and output. 
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In stick-slip problems where the conditions on the contact 

boundary are sought, again, iterations are required. It is observed 

that only several iterations are needed to attain the final boundary 

conditions. It is also observed that it takes more iterations for the 

displacement or potential energy model in which the friction condition 

cannot be applied as a constraint condition. Nevertheless, the two 

formulations yielded comparable results. 

In contact problems where the contact region is known and 

independent of the applied loading, the positions of points at which 

adhering conditions change to sliding conditions are also independent 

of the applied loading but dependent on Coulomb's coefficient of 

friction u . In the geometrically non-linear progressive contact 

problem, an incremental formulation shows that the size of the contact 

region, the displacement and stress patterns are all non-linear functions 

of the applied loading. 

The iterative method for two-dimensional progressive contact 

may be extended to general contact between bodies of dissimilar 

materials. Conceptually, the technique could well be extended to 

three-dimensional general contact problems. 
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APPENDIX A 

T H E F IN ITE ELEMENT MODEL 

T h e derivat ion of the matrix equations for a two-dimensional 

isotropic tr iangular element with linear d istr ibut ions in both d isp lace

ments and stresses is given here. 

Cons ider the functional in the mixed variational pr inc ip le 

in any cartesian x - y coordinate system when body forces are zero: 

F (U ,T ) = / / [ 2 T T T U - T T C x ] d A - 2.4 p T u d s 
A J 

2 0 
_ (u - u) p d s (A. 

where 

xx T T ) 
y y xy 

u = (u v) 

( P x V 
p = IT + mx 
" x xx xy 

IT +mx 
xy y y ' 

Si, m are the direct ion cosines of the outward normal. 

3x " 

0 f 

9y 
3_ 3_ 
9y 9x 



I 
E 

1 

-v 

0 

-V 0 

1 0 

0 2 (1+v ) 

for plane stress 

and 

1 - v 

1 0 
1 - v 

1 - v 

0 0 
1 - v 

for plane strain 

Figure A .1 A mixed triangular element 
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For the triangular element shown in Figure A. 1 the function 

expansions of u and x are: 

u = (L T L 2 L 3 ) u. (A.2) 

v = (L 1 L 2 L 3 ) v. (A.3) 

xx ( L 1 L 2 L 3 } 

xx. 

X X , 

X X . 

(A.4) 

yy 
0-., L 2 L 3 ) 

yy-

yy. 

yy-

(A.5) 

xy 
L 3 ) x y 2 

l T x y 3 

(A.6) 

where L 2 L 3 are area coordinates. 

Substituting A.2 to A.6 into A.1, functional F becomes 
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F ( U , T ) = 2x 

'a c -vc 

• 0 b ' u + c -vc c 

b a 0 0 

- 2 (A.7) 

Taking the first variation of Equation A. 7 and setting it at zero yields 

the stationary value condition as represented the following matrix 

equation: 

0 0 
T 

a 0 b 

0 0 0 b a u d ' 

a 0 c - v c 0 • 

0 b -vc. c 0 . 0 . 

b a 0 0 2(1+v)c 

(A.8) 

where the submatrices are: 

u ( U 1 U 2 U 3 V1 V 2 V 3 } 

( T T T T T T T T T ) xx 1 x x 2 x x 3 yy} yy2 yy3 xy., x y 2 x y 3 

[a] 
y 2 

y 2 

y 2 

r.2 

y 2 

y 2 

= / / U L dA 
A 1 J ' 

. . ( A . 9 ) 



3 2 1 3 2 1 

II L.L., dA 

I 1 i y 

[c] 12 E 
1 1 

II - ̂ - L.L. dA 
A I 

for plane stress. 

{d} d. = / p L. ds 
1 S x 1 

{e} = / p L. ds 
s y' 

Rearranging the equations to attain nodal order yields 



0 0 a. 1 0 b11 0 0 a21 0 

0 0 b11 311 0 0 0 b21 

C1 1 f11 0 312 0 C12 f12 

c11 0 0 b 12 f12 C12 

9l1 b n a l 2 0 0 

0 0 

0 

3 22 

0 

C22 

Q 

b 22 

f22 
symmetric 

C22 

where 

[f] = [g] 
< 

2(1+V) [c] 

or [K] {u} = {f-y 

"21 

a21 

0 

0 

g 1 2 

b 2 2 

322 

0 

0 

g 2 2 

13 

13 

'23 

23 

0 

0 

0 

b, 

3 1 

0 

0 

0 

"13 

"23 

331 0 b31 U1 d i 

0.... 
b31 331 V1 e i 

C13 f13 0 T 
X X . 

0 

f13 C13 0 X 

YYi 
0 

0 0 
9l3 

T 
x Y l 

0 

a"32 0. b 32 u 2 d 2 

0 b32 a32 V 2 6 2 

C23 f23 
0 T 

x x 2 

0 

f23 C23 0 T 
y y 2 

0 

0 0 923 T 
x y 2 

0 

a33 
0 b 33 U 3 d 3 

0 b 33 a33 V 3 6 3 

C33 f33 0 T 
x x 3 

0 

C33 0 

C33 

T 
y y 3 

T 
x y 3 

0 

0 

(A 
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The right-hand side vector arises only from the line integral 

over the part of boundary S-p where stresses are prescribed. The line 

integral over Sy where displacements are prescribed has a value of 

zero but represents additional constraint equations u =u. This will 

be discussed further in Appendix B. 

On an element where constraints on stresses are sought in 

the solution on side 2-3 of the element, the functional F in A.1 takes 

the following form: 

F (U ,T ) .// [2x' T T U ' - T , T C T' ] dA 

- 2 
3 S T 

p , T u1 DS - 2 p '"^ u 1 ds 

1 S T 

3 S U 

[u' - u ' ] T p'ds - 2 [u 1 - u']^p' ds 

- 2 
2 S T + S U 

p , T u'ds + 2 
2 S T 

[p 1 - p']"^u' ds 

+ 2 
S 2^U 

u p 1 ds (A.15) 

where the variables are primed to indicate the local x ' - y ' coordinate 

system as shown in Figure A. 2: 
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^ x x 3 ^ y y 3 ^ x y 3 

U2.V2 

^ x x 2 ^ y y 2 ^x\/2 

Figure A. 2 A Mixed element in a local coordinate system 

Substituting in the linear expansions for stresses and displacements and 

taking the stationary value of the first variation result in a similar 

governing matrix equation: 

[K1] {u'} = {f} . (A.16) 

Matrix [K1] differs from matrix [K] in A. 14 in that it contains additional 

terms arisen from the line integral 

p'^ u' ds 

in this form of functional F. Only submatrix [b] is affected and the 

new submatrix is denoted by [b 1]: 



93 
x 3 X 2 X1 

x 3 X 2 X1 

x 3 X 2 X1 

X 3 X 2 X1 

x 3 X 2 X1 

x 3 X 2 X1 

0 0 

X 3 X 2 

x 3 X 2 

X 3 X 2 

X 3 X 2 

/ / L , L ) , y d A • L.L. ds 
' J 

(A.17) 

The right-hand side vector {f1} still contains entries d and e 

from line integrals /L.pds taken from node 3 to 1 and from node 1 to 

2. If side 2-3 lies on Sy, then 

2 5 U 

u '"^ p' ds .(•A .18) 

yields consistent loads on the stress variables x , x at nodes 2 and 
yy x y 

3: (0 0 0 0 0 0 0 0 h 2 k 2 0 0 0 h 3 k 3 ) T where 

L. u' ds i . . . .(A.19) 

2 
3 

L. v' ds 
i 

If side 2-3 lies in Sy then 

2 / [p1 - p ' ] T u' ds (A.20) 

represents constraint equations: p 1 = p1 (A.21) 
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APPENDIX B 

CONSTRAINTS 

The finite element method numerically approximates the boundary 

value problem by discretizing both the continuum and the boundary. 

The application of discretized boundary conditions is facilitated by 

applying appropriate constraint equations, most commonly linear, to the 

governing algebraic equations in the finite element model. A method of 

such an application is described here. 

The general form of i linear constraint equations on n degrees 

of freedom of an unconstrained finite element model is 

[c] {u} - {d} = {0} . . . . (B. l ) 

where [c] is an nxi matrix and {u} and {d} are vectors of length n 

representing degrees of freedom and constraint values,; respectively. 

Prescribed displacements and skew boundaries are particular applica

tions of Equation B.1. In the method of static condensation. 

Equation B.l is rearranged to the partitioned form: 

[c. |c.] \ J- - {d} = {0} . . . .(B.2) 
' u. 

where j U j j represents the variables to be preserved and | U ' | those to 

be eliminated and [c] is an ixi invertible matrix. The choice of u. and 
i i 

u. is not unique, however. 
I H 
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Then {ujO> is expressed in terms of {u.}: 

. .(B.3) 

where 

and 

[T.] = - [c ] 1 [c ] j i L j 

[ T d ] = [ C j ] 
-1 

Finally, {u} may be expressed in terms of | uj j 

{u} = 
u. 

J 

u. 
T. 

J 

u. {d } (B.4) 

where I is the j x j identity matrix. 

In cases where {d} is a zero vector, the process of static con

densation may be done by a variable transformation followed by a 

variable elimination, analogous to the skew rigid boundary problem where 

in the displacement approach the variables are transformed into normal 

and tangential directions with the normal displacement variable set to 

zero. 

Thus, with {d} = {0} , Equation B.4 becomes 

{u} 
u. 

J 
u. 

u. 
J 

= [T] u. 
J 

(B.5) 
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In the finite element model, the governing matrix equation is 

[K] {u}. .= {f} (B.6) 

Substituting B.5 into B.6 gives 

[K] [T] l U j j = {f} (B.7) 

Symmetrizing the Equation B.7 yields 

[ T ] T [K] [T] i U j \ = [ T ] T {f} (B.8) 

In the solution of B.8, the eliminated variables \ u i } are recoverable 

from the equation 

U= 1 = [T.] ^1 (B.9) 

The Coulomb type friction constraint is applied in this manner 

on the nodes which lie in the region of contact. The unconstrained 

vector of variables at such a node is 

{u} 

f ^ t u 
n 

Ttt 
Tnn 

CB.10) 
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where the subscripts n a n d t denote the normal and tangential directions 

at the node. The constraint condition is 

nt y T nn 
. . (B.1T) 

where y is the coefficient of Coulomb friction, the sign of which depends 

on the direction of frictional slip. Let be the variable to be suppressed 

and [T.] is readily identified: 
J 7 

or 

| T n t J - = [0 0 0 y] 

nt [ T ] 

u. 

Ltt 

nn 

(B.12) 

U t 
u 

n 

\t 

T nn 

. (B.13) 

This furnishes the transformation matrix [T ] : 

u t 
' 1 0 0 0 ' r 

u 
n 

0 1 0 0 

T t t • = 0 0 1 0 

Tnn 0 0 0 1 

Tnt 
0 0 0 

u 

Ltt 

nn 

(B.14) 

or 
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u 
n 

tt 

nn 

nt 

- [T] 
u 

tt 

nn 

. (B. 15) 

Substituting into the governing Equations B.8 and symmetrizing yields: 

[ T ] ' [K] [T] 
u 

tt 

nn 

= [ T ] ' {f} . . .(B.16) 

After the solution vector for the node is obtained, T . is recovered from 
' nt 

Equation B.12. 

In this particular case where the constraint equations involves 

so few variables, the process of static condensation may be accomplished 

more expediently by firstly multiplying the rows and columns of matrix 

[K] corresponding to variable T by y and adding them to the rows and 
columns corresponding to variable T and secondly discardinq the x x ^ » nn 7 a nt 

rows and columns. 
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APPENDIX C 

C.I Derivation of the Separating Distance between Two Nodes  

in a Contact Nodepair 

Consider nodes i, j , k and m, n, o lying on the boundaries 

of bodies A and B, respectively. Nodes j and n form a contact 

nodepair. 

Figure C.1 Contact Nodepairs : •':>;..-* 

The normal unit vector at node j , nt has the same direction 

as the vector joining the center of the circle containing nodes i, j , k 

and node j . Let 

k 
(q.b,) 

(x - a.) 2 + (y - b.) 2 

r. 
2 

. (C. 
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be the equation of such a c i r c le . 

Subst i tut ing (x., y . ) , (x., y.) and (x, , y . ) into C.I gives I I J J K K 

where 

( x i (ys -b.) = r. 
J J 

(*. b.) = r. 
J J 

. ,2 2 
b.) = r. 
J J 

. 2 yields a.. b. : 
J 

C 2 C 6 ' C 5 C 3 

a . 
J 

C 1 C 5 " C 4 C 2 

b. 
J 

C 6 C 1 " " C 3 C 4 
b. 

J 
C 2 C 4 " " C 1 C 5 

c 1 
= 2(x. -- x . ) 

C 2 = 2(y. • 
C 3 

2 

- Y J " 

2 
y i + 

2 2 
x. - X . 
J ' 

= 2 ( x k - x . ) 

C 5 = 2 ( y k - V 
C 6 

2 2 
y k

 4 

2 2 
x. - X . 

J k 

( C 2 ) 

(C.3) 
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Hence, nt is given by: 

for 

for 

for 

* = ' x i - V i ' b i > . 

/ (x. -a. ) 2 + (y.-b.) 2 

jj x kj > 0 i.e., c .c 5 - c 2 c 4 < 0 ; 

(a. - x., b. - y.) 
nt = —1 ) J  Vf 

i 
/(x.-a.) 2 + (y.-b.) 2 

J J 1 J 

J i x k j < 0 ; 

<"c4' c i } 

n. = 
i / 9 2 

c. 

.-> .-»• 
ji x kj = 0 . . . . (C.4) 

Similarly, n^ may be determined-

Let 

nt = (xT, yi) 

and 

n = (x , y ) . . . . .(C.5) 

Then the averaqe unit normal n. for nodes i and n is 3 jn ' 



or 

is 

Let 

then 

where 
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-y 

n. 

-> •> 
n. - n 

J n 

• -> -> 
n. - n 

1 j ni 

( x J - x n , y J - y n ) 
n = - • . . . .(C.6) 

/ ( x ' - x ) - ( y ' t y ) 

By definition, the separating distance d between nodes j and n 

n. • n. 
J J " 

n j n = ( x ' y } 

d = (x . -x n ) ( x j n ) + (yj-y n ) ( y j n ) . . . . ( C 7 ) 

( x J - X ) 

in 

/ J ru ' 2 " j n 2 

/(x J-x ) - (y'-y ) 

, j n, 
(yJ - y ) 

/(x J-x ) - (y'-y ) 

and x' and y' are evaluated from C U depending on ji x kj . 
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C.2 Derivation of the Increment Load Factor k , 
m+1 

In elastic problems, the load to solution ratio is constant. 

Hence in the incremental approach to the progressive contact problem, 

A* R 

the ratio AQ/Aq is equal to m+1 where AQ, Aq are the test 

m+1 

increment load and solution and AR , , Ar . are the increment load 
m+1 m+1 

and solution sought to bring the contact to the (m+1)th contact state. 

Cumulatively, hence 

R , = R + AR . , = R +k , A Q m+1 m m+1 m m+1 

r , = r + Ar ' = r + k , Aq . . . . .(C.8) m+1 m m+1 m m+1 M 

(a) From open to close condition: 

d' = d 1 + k' , Ad 1 = 0 m+1 m m+1 

therefore 

i d m 
.k - _ ~~~~ — — . . . . (C • 9) 

Ad 

where 

Ad 1 = d'(r +A ) - d' m q m 

(b) From close to open condition: 

i i , i A i x = T + k . A T nn , nn m+1 nn +1 m 
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therefore i " I nn , i _ m_ 
km+1 " Ax 

nn 

(c) From adhering to sliding condition: 

T . + y T = K * + K , A T , +y T +k . A T ) : 

1 nt , 1 H nn , 1 nt m+1 nt 1 H nn m+1 nn m+1 m+1 m m 

for 

T . A T nt nn m 

m+1 

> T A T , nn .nt m 

nn 
+ T 

m 
nt 

m 
p A T n n + A T . nn nt 

for 

"nn 
A T 

m 
nt nt 

A T 

m nn 

y T 

m+1 
hn nt m m 

A T . - I IAT nt K nn 

(d) From sliding to adhering condition: 

u ' = u + k' , Au. = 0 t „ t m+1 t m+l m 

therefore u t 

. i m k 
m+1 A u t 


