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AABSTRACT

A tidally varying and a tidally averaged mass transport model
are applied to the Fraser River Estuary to investigate the significance

of tidal effects on the concentrations resulting from assumed effluent

i

discharges. The tidally averaged model is due to Thomann [1963]. The
tidally varying model is developed from first principles. A hydrodynamic
model was used to determine the tidally induced temporal variation in the
longitudinal velocity and cross-sectional area along the estuary. All models
are "mathematical" and one—dimensiénal.

Finite difference techniques are used to sélve the underlying
partial differential equations of all three models. The problems of stabil-
ity and numerical dispersion are examined. Numerical dispersion is seen to
result from the solution of the mass transport equation over a fixed space
grid rather than along the advective characteristics. Advantages of solving
the equation along the characteristics are: no numerical dispersion; the
advective and dispersive transport processes are usefully separated; lateral
dispersion can be partially assessed with a one-dimensional model; and
time dependent behaviour in coefficient of longitudinal dispersion can be
taken into account.

The tidally varying flows along the estuary are seen to cause a
variation in the initial dilution of a discharged effluent. This, together
with the effects of tidal flow reversal_Eroduces spikes in the concentration
profile along the estuary. The concentration of these spikes is then re-

duced by the dispersion process, the peak concentration during the first two
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tidal cycles being sensitive to the form and magnitude of the coefficient
of longitudinal dispersion. Time dependent variations in this coeffi-
cient are considered. The effect of the lateral dispersion process on
the estimated concentrations is also considered and secondary flows are
tentatively explained in terms of the generation and adveétion of vor-
ticity. The predicted peak tidally varying concentration was found to

be significantly greater than the tidally averaged value.
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INTRODUCTION

Throughout history, centers of urban, agricultural and industrial
development have commonly been located along rivers and estuaries. The
principal uses of these surface water resources in early times were water
supply and navigation; the river provided an accessible source of water
for domestic and agricultural needs and a relatively cheap and easy means
of bulk transport. Modern uses of surface water resources include naviga-
tion and water supply and waste disposal for domestic, agricultural and in-
dustrial purposes. In addition, rivers and estuaries provide habitat for
wildlife, breeding and rearing areas for fish and shellfish and areas for
general recreation.

Associated with each use of surface water resources is a set of
quantity.and quality constraints that determine whether the water is satis-
factory for that particular use. The quality constraints consist.. of the
maximum allowable levels of various deleterious substances that may be pre-
sent in thé water. Generally, the constraints for each use are different,
and conflicts may arise when water is to:.be used for multiple purposes. A
common example is the conflict between the competing uses of waste disposal,
wildlife habitat and recreation. It is recognized that the quantity and
quality conflicts are related;l however, this thesis only considers quality

aspects, and in particular, only those quality aspects that are determined

lOne obvious way of improving water quality is by low flow augmen-
tation, as has been investigated by Worley et al.. [1965].
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by the concentration of a dissolved deleterious substance in the water.

To investigate a situation of existing or potential water quality
conflicts it is usual tordevelop a>"water—quality" model, or as it shall be
referred to in this thesis, a mass~-transport model. Such a model enables
the concentration of deleterious substance to be predicted throughout the
river or estuary, and is instrumental in assessing the effectiveness of
possible control measures to improve water quality.

The simplest type of estuarine mass-transport modél is one-dimen-
sional (1-D) and only admits a variation of parameters and variables in the
longitudinal direction. In a "tidally averaged" model, parameters and var-
iables are assigned their average values over a tidal cycle, whereas in a
"tidally varying” model, they are allowed to vary throughout the tidal
cycle. The temporal resolution of the tidally varying model is much finer
than its tidally averaged counterpart, but considerably more effort is re-~
quired in its development than for the latter. Thus, it seems relevant to
enquire as to (1) whether the differences between the results of both
models are significant; and (2) whether the extra effoft involved in deve-
loping and applying the tidally varying model is justified by its finer
resolution,

In this thesis the significance of these differences is investi-
gated by applying both a tidally averaged and a tidally varying mass transport
model to the Fraser River Estuary, a tidal estuary in the Province of British
Coiumbia, Canada. The tidally averaged médel was developed by Thomann [1963]
and the tidally varying model was developed from first principles. Both mass

transport'models were developed as part of a larger interdisciplinary study



by the Westwater Research Center of the University of British Columbia
to investigate the effects of possible patterns of future development
on the water quality of the Fraser River Estuary.

This thesis consists of six chapters. The tidally varying
and tidally averaged forms of the one-dimensional mass transport equa-
tion are discussed in Chapter 1. The expected differencesibetween the
results of both models and the applicability of a one-dimensional model
to the Fraser River Estuary are also considered.there. 1In Chapter 2 the
literature is reviewed to investigate the warious ways of solving the
one-dimensional mass transport equation. In order to solve the tidally
varying form of the equation, it was necessary to develop a hydrodynamic
model to predict the tidal variations in the longitudinal»velocity and
cross—sectional area along the estuary. The hydrodynamic model and the
tidally varying and tidally averaged mass transport models applied to the
Fraser River Estuary are described in Chapter 3. The verification of all
three models is described in Chapter 4 and the results of applying both
mass transport models to the Estuary are described and discussed in Chap-
ter 5. Finally, conclusions about the differences and applicability of
both models are given in Chapter 6..

There are six appendices to this thesis. The one-dimensional
mass transport equation for unsteady non-uniform flow is derived in Appendix
A. The advective and dispersive transport processes are discussed therein,
as are'the assumptions in the derivation of the equation. Appendix B con-
s5ists of a description of the Fraser River Estuary. The various channels of

the estuary, the freshwater flows, the tides and the salinity intrusion are



all described. When finite difference techniques are used to solve the
mass transport equation, ,there are problems with numerical dispersion

and stability. In Appendix C both of these problems are seen to occur
when a fixed grid is used to solve the equation, rather than a grid along
the more fundamental characteristics of information propagation. Details
of the finite difference schemes used to solve the hydrodynamic equations
and both forms of the mass transport equation are given in Appendix D. 1In
Appendix E, it is seen that existing estimates of lateral dispersion apparent-
ly underestimate the laterdal mixing in the Fraser River Estuary. Secondary
velocities are explained in terms of vorticity, and on the basis of very
limited field data, the predicted secondary flows agree well with those ob-
served in the estuary. Finally, in Appendix F, estimates are made of the
coefficients of longitudinal dispersion. An approximate method is given to
allow for the variable contributions of the effects of vertical and lateral
velocity gradients during the initial period before cross-sectional mixing

is complete.



CHAPTER 1

PRELIMINARY CONSIDERATIONS

The one-dimensional mass transport equation is stated and its
tidally véfyihg and tidally averaged forms are briefly discussed. The
problem of determining the parameters of both forms of the equation is
considered, and expected differences between the results of a tidally
varying and a tidally averaged mass transport model are described. The
ability of a one-dimensional mass transport model to describe the mass

‘transport processes in the Fraser River Estuary is also considered.

1.1 THE ONE-DIMENSIONAL MASS TRANSPORT EQUATION

The one-dimensional equation for mass transport in unsteady non-
uniform flow in an estuary is obtained by taking a mass balance over an
elemental cross-sectional slice of the estuary. Mass is transported through
the slice by the mass transport processes of advection and dispersion, and
these processes, together with any source-sink reactions that the substance
undergoes, determine the concentration of the substance within the slice.
As it is a one-dimensional equation, the dependent variable and the parameters
are assigned their average cross-sectional values. The equation is derived in
Appendix A and the assumptions in its derivation are discussed there. The one=

dimensional mass transport equation is given by

- - - n
ac -3¢ 10 9c
A A .1

i=1



where

c is the mean cross-sectional concentration of dissolved

substance; :

G is the mean cross-sectional value of the longitudinal

velocity;

A is the cross-sectional area;

E is the mean cross-sectional dispersion coefficient in

the longitudinal direction;

S, is the rate of production per unit volume of water due
to the ith source-sink process, it being assumed that
there are n source-sink processes;

x 1is the longitudinal distance;

and

t is the time.

For the sake of brevity, the "mean" value of a parameter or variable is now
taken to refer to its "mean cross-sectional" value. The high frequency turbu-
lent fluctuations are assumed to have been averaged out of u and c.

The mean velocity u, the mean longitudinal dispersion coefficient
E and the cross-sectional area A will be referred to as the parameters of
Equation (1.1). These quantities are parameters in the sense that they are
defined outside the equation by the cross-sectional geometry and hydraulics
of the particular estuary. These three parameters can vary with both x anq t
Thus, Equation (1.1l) is seen to be a second-order linear partial differential
equation with variable coefficients. fhe three terms on the right-hand side
of the equation will be referred to as the advective, the dispersive and tﬁe

source-sink terms respectively.



Equation (1.1) was derived for the general case of unsteady non-
uniform flow and is the basis of all one-dimensional mass transport models
of rivers and estuaries., In an estuary, the rise and fall of the tide causes
temporal variations in the parameters u, A and E. In a tidally varying model,
this temporal variation in the parameters is taken into account as Equation
(1.1) is solved to determine the mean concentration along the estuary during
the tidal cycle. 1In a tidally averaged model, the parameters are assigned
their average values over a tidal cycle, and the mean concentration along
the estuary is determined over periods of a tidal cycle. Averaging Equation
(1.1) over a tidal cycle does not alter the form of the equation, but merely
changes the interpretation of the:dependent variable and the pérameters. For
example, u becomes the tidally averaged velocity and is determined by the
freshwater discharge through the tidally averaged area A, -It should be
noted that the concentration predicted'by a tidally averaged model is not
the "tidally averaged"‘concentration -- this can only be determined by aver-
aging the results of a tidally varying model over the tidal cycle. The majority
of tidally averaged models supposedly predict the mean concentration along the
estuary at times of slack-water, The reason for this is the ease of sampling

at times of slackwater, and is discussed further in Séction-Z;ld

1.2 DETERMINATION OF PARAMETERS

The flow field of an estuary consists of an unsteady oscillatory
component due to the tide superimposed on a steady component due to freshwater
inflow. Before a solution can be obtained to the tidally varying form of

Equation (1.1), it is necessary to determine the tidally induced temporal



variation in the parameters G, A and E. A cne-dimensional hydrodynamic
model was developed to determine the temporal variation in u and A. In
this model, the equations of motion and continuity were applied to the
water mass of the estuary and solved throughout the tidal cycle. The hydro-
dynamic model is described in detail in Chapter 3. The temporal variation
in E during the tidal cycle was related to the temporal variation in u, as
is discussed in Appendix F.

In a tidally averaged model, the parameters u, A and E are aver-—
aged over a tidal cycle. This reduces the unsteady tidal flow field to a
steady freshwater flow field, and consequently U can be determined from the
equation of continuity alone (the equation of continuity is applied to the
freshwater discharge through the tidally averaged area A). The tidally
averaged dispersion coefficient includes the effects of upstream advection
on the flood tide, as is discussed in Chapter 4.

V With a tidally varying model, mean concentrations are determined
throughout the tidal cycle, whereas with a tidally avefaged model, mean
concentrations are determined over periods of a tidal cycle. In effect,
the temporal resolution of the tidally varying model is much higher than
that of a tidally averaged model. Because of their unsteady nature, the
estimation of the tidally varying parameters u and A involves significantly
more effort than the estimation of their steady tidally averaged counter-
parts. This is apparent from the discussion of Chapters 3 and 4. Thus the
greater temporal accuracy of the tidally varying model is offset by the

- greater effort required to estimate the tidally varying parameters.



1.3 THE EFFECTS OF THE TIDE ON MASS TRANSPORT PROCESSES

In an estuary, fhe tidal rise and fall of the water surface
causes temporal variations in the longitudinal flow. Because of this temp-
oral variation of flow, the initial dilution of a discharged effluent also
varies during the tidal cycle. This is illustrated in Fiqure 1.1 for the
steady discharge of effluent into an estuary during the flood tide. The
effect of the flooding tide is to continuously reduce the seaward flow of
water past the effluent outfall, and thus the slug of water dosed in any
time increment becomes increasingly smaller. However, since the effluent
discharge is steady, the same mass of effluent is added to each of thg dosed
slugs and this gives rise to the spatial distribution of cross-sectionally
averaged concentration shown in Figure 1.1. As the tide continues to flood,
flow reversal will occur at the effluent outfall and previously dosed slugs
wili move upstream past the outfall and be dosed again, as is illustrated
in Figu:e 1.2, On the following ebb tide, upstream slugs will move down-
stréam past the outfall and be dosed yet again, as is also shown in Figure
1.2, A tidally varying mass transport model can account for the effects of
variation in initial dilution and multiple dosing, whereas a tidally aver-
aged model cannot.

Essentially, the effect of the tidal variation in flow is to in-
troduce "spikes" into the concentration profile along the estuary (as is
apparent from Figures 1.1 and 1.2). The concentration of these spikes is
then reduced by the dispersive transport process.. Thus, differences between
the results from a tidally varying and tidally averaged mass transport model
will depend on the magnitude of the tidally varying dispersion process,
Another difference between the results of both models is that a tidally vary-

ing model correctly accounts for the effects of upstream advection on the
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flood tide, whereas a tidally averaged model can only simulate this upstream

transport via the tidally averaged dispersion process.

l.4 ACCURACY OF A ONE-DIMENSIONAL MODEL

Havihg briefly discussed the tidally varying and tidally averaged
forms of the mass transport equation, the problem of how well a one-dimension-
al model describes the mass transport processes in the Fraser River Estuary
is now considered. When effluent is discharged into a river or estuary, the
time required for complete cross-sectional mixing to occur depends oh the
coefficient of lateral dispersion, the width of the river or estuary and the
position of the effluent outfall [Ward, 1973). 1In the initial period before
cross-sectional mixing is complete there are significant lateral concentra-
tion gradients across the river or estuary. A one-dimensional mass trans-
port model predicts the cross-sectionally averaged concentrations and does
not "see" these lateral gradients.‘?Thus,‘in the initial period before cross-
sectional mixing is complete, the predicted concentrations will underestimate
the peak lateral values in the river or estuary. Also, during this initial
period the dispersion of effluent results in a skewed distribution of concen-
tration along the river or estuary rather than the Gaussian distribution pre-
dicted by the tidally varying mass transport model (see Appendix A). When
the cross-sectional mixing is complete, longitudinal gradients dominate the
transport processes, and a one-dimensional model will provide a good descrip-

tion of the actual concentration profile along the river or estuary.
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The Fraser River estuary consists of the seven principal channels
described in Appendix B. The junctions of these various channels influence
how effluent is advected through the estuary. If cross-sectional mixing is
not complete at a diverging junction, the bulk of the effluent load may be
advected down one of the channels as shown in Figure 1.3. A one-dimensional
mass transport model cannot reproduce this behaviour at the junction. The
situation shown in Figure 1.3 is further complicated by the effects of tidal
flow reversal and the presence of secondary flows at the junction. On the
flood tide some effluent is carried back upstream past the junction, and
additional cross-sectional mixing occurs before the effluent is advected
back through the junction on the ebb tide. If secondary flows are present,
the situation may arise where effluent is released from one bénk upstream
from a diverging junction and is then advected down the opposite channel,
as is shown in Figure 1.3. (On the ebb tide, marked secondary flows of
this nature are commonly observed at the Main Arm-North Arm junction shown in
Figure B.3)., Thus, in the period before cross-sectional mixing is complete,
éhe movement of effluent through the various junctions of the Fraser River
Estuary is a complex two-dimensional process that also varies during the
tidal cycle. To reproduce these effects, a one-dimensional model would
have tq be modified at the junctions and such modification may require con-
'siderable field data. It is néted that the effects of tidal flow reversal
and secondary flow will enhance the cross-sectional mixing at junctions.

The ability of a one-dimensional mass transport model to describe
the concentration profile along the various chanﬁels of the Fraser River
Estuary essentially depends on the time required for cross-sectional mixing

to occur, In the initial period before cross-sectional mixing is complete,
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the dispersion process is skewed rather than Gaussian, the peak lateral
concentration is significantly greater than the predicted cross-sectionally
averaged value and the movement of effluent through the junctions may not
be according to the simple mass balance of the one-dimensional equation,
the latter two effects probably being the most important. The time required
for 80 per cent cross-sectional mixing to occur has been estimated in Appen-
dix E. The techniques of Fischer [1969a] and Ward [1972] gave an estimate
of 55 hours, whereas calculations baéed on vorticity considerations gave an
estimate of five hours, the bulk of the cross-sectional mixing being due to
the influence of secondary flows. It is noted that this last value has not
been confirmed by field experiments. Because of the highly asymmetrical
nature of the tides of the Fraser River Estuary, a more realistic estimate
of the time of cross-sectional mixing in the lower reaches of the estuary
is probably 1-2 tidal cycles. All of these aspects of lateral mixing are
discussed in Appendix E. Unfortunately, time and expense have precluded
using dye studies tomeasure the actual rate of cross-sectional mixing in
the estuary.

To sum up, in this study it is recognized that latetral mixing
and the complex two and three-dimensional flow characteristics through the
junctions can have a considerable influence on the concentrations along the
various channels of the Estuary. These aspects are considered: and their
influence is partially assessed, but the main thrust of the study has been
to obtain accurate solutions to the tidally varying and tidally averaged
forms of the one-dimensional mass transport equation so that the influence

of the tides on the predicted concentrations can be assessed. To some extent,
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the two- and three-dimensional effects can be estimated as further modifi-

cations of the one-dimensional results, as is discussed further in Chapter 5.



CHAPTER 2

LITERATURE REVIEW

The literature is reviewed to investigate the various solutions
and applications of one-dimensional mass transport models.  Solutions to
the mass transport equation are classified into the categories of analy-
tical solutions, numerical solutions, physical and analogue model solutions
and stochastic solutions. The advantages and disadvantages of each class

of solution are also discussed.

2.1 ANALYTICAL SOLUTIONS ’
The one-dimensional mass transport equation for unsteady non-

uniform flow in a river or estuary is given by

n

dc  _ dc 19 .. .3c
T T Uk + Z-g;{AEg;& + iElSi, (2.1)

where the terms are as defined in Section 1.2. Equation (2.1) is a second
orderliﬁeaxj partial differential equation with variable coefficients (the
source~sink terms are generally linear, and ﬁ, A and E are dependent on x
and t). As such, no completely general analytical solution exists, but
solutions have been obtained under a number of simplifying assumptions.
Before reviewing various solutions, the so-called "slackwater" concentra-
tions predicted by the tidally avéraged models are discussed.

The majoriéy of the analytical solutions discussed here are for

the steady-state response (BE/Bt = 0) of Equation (2.1). This simplification

17
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reduces the partial differential equation to an ordinary differential
equation in x alone. In determining this steady state’response, the
freshwater discharge and effluent inputs are assumed to remain steady or
constant for a period of time equal to the residence time of the estuary.
Further, any steady-state solution of Equation (2.1) is a tidally aver-
aged solution. (The equation is now independent of time and cannot re-
solve the within tide temporal fluctuations in E, ﬁ, A and E). However,
the steady state solution to Equation (2.1) does not represent the tidally
averaged concentration profile along the real estuary. 1In fact, it repre-
sents the concentration profile along a model estuary that is tideless and
has a high degree of longitudinal dispersion. (The tidally averaged E is
generally much higher than the tidally varying E, as is discussed in Sec-
tion~33). The tidally averaged concentration profile can only be obtained
from the results of a tidally varying mass transport model.

In the majority of tidally averaged mass transport models, the
steady state solution to Equation (2.1) is assumed to represent the concen-
tration profile along the estuary at times of slackwater. In other words,
the tidally averaged mass transport processes are used to determine the
concentration profile along the estuary at a particular phase of the tide.
The reason for working with slackwater profiles is the relative ease of
sampling tracers in the estuary at these times fO'Cénnor, 1960] . Any corres-
pondence between the steady-state solution'df;Eggatié@{(ﬁﬁi)iand the slack-
water concentration profile along the real estuary is because the tidal
effects are small, and under these conditions the steady-state solution is

an adequate representation of the concentration profile in the real estuary
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at any phase of the tide, or because the steady state solution is "forced"
to conform to the slackwater profile by "adjusting" the parameters of
Equation (2.1). It is interesting to note that Preddy and Webber [19631]
developed a tidally averaged model that predicts tidally averaged concentra-
tions rather than slackwater values. This model is described in Section
2,2.2,

In a tidally varying situation, quasi-steady-state conditions
are said to be achieved when the variable of interest (for example, cC)
undergoes a cyclical repetition of the same values from tide cycle to tide
cycle. Thus, in a tidally varying model one speaks of a quasi-steady-state
response, rather than a steady-state response as with a tidally averaged
model,

Essentially, the analytical solutions of Equation (2.l) entail
simplifications in which various terms of the equation are ignored (for
example, the dispersion term) and the parameters of the ﬁ, A and E are repre-
sented as simple functions of x and possibly t. Effluent inputs are treated
as boundary conditions, and solutions have been obtained for both point and
distributed effluent inputs [O'Connor, 1965].

Steady-state solutions to Equation (2.1) have been obtained for
steady effluent discharge into (1) stéady uniform flows [O'Connor, 1960, 1962};
(2) steady non-uniform flows where the area is a simple function of x [0O'Connor,
1965, 1967]; énd (3) steady non-uniform flows where the freshwater discharge
varies exponentially with x due to land run-off [0'Connor, 19671. Transient
solutions have been obtained for steady effluent discharge into (1) non-steady

freshwater flows during the recession limb of the hydrograph (which was approxi-
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mated as negative exponential in time) [O'Connor, 1967]; and (2) steady
flows where the diurnal photosynthetic production of DO is taken into
account (it was approximated as a half sine wave) [O'Connor and Di Toro,
1970]. To obtain these transient solutions, it was necessary to ignore
dispersion.

Kent [1960] used the method of separation of variables to ob-
tain the general solution to Equation (2.1) for a slug input into steady
uniform flows, and the particular solutions for a slug input into steady
non-uniform flows (ﬁ, A and E were assumed to be linear in x). Di Toro
and O'Connor [1968]70btained the transient solution for steady effluent
input into unsteady non-uniform flows where the variation in cross-sectional
area could be separated into independent functions of x and t (dispersion was
ignored).

Li [1962] used the method of characteristics to obtain a solution
for non-steady effluent discharge (sinusoidal variation) into steady uni-
form flow. (dispersion was ignored). He later used the method of perturba-
tions to obtain a solution for the same case with dispersion included [Li,
1972].

Holley [1969b] transformed the mass transport equation for BOD
into the elementary diffusion equation. (By travelling with the water
mass, the only transport process an observer "sees" is dispersion =-- see
Section A.6). He took the standard solution for a slug input and used the
convolution method to obtain the solution for the continuous (but not neces-

sarily steady) effluent discharge into unsteady uniform flow. Bennet [1971]

used the convolution method to obtain the solution for the complete BOD-DO
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system for the same effluent discharge and flow conditions as Holley.

2.2 NUMERICAL SOLUTIONS

2.2.1 Pinite Difference Solutions., Finite difference methods for

the solution of partial differential equations can be classified into (1)
fixed mesh methods in which the solution is obtained at fixed predetermined
points in a rectangular mesh of time and distance; (2) characteristic methods,
in which the solution is obtained at mesh points along the characteristic
curve(s) in the time-distance plane(s), the position of the mesh points
being determined as the solution progresses; and (3) combined methods, in
which the solution is followed along the characteristic curve(s) and then
extrapolated back onto a fixed mesh of uniformly spaced points [Amein, 1966].
In characteristic methods, the mesh points are generally non-uniformly spaced
in time or distance, and consequently the book-keeping of results is somewhat
untidy. Combined methods simplify this bookkeeping by extrapolating the
results back ontp a fixed uniformly spaced mesh.

Finitéwdifference@methods are discussed in some detail in Section
C.2. The problems of stability and convergence are considered, and it is
seen that iUmplicit finite difference schemes are generally unconditionally
stable, whereas explicit schemes are at most conditionally stable. The
stability requirements of explicit schemes are discussed in detail in
Section C.3, and are seen to impose limits on the relative size of Ax and At,
the grid spacing.

Generally, fixed mesh finite difference schemes do not simulate
the advective transport process correctly, and result in an additional dis-

persive process being superimposed on the actual advective and dispersive
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processes occurring in the riverrorestuary. This so-called numerical
dispersion is discussed in detail in Section?qu and is seen to be elimi-
nated by using characteristic finite différence methods.

Harleman et al. [1968] developed a one-dimensional, tidally
varying mass transport model of the tidal portion of the Potomac River.
A fixed mesh, implicit scheme with central differences was used to solve
the mass transport equation. (The various types of space and time differ-
ences are described in Section C.2). Tidal velocities were calculated from
discharge and tidal records, and the Taylor dispersion equation [Taylor,
19541, médified for the effects of vertical velocity gradients, was used
to determine the longitudinal dispersion coefficients. The finite differ-
encersolution simulated the results of dye studies in the estuary reason-
ably well. However, Prych and Chidley [1969] showed that the numerical
dispersion in their finite difference scheme was approximately 30 times
greater than the modified Taylor dispersion, and was of the order of the
same magnitude as the actual dispersion occurring in the estuary. (The
modified Taylor equation neglects the effects of transverse velocity grad-
ients and grossly underestimates the dispersion coefficient for streams and
estuaries, as Fischer [1966b] has demonstrated). The agreement between the
dye results and the finite difference solution was apparently only fortui-
tous. This examp}g dllustrates the significance of numerical dispersion.

Bella and Dobbins [1968] investigated fixed mesh finite differ-
ence solutions to the one-dimensional mass transport equation describing the
BOD - DO system, They applied a tidally varying finite difference model to
a hypothetical estuary and compared the results with an analytical tidally

averaged solution.



Dornhelm and Woolhiser [1968] obtained a solution to the one-
dimensional, tidally varying mass transport model for conservative sub-
stances. They used a fixed mesh implicit scheme with central differences.
A hydrodynamic model, solved by the same finite difference scheme, was
used to determine the tidally varying parameters. The hydrodynamié model
was verified against a steady-state analytical solution, but it exhibited
instabilities when applied to the Delaware estuary, (According to a linear
stability analysis, their implicit scheme was unconditionally stable. How-
ever, the non-linear nature of the hydrodynamic equations may require more
stringent stability conditions, as is discussed in SectionD.1l). The mass
transport model was verified for steady uniform flow and was applied in
tidally varying form to a hypothetical estuary.

To overcome the problems of numerical dispersion, Gardiner et
al. [1964] ﬁsed the method of characteristics to solve the two-dimensional
mass . transport equation describing the movement of a solvent through sand
saturated with oil. A combined finite difference method was used, with a
mesh of uniformly distributed moving points superimposed on a fixed two-
dimensional space mesh. At the beginning of a time step, the moving points
are assigned the concentration of the nearest fixed grid point, and then ad-
vected along the characteristics according to the equation analagous to
Equation (A.9). After advection, the moving points are assigned to the
closest grid point to determine the cohcentration there, An explicit form
of the equation analagous to Equation (A.8) is then used to disperse the
concentration over the fixed grid points. The complete process is then

repeated for the next time step. Pinder and Cooper [1970] used the same
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technique to calculate the transient positions of the salt water front
in a coastal aquifier,

Di Toro [1969] recognized that{thgimethod of characterisfics re-
duced the mass transport equation for the BOD-DO system into two ordinary
differential equations. (He ignored dispersion, and so the equation anal-
agous to Equation (A.8) was a "true" ordinary differential equation). He
noted that the numerical sclution of ordinary differential equations is
more exact than for partial differential equations, and that the accuracy

can be controlled by predictor-corrector methods.

2,2.2 "Box Model" Solutions. Another type of mass transport

model is the so-called "box model” in which the estuary is divided into
finite segments or boxes. Each segmenﬁ is assumed completely mixed and
the concentration of substance in a segment is determined by the discharge
of substance into the segment, the advective and mixing processes occuring
between adjacent segments, and any source-sink effects that the substance
undergoes. Callaway [1971] noted the box models are conceptually very
similar to finite difference models, as in effect, the latter segmenﬁ”fhe<
ééi@gty iﬁ£d‘WéEéiﬁixed boxes centred around the grid points. Another
similarity is that the box model representation of‘the estuary results in
a set of difference equations relating the concentration in any box to the
concentration in neighboring boxes (similar to impliéit difference schemes).
Thomann [1963], [1965], developed a tidally averaged box model

which was applied to the Delaware estuary. The estuary was segmented into

30 boxes whose length varied from two to four miles. All hydraiilic parameters
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were assumed steady, but the concentration within each box was allowed to
vary with time so that the effect of time varying inputs could be studied.
The concentration in each box is determined from a set of simultaneous
difference-differential equations. For steady-state inputs, the temporal
derivatives are set equal to zero and the system of equations reduces to
a set of difference equations similar to those of an implicit finite differ-
ence scheme. Thomann's model is described in more detail in Sections 3.3
and D.3. Pence et al, [1968] extended the model to account for time varying
fresh water inflows(tidal parameters are still averaged over a tidal cycle).
Like most tidally averaged models, Thomann's model is a "slack water" model
with concentrations being determined at succeeding slack waters.

Preddy and Webber ([1963] developed a tidally averaged box model
of the Thames estuary to predict the true tidally averaged value of the DO
concentration, In their model, the boxes were two miles long and the tidal
displacement was six miles to either side of a box. Thus, the tidally
averaged concentration within a box depends on the concentrations within the
three boxes upstream and downstream of it. This model is one of the few that

determine tidally averaged concentrations rather than slack water values.

2.2.3 Finite Element Solutions, Finite element methods have been

used to obtain solutions to the one-dimensional mass transport equation.
Examples include Price et al. [1968], éuymon [1970), Pinder and Friend [1972]
and Nalluswami et al. [1972). In finite element solutions, the estuary is
segmented and the concentration profile is approximated as a series of func-

tions.
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In. some respects the method is similar to implicit finite differ-
ence methods and box models; in the latter two methods the estuary is also
segmented, but the concentration profile is approximated as a point value
rather than a function in each segment. Further, the solution of all three
methods is given by a set of simultaneous equations governed by a square
banded matrix of bandwidth three (see Section D.3 for Thomann's version of
this matrix). Price et al. [1968] compared finite element, finite differ-
ence and method of characteristics solutions for the case of a constant
discharge into steady uniform flow. The finite element method was found to
be more accurate than the finite difference approximations, but this is only
to be expected as this technique can follow variation within a segment,
whereas finite difference solutions cannot. The finite element method was
faster and more accurate than the method of characteristics of Gardiner
et al. [1964] However, the accuracy of the latter technique was found to
be adequate, . and any inaccuracies probably arise from the procedure of
extrapolating the moving points back onto the fixed grid points. Apparently,
there are no problems with stability and numericaiuéispersion in finite
element methods [Price et al., 1968].

In closing this section, it is mentioned that two-dimensional
finite difference finite element and box models have been developed. Fischer
[1970], Oster et al.[1970] and Leendertse [1971a] are among those who have
obtained finite difference solutions for two-dimensional mass transport in
the horizontal plane, whereas the box model of Pritchard [1969] was developed

to describe two-dimensional mass transport in the vertical plane.
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2,3 PHYSICAL AND ANALOGUE MODEL SOLUTIONS

2.3.1 Physical Model Solutions. Physical models of estuaries were origi-

nally developed to investigate sediment erosion and deposition in tidal water-
ways. The use of these models to investigate mass transport processes in the
prototype estuary was a natural development, and examples include O'Connor
[1962]1, {1965]; Diachishin [1963]; O'Connell and Walter [1963] and Lager and
Tchobanoglous {1968]. In these model investigations of the mass transport
process, a quantity of dye is introduced at the point beiﬁg investigated and
its distribution throughout the model estuary is recorded over succeeding
tidal cycles.

Physical modelling involves the scaled-down reproduction of the
more important processes that affect the parameter being modelled. For mass
transport in estuaries, these processes are advection, dispersion and source-
sink effects. Physical models can satisfactorily reproduce one-dimensional
advection and the two-dimensional density dependent salinity intrusion pro-
cess [Simmons, 1960; Harleman, 1965]. However, the use of distorted-cross-;
sectional space scales in the model results in distorted cross-secticnal
velocity distributions, From the discussion of Seétion A.3, it is apparent
that this will result in an incorrect reproduction of:vthe 'dispersion process.
This has been discussed by Harleman [1965], Harlemen-‘et al. f{1958},and Fischer
and Holley [1971]. Even in physical models with undistorted cross-sectional
space scales, the dispersion process may not be reproduced correctly. In this
case, the reproduction of the dispersion process depends on the ratio of the
time of cross-sectional mixing to the tidal period in the prototype estuary

[Fischer and Holley, 19711.
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No attempt is made to reproduce any source-sink reactions in
model studies, a "conservative" dye being used for the tests. However,
the dye does adsorb onto surfaces, and this must be allowed for in inter-
preting test results, O'Connell and Walter [1963] developed a method to

account for a first-order decay reaction.

2.3.2 Analogue Model Solutions. Electrical analogue models

have been used to obtain solutions to the mass transport equation [Rennerfelt,
1963 and Leeds, 1967} and the hydrodynamic equations [Harder} 1971]. The
estuary is divided into segments, and the space derivatives of the mass
transport equation are approximated as finite differences over those seg-
ments. This reduces Equation (2.1l) to a set of simultaneous difference-
differential equations (the time derivative is continuous) similar to those
of Thomann [1963]. The electrical analogue of this system of equations

can then be constructed in the form of a so-called ladder network [Leeds

and Bybee, 19671.

Analogue models can determine the steady-state and transient
solutions for either constant or sinusoidally varying effluent discharge
into steady non-uniform flows [Leeds, 1967 and Leeds and Bybee, 1967]. As
the flow is assumed steady, these models are tidally averaged, but it may
be possible to develop an analogue for sinusoidally varying flows.

Depending on the finite difference approximations used for the
spatial derivatives, these models may also suffer from numerical dispersion,
as was recognized by Bella [1968]. For example, the analogue of Leeds and
Bybee [1967] used central differences to approximate the space derivatives
of Equation (2.1). From the discussion of Section C.2, it is apparent that

this will result in numerical dispersion.
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2.4 STOCHASTIC SOLUTIONS

Before reviewing stochastic solutions of the mass transport equa-
tion, it is necessary to define several terms. A process is any phenomena
that undergoes changes with respect to time, an example being daily river
flow, If the chance of occurrence is taken into account, a process is said
to be stochastic or probabalistie. A probabalistic process is time-independent
and the variables are considered pure-random. A stochastic process is time-
dependent and the variables may be pure-random or non-pure-random. If non-
pure-random, the process is composed of a deterministic and a pure-random
component. If the probability distribution of the random variable remains
constant throughout the process, the process is said to be stationary, other-
wise it is nom-stationary. Non-stationary stochastic processes are very
complicated mathematically, and in order of increasing simplification they
are treated as stationary, probabalistic, and deterministic [Chow, 1964].

Stochastic mass transport modelé attempt to preddict both -the
mean concentration profile and the variation around the mean. This varia-
tion is due to the stochastic nature off@héfﬁnderlying processés that deter-
mine the concentration, namely the variations that occur in the freshwater
and effluent discharges, effluent concentrations, etc. during the period of
analysis. Dgtgr@i;istib models use the mean value of each of these stochastic
variables to determine the mean concentration profile.

Diaschishin [1963] assumed tidal mixing to be a pure-random pro-
cess that can be characterized by a mixing length. On this basis he used a
random walk formulation to obtain a tidally averaged solution fér waste dis-

posal in purely tidal waters. He allowed for the effect of mikianin the{&et;\
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tical and lateral directions, as well as in the longitudinal direction.

The solution of Equation (2;1) for a slug input into steady
uniform flow is a Gaussian distribution. Harris'[l952} 1963] assumed
this distribution to result from a pure-random dispersion process, and
on this basis he obtained maximum likelihood estimates of u and E. He
used the convolution method to obtain the solution for a continuous re-
lease. However, in the initial non-Fickian period, the cross-sectionally
averaged concentration profile is skewed and not Gaussian (see Section A.3),
as Fischer [1966ajknotédi

Loucks and Lynn [1966] obtained the transient and steady state
probability distributions of the DO concentrations at the point of minimum
DO in a stream (dispersion was ignored). The sequence of daily streamflows
was assumed to be a first-order Markov process (a stochastic non-pure-random
process), and the sewage flows, ultimate BOD and source-sink parameters were
assumed to be dependent on the daily streamflows (via conditional probabili-
ties). Essentially, the technique is as follows. Given a streamflow, the
set of sewage flows, source-sink parameters, etc. that result in the minimum
DO falling below some prescribed value is determined (by a modified Streeter-
Phelps equation). The probability of this set of events occurring is then
determined, the process being repeated for each discrete streamflow variate,
and the probabilities summed to give the total probability of the minimum DO
being less than the prescribed value. Loucks [1967] used a similar technique
to investigate the effect of various treatment plant operating policies on
the distribution of minimum DO in a stream.

Thayer and Krutchkoff [1967] obtained a stochastic solution for the

concentration profiles of BOD and DO in a stream (dispersion was ignored, and
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the streamflow waé assumed uniform and steady). The basic processes. of

decay, reaeration, etc. occurring in the modified Streeter-Phelps equation
were treated as stochastic, but freshwater and effluent discharges were
assumed to be deterministic. Concentration values were divided into dis-
crete units of size A, and the probability of a change of A occurring in

the concentration during a small time interval was assumed to follow a Pois-
son distribution, This allowed them to lump all of the stochastic variation
into the parameter A (the sum of a number of independent Poisson processes is
itself Péisson), which was determined by fitting the predicted variance in

the model estuary to the observed variance in the real estuary. Essentially,
they used the same set of results to both estimate and verify the model.

Under these conditions, any model will reproduce the observed results, irres-
pective of whether the underlying processes are correctly modelleé. Whereas
other stochastic solutions use the explicit variation in the underlying
stochastic processes to predict the variation in the concentration profiles,
Thayer and Krutchkoff based their solution on the implicit variation in the
stochastic processes (the actual variation is not even measured). Their
predicted mean concentration value is simply the:usélution to the (determinis-
tic) modified Streeter-Phelps equation. As such, their technique is no better
.than any deterministic mcdél‘that recognizes and incorporates stochastic vari-
ation through measurements of field values. Custer and‘Krutchkoff [1969] used
a random walk formulation to extend the technique to include dispersion (the
flow was assumed uniform but unsteadys, and Schofield and Krutchkoff [1972]
further extended the technique to account for variable stochastic parameters

along the estuary.
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Koivo and Phillips [1971] regarded the measured BOD and DO concen-
tration profiles along a stream to be corrupted by "noise" due to the stochas-
tic nature of the underlying processes. They developed a method based on non-
linear regression analysis to determine the values of the stochastic para-

meters that gave the best overall fit to the observed concentration profiles.

2.5 SUMMARY

Most analytical solutions to the one-dimensional mass transport
equation are tidally averaged and may be useful for investigating effluent
discharge into estuaries with simple geometries. (When the number of segments
with different geometries is greater than four or five, the matching of bound-
ary conditions at their ends becomes cumbersome [O'Connor et al., 1968]2; In
tidally averaged solutions, upstream transport is by dispersion, and thus a
tidally averaged model may not adequately reproduce the interaction of two
or more effluent outfalls on the flood tide.

Numerical solutions provide a means of solving the one-dimensional
tidally varying mass transport equation, but the problems of stability and
numerical dispersion must be considered. Of the various numerical methods,
the method of characteristics, methods with higher order approximations and
finite element methods are satisfactory with respect to accuracy of solution.
The method of characteristics has the additional advantage of directly simula-
ting the advective process,

Undistorted physical models may be useful in resolving complex
three-dimensional aspects of the flow-field at important or sensitive sections

of the estuary, but because of their inaccurate and inconsistant reproduction
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of the dispersion process (in both distorted and undistorted models), at
best they are only an adjunct to a mathematical form of solution. As deve-
loped, analogue models are tidally averaged and suffer from numerical dis-
persion, although it may be possible to overcome both these limitations.

It is not clear whether the various stochastic solutions attempt
to model "true" stochastic variation, or a combination of stochastic and
cross-sectional variation, If the cross-sectional variation is greater
than the actual stochastic variation, it may be more meaningful to model
the lateral component of the dispersion process with a two-dimensional

deterministic model.



CHAPTER 3

A DESCRIPTION OF THE HYDRODYNAMIC AND MASS TRANSPORT MODELS

3.1 THE HYDRODYNAMIC MODEL

To solve the one-dimensional tidally varying mass transport
equation, it is necessary to know both the spatial and temporal variation
in the parameters E, A and E of the equation, as is discussed in Section
1.3, A one-dimensional hydrodynamic model was developed to predict the
spatial and temporal variation in the parameters u and A, (The temporal
and spatial variation of the parameter E is discussed in Appendix F.
In the hydrodynamic model, the equations of motion and continuity were
applied to the water mass of the estuary, and solved throughout the tidal
cycle.

3.1.1 The Hydrodynamic Equations. As applied to the Fraser

River Estuary, the equations of motion and continuity are given by [Dronkers,

1969]
e g.l.%% (3.1)
7
‘%{AG} =—bl.g-z— (3.2)
where

u is the mean longitudinal velocity;

h is the height of the water surface above an arbitrary
level datum;

§ is the mean c;osé;seC£ional‘water depth;

34
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A is the cross-sectional area;

b is the cross-sectional width;

g is the local gravitational acceleration;
and

C is Chezy's friction factor.

Several of these terms are illustrated in Figure 3.1, Note that in the
hydrodynamic equations, x increases in the upstream direction, whereas in
the mass transport equation, x increases in the downstream direction.

The two terms on the left-hand side of Equation (3.1) are the
local and con&ective (or Bernoulli) accelerations respectively. The two
terms on the right-hand side of the equation are the forces causing these
accelerations, the net pressure force due to the slope of the water surface
and the friction force respectively. The first term of Equation (3.2) is
theinqﬁoutflow from annelemental cross-sectional slice of the estuary,
while the second term represents the accompanying change in storage within
the slice. |

The assumptions made in deriving equations (3.1) and (3.2) are
listed in Dronkers [1964]}. The most important assumption is that the storage
width is equal to the advective width. The variation of advective and stor-
age widths along the major channels of the estuary is shown in Figures B.6
to B,8.Y‘The difference between the advective and storage widths is 'exagger-
ated since these values were determined from the cross-sectional areas below
local low water. (In the lower reaches of the estuary, the tidally averaged
depth is some 10 feet above local low water). Consequently, the assumption
of equal advective and~storage widths seems reasonable for the Fraser River

‘Estuary. (This is also discussed in Section 4.1 with regard to the verifi-
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cation of the hydrodynamic model). The one-dimensional nature of the
equations is justified since the various channels of the estuary are much
longer than they are wide (see Appendix B). In fact, Callaway [1971] has
classified this type of estuary as a "tidal river." In deriving Equa-
tions (3.1) and (3.2) the presence of the salt wedge has been ignored be-
cause of the complicated nature of its dynamics (see Appendix B). Accord-
ing to 0dd [1971], the Chezy formula should adequately represent frictional
effects in fast flowing, well mixed estuaries. The Fraser River estuary is
fast flowing, but the Chezy formula may not be accurate in the highly stra-
tified lower reaches,

From Figqure 3.1, it is seen that
h=a+y . (3.3)

where a is the height of the river bottom above the same level datum that
h is referred to., Thus, Equations (3.1) and (3.2) are seen to be a pair
of coupled partial differential equations, the dependent variables being u
and either § or h, and the independent variables being x and t. The width
b, Chezy's friction factor C, the area A and the factor a all appear in the
equations as parameters, In deriving these equations, it has been assumed
that the dependent variables and parameters vary in a continuous manner
along the estuary. It is noted that both equations contain variable coeffi-
cients and that Equation (3.1) contains non-linear terms.

The fixed mesh, explicit finite difference method of Dronkers [1969]
was used to obtain a numerical solution to the hydrodynamic equations. De-
tails of the method are given in Appendix D and the fixed mesh of "stations”

used in the finite difference solution is shown in Figure B.4. Because the
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solution scheme of the hydrodynamic equations is explicit, stability re-
guirements détermine the relative size of Ax and At. 1In solviﬁg the
hydrodynamic equations, Ax was set equal to 5,000 feet, except in the
deeper waters of Pitt Lake where Ax was incréased to 15,000 feet for
stability reasons; It was found that with this space grid, a At of 90

seconds was satisfactory as regards stability. The stability requirements

are discussed in detail in Section C.3.

3.1.2"Assumed’Quasiisteady'Hggraulic‘Conditions. For effluent
discharge into an estuary, the quasi-steady sfate response of an estuary
is usually a condition of interest. .Tida}ly_varying mass transport models
usually require many tidal cycles to achieve quasi-steady-state conditions,
whereas hydrodynamic models only require several tidal cycles. The reason
for this is the relative speed of information propagation in both systems.
In the hydrodynamic model, the information consists of small changes in sur-
face elevation that propagate along the estuary as elemental surges with
speeds of\ui/agfiwhereas in the mass transport model, theﬁiﬁféfmation con-
sists of changes in concentration (finite or otherwise) that propagate at
speeds of u (if dispersion is ignored). This.is discussed further in Sec-
tion C.3. Thus, in applying a mass transport model to determine the guasi-
steady state response of an estuary for some waste loading condition, it
is necessary to run the model for a succession of tidal cycles.

In solving the hydrodynamic énd tidally varying mass transport
equations for the Fraser River Estuary, the freshwater discharge and tidal
conditions are assumed to be quasi-steady. Thus, the model estuary "sees"
a constant freshwater inflow and a succession of identical tides. 1In

actual fact, "slow" variations occur in the freshwater inflow and tidal
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conditions, and the estuary may never achieve strict quasi-steady state
conditions. However, as the residence time of the Fraser River Estuary is
only four to six days, it seems reasonable to treat the freshwater and

tidal conditions as constant for this period of time.

3.1.3  The Model Estuary of the Hydrodynamic Equations. The

-~

Fraser River Estuary is described in detail in Appendix B, The model
estuary, as described byythe hydrodynamic equations, differs to some ex-
tent from the real estuary because of the assumptions made in deriving

the hydrodynamic equations. The model estuary consists of the same seven
principles as the real estuary, although the Canoce Pass Area has been simpli-
fied into a single channel, as is shown in Figure B.4. The channels of the
model estuary are assumed to be rectangular in cross-section (equal storage
and advective widths), and the salinity is assumed to be everywhere.zero.
Because the salt wedge has been ignored, the predicted velocities in the
lower reaches of the estuary are probably somewhat low. The freshwater_dis-
charge in the model estuary is constant, and the tidal rise and fall of

the water surface is quasi-steady.

3.2 THE TIDALLY VARYING MASS TRANSPORT MODEL

3.2.1 Method of Solution. The tidally varying mass transport

equation was solved by a characteristic finite difference method. 1In this
method, the equation is solved along the characteristic curves of the advec-
tive transport process, as is discussed in Appendix C. The accuracy and
directnéss of solution were instrumeﬁtal in this choice; there is no numeri-

cal dispersion (see Appendix C) and the advection process is simulated
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directly and independently of the dispersive process.

It was not possible to use the usual techniques of dye patch
studies or measurement of existing tracers to verify the mass transport
models. The large Qilutional capacity of the river made extensive dye
patch studies toc expensive, and as the seven channels of the estuary are
essentially unpolluted [Benedict, et al., 1973], there are no suitable
existing pollutional tracers. Because of the high degree of stratifica-
tion and the complicated nature dynamics of the salinity intrusion (see
Section B.2.4), salt could not be used as a tracer. Thus, it was not
possible to verify the mass transport models by a direct comparison of
predicted and observed concentrations. An attempt was made £o "verify"
the underlying mass transport processes of advection and dispersion inde-
pendently of each other, as is discussed in Section 4.2. The method of
characteristics leads to a natural separation of the advective and disper-
sive transport processes, and this was one of the reasons for using this
method to solve the tidally varying mass transport equation.

The one-dimensional mass transport equation is derived in Appendix
A and the assumptions in its derivation are discussed there. The equation

was transformed into Lagrangian or characteristic form (see Section A.6) to

give
dx -
== aq (3.4)
- n
R VI Aac} zs, (3.5)
dt Adx 1 1 -
i=

Equation (3.5) was then separated into its component dispersive and source-

sink effects to give
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129
3t A 9% ThYx (3.6)
and
— n
dc _
% - -Z si (3.7)
i=1

Initially, a grid of moving points was assigned throughout the
estuary. In the advection step, a finite difference form of Equation (3.4)
was used to advect the points along the estuary for a time increment, the
cbﬁéentrationlaf the points being adjusted as they passed effluent outfalls
or through converging junctions. 1In the dispersion step, an explicit finite
difference form of Equation (3.6) was used to adjust the concentration of
the moving points for the effects of dispersion'dﬁfigg the time increment.
Finally, in the source-sink step, Equation (3.7) was used to adjust the
concentration of the moving points for the effects of the source-sink pro-
cesses during the time increment. (The source-sink step can be done analy-
tically -- for a BOD-DO system, Egquation (3.7) is the usual Streeter-Phelps
equation). The sequence of these three steps was then repeated for the next
time increment, and so the solution progresées through time. At the boundaries
of the estuary (the sea, Pitt Lake and Chilliwack), moving particles were added
to and removed from the estuary as diictated by the advective boundary conditions.
A time increment of one hour was used in solving the tidally varying mass trans-
port equation, and at the end of each hour.the concentrations were extrapolated
offthe_grid of moving points onto the 5,000 foot fixed grid of Figure 3.1. The

method of solution is very similar to the combined method of Gardiner et al.
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[1964], except that whereas Gardiner et al. extrapolate the moving points
onto the fixed grid, the moving points in the Fraser River Estuary solution
always remain on their respective characteristics and only their concentra-
tions are extrapolated onto the fixed grid. Details of the solution of
Equations (3.4), (3.6) and (3.7) are given in Appendix D.

An advantage of the characteristic method of solution is that
additional moving points can be added to the estuary to more closely de-
fine regions of rapid variation in concentration, as occur at times of
slackwater at effluent outfalls, and where the variation is slow unneces-
sary moving points can be removed. Once the moving points are in the estuary,
their subsequent positions are determined by the advective transport process,
and they are not uniformly spaced along the estuary in*the dispersive step.
Both an explicit and implicit finite difference scheme were investigated for
the dispersive step. The explicit scheme was slightly slower, but was chosen
for reasons of simplicity (see Appendix D). The stability requirements of
the explic¢it scheme are discuésed in Appendix C, and generally the time in-
crement for stability was less than one hour; the dispersive step then con-
sisted of a number of "internal" iterations within the basic time increment
of one hour, as discussed in Appendix D.

3.2.2 The Model Estuary. For the sake of convenience, the model

estuary of both the tidally averaged and tidally varying mass transport equa-
tions has been simplified to the three major channels of the real estuary,
the Main Arm - Main Stem, the North Arm and the Pitt System, as shown in

Figure 3.2. The stations along these channels are the same as those of the
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hydrodynamic model. It is possible to include all seven channels of the
real estuary, but it would have made the computer programming of the tidally
varying mass transport equation considerably longer and more involved.
Because of their short length and smaller flows, the concentration profile
along the minor channels is essentially determined by the profilé along the
major channels, and the approximation of ignoring the minor channels seems
reasonable.

In the model estuary, the dispersion process is assumed to be
Fickian in its entirety and the cross-sectional mixing is assumed to be
complete at the junctions, The salinity of the model estuary is zero,
but because of the salinity intrusion in the real estuary, the predicted
velocity field and advective transport in this region is probably under-
estimated. The estuary is highly stratified in the region of the salinity
‘intrusion and little mixing occurs between the fresh and:saltwater. This
will tend to minimize any chemical or biological effects the saltwater may
have on the dissolved substance in question. As in the model estuary of the
hydrodynamic equations, the freshwater discharge is constant and the tidal

conditions are quasi-steady.

3.3 TIDALLY AVERAGED MASS TRANSPORT MODEL

3.3.1 Method of Solution. The one-dimensional, tidally averaged

mass transport model of Thomann [1963] was used to determine the steady state
tidally averaged response of the Fraser River Estuary for various waste loading
conditions. (As the model is tidally averaged, the response is steady-state

rather than quasi-steady state). In this model, the estuary is divided into
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a number of longitudinal segmenté or "boxes", as shown in Figure D.2.

Each segment is assumed toc be completely mixed, and.tﬁgiﬁidally averaged
advection and dispersion processes transport dissolved substance into and
out of each segment. If the tidally averaged transport processes and efflu-

ent discharges remain steady, a mass balance about segment i gives

., . .c . +a, ,c,+a, . .c. .= W, .
al,l*lci-l al,lci a1,1+1 i+l 1 (3.8)
where
c; is the concentration in segment i,
. W, is the mass of effluent discharged into segment i per
tidal cycle;
ii-1 is a coefficient accounting for the tidally averaged
! transport of substance between segments i and i-1,
imilarly for el
simil y fo ai,1+l
and
a, , accounts for dispersion out of segment i and any sink

'" effects the substance undergoes.

Details of this equation and its coefficients are given in Appendix D. An
equation similar to (3.8) can be written for each of the n segments of the

estuary, and in matrix notation the system of equations can be written
A*C = W (3.9)
KAYR Y V]

where

w is a (n x 1) column matrix of the tidally averaged waste loads
‘intozeach segment per tidal:icycle;

¢ is a (n x 1) column matrix of the tidally averaged concentration
in each segment; '
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and A is a (n x n) tri-diagonal matrix containing the tidally
- averaged transport terms and any sink effects,

fhus, the steady state tidally averaged response of the estuary is described
by a system of n simultaneous linear equations. Equation (3.9) represents
the concentrations of a conservative substance or a substance~undergoing
first order decay, such as BOD. To investigate the steady-state BOD-DO res-
ponse of an estuary, a system of equations similar to (3.9) and coupled to
it are obtained for the DO concentrations (see Thomann [1971] for details).
Thomann's steady-state solution to the one-dimensional tidally
averaged mass transport equation is essentially a fixed grid finite differ-
ence solution similar to that of an implicit difference scheme (see Appendix
D). There is no stability requirement for the steady-state solution (see
Section C.3), but there is a non-negativity requirement that imposes rela-
tive limits on the sizes of the advective and dispersive transport processes.
This is discussed in Section D.3, and if this requirement is violated, the
concentration in a segment becomes negative. Thomann's steady-state $olution
does not suffer from numerical dispersion, but for a rather unusual reason.
Because of the fixed grid nature of his finite difference scheme, the advec-
tive process will not be correctly simulated and numerical dispersion should
occur. However, from Section C.2, it is seen that for numerical dispersion
to occur, it is necessary for the concentration at a fixed grid point to
change with time. Thomann's steady~-state solution admits no temporal changes,
and thus no numerical dispersion occurs. Numerical dispersion does occur in
his transient solution where the concentration at the fixed grid points does

change with time, as Thomann [1971] recognizes.
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3.3.2 Thé Model Estuary. The model estuary of ;he tidally aver-
aéed equation consists of the same three major channels and stations as the
model estuary of the tidally varying equation and cross-sectional mixing is
assumed to be complete at the junctions. The‘tidally averaged model estuary
has no%tides and has higher dispersion than its tidally varying counterpart.
Thomann [1971] lists typical values of the tidally averaged dispersion coeffi-
cient. They range from 1 - 20 square miles per day with a mean value of
about 10 square miles per day. These values seem high compared to the
tidally varying values of dispersion coefficients, and apparently reflect
the influence of tidal advection in determining the tidally average disper-
sion coefficient. As in the tidally varying solution, the influence of the

salinity intrusion is ignored.



CHAPTER 4

VERIFICATION OF THE HYDRODYNAMIC AND MASS TRANSPORT MODELS

4.1 THE HYDRODYNAMIC MODEL

The verification of the hydrodynamic model is to ensure that
the model estuary, as represented by the hydrodynamic equations, adequate-
ly reproduces the variation in water surface elevations and discharges (or
advective velocities) observed in the real estuary. The "verification"
consists of adjusting the friction factors and the cross-sectional widths
and depths of the model estuary until an adequate fit is obtained between
predicted and observed results. (In deriving the hydrodynamic equations,
the advective flow was assumed to be uniformly distributed over an assumed
rectangular cross-section. In real situations, the cross-section is not
rectangular and the flow is concentrated in the deeper sections. To
compensate for these effects, it is necessary to adjust the crosé—sectional

- geometry of the model estuary).

4.1.1 Data Available. The network of permanent tide-gauging

stations throughout the estuary is shown in Figure B.1ll, and provides a
limited but adequate record of the water surface elevations of the estuary
throughout the tidal cycle. Field méasurements of velocities and discharges
are sporadic and inadequate for verification purposes. The only existing
data adequate for a complete verification of the hydrodynamic model under
high tide-low flow conditions is due to Baines [1952]. 1In this study, water

surface elévations were recorded at half-hour intervals at 43 stations

48
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throughout the estuary for the high tide-low flow conditions of January 24,
1952, The freshwater discharge at Chilliwack was 36,500 cubic feet per
second and the tidal range at Steveston was 11 feet. Baines used the

method of cubature to estimate the tidally varying discharges at the 43

stations.

4.1.2 Water Surface Elevations for Low Flows. The high tide-

low flow conditions of January 15, 1964 were used in an initial attempt

to reproduce the recorded water surface elevations in the real estuary.

The freshwater discharge at Chilliwack was 53,500 cubic feet per second
and the tidal range at Steveston was 10 feet. The water surface elevations
of the model estuary were found to be felatively insensitive to the effects
of friction and cross-sectional geometry. In fact, the responsé of narrow
sections with high friction was found to be equivalent to that of broader
sections with low friction. This is>i11ustrated in Figure 4.1 whiéh shows
the predicted responses for both types of section at Station Né.'l8 kNew
Westminster)'on the Main Arm - Main Stem. The average values of widths,
depths and Manning's "n" along the Main Arm-= Main Stem.are also shown.
Note that while Chezy's formula for friction was used in solving the hydrxo-

dynamic equations, friction coefficients are reported as values of Manning's

"n" (the values of n are for feet-second units).

4.1.3 Water Surface Elevations for High Flows. To separate out

the independent effects of friction and cross-sectional geometry, an attempt
was made to reproduce the water surface elevations of the high tide~-high flow
conditions of June 16, 1964. The freshwater discharge at Chilliwack was
463,000 cubic feet per second and the tidal range at Steveston was eight

feet. It was thought that the greater velocities under high discharge
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conditions would be more sensitive to frictional effec;s. This was found
to be the case, the tidally averaged or mean water levels being very sen-
sitive to friction and essentially independent of width. However, the
width was found to govern the range of the water surface fluctuations about
the mean water level. The predicted and observed water surface elevations
are shown in Figures 4.2 and 4.3, and the reproduction of the observed re-
sults is seen to be satisfactory. The gross cross-sectional values of
depths and areas shown in Figures B.6 to B.8 were used in obtaining these
results. The width was determined by dividing the area by the depth, and’
was a satisfactory compromise between the narrower advective sections and
the broader sections more representative of the storage width. Manning's
"n" varied from 0.022 in the lower reaches to 0.027 in the upper reaches.
These values are reasonable, and indicate that the Main Arm - Main Stem is
hydraulically smooth [Chow, 1959].

Under these high discharge conditions, the flow in the uppér
reaches of the Main Stem is steady, and the predicted water surface slope
can be used to check that the hydrodynamic model satisfactorily reproduces
the frictional effects. The predicted value of Manning's "n", as determined
by the average area, depth and predicted water surface slope between stations
40 and 60 on the Main Stem, was 0.0269. This agrees closely with the actual
value of 0.027 used in the hydrodynamic model over this section of the

estuary.

The "high flow" friction coefficients and cross-sectional geo-
metries were then used in a second attempt to reproduce the water surface
elevations for the low flow conditions of January 15, 1964. To obtain a sat-

isfactory fit between the predicted and observed results it was necessary to
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increase Manning's "n" by approximately 0.005 throughout the estuary.

Under these conditions the value of Manning's “n" along the Main Arm-

Main Stem varied from 0.027 in the lower reaches to 0,032 in the upper
reaches, and once again these values are reasonable. The increase in fric-
tion that low flows experience relative to higher flows also seems reason-
able. During the falling limb of the annual hydrograph sediment: is deposited
in the lower channels of the estuary [Pretious, 1972], and thus the low winter
flows experience bed forms defined by the higher summer flows. It is expected
that the relative roughness of these bed forms will be greater for the low

flows -- and hence the greater friction.

4.,1,4 Verification for the Conditions of January 24, 1952. Having

made an independent check on the friction coefficients and effective cross-
sectional geometries, an attempt was made to reproduce the recorded water
surface elevations and cubature discharges of Baines [1952]. With minoxr
adjustments to the friction coefficients, the water surface elevations and
discharges shown in Figures 4.4 to 4.11 were obtained. The predicted dis-
charge curves were found ;o be insensitive to changes‘in the cross-sectional
geometries, but relatively sensitive to changes in the friction coefficients.
In certain sectibns of the estuary, the low-flow friction coefficients of the
section have been slightly lowered to obtain a better fit between the pre-
dicted and observed peak discharges.

Generally, the fiﬁ between the predicted and observed water surface
elevations is satisfactory. In the upper reaches of the Main Stem, the range
of predicted water surface elevations is somewhat greater than that observed,

and is probably due to "ending" the model estuary before the tidal rise and
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fall of the water water surface has dissipated. The fit between the pre-
dicted discharges and the cubature discharges of Baines is not as good as

the fit between predicted and observed water surface elevations. There

seems to be a phase difference between the discharges, the predicted dis-
charge tending to occur earlier than the cubature discharge. This phase
difference was insensitive to changes in cross-sectional geometry and fric-
tion coefficients. The cubature discharge curves behave somewhat erratically
between the times of high-high-water and low-high-water. It is not certain-
whether this behaviour represents the true discharge response of the estuary,
or is due to inaccuracies in the cubature discharge calculations.

The tidally averaged discharges were found.to satisfy continuity
at the Main Arm - North Arm junction, the North Arm - Middle Arm junction
and the Main Arm - Canoe Pass junction. A tidally averaged mass balance
was made over the entire estuary and was found satisfactory. The results
of this mass balance are shown in Table 4.1.

To sum up, the behaviour of an estuary is determined by the inter-

action of the effects of river flow, tides, bed forms and cross-sectional geo-
metry. The freshwater discharge of the Fraser River Estuary undergoes a large
annual fluctuation (see Appendix B) and consequently the bed forms of the var-
ious channels, and possibly their cross-sectional geometries, are in a contin-
ual state of dynamic equilibrium with the freshwater flows and tides. Bearing
this in mind, and the fact that Baines obtained his results some 20 years
ago, and additional dykes, training walls, etc. have been constructed in
the interim, it is impossible for the simple one-dimensional hydrodynamic

model to exactly reproduce the behavior he observed in the estuary. The



TABLE 4.1

TIDALLY AVERAGED MASS BALANCE OF PREDICTED DISCHARGES
FOR JANUARY 24, 1952

CHANNEL PREDICTED VALUES

DISCHARGE IN MAIN STEM _ 36.5
(1000's cfs)

DISCHARGE OUT MAIN ARM 27.8

(1000's cfs) NORTH ARM 2.9

MIDDLE ARM 0.5

CANOE PASS 1.2

TOTAL 32.4

INTERNAL STORAGE PITT SYSTEM .2.9
(1000's cfs) OTHER 0.0
TOTAL 2.9

results shown in Figures 4.4 to 4.1l represent the "best over-all fit"
between predicted and observed water surface elevations and discharges.
As such, the predicted results are close to the limit of resolution of
the one-dimensional hydrodynamic model, or in other words, the predicted

results are the "best" the model is capable of.
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4,2 THE TIDALLY VARYING MASS TRANSPORT MODEL

Because of the lack of field data (see Section 3.2.1), a thorough
verification of the tidally varying mass transport™ model was not possible.
However, the model is computationally stable, free from the effects of
numerical dispersion and sufficiently flexible to be adjusted to field data
when available. It reproduces the advective transport process correctly and
demonstrates good agreement with the standard analytical result for the
dispersion of a slug load. To obtain preliminary notions of the tidally
varying behaviour of the estuary, other peoples' results have been used to
estimate the coefficients of longitudinal dispersion.

4,2,1 Advective Transport, In the tidally varying model, the

advective transport was simulated by a grid of moving points on the advec-
tive characteristics, as described in Chapter 3. This process directly simu-
lates the advective transport occurring in the actual estuary and does not
suffer from numerical dispersion (see Appendix C). The hydrodynamic model
was used to predict the velocities throughout the estuary at half-hour inter-
vals and these velocities were then used to advect the moving points along.
Thus, the tidally varying mass transport model will simulate the advective
transport as accurately as the hydrodynamic model simulates: the velocities,
and the verification of the hydrodynamic mode} can also be regarded as a
partial verification of the advective transport process. The predicted ad-
vective transport was found to be relatively insensitive to inaccuracies as
in the advective velocities. This is illustrated in Figure 4.12 which shows
the advection of a slug load down the Main Arm = Main Stem of two different
model estuaries. The freshwater discharge and quasi-steady tidal conditions

are the same for both estuaries, but the higher friction of one estuary
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distorts its velocity field relative to the velocity field of the other.

The only difference between both sets of results is in the tidal excursion

in the lower reaches of the estuaries, and this is not that significant.
When the tidally varying model was run with zero dispersion,

the dilution and advection of effluent through the junctions was found to

be correct (it being recalled that cross-sectional mixing is assumed to be

complete at the junctions). The discrepancy in the mass balances over any

tidal cycle was found to be less than 6% and was due to the discrete spacing

between the moving points.

4.2,2 Dispersive Transport. A slug load was introduced at

Station No. 50 on the Main Stem to verify the capability of the tidally
varying mass transport model to simulate the dispersion process. The fresh-
water discharge at Chilliwack was 36,500 cubic feet per second and the dis-
persion coefficient was set equal to 500 square feet per second and assumed
constant in x and t. The analytical solution for the dispersion of a slug
load is given by [Fischer, 1966al]

2

: x
exp{-‘ZEEJ

vanet'

where M is the mass per unit area introduced into the flow. For the given
conditions, this reduces to

. - 136 ex'{_'3;5x2}
Ve XP t

where

¢ is the concentration in milligrams per litre;
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t is the elapsed time in hours;
and

X is the distance either side of the mean value in station
co-ordinates (5,000 foot segments).

Figure 4.13 shows the form of the slug inputs for the analytic and tidally
varying solutions. (The effluent discharge in the tidally varying model sim-
ulates continuous discharges, hence the form of the slug input in Figure 4.13).
" The predicted and analytic solutions for the dispersion of the slug load are
shown in Figure 4.14 and the agreement between bothsets of results is good.
The higher peak concéntrations of the analytic solution are due to the higher
initial concentrations of the analytic slug load. It is recalled that the
dispersion process is assumed to be Gaussian in its entirety, and this is
illustrated by the results of Figure 4.14.

The estimation of the coefficients of longitudinal dispersion is
discussed in detail in Appendix F. In obtaining the tidally varying results

of this study, the coefficient of longitudinal dispersion is assumed to be

given by
E= (6+3207 U, 0<t<T
_ } (4.1)
E=ay U, t>"T
and
U, = 0.06u (4.2)
where

E, §, U, and u are the "instantaneous" values of the respective
parameters during the tidal cycle;

t is the time that has elapsed since a "parcel" of the effluent
was discharged into the estuary;

T = b2/sz and is the time scale of lateral mixing (an edge dis-
charge is assumed);
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and

¢ is a measure of the effects of lateral velocity gradients
on the dispersion process and is tabulated in Tablés F.1l.

Equations (4.1) allow for the increasing contribution of the lateral velo-
city gradients on the dispersion process as the effluent spreads across the
section and the variation of the coefficient during the tidal cycle. These
aspects are discussed in Apégndix F and it is seen that that the peak tidélly
varying concentration is quite sensitive to assumptions about the form and
magnitude of dispersion coefficient. Although simplistic,the relationships
of Equations (4.1) are thought to be a reasonable approximation of what
actually occurs in the estuary.

Because the tidally varying mass transport equation has’ been
solved along the advective characteristics, the position of each effluent
"parcel" and the time that it has spent in the estuary is known. (This in-
formation is "masked" in a fixed grid solution). Consequently, the tidally
varying mass transport model can account for time dependent behaviour of in-

dividual "parcels" of effluent, as is assumed in Equations (4.1).

4,3 THE TIDALLY AVERAGED MASS TRANSPORT MODEL

The tidally averaged dispersion coefficient includes the effects
of advective transport due to tidal flow reversal and longitudinal dispersion.
As such, it has no real physical meaning and the verification of a tidally
averaged mass transport model essentially consists of forcing the model to
fit field data. According to Holley et al. [1970] there is no way of making
an a priori estimate of'this coefficient. Ward- and Espey [1971]

suggest using the results of a tidally varying model to estimate the coeffi-
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cient. In the absence of field data, this latter approach has been adopted
to obtain estimates of the tidally averaged dispersion coefficients for
the Fraser River Estuary.

Thomann [1971] lists values of the tidally averaged dispersion
coefficient for various estuaries. They range from 1 - 20 square miles per
day with a mean value of around 10 square miles per day. Figure 4.15 shows
the influence of the tidally averaged dispersion coefficient on the predicted
concentrations for a steady, continuous discharge of a conservative effluent
at Station No. 40 on the Main Stem of the Estuary. (The concentrations are
standardized by dividing by the tidally averaged concentration based on the
total mass of effluent discharged during the tidal cycles and the freshwater
flow at Chilliwack. This is plotted as the Yta' the subscript signifying
that the results have been obtained from the tidally averaged model). The
only significant difference between the results is in the upstream excursion.
The concentration gradients are small downstream of the &ffluent discharge,
and the dispersion has little effect. It is recalled that the results of
Figure 4.15 have been obtained for a conservative effluent. If the concen-
tration of the effluent decays with time, as with BOD, there will be concentra-
tion gradients downstream of the discharge point, and the downstream concentra-
tions will also depend on the values of the tidally averaged dispersion coeffi-
cient (although the downstream concentrations-are not very sensitive to the
values of the dispersion coefficient). The decrease in concentrations around
Stations Nos. 18 and 24 is due totﬁﬁgeffects of the junctions and introduces
an error of about 10% into the predicted concentrations. It is not known why

this effect occurs.
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. Figures 4.16 and 4.17 show the maximum upstream excursion on
the flood flow for effluent released along the various channels. In the
lower reaches of the Main Arm it is assumed that the tidally averaged
dispersion coefficient is equal to 20 square miles per day, and this value
is reduced along the Main Arm - Main Stem according to the results of Figure
4.16. Along the North Arm the tidally averaged dispersion is assumed to
equal 10 square miles per day, and along Pitt River it is assumed to equal
30 square miles per day (the rapid decrease in the upstream excursion along
the Pitt River, as shown in Figure 4.17, is due to the drastic decrease in
advective veloéity in Pitt Lake). Although the absolute values of the tidally
averaged dispersion may not be correct, and this is discussed in Chapter 5,

the relative values along the estuary should be reasonable.
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CHAPTER 5

COMPARISON AND DISCUSSION OF RESULTS

The three models discussed in the last two chapters are now used
to obtainéLpreliminary indication of the significance of tidal effects on
predicted concentrations in the Fraser River Estuary. The flow and tidal
conditions of January 24, 1952 were used in this investigation. These are
typical high tide - low flow conditions and were used in the verification
of the hydrodynamic model. The freshwater discharge at Chilliwack was
36,500 cubic feet per second and the tidal range at Steveston 1l feet. A
conservative effluent and an edge discharge were assumed. The hydrodynamic
model was used to obtain the tidally varying velocities and cross-sectional
areas along the various channels of the estuary. These values, together
with estimated dispersion coefficients, were then used to predict the
tidally Qarying concentrations. The freshwater discharge at Chilliwack, the
tidally averaged areas and estimated dispersion coefficients were used to pre-
dict the tidally averaged concentrations.

Before presenting the results of this investigation, the assumptions
of the mass transport models are briefly recalled: both models are one-
dimensional and predict the cross-sectionally averaged concentrations; the
cross-sectional mixing in both models is assumed to be complete at the Jjunc-
tions; the influence of the saltwedge is ignored in both models; the dispersion
process of the tidally varying model is assumed to be Gaussian in its entirety;
and in the tidally averaged model, all effects of the tides are lumped into the

tidally averaged dispersion coefficient,

- 77
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5.1 THE EFFECTS OF LATERAL DISPERSION

In the initial period before cross-sectional mixing is complete,
there are significant lateral concentration gradients across the estuary,
and the peak cross-sectional concentration will be considerably higher than
the value predicted by either mass transport model. While this effect has
not been quantitatively assessed, it is noted that the tidally varying
mass transport model can easily be adapted to ine an approximate estimate
of this effect. The lateral concentration profile depends on the coefficient
of lateral dispersion, the position of the effluent outfall in the estuary
cross~section and the periocd of time that a "parcel” of effluent has spent
in the estuary [Ward, 1972]. Because the tidally varying mass transport
model has been solved along its advective characterisfics, the position of
each effluent "parcel" and the time that it has spent in the estuary is
known, and the predicted concentrations can be adjusted to account for the
effects of lateral dispersion. (This approach was used in allowing for the
assumed time dependent variation in the coefficient of longitudinal dispersion).

In the lower reaches of the estuary, there are three distinct periods
in each double tidal cycle of 25 hours; a period of strong flood flows; a per-
iod of weak ebb and weak flood flows and a period of strong ebb flows. This
is apparent in Figures 4.4 to 4.10 and the duration of each of the three per-
iods is seen to be approximately eight hours. The cross-sectional mixing is
principally due to the effects of secondary flows, as discussed in Appendix
E, and will be greatest during the periods of strong ebb and flood flows. If
cross-sectional mixing is not complete at the Main Arm - North Arm junction

during the strong ebb flow, or at the Main Stem - Pitt River junction during
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the strong flood flow, the effluent will not be advected through these junc-
tions according to the simple flow balance of the one-dimensional mass trans-
port models. The interaction of the time dependent behaviour of the lateral
mixing process with the advection of effluent through the junctions is very
involved and can only be reliably determined from field studies. If suffi-
cient field data were available, it may be possible to empirically allow for

this effect in the tidally varying model,

5.2 THE INITIAL DILUTION OF EFFLUENT

When effluent is discharged into an-estuary, the tidally varying
flows cause a variation in its initial dilution during the tidal cycle. This
process is described in Section 1.3 and is seen to generate concentration spikes
at times of slackwater. Figure 5.1 shows typical variations in the initial
dilution during the double tidal cyclé at four stations along the estuary.
During a double tide cycle there are four slackwaters in the lower reaches
of the estuary (see Figures 4.4 to 4.10) and the resulting concentration peaks
at Stations Nos., 10, 22 and 102 are apparent., At Station No. 50, the tidal
flows are significantly smaller in relation to the freshwater flow, and their
combined interaction results in only two effective peaks during the double
tidal cycle.

Because of the smaller flows along the North Arm, the tidally
varying concentrations at Station No. 102 are significantly higher than the
values.along the Main Arm - Main Stem. The tidally averaged dilution is also
shown in Figure 5.1, the highér values at Stations Nos. 10 and 102 reflecting

the division of the freshwater discharge between the North Arm and Main Arm.
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The peak tidally varying concentrations in Figure 5.1 are seen to be
about twice the tidally averaged values.

The minimum tidally varying concentration occurs during the
strong ebb and flood flows, and is reflected as the flat sections of the
curves of Figure 5.1. At Stations Nos. 10 and 22, this minimum concentra-
tion is approximately half the minimum value at Station No. 50. This is
due to the presence of Pitt Lake; discharges downstream from the Main Stem~
Pitt River junction are diluted by the combined effeéts of the tidal prisms
of the Pitt system and the Main Stem above the junction, whereas discharges

upstream of the junction are diluted only by the latter.

5.3 PEAK EFFLUENT CONCENTRATIONS

As well as the effects of variation in initial dilution, certain
slugs of water are dosed with effluent several times due to the effects of
tidal flow reversal. This process is described in Séctiqn 1.3 and also gen-
erates concentration spikes. However, the effects of variation in initial
dilution and multiple dosing combine to produce a compound spike whose concen-
tration is higher than that of the individual component spikes. This is well
illustrated by an effluent discharge at Station No. 50. The variation of
velocity at Station No. 50 is shown in Figure E.2; note the slackwaters at
hours 4 and 5 and that the minimal velocity at hour 6. This is the reason
for the increased concentration at hours 4 and 5 and the spike at hour 6 in
Figure 5.1. Now consider the behaviour of the water mass around Station No.
50 during this time. During hour 4 a slug of water moves downstream past the

outfall and is dosed, during hour 5 it moves back upstream and is dosed agaln
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and finally during hour six it moves downstream past the outfall is dosed
yet again, The result of this is that the concentration in this slug of
water is 12 times greater than the tidally averaged value as is shown in
Figure F.2 for the curve with zero longitudinal dispersion. This spike is
composed of the three subspikes generated at hours 4, 5 and 6, their indivi-
dual magnitudes being 3, 3 and 6 as shown in Figure 5.1.

The spikes due to the effects of variation in initial dilution and
multiple 3desing combine because both effects occur around the same phase of
the tide. A particulariy sensitive portioh of the double tidal cycle is the
period of weak ebb and flood flows where there are three slackwaters in the
épéééﬁ;%igiéﬁﬁ hours. The velocities between these times of slackwater are
relativelyui;w (see Figures 4.4 to 4.10).

Once a spike is generated by the effects of variation in initial
dilution, multiple dosing or a combination of both, its peak concentration
begins to be reduced by the longitudinal dispersion process. This is illus-
trated in Figure 5.2 for a steady effluent discharge at Station No. 50. The
compound spike is generated at hour 6 with a peak concentration that is 11
times greater than the tidally averaged value., (The decrease from the pre-
vious value of 12 is due to the effects of dispersion on the subspikes gen-
erated at hours 4 and 5). However, as the spike is advected down the estuary,
the dispersion process reduces the peak concentration as shown. The results
of Figure 5.2 seem to indicate that mass is not conserved since the area under
the spike is not constant. This is only an apparent effect due to extrapolating
the doncentrations off the advective characteristicé onto the standard 5,000

foot space grid, as described in Section 3.2, In actual fact, the initial

base width of the spike is only 500-800 feet, which is too fine to be resolved
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by the fixed grid., (Note that the spike is correctly resolved on the char-
acteristics).

The most significant effects of variation in initial dilution
and multiple dosing occur in the first 1-2 tidal cycles after a "parcel"
of effluent has been discharged into the estuary. This is due to the high
initial concentration gradients of the spike and assumed time-dependent
increase in the coefficient of longitudinal dispersion (see Appendix F).
These aspects are apparent from Figure 5.2 and are also illustrated in Appendix
F.

For the steadybdischarge of a conservative effluent, the peak
tidally varying concentration was found to be from 1 to 10 times greater
than the value predicted by the tidally averaged model. These results are
summarized in Table 5,lﬁand were obtained for a single effluent discharge
at the designated station. (The peak tidally varying discharge occurs at
the discharge point). The results of Table 5.} are sensitive to the magni-
tude and assumed temporal variation of the coefficient of longitudinal dis-
persion, as discussed‘and illustrated in Appendix F. In obtaining the results
of Table F.l, the coefficient of longitudinal dispersion was assumed to be
as given in Equation (4.1l). The peak cross-sectional concentration will be

significantly higher than these values.

5.4 UPSTREAM EFFLUENT TRANSPORT
In a tidally varying mass transport model, effluent is transported
upstream by the effects of dispersion and advection during tidal flow . reversal.

Because of the large tidal flows, advective transport is the more important
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component for the Fraser River Estuary, as is apparent from Figures 4.16

and 4.17. 1In a tidally averaged model; upstream transport is by the tidally
averaged dispersion process. Figures 5.3 and 5.4 show the predicted tidally
varying and tidally averaged concentrations at Stations upstream from effluent
discharges. 1In all cases, the tidally averaged value is significantly less
than the tidally varying values. A better fit between the results could be
obtained by increasing the values of the tidally averagedidispersion coeffi-
cient.

The results of Figure 5.4 are for simultaneous effluent discharges
at Stations Nos. 10 and 14. Once again, the effects of variation in initial
dilution and multiple dosing cause a concentration spike at both discharge
points, spike A being generated at Station No. 10 and spike B at Station No.
14, Note that between hours 6 and 17 the tidally varying concentration at
Station No. 6 is zero due to uncontaminated seawater moving upstream on the
flood tide. The concentration boundary condition at the sea was assumed to
be zero, a more realistic boundary condition being possibly as shown. The
tidally averaged concentration is not a good indication of the tidally
varying response upstream of Station No. 14, between the two stations or

downstream of Station No. 10.

5.5 CHANNEL INTERACTIONS

Consider now the effect of an effluent discharge in one channel
on the water quality in another channel. The significance of this effect
will depend on the proximity of the effluent discharge to the junction. If

the discharge point is sufficiently far upstream from a junction, the effluent
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will be dispersed both laterally and longitudinally by the time it reaches
the junction. Under these conditions, the tidally averaged concentration
in both channels downstream of the junction will be a good measure of the
tidally varying §alues. Of more interest is the case where the effluent
discharge is downstream from a junction, This is illustrated in Figqure 5.3
for interactions between the Main Arm and North Arm and between thé Main
Stem and Pitt River. Consider the effluent discharged at Station No. 22:

at hour 8 a spike is advected up Pitt River past Station No., 144 on the
strong flood flow and returns past Station No. 144 at hour 23 on the strong
ebb tide, its concentration being reduced by the effects of dispersion dur-
ing its resiaence in Pitt River. For the two cases of Figure 5.3, upstream
advection causes a slug of contaminated water to be fed into the other
channel during each double tide cycle of 25 hours. The zero concentration
in the North Arm at hour 22 marks the end of one slug-and the beginning of
another. 1In both cases, the tidally averaged concentration is not a good
indication of the tidally varying values, although as remarked in a previous
section, the fit can be improved by increasing the tidally averaged dispersion

coefficient.

5.6 SUMMARY

In this chapter the results from the tidally varying and tidally
averaged mass transport models have been compared to obtain a preliminary
indication of the significance of tidal effects on the predicted concentra-

tions in the Fraser River Estuary.
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The tidally varying flows cause a variation in the initial
dilution of a discharged effluent. This, and the effects of tidal flow
reversal, indepéndently génerate concentration spikes. Because both effects
occur around the same phase of the tide, the period of weak flood and ebb
flows in each double tidal cycle being especially sensitive, the individual
spikes combine:rto generate a spike whose concentration was estimated to be
from 1 to 10 times greater than the predicted tidally averaged concentration.
Because of incomplete lateral mixing, the peak cross-sectional concentration
will be considerably higher than these values. The effects of concentration
spikes are most sigﬁificant in the first 1-2 tidal cycles after their gener-
ation. After this period of time, the longitudinal dispersion is due to
the effects of lateral concentration gradients and the concentration of the
spike is rapidly reduced.

The moveﬁent of water through the Fraser River Estuary is a com-
plex process that is influenced by the large tidal effects, the significant
freshwater discharge (even at low flows), the various channels and junctions
of the estuary and the presence of Pitt Lake. If an effluent discharge is
sufficiently far upstream from the junctions, the spikes will be flattened
and the effluent dispersed over the cross-section by the time it is advected
to the junction. Under these conditions, the predicted tidally averaged be-
haviour at and downstream of the junction is a good estimate of the tidally
varying behaviour, and both should be a reasonable approximation to the actual
behaviour in the estuary. Effluent discharges in the Main Stem above Station
No. 45 are expected to behave in this manner. Throughout the lower reaches

of the estuary,including Pitt River, the predicted tidally averaged behaviour
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is not a good indication of the tidally varying behaviour. Because of the
effects of incomplete lateral mixing and junctions; as discussed in Section
5.1, the actual response of the estuary may be somewhat different from the
predicted tidally varying behaviour.

By adjusting the tidally averaged dispersion coefficients, it is
possible to obtain a "best-fit" between the predicted tidally varying and
tidally averaged concentrations. However, since the tidally averaged dis-
persion coefficient has no real physical meaning, there is probably no
unique set of values for the estuary. Rather, the best fit dispersion co-

efficients will vafy with the position and number of effluent discharges.



CHAPTER 6

SUMMARY AND CONCLUSIONS

Mass transport models are commonly used to investigate situations
of existing or potential water quality conflicts in estuaries. Such models
are used to predict the concentration of the offending substance through-
out the estuary and are essentially of two types: those that correctly
allow for tidal effects and those that do not. While tidally varying
models correctly allow for the effects of the tides, their development
and application involves significantly more work than for their tidally
averaged counterparts. In tidally averaged models, all tidal effects are
lumped into the tidally averaged dispersion coefficient, and while such
models are relatively easy to develop and apply, they give no indication
of the significance of tidal effects on the predicted concentrations. 1In
this study, both a tidally averaged and a tidally varying mass transport
model have.been.idévelgpéé?andnappliéd‘to the Fraser River Estuary. The -
principal object of this study wés to assess the ability of the tidally
averaged model to describe the tidally varying concentrations. This was
investigated by comparing the predicted concentrations from both models for
assumed effluent discharges. The tidally averaged model used in this study
is due to Thomann [1963]. The'ti@élly Vé;ying model was developed from
first principles, and during its development. it was necessary to consider

the problems of numerical dispersion, stability, the significance of lateral

92
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dispersion and the time dependent behaviour of the coefficient of longi-
tudinal dispersion during the initial period before cross-sectional mixing

is complete.
The principal conclusions to emerge from this study are:

1. Numerical dispersion can be eliminated from
the finite difference solution of mass transport equations
by solving the equations along the advective characteris-
tics. '

- 2, The stability requirements of explicit finite
difference schemes have been shown to be related to the
speed of information propagation. Advective instabili-
ties are eliminated by solving the mass transport equa-
tion along the advective characteristics.

3. Existing theories have been shown to apparent-
ly underestimate the significance of secondary currents on
the lateral mixing process. Secondary currents have been
explained in terms of the generation and advection of vor-
ticity, and estimated values show good agreement with
limited field data. Revised estimates of lateral disper-
sion indicate significantly faster lateral mixing.

4, 1If the mass transport equation is solved along
the advective characteristics, the time dependent behaviour
of the coefficient of longitudinal dispersion during the
initial "period before cross-sectional mixing is complete
can be taken into account. Also, a one-dimensional equa-
tion can be used to estimate lateral concentration profiles.

5. The effect of the tide has been shown to intro-
duce "spikes" into the concentration profile along the estu-
ary. These spikes are caused by variation in the initial
dilution of a discharged effluent and multiple dosing due
to tidal flow reversal.

6. Significantly more work and resources are in-
volved in the development and application of a tidally
varying mass transport model than for a tidally averaged
model. The time required for development, the amount of
field data required for verification and the amount of
computer time required to analyze an identical situation
is estimated to be an order of magnitude greater for the
tidally varying model as compared to the tidally averaged
model.
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7. The tidally averaged concentrations were
not found to be a good indication of the tidally vary-
ing response of the Fraser River Estuary. The peak
cross-sectionally averaged concentration predicted
by the tidally varying model was found to be from one
to 10 times greater than the tidally averaged values.

The conclusions are now discussed in detail. In this study
two mass transport models and a hydrodynamic model were developed and
applied to the Fraser River Estuary, the hydrodynamic model being used to
predict the temporal variation in the parameters of the tidally varying
mass transport model. Finite difference methods have been used to solve
the wunderlying partial differential equations of all three models. Impor-
tant aspects of this type of solution are the problems cof numerical dis-
persion and stability. There has been some confusion in the literature
over the origin and means of controlling numerical dispersion. 1In this
study, numerical dispersion has been shown to result from solving the mass
transport equation over a fixed space grid rather fhan along the more fund-
amental advective characteristics; if the equation is solved along the ad-
vective characteristics, numerical dispersion is eliminated. As applied,
Thomann's solution is steady state and has no numerical dispersion because
it is independent of time. 1In addition to the problem of numerical disper-
sion, there is also the problem of stabilify in explicit finite difference
schemes. In Appendix C this is seen to be related to'the speed of infor-
mation propagation along the chafacteristics of the respective partial dif-
ferential equations. Stability requirements géverﬁ%the relative size of the
space and time increments in the hydrodynamic equations and in the dispersion
step of the tidally varying mass transport equatibn. There is no stability

requirement for Thomann's solution as it is independent of time. However,
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théere is a limit on the relative magnitudes of the tidally averaged advec-
tive and dispersive transport processes, and if violated, the concentration
in the offending segment will become negative.

There are a number of advantages to solving the tidally varying
mass transport equation along the advective characteristics; it results in
a direct simulation of the advective transport occurring in the estuary,

a useful separation of the advective and dispersive transport processes

is achieved, and the position of each separate "effluent parcel" and the
time that it has spent in the estuary is known. This last piece of infor-
mation has been used to account for an assumed ' time-dependent increase in
the coefficient of longitudinal dispersion in the initial period before
cross-sectional mixing is complete, and also allows the tidally varying
ﬁass transport model to be adapted to predict lateral concentration profiles.
A most useful feature of solving the equation along‘théxadvective charac-
teristics is that additional moving points can be placed on the character-
istics to more accurately define regions of rapid variation in concentra-
tion, such as occur at effluent outfalls at times of slackwater, and un-
necessary moving points can be removed from regions of slow variation. The
concentration spikes generated by the effects of variation in initial dilu-
tion and multiple dosing are initially very sharp and only some 500 - 800
feet wide at the base. To achieve adeguate resolutdon of such a spike

with a fixed grid solution would require a space grid approximately 10 times
finer than the standard 5,000 foot space grid used in this study.

The advantages of solving the mass transport equation along the
advective characteristics must be balanced against the somewhat untidy "book-

keering'of solution:results inherent to characteristic: methods of solution.
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In the tidally varying model of the Fraser River Estuary, this book-keeping
is complicated by the multi-channeled nature of the estuary and the inter-
actions of these channels at their junctions. But while awkward, the book-

keeping of results was not excessively difficult.

Of the three models used in this study, only the hydrodynamic
model has been verified with any degree of thoroughness. Because the tidally
averaged dispersion coefficients have no real physical meaning, a tidally
averaged model is forced to reproduce measured field results rather than
being rigorously verified. Lack of field data prevented this, and also pre-
vented the complete verification of the tidally varying mass transport model.
However, all three models are sﬁfficiently flexible to simulate the range of
flow and tidal conditions of the Fraser River Estuary and can be adjusted to

fit field results when available.

Essentially, the effect of the tides is to cause spikes in the
concentration profile along the esﬁuary. In a one-dimensional model, the
tidally varying flows cause a variation in the initial dilution of a dis-
charged effluent, the concentration being greatest at times of slackwater,
This generates spikes in the concentration profile along the estuary. The
effects of tidal flow reversal result in certain slugs of water being dosed
with effluent several times, and this also generates concentration spikes.
Because of the asymmetric nature of the tides there is a period of weak
flood and ebb flows once in each double tidal cycle. During this time there
are three slackwaters and the velocities are low, and the effects of variation

in initial dilution and multiple dosing interact to form a compound spike
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whose concentration is significantly greater than that of the component
spikes.

After a spike has been generated, its concentration is reduced
by the effects of lateral and longitudinal dispersion. The initial
longitudinal dispersion after a "parcel of effluent" has been discharged
into the estuary, is due principally to the effects of vertical velocity
gradients. However, when the effluent is mixed over the cross-section,
lateral velocity gradients dominate its longitudihal dispersion. To .account
for this effect, it was assumed that the coefficient of longitudinal dis-
persion increased between these two extremes as described in Appendix F.
Also, the coefficient of longitudinal dispersion was assumed to vary
directly as the absolute velocity. While simplistic, these variations
are thought to be a reasonable approximation of what occurs in the estuary.
The peak tidally varying concentration at the point of effluent discharge
was estimated to be from one to 10 times greatexr than the value predicted
from the tidally averaged model., Because the effluent is not uniformly
distributed over the cross-section, the peak lateral concentration will be
much greater than these values. After a spike has been in the estuary for
several tidal cycles, its concentration has been greatly reduced by the

longitudinal dispersion process.

In the estuary with relatively short residence times such as
the Fraser, lateral mixing will be of considerable importance. For example,
in the lower reaches of the estuary, the residence time is only 2-4 tide
cycles, and effluent may not be completely mixed over the cross-section
even when it leaves the estuary. In the initial period before cross-sectional

mixing is complete, the peak lateral concentration is significantly greater
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than the cross-sectional averaged value predicted by the tidally varying
model. However, the model can be adapted to predict lateral concentration
pfofiles as was discussed previously. If cross-sectional mixing is not com-
plete at a diverging junction, the effluent may not be advected through the
junction according to the simple flow balance of the mass transport models.
To account for this effect in a model would require considerable field data.
Because of the influence of secondary currents, cross-sectional mixing is
thought to be relatively rapid in the Fraser River Esfuary. Secondary flows
have been tentatively explained in terms of the generation and advection of
vorticity, and on the basis of limited float studies, show good agreement
with values measured in the estuary.

To sum up, the movement of water through the Fraser River Estuary
is a complex phenomenon that is affecfgd by the tides, the freshwater dis-
charge, the various channels and junctions of the estuary and the presence

of Pitt Lake. The advective and dispersive transport processes that distribute

én effluent throughout the. water mass of the estuary are similarly complex,
and‘in pa?ticular are significaﬁtly affected by the tides. A tidally aver-
aged model, while simpler to develop and apply to the estuary, does not give
a good indication of the tidally varying concentrations. This study does

not pretend to solve the total problem of calculating effluent concenﬁrations
in an estuary as complex as the Fraser. Rather, it has concentrated on deve-
loping stable mathematical models free from numerical dispersion to allow

a preliminary investigation of the significance of tidal effects. In addi-
tion an assessment ismade of the importance of lateral dispersion, and it

is seen that with simple modifications, the tidally varying model can at

least partially account for the effects of lateral dispersion.
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APPENDIX A

DERIVATION OF THE ONE-DIMENSIONAL MASS TRANSPORT EQUATION

A.l GENERAL

The mass transport processes of advection, turbulent diffusion
and molecular diffusion transport and distribute any dissolved substance
throughout the water mass of a river or estuary. (Advection is also re-
ferred to as convection or forced convection in the literature). At theb
time and space scales of interest, the contribution to mass transport by
molecular diffusion is insignificant‘compared to the other processes, and
is not congidered further. The inability of the advective or bulk velocity
to describe the distribution of velocity over a cross-section of the fiver
or estuary makes it necessary to postulate another transport mechanism,f"“
namely dispersion. The mechanisms of advective and dispersive transﬁort
are described in Sections A.2 and A.3.

The one-dimensional mass transport equation is derived by taking
a mass balance of dissolved'substance over an element cross-sectional
slice of the estuary. Dissolved substance is transported into and out of
this volume by the processes of advection and dispersion, and these processes,
together with any source-sink effects that the substance undergoes within the
water mass, determine its concentration within the elemental volume.

The only spatial variation that is admitted in the one-dimensional
mass transport equation is a longitudinal variation along the estuary. The

concentration, longitudinal velocity, depth and dispersion coefficient are
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all assigned their average cross-sectional values (c, u, § and E respec-
tively). For the sake of brevity, the average cross-sectional value of
any parameter will be referred to as its "mean" value. The high fre-
quency turbulent fluctuations are assumed to have been averaged out of
the mean values u and c.

Figure A.l shows an elemental cross-sectional slice of an
estuary. The direction of the co-ordinate axes x, y and z are as shown,
the positive x axis pointing seawards and the positive y axis vertically
down. Note that the co-ordinate axes are Eulerian, or fixed in space.

The flow is assumed to be both.unsteady and non-uniform so that E, G, §, E
and the cross-sectional area A vary 5oth with time (t) and longitudinal

distance (x). The width of estuary b is assumed to vary with x only. It
is assumed that the longitudinal variation in all these pafameters is con-

tinuous.

A.2 LONGITUDINAL ADVECTIVE TRANSPORT

The distribution of longitudinal velocity in an estuary is
three-dimensional. Variations in the longitudinal direction occur due
to changes in the cross-sectional area of the estuary, and over any cross-
section, variations in the lateral and vertical directions occur due to
the frictional influence of neighbouring fluid layers with each other and
the solid bed. In a river or estuary, the lateral distribution of longi-
tudinal velocity ié modified by the presence of bends, and in an estuary,
the vertical distribution of longitudinal velocity is modified by the

additional influence of salinity.
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In one-dimensional mass transport models, it is:assumed that
a cross-sectional slice or slug of water moves along the river or estuary
at the mean cross-sectional velocity u, The transport of dissolved sub-
stance in this slug of water is termed longitudinal advection.

The advective transport in a river is always in the downstream
direction. 1In an estuary, the net advective transport over a tidal cycle
is in the downstream direction because of the effect of freshwater inflow.
However, because of flow reversal due to tidal effects, the advective
transport will be in the upstream direction over portion of the tidal
cycle.

The mass of dissolved substance (M) advected through any cross-

section of a river or estuary in time 8t is given by
M = uAc §t,

and thus the net mass (Mnet) remaining in the elemental volume of Figure

A.1 due to advective transport during time &t is

cléxst (a.1)

=

[

|
e
%]°

net

A.3 LONGITUDINAL DISPERSIVE TRANSPORT

Advection accounts for the transport of dissolved substance in
the longitudinal direction due to the assumed uniform distribution of the
velocity over the cross-section, u.. The vertical and lateral velocity
~gradients that exist ovef any cross-section resﬁlt in small "parcels" of
water preceding and lagging the line of advective advance, as defined by

u. This is illustrated for a vertical velocity profile typical of a river
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in Figure A.,2., It is seen that a slug input from a line source is not
advected downstream as a’slug load, but is spread around the line of mean
advance. The effect of this is to reduce the peak concentration and flatten
the concentration gradients, as predicted on the basis of advection alone.

Superimposed on the effects of velocity gradients is the process
of turbulent diffusion. The mass transport associated with the turbulent
velocity fluctuations results in a further flattening of the concentration
gradients. The effect 6f turbulent diffusion over the vertical section "AA"
is also illustrated in Figure A.2. The combined effects of velocity gradients
and turbulent diffusion in spreading the dissolved substance around the line
of advective advance (u) is termed longitudinal dispersion. Unless .otherwise
qualified, the terms "advection" and "dispersion" will be taken to mean ad-
vection and dispersion in the longitudinal direction.

It is necessary to represent the dispersion process mathematically
if it is to be included in the mass transport equation. Holley [1969a]dis-
cussed the underlying similarity between the mechanisms of molecular diffu-
sion, turbulent diffusion and dispersion. Both molecular diffusion [Bird,
et al., 1960] and turbulent diffusion in homogeneous isotropic free turbu-
lence [Hinze, 1959] can be represented mathematically by a Fickian diffusion
equation. Taylor [1954] showed that after a suitable time had elapsed, the
longitudinal dispersibn in flow through a pipe can also be represented by a
one-dimensional Fickian diffusion equation. Elder [1959] found a similar
result to hold in model experiments of open channel flow, Fischer [1966al
illustrated that in the initial non-Fickian period following the release of
tracer, the effects of velocity gradients outweighed the effects of turbu-

lent diffusion, and led to a skewed distribution of mean concentration in
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the longitudinal direction, as is illustrated in Figure A.2. According

to Fick's Law, the distribution of concentration should be Gaussian, but
Fischer [1966a] has shown that this only occurs after cross-sectional mixing
has reduced the spatial variation of concentration over the cross-section to
a value much smaller than the mean cross-sectional value. 1In deriving and
applying the one—dimensionai mass transport equation, the dispersion process
in its entirety is assumed to be Fickian.

In actual fact, the longitudinal dispersion of effluent in a
river or estuary is a complex phenomenom that is initially controlled by
the effects of vertical velocity gradients. As turbulent diffusion and
secondary flows distribute the effluent mass over the cross-section, the
lateral velocity gradients exert an increasing influence on the longitudi-
nal dispersion process. The lateral mixing due to turbulent diffusion and
secondary flows is discussed in Appendix E and an estimate of the coeffi-
cients of longitudinal dispersion of the‘estuary is given in Appendix F. (The
. effects of vertical and lateral velocity gradients are also discussed in
Appendix F). When the cross-sectional mixing is essentialiy complete (and
the dispersion process is Fickian) the effects of lateral velocity gradients
dominate the longitudinal dispersion and are of the ordér of 20 - 100 times
greater than the effects of vertical velocity gradients [Fischer, 1966al.
In an estuary, the dispersion process is modified by the additional influence
of salinity and tidal effects. The influence of tidal oscillations on the
dispersion coefficient has been investigated by Holley et al. [1970], and
their méthod has been used in estimating the dispersion coefficients for the
Fraser River Estuary in Appendix F.

According to Fick's law of diffusion, the net mass of dissolved
substance transported through unit cross-sectional area in time §t is given

by [Bird et al., 1960]
M = -E—6t . (A.2)
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the minus sign arising because the net transport is in the direction of
decreasing concentration. E is the dispersion coefficient, and as is
expected from the previous discussions of the dispersionprocess, depends
on the distribution of velocity over the cross-section and the coefficient
of turbulent diffusion (see, for example, Taylor [1954]; Fischer [1966a],
[1967] and Holley et al. [1970].

According to equation (A.2), the net mass remaining in the

elemental volume due to dispersive transport during time &t is

9 - ode
] Mo = s;[AEax}@x,étz, (a.3)

A.4 SOURCE-SINK EFf‘ECTS

The source-sink terms account for any processes that result in
the production or removal of the dissolved substance from the water body.
In the BOD-DO system, source processes include reoxygenation by atmospheric
oxygen dissol¥ing in the water and the oxygen produced photosynthetically
by aquatic plants; the sink processes include oxygen uptake by bacteria
breaking down the substances exerting the BOD and oxygen uptake for aquatic
plant respiration.

The source-sink processes that a substance undergoes in thé aqua-

. PR

~E§c*gpyitqﬁhent are specific to the particular substance, and depend on the

physical, chemical and biological processes that the substance undergoes in
the particular aquatic environment. Consequeptly, source-sink effects are
included in the mass transport equation in a general manner. Suppose that
the particular substance is undergoing n processes that result in its produc-

tion or removal from the water body. If the rate of production per unit
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.th . .
volume of water due to the i process is given by Si’ removal processes
being regarded as negative prcduction, then the net mass of substance pro-
duced in the elemental volume in time &t is
n _ ‘
M = ASxStE S : (r.4)
net
i=1
A.5 TEE ONE-DIMENSIONAIL MASS TRANSPORT EQUATION

The mass of dissolved substance contained in the elemental

volume is
M = Adxc

As a result of the advection, dispersion and source-sink effects that
occur in time &t, the change in mass of dissolved substance in the ele-

mental volume is
M = 2--{Ac_:}axst (A.5)
ot *

summing eguations (A.1), (A.3) and (A.4) and substituting into equation

(A.5) gives

- n

g—‘{ 3} = ———{Auc] + --[AE S} +az s, (A.6)
t i=1 i

Expanding the first two derivatives and using the equation of conservation

of fluid mass in the form

3 - A
s rul +5p =0,
equation (A.6) reduces to
dc de 1 c
3t Uax * A x{AE b+ Z 55 if ®.7)

i=1
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the one-dimensional mass transport equation for unsteady non-uniform
flow. The terms on the right-hand side of Equation (A.7) shall be re-
ferred to respectively as the advectiwve, the dispersive and the source-

sink terms.

A.6 THE LAGRANGIAN FORM OF THE ONE-DIMENSIONAL MASS TRANSPORT EQUATION

Equation (A.7) was derived relative to an Eulerian co-ordinate
system (xyz) that is fixed in space. To transform the equations relative
to a co-ordinate system that is advected along at the mean velocity u (a
Langrangian co-ordinate system), it is necessary to transform the Eulerian
co-ordinates according to

ax

& -3 (A.8)

Relative to the curve (A.8), the time rate of change of concentration is

given by (see Section 'C.l)

de _ 3¢ , rdc
atc ot Yax

and thus, relative to Langrangian co-ordinates, Equation (A.7) becomes

dc

1 3¢
i " & —{AE—} + L s (p.9)

3
ax 9x i

Equation (A.8) is the characteristic curve of advective information
propagation, and is discussed further with regard to numerical dispersion and
stability in Appendix C. Equation (A.7) and Equations (A.8) and (A.9) repre-
sent the same situation but from different viewpoints; in Equation (A.7) the

"observer" is stationed on the bank of the river or estuary and observes changes
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in the concentration as the water flows past him, whereas in the latter
two equations, the observer is advected along with the water mass [Equation

(A.8)] anhd observes changes in the water mass around him [Equation (A.9)].

If dispersive transport is ignored, Equation (A.8) reduces to

dc

dt

e
n

which is the original one-dimensional mass transport equation developed by
Streeter and Phelps [1925] to predict the effect of substances exerting a
bioclogical oxygen demand (BOD) on the concentration of dissolved oxygen (DO)
in a river. 1In their model, n was equal to two; the only source of DO was
reaeration through the water surface and the only sink was the satisfaction

of the BOD.



APPENDIX B

A DESCRIPTION OF THE FRASER RIVER ESTUARY

B.1l GENERAL

The Fraser River is the largest and most important river in
British Columbia. Its drainage area of 90,000 square miles is shown in
Figure B.l and occupies almost one-quarter of the Province. The river
rises .inh.'the Rocky Mountains near Jasper and flows north-west for some 330
miles. - North of Prince George the river changes direction and flows south
Some 400 miles to Hope. At Hope the river emerges from the Coast Mountains
and flows westward through the Fraser Valley for almost 100 miles to enter
the Strait of Georgia at Vancouver. It is this latter section of the river,
from‘Hope to Vancouver, that is of direct concern to this thesis, and dis-

cussion is now restricted to it.

B.2 THE LOWER FRASER RIVER SYSTEM

The Lowexr Fraser River from Hope to Vancouver is shown in Figure
B.2. A convenient way of describing this section of the river is in terms
of the factors that affect the flow. These factors include: (1) the var-
ious cthannels of the river system; (2) the tides in the Strait of Georgia;
(3) the river discharge; and (4) saltwater intrusion.

B.2.1 Channels of the River System. The Fraser River deposits

20 - 25 million tons of sediment into the Strait of Georgia annually :[Pretious,

1972} and has built a large delta with a seaward perimeter of some 30 miles.
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The delta is shown in Figure B.3 and it is seen that the river has cut a net-
work of channels through it. At New Westminster the river trifurcates into
the Main Arm, which enters the Strait off Steveston; Aﬁnacis‘Chqnngz, which
flows around the back of Annacis Island to reconnect with the Main Arm; and
the North Arm, which enters the Strait near Point Grey. Annacis Channel is
not treated as a separate channel, but as part of the Main Arm. Around Sea
Island, the North Arm divides to form the Middle Arm. North-west of Ladner,
a complex of shallow channels and sloughs (backwater areas) interconnect
with each other, the three most important channels being Ladner Reach, Sea
Reach and Canoe Pass. This area# drains through Canoce Pass to provide the
Main Arm with another connection to the Strait of Georgia. The percentage
of river discharge that enters the Strait through the Main Arm, the North
Arm, the Middle Arm and Canoe Pass is approximately 85 per cent, 5 per cent,
five per cent and five per cent respectively [Goldie, 1967). This is only a
general indication of the percehtagé distribution of flows, the summer dis-
tribution of flows probably differing from the winter distribution.

The section of river between New Westminster and Hope is referred
to as the Main Stem. Of the various islénds present in the Main Stem (see
Figure B.é), only Douglas and Barnston Islands form significant additional
channels. The channels at the "back" of the other islands are‘treated as
part of the Main Stem.

Of the various major lakes that drain into the Main Stem (see Fig-
ure B.2), Pitt Lake is of particular significance. The surface elevation of
the lake is affected both by the tides in the Strait of Georgia and the fresh-

water discharge of the Fraser (the discharge of Pitt River into the north end
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of the lake is negligible compared to the Fraser discharge. At low freésh-
water flows in the Fraser, the maximum tidal range of the lake is several
feet, and as the lake has a surface area of some 25 square miles, the volume
of‘water stored in the lake oﬁ the flood tide and released to the Fraser |
on the ebb tide is very large (see Table B.l). The large reverse delta at
the entrance to Pitt Lake (see Figure B.2) 1is evidence of the large flows
that enter the lake. The Pitt River - Pitt Lake system obviously consti-
tute an important channel of the lower Fraserysystem and will be referred
to as the Pitt System. The other lakes draining into the Main Stem are of
sufficient elevation to be independent of tidal influence and freshwater
discharge in the Fraser.

Thus, the lower Fraser RiQer system consists of the following

seven principal channels:

1. Main Arm - Main Stem
2. North Arm

3. Middle Arm

4. Canoe Pass

5. Pitt System

6. Douglas Channel, and
7. Barnston Channel.

To some extent the channel geometries are determined by the many - ..
dykes, jetties and training walls that have been constructed in the lower
Fraser system. Each Spring the Fraser Valley is subject to possible flooding
during the freshet (time of high runoff due to snowmelt), and an extensive

system of dykes has been constructed for flood protection. Ocean-going ships
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use the Main Arm to enter and leave New Westminster, an overseas shipping
terminal. To maintain the shipping‘éhénﬁél} a number of dykes and training
walls have been constructed to increase local scour.

Cross-sectional areas, depths and widths were evaluated at the net-
work of stations shown in Figure B.4. The stations are 5,000 feet apart,
except in the deeper water of Pitt Lake where the spacing has been increased
to 15,000 feet. (This network of stations is used in the finite difference
solutions of the hydrédynamic equation and the tidally varying and tidally
averaged mass transport equations, as is discussed in Chapter 3). Soundings
charts supplied by the Department of Public Works of Canada were used to deter-
mine the channel geometries. A typical cross-section of each of the seven
channeis is shown in Figure B.5. Widths and depths are recorded in feet,
and depths are relative to local low water. Figures B.6 to B.8 show the var-
iation in depths, widths and cross-sectional areas along the five major
channels. 1In an attempt to estimate the advective area (effective area of
discharge), it was arbitrarily assumed that any depth of section less than
10 feet deep did not contribute to the advective area. This is illustrated
for Station No. 35 in Figure B.5, where areas less than 10 feet deep are
shown hatched. The storage width of section is AB, but the advective width
is only CD. The advective area was used to determine the advective hydraulic
radius (which is greater than the hydraulic radius determined from the gross
area of section). From Figures B.6 to B.8, it is seen that the advective
area is not much smaller than the gross area, but the advective width is
often considerably sméller than the storage width. The river sections are
essentially wide and shallow and the terms hydraulic radius and mean depth

are now used synonymously.
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B.2.2 Tides in the Strait of Georgia. The Strait of Georgia is

tidal, being cpnnected to the Pacific Ocean by the Juan de Fuca Strait (see
Figure B.l). The tides are of the mixed type characteristic of much of the
coast of Northwest America. The tidal range at Steveston for mean and large
tides is respectively 10 feet and 15 feet and tYpical tides a; Steveston are
shown in Figure B.9.

The effects of the tides on the flows in the Fraser system depends
both on the tidal range at Steveston and the river discharge, This is illus-
trated in Figure B.10 [after Baines, 1953] which shows the local low and high
tide envelopes of the Main Arm and Main Stem for discharges of 27,000 and
250,000 cubic feet per second at Hope. The greater influence of the tide
during low flow conditions is readily apparent, and it is seen that the upstream
limit of tidal influence is aroundvchilliwack, some 60 miles from Steveston.
The section of the Fraser system from the Strait of Georgia to Chilliwack will
be referred to as the Fraser River Estuary, although it is noted that the
Fraser is more properly designated as a tidal river [Callaway, 1971].

During low flow-high tide conditions, flow reversal occurs in the
Fraser Estuary. The cubature study of discharges by Baines [1952] predicted
flow reversai at Mission, some 50 miles upstream of Steveston.

Downstream of Chilliwack there is a network of tide gauging stations,

qumeaequipped with continuous recorders and others only recording the maximum

g q~?h§¢mi?imum levels during each 24 hour period. The position and type of
fégﬁéefat‘each station is shown in Figure B.1ll.

oy 4

B 2 3 River Discharges. The variation of the mean’monthly dls—:

« \’.

charge at Hope, as calculated for the period 1912- 1970, 15 ﬂ[

B.12., The mean monthly flows vary from a summer maximum.of - 250 000 cfs durlng

- .
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fréshét to a winter minimum of around 30,000 cfs. Recorded extremes at Hope
are 536,000 cfs on May 31, 1948 and 12,000 cfs on January 8, 1916.

The drainage area of the Fraser River below Hope is some 6,000
square miles, and between Hope and the Strait of Georgia various other rivers
flow into the Fraser system, the most important being the Harrison River
(see Figure B.2). The effect of this additional inflow is to increase the
flow at New Westminster by some 15 per cent ovef the flows at Hope during
the freshet, and up to 50 per cent during winter.

It should be apparent that the Fraser River Estuary is somewhat
unusual, being characterized by both high river discharges and large tidal
effects. This is illustrated by a calculation of the tidal prism and total
river discharge between the times of low-low-~water and high-high-water for the
tidal cycles of January 11 and June 16, 1964. These tidal cycles and the
freshwater discharges are shown in Figure B.9. The volumes of the tidal

prisms and river flows are shown in Table B.1l.

B.2.4 sSaltwater Intrusion. The salinity of the Strait of Georgia

is essentially some 30 parts per thousand (ppt), and under low river discharge
conditions saltwater intrudes a considerable distance into the four channels
that emerge from the delta. The saltwater intrusion into the Main Arm is
illustrated in Figure B.13 [data from Waldichuk, et al., 1968], which shows
the salinity profile at four stations along the Main Arm. (Note: the station
designation in Figure B.1l3 is fhat of Waldichuk, et al., and should not be
confused with the station designation in Figure B.4). The position of the
stations, the tide at Steveston and the time of tide the observations were
taken are also shown. The four observations closely occur around the same

phase of tide and can be regarded as "simultaneous." The freshwater discharge



TABLE B.1

RIVER FLOW VOLUMES AND TIDAL PRISMS ON JANUARY 15 AND JUNE 16, 1964
(Volumes Calculated for Time Between Low-Low-Water and High-High-Water)

TIDAL PRISM

RIVER FLOW TIDAL, RANGE RIVER FLgW g RIVER FLOW
DATE (¢fs) (feet) vol. (ft") (ft7) TIDAL PRISM
8 8
JANUARY 15 53,500 10.4 12 x 10 66 x 10 0.18
8 8
JUNE 16 463,000 7.6 104 x 10 25 x 10 4.2

GET
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at Hope is 57,000 cfs and it is apparent that under these freshwater dis-
charge and tidal conditions, the Main Arm is highly stratified with the toe
of the salt wedge somewhere between stations 2 and 3.

Recent stuaies have involved monitoring the salinity profile con-
tinuously at three stations along the Main Arm. This was done for the two
periods February 1 - 16 and March 16 - 30, 1973, during which the average
discharge at Hope was 30,000 cfs ~and 34,000 cfs respectively. It was found
that the effect of the tides was to move the wedge bodily up and down the
Main Arm [D. O. Hodgins, private communication], the maximum excursion of
the toe of the wedge probably being to somewhere around Annacis Island.

Thus, for low river flows, the Main Arm of the Fraser Estuary is
highly stratified with the salt wedge moving bodily up and down the estuary
under the influence of the tides. During times of flow reversal, the
wedge may move as far upstream as Annacis Island but during seaward discharge
it is washed downstream past Steveston. For high river flows, the wedge prob-
ably does not penetrate:past Steveston, if that far. Saltwater intrudes into
the other channelg of the delta, and similar situations probably occur there,
although the saltwater movement may be modified by the slower velocities through
these channels. Salinity profiles in these other channels show them to be
typically stratified, but perhaps not quite as stratified as the Main Arm

(probably due to the lower discharge velocities through these channels).



APPENDIX C

NUMERICAL DISPERSION AND STABILITY

The dependent variable of a partial differential equation de-
fines a surface over the plane of the independent variables. In the plane
-of the independent variables there are various curves, or "characteristics”
that describe the propagation of information through the system that the
partial differential equation represents. '~ The one-dimensional forms of the
advective transport equation, the dispersive transport equation and the
hydrodynamic equations are of interest to this thesis. The forms of their
respective surfaces are briefly described and the equations of their respec-
tive characteristics are given. In fixed grid finite difference schemes,
the problem of numerical dispersion arises from solving the one-dimensional
advective transport equation (or the one-dimensional mass transport equation)
relative to a fixed space grid, rather than along the advective characteris-
tics. In explicit finite difference échemes, the problem of stability also
arises from solving the above three equations relative to a fixed grid rather

than along their respective characteristics.

C.1 SURFACE GEOMETRY OF PARTIAL DIFFERENTIAL EQUATIONS

The following partial differential equations are of interest

dc -3C

at 3% @b
dc 13 . -3cC

56 T & oxi oo ©.2)

138
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du _  _=8u _dy _-da _ Juju
5t ox - I5x 9% Ep
I
: _ . (C.3)
oy . _jlu _ 8y _cuydb
3t Yax T Yox T SX’ ox

Equation (C.l) describes one-dimensional advective transport and Equation (C.2)
one~dimensional dispersive transport.{%These two equations represent the compo-
_ hent transport processes of the one—dimensiénal mass transport equation, and
the sum of their effects is the one-dimensional mass transport equation with-
out tﬁe source-sink terms. The two coupled equations (C.3) are the hydrodynamic
equations and are used to predict the temporal variations in the parameters u
and A of the tidally varying mass transéort equation. [Equations (C.3) are ob-
tained by substituting Equation (3.3) and A = by into Equations (3.1) and (3.2)].
Equations (C.l) and (C.2) define surfaces c(;{,t) over the
(x,t) plane and Equations (C.3) define a pair of coupled surfaces u(x,t) and
v(x,t) over the (x,t) plane., Consider now the form of the surface defined by
the advective transport Equation (C.l). Figure C.l shows the shape of this
surface for a slug input into (a) steady uniform flow; (b) steady non-uniform
flow along a river of contracting cross-section; and kc) the mixture of steady
and oscillatory flow characteristic of an estuary (estuary flow). These sur-
faces are solutions to Equation (C.1) forba slug input into the various types
of flow. It is apparent from Figure C.l that there are various curves in the
(x,t) plane that resuit in a considerable simplification of Equation (C.l) --
the concentration is constant along ~ each of the curves AB of Figure C.l
while everywhere else in the plane it is zero.
For any continuous, smoothly varying surface E(x,t), the time rate

of change of c(x,t) along the vertical plane defined by the curve
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(a)
c(x,t) Steady, non- uniform flow
A (river of contacting cross-section)

Figure C.1

Concentration Surfaces for the Advection of a Slug Load
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e f(x,t) (C.4)

in the (x,t) plane is given by

dc “d¢ “de - dx
*& “3t v o at (€.5)

The graphical interpretation of this elementary formula of calculus is illus-

trated in Figure (C.2. Substituting Equation (C.1l) into (C.5) gives

(C.6)

= =q (C.7)
the time rate of change of concentration is given by

as

at - © (C.8)

Equations (C.7) and (C.8) are the well-known Langrangian form of the advective
transport equation and curve (C.7) obviously defines the three curves AB of
Figure C.l. In deriving Equation (C.l) it is assumed that the variation of ¢
and u with x and t is continuous, For the cases shown in Figure C.1l, the vari-
atioh of ¢ is discontinuous and the partial derivatives dc/9t and dc/ox are not
defined everywhere in the (x,t) plane. Thus, Equation (C.1l) does not correctly
represent the advection of a slug load (this is the fundamental reason for
numerical dispersion). It is only when the solution to Equation. (C.1l) is ex-
amined along the curve (C.7) that the problem of the non-definition of the par-

tial derivatives is avoided. [See Equation (C.6)].
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Consider disturbing the system.represented by Equation (C.1l) by
introducing an elemental slug load of Ac. This disturbance, of "information,q
will propagate through the system according to Equation (C.7). Thus,.Equation
(C.7) is of direct physical significancé, and along this curve the solution to
the advective transport eduation reduces to the simple form of Equation (C.8).
The fixed (Eulerian) space grid used to derive Equation (C.1l) "masks" the under-
lying physics of the transport process and the simplicity of the solution.

Now consider the_equation of dispersive transport (C.2). If both E

and A are constant in x and t, Equation (C.2) reduces to

%% = E—é- (C.9)
9x

The surface defined by Equation (C.9) for the dispersion of a slug load is

shown in Figure C.3. The equation of this surface is [Fischer, 1966al

_ oM
c{x,t) =

4HEt

L2
exp{—“Z%—J (C.10)

where M is the mass per unit area~df tracer released. At any time't' the

shape of the surface is a Gaussian distribution aﬁd clx,t') is uniquely defined
by the location of the point of standard deviation. This i§ illustrated in Figure
C.3. Thus, the locus of the standard deviation in the (x,t) plane directly des-
cribes the underlying mass transport process. From Equation (C.10) the locus

of the standard deviation is the parabola

X = 2E (C.ll)

x _ E (€.12)
X
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Dispersion of A Slug Load
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If this system is disturbed by introducing.an elemental slug load of AE, the

effect of this slug load, or its "information", will propagate through the

system according to Equation (C.1ll) or (€.12). Once again, the curve (C.12)

is of fundamental significance and along this curve the concentration is

given by

Slx,t) = '_'_Pii_',|';1<_,|f

V2lle

Finally, consider the hydrodynamic Equations (C.3).

(C.13)

The well-known

characteristics of this system are given by [Courant and Hilbert, 1962]

(C.14)

If this system is disturbed by introducing a small change in the water sur-

face elevation Ay, this "information" will propagate through the system accord-

ing to Equation (C.14) and along this curve Equations (C.3) reduce to [Henderson,

1966]

as - . L= dh ulu
1y {u = 2vgy} = =g = F c2§

(C.15)

In summary, there are certain curves in the (x,t) plane that directly

describe the propagation of information through the systems that Equations (C.1),

(C.2) and (C.3) represent.

These curves can be called characteristics of infor-

mation propagation, and along these curves the solutions to the respective equa-

tions are greatly simplified.

This underlying simplicity is masked by the

Eulerian nature of the derivation of the equations. The problems of numerical



dispersion and stability arise directly from viewing the numerical solu-
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tions to Equations (C.1l) to (C.3) from a fixed Eulerian space grid, rather

than from a space grid along the characteristics.

C.2 NUMERICAL DISPERSION

Before discussing numerical<dispersion in detail, it is necessary

to briefly consider a few fundamentals of finite difference solutions to

partial differential equations. In using finite difference methods to

solve differential equations, derivatives are approximated by finite differ-

ence expressions and the differential equation is reduced to a difference
equation. The justification of replacing the derivatives by difference ex-:u-
pressions can be illustrated by the Taylor's Series expansion of the variable

U(x,t) with respect to t in the neighborhood of the point (x

This can be written as

R . 12y B0
—l——-jv—él - (=), = %At(—=),
t ot’j 3t2 3

where the partial derivatives are assumed continuous and 0 < © < 1 [Richtmyer

= nAt).

(C.16)

and Morton, 1967, p. 19]. By making At small enough, the difference expression

of Equation (C.16) can be made to approximate the derivative to any desired

degree of accuracy. The term on the right-hand side of Equation (C.16) is the

truncation error that results when the derivative 9U/9t is replaced by the

difference expression of Equation (C.16).

When a partial differential equation in x and t is approximated by

a partial difference equation, the truncation error consists of terms containing
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Ax and At raised to various powers. The conditions under which the truncation
error tends to zero is the problem of convergence. That is, as the mesh is
refined (Ax, At -~ 0), does the numerical solution converge to the true solu-
tion of the partial differenfial equation? The behaviour of thes truncation
error as the solution progresses through time is the problem of stability.

If the difference scheme is unstable, errors generated during the solution
(for example, round-off errors) may become so magnified during the calcu-
lations as to make the final results meaningless.

There are many fixed mesh difference schemes for approximating
the derivatives of partial differential equations, but essentially they can
be classified into explicit and implicit schemes. BAn explicit scheme uses
forward time differences (see Figure C.4), and each difference equation con-
tains only one unknown variable which can be solved for explicitly. Implicit
schemes use backward time differences (see Figure C.4)'and each difference
equation contains several unknown variables. To obtain a solution at any
time step, the resulting system of simultaneousuequations must be solved
over the entire space grid. Generally, implicit schemes are unconditionally
stable, whereas explicit schemes are at most .conditionally stable. This is
discussed further in Section C.3.

Consider now the numerical solution of the one-dimensional mass
transport equation (C.l). This equation is a component of the one-dimensional
mass transport equation. Fixed‘mesh finite difference schemes generally do not
simulate the advective transport process correctly, and result in an additional
dispersive process being superimposed on the actual advective and dispersive
processes occurring in the river or estuary. This so-called numerical disper-

sion can be illustrated by considering the truncation error associated with
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Fo.rw‘ard Time Differences:

| - .
ut' = function { uf_, uj, ul.}
- time = (n‘+ 1 )at
O A ~ time = nat
(j-1ox joOx (j+1)ox
Backward Time Differences:
R ' . n n+l  n+l
uj™'= function { U}, U, Ui}
(i-1)ox iox (1A% 4ime = (n+1)at
1 time = nat
‘ Figure C.4

Forward and Backward Time Differences
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replacing the partial differential equation of advective transport (C.1) with

its corresponding explicit difference equation

n+1 n ..n n n n
C, - C, S A{l=a)(C, - C, ) . afc, . =-C.)
At Ax

1 = 0 (c.17)

nAt and o is

where the flow is assumed to be uniform and steady, x = jAx, t

a weighting factor such that o = 0 for upstream differences, a 1/2 for cen-
tral differences and o = 1 for downstream differences. These various differ-
ences are illustrated in Figure C.5. Egquation (C.17) is an example of an ex-
plicit difference scheme that uses forward time differences (the concentrations
at time step n are used to determine the concentrations at time step n+l). A

Taylor's Series expansion of the derivatives of Equation (C.l) shows that the

difference equation (C.17) approximates the differential equation

n n 2. n 2. n
‘ 2
S, + udS, = x-S, - me @S+ own® + o’
3?)3 3% 23 2 27 &
ox ot 3 + (c.18)

the terms on the right-hand side being the truncation error. As C is a solu-

tion of Equation (C.1l) it also satisfies

2 2
ot ox

Substituting Equation (C.19) into (C.18) and neglecting terms of order (Ax)z.
(At)2 and higher, it is found that the difference equation approximates the

differential equation

2
3¢ _ -3¢ 3%C \
o T Ep 552 (€.20)
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Upstream Differences?

ac] ~ Ci™ Cj-i
= ~ ~
== ot djiax AX

f

c(x,t) ~ Central Differences:

] ~ Cj-ci-l_l_cj«!-l-cl‘}
jox -2 AX AX

AL SN AV U B

c(x,t) Downstream Differences:

ic_] ~ Cjt1— Cj
ot ijN AX

Fiqure C.5

Upstream, Central and Downstream Space Differences
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where Ep can be considered to .be a coefficient of pseudo or numerical disper-

sion, and is given by

B, = %uax{ (1-20) - 'X—i—t- (c.21)

Thus, the solution to the difference equation (C.17) approximates
the solution to an advective-dispersive equation rather than the correct ad-
vective equation. As Ax - O, Ep -+ 0 and the mass transport associated with
the numerical dispersion becomes increasingly smaller, However, in difference
schemes Ax is always finite, and while the solution to difference equation
converges to the solution of the correct advective equation in the limit (Ax = 0),
it converges to the solution of an advective-dispersive equation at the level
of application (Ax # 0).

It is apparent from Equations (C.20) and (C.2l1) that numerical dis-

persion will always occur unless either

vl - 12 (C.22)
Ax

or

82C

— = 0
3x2
Ignoring the trivial latter case (the mass transport associated with any real

dispersion is also zero), it is seen that numerical dispersion does not occur

when upstream differences are used (a = 0) and 4x and At are defined by

Ax
T U (C.23)
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as was recognized by Bella and Dobbins [1968]. Under these conditions Equa-

tion (C.17) reduces to

C, = C? = constant (C.24)
;| j=1

Equations (C.23) and (C.24) are simply the finite difference versions of Equa-
tions (C.7) and (C.8). Thus, the use of upstream differences with the grid
spacing defined by Equation (C.23) is equivalent to solving Equation (C.17)
along the characteristic curve in the (x,t) plane. Under these conditions
the underlying advective mass transport process is correctly simulatédh énd
there is no numerical dispersion.

Consider now using central differences (a = 1/2) to solve Equation
(C.17). From Equation (C.22) it is seen that numerical dispersion will always
occur except in the trivial case of U= 0. According to Leendertse [1971b]
there is no numerical dispersion when central differences are used. He
apparently assumes that central differences correctly describe the advection
process, and then uses this incorrect assumption to demonstrate that numerical
dispersion will occur when upstream or downstream differences are used.

The use of downstream differences (4 = 1) will always result in numeri-

cal dispersion except when

—_ = U (C.25)

The use of downstream differences with Equation (C.25) defining the grid spacing
can be interpreted as an attempt to determine upstream conditions from those
downstream by working backwards through time (hence the negative sign) along
the characteristic curve in the (x,t) plane. Although this procedure is im-

practical, it would correctly determine the preceeding concentration distributions
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with no numerical dispersion if the final concentration distribution’ was
known.

“Bella and Grenney [1970] investigated the numerical dispersion result-
ing from the advection of a slug load by various fixed mesh finite difference:
schemes, They found that the coefficient of numerical dispersion was as
given by Equation (C.21) and that no numerical dispersion occurred when up-
stream differences were used with Equation (C.23) defining the grid spacing.
Numerical dispersion always occurred with central or downstream differences.

Fox [1971] made a Fourier series analysis of the difference schemes of Bella

and Grenney and showed that the effect of discretization was to introduce ampli-
tude and phase errors into the solution of the difference equations. His results
demonstrate that neither amplitude nor phase errors occur when upstream differ-
ences are used with a grid spacing according to Equation (C.23).

In conclusion, numerical dispersion occurs because fixed mesh
finite difference schemes do not correctly simulate the advective transport
process. (Although numerical dispersion has =only been demonstrated for explicit
difference schemes, it also occurs in implicit difference schemes). The
truncation error of the simple difference schemes discussed here corresponds
to an actual physical mode of mass transport and will modify the advective
transport and any dispersive transport that is occurring in a river or estuary.
To correctly simulate the advective transport process, it is necessary to
solve the advective mass transport equation along the characteristic curve in
the (x,t) plane. The magnitude of the numerical dispersion depends directly
on the magnitude of 82c/8x2, and so is greatest for a slug load and less for a

continuous release. A continuous release can be treated as a succession of
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slug loads, and apparently the numerical dispersidn due to any particular

slug is compensated by the numerical dispersion of neighbouring slugs, as

has been noted by Bella and Grenney [1970]. 1In deriving Equation (C.l) and

writing the difference equation (C.1l7), if is implicitly assumed thatvc(x,t)

varies in a continuous manner with x and t. This is certainly not the case

for a slug load, as is seen in Figqure C.l. It is only along the character-

istic curve that c(x,t) varies continuously, as is also apparent from Figure

C.l. Thus, in using Equation (C.i7) to advect a slug load, there is the

added problem that the partial derivatives dc¢/9t and dc/dx are not defined,

and the numerical dispérsion can be interpreted as an attempt to define them,
Numerical dispersion can be eliminated by solving the equation

advective-dispersive mass transport along the characteristics of advectiVe

information.propagatation. .Such aﬁhﬁméﬁicai solution is referred to as a

characteristic method in Section 2.2, where the problem of the bookkeeping

of solution results is discussed. Numerical dispersion can be controlled

by the use of more sophisticated differencing schemes [see Fox, 1970], or

by reducing the actual dispersion coefficients by Ep according to Equation

(C.21). Numerical dispérsion is apparently reduced in finite element solutions

[Price et al., 1968; Fox, 1970], but because of the fixed grid nature of finite

element solutions, the numerical dispersion is probably not totally eliminated,

C.3 STABILITY

If a fixed grid difference equation is used to approximate a linear
partial differential equation with constant coefficients, the von Neumann

stability condition requires that the eigenvalues of the amplification matrix
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should not exceed unity in absolute value for physically stable systems
[Richtmyer and Morton, 1967]. To illustrate these ideas, consider the ex-
plicit finite difference scheme of Equation (C.17) that was used to approxi-

mate the advective transport equation. This difference scheme can be written

; _ _ bat _ n_ .n n _n
¢y -Cy = o-gtla a) (Cy = €, y) +alCy, cj)} (C.26)

1

where a ='O for upstream differences, a = 1/2 for central differences and

o = 1 for downstream differences. The von Neumann stability condition is
based on a Fourier Series analysis of the difference equation. At any time,
the concentration profile along the river or estuary can be considered to be
composed of a number of Fourier components. The contribution of the k'th
component to the concentration at point jAx at time nAt is given by

c’j1+l = crj’exp {ikjax}

where i = /-1. Substituting into Equation (C.26) for the k'th Fourier

component and simplifying gives

Cn+1 =G Cn
where

G = 1-8(1-2¢0) (1=cosQ) + iBsin® (c.27)
and

0 = ikax

. e . . . . ) +
G is the amplification matrix of the difference equation (C.26). As ch .

only depends on Cn, the eigenvalue of the amplification matrix is given by

the value of G from Equation (C.27). Thus, the von Neumann stability condition
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requires

‘{1—8(1—2a)(1—cosO)}2 +{Bsin 02} <1

Evaluating this for the three cases of upstream, central and downstream

differences, the stability criterion in each case is given by

Ax =1
or
Ax
ey > u (c.28)

If the stability condition is violated, certain Fourier components
will be unacceptably amplified, and the vélue of the concentration, as deter-
mined by Equation (C.26) will oscillate with ever-increasing amplitude.
Richtmyer and Morton [1967] give a very clear example of this oscillation
for the simple dispersion equation (C.9). In the hydrodynamic equations,
the instability manifests itsglf as an oscillation of the water depths and
velocities (the water depths eventually becoming negative). Note that the
von Neumann stability condition has been derived for linear equations with
constant coefficients. This implies that the U of Equation (C.26) is con-
stant, or that the flow is uniform and steady. In a situation where U var-
ies with x and t, the stability condition is assumed to be determined by the
worst case of Equation (C.28) along the estuary.

Consider the simple dispersion equation (C.9). This can be approxi-
mated by the explicit finite difference scheme

n n
—_— - +
2 (G517 2% C3-1?
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and if E is constant, the stability condition is given by [Richtmyer and

Morton, 1967]

‘2EAt

< 1
(Ax)2 T
oY
2
(Ax) .
T 2 2E (C.29)

The hydrodynamic equations (C.3) are non-linear and have non-
constant coefficients. Richtmyer and Morton [1967] linearize the equations

and obtain the following stability condition

%5 > Ut /gy (C.30)

It is apparent that Equations (C.28), (C.29) and (C.30) are the
‘finite difference equivalents of Equations (C.7), {C.11l) and (C.14), which
describe the characteristic curve of information propagation in the (x,t)
plane (see Section C.1l). The physical reason for this can be seen from a
consideration of Equation (C.26), the sexplicit finite difference .approxima-
tion to the advective transport equation. This equation states that the value
of C at the point jAx at time (n+l)At depends on the value of C at points
"(§=1)Ax, jAx and (j+1)Ax at time nAt. If this advective system is disturbed
at point jAx at time nAt, és shown in Figure C.6, the disturbance propagates
through the system according to Equation (C.7). If the stability condition

of Equation (C.28) is violated, the disturbance will reach the point (j+1)Ax,



158

Stable Explicit Scheme uAt < Ax

Position after At

Ac time = (n+1)At
O <r‘ . ©
ullt
. . u
Initial Position of Ax
Disturbance \V
%Ac time = nAt
- j-1 i j*!

Uns'rclble Explicit Scheme uAt > AX :

Position after At

Ac% time = (n+!)At

Q

ut |
1
Initial Position of ______:...u
Disturbance Ax
Ac time = nAt
—O0 0,
-1 j j*+1
Figure C.6

Stable and Unstable Explicit Advective Schemes



159

and alter the concentration there, before the concentration at point jix

has been updated: according to Equation(C.26). 1In other words, the concen-
tration at point jAx at time (n+1l)At now depends on what is occurring at a
distance greater than Ax from jAx (see Figure C.6). Obviously, under these
conditions the difference equation (C.26) is no longer physically meaningful,
and it is only to be expected that it behaves in some strange manner, Simi-
lar reasoning holds for the relationship of Equation (C.29) to (C.ll) for
the dispersive equation, and Equations (C.30) to (C.14) for the hydrodynamic
equation,

The problem of stability only arises with explicit differencing
schemes, where the time differencing is forward. 1In implicit differencing
schemes, where the time differencing is backward, the values are simultaneous-
ly determined at each grid point along the estuary. This technique automa-
tically adjusts for the effect of the information propagating‘distances
~greater than Ax in the time increment. A difference scheme is simply a’means
of determining the value Cn+l from the value Cn. In effect, the difference
equation maps c® into Cn+l, and the eigenvalues of this mapping (in other
words, the eigenvalues of the amplification matrix) define the characteris=
tic directions along which Cn+l is determinea from ol [see Sawyer, 1966]. It

is only to be expected that these eigenvalues should reflect the underlying

physics of the problem.

C.4 SUMMARY
For any one-dimensional physical system, there are characteristic-

curves in the (x,t).plane that directly reflect® the physical behaviour of the
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system. These curves are often hidden or masked when a differential equa-
‘tion is derived relative to a fixed grid in the (x;t) plane. The problem

of numerical dispersion occurs because the equation of advective transport

is solved relative to a fixed grid, rather than along its appropriate charac-
teristic. 1In an explicit difference scheme, the problem of stability arises
for exactly the same reasons. If the equations are solved along their charac-
teristic curves (or by an implicit method) there are no stability require-
ments, and the relative size of Ax and At are determined by theé variation in

the dependent variable.



APPENDIX D

DETAILS OF THE SOLUTION SCHEMES
OF THE HYDRODYNAMIC AND MASS TRANSPORT EQUATIONS

D.1 NUMERICAL SOLUTION OF THE HYDRODYNAMIC EQUATIONS
The fixed mesh, explicit finite difference method of Dronkers [1969]
was used to obtain a numerical solution to the hydrodynamic equations. The

finite difference forms of Equations (3.1) and (3.2) are respectively

Q2oL _2nml At ondl 9n-1  2n-ly o Atg2n 20
2m 2m 20x% 2m 2m+2 2m-2 gAx 2m+1 2m-1
- 2gAt ui’t‘l'l
R | D.1
(3‘ on ( )
,yém
and
2n+2 2n At .2n+l _2n 2n+l_2n-
2m+l  2m+l 2n My Pomez ~ Yope B om’ (D.2)
Axb
2m+1

where ug and hz are respectively the mean velocity and surface elevation at
the grid point given by x = mAx at time t = nAt. Note that the difference
scheme employs central differences and that the "bar" sign has been dropped
from the cross-sectionally averaged variables and parameters to avoid confusion
with the subs@?ip#;and superscripts,. (This convention will be followed when
presenting finiﬁe differénce quantities).

Because an explicit finite difference scheme was used to solve the

hydrodynamic equations, the relative size of Ax and At is govérned by the
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stability criterion

71k

>ut Vg

This stability criterion is discussed in detail in Appendix C. Because
of the friction term, the hydrodynamic equations are naturally dissipative,
and this helps maintain stability. In fact, stability was found to be de-
pendent on a minimum value of friction. For the cross-sectional gemocetries
and flow and tidal conditions of Section 4.1.4, the hydrodynamic equations
became unstable when Manning's "n" was less than 0.012. (Manning's "n" was
constant throughout the estué?y for this investigation). The stability cri-
ﬁériéﬁu of Appendix C is independent of the effects of friction. However,
it was derived from a linear stability analysis on the non-linear hydrodyna-
mic equations, The true non-linear stability criterion may be more strict
than the derived linear criterion, and this is reflected by the necessity
of a minimum level of friction to preserve stability.

The solution points for the finite difference scheme are shown
in Figure D.l, It is seen that the velqcity and elevation points are stag-
gered in both time and space. In effect, the values of Velocity and water
surface elevations are marched forward through time in a "leap-frog" manner.
From Equation D.1l, the velocities at any time step 2n+l are determined by the
surface elevations at time step 2n and the Vélocities at time step 2n-1.
The surface elevations at time step 2n+2 are then determined from the velo-
cities at time step 2n+1l byfusing Equation. (D.2).

The fixed mesh of spaceApoints or !stations" used in solving the
hydrodynamic ecquations is shown in Figure B.4. Velocitiés are evaluated at

odd -numbered stations and water surface elevations are evaluated at even-
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numbered stations. At channel junctions, it is necessary that the junction
station be a water surface elevation station, and this accounts for the non-
coincidence of the junctions of the model estuary and real estuary in several
cases (see Figure B.4).

In applying the hydrodynamic model, a design tidal cycle of
selected flow and tidal conditions is chosen. The freshwater inflow forms
a boundary condition at Chilliwack and the tidal rise and fall of the water
surface forms boundary conditions at the seaward ends of the four channels
that emerge from the delta. The vélocity and water surface elevations through-
out the estuary aressét to initial values, and Equations (D.l) and (D.2) are
then used to march the velocities and water surface elevations through time.
The initial ¥alues of velddify and water surface elevations do not have to be
exact as the model will converge to the true initial values after several tidal
cycles

The hydrodynamic model was programmed in high speed FORTRAN (FORTRANH)
for solution by digital computer. The program consisted of 670 active state-
ments and required approximately 40 éeconds to analyse two complete tidal
cycles. (The first.tidal cycle was required for the estuary to converge to
the true initial values of velocity and water surface elevation). The values
of velocity and cross-sectional area Were recorded -at half-hourly intervals

and later used”in solving the tidally varying mass transport equation.

D.2 NUMERICAL SOLUTION OF THE TIDALLY VARYING MASS TRANSPORT EQUATION
From Section 3.2 it is seen that the solution of the tidally vary-
ing mass transport equation over any time increment involves an advection

step, a dispersion step and a source-sink step. The finite difference form
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of Equation (3.4) used to advect the moving points along the characteristics

during the advection step was

+ n .
R R Y . (D.3)
J J
where
n+l | ‘g . . . .
X, is the position of moving point j at the end of time
J increment n;
x5 is the position of moving point j at the start of
] time increment n;
and
n ., . s s n n+l
u is the average velocity between positions xj and xj

during time incremehnt n.

The hydrodynamic model was used to obtain the longitudinal velocities and
cross-sectional areas throughout the estuary at half-hourly intervals during
the tidal cycle, The value of un cén be'obtaiﬁed”frdﬁ'theSé Veiocities.

In the dispersion step, the concentration of the moving points is
adjusted for the effects of dispersion during the time increment. Both an
explicit and an implicit finite difference scheme were  investigated for
the dispersive step. The implicit scheme was the Crank-Nicholson scheme
described in Richtmyer and Morton [1967]. Irrespective of whether an impli-
cit or explicit scheme is used, the "information" propagates through a dis-

persive system according to
2
x = 2Et (D.4)

as is discussed in Appendix C. The finite difference form of Eduation (D.4),

namely

2
A < (&x)

2 5 (D.5)
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vdefines the stability criterion of an explicit scheme, as is also discussed
in Appendix C. Equation (D.5) also determines the fesponse of an implicit
system, and although the implicit system is unconditionally stable, the con-
vergence criterion is related to Equation (D.5). In other words, if At is
significantly larger than the At of Equation (D.5) an implicit scheme may
converge to the wrong solution. Of the two schemes, the implicit scheme
was slightly faster, but because of the large somewhat ill-conditioned
matrices involved (of order 150) there were uncertainties in the signifi-
cance of round-off errors. Conseqguently, the simpler explicit scheme was
used. (The ill-conditioned nature of these matrices was due to the variable
spacing of the moving points. This variable spacing is discussed in Chapter
3).

The following explicit central difference equation was used to

Equation (3.6)

n+l _ n + 2At -{(Eéqn ™ -ty - (Eéon @ -
5 5 7 Th, _ o n+l A% 5,5-1C5+1 T ©5 A 5,5-1"" 75
A%, (Mx), .
] j+1,3-1
where
c? is the concentration of moving point j at the start of
time increment n;
Axn = xo - xn
jrj"l j j_l
x7 is the position of moving point j at the start of time
increment n;
E)D is the average value of EA between moving points j
J.J-1 . . . X I
and j-1 during time increment n; i
and

n , . . . .
A, is the average cross-sectional area at moving point j
during time increment n.
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Equation (D.6) is the usual explicit central difference approximafion except
that it is applied over a grid where Ax is not constant. The stability re-
quirement of Equation (D.5) generally results in a At smaller than the

basic time increment of one hour. When this occurred, Equation (D.6) was
solved repeatedly within the hour for as many iterations required by Equa-
tion (D.5). (This assumes that the relative spacing of the particles and
the values of E and A remain constant during the hour -- which is a reason-
éble assumption).

Finally, in the source-sink step, the concentrations of the moving
points are adjusted for the effects of any source-sink processes occurring.
The following finite difference equation can be used to approximate the source-
sink equation (3.7)

n
M Py A s, (D.7)
J Jj i=1"1i

although it is noted that Equation (3.7) can be solved analytically during
the time increment.

Thetidally varying mass transport model was programmed in high
speed FORTRAN (FORTRANH) for solution by digital computer. The program con-
sisted of some 1,300 active statements and required approximately 100 seconds

to analyse six tidal cycles.

D.3 NUMERICAL SOLUTION OF THE TIDALLY AVERAGED MASS TRANSPORT EQUATION

The one-dimensional, tidally averaged mass transport was solved
by the method of Thomann [1963]. In this solution, the estuary is divided
into a number of segments or boxes, as shown in Figure D.2, and each segment

is assumed to be completely mixed. If the tidally averaged transport processes
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and waste discharges are steady in time, a fmass balance over segment i for

a ‘substance undergoing first-erder decay gives (see Thomann [1971] for de-

tails)

' + (1- - + (1-a, | .

loy g 305 * Amey g eyt —oley g0 + Aoy 440)%4)

t 1

+ E, (C, ,~-C.) + B, . c, .~C.) - K, cV, +W, = .

1—1,1( i-1 1) E1,1+l( i+l 1) Kl ii Wl ° (D.8)
where

Ci is the concentration in segment ij;

Vi is the volume of segment i;

Wi is the mass of waste substance discharged into segment i

per tidal cycle;
Ki is the decéy coefficient for segment i;
Q 1is the tidally averaged discharge through the estuary
(fthe freshwater discharge) ;
o, . is the tidal exchange coefficient between segments i
i,i+l .
and (i+l);
and
]
Ei i+l is the "effective dispersive" transport between segments
r

i and (i+1).

The subscript notation of the various terms is "illustrated in Figure D.2.
The first two terms on the right-hand side of Equation (D.8) are

the tidally averaged advective transport into and out of segment i. The

factor o is a weighting factor used to determine the concentration at the

interface of two segments from the concentration at within each segment.

In purely tidal flows o is set equal to 0.5 to allow for the effects of flow

reversal, whereas in a river flow situation o is set equal to 1.0 as the flow

is always downstream. The next two terms on the right-hand side of the equation
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represent the net dispersive transport of mass into segment i from the
neighbouring segments. E' is given by

E, . A, .
! _ i,i+l i,i+l

By il T =
i,i+l
where
Ei is1 is the effective coefficient of dispersion over a
! tidal period at the interface of segments i and (i+l);
A, | is the cross-sectional area (tidally averaged) of the
i,i+1 .| . .
interface between segments i and (i+l);
and _
Li i+l is the average of the lengths of segments i and (i+l).
14

The final two terms on the right-handdiside of Equation (D.8) represent the
effects of decay and waste discharge.

An equation similar to (D.8) can be written for each of the
n segments of the estuary to give a system of n simultaneous, linear,

difference equations. Equation (D.8) can be written

.. . + a,.c. + a, . . = W, .
a1,1—-1c1--1 allcl a1,1+lcl+l Wl (b.9)
where
L}
i ,5-1 " %-1,19 7 Biog,yf
. 1 l
. = .. - - C, .} + E, . + E, | + V.K,;

ai1 Q{OLJ.,l-l-l (1 cl—l,l} El—l,l E1,1+1 Vl i

25,501 = 7% 540092 7 By 5,
In matrix notation, the system of Equations (D.9) can be written

R & = X (D.10)

where % is a (nxn) tri-diagonal matrix and S and E are (nxl) column matrices.
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Thomann [1971] gives details of the complete BOD-DO system of equations.

Thomann's model is essentially a finite fixed grid finite dif-
ference model that uses central differences for the dispersive transport,
and central differences for the advective transport when o = 0.5 and up-
stream differences for the advective transport when a = 1.0. (Upstream and
central differences are described in Appendix C). Thomann's model is simi=-
lar to an implicit finite difference scheme. 1In both schemes the concentra-
tion at a gridpoint or in a segment depends on the concentrations at neigh-
bouring gridpoints or segments, and consequently the response of the
estuary is determined by a square tri-diagonal matrix in both equations.
Finite element solutions are also governed by a square tri-diagonal matrix,
as is discussed in Section 2.2.3.

Thomann's difference equations are unconditionally stable and do
not suffer from numerical dispersion, as is discussed in Chapter 3. How-
ever, there is a non-negativity requirement for each segment given by

Ei,i+1

D.1l1
o ( )

a,,i+l > 1 -
1

If this criterion is violated the discharge of a waste substance into seg-
ment i results in a negative concentration in the segment. The physical
reason for this is that more substance is being transported out of the
segment per tide cycle than is being added. The substance is transported
upstream by dispersion and downstream by advection and dispersion. Rearrang-

ing Equation (D.1ll) gives

By ie1 > (179 54900

which imposes limits on the relative size of the dispersive and advective

transport processes.
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Finally, the ease with which Thomann's approach handles
the separate channels of the estuary should be mentioned. Figure D.3
shows the matrix A of Equation (D.10). Note that the three channels
of the estuary are contained in the one matrix. 1In effect, the matrix
is paftitioned into three separate blocks, each of which represents a
single channel. Note that each block or channel is uncoupled from
the éthers except at the junction stations, where an additional term,
which is not tri-diagonal, appears in the rows and columns of the matrix.
These additional terms reflect the extra boundary through which mass trans-
port occurs at the junctions.

The tidally averaged mass transport model was programmed in
FORTRAN for solution by digital computer. The program consisted of some
250 active statements and required approximately 10 seconds to determine

the steady state response of the estuary.
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APPENDIX E

ESTIMATION OF LATERAL DISPERSION

Existing theories of lateral dispersion were used to estimate the
time of cross-sectional mixing in the Main Arm - Main Stem of the Fraser
River Estuary. The predicted time of cross-sectional mixing appears high
for the conditions of this study. More recent work on secondary currents
in rivers was used to develop revised estimates of the cross-sectional
mixing time. These revised estimates indicate much faster mixing over the

cross-section.

E.l EXISTING ESTIMATES OF LATERAL MIXING

For steady uniform flow in straight channels, the coefficient of

lateral dispersion is given by [Fischer, 1969a]
€, = 0.23yU, : (E.1)

where

§ is the mean depth of cross-section;
and

U, is the shear velocity.
The presence of bends in the channel of a river or estuary induces spiral
secondary currents that increase the rate of lateral mixing. For steady
flow around a bend, the increase in the coefficient of lateral dispersion

due to these secondary currents has been estimated as [Fischer, 1969a]

e = -2X __ .1 (E.2)
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where

u is the mean longitudinal velocity;

k is Von Karman's constant;

R is the radius of curvature of the bend;
and

I is a factor (negative) that depends on channel friction and
k, and is evaluated by Fischer. (A typical value of I is -0.3).

Ward [1972] measured the coefficient of lateral dispersion from
laboratory experiments of oscillatory flow (purely tidal) in a channel con-

sisting of a series-of bends. His results are of the form

-t
e; = ayU/ (E.3)
where
€ 1s the tidally averaged coefficient of lateral
dispersion due to oscillatory flow;
U: is the tidally averaged shear velocity due to
oscillatory flow;
and

o is a factor depending on the ratios of the depth
and width of the channels to the radius of curvature
of the bends. (For straight channels a = 0.5, and
for wide shallow channels with a small radius of
curvature on2.0).

In a tidally varying situation where there is both a steady velocity compo-
nent and a sinusoidally varying component, the tidally averaged shear velocity

can be estimated from

_ 3.8n 2 2 %
—§1/6 [Ug + 0.5 U]

* 0

(E.4)
where
n is Manning's "n";

Uf is the steady velocity component;
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and

Ut is the amplitude of the oscillatory velocity component.
Equation (E.4) is obtained from the Manning formula relating steady velocity
to frictional effects. According to 0dd [1971], the Manning or Chezy formu-
lation should be an adequate description of frictional effects in fast flow-
ing, well-mixed estuaries.

The following estimation of dispersion coefficients is limited
to the Main Arm - Main Stem of the Fraser River Estuary. This is the widest
channel and carries the bulk of the flow thréugh the delta. Along this chan-
nel, there are 12 significant bends whose radii of curvature range from 7,000
feet to 35,000 feet, as illustrated in Figure E.l. The variation of longi-
tudinal velocity throughout the tidal cycle at three stations along the
Main Arm - Main Stem is shown in Figure E.2. The predominance of the tidal
component in the lower reaches and the steady component in the upper reaches
is apparent,

The following procedure was used to estimate the coefficients of
lateral dispersion. The velocity at each bend was divided into a steady com-
ponent Uf, which is given by the freshwater discharge through the tidally
averaged area, and an approximating sinusoidal component of amplitude Ut'
Equations KEfI) and (E.2) were used to estimate the coefficient of lateral
dispersion d;e to the steady component of velocity (éf), and Equation '[E.3]
was used to estimate the coefficient of lateral dispersion due to the sinu-
soidal or oscillatory component (et). Equation (E.4) was used to estimate
the shear velocities due to the steady (Uf) and oscillatory (UE) velocity
components. The total lateral dispersion was assumed to be the sum of

these two separate effects. The results of the calculations are shown in



Figure E,1

Bends Along The Main Arm - Main Stem
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TABLE E.1l

ESTIMATION OF COEFFICIENTS OF LATERAL DISPERSION

. 0 3 9 8 g . P x Y * o
sl B gl sl8].8 o |88 luelelesle]e |8
g E§ m§ w@ =" Dvg = 8 | ‘5g 1> o S S|
i e e ‘ -
1| 57-60 | 17,000 | 24 | 1.2 { 0.1 | 0.032 | 0.088 | 0.005 | 0.088 }o0.12 | 0.14 | 1.0 | 0.24 | 0.6
2| s5-57 | 7,000 | 24 | 1.2 0.032 | 0.088 | 0.037 | 0.097 |o0.29 | 0.34 | 1.9 | 0.29 | 2.
3| s2-s5 | 7,000 | 35 {0.9 | 0.7 |0.032 ] 0.062 | 0.031 | 0.070 |0.29 | 0.40 | 1.8 | 0.37 | 2.8
4 | 46-52 | 17,000 | 31 | 0.9 | 1.2 | 0.032 | 0.063 | 0.054 | 0.087 |0.13 | 0.18 | 1.0 | 0.24 | 2.2
s | 41-46 | 16,000 | 37 | 0.8 | 1.3 |0.032 | 0.055 | 0.057 | 0.083 |0.13 | 0.23 | 1.0 | 0.26 | 2.7
6 | 36-41 | 35,000 | 32 { 0.7 | 1.3 | o0.032 | 0.049 | 0.058 | 0.081 |o0.06 | 0.09 | 0.6 | 0.23 | 1.5
7 | 32-35 | 7,000 | 43 | 0.7 | 1.5 | 0.025 | 0.036 | 0.050 | 0.066 |0.29 | 0.62 | 1.8 | 0.62 | 4.8
g8 | 29-31 | 7,000 | 38 | 0.7 | 2.2 |0.025 | 0.037 | 0.074 | 0.091 |o0.29 | 0.54 | 1.8 | 0.52 | 5.8
9 | 19-23 | 16,000 | 38 | 0.6 | 2.5 | 0.025 | 0.033 | 0.088 | 0.10 |0.13 | 0.24 | 1.0 | 0.28 | 4.7

10 | 14-17 | 8,000 | 38 | 0.7 | 3.3 |o0.025 | 0.037 | 0.11 | 0.12 |o0.25 0.48 | 1.6 | 0.45 | 7.3
11 | s8-14 | 33,000 | 3¢ | 0.6 | 3.0 }o0.025 | 0.032 | 0.10 | 0.11 [0.06 | 0.10 | 0.6 | 0.24 | 2.3
12| 2-8 | 27,000 | 34 0.6 | 3.5 | 0,025 | 0.032 | 0.12 | 0.13 |o0.07 | 0.13 | 0.6 | 0.24 | 2.7

6LT
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Table E.1l, the combined coefficient of lateral dispersion being designated
€t

From the results of Table E.l, the average value of the coeffi-
cient of lateral dispersion along the Main Arm - Main Stem is approximately
3.3 square feet per second. Assuming an average width and depth of channel
of 1800 feet and 30ifeet respectively, and an effluent’discharge at the
channel edge, the time requifed for 80 per cent mixing in the lateral direc-
tion is 55 hours [Ward, 1973]. (The percentage lateral mixing is défined as
the ratio of the lateral root-mean-square concentration deviation to the aver-
age lateral concentration).

This estimate of 55 hours for the time of 80 per cent cross-
sectional mixing seems very high., Strong secondary currents around bends
9, 10 and 11 are observable in the estuary during ebb flow conditions. 1In
fact, if the fishermen lose a net in the Main Stem, it is often washed ashore
on the north bank of bend 11 by these secondary currents. In a surface float
’study during ebb tide conditions, the floats were also wakhed ashore on the
north bank of bend 11. It seems that the results of Table E.l underestimate
the effects of the secondary currents on the lateral mixing process. In view

of this, an attempt was made to estimate the velocities of the secondary

currents and the influence of the secondary currents on lateral mixing.

E.2 VORTICITY ESTIMATE OF SECONDARY CURREi\ITS

First consider the lateral mixing due to secondary currents. For
the sake of simplicity, the vertical distribution of the secondary velocities
is assumed to be linear, as shown in Figure E.3. This velocity distribution

should be a satisfactory approximation for wide, shallow cross-sections.
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The variation of velocity with depth is given by

w(n) =wW_(1 - 2n) | (E.5)

n y/y
where Ws is t he surface velocity of the secondary current. In the manner

of Elder [1959] and Fischer [1969a] the coefficient of lateral dispersion can

be estimated from

2 ,
e = -3 Trem{ M 1" £ anjantan (E.6)
2 o’ 0 o Sy

where ey is the coefficient of vertical mixing. If we assume the flow to
be steady and uniform, the vertical profile of the longitudinal velocity u
is logarithmic, and is given by [Einstein, 1972]

U

- _ % . 9,05yUx
u(y) = o Inf —1} : (E.7)
where
vy is measured vertically upwards from the bend;
and

v is the kinematic viscosity.
For this logarithmic profile, the value of ey is given by [Fischer,l969a]
ey = K (1-n)nyu, (E.8)

where k is von Karman's constant. Using the relations of Equations (E.5)

and (E.8), the integration of Equation (E.6) gives

= 0.42{G§4 (E.9)
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This result .closely agrees with the value of

€ )
= O.S{U—s}2
y U, *

that Ward [1972] gives for the same distribution of secondary velocities.,
Thus, it only remains to estimate or measure the secondary velocity Ws to
determine the coefficient of lateral mixing.

Quick {1973] has developed a theory of river meanders that nicely
predicts the types of meanders that are observed in nature. The existance
of'secondary flows when bends or meanders are present in a river is well
known, and Quick's theory has been used to obtain an estimate of the secondary
velocity WS. The basis of this theory is the generation of vorticity by the
gradient of the vertical distribution of longitudinal velocity E, and the sub-
sequent advection of this vorticity by u. This is illustrated in Figure E.4,
the sense of the vorticity being given by the right~hand-screw rule. Because
of the large velocity gradients of u close to the bed, the vorticity is gener- '~
ated in this region as intense, small-scale, highly anisotropic vortices. The
vorticity“Egéﬁxiiffuses vertically into the flow and is advected along by u.
During thiSfdfffJ%i;g and advection, the vorticity degenerates into increasing-
ly isotropic turbulence and is ultimately dissipated by frictional effects.
However, in any steady flow situation there must be a balance between the
generation and dissipation of vorticity. The vertical logarithmic profile
of u reflects the energy balance of a steady flow situation, and presumably

the vorticity balance also. Because of the velocity gradients of this pro-

file, the flow at any section has a "bulk" vorticity given by

e _ duly)
£, 3y (E.10)
.average
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where the velocity gradient is averaged over the depth of flow. If this
argument is correct, there is an intermediate stage between the generation
and dissipation of the vorticity, in which the vorticity retains an organized,
anisotropic state. This state is reflected by the velocity gradients of the
1ogarith@ié;;elocity profile.

;h a straight river, the velocity vector é and the vorticity wvec-
tor %Z are perpendicular to eacb other and do not interact. This is illus-
trated in Figure E.4. However, the situation is different when the flow
moves around a bend., 1Initially, the water on the inside of the bend flows
faster than the water on the outside of the bend, but in the bend proper, the
faster filaments of flow move to the outside of the bend, and the outside
water moygéjfaster than- the water on the inside of the bend. This is illus-
trated in Figure E.5. At A the faster filament is on the inside of the bend
while at B it is on the outside of the bend. Because of the lateral velocity
gradient of u as the flow moves around the bend, the vorticity is being gener-
ated and advected at an angle © to’ﬁw as illustrated in Figure E.5. Note
that © varies as the flow moves around the bénd and this variation of 0 will
depend on the radius of the curvature of the bend. Quick's theory predicts
this anglel0 between E and Ez. Thus, there is a streamwise component of
vorticity given by

& = |£z|cos6 (E.11)

and it is this streamwise component that gives rise to the secondary current
as the flow moves around thebend.

Substituting the logarithmic profile (E.7) into (E.10) and aver-
aging overi@%i&?éthnbetween the limits y = 11.0v/U, and y =f§; the lower

limit being an estimate of the depth of the laminar sublayer, gives
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Figure E.S

Interaction of u and Ez Around A Bend
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oy, .
E = — (E.12)
2 key ‘
1'{U*Y ) | 13
where a = 1n 1100 (E.13)
and thus from Equation (E.11)
g = 9xcosd (E:14)
X Py
ky

Now, consider the circulation around the section ABCD of Figure

E.3 due to this streamwise vorticity. This circulation is given by

I = ¢ & -an
ABCD "
= Lfsup e
= 8 U.b cos (E.15)

where b is the width of the river. Now, the circulation around the cross-
section ABCD is also given by
r = ¢ u-al (E.16)
ABCD v
Assuming there is sufficient time for the streamwise vorticity to "arrange"
itself into the linear distribution of secondary velocities of Figure E.3,

Equation (E.16) can be evaluated as

T
X

RE

2st (E.17)

where the contributions over BC and DA have been ignored (the sectidn is assumed
to be wide and shallow). Finally, putting k = 0.4 and substituting Equation

(E.15) into (E.17), the following expression for Ws is obtained

w, = 1.2500, fosO\_ (E.18)
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The results of a surface float study indicate a cross-channel

surface velocity of approximately 0.6 feet per seconddaround bend No. 11

of Figure E.l1., The study was made on March 20, 1973 when the freshwater
discharge at Hope was 31,000 cubic feet per second. The floats had drogues
to minimize the effects of wind and were released during the initial period
of the strong ebb phase of the tide. The following velocity values were ob-
tained:

u =3.1 feet per second (from floats);

and

U, = 0.15 feet per second (Manning's equation)

In his study of stable meanders, Quick found that for geometrically similar
meanders to bend No. 11, the value of © varied from about 50 to 70 degrees.

Taking U} :as above and

y = 34 feet (Table E.1)

V=1.6x% 10_5 square feet per second;
and

® = 60 degrees

we obtain from Equations (E.13) and (E.18)
Ws % 0.7 feet per second
which agrees well with the value obtained from the float studies.
Assuming a linear variation of secondary flow with depth (as in
Figure E.3) and using a value of Ws of 0.6 feet per second, the coefficient of

lateral dispersion from Equation (E.9) is given by
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=6 (E.19)

or €, = 30 sguare feet per second.

The value of Equation (E.19) is considerably larger than other.
values fhat have been reported (for example, the values in Table 1 of Ward
[1972]), and it should be emphasized that the estimated value has not been
confirmed experimentally. A possible reason for this high value is that
the Frasexr is essentially a "tidal river" with both Kigh *freshwater and
tidal flows. The Fraser is relatively wide when compared to other rivers
where values of ez/§ U, have been measured, but relatively narrow when com-
pared to estuaries (see Table 1 of Ward). It is noted that the dispersion
equatioﬁ (E.9) for determining the lateral dispersion coefficient in second-
ary flows is very sensitive to the value of (WS/U*).

Using a value 6f €, = 30 square feet per second, the previous
estimate of 55 hours for 80 per cent cross-sectional mixing is reduced to
five hours. This will underestimate the time of cross-sectional mixing as
the flow is not steady during the tidal cycle. Because of the highly
assymetrical nature of the tides, there is only one strong ebb and flood
tide in each double tidal cycle of 25 hours to generate secondary currents
(see Appendix B for typical tides). Thus, within any tidal cycle, the later-
al mixing will vary from a maximum during the strong flood or ebb to a minimum
at times of slackwater. Consequently, an estimate of the effect of cross-
sectional mixing is probably one tidal cycle (12.5 hours) for the lower

reaches of the estuary and Pitt River and 1-2 tidal cycles for the upper
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reaches where the tidal effects are smaller. On this basis, the effective
or tidally averaged coefficient of lateral dispersion would be about 15
squarevfeet per second in the lower reaches and seven square feet per
second in the uéper reaches of the Main Arm - Main Stem. On the basis

of the relative magnitudes of the tidally averaged values of y and U,r

tﬁe lateral dispersion in the North Arm is estimated to be five square
feet per second and 10 square feet per second in Pitt River.

At this stage, the theory relating vorticity and secondary
currents is neither fully developed theoretically nor confirmed experimen-
tally, but future work is planned in both directions. In concluding, it
is noted that some values quoted for lateral dispersion coefficients are
based on-the results of laboratory experiments. Cross=sectional mixing
in the presence of secondary currents is a complex three-dimensional pheno-
mena, and it may be that some components of this process are not being

scaled properly in model experiments,



APPENDIX F

ESTIMATION OF LONGITUDINAL DISPERSION

The coefficients of longitudinal dispersion due to the effects
of vertical and lateral velocity gradients are estimated for the Fraser
River Estuary. Simple approximations are given for the time-dependent
behaviour of the longitudinal dispersion coefficient during the initial
period before cross-sectional mixing is complete and during the tidal
cycle., The predicted tidally varying concentrations during the first
double tidal cycle were found to be very sensitive to assumptions about
the time-dependent behaviour 'of the dispersion coefficient. Neither the
magnitude nor time-dependent behaviour of the dispersion coefficients has
been verified by field measurements, and it is recognized that they may be

in error.

F.1l GENERAL

When effluent is discharged into a river or estuary it is dispersed
in the longitudinal direction by the effects of both vertical and lateral
velocity gradients, as described in Appendix A. The effluent must disperse
over a reasonable depth and width of the estuary before these velocity grad-
ients can exert a significant effect on the longitudinal dispersion process.
Most rivers and estuaries are much wider than they are deep and consequently
mixing in the vertical direction is much more rapid than in mixing in the

lateral direction. Thus, when a "parcel" of effluent is initially discharged,

191
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the longitudinal dispersion is essentially due to the effects of vertical
velocity gradients. However, as the effluent spreads across the cross-
section, the lateral velocity gradients exert an increasing influence on
the longitudinal dispersion process. In an estuary, the longitudinal
dispersion is complicated by the effects of tidal flow reversali;. If the
cross—-sectional mixing is not essentially complete within a tidal cycle,
some of the longitudinal dispersion due to the oscillatory flow will be
"undone" by the effects of flow reversal [Holley et al., 1970}.

The Fraser River Estuary falls into a class that Holley et al.
[1970] describe as "sinuous, multi-channeled or island-studded estuaries."
Because of the complicating effects of the bends, islands and junctions of
the estuary, the coefficients of longitudinal dispersion can only be reliab-
ly determined by field dye studies. Time and expense precluded such studies,
and in the absence of adequate fiéld data, the work of Fischer [1966b, 1969Db]
and Holley et al. [1970] has been used to obtain preliminary estimates of

the longitudinal dispersion.

F.2 TIDALLY AVERAGED COEFFICIENTS OF LONGITUDINAL DISPERSION
For steady flow the longitudinal dispersion due to the effects of

vertical and lateral velocity gradients can be respectively estimated as

E

Yoo

y U,

E _ 2

“2— = 0.075(% ) (22

y U, U, v

(F.1)

(F.2)
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where u'2 is the square of the velocity deviation and is given by

u'2 = (ﬁ(y,Z) - 5)2

the over-bar in Equation (F.2) signifying the average cross-sectional
value. Equation (F.l) was obtained by Elder [1959] for the logarithmic
velocity profile. In obtaining Equation (F.2), Fischer :[1966b] assumed
the lateral mixing to be due to turbulent diffusion alone. According to
the triple integral of Equation (E.6), the longitudinal dispersion due to
lateral velocity gradients will vary inversely as the coefficient of later-
al dispersion. This is because mixing over the cross-section tends to "undo"
the effects of dispersion in the longitudinal direction. The lateral dis-
persion in the Fraser River estuary is thought to be quite high because of
the effects of secondary flows (see Appendix E), and Equation (F.2) is sub-
sequently adjusted for this effect.

To apply Equation (F.2) it is necessary to have some estimate
of u'2 and U,. Two velocity profiles were made in the Main Arm at Stations
Nos. 14 and 15 on April 4, 1973. The freshwater flow at Hope was 34,700 cubic
feet per second, the tidal range at Steveston was 11 feet and the measurements
were taken during the strong ebb phase of the tide. The depth-averaged velocity

profiles across the sections are shown in Figure F.l, and for these conditions,

the various velocities are estimated to be

u = 3.6 feet per second (measured);

U, 0.18 feet per second (Manning's equation);
Uf = 0,9 feet per second;

and

=]
1l

3.3 feet per second
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where it is assumed that the total velocity u consists of a steady compo-
nent (freshwater) of magnitude Uf and a sinusoidally varying oscillatory
component  (tidal) of amplitude Ut‘

Stations Nos. 14 and 15 are located in bend No. 10 of Figure
E.l, a region of strong secondary flows. Using the average of the measured

2
values of U' at both stations, Equation (F.2) can be evaluated as

= 3600 (F.3)

which is much higher than recorded values in other rivers ([Fischer, 1966b,
Table 1]. However, the value of Equation (F.3) has to be reduced to account
for the greater cross-sectional mixing in the Fraser. The relative magnitude
of lateral mixing due to turbulent diffusion is 0.23, as in Equation (E.1),
whereas the relative magnitude for the effects of secondary currents in the
region §§ffhe estuary has been estimated to be 6.0 (see Appendix E). Thus

the adjusted value of Equation (F.3) is

= 140 (F.4)

which is much more reasonable when compared to the values that Fischer
" lists.

Equation (F.4) is an estimate of the "instantaneous" longitudinal
dispersion due to the lateral velocity gradients existing at one particular
time during the tidal cycle., According to Fischer [1969a], the effectsvof

the steady and oscillatory components on the longitudinal dispersion are
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separate and additive, and thus Equation (F.4) can be separated into the

following steady and oscillatory components

=

_f F = 140 ' (F.5)
y U,
and
E
_tt = 140 (F.6)
y U,
where
£
U, =U, +U

For the sake of simplicity, the subscript z has been dropped. Note that
Equations (F.5) and (F.6) sum to give the correct combined dispersion of
Equation (F.4). To apply the analysis of Holley et al. [1970], the oscilla-
tory component has to be corrected back to a tidally averaged value. In the
manner of Equation (E.4), this is estimated to be

E
= 120 : (B:7)

Fut
*

In the absence of other field data, Equations (F.5) and (F.7) have
been used to estimate the longitudinal dispersion due to lateral velocity
gradients throughout the estuary. The equations are applied as is for the

Main Arm - Main Stem of the estuary, but have been corrected for the different

depths and widths of the other channels to dive

]

w0
a
* Hh

} North Arm (F.8)

|
(@]
* ¢t
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= 120 Pitt River (F.9)

Note that there is no steady dispersion component in Pitt River, the flow
is purely oscillatory. The estimates of the various velocity components and
the steady and oscillatory dispersion components are given in Table F.1,
If the cross-sectional mixing is not essentially complete within
a tidal-cycle, some of the oscillatory dispersion is undéne by the effects

of tidal flow reversal. To account for this effect, the values of Et have

]

been reduced to their effective values E] according to the procedure in

it

Holley et al. These results are also shown in Table F.l, the effective per-
iod of flow oscillation is designated T and the ratio of this value to the
time scale of lateral mixing is designated T'. Finally, the steady and
effective oscillatory dispersion components are sﬁmmed to give a combined
tidally averaged coefficient of longitudinal dispersion due to the.effects
of lateral velocity gradients (Ec).

It is recognized that the values of the dispersion coefficients
given in Table F.l have been obtained from very limited field data and de-
pend heavily on the unverified estimate of lateral dispersion from Appendix
E. Consequently, the eétimates may be considerably in error. However, the

ratio Ef/§ Uf and the absolute value E_ are reasonable when compared to values

£

measured in other rivers [Fischer, 1966b, Table 1] and the maximum value of

the effectiwve oscillatory component Et

of 450 square feet per second agrees
well with the upper limit of approximately 500 square feet per second that

Fischer [1969b] suggests. The combined dispersion coefficient Ec shows an



TABLE F.1

ESTIMATED COEFFICIENTS OF LONGITUDINAL DISPERSION DUE TO LATERAL VELOCITY GRADIENTS

(January 24, 1952:

Freshwater Discharge at Chilliwack 36,500 cfs; Tidal Range at Steveston 11l

feet)
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MAIN ARM 19-24 2.5 0.033 0.088 0.10 180 400 15 25 1.7 400 580 140
25-30 . 2.2 0.037 0.074 0.091 190 340 15 }12.5 . 200 390 110
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51-60 1.1 0.7 0,079 0.035 0.082 310 120 7 112,.5 {0.4 40 350 120
NORTH ARM 101-118 | 0.2 1.6 0.011 0.063 0.064 20 100 5 25 2.8 100 120 70
PITT RIVER | 140-154 | ——- 2,8 | ~==—w 0.11 0.11 - 400 10 25 1.8 400 400 120
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increase down the Main Stem - Main Arm due to increasing effects of tidal
flows in the lower reaches, and this also seems reasonable. The sensitivity
of the predicted concentrations to errors in the coefficient of longitudinal

dispersion is investigated in Section F.4.

F.3 TIME DEPENDENT LONGITUDINAL DISPERSION COEFFICIENTS

The tidally averaged values of the combined dispersion coefficient
Ec listed in Table F.l1 represent the effects of the lateral velocity gradients
on the longitudinal dispersion process when the cross-sectional mixing is
essentially complete. In the initial period following the discharge of a
"parcel" of effluent, the longitudinal dispersion is principally due to
the effects of vertical velocity gradients alone, as discussed in Section
F.l. (The time scale of vertical mixing is a half-hour). According to
Fischer [1969a], the effects of vertical and lateral velocity gradients
on the longitudinal dispersion are separate and additive. To allow for the

variable contribution of both components, it is assumed that

and } (F.10)

where

t is the time that has elapsed since a "parcel" of effluent
was discharged into the estuary;

T is the time scale of lateral mixing based on the width of
section b (an edge discharge is assumed); and

E._, E are the coefficients of longitudinal dispersion due
to the effects of vertical and lateral velocity gradients
respectively.
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Equations (F.1l0) are a simplistic representation of a complex three-dimen-
sional phenomenom, but tﬁey should adequately reproduce both the short-

and long-term dispersion effects. It is only possible to account for the
effects of such temporal variations in E because the tidally varying mass
transport equation has been solved along its advective characteristics. Con-
sequently, the position of each effiuent "parcel" and the time that it has
spent in the estuary is known, information that is masked by a fixed grid
solution to the mass transport equation.

As well as increasing with time due to the influence of lateral
velocity gradients as the effluent spreads over the cross-section, the:
coefficient of longitudinal dispersion will also vary during the tidal
cycle. It will be minimal during times of slackwatér and greatest during
the times of strong ebb and flood flow. To investigate this effect, it
was assumed that the coefficient of longitudinal dispersion given by Equations

(F.9) also varied directly as the absolute velocity

ot =
E=(t+—T)yU* 0<t«<rT
(F.11)
E =ay U, t > T
and
(A _ -
U, = 0.06u F.12)

where E, §, U, and u are the instantaneous values of the respective parameters
during the tidal cycle and o is assumed equal to the tabulated values of Ec/§ Uf
in Table F.l. The relation (F.12) is obtained from Manning's equation and
represents a "best over-all fit" for the entire estuéry. The average of

Equation (F.1ll) over a tidal cycle was:~found to be a satisfactory estimate

of Egquation (F.10).
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F.4 SENSITIVITY OF PREDICTED CONCENTRATIONS

The sensitivity of the predicted concentrations to assumptions
about the coefficient of longitudinal dispersion was investigated for a
steady discharge of a conservative effluent at Station No. 50 on the Main
Stem., Figure F.2 shows the variation in concentration at Station No. 50
during a double tidal cycle and the concentration profiles along the Main
Stem 50 hours after the initial discharge. The predicted concentrations
have been standardized by dividing by the tidally averaged concentration ob-
tained from the mass of effluent discharged per tidal cycle and the fresh-
water discharge at Chilliwack. This is plotted as the parameter th’ signi-
fying that the results have been obtained from the tidally varying model.
The effects of variation in initial dilution and multiple dosing due to
flow reversal, as discussed in Section 1.3, result in spikes in the concen-
tration profile along the channel. It should be noted that the base of
these spikes is initially only some 500 - 800 feet wide, and is much "thinner"
than it appears in Figure F.2. The reason the base appears wide is that the
predicted concentrations are extrapolated of the advective characteristics
onto the standard 5,000 foot space grid (see Section 3.2). This grid is too
coarse to accurately resolve the initial forms of the spikes. It is noted
that the spikes are correctly resolved on the advective characteristics
(where necessary, additional moving points were added to define regions of
rapid variation, as discussed in Section 3.3). Nbte that the concentration
of the most seaward spike (E = 0) has been halved by dilution from the Pitt:

River in passing through the Main Stem - Pitt River junction.
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The results of assuming E to be constant and independent of
time are shown as curves (i), (ii) and (iii) in Figure F.2. The
corresponding values of E are:

. Case (i) E

1]
o

Case (ii) E

Ey (20 square feet per second);

and

Case (iii) E Ec (350 Square feet per second).
The peak concentration at Station No. 50 is seen to be quite sensitive to
the magnitude of E, Eighteen hours after its$ generation, the spike has
been advected downstream to Station No, 35 and its concentration is seen
to be significantly reduced irrespective of whether E equals E_or Ec'

When E is allowed to vary with time according to Equations (F.10)
and (¥.11l), the predicted concentrations are given by curves (iv) and (v)
respectively. Once again, the greatest effect is on the peak concentrations
at Station No. 50, the differences between both curves being negligible
after 18 hours when the spike is at Station No. 35. Note the significant
increase in the peak predicted concentration at Station No. 50 when E is
allowed to vary with :i The reason for this is apparent from the velocity
variation at Station No. 50 during the tidal cycle. This is shown in Figure
E.2, the spike being due to the low velocities and flow reversals around
hours 4, 5 and 6. Because of the low values of G, the value of U, is very
low and fhe effective dispersion is very small compared to other times dur-
ing the tideicycle.

Because of the assymetric nature of the tides, the velocities in

the lower reaches of the estuary are quite low during the period of time
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between high-high-water and low-high-water. This is illustrated by the
velocity variation at Station No, 5uin Figure E.2, and the dispérsion will
certainly be less during this phase of the tide than during the strong ebb
and flood flow that are seen to occur once each double tide cycle. The
effects of variation in initial dilution and multiple dosing are most sig-
nificant during the slackwaters-around the time between high-high-water and
low-high-water, and this can be identified as a sensitive period of the
tide cycle.

In conclusion, the peak concentrations aﬁ the point of effluent
discharge are very sensitive to assumptions about the form and magnitude of
the coefficient of longitudinal dispersion. .However, after a spike has
been in the estuary several tidal cycles, its peak concentration is reason-
ably insensitive to the form and magnitude of the coefficient. Until adequate
field data is available, the assumed temporal variations of E in Equation (F.1l1)

are thought to be a reasonable approximation of what occurs in the estuary.

F.5 SUMMARY

The dispersion of effluent in an estuary is a complex, timé-dependent
threesdimensional phenomenom due to an intimate combination of the effects of
turbulent diffusion, vertical and lateral velocity gradients and secondary
flows. Limited field data and the results of other peoples' work have been
used to obtain estimates of the coefficients of longitudinal dispersion. Due
to the lack’ of field ddta, these estimated values may be substantially in
error. However, they provide a basis for obtaining preliminary notions of
the tidally varying response of the estuary to waste discharges. For the

assumed time-dependent behaviour of the coefficient of longitudinal dispersion
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the predicted concentrations were found to be relatively insensitive to
the value of Ec' The predicted peak concentrations at this point of efflu-
ent discharge were found to be very sensitive to the assumed time-depéndent
behaviour of the coefficient-of longitudinal dispersion. It is thought
that the assumed time dependent behaviour is a reasonable approximation

of what happens in the estuary,.



