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ABSTRACT 

A study to investigate the e f f e c t s of p a r t i c l e angularity and high 

confining stresses on l i q u e f a c t i o n resistance of sands i s presented. 

Two quartz sands of i d e n t i c a l mineral composition and gradation but 

d i f f e r i n g i n p a r t i c l e angularity were used. The investigations were 

performed under c y c l i c simple shear condition which c l o s e l y simulates 

f i e l d stress conditions. 

Resistance to l i q u e f a c t i o n i s compared for angular and rounded 

sands over a range of r e l a t i v e d e n s i t i e s and confining stresses. Con­

f i n i n g stress of up to 2500 kPa were applied to represent the condition 

of granular materials i n high dams. The change i n l i q u e f a c t i o n r e s i s t ­

ance with increase i n confining stress i s shown for each sand for a 

range of r e l a t i v e d e n s i t i e s . The data i n d i c a t e s that l i t t l e benefit i s 

gained i n dynamic resistance by i n i t i a l l y densifying t a i l i n g s sands 

which w i l l l a t e r be subjected to high confining stresses. 

- i i -
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1. 

1. INTRODUCTION 

Li q u e f a c t i o n i s one of the problems associated with earthquake 

shaking of saturated cohesionless materials. It i s the development of 

l a r g e s t r a i n s i n s o i l mass during c y c l i c undrained loading when the 

pore water pressure i n the s o i l becomes close or equal to the e f f e c t i v e 

confining s t r e s s . Sands and s i l t s are the most susceptible materials 

to l i q u e f a c t i o n phenomena. When these materials are subjected to 

earthquakes, no s i g n i f i c a n t pore water pressure d i s s i p a t i o n i s expected 

to occur even i n r e l a t i v e l y permeable sands due to the short duration 

of the earthquake loading. Thus s o i l s of t h i s type can be considered 

undrained during earthquake shaking. 

Liq u e f a c t i o n resistance of cohesionless s o i l s can be determined i n 

the laboratory mainly by using c y c l i c t r i a x i a l or c y c l i c simple shear 

t e s t s . C y c l i c t o r s i o n a l shear t e s t s and shaking table t e s t s are also 

used but l e s s frequently. By conducting a s e r i e s of undrained c y c l i c 

simple shear or c y c l i c t r i a x i a l t e s t s , one can obtain a r e l a t i o n s h i p 

between the c y c l i c s t r e s s r a t i o (T /a1 ) to cause l i q u e f a c t i o n i n a J cy vo n 

s p e c i f i e d number of cycles and the sand r e l a t i v e density. This r e l a ­

t i o n s h i p forms the l i q u e f a c t i o n resistance curve of the s o i l . It Is 

f e l t that t h i s r e l a t i o n s h i p may be a f f e c t e d when the material i s loaded 

under high confining stresses. However, no comprehensive study has 

been made to seek the influence of high confining stress on l i q u e f a c ­

t i o n p o t e n t i a l of sands. These confining stresses i n earth dams can go 

as high as 2500 kPa when the dam height approaches 200 m. 

The past experience with the evaluation of the l i q u e f a c t i o n 
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p o t e n t i a l i s confined mainly to natural sands which consist of rounded 

to subrounded p a r t i c l e s . T a i l i n g s sands which are used to construct 

t a i l i n g s dams are d i f f e r e n t from natural sands i n that they consist of 

angular p a r t i c l e s . Recently there i s a growing tendency to b u i l d high 

t a i l i n g s dams. It i s f e l t that the performance of these t a i l i n g s sands 

i n high t a i l i n g s dams could be d i f f e r e n t from that of conventional 

sands i n t h e i r resistance to l i q u e f a c t i o n . This research work i s an 

attempt to investigate the e f f e c t s of confining stress and p a r t i c l e 

a n g u l a r i t y on l i q u e f a c t i o n resistance of sands. The constant volume 

c y c l i c simple shear apparatus i s used i n these laboratory investiga­

t i o n s . Simple shear conditions are considered most representative of 

the i n - s i t u stress conditions during earthquakes. 

The e f f e c t of p a r t i c l e a n g u l a r i t y has been examined by t e s t i n g two 

d i f f e r e n t materials, rounded Ottawa sand and angular t a i l i n g s sand, 

having an i d e n t i c a l mineral composition and gradation. The e f f e c t of 

confining stress on both sands has been investigated through t e s t i n g 

each sand over a range of confining stresses up to a maximum of 2500 

kPa. 
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2. REVIEW OF THE LITERATURE 

To the author's knowledge, no comprehensive study has been made to 

seek the influence of large confining stresses on the l i q u e f a c t i o n 

r e s i s t a n c e of granular materials. The previous work c a r r i e d out by few 

researchers was confined to a r e l a t i v e l y low confining s t r e s s . 

Furthermore, no d i r e c t assessment of the e f f e c t of p a r t i c l e angularity 

on resistance to l i q u e f a c t i o n has been attempted. 

Early recommendations have been made regarding the density 

requirements to preclude l i q u e f a c t i o n . Sherard (13) stated that sands 

with r e l a t i v e density of 50% or more probably cannot l i q u e f y regardless 

of the gradation. A si m i l a r conclusion has been made by D'Appolonia 

(4) as he indicated that l i q u e f a c t i o n might occur f o r s o i l s having a 

r e l a t i v e density l e s s than 50% during ground motions with accelerations 

i n excess of approximately 0.1 g, and for r e l a t i v e d e n s i t i e s greater 

than 75% l i q u e f a c t i o n f o r most earthquake loading i s u n l i k e l y . 

Casagrande (2) had recommended a r e l a t i v e density of 60% to be s u f f i ­

c i e n t as f a r as the compaction of mine t a i l i n g s dams i s concerned. A 

minimum r e l a t i v e density of 60% was also recommended by the Department 

of Energy, Mines and Resources (5) as a requirement for the mine waste 

embankments. 

However, the above recommendations were based on empirical 

c r i t e r i a . It w i l l be shown i n a l a t e r chapter that sands can l i q u e f y 

even at r e l a t i v e d e n s i t i e s i n excess of 75% i f they are under high 

c o n f i n i n g stresses and subjected to a moderate earthquake loading. 

Therefore, these recommendations are not always true, as they might 

have been based on performance of rounded sand under low confining 
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stresses. 

Data on l i q u e f a c t i o n resistance of several subangular to sub-

rounded sands was presented by Castro and Poulos ( 3 ) . A general reduc­

t i o n trend i n c y c l i c stress r a t i o to cause l i q u e f a c t i o n was observed as 

the confining stress increased from 50 to 600 kPa. The sands were 

tested i n t r i a x i a l apparatus with i s o t r o p i c consolidation. A s i m i l a r 

reduction i n l i q u e f a c t i o n resistance of compacted t a i l i n g s sand was 

reported by Volpe (15). The c y c l i c stress r a t i o to cause l i q u e f a c t i o n 

was reduced by 25% when the confining stress had increased from 100 to 

3 50 kPa. Volpe had used the t r i a x i a l apparatus i n generating these 

data, using anisotropic c o n s o l i d a t i o n stress r a t i o k c of 2. 

Later, as a step i n the design procedure of dams, Seed (12) had 

suggested to reduce the c y c l i c stress r a t i o to cause l i q u e f a c t i o n i f 

the confining stress exceeds 150 kPa. The reduction increases to ~35% 

when the confining stress reaches 800 kPa. The reduction curve presen­

ted by Seed i s shown on F i g . ( 1 ) . However, no reference was made as to 

ei t h e r the sand type or r e l a t i v e density l e v e l at which t h i s c o r r e c t i o n 

was suggested. Anyhow, t h i s reduction mode cannot be generalized and 

i t may be v a l i d only f o r one type of material at a c e r t a i n r e l a t i v e 

density l e v e l . Dorey and Byrne (6), i n dynamic s t a b i l i t y a n a l y s i s of 

t a i l i n g s impoundment, had shown that as the height of t a i l i n g s 

increases l i q u e f a c t i o n resistance decreases f o r compacted t a i l i n g s and 

increases f o r uncompacted t a i l i n g s . 

From the above l i m i t e d i n v e s t i g a t i o n s , one can r e a l i z e that the 

e f f e c t of confining stress has been investigated over a r e l a t i v e l y low 

range (maximum of 600 to 800 kPa) . For dams of ~200 m height, the 

confinin g stress at the lower zone of the dam can be as high as 2500 



5. 

F i g . 1. Reduction i n C y c l i c Stress Ratio Causing Liquefaction With 
Increase i n Confining Pressure Suggested by Seed H.B. (10). 
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kPa. Furthermore, a c l e a r assessment of the e f f e c t of p a r t i c l e 

a n g u l a r i t y on l i q u e f a t i o n resistance has not been made. This thesis i s 

therefore an attempt to c l a r i f y the e f f e c t s of p a r t i c l e angularity and 

confining stress on the l i q u e f a c t i o n potential of sands. 
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3. TESTING PROGRAM 

3.1 Testing Apparatus 

The constant volume c y c l i c simple shear apparatus described by 

Finn and Vaid (9) was used i n t h i s study. The apparatus i s shown i n 

F i g . ( 2 ) . In the constant volume technique, the changes i n the v e r t i ­

c a l stresses to maintain constant volume during the c y c l i c loading are 

equivalent to the changes i n pore water pressures i n the corresponding 

undrained t e s t s . The constant volume of the simple shear specimen i s 

achieved by clamping the loading head to a r i g i d loading plate which i n 

turn i s clamped to four v e r t i c a l posts. These posts are threaded into 

the body of the simple shear apparatus. The v e r t i c a l stress i s applied 

by tightening the b o l t nut on the underside of the loading plate u n t i l 

the desired value of the v e r t i c a l stress i s achieved. Then the b o l t 

nut on the top of the loading plate i s tightened. Only a very small 

volume change can be introduced due to the recovery of the e l a s t i c 

deformation of the loading plate as the v e r t i c a l stress decreases dur­

ing the constant volume t e s t s . These small changes i n the volume dur­

ing the constant volume tests represents a very small percent of those 

associated with system compliance i n the undrained tests (9). Hence 

more accurate and r e l i a b l e c y c l i c loading r e s u l t s are expected from the 

constant volume t e s t s , since they are free from the compliance e f f e c t s 

which are common to a l l undrained t e s t s . 

The sample preparation technique described by Finn and Vaid (9) 

was used i n preparing dry sand specimens. In t h i s technique, the mem­

brane i s f i r s t stretched i n the sample c a v i t y i n the simple shear 

apparatus. The sand i s then deposited within the membrane i n the 
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Apparatus ( a f t e r Finn & Va 



9 . 

apparatus through a funnel t i p permitting a free f a l l u n t i l the height 

of the sand i n the sample c a v i t y exceeds the required sample height. 

The excess sand over the f i n a l grade i s then siphoned o f f using a small 

vacuum. The sample height i s c o n t r o l l e d by adjusting the vacuum tube 

length. The top ribbed plate i s then placed on the top of the sample 

and the membrane closed over i t . The sample i s then sealed to the 

loading head. The desired density i s achieved by v i b r a t i o n s using a 

s o f t hammer while the sample i s kept under a seating e f f e c t i v e stress 

of about 0.20 kg/cm2. 

The above sample preparation procedure r e s u l t s i n a sample of 

uniform density throughout (9). This i s very important e s p e c i a l l y 

while preparing dense samples i n which the l i q u e f a c t i o n resistance may 

be underestimated by the possible existence of loose surface layer 

during sample preparation (9). 

There are advantages i n using the constant volume c y c l i c simple 

shear apparatus. It permits the use of dry sand for c y c l i c undrained 

t e s t s . It i s easier and fa s t e r to handle dry sand than saturated sand. 

Furthermore, many problems associated with undrained t e s t i n g are 

avoided. This, together with the improved sample preparation technique 

described by Finn and Vaid (9) leads to a more accurate estimate of the 

l i q u e f a c t i o n potential i n the laboratory. 

The simple shear specimen had a square dimension with a h o r i z o n t a l 

cross-sectional area of =25 cm2 and a height of =2.5 cm. 

The c y c l i c shear stress was applied by means of an e l e c t r o -

pneumatic loading system. A s i n u s o i d a l shape was used with a frequency 

of 0.1 Hz. This low frequency was used i n order to overcome any d e f i ­

ciency i n the response of the electropneumatic system or of the s t r i p 
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chart recorder on which signal traces were recorded. It also enabled 

examination of the pore water pressures and s t r a i n development not only 

at the completion of the loading cycles but also during each loading 

c y c l e . V e r t i c a l and horizontal loads were measured by means of s t r a i n 

gauge type transducer whereas displacement was measured by a displace­

ment transducer. The transducers were p r e c i s e l y c a l i b r a t e d . The f r i c ­

t i o n i n the l i n e a r bearings of the apparatus as well as the resistance 

due to membrane st r e t c h during simple shear deformation were measured 

over the f u l l working pressure and s t r a i n range using an a i r sample. A 

f r i c t i o n c o e f f i c i e n t of 0.006 was recorded and considered i n correcting 

the applied c y c l i c shear stress amplitude i n each t e s t . 

Continuous records of the c y c l i c shear stress, pore water pres­

sure, and s t r a i n as monitored by the transducers were obtained on a 

s t r i p chart recorder. 

3.2 Material Tested 

Two d i f f e r e n t granular materials, Ottawa sand and Brenda mine 

t a i l i n g s sand, were used i n t h i s study. Ottawa sand i s a natural 

s i l i c a sand consisting of rounded p a r t i c l e s . It i s a medium sand and 

corresponds to ASTM designation C-10 9. I t s maximum and minimum void 

r a t i o s are 0.82 and 0.50 r e s p e c t i v e l y , and i t s s p e c i f i c g r a v i t y i s 

2.67. Brenda mine t a i l i n g s sand was the coarse f r a c t i o n of a copper 

mine waste which i s used i n b u i l d i n g the t a i l i n g s dam. It was treated 

so that i t s g r a i n s i z e when tested was e s s e n t i a l l y the same as that of 

Ottawa sand. This was achieved by washing through #100 sieve together 

with removal of some of the coarse f r a c t i o n . The grain size curves of 

the two sands are shown i n F i g . (3). T a i l i n g s sand had maximum and 



So n d 
Coorse Medium Fine 

Sieve Size 

Diameter i n mm 

Fi g . 3. Grain Size D i s t r i b u t i o n of Ottawa and 
T a i l i n g s Sands. 
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minimum void r a t i o s of 1.06 and 0.688 res p e c t i v e l y , and a s p e c i f i c gra­

v i t y of 2.68. T a i l i n g s sand which i s composed of angular p a r t i c l e s i s 

more compressible than Ottawa sand. The marked d i f f e r e n c e i n t h e i r 

c o m p r e s s i b i l i t i e s may be noted from the r e s u l t s of one dimensional 

consolidation tests, Figs. (4) and (5). 

The mineral composition of t a i l i n g s was mainly quartz with occa­

s i o n a l traces of mica and chalcopyrite. Since Ottawa sand i s composed 

of quartz, the mineral composition of the two sands i s i d e n t i c a l . Thus 

any d i f f e r e n c e i n behaviour of these sands can be a t t r i b u t e d to grain 

shape. 

3.3 Testing Program 

Samples of both sands, prepared as described e a r l i e r , were subjec­

ted to v e r t i c a l e f f e c t i v e confining stresses of 200, 400, 800, 1600, 

and 2 500 kPa. At each confining s t r e s s , samples were c y c l i c a l l y loaded 

u s i n g three or more d i f f e r e n t c y c l i c s t r e s s r a t i o s ( T
C y / a y 0 ) ' ^ h e 

amplitudes of the c y c l i c stress r a t i o s were selected i n such a way that 

the sample l i q u e f i e d i n a reasonable number of cycles (preferably 

between 5 and 50 cycles) . This was achieved by making a few i n i t i a l 

t r i a l t ests at each confining s t r e s s . At every c y c l i c stress r a t i o 

l e v e l samples were prepared at d i f f e r e n t i n i t i a l r e l a t i v e d e n s i t i e s and 

then subjected to the c y c l i c loading u n t i l l i q u e f a c t i o n . 

L i q u e f a c t i o n i s considered here to be the development of a c e r t a i n 

shear s t r a i n amplitude. Up to t h i s l e v e l of developed s t r a i n the 

electropneumatic loading system provided a s a t i s f a t o r y response and d i d 

not r e s u l t i n attenuation of the shear stress amplitude with large 

s t r a i n excursions. 



400 600 800 1000 2000 . 4000 6000 8000 10000 

Confining Pressure, a' (kPa) 

F i g . 4. One Dimensional C o m p r e s s i b i l i t y of T a i l i n g s Sand. 
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4. TEST RESULTS 

The basic data on c y c l i c loading behaviour was obtained i n the 

form of number of cycles to cause a c e r t a i n shear s t r a i n i n the sample 

due to the applied c y c l i c shear s t r e s s f o r various i n i t i a l r e l a t i v e 

d e n s i t i e s . Several such r e l a t i o n s h i p s were obtained at each confining 

stress l e v e l and various l e v e l s of c y c l i c stress r a t i o s (T /a' ). The 
cy vo 

rel a t i o n s h i p s between r e l a t i v e density and the c y c l i c stress r a t i o to 

cause l i q u e f a c t i o n i n a s p e c i f i c number of cycles were then achieved by 

cross p l o t t i n g the data. The test data f o r both sands, t a i l i n g s and 

Ottawa sand, showed extremely high degrees of r e p r o d u c i b i l i t y and 

l i t t l e s c a t t e r . 

4.1 C y c l i c Loading Behaviour 

T y p i c a l r e l a t i o n s h i p s of re s i d u a l pore water pressure r a t i o 

(Au/a' ) as w e l l as shear s t r a i n y with the number of loading cycles 
v o 

are shown i n Figures (6, 7, 8, 9). In these f i g u r e s , the behaviour of 

both sands under low and high confining stresses i s shown at loose and 

dense r e l a t i v e d e n s i t i e s . At loose r e l a t i v e density, there was a large 

development of c y c l i c shear s t r a i n a f t e r a c e r t a i n number of cycles 

regardless of the confining stress l e v e l and p a r t i c l e angularity. The 

s t r a i n increased suddenly from a very low value to more than 5% i n one 

c y c l e . At high r e l a t i v e d e n s i t i e s , however, a gradual increase i n the 

c y c l i c shear s t r a i n was noted with cycles of loading. At such densi­

t i e s , i t may take more than 10 a d d i t i o n a l cycles to bring up the shear 

s t r a i n l e v e l from 2.5% to 5% (Figure (6a)). This d i f f e r e n c e i n the 

shear s t r a i n development between the loose and dense states would 
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F i g . 6. T y p i c a l C y c l i c Loading Behaviour of T a i l i n g s Sand at Low 
Confining Pressure, (a) Shear S t r a i n Versus Number of 
Cycles, (b) Pore Pressure Ratio Versus Number of Cycles. 
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a f f e c t the c y c l i c stress r a t i o causing l i q u e f a c t i o n , depending on what 

l e v e l of s t r a i n development i s considered to define the occurrence of 

l i q u e f a c t i o n . Such differences w i l l be discussed l a t e r . 

For both sands, at low confining stresses, the development of pore 

water pressures i n loose samples was at a f a s t e r rate, which r e f l e c t s 

the high potential volume contraction during c y c l i c loading. Dense 

samples at low confining stresses, however showed a gentle increase i n 

pore water pressure r a t i o with the number of c y c l e s . 

At high confining stresses, loose samples of both sands showed a 

s i m i l a r increase i n pore pressure to that at low confining stresses. 

But, dense samples of t a i l i n g s sand showed a f a s t e r rate of pore pres­

sure generation with increase i n number of cycles than s i m i l a r samples 

of Ottawa sand. It may be noted i n Figures (7 and 9) that although 

t a i l i n g s sand was at higher r e l a t i v e density and subjected to lower 

c y c l i c stress r a t i o than Ottawa sand, the pore pressure development i n 

t a i l i n g s sand was at a fa s t e r rate than that i n Ottawa sand. The 

breakage of sharp edges of t a i l i n g s sand during c y c l i c loading at high 

confining stresses might be responsible f o r larger p o t e n t i a l volumetric 

s t r a i n which could be the cause f o r t h i s high pore pressure development 

rates i n t a i l i n g s sands. 

A.2 L i q u e f a c t i o n Resistance of T a i l i n g s Sand 

In the following discussion, the c y c l i c stress required to develop 

±5% shear s t r a i n i n 10 loading cycles i s defined as the resistance to 

l i q u e f a c t i o n . Results based on development of ±5% shear s t r a i n i n 15 

cycles as well as ±2.5% s t r a i n i n 10 and 15 cycles w i l l also be 

presented l a t e r . 



The r e l a t i o n s h i p s between void r a t i o a f t e r consolidation and the 

number of cycles to cause l i q u e f a c t i o n of t a i l i n g s sand at various 

c y c l i c shear stress r a t i o s and under confining stresses of 200, 400, 

800, 1600, and 2500 kPa are shown i n Figure (10). In these r e l a t i o n ­

ships, each contour was developed using a f i x e d l e v e l of c y c l i c shear 

str e s s r a t i o while the void r a t i o was varied. It may be seen that the 

number of cycles to l i q u e f y the t a i l i n g s sand increases very r a p i d l y 

with decrease i n void r a t i o at low confining stresses regardless of the 

l e v e l of c y c l i c shear stress r a t i o . However, at high confining 

stresses, a s i m i l a r decrease In void r a t i o r e s u l t s i n a much smaller 

increase i n number of cycles to cause l i q u e f a c t i o n . This i s apparent 

i n progressive steepening of the void r a t i o versus number of cycles 

contours i n Figure (10) as the confining stress increased. 

Figure (11) shows the l i q u e f a c t i o n resistance of t a i l i n g s sand as 

a function of r e l a t i v e density and confining s t r e s s . The l i q u e f a c t i o n 

r e s i s t a n c e i s defined here as the c y c l i c stress r a t i o to cause ±5% 

shear s t r a i n i n 10 cy c l e s . The l i q u e f a c t i o n resistance, as expected, 

increases with increase i n r e l a t i v e density. However, the rate of t h i s 

increase depends on the confining stress l e v e l and r e l a t i v e density 

range c o n s i d e r e d . At low c o n f i n i n g s t r e s s e s ( a' < 400 kPa) , the 
vo 

l i q u e f a c t i o n resistance b u i l d s up very r a p i d l y over a narrow range of 

r e l a t i v e density i n excess of about 60%. A small increase i n r e l a t i v e 

d e n s i t y at these confining stress l e v e l s r e s u l t s In a considerable 

increase i n the resistance. The resistance curves at confining 

stresses < 400 kPa are highly nonlinear i n contrast to the generally 

assumed l i n e a r increase In resistance with the increase i n r e l a t i v e 

density (1). 
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At high confining stress l e v e l s , the b u i l d up i n l i q u e f a c t i o n 

r e s i s t a n c e with increase i n r e l a t i v e density i s much smaller than at 

lower confining s t r e s s e s . The resistance curves become progressively 

f l a t t e r as the confining pressure increases. The l i q u e f a c t i o n r e s i s t ­

ance, at a given r e l a t i v e density l e v e l , decreases with the increase i n 

c o n f i n i n g stress as i t i s apparent i n Figure (11). This decrease i n 

r e s i s t a n c e with increase i n confining stress seems to be confined to 

r e l a t i v e d e n s i t i e s i n excess of about 55%. As the r e l a t i v e density 

increases above t h i s value, the reduction i n resistance becomes pro­

g r e s s i v e l y larger with increasing confining pressure. The most drama­

t i c decrease i n resistance seems to be associated with the increase of 

confining stress from 200 kPa to 800 kPa. At r e l a t i v e density of 77%, 

the reduction i n l i q u e f a c t i o n resistance as the confining stress 

increases from 200 kPa to 800 kPa i s about 60%, while the t o t a l reduc­

t i o n i n the resistance at the same r e l a t i v e density l e v e l as the con­

f i n i n g stress increases from 200 kPa to 2500 kPa i s 68%. 

Samples at r e l a t i v e d e n s i t i e s greater than about 77%, at a confin­

ing stress of 200 kPa could not be formed e a s i l y i n the laboratory. On 

the other hand, the minimum achieved r e l a t i v e density at a confining 

s t r e s s of 2500 kPa was about 60%. This confining stress of 2500 kPa 

brought the r e l a t i v e density of samples prepared at i n i t i a l r e l a t i v e 

density of about 20% to a r e l a t i v e density of about 60% a f t e r c o n s o l i ­

dation. These l i m i t a t i o n s i n the r e l a t i v e d e n s i t i e s under confining 

stresses of 200 kPa and 2500 kPa l i m i t s the comparison between the 

responses under the extreme values of confining stresses to the range 

of r e l a t i v e density between 60% and 77% only. Due to very high l i q u e ­

f a c t i o n resistance at confining stress of < 400 kPa, t a i l i n g s sand at 
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r e l a t i v e d e n s i t i e s i n excess of 70% i s u n l i k e l y to l i q u e f y even under 

moderate to strong earthquakes, whereas at c o n f i n i n g s t r e s s of 2500 

kPa, the same sand may be s u s c e p t i b l e to l i q u e f a c t i o n even at r e l a t i v e 

d e n s i t i e s approaching 90% under moderate earthquake shaking. 

The r e d u c t i o n i n l i q u e f a c t i o n r e s i s t a n c e w i t h the increase i n 

c o n f i n i n g s t r e s s occurs a t high r e l a t i v e d e n s i t i e s r a t h e r than low 

ones. At r e l a t i v e d e n s i t i e s of about 50% to 55%, a l l r e s i s t a n c e curves 

tend to merge together, i n d i c a t i n g l i q u e f a c t i o n r e s i s t a n c e r e l a t i v e l y 

independent of c o n f i n i n g s t r e s s . As the r e l a t i v e d e n s i t y drops below 

about 50%, the l i q u e f a c t i o n r e s i s t a n c e becomes higher at higher c o n f i n ­

i n g s t r e s s e s , provided t h i s r e l a t i v e d e n s i t y l e v e l i s a c c e s s i b l e a t the 

c o n f i n i n g pressure under c o n s i d e r a t i o n . 

The v a r i a t i o n of c y c l i c s t r e s s r a t i o to cause l i q u e f a c t i o n w i t h 

i n c r e a s e i n c o n f i n i n g s t r e s s a t v a r i o u s r e l a t i v e d e n s i t y l e v e l s i s 

shown i n Fi g u r e (12) while the percent r e d u c t i o n i n c y c l i c s t r e s s r a t i o 

to cause l i q u e f a t i o n w i t h increase i n c o n f i n i n g s t r e s s at these r e l a ­

t i v e d e n s i t y l e v e l s , when r e f e r r e d to a c o n f i n i n g pressure of 200 kPa, 

are shown i n Figure (13). I t may again be noted from Figures (12) and 

(13) that the l a r g e s t r e d u c t i o n i n l i q u e f a c t i o n r e s i s t a n c e occurs as a 

consequence of c o n f i n i n g s t r e s s increase from 200 kPa to 800 kPa. The 

higher the r e l a t i v e d e n s i t y , the more i s the r e d u c t i o n . Not much 

change i n l i q u e f a c t i o n r e s i s t a n c e occurs when the c o n f i n i n g s t r e s s 

i n c r e a s e s from 800 kPa to 1600 kPa, except at r e l a t i v e d e n s i t i e s i n 

excess of about 65%. However, a l a r g e r r e d u c t i o n occurs as the c o n f i n ­

ing s t r e s s exceeds 1600 kPa. 

It may a l s o be noted from Figure (12) that the change i n r e l a t i v e 

d e n s i t y a t lower c o n f i n i n g s t r e s s e s has a much l a r g e r e f f e c t on the 



28. 

C o n f i n i n g S t r e s s , a' i n kPa ° vo 

F i g . 12. V a r i a t i o n of C y c l i c Stress R a t i o to Cause L i q u e f a c ­
t i o n of T a i l i n g s Sand With Co n f i n i n g Pressure at 
Various R e l a t i v e Density Levels. 
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l i q u e f a c t i o n resistance of t a i l i n g s sand. At a confining stress of 200 

kPa, the c y c l i c stress r a t i o ( T
C y / a ^ 0 ) required to l i q u e f y a sample at 

r e l a t i v e density of about 50% Is only 0.13, whereas a c y c l i c stress 

r a t i o of about 0.45 i s needed to l i q u e f y samples at r e l a t i v e d e n s i t i e s 

of 77% under the same confining s t r e s s . On the other hand, a change In 

r e l a t i v e density at a high confining stress has only a small e f f e c t on 

l i q u e f a c t i o n resistance e.g., at a confining stress of 2500 kPa, the 

c y c l i c stress r a t i o (T /o' ) to cause l i q u e f a c t i o n increased only from 
J cy vo M J 

0.13 to 0.155 as the r e l a t i v e density increased from 60% to 85%. 

The c o m p r e s s i b i l i t y c h a r a c t e r i s t i c s of t a i l i n g s , as measured i n 

one-dimensional consolidation tests and expressed as the r e l a t i o n s h i p 

between v o i d r a t i o e and l o g were shown i n Figure ( 4 ) . It may be 

noted that considerable volume compression occurs on a p p l i c a t i o n of 

large confining pressures. The e f f e c t of confining stress on r e l a t i v e 

density increase, however, decreases with increase i n i n i t i a l r e l a t i v e 

density. The substantial increase i n r e l a t i v e density i s the one asso­

ci a t e d with the a p p l i c a t i o n of high confining stresses on samples of 

i n i t i a l l y low r e l a t i v e density. 

Figure (14) shows the r e l a t i o n s h i p s between the i n i t i a l void 

r a t i o s and the void r a t i o s a f t e r consolidation at confining stresses 

under consideration. It i s i n t e r e s t i n g to note that at each selected 

confining s t r e s s , a l i n e a r r e l a t i o n s h i p i s obtained between i n i t i a l 

v o i d r a t i o e. and the v o i d r a t i o a f t e r c o n s o l i d a t i o n , e . T h i s i c 
observed l i n e a r i t y i n the r e l a t i o n s h i p s between e, and e helped i n 

i c 

estimating the r e l a t i v e d e n s i t i e s a f t e r consolidation at each confining 

stress l e v e l . 
The v a r i a t i o n i n l i q u e f a c t i o n resistance with increase i n 
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c o n f i n i n g s t r e s s a t f i x e d values of i n i t i a l r e l a t i v e d e n s i t i e s ( D
r^) i s 

shown i n Figure ( 1 5 ) . Each contour i n Figure (15) represents the 

l i q u e f a c t i o n r e s i s t a n c e of samples co n s o l i d a t e d along a t y p i c a l conso­

l i d a t i o n curve i n Figure ( 4 ) . The c o n f i n i n g s t r e s s has two e f f e c t s on 

the l i q u e f a c t i o n r e s i s t a n c e , which are opposite to each other, 1. 

Increased c o n f i n i n g s t r e s s reduces l i q u e f a c t i o n r e s i s t a n c e . 2. 

Increased c o n f i n i n g s t r e s s increases the r e l a t i v e d e n s i t y which, i n 

t u r n , i n c r e a s e s the r e s i s t a n c e . The r e s i s t a n c e curves i n Figure (15) 

show the net i n f l u e n c e of these two f a c t o r s . I t may be seen that at 

low i n i t i a l r e l a t i v e d e n s i t i e s , the e f f e c t of d e n s i f i c a t i o n f a r out­

weighs t h a t of i n c r e a s i n g c o n f i n i n g s t r e s s up to of about 1600 kPa. 

At higher c o n f i n i n g s t r e s s e s , the e f f e c t of c o n f i n i n g s t r e s s i n reduc­

in g the c y c l i c r e s i s t a n c e seems to be predominant. A general continu­

ous decrease i n r e s i s t a n c e i s obtained w i t h i n c r e a s e i n c o n f i n i n g 

s t r e s s a t higher i n i t i a l r e l a t i v e d e n s i t i e s . This i n d i c a t e s that at 

these hig h i n i t i a l r e l a t i v e d e n s i t i e s , the increase i n r e l a t i v e d e n s i t y 

due to c o n s o l i d a t i o n i s too small to o f f s e t the r e d u c t i o n due to high 

c o n f i n i n g s t r e s s e s . That i n i t i a l d e n s i f i c a t i o n of t a i l i n g s sand had a 

l a r g e e f f e c t on i t s l i q u e f a c t i o n r e s i s t a n c e a t lower c o n f i n i n g s t r e s s e s 

( O ^ q < 400 kPa) may be noted from Figure ( 1 5 ) . At c o n f i n i n g s t r e s s of 

200 kPa, f o r example, the r e s i s t a n c e increased by 150%, i f the sand had 

been i n i t i a l l y d e n s i f i e d to a r e l a t i v e d e n s i t y of 70% i n s t e a d of 35%. 

At h i g h e r c o n f i n i n g s t r e s s e s (°^ 0 > 800 kPa) i n i t i a l d e n s i f i c a t i o n had 

l i t t l e b e n e f i t to the l i q u e f a c t i o n r e s i s t a n c e . At c o n f i n i n g s t r e s s of 

2500 kPa, only 19% increase i n r e s i s t a n c e was observed as the i n i t i a l 

r e l a t i v e d e n s i t y i n c r e a s e s from 35% to 70%. This has a considerable 

p r a c t i c a l s i g n i f i c a n c e i n de c i d i n g placement d e n s i t i e s of t a i l i n g s at 
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F i g . 15. E f f e c t of Confining Pressure on the Resistance to 
Liquefaction of T a i l i n g s Sand Prepared at Various 
I n i t i a l Relative Densities. 



34. 

various l o c a t i o n s i n t a i l i n g s dams. 

Li q u e f a c t i o n resistance of t a i l i n g s sand based on the development 

of ±5% shear s t r a i n i n 15 stress cycles rather than 10 cycles i s shown 

i n Figure (16). The resistance curves look very s i m i l a r to those pre­

v i o u s l y discussed f o r 10 cy c l e s . The r e l a t i v e p o s i t i o n s of the curves 

at a l l confining stresses stay about the same. The values of the 

c y c l i c stress r a t i o s to cause ±5% s t r a i n i n 15 cycles are as expected 

l e s s than those f o r 10 cycle s as shown In Figure (11). A l l the curves 

i n Figure (16) are e s s e n t i a l l y h o r i z o n t a l l y s h i f t e d towards higher 

r e l a t i v e d e n s i t i e s . This s h i f t r e s u l t s i n the resistance curves merg­

ing at s l i g h t l y higher r e l a t i v e density l e v e l s than i n the case of 10 

cycles. 

The l i q u e f a c t i o n resistance of t a i l i n g s sand based on the 

development of ±2.5% shear s t r a i n i n 10 cycles and 15 cycles i s shown 

i n Figures (17) and (18) respectively. Figure (17) shows the c y c l i c 

s t r e s s r a t i o required to cause ±2.5% shear s t r a i n i n 10 cycles with 

increase i n r e l a t i v e density at various confining stresses. The 

resistance curves i n Figure (17) are s i m i l a r to those f o r ±5% s t r a i n 

shown i n Figure (11) except that they become s l i g h t l y f l a t t e r i n the 

region of higher r e l a t i v e d e n s i t i e s . This i s because, a r e l a t i v e l y 

l a r g e number of cycles i s needed f or dense sand to bring up the shear 

s t r a i n from 2.5% to 5%. Such a di f f e r e n c e i s c l e a r l y shown i n Figures 

(6, 7, 8, and 9), where the number of cycles needed to increase the 

shear s t r a i n from 2.5% to 5% could be up to 10 cycles or more i n the 

case of dense sand. On the other hand the s t r a i n b u i l d s up from very 

low values to more than 5% occurs i n only one c y c l e i n loose sand. 

L i q u e f a c t i o n resistance curves of t a i l i n g s sand based on the 
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F i g . 17. Resistance to Liquefaction of T a i l i n g s Sand at Various 
Confining Pressures Based on Shear S t r a i n Level of 
+ 2.5% i n 10 Cycles. 
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development of 2.5% s t r a i n i n 15 cycles are shown i n Figure (18). The 

resistance curves are s i m i l a r to those i n Figure (17) with a s l i g h t 

s h i f t towards the higher r e l a t i v e d e n s i t i e s . In both Figures (17 and 

18), the r e l a t i v e p o s i t i o n of the curves stays the same as i n the case 

of 5% s t r a i n . This implies that s i m i l a r reduction i n l i q u e f a c t i o n 

r e s i s t a n c e occurs with increase i n confining stress, regardless of the 

shear s t r a i n l e v e l to define the l i q u e f a c t i o n . 

4.3 L i q u e f a c t i o n Resistance of Ottawa Sand 

The resistance to l i q u e f a c t i o n i s f i r s t based on the development 

of ±5% shear s t r a i n i n 10 cycles. Data obtained at other l e v e l s of 

shear s t r a i n and d i f f e r e n t number of loading cycles w i l l be discussed 

l a t e r . 

The basic data on l i q u e f a c t i o n resistance of Ottawa sand i s shown 

i n Figure (19). The increase i n number of cycles to cause ±5% shear 

s t r a i n with the decrease i n void r a t i o at confining stress of 200 kPa 

was very rapid and s i m i l a r to that f o r t a i l i n g s at the same confining 

s t r e s s . At higher confining s t r e s s , even though the void r a t i o range 

i s d i f f e r e n t from that at low confining s t r e s s , the increase i n number 

of c y c l e s to cause l i q u e f a c t i o n as the void r a t i o decreases i s s t i l l at 

a high r a t e . This i s a d i s t i n c t i v e c h a r a c t e r i s t i c of Ottawa sand when 

compared to the behaviour of t a i l i n g s sand and implies a rapid buildup 

of resistance to l i q u e f a c t i o n with r e l a t i v e density even at high 

confining s t r e s s e s . 

The l i q u e f a c t i o n resistance of Ottawa sand as expressed by a r e l a ­

t i o n between the c y c l i c stress r a t i o to cause ±5% s t r a i n i n 10 cycles 

and r e l a t i v e density at each confining stress l e v e l i s shown i n Figure 
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(20) . A nonlinear increase i n resistance as the r e l a t i v e density 

increases may be noted from Figure (20) over p r a c t i c a l l y the f u l l range 

of r e l a t i v e d e n s i t i e s considered. The resistance curve at confining 

stress of 200 kPa has also been presented i n e a r l i e r studies (see 8). 

No t e s t s were performed at a confining stress of 400 kPa, however, 

e a r l i e r studies on t h i s sand (8) have shown that i t s resistance to 

l i q u e f a c t i o n was not affected by the increase of confining stress from 

200 kPa to 400 kPa. It may be seen i n Figure (20) that the l i q u e f a c ­

t i o n resistance b u i l d s up r a p i d l y as the r e l a t i v e density increases, 

even at high confining stresses. This occurs despite the d i f f e r e n c e i n 

the r e l a t i v e density range between low and high confining stresses at 

which samples can e x i s t . The resistance to l i q u e f a c t i o n at r e l a t i v e 

d e n s i t i e s i n excess of about 55% decreases with increase i n confining 

stress l e v e l . The reduction i n resistance i s larger at higher r e l a t i v e 

d e n s i t i e s . Again, as f o r t a i l i n g s , the most s i g n i f i c a n t reduction i n 

resistance to l i q u e f a c t i o n occurs as the confining stress increases 

from 200 kPa to 800 kPa. No change i n resistance seems to occur when 

confining stress increases from 800 kPa to 1600 kPa. Then as the con­

f i n i n g stress exceeds 1600 kPa, further reduction i s noticed, regard­

l e s s of the r e l a t i v e density l e v e l . At r e l a t i v e d e n s i t i e s below about 

55%, the shape of the r e s i s t a n c e curve at o' of 1600 kPa seems to ' vo 

s u g g e s t a c r o s s o v e r with that at of 200 kPa, i m p l y i n g l a r g e r 

resistance at lower r e l a t i v e d e n s i t i e s associated with higher confining 

stresses. 

Ottawa sand i s u n l i k e l y to exist at r e l a t i v e d e n s i t i e s l e s s than 

about 50% under confining stresses i n excess of 800 kPa. At the same 

time, samples at r e l a t i v e d e n s i t i e s of more than 75% were extremely 
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d i f f i c u l t to prepare under a consolidation pressure of 200 kPa. Thus 

the v a r i a t i o n of c y c l i c stress r a t i o with the increase i n confining 

s t r e s s at various r e l a t i v e d e n s i t i e s which i s shown i n Figure (21), 

spans a r e l a t i v e density range of only 55 to 75%. It may be noted from 

Figure (21) that the decrease i n l i q u e f a c t i o n resistance with increase 

i n confining stress i s larger at higher r e l a t i v e d e n s i t i e s . The 

increase i n resistance with increase i n r e l a t i v e density i s higher at 

lower confining stresses. At high confining stresses, even though the 

increase i n resistance with increase i n r e l a t i v e density i s l e s s than 

that at low confining stresses, Ottawa sand, unlike t a i l i n g s , shows a 

marked increase i n resistance with increase i n r e l a t i v e density. 

The percent reduction i n resistance due to increase of confining 

stress as i t i s referred to a confining stress of 200 kPa i s shown i n 

Figure (22). 

Unlike the behaviour of t a i l i n g s , the a p p l i c a t i o n of high confin­

ing stress to Ottawa sand causes only a small change i n r e l a t i v e 

density (Figure 5). A confining stress of 2500 kPa causes the r e l a t i v e 

density of the loose sample to increase by only 15% and dense sample by 

a mere 6%. Nevertheless, even these smaller increases i n r e l a t i v e 

d e n s i t y are much more e f f e c t i v e , In comparison with that f o r t a i l i n g s , 

i n increasing i t s resistance to l i q u e f a c t i o n . This i s so because of 

steepness of the resistance curves shown i n Figure (20). 

The void r a t i o of Ottawa sand a f t e r c o n s o l i d a t i o n i s again 

l i n e a r l y r e l a t e d with the i n i t i a l void r a t i o at a l l confining stress 

l e v e l s . This r e l a t i o n s h i p , as f o r t a i l i n g s sand, was useful i n predic­

t i n g the r e l a t i v e density a f t e r consolidation under a prescribed 

confining pressure when s t a r t i n g from a known i n i t i a l density. 
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Figure (24) shows the r e l a t i o n s h i p between c y c l i c stress r a t i o to 

cause l i q u e f a c t i o n and confining stress at various i n i t i a l r e l a t i v e 

d e n s i t i e s . At i n i t i a l d e n s i t i e s up to about 62%, the c y c l i c resistance 

i n c r e a s e s w i t h i n c r e a s i n g confining stress up to of ~1200 kPa, as 

the p o s i t i v e influence of d e n s i f i c a t i o n exceeds the negative e f f e c t of 

confinin g stress increase. At i n i t i a l r e l a t i v e density of about 62% 

and a confining stress range from 200 kPa to ~1600 kPa, the p o s i t i v e 

e f f e c t of d e n s i f i c a t i o n of the sand with confining stress seems to 

compensate the negative e f f e c t due to the confining stress Increase. A 

general reduction i n c y c l i c resistance may be noted with confining 

stress increase at r e l a t i v e d e n s i t i e s i n excess of 62%. A very s l i g h t 

change i n resistance occurs at a l l i n i t i a l r e l a t i v e d e n s i t i e s when the 

confining stress increases from 800 kPa to 1600 kPa. As the confining 

s t r e s s exceeds 1600 kPa, the l i q u e f a c t i o n resistance decreases with 

increase i n confining s t r e s s , regardless of the i n i t i a l r e l a t i v e 

density l e v e l . 

I n i t i a l d e n s i f i c a t i o n of Ottawa sand i s b e n e f i c i a l i n increasing 

i t s l i q u e f a c t i o n resistance over a broad range of confining stress as 

shown i n Figure (24). Regarding t h i s aspect, d e n s i f i c a t i o n i s much 

more e f f e c t i v e at lower confining stresses. At a confining stress of 

200 kPa, the l i q u e f a c t i o n resistance i s increased by 80% as a conse­

quence of increase i n i n i t i a l r e l a t i v e density l e v e l from 53% to 69%. 

Whereas at confining stress of 2500 kPa, the gain i n resistance f o r the 

same increase i n i n i t i a l r e l a t i v e density was only 32%. 

Results of l i q u e f a c t i o n resistance at ±5% shear s t r a i n i n 15 

cy c l e s are shown i n Figure (25). The resistance curves, i n t h i s case, 

are s i m i l a r to that for 10 cycles and t h e i r r e l a t i v e p o s i t i o n stays 
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almost the same. As expected, a higher r e l a t i v e density i s needed to 

withstand a c e r t a i n c y c l i c shear stress l e v e l for 15 loading cycles 

than the r e l a t i v e density required for the same shear stress l e v e l i n 

10 cycles at a l l confining stress l e v e l s . The reduction i n c y c l i c 

stress r a t i o to cause ±5% s t r a i n i n 15 cycles at fixed r e l a t i v e density 

l e v e l s i s very s i m i l a r to that for 10 cy c l e s . 

The l i q u e f a c t i o n resistance of Ottawa sand based on shear s t r a i n 

l e v e l of ±2.5% i n 10 and 15 cycles i s shown i n Figures (2 6) and (2 7) 

r e s p e c t i v e l y . A s i m i l a r conclusion to that on l i q u e f a c t i o n resistance 

of t a i l i n g s sand at the same s t r a i n l e v e l can be applied here. The 

r e l a t i v e positions of the resistance curves at the various confining 

pressure l e v e l s stay very well the same as i n the case of ±5% shear 

s t r a i n . This implies a s i m i l a r reduction i n l i q u e f a c t i o n resistance, 

with increase i n confining pressure, to that at ±5% shear s t r a i n 

regardless of the shear s t r a i n l e v e l to define the l i q u e f a c t i o n . 
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F i g . 26. Resistance to Liquefaction of Ottawa Sand at Various 
Confining Pressures, Based on Shear S t r a i n Level of 
+ 2.5% i n 10 Cycles. 
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5. EFFECT OF CONFINING STRESS AND PARTICLE ANGULARITY  
ON LIQUEFACTION POTENTIAL 

The main purpose of t h i s research was to investigate the e f f e c t of 

c o n f i n i n g stress and p a r t i c l e angularity on l i q u e f a c t i o n p o t e n t i a l . 

The e f f e c t of confining stress has been investigated and discussed i n 

Chapter 4 by looking at the resistance of both angular and rounded 

sands at various confining stress l e v e l s . The e f f e c t of p a r t i c l e angu­

l a r i t y w i l l be considered by comparing the response of the two sands at 

f i x e d l e v e l s of confining stress and r e l a t i v e density. In the follow­

ing discussion, development of ±5% s t r a i n i n 10 cycles i s considered as 

the occurrence of l i q u e f a c t i o n . 

The resistance to c y c l i c loading of both t a i l i n g s and Ottawa sand, 

as discussed e a r l i e r , c l e a r l y i n d i c a t e a reduction with increase i n 

confining s t r e s s . The v a r i a t i o n of the c y c l i c stress r a t i o to l i q u e f y 

both sands with confining stress increase i s shown i n Figures (12 and 

19). Both figures show a general reduction i n c y c l i c stress r a t i o to 

cause l i q u e f a c t i o n with increase i n confining s t r e s s , regardless of the 

sand type. The magnitude of reduction, however, depends on the sand 

type, confining stress l e v e l , and the r e l a t i v e density l e v e l at which 

t h i s evaluation i s made. 

The percent reduction i n l i q u e f a c t i o n resistance with confining 

s t r e s s increase at various l e v e l s of r e l a t i v e density i s shown i n 

Figures (13 and 20) for t a i l i n g s and Ottawa sand. In these f i g u r e s , 

the resistance at confining stress of 200 kPa was taken as the r e f e r ­

ence. The l i q u e f a c t i o n resistance of t a i l i n g s sand, f o r example, 

reduces by as much as 56% due to an increase i n confining stress from 
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200 kPa to 2500 kPa at r e l a t i v e density of 75%. Most of the reduction 

occurs as the confining stress increases from 200 kPa to 800 kPa. The 

same trend appears to be applicable f o r Ottawa sand but with r e l a t i v e l y 

lower reductions. The amount of reduction decreases as the r e l a t i v e 

density decreases. Furthermore, there seems to be a c e r t a i n upper 

l i m i t of r e l a t i v e density, f o r both sands, below which the l i q u e f a c t i o n 

r e s i s t a n c e appears not to be negatively affected by the increase i n 

confining s t r e s s . The value of t h i s r e l a t i v e density i s about 50 to 

55% for both sands. 

The e f f e c t of confining stress on the l i q u e f a c t i o n p o t e n t i a l , 

however, cannot be i s o l a t e d from the e f f e c t of the p a r t i c l e shape. 

Very large confining stresses r e s u l t i n very large d e n s i f i c a t i o n of 

angular sands and consequently may increase t h e i r c y c l i c resistance 

more by d e n s i f I c a t i o n than the reduction due to Increasing confining 

pressure. 

The two sands used i n the study had i d e n t i c a l mineral composition 

and gradation. Therefore the d i f f e r e n c e i n t h e i r response to c y c l i c 

loading can be att r i b u t e d s o l e l y to the differences i n angularity of 

t h e i r p a r t i c l e s . Figure (2 8) shows a d i r e c t comparison of l i q u e f a c t i o n 

r e s i s t a n c e of the two sands at confining stresses of 200 kPa and 2500 

kPa. It may be noted that at low confining stress (200 kPa), the angu­

l a r sand i s more r e s i s t a n t to l i q u e f a c t i o n than the rounded sand over 

the e n t i r e range of r e l a t i v e d e n s i t i e s investigated. At high confining 

s t r e s s (2500 kPa), the di f f e r e n c e i n t h e i r response depends on the 

r e l a t i v e density l e v e l under consideration. At r e l a t i v e d e n s i t i e s l e s s 

than about 70%, the angular sand i s more r e s i s t a n t to l i q u e f a c t i o n than 

the rounded sand. As the r e l a t i v e density exceeds about 70%, the 
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F i g . 28. Comparison of Resistance to L i q u e f a c t i o n of Angular 
and Rounded Sands at Low and High Confining Pressures. 
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rounded sand becomes more r e s i s t a n t than the angular sand. The 

d i f f e r e n c e between the resistance of the two sands beyond the r e l a t i v e 

d e n s i t y of 70% increases r a p i d l y as the r e l a t i v e density increases. 

T h i s may be due to the much f a s t e r rate of the resistance buildup of 

Ottawa sand at high confining stresses, whereas for angular sand, the 

r e s i s t a n c e curve at high confining stress (2 500 kPa) i s much f l a t t e r . 

Comparison of l i q u e f a c t i o n resistance at other confining pressures can 

be made i n a s i m i l a r manner, which would show a gradual transion 

between the behaviour at low (200 kPa) and high (2 500 kPa) confining 

pressures. 

Thus, the resistance of angular sand can be e i t h e r larger or 

smaller than that of i t s rounded counterpart, depending upon the l e v e l 

of confining stress and the magnitude of r e l a t i v e density at which the 

comparison i s made. At low confining stresses, both angular and 

rounded sands are u n l i k e l y to l i q u e f y at r e l a t i v e d e n s i t i e s i n excess 

o f about 70% even under strong earthquakes. This i s apparent i n Figure 

(2 8) which shows extremely high c y c l i c resistance for r e l a t i v e densi­

t i e s i n excess of about 70%. At high confining stresses, t a i l i n g s sand 

may be susceptible to l i q u e f a c t i o n even at r e l a t i v e d e n s i t i e s approach­

ing 100% under moderate earthquake shaking. Ottawa sand at high 

c o n f i n i n g stresses i s more r e s i s t a n t than t a i l i n g s sand and seems 

u n l i k e l y to l i q u e f y at r e l a t i v e d e n s i t i e s i n excess of about 80% even 

under strong earthquakes. 

The low resistance o f t a i l i n g s at higher confining stresses may be 

due to the breakage of sharp edges of t a i l i n g s sand p a r t i c l e s under 

c y c l i c shear s t r a i n s . The consequence of p a r t i c l e breakage during 

c y c l i c loading i s analogous to increased p a r t i c l e compressibility, 
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which would r e s u l t i n an accelerated pore water pressure r i s e i n 

undrained t e s t s . The resistance to l i q u e f a c t i o n of such a sand, under 

co n f i n i n g stress high enough to cause p a r t i c l e breakage during c y c l i c 

shearing, w i l l be of course l e s s than that i n the case where no 

p a r t i c l e breakage would occur. 

Results from monotonic undrained t r i a x i a l t e s t s on both sands 

i n d i c a t e that gradation curve of Ottawa sand a f t e r being tested at 

confining stress of 2500 kPa i s v i r t u a l l y i d e n t i c a l to that f o r the 

untested sand. For t a i l i n g s sand, however, about 0.5% increase i n 

f i n e s content was observed during consolidation under the confining 

stress of 2500 kPa and an a d d i t i o n a l increase of about 1.5% during 

monotonic undrained t e s t i n g . However, l a r g e r increase i n f i n e s may be 

expected from c y c l i c loading of t a i l i n g s . This implies that both 

c o n s o l i d a t i o n and shearing of angular sands r e s u l t s i n breakage of the 

shape edges of the p a r t i c l e under high confining stresses. No detect­

able increase i n f i n e s content was noted for tests at confining 

stresses l e s s than 400 kPa and consequently l i q u e f a c t i o n resistance of 

t a i l i n g s at these confining stress l e v e l s would not be reduced by 

breakage of p a r t i c l e edges during c y c l i c shearing. 
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6. CONCLUSIONS 

The e f f e c t s of high confining pressure and p a r t i c l e angularity on 

l i q u e f a c t i o n resistance of sands have been investigated under the 

constant volume c y c l i c simple shear condition. Two quartz sands of 

i d e n t i c a l mineral composition and gradation but varying i n p a r t i c l e 

angularity were used i n the study. 

The r e s u l t s show that a decrease i n l i q u e f a c t i o n resistance of 

sands occurs with increase i n confining stress regardless of p a r t i c l e 

shapes c o n s t i t u t i n g the sand. The magnitude of reduction i n resistance 

to l i q u e f a c t i o n with increase i n confining s t r e s s , however, depends on 

the r e l a t i v e density l e v e l , p a r t i c l e shape of the sand, and the range 

of confining stresses of i n t e r e s t . 

Liquefaction resistance of both angular and rounded sands at low 

c o n f i n i n g stress of 200 kPa increased very r a p i d l y with increase i n 

r e l a t i v e density. At t h i s low confining stress l e v e l , angular sand was 

more r e s i s t a n t to c y c l i c loading than rounded sand. At high confining 

s t r e s s e s , by contrast, the buildup i n l i q u e f a c t i o n resistance of angu­

l a r sand with increase i n r e l a t i v e density i s very slow compared to 

that of rounded sand, which maintained a rapid rate of increase i n 

r e s i s t a n c e with increase i n r e l a t i v e density. This makes rounded sand 

under high confining stresses more r e s i s t a n t to c y c l i c loading than 

angular sand at higher r e l a t i v e d e n s i t i e s . 

The decrease i n resistance to l i q u e f a c t i o n with increase i n 

c o n f i n i n g s t r e s s , f o r both sands, increases with increase i n r e l a t i v e 

density. However, such decrease seems to be more s i g n i f i c a n t f o r 

angular sand. Very l i t t l e increase i n resistance occurs with large 



59. 

increase i n r e l a t i v e density at high confining stresses i n such a 

sand. 

The most dramatic decrease i n resistance to l i q u e f a c t i o n , f o r both 

sands, was that associated with increase i n confining stress from 200 

kPa to 800 kPa. 

A c e r t a i n r e l a t i v e density l e v e l appeared to e x i s t , f o r both 

angular and rounded sands, below which the resistance to l i q u e f a c t i o n 

was not affected by the negative e f f e c t of confining s t r e s s , provided 

such r e l a t i v e density states were accessible under confining stress 

c o n s i d e r e d . At low confining stresses ( ° v o < 400 kPa) , both sands at 

r e l a t i v e density i n excess of about 70% are u n l i k e l y to l i q u e f y even 

under strong earthquakes because of t h e i r extremely large resistance to 

l i q u e f a c t i o n (D of 75%, x /a' > 0.3). n r cy vo 

At high confining stresses, c y c l i c shearing tends to cause break­

age of sharp edges of angular sand p a r t i c l e s , which induces more poten­

t i a l volumetric contraction and consequently an accelerated pore water 

pressure increase. This makes angular sand more susceptable to l i q u e ­

f a c t i o n under high confining stresses than rounded sand. Angular sand 

could l i q u e f y under high confining pressure during even moderate earth­

quakes, despite r e l a t i v e d e n s i t i e s approaching 100%. Furthermore, 

i n i t i a l d e n s i f i c a t i o n of angular sand was found to be of l i t t l e b e n e f i t 

i n increasing i t s l i q u e f a c t i o n resistance i f i t was to perform eventu­

a l l y under high confining stresses. 

Rounded sand at r e l a t i v e d e n s i t i e s i n excess of about 80% seemed 

to be non-susceptible to l i q u e f a c t i o n even at confining stresses of up 

to 2500 kPa under strong earthquake shaking. 
Because of the d i f f e r e n c e s i n the behaviour of angular and rounded 
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sands discussed above, extreme caution must be exercised i n t r y i n g to 

p r e d i c t c y c l i c resistance of t a i l i n g sand at high confining pressures 

from r e s u l t s of comparable studies on natural rounded sands or from 

studies on t a i l i n g s sands at low confining stresses. 
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