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ABSTRACT

An efficient undrained model for the deformations analyses of
0il sand masses upon undrained loading is presented in this thesis.

An analysis which couples the s0il skeleton and pore fluids is
used. The soil skeleton is modelled as a non-linear elastic-plastic
isotropic material. In undrained conditions, the constitutive
relationships for the pore fluids are forﬁulated based on the ideal gas
laws. The coupling between the soil skeleton and the pore fluids is
based upon volpme compatibility.

The undrained model was verified with the experimental results
and one dimensional expansion of soil sand cores. Comparisons between
computed and measured responses are in good agreement and suggest that
this model may prove useful as a tool in evaluating undrained response
of oll sand.

The‘response of a wellbore in oil sand upon unloading was
.analysed using the developed model. Such analyses are important in the

rational design of o0il recovery systems in oil sand.
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LIST OF SYMBOLS

The following is a list of the commonly used symbols in this
thesis. Multiple use of several symbols is unavoidable because of the
complexity of the formulations. The symbol will be defined immediately

in the text where the use of symbols differs from those listed below.

SYMBOL MEANING

B compressibility

A change

g stress

€ strain

v Poisson's ratio

¢ friction angle

a temperature solubility conétants
o, radial stress

06 tangential stress

a, vertical stress

B bulk modulus

e . void ratio

E Young's modulus

G shear modulqs

H Henry's constant

k : permeability

K apparent bulk fluid modulus



bulk fluid modulus
porosity

pressure

flow rate

radius (variable)
radius (constant)
radius of plastic zone
radius of wellbore
saturation
temperature

pore fluid pressure

volume
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i ' initial (internal in Chapter 6)
o) oil (outer in Chapter 6)
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1.1 INTRODUCTION

Many schemes for oil recovery require open excavations, tunnels
or wellbore in oil sand. As a result, an accurate and efficient
analysis of stresses and deformatioms around these openings is becoming
increasingly important. Mathematical models have been developed by
Byrne et al (1980), Dusseault (1979), and Harris and Sobkowicz (1977)
to investigate these problems. An efficient undrained model for
analysing the stresses and deformations around open excavations,
tunnels and wellbores in o0il sand is presented in this thesis.

011 sand is comprised of a dense sand skeleton with its pore
spaces filled with bitumen, water and free or dissolved gas. The
presence of bitumen reduces the effective permeability of oil sand,
hence undrained conditions occur on rapid unloading. Gas evolves from
pore fluids during unloading‘when the pore fluid pressure is below gas
saturation pressure. Because gas exsolution takes some time to occur,
two undrained conditions arise, (1) an immediate or short term
condition in which there is no time for gas exsolution, and (2) a long
term or equilibrium condition in which complete gas exsolutibn has
occured. Both of these conditions are considered in this thesis. The
rate of gas exsolution is not considered herein. The drained analysis
with pore pressures under steady-state conditions is also addressed.

The sand skeleton is modelled as a non—linear elastic-plastic
porous material. The fluids stress—strain relationships for undrained
condition are formulated on the basis of ideal gas law. For the
undraiped condition, the pore pressure changes :~re computed from the
ZSKQQQEQ of volume compatibility between the sand skeleton and the pore

fluids. It is assumed that the pore fluid pressures are known in the

drained analysis.



Validation of the stress strain model is méde by comparing
responses with theoretical solutions and observed data. The observed
data are the experimental results in Sobkowicz's doctorate thesis.

The stresses and deformations around a wellbore in o0il sand

upon unloading 1s investigated using the new stress—-strain model.

1.2 BEHAVIOUR OF OIL SAND

0il sand is comprised of a demse, highly incompressible,
uncemented, interlocked skeleton with pore spaces filled by water,
bitumen, and dissolved or free gas. The interpenetrative structure.
leads to the low in—situ void ratio and high shear strength.

The response of oil sand is mainly governed by the rate of

loading. Undrained conditions occur as a result of:

1) 1low effective permeability to pore fluids
2) 1large amount of dissolved gas in pore fluids

3) rapid unloading

The response of 0il sand may be physically modelled by a set of
springs shown in Figure l.1l. The o0il sand is split into two load
carrying components = soil skeleton and pore fluids. The soil skeleton
compressibility, BS, characterizes the deformation of soil skeleton,
which results in a change in effective stress. The pore fluid
compressibility, Bf, characterizes the deformation of pore fluids

(because of free gas) which results in a change in pore pressure.
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Strain compatibility between the pore fluids and soil skeleton controls
the relative magnitudes of the changes in pore pressures and effective
stress which together equal the change in total stress. Stress chanrges
(unloading) are shared between the sand skeleton and pore fluids
according to their compressibilities. When the pore pressure is above
the gas saturation pressure and the oil sand is 100% saturated, the
stress changes will be accommodated by the pore fluids because their
compressibilities are lower. Once the pore pressure drops below the
gas saturation pressure, gas starts to evolve which increases the
fluids' compressibilities. Therefore the sand skeleton becomes the
less compressible phase and takes up the stresses rather than the pore
fluids. When the effective stress drops to zero, the soil skeleton
is very compressible relative to the pore fluids; hence any further
decrease 1in total stress is entirely accommodated by the pore
pressure.

The gas exsolution takes some time tp occur, hence two
undrained conditions (Sobkowicz, 1982) arise. The expressions 'short

term' and 'long term' will be applied to these processes exclusively.

1) 'Short term' undrained in which there is no time for gas
exsolution
2) 'Long term' undrained in which equilibrium state has been

reached, i.e. completion of gas exsolution.

In the field, the unusal behaviour of o0il sand manifests in a

number of ways. They include:



1) Volumetric expansion of 5 to 15% occurred when core samples
were left in an unconfined state, i.e. not retained by
plastic core sleeves (Dusseault 1980; Byrne et al 1980).

2) Core samples spontaneously split longitudinally and
perpendicularly to the core axis, effervescence was
observed on several freshly recovered cores (Hardy and
Hemstock 1963).

3) Rétrogression of slopes in o0il sand on rapid excavation.

4) 01il sand at the base of excavation subjects to softening

and heaving, followed by settlement on reloading.

When the decrease in éxternal sfress occurs over a period of
time, the evolved gas has time to drain off and effective stress does
not go to zero which results in an undisturbed sand skeleton. Its high
in-situ density and hence high shear strength is retained. Such
situations can be seen on the exposures of oil sand deposits along the
Valley of Athabasca River where erosion (unloading) by the river has
occurred over thousands of years. These oil sand deposits are standing
on steep stable slopes with slope angles in excess of 60° and heights

up to 60 metres, exhibiting high strength (Harris and Sobkowicz 1977).

1.3 THE SCOPE
The purpose of this study is to present a stress—strain model
(Vaziri, 1985) for the deformation analyses of oil sand masses, i.e. to
explain the behaviour of oil sand as described in Section 1.2.
Modelling the undrained response of 0il sand requires the pore
fluids pressure to be numerically evaluated. For the undrained

condition, pore fluid pressures are computed from the constraint of



volumetric compatibility between the sand skeleton and pore fluid
phases.

Compressibilities of sand skeleton and pore fluids have to be
evaluated in the new stress—-strain model. A non-linear stress-strain
relationship (Duncan et al 1970) is adopted for the sand skeleton. The
compressiblities of pore fluids are formulated on ths basis of ideal
gas laws.

The new stress—strain model is incorporated into finite element
programmes (INCOIL, MHANS). For the validation of the stress—strain
relationship, the computed results are compared with the theoretical
solutions and observed data.

The validated programme was used to study the unloading
response of stress and deformations around a deep wellbore in oil

sand.

l.4 ORGANIZATION OF THE THESIS

This thesis consists of seven chapters. A review of previous
work on un&raiped models for oil sand is given in Chapter 2. This
chapter concentrates on the examinations of their capabilities and
shortcomings.

A stress—-strain model which was developed by Vaziri is
presented in Chapter 3. Appropriate soil skeleton and pore fluids
constitutive relationships are also recommended in this chapter.

Chapter 4 summarizes the finite element formulations used in
the development of the programme.

Validation of the developed model by comparing predicted

response with existing theoretical solutions, field and laboratory



observations is mentioned in Chapter 5. The response of a wellbore in

0oil sand upon unloading is investigated in Chapter 6 using the
validated finite element programme.

A summary of work and major conclusions are presented in

Chapter 7.



CHAPTER 2 : REVIEW OF PREVIOUS WORK

2.1 INTRODUCTION

Theoretical solutions for the undrained response of oil sand
were not available until 1977 because of its unusual behaviour. Due to
the increase in demand for construction in oil sand formation, such as
open pit mining, tunnels and deep shafts, a considerable amount of
research has been done on this topic since 1977.

These developed theoretical relations share the same basic
approach of coupling the soil skeleton and pore fluids together. Pore
pressure changes are computed from the constraint of volumetric
compatibility between the soil skeleton and pore fluids. Harris and
Sobkowicz's model is capable of evaluating pore pressure change upon-a
stress or/and temperature change. This model was then extended by
Byrne et al and incorporated in a finite element programme.
Dusseault's approach is restricted to one dimensional problems.

A careful examination of these theoretical models and their

applications is made and several shortcomings are also reviewed.

2.2 MATHEMATICAL MODELS FOR OIL SAND

2.2.1 Harris and Sobkowlcz (1977)

Harris and Sobkowlcz presented a mathematical model to analyse
the undrained response of 0il sand subjected to changes of stress
and/or temperature. This is the first analytical model developed to

explain the behaviour of o0il sand such as:

1) Movement and stability of slopes and tunnels formed in oil



sand.
2) Settlements or heave of structures placed in oil sand (e.g.
hot oil tank).

3) Heave at the base of excavations in oil sand.

The model can be explained by the same spring analogy as shown
in Figure 1l.1l.
The response of oil sand to changes in stresses or/and to

changes in temperature may be computed by the following equations:

a) One-Dimensional Analysis

Au can be obtained from a quadratic equation

L*AuZ+M*Au+N=0 2.2
where

L =8

S

Ty
M =B (P, - a0p) + n, + P, i (n H +nH)
T T

N =P, [ng(l -5 - Aclss] -~ Pl AT z— (a8 +nB)

i a
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b) Two-Dimensional Analysis

from strain compatibility again

Agg + AE (AG]_ - A0’3)

Bu = nB_ 2.3
1+ o
s

and

PAu2 +QAu+R =0 2.4
where

P =g

s
Ty
Q = BS (Pi -X) + ng + P -,i,: (anw + noHO)
Ty Ty _
R =P [ng (1-7)-X8]-P aTz(na +na)
a a

X = Aoy + Ap (Ao = Aog)
and

%X- = volumetric strain

s = soil skeleton compressibility

n = porosity of soil

n, = porosity of oil

n, = porosity of water >

ng = porosity of gas

Ao = change in total stress
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= initial pore fluid pressure

= change in pore fluid pressure

= change in major principal stress

= change in minor principal stress

= standard temperature (288 °K)

= initial pore fluid temperature °K

= final pore fluid temperature °K

= change in temperature

= temperature solubility constant for gas in water
= temperature solubility constant for gas in oil

= Pressure solubility constants for gas in water

= Pressure solubility constants for gas in oil

= so0il skeleton dilatancy factor

Harris and Sobkowicz examined the response of 0il sand during

excavation and reloading of a square footing, and the behaviour of a

tunnel excavation in the same material. Their results will allow an

assessment of the applicability and shortcoming of the theory.

L)

2)

This solution.incorporated a linear constitutive

.relationship for the soil. As o0il sand behaves like an

elastic-plastic material, there will be a plastic zone
developed adjacent to the tunnel wall on unloading when the
effective. stresses are such that failure (Mohr Coulomb
Criteria) occurs.

The extent of the plastic zone is only an approximation

because redistribution of stresses has not been taken into
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account during the formation of plastic zone.

3) An iterative procedure is required to obtain Au

2.2.2 DUSSEAULT

Dusseault (1979) extended the one dimensional Skempton's B
equation to analyse the behaviour of cohesionless materials with large
amount of free or dissolved gas in pore fluids. He presented a more
rigorous derivation for the compressibility of pore fluids, and coupled
the compressibility with that of soil skeleton ( e - o' relationship)
in Skempﬁon's B equation.

This model shares the same basic 1dea as the previous one
(Harris and Sobkowicz), which has two load carrying components — soil
skeleton and pore fluids. The relative compressibilities of these
components control the magnitude of changes in pore pressure and
effective stresé which together balance the change in total stress in
an undrained state.

The traditional Skempton's B equation is

B= —=2 ———— 2-5

™
il

compressibility of pore fluid (water)

w
[

compressibility of soil skeleton

The extended one is



Au
o = [+ £(u,0)]

o-u a+b2,n(o-u)—eo—ew-i-ﬂoeo+ﬂwew
£(u,0) = = [e 8, + e, + - ]

13

2.6

a, b = void ratio -~ effective stress relationship parameters

e , e , e = void ratios : oil, water, gas
o’ w g

Ho’ Hw = Henry's constants : oil, water
Bo’ Bw = compressibility : oil, water
u, 0 = current values of pore pressure and total stres

Dusseault applied this model to investigate the response

element of o0il sand upon unloading. He examined a shallow case

)

of an

(15 m)

and a deeper one (500 m). His results will allow an assessment of the

applicability and shortcoming of the theory:

1) 1In order for the solution to be numerically stable,
reduction in total stress is assumed to be entirely
by the pore pressure once effective stress drops to

2) This solution incorporated a non-linear constitutive
relationship for the soil.

3) Accurate e — ¢' relationship or compressibility of o
is extremely difficult to obtain since they are very
sensitive to sample disturbances. No undisturbed oi

samples have been cored so far.

further

taken

Zero.

il sand

1 sand
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4) An iterative procedure is required to get Au.

2.2.3. Byrne and Janzen

Byrne et al (INCOIL, 1983) developed an incremental analytical_
finite element method for predicting stresses and deformations in
excavations and around tunnels in o0il sand using a nonlinear elastic
sand skeleton with shear dilation. An extension to Harris and
Sobkowicz's model was used to evaluate the pore pressure change, Au.

The finite element program, INCOIL, can handle both undrained
and drained analyses. »For the undrained condition, pore fluid
pressures are computed from the constraint of volumetric compatibility
between the sand skeleton and the pore fluids. For the fully drained
condition, it is assumed that the pore fluid pressures are known.

The general framework of the finite element model for oil sand

are as follows:

[x] (&) = (a£) - (k) (au) 2.7
.where

uaTl ' . Tl
2 % * - *(1=- —) -~
T AT (nwaw+noao) uo[ng (1 T ) Aev]
a o
u T1

a
T (n H +n H ) + n, = be,

Au 2.8

Derivation of equation 2.7 is presented in Appendix A



The effective

where

15

stress may be evaluated from
[c] (as) 2.9

= [p'] (ae) 2.10

the matrix which depends on element geometry
ek

the matrix property matrix (affective stress)

the change in effective stress vector

the change in strain vector

the element stiffness matrix

the incremental element nodal deflections vector

the incremental element nodal forces vector

the pore pressure laad vector

porosity : water, oil and gas phase

temperature solubility constant : water, oil

pressure solubility constant : water, oil

reference (atmospheric) pressure

reference temperature (288°K)

initial temperature (°K)

final temperature (°K)

change in temperature (T; - To) (°K)

initial absolute pore pressure

volumetric strain (compression positive)



16

They examined the response of cylindrical shaft in oil sand on
reduction of support pressure and the response of an element of oil
sand to one dimensional unloading. The latter case 1s to simulate core
samples of o0il sand left in an unconfined state. Their results will
allow an assessment of the applicability and shortcoming of the

theory:

1) The predicted expansion of the core on unloading is small
compared with those measured in the field which is 5-15%
when core samples of oil sand are left in an unconfined
state.

2) An iterative procedure is required to obtain Au.



CHAPTER 3 : STRESS-STRAIN MODEL

3.1 INTRODUCTION

It is noted that the mathematical models described in Chapter
2 have quite a few shortcomings. Therefore, a more sophisticated and
efficient undrained model was developed (Naylor 1973, Vaziri 1985) and
is incorporated in a finite element programme. |

A total stress apprdach coupling the soil skeleton and pore
fluids is used . Pore pressure changes are_computed_from the
constraint of volume compatibility between the soil skeleton and pore
fluids under undrained conditions.

Separate constitutive relationships for soil skeleton and pore
fluids are required in the new undrained model. An incremental
non—-linear elastic and isotropic stress—strain model as described by
Duncan et al is adopted for the soil skeleton. Depending on the
component of the pore fluids, different formulations for the non-linear
elastic and isotropic stress—strain relationships of pore fluid are

derived.

3.2 DEVELOPMENT OF UNDRAINED MODEL

The effective stress concepts (Terzaghi) in conventional soil
mechanics seem to be applicable to determine the shear strength of oil
sand (Hardy and Hemstock). However, the pore pressures of fluids in
the oil sand have to be numerically evaluated in the effective stress
approach. lience, a quantitative relationship between the magnitudes of
stress release and pore pressure is required.

When a saturated soil mass is subjected to undrained loading,

17



stress change must be shared between the soil skeleton and pore fluid
(Bishop and Eldin 1950). A theoretical expression for the relationship
between total stress change and resulting pore fluid pressure change
was derived by Skempton (1954) which is the Skempton's B equation.

Using the finite element method, Christian (1968) introduced an
effective stress approach for soils subjected to undrained loading,
enabling resulting pore fluid pressure to be evaluated. Programmes
incorporating this alternative are relatively inefficient. Naylor
(1973) developed a more elegant approach which allows excess pore
pressure to be computed explicitly in terms of material skeleton
stiffness pérameters and an independently specified pore fluid
stiffness. However, Naylor only considers soils that are two-phase
system — solids and water.

Due to the presence of bitumen, free and dissolved gas in oil
sand, the above mentioned approaches are inadequate to describe the
undrained behaviour of oil sand. Not until 1977, Harris and Sobkowicz
developed an analytical expression incorporating a linear constitutive
relationship for the o0il sand, to relate the change in pore pressure to
the change in total stress. Dusseault (1979) extended Skempton's one
dimensional B equation to model the equilibrium behaviour of oil sand.

Byrne et al (1980) studied the behaviour of oil sand by using
finite element method. They extended Harris and Sobkowicz's model and
incorporated it into Christian's finite element formulation.

As there are shortcomings of the approaches developed by Harris
and Sobkowicz, Dusseault and Byrne et al, z more sophisticated
numerical model is required. Vaziri adopted Naylor's approach and

extended it to model the undrained behaviour of o0il sand using finite

18



elements.

19

The stress—strain model for oil sand behaviour is based on the

following assumptions.

L

2)

3

4)

5)

Volumetric change of soil skeleton is governed by the
effective stress.

Liquids and gas in the voids are at the same pressure, i.e.
effect of surface tension between the pore fluid phases are
neglected.

Free gas in the pores behaves in accordance with classic
gas laws with respect to pressure. Gas comes out ffom
solution in accordance with Henry's law. Henry solubility
constants are constant.

The compressibility of soil grains is negligible, and has
no contribution to the volume changes.

The gas is in the form of occluded bubbles inside the pore

fluid.

The total stress constitutive law may be written as:

where (40),

(ac) = [D] (ae) 3.1

(Ae) are the incremental total stress vectors and strain

vectors respectively, aand [D] is the material property matrix (total

stress).

Computation of element stiffness matrix, assembly and

solutions for displacements proceeds along the standard lines. The

analysis yields a total stress field.
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Since the soil skeleton and the pore fluids deform together
when conditions are undrained, strains — in a macroscopic sense - are

the same in each phase. Thus in addition to Equation 3.1

(ac'} = [D'] (a¢) 3.2
(au) = K (dey) + Aepp + Aegy) 3.3a
= K_ (Aev) 3.3b

in which prime means effective, [ﬁ] is the material property matrix
(;ffective stress), Kavis the apparent pore fluid bulk modulus and (Au)
is the pore pressure change vector.

The actual pore fluid modulus, K

£ is related to the apparent

one as

3.4

where n is the soil porosity.
Derivations of equations 3.3 and 3.4 are presented in Appendix B.
Equation 3.3 may be expressed in a form compatible with

‘equation 3.1 and 3.2 as:

(a0,) = [p,] (ae) 3.5

where (d0.) = [au 4u Au 0 0 O



Since the pore fluid cannot transmit shear, [Df] can be expressed in

terms of apparent bulk modulus,

3.6

[13 031

D = K !
[f] a \LO303J

where I3 is as 3 x 3 matrix with all the elements equal to 1, whereas
03 are 3 x 3 null matrices.

The principle'of effective stress may be used to relate the
changes in effective stress and pore presusre caused by the applied

loads to the corresponding change in total stress

(a0) = (Ac') + (Aof) 3.7
Substituting from Equations 3.1, 3.2, and 3.3 into 3.7, yields:

(0] = [»'] + [n,] 3.8

The elastic material is now considered to be two phase, with the
stiffuness defined by effective stress moduli, E, B and pore fluid
apparent builk modulus Ka.

The material properties of [D'] and Ka are read in separately.
They are combined in the programme automatically using equations 3.6

and 3.8. Thereafter, computation of element stiffness, assembly and

solution of displacements and hence strains proceed along the standard

lines. The effective stress and pore pressure are obtained by

Equations 3.2 and 3.5 respectively.
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This approach allows stresses, porepressure and deformation in
soil mass, with nearly incompressible to highly compressible pore
fluids, to be evaluated by finite elements for undrained conditions.
Naylor studied the response of undrained triaxial test on clay using
this model. The end platens were ;igid and rough. But the computed
excess pore pressures near the centre of the sample were in good

agreement with the theoretical solutions (Cam—Clay). In the case of

drained analysis, Equations 2.7 to 2.10 are used instead, assuming all

the pore fluid pressures are known.

3.3 CONSTITUTIVE RELATIONS

3.3.1 Incremental Non-linear Elastic Soil Skeleton

An incremental non-linear elastic-plastic and isotropic
stress—strain soil model as described by Duncan et al (1970) is
employed in this thesis. 1In this approach, two independent elastic
parameters are required to represent non~linear stress—-strain and
volume change behaviour. These are usually the Young's modulus, E, and
the Poisson's ratio, v. The shear modulus, G, and the bulk modulus B,
are the more fundamental parameters because they separate shear or
distortion and volume components of strain and would be the most
desirable ones to use. However, the shear modulus is difficult to
obtain direétly in laboratory testings and for this reason Duncan et al
(1980) used the Young's modulus and the bulk modulus as their two
parameters. The Young's modulus is very similar in éharacter to the
shear modulus as both are a measure of distottioﬁal response.

Therefore, E and B are used in this thesis.



The stress—dependent E and B are usually obtained from
laboratory tests. A typical example for sand is shown in Figure 3.1.
The distortional response can be reasonably approximated by modified
hyperbolas (Konder) and the volumetric response in exponential form.

They are expressed as follows:

The tangent Young's modulus

Rf(l-sin¢) (oi-0}) -

B = [+ - 204 sin¢ ] Ey 3.9
o} a
where Ei = KE Pa (F;) 3.10
and
o}
¢ = ¢1 = 49 log (5) 3.11
a

The tangent bulk modulus

B. =K_P (Si—)m : 3.12
t K'B a Pa ' *

where E initial Young's modulus

Young's modulus number

=8

=]
]

Young's modulus exponent
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bulk modulus number

of ¥

m = bulk modulus exponent

Pa = atmospheric pressure

o], 94 = major and minor principal effective stress

Rf = failure ratio

$1 = friction angle at confining stress of 1 atm

Ap. = decrease in ffiction angle for a tenfold increase in

confining stress
The procedures for evaluating these parameters from laboratory
tests are described in detail by Duncan et al (1980) and Byrne and

Eldridge (1982).

3.3.2 Incremental Non—linear Fluid Modulus

3.3.2.1 General

Ap incremental non-linear elastic and isotropic stress—strain
fluid model is employed here. Since the fluid cannot transmit shear,
the stress-strain relations are defined only by one elastic barameter,

the bulk fluid modulus, K., which is a measure of volumetric response.

f

Before the derivation of K_, Henry's law and Boyle's law must be

£
mentioned because these laws govern the derivations.

Pore fluids may be immiscible, miscible, or a combination of
the two. Examples of both miscible and immiscible fluids will be
considered in this thesis. That is, water undersaturated with air and
carbon dioxide, water and bitumen saturated with gas (methane, C0,).
The first combination is to describe the pore fluids of the gassy soils

which Sobkowicz (1982) used in his laboratory testings. The second

combination is to similate 0il sand pore fluids.
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If both free gas and liquids are present in the pore fluids,
and the gas 1is soluble in the pore liquid in a certain extent, the pore
fluid compressibility will be both pressure dependent and influenced by
the solubility relationship. Hence, Boyle's and Henry's laws are

appropriate for describing these volume and pressure relationships.

1) Boyle'’s law (Laidler et al): The volume of a free gas is
inversely proportional to the pressure applied to it when

the temperature is kept constant. Mathematically,
1

where V is the volume, P is the absolute pressure

2) Henry's law (Laidler et al): The mass of gas m dissolved
by a given volume of solvent at constant temperature, is
proportional to the pressure of the gas in equilibrium with

the solution. Mathematically,
m (dissolved gas) = H *# P 3.14

where H is Henry's solubility constant, P is the absolute

pressure.

In other words, the volume of dissolved gas 1s constant in a
fixed volume of solvent at constant temperature when the volume is

measured at P

26
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Vdg (dissolved gas) = H * V (solvent) 3.15

Most gases obey Henry's law when the temperature is not too low
and the pressure is mod?fggg. If several gases from a mixture of gases
dissolve in a solution, Henry's law applied to each gas independently,
regardless of the pressure of the other gases present in the mixture.
H is both temperature and pressure dependent, particularly for natural
gases in hydrocarbons (Burcik, 1956). Since the variation of H on
pressure is not very significant, it is assumed that H is independent

of pressure in this thesis.

3.3.2.2 Partly Miscible Gas/Liquid Mixture

Definitions:

1) Pore fluids compressibility, Bf

- dv
1 £

B, = - — * — 3.16a
£ Vf de

where Vf is the volume of pore fluids, P is the absolute

pressure, assuming surface tension effects are neglected,

B, = — * — 3.16b



2)

a)

28

Compressibility of a gas Bg

1 dv
B _____V_*__.g ) 3017

dp
8 g

where Vg is the volume of gas.

Air/water Mixture

Let the initial volume of free gas and water in a soil

element be:

Vi and V
fg w

Thus the total volume of free and dissolved gas
V., =V_. +HUV 3.18

For a change in pressure, the volume of water is assumed
constant as the compressibility of water is insignificant
compared with the pore gas. Applying Boyle's law to the
total volume of gas (Fredlu@$f1973, Sobkowicz 1982) in the

element,

3. 19



i Pi £
=V, = -y
Tg P dg
£
P
= (yi i, . i _,f
(Veg + Vig ) 7, Vig

Change of free gas in the soil element

Av =V -V

P
i i “i
= K s -
(Vfg + Vdg) Pf v
i i ~AP
= *
(Vfg + Vdg) P1+AP
By definition
s - 1 . AVfg
g v i AP
fg
i i
. (Vfg + vdg) . 1
yi Pi+AP
fg

dv
B:—L*.__f
\ dP

3.20

3.21

3.22
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b)

= -1 [dvfg f]_‘i]
Vv dp dP
f
i i
b-qm e g,
Vf Pi + AP W w
_ 1 -8+ sH
——P—+—AP———+SBW 3-233
As AP approaches zero,
l1 -5+ SH
Bf I — + SBw 3.23B
and
1
K. = —
f Bf

Carbon Dioxide, Air/water Mixture

By definition, the compressibility of pore fluids, Bf,

so--L o U
£ Vf dp
= - L [ivf_gJ,de]
v dP -dP

30



i i
v + V.
o _l_ _ £ dg” _
. Vf [ Pi + AP vaw] 3.24a

in which there may have air and carbon dioxide as free
i
gas, Vfg'
Consider the phase diagram in Figure 3.2, the volume of
sollds is assumed to be-'l unit, the volume of void is e

units according to definition of void ratios

Therefore
Vi e ~ ew
g - 3.25a
\'} e
f
Vi H e +H e
dg _ a3 w col2 w 3.25a

Substituting equations 3.25 into 3.24a, yields

(e ~ ew) + Ha e, + HcoZ e

P + AP

_ 1
Be = E‘[

£ + 8 e ] 3.24b

As AP approaches zero,
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c)

(e-—e)+H e +H e
_ 1 W a w co2 w
Bf =3 B + B w] 3.24¢
and
1
K, = —
f Be

Gas (Methane)/Bitumen and Water Mixture

Again, by definition the compressibility of pore fluids

3.26a

Consider the phase diagrams in Figure 3.3, the volume of
solids is assumed to be 1 unit, the volume of voids is e

units according to definition of void ratios

Therefore

i
\ -e_ -
_f_g_ = (e w eb) 3 27a
Vf e :
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Fig.3.3 - Phase diagram for oil sand
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i
Vag _ Hgrwtw " Horp b
v e

3.27b

where Hg/w’ Hg/ are Henry's solubility constants of gas

b

in water and bitumen respectively.

Substituting Equations 3.27 into 3.26a, and AP approaches

zero, yields,

(e - e, " eb) + Hg/w e, + H /b ey

=1 g
Be = o P + Bt Byl
3.26b
and
1
Kf-s—-
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CHAPTER 4 : FINITE ELEMENT FORMULATIONS
4.1 INTRODUCTION

Two types of formulations are presented herein which are
suitable for modelling a variety of problems encountered in practice.
Depending on the nature of the problems, they will fall into one of the
following categories:

1) Plane strain - 2 Dimensional, e.g. tunnels, shaft, etc.

2) Axisymmetric - 3 Dimensional, e.g. triaxial test,

wellbore, etc.

The soil is modelled by isoparametric quadrilateral or
triangular elements.

Stress distribution formulations are added to cope with

problems where plastic zones are developed during loading or unloading.

4.2. THE PLANE SRAIN FORMULATIONS

4.2.1 The Constitutive Matrix [D]

Plane strain problems are characterized by the following two
properties:

1) no deflection in z direction

2) first derivative of the x and y deflections with respect

to z are zero.

Therefore

w=20 4.1a

Ae3z = Aeyz = Aejy3 = 0 4.1b
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where u, v, w are the displacements in x, y and z directions

respectively with corresponding subscripts, 1, 2 and 3 respectively.

From the generalized Hooke's law for incremental elasticity

Aeyy = [Aoyy = v (bopp + Aoz3) ]/E 4.2a
Aeyy = [Aoyp - v (Aoy; + Ao33)]/E 4.2b
Aeyz = [Aogy = v (Agy + B0y,) |/E 4.2c
Aeyy = Aoy, /G 4.2d
Aeyg = Aoy3/G 4.2e
Ae3y = Ao3; /G 4.2f

After substituting the conditions from equation 4.lb into equations

4.2, it follows that:

A013 = A031 =90 C 4.3a

]

[
[

A023 A632 = 4.3b

where Aoij is the incremental shear stress with the direction indicated
by the subscripts.

With the above eliminations, the incremental stress and strain

vectors become

(AO) = [A°11 Aogop A012]T 5 4.4a
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(AE) = [A€11 Mgy Aslz)T 4.4b

The constitutive relations for a plane strain problem in total stress

analysis are written (Naylor, 1973) as:

-

Aoy,  1-v v 0
Ao - < E v 1-v 0
22 (1+v)(1-2v) | 1-2v)
-2V
Aoyo LO 0 ( 2
. J L 7 e
[ !
1 1 AE]_]_‘
0 0 AElzj
or
(ac) = ([o'] + [p.]) (a¢) 4.5b
where
E = tangent Young's modulus
v = tangent Poisson's ratio
Ka = apparent tangent bulk fluid modulus

The constitutive relations can also be written in another equivalent

form which is adopted in INCOIL.



or

Where

A°11

Aczz

A012

B'

G'

Equation

(40)

4

( ]
B'+G' B' -G 0
= J B' -G B' -G 0
0 0 G’
L /
( ]
1 1 0 A€11
I L DY) 4.6a
0 0 0 Aeq o
7/
([p']) + [Df]) (a¢) 4.6b
3B
2(1+v)
B
2(1+v)

tangent bulk modulus
tangent Young's modulus
tangent Poisson's ratio

apparent tangent bulk fluid modulus

+6 can also be written as

[p] (ae) 4.7

39



40

where

[D] is the constitutive matrix

4.2.2 The Strain Displacement Hatrix;[B]

For isoparametric elements, the geometry (x,y) and
displacement (u,v) are both expressed by te same shape functions and

are approximated as:

(3) = (] (6) 4.10

y

and

~
< €
'
[
—
A
(S )
~~
o
—

4.11

where

~
[ ]
——
]
-~
w
—

Y1 X2 Y2 X3 Y3 X4 Yy

]

(")

[ur vi uwz v3 w3z vy ouy ]

in which (8) is the nodal coordinate vector and (§') is the incremental



nodal displacement vector

and

N1 = (l-s8) (1-t)/4

No = (1-s) (1+t)/4

N3 = (l+s) (1+t)/4

N, = (1+s) (1-t)/4

xi’yi = nodal coordinates in x and y directions
respectively

uj,vj = incremental nodal displacement in x and y

directions respectively.

s,t are local coordinates

The incremental strain vector can be expressed in terms of

displacement as follows:

]
Aell " au/ax
AE]_Z I = av/ay 4,12
A813J 3u/dy + 3v/9x

Substitution of u and v from equation 4.11 into equation 4.12 yields

411
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oN, 9Ny INg oNy,
Aeqy = 0 = ° x 9 x 0
oN, N, oNj Ny
A€22 0 -8—y— 0 -a—y—- 0 3_}’— 0 3&—
oN, N, 9N, N, oNj oNg oN,, oNy
Ae1s 5y 3% 3y 3% 3y 3% 3y 9%
L
fu1~
V1
uz
V2 4.10
uz’
v3
Uy
4
.
Equation 4.10 can also be written In matrix notation as
(ae) = [B] (8) 4.13

where

[B] is the strain displacement matrix

However, the shape functions N, for isoparametric elements are

i
defined with respect to the local coordinates s and t and therefore
cannot be differentiated directly with respect to the global x, y

axes.

In order to overcome this difficulty it is necessary to obtain



the derivatives of the two sets of coordinates and this can be achieved

through the chain rule of partial differentiation.

For plain strain problems, the derivatives are related as

2 o
9s X
= [J] 4,14
3 3_
at 3y
where
- N
x 3y
ds ds
[J] = is called the Jacobian matrix
ax 3y
Lat ot
4

Hence the derivatives werete x and y can be expressed as derivatives

weret s and t as follows

ol o
"
|
A
Wl
1]

= [J] 4.15

g
Q:|<v
et

The strain displacement matrix in Equation 4.13 are evaluated
numerically, using Gaussian quadrature over quadrilateral regions. The

quadrature rules are all of the form

J] £ (s,t) ds dt =

L=
3

Ki Kj f(si, tj)

i=l  j=1
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where K Ki are weighting functions and s

i’

, t. are coordinate position
1" 73

within the element.

A 2 x 2 Gauss quadrature is used to evaluate the strain

displacement.

4.2.3 The Stiffness Matrix [K]

The‘stiffness matrix for the force displacement relationship
is obtained by the principle of virtual work. For a virtual nodal
displacement vector (g)e’ the external work done, W(ext), by the
external force vector (f) caused by virtual displacements is written

as
W(exe) = (3)1 () 4.16

The virtual strain vector caused by the virtual displacements vector is

written as
(ae) = [B] (5], : 4.17

Hence the internal work done, W(ext), caused by the virtual strain is

written as

W(int) = [, (48)T (ao) t da 4.18a

A

where
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thickness of the element

(4
]

>
i

area of the element
Substituting equation 4:;% into 4.18a yields

W(ine) = [, [3]7 [8]" [p] [B] [6] t aa 4.18b
Applying principle of virtual work

W(ext) = W(int) ' 4.19

Therefore

(£)

[, (81" [0] [B] [6] t 4a 4.20

(£) = [x] (8) 421
where [K] = fA [B]T [D] [B] t dA 1s called the stiffness matrix for
the element.

The global stiffness matrix, [Kg], is obtained by assembling
all the element stiffness matrices together. The procedure of
assembling the element matrix is based on the requirement of
'compatibility' at the element nodes. This means that at the nodes
where elements are connected, the values of the unknown nodal degrees
of freedom are the same for all the elements joining at that node. The

global force
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vector, [F], 1s assembled by adding nodal loads of each of the elements
sharing the node. Displacements are calculated using standard
procedure (e.g. Gaussian elimination) to solve the simultaneous
equations,[Kg] [6] = [F],represented by the glogal stiffness matrix and
the force vector. Strains can be computed from equation 4.13 or 4.36
after knowing the elements nodal displacements. After solving for
-displacements—and strains, the effective stress and pore pressure can

be computed from

(80") = [D'] (a€)
and

(Au) = [Df] (ae)

4.3 THE AXISYMMETRIC FORMULATIONS

4.3.1 The Constitutive Matrix [D]_

Axisymmetric problems are characterized by the following

properties:

1) Symmetry of both geometry and loading

2) Stress components are independent of cthe angular (6)

coordinates.

Hence

v=20 4.22a
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A€13 = A€31 =0 4.22b

I
o

Aeyy = Aegzp = 4.22c
where u, v, w are displacements in the r, z and 6 directions with
corresponding cubscripts, 1, 2 and 3 respectively.

From the generalized Hooke's law for incremental elasticity

Aeyy = [Boy; - v (Ao + Acz3) |/E 4.23a
Aeyp, = [Aopp = v (Aozz + Aoyp)]/E 4.23b
Aezz = [Aogz T v (Agy; + 809,)]/E 4.23c¢
Aey3 = B00y3/G 4.23d
Aeyp; = Aoy, /G 4.23e
Aeysg = Ady3/G 4.23f

After substituting the conditions from Equations 4.22b and 4.22c into

Equations 4.23, it follows that

]
(=)

Aoz = Aoz 4.14a

Aop3z = Ao3zp =0 4.15a

where Acij is the incremental shear stress with the direction indicated

by the subscripts.

With the above eliminations, the incremental stress and strain

vectors become

(AO’) = [Ao“ Aopy Adizj AOlZ]T 4.25



The constitutive relations for an axisymmetric problem

(4e)

[ae;

T
| Beyp Ae3zz Aejg]

analysis are written (Naylor, 1973) as

Also

where

( 3

Acll
AOZZ

Ag33

. A012

\

+ K

£
[1]

<
]

e
]

L]
A

1-v v v
\ 1-v v
— E
(1+v)(1-2v) v v 1l-v
0o 0 o0
k\
. } ~
1 1 0 AEll
1 1 0 } AEzz
1 1 0 Aegg
0 0 0 Aey o
7 \J

1+ D | (ee)

tangent Young's modulus

tangent Poisson's ratio

appar

ent tangent bulk modulus
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in total stress

4.27a

4.27b



The counstitutive relations can also be written in another

equivalent form which is adopted in INCOIL.

or

where

,

\

A°11
Aggpo
Aczj

AOIZ

B'

G'

3

4

.
B'+G' B'-G' B'-G' 0 7}
B'-G' B'+G' B'-G' 0

“1lB'=¢' B'-¢' B'4G' 0

0 0 0 G
§ ]

r L b ) 'g 3

1 1 1 1 0 Aeyy |

1 1 1 1 o & Aezzg

1 1 1 1 0 Ae33§

o 0 0 0 o Aeqs

| )

3B
2(1+v)

_E__
2(1+v)

tangent bulk modulus
tangent Young's modulus

tangent Poisson's ratio

4,28a

4.28b
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~
1]

apparent tangent bulk fluid modulus

Equation 4.28 may be written in matrix notation as

(40)

[p] (a€) 4.29

where [D] is the constitutive matrix.

4.3.2 The Strain Displacement Matrix [B]

The isoparametric elements, the geometry (r, z) and
displacements (u, v) are both expressed by the same shape functions and

are approximated as:

r
L= [N] () 4.32
Z)
{
u
= [n] (&) 4.33
v
N; O Ny 0 N3 0 N, O
[n] =
0O N, O Ny O N O N,
(8) = [ry 2z 1t 2 r3 z3 1, z]
(') = [uy vy uy vy uz vz u, V]

in which (8) is the nodal coordinate vector, (6') is the incremental



nodal displacement vector and the shape functions N, are the same as

i
given 1n Section 4.2.2.
and
Loz, = nodal coordinates in x and y directions
respectively,
u,, v, = incremental nodal displacements in x and y

directions respectively.

" The incremental strain vector can be expressed in terms of

displacements as follows:

Yo r )
Aepp|=| 3u
or
f
i v
i =] —
[ he22|=| 37 4.34
]
}
: =3
| Ae33 =) ¢
i v Ju
|%%12)7r Y ez
\ /

Substitution of u and v from Equation 4.33 into Equation 4.30 yields

RN 3N, aN, 3N,
henn 3 0 3 0 3T 0
aNl 3N2 3N3
ezt 10 g ° % R P
A€33 r— 0 -r—- 0 ?— 0
3N, ON; AN, Ny  ON3 9N,
Aey kL 5%z 3t 37 5%
L P
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.
Ny Py
or 0 Vi
3N4+ us 1
0 3z vzé 4.35
Ny u3 |
— 0 ;
r V3
\ Ny 9Ny uy ;
dz ar
J Vi

Equation 4.35 can also be written in matrix notation as

(ae) = [B] (6) 4.36

where

[B] is the strain displacement matrix

However, the shape functions Ni for isoparametric elements are
defined with respect to the local coordinates s and t therefore cannot
be differentiated directly with respect to the global x, y axes.

In order to overcome this difficulty it is necessary to obtain
a relationship between the derivatives of the two sets of coordinates
and this can be achieved through the chain rule of partial

differentiation.

L8
0l
o)lo)
~

= [J] | 4.37

WDy
t
Q| o
N




where

Hence the derivatives weret x

weret s and t as follows

or -1

Ql
|
—
o
—
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i is called the Jacobian matrix

Q
N

ml
(ad
| S

and y can be expressed as derivatives

4.38

Q [+34 K5
/2]

@
(a3

A similar Gauss quadrature mentioned in Section 4.2.2. is employed to

evaluate the above [B] matrix

4.3.3 The Stiffness Matrix

numerically.

[x]

The stiffness matrix

for the force displacement relatinship is

obtained by the principle of virtual work. For a virtual nodal

displacement vector (E)e’ the

external work done, W(ext), by the

external force vector (F) caused by the virtual displacements is

written as

w(ext) = (8)T (¢) 4.39

e

The virtual strain vector caused by the virtual displacemehts vector is



written as

(ae) = [8] (8],

Hence the internal work done, W(int), caused by the virtual strain is

written as
- T
W(int) = [ (ae)” (Ac) av
where V = volume of the element

Substituting Equation 4.40 into 4.4la yields

Applying the principle of virtual work
Wext = Wint

Therefore

4.41a

4.41b

4.42

4.43

4.44
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where fv [B] [D] [B] dV is called the stiffness matrix for the
element.

The procedure of obtaining element stresses and strains is the same as

described in Section 6.2.3.

4.4 LOAD SHEDDING (PLAIN STRAIN) (Byrne 1983)

Problems arise when any element within the solution domain
violates the failure criteria (Mohr Coulomb). That is, for unloading
of a shaft or tumnel, a plastic zone usually developes adjacent.to the
shaft. The extent of plastic zone and hence volume changes are only
approximated since the stress redistribution has not been considered
during the formation of the zone.

The analysis predicts the stress path ABC instead of ABD on
unloading. But the stress state at C (Figure 4.l1) violates the failure
criterion (Mohr Coulomb). If load shedding technique is used, the
overstress can be distributed to the adjacent elements by applying an
appropriate set of nodal forces described herein and brings the stress
path BC back to the corréct BD.

The overstress, At, in the element can be removed by
subtracting the computed stresses by Ac)), Aop; and Aog;; amount as

shown in Figure 4.21b.

where Aoij have the same notation as thosé in Section 4.2 and 4.3

Aoy :‘:__Adl
(AO'J = AO'22 = [T] AO'3
A012 AT13

4.45
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where

1 _ cos2f 1 + cos28 0
2 2 2 2 is called the
_ 1 . cos26 1 _ cos26
(T) = i— + 3 f '—2——- 0 transformation
_ 51226 si;ZB 0 matrix

Agg minor principal stress = 0

Aoy major principal stress
= ¢; - 03 tan? (45 + %0

ATy3 = principal shear stress = 0

The derivation of these stresses changes and the
transformation matrix is in Appendix E,

The removal of these overstresses can be achieved by applying
a set of nodal forces which is obtained by the principle of virtual
work. The incremental nodal force vector causes a virtual displacement

vector. Hence the external work done, W(ext), can be written as

Wlext) = (8) (af), 4.46

The incremental virtual strain vector caused by the virtual

displacement vector is

(AE)e = [8] (3), 4.47
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Therefore, the internal work done, W(int), is
s =T
W(int) = [, (ae), (ao), t A 4.48a
Substitution of Equation 4.43 to 4.48 yields

wiint) = [, (8)T [B] (a0) t aa 4.48b

A

Applying the principle of virtual work
W(ext) = W(int) 4.49

Hence [ag], = tf, (8]* (80], da 4.50
where [B] is the strain displacement matrix in Section 4.2.2.
and [Ao]e is the stress vector shown in Equation 4.41.

The failed element will have a stress change of Ao;;, AS;, and
Acy2. However, the computed stresses may not lie on the failure
envelope due to the application of the nodal forces. Therefore
iterations may be required to briﬁg this to the assigned tolerance.

The loading ;hedding technique presented herein gives the same
results compared with INCOIL (c; = constant). However, the number of
iterations required to bring the computed stresses back to the failure

envelope 1is less.

With the incorporation of load shedding technique, the sand



skeleton is modelled as a non-linear elastic-plastic porous material.
The soil skeleton is coupled with the pore fluids in the undrained
model. For undrained conditions, this model allows stresses, pore
pressure and deformations of oil sand masses to be evaluated by finite

elements.
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CHAPTER 5 : COMPARISONS WITH EXISTING SOLUTIONS

5.1 INTRODUCTION

It is important to check the validity of the developed model
before any major application. Two types of comparisons are presented
herein which are suitable for checking the stress—strain model of the
soill skeleton and also the newly developed gas law model.

For the validation of the analytical procedure, the computed
results are compared with elastic and elastic-plastic closed form
solutions. The gas law model is validated by comparing computed
solutions with observed data, such as expansion of oil sand cores and

triaxial tests on gassy soils.

5.2 COMPARISONS WITH THEORETICAL RESULTS

5.2.1 Eiastic Closed Form Solutions

The theory for elastic closed form solution was first
developed by Timoshenko (1941). The plane strain solutions of stresses

and displacements in a thick wall cylinder are presented herein:

- Stresses

2p - K2 - 2 12
a Pi b Po (Pi Po) ac b

6.~ + (bz_az) r&

r TN —— 5.1la

a2 p, - b2p (P, - P ) a? p?
5. = i o _ i o 5.1b
8 b4 - a< (b4 - a%) r< .
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Displacement

2 - K2
5 = (172v) (1+v) (a’Ry = b7 P T

E b? - a‘
4 (V) By =P 4232 5.1c
E (b4 - a¢) r

where Pi = Pressure on the inner surface of cylinder
P° = Pressure on outer surface of cylinder
E = Young's modulus
v = Poisson's ratio

and a, b, r are defined in Figure 5.1

The response of unloading a thick wall cylinder is being
investigated.

The stresses and displacements predicted by the programme are
in remarkably good agreement witﬁ the closed form solution as shown in

Figure 5;2. Hence the analytical procedure is validated

5.2.2 Elastic—-Plagtic Closed Form Solution

For a tunnel or shaft‘problem, the initial state of stress
will be the same throughout the domain. As the support pressure of the
tunnel drops, yielding will occur if the strength of the soil is
exceeded. Yielding develops on the inside face first as a plastic
annular zone and extends radially outward if the support pressure is
reduced further. Hence there exists a plastic and an elastic zone in

the domain concentrically. The solutions of stresses and displacements



Fig.5.1 - Thick wall cylinder
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for the plastic and elastic zone will be quite different.
The strlesses and displacements for the elastic zone are just
an extension of Equation 5.1 by setting b to infinity. They may be

written as

Stresses
a? 5.2
a? 5.2b
og = Po - (Pi - Po) =z .
Displacement
1+v a2
§ = —-E— ‘;— (Pi PO) 5.2¢
where Pi = Pressure on inner surface of cylinder
Po = Pressure on outer surface of cyliﬁder
E = Young's Modulus
v = Poison's Ratio

Different investigators, Gibson and Anderson (1951), Lédanyi
(1963), Vesic (1972) and Hughes et al developed closed form solutions
of stresses and displacements for the plastic zone. Hughes et al
presented the more elegant solutions which are presented herein:

All the sand is assumed to fail with a constant ratio of

principal stresses, so that

o'
——=N=tam? 45+ 9 5.3

a}



The equilibrium equation that must be satisfied is

dor o; - oé
+ = 0 504
dr r

Substituting for cé from Equation 5.3, integrating and using outer

boundary conditions of 0; = cﬁ at r = R,
o-'
gn == 1N tn S 5.5
9% r
where o; = radial stress at r within the plastic zone
o& = radial stress at the outer boundary, R, of the

plastic zone

| - -
SR Po 1 sind) 5.6
l-sin¢
P 2sin¢
R =a [ﬁg-(l - sin¢)] ‘ 5.7
i

Equation 5.5 governs the distribution of the radial effective stress

within the plastic zone.

Continuity of stresses and displacements between the plastic

and elastic zone must be maintained. Hence Equation 5.6 is substituted

into Equation 5.2c, the displacement, UR at the elastic-plastic zone

contact is
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Up == 5 RP_sin¢ 5.8

Hughes et al also show that the displacements, u, within the plastic

zone
U
u _ ,R.n+l R
=& -y 5.9
where ; n= tan? (45 + g)
g = dilation angle

The response of unloading a tunnel is investigaﬁed. The
comparisons in Figure 5.3 show that the analysis of stresses and
displacements in elastic—-plastic materials predicted by the programme
is in good agreement with the closed form solutions. The minor
discrepancies are due to the limit of Poisson's ratio and the
coarseness of the mesh. An upper limit of 0.499 is adopted in the
programme (MHANS) to maintain numerical stability, whereas the actual
value should be O.S. The agreement in displacements and the extent of
the plastic zone also confirm that the load shedding technique in the
programme (MHANS) is working properly. This is a satisfactory check of
the programme in drained analysis.

Unfortunately, the load shedding techniqﬁe in INCOIL cannot be
successfully tested. The element type in this programme is QM-6.
Non-equilibrium of stresses arise in QM-6 elements at high Poisson's

ratio (v > 0.4) if the geometry of the elements is non-rectangular.
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Since the elements in a finite element mesh for modelling plane strain
shaft problems are not rectangular, non-equilibrium of stresses arise

before load shedding is required.

5.3 COMPARISONS WITH OBSERVED DATA

5.3.1 One Dimenional Unloading of Oilsand

This is. an opportunity for the new gas law model to be checked
with some field data. Since the unloading is 1-D, the validity of the
schematic spring analogy model (Figure l.l) can also be demonstrated.

Unconfined oilsand core taken from drilled holes swells by 5
to 15% of the original volume (Dusseault 1980, Byrne et al 1980).
Maximum expansion potential generally cannot be reached because
expansion stops when there is adequate intercommunication of gas voids
to permit flow 6f gas out of the sample. This leads to disruption of
the soil fabric. This is the equilibrium saturation point in which gas
becomes mobile and the maximum gas saturation value is 157 (Amyx et al
1960). However, the total amount of expansion is impossible to predict
and can only be measured for individual cores.

The core liners are specifically designed oversized to prevent
the jamming of the core within the barrel. Radial expansion is assumed
to be completed when the 0il sand core is brought up from the drilled
ﬁole. The linerg and steel containers are assumed to be rigid and
frictionless so that only axial expansion of the core is allowed.
Therefore, the oilsand core can be modelled as 1-D unloading after
recovery.

The initially high stressed core specimen is modelled as shown
in Figure 5.4a. Vertical stress is reduced from 750 kPa to zero. The

stresses, pore pressure and displacements are shown in Figure 5.4b.
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It can be seen that the change in total stress is
apportioned between the effective stess and the pore pressure as

suggested by the spring analogy model.

Case A: Gas saturation pressure = 100 kPa.

Initially pore pressure is above gas saturation pressure and
saturation remains 100%. Therefore loads come off from the pore fluids
while effective stress remains fairly constant because pore fluid is
the stiffer phase as shown in Figure 5.4b. As pore pressure drops
below the gas saturation pressure, gas starts to evolve which causes
the pore fluid to become flexible. Stress change will be taken up by
the soil skeleton on further unloading until zero effective stress.
Further reduction on boundary load at zero effective stress is entirely
accommodated by the pore fluids.

Case B: Gas Saturation pressure = 300 kPa.

Because of gas exsolution the pore fluids start as a flexible
phase so effective stress drops to zero with no appreciable change of
pore pressure on unloading. Reduction of boundary stress beyond this
stage 1s entirely taken by the fluid phases as the soil skeleton
essentially has no stiffness at zero effective stress as shown in

Figure 5.4b.

It may be seen from figure 5.4b that there are no appreciable
displacements when the effective stress is positive. The displacements
essentially come from unloading at zero effective stress. The total
displacements upon total removal of vertical stress lie within the

range of 5 to 15% of the original length.
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The results show that the new stress strain model has the

excellent capability of predicting undrained response of oil sand.

5.3.2 Triaxial Tests on Gassy Soils (Sobkowicz 1982)

Performance of gassy soil on laboratory triaxial tests are
reported by.Sobkowicz (1982). A review of his work shows that the gas
law model is generally correct. An appraisal of the predictive
capabilities of the gas law model is made by comparing predicted and
laboratory observed response of the immediate pore pressure, the
immediate (short term) B value, the equilibrium pore presusre, the
equilibrium (long term) B value, and value of saturation and
displacements.

Since only test 11 in Sobkowicz's thesis 1s documented in
detail, a comparison between predicted and observed response for this
test is made to evaluate the validity of the undrained model. Analysis
is performed using the same initial condition as test 1l1l: S = 99.75%,
n = 32.28%, o = 1403.3 kPa, u = 652.3 kPa and 8_ = 9E-6 kPa~!. The
compressibilkity of solid is comparable with that of water (Bw =5 x
1077 kPa-l) so that the B (short term) value will not equal to one even
for full saturation. These components are converted into parameters to
be read in by the programme. The conversion and parameters are shown
in Appendix F. The unloading sequence is shown in Table 5.1.

During any phase of the isotropic unloading test, pore
pressure responses are predicted from the knowledge of soil skeleton

and fluid compressibilities which are a function of effective stress,

72



73

pore pressure, saturation and porosity. For short term reponse, H is
set to zero in Equation 3.26b since there is no time for gas
= 0.02 and H

exsolution. H = 0.86 are used for the

air/water co2/water

equilibrium response when gas exsolution is complete.
The comparisons are summarized in Table 5.1 and are presented

graphically in Figures 5.5 and 5.6. They include:

1) predicted undrained response by the present undrained
model

2) measured undrained response (Test 11, Sobkowicz 1982)

A careful examination of Table 5.1 and Figures 5.5 and 5.6
show that the predictive capability of the gas law model is remarkably
good, especially for the long term undrained response. The minor
discrepancies are due to the loss of gas from the sample as the result
of gas diffusion and leakage through the membrane.

The observed immediate pore pressure are higher than the
predicted values because of the time elapse (15 to 30 seconds) between
reducing the total stress and taking the first reading. Thus, the
predicted short term B is always higher than the observed ones.

It can be seen that the stress réduction is apportioned
between soil skeleton and pore fluids, depending on their
compressibilities. The sample in Test llzwas initially saturated with
respect to air in water and undersaturated with respect to carbon
dioxide in water. On unloading, during ;he first few phases, as

<PLKP , a small amount of gas exsolves for H

PcoZ/water air/water

(air/water) = 0.02. The change of effective stress and pore pressure



TABLE 5.1a

A Comparison of Computed and Measured Results (Test 11, Sobkowicz)

Total Short Term B Long Term B . Scrtutﬂktv\én‘(.Z)
Phase Stress (kPa) Predicted Measured Predicted Measured Predicted Measured
A 1322.4 0.897 0.694 0.523 0.606 99.65 99.67
B 1220.5 9.843 0.69 0.477 |  0.433 99.50 99754
c 1112.1 0.781 0.68 10.378 0.403 99.30 99.38
D 978.2 0.705 0.64 '0.021 0.011 98.90 99.11
E 883.6 0.628 0.548 0.022 0.016 98.61 98.93
F 766.4 0.584 0.508 0.024 0.034 98.22 98.93
¢ | 654.9 0.548 0.482 . 0.026 0.07 97.80 | 98.27
H  559.0 0.536 0.50 0.031 10.155 . 97.38 97.90
J1 457.3 0.569 0.590 0.129 0.21 96.40
Ja 1 1 1 S| 95.15
J3 | ’ 1 1 1 1 94.66

Predicted: Results predicted by Programme

Measured: Results measured in Test 11 by Sobkowicz

YL



TABLE 5.1b

A Comparison of Computed add Measured Results (Test 11, Sobkowicz)

Measured Strains (%) Porosity (%)
Phase Horizontal Vertical Volumeteric Predicted Measured
A -0.112 E-1 0.112 E-1 0.336 E~1 32.30 32.30
B 0.275 E-1 0.275 E-1 0.825 E-1 32.33 32.33
c 0.490 E-1 0.490 E-1 0.147 32.38 32.36
D 0.929 E-1 0.919 E-1 0.2757 32.46 32.42
E 0.124 0.124 0.372 32.53 32.46
F 0.167 0.167 0.501 32.62 32.53
G 0.214 0.214 0.624 32.72 32.61
H 0.261 0.261 - 0.783 32.80 32.69
3 0.376 0.376 1.128
J2
J3

al
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are roughly the same because the compressibilities of both soil
skeleton and pore fluids are comparable. This characteristic is
similar to those of unsaturated soils. On further unloading, as P <

, a large amount of gas exsolves because the high solubility

P
co2/water

(H = 0.86) of carbon dioxide in water. This causes a sudden

co2
increase in flexibility of the fluid phase and hence most of the load
is transferred to the soil skeleton. When the effective stress in the
skeleton approaches zero, the fluid once again becomes the stiffer
phase, hence the B value rises to one. This is the typical behaviour
of gassy soil on unloading.

The predicted and measured displacements are in remarkably
good agreement. This indicates that the input parameters (Appendix f)

and the ratio of the parameters, KB = 0.6 KE and n = 2m = 0.5 (Byrne

and Cheung) are generally correct.
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CHAPTER 6 — STRESSES AROUND A WELLBORE OR SHAFT IN OIL SAND

6.1 INTRODUCTION

The response of a wellbore in 0il sand upon unloading is
considered because it is an important problem in oil recovery in oil
sand. In general, knoweldge of the stressvsolutions around a borehole

is of great importance in several situations:

1) ©borehole stability
2) hydraulic fracturing

3) production or injection

A theoretical solution for stresses around a wellbore was
developed by Risnes et al (1982) and the equations are presented
herein. Validation of the programme (MHANS) for drained analysis is
made by comparing computed response with the closed form solutions
developed by Risnes et al. A linear elastic-plastic constitutive
relationship is used for the above validation.

Upon validation of the programme, it was used to study the
behaviour of a wellbore in 0il sand upon unloading. Undrained and
drained analyses were performed to obtain the short term and long term
response respectively. 1In the undrained analysis, the gas exsolution
is assumed to be very fast relative to the construction of wellbore.
In the drained analysis, the pore pressure profile is estimated by

using Dupuit's theory (Section 6.3.3).



6.2 GENERAL MODEL DESCRIPTION

The wellbore under consideration is supported by fluid
pressure. As a model, a vertical cylindrical hole through a horizontal
layer of oil sand is considered. The geometry, finite element mesh,
and initial conditions of the problem are shown in Figure 6.1 and 6.2.
Loading and geometry are assumed to be symmetrical around the well
axis. Only radial displacement after the initial overburden loading
are considered. These correspond to the assumption of axisymmetric and
plane strain conditions.

The sand formation is assumed permeable, isotropic,
homogeneous and initially fully saturated. The material is assumed
elastic-perfectly plastic and obeys Mohr Coulomb failure criterion.

Only stress solutions for 94 > o, at the elastic—-plastic

boundary will be investigated.

6.3 THEORETICAL SOLUTIONS FOR STRESSES AROUND A BOREHOLE

A closed form solution for streses around a well, using a
linear elastic-plastic stress—strain relationship, can be obtained from
Risnes et al (1982).

The derivations of the stress solutions follow that of Risnes

et al (1982) with two additional assumptions.

1) Insitu state of stress is considered to be isotropic
initially, i.e. or = oe = oz.
2) The Mohr Coulomb failure criterion in a porous material

is

f = 0] - 25 tana - o} tan?a = 0 6.1
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Elastic zone

Fig.6.1 - Outline of the problem
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where S is the cohesion intercept (or apparent cohesion)
R / 1 ¢'

a is the failurte angle, i.e. 7t

¢' is the internal friction angle

These symbols are also explained in Figure 6.2b

6.3.1 Stresses

6.3.1.1 Stresaes in Elastic Zone

The stresses around a hole in an elastic thick wall cylinder,

with porous material saturated with fluid, may be written as follows:

R2 R
o.=0_ + (o -o0_,) —2—3;—7r[1 - (—202]
r ro ro ri R0 - Ri r
- (@ -P,) 1-2v

o i’ 2(1-v)

' Ln(R
RY 7=
- (92 1o
=z 1 - @)+ maT) 6.2
o i o 1
R2
09 = oro + (Uro - c’r:i) Rg —1R§ [1 + (?2)2]
1-2v
- @, P Ay
R ]
. _9y2 -
[Rg - ®Z Ll + (2] + o (®_/R)
R

[2a (D) - 1]) 6.3
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Fig.6.2 b - Mohr Coulomb failure envelope
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R2
— pr— i - -—
oz N ozo +2v (oro Gri) Rg - Rg (Po Pi)
2Rr2 R
1-2v i 2 o v
TR RZ - Rf+ m (R_/R) [0 (D - ]) 6.4

The procedure for obtaining these stress solutions is given in Appendix

G.

6.3.1.2 Stresses in Plastic Zone

As long as £ =0 (Equation 6.1), a plastic zone will start to‘
develop at the borehole wall, and then expanding in size as support
pressure is decreased. Equation 6.1 will apply within the plastic
zone. |

If the stress state at the boundary between the elastic and
plastic zone is considered, the elastic stress solutions at this
boundary ére given by Equation 6.2 to 6.3, with Ro =r = Ri’ Opre = Opg

rc

and Pc = Pi' With the assumption of no fluid flow (i.e. Pc = Po) and

Ro >> Rc’ the stress solutions from Equations 6.2, 6.3 and 6.4 may be

written as:

o] =g 6.4
re rc

c = 20 - g 6.5
fc ro re

a =0 6.6
zc Z0o

The elastic solutions (Figure 5.2) show clearly that the radial stress
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will be the smallest at the boundary between elastic and plastic zones,
and following the assumption (1) of initial isotropic stress, the state
of stress at the elastic-plastic boundary will be 0. < o < o, .
re zc 8c
The stress solutions within the plastic zone may be derived by
combining Coulomb failure criterion (6.1) and the equation of

equilibrium.

=0 6.7

The stress solutions for the plastic zone may be written as:

For R, < r <R
i c

Q
|

= _Hq r .1 - _Hqg
r P Yok M R, + ¢ (28 tana = 500 ’

[ - 1] 6.8

For R, < r <R

Q
L]

_Hq_ r,,1 - _¥kq
Pi + Tk (1 + 2n Ri) + T (2S tana 2nhk)

[(e + 1) (Tﬁ;)t - 1] 6.9

For R, < r <R



= Mg ry,.i T Iyt
o, =P, +52-(1+ Ri) + 2 (25 tana - 59 [(r + 1) (Ri) 1]

6.10
For R, < r <R
b c
- _uq r_ uq (1-v)(1-2v)
o, = @) * i 0 Ri) tVrmE T T I
- y - _Hq I Nt _
(6, ~P) +3 [2s tana 21mk] [(e+2) ()7 - 2]
6.11

1
where t = tan?a - 1, a = 45° +-%—

fluid viscocity

=
]

The procedure to derive Equations 6.7 to 6.11 is given in Appendix H.

6.3.1.3 Radius of the Plastic Zome

Radius of the inmer Plastic Zone R

b

At the boundary of inner and outer plastic zones, the
tangential stress and vertical stress given by equations 6.9 and 6.11

are equal.

Setting Equations 6.9 equal to 6.11 and r = Rb’ yields.

. |
a1 G +ap =0 6.12
1
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where

a1=%(2s tana - 5EL) [(£ + 1) = v (£ + 2)]
1+v 1-2v
R R

L ny - —A3 -
T (25 tana 21rhk) (1-2v)

Radius of the Entire Plastic Zone

There are two requirements that must be satisfied at the
boundary of elastic and plastic zones

1) Mohr Coulomb criterion must hold

2) Continuity of radial stress

Inserting radial stress from Equation 6.8 and tangential
stress from 6.3 into Mohr Coulomb failure criterion 6.1, the resulting

equation for the radius of plastic zone Rc is

t+2 Ro t Ro 2 2 Rc 2 o
b Rc n e + by Rc n T + bj Rc + by RC in i— + bg Rc ln—-ﬁ
(o] Cc 1 [od
RO RC RC RO .
+b6 2n§—°2n§— +b7£nr—-+b82n§-—+b9=0
[ i i [

6.13



where

-t
by = (2S tan o - Z:Ek) Ri
t+ 2
b2 = - t Cl R02
1 - 2v
by = = 3y B T Fy)
by = 1 -2v uq
4 7 2(1-v) 2mhk
_ _Hq
bs = 2thk
1 2v
bg = - (2 ) C sz
b, == by R 2
by = [$% 0,0 + T =22 (B, +P,) - 22, + 225 tan a
_H2 uq ]
t 2nhk
bg = - C3 R02

6.3.2 Stability

It is noted that the radial stress component in Equation 6.8

consists of two r-dependent terms, one logarithmic acd one to the power
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of t. The last term will become dominant when the exponent t has

a value greater than about two.

(2S tan a - —ES—O R -t | 6.14

Setting C S7hK 1

]
el

If C is positive, radial stress in the plastic zone will increase with
r, and combined plastic-elastic solutions are possible. But when the
flow rate q is large enough to cause C to become negative, radial
stress will decrease with increasing distance r, and combined solutions

are not possible. Hence, there exists a stability criterion.

c>0 6.15

with the limit

SThk = 2S tan a | 6.16

This study concentrates on oil sand which has § = 0. If the wellbore
3
is suported only by fluid pressure, equation 6.16 indicates that

instability arises when flow into the wellbore occurs.

6.3.3 Pore Pressure Profile

When steady-state conditions aroﬁnd the wellbore have been
reached, the pore pressure in the soil elements may be estimated if the
piezometric surface is known. Dupuit developed a theory which enables
the quantity of steady—-state seepage and the plezometric surface around

a well to be evaluated. His theory is based on three assumptions:
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1) the hydraulic gradient is equal to the slope of the free
surface and is comnstant with depth,

2) for small inclinations of the line of seepage the
streamlines may be taken as horizontal.

3) The permeability of the soil 1s constant

(SN

With the terminology in Figure 6.2a the flow when steady state

conditions exist is given by:

Q =mk (hp2 - h;?) z;(%7?’3 | 6.17
w .

and the location of the free surface is

h 2_h2
B2 = b2 4 — o = 6.18
1 2n(R7rw) r,

There is a controversy about the location of the piezometric
surface predicted by Dupuit's theory, especially in the vicinity of the
well. This is because the surface of seepage is omitted in Dupuit's
prediction. But the problem is modelled as a disk of sand below the
seepage surface (Figure 6.3b). Only radial flow is assumed in the sand
disk. Hence equation 6.16 is accurate enough to estimate the pore

pressure profile.



surface of seepage

Flow F.E. Mesh

Fig.6.3 - Idealised flow to a wellbore
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6.4, Comparisons of Predicted Response and Closed Form Solution

The response of unloading a borehole, with linear
elastic-plastic porous material, is investigated. A drained analysis
was performed. The initial and final conditions of the problem are
shown in Figure 6.4(a). When the fluid support pressure is higher than
the initial pore pressure, no flow from the borehole into the sand
formation is assumed. Since the final fluid support (4100 kPa) is
higher than the initial pore pressure, flow into the borehéle is not
considered herein.

The stress solutions computed by the programme are in good
agreement with the closed form solutions mentioned in Section 6.3, and
shown in Figure 6.4. The radius of the entire plastic zone is small
which shows that the borehole is stable at the final fluid support

pressure of 4100 kPa.

6.5.1 Undrained Response

The undrained non-linear elastic-plastic model will now be used to
study the response of a wellbore on unloading. The finite element
mesh and initial conditions are shown in Figure 6.1b. Only the long
term undrained response will be investigated in this thesis because
this condition is felt to be more realistic (t # 0) and it was also
shown thét the long term undrained condition is more critical than the
immediate response (Sobkowicz, 1982) in terms of stability.

The wellbore is unloaded by decreasing the total stress at the
wellbore wall, and the stress solutions and displacements are shown
graphically in Figures 6.5. A careful examination of these figures

indicates some interesting results:
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Fig.6.4 - Stresses around a wellbore in an elastic-plastic material
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Fig.6.5 - Undrained response of a wellbore in o0il sand on unloading
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Fig.6.5 - Undrained response of a wellbore in o0il sand on unloading



98

o
0
duoz or13sera
o
4
(]
o,
.
o
pot o
2 3
]
[
| o)
2 o
auoz or3serd 0 N
n
Q
n
o =
a,
=}
[}
auoz pinbry
1 ] ] 1 ] ] ] ] ] ] 1 ] ] ] o
008 009 oo¥ ooe 0 oo¥ 0se oo¢c 0Se 002

(

101X) (ed) ssaajg aa1309))q ( ;01

X) (ed>) sanssaaq aao(d

Radii (r/r,)

(c)

Fig.6.5 - Undrained response of a wellbore in o0il sand on unloading
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The support pressure can be reduced below the initial pore
fluid pressure and the wellbore is still stable;
instability is defined when large displacements start to
occur at the wellbore wall.

Instability occurs at a support pressure of approximately
2500 kPa.

The size of the plastic zone remains small as long as the
support pressure 1s higher than 2500 kPa (Figure 6.5 b).
Once the support pressure drops below 2500 kPa, the size
of the plastic zone increases rapidly (Figure 6.5 c).
Pore fluid pressure changes only occur in the plastic
zone. The evaluation of the fluid pressure response

depends on volumetric strain Aev = Aej + Ass. But in the

elastic zone, Aei = - A eg and Aei = 0 so that A€3= 0,

and hence no change in pore fluid pressure is predicted.

Once instability has been reached, a liquid zone with zero
effective stress associated with a large plastic zone will
form adjacent to the wellbore. These zones will extend
into the sand formation rapidly upon further reduction of

support pressure, leading to large displacements.



6.5.2 Drained Response

For the drained condition, the pore fluid pressure is assumed
to be known. Dupuit's theory described in Section 6.4.3 is adopted to
estimate the pore pressure profile around the borehole in this study.
Two typical pore pressure profiles are shown in Figure 6.7 with R = 100
and 150 m with the fluid support pressure fluid at 3200 kPa. There are
" some intermediate pore pressure profiles Between support pressure of
3500 kPa to 3200 kPa, depending on the number of increments on
unloading, but they are not shown here. When the fluild support
pressure is above 3500 kPa, no flow from the wellbore into the sand
formation is assumed.

The wellbore is unloaded in the same manner as for the
undrained analysis. The results of the stress solutons are shown in
Figure 6.7. A careful examination of these results indicate some

interesting points:

1) To maintain borehole stability, the support pressure
cannot be reduced to less than the initial pore pressure;
instability is defined as large displacements start to
occur at the wellbore wall.

2) The stress solutions only differ by a few percent when the
input pore pressure profiles are generated by using R =
100 and 150 m. Therefore, only one set of stress solutons
is presented here in Figure 6.7.

3) Once stability has been reached, a liquid zone with zero
effective stress associated with a large plastic zone will

extend into the sand formation rapidly upon further

100
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reduction of support pressure, leading to large

displacements.

6.5.3 Implications of Undrained and Drained Analyses

The analyses show that there are limits on the fluid support
pressure reduction in order to maintain borehole stability.

Comparisons of both analysis are made at support pressure of
3500 kPa and 3200 kPa. 3500 kPa is thebcritical pressure below which
instability occurs in drained condition. It is noted that in Figure
6.9 the plastic zone in the undrained analysis is much smaller than the
one in drained analysis. At a support pressure of 3200 kPa, the
borehole is obviously unstable under drained conditions (Figure 6.9),

" showing a large plastic zone and consequently large displacements. But
the borehole only exhibits a small plastic zone at this support
pressure (3200 kPa) under undrained conditions (Figure 6.9). This is
because the pore pressure around the wellbore is lower in the undrained
case, which results in a higher effective stress.

Consolidation is the process which bridges the fully undrained
and drained conditions. An interesting point is that the pore pressure
will increase around the borehole during consolidation, leading to
lower effective stress. Hence, the long term drained condition is less

stable than the undrained condition.

6.6 Application to 0il Recovery

For oll production, the final support pressure must be reduced
below the in-situ pore fluid pressure. Based on the undrained analyses

with the wellbore supported only by fluid pressure, the support
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pressure can be reduced below the in-situ pore fluild pressure and the
wellbore is still stable. This allows the construction of the wellbore
and initial reduction of fluid support pressure below in-situ pore
fluid pressure. However, for the drained condition, the wellbore
becomes unstable which causes collapse of the well and hence no oil
production.

Instability results in the formation of large liquid and
plastic zones (Figure 6.9) around the wellbore. Since the permeability
in the 1iquid and plastic zones are higher due to the expansion of sénd
skeleton, it is desirable to have these zones around the o0il production
well. This effectively increases the diameter of the well.

To enhance o0il production and maintain wellbore stability, a
screen may be installed to provide effective support pressure after the
liquid and plastic zones have formed.

The three dimensional and viscous effects have not been
considered in the analysis, however they may help in stabilizing the

wellbore.
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CHAPTER 7 : SUMMARY AND CONCLUSIONS

A new stress—stress relationship for ﬁodelling the undrained
response of oil sand has been presented. An analysis which couples the
soil skeleton and pore fluids is used. The pore pressure changes are
computed from the constraint of volume compatibility.

Separate stress—strain models are required for both soil
skeleton and pore fluids in this analysis. The conventional hyperbolic
stress—strain model described by Duncan et al is adopted for the soil
skeleton. The pore fluids stress—-strain relationships are formulated
on the basis of ideal gas laws.

The developed model is incorporated into a finite element
programme for analysing the deformation behaviour of gassy soils (e.g.
oil sand). Upon validation in Chapter 5, it is shown that the
undrained model is capable of predicting the response of unsaturated to
gassy solls. Naylor has shown that this model can be used to predict
the response of saturated soils.

For non-rectangular QM-6 elements, equilibrium cannot be
achieved for Poisson's ratio values greater than 0.4, but higher order
element can remedy this.

In the study of the response of wellbore in oil sand upon
unloading, the fluid support pressure can.be reduced below in-situ pore
fluid pressure under undrained condition and the wellbore is still
stable. However, for the drained conditi#, the fluid support pressure
cannot be reduced below the in-situ pore fluid pressure in order to
maintain wellbore stability. |

For oil production, the fluid sﬁpport must be reduced below

in-situ pore pressure which results in formation of large liquid and
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plastic zones. It is desirable to have these zones around the wellbore
because the diameter of the well is effectively larger.

To enhance oll production and maintain wellbore stability, a
screen may be installed to provide effective support pressure after the

liquid and plastic zones have formed.
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APPENDIX A
The constitutive relationship may be written:
(ac') = [D'] (a€) A.l

in which (Ac') is the incremental stress vector, (Ae) is the
incremental strain vector and [D'] is the incrmental effective stress
strain matrix.

The incremental strain vector is related to the nodal

displacements by:

(ae) = [B] (6) A.2

in which [B] is a matrix that depends on element geometry.
By the principle of virtual work, the external work done by
the virtual displacement is equal to the internal work done by the

increment of virtual strains:
(5)" (¢) - N (82)T (ac') aa + IN (ae)F (i) Au dA A.3

in which (f) = the element force vector
(Ac') = the element incremental effective stress vector

(Au) = the element incremental pore pressure vector



Substituting for (AE] and (Ac') from Equations A.l and A.2,

)

o

(3) (£) = (8)" [8]" ['] [8] (8) &_ + (3)" [B]%(
Au A A.4

in which Ae is the area of the element with unit thickness.

Rearrangement of Equation A.4 yields

in which [k] = [8]% [p] [B] A

where [K] is the element stiffness matrix and (Kw] is a load vector

associated with the pore pressure.
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APPENDIX B

Assumptions:
1) the volume of solids is 1 unit, then the volume of voids
is e units by the definition of void ratio,

2) the solids are incompressible.

The undrained response of the element under a change on

external pressure will be

Aom'
Skeleton (Ae ) =
v/ SK BSK B.l
Au .
Fluid (Aev)f N B.2
f
in which (Aev)SK, (Aev)f = volumetric strain: Skeleton, Fluid
BSK’ Kf = bulk modulus: Skeleton, fluid
Aom' = mean effective stress change
Au = pore pressure change

Since the soil skeleton and the pore fluids deform together
when the conditions are undrained, in additions to Equations B.l and

B.2:
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Compatibility e (Aev)f = (1 + e) (Aev)sK B.3a

or (be ). = — (A ) ) B.3b
in which e is the void ratio and n is the porosity.
Substituting B.3b into B.l, the pore pressure change, Au, may

be written as:

Au = Ka (Aev)SK B.4
Kf
in which Ka = the apparent bulk fluid modulus

In finite element analysis

bu = K_ (e )

Ka (A€11 + AEZZ + A€33)
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APENDIX C

Poisson's ratio is equal to 0.5 in undrained analysis
theoretically. This means that bulk modulus is infinite and numerical
instability will arise (this sentence does not sound right).

Therefore the default of Poisson's ratio, v, is always less than 0.5
(e.g. 0.495) to mailontain stability and accuracy. In the total stress
model developed in Sectionb3.2, it is the combined Poisson's ratio, Vb
for matrix [D] that controls the overall numerical stability, not just

Ve

The elastic moduli in matrix [D'] are related as

E

¢ =y ¢t
E

SEI¢T0) ¢-2

Assuming the elastic moduli in matrix [D] = [D'] + [D_.] are related as

Ecb

Gcb = 2(1+vcb) c.3
E

B o= e C.4

cb 3(1—2vcb)
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in which suffic cb means combined, G = Gc as pore fluid does not

b

transmit shear.

Just consider the direct stress terms in the constitutive

relationship
1
Aoy, L+K L*M4K L*M+K A€11i
a a a l
= * *M+]
AOIZ L M+Ka L+Ka L*M Ka A€22
% *
Aojj L M+Ka L M+Ka L +Ka Aegg
C.5
E(1-v)
in which L (TFv) (1-2)
\%
Moo= 1-v
Substituting C.2 into C.5, yields,
Agyy P+Ka Q+Ka Q+Ka Aeqy,
Aoy = Q+Ka P+Ka Q+Ka Aegyop C.6

Aczj Q+K Q+Ka P+K Aegg3



. _ 3B(1-v)

in which P = —?I;GS__
_ 3Bv
Q= 1+v

Adding the direct stress in Equation C.6 and rearranging

1
3 (8011 + Aozp + Ao33)

B(l1-v) 2Bv

[

(Aell + Agyy + A€33)

Eliminating Ec from Equations C.3 and

b

3Bcb - 2G

cb 6BCb + 2G

Substituting C.7 into C.B, rearranging

E
3(B + Ka) = Ty

cb - B(B + K) + E
) 1+v

\Y

1-v + 1+v

Bcb

C.4, yields

+ K

C.7

c.8
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APPENDIX D

In the incremental elastic method, two iterations are
performed to obtain the tangent moduli of the soil skeleton. Hence two
iterations are also employed to evaluate the tangent bulk fluid modulus
in order to make the procedure compatible. The parameters at the end
of previous increment will be used in the analysis of the present
increment, and then updated at the end of this increment.

The tangent bulk fluid modulus and the proéedure to update the
parameters are shown herein:

"Equation 3.24e and 3.26b are programmed as:

e—nw(1+e) + Hwnw (lte) + Hcoznw (1+e)

_1
Ber = 38 P
+8. N, (1+e) ] D.1
1 e—no(1+e) - nw(l+e) + anb(1+e) + Hwnw(1+e)
Bez = ¢ P

+ anb(1+e) D.?2

+ Bwnw (1+e)

The parameters in Equation D.l and D.2 may be updated

according to the following foimulae based on the assumptions:
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volume of solids is 1 unit

bitumen, water and soil solids are incompressible

Ae = (1+e) Aev D.3
ef = ei + Ae D.4
Sfef = Siei D.5

ng(1+e) + Ae

' =
oo T+e + Ae D.6

n, (1+e)
n ! = .b__.— D 7
b l+et+Ae *
nw( 1+e)
' = ———————————
Oy l+etAe D.8

P = u+ Au D.9
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APPENDIX E
Refer to Figure 4.1b
011 + 022
oy = —— + 0y2 cosec 28 E.1
011 + 022
o3 = ———-2—-—- — 0)2 cosec 206 E.2

The overstress in the element is removed by reducing Aoy, Acgg,

ATyo as follows

Aoy = op - o3 tan? (45° + %9 : E.4
N\
AT12 = 0 E.6

These change in principal stresses can be expressed in terms of

stresses in x—y space:

AOI + AG3 AOl - A03

Aoy, = > + 5 cos 26 E.7




Acgyy = - cos 260

|
0
[«
w
N
@
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E.8

E.g

Equations E.7, E.8 and E.9 may be expressed in matrix form

Maoe |
AO’ll . ’: AO’I
AGZZ = [T] AG3
Aoy At)3

[T] is the transformation matrix

1l _ cos 26 l_+ cos 20
2 ) 2 2 2
_ 1 cos 20 1 _ cos 26
[t]= 13 +—=%— 3 7
_ sin 26 sin 26
2 2
L

E.10
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APPENDIX F

Back Calculation of Soil Parameters

Given the compressibility of soil BS = 9 E-b kPa~! and the
effective stress ¢} = 751 kPa, the bulk modulus KB number can be

backcalculated by assuming a value of m.

From Equation 3.12

o} o
B =% P, ) el
a
1 9 m
ioeo 'B—= KB Pa (P_) F-Z
s a

Substituting Bs’ o} and Pa and assuming m = 0.25 (Byrne and Cheung) in

F.2,

KB = 665

Adopting the relationship K_ = 0.6 KE (Byrne and Cheung)

B

K, = 1108

Other parameters are depicted from Byrne and Eldridge on Byrne and
Cheung reports. A complete set of soil parameters for Test 1l may be

written as:



o8

=]

1108

0.5

665

0.25

0.8

42°

8°

0.3228 (e = 0.4767)

0.9975
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APPENDIX G

Elastic Stress Solution

If the fluid pressure is included, the displacement u of an

elastic material may be written as

d ,du , u dp _
dr (& * r) tBIr T 0 G.1

(A + 26) ir

E v
(1+v) (1-2v)

where A =

E
¢ = 7AW
Cr
B =1~ T which is assumed equal to 1
b
Cr = sand matrix compressibility
Cb.= sand bulk compressibility

The pressure may be expressed by Darcy's law in radial form

dp _ _Mq G.2
dr 27hKr *

The stresses are written as

e e '
o, = A Ev + 2G er + P G.3
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g = A ee + 2G ee + P G.4
0 v 0

o = A ee + 2G ee + P G.5
z v z

e e
Where € €
r’ 9

+ ee Go6
V4

e ; . e e e
and €, are the elastic strain components and e, = €. + €

Assuming the initial loading cause a deformation only in the
vertrical direction, but no displacement in the horizontal directiomns
(e =

ee = 0), the initial vertical strain ezo’ is given by G.5 as

o =P
20 0O

ezo = A+ 2G G.7

Assuming only radial displacement after initial loading, the strains

are

e _ du
er = 3T G.8
e _u
Ee—r Gog
ee = ¢ G.10

z Z0
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By solving Equation G.l with the boundary conditions

1
w

when r

Q
]
Q

Q
]
]

=

g when r
r

and combining the results with Equations G.8, G.9 and G.10, the stress
solutions (Equations 6.2, 6.3, 6.4) can be found by inserting the

result in Equations G.3 through G.5
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: APPENDIX H

Plastic Stress Solutions (or < o, < ce)

The conditions must be satisfied within the plastic zone

1) Equilibrium

do g -0
r

dr r

2) Mohr Coulomb failure criteria

f=0

6 or tan? o + (tan? a=1) P - 25 tana =0 H.2

The flow rule associated with yield condition is

ep = ) EE_ = - )\ tan? a H.3a
r 30
T
P =3 H.3b
0 3o
8
P = g H.3c
z o

From Equations H.3a and H.3b, it follows that

ep + eg tan? a = 0 H.4
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The total strain components may be written as

£ = ee + ep H.5a
T r r
= g% p
€g €4 + €g H.5b
€ = ee +¢eP = € H.5¢c
z z z zo

eP

z 0 because it is assumed that there is only radial displacement

after initial loading.
Combining Equations H.5a and H.5b, inserting into H.4, gives

e
€ + ¢, tan? a = er + eg tan? o H.6

Applying Hooke's law of elasticity for porous material, yields

e

Eer =09, - v (oe + cz) - (1-2v)P H.7a
e

Ese =0g -~V (orr + cz) - (1-2v)P H.7b
e

Eez =g, -V (cr + ce) - (1-2v)P H.7¢c
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Substituting Equation H.5c into H.7c yields

g, = Eezo + v (or + oe) + (1-2v)P H.8

- Combining Equations H.7 and H.8, inserting into the yield

criterion Equation H.2 with the strain relation in H.6, it gives

2

[tan* a + 1 - v (tan? a + 1)2] g. = 2G €.+ 26 g4 tan a

6
+ [tan2 o (tan2 a-1) - v (tan* a - 1)
+ (tan? a + 1) (L -2 Q)]P - [tan2 a (1-v) - v] 2 Stan a
+ v (tan? a + 1) 2G6 €0 H.9
and
[tan* a + 1 - v (tan? a + 1)2] oy = 268 tan? o + 2Ge,, tan® «
+ [v (tan* a - 1) - (tan? a - 1)

+ tan? a (tan? a + 1) (1-2v)]P - [v (tan? o + 1) - 1] 2Stan «

+ v tan? a (tan? o + 1) 2Gezo H.10



Substituting Equations H.9 and H.10 into equilibrium Equation
H.l, together with the strain-displacement relations G.8 and G.9, the

displacement equation may be written as

2
r2 E—E-+ r du _ utan? o = — (- [tan2 o (tan? a - 1) - v(tan"* - 1)
dr2 dr 2G

+ (tan? a + 1) (1-2v)] =24+ (tan2? a +1) (1-2v) 2 Stan a
2mhk

+ v (tan? o - 1) 26 ezo) H.11

The displacement solution of Equation H.ll is

2 - tan2
26u = Ajr @™ % 4 a,r T TARTC 4 gy H.12

and the corresponding strains are

-tan?a

24-1
tan®a=" _ tan? a Ay r + B

2Ger tan? q Ar

H.13

a -tanza

2Ge, = Alr + AZ r + B H.14

Where A; and A; are constants of integrations which depend on initial

conditions.
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2
_ rtanca 1-2v ug  _ 1-2v
B = [tanza+1 tanla_l] Ihk tanZo—1 2 Stana
Ve H.15

Z0

Substituting Equations H.13 and H.14 into Equations H.9 and H.10

together with Darcy's law for radial flow,

P =P +u_q2nr—-

i  2mhk Ri H.16
gives
o, = Pi + 5%%? 2n<§; - %—(ZStana - 5E%E)
+ 2tan? a ;i ' H.17
Og = Pi + E%%E 4n %I - %-(ZStana - tan? o z:gk)
+ 2tan'a ﬁl et H.18
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where

135

2nhk T [4Stan a - (tan? a + 1).

21 ]+ (1-¥3§1‘2V) (ozo_Po)' +v (tan®a + 1).

2tan? o« — r H.19

tan® a - 1

tan* a + 1 - v (tan? a + 1)2

The constant of integration A; can be found by inserting the boundary

condition, Gr

=P, whenr =R into H.17.

i i’
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APPENDIX J

The quantity of steady—state seepage at any distance r from

the centre of the well is

Q = k 27rh %%- J.1

on setting the limit of integration, yields

R hy
27k f r f h dh
r h;
w
and
Q=7k (hg - hf) — it J.2
n (R/rw)
Equating J.1 and J.2, yields
dh _ 2 2 1 B
2rha? = (hy hy) m;:-— C J.3

integrating J.3

h2=Csfnr+D J.4
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where D is the constant of integration

Substituting the boundary conditions r = r, and h = h; in J.4,

yields,
2
w

Substituting J.5 into J.4, yields

2 2 h3-ni r
h =Mh +W ln?— J.6
W w



