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ABSTRACT 

An efficient undrained model for the deformations analyses of 

o i l sand masses upon undrained loading i s presented i n this thesis. 

An analysis which couples the s o i l skeleton and pore fluids i s 

used. The s o i l skeleton i s modelled as a non-linear elastic-plastic 

isotropic material. In undrained conditions, the constitutive 

relationships for the pore fluids are formulated based on the ideal gas 

laws. The coupling between the s o i l skeleton and the pore fluids i s 

based upon volume compatibility. 

The undrained model was verified with the experimental results 

and one dimensional expansion of s o i l sand cores. Comparisons between 

computed and measured responses are i n good agreement and suggest that 

this model may prove useful as a tool in evaluating undrained response 

of o i l sand. 

The response of a wellbore i n o i l sand upon unloading was 

analysed using the developed model. Such analyses are important in the 

rational design of o i l recovery systems i n o i l sand. 



i i i 

TABLE OF CONTENTS 

Page 

Abstract i i 

Tabele of Contents i i i 

List of Tables v i i 

Li s t of Figures v i i i 

L ist of Symbols x 

Acknowledgements x i i i 

CHAPTER 1 Introduction 

1.1 Introduction 1 

1.2 Behaviour of Oil Sand 2 

1.3 The Scope 5 

1.4 The Organization of Thesis 6 

CHAPTER 2 Review of Previous Work 

2.1 Introduction 8 

2.2 Mathematical Model for Undrained Behaviour 

of O i l Sand 

2.2.1 Harris and Sobkowicz 8 

2.2.2 Dusseault 12 

2.2.3 Byrne and Janzen 14 

CHAPTER 3 Stress-Strain Model 

3.1 Introduction 17 

3.2 Development of the Undrained Model 17 

3.3 Constitutive Relations 

3.3.1 Incremental Non-linear Elastic Soils Model 22 

3.3.2 Incremental Non-linear Elastic Fluid Model 25 



i v 

Page 

3.3.2.1 General 25 

3.3.2.2 Partly Miscible Gas/Liquid 

Mixture 27 

a. Air/Water Mixture 28 

b. Carbon Dioxide, Air/Water 30 

Mixture 

c. Gas/Bitumen and Water Mixture 33 

CHAPTER 4 Finite Element Formulations 

4.1 Introduction 36 

4.2 The Plane Strain Formulation 

4.2.1 The Constitutive Matrix [D] 36 

4.2.2 The Strain Displacement Matrix [B] 40 

4.2.3 The Stiffness Matrix [K] 44 

4.3 The Axisymmetric Formulation 

4.3.1 The Constitutive Matrix [D] 46 

4.3.2 The Strain Displacement Matrix [B] 50 

4.3.3 The Stiffness Matrix [K] 53 

4.4 Load Shedding Formulation 55 

CHAPTER 5 Comparisons with Existing Solutions 

5.1 Introduction 60 

5.2 Comparisons with Theoretical Solutions 

5.2.1 Elastic Closed Form Solutions 60 

5.2.2 Elastic-Plastic Closed Form Solutions 61 

5.3 Comparisons with Observed Data 

5.3.1 One Dimensional Unloading of O i l Sand 68 



Page 

5.3.2 Triaxial Tests on Gassy Soils 72 

CHAPTER 6 Stresses Around a Wellbore or Shaft i n O i l Sand 

6.1 Introduction 79 

6.2 General Model Description 80 

6.3 Theoretical Solutions for Stresses Around a 

Wellbore 80 

6.3.1 Stresses 

6.3.1.1 Stresses in Elastic Zone 83 

6.3.1.2 Stresses in Plastic Zone 85 

6.3.1.3 Radius of Plastic Zone 87 

6.3.2 Stability 89 

6.3.3 Pore Pressure Profile 90 

6.4 Comparisons of Predicted Response and 

Closed Form Solution 93 

6.5 Analysis of Response of Borehole in Oil Sand 

on Unloading 

6.5.1 Undrained Response 93 

6.5.2 Drained Response 100 

6.5.3 Implications of Undrained and Drained 

Analysis 104 

6.6 Application of o i l recovery 104 

CHAPTER 7 Summary and Conclusions 108 

Bibliography 110 

Appendix A 114 

Appendix B 116 

Appendix C 119 



VI 

Page 
Appendix D 

Appendix E 

Appendix F 

Appendix G 

Appendix H 

Appendix J . _, 
136 



LIST OF TABLES 

Table 

v i i 

LIST OF TABLES 

Page 

A comparison of computed and measured results 

(Test 11, Sobkowicz) 74 



V l l l 

LIST OF FIGURES 

Figure _ __ Page 

1.1 Schematic spring analogy for o i l sand 3 

3.1 Stress-strain curves for drained t r i a x i a l 

tests on loose sand 24 

3.2 Phase diagram for gassy s o i l 32 

3.3 Phase diagram for o i l sand 34 

4.1 Stresses associated with load shedding 56 

5.1 thick wall cylinder 62 

5.2 Stresses and displacements around circular opening 

in an elastic material 63 

5.3 Stresses and displacements around circular opening 

in an elastic-plastic material 64 

5.4a Model for one dimensional unloading of o i l sand 70 

5.4b Response of o i l sand to one dimensional unloading .... 71 

5.5 Comparisons of predicted and observed pore pressure .. 76 

5.6 Comparisons of predicted and observed strains 77 

6.1 Outline of the wellbore problem 81 

6.2a Finite element mesh for wellbore problem 82 

6.3b Mohr Coulomb failure envelope 84 

6.3 Idealised flow to a wellbore 92 



LIST OF FIGURES - Continued 

Figure Page 

6.4 Stresses around a wellbore i n an elastic-plastic 

material 94 

6.5 Undrained response of wellbore i n o i l sand on 

unloading 96 

6.6 Pore pressure profile around a borehole 101 

6.7 Drained response of a wellbore in o i l sand on 

unloading 102 

6.8 Comparisons of undrained and drained response 

of a wellbore in o i l sand at a support pressure 

of 3500 kPa 105 

6.9 Comparisons of undrained and drained response 

of a wellbore in o i l sand at a support pressure 

of 3200 kPa 106 



X 

LIST OF SYMBOLS 

The following is a l i s t of the commonly used symbols in this 

thesis. Multiple use of several symbols is unavoidable because of the 

complexity of the formulations. The symbol w i l l be defined immediately 

in the text where the use of symbols differs from those l i s t e d below. 

SYMBOL MEANING 

3 compressibility 

A change 

a stress 

e strain 

v Poisson's ratio 

(j) f r i c t i o n angle 

a temperature solubility constants 

a radial stress r 
o"g tangential stress 

a vertical stress z 
B bulk modulus 

e . void ratio 

E Young's modulus 

G shear modulus 

H Henry's constant 

k permeability 

K apparent bulk f l u i d modulus 



x i 

bulk f l u i d modulus 

n porosity 

P pressure 

q flow rate 

r radius (variable) 

R radius (constant) 

R radius of plastic zone c 
r radius of wellbore w 
S saturation 

T temperature 

u pore f l u i d pressure 

V volume 



x i i 

Subscripts 
1 f i n a l 

a a i r 

f pore f l u i d 

g gas 

i i n i t i a l (internal i n Chapter 6) 

0 o i l (outer in Chapter 6) 

S s o i l skeleton 

v volumetric 

w water 

cb combined 

dg dissolved gas 

fg free gas 

Tg total gas 

Superscripts 
e elastic 

f f i n a l 

1 i n i t i a l 

p plastic 



x i i i 

ACKNOWLEDGEMENTS 

I am greatly indebted to my supervisor, Professor P.M. Byrne, 

for his guidance, encouragement end enthusiastic interest throughout 

this research. I would also like to thank Professor Y.P.Vaid for 

reviewing the manuscript and making valuable suggestions. My 

colleagues, U. Atukorala, F. Salgado, J. She, H. Va z i r i and especially, 

C. Lum, shared a common active interest in s o i l mechanics. I thank 

them a l l for their helpful discussions and constructive criticisms. 

Appreciation is extended to Ms. S.N. Krunic for typing the 

manuscript and her patience during the preparation of this thesis. 

Support and assistance provided by the Natural Science and 

Engineering Research Council of Canada i s acknowledged with deep 

appreciation. 

A special thanks i s extended to my family and P r i s c i l l a , for 

their constant support and encouragement. 



1 

1.1 INTRODUCTION 

Many schemes for o i l recovery require open excavations, tunnels 

or wellbore i n o i l sand. As a result, an accurate and efficient 

analysis of stresses and deformations around these openings i s becoming 

increasingly important. Mathematical models have been developed by 

Byrne et a l (1980), Dusseault (1979), and Harris and Sobkowicz (1977) 

to investigate these problems. An efficient undrained model for 

analysing the stresses and deformations around open excavations, 

tunnels and wellbores i n o i l sand i s presented i n this thesis. 

Oil sand i s comprised of a dense sand skeleton with i t s pore 

spaces f i l l e d with bitumen, water and free or dissolved gas. The 

presence of bitumen reduces the effective permeability of o i l sand, 

hence undrained conditions occur on rapid unloading. Gas evolves from 

pore fluids during unloading when the pore fluid pressure i s below gas 

saturation pressure. Because gas exsolution takes some time to occur, 

two undrained conditions arise, (1) an immediate or short term 

condition i n which there i s no time for gas exsolution, and (2) a long 

term or equilibrium condition in which complete gas exsolution has 

occured. Both of these conditions are considered in this thesis. The 

rate of gas exsolution is not considered herein. The drained analysis 

with pore pressures under steady-state conditions i s also addressed. 

The sand skeleton is modelled as a non-linear elastic-plastic 

porous material. The fluids stress-strain relationships for undrained 

condition are formulated on the basis of ideal gas law. For the 

undrained condition, the pore pressure changes ;.re computed from the 

constant of volume compatibility between the sand skeleton and the pore 

fluids. It i s assumed that the pore f l u i d pressures are known in the 

drained analysis. 
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Validation of the stress strain model i s made by comparing 

responses with theoretical solutions and observed data. The observed 

data are the experimental results in Sobkowicz's doctorate thesis. 

The stresses and deformations around a wellbore in o i l sand 

upon unloading i s investigated using the new stress-strain model. 

1.2 BEHAVIOUR OF OIL SAND 

Oil sand is comprised of a dense, highly incompressible, 

uncemented, interlocked skeleton with pore spaces f i l l e d by water, 

bitumen, and dissolved or free gas. The interpenetrative structure 

leads to the low in-situ void ratio and high shear strength. 

The response of o i l sand is mainly governed by the rate of 

loading. Undrained conditions occur as a result of: 

1) low effective permeability to pore fluids 

2) large amount of dissolved gas in pore fluids 

3) rapid unloading 

The response of o i l sand may be physically modelled by a set of 

springs shown i n Figure 1.1. The o i l sand i s s p l i t into two load 

carrying components - s o i l skeleton and pore fluids. The s o i l skeleton 

compressibility, 3 g, characterizes the deformation of s o i l skeleton, 

which results i n a change i n effective stress. The pore f l u i d 

compressibility, 8^, characterizes the deformation of pore fluids 

(because of free gas) which results i n a change i n pore pressure. 
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Strain compatibility between the pore fluids and s o i l skeleton controls 

the relative magnitudes of the changes in pore pressures and effective 

stress which together equal the change i n total stress. Stress changes 

(unloading) are shared between the sand skeleton and pore fluids 

according to their compressibilities. When the pore pressure is above 

the gas saturation pressure and the o i l sand is 100% saturated, the 

stress changes w i l l be accommodated by the pore fluids because their 

compressibilities are lower. Once the pore pressure drops below the 

gas saturation pressure, gas starts to evolve which increases the 

fluids' compressibilities. Therefore the sand skeleton becomes the 

less compressible phase and takes up the stresses rather than the pore 

fluids. When the effective stress drops to zero, the s o i l skeleton 

i s very compressible relative to the pore fluids; hence any further 

decrease in total stress is entirely accommodated by the pore 

pressure. 

The gas exsolution takes some time to occur, hence two 

undrained conditions (Sobkowicz, 1982) arise. The expressions 'short 

term' and 'long term' w i l l be applied to these processes exclusively. 

1) 'Short term' undrained in which there i s no time for gas 

exsolution 

2) 'Long term' undrained i n which equilibrium state has been 

reached, i.e. completion of gas exsolution. 

In the f i e l d , the unusal behaviour of o i l sand manifests in a 

number of ways. They include: 
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1) Volumetric expansion of 5 to 15% occurred when core samples 

were l e f t in an unconfined state, i.e. not retained by 

plastic core sleeves (Dusseault 1980; Byrne et a l 1980). 

2) Core samples spontaneously split longitudinally and 

perpendicularly to the core axis, effervescence was 

observed on several freshly recovered cores (Hardy and 

Hemstock 1963). 

3) Retrogression of slopes i n o i l sand on rapid excavation. 

4) Oil sand at the base of excavation subjects to softening 

and heaving, followed by settlement on reloading. 

When the decrease in external stress occurs over a period of 

time, the evolved gas has time to drain off and effective stress does 

not go to zero which results in an undisturbed sand skeleton. Its high 

in - s i t u density and hence high shear strength i s retained. Such 

situations can be seen on the exposures of o i l sand deposits along the 

Valley of Athabasca River where erosion (unloading) by the river has 

occurred over thousands of years. These o i l sand deposits are standing 

on steep stable slopes with slope angles i n excess of 60° and heights 

up to 60 metres, exhibiting high strength (Harris and Sobkowicz 1977). 

1.3 THE SCOPE 

The purpose of this study i s to present a stress-strain model 

(Vaziri, 1985) for the deformation analyses of o i l sand masses, i.e. to 

explain the behaviour of o i l sand as described in Section 1.2. 

Modelling the undrained response of o i l sand requires the pore 

fluids pressure to be numerically evaluated. For the undrained 

condition, pore f l u i d pressures are computed from the constraint of 



volumetric compatibility between the sand skeleton and pore f l u i d 

phases. 

Compressibilities of sand skeleton and pore fluids have to be 

evaluated in the new stress-strain model. A non-linear stress-strain 

relationship (Duncan et a l 1970) is adopted for the sand skeleton. The 

compressiblities of pore fluids are formulated on ths basis of ideal 

gas laws. 

The new stress-strain model i s incorporated into f i n i t e element 

programmes (INCOIL, MHANS). For the validation of the stress-strain 

relationship, the computed results are compared with the theoretical 

solutions and observed data. 

The validated programme was used to study the unloading 

response of stress and deformations around a deep wellbore in o i l 

sand. 

1.4 ORGANIZATION OF THE THESIS 

This thesis consists of seven chapters. A review of previous 

work on undrained models for o i l sand i s given i n Chapter 2. This 

chapter concentrates on the examinations of their capabilities and 

shortcomings. 

A stress-strain model which was developed by Vaziri i s 

presented in Chapter 3. Appropriate s o i l skeleton and pore fluids 

constitutive relationships are also recommended in this chapter. 

Chapter 4 summarizes the f i n i t e element formulations used i n 

the development of the programme. 

Validation of the developed model by comparing predicted 

response with existing theoretical solutions, f i e l d and laboratory 



observations i s mentioned in Chapter 5. The response of a wellbore 

o i l sand upon unloading is investigated in Chapter 6 using the 

validated f i n i t e element programme. 

A summary of work, and major conclusions are presented i n 

Chapter 7. 
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CHAPTER 2 : REVIEW OF PREVIOUS WORK 

2.1 INTRODUCTION 

Theoretical solutions for the undrained response of o i l sand 

were not available u n t i l 1977 because of i t s unusual behaviour. Due to 

the increase in demand for construction in o i l sand formation, such as 

open pit mining, tunnels and deep shafts, a considerable amount of 

research has been done on this topic since 1977. 

These developed theoretical relations share the same basic 

approach of coupling the so i l skeleton and pore fluids together. Pore 

pressure changes are computed from the constraint of volumetric 

compatibility between the s o i l skeleton and pore fluids. Harris and 

Sobkowicz's model i s capable of evaluating pore pressure change upon a 

stress or/and temperature change. This model was then extended by 

Byrne et a l and incorporated in a f i n i t e element programme. 

Dusseault's approach is restricted to one dimensional problems. 

A careful examination of these theoretical models and their 

applications is made and several shortcomings are also reviewed. 

2.2 MATHEMATICAL MODELS FOR OIL SAND 

2.2.1 Harris and Sobkowicz (1977) 

Harris and Sobkowicz presented a mathematical model to analyse 

the undrained response of o i l sand subjected to changes of stress 

and/or temperature. This is the f i r s t analytical model developed to 

explain the behaviour of o i l sand such as: 

1) Movement and sta b i l i t y of slopes and tunnels formed in o i l 



sand. 

2) Settlements or heave of structures placed in o i l sand (e.g. 

hot o i l tank). 

3) Heave at the_base of excavations i n o i l sand. 

The model can be explained by the same spring analogy as shown 

in Figure 1.1. 

The response of o i l sand to changes i n stresses or/and to 

changes in temperature may be computed by the following equations: 

a) One-Dimensional Analysis 

Au can be obtained from a quadratic equation 

L * Au 2 + M * Au + N = 0 2.2 

where 

L = 3 
s 

Tl M = 3 (P. - Aoi) + n + Pi — (n H + n H ) s i 1 / g 1 T v w w o o ' a 

N = P ± [n (1 - - A 0 l 3 s ] " Pi AT ̂ - ( n ^ + n ^ ) 
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b) Two-Dimensional Analysis 

from strain compatibility again 

Aa 3 + A (Ao-! - Ao 3) 
Au = 

and 

where 

and 

1 + *s 

n6f 2.3 

P Au z + Q Au + R = 0 2.4 

P = B 
s T 1 

Q = 8 (P. - X) + n + Pi — (n H + n H ) s v i g 1 T w w o o ' 

R = P. [n (1 - — ) - X 0 ] - P, AT — (n a + n a ) l L g T s J i T v w w 0 0 

X = A02 + Ap (Aai - Ao"2) 

= volumetric strain 

B g = s o i l skeleton compressibility 

n = porosity of s o i l 

n Q = porosity of o i l 

n w = porosity of water ^ 

n = porosity of gas 

Aa = change in total stress 
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P = i n i t i a l pore f l u i d pressure 

Au = change in pore fluid pressure 

Ao"i = change i n major principal stress 

Ao"3 = change in minor principal stress 

T a = standard temperature (288 °K) 

= i n i t i a l pore f l u i d temperature °K 

Tl = f i n a l pore f l u i d temperature °K 

AT = change i n temperature 

= temperature solubility constant for gas in water 

= temperature solubility constant for gas in o i l 

H W = Pressure solubility constants for gas i n water 

H q = Pressure solubility constants for gas i n o i l 

Ap = s o i l skeleton dilatancy factor 

Harris and Sobkowicz examined the response of o i l sand during 

excavation and reloading of a square footing, and the behaviour of a 

tunnel excavation in the same material. Their results w i l l allow an 

assessment of the applicability and shortcoming of the theory. 

1) This solution..incorporated a linear constitutive 

relationship for the s o i l . As o i l sand behaves like an 

elastic-plastic material, there w i l l be a plastic zone 

developed adjacent to the tunnel wall on unloading when the 

effective.stresses are such that failure (Mohr Coulomb 

Criteria) occurs. 

2) The extent of the plastic zone i s only an approximation 

because redistribution of stresses has not been taken into 



account during the formation of plastic zone. 

3) An iterative procedure is required to obtain Au 

2.2.2 DUSSEAULT 

Dusseault (1979) extended the one dimensional Skempton's B 

equation to analyse the behaviour of cohesionless materials with large 

amount of free or dissolved gas in pore fluids. He presented a more 

rigorous derivation for the compressibility of pore fluids, and coupled 

the compressibility with that of s o i l skeleton ( e - a' relationship) 

in Skempton's B equation. 

This model shares the same basic idea as the previous one 

(Harris and Sobkowicz), which has two load carrying components - s o i l 

skeleton and pore fluids. The relative compressibilities of these 

components control the magnitude of changes in pore pressure and 

effective stress which together balance the change in total stress i n 

an undrained state. 

The traditional Skempton's B equation is 

Aa 
1 + n-

2.5 

8^ = compressibility of pore fluid (water) 

3 = compressibility of s o i l skeleton 

The extended one i s 



^ = l / [ l + f(u,o)] 2.6 

a+bAn(a-u)-e -e +H e -Hi e 
f(u,a) = [ e g + e 3 + J . o o w w J 

D U 

a, b = void ratio - effective stress relationship parameters 

e , e , e = void ratios : o i l , water, gas o' w' g » » e> 
H , H = Henry's constants : o i l , water o' w 
3 Q, 3 w = compressibility : o i l , water 

u, a = current values of pore pressure and total stress 

Dusseault applied this model to investigate the response of an 

element of o i l sand upon unloading. He examined a shallow case (15 m) 

and a deeper one (500 m). His results w i l l allow an assessment of the 

applicability and shortcoming of the theory: 

1) In order for the solution to be numerically stable, further 

reduction in total stress i s assumed to be entirely taken 

by the pore pressure once effective stress drops to zero. 

2) This solution incorporated a non-linear constitutive 

relationship for the s o i l . 

3) Accurate e - a' relationship or compressibility of o i l sand 

is extremely d i f f i c u l t to obtain since they are very 

sensitive to sample disturbances. No undisturbed o i l sand 

samples have been cored so far. 



4) An iterative procedure i s required to get Au. 

2.2.3. Byrne and Janzen 

Byrne et al (INCOIL, 1983) developed an incremental analytical 

f i n i t e element method for predicting stresses and deformations in 

excavations and around tunnels in o i l sand using a nonlinear elastic 

sand skeleton with shear dilation. An extension to Harris and 

Sobkowicz's model was used to evaluate the pore pressure change, Au. 

The f i n i t e element program, INCOIL, can handle both undrained 

and drained analyses. For the undrained condition, pore flu i d 

pressures are computed from the constraint of volumetric compatibility 

between the sand skeleton and the pore fluids. For the fu l l y drained 

condition, i t i s assumed that the pore f l u i d pressures are known. 

The general framework of the f i n i t e element model for o i l sand 

are as follows: 

[K] (fi) = (Af) - (K ) (Au) 2.7 
w 

where 

u Ti 
| — * AT * (n a +n a ) - u fn *(1- — ) -T v w w o o ' « L a

v T ' o L g 
A e 1 v J 

Au = u Ti 
a L 

2.8 
(n H +n H ) + n - Ae w w o o g v 

Derivation of equation 2.7 is presented in Appendix A 
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The effective stress may be evaluated from 

(Ae) = [c] (A6) 2.9 

(Aa') = [D»] (Ae) 2.10 

where 

[c] = the matrix which depends on element geometry 

[D'J = the matrix property matrix (affective stress) 

[Aa'] = the change in effective stress vector 

[Ae] = the change in strain vector 

[K] =» the element stiffness matrix 

(A6) = the incremental element nodal deflections vector 

(Af) = the incremental element nodal forces vector 

(K ) = the pore pressure load vector 

n w, n Q, n^ = porosity : water, o i l and gas phase 

a w > a Q = temperature solubility constant : water, o i l 

H W , H Q = pressure solubility constant : water, o i l 

u = reference (atmospheric) pressure 

T a = reference temperature (288°K) 

T Q = i n i t i a l temperature (°K) 

Tl - f i n a l temperature (°K) 

AT = change in temperature (Ti - T ) (°K) 
o 

U Q = i n i t i a l absolute pore pressure 

Ae = volumetric strain (compression positive) 



They examined the response of cylindrical shaft in o i l sand on 

reduction of support pressure and the response of an element of o i l 

sand to one dimensional unloading. The latter case i s to simulate core 

samples of o i l sand l e f t in an unconfined state. Their results w i l l 

allow an assessment of the applicability and shortcoming of the 

theory: 

1) The predicted expansion of the core on unloading is small 

compared with those measured in the f i e l d which i s 5-15% 

when core samples of o i l sand are l e f t in an unconfined 

state. 

2) An iterative procedure i s required to obtain Au. 



CHAPTER 3 : STRESS-STRAIN MODEL 

3.1 INTRODUCTION 

It is noted that the mathematical models described in Chapter 

2 have quite a few shortcomings. Therefore, a more sophisticated and 

efficient undrained model was developed (Naylor 1973, Vaziri 1985) and 

i s incorporated i n a f i n i t e element programme. 

A total stress approach coupling the s o i l skeleton and pore 

fluids i s used . Pore pressure changes are computed from the 

constraint of volume compatibility between the s o i l skeleton and pore 

fluids under undrained conditions. 

Separate constitutive relationships for s o i l skeleton and pore 

fluids are required in the new undrained model. An incremental 

non-linear elastic and isotropic stress-strain model as described by 

Duncan et al is adopted for the s o i l skeleton. Depending on the 

component of the pore fluids, different formulations for the non-linear 

elastic and isotropic stress-strain relationships of pore fluid are 

derived. 

3.2 DEVELOPMENT OF UNDRAINED MODEL 

The effective stress concepts (Terzaghi) in conventional s o i l 

mechanics seem to be applicable to determine the shear strength of o i l 

sand (Hardy and Hemstock). However, the pore pressures of fluids in 

the o i l sand have to be numerically evaluated i n the effective stress 

approach. Hence, a quantitative relationship between the magnitudes of 

stress release and pore pressure i s required. 

When a saturated s o i l mass is subjected to undrained loading, 
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stress change must be shared between the s o i l skeleton and pore f l u i d 

(Bishop and Eldin 1950). A theoretical expression for the relationship 

between total stress change and resulting pore f l u i d pressure change 

was derived by Skempton (1954) which is the Skempton's B equation. 

Using the f i n i t e element method, Christian (1968) introduced an 

effective stress approach for soils subjected to undrained loading, 

enabling resulting pore f l u i d pressure to be evaluated. Programmes 

incorporating this alternative are relatively inefficient. Naylor 

(1973) developed a more elegant approach which allows excess pore 

pressure to be computed explicitly in terms of material skeleton 

stiffness parameters and an independently specified pore f l u i d 

stiffness. However, Naylor only considers soils that are two-phase 

system - solids and water. 

Due to the presence of bitumen, free and dissolved gas i n o i l 

sand, the above mentioned approaches are inadequate to describe the 

undrained behaviour of o i l sand. Not u n t i l 1977, Harris and Sobkowicz 

developed an analytical expression incorporating a linear constitutive 

relationship for the o i l sand, to relate the change i n pore pressure to 

the change in total stress. Dusseault (1979) extended Skempton's one 

dimensional B equation to model the equilibrium behaviour of o i l sand. 

Byrne et al (1980) studied the behaviour of o i l sand by using 

f i n i t e element method. They extended Harris and Sobkowicz's model and 

incorporated i t into Christian's f i n i t e element formulation. 

As there are shortcomings of the approaches developed by Harris 

and Sobkowicz, Dusseault and Byrne et a l , a more sophisticated 

numerical model i s required. Vaziri adopted Naylor's approach and 

extended i t to model the undrained behaviour of o i l sand using f i n i t e 



elements. 

The stress-strain model for o i l sand behaviour i s based on the 

following assumptions. 

1) Volumetric change of s o i l skeleton i s governed by the 

effective stress. 

2) Liquids and gas in the voids are at the same pressure, i.e. 

effect of surface tension between the pore flu i d phases are 

neglected. 

3) Free gas in the pores behaves i n accordance with classic 

gas laws with respect to pressure. Gas comes out from 

solution i n accordance with Henry's law. Henry solubility 

constants are constant. 

4) The compressibility of s o i l grains i s negligible, and has 

no contribution to the volume changes. 

5) The gas Is in the form of occluded bubbles inside the pore 

f l u i d . 

The total stress constitutive law may be written as: 

(Aa) = [D] (Ae) 3.1 

where (Aa), (Ae) are the incremental total stress vectors and strain 

vectors respectively, and [D] is the material property matrix (total 

stress). Computation of element stiffness matrix, assembly and 

solutions for displacements proceeds along the standard lines. The 

analysis yields a total stress f i e l d . 



Since the s o i l skeleton and the pore fluids deform together 

when conditions are undrained, strains - in a macroscopic sense - are 

the same in each phase. Thus in addition to Equation 3.1 

(Aa') = [D»] (Ae) 3.2 

(Au) = K ( A e n + Ae 22 + Ae 3 3) 3.3a 

= K (Ae ) 3.3b a v v' 

in which prime means effective, [D'] is the material property matrix 

(affective stress), K is the apparent pore fluid bulk modulus and (Au 

is the pore pressure change vector. 

The actual pore f l u i d modulus, K̂ , i s related to the apparent 

one as 

K f K = — 3.4 a n 

where n is the s o i l porosity. 

Derivations of equations 3.3 and 3.4 are presented i n Appendix B. 

Equation 3.3 may be expressed in a form compatible with 

equation 3.1 and 3.2 as: 

(A° f) = [D f] (Ae) 3.5 

where (Aa f) = [Au A U A U 0 0 0 ] T 



Since the pore f l u i d cannot transmit shear, [D^] can be expressed in 

terms of apparent bulk modulus, 

[D F] = K f a 

where I 3 is as 3 x 3 matrix with a l l the elements equal to 1, whereas 

O3 are 3 x 3 null matrices. 

The principle of effective stress may be used to relate the 

changes in effective stress and pore presusre caused by the applied 

loads to the corresponding change in total stress 

(Ao) = (Aa') + (Aa f) 3.7 

Substituting from Equations 3.1, 3.2, and 3.3 into 3.7, yields: 

[D] = [D«] + [D f] 3.8 

The elastic material is now considered to be two phase, with the 

stiffness defined by effective stress moduli, E, B and pore f l u i d 

apparent builk modulus K^. 

The material properties of [D'] and are read in separately. 

They are combined in the programme automatically using equations 3.6 

and 3.8. Thereafter, computation of element stiffness, assembly and 

solution of displacements and hence strains proceed along the standard 

lines. The effective stress and pore pressure are obtained by 

Equations 3.2 and 3.5 respectively. 

r3 °3 
0 3 0 3 

3.6 



This approach allows stresses, porepressure and deformation in 

s o i l mass, with nearly incompressible to highly compressible pore 

fluids, to be evaluated by f i n i t e elements for undrained conditions. 

Naylor studied the response of undrained t r i a x i a l test on clay using 

this model. The end platens were rigi d and rough. But the computed 

excess pore pressures near the centre of the sample were in good 

agreement with the theoretical solutions (Cam-Clay). In the case of 

drained analysis, Equations 2.7 to 2.10 are used instead, assuming a l l 

the pore f l u i d pressures are known. 

3.3 CONSTITUTIVE RELATIONS 

3.3.1 Incremental Non-linear Elastic Soil Skeleton 

An incremental non-linear elastic-plastic and isotropic 

stress-strain s o i l model as described by Duncan et a l (1970) i s 

employed in this thesis. In this approach, two independent elastic 

parameters are required to represent non-linear stress-strain and 

volume change behaviour. These are usually the Young's modulus, E, and 

the Poisson's ratio, v. The shear modulus, G, and the bulk modulus B, 

are the more fundamental parameters because they separate shear or 

distortion and volume components of strain and would be the most 

desirable ones to use. However, the shear modulus is d i f f i c u l t to 

obtain directly in laboratory testings and for this reason Duncan et a l 

(1980) used the Young's modulus and the bulk modulus as their two 

parameters. The Young's modulus i s very similar in character to the 

shear modulus as both are a measure of distortional response. 

Therefore, E and B are used i n this thesis. 



The stress-dependent E and B are usually obtained from 

laboratory tests. A typical example for sand is shown in Figure 3.1. 

The distortional response can be reasonably approximated by modified 

hyperbolas (Konder) and the volumetric response in exponential form. 

They are expressed as follows: 

The tangent Young's modulus 

and 

R (l-sin4.) ( a i - 0 3 ) 2 

E = [ l - — =-j — 1 E, 3.9 
t L 2oj sin<j> J i 

where E ± = Kg P a ( p - ) n 3.10 
a 

<J. = <(>!- A* log (—) 3.11 

The tangent bulk modulus 

B t = K B P a < F - > m 3 ' 1 2 

a 

where E i 

n 

= i n i t i a l Young's modulus 

= Young's modulus number 

= Young's modulus exponent 
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16 

Fig.3.1 - S t r e s s - S t r a i n curves f o r d r a i n e d t r i a x i a l t e s t s on loose sand 
( A f t e r Byrne and E l d r i d g e , 1982 ) 



= bulk modulus number 

= bulk modulus exponent 

= atmospheric pressure 

= major and minor principal effective stress 

= failure ratio 

= f r i c t i o n angle at confining stress of 1 atm 

= decrease in f r i c t i o n angle for a tenfold increase in 

confining stress 

The procedures for evaluating these parameters from laboratory 

tests are described i n detail by Duncan et a l (1980) and Byrne and 

Eldridge (1982). 

3.3.2 Incremental Non-linear Fluid Modulus 

3.3.2.1 General 

An incremental non-linear elastic and isotropic stress-strain 

f l u i d model i s employed here. Since the f l u i d cannot transmit shear, 

the stress-strain relations are defined only by one elastic parameter, 

the bulk f l u i d modulus, K̂ , which is a measure of volumetric response. 

Before the derivation of K̂ , Henry's law and Boyle's law must be 

mentioned because these laws govern the derivations. 

Pore fluids may be immiscible, miscible, or a combination of 

the two. Examples of both miscible and immiscible fluids w i l l be 

considered in this thesis. That i s , water undersaturated with air and 

carbon dioxide, water and bitumen saturated with gas (methane, (X^)-

The f i r s t combination i s to describe the pore fluids of the gassy soils 

which Sobkowicz (1982) used in his laboratory testings. The second 

combination i s to similate o i l sand pore fluids. 

\ 
m 

P 
a 

°{> 

R f 

• l 
A<{>. 



If both free gas and liquids are present i n the pore fluids, 

and the gas is soluble in the pore liquid in a certain extent, the pore 

f l u i d compressibility w i l l be both pressure dependent and influenced by 

the solubility relationship. Hence, Boyle's and Henry's laws are 

appropriate for describing these volume and pressure relationships. 

1) Boyle's law (Laidler et a l ) : The volume of a free gas i s 

inversely proportional to the pressure applied to i t when 

the temperature is kept constant. Mathematically, 

V a j 3.13 

where V is the volume, P i s the absolute pressure 

2) Henry's law (Laidler et a l ) : The mass of gas m dissolved 

by a given volume of solvent at constant temperature, i s 

proportional to the pressure of the gas i n equilibrium with 

the solution. Mathematically, 

m (dissolved gas) = H * P 3.14 

where H is Henry's solubility constant, P is the absolute 

pressure. 

In other words, the volume of dissolved gas is constant in a 

fixed volume of solvent at constant temperature when the volume i s 

measured at P 
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(dissolved gas) = H * V (solvent) 3.15 

Most gases obey Henry's law when the temperature is not too low 

and the pressure i s moderate. If several gases from a mixture of gases 

dissolve in a solution, Henry's law applied to each gas independently, 

regardless of the pressure of the other gases present i n the mixture. 

H is both temperature and pressure dependent, particularly for natural 

gases i n hydrocarbons (Burcik, 1956). Since the variation of H on 

pressure is not very significant, i t is assumed that H is independent 

of pressure in this thesis. 

3.3.2.2 Partly Mlsclble Gas/Liquid Mixture 

Definitions: 

1) Pore fluids compressibility, 3 

3.16a 

where V is the volume of pore fluids, P i s the absolute 

pressure, assuming surface tension effects are neglected, 

3.16b 
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2) Compressibility of a gas g 

1 d v 

8 

where V is the volume of gas. 

a) Air/water Mixture 

Let the i n i t i a l volume of free gas and water i n a s o i l 

element be: 

V* and V fg w 

Thus the total volume of free and dissolved gas 

v i = + H V 3.18 Tg fg w 

For a change in pressure, the volume of water is assumed 

constant as the compressibility of water i s insignificant 

compared with the pore gas. Applying Boyle's law to the 
.,1 

total volume of gas (Fredlung 1973, Sobkowicz 1982) in the 

element, 

f i P i V = V * — 3.19 VTg VTg P f 

Then the new volume of free gas after change in pressure 

f f f v = V - V V f g VTg Vdg 
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P 
Tg P. Vdg 

( V f g + Vdg ) * Pf " V d g 3.20 

Change of free gas in the s o i l element 

fg fg fg 

p 
fg dg' P f dg v f g 

- ( V L + V,!) * ra» 3.21 fg dg' P +AP 

By definition 

g i AP 
fg 

(v* + V, 1) 
fg dg' # 1 

v i P ± +AP 
fg 

Also, by definition 

1 * d V f 
V f dP 

3.22 
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, dV. dV 
V LdP dP J 

V f
 L P + AP V w J 

1 -S + SH 
w P, + AP + S e - 3.23a 

As AP approaches zero, 

3 f P + Sg w 3.23B 

and 

b) Carbon Dioxide, Air/water Mixture 

By definition, the compressibility of pore fluids, 3 f, 

1_ ^ f*f 
3 f " V * dP 

, dVr dV 
= - — f — & + — 

V LdP dP J 



in which there may have air and carbon dioxide as free 

gas, V* g. 

Consider the phase diagram in Figure 3.2, the volume of 

solids i s assumed to be 1 unit, the volume of void i s e 

units according to definition of void ratios 

Therefore 

V* e - e fg = w 
V f " e 

V* H e + H „ e dg _ a w co2 w 
V f 

3.25a 

3.25a 

Substituting equations 3.25 into 3.24a, yields 

, ( e - e ) + H e + H _ e , _ 1 r w a w co2 w L Q -i „ 0 / , !, = — I „ , r g e 3.24b f e L P + AP w wJ 

As AP approaches zero, 
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•+ 
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Air & C02 

Water 

Solids 

v 9 

Fig.3 .2 - Phase diagram for gassy s o i l 
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. ( e - e ) + H e + H _ e 
a _ 1 r w a w co2 w , . -1 - . . 

3 = _ ^ + 8 e J 3.24c 
f e L P w wJ 

and 

K - 2-
1 s £ 

c) Gas (Methane)/Bitumen and Water Mixture 

Again, by definition the compressibility of pore fluids 

1 d V f 
8 = - — * -
P f V f dP 

i d v ^ d vx 
V f

 L dP dP J 

(V* + V* ) 
rr [ p g , ° 8 - V 0 - V. B. ] 3.26a 
v ^ P^ + AP ww b b J 

Consider the phase diagrams in Figure 3.3, the volume of 

solids i s assumed to be 1 unit, the volume of voids i s e 

units according to definition of void ratios 

Therefore 

(e - e w - e b) 
3.27a 



Fig. 3 . 3 - Phase diagram for o i l sand 



where Hg/W> ^g/b a r e Henry's solubility constants of gas 

in water and bitumen respectively. 

Substituting Equations 3.27 into 3.26a, and AP approaches 

zero, yields, 

(e - e - e, ) + H , e + H e, 
B = I [ 2 * - ^ ! _ w g/b_J> + , 
f e L P w w b b J 

3.26b 

and 



CHAPTER 4 : FINITE ELEMENT FORMULATIONS 

4.1 INTRODUCTION 

Two types of formulations are presented herein which are 

suitable for modelling a variety of problems encountered in practice. 

Depending on the nature of the problems, they w i l l f a l l into one of the 

following categories: 

1) Plane strain - 2 Dimensional, e.g. tunnels, shaft, etc. 

2) Axisymmetric - 3 Dimensional, e.g. t r i a x i a l test, 

wellbore, etc. 

The s o i l i s modelled by isoparametric quadrilateral or 

triangular elements. 

Stress distribution formulations are added to cope with 

problems where plastic zones are developed during loading or unloading. 

4.2. THE PLANE SRAIN FORMULATIONS 

4.2.1 The Constitutive Matrix [P] 

Plane strain problems are characterized by the following two 

properties: 

1) no deflection i n z direction 

2) f i r s t derivative of the x and y deflections with respect 

to z are zero. 

Therefore 



where u, v, w are the displacements in x, y and z directions 

respectively with corresponding subscripts, 1, 2 and 3 respectively. 

From the generalized Hooke's law for incremental elasticity 

Aei j = [Aon - v (A022 + Ac 3 3)]/E 4.2a 

Ae 22 = [AO"22 ~ v ^ a i l + Ao"33)]/E 4.2b 

Ae 3 3 = [Aa 3 3 - v (Ao^ + Aa 2 2)]/E 4.2c 

Ae 1 2 = Ao 1 2/G 4.2d 

Ae 2 3 = Aa 2 3/G 4.2e 

Ae 3 1 = Aa 3 1/G 4.2f 

After substituting the conditions from equation 4.1b into equations 

4.2, i t follows that: 

Aoi 3 = Ao 3 1 = 0 4.3a 

A o 2 3 = Aa 32 = 0 4.3b 

where Aâ .. is the incremental shear stress with the direction indicated 

by the subscripts. 

With the above eliminations, the incremental stress and strain 

vectors become 

(Aa) = [Aau Ao"22 Ao-12] 4.4a 



(Ae) = [ A e n Ae 2 2 Ae 1 2] 4.4b 

The constitutive relations for a plane strain problem in total stress 

analysis are written (Naylor, 1973) as: 

A o n 

Ao"22 

Aa 1 2 

(l+v)(l-2v) 

1 1 0 
+ K 1 1 0 

a 
0 0 0 

r 
l-v V 

l-v 

0 

1 
A e l l 
Ae 
Ae 

22 
12 

0 

0 

d-2v) 
2 

4.5a 

or 

(Aa) = ([D'l + [D f]) (Ae) 4.5b 

where 

E = tangent Young's modulus 

v = tangent Poisson's ratio 

K = apparent tangent bulk f l u i d modulus 
cL 

The constitutive relations can also be written in another equivalent 

form which i s adopted in INCOIL. 



* 

A a 2 2 < 

A o 1 2 

+ K 

B' + G' B' - G' 0 

B1 - G B* - G' 0 

0 0 G' 

< 

1 1 0 A e n 

1 1 0 • A £22 
0 0 0 A e 1 2 

or 

(Aa) - ([ n']) + [D f]) (Ae) 

Where 

•a i _ 3B 
2(l+v) 

G' = E 

2(l+v) 

B = tangent bulk modulus 

E = tangent Young's modulus 

v = tangent Poisson's ratio 

K = apparent tangent bulk f l u i d modulus 

Equation 4.6 can also be written as 

(Aa) = [D] ( A S ) 
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where 

[D] is the constitutive matrix 

4.2.2 The Strain Displacement Matrix [B] 

For isoparametric elements, the geometry (x,y) and 

displacement (u,v) are both expressed by te same shape functions and 

are approximated as: 

(*) = [N] («) 4.10 

and 

O - [M] («') 4.11 

where 

Nj 0 N 2 0 N 3 0 Uk 0 

W to Ni 0 N 2 0 N 3 0 NJ 

( 6 ) - [x! y! x 2 y 2 x 3 y 3 X l + y j -

( 6 ' ) = [ u j V! u 2 v 3 u 3 v 3 uit v 4] 

in which ( 6 ) is the nodal coordinate vector and ( 6 ' ) is the incremental 



nodal displacement vector 

and 

N x = (l-s) (l-t)/4 

N 2 = (l-s) (l+t)/4 

N3 = (1+s) (l+t)/4 

- (1+s) (l-t)/4 

x y = nodal coordinates i n x and y directions 1, i 
respectively 

u. v. = incremental nodal displacement i n x and y 
2» 3 

directions respectively. 

s,t are local coordinates 

The incremental strain vector can be expressed in terms of 

displacement as follows: 

* 

3u/3x 

Ae 1 2 = 3v/8y 

A e13 3u/3y + 3v/3x 

Substitution of u and v from equation 4.11 into equation 4.12 yield 



Ae 

Ae 

11 

22 

A e13 

3Ni 

0 W 

3Nj 3Ni 
3y 3x 

u l 
v l 
u 2 

v 2 

u3~ 
v3 

3N2 

3x~ 

3N2 

W 

3N 2 

3y~~ 

3N 3 

3x~ 0 

3N3 

3No 3Nq 3N. 
3x 3y 3x 

3N^ 
3x~ 

3N 4 

3y~ 

0 

3N\ 

3N1+: 
3 7 " I 

4.10 

Equation 4.10 can also be written in matrix notation as 

(Ae) - [B] (6) 4.13 

where 

[B] is the strain displacement matrix 

However, the shape functions for isoparametric elements are 

defined with respect to the local coordinates s and t and therefore 

cannot be differentiated directly with respect to the global x, y 

axes. 

In order to overcome this d i f f i c u l t y i t i s necessary to obtain 



the derivatives of the two sets of coordinates and this can be achieved 

through the chain rule of partial differentiation. 

For plain strain problems, the derivatives are related as 

3_ 
3s 

3_ 
3t 

3_ 
3x 

3_ 
3y 

4.14 

where 

M -
3x 3y 
3s 3s 

3x 
3t 

3y 
3t 

) 

is called the Jacobian matrix 

Hence the derivatives w*r»t» x and y can be expressed as derivatives 

w»r«t s and t as follows 

3_ 
3x 

3_ 
3y 

[j] 
-1 3s 

3t 

4.15 

The strain displacement matrix in Equation 4.13 are evaluated 

numerically, using Gaussian quadrature over quadrilateral regions. The 

quadrature rules are a l l of the form 

n r. 
// f (s,t) ds dt - E I K K. f(s , t.) 

i-1 j-1 1 2 1 J 



where K̂ , K\ are weighting functions and s^, t^ are coordinate position 

within the element. 

A 2 x 2 Gauss quadrature i s used to evaluate the strain 

displacement. 

4.2.3 The Stiffness Matrix [K] 

The stiffness matrix for the force displacement relationship 

i s obtained by the principle of virtual work. For a virtual nodal 

displacement vector (6) g, the external work done, W(ext), by the 

external force vector (f) caused by virtual displacements i s written 

The virtual strain vector caused by the virtual displacements vector i s 

written as 

Hence the internal work done, W(ext), caused by the virtual strain i s 

written as 

as 

W(ext) - {6)1 (f) 4.16 

(^) = [B] ( 6 ) e 4.17 

W(int) = J (Ae) 1 (Ao) t dA 4.18a 

where 



t = thickness of the element 

A = area of the element 

Substituting equation 4.17 into 4.18a yields 

W(int) = J A [«]* [ B ] T [D] [B] [6] t dA 4.18b 

Applying principle of virtual work 

W(ext) = W(int) 4.19 

Therefore 

(f) = / A [B] T [D] [B] [6] t dA 4.20 

(f) = [K] (6) ' 4.21 

T 

where [K] = / [B] [D] [B] t dA is called the stiffness matrix for 

the element. 

The global stiffness matrix, [K ], i s obtained by assembling 

a l l the element stiffness matrices together. The procedure of 

assembling the element matrix i s based on the requirement of 

'compatibility' at the element nodes. This means that at the nodes 

where elements are connected, the values of the unknown nodal degrees 

of freedom are the same for a l l the elements joining at that node. The 

global force 



vector, [F], i s assembled by adding nodal loads of each of the elements 

sharing the node. Displacements are calculated using standard 

procedure (e.g. Gaussian elimination) to solve the simultaneous 

equations,[K ] [s] = [F],represented by the global stiffness matrix and 

the force vector. Strains can be computed from equation 4.13 or 4.36 

after knowing the elements nodal displacements. After solving for 

displacements and strains, the effective stress and pore pressure can 

be computed from 

(Aa') = [D'j (Ae) 

and 

(Au) = [D f] (Ae) 

4.3 THE AXISYMMETRIC FORMULATIONS 

4.3.1 The Constitutive Matrix [D| 

Axisymmetric problems are characterized by the following 

properties: 

1) Symmetry of both geometry and loading 

2) Stress components are independent of*the angular (0) 

coordinates. 

Hence 

v = 0 4.22a 



A e 1 3 " A e 3 1 = 0 

Ae 2 3 = Ae 3 2 = 0 

4.22b 

4.22c 

where u, v, w are displacements in the r, z and 0 directions with 

corresponding cubscripts, 1, 2 and 3 respectively. 

From the generalized Hooke's law for incremental e l a s t i c i t y 

A e n = [ l o u - v (Ao22 + Ao 3 3)]/E 4.23a 

Ae 2 2 = [ACT 2 2 - v (A033 + A a n ) ] / E 4.23b 

A e 3 3 " [ A o"33 ~ v ( A a n + Aa 2 2)]/E 4.23c 

A e i 3 = Ao13/G 4.23d 

Ae 1 2 = Aa 1 2/G 4.23e 

Ae 2 3 = Aa 2 3/G 4.23f 

After substituting the conditions from Equations 4.22b and 4.22c into 

Equations 4.23, i t follows that 

Aai3 = Aa 3i = 0 4.14a 

Aa 2 3 = Aa 3 2 = 0 4.15a 

where A o
i j is the incremental shear stress with the direction indicated 

by the subscripts. 

With the above eliminations, the incremental stress and strain 

vectors become 

(Ao) = [ A a n Aa 2 2 Aa 3 3 Aa 1 2] 4.25 
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(Ae) = [ A e n Ae 22 A e 3 3 A e 1 2 ] 4.26 

The constitutive relations for an axisymmetric problem in total stress 

analysis are written (Naylor, 1973) as 

Also 

Aa 11 

A a 2 2 

A a 3 3 

A a 1 2 

+ K 

(l+v)(l-2v) 

1 1 1 0 

1 1 1 0 

1 1 1 0 

0 0 0 0 

1-v V V 

1-v V 

V 1-v 

0 0 

A e n 

A e 2 2 

A e 1 2 

0 

0 

0 
l-2v 

4.27a 

(Air) = [D-] + [ D J (Ae) 4.27b 

where 

E = tangent Young's modulus 

v = tangent Poisson's ratio 

K = apparent tangent bulk modulus 



The constitutive relations can also be written in another 

equivalent form which i s adopted in INCOIL. 

or 

A o n ] 

A 0 2 2 ] 

^ 3 3 ] 

Ao 1 2 

+ K 

B'+G' B'-G' B'-G' 0 

B'-G' B'+G' B'-G1 0 

B'-G' B'-G' B'+G' 0 

1 

1 1 1 1 0 

1 1 1 1 0 

1 1 1 1 0 

0 0 0 0 0 

A e l l I 

A e 2 2 j 

3 3 I 
A e 1 2 

4.28a 

[Ao] - ([D«] + [ D f ] ) [Ae] 4.28b 

where 

B' = 3 B 

2(l+v) 

G , . _ J 
2(l+v) 

B = tangent bulk modulus 

E = tangent Young's modulus 

v = tangent Poisson's ratio 



K a = apparent tangent bulk f l u i d modulus 

Equation 4.28 may be written in matrix notation as 

(Aa) = [D] (Ae) 4.29 

where [D] is the constitutive matrix. 

4.3.2 The Strain Displacement Matrix [B] 

The isoparametric elements, the geometry (r, z) and 

displacements (u, v) are both expressed by the same shape functions and 

are approximated as: 

c •> 
r 

- W ( 6 ) 4.32 

= [ N ] ( « ' ) 4.33 

[N] = 
N x 0 N 2 0 N 3 0 N 4 0 

0 N , 0 N , 0 N q 0 N b 

( 6 ) = ( > ! zl r 2 z 2 r 3 z 3 rk Zlf] 

( 6 ' ) = [u! v x u 2 v 2 u 3 v 3 U l + v„] 

in which (fi) is the nodal coordinate vector, ( 6 ' ) is the incremental 



nodal displacement vector and the shape functions are the same as 

given in Section 4.2.2. 

and 

ri» Z i 

u., v. 
J J 

nodal coordinates in x and y directions 

respectively, 

incremental nodal displacements i n x and y 

directions respectively. 

The incremental strain vector can be expressed in terms of 

displacements as follows: 

Ae 

i A e 2 2 

11 

I Ae 33 

A e 1 2 

s 3u 
3r 
3v 
3r 
u 
r 

3v 3u 
) 

3r 3z 

4.34 

Substitution of u and v from Equation 4.33 into Equation 4.30 yields 

Ae 11 

Ae 22 

A e 3 3 

A e 1 2 

3NX 

3r 
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3Ni 
3z~ 

3Nj 
I F 

3N2 

3r~ 

0 

N 2 

— 0 — r 
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3N3 
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3N3 
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W 

0 

r 

r 
0 

3z~ 

0 
31^ 
3r~ 

vi j 
u 2 | 
v 2 

u 3 
v 3 
UI+ 

4.35 

Equation 4.35 can also be written in matrix notation as 

(Ae) = [B] (6) 4.36 

where 

[B] i s the strain displacement matrix 

However, the shape functions for isoparametric elements are 

defined with respect to the local coordinates s and t therefore cannot 

be differentiated directly with respect to the global x, y axes. 

In order to overcome this d i f f i c u l t y i t i s necessary to obtain 

a relationship between the derivatives of the two sets of coordinates 

and this can be achieved through the chain rule of partial 

differentiation. 

_8_ 
ds 

a_ 
at 

3_ 
3r 

3_ 
9z 

4.37 



where 

[J] -

3r 3z 
3s 3s 

3r 3z_ 
3t St 

is called the Jacobian matrix 

Hence the derivatives wvt x and y can be expressed as derivatives 

w»r«t s and t as follows 

3_ 
3r 
3_ 
3z 

[j] -1 
3_ 
3s 
3_ 
3t 

4.38 

A similar Gauss quadrature mentioned in Section 4.2.2. is employed to 

evaluate the above [B] matrix numerically. 

4.3.3 The Stiffness Matrix [K] 

The stiffness matrix for the force displacement relatinship i 

obtained by the principle of v i r t u a l work. For a virtual nodal 

displacement vector (5)e> the external work done, W(ext), by the 

external force vector ( F ) caused by the virtual displacements is 

written as 

W(ext) = [s)T

e (f) 4.39 

The virtual strain vector caused by the virtual displacements vector i 



written as 

(Ai) = [B] (6) e 4.40 

Hence the internal work done, W(int), caused by the virtual strain i s 

written as 

W(int) = / (Ae) T (Aa) dV 4.41a 

where V = volume of the element 

Substituting Equation 4.40 into 4.41a yields 

W(int) = J Y [&fe [ B ] T [D] [B] [6] dV 4.41b 

Applying the principle of virtual work 

Wext = Wint 4.42 

Therefore 

(0 " / v [B] T [D] [B] [6] dV 4.43 

(f) = [K] (6) 4.44 



where / [ B ] [D] [B] dV is called the stiffness matrix for the 

element. 

The procedure of obtaining element stresses and strains i s the same as 

described in Section 6.2.3. 

4.4 LOAD SHEDDING (PLAIN STRAIN) (Byrne 1983) 
Problems arise when any element within the solution domain 

violates the failure c r i t e r i a (Mohr Coulomb). That i s , for unloading 

of a shaft or tunnel, a plastic zone usually developes adjacent to the 

shaft. The extent of plastic zone and hence volume changes are only 

approximated since the stress redistribution has not been considered 

during the formation of the zone. 

The analysis predicts the stress path ABC instead of ABD on 

unloading. But the stress state at C (Figure 4.1) violates the failure 

criterion (Mohr Coulomb). If load shedding technique is used, the 

overstress can be distributed to the adjacent elements by applying an 

appropriate set of nodal forces described herein and brings the stress 

path BC back to the correct BD. 

The overstress, Ax, in the element can be removed by 

subtracting the computed stresses by Aa^i, Aa 2 2 and Aa i 2 amount as 

shown in Figure 4.21b. 

where Aa. . have the same notation as those in Section 4.2 and 4.3 

(Ao) = 
Aa 
Aa 
Aa 

11 

22 = [T] 
Aa] 
Aa- 4.45 

12 Ax 13 
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Fig.4.1 - Stresses associated with load shedding 



where 

(T) = 

A03 = minor principal stress = 0 

Ao"i = major principal stress 

= 0 1 - 0 3 tan 2 (45 + -|-) 

AT13 = principal shear stress = 0 

The derivation of these stresses changes and the 

transformation matrix i s in Appendix E, 

The removal of these overstresses can be achieved by applying 

a set of nodal forces which is obtained by the principle of virtual 

work. The incremental nodal force vector causes a virtual displacement 

vector. Hence the external work done, W(ext), can be written as 

W(ext) = ( s ) ^ ( A f ) e 4.46 

The incremental virtual strain vector caused by the virtual 

displacement vector i s 

cos26 

1 4 . cos29 
2 2 

sin26 

L_ cos26 
2 2 

cos29 
2 

sin29 
0 

0 

is called the 

transformation 

matrix 

Ui)e = [ B ] ( « ) e 

4.47 
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Therefore, the internal work, done, W(int), i s 

W(int) = /. (Ae) T (Ac) t dA 4.48a 
A. 6 6 

Substitution of Equation 4.43 to 4.48 yields 

W(int) - / ( 6 ) T [B] ( A C ) t dA 4.48b 

Applying the principle of virtual work 

W(ext) = W(int) 4.49 

Hence , [Af ] g = t / A [ B ] T [Aa] e dA 4.50 

where [B] is the strain displacement matrix in Section 4.2.2. 

and [Ao] e is the stress vector shown i n Equation 4.41. 

The failed element w i l l have a stress change of Ao"n> A622 a n d 

Ao"i2- However, the computed stresses may not l i e on the failure 

envelope due to the application of the nodal forces. Therefore 

iterations may be required to bring this to the assigned tolerance. 

The loading shedding technique presented herein gives the same 

results compared with INCOIL (a' = constant). However, the number of 
m 

iterations required to bring the computed stresses back to the failure 

envelope is less. 
With the incorporation of load shedding technique, the sand 



skeleton i s modelled as a non-linear elastic-plastic porous material. 

The s o i l skeleton is coupled with the pore fluids in the undrained 

model. For undrained conditions, this model allows stresses, pore 

pressure and deformations of o i l sand masses to be evaluated by f i n i t e 

elements. 
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CHAPTER 5 : COMPARISONS WITH EXISTING SOLUTIONS 

5.1 INTRODUCTION 

It is important to check the validity of the developed model 

before any major application. Two types of comparisons are presented 

herein which are suitable for checking the stress-strain model of the 

s o i l skeleton and also the newly developed gas law model. 

For the validation of the analytical procedure, the computed 

results are compared with elastic and elastic-plastic closed form 

solutions. The gas law model is validated by comparing computed 

solutions with observed data, such as expansion of o i l sand cores and 

t r i a x i a l tests on gassy so i l s . 

5.2 COMPARISONS WITH THEORETICAL RESULTS 

5.2.1 Elastic Closed Form Solutions 

The theory for elastic closed form solution was f i r s t 

developed by Timoshenko (1941). The plane strain solutions of stresses 

and displacements in a thick wall cylinder are presented herein: 

Stresses 

a 2P. - b 2P (P - P ) a 2 b 2 

i o . i o a — —r~> ? — + —TTV -T\—9 5.1a 
r b^ - a z (b^ - a z) r z 

a 2 P. - b 2P (P - P ) a 2 b 2 

°Q b2 - a 2 (b 2 - a 2) r 2 5 ' l b 



Displacement 

/i n N N ( a 2 p- ~ b 2 P )r . _ (l-2v) (1+v) v 1 o' 
0 - ^TZTTI a' 

(1+v) ( P i ~ P o ) a 2b 2 5.1c 
E (b z - a z) r 

where P i = P r e s s u r e o n t n e inner surface of cylinder 

P = Pressure on outer surface of cylinder o J 

E = Young's modulus 

v = Poisson's ratio 

and a, b, r are defined i n Figure 5.1 

The response of unloading a thick wall cylinder is being 

investigated. 

The stresses and displacements predicted by the programme are 

in remarkably good agreement with the closed form solution as shown in 

Figure 5.2. Hence the analytical procedure i s validated 

5.2.2 Elastic-Plastic Closed Form Solution 

For a tunnel or shaft problem, the i n i t i a l state of stress 

w i l l be the same throughout the domain. As the support pressure of the 

tunnel drops, yielding w i l l occur i f the strength of the s o i l is 

exceeded. Yielding develops on the inside face f i r s t as a plastic 

annular zone and extends radially outward i f the support pressure i s 

reduced further. Hence theie exists a plastic and an elastic zone in 

the domain concentrically. The solutions of stresses and displacements 



Fig.5.1 - Thick wall cylinder 
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O o o 

Radii (r/r0 ) 
E = 3000 MPa 
v = 1/3 
i n i t i a l stress : ar = a, = 6000 kPa 
final stress : or = 2500 kPa 
inside radius : r„ = 1 m 

Fig.5.2 - Stresses and displacements around circular opening 

in an elastic material 
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for the plastic and elastic zone w i l l be quite different. 

The stresses and displacements for the elastic zone are just 

an extension of Equation 5.1-by setting b to i n f i n i t y . They may be 

written as 

Stresses 
a 2 

a = P + (P, - P ) -̂ V 5.2a r o v i o/ r"1 

a 2 

aa = P - (P, - P ) —jr 5.2b 9 o v i o' r z 

Displacement 

E r v i o 

where P^ = Pressure on inner surface of cylinder 

P = Pressure on outer surface of cylinder o J 

E = Young's Modulus 

v = Poison's Ratio 

Different investigators, Gibson and Anderson (1951), Ladanyi 

(1963), Vesic (1972) and Hughes et a l developed closed form solutions 

of stresses and displacements for the plastic zone. Hughes et al 

presented the more elegant solutions which are presented herein: 

A l l the sand is assumed to f a i l with a constant ratio of 

principal stresses, so that 

N = tan 2 (45 + |) 5.3 



The equilibrium equation that must be satisfied i s 

do a* - al 
- ^ + ^ i - 0 5.4 
dr r 

Substituting for a' from Equation 5.3, integrating and using outer 

boundary conditions of a^ = at r = R. 

a' 
in = (1-N) Jin (|) 5.5 

R 

where a' = radial stress at r within the plastic zone r r 

o R = radial stress at the outer boundary, R, of the 

plastic zone 

= P (1 - sin<j>) 5.6 

p l-sinfr 
R - a [-2. ( l - sin*)] 2 s i n * 5.7 

I 

Equation 5.5 governs the distribution of the radial effective stress 

within the plastic zone. 

Continuity of stresses and displacements between the plastic 

and elastic zone must be maintained. Hence Equation 5.6 is substituted 

into Equation 5.2c, the displacement, U at the elastic-plastic zone 

contact i s 



UR E" R Po S i n * 5.8 

Hughes et al also show that the displacements, u, within the plastic 

zone 

^ = ( | ) n + 1 ( ^ | ) 5.9 

where j n = tan 2 (45 + 

u = dilation angle 

The response of unloading a tunnel is investigated. The 

comparisons i n Figure 5.3 show that the analysis of stresses and 

displacements in elastic-plastic materials predicted by the programme 

is i n good agreement with the closed form solutions. The minor 

discrepancies are due to the limit of Poisson's ratio and the 

coarseness of the mesh. An upper limit of 0.499 i s adopted i n the 

programme (MHANS) to maintain numerical sta b i l i t y , whereas the actual 

value should be 0.5. The agreement i n displacements and the extent of 

the plastic zone also confirm that the load shedding technique in the 

programme (MHANS) is working properly. This i s a satisfactory check o 

the programme in drained analysis. 

Unfortunately, the load shedding technique i n INCOIL cannot b 

successfully tested. The element type in this programme is QM-6. 

Non-equilibrium of stresses arise in QM-6 elements at high Poisson's 

ratio (v > 0.4) i f the geometry of the elements i s non-rectangular. 



Since the elements in a f i n i t e element mesh for modelling plane strain 

shaft problems are not rectangular, non-equilibrium of stresses arise 

before load shedding is required. 

5.3 COMPARISONS WITH OBSERVED DATA 

5.3.1 One Dimenional Unloading of Oilsand 

This i s an opportunity for the new gas law model to be checked 

with some f i e l d data. Since the unloading is 1-D, the validity of the 

schematic spring analogy model (Figure 1.1) can also be demonstrated. 

Unconfined oilsand core taken from dr i l l e d holes swells by 5 

to 15% of the original volume (Dusseault 1980, Byrne et a l 1980). 

Maximum expansion potential generally cannot be reached because 

expansion stops when there is adequate intercommunication of gas voids 

to permit flow of gas out of the sample. This leads to disruption of 

the s o i l fabric. This i s the equilibrium saturation point i n which gas 

becomes mobile and the maximum gas saturation value is 15% (Amyx et a l 

1960). However, the total amount of expansion i s impossible to predict 

and can only be measured for individual cores. 

The core liners are specifically designed oversized to prevent 

the jamming of the core within the barrel. Radial expansion is assumed 

to be completed when the o i l sand core i s brought up from the d r i l l e d 

hole. The liners and steel containers are assumed to be rigid and 

frictionless so that only axial expansion of the core i s allowed. 

Therefore, the oilsand core can be modelled as 1-D unloading after 

recovery. 

The i n i t i a l l y high stressed core specimen is modelled as shown 

in Figure 5.4a. Vertical stress i s reduced from 750 kPa to zero. The 

stresses, pore pressure and displacements are shown in Figure 5.4b. 



It can be seen that the change in total stress i s 

apportioned between the effective stess and the pore pressure as 

suggested by the spring analogy model. 

Case A: Gas saturation pressure = 100 kPa. 

I n i t i a l l y pore pressure i s above gas saturation pressure and 

saturation remains 100%. Therefore loads come off from the pore fluids 

while effective stress remains f a i r l y constant because pore f l u i d is 

the s t i f f e r phase as shown in Figure 5.4b. As pore pressure drops 

below the gas saturation pressure, gas starts to evolve which causes 

the pore fluid to become flexible. Stress change w i l l be taken up by 

the s o i l skeleton on further unloading u n t i l zero effective stress. 

Further reduction on boundary load at zero effective stress is entirely 

accommodated by the pore fluids. 

Case Bt Gas Saturation pressure = 300 kPa. 

Because of gas exsolution the pore fluids start as a flexible 

phase so effective stress drops to zero with no appreciable change of 

pore pressure on unloading. Reduction of boundary stress beyond this 

stage is entirely taken by the fluid phases as the so i l skeleton 

essentially has no stiffness at zero effective stress as shown i n 

Figure 5.4b. 

It may be seen from figure 5.4b that there are no appreciable 

displacements when the effective stress i s positive. The displacements 

essentially come from unloading at zero effective stress. The total 

displacements upon total removal of vertical stress l i e within the 

range of 5 to 15% of the original length. 
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The results show that the new stress strain model has the 

excellent capability of predicting undrained response of o i l sand. 

5.3.2 T r i a x i a l Tests on Gassy S o i l s (Sobkowicz 1982) 

Performance of gassy s o i l on laboratory t r i a x i a l tests are 

reported by Sobkowicz (1982). A review of his work shows that the gas 

law model is generally correct. An appraisal of the predictive 

capabilities of the gas law model i s made by comparing predicted and 

laboratory observed response of the immediate pore pressure, the 

immediate (short term) B value, the equilibrium pore presusre, the 

equilibrium (long term) B value, and value of saturation and 

displacements. 

Since only test 11 i n Sobkowicz's thesis i s documented in 

detail, a comparison between predicted and observed response for this 

test i s made to evaluate the val i d i t y of the undrained model. Analysis 

is performed using the same i n i t i a l condition as test 11: S = 99.75%, 

n = 32.28%, a = 1403.3 kPa, u = 652.3 kPa and 3 = 9E-6 kPa - 1. The 
s 

compressibilkity of solid i s comparable with that of water (3 = 5 x 

10 - 7 kPa - 1) so that the B (short term) value w i l l not equal to one even 

for f u l l saturation. These components are converted into parameters to 

be read in by the programme. The conversion and parameters are shown 

in Appendix F. The unloading sequence i s shown in Table 5.1. 

During any phase of the isotropic unloading test, pore 

pressure responses are predicted from the knowledge of s o i l skeleton 

and fluid compressibilities which are a function or effective stress, 



pore pressure, saturation and porosity. For short term reponse, H i s 

set to zero in Equation 3.26b since there is no time for gas 

exsolution. H . , ^ = 0.02 and H „ , ^ = 0.86 are used for the air/water co2/water 
equilibrium response when gas exsolution i s complete. 

The comparisons are summarized in Table 5.1 and are presented 

graphically i n Figures 5.5 and 5.6. They include: 

1) predicted undrained response by the present undrained 

model 

2) measured undrained response (Test 11, Sobkowicz 1982) 

A careful examination of Table 5.1 and Figures 5.5 and 5.6 

show that the predictive capability of the gas law model is remarkably 

good, especially for the long term undrained response. The minor 

discrepancies are due to the loss of gas from the sample as the result 

of gas diffusion and leakage through the membrane. 

The observed immediate pore pressure are higher than the 

predicted values because of the time elapse (15 to 30 seconds) between 

reducing the total stress and taking the f i r s t reading. Thus, the 

predicted short term B is always higher than the observed ones. 

It can be seen that the stress reduction i s apportioned 

between s o i l skeleton and pore fluids, depending on their 

compressibilities. The sample i n Test 11 was i n i t i a l l y saturated with 

respect to air in water and undersaturated with respect to carbon 

dioxide in water. On unloading, during the f i r s t few phases, as 

P 0 / . < P < P . , _ , a small amount of gas exsolves for H co2/water air/water' & 

(air/water) = 0.02. The change of effective stress and pore pressure 



TABLE 5.1a 

A Comparison of Computed and Measured Results (Test 11, Sobkowicz) 

Total Short Term B Long Term B Salw ra "t.» ori ( %,) 

Phase Stress (kPa) Predicted Measured Predicted Measured Predicted Measured 

A 1322.4 0.897 0.694 0.523 0.606 99.65 99.67 

B 1220.5 9.843 0.69 0.477 0.433 99.50 99^54 

C 1112.1 0.781 0.68 0.378 0.403 99.30 99.38 

D 978.2 0.705 0.64 0.021 0.011 98.90 99.11 

E 883.6 0.628 0.548 0.022 0.016 98.61 98.93 

F 766.4 0.584 0.508 0.024 0.034 98.22 98.93 

G 654.9 0.548 0.482 0.026 0.07 97.80 98.27 

H 559.0 0.536 0.50 0.031 0.155 97.38 97.90 

Jl 457.3 0.569 0.590 0.129 0.21 96.40 

J2 1 1 1 1 95.15 

J3 1 1 1 1 94.66 

Predicted: Results predicted by Programme 

Measured: Results measured in Test 11 by Sobkowicz 



TABLE 5.1b 

A Comparison of Computed and Measured Results (Test 11, Sobkowicz) 

Phase 

Measured Strains (%) 

Horizontal Vertical Volumeteric 

Porosity (%) 

Predicted Measured 

A 0.112 E-l 0.112 E-l 0.336 E-l 32.30 32.30 

B 0.275 E-l 0.275 E-l 0.825 E - l 32.33 32.33 

C 0.490 E-l 0.490 E-l 0.147 32.38 32.36 

D 0.929 E-l 0.919 E-l 0.2757 32.46 32.42 

E 0.124 0.124 0.372 32.53 32.46 

F 0.167 0.167 0.501 32.62 32.53 

G 0.214 0.214 0.624 32.72 32.61 

H 0.261 0.261 0.783 32.80 32.69 

Jl 0.376 0.376 1.128 

J2 

J3 



.5.5 - Comparisons of predicted and observed pore pressure 
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are roughly the same because the compressibilities of both s o i l 

skeleton and pore fluids are comparable. This characteristic i s 

similar to those of unsaturated s o i l s . On further unloading, as P < 

P „ , _ , a large amount of gas exsolves because the high solubility co2/water' ° ° a J 

(H „ = 0.86) of carbon dioxide in water. This causes a sudden coz 
increase i n f l e x i b i l i t y of the f l u i d phase and hence most of the load 

is transferred to the s o i l skeleton. When the effective stress in the 

skeleton approaches zero, the f l u i d once again becomes the s t i f f e r 

phase, hence the B value rises to one. This i s the typical behaviour 

of gassy s o i l on unloading. 

The predicted and measured displacements are in remarkably 

good agreement. This indicates that the input parameters (Appendix f) 

and the ratio of the parameters, = 0.6 K̂, and n = 2m = 0.5 (Byrne 

and Cheung) are generally correct. 



CHAPTER 6 - STRESSES AROUND A WELLBORE OR SHAFT IN OIL SAND 

6.1 INTRODUCTION 

The response of a wellbore in o i l sand upon unloading i s 

considered because i t i s an important problem in o i l recovery in o i l 

sand. In general, knoweldge of the stress solutions around a borehole 

i s of great importance in several situations: 

1) borehole s t a b i l i t y 

2) hydraulic fracturing 

3) production or injection 

A theoretical solution for stresses around a wellbore was 

developed by Risnes et a l (1982) and the equations are presented 

herein. Validation of the programme (MHANS) for drained analysis i s 

made by comparing computed response with the closed form solutions 

developed by Risnes et a l . A linear elastic-plastic constitutive 

relationship i s used for the above validation. 

Upon validation of the programme, i t was used to study the 

behaviour of a wellbore in o i l sand upon unloading. Undrained and 

drained analyses were performed to obtain the short term and long term 

response respectively. In the undrained analysis, the gas exsolution 

is assumed to be very fast relative to the construction of wellbore. 

In the drained analysis, the pore pressure profile i s estimated by 

using Dupuit's theory (Section 6.3.3). 



6.2 GENERAL MODEL DESCRIPTION 

The wellbore under consideration i s supported by f l u i d 

pressure. As a model, a vertical cylindrical hole through a horizontal 

layer of o i l sand i s considered. The geometry, f i n i t e element mesh, 

and i n i t i a l conditions of the problem are shown in Figure 6.1 and 6.2. 

Loading and geometry are assumed to be symmetrical around the well 

axis. Only radial displacement after the i n i t i a l overburden loading 

are considered. These correspond to the assumption of axisymmetric and 

plane strain conditions. 

The sand formation i s assumed permeable, isotropic, 

homogeneous and i n i t i a l l y f u l l y saturated. The material is assumed 

elastic-perfectly plastic and obeys Mohr Coulomb failure criterion. 

Only stress solutions for > at the elastic-plastic 

boundary w i l l be investigated. 

6.3 THEORETICAL SOLUTIONS FOR STRESSES AROUND A BOREHOLE 

A closed form solution for streses around a well, using a 

linear elastic-plastic stress-strain relationship, can be obtained from 

Risnes et al (1982). 

The derivations of the stress solutions follow that of Risnes 

et a l (1982) with two additional assumptions. 

1) Insitu state of stress is considered to be isotropic 

i n i t i a l l y , i.e. a = o. = a . 
r o z 

2) The Mohr Coulomb failure criterion in a porous material 

i s 

f = a{ - 2S tana - 03 tan 2a. = 0 6.1 



Fig.6.1 - Outline of the problem 



Fig. 6.2 

76 elements , 78 nodes 

Finite element mesh for wellbore problem 



where S is the cohesion intercept (or apparent cohesion) 

a is the f a i l u r e angle, i.e. + -|— 

<f>' is the internal f r i c t i o n angle 

These symbols are also explained i n Figure 6.2b 

6.3.1 Stresses 

6.3.1.1 Stresses In Elastic Zone 

The stresses around a hole in an elastic thick wall cylinder, 

with porous material saturated with f l u i d , may be written as follows: 

R2, 

'r = °ro + <0ro " 0 r i > F ^ R T [ l - ( ^ ) 2 ] 
o i 

o i ' 2(l-v) 

£n(R . 
R? » -°> 

" i ' *n(R o/R.)-

R̂* R 
°9 * °ro + (°ro " °ri> R ^ R T t 1 + 

o i 

( P _ P ) 1-2* 
^ o i ; 2(l-v) 

o i v o i ' 

[*n (^) - 1]) 6.3 



Fig.6.2 b - Mohr Coulomb failure envelope 
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The procedure for obtaining these stress solutions is given in Appendix 

G. 

6.3*1.2 Stresses in Plastic Zone 

As long as f = 0 (Equation 6.1), a plastic zone w i l l start to 

develop at the borehole wall, and then expanding i n size as support 

pressure is decreased. Equation 6.1 w i l l apply within the plastic 

plastic zone is considered, the elastic stress solutions at this 

boundary are given by Equation 6.2 to 6.3, with R = r = R., a = a 
o i rc r 

and P = P.. With the assumption of no fluid flow (i.e. P = P ) and 
c i r c o' , 

R Q » R^, the stress solutions from Equations 6.2, 6.3 and 6.4 may be 

written as: 

zone. 

If the stress state at the boundary between the elastic and 

a = a 6.4 rc rc 

= 2a - a 6.5 ro rc 

a = a 6.6 zc zo 

The elastic solutions (Figure 5.2) show clearly that the radial stress 



w i l l be the smallest at the boundary between elastic and plastic zones, 

and following the assumption (1) of i n i t i a l isotropic stress, the state 

of stress at the elastic-plastic boundary w i l l be a < a < an . 
rc zc 9c 

The stress solutions within the plastic zone may be derived by 

combining Coulomb failure criterion (6.1) and the equation of 

equilibrium. 

do a -a 
-* + JL-±=0 6.7 dr r 

The stress solutions for the plastic zone may be written as: 

For R. < r < R i c 

a = P. + ir^r; Zn |- + -̂ (2S tana - -^r-) r i 2irhk R̂  t 2Trhk 

[(I-)* - 1] 6.8 
For R. < r < R i c 

°9 - p i + 2¥ht c1 + * n ir> + F <2S t a n a - iSk> 

[(t + 1) (I-)11 - l] 6.9 
R i 

For R, < r < R. 
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°z " Pi + 2^hk <X + *N R7> + I (2S tan° - zSfc t ( t + L) < ! / 

6.10 

For R, < r < R b c 

a - (P + «a- £ n f-) + v l i l - + Cl-y)(l-2v) 
z i 2Trhk R ' 2irhk 1-v 

6.11 

<|)1 

where t = tan 2a - 1, a = 45° + -j-

u = fluid viscocity 

The procedure to derive Equations 6.7 to 6.11 is given in Appendix H. 

6.3.1.3 Radius of the P l a s t i c Zone 

Radius of the inner Plastic Zone R, b 
At the boundary of inner and outer plastic zones, the 

tangential stress and vertical stress given by equations 6.9 and 6.11 

are equal. 

Setting Equations 6.9 equal to 6.11 and r = R̂ , yields. 

a x ( ^ V + a 2 = 0 
i 

6.12 
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where 

a i - £ (2S tana - [(t + 1) - v (t + 2)] 

a 2 = ( 1 . v ) J i J L - ( 1 ^ ) ( f f - P ) * 2irhk l - v v zo cr 

7 ( 2 S t a n a ' 2$!k> ( 1 " 2 v ) 

Radius of the Entire Plastic Zone 

There are two requirements that must be satisfied at the 

boundary of elastic and plastic zones 

1) Mohr Coulomb criterion must hold 

2) Continuity of radial stress 

Inserting radial stress from Equation 6.8 and tangential 

stress from 6.3 into Mohr Coulomb failure criterion 6.1, the resulting 

equation for the radius of plastic zone R̂  is 

2 R R R R 

b x R c
C £n ̂  + b 2 £ n -2. + b 3 R 2 + b l + R 2 £ n |_ + b,. R 2 £ n _ | 

R R R R 
+ b 6 in Y~ • in jp- + b 7 in ^ + b Q £ n _° + b g = 0 

c i i c 
6.13 
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where 

bx = (2S tan a - R ^ 

b 2 - - ̂ r1 Ci R 2 

• t 1 o 

B 3 * " 2(1=*) ( P o - V 

= 1 " 2 v 

2 (1-v) 2uhk 

b 5 2irhk 

b - - b^ R 2 

b8
 = v + <P

Q

 + V - 2 p i
 + 1 2 5 tan a 

t+2 uq i 
t 2TThkJ 

b 9 = - C 3 R 2 

6.3.2 Stability 

It is noted that the radial stress component in Equation 6.8 

consists of two r-dependent terms, one logarithmic and one to the power 
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of t. The last term w i l l become dominant when the exponent t has 

a value greater than about two. 

Setting C = 7- (2S tan a - ^rtjr) R ~ t 6.14 ° t 2irhk i 

If C is positive, radial stress in the plastic zone wi l l increase with 

r, and combined plastic-elastic solutions are possible. But when the 

flow rate q is large enough to cause C to become negative, radial 

stress w i l l decrease with increasing distance r, and combined solutions 

are not possible. Hence, there exists a stability criterion. 

C > 0 6.15 

with the limit 

•X—T- = 2S tan a 6.16 2irhk 

This study concentrates on o i l sand which has S = 0. If the wellbore 

is supprted only by f l u i d pressure, equation 6.16 indicates that 

instability arises when flow into the wellbore occurs. 

6.3.3 Pore Pressure Profile 

When steady-state conditions around the wellbore have been 

reached, the pore pressure i n the s o i l elements may be estimated i f the 

piezometric surface is known. Dupuit developed a theory which enables 

the quantity of steady-state seepage and the piezometric surface around 

a well to be evaluated. His theory is based on three assumptions: 



91 

1) the hydraulic gradient is equal to the slope of the free 

surface and i s constant with depth, 

2) for small inclinations of the line of seepage the 

streamlines may be taken as horizontal. 

3) The permeability of the s o i l Is constant 

With the terminology in Figure 6/2a. the flow when steady state 

conditions exist i s given by: 

Q - w k ( h 2
2 - h L

2) J^J^ 6.17 

w 

and the location of the free surface is 

h 2
2 - h! 2 

h 2 = h i 2 + . / T i ,—r- Jin (—) 6.18 1 £n(R/r ) v r ' w w 
There Is a controversy about the location of the piezometric 

surface predicted by Dupuit's theory, especially in the v i c i n i t y of the 

well. This is because the surface of seepage is omitted in Dupuit's 

prediction. But the problem i s modelled as a disk of sand below the 

seepage surface (Figure 6.3b). Only radial flow is assumed in the sand 

disk. Hence equation 6.16 i s accurate enough to estimate the pore 

pressure profile. 



h, 

^^— 

f surface of seepage 

Flow 7"~ F.F. Mesh 

Fig.6. 3 - Idealised flow to a wellbore 
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6.4. Comparisons of Predicted Response and Closed Form Solution 

The response of unloading a borehole, with linear 

elastic-plastic porous material, i s investigated. A drained analysis 

was performed. The i n i t i a l and f i n a l conditions of the problem are 

shown i n Figure 6.4(a). When the f l u i d support pressure i s higher than 

the i n i t i a l pore pressure, no flow from the borehole into the sand 

formation i s assumed. Since the f i n a l f l u i d support (4100 kPa) i s 

higher than the i n i t i a l pore pressure, flow into the borehole i s not 

considered herein. 

The stress solutions computed by the programme are i n good 

agreement with the closed form solutions mentioned in Section 6.3, and 

shown i n Figure 6.4. The radius of the entire plastic zone i s small 

which shows that the borehole is stable at the fi n a l fluid support 

pressure of 4100 kPa. 

6.5.1 Undrained Response 

The undrained non-linear elastic-plastic model wi l l now be used to 

study the response of a wellbore on unloading. The f i n i t e element 

mesh and i n i t i a l conditions are shown in Figure 6.1b. Only the long 

term undrained response w i l l be investigated i n this thesis because 

this condition is f e l t to be more r e a l i s t i c (t * 0) and i t was also 

shown that the long term undrained condition i s more c r i t i c a l than the 

immediate response (Sobkowicz, 1982) in terms of st a b i l i t y . 

The wellbore i s unloaded by decreasing the total stress at the 

wellbore wall, and the stress solutions and displacements are shown 

graphically in Figures 6.5. A careful examination of these figures 

indicates some interesting results: 
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Fig.6.4 - Stresses around a wellbore in an elastic-plastic material 



Fig.6.5 - Undrained response of a wellbore in o i l sand on unloading 
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F i g . 6 . 5 - Undrained response of a w e l l b o r e i n o i l sand on unloading 
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Fig.6.5 - Undrained response of a wellbore in o i l sand on unloading 
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1) The support pressure can be reduced below the i n i t i a l pore 

f l u i d pressure and the wellbore Is s t i l l stable; 

instability is defined when large displacements start to 

occur at the wellbore wall. 

2) Instability occurs at a support pressure of approximately 

2500 kPa. 

3) The size of the plastic zone remains small as long as the 

support pressure is higher than 2500 kPa (Figure 6.5 b). 

Once the support pressure drops below 2500 kPa, the size 

of the plastic zone increases rapidly (Figure 6.5 c). 

4) Pore f l u i d pressure changes only occur in the plastic 

zone. The evaluation of the fluid pressure response 
e P depends on volumetric strain Ae = Ae + Ae . But in the v v v 

elastic zone, Ae e = - A e^ and Ae e = 0 so that Aee= 0, r 6 z v 
and hence no change in pore fluid pressure is predicted. 

5) Once instability has been reached, a liquid zone with zero 

effective stress associated with a large plastic zone w i l l 

form adjacent to the wellbore. These zones wi l l extend 

into the sand formation rapidly upon further reduction of 

support pressure, leading to large displacements. 
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6.5.2 Drained Response 

For the drained condition, the pore fluid pressure is assumed 

to be known. Dupuit's theory described i n Section 6.4.3 i s adopted to 

estimate the pore pressure profile around the borehole in this study. 

Two typical pore pressure profiles are shown in Figure 6.7 with R = 100 

and 150 m with the fl u i d support pressure fl u i d at 3200 kPa. There are 

some intermediate pore pressure profiles between support pressure of 

3500 kPa to 3200 kPa, depending on the number of increments on 

unloading, but they are not shown here. When the f l u i d support 

pressure is above 3500 kPa, no flow from the wellbore into the sand 

formation is assumed. 

The wellbore i s unloaded i n the same manner as for the 

undrained analysis. The results of the stress solutons are shown i n 

Figure 6.7. A careful examination of these results indicate some 

interesting points: 

1) To maintain borehole s t a b i l i t y , the support pressure 

cannot be reduced to less than the i n i t i a l pore pressure; 

instability is defined as large displacements start to 

occur at the wellbore wall. 

2) The stress solutions only dif f e r by a few percent when the 

input pore pressure profiles are generated by using R = 

100 and 150 m. Therefore, only one set of stress solutons 

is presented here in Figure 6.7. 

3) Once st a b i l i t y has been reached, a liquid zone with zero 

effective stress associated with a large plastic zone w i l l 

extend into the sand formation rapidly upon further 



Fig. 6 . 6 - Pore pressure profile around a borehole 
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Fig.6.7 - Drained response of a wellbore in o i l sand on unloading 
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reduction of support pressure, leading to large 

displacements. 

6.5.3 Implications of Undrained and Drained Analyses 

The analyses show that there are limits on the fluid support 

pressure reduction in order to maintain borehole s t a b i l i t y . 

Comparisons of both analysis are made at support pressure of 

3500 kPa and 3200 kPa. 3500 kPa is the c r i t i c a l pressure below which 

instability occurs in drained condition. It i s noted that in Figure 

6.9 the plastic zone in the undrained analysis i s much smaller than the 

one in drained analysis. At a support pressure of 3200 kPa, the 

borehole i s obviously unstable under drained conditions (Figure 6.9), 

showing a large plastic zone and consequently large displacements. But 

the borehole only exhibits a small plastic zone at this support 

pressure (3200 kPa) under undrained conditions (Figure 6.9). This i s 

because the pore pressure around the wellbore i s lower in the undrained 

case, which results in a higher effective stress. 

Consolidation i s the process which bridges the f u l l y undrained 

and drained conditions. An interesting point is that the pore pressure 

w i l l increase around the borehole during consolidation, leading to 

lower effective stress. Hence, the long term drained condition is less 

stable than the undrained condition. 

6.6 Application to Oil Recovery 

For o i l production, the f i n a l support pressure must be reduced 

below the in-situ pore f l u i d pressure. Based on the undrained analyses 

with the wellbore supported only by flu i d pressure, the support 



g.6.8 - Comparisons of undrained and drained response 
of a wellbore in o i l sand at a support 
pressure of 3500kPa 
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Fig.6.9 - Comparisons of undrained and drained response 
of a wellbore in o i l sand at a support 
pressure of 3200kPa 
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pressure can be reduced below the in - s i t u pore f l u i d pressure and the 

wellbore is s t i l l stable. This allows the construction of the wellbore 

and i n i t i a l reduction of f l u i d support pressure below in-situ pore 

flui d pressure. However, for the drained condition, the wellbore 

becomes unstable which causes collapse of the well and hence no o i l 

production. 

Instability results i n the formation of large liquid and 

plastic zones (Figure 6.9) around the wellbore. Since the permeability 

i n the liquid and plastic zones are higher due to the expansion of sand 

skeleton, i t is desirable to have these zones around the o i l production 

well. This effectively increases the diameter of the well. 

To enhance o i l production and maintain wellbore s t a b i l i t y , a 

screen may be installed to provide effective support pressure after the 

liquid and plastic zones have formed. 

The three dimensional and viscous effects have not been 

considered in the analysis, however they may help in stabilizing the 

wellbore. 
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CHAPTER 7 : SUMMARY AND CONCLUSIONS 

A new stress-stress relationship for modelling the undrained 

response of o i l sand has been presented. An analysis which couples the 

s o i l skeleton and pore fluids i s used. The pore pressure changes are 

computed from the constraint of volume compatibility. 

Separate stress-strain models are required for both s o i l 

skeleton and pore fluids in this analysis. The conventional hyperbolic 

stress-strain model described by Duncan et a l i s adopted for the s o i l 

skeleton. The pore fluids stress-strain relationships are formulated 

on the basis of ideal gas laws. 

The developed model i s incorporated into a f i n i t e element 

programme for analysing the deformation behaviour of gassy soils (e.g. 

o i l sand). Upon validation i n Chapter 5, i t i s shown that the 

undrained model is capable of predicting the response of unsaturated to 

gassy s o i l s . Naylor has shown that this model can be used to predict 

the response of saturated so i l s . 

For non-rectangular QM-6 elements, equilibrium cannot be 

achieved for Poisson's ratio values greater than 0.4, but higher order 

element can remedy this. 

In the study of the response of wellbore i n o i l sand upon 

unloading, the fluid support pressure can be reduced below in-situ pore 

f l u i d pressure under undrained condition and the wellbore is s t i l l 

stable. However, for the drained conditin, the fluid support pressure 

cannot be reduced below the in-situ pore f l u i d pressure i n order to 

maintain wellbore s t a b i l i t y . 

For o i l production, the f l u i d support must be reduced below 

in-situ pore pressure which results in formation of large liquid and 



109 

plastic zones. It i s desirable to have these zones around the wellbore 

because the diameter of the well is effectively larger. 

To enhance o i l production and maintain wellbore s t a b i l i t y , a 

screen may be installed to provide effective support pressure after the 

liquid and plastic zones have formed. 
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APPENDIX A 

The constitutive relationship may be written: 

(Aa') = [D'] (Ae) A.l 

in which (Ao 1) is the incremental stress vector, (Ae) is the 

incremental strain vector and [D*] is the incrmental effective stress 

strain matrix. 

The incremental strain vector i s related to the nodal 

displacements by: 

(Ae) = [B] (S) A.2 

in which [B] is a matrix that depends on element geometry. 

By the principle of vi r t u a l work, the external work done by 

the virtual displacement is equal to the internal work done by the 

increment of vi r t u a l strains: 

(5) T ( f) - /A U e ) T (Ao') dA + J . (Ae")T (}) Au dA A.3 

in which (f) = 

(Aa') = 

(Au) = 

the element force vector 

the element incremental effective stress vector 

the element incremental pore pressure vector 



Substituting for (Ae) and (Aa') from Equations A.l and A.2, 

(6) (f) = (6)T [B] T [D'] [B] (6) A o + (8)T [ B] T(*) 

Au A A.4 
e 

in which A is the area of the element with unit thickness, e 
Rearrangement of Equation A.4 yields 

[K] (6) = (f) - ( K j (Au) A.5 

in which [ K ] = [ B ] T [ D ] [ B ] A^ 

[ K ] = [ B ] T (1) A w L 1 ^o' e 

where [K] is the element stiffness matrix and (& w) is a load vector 

associated with the pore pressure. 



APPENDIX B 

Assumptions: 

1) the volume^ of solids i s 1 unit, then the volume of voids 

is e units by the definition of void ratio, 

2) the solids are incompressible. 

The undrained response of the element under a change on 

external pressure w i l l be 

Aa ' 
Skeleton (Ae ) - m 

v'SK B S K B.l 

Fluid (Ae )_ = B.2 v f 

in which (Ae ) , (Ae ), = volumetric strain: Skeleton, Fluid v SK v f ' 
Bg^, = bulk modulus: Skeleton, f l u i d 

Aa ' = mean effective stress change m 
Au = pore pressure change 

Since the s o i l skeleton and the pore fluids deform together 

when the conditions are undrained, i n additions to Equations B.l and 
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Compatibility e (A£ y) f - (1 + e) t^)^ B.3a 

or (Ae ) = - (Ae ) B.3b 
v f n v SK 

in which e is the void ratio and n is the porosity. 

Substituting B.3b into B.l, the pore pressure change, Au, may 

be written as: 

A u = K a < A ev> S K B ' 4 

K f i n which K = — , the apparent bulk f l u i d modulus a n 

In f i n i t e element analysis 

Au = K (Ae ) a v 

= K a ( A e n + Ae 2 2 + Ae 3 3) 
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APENDIX C 

Poisson's ratio is equal to 0.5 in undrained analysis 

theoretically. This means that bulk modulus i s i n f i n i t e and numerical 

instability w i l l arise (this sentence does not sound right). 

Therefore the default of Poisson's ratio, v, i s always less than 0.5 

(e.g. 0.495) to maiontain stability and accuracy. In the total stress 

model developed i n Section 3.2, i t i s the combined Poisson's ratio, 

for matrix [D] that controls the overall numerical st a b i l i t y , not just 

v. 

The elastic moduli i n matrix [D'] are related as 

G = E C.I 2(l+v) 

B = E C.2 3(l-2v) 

Assuming the elastic moduli in matrix [D] = [D'] + [ D F ] are related as 

G cb C.3 

B cb C.4 
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in which suffic cb means combined, G = G , as pore f l u i d does not 
cb 

transmit shear. 

Just consider the direct stress terms i n the constitutive 

relationship 

A a n L + K 
a 

L*M+K 
a 

L*M+K 
a 

A e n 

Aa 1 2 
s s L*M+K 

a 
L+K 

a 
L*M+K 

a 
Ae 2 2 

Ao-33 L*M+K 
L a 

L*M+K 
a 

L +K 
a 

A E 3 3 

C.5 

4 M U. T E(l-V) 
i n w h i c h = (l+v)(l-2v) 

1-v 

Substituting C.2 into C.5, yields, 

Aff H P+K 
a 

Q+K 
a 

Q+K 
a 

A e u 

Ao 2 2 
= Q+K 

a 
P+K 

a 
Q+K 

a 
Ae 2 2 C.6 

A 0 - 3 3 Q+K 
a 

Q+K 
a 

P+K 
a 

A E 3 3 
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v „ 3B(l-v) in which P = ( 1 + v / 

Q = 3 B V 

1+v 

Adding the direct stress in Equation C.6 and rearranging 

T ( A q " + A g22 + A g33) = B(l-v) + 2 B V +K a 

(Ae^i + Ae 22 + ^£33) l-v 1+v 

= B C.7 
cb 

Eliminating E from Equations C.3 and C.4, yields cb 

3B c b - 2G 
Vcb = 6B°. + 2G 0 , 8 

cb 

Substituting C.7 into C.8, rearranging 
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APPENDIX D 

In the incremental elastic method, two iterations are 

performed to obtain the tangent moduli of the s o i l skeleton. Hence two 

iterations are also employed to evaluate the tangent bulk fluid modulus 

in order to make the procedure compatible. The parameters at the end 

of previous increment w i l l be used in the analysis of the present 

increment, and then updated at the end of this increment. 

The tangent bulk flu i d modulus and the procedure to update the 

parameters are shown herein: 

Equation 3.24e and 3.26b are programmed as: 

e-n (1+e) + H n (1+e) + H „n (1+e) 
0 l r w ww co2 w 3 f i - - L p 

+ 3 N (1+e)] D.l w w J 

e-n (1+e) - n (1+e) + H,n, (1+e) + H n (1+e) „ _ 1 r o w b b ww 
8f2 - e L 

+ W 1 + e > ] D.2 
+ V w 

The parameters in Equation D.l and D.2 may be updated 

according to the following foaulae based on the assumptions: 



volume of solids i s 1 unit 

bitumen, water and s o i l solids are incompressible 

Ae = (1+e) Ae D.3 v 

e^ = e i + A e ^"^ 

S ce £ = S.e, D.5 f f 1 i 

n (1+e) + Ae 
-8 D.6 1+e + Ae 

n (1+e) 
< - rzzn D. 7 
b 1+e+Ae 

n (1+e) w 
"w 1+e+Ae n' = r£—n D.8 

P = u + Au D.9 
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APPENDIX E 

Refer to Figure 4.1b 

°1 = 9 + °12 cosec 29 E.l 

an + a22 
03 = ^ ~ °12 cosec 28 E.2 

x 1 3 = 0 E.3 

The overstress in the element is removed by reducing AOj, A a 3 , 

A T 1 2 as follows 

AO! = Oi - a3 tan 2 (45° + |-) E.4 

Ao-c, = 0 E.5 

A x 1 2 = 0 E.6 

These change in principal stresses can be expressed in terms of 

stresses i n x-y space: 

AO} + Aa 3 AO} - Aa 3  

A o l l = 0 + * cos 29 E.7 
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Aoi + Aa-i Ao"i - Aero 
Aa 22 = cos 29 E.8 

AOi - AO: 
A a 1 2 = cos 29 E.9 

Equations E.7, E.8 and E.9 may be expressed in matrix form 

A c n 

Ao 22 

Aa 1 2 

r 

[ T ] 

Aoi 

Aa 3 

Ati3 

E.10 

[ T ] is the transformation matrix 

[ T ] = 

1_ cos 29 1_ cos 29 
2 2 2 2 

i 1_ cos 29 1_ cos 29 
2 2 2 2 

sin 20 

2 

sin 20 



APPENDIX F 

Back Calculation of So i l Parameters 

Given the compressibility of s o i l 0 g = 9 E-b kPa - 1 and the 

effective stress o§ = 751 kPa, the bulk modulus K number can be 
B 

backcalculated by assuming a value of m. 

From Equation 3.12 

B = *B P a ( p - ) m *' 1 

a 

s a 

Substituting 3 , and P and assuming m = 0.25 (Byrne and Cheung) 
S cl 

F.2, 

= 665 

Adopting the relationship K = 0.6 K (Byrne and Cheung) 
B E 

K E = 1108 

Other parameters are depicted from Byrne and Eldridge on Byrne and 

Cheung reports. A complete set of s o i l parameters for Test 11 may b 

written as: 



\ = 1108 

n = 0.5 

h " 665 

m = 0.25 

Rf = 0.8 

<t>' = 42° 

A<f>' = 8° 

n = 0.3228 (e = 0.4767) 

S = 0.9975 



APPENDIX G 

Elastic Stress Solution 

If the f l u i d pressure i s included, the displacement u of an 

elastic material may be written as 

(X + 2G) ̂  ( T i + ~) + 3 0 G.l dr dr r' dr 

where A = (1+v) (l-2v) 

G = E 

2 (1+v) 

C 
3 - 1 - -p-— which i s assumed equal to 1 

Cb 

= sand matrix compressibility 

C, .= sand bulk compressibility b 

The pressure may be expressed by Darcy's law in radial form 

iP _ "q , 
dr 2irhKr 

The stresses are written as 

o = X e e + 2G e 6 + P G.3 r v r 



a. = X e e + 2G + P G.4 
6 v 0 

a = X e e + 2G e e + P G.5 
Z V z 

e e e 6 6 Where e , e 0 and e are the elastic strain components and e = e + e r 9 z v v r 
+ e e G.6 z 

Assuming the i n i t i a l loading cause a deformation only in the 

ve r t r i c a l direction, but no displacement i n the horizontal directions 

(e = en = 0), the i n i t i a l vertical strain e , is given by G.5 as r 9 zo 

a -P zo o 
:zo = X + 2G G , / 

Assuming only radial displacement after i n i t i a l loading, the strains 

are 

e = — G.8 r dr 

e u 
e9 = 7 G ' y 

e e = e z zo 



By solving Equation G.l with the boundary conditions 

a = a . when r = R. r r i i 

a = a when r = R, r ro i 

and combining the results with Equations G.8, G.9 and G.10, the stres 

solutions (Equations 6.2, 6.3, 6.4) can be found by inserting the 

result in Equations G.3 through G.5 



APPENDIX H 

Plastic Stress Solutions (a < a < a„) r z 0 
The conditions must be satisfied within the plastic zone 

1) Equilibrium 

da a - o„ 

2) Mohr Coulomb failure c r i t e r i a 

f = a. - a tan 2 a + (tan 2 a-1) P - 2S tan a = 0 H.2 0 r 

The flow rule associated with yield condition i s 

P , 9f ^ 2 
e = X = - X tan z a 
r da 

r 

H.3a 

el - X ~ - - X H.3b 
0 9a Q 

e P - \ | | - - 0 H.3c 
z da 

From Equations H.3a and H.3b, i t follows that 

e£ + tan 2 a = 0 H.4 



The total strain components may be written as 

e r = e r + E r H ' 5 a 

e g = Eg + e^ H.5b 

e p e = e + e = e H.5c z z z zo 

= 0 because i t is assumed that there is only radial displacement 

after i n i t i a l loading. 

Combining Equations H.5a and H.5b, inserting into H.4, gives 

o e e o e + e. tan^ a = E + E q tan^ a H.6 r 0 r 0 

Applying Hooke's law of elas t i c i t y for porous material, yields 

Ee® = a - v (a f l + a ) - (l-2v)P H.7a r r o z 

E E Q = a . - v ( o - + a ) - (l-2v)P H.7b 0 9 v r z 

Ee e = a - v (a + a Q) - (l-2v)P H.7c z z r 9 



Substituting Equation H.5c into H.7c yields 

a = Ee + v (a + a.) + (l-2v)P H.8 z zo r 8 ' 

Combining Equations H.7 and H.8, inserting into the yield 

criterion Equation H.2 with the strain relation i n H.6, i t gives 

[tan1* a + 1 - v (tan 2 a + 1) 21 a = 2G £ + 2G e„ tan 2 a 
J r r 9 

+ [tan 2 a (tan 2 a - 1) - v (tan1* a - 1) 

+ (tan 2 a + 1) (1 - 2 v)]p - [tan 2 a (l-v) - v] 2 Stan a 

+ v (tan 2 a + 1) 2G E H.9 
zo 

and 

[tan1* a + 1 - v (tan 2 a + l ) 2 ] o Q = 2Ge tan 2 a + 2Gen tan* a 
o r 6 

+ [v (tan1* a - i) - (tan 2 a - 1) 

+ tan 2 a (tan 2 a + 1) (l-2v)]p - [v (tan 2 a + 1) - l ] 2Stan a 

+ v tan 2 a (tan 2 a + 1) 2Ge H.10 
zo 



Substituting Equations H.9 and H.10 into equilibrium Equation 

H.l, together with the strain-displacement relations G.8 and G.9, the 

displacement equation may be written as 

2 
r 2 — j + r - utan 2 a = 7^7 (- [tan 2 a (tan 2 a - 1) - v(tan l + - 1) 

dr 

+ (tan 2 a + 1) (l-2v)] j^hk + ( t a f l 2 a + 1 ) < 1 _ 2 v) 2 S t a n a 

+ v (tan 2 a - 1) 2G e 1 H . l l 
zoJ 

The displacement solution of Equation H.ll i s 

, tan 2a , . - tan 2a , _ „ .. 2Gu = A.^ + A 2r + Br H.12 

and the corresponding strains are 

2Ger = tan 2 .0 ^ r 1 ^ - 1 - tan 2 a A 2 r _ t a n 2 a + B 

H.13 

0 0 A tan 2a . , -tan 2a . _ „ ,, 2GeQ = A ^ + A 2 r + B H.14 

Where Aj and A 2 are constants of integrations which depend on i n i t i a l 

conditions. 
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B = [f2? L tan' 
z a ^ l-2v -i uq l-2v „ 0 v , - i + - — 2 — r J o u i - 7 — 2 — r 2 Stana •'a+l tan^a-l J 2irhk tan zct-l 

- v 2G e H.15 zo 

Substituting Equations H.13 and H.14 into Equations H.9 and H.10 

together with Darcy's law for radial flow, 

gives 

P = P + -Hi- £n — 
* i 2TThk X n R i H.16 

a = P, + -^rr In-I- - -\- (2Stana - ^ 3 - ) r i 2irhk R, t 2TThky 

o A l t + 2tan z a ^— r 

aa = p- + o^T * n I 7" (2Stana - tan 2 a -^tr") 
9 I 2irhk t 2trhk 

H.17 

u
 A l t + 2tan*a — r T H.18 



a = P. + 0 .* Jin — 4Stan a - (tan z a + 1), 
z i ZTrhk R t L 

^S_] + ( 1 7 ) ( 1 " 2 V ) (a -P ) - + v (tan 2a + 1), 2irhkJ 1-v zo o 

A l 
2tan 2 a - r ' H.19 

where t = tan 2 a - 1 

T = tan 4 a + 1 - v (tan 2 a + l ) 2 

The constant of Integration Aj can be found by inserting the boundary 

condition, o = P. when r = R., into H.17. r i i ' 
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APPENDIX J 

The quantity of steady-state seepage at any distance r from 

the centre of the well i s 

Q = k 2irrh ^ J«l x dr 

on setting the limit of integration, yields 

_ R , h 2 

r hi w 1 

and 

Q = IT k (h2 - h') A n I J.2 
w 

Equating J . l and J.2, yields 

2 r h § = (4 -h?) j^sbr-'C J.3 
w 

integrating J.3 

h 2 = C Jin r + D J.4 
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where D i s the constant of integration 

Substituting the boundary conditions r = and h = h^ in J.4, 

yields, 

2 
D = hi - C Jin r J.5 

* XJ 

Substituting J.5 into J.4, yields 

2 2 h l ~ h ? r 
h = hi + -—5-7— An — J.6 

1 In R/r r w w 


