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ABSTRACT

The effects of the variability in strength and loading
on the reliability of slender, reinforced concrete columns
are investigated using the Monte Carlo simulation technique.
The columns are considered to be axially loaded with equal
end eccentricities and no lateral load.

Variabilities in strength, axial load and eccentricity
of axial 1loads are considered. A new procedure called the
Implicit Uncorrelation Procedure has been developed to find
the wvalues of the failure function from the values of the
basic variables named above.

The allowable axial load at various eccentricity levels
corresponding to a probability of failure of one 1in one
hundred thousand has been found for three different cross
sections. Seven different slenderness ratios are considered
for each cross section. The results are compared with those
obtained by following the code procedures outlined in
CAN3-A23.3-M77 and CSA-A23.3 (1984).

A change in the performance factor for moment

magnification, ¢ (as given in CSA-A23.3 (1984)) is

m r
recommended in order to obtain a more accurate and
consistent level of reliability in the design of slender

reinforced concrete columns.
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1. INTRODUCTION

The actual strength of a reinforced concrete member
differs from the nominal strength calculated by the design
engineer due to variations in the material strengths and the
geometry of the member, as well as the vvariabilities
inherent in the equations wused to compute the member
strength. Similarly, designers use constant nominal values
of loads in their calculation  of forces, but the actual
loads are variable. This variability in strength and loading
is accounted for in one form or another in safety provisions
of all existing building codes.

In this study the effect of these variables was
investigated wusing the Monte Carlo technique for random
simulation, Similar analyses have been applied to beams and
columns by Allen(1970), Ellingwood(1977), Grant et al/ (1978)

and Mirza and MacGregor(1982).

.1.1 CODE METHOD
Cornell(1969) and Lind(1971) have shown that in order
to achieve a consistent level of reliability in design, the
code design criterion should be of the form:
¢R 2 AU
where:

R

design strength

U = nominal specified load

¢ = strength reduction factor
A

= load factor



A summary of the actual procedure followed by the Code for
the Design of Concrete Structures for Buildings (CSA-A23.3)

is presented below.

1.1.1 METHOD OF CAN3-A23,.3-M77

The factored design 1load (for only dead and live

loads) is given by

U=>3x D+ XL L
where D and L are the nominal values of the dead and the
live loads respectively and XD and XL are the
corresponding load factors. The value for XD is taken as.
1.4 while that for AL is taken as 1.7.

The short column strength of the column is reduced
by a capacity reduction factor ¢. The value of ¢ for
pure bending is 0.90 and for axial compression or axial
compression combined with bending it is 0.70. ¢ is
linearly increased to 0.90 as the axial design 1load
decreases from 0.10fé Ag to zero.

To account for the slenderness effect of the
columns, the members are designed wusing a magnified
moment M, defined by:

M, = &M,
where M, is the larger design end moment on the member,
based on U as described above, and is calculated from a
conventional elastic frame analysis and 8 1is a moment
magnification factor. MC must be less than the reduced

short column strength. & is given by the relation:



C
§ = —0 > 1.0
1—Pu/¢PC
where ¢ varies as stated above, and
2RI
P, = ———
2
(klu)

where klu is the effective length of the column.
EI is calculated as:

0.2E I _ + E 1
El = c'g se’s

1+ By
following the notation of CAN3-A23.3-M77.
Cn is given by:
M,
C_=10.6 + 0.4—
m M,
where M, and M, are the smaller and the larger design

end moments respectively at the two ends of the member.

1.1.2 METHOD OF CSA A23.3(1984)

The total design load for the case when only the
dead 1load and the live loads are acting is given by a
relation similar to the one in CAN3-A23.3-M77 except
that in this case Ay is taken as 1.25 while RL has the
value 1.50.

Material resistance factors are applied to the
nominal strengths of concrete and reinforcing bars as
shown in figure 1. The value for ¢ is 0.60 while that
for ¢s is 0.85.

The slenderness effect is taken into account using

a procedure identical to the one in CAN3-A23.3-M77 but



Concrete Steel

Figure 1. Material resistance factors

with the moment magnification factor defined as:
Cn
§ = ————m— 2 1.0

1—P/¢mPc

where ¢m = 0.65.



2. MONTE CARLO SIMULATION

2.1 INTRODUCTION

If a

relationship can be derived between the

performance of a system and each variable affecting the

performance, and if statistical

properties of the

distributions of all the variables are known, it is possible

to use randomly selected values of the variables to

calculate the wvariability of the system performance. This

technique, shown schematically in figure 2 and called Monte
Carlo

simulation, was wused in this study to determine the

variability of the strength of reinforced concrete columns,

because of the complexity of the strength relationships.

INPUT:
STATISTICAL
PROPERTIES OF
VARIABLES

SELECT A
RANDOM VALUE
OF EACH
VARIABLE

REPEAT
MANY TIMES

RELATIONSHIP

BETWEEN
VARIABLES
AND SYSTEM
PERFORMANCE

CALCULATE
VALUE OF

SYSTEM
PERFORMANCE

QUTPUT:
SUMMARIZE

RESULTING VALUES

OF SYSTEM
PERFORMANCE

WITH STATISTICAL

ANALYSIS

Figure 2. The Monte Carlo simulation technique



2.2 DESCRIPTION OF THE METHOD

The Monte Carlo method may be described as a means of
solving problems numerically in mathematics, physics,
engineering, and other sciences through sampling
experiments. The problem may be posed in either
probabalistic or deterministic form. 1In the probabalistic
case the actual random variable or function appearing in the
problem is simulated, whereas in the deterministic case an
artificial random variable or function is first constructed
and then simulated. The simulation process 1is computerised
to follow the distribution properties of the variable. The
method normally consists of the following steps:

1. simulation of the random variable function,

2. solution of the deterministic problem for a large

number of realizatiohs of the latter, and
3. statistical analysis of the results.
The present chapter and the two following it discuss

each of these steps in detail.

2.3 VARIABILITY OF STRENGTH

In order to evaluate the variability of the strength of
slender reinforced concrete mehbers a knowledge of the
variability of the parameters that affect the strength is
necessary. These parameters are the concrete strength 1in
compression and tension, the yield strength and the position
of the reinforcement, and the dimensions of the «cross

section of the member. The variabilities of these parameters



used 1in this study were based primarily on. the datsa
summarized by Mirza et al (1979) and Mirza and
MacGregor(197%a,b).

Three major assumptions were made 1in deterhining the
material strengths to be wused 1in the derivation of the
strength of the reinforced concrete columns.

1. The wvariability of the concrete properties and
dimensions corresponds to average quality
construction. This assumption is made so that the
results may represent the average of Canadian
construction practice. Similarly, the reinforcement
was assumed to be drawn from a population
representing all sources of reinforcement in Canada
and the United States.

2. The material strengths were assumed to correspond to
lower loading rates than those generally used in
material tests or laboratories. The crushing
strength of concrete was based on a 1-hour 1loading
to failure, and the yield strength of steel was
based on a so-called static loading rate. This is a
conservative assumption since the strengths of
concrete and steel tend to increase at high rates of
loading.

3. Increase in the long-time strength of the concrete
due to increased maturity of the concrete, as well
as possible future corrosion of the reinforcement

were ignored. Gardiner and Hatcher(1970) and Washa



and Wendt(1975) report that the mean strength of
20-25 year old concrete is expected to be 150-250%
of the mean strength at 28 days. For this study
however, this effect was disregarded and the
concrete strength was related to the 28-day test
cylender strength. This 1leads to a conservative

estimate of member strength.

2.3.1 PROPERTIES OF CONCRETE

Under current design, production, testing, and
quality-control procedures, the strength of concrete in
a structure may differ from 1its specified design
strength and may not be wuniform throughout the
structure. The major sources of variation in concrete
strength are the variations in material properties and
proportions of the concrete mix, the wvariations in
mixing, transporting, placing and curing methods, the
variations in testing procedures, and variations due to
concrete being in a structure rather than in control
specimens. The following data, as suggested by Mirza et
al (1979), accounts for most of these effects.

Assuming a rate of loading corresponding to failure
in a test lasting 1 hour, the mean compressive strength
of concrete in a structure was taken as 23.36 MPa (3388
psi) " for 27.6 MPa (4000 psi) concrete. The coefficient
of variation for the cast-in-place concrete was taken as

0.175.



The mean value of the modulus of elasticity for the
27.6 MPa concrete was taken as 22476.91 MPa (3260 ksi)
with a coefficient of variation of 0.12.

These properties were assumed to follow normal

distributions.

2.3.2 PROPERTIES OF REINFORCEMENT

The sources of wvariation in the steel yield
strength are the following:

1. Variation in the strength of the material‘

itself.
2. Variation 1in the area of cross section of the
bar.
3. Effect of the rate of loading.
4., Effect of bar diameter on the properties of the
bars.
5. Effect of strain at which yield is defined.
The following data, as suggested by Mirza and MacGregor
(1979b), accounts for the effect of most of these
sources of variation.

The mean and the coefficient of variation for the
static yield strength for the steel reinforcement were
taken as 460.6 MPa (66.8 ksi) and 0.09, respectively,
for gréde 60 hot rolled bars. The yield strength was
assumed to follow a Beta distribution. These values were

assumed to be independent of bar size.
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The mean value for the modulus of elasticity was
taken as 201000 MPa (29200 ksi) Qith a coefficient of
variation, 0.033. The probability distribution of the
modulus of elasticity was considered to be normal.

The ratio of actual to nominal values of the area
of cross section of the bars was assumed to follow a
normal distribution truncated at 0.94 with a mean value
of 0.99 and a coefficient of variation 0.024.

Since the steel in a concrete member must be some
combination of whole bars, the area of steel actually
provided may differ from that calculated. As suggested
by Mirza and MacGregor(1979a), this effect has been
considered by a modified lognormal distribution having a
mean of 1.01, a coefficient of variation of 0,04, and a
modification constant of 0.91 below which the modified
lognormal distribution equals zero.

The variability of strength within a single bar 1is

relatively small and is neglected in this study.

2.3.3 GEOMETRIC PROPERTIES

Geometric imperfections in reinforced concrete
members are mainly caused by deviation from the
specified values of the .cross sectional shape and
dimensions, the positioning of reinforcing bars, the
horizontality and verticality of concrete lines, the
alignments of columns and beams, and the grades and

surfaces of the constructed structures. The data used to



account for these effects in this study were as
suggested by Mirza and MacGregor(1979a). It has been
assumed that a normal distribution can be wused to
represent the distribution of the geometric
imperfections of reinforced concrete members.

The mean deviation of the actual cross sectional
dimensions from the specified dimension was taken as
+1.52 mm (+0.06 in)'. The standard deviation of the
cross sectional dimensions was taken as 6.35mm (0.25
in).

The location of vertical reinforcement in columns
is affected by tolerances in the ties, forms, column
alignment from floor to floor and care taken to center
the reinforcement cage within the form. The mean
deviation of concrete cover for steel bars was taken as
+8.13 mm (+0.32 1in)?. The standard deviation of the
concrete cover for steel bars was taken as 4.32mm

(0.17in).

2.4 VARIABILITY OF LOADS

In the analysis of safety it is necessary to deal with
load effects such as moments, etc. rather than the loads
themselves. It is therefore necessary to have a distribution

of load effects. These are found by combining the

' i.e. specified dimension + 1.52 mm,

2 i.e. specified cover + 8.13 mm.



12

variability of the loads themselves with the wvariability
introduced by the structural analysié. The latter component
is small and can be ignored except in the case of dead load.
The wvariability of the 1loads themselves 1is in turn the
combined variability of the magnitude and the distribution
of the load, and this influences the load effects on the
columns, In the following, wvariability from both the

components is considered.

2.4.1 VARIABILITY OF DEAD LOADS

Except in cases where the lower parts of the
building have to be designed before the wupper part is
well defined, dead 1loads are known accurately 1in

comparision with other loads. The ratio, R, of actual to

D
nominal dead load was represented by a normal
distribution with the mean equal to 1.05 and the
coefficient of wvariation equal to 0.07. This was based
on studies of the variability of aead load effects in
concrete structures resulting from wvariations in
dimensions, densities, superimposed loads, and analysis
(Ellingwood et al 1980). Allen(1975) assumed values of
1.0 and 0.07 whereas Lind et al (1978) used values of 1.0
and 0.05. Nowak and Lind(1979) assumed the values as

1.05 and 0.08 for site-cast concrete bridge structures.
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2.4.2 VARIABILITY OF LIVE LOADS

The ratio, R of the maximum 30 year live load to
the nominal load was assumed to have a mean of 0.70, and
as suggested by Allen(1975) 1is independent of the
tributary area. On the basis of load survey results of
Mitchell and Woodgate(1971), the coefficient of
variation of maximum live load is taken to be 0.30, and
is independent of the tributary area. ©Nowak and
Curtis(1980) suggest a gamma distribution for the 1live
loads, while Allen(1975) does not specify the
distribution. In the present study an extreme type I
distribution was assumed for the maximum live load in 30

years.

2.4.3 LOAD COMBINATION

It is important to combine the different 1load
effects properly so as to achieve a more realistic
assessment of reliability. Load effects are usually
random functions of time. When the design is resisting
gravity loads, one possible load combination is the dead
load (which would be constant in time) and the maximum
live 1load (or the maximum occupancy 1load) 1in the
lifetime of the structure. This combination of the loads
has been considered in this study with the nominal
values of ‘the live and the dead loads equal to each

other.



Define a dead load ratio factor, a as:

_ Nominal dead load
" Total nominal load

where the total nominal load is the sum of the nominal
values of the dead and the live loads. Hence for our
case a=1/2.

Two more cases with a=1/3 and a=2/3 (i.e. with the
nominal value of the 1live 1load equal to twice the
nominal value of the dead load, and vice-versa) were
also considered for one cross section 1in order to
investigate the effect of this fgctor on the
reliability.

The load effects of wind, snow and earthquake have
not been considered.

No load factors have been applied.

The load combination procedure may be summarized as

follows:
D+L=RDDN+RLLN

where

D = actual dead load

L = actual live load

Dy = nominal dead load

Ly = nominal live load
and Ry and R, are as described previously.
Then

DN
D+L=LN{RD(—£—)+RL}



Now we have:

N
a_
D .+L
Rearranging NN
N ¢
LN 1-a
Hence, the load effect can finally be written as:
- a
D+ L =1>Ly {Ry ( 5=5) + Ry }
This formulation was used to simulate the load

for this study.

effect



3. STRENGTH MODEL

3.1 INTRODUCTION

This chaptef describes a theoretical model for
predicting the strength of slender reinforced columns. The
model uses the stress strain behaviour for concrete as given
by Desai and Krishnan (1964). The stress strain relationship
for steel is assumed to be elastic-perfectly plastic.

The theory and assumptions in the model are described,
along with a basis for the computer program used to obtain
the strength of slender, reinforced concrete columns.

The organization of the program is similar to one
developed by Nathan (1972) for reinforced and prestressed
concrete, and verified for those materials by Alcock and

‘Nathan(1977).

3.2 ASSUMPTIONS

The following assumptions are made :

1. Plane sections remain plane.

2. Material properties are constant along the length of
the column.

3. Dimensions and error in placing of steel bars are
constant along the length of the column.

4, If moment varies along a member, failure occurs at
the cross section subjected to maximum moment, or by
instability of the member.

5. Bending in only one plane is considered.

16
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6. Effects of shrinkage are neglected.

7. No torsional or out-of-plane deformations are
considered.b Duration of 1load effects are not
consiaered. Shear failures are not considered.

8. There is no slip between the concrete and the

reinforcing steel.

3.3 CROSS SECTION BEHAVIOUR

The ultimate interaction diagram and the moment -
curvature-axial 1load relationships for a cross-section are
derived by using a simple step-by-step procedure to obtain
axial load and moment capacities for a range of neutral axis
depths and curvatures., Recall that the ultimate interaction
diagram shows the 1limiting combinations of axial load and

bending moment that a section can resist.

3.3.1 ULTIMATE INTERACTION DIAGRAM

For the reinforced concrete cross section such as
the one shown in figure 3(a), the calculation begins by
considering the top fibre at wultimate strain (failure
strain for concrete). The neutral axis is then marched
across the section. A typical location of the neutral
axis produces a strain distribution across the section
as shown in figure 3(b). The‘following procedure is then
used to determine what combination of axial load and

bending moment would produce this condition.
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al a
¢ ¢ § concrete § steel
strain strain
T' .
[ o
) . material segment net
» stress .

sgchon stroin propefﬁes forces actions

- (b (¢) (d) (e) ()
Figure 3. Cross section behaviour

The depth of the section is divided into a number
of segments. The strain at the mid-height of each
segment 1is evaluated. The appropriate stress-strain law
is then used to find the stress for each segment as
shown in figure 3(d). This stress is multiplied by the
area of the segment to give the force acting on each
segment, as shown in figure 3(e5. The forces in the

steel bars, C_ and Ts are found in a similar manner.

s

The forces for all the segments are added to give
the required axial force, P. The forces in the segments
are multiplied by the distance from the mid-height of
the segment to the centroidal axis, and then added to
give the bending moment, M, acting on the cross section.

At this stage, the following information is stored,
before repeating the above calculation with increased
neutral axis depth. The stored information is:

1. Curvature (input)

2. Net axial load (output)
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3. Bending;moment (output)

For a number of neutral axis locations, the
procedure described above is repeated, till the neutral
axis has marched across the section.

Hence we obtain the axial load-bending moment
interaction diagram. The wultimate interaction diagram
for a section of dimensions 500mm X 500mm with 2% steel
is shown in figure 4. Any point inside the curve
represents a combination of axial force and bending
moment that the cross section can resist. Any point

outside the curve represents failure.

3.3.2 CURVATURE CONTOURS
A number of values for curvature (30 in this case)

are selected between zero and ¢ma

% ! where $ra is the

X
maximum curvature on the ultimate interaction diagram.
The curvature contours afe found for each of these
curvature values. The procedure followed for finding the
curvature contours is described below.

For a selection of curvature, the neutral axis 1is
marched across the cross section. The net axial load and
bending moment for each of these neutral axis locations
is found by a procedure similar to the one described in
the previous section. Figure 5 shows the relationship
between axial force and bending moment for 30 curvature

contours. Each line represents a single value of section

curvature. Different points on a 1line of constant
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curvature répresent the combinations of axial load and
moment required to produce that curvature for various
neutral axis locations. Note that figure 4 1is the

envelope of all the points shown in figure 5.

3.3.3 MOMENT-CURVATURE CURVES

Figure 6 shows the moment-curvature relationships
for several levels of axial 1loads,P. All the curves
start at the origin but some have been shifted for
clarity of presentation. P, 1is the axial compression
strength of the column. These curves are computed from

already stored data. A horizontal 1line on figure 5
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Figure 6. Moment-curvature-axial load relationships
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represents a level of axial load. Each intersection of
this horizontal line with a curvature contour provides a
value of bending moment and curvature, which is plotted
on figure 6. The final point for each moment-curvature
curve represents the point on the wultimate interaction
curve for that level of axial load. For high values of
axial load, a falling branch of the moment-curvature
curve exists, beyond the maximum moment, but this is not
plotted as this information is not used 1in subsegquent

calculations.

3.4 SLENDER COLUMN BEHAVIOUR

This section describes the procedure used to establish
the behaviour of columns of any length under the action of
eccentric axial loads with equal end eccentricities and no

lateral load as shown in figure 7.

P

P

Flgure 7. Column with axial load and egual end
eccentricities
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3.4.1 FAILURE MODES

In order to facilitate the understanding of the
computer model, the behaviour of eccentrically loaded
compression members will be reviewed in this section.
Consider the possible behaviour of the member shown in
figure 7, as the axial load P is increased to failure.
If the end eccentricity for the axial load 1is e, then
the bending moment at the ends is Pe, while the bending
moment at the mid-span is P(e+A), where A 1is 1is the
deflection at mid-span, as shown.

Figure 8 is an interaction diagram of axial load vs
bending - moment. The outer curved line is the ultimate
interaction curve for the cross—-section, and it
represents material failure. Consider a load path for
axial load and end moment, as axial load P is increased,
represented by the 1line 0O-A, to P,. The corresponding
load path for mid-span moment is shown by the curved
line O-B.

The horizontal distance between lines O-A and O-B
represents the amount by which the initial mid-span
moment, Pe has magnified to P(e+A). In this case the
member fails at an axial load P,, when the mid-span load
path O-B intersects the material strength interaction
diagram at the point B. This is described as material
failure .

If the same member 1is loaded with a smaller

eccentricity, the load path for end moments could be
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shown by line ©0-C, and the 1load path for mid-span
moments by line O-D. In this case an instability failure
occurs when the axial load reaches a maximum value P,.
The mid-span moment at failure 1is shown by point D,
which is well inside the material strength curve. If the
member were loaded with a system under load control (for
example, gravity loads) to load P,, deformations would
increase rapidly and a material failure would follow
immediately., If the member were loaded under conditions
of controlled displacement the load path shown by the
extension of line O-D would be followed to eventual
material failure at point E.

If this process is repeated many times for the same
member using a range of eccentricities, figure 9 can be
produced. The solid line is the wultimate interaction
diagram. The chain-dotted line PU—C—A—Mu is the locus of
points such as A and C 1in figure 8, representing
combinations of axial load and end moment (unmagnified
moment) just causing failure.

3.4.2 CALCULATION PROCEDURE

A computer program for calculating points on the
curves shown in figure 8 is described below.

The program can consider a column of any length
made up of &a number of segments of equal length. A
method described by Galambos(1968) is used to develop

column deflection curves for a given axial load, to
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determine the maximum end eccentricity, e, at which that

- load can be applied to that column.

As the column is symmetrically loaded, the slope is
considered to be zero at mid-span. For the axial 1load
under consideration, the moment at mid-span is initially
set to the material failure moment for that load (a
point on ‘the ultimate interaction diagram). The
corresponding mid-span deflection, e+A, (from the 1line
of axial 1load) 1is the failure moment divided by the
axial load. To find the actual values of e and A it is
necessary to calculate the deflected shape of the
member. A column deflection curve 1is obtained by
proceeding along the column, segment-by-segment from
mid-span, calculating the deflection at each node.

Consider the calculations for a typical segment of
length Ax, such as that shown in figure 10. 1If the
deflection v, and slope v are known at the starting
node x,, then the moment M,, at the mid—boint of the
segment (point x,) is approximately

M; = P(vgot+tvg-Ax/2)
The curvature, ¢,, at point x,; can be obtained from the
moment-curvature-axial load relationship (figure 5). The
curvature 1is assumed to be constant along the segment.
The deflections are assumed to be small such that ¢=v".

The displacement, v,, and slope, v;, at the next
node, x, are calculated from

v, = vy + vg(Ax) - ¢,(Ax)2%/2
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Figure 10. Column deflection curves

and:
v = vg - ¢,(8x)
The moment M, at node x, is the product of P and v,.

For the first calculation of the column deflection
curve, (with the moment at mid-span equal to the failure
moment at that load) the end eccentricity is calculated
to be e,. The calculation is then repeated for a lower
mid-span moment. If the new end eccentricity, e,, is
less than e, (figure 10(b)), then this alsob represents
material failure and this calculation 1is ignored.
However, if e, is greater than e, (figure 10(c)) then

this represents instability failure, and the calculation
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is repeated with smaller reductions in the mid-span
moment till a peak value for the end eccentricity is
observed. This peak value is then the end eccentricity
at which instability failure occurs, and when multiplied
by the axial 1load, it gives the end moment for

instability failure.

3.5 PROGRAM INPUT
The following information is required as input to this
computer model. Each of these items will be discussed in
detail below.
1. Cross section properties:
a. Cross section dimensions
b. Properties of concrete
c. Properties of reinforcement
2. Slenderness effect:
a. Column length
b. Segment length for column deflection curves

c. Reduction ratio for mid-span moment

3.5.1 CROSS SECTION PROPERTIES

The program can be used té obtain column properties
for any polygonal shape of cross section up to twenty
corners. However, for the present study it has been used
only for rectangular sections.

The‘program can consider various stress strain

relationships for concrete as well as for steel.
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However, for this study the stress strain relationship
for concrete in compression is assumed to follow the
modified Hognestad relationship, as presented by Desai
and Krishnan (1964), by the following relation:

f 2(e/eo)

£, 1+(e/eo)?
Here f, and e, are the peak stress and peak strain
respectively. The compressive strength of concrete, fé
is input, along with the modulus of elasticity, Ec . The
peak strain 1is calculated by the following relation
suggested by Desai and Krishnan(1964):
2f’
€p = <

Ee
After an ultimate strain of 0.0038 the concrete was
assumed to have no strength even though it may still be
confined by the column ties and capable of supporting
some load. The strength of concrete 1in tension is
neglected. The Youngs Modulus and the yield stress for
the steel reinforcement are input. The reinforcement is
assumed to follow the elastic-perfectly plastic
stress-strain relationship. The elastic-perfectly
plastic stress-strain relationship is somewhat

conservative because the effect of strain hardening is

neglected.



30

3.5.2 SLENDERNESS EFFECT

The program can handle a column of any length and
slenderness ratio. The effect of the slenderness on the
strength of the column is accounted for as described
earlier.

Chen and Astuta(1976) have shown that a segment
length of four times the radius of gyration gives
sufficiently accurate results. For a rectangular section
this corresponds to 1.16 times the section depth. A
segment length equal to the section depth has been
considered throughout this study.

The program also requires as input the rate at
which the mid-span moment is to be reduced 1in the
step-by-step procedure for the construction of the
column deflection curves. A value of 0.05 times the

maximum moment has been used,

3.6 PROGRAM OUTPUT

The output from this computer model typically consists
of axial load-end moment interaction curves for several
column 1lengths. The calculations described in the previous
sections have been <carried out for columns of several
slenderness ratios, each at eight different levels of axial
load between 0.02 to 0.60 times the maximum load. Figure 11
shows an 1interaction diagram showing the combination of
axial load P and end moment Pe just producing failure for a

typical 500mm X 500mm cross section column with 2% steel.
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Figure 11. Strength interaction curve for slender columns

The outer 1line 1is the ultimate interaction diagrém
representing material strength (slenderness effects for a
slenderness ratio of 10 are negligible). The 1inner curves
correspond to the curve P ~C-a-M in figure 9. For low
slenderness ratios the inner curves are close to the
ultimate interaction curve. As the slenderness ratio
increases, the curves move inside the wultimate interaction
diagram, indicating that behaviour under these loads is
governed by instability failures.

These curves have been plotted directly from the
computer output. Only eight 1levels of axial 1load were

considered and 1linear interpolation was used to f£ind the
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limiting bending moment for any intermediate axial load.
This is considered to give sufficiently accurate results for

the purpose of this study.



4. RELIABILITY EVALUATION

4.1 INTRODUCTION

This chapter describes the theory behind the method
used to evaluate the reliability of the reinforced concrete
columns, as well as the basis for the computer program used.

The evaluation of the reliability is done by finding
the value of the reliability index for a number of wvalues
for the nominal axial 1load. Linear interpolation is then
used to find the value of the allowable nominal axial 1load

corresponding to the target reliability.

4,2 RELIABILITY INDEX CONCEPT

To facilitate a better understanding of the theoretical
model for the reliability program, the safety index concept
is briefly reviewed. The description presented below is
" similar to the one by Foschi(1979).
A design problem in structural analysis typically has a

set of relevant variables (X,,X;,...,X_ ), some of which are

n
related to the resistance of the material, while others are
related to the effect of the design loads. These variables
must satisfy a design equation of the form
G(X1,X2,...,Xn ) £0
In general, several such conditions could be
considered, each of them defining the appropriate /[imit

states.

33
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In general, the wvariables X are random variables
obeying some distribution function. Hence the design process
is not deterministic, and the design conditions will not be
satisfied for all wvalues of the variables X. The design
strategy usually followed is to specify a 'tolerated' range
for which the variables should satisfy the design
conditions. This gives a 'reliability' range, which can be
expressed 1in terms of mathematical probabilities, provided
the individual distributions of the design variables X are
known. Veneziano (1974) describes some methods of doing this
in detail.

Consider the simple case of only two design variables,
R and U. R is the resistance for the problem, while U
represents the load effect. R and U are called 'basic
variables' of the design problem (Hasofer and Lind (1974)).

The failure criterion can be written as

U=2R
where the equality would represent the boundary between
survival and failure. If U and oy are the mean and standard
deviation of U, and R and op are the mean and standard
deviation of R, we <can define non-dimensional random
variables x and y such that
(R - R)

X =

R

(v - 0)

oy
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Hence the failure criterion can be written as
(R-0) o

+ x(_B

u %

Note that this is the equation of a straight line with

y 2
o

a slope aR/aU and an intercept (ﬁ-ﬁ)/aU on the y-axis as
shown in figure 12,

If the variables R and U are not correlated, the points
(x,y) representing a combination (R,U) will be distributed
over the entire x-y plane. The failure criterion divides the
plane into two parts. The upper part corresponds to
combinations of R and U producing failure and the lower part
corresponds to combinations representing survival,

The minimum distance between the origin 0,
corresponding to the mean values of R and U, and the

boundary I-1I, the 'failure surface' is given by the segment

FAILURE

- -
- ,”

Figure 12, Definition of the reliability index
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OA. This minimum distance, defined as the reliability index

B, can be calculated from the figure as

(® - 0)
V(ok + o)

The point A is called the most 1likely failure point.
Any combination of R and U below the failure surface (which
is at a minimum distance of g from the mean point) will not
produce failure. This 1is a reliability statement on the
design problem and therefore, § may be used as a reliability
measure, which can be related to the probability of failure,
Pf . Even for the case wheh there are more than two basic
variables and when the failure function, G, is non-linear, 8
is defined as the minimum distance from the mean point to
the failure surface.
If we define:
Y = R-U
the failure criterion becomes the event Y < 0. Then
Y = R-U
and
oy, = V(o + aé)
Hence, f§ can be written as
B=Y/0_Y'
Hence, as shown in figure.13,'the measure 3 becomes the

number of standard deviations, o that the mean Y is from

Y 1
the failure event Y=0. The probability of failure Pe is then
given by P(YSO); and corresponds to the area of the shaded

portion of figure 13, If R and U are normally distributed, Y
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Figure 13. Reliability Index and the probability of failure

will be normally distributed and Pe can easily be obtained
from the normal tables, knowing the value of §.

The relationship between g and Pe becomes very complex
for the following cases:

1. G being a non-linear function

2. R and U being non-normal

3. R and U being correlated

Rackwitz and Fiessler(1978) suggest a transformation to
the R and U distributions which minimizes the error 1in the
calculation of B due to non-normal distributions. This
transformation 1is the basis of the Rackwitz-Fiessler
algorithm. This algorithm uses an iterative procedure on the
variables to locate the most likely failure point, and hence

to evaluate the reliability index.
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If R and U are dependent on each other, then they have
to be uncorreléted before wusing the Rackwitz-Fiessler
algorithm.

For this study, a computer program based on the
.Rackwitz—Fiessler algorithm was used to evaluate the value
‘of the reliability index, f from the values of the failure

finction, G.

4.3 RELIABILITY CRITERION

The method used for evaluating the reliability of the
reinforced concrete slender columns is analogous to the 6ne
described above.

The capacity of the column depends upon the
eccentricity at which it is loaded, as well as upon the
column properties. The interaction curves shown in figure 14
represent the column properties, and may be defined by the
parameters P, and M,. Hence, the capacity of the column may
be written as

P = f(M,M,,Py)
where Pc is the axial force capacity of the column when a
bending moment M is applied at the ends.

The failure function may be written as:

G=P, - P
or:
G = £(M,M,Po)-Py

where P1 is the axial load. A negative value for the failure

function represents failure. But for a given eccentricity, a
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higher axial load corresponds to a higher bending moment
while a lower axial 1load corresponds to a lower bending
moment. Thus, M and Pl are correlated, or, Pc and Pl are
correlated.

This problem may be solved by the method described

below.

4,3.1 IMPLICIT UNCORRELATION PROCEDURE

In this procedure the variables R and U are not
explicitly uncorrelated. The procedure is presented here
for solving the problem at hand. However, with some
modifications the Implicit Uncorrelation Procedure can
be generalized for any set of random correlated

variables,

R

capacity \\

mean eccentricity

w \\\\\\\
& \\\\\\\
%
-d
5 Ph 1\ A
<
loads

M

o
MOMENT

Figure 14. The Implicit Uncorrelation Procedure
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Recall that in our case, axial load Py and bending
moment M are correlated such that a high value of Pl
corresponds to a high value of M. Similarly, a low value
of Pl corresponds_to a low value of M.

In the following it is assumed that we need to find
the reliability index f§ for given mean values for axial
load and eccentricity. The distribution of the axial
load is known. The method for finding the standard
deviation for eccentricity 1is described in the next
éection. The distribution of eccentricity is assumed to
be normal.

The Implicit Uncorrelation Procedure 1is described
below.

1. Simulate random values for axial load and for
eccentricity for the given mean values and
distributions.

2. Select one value of axial load to investigated
(say P,, as shown in figure 14).

3. Multiply Py, by each of the simulated
eccentricity values to get the corresponding
range of bending moment values.

4, Using linear interpolation, find the capacity
for each bending moment value for each
interaction curve. This gives a distribution for
capacities as shown in figure 14.

5. Subtract from each of the capacity values, the

axial load value wunder investigation to get
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values for the failure function G, which are
stored in an array.

6. Repeat steps 2 through 5 till all the simulated
axial load values have been considered.

The procedure described will 1lead to a set of
values for the failure function G. Note that the failure
function will not be distributed according to some
standard distribution. These values are then used to
evaluate the measure B} using the Rackwitz-Fiessler

algorithm as outlined earlier in this chapter.

4.3.2 STANDARD DEVIATION FOR ECCENTRICITY

The uncertainity in the bending moment can mainly
be due to two reasons.

1. Due to the exact magnitude of the loads being

unknown. |
2. Due to the exact distribution of the loads being
unknown,

The variability of the loads for the first reason
has been discussed in section 2.4. In the following it
has been assumed that the distribution of the dead 1load
is exactly known, and that it entails no uncerta{nity in
the evaluation of the bending moment acting on the
column,

A survey of different kinds of possible 1loading
distributions on a beam re&eal that it is reasonable to

assume a vériability of about 5% in evaluating the
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mean eccentricity

/
/

MOMENT

Figure 15. Standard deviation of eccentricity

bending

moment when the exact force is known.

The method used for finding the standard deviation

for the

1'

eccentricity is as follows.

Select the mean eccentricity for which the
variability is to be investigated. (Figure 15).
Simulate an axial load distribution for some
average axial load value. Hence, knowing the
mean eccentricity the average value of the
bending moment corresponding to a particular
value of axial load is fixed.

Simulate values for the bending moment assuming

a Variability caused only by the distribution of
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the load. Hence, calculate the set of
corresponding eccentricity values.
4, Repeat steps 3 and 4 until all the simulated
axial load values have been considerea.
It was found that  the variability of the
eccentricity is independent of the nominal axial load.
Note that instead of using step 3 of the Implicit
Uncorrelation Procedure, the values of the bending
moments could had been simulated directly, without using
the variability of the eccentricity. However, the
simulation of the bending moments would be different for
each level of the nominal axial 1load, whereas the
simulation of the eccentricity values remains the same.
Hence, this method leads to saving in the computer time
due to the large number of nominal axial load levels at

which the reliability is to be investigated.

4.4 SAMPLE SIZE

The procedure described above is capable of finding the
value of the reliability index, B for a particular value of
the nominal axial load. This procedure is to be repeated a
number of times in order to find the nominal axial 1load
corresponding to the target f§ for each cross section, and
for each slenderness ratio. Hence, in order to save computer
time it 1is necessary to determine the smallest possible
sample sizes. Grant et al! (1978) have suggested that a

sample size of 200 column sections is adequate to represent
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the variability in strength. In the present study 250 column
cross sections were simulated. |

The axial load was simulated by 50 values while the
sample size for the eccentricities was 20. This gives 1000
load points. The Code for the Design of Concrete Structures
for Buildings (CSA A23.3) aims at a possibility of overloads
of 1 in 1000, so a sample size of 1000 simulated load points
seems to be adequate.

The above sample sizes will lead to 250,000 values for
the failure function, G, which are to be placed in ascending
order, and then used to evaluate the reliability index. In
order to save computer time in this calculation only
alternate ranked values of the failure function were
considered after placing them in ascending order (a total of
125,000 wvalues) and the result was compared with that
obtained by using all the 250,000 values. A variation of
about 5% was observed. Hence, the calculations for the
reliability index were performed using all the 250,000

values of the failure function.



5. RESULTS

5.1 INTRODUCTION

The results obtained by the method described in the
preVious chapters are in the form of the value of the
reliability index, f v/s the corresponding nominal axial
load. The code aims at a probability of overloads for
columns of one 1in a thousand, and a probability of
understrength of one in a hundred. Now

Prob(failure) = Prob(overloads) X Prob(understrength)
Hence the the code aims at achieving a probability of
failure of 1 in 100,000 for columns. The method for doing
this 1is by specifying strength reduction factors and some
load factors. The reliability index B corresponding to a

probability of failure of 1 in 100,000 is 4.265.

5.2 RELIABILITY AND AXIAL LOAD

The first step in the analysis of the results is to
obtain the value of the maximum allowable nominal axial load
that would correspond to the target f of 4.265. Figure 16
shows the relation between B8 and the axial load for a
250mm X 250mm cross section with 2% steel, for a mean
eccentricity of axial load of 50mm. Linear interpolation was
used to obtain the axial load corresponding to the target §
of 4.265. This maximum allowable nominal axial load
corresponding to a f§ of 4.265 is referred to as the computer

result in the following.

45
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5.3 RELIABILITY AND LOAD RATIO

As described earlier, the load effects of only the dead
load and the 1live load were considered in this study. The
dead load ratio factor a was defined in section 2.4.3. 1In
this study a was primarily considered to have the value 1/2.
However, to check the variation of the reliability with a,
values of a equal to 1/3 and 2/3 were also coﬁsidered for
one cross section. The résults are presented for slenderness
ratio's of 10 and 60 in figure 17. Note that the value of a

does not affect the results by more than about 7%.

5.4 RESULT FORMAT

In the present study it was assumed that the 1load
factors A as presented in the code adequately express the
effect of variability of the load effects.

The computer results obtained by the present study were
compared with those found by the code method. For the
evaluation of the allowable axial load capacities by the
code method, the strength of concrete was assumed to follow
the modified Hognestad stress-strain relationship. This is
more accurate than the rectangular stress block relationship
and is allowed by the code.

The results are presented for the various specimen
cross sections and - slenderness ratios for different
eccentricities of - loading in tables 1 to 3 for
CAN3-A23,3-M77 and 1in tables 4 to 6 for the new code. The

results are in terms of the factor § where
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Mean Ecc Slenderness Ratio
(mm) 10 20 30 40 50 60 80
25 0.87 0.91 0.99 1.12 1.28 1.15 1.38
50 0.9 0.96 1.01 1.06 1.07 1.06 1.09
80 0.95 0.94 0.93 0.95 0.95 1.01 0.94
150 0.83 0.94 0.93 0.92 0.92 0.94 0.92
250 1.10 1.06 0.99 0.92 0.91 0.90 0.89
Table 1. So for 250mm X 250mm column with 2% steel, 4=0.52
Mean Ecc Slenderness Ratio
(mm) 10 20 30 40 50 60 80
50 1.14 1.15 1.18 1.24 1.33 1.45 1.69
100 1.16 1.19 1.22 1.27 1.31 1.33 1.47
160 1.17 1.19 1.21 1.22 1.24 1.28 1.30
300 1.14 1.17 1.18 1.19. 1.20 1.21 1.20
500 1.24 1.25 1.26 1.24 1.17 1.10 1.03
Table 2. go for 500mm X 500mm column with 2% steel, 1=0.76'
Mean Ecc Slenderness Ratio
(mm) 10 20 30 40 50 60 80
50 1.06 1.05 1.03 1.01 1.00 1.04 1.15
100 1.05 1.05 1.04 1.04 1.06 1.09 1.20
160 1.06 1.07 1.06 1.09 1.09 1.12 1.19
300 |1.03 '1.03 1.03 1.04 1.06 1.12  1.21
500 1.03 1.04 1.05 1.06 1.09 1.10 1.12
Table 3. So for 500mm X 500mm column with 4% steel, +4=0.73
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Mean Ecc

Slenderness Ratio

10

(mm) 20 30 40 50 60 80
25 0.86 0.87 0.94 1.06 1.21 1.12 1,32
50 0.86 0.91 0.95 1.01 1.04 1.03 1.05
80 0.89 0.91 0.91 0.94 0.93 0.97 0.91
150 0.92 0.92 0.91 0.90 0.89 0.91 0.92
250 1.07 1.05 1.00 0.92 0.90 0.87 0.91
Table 4. Sn for 250mm X 250mm column with 2% steel, ¥=0.52
Mean Ecc Slenderness Ratio
(mm) 10 20 30 40 50 60 80
50 1.11 1.10 T.11 1.16 1.25 1.36 1.59
100 1.08 1.11 1.13 1.18 1.22 1.24 1.35
160 1.07 1.10 .11 1.12 1.13 1.15° 1.17
300 0.97 0.98 0.99 1.00 1.01 1.02 1.03
500 0.96 0.97 0.97 0.98 0.95 0.91 0.90
Table 5. sn for 500mm X 500mm column with 2% steel, ¥=0.76
&ean Ecc Slenderness Ratio
(mm) 10 20 30 40 50 60 80
50 1.02 0.99 0.94 0.91 0.91 0.96 1.07
100 0.93 0.94 0.93 0.93 0.95 0.99 1.10
160 0.93 0.94 0.94 0.95 0.97 1.00 1.08
300 0.89 0.96 0.90 0.90 0.92 0.96 1.04
500 0.81 0.82 0.83 0.85 0.88 0.89 0.92

Table 6. Sn for 500mm X 500mm column with 4% steel, 4=0.73
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§ = Ractual /Rcode

where Ractual are the axial load capacities found by this

study for a § of 4.265. R are the axial load capacities

code
obtained by the code method. go refers to the computer
results as compared with those obtained by following
CAN3-A23.3-M77, while Sn refers to the computer results

compared with those obtained by following CSA-A23.3(1984).

5.5 CODE EVALUATION

MacGregor et al (1970) surveyed 22000 columns 1in the
late 1960s and found that nearly all of them had a
slenderness ratio less than 30. Hence, 1in any attempt at
code calibration columns with slenderness ratios of 30 or
less must be considered important. However, it should also
be realized that columns with higher slenderness ratios are
the ones that usually create problems and as such their
importance increases. In this study the columns were divided
into two categories and each category was considered
separately. The first .category consists of columns with
slenderness ratios of 30 or less. The second category
consists of columns with slenderness ratios greater than 30.

Grant(1976) conducted a use study of column sizes and
steel ratios of wvarious buildings in Alberta. The results
indicate that more than 50 percent of the column widths
range from 16in.(406mm) to 24in.(610mm) and more than 50
percent of the columns have steel ratios between 0.005 and

0.015. Hence, out of the sections considered for this study,
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the 500mm X 500mm cross section with 2% steel would be one
of the more widely used ones. Hence, a code modification
which can 1lead to some improvement in the value of § for
this particular cross section without adversely affecting
the results for the other cross sections would be a
practically acceptable proposal.

For an objective comparison between the proposal and
the code procedure the following method was adopted.

The error e is defined as:

_ g B - I1q.o)2

where the summation is performed over all the values falling
in a particular category.

Tables 4, 5 and 6 reveal that CSA-A23.3 (1984) leads to
results that are close to the computer result for 1low
slenderness, especially for the 500mm X 500mm cross section
with 2% steel. However, with increasing slenderness, there
is an increasing difference between the code and the
computer results. Hence, it was felt that retaining the
present ¢ and ¢ (i.e. 0.60 and 0.85 respectively), but
with a different m would be a realistic proposal for a more
consistent code.;

For this purpose, values of ¢m between 0.55 and 1.05
vere considered at intervals of 0.05. The result 1is
presented in fiqure 18 in terms of the factor e. In figure
18 note that for the 500mm X 500mm (2% steel) cross section,

the cumulative error e is minimum for ¢m =1.0., However, at
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Figure 18. Variation of e with ¢

high values of ¢_some values of { became as low as 0.78.

m
for this column (an error of up to 22% from the computer
result). Such low values of B are incompatible with the code
aim as they would lead to a very 1low reliability. It |is
proposed that for such common sections, the minimum value of
¢ should not be less than 0.90, i.e. an error of more than
108 from the computer result 1is not allowed. With this
condition, a value for ¢ of 0.70 was found to be optimum.
However, this entails restricting the use of the moment

magnification formula to columns with slenderness ratios of

equal to or less than 60.
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Mean Ecc Slenderness Ratio
(mm) 10 20 30 40 50 60 80
25 0.86 0.86 0.93 1.03 1.16 1.06 1.24
50 0.86 0.90 0.94 0.99 1.01 0.99 0.98
80 0.89 0.90 0.90 0.92 0.90 0.93 0.87
150 0.92 0.91 0.90 0.88 0.87 0.89 0.89
250 1.07 1.04 0.99 0.91 0.89 0.85 0.87

Table 7. § for 250mm X 250mm column with 2% steel, ¥y=0.52

Mean Ecc Slenderness Ratio
(mm) 10 20 30 40 50 60 80
50 1.11 1.10 1.10 1.14 1.21 1.30 1.49

100 1.08 1,10 1.12 1.16 1.19 1.20 1.28
160 1.07 1.09 1.10 1.1 1.11 1.11 T.11

300 0.97 0.98 0.98 0.99 0.99 0.99 1.00

500 0.96 0.97 0.96 0.97 0.94 0.90 0.89

Table‘8. § for 500mm X 500mm column with 2% steel, ¥=0.76

p1
Mean Ecc Slenderness Ratio
(mm) 10 20 30 40 50 60 80
50 1.02 0.96 0.93 0.90 0.89 0.92 1.01

100 0.93 0.93 0.93 0.92 0.93 0.96 1.05
160 0.93 0.94 0.93 0.94 0.95 0.97 1.03
300 0.89 0.89 0.89 0.89 0.90 0.94 1.00

500 0.81 0.82 0.83 0.84 0.86 0.87 0.%0

Table 9. § for 500mm X 500mm column with 4% steel, ¥=0.73

p1
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Figure 19, Results for the 250mm X 250mm column with 2%
steel

The results for all the three sectiéns in terms of the
factor § (denoted in this case by the gp] ) are presented in
Tables 7-9 for ¢c =0.60, ¢s =0.80 and ¢m =0.70. Note that
this proposal does not have any significant adverse effect
on the two less common cross sections (250mm X 250mm (2%
steel) and 500mm X 500mm (4% steel)).

In addition to the above, note from Table - 5 that
CSA-A23.3 (1984) 1eads. to a § less than 1.00 for high
eccentricities while for‘low eccentricities the § is greater
than 1.00. This 1is true even for the short column, which
suggests a change in the material resistance factors, ¢ and

¢ . By increasing ¢ and decreasing ¢ this difference can

S



4000
* - COMPUTER RESULT
3500 ecc=30mm
CSA-A23.3 1984
' =10/ N = s
. . CSA-A23.3-M7
3000 SN\ TEeeeeeRE e mmen
4 RN MODIFIED CSA-A23.3
z ~~~ \
X 2500 RN
8 ] = .\
% l/r-GO s‘\~ .\'.
N 2000 . \.
| heS \..~". ‘\ \
< W \~‘ \\. \‘
> 1500 oo N . .
< ~ -~ . \
\‘s \ “ /
NN o
’000" \‘ \ . , /
* \ o’ ecc=500mm
l‘ ,.' ‘I
500 . :
0 T o 1 T T —— —
0 100 200 300 400 500

_ BENDING MOMENT kN—m
Figure 20. Results for the 500mm X 500mm column with 2%

steel
5000
* ecc=50mm
4500 COMPUTER RESULT
' CSA-A23.3 1984
.40004 4/ === -
ﬂ 1/r=10f .. CSA-A23.3-M77__.
3500 NN~ MODIFIED CSA—A23.3
E ] \“ \. ..................................
‘\‘ '\‘
by 3000 / N
O ] N
8 2500- l/r-so ‘\ \..."uv “\ '\-.
3 1 \\\ . \“ \
< 2000 \
x ‘\ ‘\ \
< 1 “\ .‘\'"- ‘I B
1500 - " o ] \
N N ' N —ecc=500mm
. ‘. .
1000 _ S
500
o] M N AR B | MBS T NS T v
0 100 200 300 400 500 600 700 800

BENDING MOMENT kN—m

Figure 21. Results for the 500mm X 500mm column with 4%
steel



56

Mean Ecc Slenderness Ratio
(mm) 10 20 30 40 50 60 80
25 0.86 0.86 0.90 1.01 1.14 1.05 1.24
50 0.83 0.87 0.91 0.97 "1.00 0.98 0.99
80 0.86 0.88 0.88 0.90 0.89 0.94 0.87
150 0.92 0.92 0.91 0.89 0.88 0.89 0.88
250 1.09 1.05 0.99 0.92 0.92 0.90 0.85
Table 10. sz for 250mm X 250mm column with 2% steel, 4=0.52
Mean Ecc Slenderness Ratio
(mm) 10 20 30 40 50 60 80
50 1.11 1.10 1.07 1.1 1.18 1.29 1.49
100 1.04 1.07 1.09 1.13 1.17 1.18 1.28
160 1.04 1.06 1.07 1.08 1.09 1.1 1.12
300 0.96 0.98 0.99 1.00 1.00 1.01 1.02
500 1.00 1.01 1.00 1.00 0.97 0.94 0.89
fablé 11. spz for 500mm X 500mm column with 2% steel, ¥=0.76
Mean Ecc Slenderness Ratio
(mm) 10 20 30 40 50 60 80
50 t.00 0.97 0.92 0.89 0.88 0.92 1.01
100 [0.92° 0.92 0.1 0.91 0.93 0.95  1.05
160 0.92 0.93 0.93 0.93 0.95 0.97 1.03
300 0.8 0.89 0.89 0.89 0.9 0.94 1.02
500 0.83. 0.84 0.85 0.86 0.89 0.90 0.93

Table 12.
able Sp

2_for 500mm X 500mm column with 4% steel, =0.73
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be reduced. To this end the values of ¢, corresponding to ¢

=0.65, ¢_ =0.80 and ¢ =0.70 (denoted in this case by Sp2
), are presented for the three cross sections in Tables
10-12. Again, note that this leads to better results for the
500mm X 500mm (2% steel) cross section without adversly
affecting the results for the other two sections.

Figures 19-21 show the results for the three cross
sections for slenderness ratios of 10 and 60. The modified
CSA-A23.3 result 1is the one with only the P changed to
0.70. A comparison between the results from CSA-A23.3 (both
1977 - and 1984 versions) and the probosed modified CSA-A23.3
is presented in Table 13 in terms of e. In table 13 Proposal
1 is the one in which only ¢ is changed while for Proposal

2 all the three strength reduction factors are changed.

Section Category|CSA-A23.3 CSA-A23.3 Proposal Proposal
M77 (1984) 1 2
250mmX250mm 1 0.0698 0.0920 0.0998 0.1105
2% steel 2 0.1319 0.1151 0.1093 0.1054
500mmX500mm 1 0.1936 0.0822 0.0800 0.0594
2% steel 2 | 0.3063  0.2159  0.1801 0.1708
500mmX500mm | 1 0.0472 0.1030 0.1066 0.1025
4% steel 2 0.1045 0.0791 0.0861 0.0809

Table 13. Comparison of results in terms of e



6. CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

From table 13 we note that a modification in the code
(CSA-A23.3 1984) to change the value of ¢ from 0.65 to 0.70
would reduce the root mean square error by as much as 16%
for a column of common usage. A more drastic modification

(i.e. to change 6. + ¢ and ¢, to 0.65, 0.80 and 0.70

s
respectively) would lead to still more accurate results,
However, a change in the material resistance factors would
also affect members other than those with flexure combined
with axial compression. Hence, a more detailed study is
suggested to evaluate the consequences of such a change.
Nevertheless, the first modification should be a practical
suggestion.

It can also be noted in the results that as the columns
become increasingly slender, the code results deviate more
and more from the'computer result. This 1is especially a
cause of concern for large eccentricities of loading because
the code results are non-conservative 1in such cases.
Moreover, with the development of computer software, it is
now possible to effectively predict the behaviour of slender
columns. Hence, it 1is desirable and practical to restrict
the use of the moment magnifiéation formula to columns of
slenderness ratios equal to or less than 60. Note that for a

slenderness ratio of up to 60, the proposal to change ¢, to

0.70 leads to a 1lowest ¢ of 0.90 for the commonly used

58



59

section (Table 8).

6.2 RECOMMENDATIONS
It 1is recommended that subject to the | following
condition, the wvalue of ¢m should be taken as 0.70 in the
Code for the Design of Concrete Structures for Buildings
(CSA-A23.3 1984). The condition to be satisfied is:
The slenderness ratio of the column should not be
greater than 60.
In case this condition <cannot be satisfied, a rational
procedure to evaluate the slenderness effect should be
followed. A computer program similar to the one described in
this thesis would be an acceptable rational procedure to

this end.
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