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ABSTRACT 

The fracture problem due to the singular stresses 

a r i s i n g from the sudden change of geometric properties 

around cracks and notches was studied both a n a l y t i c a l l y and 

experimentally. 

The f a i l u r e models of the cracked and the notched 

specimens were derived by using linear e l a s t i c fracture 

mechanics methodology, which led to the determination of the 

c r i t i c a l stress intensity factors. Experiments were 

conducted to determine fracture toughness for dif f e r e n t 

modes as well as the effect of variations in the crack-front 

width, specimen size and moisture content. Subsequently, 

fa i l u r e surfaces for cracks and notches were developed based 

on the experiments undertaken, describing in each case the 

interaction between mode I and mode II fracture toughness. 

To v e r i f y the r e l i a b i l i t y of these experiments, the results 

obtained were compared with the published l i t e r a t u r e . 

As an application, design curves for a 90 

degrees-cracked beam and a 90 degrees-notched beam are 

presented. These curves allow the prediction of the f a i l u r e 

loads due to the rapid crack propagation under different 

loading conditions. 

i i 
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1. INTRODUCTION 

1 . 1 THE PROBLEM 

In pr a c t i c a l situations wood i s sawn, chopped, chipped, 

sli c e d , dried, d r i l l e d , flaked, and fastened. Flaws or 

defects unavoidably occur as a result of each of these 

processes. In other cases, gaps between ends of boards in 

laminated timber (which are usually denoted by the term 

"butt-joint"), notches formed by a sawcut, re-entrant 

notches occurring at open butt or lap joints in laminated 

beams lead to a sudden change in geometry and stress 

concentrations. A l l of these cases result in a stress 

singularity formed at the notch root which can not be 

analyzed by ordinary stress formulae. The Timber Design 

Manual, as well as the governing Canadian design code, 

CAN3-086-M84: Code for Engineering Design in Wood, use a 

reduced net depth to account for the present of a notch in a 

beam, without consideration of the intense stress 

concentration at the notch corner. Furthermore, the code 

does not cover s p l i t e d specimens. 

Obviously, a the o r e t i c a l understanding of these 

s i n g u l a r i t i e s in wood should be of p r a c t i c a l importance. 

Application of fracture mechanics to wood is concerned 

with structural f a i l u r e by catastrophic crack propagation. 

In many applications, fracture mechanics techniques are used 

to eliminate such f a i l u r e s by special material control tests 

or by defining maximum crack or flaw sizes that can be 

1 
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tolerated in the structure. As mentioned above, flaws in a 

wood structure cannot be t o t a l l y controlled, so fracture 

mechanics methods must be used to assess the allowable load 

on the structure. 

Near the v i c i n i t y of a notch root or a crack t i p , the 

stress at every point in this region i s subjected to plane 

stress or st r a i n conditions which can be expressed in terms 

of the stress intensity factors. Therefore, the 

determination of the allowable load i s the same as obtaining 

the c r i t i c a l values of the stress intensity factors. 

Depending on the mode of crack t i p deformation, the 

stress intensity factors K are designated with a subscript 

I, II, III for the cracked specimen (zero notch angle 

cracks) which corresponds to the opening, forward shear and 

tranverse shear modes of deformation. For notches, the 

subscript A, B are used to define the stress intensity 

factors for the primary and the secondary stress f i e l d s 

respect i v e l y . 

C r i t i c a l values for the pure mode I and mode II for a 

cracked specimen have been studied and published for 

different species of wood. There i s , however, a lack of 

information about the c r i t i c a l values for the mixed mode 

fa i l u r e of a cracked specimen. 
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1.2 PREVIOUS RESEARCH 
Studies of the cracks or notches were initiated by Inglis 
(1913) who made the stress analysis of an e l l i p t i c a l hole in 
a uniformly stressed elastic plate. A crack can be 
represented by an infinitesimally narrow ellipse. Based on 
Inglis' theory, G r i f f i t h (1921) formulated his well known 
energy criterion for b r i t t l e fracture which was extended by 
Irwin (1948) and Orowan (1955) to apply to metallic solids 
where plastic deformation takes place at crack tips. Later, 
Savin (1961), using his photoelastic method, analyzed the 
stress at re-entrant corners. Up to that moment, the study 
of cracks and notches was mainly based on the energy method 
or individual experiment results to determine the stress 
concentration factors for specific geometries. 

Linear elastic fracture mechanics (LEFM) is based on 
the elastic solution of the crack tip stress f i e l d where the 
yielding has been highly localized at the crack front. 
Williams (1957) has solved the problem of a cracked plate, 
expressing the stresses a i j / the strains e i j ' a n t^ the 
displacements u — in terms of infinite series of singular 
and regular terms of r and 6, where r and 6 are polar 
coordinates, with the crack tip at the origin. Later, Irwin 
(1957) found that the f i r s t singular term always dominate in 
the stress formulae and expressed the stress and strain 
equations introducing the Kj stress intensity factor. 

A comprehensive analysis of crack tip elastic stresses, 
strains and displacements, using the stress intensity factor 
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method, was studied by Liu (1965&-1966) . For the case of 

small scale y i e l d i n g , SSY, L i u has shown that K i s capable 

of characterizing the crack t i p stresses, strains and 

displacements within the e l a s t i c f i e l d zone which forms the 

fundamental basis of the linear e l a s t i c fracture mechanics. 

The application of linear e l a s t i c fracture mechanics 

(LEFM), to cracked material using the stress intensity 

factors has been shown to be an e f f e c t i v e method by Knott 

(1973), Broek (1982), Hellan (1984) but r e s t r i c t e d to 

isotropic material. The extension of LEFM to orthotropic 

body was f i r s t made by Sih et at (1965) who derived formulae 

for the stresses in a small region surrounding a crack t i p 

in an orthotropic body. 

In the application of LEFM to the strength of 

structures, i t is not only the form of s i n g u l a r i t y but also 

the magnitude of the stresses near the root of the fractured 

surface what i s needed. This requires the computation of the 

so-called stress intensity factors for the s i n g u l a r i t y . And 

except for some simple geometry and boundary conditions, the 

solutions always require a numerical method. Walsh 

(1971,1972,1974) introduced a c a l i b r a t e d f i n i t e element 

method to compute the stress intensity factors using LEFM, 

which incorporated the singular terms in the displacement 

f i e l d . This method also s a t i s f i e s the equilibrium and 

compatibility conditions at the interface between the 

conventional f i n i t e elements and the modified elements. This 

method was extended to apply to orthotropic materials and 
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right angle notches. However, the method does not account 

for compatibility at the elements interfaces, which enhances 

monotonic convergence. 

A method suggested by Benzley (1974), using a 

compatible displacement formulation for a f i n i t e element, 

with singular 'enrichment' terms, solves this problem 

thoroughly. The method has been shown to be e f f i c i e n t and 

r e l i a b l e . 

This conformable displacement model was extended by 

Foschi and Barrett (1976) for the anisotropic case and used 

by G i f f o r d and Hilton (1978) to analyze cracks in isotropic 

bodies with 12-node isoparametric elements and a coarser 

mesh. 

The application of LEFM to the analysis of the stress 

f i e l d at the root of a sharp notch of arbitrary notch angle 

was f i r s t proposed by Leicester (1971). He introduced the 

stress intensity factors for notches, K A and Kfi, which 

correspond respectively to the primary and the secondary 

stress f i e l d of the eigenfields governing the notch t i p 

stress d i s t r i b u t i o n . However, the terms "opening mode" and 

" s l i d i n g mode" which are commonly used in connection with 

sharp cracks are applicable to notches only i f the notches 

are symmetrical with respect to the axes of e l a s t i c 

symmetry. These factors were incorporated in the f i n i t e 

element method to analyze notches in Leicester's paper with 

Walsh (1982). The V-notch, which i s a special case of 

notches, has been studied by Gross and Mendelson (1972) 
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using the boundary collocation procedure and also by Lin and 

Tong (1980) using the singular f i n i t e element method. 

According to the linear fracture mechanics model, 

fracture i s assumed to occur when the stress intensity 

factor attains a c r i t i c a l value — the c r i t i c a l stress 

intensity factor. This factor i s material dependent and has 

to be determined experimentally for di f f e r e n t species of 

wood. Schniewind and Centeno (1971) presented KI(-, values for 

the six p r i n c i p a l systems of propagation for Douglas-fir 

wood; using the end-split beam method, Barrett and Foschi 

(1971) found the K I I C values for Hemlock. Hunt and Croager 

(1982) also established the mode II fracture toughness for 

b a l t i c redwood by a mixed mode test method assuming an 

interation curve existed between mode I and mode I I . The 

studies on the interaction curve for isotropic and 

orthotropic materials has been r e s t r i c t e d to cracked 

elements due to the fact that the notch root can have 

different types of s i n g u l a r i t i e s , whereas the sharp cracks 

always have a 1 /Vr s i n g u l a r i t y . A method suggested by Lum 

(1986), which incorporates the eigenvalue X as a f a i l u r e 

parameter, has proved to be a reasonable approach to specify 

the c r i t i c a l notch root stress conditions and may be used to 

describe interaction curves for notches as well as for 

cracks. 

Studies on the crack-front width effect have shown that 

i t influences the prediction of the f a i l u r e load for large 

structures. Barrett (1976) found a size effect due to 
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crack-front width on Kj^. for cracks using the Weibull's 

theory whereas Ewing (1979), has also shown the existence of 

this effect based on his stress-state model. Leicester 

(1969,1973) has studied the magnitude of a size effect on 

notches by considering a size c o e f f i c i e n t implied on the 

nominal stress. 

The moisture content effect was studied by Ewing & 

Williams (1979) on compact tension specimen and by Dolan & 

Madsen (1985) on the shear strength. 

1.3 OBJECTIVE 

The objective of this thesis is to investigate the fracture 

behavior of white spruce under the mode I, mode II and the 

combined mixed mode loading conditions. The effects-such as 

the variation of the moisture content and the crack-front 

width w i l l also be studied. 

1 .4 SCOPE 

1.4.1 INTRODUCTION 

In order to develop a design procedure for cracks and 

notches under loading, experiments were car r i e d out to 

establish the c r i t i c a l values for the stress intensity 

factors and results were compared with published ones. In 

part i c u l a r , the experiments were designed to examine the 

following features. 
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1.4.2 MODE I FRACTURE TOUGHNESS 

To determine experimentally the c r i t i c a l value of the 

opening mode stress intensity factor for white spruce using 

a compact tension specimen and a double cantilever beam 

specimen. Effect of crack orientation with respect to the 

grain was also considered. 

1.4.3 MODE II FRACTURE TOUGHNESS 

To determine experimentally the c r i t i c a l value of the 

sl i d i n g mode stress intensity factor for White Spruce by the 

end-split beam method. Effect of the crack orientation was 

also considered for cracks propagating along the grain. 

1.4.4 SPECIMEN SIZE EFFECT 

The strength of complex structures are frequently 

assessed from laboratory tests on scaled models. This i s 

most simply done by use of the assumption that a scale model 

and a f u l l - s i z e structure w i l l f a i l at the same nominal 

stress l e v e l . However, for structures containing singular 

stress f i e l d s , this may not be the real case. Experiments 

were carried out to study the dependence of the mode I 

stress intensity factor on the size of the specimen and also 

to study the a p p l i c a b i l i t y of the crack-front width theory 

developed by Barrett (1976) on the mode I stress intensity 

factor. 
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1 .4 .5 MOISTURE CONTENT EFFECT 

Many published papers have shown that the fracture 

toughness of wood depends on the moisture content as well as 

the temperature, but design formula are lacking to account 

for this e f f e c t . Experiments were conducted to study the 

moisture content effect on the mode I c r i t i c a l stress 

intensity factor and a model i s proposed in terms of 

residual stresses. 

1.4 .6 INTERACTION CURVES FOR MIXED MODE LOADING 

Since wood is often subjected to combined loading 

producing both opening and s l i d i n g deformation modes, 

interaction curves are necessary to predict the f a i l u r e 

strength of the structures. Experiments were carr i e d out to 

establish the interaction curves for both cracks and 

notches. 

1.5 SUMMARY OF OBJECTIVES 

1. To determine the mode I c r i t i c a l stress intensity factor 

for white spruce. 

2. To determine the mode II c r i t i c a l stress intensity 

factor for white spruce. 

3. To study the specimen size effect on the mode I fracture 

toughness. 

4 . To study the moisture content effect on the fracture 

toughness of the white spruce. 

5 . To establish the family of mixed mode f a i l u r e 
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i n t e r a c t i o n curves f o r c r a c k s and notches of white 

spruce. 

6 . To d i s c u s s the r e s u l t s , t h e i r a p p l i c a t i o n to design 

p r a c t i c e and suggested d i r e c t i o n s f o r f u r t h e r r e s e a r c h . 



2. THEORY 

2.1 INTRODUCTION 

This chapter explains the basic theory of linear e l a s t i c 

fracture mechanics as applied to cracked (zero angle notch) 

and notched wood specimens. The theory requires the 

computation of the stress intensity factors, which are 

associated with the singular stresses near the crack t i p or 

notch root. 

For s i m p l i c i t y , the theory w i l l be introduced s t a r t i n g 

from a sharp crack in an isotropic and orthotropic specimen. 

This w i l l be extended to the more general cases of notches. 

This information, combined with the experimentally 

determined c r i t i c a l stress intensity factors, makes the 

prediction of the ultimate strength of fracture structures 

possible. 

The size and the moisture content of the specimen had 

been proven to have pronounced ef f e c t on the strength of the 

specimen and w i l l be discussed in the following sections. 

This chapter w i l l end with the theory of interaction curves 

of stress intensity factor. 

2.2 APPLICATION OF LEFM ON WOOD STRUCTURES 

The concept of linear e l a s t i c fracture mechanics for 

determining the fracture f a i l u r e mode and strength in wood 

have received a abundant amount of attention in the past 

several years. Fracture mechanics is concerned with 

1 1 
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structural f a i l u r e by catastrophic crack propagation at 

average stress below the normal f a i l u r e stress l e v e l . In 

many applications, fracture techniques are used to eliminate 

t h i s kind of f a i l u r e by controlling the flaw size or in the 

cases that these defects are unavoidable, by considering the 

effect of the flaw on the allowable load on the structures. 

Complete studies of fracture behavior cover both the 

stress analysis aspects and the resistance of the material 

to the stress imposed. In this chapter, the purpose i s to 

develop the s i g n i f i c a n t stress analysis d e t a i l s and relevant 

parameters, which w i l l govern the f a i l u r e strength of 

structures containing cracks or notches. 

The r e d i s t r i b u t i o n of stress in a body due to the 

existence of a crack or a notch w i l l be analyzed by the LEFM 

method. The greatest attention should be paid to the high 

elevation of stresses at the v i c i n i t y of the crack t i p which 

w i l l usually be accompanied by at least some p l a s t i c i t y and 

other non-linear e f f e c t s . The surfaces of a crack or a notch 

dominate the d i s t r i b u t i o n of stresses near or around the 

crack t i p since they are stress-free boundaries of the body. 

Other remote boundaries and loading forces affect only the 

intensity of the l o c a l stress f i e l d at the t i p . 

The stress f i e l d s near a crack or a notch t i p can be 

divided into three basic types, each associated with a l o c a l 

mode of deformation as i l l u s t r a t e d in Figure 1. 

In mode I propagation, the crack surfaces open normal 

to themselves; in mode II the surfaces s l i d e tangential to 



Figure 1 - Three basic modes of crack surface displacement 

CO 
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themselves l o n g i t u d i n a l l y ; and i n mode I I I the su r f a c e s 

s l i d e t a n g e n t i a l to themselves and p e r p e n d i c u l a r to the 

propagation d i r e c t i o n i n a t e a r i n g f a s h i o n . The 

s u p e r p o s i t i o n of these three modes i s s u f f i c i e n t to d e s c r i b e 

the most ge n e r a l 3-dimensional case of l o c a l c r a c k - t i p 

deformation and the a s s o c i a t e d s t r e s s f i e l d s . As we know, 

wood i s a h i g h l y a n i s o t r o p i c , heterogeneous and porous 

m a t e r i a l with v a r y i n g mechanical p r o p e r t i e s i n d i f f e r e n t 

d i r e c t i o n s . The l o n g i t u d i n a l - r a d i a l and the 

l o n g i t u d i n a l - t a n g e n t i a l planes are n a t u r a l cleavage planes. 

For specimen s u r f a c e f r e e of checks, crack propagation 

u s u a l l y occurs along the g r a i n . Due to the high o r t h o t r o p y , 

a system s p e c i f y i n g the p r i n c i p a l crack propagation 

d i r e c t i o n s w i t h i n the o r t h o t r o p i c planes of symmetry w i l l be 

necessary. For each of the three modes of propagation, s i x 

p r i n c i p a l systems of propagation e x i s t s as shown i n F i g u r e 

2. A system of propagation i s i d e n t i f i e d with a p a i r of 

l e t t e r s , the f i r s t r e f e r s to the d i r e c t i o n normal to the 

f r a c t u r e s u r f a c e , and the second r e f e r s to the d i r e c t i o n i n 

which the crack plane propagates. 

The s o l u t i o n s of the i s o t r o p i c c r a c k problem r e q u i r e 

the computation of s t r e s s i n t e n s i t y f a c t o r s . A v a r i e t y of 

s o l u t i o n s are a v a i l a b l e f o r sharp c r a c k s , p a r t i c u l a r l y f o r 

symmetrically p l a c e d c r a c k s i n i s o t r o p i c m a t e r i a l s , and many 

of these s o l u t i o n s have been summarized by P a r i s and S i h 

(1957). 



u . r.l. l.r. 

t.r. r.t. l.t. 

F i g u r e 2 - T h r e e - l e t t e r system f o r d e s i g n i n g o r i e n t a t i o n r e l a t i o n s i n 

wood, a c c o r d i n g to A . P . Schniewind and R . A . P o z n i a k 
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Since the formulation of this fracture theory is based 

on continuum mechanics where material differences are not 

considered, i t is expected that fracture mechanics should be 

equally applicable to orthotropic materials such as wood. 

Similar formulation of stress intensity factors in 

anisotropic materials has also been proposed by Paris and 

Sih (1965). Walsh (1972) had investigated the effect of 

orthotropy on computed stress intensity factors for several 

geometry and concluded that for rectangular specimen of 

su f f i c i e n t length, orthotropic and isotropic results agree 

closely. However, i t would appear only for the case of 

symmetrical and skew-symmetrical s e l f - e q u i l i b r a t i n g loading 

on cracked i n f i n i t e plates. Thus, to apply LEFM on wood 

products, one must aware the dependence of stress intensity 

factor on the material properties of the specimen. 

Another assumption that is necessary to apply LEFM i s 

the condition of small scale y i e l d i n g (SSY) around the crack 

t i p . Under this condition, K can characterize the crack t i p 

stresses and strains even within the p l a s t i c zone. This i s 

equivalent to the p l a s t i c zone radius ^ rp^ being much 

smaller that the radius of e l a s t i c f i e l d zone (r e).Since r e 

i s proportional to the specimen size, in p r i n c i p l e , the SSY 

condition can always be s a t i s f i e d , i f one uses a large 

enough specimen. The ASTM recommended size requirements for 

v a l i d K c measurements are: 

£ > 2.5 ( 2 > 1 ) 

y 
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where a i s the length of the crack, L i s the distance 

ahead of the crack front, o-y is the y i e l d i n g stress or that 

stress that results in gross deformation. The condition of 

r e » Tp i s a s u f f i c i e n t but not necessary condition for the 

v a l i d i t y of the LEFM. The condition could be unduly 

r e s t r i c t i v e in terms of specimen size requirements. The 

necessary condition for the v a l i d i t y of the LEFM i s that K 

would be able to characterize the crack t i p stress or st r a i n 

component at the location of the defined fracture process. 

The zero notch root assumption w i l l be imperative for 

applying LEFM on notch problem. In order to have SSY at the 

notch root, the notch radius should be small compare to 

other dimensions, so that variation of the notch radius does 

not influence the surrounding stress and s t r a i n f i e l d s . 

Ewing and Williams (1979) had studied the importance of 

the sharpness of the i n i t i a l notch on the fracture toughness 

of Scots Pine and found that the mode I fracture toughness 

tends to increase as the radius increases. 

2.3 FORMULATION OF THE STRESS INTENSITY FACTORS FOR CRACKS 

The formulation of the solution of the stress and 

displacement f i e l d s associated with each mode using the LEFM 

methodology follows in the manner of Irwin (1957) based on 

the method of Westergaard (1939). Mode I and II can be 

analyzed as two-dimensional plane problems with the 

symmetric and skew-symmetric stress f i e l d s with respect to 

the crack plane. Mode III can be treated as a pure shear 
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problem. From the cracks handbook by Hiroshi Tada (1973), 
the resulting stress and displacement fields for the 
isotropic case are given as follows with the notation 
referred to Figure 3. 
Mode I : 

a = - cos £ [1 - s i n £ s i n |£] + a + 0(rl'2) (2.2a) 
x ( 2 n r ) 1 / 2 2 2 J xo 

o = — cos £ [ l + s i n £ s i n |£] + 0 ( r l / 2 ) (2.2b) 
y (2*r)l>2 2 2 2 

T = — s i n i cos i c o s — + 0 ( r l / 2 ) (2.2c) 
X y (2Trr)l/2 1 1 • 2 

and for plane strain (with higher order terms omitted) 

o = v(a + a ) (2.2d) 
z x y 

T = T = 0 (2.2e) 
xy yz 

The c o r r e s p o n d i n g d i s p l a c e m e n t s a r e : 

u = ^ [ r / ( 2 7 r ) ] 1 / 2 cos J - [ l - 2v + s i n |£] (2.2f) 

v = ^ [ r / ( 2 n ) ] l / 2 s i n f [2 - 2v - cos |£] (2.2g) 



F i g u r e 3 - C o o r d i n a t e system used f o r d e s c r i b i n g the s t r e s s e s ahead 
of a c r a c k . From P . C . P a r i s and G . C . S i n 
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w = 0 
(2.2h) 

Mode II : 

av — sin £ [2 + cos | - cos + a + 0(rl '2) 
x /o 2 2 2 xo (2*1-

_ _ II . 9 9 39 , i / o s a = sin TT cos -r- cos + 0 ( r 1 / z ) 
y (2^)1/2 2 2 2 

X y (2Trr)l/2 2 2 2 

and for plane strain (with higher order terms omitted) 

(2.3d) 

T = T = 0 (2.3e) xz yz 

with dispalcements: 

u = — i - [r/(2Tr)]l/2 s i n 1 [2 - 2v + cos 29 
2 (2.3f) 

v [-1 + 2v + sin Y~] (2.3g) 



f 
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w =0 

Mode III : 

hn J e 

(2.3h) 

T XZ 

T 

(2Tvr)l/ 2 

s i n f + T x z Q + 0(rl/2) ( 2 . 4 a ) 

' y z (2Ttr)l/2 
cos i + 0(rl/2) ( 2 > 4 b ) 

a = f f = a = t =0 (2.4c) x y z xy v w 

w -IiI[(2r)/,r]l/2 s i n |. ( 2 > 4 d ) 

u = v = 0 (2.4e) 

Equations (2.2) and (2.3) have been written for the 
case of plane strain, but can be changed to plane stress by 
taking a = 0 and replace v by v/(]+v). 

As seen from equations (2.2) and (2.3), the formulae 
include higher order terms such as uniform stresses parallel 
to cracks, oXQ and r

X Z O f a n ^ terms of the order of square 
root of r, 0 ( r 1 / / ^ ) . But these terms can be neglected since 
as the value of r approaches 0, (i.e. close to the crack 
tip), the singular term 1/Vr becomes the governing term in 
the equations. 
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The parameters Kj , K I I f i - n these equations are 
called the stress intensity factors for the three modes 
respectively, as shown in Fig 1. It is found that these 
parameters are coordinate-independent, so they can be 
thought of as the magnitude of the stress fields surrounding 
the crack tip. The parameters, K, are determined by the 
other boundaries conditions and the imposed loads. 
Consequently, formulae for their evaluation come from a 
complete stress analysis for the specimen configuration and 
loading. 

A crack stress fi e l d for certain loading and geometry 
is represented by a unique combination of the three stress 
intensity factors. Since they are correlated parameters , 
the failure criterion w i l l depends on a l l three. 

From the Equations (2.2), (2.3) and (2.4), we observe 
that the stress intensity factors have units of 
(ForceJxtLength) -^/ 2. Since they are linear factors in a 
linear elastic stress solution, the stress intensity factors 
are linearly related to the applied loads. 

Sih et al (1965) derived formulae for the stresses in a 
small region surrounding a crack tip of orthotropic material 
using a complex variable formulation for the LEFM method. 

Their results for a crack parallel to a material axis 
and coincident with the negative x-axis (Figure 3) are : 



Symmetric (about x-axis) plane loading, 

Kj - 6 , 6 , 6 

/ 2 n r 

n : "1 P2 "2 H K , 

K I 1 31 B2 

/2Trr • 6 r 6 2 ^ B l 

•xy 
~ B1 S2 ,1 1 

and 
Skew-symmetric (about x-axis) plane loading, 

*II r 1 , B? B l c = " 
X /2 ir i 

KII D r 1 r 1 1 M 
0? "^ R e [*V * ? ( * 7 

KII 1 B l B2 

where 

B. = /cos 9 + ie . sin 9 i = 1,2 J J 

i = /^T 

Re = real part 
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B? =• e 2 [« + (,c 2-l)l/2] -1 

-1 
B2. - E 2 [< - ( < 2 - l ) ! / 2 ] 

> for plane stress 

xy 

(2.6g) 

(2.6h) 

(2.61) 

And directly ahead of the crack the stresses are : 

II 
/2TTX xy • 2 TTX 

(2.7) 

where the K's values are dependent on remote boundaries 
conditions, highly dependent on geometry, and slightly 
dependent on orthotropic parameters (for finite bodies). 

Some typical symmetric and skew-symmetric stress fields 
are shown in Figure 4 and Figure 5. The stresses in polar 
co-ordinates are obtained by doing the transformation as 
follows : 

a = a cos 29 + o sin 2 6 + 2a cos8 sin9 r x y xy (2.8a) 

a = a sin 29 + a cos28 - 2a cos9 sln9 o x y xy (2.8b) 

o r 6 - (o y - a x) cos8 sin9 + o x y ( c o s 2 9 - sin 2 9 ) (2.8c) 

The symmetric and skew-symmetric stress fields w i l l 
only exist i f the crack is parallel to an axis of elastic 
material symmetry. Then, the stresses around the crack t i p 
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so* Primary s tress f i e l d 
E : E . . = 20.00 

lao* i T 

270* 

Figure 4 - F i r s t primary s i n g u l a r s t r e s s f i e l d for a 
0° crack 

Primary s tress f i e l d 
E : E = 20.00 
E X : G y = 0.90 

= 0.02 

P o s i t i v e 
Negative 

F igure 5 - Second primary s i n g u l a r s t r e s s f i e l d for a 
0° crack 
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will be the superposition of some linear combination of 
these two fields. 

2.4 STRESS INTENSITY FACTORS FOR SHARP NOTCHES 

2.4.1 INTRODUCTION 
The stress intensity factors have been shown to 

characterize the stress fields surrounding the fracture 
plane. However, the literature on stress intensity factors 
is mostly concerned with sharp cracks. Although there are 
few papers on notches, the method was based on the nominal 
fracture stress combined with limited experimental results. 
Leicester(1971) has presented a new method for the analysis 
of the stress fields at the root of a mathematically sharp 
notch of arbitrary notch angle. The application of this 
method indicates that in general there are two stress 
singularities of stress at the roots of notches in typical 
orthotropic structural materials. The magnitude of these 
stress fields are noted as the stress intensity factors for 
notch angle. He used the indices of A and B referring to the 
two stress fields and these two stress fields are different 
from the symmetry and skew-symmetry stress fields in most 
cases. 

The significance of the stress intensity factors lies 
in the fact that a criterion for crack propagation from the 
notch root may be formulated as follows: 
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where K A C and Kg^, the c r i t i c a l stress intensity 
factors, and the interaction equation (2.9) are determined 
by direct measurement. For the specific case of a zero angle 
notch, i.e., a crack, the notation Kj , Kj£, K J J and ^HQ 
will replace the notation KA , KA^, Kg and Kg^. 

2.4.2 FORMULATION OF THE PROBLEM FOR NOTCHES 
The formulation of the .problem follows the method 

proposed by Lum (1986). 
The equations of equilibrium under zero body forces, in 

cartesian co-ordinates, are: 

3a 3a 

3x 
_xy_ 
3y 

= 0 

3a 

3? 

3a 
+ - S L 

3x 
= 0 

(2.10a) 

(2.10b) 

The strain-displacement kinematic relationships are: 

X 
3u 
3x 

3y_ 

3y 

xy 
3u t 3v 
3y 3x 

(2.11a) 

(2.11b) 

(2.11c) 
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and the stress-strain equations for an orthotropic 
material with plane stress condition are : 

o u x yx 
E x = F T _ E — ° y (2.12a) x y J 

a u y xy 
G y E ~ E a x (2.12b) 

y x 

a 
xy 

Gxy = G (2.12c) 
xy 

From strain-energy considerations i t is known that : 

u u xy _ yx 
E E x y 

(2.13) 

Equations (2.11a,b,c) may be shown to result in the 
following equation of compatibility : 

3 2e 32e 3 2e 
, , x y + £ (2.14) 
8 x 3 y 3y 2 3x 2 

Equations (2.l0a,b) are satisfied when the stress 
components are expressed by Airy's stress function 0 through 

32<b 
(2.15a) 

3x 2 7 
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(2.15b) 
3y 2 A 

| % - = -a (2.15c) 3x3y xy ^ ' 

Substitude (2.l5a,b,c) into (2.12a,b,c) we get the 
expressions for strains in term of Airy's stress functions : 

£ x - ^ - ( f ) " ^ ( ^ ) (2.16a) 
X 3y 2 E x E y 3x 2 

J 3x z y x 3y z 

Exy " " f x V ̂  ( 2 ' 1 6 C ) 

Substituding (2.l6a,b,c) into the equation of 
compatibility (2.14), one finally obtains : 

3x^ e 2 3x 23y 2 3yI* 
(2.17a) 
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where 

E 
e E 

y 

< - I ^ y ^ 2 t ( 1 / G xy) - < W " <W- <2'17b) 

In order to solve equation (2.17a), i t may also be written 
as : 

t 1 T + a I 1 T K i i - + « I I ^ - ] * =0 (2.18a) 
3x2 1 3y2 3x2 1 1 dy2 

where 

1 r o I / 2 , 
aI = — [< + (<2-l) ] 

e 2 

2 1 1 ' J (2.18b) 

a l l ? LN ^ ~ x ' J (2.18c) 

Since equation (2.18a) was derived from the 
equilibrium, stress-strain and compatibility equations, the 
solution of this equation will satisfy a l l the governing 
equations. Also, the parameters that govern the solution of 
the notch root stress fields will be the constants e and K 

defined as (2.17a,b). These two parameters are material 
dependent and have values between 0.1 and 10. For isotropic 
materials, e=«=1.0 and for White Spruce, e=2.13 K=1.60 with 
axes in the longitudinal-tangential plane, and e=1.87 K=1.98 
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with axes in the longitudinal-radial plane. 
The representative range for the elastic properties of 

structural materials published by Leicester (1971) is shown 
in Table 1. 

The solution of the fie l d equation with subscripts I 
and II indicates that two further transformed co-ordinates 
may be defined. These are 

x = x = x (2.19a) 

y " V l = a I l y I I (2.19b) 

and shown in Figure 6. 

The f i e l d equation (2.18), written in the new 
co-ordinates, is : 

[ j l . + _!!_][_>!_ • _ » ! _ ] » . 0 (2.20) 3V V »V ' - I I * 

For the case a i ~ a n > equation (2.20) reduces to a 
biharmonic equation, and in terms of polar co-ordinates : 

V 2 (v 2 ($)) = 0 (2.21) 

where the operator V 2 is 



T a b l e 1 

E l a s t i c P r o p e r t i e s o f S t r u c t u r a l M a t e r i a l s 

Type of M a t e r i a l e K 

I s o t r o p i c s o l i d 1.0 1.0 

T y p i c a l Wood ( LR & LT p lanes ) 2.0 2.0 

T y p i c a l plywood of ba lanced c o n d i t i o n 1.0 4.0 

T y p i c a l f i b r e - r e i n f o r c e d p l a s t i c 2.0 4 .0 

From R . H . L e i c e s t e r (1971) 
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F i g u r e 6 N o t a t i o n f o r r e a l s p a c e and t r a n s f o r m e d 
c o o r d i n a t e s . ( a ) C o o r d i n a t e s o f r e a l s p a c e , 
(b) C o o r d i n a t e s s y s t e m I . ( c ) C o o r d i n a t e 
s y s t e m I I . From R.H. L e i c e s t e r (1971) 

F i g u r e 7 N o t a t i o n and c o o r d i n a t e s f o r n o t c h r o o t s . 
From R.H. L e i c e s t e r (1971) 
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In general, for the orthotropic materials a^ta^^, and 
the solution may be written as 

where <f>j and are harmonic functions of the 
co-ordinates systems I and II respectively. 

The solution to equation (2.22) may be sought in the 
product form : 

i = r i f ( V 1 " J > 1 1 (2.24) 

where X is a constant. 
A suitable pair of harmonic functions for the solutions 

is the following : 

$ = A^* cos(X6 I) + A 2 r ^ sin(X6 ].) (2.25a) 

' n = V I I c o s C x e n ) + V i i s i n ( x e n > (2.25b) 

where A1 to A^ are arbitrary constants. 
Substituting (2.25) into (2.l5a,b,c) leads to the 

following : 

a x = A(A-l)r^" 2(l/a2)[-A 1cos(X0 I-29 1) - A 2 s i n ( X 6 ^ 2 6 r ) j 

+ X ( X - l ) r X . I
2 ( l / a 2 I ) [ - A 3 c o s ( X 9 I I - 2 e i I ) - A^slnUe^-Ze ) ] (2.26a) 



35 

o y = X(X-l)r^ 2 [A 1 cos(X8 I-26 I) + A 2sin(Xe ].-29 i)] 

+ X ( X " l ) r ^ 2 [A 3 cos (Xe ] ; I -2e i I ) + A l t sin(Xe i ].-26 I I)] (2.26b) 

o = X ( X - l ) r ^ ~ 2 ( l / a T ) [ A , s i n ( X 9 - 2 9 T ) - A,cos(X9 -29 T)] xy I I 1 1 I I 2 I I J 

+ X ( X - l ) r ^ ~ 2 ( l / a I I ) [ A 3 s i n ( X 9 I ] . - 2 9 I I ) - A ^ c o s U g ^ g ^ ] (2.26c) 

The constants A1 to A^ are obtained by substitution of 
eqnations (2.26a,b,c) in the boundary conditions OQ= ° R Q = Q 

at the notch edges along 0=0A and 6=9^, as shown in Figure 
7. These four conditions lead to a matrix equation : 

a!2 a!3 
a 2 i 3 2 2 a23 aZk 

a. a_ _ a 31 32 33 

. a m \ l • a-3 a ^ 

= 0 (2.27) 

For any particular notch, the eigenequation (2.27) is 
satisfied when a value of X has been found such that the 
determinant |a m n| is zero. Figure 8 is a plot of this 
determinant for a notch in Douglas f i r . 

It can be shown that the eigenvalues of a singular 
eigenfield are limited to the range 1 < X < 2. Within this 



-3-0 I I I I I I I I 
1-0 1-5 2-0 2-5 3-0 3-5 4-0 

Parameter A 

F i g u r e 8 - D e t e r m i n a n t o f e i g e n e q u a t i o n f o r n o t c h i n D o u g l a s f i r . 
From R.H. L e i c e s t e r ( 1 9 7 1) 

CO 
cn 
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range i t is found that there is always at least one 
eigenvalue, and if the notch angle is small there will be 
two eigenvalues. 

Denote these two eigenvalues, XA and X B with XA < Xg. 
The eigenfields associated with these eigenvalues will be 
defined as 'primary' and 'secondary' eigenfields 
respectively. In general, the primary eigenfield will 
dominate at the notch root as r approaches 0 except in pure 
shear mode where the secondary eigenfield w i l l govern. 

Since equation (2.27) is a homogeneous equation, an 
additional constraint must be applied besides the four 
boundary conditions. The magnitude of the stress fields will 
f u l f i l this requirement. The stress intensity factors 
corresponding to the primary and the secondary stress fields 
will be denoted by KA and KB respectively. The definitions 
of KA and KB are quite arbitrary but in most cases of 
orthotropic material, they are defined as follows : 

oe(e=n) = K. /(2-jrr) 
2-A, 

cr9(e=fi.) - K B / (2*r) 
2-X, 

(2.28a) 

(2.28b) 

where fi is the angle of crack propagation and is 
usually the grain angle in the wood. 

For the special case of a sharp crack, KA = Kj and Kg = 
K T T . However, the terms "opening mode" and "sliding mode", 
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which are usually associated with a sharp crack, are 
applicable to notches only if the notches are symmetrical 
with respect to the axes of elastic symmetry. 

The failure criterion characterizing the onset of 
propagation of a crack from a sharp notch corresponds to 
these two stress intensity factors, K and K , reaching some 

A 6 
c r i t i c a l values K A C and K B C respectively. 

From the equations of stress fields, we can derive the 
equations of strain and displacement f i e l d in terms of the 
stress intensity factors. The method for obtaining these 
factors is discussed in the next section. 

2.4.3 IMPLEMENTATION IN A FINITE ELEMENT PROGRAM 
A singular finite element method is manipulated to 

compute the stress intensity factors. The finite element 
mesh consists of three regions — t h e elements around the 
notch tip, the elements remote from the notch tip, and the 
transitional elements in between to assure the compatibility 
of the elements. 

Around the notch tip, the quadratic displacement f i e l d 
is enriched by the singular terms as follows : 

u i = a i + a 2 c + a 3 n + ak^2 + a 5 C n 

+ a 6 n 2 + a ? c 2 n + a 8 ? n 2 

+ K ^ U . n ) + KBg.(c,n) (2.29) 



where $ and TJ are natural co-ordinates. 
Substituting the nodal displacements 

(2.29), we get : 

{u.} = [M]{a} + KA{f.} + KB{g.} 

or 

{a} = [M]-l[{ui} - K A{f i } - KB{g.}] 

Substituting back into equation (2.29), 

ui(?.n) = [N(c,n)]{u.} 

+ K
A [^(Cn) " [N ( C ,Ti)]{f .}] 

+ Kg [ g ^ . - l ) - [N(c,n)]{gi}] 

Using the virtual work principle results in 

/ « T {<5}[B]T [[D][B]{6} + {K}T[D]{J2}]dV = « T {6}{R} 
V 

for a virtual change in {6}, and 
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/ 6 T (K}{n} T [[D][B]{6> + {K}T[D}{fi}]dV = 6
T {K}{R } 

V k 

(2.34) 

for a virtual change in {K}. Combining equations (2.33) 

and (2.34), we get : 

[S] {Pj} {P2} " 
{V* [ C n ] [c21] 

L { P 2 } T [c 1 2] [c22] 

{6} {R} 
(2.35) 

where 

[S] = / [B] [D][B]dV 
V 

(2.36) 

{ P J = / [B] [D]{Q }dV 
V 

(2.37) 

[C ] = / {Q.} [D]{n.}dV 
J v 

(2.38) 



41 

The element stiffness matrix can be assembled to form 
the global stiffness matrix, and the element load vector, 
the global load vector. The elements far from the notch tip 
will be ordinary quadratic, regular elements, whereas the 
transitional elements are introduced in a transition zone 
between fully singular and regular elements. 

The displacement f i e l d of the transitional elements 
will be : 

u.(?,n) = [NU,r,)]{u.} + R(c,n){K A [f i (c,n) - [N( c,n){f.}] 

+ K B [g.(c.,n) - [N(c,n)]{g i}]} (2.39) 

where R($,TJ) is bilinear transition function with R = 1 

at singular-singular boundary and is equal to 0 at 
singular-regular boundary. The use of the bilinear 
transitional elements ensures conformity between elements. 

After forming the stiffness matrix, the solution method 
will be the same as for an ordinary fi n i t e element problem. 
From the calculated KA and Kg values, which indicate the 
magnitude of the eigenfields, we can get the Kj and K J J 
stress intensity factors by assigning the amounts of opening 
and shear-sliding in each eigenfields. 

Thus, for a direction of crack propagation ^, 

— 2 " A A 

K = /2TT lim (r A o Q ( r , 9 = 
1 r*0 9 

— VAA 
= /2TT lim ( K A f A ( 0 = *) + Kg r f B(6 - i | 0 + ... (2.40) 

r+0 
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- 2 _ X A K n = /2TT lim ( r T r Q(r,e= 1( l) 
r+0 

= /2TT lim (KAgA(9=*) + K Br ° gB(9=*) + ... (2.41) 
r+0 

then 

K I = / 2 L F K A V 9 = * ) f 0 r X
A
 < XB (2.42a) 

K l = / 2 7 [ K A F A ( 9 = * ) + K B f
B

( H ) l f o r A
A
 = XB (2.42b) 

and 

K I I = V 2 i r KA 8A ( e"* ) for 1 < X B (2.43a) 

K 
I I 

= /2ir [KAgA(9=*) + KRgw(6-*)] B°B> 
for A, = A (2.43b) 

For notches, the primary eigenfield will always 
dominate the stress and strain fields around the notch root 
except loading in pure shear-sliding mode. 

Lum (1986) has developed the program NOTCH, which 
utilized this method and has shown good results in 
comparison with the collocation method used by Gandhi 
(1972). 
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From equation (2.28) we can observe that the dimension 
2-XA 

of KA and Kg is (Force)x(Length) which depends on the 
material elastic properties and grain angle. Therefore, for 
different angle of notches, we have different dimensions of 
stress intensity factors. Thus, in order to derive a failure 
criterion for sharp notches, we must include the parameter X 
in our criterion. 

2.5 EFFECT OF SPECIMEN SIZE ON STRESS INTENSITY FACTORS 
In predicting the strength of large structures, experiments 
were usually done by using the scale models. This employs an 
assumption that a scale model and a full-size structure w i l l 
f a i l at the same nominal stress. However, failure of large 
structures at a lower nominal stress indicates that there 
may be a specimen size effect. 

Most of the previous literature has applied a 
st a t i s t i c a l model based on the weakest link principle to 
account for the strength of reduction. Such a theory assumes 
that failure of a single volume element leads to the failure 
of the whole specimen. This has an obvious analogy with the 
strength of a chain in which weakest link govern the 
strength. 

2.5.1 EFFECT OF MATERIAL HETEROGENEITY 
Barrett (1976) has applied this method to compare Mode 

I fracture toughness data obtained from specimens of 
differing thickness as multiple crack-fronts. Using the 
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Weibull analogy, Barrett defined the cumulative distribution 
function for c r i t i c a l stress intensity factor with total 
crack-front width B assuming a l l cracks have the same 
nominal stress intensity factor : 

F ( K I C ) = 1 - e x p [ - ( K I C / m ) k B] ( 2 . 4 4 ) 

where k and m are the shape and scale parameters 
respectively. 

An expression relating the fracture toughness of two 
specimens with the crack-front widths, B and B*,is : 

KIC = ,B* 1/k 
K*c B ; (2.45) 

Obviously, if we plot Kj^, against specimen width on a 
log-log scale, the slope of the regression line should be 
-1/k. 

2.5.2 EFFECT OF THE CHANGE OF THE STRESS STATE 
Another model to explain the crack-front width effect 

is proposed by Ewing (1979) based on the stress state in the 
specimen, and in particular the residual stresses induced by 
the drying which increases the toughness and constraint 
stresses which cause a decrease. 
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A useful model for describing plane stress-plane strain 
effects has been used in other materials and has some 
u t i l i t y here. Figure 9 shows a cross section diagram of a 
specimen, the region near the surface within the area H is 
in a plane stress condition. The region in the middle is in 
the plane strain stress condition. Let denote and be 
the c r i t i c a l fracture toughness for the plane strain and 
plane stress condition respectively. Then the average 
c r i t i c a l stress intensity factor K'r for D>2H w i l l be : 

DK' c 2HK C 2 + (D-2H) K c l 

K' c KC1 + D 
2H 

( KC2 " K C 1 } 

(2.46a) 

(2.46b) 

Usually K C 1 < K C 2 so that we'll have a positive slope 
if we plot K'c versus inverse thickness and an intercept of 
K C 1 at D - 1 =0 . The depth of the value H of the plane stress 
region can be computed from : 

H (2.47) 

where is the yield stress or the stress which 
results in gross deformation. The plane strain condition can 
only exists as long as there is enough thickness to provide 
the constraint and in general : 



F i g u r e 9 - S t r e s s s t a t e i n specimen 
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D > 4H 
(2.48) 

In general cases, if D<2H, then we'll have a complete 
plane stress condition and K'c = K c 2. For D>2H, then plane 
strain condition will result in the middle that decrease the 
average stress intensity factor. 

For the notched specimen, there is a similar size 
effect on the c r i t i c a l stress intensity factor proposed by 
Leicester (1973). From equations (2.26a,b,c), we can rewrite 
it for the plane stress at failure due to the primary stress 
singularity f i e l d as follows : 

where a^j is the stress component around the notch root 
and Af is a constant that depends on the notch root angle, 
material and detail of the notch root. 

From the dimensional analysis, we get : 

s = A f (2.49) 

(2.50) 

where 
a is the normal stress, 
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L is a characteristic length denoting the size 
of the element, 
B is a dimensionless constant depends on the 
geometry and loading. 
Hence for a structural element of specific shape and 

loading, we can write : 

CTof " V L S S > 0 (2.51) 

where aQ£ is the value of o Q at failure and A1 is a 
constant. 

Similarily for the secondary stress f i e l d : 

° o f L q = A2 q > 0 (2.52) 

where A 2 is another constant. 
Since s>q i t follow that (2.51) always predominates 

provided the structural element is sufficiently large. 
We can also write (2.51) for two similar specimen with 

different size : 

0 . . L„ 
— - ( r - f (2.53) 
° f 2 L2 

where 1 and a£2
 a r e t n e nominal stress at failure and 

Lj and 1>2 are the corresponding characteristic lengths 
respectively. 
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There are also two conditions required to apply the 
size coefficient factor on two different specimens. Fi r s t l y , 
the detail of the notch roots must be identical (not scaled) 
and secondly, the predicted fracture stress must be less 
than about 70% of the nominal proportional limit stress for 
unnotched members. 

Based on the experimental results, the values of s 
follow a trend with the variation of the notch angle. 

2.6 EFFECT OF MOISTURE CONTENT ON FRACTURE TOUGHNESS 
Fracture toughness values show thickness variation in the 
kiln dried state, but the toughness also varies with 
moisture content. In green timber, water is contained within 
the c e l l lumens and c e l l walls, and drying to the fibre 
saturation point (approximately 27%) removes free water from 
the c e l l lumens. Below this value, water is removed from the 
ce l l walls, resulting in shrinkage and significant property 
changes. It was expected that strength would increase with 
decreasing moisture content below 27%. Since the drying 
process increases strength, then i t is reasonable to propose 
that the residual stresses w i l l increase K'̂  providing no 
cupping and consequential cracking occurs. 

Debaise, Porter, and Pentoney (1966) found that g I T L C 

of Western white pine varied according to : 

GITLC = 1 , 2 8 + ° ' 1 1 2 5 ( e " 2 4 3 > ^ " e ~ M / 6 ) (2.54) 
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where 
6 = temperature (0°K) 
M = moisture content (% ovendry weight) 
GITLC = c r ^ t i c a 1 strain energy release rate for 
the TL system 
We can relate G I T L C to K I C for TL system by : 

a. . a. 
r = vl J 1 1 ~ i z 
I T L C - K I ' — * ( 2 . 5 5 ) 

where 

2a ,„+a, • _ J 3 2 2 " 1 2 ^ 6 6 ^ / 2 
• " 1- a 7 7 + 2 a n J ( 2 - 5 6 ) 

and a 1 1 , a 2 2 f e t c . , are the usual anisotropic 
compliances. 

Substituting into (2.54) for c r i t i c a l value : 

K I T L 2 = C [ 1 . 2 8 + 0 . 1 1 2 5 ( 9 - 2 4 3 ) ( l - e ~ M / 6 ) ] ( 2 . 5 7 ) 
c 

where 

a.. a 
C = 1 / ' / _ 1 1 " 2 2 

( 2 . 5 8 ) 
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A similar equation can be derived for the c r i t i c a l 
fracture toughness of white spruce along the TL system. 

2 . 7 MIXED MODE FRACTURE IN WHITE SPRUCE 
In recent years, attention has been dedicated to the 
fracture of wood in the opening mode (mode I). It has been 
shown that fracture toughness, K J C, is a geometry 
independent material property of wood characterizing the 
stress f i e l d around cracks, which govern the initiation of a 
crack propagation. The fracture failure of wood for sliding 
mode, mode II, has also been investigated by Barrett and 
Foschi ( 1 9 7 7 ) . However,wood structural members are often 
subjected to complex loading condition that result in mixed 
mode fracture. Available information under this mixed mode 
is limited, and will be discussed briefly in the following. 

The mixed mode fracture in wood was f i r s t studied by Wu 
( 1 9 6 7 ) . He carried out mixed mode loading tests on balsa 
wood and proposed the f i r s t interation curve for the mixed 
mode fracture in the form: 

K I KII 
( i r ^ ) 2 = 1 (2.59) 

Similar experiments had been conducted by Leicester 
( 1 9 7 4 ) on pine and an interaction curve for Kj and K J J 

stress intensity factors is in the form : 
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I II 
v—+ y 1 (2.60) 
KIC KIIC 

Although most of the investigators favor the idea that 
an interaction relation exists, Williams and Birch (1976), 
based on their experiments on Scots pine, concluded that 
there is no effect on the opening mode failure due to the 
sliding mode caused by the shear stress. Their proposed 
failure criterion is : 

K l 
K ^ - l ( K I I > 0 ) <2'61) 

Recently, Woo and Chow (1979) investigated the mixed 
mode fracture in Kapur and Gagil using the single-edge notch 
and center-crack specimen. Their results has shown that 
there is some interaction relation between the mode I and 
mode II stress intensity factors under combined loading 
conditions. 

More recently, Mall and Murphy (1983) have studied the 
mixed mode fracture failure of eastern red spruce by means 
of single-edge notch and center-crack specimen with various 
crack inclinations in the TL system. Their results, have 
shown that the criterion for the mixed mode fracture failure 
of red spruce is same as equation (2.59). 

A more general form for the interaction curve for mixed 
mode fracture may be proposed : 
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K T K T T 

K IC n c 
(2.62) 

where constants a is determined experimentally. 
The interaction phenomenon will also be valid for mixed 

mode loading of sharp notches. As we know, the dimension of 
the c r i t i c a l stress intensity factor for sharp notches 
depends on the parameter X, which is material and geometry 
dependent. In order to generate the interaction curve for 
notches, we need to have the same dimensions. A rational 
method is to generate a family of interaction curves each 
with a different X, where X has a range of 1.5 to 2.0. Then 
each curve will apply to a l l the mixed mode cases in the 
same dimension. For the special case of sharp crack, X=1.5. 
To describe mixed mode fracture of each species of wood for 
both cracks and notches, we need to generate the interaction 
curve for intermediate values, for example, X =1.5, 1.6, 
1.7, 1.8, 1.9 and 2.0. For specific geometry and loading 
condition, the value of X is determined and the appropriate 
curve to estimate the KT and K T T values at failure. 



3. EXPERIMENT PARAMETERS 

3.1 INTRODUCTION 
The aim of carrying out experiments is to verify the 
applicability of the theories to real practice. Different 
experiments were designed to study the validity of c r i t i c a l 
stress intensity factors methodology in predicting the 
failure mode and strength of the real structures. This 
chapter outlines the important considerations with regard to 
the selection of a fracture geometry, mode of failure, 
specimen preparation, and some guidelines on the experiment 
procedure and measurements. 

3.2 CRACK ORIENTATION AND PROPAGATION 
Since wood is a typical orthotropic material, one must 
specify the mode of crack propagation so as to describe the 
i n i t i a l crack surface orientation (see sec.2.2). Within a 
plane, the crack may propagate in different directions and 
in a combination of the three different fundamental modes 
(see Figure 1). Therefore, in preparing the specimen for the 
experiments, attention must be paid to the crack 
orientation. Also, due to the large number of possibilities 
of fracture orientation, a set of appropiate experiments 
must be designed in order to simulate the fracture behavior 
in real structures. 

First of a l l , the determination of mode I fracture 
toughness may lead to six different sets of experiments for 

54 



55 

each different crack orientation, namely TL,RL,LT,LR,RT or 
TR, where the f i r s t letter refers to the direction 
perpendicular to the crack surface and the second letter 
refers to the crack propagation direction. However, the 
fracture toughness results of Schniewind and Centeno (1973) 
have shown that the fracture strength for the plane in 
longitudinal direction has values approximately one-tenth 
the values where propagation is across the grain. This 
implies that the fracture would always occur in the weakest 
natural cleavage plane, i.e., either the tangential-radial 
plane or the radial-longitudinal plane. 

In addition, in order to obtain the best design of the 
experiment, the correct choice between two alternative 
failure planes need to be made. On a macroscopic level, most 
of the commercial boards under bending are observed to f a i l 
in the radial longitudinal plane. However, a closer look at 
the crack initiation will reveal that the failure has been 
initiated in the tangential-longitudinal plane. Therefore i t 
was decided to conduct the experiments with specimen in this 
category and i t is postulated that i t would be 
representative of the initiation of failure in commercial 
material. 

In addition, some of the specimens with different 
orientation such as RL system were tested in order to study 
the effect of orthotropy on the opening mode and the sliding 
mode fracture toughness. 
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3.3 MATERIALS 
Thirty two kiln-dried nominal 2-in by 8-in White Spruce 
(Picea glauca) boards were purchased from one sawmill. For 
studies of between board variation of K j . c compact 
tension specimens, 125mm by 120mm by 38mm, were cut randomly 
from 10 different boards. From another eleven board, sixty 
two one-metre long end-split beam specimens were used to 
study the K J Q , K H C a n <^ mixed mode loading. Sixty-six 
one-metre mid-crack specimens were cut to study the 
mid-cracked beams under the condition of mixed mode loading 
and another twenty-four one-metre long specimens were cut 
and used for the study of between board variations of 
notched beams. Twenty of the one-metre long specimen were 
tested for the average modulus of elasticity (MOE) by 
stressing them under three-point loading and measuring the 
displacement. Due to the high bearing stresses induced at 
the supports, the specimens were tested about their weak 
axis — on the flat -- to eliminate the bearing effect. The 
average MOE obtained was approximately 9000 MPa. Since 
obtaining local modulus of elasticity and Poisson ratios is 
d i f f i c u l t , published values of these constants were used in 
the analysis. (E L =10163 MPa, ET=494 MPa, ER=830 MPa, 
GLT=663 MPa, GLR=700 MPa, ^LR=0.337, *>LT=0.40, vRL=0.0275, 
U T L ~ 0.0194 ). These elastic parameters were computed from 
regression equations as proposed by Bodig and Goodman 
(1973). A l l the specimens had been previously kiln-dried and 
were stored for a period of at least one month in a 
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temperature and humidity controlled room of 70°C which 
maintained a nominal 9% (±1%) equilibrium moisture content. 
These boards were straight-grained with the dominant system 
of propagation being TL. 

3.4 SPECIMEN PREPARATION 
In order to maintain similar samples, the specimens were cut 
in a mass production pattern to ensure uniform dimensions of 
the testing specimens. The cracks were f i r s t cut by a 
bandsaw which produced a kerf of about 1/8" so as to have 
enough room to accomodate the crack starter (see Figure 10) 
and the smooth plastic plate for the mode II fracture 
toughness testing. Then just prior to testing, the bandsawn 
notch was sharpened with the crack starter to extend the 
sawn notch approximately 0.1 in. 

An importance consideration of the specimens prepared 
is the sharpness of the i n i t i a l crack. As we assumed a zero 
notch root hypothesis, we need to have some control of the 
crack sharpness. Leicester (1974) has shown that the 
influence of root diameter on the fracture strength of 
drilled notches is less than 10% for notch roots below 5 mm 
in diameter. Thus a single point crack starter with an 
included angle of approximately 10° and a tip radius of less 
than 0.5Mm was used. It is postulated that this would give 
the same result as the cracks made by a razor blade. 
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Figure 10 A steel crack starter with crack t i p 
radius less than 0.5um 
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3 . 5 EXPERIMENTAL MEASUREMENT OF LOAD AND DISPLACEMENT 
In the experiments, centerline deflection was measured using 
a linear variable differential transducer (LVDT) in a l l 
cases (see Figure 1 1 ) , while a modified LVDT (as shown in 
Figure 1 2 ) was used to measure the crack . opening 
displacement (COD) and the relative longitudinal 
displacement of the crack in a cracked beam. 

In obtaining the c r i t i c a l stress intensity factors, 
some criterion was employed to determine the c r i t i c a l 
failure load during the testings. Load-deflection plots were 
generated at the time of testing on an X-Y recorder. Since 
these curves were similar to those encountered in the ASTM 
fracture tests, a similar method was adopted to check the 
validity of the results. Small amounts of slow crack growth 
are allowed in the ASTM test, but growth is limited to 
approximately 5 % of i n i t i a l crack length in a valid K I C 

test. Three different curves were encountered during the 
experiments (as shown in Figure 1 3 ) , and the load P Q 

corresponding to a 5 % offset from the i n i t i a l slope was used 
to compute the c r i t i c a l stress intensity factors. 

The compact tension specimens were done in the humidity 
room with an Instron universal testing machine which 
provided autographic recordings of the load and 
displacement. Cross head speed of 0 . 5 mm/min was selected 
which produced failures in about 1 minute. 

Al l the beam tests were done at room temperature 
(approx. 2 0 ° C ) with a Satec testing machine which provided 



60 

F i g u r e 11 - LVDT gage f o r c e n t e r l i n e d e f l e c t i o n 
measurement 

connect t o X-Y p l o t t e r 

F i g u r e 12 - M o d i f i e d LVDT gage f o r measuring 
l o n g i t u d i n a l s l i d i n g d i s p l a c e m e n t 



Q < O 

P =P 
Q max 

P„<P Q max P„<<P Q max 

DISPLACEMENT 
(COD o r M i d s p a n D e f l e c t i o n ) 

F i g u r e 13 - T y p i c a l L o a d Vs D i s p l a c e m e n t C u r v e s : ( a ) P Q = P ( a c c e p t a b l e ) ; 
(b) 1 . 2 P Q * p m a x ( a c c e p t a b l e ) ; ( c ) 1.2P Q<P m a xTunSgeeptable ) 
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plotting of the load and displacement. Cross head speed was 
controlled so as to produce failures at about 2-4 minutes. 

The moisture content at the time of testing and the 
specific gravity were determined for a l l specimens tested. 

3.6 TREATMENT OF DATA 
An average failure load as well as the variance were 
calculated for each experiment. Moisture content data were 
also collected to assure that a l l the specimens were tested 
under uniform conditions and provide a basis for adjusting 
data as required. 

The values of the deflection is not significant in 
these experiments except that the load deflection curve is 
used for determining the failure loads. As mentioned 
earlier, the stress intensity factor is linearly related to 
the applied load in a linear elastic material, so the 
failure loads were used to compute the c r i t i c a l stress 
intensity factors by the following equation : 

K i c = F K x 1 = 1.2 (3.1) 

where PQ is the failure load; P * is the arbitrary load 
entered into the finite element computer program to compute 
the corresponding stress intensity factor Kj*, and Kj^ is 
the c r i t i c a l stress intensity factor for the specific 
specimen geometry and loading. 
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Calculated stress intensity factors were collected and 
used to generate the interaction curves for cracks and 
notches. The curves were expected to have a form similar to 
a quadrant of an ellipse as proposed by many investigators 
as shown in Figure 14. In order to verify the equation or 
derive a new empirical formula, we need to have evenly 
spreaded failure points on the curves. Different experiments 
were designed to generate the curve.s as well as to study the 
moisture constant effect and the specimen size effect. 

The details of each experiment as well as the results 
will be described in the next chapter. 
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4. EXPERIMENT DESCRIPTIONS AND RESULTS 

4.1 INTRODUCTION 
This chapter gives a f u l l description of the procedures and 
results of the experiments. The eight experiments conducted 
will be discussed in separate sections, namely No.1 to No.8. 

Emphasis was put on studies of mode I c r i t i c a l stress 
intensity factors which tend to dominates in wood fracture 
failure. Effects of variation of the moisture content and 
crack-front width on the mode I fracture toughness was also 
studied. At the beginning of this thesis, i t was expected 
that the c r i t i c a l stress intensity factors would be a 
constant for specific geometry, material and crack 
orientation. However, as the experiments progressed, i t was 
found that K J C may also depends on the actual size of the 
specimen. Experiments were conducted to study the effect of 
the variation of the uncracked length in front of the crack 
on the mode I fracture toughness. 

4.2 EXPERIMENT N0.1, MODE I FRACTURE TOUGHNESS 

4.2.1 EXPERIMENTAL DESIGN AND PROCEDURE 
Experiment No.1 was designed to determine the mode I 

fracture toughness for white spruce. Effects of the grain 
orientation and specific gravity were also investigated. Two 
type of specimens were used to study the fracture toughness 
--the ASTM compact tension specimen (CTS) and the double 

6 5 
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cantilever beam specimen (DCB) as shown in Figure 15 and 16. 
The length to width ratio of the compact tension 

specimen was as recommended by the ASTM Standard with 
thickness of 38 mm. A total of 75 specimens were machined 
from two 20ft boards with the dominant system of propagation 
being TL. The CTS is also designed to study the effect of 
the grain orientation on the mode I fracture toughness as 
well as the between board variation of K I C . The crack 
opening displacement (COD) was measured by the modified LVDT 
and a l l the testing was done with an Instron Testing Machine 
in a humidity room at 70°F and 50 per cent relative 
humidity. Crosshead speed was maintained at 0.5mm/min which 
produced failures in about 1 minute. The experiment setup is 
shown in Figure 17. 

For the double cantilever beam test, a total of 18 
specimens were cut from three 20ft kiln-dried boards and 
were previously conditioned to approximately 10 per cent 
moisture content. 

The tests were carried out at room temperature with the 
Satec Testing Machine at a rate of 0.2mm/min which caused 
failure in about 2 minutes. 

. 4.2.2 RESULTS 
In order to determine the mode I fracture toughness, we 

need to compute the geometrical correction factors for both 
the CTS as well as the DCB specimens. This was accomplished 
with the finite element program NOTCH, using quadratic 
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100 N 

K = 0.06901 MPa^ 

KII= ° 

D = 1 i n . 

Figure 15 Configuration of Compact Tension Specimen (CTS) 

P = 100 N 

50 mm —* 

Kx•••= 0:0405 MPa/ra 

Figure 16 Configuration of Double Cantilever Beam specimen (DCB) 
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F i g u r e 17 The experimental setup of the compact 
tension specimen. 
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isoparametric, singular-enriched elements. An arbitrary load 
of 100 N was selected in obtaining the stress intensity 
factors and the c r i t i c a l fracture toughness were easily 
obtained by eqn. (3.1). The finite elements mesh for the CTS 
and the DCB specimens are shown respectively in Figure 18 
and Figure 19. 

Table 2 summarizes results for both cases for different 
grain orientations. A trend of decreasing mode I fracture 
toughness from TL system to RL system is apparent. A plot of 
Kj^ versus annual rings angle is shown in Figure 20 and a 
line was fitted by least-squares to the data. Thus, 

K I C = 0.3933 - 2.1323 x 10"3 e (4.1) 

where Kj^ is the mode I fracture toughness, MPai/m ; 8 

is the angle between the crack and the growth ring angle as 
defined in Figure 20. 

Figure 21 and Figure 22 shows the cumulative 
distribution functions of the K J Q for the CTS and DCB 
specimens. They were best-fitted by the Weibull distribution 
curves which are often used to model the strength 
distribution of wood products. 

From Table 2, i t is obvious that the Kj^ values for the 
CTS is lower than the DCB specimens. This implies there is 
some relationship between the KJQ and the specimen size, and 
this was investigated in the later phase of the experiments. 
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s t e e l 
elements 

s i n g u l a r 
e l e ments 

F i g u r e 18 F i n i t e Element Mesh f o r t h e CTS 

P 

\ 
V 

singular 
elements 

P 

Figure 19 F i n i t e Element Mesh for the DCB specimens 



T a b l e 2 

E f f e c t o f t h e A n n u a l R i n g s A n g l e on K 

S p e c i m e n A n g l e t o s a m p l e M . C . S . G . P m x / ^IC 
T y p e R L ( d e g ) n o . (7„) P p ( M p a / m ) (psi/Tn) 

0 - 10 6 9 . 5 4 0 . 349 1. 02 0 . 3 8 7 2 3 5 2 . 3 1 

11 - 20 4 9 . 4 0 0 . 354 1 .04 0 . 3 6 5 0 3 3 2 . 1 7 

21 - 30 1 10 . 0 0 0 . 336 1 .06 0 . 3 6 6 6 3 3 3 . 6 0 

31 - 40 5 8 . 4 4 0 . 374 1 .05 0 . 3 1 5 3 2 8 6 . 9 6 

41 - 50 12 8 . 49 0 . 386 1 . 0 3 0 . 2 9 7 2 2 7 0 . 4 4 

51 - 60 8 8 . 9 6 0 . 380 1 . 0 3 0 . 2 8 2 2 2 5 6 . 8 0 

61 - 70 1 9 . 0 0 0 . 4 0 0 1 . 0 5 0 . 3 0 6 1 2 7 8 . 5 5 

71 - 80 3 9 . 0 0 0 . 3 9 3 1 .03 0 . 2 2 4 5 2 0 4 . 3 0 

81 - 90 33 9 . 3 3 0 . 388 1 .05 0 . 2 0 5 1 2 2 8 . 4 1 

90 17 9 . 4 3 0 . 370 1 .05 0 . 3 8 7 9 3 5 2 . 9 9 
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Mode I Fracture Toughness Variation with Annual Rings Angle 



MODE I CUMULATIVE DISTRIBUTION 
Compact T e n s i o n Spec imen 

Kic-° 
F = 

52ILE: 
5CUILE: 

MEAN: 
95* ILE : 

OF DISP: 

DATA (SOLID L INE) : N=33 
DATA ST.DV. WE I BULL 

0. 133 0.010 0.138 
0.192 0.010 0.196 
0.205 0.051 0.205 
0.315 0.038 0.301 
0.250 0.249 

5 INTERVAL CHI-SQUARE F IT : 1.39 
3-PAR WE I BULL (DASHED): 

SHAPE = 1 .6554 
SCALE = 0.0920 
LOCA. = 0.1227 

ST.DV. 
0.007 
0.011 
0 .051 
0.027 

o.o 
1 1 1 1 1 1 1 

0.15 0.2 0.25 0.3 0.35 0.4 0.^5 0.5 

K I C > MPa/m 

Figure 21 Cumulative Dis t r i b u t i o n Curve of the Compact Tension Specimen 



MODE I CUMULATIVE DISTRIBUTION 

Doub le C a n t i l e v e r Beam 

F = 1 

8.2095 

0 .4099 

DATA (SOLID L INE) : N=17 
DATA ST.DV. WE 1 BULL 

5XILE: 0.291 0.020 0.285 
50* ILE : 0.391 0.010 0.392 

MEAN: 0.387 0.051 0.386 
95J ILE : 0.502 0.035 0.468 

OF DISP: 0.132 0.144 

INTERVAL CHI-SQUARE F IT : 1.52 
2-PAR WE I BULL (DASHED): 

SHAPE = 8.2095 
SCALE = 0.4099 

0.2 i— 
0.3 

—1— 
0.4 

ST .DV 
0 .037 
0.016 
0 .056 
0 .020 

oo 
K IC' 

0.5 

MPa /in 
0.6 0.7 0.8 0.9 I .0 

F i g u r e 22 C u m u l a t i v e D i s t r i b u t i o n Cu rve o f t h e D o u b l e C a n t i l e v e r Beam. 
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The c r i t i c a l mode I stress intensity factor, KI(, , for 
the CTS of white spruce in the TL and RL system of crack 
propagation were 0.205 MPa/m and 0.387 MPa/m respectively, 
(see Table 2) This species of wood has not been previously 
tested for this fracture mechanics parameters. However, 
present values of K I C are comparable with their counterparts 
obtained for other species; K J C for the TL mode of western 
white pine is about 0.190 MPa/m and for western red cedar is 
about 0.185 MPa/m obtained by Johnson (1973). 

The mode I fracture toughness for the DCB spscimens in 
the TL system of crack propagation is approximately 0.387 
MPa/m . 

Average moisture content recorded for a l l tested 
specimens is 9.1% and average specific gravity is 0.38, 
based on the ovendry weight-ovendry volume. An example of 
the dependence of K J C on specific gravity is shown in Figure 
23 for the CTS and i t is apparent that there is no 
corelation between the specific gravity and the K I C . 

4.3 EXPERIMENT NO.2 CRACK-FRONT WIDTH EFFECT ON FRACTURE  
TOUGHNESS 

4.3.1 EXPERIMENT DESIGN AND PROCEDURE 
Experiment No.2 was designed to study the effect of the 

variation of the crack-front width on the mode I fracture 
toughness. A total of thirty-eight CTSs were cut into five 
different widths, nominally B = 7,15,21,29,38 mm and mostly 
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i n the TL system. The specimen geometry and the l o a d i n g 

procedure was same as used i n Experiment No.1. I t i s 

expected t h a t the s t r e s s i n t e n s i t y f a c t o r i s i n v e r s e l y 

p r o p o r t i o n a l t o the w i d t h of the specimen, so i f we double 

the w i d t h of the specimen, the s t r e s s i n t e n s i t y f a c t o r w i l l 

be h a l f of b e f o r e . A l l the specimens were t e s t e d i n the 

temperature and h u m i d i t y c o n t r o l l e d room w i t h the I n s t r o n 

T e s t i n g Machine. 

4.3.2 RESULTS 

The c r i t i c a l s t r e s s i n t e n s i t y f a c t o r s o b t a i n e d f o r each 

w i d t h are g i v e n i n Table 3. Shown are the average v a l u e s of 

c r i t i c a l s t r e s s i n t e n s i t y f a c t o r s , KI(-. , c o e f f i c i e n t of 

v a r i a t i o n (COV) i . e . , r a t i o of s t a n d a r d d e v i a t i o n t o average 

v a l u e s , sample s i z e as w e l l as the shape (k) and s c a l e (m) 

parameters f o r a 2-parameters W e i b u l l model. The l a r g e 

v a r i a t i o n of the k and m v a l u e s can be e x p l a i n e d by the 

l i m i t e d t e s t s f o r each c a s e . 

The i n f l u e n c e of c r a c k - f r o n t w i d t h on the f r a c t u r e 

toughness can be d e r i v e d by the W e i b u l l weakest l i n k model. 

The c r a c k - f r o n t w i d t h , B ,mm, i s a l s o i n c o r p o r a t e d i n the 

d e r i v a t i o n and the r e l a t i o n s h i p o b t a i n e d i s : 

F ( K K ) = 1 - e Xp[-(K I C/m) kB] (4.2) 

where k and m a r e the shape and s c a l e paramters 

r e s p e c t i v e l y . 



T a b l e 3 

E f f e c t o f c r a c k - f r o n t w i d t h on f o r c o m p a c t - t e n s i o n s p e c i m e n s 

o f w h i t e s p r u c e f o r l o n g i t u d i n a l p r o p a g a t i o n 

W i d t h , B S a m p l e S p e c i f i c P . A v e r a g e K I C C . V . S h a p e S c a l e 
? a „ p a r a m e t e r p a r a m e t e r 

mm s i z e g r a v i t y P Q M P a / m % k m 

7 5 0 . 3 3 5 1 .08 0 . 2 5 7 0 2 . 1 5 4 7 . 9 8 0 . 2 5 9 8 

15 7 0 . 3 7 8 1 .05 0 . 2 2 8 2 9 . 3 3 1 0 . 9 5 0 . 2 3 8 4 

21 6 0 . 3 9 5 1 .03 0 . 2 4 3 5 6, . 18 2 2 . 3 1 0 . 2 5 0 1 

29 7 0 . 3 7 5 1 .04 0 . 1 8 0 5 1 0 . .87 1 2 . 9 3 0 . 1 8 8 7 

38 10 0 . 3 8 9 1 .05 0 . 1 7 6 8 2 7 . ,15 4 . 2 3 0 . 1 9 4 0 
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Considering two different width, B and B*, the effect 
of variation of B on median values of Kj^. can be derived by 
evaluating equation (4.2) at F = 0.5. Then, we get : 

IC 

If we plotted Kj^ values against specimen width B on a 
log-log plot, the slope of the regression line will be -1/k. 
The least-squares method was used to f i t the regression line 
to the data. The relationship between KI(-. and crack-front 
width obtained is : 

log K I C = -0.3795 - 1/4.423 log B R 2 = 0.735 (4.4) 

where B is the crack front width,mm; KJ Q is the 
c r i t i c a l stress intensity factor, MPa/m . 

A plot of this relationship is shown in Figure 24 and 
results obtained by Barrett (1976) for Douglas f i r is also 
presented in the graph. The parameters k and m obtained by 
Barrett (1976) are 7.41 and 0.41 respectively. The 
discrepany between the two curves is due to the difference 
in the elastic properties of two species of wood. 

From equation (4.2) we get the cumulative distribution 
for K I C : 
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F(K I C) = 1 - exp[-(K IC / 0 . 3 8 4 ) 4 - 4 2 3 B] (4.5) 

which is comparable to the results of Douglas-fir. 
The results of these tests confirmed that a 

relationship exists between the fracture toughness and the 
crack-front width. It has been shown that K J C deceases as 
the crack-front width increases which can be explained by 
the weakest-link principle. 

Another consistent model of the crack-front width 
effect is based on the stress state in the specimen. From 
equations (2.46b) and (2.47) we have : 

KC - KC1 + 2 H / D ( KC2 " K C 1 } 

H 1_ 
2TT 

where OQ is the yield stress or that stress which 
results in gross deformation. 

A graph of Kj^ versus inverse thickness is shown in 
Figure 25 and a regression line is plotted based on the four 
data points. From the intercept at 1/D = 0 and equations 
(2.46b) and (2.47), we get : 



Figure 25 Effect of Crack-front Width on Mode I Fracture Toughness 
(Based on the Stress-state Model) 
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K = 0.1414 MPa/m 

K_» = 0.435 MPa/m C2 

H = 6.95 mm 

The transition thickness from plane stress to plane 
strain will be D = 2H which is equal to 13.90 mm. When D < 
13.90 mm, a plane stress condition will be maintained, so 
the basic plane stress value, will be achieved. 

For D > 13.90 mm, the plane strain condition w i l l 
result in a decline in Kj£ . 

As seen from Figure 24 and Figure 25, both the Weibull 
theory model and the stress-state model fitted very well 
with the data points. However, if a specimen has a width 
less than the transition thickness, according to the 
stress-state theory, i t is postulated that the width has no 
effect on the fracture toughness. For the Weibull model, i t 
is proposed that the effect will exist no matter what the 
specimen thickness i s . Since the transition thickness is 
usually less than 10 mm, the deviation between the Weibull 
model and the stress-state model is not significant at a l l 
and both models behaved well in the experiments conducted. 



4.4 EXPERIMENT NO.3, CRACK-FRONT LENGTH VARIATION 
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4.4.1 EXPERIMENT DESIGN AND PROCEDURE 
Because of the differences between the mode I fracture 

toughness values obtained from the CTS and DCB test results, 
Experiment No.3 was conducted. It aimed at investigating the 
influence of the crack-front length on the mode I fracture 
toughness. It was expected that the fracture toughness would 
follow a trend as the crack-front length i.e., the length in 
front of the crack increases. Experiments were carried out 
with the CTS with different crack-front length, nominally L 
= 50,75,100,125 mm, where L is defined in Figure 26. The 
crack is maintained at the same length as in experiment 
no.1. Five specimens were prepared for each case and a total 
of twenty specimens were cut from four boards. The 
experiments were conducted in room temperature with a 
•average moisture content of 9%. The load was plotted against 
the COD recorded by the modified LVDT on a X-Y plotter. The 
design failure load were determined in the same way as ASTM 
Standard E399 and the time to failure were about 1 minute 
for a l l cases. 

4.4.2 RESULTS 
Table 4 summarize results of within-board experiments 

designed to determine the relation between KI(, and the 
crack-front length, L. Average values of KJQ , C.V., 
moisture content and specific gravity for each length are 



Figure 26 Specimen Configuration of the Crack-front Length Specimen. 

oo 



T a b l e 4 

E f f e c t o f c r a c k - f r o n t l e n g t h on K^^ f o r compact 
t e n s i o n s p e c i m e n s o f w h i t e s p r u c e 

B o a r d L e n g t h Sample 

No. L, mm s i z e 

A 75 2 
100 1 
125 2 

B 50 2 
75 2 

100 1 
125 1 

C 50 2 
75 1 

100 2 
125 1 

D 50 1 
100 1 
125 1 

A v e r a g e A v e r a g e A v e r a g e C.V. 

M. ,C. % S.G. K I C , MPa/m 
/ 
o 

8. .43 0 .413 0. .2304 2. , 24 
8. .49 0 .420 0. .2275 0. .00 
8, .68 0 .414 0. .2222 9. .36 

8. .81 0 .412 0. .2817 4. ,63 
9. .36 0 .419 0. .2918 5. , 28 
8. .96 0 .410 0. .2762 0. ,00 
8. .96 0 .408 0, .2569 0. .00 

9. .69 0 .335 0. .2076 3. ,86 
9. .68 0 .334 0. .1894 0. ,00 
9. .75 0 .322 0. .2193 7 . 41 
9. .54 0 .342 0. . 1805 0. ,00 

8. .99 0 .416 0. .2640 0. ,00 
8, .98 0 .413 0. .2518 0. ,00 
8, .93 0 .405 0, .3145 0. ,00 
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also shown and the results are plotted in Figure 27. The 
results do not seem too helpful as i t is not obvious any 
trend exists for a l l cases except for board A, for which the 
values of KI(, decrease as the length increases. The lack of 
consistent trends can be attributed to the limited number of 
specimens tested. However, comparing the average fracture 
toughness between the CTSs and the DCB specimens, 
surprisingly, the DCB specimens gave fracture toughness 
values twice as great as the CTSs. This may have different 
causes. F i r s t l y , the CTSs were prepared from many different 
boards which implies a higher degree of variability, whereas 
the DCB specimens were prepared from only three boards. This 
can be observed by examining the coefficient of variations 
for both cases, as shown in Fig. 21 and 22. 

The difference of the fracture toughness between CTSs 
and DCB specimens may also be explained by the stress-state 
condition in the specimens. As mentioned before, the 
fracture initiation constant, K J Q , is thickness dependent. 
The amount of material which yields at the crack tip must 
also be small. To ensure this, specimens must be of 
sufficient thickness so that a tria x i a l state of stress can 
exist at the flaw tip. It is postulated that Kj^ decreases 
as the crack-front width increases. The lower limit occurs 
as the width approaches infinity and i t is called the plane 
strain fracture toughness. The K j C at this point is 
considered to be a geometric invariant material property. 
The size requirements recommended by Liu (1983) for this SSY 
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Figure 27 Effect of Crack-front Length on Mode I Fracture Toughness 
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and plane strain condition are : 

(4.6a) 

or 

(4.6b) 

where t is the specimen thickness, m; a,l are defined in 
Fig. 26. 

This means that if the left-hand term is less that one, 
then a plane stress condition w i l l exist; otherwise,' the 
plane strain condition will result in a decline in K J C . 

Table 5 shows the data for the cases of CTSs and DCB 
specimens, the left-hand term for the CTSs is larger than 
the value for the DCB specimens. This indicates that the DCB 
specimens have a condition closer to the plane stress 
condition which implies a higher value of Kj^ , which agrees 
with the results obtained. Further analysis of this 
difference is included in Appendix II. 

4.5 EXPERIMENT NO.4 MOISTURE CONTENT EFFECT 

4.5.1 EXPERIMENT DESIGN AND PROCEDURE 
This experiment uses Kj^, to examine the variation of 

fracture toughness in white spruce with the practically 



T a b l e 5 

The s i z e c o e f f i c i e n t f o r CTSs and DCB spec imens 

Specimen Sample a L t t / ^ ^ 5 (—!£.) Q - ^ t ^ C Y ) 
O y a K-j.̂ , 

t ype s i z e mm mm mm m MPa L 

CTS 33 50 50 38 0 .038 2 . 8 0 0 .01288 2 .9503 

DCB 17 250 700 38 0 .1064 2 . 8 0 0 .04800 2 .2164 
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important parameter — moisture content. 
Thirty-two compact tension specimens were prepared; 

most of them were in the TL system of crack propagation. The 
specimens were randomly divided into two groups and each 
group was conditioned in two different environments. Sixteen 
were placed in a dry air oven at 105°C to reduce the 
moisture content to zero; the remainder were conditioned in 
a humidity room to achieve a moisture content of 6%. When 
combined with the results from the 9% M.C. CTS of Experiment 
No.1, the three sets of specimens allows evaluation of Kj^ 
at different moisture content. Specimen size and 
experimental procedures were exactly the same as Experiment 
No.1. The tests were conducted in the same humidity room. 

4.5.2 RESULTS 
Table 6 summarized the results from each set of 

experiments and a plot is given in Figure 28. As can be seen 
in the figure, the ovendried specimens failed at lower loads 
than the wet. The results indicate that the effect of 
moisture content on KI(- shows a decrease as the moisture 
content decreases from 9% to 0%. The average values for the 
kiln-dried condition,with moisture content approximately 9%, 
is 0.2051 MPa/m , and an average value of 0.1752 MPa/m for 
the oven-dried specimens. This shows a decrease of 15% which 
is consistent with the results of the Newsletter of 
Technical Research Centre of Finland (1986) for spruce. 
According to the results obtained by P.D.Ewing (1979), the 



T a b l e 6 

E f f e c t o f mo i s ture content on K T r f o r CTS i n l o n g i t u d i n a l p r o p a g a t i o n 

M o i s t u r e Sample Average K-j-^ C . V . S p e c i f i c 
content s ± z & MPa/m % g r a v i t y 

/o 

0.00 16 0.1752 21.46 0.383 

6.34 16 0.1957 17.32 0.347 

9.10 33 0.2051 24.67 0.380 
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Figure 28 Effect of Moisture Content on Mode I Fracture Toughness 
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effect of moisture content on K J C generally shows an 
increase as the moisture content decreases from 20% to a 
maximum at around 10% and then the Kj^ values tend to 
decrease. This agrees with the results obtained from 
Experiment No. 4. 

An exponential curve was fitted to the data points 
using the least-squares technique and the following 
relationship is obtained for M̂ 10 % : 

K 2
C = 0.0305144 + 0.013619 (1 - e~ M / 6) (4.7) 

R2 = 0.9688 

where 
K J Q is the mode I fracture toughness, MPay/m ; 
M is the moisture content, %. 
This equation shows good agreement with the 

experimental data points, as shown in Figure 28. However, 
this equation shows a limitation in that the fracture 
toughness will increase as long as the moisture content 
increases. According to Ewing's theory, this equation should 
only be valid in the range between 0% and 10%. 

4.6 EXPERIMENT NO.5, MODE II FRACTURE TOUGHNESS 

4.6.1 EXPERIMENT DESIGN AND PROCEDURE 
Although mode I is usually dominant in crack 

propagation, for certain loading situations mode II can also 
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be of significance. In order to generate the interaction 
curve between mode I and mode II at failure; or to study the 
wood structure under the mode II failure condition, mode II 
fracture toughness values are required. 

The end-split beam specimen suggested by Barrett, and 
Foschi (1977) was adopted here to study the mode II fracture 
toughness. The test method is shown in Figure 29 and the 
mesh for the finite element program is shown in Figure 30. 

During the experiments, the relative displacement of 
the crack surfaces at points A and B shown in Figure 31 was 
recorded by a modified LVDT and plotted against the applied 
loads. Friction induced by the crack closure was avoided by 
placing a smooth plastic plate between the sawn notch as 
shown in Figure 29. Twenty-four specimens were prepared and 
the bandsawn notches were extended by a steel knife crack 
starter just before the testing. The specimens were tested 
in the Satec Testing Machine under room temperature and the 
crack orientation was recorded for each specimen. The 
experimental setup is shown in Figure 32. 

4.6.2 RESULTS 
A typical load versus crack displacement curve is also 

shown in Figure 31 which indicates some slow crack growth 
prior to the crack starting to propagate. The failure load 
were determined using the 5% offset line as suggested in 
ASTM Standard E399. The experiment results also indicated a 
dependence of mode II fracture toughness on the crack 
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F i g u r e 29 Experiment Setup o f the Mode I I F r a c t u r e Toughness Specimen. 

Fi g u r e 30 F i n i t e Element Mesh f o r the Mode I I F r a c t u r e Toughness Specimen. 
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Figure 31 Applied Load versus Longitudinal Displacement. 



Figure 32 The apparatus and the experimental setup of the 
mode II fracture toughness test specimen. 
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orientation as shown in Table 7. 
The K j I C values were plotted against the annual rings 

angle, 6 in Fig 33. The best-fitted polynomial curve 
calculated by the least-squares method is also shown in the 
figure, and the following relationship was derived : 

K = 1.8798 + 2.5114 x 10 _ 29 - 2.4828 x KT^e 2 (4.8) 

where 

K J J ^ is the mode I I fracture toughness, MPa/m ; 
0 is the annual rings angle, degree. 
The curve shows a maximum at a rings angle of 50 

degrees which indicates a mode of cross-grain plane failure. 
This is reasonable as the cross-grain failure always require 
a higher failure load. The average mode I I fracture 
toughness values obtained for white spruce were 2.16 MPa/m 
and 2.05 MPa/m for the TL and RL systems respectively. These 
values are comparable with the results obtained by Barrett 
(1981) for white spruce -- K n c for the TL mode is 1.89 
MPa/m which is in the same order of magnitude. 

Figure 34 shows the cumulative distribution funmction 
for K I I C based only on a l l the specimens tested in the TL 
system. The coefficient of varience is 16% with the f i f t h 
percentile being 1.925. MPa/m . 



T a b l e 7 
E f f e c t o f t h e a n n u a l r i n g s a n g l e on K I I C 

Specimen A n g l e t o Sample M.C. S.G. K n c K I I C 
t y p e , g i z e % MPa/m p s i / T n 
" d e g r e e 

E n d - s p l i t 
Beam 

0 -- 10 2 13. 38 0. 384 2.0180 1836. 33 

11 -• 20 2 13. 75 0. 369 2.1000 1911. 00 

21 -- 30 0 - - -
31 -- 40 3 12. 83 0. 410 2.2597 2056. 30 

41 -- 50 4 13. 13 0. 418 2.6935 2451. 09 

51 -- 60 2 13. 78 0. 371 2.3942 2178. 72 

61 -- 70 1 14. 50 0. 423 3.0098 2738. 90 

71 -- 80 1 12. 75 0. 324 1.9359 1761. 70 

81 -- 90 8 12. 91 0. 345 2.1561 1962. 01 
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Figure 33 Mode II Fracture Toughness Variation with Annual Rings Angle 



MODE II CUMULATIVE DISTRIBUTION 

End-split Beam 

K 15.229 

F = 1 
-( IIC 
2.2329 

5JILE 
50ZILE 

MEAN 
952ILE 

OF DI5P 

DATA (SOLID L I N E ) : N=8 
DflTR ST.UV. WEIBULL 5T.DV 

I .925 0.014 1 .837 0 . 190 
2.163 0.151 2.179 0.073 
2.156 0.178 2.157 0.173 
2.428 0.047 2.399 0.081 
0.082 0.080 

INTERVAL CHI-SQUARE F IT : 0.00 
2-PAR WE I BULL (DASHED) : 

SHAPE = 15.2286 
SCALE = 2.2329 

.0 0.5 1 .0 1 .5 
1 

2.0 

K IIC 

~ l 
2.5 

I— 
3.0 

MPa/m 
3.5 4 . 0 -1.5 

Figure 34 Cumulative Distribution Curve of the End-split Beam Specimens. 
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4.7 EXPERIMENT NO.6, MIXED MODE MID-CRACKED BEAMS 

4.7.1 EXPERIMENT DESIGN AND PROCEDURE 
Since wood structural members are often subjected to 

complex loading conditions that result in mixed mode 
fracture, a failure criterion should be expressed in terms 
of combinations or interations of the mode I and mode II 
failure modes. 

Experiment No.6 was designed to investigate the 
fracture strength of mid-cracked beams under the mixed mode 
loading condition. Di f f i c u l t i e s were encountered in 
designing the specimen geometry in order to produce the 
desired ratio of Kj to Kjj . This had to be done by t r i a l 
and error, and finally the 45 degrees and the 90 degrees 
mid-cracked beams were adopted for testing. 

This investigation had two principal phases. In the 
f i r s t phase, the 45 degrees mid-cracked beams were loaded at 
the centerpoint as well as at a distance of 200 mm from the 
support as shown in Figure 35. Twenty-four specimens were 
cut and prepared for each case with mostly in the TL system 
of crack propagation. 

The second phase consists of the 90 degrees mid-cracked 
beams loaded at the centerpoint as shown in Figure 36. 
Sixteen specimens were prepared for the TL propagation and 
the tests were performed in the Satec Testing Machine at 
room temperature. 
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P = 100 N 
K. = 7.55xl0~ MPa/ni 
K__ = -0.0187 MPa/m 

Type A 

P = 100 N 
Kj= 6.97x 
K „ = 0.0102 MPa/m 

" MPa^ 

II 

A 

Figure 35 
Type B 

Specimen Configuration of the 45 deg. Beam 
(a) Loading at the centerpoint. 
(b) Loading at 200mm from the left support. 

P = 100 N 
Kx= 6.309x10 -3 MPa/m 
K II 0.0134 MPa>/m 

A 

Figure 36 

cr 
Type C 

Specimen Configuration of the 90 deg. Beam 
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Prior to testing, the band-sawn notches were also 
sharpened with the crack starter in the direction of the 
sawn crack. In fact, the cracks propagated along the grain 
at maximum load. 

The Kj and K J J values corresponding to a load of 1 0 0 N 
were calculated with the program NOTCH using the fini t e 
elements meshes shown in Figure 37. The predicted direction 
of propagation was determined by comparing the Kj and K J J 

values for both directions from the computer output. A 
higher value of Kj and K J J indicates a lower failure load 
during the testing. The predicted failure direction is also 
shown in Figure 3 5 and Figure 3 6 . 

Because of the d i f f i c u l t i e s of measuring the COD values 
in the experiments or the opening at the lowest midpoint of 
the i n i t i a l crack, the mid-span deflections were measured 
instead. 

4.7.2 RESULTS 
Table 8 summarizes the results for each phase of 

experiment with the average K I C , K I I C values shown as well. 
As can be seen from Figures 3 5 , 3 6 and Table 8 , there are 
two potential directions of propagation for the 9 0 degrees 
mid-cracked beams. Since cracks started at the weaker 
direction of the two, i t implies a double chance of failure. 
The experimental curves were corrected based on the 
following formulae : 
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Figure 3 7 F i n i t e Element Mesh f o r the Mid-cracked Beam Specimen. 
(a) 45 degrees Mid-cracked Beam. 
(b) 90 degrees Mid-cracked Beam. 



Table 8 

Results of the mid-cracked beam specimens 

K J J C . V . R * 

K I I C "/O 7 ° 
Mean 

Type A 20 0.3013 0.7470 19.0 0 0.7765 9.0 0.3433 12.5 100 

Type B 18 0.3539 0.5183 18.7 180 0.9073 6.4 0.2341 14.9 100 

Type C 16 0.3084 0.6571 17.4 0 , 180 0.8496 3.8 0.3160 10.7 100 

Specimen Sample Average Average C . V . Predicted C . V . 
K T„ K T T O prop. 

type size I C I I C „ , /. K _ . V A / 

MPa/m MPa/m '* E r e c t i o n K I C L 
'Mean 

•k _ R i s the percentage of the specimens f a i l e d i n the predicted d i r e c t i o n . 
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F £ - 1 - [1 - F £]2 ( 4 . 9 ) 

F - 1 ~ / l - F ( 4 . 1 0 ) c E 

where 
F E is the experimental cumulative probability. 
F c is the corrected cumulative probability. 
These cumulative distribution curves are shown in 

Figure 3 8 and Figure 3 9 together with the best-fitted 
Weibull curves and equations. It can be seen that the curves 
are rotated to the right i.e., higher values of K I C and K I I C 

correspond to the same percentile. 

For the mode I stress intensity factors of the 9 0 

degrees beams, the K J C has a mean value of 0 . 3 0 8 4 MPa/m for 
the experimental cumulative distribution and a value of 
0 . 3 5 5 6 MPa/m for the corrected cumulative distribution. 

In order to determine the normalized interaction curve 
between mode I and mode II fracture toughness, the and 
K J J values for mixed mode failure are normalized by the 
c r i t i c a l mode I and mode II stress intensity factors 
respectively. If we just divide the Kj and K J J values by the 
average K I C and K J I C respectively, we are comparing the 
values at different percentiles. One method to tackle this 
problem is to normalize the Kj and K J J values at failure by 
the K I C and K I I C values which correspond to the same 
percentile. 

This method is shown diagramatically in Figure 4 0 . The 
solid curve and the dashed curve correspond to the pure mode 



Kj ( MPaVm) 
Figure 38 Experimental and Corrected Cumulative P r o b a b i l i t y Curves 

of the Mode I Fracture Toughness for the 90 degrees beam. 

o 



K J J ( M P a V m ) 

Figure 39 Experimental and Corrected Cumulative P r o b a b i l i t y Curves 
of the Mode II Fracture Toughness for the 90 degrees beam. 

o 



Figure 40 Method of Normalizing the Cumulative Pr o b a b i l i t y Curves 
for the 45 degrees mid-cracked beam. 
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I and mode II fracture toughness Weibull curves 
respectively. Each data point is divided by the value 
which refers to the same level of cumulative probability. 
Refering to Figure 40, we have : 

K I X l K I I X2 
IC X l c K I I C X 2 C 

where 
Kj is the mode I stress intensity factor at failure. 
K J J is the mode 11 stress intensity factor at 
failure. 
Kj^ is the pure mode I fracture toughness. • 
KIIC * s fc^e P u r e m°de 1 1 fracture toughness. 
X 1 , X ^ , X 2 , X 2 Q are as shown in the figure. 
Both the 45 degree and the 90 degree mid-cracked beam 

data points are treated by this method. For the 90 degrees 
beams data, the corrected cumulative distribution functions 
were used to calculate the required ratios. 

The average values for the Kj / K I C and K J J / K J I C for 
this experiment are listed in Table 8 and are plotted in 
Figure 41. 
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Figure 41 K^-K^ Interaction Diagram based on the Mid-cracked 
Beams Result. 
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4.8 EXPERIMENT NO.7, DCB UNDER MIXED-MODE LOADING 

4.8.1 EXPERIMENT DESIGN AND PROCEDURE 
Experiment no.7 served the purpose of generating more 

points on the interaction curve and to check the consistency 
of the interaction curve for describing the mixed mode 
fracture failure for different geometries. 

The main di f f i c u l t y in generating a interaction curve 
occurs because of the limited range of Kj / K J J (or ( Kj / 
KIC K I I / KIIC ^ * n fc^e s P e c i m e n design. It was found 
that for most beam geometries, the mode I stress intensity 
factor often dominates the fracture failure. This is 
equivalent to the failure points on the upper region of the 
interaction curve or a high value of 9 as shown in Figure 
41 . 

The practical diff i c u l t y was overcome by applying two 
separate loads on the DCB specimens which could be 
controlled to produce different mode I and mode II stress 
fields around the crack tip. This is the same as 
superimposing the mode I and mode II DCB loading as shown in 
Figure 16 and 29. Although the two stress modes are not 
absolutely independent with respect to the two loads, i t is 
possible to control the ratio of Kj to K J J at fracture. The 
test method is shown in Figure 42. The midspan load was 
produced by the Satec Testing Machine while the end-support 
load was achieved by a hydraulic jack with a calibrated load 
c e l l . The experimental setup is shown in Figure 43. 



Figure 42 Specimen Configuration of the Two-loads Beam Specimen. 
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The relationship between the stress intensity factors 
and the applied loads are : 

Kj - 4.0488 x lo" 1* ? 1 - 9.894 x io"5 P,, (4.12a) 

K I I = - 1 ' 5 0 6 0 x 1 0 ~ * p
2 (4.12b) 

Using the results from before for the TL system : 

K = 0.388 MPa/m K = 2.13 MPa/m 
•L V' 110 

For pure mode I fracture : (P2=0) 

= ^388 = 9 5 8 3 N 

4.0488 x 10_1+ 

For pure mode II fracture : (P^O) 

P = = 14143.5 N 
1.5060 x I O - 4 

Introducing the condition Kj >0 i.e., that the crack does 
not close, from Equation (4.12a) we have : 

4.0488 x 10" 4 P, - 9.894 x 10~ 5 P = 0 



or 

P2 < 4.1 ? i 

Assuming the interaction curve to be : 

Case I : 

K l K l l 
K i c K n c 

K I / K I C 
L e t r = —71? = t a n 9 

K I I / K I I C 

we have, 

P = (SrZ+T - r)[1234.93r K + 811.29 K_ ] 

P2 = 3320.062 (/?2+4 - r)[KI I (,] 

Case II : 

( i r - ) 2 + • 1 

K i c K n c 

we have, 

P1 = 1//1+P" [2469.9 K I C • r + 1622.6 K ] 

P2 = 6640.12 
/l+ r2 
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Since case I is more conservative than case II, in 
designing the fracture criterion, case I is adopted. 

The interaction failure envelope for the P1~?2 mi- xed 
mode loading is shown in Figure 44. Outside the curve is the 
failure region, where as inside, the specimen is intact. 

To obtain the desired ratio of fracture toughness, the 
following procedure was followed : 
1. A ratio r was selected. 
2. From equations (4.14a) and (4.14b), failure loads and 

P 2 were obtained. 
3. The corresponding Kj and K J J values from equations 

(4.12a) and (4.12b) were calculated. 
4. From Figure 44, a loading path was designed within the 

safe region to achieve the P1 and P 2 calculated. 
Experiment no.7 was carried out in determining the Kj 

and K J J value at failure for two different ratios as shown 
in Figure 44 together with the loading path. 

Ten specimens were prepared and tested for each case 
under room temperature with the dominant system of crack 
propagation being TL. The applied mid-span load and the COD 
were recorded by a X-Y plotter. 

4.8.2 RESULTS 
The experiment results are summarized in Table 9 and 

Figure 44, with the failure load shown as well. This gives 
the ratio of Kj to KTl values of 0.64 and 0.229, with 
corresponding d values of 74° and 52°. These values were 
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Figure 4 4 Failure Envelope of the Two-loads Beam Specimen 
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T a b l e 9 

R e s u l t s o f the t w o - l o a d s beam t e s t s 

Spec imen Sample P , P 9 Ave rage C . V . A v e r a g e C . V . K x C . V . K J T C . V . A v e r a g e 
t y p e s i z e / / K ] . : % % * % " % 

MPa/m MPa/m i L i i L 

5 - s t e p s 10 1925 .0 3985 .4 0 .3851 9 .6 0 .6002 9 .6 0 .998 5 . 3 0 .282 9 . 3 3 .525 

9 - s t e p s 9 2800 .0 8488 .3 0 .2938 16 .7 1.2783 16 .7 0 .754 5 . 4 0 .600 5 .9 1.260 
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used to generate the interaction curve later. 
Theoretically, i t is possible to attain any stress 

intensity factors ratio even for d close to zero, however, 
in practice i t may require the specimen loaded close to the 
mode II fracture toughness, which may cause the specimen 
failed in mode II instead of the mixed mode condition 
wanted. 

The onset of the crack propagation were determined by a 
change of the slope of the load verses COD curve in the 
final phase as shown in Figure 45. Some slow crack growth 
was observed during the tests. A 5% offset method is used 
here to determine the failure load. 

4.9 EXPERIMENT NO.8, NOTCHED BEAM SPECIMENS 

4.9.1 EXPERIMENT. DESIGN AND PROCEDURE 
The final phase of the experiment concerned the notched 

beam specimens under the mixed mode loading condition. As 
mentioned before, the stress intensity factor for notches 

2-X 
has a unit of (Load)x(Length) , which depends on the 
eigenvalue X. Therefore, the interaction curve for notched 
specimens include three variables, i.e., Kj / K J C » K T . T / K H C 

and X. 
Experiment no.9 was designed to produce data points for 

notches with X = 1.6 and 1.7. Three types of specimens were 
used in these experiments as shown in Figure 46. 
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\ 

STAGE 2 

STAGE 1 

COD 

Figure 45 Typical Load-Displacement curve of 
Two-loads Beam Specimen. 
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(a) 

Applied 
Load 

1 
92mm 50mm TYPE A 

130' \ 
7S~ 

•450mm 

Figure 46 Specimen Configurations for Notched Beam 
(a) Type A specimen; X=1.60 
(b) Type B specimen; X=1.60 
(c) Type C specimen; X=1.70 
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Eight specimens were prepared for each case and the 
tests were carried out with the Satec Testing Machine at 
room temperature. The i n i t i a l notches were not extended by 
the crack starter and the loads were plotted against the 
midspan deflection for a l l cases. 

The pure mode I and mode II fracture toughness tests 
for these Xs were not done due to the d i f f i c u l t y of 
obtaining feasible specimen dimensions and loading method. 
For example, to obtain the K J C and K I I C for X=1.6, we need 
to test a 77° notch in the compact tension specimen, and a 
13° notch in shear. 

4.9.2 RESULTS 
The results were summarized in Table 10. Since the 

specimens are symmetrical with respect to the midspan 
neutral axis, there is a equal probability of crack 
initiation at both notches. Similar treatment of the 
experiment data were preformed according to the equations 
(4.9) and (4.10). The average corrected Kj and K J J values 
are given in Table 10 as well. 

The failure of specimens type A and type C was very 
brit t l e and the rate of crack propagation was extremely fast 
while the failure of type B specimens were more ductile due 
to the slow crack growth. 

The average values of the stress intensity factors at 
failure for notches were showed to be less than the values 
for cracks. It is expected that the interaction curves will 



Table 10 

Results of the notched beam specimens 

Specimen Sample M.C. 
type size % 

Type A 7 8.81 0.361 0.2877 0.4997 17.94 1.60 

Type B 8 8.59 0.347 0.2370 1.2044 12.11 1.60 

Type C 8 8.00 0.315 0.2122 0.7326 24.54 1.70 

S.G. Average Average C.V. 

MPam 2 _ X MPam 2 _ A 
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move towards the origin as the value of X increases. 

4.10 SUMMARY 

This chapter has served to provide the f u l l descriptions of 
the experiment design, procedures and results. Each 
experiment contributed to a better understanding of how wood 
specimens performed under different geometries and loading 
conditions. The experiments also provide the data points 
which are necessary in generating the interaction curve for 
the mode I and mode II stress intensity factor. 



5. DISCUSSION 

5. 1 INTRODUCTION 

This chapter f i r s t explains the method of generating an 

interaction curve for a cracked beam, and then presents the 

results obtained. The method i s then extended to a notched 

specimen, to establish the family of interaction curves. 

Following is a detailed discussion of the treatment of data 

in order to obtain the curves, including assumptions that 

had been made during the process and the limitations of the 

experiments. F i n a l l y , rules for the design of cracked beams 

and notched beams are suggested. 

5.2 STRESS INTENSITY FACTOR INTERACTION CURVE FOR CRACKS 

Using the results of a l l the cracked specimens tested - DCB 

specimens, two-loads specimens, mid-crack beam specimens, i t 

is possible to establish the interaction curve for the 

cracked beams. Figure 47 shows a l l the experimental data 

points obtained which had been normalized with the c r i t i c a l 

mode I and mode II stress intensity factors. An interation 

curve has been derived by the least-squares technique based 

on equation (2.65) and is shown in Figure 47 with a l l the 

data points, and in Figure 48 with their average values. 

This gives the formula : 

K I . , KII .2.5587 
— + (j7 ) - 1 (5.1) 
IC IIC 
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Figure 48 Interaction curve derived between K J / K T C A N ^ ^n/^xiC 
for cracked beam specimens. — 
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This is close to the model proposed by Wu (1967),i.e.: 

Kic Sic <5-2> 
This formula is replotted in Figure 49 together with 

other suggested models. The linear relation of Leicester 
(1974) seems to be too conservative. The model proposed by 
Williams and Birch (1976) that the shear stress causing 
sliding mode has no effect on the mixed mode failure, does 
not follow the data trend. The present experiments on white 
spruce corroborate the findings of Wu (1976) on balsa. The 
question might be raised whether this interaction relation 
is applicable to other species of wood, but i t cannot be 
answered until further results are obtained. 

5.3 STRESS INTENSITY FACTOR INTERACTION CURVE FOR NOTCHES 
As mentioned before, the stress intensity factors for 
notches have dimensions of stress*length , where X is a 
non-linear function of the material and notch orientation in 
orthotropic materials. Consequently, for any given value of 
X, there may be an infinite number of compatible notch 
geometries and material combinations. 

In a general case of a notch, a minimum of three 
parameters are essential to uniquely specify the stress 
fields at the notch root : Kj , K J J and X. Kj and K J J 

indicate the strength of each of the stress fields while X 



X = 1.50 

c r a c k e d beam specimens. 
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shows the rate at which the stresses change when the 
distance to the notch root varies. 

To establish the family of interaction curves, i t is 
necessary to obtain interaction curves for X values from 1.5 
to 2.0. This is rather tedious as compared to sharp cracks, 
for which the primary and secondary modes have equal 
eigenvalues. In order to obtain data points on the 
interaction curve, different notch geometries are required. 

The experiments contributed two data points for X=1.6 
and one data point for X=1.7. These are the more general 
cases since a larger value of X corresponds to a large notch 
angle. As X approaches the value of 2.0, the notch open to 
180 degrees to produce a flat surface. 

Due to the limited number of the data points, the 
assumption that the shape of the interaction curves for 
notches would be the same as for the case of cracks had to 
be made. 

A plot of the family of the interaction curves obtained 
is shown in Figure 50. The curves are best-fitted based on 
the following interaction relationship: 

A K x + B K ^ ' 5 5 8 7 = i ( 5 > 3 ) 

A/B = 17.84 (5.4) 
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where 

Kj , K J J are the mode I and mode I I f r a c t u r e toughness 
2 _X 

r e s p e c t i v e l y , MPam ; 

A, B a r e some c o n s t a n t s as shown i n F i g u r e 50. 

T h i s g i v e v a l u e s of K I C of 0.3880 MPa/m , 0.3115 

MPam 0* 4, 0.2375 MPam 0 , 3 f o r X=1.5, 1.6, 1.7 r e s p e c t i v e l y ; 

K I I C of 2.183 MPa/m , 1.955 MPam 0 , 4, 1.758 MPam 0 , 3 f o r 

X=1.5, 1.6, 1.7 r e s p e c t i v e l y . A more g e n e r a l i n t e r a c t i o n 

e q u a t i o n was d e r i v e d f o r whit e spruce u s i n g the 

l e a s t - s q u a r e s method on the e x p e r i m e n t a l r e s u l t s : 

2 SS87 
Kj + 0.05605 K1Z = 1-8355 - 1.1525 X + 0.125 \2 (5.5) 

where 

Kj , K j J are the mode I and mode I I f r a c t u r e toughness 
2 - X 

r e s p e c t i v e l y , MPam ; 

The i n d i v i d u a l i n t e r a c t i o n curve f o r notched beams f o r 

X=1.6 and 1.7 are a l s o showned i n F i g u r e 51 and F i g u r e 52 

r e s p e c t i v e l y . 

A f t e r e s t a b l i s h i n g t he i n t e r a c t i o n c u r v e s , we a r e now 

a b l e t o compute the s t r e n g t h of any notched or c r a c k e d 

specimen of d i f f e r e n t g e o m e t r i e s , m a t e r i a l s and g r a i n 

o r i e n t a t i o n s under any k i n d of l o a d i n g . But u s i n g of t h e s e 

c u r v e s f o r beam d e s i g n seems t o be too troublesome as one 

needs the s t r e s s i n t e n s i t y f a c t o r s . However, we can a l t e r 

these c u r v e s i n o r d e r t o o b t a i n a d e s i g n method f o r the 



Figure 51 Interaction curve for notches with A=1.60 
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Figure 52 Interaction curve for notches with X=1.70 
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cracks and notches. 

5.4 APPLICATION 

The application of linear elastic fracture mechanics methods 
for beam design allows estimates of the strength of notched 
beams. Murphy (1978) had shown that the recent code has 
underestimated the effect of the presence of a notch based 
on the net-section theory. A more rational method of 
treating the notches and cracks is presented herein which 
provides rules for the strength design of notched beams. 
These rules were based on theoretical studies combined with 
the test data. 

The design method includes two essential features - the 
90 degrees cracked beam and the 90 degrees notched beam. The 
essential feature of the 90 degree cracked beam problem 
under investigation is shown in Figure 53. The geometrical 
dimensions a, b, d are indicated therein as well as the sign 
convention of bending moment M and shear force V acting on 
the beam at the cross-section containing the crack root. 

Figure 53 also shows the individual contribution of the 
applied moment and shear to the mode I and mode II stress 
intensity factors for varying notch-depth ratios. The curves 
were obtained by using the program NOTCH and followed the 
"transformed stress intensity factors method" proposed by 
Murphy (1978). 

In application, one can obtain the stress intensity 
factors for specific configuration by evaluating the moment 
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Figure 53 Dimensionless Stress Intensity Factors for pure moment 
and pure shear loadings as a function of notch-to-depth 
r a t i o for 90 degrees cracked beam. ^ 
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and shear at the notch root and entering the figures. 
Since the stress intensity factors are also affected by 

the nominal stress f i e l d surrounding the eigenfield, the 
accuracy of the proposed curves for computing stress 
intensity factors depends on how similar the nominal stress 
f i e l d of the beam being analyzed is to the stress f i e l d of 
the beam shown in Figure 53. 

To verify the validity of these curves, a comparison 
had been made between the results obtained by these curves 
and the the program NOTCH. Five cases, with two simple 
structural configurations under different loadings were 
investigated. The notch-to-depth ratio is 0.5 and the five 
cases are shown in Figure 54. 

The results are presented in Table 11. As can be seen, 
the difference between the two methods is larger in cases 3 
and 5, which might be explained by the high discrepancy 
between the nominal stress f i e l d of the off-center cracked 
beam and the nominal stress fi e l d of the beam from which the 
curves were derived. The difference of the beams under 
uniform loading can be explained in the same manner. 

Interaction relation between the ultimate moment and 
shear force can be established by using the interaction 
curves for the stress intensity factors obtained and 
substituting the Kj and K J J values by the applied moment and 
shear. The interaction relation between the moment and shear 
for 90 degrees crack for various notch-depth ratio is shown 
in Figure 55. The curves show a linear relationship between 
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T a b l e 11 

S t r e s s i n t e n s i t y f a c t o r s f o r v a r i o u s sha rp c r a c k p rob lems 

Case From c u r v e s From NOTCH A c c u r a c y * A c c u r a c y 

K I 
MPa/m 

K I I 
MPa/m MP a/ii i 

K I I 
l-IPa'/m 

o f 
o ia 

o f 
o 

K. 

o 

1 7 , . 2 1 0 x l 0 " 3 0.0154 7 , , 0 0 5 x l 0 ~ 3 0.0149 2, ,9 2. .7 

2 6 . 6 0 6 x l 0 " 3 0.0107 6 , 3 7 2 x l 0 ~ 3 0 .0101 3. .7 5. .7 

3 0 .0288 0.0614 0, .0317 0 .0672 8. ,9 8. .6 

4 9 . 6 0 6 x l 0 " 3 0.0137 9, . 2 8 0 x l 0 ~ 3 0 .0133 3. .5 3. .3 

5 0, .0216 0 .0461 0, .0241 0 .0502 10. , 1 8. .3 

I I 

* A c c u r a c y i s b a s e d on the r e s u l t s o b t a i n e d f rom the p rog ram NOTCH. 
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moment and shear with d i f f e r e n t i n t e r c e p t s and slopes f o r 

d i f f e r e n t notch-depth r a t i o . 

These r e l a t i o n s h i p can be expressed i n formulae i n 

terms of the nominal maximum bending s t r e s s fk=6M/bd 2 and 

nominal maximum shear s t r e s s f s=3V/2bd c a l c u l a t e d f o r the 

t o t a l beam depth. 

T h i s g i v e s , 

For 90 degrees cracked beam ; 

af + f 

- J ^ f < 1 (5.6) 

where 

a, 0 are constants l i s t e d below; 

d i s the t o t a l beam depth, m; 

f ^ i s the maximum bending s t r e s s , MPa; 

f s i s the maximum shear s t r e s s , MPa. 
a/d a(dimensionless) B(/m/MPa) 

0.5 0.0644 0.1271 

0.4 0.0797 0.1815 

0.3 0.0787 0.2374 

0.2 0.0913 0.3532 

0.1 0.1004 0.8544 

Equation (5.6) i s analogous to the design equations f o r 

notches from the S.A.A. A u s t r a l i a n Timber En g i n e e r i n g Code 
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CA65-1972 (S.A.A. 1972) : 

0.3f. + f 
——^- S-< 1 (5.7) C, F , 3 sj 

where 

6M . 1.5V 
b lie 

min 
B d2 s Bd . C Q • min 

F • = shear block strength for the species of interest; 
C3 = constant for specific notch angle. For the 90 

degrees notched beam, the stress intensity factors do not 
show a consistent relationship with the applied moment and 
shear. This means the stress distribution around the 
eigenfield of a notch is very sensitive and varies with 
different loadings and geometries. Consequently, the stress 
intensity factors for notches have to be computed by using 
singular finite element program, and general design curves 
for different loadings can not be obtained. 

One particular case of a one-metre rectangular 
end-notched white spruce 2x8's beam under centerpoint 
loading (P) was analyzed with various notch-to-depth ratio. 
The ratio Kj /P were plotted against the notch length for 
various notch-to-depth ratio, (see Figure 56) Since the Kj 
to K J J ratio is constant for a given notch geometry and 





1 4 7 

material, K J J can be obtained from the relation K^j = 1 . 0 9 6 

Kj after obtaining the Kj value from the figure. Using 
equation ( 5 . 5 ) and substituting K J J by 1 . 0 9 6 Kj , the 
c r i t i c a l mode I and mode II stress intensity factors can be 
computed. The values obtained are 0 . 3 8 2 3 MPam ° * 4 5 2 1 for the 
c r i t i c a l 'mode I stress intensity factor and 0 . 3 4 8 7 

0 4 5 2 1 . . MPam ' for the c r i t i c a l mode II stress intensity factor. 
Using these values and Fig. 5 6 , a plot of the c r i t i c a l 
applied load against the notch length for various notch 
depths can be obtained as shown in Figure 5 7 . It should be 
noted that for notches close to the end support, the stress 
intensity factors might be affected by the bearing stress, 
which causes the distortion of the stress f i e l d around the 
notch. Therefore the stress intensity factors cannot be 
represented in the same plot. 

Although the relation between the c r i t i c a l stress 
intensity factors and the applied load seems to be very 
complicated for notches, design curves for other beam 
configurations and loadings can be established in a similar 
way based on the notch length and the notch-to-depth ratio. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS 
The linear elastic fracture mechanics method has been found 
to be appropiate and to apply well to the characterization 
of the fracture behavior of wood. The fracture toughness for 
white spruce has been shown to vary with the annual ring 
orientation in the specimens. It has also been shown that 
there is a dependence of the mode I fracture toughness, 
KIC ' o n t* i e width of the crack front and the moisture 
content in the specimens. 

The mode II c r i t i c a l stress intensity factor, K J J ^ , 

has been shown to govern the fracture of end-cracked wood 
beams and i t has also shown a dependence on the annual ring 
orientation. 

The mixed mode interaction curves, which incorporate 
the mode I and mode II fracture toughness, have been 
presented and applied successfully to the fracture behavior 
of white spruce. The criterion that the mode I fracture 
toughness is independent of forward shear effect has not 
been observed here while an interaction relationship between 
Kj and K J J in the mixed mode fracture of white spruce is 
more obvious. This relation applied equally well to the 
notched specimens, and a family of interaction curves for 
predicting the onset of rapid crack propagation has been 
established for white spruce. 
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Design methods has been provided herein for 90 degrees 
cracked beam based on the applied moment and shear. 
Interaction formulae between nominal maximum bending stress 
and nominal maximum bending stress has been presented which 
is analogous to the rules outlined by the Australian Timber 
Design Code. Design curves for 90 degree notched beam has 
also been presented here for a particular case of a 
simple-supported mid-span loaded beam. 

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 
The crack-front width theory has been found to apply well to 
the experiments conducted and an extension of applying to 
notches should be studied. 

The moisture content effect should be investigated with 
wider range of moisture content variation as well as 
possibility of applying on notches. 

The pursuit of a valid size effect on the mode I 
fracture toughness has not been completed successfully and a 
consistent method to characterize the effect of the specimen 
size on the mode I fracture toughness should be developed. 

This work has also given a simplified picture of mixed 
mode failure for notches which has not been studied before. 
A proposed design method has also been presented here which 
can be adopted by the timber design code. Further research 
should include performing experiments to study this 
interaction relation for other geometrical configurations 
and other species of wood. 
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APPENDIX I 

Test Data of Experiment No. 1  
Compact Tension Specimen 

Spec. M.C. S.G. Angle to P P„ ' P /P„ K „/ ° . . max Q max Q IC no. % RL 
degree N N MPa/m 

1 9.92 0.372 90 248.0 227.5 1.09 0.1570 
2 9.92 0.324 90 216.1 208.1 1.04 0.1436 
3 10.05 0.411 90 307.2 290.1 1.06 0.2002 
4 10.18 0.408 90 324.2 312.9 1.04 0.2159 
5 10.05 0.377 90 199.1 147.9 1.35 a 0.1021 
6 8.87 0.450 90 492.5 489.2 1.01 0.3376 
7 10.10 0.330 90 238.8 227.5 1.05 0.1570 
8 10.00 0.414 90 291.2 272.9 1.07 0.1883 
9 9.80 0.374 90 341.3 332.1 1.03 0.2296 
10 9.60 0.378 90 335.6 329.9 1.02 0.2277 
11 9.60 0.369 90 244.5 248.0 1.00 0.1711 
12 9.80 0.405 90 238.8 236.6 1.01 0.1633 
13 9.70 0.412 90 261.6 252.5 1.04 0.1743 
14 9.70 0.375 90 329.9 295.8 1.11 0.2041 
15 9.80 0.410 90 307.2 284.4 1.08 0.1963 
16 9.60 0.328 90 270.7 260.5 1.04 0.1798 
17 6.60 0.408 90 432.2 415.2 1.04 0.2865 
18 9.95 0.417 90 238.8 213.9 1.12 0.1476 
19 9.70 0.373 90 318.5 304.8 1.05 0.2103 
20 9.40 0.386 90 261.6 254.9 1.03 0.1759 
21 9.20 0.384 90 204.7 184.3 1.11 0.1272 
22 9.50 0.386 90 204.7 199.1 1.03 0.1374 
23 9.10 0.389 90 298.0 275.3 1.08 0.1900 
24 8.45 0.370 90 227.5 224.1 1.02 0.1547 
25 8.70 0.378 90 398.1 389.1 1.02 0.2685 
26 9.10 0.386 90 394.6 378.7 1.04 0.2613 
27 8.95 0.386 90 409.5 407.3 1.01 0.2811 
28 9.30 0.394 90 301.5 278.7 1.06 0.1923 
29 9.20 0.394 90 394.7 381.1 1.04 0.2630 
30 8.70 0.374 90 420.8 415.2 1.01 0.2865 
31 8.40 0.441 90 272.9 255.9 1.07 0.1766 
32 8.95 0.390 90 369.7 364.0 1.02 0.2512 
33 9.40 0.411 90 261.6 252.5 1.04 0.1743 
34 8.80 0.389 90 364.0 345.8 1.05 0.2386 
35 9.30 0.381 80 184.3 177.5 1.03 0.1225 
36 9.00 0.400 76 382.2 364.0 1.05 0.2512 
37 8.70 0.399 75 449.3 434.5 1.03 0.2998 
38 7.70 0.402 65 466.3 443.6 1.05 0.3061 
39 9.20 0.388 60 537.0 536.8 1.00 0.3704 
40 9.40 0.359 60 278.8 263.9 1.06 0.1635 

a - : rejected because P > 1.2P max Q' 
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Test Data of Experiment No. 1 - Cont'd 
Compact Tension Specimen 

Spec. M.C.b S.G. Angle to P P n P /P„ 
no. % RL C max Q max Q IC 

degree N N MPav^ii 

41 8.08 0.390 57 473.2 460.7 1.03 0.3179 
42 7.40 0.383 55 445.9 437.9 1.02 0.3022 
43 9.65 0.350 54 420.8 406.1 1.04 0.2802 
44 9.90 0.350 53 445.9 436.8 1.02 0.3014 
45 9.67 0.457 52 403.8 392.4 1.03 0.2708 
46 8.40 0.364 51 374.2 364.0 1.03 0.2512 
47 8.70 0.356 50 364.0 344.7 1.06 0.2379 
48 7.80 0.386 50 464.1 460.7 1.01 0.3179 
49 7.90 0.455 50 523.3 494.8 1.09 0.3415 
50 8.57 0.453 49 523.3 489.1 1.07 0.3375 
51 8.60 0.368 49 369.2 364.0 1.01 0.2512 
52 9.40 0.456 48 475.5 460.7 1.03 0.3179 
53 9.92 0.359 47 434.5 426.6 1.02 0.2944 
54 9.00 0.353 47 361.7 358.3 1.01 0.2473 
55 9.00 0.377 47 398.1 381.1 1.04 0.2630 
56 7.20 0.357 46 483.5 483.4 1.00 0.3336 
57 8.57 0.356 45 434.5 420.9 1.03 0.2905 
58 7.20 0.355 44 489.2 483.4 1.01 0.3336 
59 7.00 0.354 40 517.6 517.6 1.00 0.3572 
60 9.70 0.349 40 386.7 386.7 1.00 0.2669 
61 9.00 0.356 39 352.6 341.8 1.03 0.2359 
62 9.50 0.452 33 517.6 492.5 1.05 0.3399 
63 7.00 0.356 32 551.7 546.0 1.01 0.3768 
64 10.00 0.336 23 563.1 531.2 1.06 0.3666 
65 9.95 0.364 16 574.4 517.6 1.11 0.3572 
66 8.95 0.348 16 529.0 517.6 1.02 0.3572 
67 9.60 0.353 16 500.5 500.5 1.00 0.3454 
68 9.10 0.350 12 585.8 580.1 1.01 0.4003 
69 9.40 0.347 7 506.2 '502.8 1.01 0.3470 
70 9.30 0.355 5 557.4 541.5 1.03 0.3737 
71 9.60 0.366 2 602.9 591.5 1.02 0.4082 
72 9.80 0.337 0 532.3 530.1 1.00 0.3658 
73 9.95 0.335 0 625.6 620.0 1.01 0.4279 
74 9.20 0.355 0 602.9 580.1 1.04 0.4003 

b 
c 

- moisture content recorded by resistance type moisture meter. 
- RL i s the r a d i a l - l o n g i t u d i n a l system of crack i n i t i a t i o n . 
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Test Data of Experiment No. 1 

Double Cantilever Beam Specimen 

Spec. M.C. S.G. Angle to P P„ P /P„ K „, _ T max Q max Q IC no. % RL x x 
degree N N MPa/m 

1 9.56 0.367 90 1059.7 981.2 1.08 0.397 
2 9.79 0.392 90 1100.2 1047.8 1.05 0.424 
3 9.51 0.373 90 1049.9 963.2 1.09 0.390 
4 9.83 0.335 90 802.1 722.6 1.11 0.293 
5 9.85 0.389 90 983.0 954.4 1.03 0.386 
6 9.78 0.401 90 925.9 890.3 1.04 0.360 
7 9.61 0.377 90 928.8 910.6 1.02 0.369 
8 9.52 0.362 90 1040.8 1020.4 1.02 0.413 
9 9.33 0.388 90 848.0 839.6 1.01 0.340 

10 9.41 0.389 90 1021.5 954.7 1.07 0.387 
11 9.21 0.374 90 1080.2 1038.4 1.04 0.420 
12 8.78 0.368 90 852.3 796.5 1.07 0.322 
13 9.14 0.332 90 1208.8 1140.4 1.06 0.462 
14 9.26 0.387 90 1242.8 1230.5 1.01 0.498 
15 9.03 0.396 90 826.3 802.2 1.03 0.325 
16 8.98 0.332 90 1037.4 1007.2 1.03 0.408 
17 9.75 0.327 90 1006.9 987.2 1.02 0.400 



Tes t Data o f Exper iment 2 

E f f e c t of Crack-front width on K 

Spec. 
no. 

Width 
mm 

M.C. 
% 

S.G. P 
max 
N 

PQ 
N 

P /P n max Q K I C 
MPa/m' 

1 7 8.98 0.335 69.5 66.7 1.04 0.2511 
2 7 8.94 0.335 70.8 68.6 1.03 0.2585 
3 7 9.21 0.335 70.0 68.6 1.02 0.2585 
4 7 8.68 0.338 76.3 70.6 1.08 0.2659 
5 7 8.83 0.338 69.4 66.7 1.04 0.2511 

6 15 8.77 0.389 155.0 149.1 1.04 0.2619 
7 15 8.46 0.379 127.4 122.6 1.04 0.2154 
8 15 8.98 0.388 148.5 147.1 1.01 0.2585 
9 15 9.02 0.367 118.8 117.7 1.01 0.2068 
10 15 9.02 0.354 127.5 127.5 1.00 0.2240 
11 15 8.76 0.378 121.2 117.7 1.03 0.2068 
12 15 8.84 0.392 133.9 127.5 1.05 0.2240 

13 21 9.24 0.377 178.7 173.6 1.03 0.2179 
14 21 9.17 0.401 202.0 196.1 1.03 0.2462 
15 21 9.09 0.410 208.0 205.9 1.01 0.2585 
16 21 8.94 0.389 189.7 182.4 1.04 0.2289 
17 21 9.01 0.397 216.2 204.0 1.06 0.2560 
18 21 8.76 0.396 220.0 202.0 1.09 0.2535 

19 29 8.49 0.377 207.9 196.1 1.06 0.1783 
20 29 8.54 0.376 180.3 178.5 1.01 0.1622 
21 29 8.78 0.377 220.1 215.7 1.02 0.1961 
22 29 8.77 0.373 161.6 156.9 1.03 0.1426 
23 29 8.92 0.373 226.3 219.7 1.03 0.1996 
24 29 8.96 0.375 216.4 215.7 1.00 0.1961 
25 29 8.88 0.372 209.9 207.9 1.01 0.1890 

26 38 8.92 0.372 213.8 196.1 1.09 0.1353 
27 38 8.92 0.324 186.3 179.4 1.04 0.1238 
28 38 9.05 0.411 178.7 173.5 1.03 0.1197 
29 38 9.18 0.408 279.5 269.7 1.04 0.1861 
30 38 8.87 0.450 393.4 374.6 1.05 0.2585 
31 38 9.10 0.330 251.0 235.3 1.07 0.1624 
32 38 9.00 0.414 205.9 184.4 1.12 0.1272 
33 38 9.80 0.374 289.3 284.4 1.02 0.1976 
34 38 9.60 0.378 340.3 328.5 1.04 0.2267 
35 38 9.80 0.369 344.3 334.3 1.03 0.2307 
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Test Data of Experiment No. 3 

Effect of Crack-front Length on K^^ 

Spec. 
no. 

Board M.C 
% 

' S.G. L 
mm 

Angle to 
RL 

degree 

P 
max 
N 

N 

P /P n max Q K I C 
MPa/m 

1 A 8.50 0.41 75 90 538.1 "511.5 1.05 0.2355 
2 A 8.36 0.42 . 75 90 545.1 489.3 1.11 0.2252 
3 A 8.49 0.42 100 90 635.2 622.7 1.02 0.2275 
4 A 8.71 0.40 125 90 680.1 645.0 1.05 0.2014 
5 A 8.65 0.43 125 90 803.4 778.4 1.03 ' 0.2430 

6 B 8.43 0.41 50 60 444.1 427.0 1.04 0.2947 
7 B 9.19 0.41 50 60 416.6 389.2 1.06 0.2686 
8 B 9.37 0.42 75 55 650.5 600.5 1.08 0.2764 
9 B 9.35 0.42 75 58 694.9 667.2 1.04 0.3072 
10 B 8.98 0.41 100 60 772.0 756.2 1.02 0.2762 
11 B 8.96 0.41 125 65 841.4 822.9 1.03 0.2569 

12 C 9.70 0.34 50 75 284.6 278.0 1.02 0.1918 
13 C 9.69 0.34 50 75 303.2 300.2 1.01 0.2072 
14 C 9.68 0.33 75 72 445.3 411.4 1.08 0.1894 
15 C 9.75 0.32 100 68 674.0 645.0 1.04 0.2356 
16 C 9.74 0.33 100 75 592.4 556.0 1.06 0.2031 
17 C 9.54 0.34 125 79 581.2 578.2 1.01 0.1805 

18 D 8.99 0.42 50 60 408.3 382.5 1.07 0.2640 
19 D 8.98 0.41 100 60 695.5 689.4 1.01 0.2518 
20 D 8.93 0.41 125 72 1063.9 1007.5 1.05 0.3145 
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Test Data of Experiment No. 4 

Effect of Moisture Content on K 

Spec. M.C. S.G. Angle to P P„ P /?n K „ „ T max 0 max Q IC no. % RL 
degree N N MPa/m 

1 0.0 0.388 90 207.9 196.1 1.06 0.1353 
2 0.0 0.357 90 280.4 269.7 1.04 0.1861 
3 0.0 0.396 90 214.2 213.8 1.00 0.1475 
4 0.0 0.403 70 205.6 204.0 1.01 0.1407 
5 0.0 0.357 90 282.1 255.0 1.11 0.1759 
6 0.0 0.394 90 274.4 262.8 1.05 0.1813 
7 0.0 0.372 90 344.1 335.4 1.02 0.2314 
8 0.0 0.356 90 337.9 326.5 1.04 0.2253 
9 0.0 0.439 90 355.2 351.1 1.01 0.2422 
10 0.0 0.410 90 225.8 219.7 1.03 0.1516 
11 0.0 0.372 90 252.3 235.3 1.07 0.1724 
12 0.0 0.366 90 322.1 313.8 1.02 0.2165 
13 0.0 0.379 90 311.6 298.1 1.05 0.2057 
14 0.0 0.387 90 206.9 196.1 1.05 0.1353 
15 0.0 0.375 90 207.1 204.0 1.01 0.1407 
16 0.0 0.371 90 186.9 179.4 1.04 0.1238 

17 6.2 0.371 90 274.2 262.8 1.04 0.1813 
18 6.1 0.365 90 231.9 219.7 1.06 0.1516 
19 6.3 0.351 90 351.1 326.5 1.07 0.2253 
20 6.1 0.344 90 252.7 240.3 1.05 0.1658 
21 6.3 0.342 60 333.4 313.8 1.06 0.2165 
22 6.1 0.340 90 302.1 298.1 1.01 0.2057 
23 6.6 0.327 90 264.9 262.8 1.01 0.1813 
24 6.8 0.334 90 260.1 255.0 1.02 0.1759 
25 6.3 0.387 90 279.2 235.3 1.09 0.1624 
26 6.1 0.312 90 330.7 313.8 1.05 0.2165 
27 6.1 0.314 90 343.2 328.5 1.04 0.2267 
28 6.7 0.386 90 220.6 213.8 1.03 0.1475 
29 6.3 0.343 90 224.2 217.7 1.03 0.1502 
30 6.5 0.317 90 378.9 362.8 1.05 0.2504 
31 6.4 0.357 90 360.3 351.1 1.02 0.2422 
32 6.7 0.369 90 359.2 335.4 1.07 0.2314 
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Test Data of Experiment No. 5  

Mode II End-split Beam Specimen 

Spec. M.C. S.G. Angle to P K 
no. % RL Q I I C 

degree N MPa/m 

1 13.3 0.376 0 13344 2.0522 
2 13.5 0.388 7 12899 1.9837 
3 13.7 0.378 12 14856 2.2847 
4 13.9 0.360 18 12454 1.9153 
5 11.3 0.473 32 16013 2.4626 
6 13.3 0.387 38 15034 2.3121 
7 14.0 0.370 39 13033 2.0043 
8 12.6 0.378 43 13789 2.1206 
9 13.8 0.375 45 18682 2.8731 
10 11.7 0.380 46 17792 2.7362 
11 14.5 0.539 48 19794 3.0441 
12 13.9 0.360 55 18904 2.9072 
13 13.7 0.381 60 12232 1.8812 
14 14.5 0.423 64 19571 3.0098 
15 12.8 0.324 75 12588 1.9359 
16 13.3 0.349 88 13033 2.0043 
17 12.9 0.347 90 14678 2.2573 
18 13.5 0.398 90 12632 1.9427 
19 12.5 0.384 90 12677 1.9496 
20 13.5 0.349 90 14812 2.2779 
21 12.9 0.313 90 12899 1.9837 
22 13.5 0.345 90 13878 2.1343 
23 12.0 0.310 90 15568 2.3942 
24 12.6 0.314 90 15012 2.3087 

Note : P m a x i s usually greater than 2P^ since specimens' are governed 
by the bending strength. 



162 

T e s t Data o f Experiment No. 6 

Mixed Mode M i d - c r a c k e d Beam 
c 

Phase 1 - Center point loading 

Spec. M.C. S.G. Angle to Crack Load P „ b K K „ 
% RL angle at ^ ^ ^ 

degree degree MPa/m MPaAi 

1 8. 94 0.396 41 45 a c e n t e r 4448 0.3360 0.8330 
2 9. 03 0.394 55 45 center 5560 0.4199 1.0413 
3 9. 02 0.374 65 45 center 5871- 0.4435 1.0996 
4 8. 87 0.388 60 45 center 5894 0.4451 1.1038 
5 8. 96 0.401 90 45 center 4670 0.3527 0.8747 
6 8. 98 0.403 90 45 center 4448 0.3360 0.8330 
7 9. 23 0.416 90 45 center 3425 0.2587 0.6414 
8 8. 46 0.369 90 45 center 6227 0.4703 1.1662 
9 8. 79 0.388 90 45 center 3647 0.2755 0.6831 
10 8. 90 0.404 90 45 center 3514 0.2654 0.6581 
11 8. 37 0.399 90 45 center 3174 0.2397 0.5831 
12 8. 38 0.396 90 45 center 5338 0.4031 0.9996 
13 8. 42 0.393 90 45 center 4782 0.3612 0.8955 
14 8. 57 0.385 90 45 center 3336 0.2520 0.6248 
15 8. 69 0.344 90 45 center 3625 0.2738 0.6789 
16 8. 94 0.346 90 45 center 4003 0.3024 0.7497 
17 9. 00 0.384 90 45 center 4226 0.3192 0.7914 
18 9. 02 0.388 90 45 center 3892 0.2940 0.7289 
19 8. 89 0.374 90 45 center 5894 0.4451 1.1038 
20 8. 78 0.376 90 45 center 3781 0.2856 0.7081 
21 8. 98 0.392 90 45 center 3447 0.2603 0.6456 
22 9. 03 0.377 90 45 center 3505 0.2647 0.6564 
23 8. 65 0.354 90 45 center 3394 0.2563 0.6356 
24 8. 75 0.346 90 45 center 3336 0.2520 0.6248 

a - Loading at the c e n t e r l i n e , i . e . , 450 mm from the support. 
b - P m a x i s greater than 1.2 P^, beam strength governed by bending, 
c - phase 1 i s 45 degrees beam t e s t s . 
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Test Data of Experiment No. 6 - Cont'd 

Phase 1 - 4 5 deg. beam - Sixth point 16ading 

!pec. 
no. 

M.C. 
% 

S.G. Angle to 
RL 

Crack 
angle 

Load 
at 

PQ KIQ K I I Q 
degree degree N MPa/m MPa/m 

1 8.44 0.375 11 45 6th 4670 4 0.3255 0.4768 
2 8.64 0.386 40 45 6 th 5115.2 0.3566 0.5222 
3 8.76 0.398 51 45 6th 6004.8 0.4186 0.6130 
4 9.04 0.401 58 45 6th 4781.6 0.3333 0.4882 
5 8.56 0.375 73 45 6th 5560.0 0.3876 0.5676 
6 8.94 0.336 87 45 6th 6227.2 0.4341 0.6357 
7 8.48 0.384 90 45 6 th 5782.4 0.4031 0.5903 
8 8.52 0.386 90 45 6th 4448.0 0.3100 0.4541 
9 8.79 0.383 90 45 6th 3647.4 0.2542 0.3724 
10 9.12 0.396 90 45 6th 3558.4 0.2480 0.3633 
11 9.08 0.399 90 45 6th 4670.4 0.3255 0.4768 
12 9.12 0.391 90 45 6th 6004.8 0.4186 0.6130 
13 9.26 0.405 90 45 6 th 5115.2 0.3566 0.5222 
14 8.96 0.386 90 45 6th 5560.0 0.3876 0.5676 
15 8.94 0.377 90 45 6th 6227.2 0.4341 0.6357 
16 9.04 0.389 90 45 6th 5560.0 0.3876 0.5676 
17 9.02 0.403 90 45 6th 6449.6 0.4496 0.6585 
18 8.59 0.380 90 45 6th 6672.0 0.4651 0.6812 
20 8.54 0.377 90 45 6th 4448.0 0.3100 0.4541 
21 9.34 0.411 90 45 6 th 4448.0 0.3100 0.4541 
22 9.33 0.408 90 45 6th 5449.0 0.3798 0.5563 
23 9.31 0.412 90 45 6 th 3447.6 0.2403 0.3519 
24 9.16 0.402 90 45 6th 5115.3 0.3565 0.5222 
25 9.22 0.398 90 45 6 th 4782.0 0.3333 0.4882 
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T e s t Da ta o f Expe r imen t No. 6 - C o n t ' d 

Phase 2 - 9 0 deg . beam - c e n t e r l i n e l o a d i n g 

>pec. 
no. 

M.C. 
% 

S.G. Angle to 
RL 

Crack 
angle 

KIIQ 
degree degree N MPav̂ ni MPa/m 

1 8.98 0.356 90 90 5393 0.3402 0.7246 
2 8.73 0.398 90 90 4559 0.2876 0.6125 
3 8.16 0.388 90 90 5627 0.3550 0.7560 
4 8.48 0.359 90 90 6505 0.4104 0.8740 
5 8.81 0.328 90 90 5338 0.3367 0.7172 
6 9.04 0.396 90 90 4782 0.3017 0.6425 
7 9.08 0.400 90 90 4559 0.2876 0.6125 
8 8.48 0.377 90 90 3447 0.2175 0.4631 
9 8.63 0.369 90 90 4537 0.2862 0.6096 
10 8.71 0.399 90 90 6283 0.3937 0.8441 
11 8.68 0.396 90 90 3781 0.2385 0.5080 
12 8.70 0.394 90 90 5894 0.3718 0.7919 
13 8.65 0.390 90 90 4337 0.2736 0.5827 
14 8.68 0.388 90 90 3892 0.2455 0.5229 
15 8.72 0.392 90 90 4782 0.3017 0.6425 
16 8.71 0.392 90 90 4537 0.2862 0.6096 

Note: Crack I n i t i a t i o n occured ±90 degrees to the i n i t i a l crack 
simultaneously. 
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T e s t Data o f Experiment No. 7  

DCB under Mixed-mode L o a d i n g 

Spec, 
no. 

M.C. 
% 

S.G. Angle to 
RL 

degree 

P2 KIQ K I I Q 
N MPav/iii MPav̂ m 

1 8.42 0.379 90 1925 3825 0.4009 0.5761 
2 8.73 0.386 90 1925 3336 0.4493 0.5024 
3 8.71 0.384 90 1925 4448 0.3393 0.6699 
4 8.76 0.379 90 1925 4003 0.3833 0.6029 
5 9.26 0.359 90 1925 4448 0.3393 0.6699 
6 8.16 0.403 90 1925 3670 0.4163 0.5526 
7 8.96 0.396 90 1925 4003 0.3833 0.6029 
8 8.94 0.394 90 1925 3558 0.4273 0.5359 
9 8.89 0.382 90 1925 4114 0.3723 0.6196 
10 8.75 0.374 90 1925 4448 0.3393 0.6699 

11 8.96 0.369 90 2800 9341 0.2095 1.4067 
12 8.94 0.346 90 2800 8229 0.3195 1.2393 
13 9.07 0.358 90 2800 8674 0.2755 1.3062 
14 9.01 0.398 90 2800 7784 0.3635 1.1723 
15 8.92 0.374 90 2800 8006 0.3415 1.2058 
16 8.96 0.368 90 2800 8562 0.2865 1.2895 
17 8.46 0.348 90 — — — * 
18 8.29 0.376 90 2800 8006 0.3415 1.2058 
19 8.45 0.368 90 2800 8674 0.2755 1.3062 
20 8.65 0.384 90 2800 9118 0.2315 1.3732 

* S p l i t occured i n the specimen before t e s t i n g . 
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Test Data of Experiment No. 8  

Notched Beam Specimens 

Spec. Spec. M.C. S.G. A Angle to P K K 
type no. % RL I i Q 

degree N MPam MP am A 

A 1 8.84 0.382 
A 2 8.76 0.369 
A 3 8.42 0.384 
A 4 9.24 0.321 
A 5 9.80 0.402 
A 6 7.78 0.416 
A 7 8.12 0.332 
A 8 9.13 0.303 

B 1 8.41 0.342 
B 2 8.12 0.383 
B 3 8.56 0.369 
B 4 9.37 0.414 
B 5 10.01 0.311 
B 6 7.68 0.308 
B 7 8.08 0.324 
B 8 8.46 0.326 

C 1 8.11 0.414 
C 2 8.43 0.308 
C 3 8.56 0.388 
C 4 8.64 0.384 
C 5 7.13 0.369 
C 6 6.84 0.342 
C 7 8.42 0.324 
C 8 7.88 0.336 

1.6 90 4203 0. 2676 0.4647 
1.6 90 4559 0. 2902 0.5041 
1.6 90 2335 0. 1487 0.2582 
1.6 90 4114 0. 2619 0.4549 
1.6 90 5226 0. 3327 0.5778 
1.6 90 4504 0. 2867 0.4980 
1.6 90 4915 0. 3129 0.5434 
1.6 90 4114 0. 2619 0.4549 

1.6 90 4114 0. 1776 0.9025 
1.6 90 6338 0. 2737 1.3904 
1.6 90 5894 0. 2545 1.2928 
1.6 90 5115 0. 2208 1.1221 
1.6 90 6227 0. 2689 1.3660 
1.6 90 5226 0. 2256 1.1465 
1.6 90 5449 0. 2352 1.1953 
1.6 90 5560 0. 2400 1.2197 

1.7 90 8006 0. 1940 0.6840 
1.7 90 10342 0. 2506 0.8835 
1.7 90 9341 0. 2263 0.7980 
1.7 90 5338 0. 1293 0.4560 
1.7 90 8118 0. 1967 0.6935 
1.7 90 6116 0. 1482 0.5225 
1.7 90 10898 0. 2640 0.9310 
1.7 90 11898 0. 2883 1.0165 



APPENDIX III 

Difference between Mode I Fracture Toughness of CTSs and DCB  
spec imens. 
A. Influence on KI(-, of Assumed Elastic Properties 

E (MPa) 
X 

Spec. 
type 

K*c (MPa/m) 

E 

y 

E 

y 

E 

y 

12500 DCB 0.0498 0.0403 0.0359 12500 CTS 0.0693 0.0688 0.0681 

10000 DCB 0.0498 0.0403 0.0359 10000 CTS 0.0693 0.0688 0.0681 

7500 DCB 0.0498 0.0403 0.0359 7500 CTS 0.0693 0.0688 0.0681 

*E„/G = 1.0 and v v„ = 0.02 were used in generating the 
y A Y 

chart. 
As can be seen above, the variation of E has no 

influence on the fracture toughness providing the ratios 
EV:E._, E„:G and vv„ are the same as those used in generating 

A y y A y 

the chart. Thus, we can compute the ratio k J C T S ^ K I D C B ' KIC 
(DCB) and K I C (CTS) for the three cases : 

K. I(CTS) 
K I(DCB) KIC(DCB) ( M P a ^ ) KIC(CTS) ( M P a ^ 

10 
20 
30 

1.3909 
1.7047 
1.8970 

0.4760 
0.3855 
0.3429 

0.2059 
0.2044 
0.2023 

The difference between the CTSs and DCB specimens is 
167 
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significant for various ratios of E x/E y. This indicates that 
the difference in the mode I fracture toughness is not 
affected much by the assumed elastic properties. 
B. T-test on the hypothesis that the two samples being 
compared are drawn from the same population. 

The test is applied to the null hypothesis that the two 
samples being compared are drawn from the same population, 
and we calculate the probability of the difference of the 
two means having a value as large as, or greater than, 
observed. 

Sample Mean K (MPa m) 
•LL* 

Standard deviation Sample s i z e 
X s n 

1. CTS 0.205 0.0510 33 
2. DCB 0.387 0.0497 17 

The pooled estimate of variance is 

s 2 = n l s l + n2 s2 = 33 x 0.05102+ 17 x 0.04972 = 2.557x10 

and 

s = 0.0506 MPa/m c 
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The standard deviation of the difference of mean is thus : 

S. = s / l / n . + l / n . d c i 1 

0.0506 / 1/33 + 1/17 

= 0.01509 

X l " X2 10.205 - 0.387| 

0.01509 
12.06 

The number of degrees of freedom is 33 + 17 - 2 = 48, 
and from the t-distribution, i t gives t = 2.0126 at the 95 
percent level of confidence. Therefore, the null hypothesis 
can be rejected, and we conclude that the two samples are 
from different populations. 



APPENDIX I I I 

S.A.A. A u s t r a l i a n T imber E n g i n e e r i n g Code AS 1720-1975 

S t r e n g t h o f Notched Beams 

F o r a r e c t a n g u l a r beam o f dep th D, n o t c h e d on the t e n s i o n 

edge as shown i n F i g . 57 , the n o m i n a l maximum b e n d i n g s t r e s s 

^b = ScO a n c ^ n o m : L n a l maximum s h e a r s t r e s s f g = c a l c u l a t e d 
n n 

f o r the ne t s e c t i o n s h a l l comply w i t h t he f o l l o w i n g i n t e r a c t i o n 

f o r m u l a : 
0 . 3 f , + 0 . 7 f 

D S 
c 3 F s j 

« 1 

where C 0 i s a c o n s t a n t t a b u l a t e d i n t a b l e 11 and F • i s the 3 s j 
p e r i m i s s i b l e shear s t r e s s f o r j o i n t d e t a i l s o r the shear b l o c k 

s t r e n g t h f o r the s p e c i e s o f i n t e r e s t , 
v 

M 

Figure 57 Notation for Notch 

T a b l e 11 

Paramete r C^ f o r s e l e c t e d n o t c h a n g l e s 

n o t c h s l o p e a ^ O . l D a < 0 . 1 D 
b / a = 0 
b / a = 2 
b / a = 4 

a » 0 .1 D 
• 3 / D % , 

2 . 6 / D ? 
2 . 2 / D " 

l / a % 

1 . 2 / a 
1.3/a' 1 
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