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ABSTRACT

During its service life, é structure may be subjected
to various environmental and loading conditidns, However, in
general, the properties determined under one set of
conditions may not be used to determine the behaviour of the
material under 'a different set of conditions. For example,
it is well known that concfeteAis a strain rate sensitive’
material; therefore, its properties - determined under
conventional static ldading_ cannot‘be used to predict the
performance of concrefe subjected to high strain rates. The
problem is'serious because these high strain rate 1loadings
~are associated with large amounts of energy imparted to the
‘structure in a very short period of time, and concrete is a
brittle material. Since the strain rate sensitivity of
conérete‘prohibits the use of its statically determined
properties 1in assessing its behaviour wunder dynamic

conditions, high strain rate tests are required.

impact tests were carried out on about 500 concrete
beams. An instrumented drop weight impact machine was used.
‘The instrumentation included strain gauges mounted in the
striking end of the hammer (called 'the tup'), and also in
-one of the support anvils. In addition, three accelerometers
were mounted along the length of thé beam in order to obtain
the bbeam response, and also to enable 'the inertial

correction to the observed tup load to be made..
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Two different concrete mixes, normal strength with a
compressive strength of 42 MPa, and high strength with a
compressive strength of 82 MPa, were tested._The effect of
two types of fibres, high modulus steel, and low modulus
fibrillated polypropylene, in énhancing concrete properties
was investigated. In addition, tests were also conducted on
beams with conventional reinforcement. Hammer drop heights
ranging from 0.15m‘ to 2.30m were used. Static tests were
conducted on companion specimens for a direct comparison

with the dynamic results.

In general, it was found that concrete is a very stain-
rate sensitive material. Both the peak bending loads and the
fracture energies were higher under dynamic conditions than
under static conditions. Fibres, particularly the steel
fibres, were found to significantly increase the ductility
and the impéct . resistance of the composite. High strength
concrete made with microsilica, 1in certain circumstances,
was found to behave in a far more brittle manner than normal

strengﬁh concrete,

High speed photography (at 10,000 frames per second)
was used to _study the propagation of cracks under impact
loading. In general, the crack §elocities were found to be
far lower than the ' theoretical <crack velocities. The
presence of reinforcement, either in the form of fibres, or

of continuous bars was found to reduce the crack velocity.
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A model was proposed based on a time step 1integration
technique to evaluate the response of a beam subjectéd to an
external impact pulse. The model was capable of predicting
not only the experimentally observed non-linear behaviour of
concrete unaer impact loading, but also the more pronounced

brittle behaviour of high strength concrete.
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1. INTRODUCTION

A structural engineer 1is required to predict the
nature, duration and magnitﬁde of the loading on a
structﬁre. on the other hand, he is also reQuired to know
the properties of the materials he is working with.

. There are a number of types of loadings to which a
structure can be subjected. Loadings can be divided broadiy
info two categories: dead loads or _quaéistatic loads, and
suddenly applied loads. These are generally referred to as
static loading and dynamic loading, respectively. Load
prediction for static conditions is fairly straightforwérd
and does .not pose any particular problem. But in the case of
dynamic ioading, the precise prediction of load and its‘
variation with time can be fairly involved.

Dynamic loading itself can be subdivided into. two
categories: single cycle and multicycle. An example of
single cycle dynamic loading is a mass impacting against a
structural element. However, a structure wundergoing an
earthguake would have its elements subjected to multicycle
dynamic loading. Single cycle dynamic 'loading is called
impact loading for brevity.

There are, further, two basic types of impact loadings:
‘single point impact loading and distributed impact 1loading.
A structure hit by a missile-like object would undergo a
single point impact, whereas blasts or explosions would
result in a distributed impact 1load. The present work is

concerned primarily with single point impact loading.



One basic problem with single point impacts 1is the
difficulty in assessing the exact load versus time history
of the impact. As a result, energy values are generally
chosen as the basic variable. The impact resistance of a
material or a structure may be defined in terms of the
‘energy the system 1is capable of absorbing before failure.
While momentum or impulse could also have been chosen as the
basic variable, they can easily be related to the energy;
the calculation of one from the other is not difficult.

The size aﬁd the mass of the impacting body are very
important in a typical impact event. Three distinct
situations can arise:

1. A very large object struck by a small impacting
mass.

2. An impact involving comparable masses.

3. A small object struck by a large impacting mass.

While the third case is comparatively rare, the first
and second cases are often encountered. In the first case,
because of the massiveness of the impacted object, damage is
limited mainly to the contact zone. In the case of
comparable masses, however, the response of the impacted
mass is governed by shear and bending, and a relatively
large portion of the impacted mass reacts to the impact.
While the case of a small object hitting a massive target
has been considered by many investigators, and solutions
have been suggested in the form of empirical formulae, the

case of impact between comparable masses, to date, remains



ﬁnsolved.

On the materials side, most materials have been found
to be strain rate sensitive, thus further complicating the
whole problem. The degree of strain rate sensitivity depends
upon the loading system, support characteristics,
environmental factors, and so on. Since the energy that a
structure is capable of absorbing before failure depends
upon its material properties, which, in the case of 1impact,
depend upon the rate of stressing, the problem is one which
cannot be solved without a thorough knowledge of the
material properties.

Of all of the major materials of construction used
today, the behaviour of concrete under high rates of strain
is the least wunderstood. The inherently brittle nature of
plain concrete, 1its extreme weakness in tension, and its
heterogeneous structure are some of the reasons for its
markedly low impact strength. 1Its lack of toughness and
tensile strength have meant that it is almost always used in
conjunction with conventional steel reinforcement. But the
discovery of fibre reinforced concrete (frc), and frc's
greatly improved impact resistance over plain concrete, have
triggerea an interest in understanding .the impact
performance of both frc and plain concrete, since a proper
understanding of the composite behaviour of frc calls for an
understanding of its individual components.

With present design trends, there are two reasons for

the incorporation of fibres in cementitious matrices: First,



since the impact resistance of these components is higher,
they can withstand occasional shocks or overloadings without
extensive damage. Secondly, the behaviour of frc under load,
which is characterized by large postelastic deformations,
means that failure, if it occurs at all, generally does so
only after sufficient warning.

Experimental work, especially with instrumented impact
machines, is being carried out by several investigators, but
these instrumented impact tests have inherent problems, and
the results can be grossly misleading if caution 1is not
exercised in their interpretation. Inertial loading effects,
energy loss predictions and so on are some of the problems
which need consideration. The basic aim of the present work,
therefore, was to develop a valid testing technigque for
testing concrete under impact, and to use such a technique
to evaluate the 1impact behaviour of concrete. The various
factors that affect the impact resistance of concrete, and
the various reinforcing techniques that can be made use of
in order to enhance 1its impact resistacne were also

investigated.



2. OBJECTIVE AND SCOPE

Concrete, with its heterogeneous composition and
inelastic behaviour, behaves quite differently from other
materials such as metals. The random distribution of fine
and coarse aggregate particles throughout the hardened
cement matrix and the nonlinear behaviour under loading,
separate concrete from the much more homogeneous metals. It
is the very structure and composition of concrete which
impart its strain rate sensitive characteristics.

The present knowledge of the behaviour of concrete
under high rates _of loading is inadequate to explain its
performance as a structural material when subjected to
impact loadings. The strain rate sensitivity .of concrete
makes it improper to use its statically determined
properties under high strain rate or impact loading.
Moreover, the results obtained ét low or intermediate strain
rates may not be used to predict the behaviour under impact
loading because, (a) no universally accepted rule exists for
such an extrapolation, and (b) impact may not be regarded
simply as a case of . extreme strain rate application. Not
only don't we understand plain cbncrete, we can't even begin
to predict the behaviour of fibre reinforced concrete, and
of conventionally reinforced concrete at high stress rates.

High stress rate testing of concrete necessitates a
testing machine capable of generating high stress rates, a
method of acquiring the data, and finally, a valid technique

for analysing the test results. An instrumented drop weight



impact machine was designed and constructed for this purpose
as described in Chapter 4. Load measurements were made at
the point of the hammer-beam contact, and also at one of the
supports. Three accelerometers mounted along the length of
the beam were used to make the inertial load correction. An
analysis was developed to evaluate the generalized inertial
load from the accelerometer readings. Subsequent evaluation
of the "true" or the generalized bending 1load and the
fracture energy could be made using the observed tup 1load
vs. time data and the integrated acceleration record. The
support load measurements were compared with the evaluated
generalized bending load as a check of the validity of the
technique used in this study for 1inertial load correction
(Chapter 4).

Considerable simplification is possible in the
treatment of the impact data 1if some assumptions about the
acceleration distribution along the 1length of the beam
specimen can be made. In the present work, acceleration
distributions were studied for plain, fibre reinforced, and
conventionally reinforced concrete beams undergoing impact,
and it is shown that simple mathematical functions may be
used to define the acceleration distribution along the
length of the beam (Chapter 4).

Rubber pads between the striking tup and the beam aré
sometimes wused 1in order to reduce the inertial load
oscillations. It has even been suggested that, with the

proper pads, the inertial loading may be entirely



eliminated. The validity of ‘thése arguments has  been
examined in Chabter 5. |

The testing program involved the testing of
approximately 350 concrete beams under widely different
stress rates. The lowest stressing raté chosen was that of
quasi-static testing, using a conventional mechanical
testing machine; the highest stressing rate was achieved
using the highest possible hammer drop height in the impact
machine, 2.30m. This gave a range of cross-head velocities
from 4.2x10"7 m/sec to about 6.71m/sec.

Concrete is a conglomerate of randomly distributed
aggregate particles bound together by hydrated portland
cement. The overall properties of concrete depend upon the
properties of the paste and on its bond with the aggregates.
Thus, as a first step in the study of the strain rate
sensitivity of concrete the behaviour of paste itself under
impact loading was studied (Chapter 6). The efféct of stress
rate on the behaviour of plain concrete was also studied by
subjecting plain concrete beams to stress rates associated
with static loading and those associated with impact. The
most important properties studied were the strength and the
fracture energy (Chapter 6).

The role of microsilica (finally divided silica fume)
in improving the static strength of concrete is well known.
However, high strength concrete is also known to be more
brittle than normal strength concrete. The effect of high

strength (achieved by the wuse of microsilica) on the



properties of concrete subjected to varying stress rates was
investigated. Of particular interest was the behaviour df
high strength concrete beams under the very high stress
rates associated with impact, and its comparison with normal
strength concrete (Chapter 6).

“Analytical prediction of concrete behaviour under high
stress rates requires a model and some assumptions regarding
its behaviour. A constitutive 1law for concrete with the
applied stress rate as an independent variable was proposed.
With the proposed constitutive law, the behaviour of a beam
under an external load pulse was determined using a single
degree of freedom model and the time. step integration
technique (Chapter 7).

- The concept of energy bélance, which has its basis in
the law of conservation of energy, was examined in the case
of pléin concrete beams undergoing'impact. The energies lost
by the hémmer hp to the peak external load, and just after
the completion of the impact event, were compared to the
energy gained by the beam in various forms. The machine
. losses, if any, were computed (Chapter 8).

Concrete 1is a brittle material, and as such the
strength of a concrete element under tension or flexure is
determined by the size of the largest flaw present. Stresses
in the vicinity of the tip of a flaw can be expressed in
terms of basic fracture mechanics parameters. However, the
critical value of the fracture toughness (KIC) depends,

amongst other things, upon the rate at which the load is



applied. This stress rate dependence of K. . was investigated

IC
fdr normal §trength, high strength, and fibre reinforced
concrete using notched beams subjected to both static . and
impact loading. The common belief that the fibres retard
crack propagation by acting as crack arresters was also
examined (Chapter 9).

The use of fibres has proven to be of importance 1in
improving the "ductility" of <concrete. This desirable
contribution of fibres is particularly welcohe in  impact
loading situations, where a 1large amount of energy is
suddenly imparted to the structure, demanding a high energy
absorption capacity from its elements. Steel and
polypropylene fibre reinforced beams were subjected to
impact and the strength and fracfure energy values thus
obtained were compared with those obtained under static
loading. Comparisén was also made with beams without fibres
(Chapter 10).

The low strength of concrete wunder tension has led to
its use almost always in conjunction with reinforcing steel.
In spite of the advantages of adding fibres, they cannot
replace conventional reinforcing bars. Strategically placed
reinforcing bars have performed better than randomly
distributed fibres in terms of both strehgth and ductility
in static situations. However, very little 1is known about
the performance of conventionally reinforced concrete under
impact. To examine this, conventionally reinforced beams

were subjected to impact with varying hammer drop heights,
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and their impact performance was compared with their static
performance. Both deformed and smooth reinforcing bars were
ltested. Conventionally reinforced concrete beams made with
high strength concrete were also tested (Chapter 11).

Confinement has been found to.increase the ductility of
concrete under static loading. The effect of confinement
under impact loading was examined by confining
conventionally reinforced concrete using rectangular
stirrups, and subjecting the resulting specimens to both
static and impact loading (Chapter 11).,

The effects of a combination of conventional
‘reinforCement ana fibre reinforcement were also studied,
using both normal and high strength concrétes. Such
combinations are known to be very effective 1in static
loading, and an attempt was made to evaluate this
combination under impact loading (Chapter 12).

A structural element is required to carry dead and live
static loads on a continuous basis. Thus, in practice, at
the time of impact the elements will already have been
subjected to static loading. Since the appearance of tension
cracks in concrete is allowed by most design codes, the
element may be pre-damaged before it is subjected to impact.
To check the performance of beams pre-damaged by static
loading, such pre-damaged beams were subjected to impact and
their performance was compared to that of undamaged beams.
The effect of fibre reinforcement on preserving the

integrity of the predamaged beams undergoing impact was also



11

studied (Chapter i2).

The failure of concrete is caused by the propagation of
cracks. Under load, micro-cracks in the concrete grow and
coalesce into macro-cracks that propagate to cause
separation. Once unstable propagation of cracks begins, the
behaviour of the element depends upon the mode in which the
crack propagates, the velocity of the crack, crack
branching, and so on. In the case of impact, since the
entire event takes place in a fraction of a second, the
propagation of the crack cannot be observed with the naked
eye. One has therefore to resort to high speed photography
to observe the crack propagation. High speed photography was
carried out using a motion picfure camera running at 10,000
frames per second on hydrated - cement paste, steel fibre
reinforced concrete, and conventionally reinforced concrete
beams. The films were then viewed frame by frame in a small
hand viewer to study the crack propagation, crack
velocities, crack branching, and the crack arrest due to the
presence of the fibres. (Chapters 6, 10, and 11).

The present study, thus, was directed towards: (a) The
development of a valid testing method to test concrete beams
under impact loading, and (b) The assessment of the impact
resistance of plain, fibre reinforced, and conventionally
reinforced concrete beams using such a testing method. The
output from the testing program 1is more 1in the form of
trends, and less in the form of basic material properties,

although an attempt has been made to evaluate the basic



material properties wherever possible.
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3. LITERATURE SURVEY

3.1 INTRODUCTION

The possibility of a structure _being subjected to
impact, accidental or otherwise, has long been recognized. A
structure as a whole, or a particular structural component,
could be called upon to sustain the large amount of energy
imparted to it by a sudden application of load. In order to
design a structure for dynamic loading, we should be able to
assess the energy absorbing capacity both of the individual
components of the structure, and of the entire structure
‘itself. For example, to assess correctly the energy
absorption of a structure when subjected to earthquake
loading, we should know the basic material properties at the
strain rate 1in question. In addition to the material
properties, we also need to know the failure mechanisms and
the various energy dissipating mechanisms.

Unfortunately, our knowledge of the behaviour of
cementitious materials is still lérgly qualitative. Although
some work at high strain rates has been carried out, the
quantitative side is far from clear. This may be due to the
wide variations observed between different experimental
‘investigations, which often result in contradictory
conclusions. Our present knowledge, and consequently our
design practice as such, are still at least partly empirical
in nature. In the absence of a better understanding‘of the
reaction of the impacted structure to the external impact

load, nothing can be said with certainty. The stress
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distribution in an impacted mass of plain concrete or fibre
reinforced concrete is far.from simple, due mainly to the
heterogeneous internal structure, the variable distribution
of strains, the steep strain gradients, and the poorly
characterized interﬁace between the cement and the
aggregates. It is.also worth noting that in many instances a
correct estimation of the external load and its variation
with time is also not possible. The input load function,
which among other things depends upon the precise manner in
which the impacted body absorbs the incident energy and on
the relative masses of the bodies colliding, forms .an
important area of study. The 1input 1in the fbrm of the
external load function and the output, in the form of the
structural response, are thus highly interdependent.
Mainstone and Kavyrchine (1), Struck and Voggenreiter. (2),
and Kavyrchine and Struck (3) have cited examples of impact
and impulsive loading that may possibly occur in practice
and the consequences that may follow. They have also
described the problems associated with the evaluation of the
impact response of structures. In the case of impact
loading, the response of the structure can be divided into
two types: local response and overall response (3).
Depending on the relative masses of the impacted and the
impacting bodies, the overall structural response may or may
not be significant. The case of a very small object hitting
a very large mass, which is particularly interesting from

the military point of view, is a case in which the local
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response is critical.

The National Defence Research Committee (NDRC) has
proposed various empirical formulae to estimate the
penetration depths (x) for the case of nondeformable
cylindrical missiles impacting concrete masses. The general

form of the formulae is

x=f(k,w,d,Vv) (3.1)

where
k is a constant,
W is the missile weight,
d is the diameter of the missile,
and V is the velocity of the missile.

Sliter(4) found the NDRC formulae to work
satisfactorily for high velocity impacts; for low velocify
impacts the observed penetrations were much smaller than the
predicted ones. Also, these formulae do not apply to
deformable missiles (4). NDRC formulae do not consider any
reinforcement present in the impacted body, thus making the
differentiation between a reinforced target and an
unreinforced target an impossibility. Various other
investigators have also presented independent empirical

formulae based on their experimental findings, but a

universally accepted formula does not exist.
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3.2 IMPACT TESTING

So far, no results of full scale impact tests on
buildings or other structures are available, but various
investigators have subjected structural elements made of
cementitious materials (e.g., flexural members, compression
members, tension members, and slabs) to dynamic 1loadings.
Attempts were made to ascertain the energy absorbing
'capacities of the cementitious materials uﬁder variable
strain rate loadings. The various methods employed by these
investigators (5,6) include: free fall drop weight tests,
explosive tests, Charpy or Izod tests, Hopkinson split bar
tests, and the use of fracture mechanics as an analytical
tool. Unfortunately, the earlier tests of this type were not
fully instrumented; investigators now realize that much
important information can be lost in the absence of proper
instrumentation. Most of these tests were directed at
finding 'work of fracture' values, or 'toughness'. Attempts
were also made to obtain the basic material properties, such
as the constitutive laws in compression or tension, critical
stress intensity factors, and the critical strain energy
release rates.

The extent to which wuseful information can be derived
from these variable strain rate tests depends upon our
general understanding of the process of loading at high
stress rates and of the energy transforﬁations and
dissipations occuring during a test. The data obtained from

an instrumented impact test may be very misleading if proper
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caution in not exercised in their interpretation. The most
basic form of instrumentation provided in any of these
.instrumented impact tests 1is the instrumentation of the
striking head or 'tup'. This form of instrumentation 1is
often supplemented by instrumented anvils (specimen
supports) or by instrumented specimens. The strain gauges
provided in the striking head generate a time-base signal
which, with proper calibration, can generate the load vs.
time record of the impact. This load vs. time record of the
impact can then be used to obtain the impulse acting against
the moving tup, which in turn can be used to obtain the
energy lost by the tup (7). Other information obtainable
from the 1load vs. time trace includes the maximum load
occuring in an impact, which 1is useful from the strength
calculation point of view.

Many investigators have realized that these tests are
not free from parasitic effects such as inertial 1loading
effects. A major part of the tup load, at the beginning of
the impact event, is used up in accelerating the specimen
from rest. Thus, not all of the tup 1load acts wupon the
specimen as the bending load. This is termed the "inertial
loading effect". Cotterell(8), and later others (9-12),
noticed an initial discontinuity in the load vs. time traces
obtained from impact tests on metallic specimens. This
discontinuity was explained by Cotterell (8) using elastic
wave theory. He argued that the compression wave in the

striking head is reflected as a tension wave from the free
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boundaries of the striker. Radon and Turner (10) later found
that the nature of the discontinuity observed in the load
vs. time curves was the séme even for tups with different
configurations.

A clear picture of inertial loading 1is presented by
Saxton, Ireland and Server (13) and by Server (14). The
inertial 1loading in the instrumented impact tests is
characterized by oscillations about the actual beam
deformation load in the load vs. time curve. The magnitude
of this deviation of the apparent tup load signal from the
actual beam deformation load depends on the masses involved,
the velocity of impact, the stiffness of the contact =zone,
and so on. Server (14) recommended that reliable
measurements should be made only after three oscillations of
this type. However, in the case of brittle materials such as
concrete, it may not be possible to avoid failure during the
first inertial oscillation. Thus, the guidelines suggested
by Server (14) can not be met. As a result, the entire
mechanical response of the beam may be overshadowed by its
inertial response. The interpretation of the test results in
the case of concrete, thus, may be very different from that
of metallic materials wheré the time to fracture is normally
very long.

Remedies to the problem of inertial loading have been
presented by various investigators. These remedies may be
broadly classified into two categories: analytical and

experimental. It is worth noting here that each method has
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its own underlying and simplifying assumptions, and thus no
universally applicable method yet exists.

Saxton et al (13) conducted instrumented impact tests
on different materials. They reported a linear dependence of
the maximum inertial load upon the initial velocity, and a
systematic increase in the maximum inertial 1load with an
increase in the acoustic impedence of the material tested.
Thus they concluded that the initial impact load is governed
by elementary elastic wave mechanics. They extended the
argument further, by proposing a series of tests on steel
specimens with known properties, thus evaluating the test
machine parameters in order to estimate the inertial 1load
for any other material to be tested. The equations proposed
by them are therefore restricted to their particular
machines and instrumentation.

Venzi, Priest and May (12) modelled the beam as having
pure rotatory motion and =zero trahsverse stiffness. They
also assumed that the 1inertial load per unit length was
proportional to the displacement from the mean position.
They thus determined the reaction of the tup and the anvils
to this inertial load from a knowledge of their respective
spring constants. Knowing these reactions, the actual
bending load was calculated using statics.

Radon and Turner (10) also suggested an approximate
correction for inertial load 1in instrumented impact tests.
They assumed that the acceleration of each particle in the

beam was a constant with time, as a function only of its
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position along the beam. They obtained the inertial force
acting on an infinitesimal element as a function of the
displacement at the instant of failure. Then, éonsidering-
the problem as one of a beam on elastic foundation, with the
inertial loading as the foundation reaction} they solved for
the deflected shape as a function of the tup load and the
other physical parameters. Once the deflécted shape was
known, it could be wused to find the bending moment in the
centre. This was finally equated to the bending moment of a
simply supported beam and the value of the actual bending
load was obtained.

On the experimental side, evaluation and subsequent
elimination of the parasitic effects involved resorting to
more sophisticated instrumentation. An estimation of the
actual bending 1load on the beam undergoing impact was
attempted by Gopalaratnam, Shah, and John (15), by
instrumenting the anvils. The difference between the
recorded tup load and the recorded anvil load yielded the
inertial load on the beam.

Hibbert (7) tried to eliminate the effect of inertial
loading from the energy computations by measuring the
kinetic energy acquired by the broken halves of the beam.
The Charpy specimens in Hibbert's tests were secured at the
two.ends by means of specimen holders and these specimen
holders were allowed to rotate after fracture against a

spring and ratchet system.
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Suaris and Shah (16) introduced a rubber pad between
the tup and the beam and subsequently showed that the
difference between the bending load and>the tup load was
reduced because of this modification to the test system. The
procedure adopted by Suaris and Shah has two points worth
noting. First, the introduction of the rubber pad
significantly reduced the applied strain rate. Secondly, a
large amount of energy was absorbed 1in the elastic
deflection of the rubber pad, which 'should have been
considered while calculating the bending energy of the beam.

Another major problem that occurs in interpreting
results of instrumented impact tests 1is the problem of the
energy balance. In an instrumented impact test the energy as
obtained by integrating the load vs. time plot is a measure
of the total energy expended by the hammer. Obviously, not
all of this energy 1is spent 1in creating new fracture
surfaces. Most of the energy is consumed in secondary
effects. An exact evaluation of this energy loss is
impossible, which means that the energy balance equation can
never be fully satisfied. The generally accepted -energy
balance equation(17,18) is,

AEo=E_+E_+E

+E (3.2)

vib* Bkpt*Buot*Erat

where,

AE, is the total energy obtained from the
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"load vs. time record,
E;, E, are the strain energies imparted to
the specimen and the machine, respectively,

E is the wvibrational energy of the

vib
specimen,

Ekpf is the kinetic energy prior to
fracture of the specimen,

E is the work of fracture,

wof

and E is the rotational kinetic energy

raf
after fracture.

Abe, Chandan and‘Bradt (17) attempted an evalution of
ﬁhe total energy loss. The 1load point deflection, obtained
as the product of the average velocity and the total time to
fracture, was used to evaluate the total deflection at
fracture. Knowing the compliance of the specimen and the
maximum load, the compliance of the hammer could be
calculated. This could conveniently be wused, theﬁ, to
evaluate the strain energy in the machine. Lueth (18) and
Iyer and Miclot (19) have also described the method of
applying the compliance correction to the measured gross
energy values.,

When the energy balance concept is applied to concrete,
additional problems arise. First of all, a compliance
correction requires a knowledge of the properties of the
material being tested at a high strain rate. For concrete

our understanding of these properties is only qualitative,

so the compliance of the specimen can not be calculated
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accurately. A second problem in the case of concrete, which
was not considered by the above investigators, 1is the
complicated nature of the >contact zone. With crushing
occurring in the contact zone, the energy balance equation
has to incorporate an additional term, Ecrur which may be
substantial but unfortunately is very difficult to evaluate.
This crushing also renders the entire compliance correction
procedure doubtful.

One major problem with applying the energy balance
concept to concrete is the interchangeability of the various
energieé involved. Obviously, the strain energy of the
specimen appears, at least in part, as the work of fracture.
Quite possibly some of the strain energy too 1is used to
reach thé post-fracture velocity, and some of the kinetic
energy to form the fracture surfaces. With this hazy picture
on the energy front, only approximate evaluations are

possible with our present understanding of the problem.

3.3 VARIABLE STRAIN RATE TESTS ON PLAIN CONCRETE

Basic studies of cement paste, of mortar,and of
concrete have revealed the inherently brittle nature of
these materials. To exacerbate the situation, these
cement-based construction materials have very low tensile
strengths. The weakness of concrete under tensile stress,
and its low failure strain, have meant that concrete has a
very low toughness; the toughness of some metals may be

almost three orders of magnitude higher than that of
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concrete. Moreover, concrete is strain rate sensitive. Its
properties were found to vary with stress application rates.
Variation was found not only between different stress
application rates, but also Dbetween various stress
application systems at the same stress rate. This has made
the problem all the more.complicated.

A number of attempts have been made to assess the
behaviour of cement-based materials under varying strain
rates. Concrete, 1in the form of compression, tension, or
flexural specimens has been subjected to increasingly high
strain rates, and the various strength and energy values
determined.

Possibly the first experimental study was that of
Abrams (20) 1in 1917, who subjected «concrete cylinders to
impact compression loading and observed an increase in the
impact strength over the static strength. Abrams also
observed that the rate at which the first 88% of the
ultimate load was applied did not have any effect on the
compressive strength. Many other investigators have also
concluded that at 1least the first 50% of the 1load can be
applied at any rate without affecting the ultimate strength.

Watstein(21), by performing compression tests on

6 to 10/sec) found

concrete at variable strain rates (10
that the ratio of the dynamic to the static strength was
substantially greater than unity. He also observed that this
ratio for strong concrete did not differ much from that for

weak concrete. The failure strains at high rates of loading
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were higher thaﬁ their static counterparts. Similarly, the
secant modulus and maximum load were considerably higher in
the case of higher strain rates.

Green(22) used the type of cement, the type of coarse
aggregate, shape of the coarse aggregate, curing conditions,
sand grading, mix proportion and the age of the specimens as
the independent variables in evaluating the performance of
concrete at variable strain rates. Contrary to Watstein's
(21) findings, he found that the ratio of the impact to
static strength increased with the static strength of
concrete. Concrete with angular aggregates showed a higher
impact strength than the concrete with rounded and smooth
aggregates. The water-cured specimens showed higher impact
strengths than the ones that were air cured.

McNeely and Lash(23) determined the effect of the
loading rate on the tensile strength of concrete. They found

)

a linear relationship between the modulus of rupture (ft
and the rate of loading (R), given by
£, =A+Blog, R (3.3)

where A and B are constants.

Atchly and Furr (24) performed compression tests under
both static and dynamic conditions at 0.05 to 12x10* MPa per
sec. They also found that the compressive strength, energy
absorption, secant modulus and the strain at failure
increased with an increase in the~strain rate. Contrary to

Watstein's (21) findings, they found the compressive
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strength and the energy absorption to reach a constanﬁ value
at higher rates of loading.

Goldsmith, Kenner and Ricketts (25) used ballistically
suspended Hopkinson split bars to test concrete with
different aggregates. Grain cleavage 1in the aggregate
particles of diorite was found to be responsible for the
high energy absorption capacity of concrete made using this
aggregate. Strains, when measured for exposed aggregates,
and for the matrix, (at the same longitudinal positions
along the bar) seemed to have lower values at the aggregate
location than at the matrix location. This suggested that
the aggregates were the deciding factor in the stiffness of
concrete. o

Birkimer and Lindemann (26) have shown that the
critical fracture strain energy theory provides a meaningful
fracture criterion. They also vfound that the <critical
fracture strain is directly proportional to the strain rate
raised to the one-third power. |

Hughes and Gregory (27) wused "low friction" pads to
reduce the platen friction 1in the case of dynamic
compression tests on concrete prisms. The load column method
was used'to develop high strain rates of up to 30/sec, and a
value of 1.9 was found as the ratio of dynamic to static
strength. This ratio was found to be largely independent of
the water-cement ratio, age, and cement content, but

dependent upon the type of coarse aggregate.
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Sparks and Menzies (28) tested concrete prisms in
uﬁiéxial cqmpression under both static and fatique 1loading.
The sensitivity of the static strength to the rate of
loading was found to be related to the stiffness of the
aggregate wused. Lytag, the least stiff of all the
aggregates, was - found to be the most rate sensitive;
limestone, the stiffest aggregate, was found to be the least
rate sensitive. They also found that this étrain rate

dependence could be expressed as

0g=C+nlogo o (3.4)
where

o¢ is the failure stress

0 is the stress rate.

and C and n are constaﬁts.

Hughes and Watson (29) tested concrete cubes with
varying mix proportions and two different types of coarse
aggregates under compressive impact loading (strain rates up
to 17/sec). They found that the ultimate strains decreased
with an 1increase in the stress rates, opposite to the
findings reported in (24) and (26). This was attributed to
the absence of creep strains for high strain rate 1loadings.
Also, the crack propagation path 1in the high strain rate
tests was much straighter than that in the low strain rate
tests. Aggregate failures were observed more in the impact
tests than 1in the static tests. In the static tests the

crack was found to propagate around the aggregate but never
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through it. They considered this as thelreason for the large
energy requirement in the impact tests.

The fracture mechanics approach to rate of 1loading
effects involves a combination of the classical Griffith
theory with an . empirical relationship describing the
sub—critical crack‘growth (30). According to the concept of
sub-critical crack growth, under a sustained load, a crack
of sub-critical size will eventually grow to the «critical
size, and failure will then occur. The velocity of such a

growing crack is given by

(3.5)
where

V is the crack velocity.

KI_is the stress intensity factor.

A,n are constants.

In the case of rapid loading, a sub-critical crack
simply does not have enough time to grow to the critical
size, and hence the specimen can support a higher load. The
three different ways of determining the constant n 1in
Equation 3.5 are given in Figure 3.1. Figure 3.1(a)
represents a constant load test, with 0. the applied 1load
causing failure and r the time to failure. Figure 3.1(b)
corresponds to the direct observation of the growing crack
and Fiqure 3.1(c) is the outcome of a constant rate of

loading test.
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FIGURE 3.1-Three different ways of determining the constant
- "n"

Mindess and Nadeau (31) tried to compare the slope (n)
of the logV—logKI plot, obtained frqm controlled crack
growth in double torsion tests, with the 'slope of the
1logMOR-logu plot =~ (Figure .3.1(c)), where 0 is the
displacement rate. They found thaﬁ n was aimost the same in
the case of mortar, but that there wés a discrepancy of a
factor of twbbfothhé: cement paste. They also analyzed the
;&ata obtainéd by the other inveétigators in order to find
the value of n in each case. It was found that n was larger
for compression tests than for tension and flexural testé.

Zech and Wittmann (32) attempted to find the
distribution function of the flexural strength of mortars at
varying strain  rates. A missile falling on the flexural

mortar specimens was employed to generate strain rates of
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about 2/sec. The theoretical approach developed by Mihashi
and Izumi(33), which relates the ratio of the dynamic to
static strengths to the rates at which these strengths were

measured was found to describe the results satisfactorily:

(£4/8)=(5g/6 ) (1/U1*R)) | (3.6)

where
fd and fS are the dynamic and the static
strengths, respectively,
o4 and és are the dynamic and the static
stress rates, respectively, and

B is a material parameter.

The parameter f was found to increase with an increase
in the strength of concrete. Thus stronger concretes were
predicted to be less strain rate sensitive than weaker ones.
Zech and Wittmann (32) also found that the variability was
not influenced by the rate of loading.

Suaris and Shah(34) performed instrumented variable

strain rate tests (strain rates from 0.67x10 ©

to 0.27) on
mortar using a flexural testing system. They noted that, in
general, the higher the static flexural strength, the lower
was the relative increase in the flexural strength with

incfeasing strain rate. They deduced that on a comparative

basis, the tensile response was the most strain rate
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sensitive, the compressivé response the least strain rate
sensitive, with the flexural response lying somewhere in
between. They tried to find the value of the parameter n in
Equation 3.5. However, on the basis of the observed data,
they found that n did not seem to be a constant; rather, it
decreased with increasing strain rate.

Zielinski and Reinhardt (35) and Zielinski (36) used
the split Hopkinson bar technique in order to investigate
the tensile stress-strain behaviour of mortar and concrete
bat high stress rates (5000-30000 MPa/sec). They concluded
that the remarkable increase in the tensile strength of
concrete and mortar atv high stress rates was due to thé
extensive microcracking in the whole volume of the stressed
specimen. To support this argument they observed that the
ultimate strains at higher stress rates were also higher.
Moreover, the specimens subjected to high rates of stress
fractured at more than one place along their lengths. The
difference between the impact strength of concrete and
mortars was explained on the basis of the direct crack
arresting action of the aggregates. It was also postulated
that in the case of very rapid loading, since much energy
was introduced into the system in é short time, cracks are
forced to develop along the shorter paths of higher
resistance, through stronger matrix 2zones and also through
some aggregates.

Alford (37) studied the behaviour of a crack, i.e., its

velocity and its path, as the crack approaches a disturbance
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(e.g. an aggregate or a void). An 'around the aggregate
mode' and a 'through the aggregate mode' were recognized for
crack propagation. The main factors determining the mode
were found to be the angularity and the toughness of the
aggregates. High speed photography results showed that the
observed crack velocity was much less than the theoretical
Rayleigh wave velocity. As a result,A the dynamic value of
the critical strain energy release rate (Gd) was found to be

approximately the same as the static value(Gs).

3.4 VARIABLE STRAIN RATE TESTS ON FIBRE REINFORCED CONCRETE

The poor impact resistance of plain concrete has led to
the incorporation of fibrous substances into the basic
brittle cementitious matrix to enhance its imp;ct
performance. Initially, these fibres were thought to
increase the strength of the composite, but it was soon
realized that the major advantage in adding these fibres was
not in the enhanced strength, but in enhanced ductility.
This enhanced ductility of the composite may be particularly
useful in situations where accidental impacts can occur and
the energy absorption capacity of the structure must be
considered in design. Thus, various investigators started
studying the composite behaviour of fibrous concrete at
variable strain rates.

Shah and Rangaﬂ (38) conducted static tests on fibre
reinforced concrete specimens in tension, flexure, and

compression and concluded that the basic advantage derived
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from the fibres occured only after the matrix cracked. Bond
strength of fibres was found to be a very important factor.

Naaman and Shah (39) carried out pull-out tests on
steel fibre reinforced concrete in order to study the effect
of fibre orientation and fibre grouping on the peak pull-out
load, the ultimate 1load and the pull-out work. They found
that the mechanism of fibre pull-out in the case of straight
fibres is very different from the mechanism in the case of
inclined fibres. The performance of a group of fibres
pulling out of a matrix could notbalways be estimated by
knowing the perfo}mance of a single fibre. This was because
of the increased spalling and disruption of the matrix with
an increase in the number of fibres. Thus the efficiency of
a group of fibres was less than that 6f a single fibre. They
finally concluded that this effect should be more pronounced
in the case of inclined fibres because more matrix crushing
is involved in this case.

Kobayashi and Cho (40) considered the flexural
behaviour of polyethylene fibre reinforced concrete and
found the fibres to be useful in improving the toughness of
the composite. The strain rate sensitivity of the composite
was also measured by the authors.

Bhargava and Rehnstrom (41) tested plain concrete,
polymer cement concrete and polypropylene fibre reinforced
concrete under high rates of compressive loading. They made
use of the principle that for viscoelastic materials there

is an optimum stress transmission limit. If the material is
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subjected to stress above this 1limit, the excess energy 1is
dissipated in fracture and féilure, and results in no
increase in the transmitted stress. They found that polymer
cément concrete had 30-35% higher dynamic strengths than
plain concrete. For fibre reinforced concrete the increase
was about 15%.

'Ramakrishnan et al (42) presented a comparative
evaluation of two types of fibres. The performance of
straight 25mm long steel fibres was compared to 50mm long
steel fibres with deformed ends. The fibres, held together
by a water soluble glue before mixing, were found to be free
from tangling or balling. Hooked fibres were also found to
produce higher flexural strength, higher loadv carrying
capacity, higher ductility and higher impact strength..

Jamrozy and Swamy(43) described their experience with
the applicafion of steel fibre reinforced concrete in
building machine foundations that were subjected to impact
loading. They designed a free fall drop weight impact tester
capable of repeatedly dropping a mass on a standard specimen
until a predetermined failure criterion was reached. Fibres
in general were helpful in increasing the impact performance
of concrete. The fibre volume, fibre geometry and fibre size
were all found to influence the impact strength. They also
found that for a given fibre geometry and size, there
existed an optimum fibre volume, which gave the maximum
efficiency. Some actual foundations were instrumented, and

it was found that the use of fibre reinforced concrete was
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really useful. They also concluded, however, that fibres
cannot replace conventional reinforcement.

Radomsky (44) discussed the construction and the use of
a rotating impact machine to 1investigate the impact
properties of concrete reinforced with straight round steel
fibres. He concluded that the impact resistance of these
composites increased with increasing velocity of impact, and
also with the angle of impact with respect to the fibre
direction. One-dimensional orientation of fibres was found
to give about twice the impact strength of two-dimensional
fibre orientation. A comparison of rotating impact machine
data with Charpy impact data revealed that these data cannot
be compared. This clearly demonstrates the influence of the
type of machine on the results obtained.

Hibbert (7) and Hibbert and Hannant (45) used an
instrumented Charpy impact machine to study the behaviour of
fibre reinforced concrete under impact loading. They
calculated the total energy lost by the pendulum from the
load vs. time plot and also independently from the residual
pendulum swing. These two values were found to be in
agreement. They also attempted to calculate the energy
losses during impact. The kinetic energy of the broken
halves of the specimen was determined by allowing the
specimen holders to rotate after fracture against a spring
and ratchet system. On the basis of their results, they
concluded that for fibre reinforced materials, the energy

absorbed after the matrix had cracked was not substantially
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different under slow flexure than that obtained under impact
conditions. Thus strain rate, they concluded, had no effect
on fibre-matrix bond properties. The matrix failure strain
was also found not to be sensitive to strain rate. These
findings, when put together( indicated that the energy
absorbing properties of fibre reinforced concrete under
impact conditions could also be reasonably estimated by
performing conventional static tests and by measuring the
area under the load vs. deflectibn curves. The authors used
a variety of steel and polypropylene fibres. Amongst the
steel fibres, the crimped fibres and the hooked end fibres
were found to be the best. Polypropylene was not found to be
as effective as the steel fibres.

Gokoz and Naaman (46) carried out pull-out tests on
steel, glass and polypropylene fibres-at various rates of
loading from a portland cement mortar matrix. The entire
process of pulling out 1in the case of steel fibres was
modelled as comprising a first peak denoting a combination
of bond failure and friction, a second peak which was only
friction dependent, and a final peak corresponding to final
tilting of the specimen due to the uneven pull out
resistance of different fibres. Steel fibres at all strain
rates were found to pull-out, while the glass fibres were
found to break. With an increase in the strain rate, the
polypropylene fibres had an increasing percentage of fibres
being pulled out. For all of the fibres tested, no

substantial increase in the first peak load with increasing
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strain rate was observed. The same was true for the second
peak. On the energy side, steel and glass fibres did not
show any change in the pull-out energy with changing strain
rate. On the othér hand polypropylene fibres showed a
dramatic increase in the pull-out energy with an increase in
strain rate.

Knab and Clifton (47) studied the cumulative damage of
steel fibre reinforced slabs subjected to repeated impact.
The crater dépth measured right under the point of impact
was found to be a good indicator of the cumulative damage.
The addition of steel fibres was found to increase the total
number of blows to failure considerably.

Suaris and Shah(34) compared the performance of plain
concrete and plain mortar with their - steel, glass and
polypropylene fibre réinforced counterparts. They found that
the flexural strength (MOR) of both steel and glass fibre
reinforced mortars was more strain rate sensitive than that
of the mortar matrix itself. Polypropylene fibre reinforced
mortar, on the contrary, was apparently not strain rate
sensitive. The energy absorption values of fibre reinforced
mortar with various fibres, subjected to impact, were found
to be 7 to 100 times 1larger than those of the wunreinforced
matrix.

Naaman and Gopalaratnam (48) also studied the strain
rate sensitivity of steel fibre reinforced mortar. They
concluded that an 1increase in the aspect ratio and fibre

volume, in general, increased the strain rate sensitivity.
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The increase in the composite flexural strength and energy
absorbed with increased 1loading rate was attributed
primarily to the strain rate sensitivity of the matrix and
the pull-out resistance of thé fibres.

Gopalaratnam et al(15) used a modified instrumented
Charpy machine for testing cement based composites at higher
rates of loading. They observed an increase of about 60% in
the MOR when the strain rate was increased from 10_6/sec to
0.3/sec. The peak strains recorded showed an increase at
higher rates of loading. The secant modulus was also found
to increase at higher rates of loading, which was attributed
to a decrease in the amount of microcracking at higher rates
of loading.

Harris et al (49) tested cement/sand mortar beams
reinforced with short randomly distributed fibres of glass,
high carbon steel, and mild steel in bending, and determined
the value of the work of fracture (7f), and the «critical
stress intensity factor(Kc). The critical stress intensity
factor, which depends upon the peak 1load obtained and the
specimen geometry was found to increase by a factor of two.
The work of fracture, on the other hand, which considers the
entire load vs. deflection plot, was found to increase;by as
much as an order of magnitude, when plain concrete was
compared with fibre reinforced concrete.

Thus, on the basis of the 1literature survey, the

following conclusions may be made:
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(a) Results obtained by the various investigators are often
contradictory. For example, Hibbert (7) has found that the
strain rate has no effect on the properties of fibre

reinforced concrete; most others find that this is not so.

(b) No general agreement over the phenomena responsible for

strain rate effects exists,

(c) No general agreement over the magnitudes of the observed

effects exists,

(d) The effects seem to depend on the type of test and the
type of interpretation.

Thus, the nature of the impact behaviour of even a
cementitious matrix is not well understood, let alone the

impact behaviour of frc.



4. EXPERIMENTAL PROCEDURES

4,1 INTRODUCTION

Destructive tests on concrete have been in use for many
years. However, strength 1is not a fundamental material
property; it depends upon how it is measured. The mechanical
properties of concrete have been found to depend upon,
amongst other things, the geometry of the specimen, the
stiffness and type of testing machine, loading
configuration, moisture content, temperature, and the rate
of loading. The effect of the rate of 1loading, which was
pfobably first pointed out by Abrams(20) in 1917, has
recently become a major area of investigation. Many
investigations have recently been <carried out to study the
rate of loading, or the stress rate effect on the properties
of concrete. Unfortunately, while for the static properties
there are a number of standard test methods, no such
standard test mefhod exists for concrete under high rates of
loading, or under dynamic conditions.

High stress rate testing on any material is based on
suddenly imparting a large amount of energy to the test
specimen. In most impact machines potential energy is stored
in a spring, a pendulum, a hammer, or a simple ball, and
this stored energy 1is transferred to the specimen over an
extremely short interval of time. The specimen deforms in
response to this energy transfer, leading to the development

of high stresses in the specimen over a very short length of

40
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time. But, there is a 1limit to the amount of energy ahy
material can‘absorb as strain energy before failing; If the
externally available energy exceeds this limit, failure will
result. Various techniques have been wused to test concrete
at high stress rates. The most common are:

(a) Free fall drop weight tests;

(b) Work of fracture tests;

(c) Explosive teéts; ‘

(a) Hopkinsoﬁ's Split Bar test;

(e) Charpy/Izod tests; and

(f) Fracture mechanics tests.

In all of the‘above’test methods, there is an attempt to
quantify the energy required to achieve failure. However,
because both the failure criteria and the physical processes
by which failure occurs vary from test to test, comparisons
between any of these tests is very difficult.

In the Charpy tests, a pendulum bob 1is used to store
potential energy, which 1is suddenly transferred to the
specimen when the pendulum is released. Historically, the
Charpy machine was developed primarily for testing metals.
Thus, when this test method is used for concrete,
modifications have to be made. First, the specimen holders
have to be modified in order to hold the much bigger
concrete specimens. Another modification is in the form of
strain gauges mounted in the striking end of the pendulum

(7), in the specimen supports, and possibly on the specimen
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itself. The monitoring of the 1load developed in the
instrumented pendulum bob permits an approach towards the
quantification of energies. The 1load vs. time curve thus
obtained also allows a calculation .of the stress rate
achieved in a test.

ACI Committee 544 (50) has recommended an impact test
in which a 4.5kg steel ball is dropped repeatedly through: a
standard height of 457mm (18 inches) on a 152.4mm diameter
by 63.5mm thick concrete test specimen. The number of blows
to a predetermined failure criterion is noted. The number of
blows can also be converted to an energy value by
multiplyiﬁg the energy given to the specimen with each blow
(20.2 N-m, in this case) by the total number of blows to
failure. There are several major problems with this type of
testing. The selection . of the failure criterion is
completely arbitrary, and not all of the energy goes in to
the specimen, being dissipated in the test device itself.

The Hopkinson's split bar technique is often used as a
means of generating high stress rate loading. Basically, it
consists of two elastic bars . between which the specimen is
sandwiched. An incident stress pulse is generated in the
first elastic bar and the pulse transmitted through the
specimen is measured at the second elastic bar. Thus, the
force that acted on the specimen can be evaluated. This
technique can be wused for wuniaxial compressive 1loading
(51,52) or uniaxial tensile loading (36); stress rates up to

about 60 MPa/ms can be achieved.
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The work of fracture tests conducted using a
conventional static machine involve stressing a flexural
specimen at conventional fates of loading and monitoring the
load and the load point deflection. The energy expended 1in
creating two new fracture surfaces (Ef), which is equal to
the area under the load vs. deflection plot, can then be
used to determine the work of fracture Tgr

Ep

where A is the area of cross section of the specimen. The
" results obtained from such work of fracture tests may be
used to predict the energy absorption capabilities in
dynamic conditions only 1if the strain rate sensitivity of
concrete can be 1ignored, a very doubtful assumption.
Nevertheless, such tests may, at best, predict the lower
limit on energy absorption values.

Explosive tests are sometimes used to generate
uniformly distributed dynamic loading. The problems often
encountered in such tests include the wuncertainty in the
quantification of energy, loads, and the specimen response.

Fracture mechanics has been used as an analytical tool
to predict the behaviour of concrete under high rates of
loading. However, the success of such a tool 1is 1limited
since there 1is no wuniversal agreement over the basic

fracture mechanics material constants, and the constants
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themselves are stress rate dependent.

In this study, an instrumented drop weight impact
machine was used 1in order to test concrete beéms at high
stress rates. This type of machine was considered to be a -
suitable means of testing large specimens of concrete wunder
flexural impact loading. The mass of the hammer was chosen
to be about eight times the mass of the impacted beam, 1in
order to induce specimen failure 1in a single blow of the
hammer. Conventionally reinforced concrete beams, which due
to the steel are much tougher than plain concrete beams
could also be tested with the same hammer without having to

carry out any modifications to the machine.
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4,2 SPECIMEN PREPARATION

For the experimental work, plain, fibre reinfdrced, and
conventionally reinforced concrete beams were cast. Three
different sizes were chosen; (length x width x depth)
1525mmx 150mmx 150mm, | 1400mmx 100mmx125mm, and
1200mmx 100mmx 125mm. The 1500mmx150mmx150mm beams were - found
to be too heavy and awkward to handle. The
1400mmx 100mmx 125mm beams were found to have a large segment
of the beam overhanging the supports, which were only 960mm
apart. Finally, most of the beams were made 1200mm x 100mm x
125mm in size; a sizé not difficult to handle and not too
long. The cement usea was CSA Type 10 normal portland cement
(equivalent to ASTM type 1). The maximum size of the pea
gravel aggregate was 10mm. A summary of the specimens

prepared has been presented in Table 4.1.

4.2.1 NORMAL STRENGTH PLAIN CONCRETE BEAMS

For the production of normal strength plain concrete
beams the fpllowing mix proportions, by weight, were used:
water:cement:fine aggregate:coarse aggregate =
0.5:1.0:2.0:3.5. |
In additibn, 9.45ml of superplasticizer (Mighty 150) per kg
of cement were added to the mix.

A pan type mixer (0.170m?® capacity) was used for mixing
the concrete. All of the aggregates were placed in the mixer
and it was turned on for about one minute. Next the cement,

the water, and the additives were added. These were then



Table 4.1

Reinforced Normal
Suength Concrete
with Deformed
Reinforcing Bars

0.33:1.0:0.0:2.0:3.5

Types of Specimens

BEAM TYPE Quantity Cast Mix Proportions! S.plasticizer? Fibre (%) .SLrenth’(MPa) Designation
Paste 10 0.35:1.0 - - - P
Normal Strength 3 © 0.50:1.0:0.0:2.0:3.5 9.45ml - @ NS
Plain Concrete

High Strength Plain 35 0.33:0.86:0.14:1.57:1.04  14.2ml - 82 HS
. Concrete

Normal Strength 20 -0.50:1.0:0.0:2.0:3.5 14.2ml 15 50 NSSFRC
Steel Fibre

Reinforced Concrete

High Strength Steel 20 0.33:0.86:0.14:1.57:1.04  142ml 15 82 HSSFRC
Fibre Reinforced

Concrete

Normal Strength 20 0.50:1.0:0.0:2.0:3.5 14.2mi 0.5 49 NSPFRC
Polypropylene Fibre

Reinforced Concrete

High Strength 20 0.33:0.86:0._14;1.57:1.04 14.2ml 0.5 82 HSPFRC
Polypropylene Fibre

Reinforced Concrete

Conventionally 35 0.40:1.0:0.0:2.0:3.5 9.45ml ~ 49 CRNSC

9%



Conventionally
Reinforced High
Strength Concrete
with Deformed
Reinforcing Bars

35

0.33:0.86:0.14:1.57:1.04

14.2ml

82

CRHSC

Conventionally
Reinforced Normal
Strength Concrete
with Smooth
Reinforcing Bars

20

0.5:1.0:0.0:2.0:3.5
0.4:1.0:0.0:2.0:3.5

9.45ml

42

CRNSC-S

Conventionally
Reinforced Normal
Strength Concrete
with Deformed
Rebars and Stirrups

20

0.4:1.0:0.0:2.0:3.5

9.45ml

49

CRNSC-ST

Conventionally
Reinforced Normal
Strength Concrete
‘with Polypropylene
Fibres

20

0.40:1.0:0.0:2.0:3.5

14.2ml

0.5

49

CRNSC-P

Conventionally .
Reinforced High
Strength Concrete
with Polypropylene
Fibres

20

0.33:0.86:0.14:1.57:1.04

14.2ml

0.5

49

CRHSC-P

Normal Strength
Plain with Notch

20

0.5:1.0:0.0:2.0:3.5

9.45ml

42

NS-NT

High Strength Plain
with Notch

20

0.33:0.86:0.14:1.57:1.04

14.2ml

82

HS-NT.

Ly



Normal Strength 20 0.5:1.0:0.0:2.0:3.5 14.2ml
Plain Concrete with V

Polypropylene Fibres,

Notched

0.5

49

NS-P-NT

! Water:Cement:Microsilica:Fine Aggregate:Coarse Aggregate (by weight).
! Per kilogram of cement
' Equivalent Cube Strength obtained by using 125mmx125mm plates.

8%
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mixed for about 10 minutes. Once the mixing was completed,
the concrete was shovelled into oiled wooden forms in a
single layer, and was roughly compacted with a shovel.
Proper compaction was then achieved using an electric
immersion vibrator. Each beam was vibrated for about fifteen
seconds at six different 1locations along its length. The
forms were then covered with polyethylene sheets. The beams
remained in the forms for about 24 hours. At the end of this
period, the beams were demoulded and transferred to a moist
room until tested. The test ages ranged from about one month
to about one year.

On the day of the testing, the beams were removed from
the moist room and the accelerometer locations were marked.
Those marked spots were surface dried with a blow drier and
cleaned with a wire ‘brush. The mounting bases of the
accelerometers were then carefully fastened to the beam
using an epoxy adhesive. The epoxy was allowed to dry for a
minimum period of about 15 minutes, at the end of which the

beams were ready for testing.

4,.2.2 HIGH STRENGTH PLAIN CONCRETE BEAMS

High strength plain concrete beams were made in very
much the same way as were the normal strength plain concrete
beams. For the production of high "strength concrete, 16%

microsilica' by weight of thé cement was also added, the

' Produced by Elkem Chemicals, Inc., Pittsburgh,
Pennsylvania.
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water/(cement+microsilica) ratio was reduced to 0.33, and a
triple dose of the superplasticizer was used. The mix
proportions were then:

water:cement:microsilica:fihe aggregate:coarse aggregate =

0.33:0.86:0.14:1.57:1,04

The casting and storage of the high strength beams was
carried out in the same way as for the normal strength

beams.

4.2.3 FIBRE REINFORCED CONCRETE BEAMS

Fibre reinforced concrete beams were made by
iﬁéorporating steel or polypropylene fibres into both the
normal strength and high strength concrete mixes. To produce
steel fibre reinforced concrefe, 1.5% by volume of steel
fibres were added. These fibres were 50mm long and had their
ends‘hookedz. The fibres were originally held together by a
water soluble sizing, and special care was exercised in
adding the fibres to the mix, to minimize balling and
nonuniform distribution of the fibres through out the body
of the beam.

Polypropylene fibre reinforced concrete contained 0.5%
by weight of 37mm long fibrillated polypropylene fibres?3.
The fibres had a very high water demand and it proved
impossible, with the technique described above, to-add a

higher volume of fibrillated polypropylene fibres to the

3 Produced by Forta Fibres, Inc., Grove City, Pennsylvania.
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mix.

4.2.4 CONVENTIONALLY REINFORCED CONCRETE BEAMS

The conventionally reinforced concrete beams were cast
with either deformed steel reinforcing bars or smooth
reinforcing bars.

In the case of the deformed reinforcing bars, two
9.52mm (cross-sectional area = 2x71mm?) nominal diameter
deformed steel bars were placed in the forms so as to
provide a clear cover of 25mm from the bottom and the sides
of the forms to the bars.

The smooth reinforcing bars used were also 9.52mm in
diameter and were placed in the forms in the same way as the
deformed bars.

Some of the reinforced concrete beams were provided
with 5mm diameter stirrups spaced 100mm apart.

For the reinforced concrete beams, both normal strength
and high strength beams, and beams containing fibres, were

produced, as shown in Table 4.1.

4.2.5 NOTCHED BEAMS

To study the effect of notches on the dynamic
performance of concrete, several of the beams made with both
normal strength and high strength mixes were notched. The
notches were cut at midspan using a circular diamond cutting
saw; they were 65 to 70mm deep. The actual notch depths in

the individual beams were measured just before the test and



were used in the analysis.
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4.3 TESTING PROGRAM

The basic aim of the testing program was to develop a
valid teéting technique to test concrete under impact, and
to investigate the effect of stress rate on the performance
of plain, fibre reinforced, and conventionally reinforced
concrete beams. The tests carried out may be broadly
classified into two categories: static and dynamic. All of
the tests, static or dynamic, were conducted on beams in a

three point bending configuration using a 960mm span.
4.3.1 STATIC TESTING

4.3.1.1 Flexural fests on beams

The static flexural tests were carried out on a
universal testing machine.* The beams were simply supported
on rollers on a span of 960mm, and the load was applied at
midspan. The machine was equipped with a load cell capable
of measuring 1loads up £o 90 kN. The machine was also
equipped with an x-y plotter, with the y channel of the
plotter connected to the 1load cell and the x channel
connected to a linear variable differential transducer
(LVDT) reading deflections under the load point.

The cross head speed chosen for the static testing was
4.2x10—7 m/sec. At this rate, in a typical test, it took
about 1 hour to reach the peak load. Once the load vs.

deflection plots were obtained, a planimeter was used to

“Baldwin Model GBN, manufactured by Satec Systems, Inc.,
USA.
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measure the area under the load vs. deflection plot. This
area represented the energy absorbed by the beam.
In general, three specimens of each type were tested in

this way.

- 4.3.1.2 Tension tests on reinforcing bars

The same universal testing machine was also used to
carry out tension tests on both the deformed and smooth
reinforcing bars wused for the conventionally reinforced
concreté. A clip gauge with an LVDT fitted to it was used to
read the strain over a 50mm gaugé length. A 1load vs.
diplacement plot was obtained.‘The speed of the crosshead
was maintained at about.1mm/minute. The area under the load
vs. displacement plot to failure was measured with ‘a
planimeter. As before, this represented the energy required
to fail the bars in tension. The yield strength of the bars
was found to be 425 MPa, while their ultimate strength was
found to be 720 MPa, With the ultimate strain of 0.12, the

energy required upto failure was found to be 70 MNm/m?3
4,3.1.3 Stiffness test on the rubber pad

Some of the dynamic tests were carried out with a
rubber pad in between the tup and the beam. This technique
had originally been devised as a way of eliminating the
inertial loading effects (16). The Baldwin universal testing

machine was used for this purpose. The load vs. deflection
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plot for the rubber pad in compression was obtained, using a
pad with the dimensions of 150mm (width), 150mm (breadth),
and 50mm (depth). Tﬁe deflections were measured by measuring
the movement of the cross head itself. For such a soft
material, this was considered to be a valid technique for
displacement measurement. The stiffness of the rubber pad
was obtained by measuring the slope of the load vs.

displacement plot thus obtained.

4.3.1.3 Compressive strength determination from broken

halves of the beams

Equivalent cube tests were performed on the halves of
beams broken in static flexure. Two 125mm x 125mm steel
plates were used on the top and the. bottom of the beam lying
on its 125mm side. Load was applied in a hydraulically
controlled testing machine wuntil the concrete failed by

crushing.
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4.3.2 IMPACT TESTING

The impact testing was carried out using a drop weight
impact machine. The following sections provide a description
of the machine, the instrumentation, <calibration, data

acquisition, and the analysis of the test results.
_4.3}2.1 The impact testing machine

‘d._Géneral princip{g of a drop Weight impact machine
A'photagraphu of the instrﬁméhted drop weight impact
machiﬁe is shown in Figure 4.1; a dimensioned sketch is
given in Figuré 4.2, 1In these types of mééhines, a hammer
with a sustantiél mass is raised to a certain height above
:the specimen. In;this position, the hammer has the potential
energy mhahh (mass of the hammer» x acceleration of the
hammer under gravity x height to which it is raised) with
respecﬁ to the top surface of the specimen. If the hammer‘in
"this position is allowed to :drop on to the specimen, the
potentiél energy of the hammer 1is converted to kinetic
energy’as the‘hammér falls with an accéleration ap . (Dué' to
the frictional forces in the: machine acting on the hammer,
the downward acceleration of the hammer is ‘less than the
earth's gravitational accelerétion, g).' Just before the

hammer strikes the beam, its velocity is given by
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Figure 4.1-The Drop Weight Impact Testing Machine
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At this velocity, the hammer has a kinetic energy,

(\/Zahh)z
= mhahh _‘

(4.2b)

When the hammer strikes the beam, a sudden traﬁsfer of
momentum occurs from the hammer to the beam. As a result,
the moﬁentUm of the hammer decreases. This,'in turn, results.
in a loss of the hammer kinetic energy, and a corresponding
gain in the beam energy. This transfer of energy between the
hammer and the beam is very sudden, and results in a sudden
build-up of stresses in- the beam. In this study, five
chaﬁnels of instrumentation were provided to monitor the
response of the beam to .impact. Strain gauges were mounted
on the striking end of the hammer.(called the_'tup') and on
one of the support anvils, and three accelerometers were
mounted'élong the length of the beam. The strain gauges in
the tupvmeasured the contact load between the hammer and the.'
vbeem,vthe stfaih gauges in the .suppert were designed to
monitor the sﬁpport reaction, and the acclerometers were
employed to record the accelerations in the beam unaefgoing
impact. The time base data were acquired by a data
acduisition system based upon an IBM PC.

The layout of the testing setup is shown in Figure 4.3,

As shown, the hammer is attached to the hoist by means of a
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Figure 4.3-The Layout of the Impact Testing Set-up
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pin lock. The hoist can be moved up and down by using a
chain and motor. Once the hammer is ét the desired height
above the specimen, the pneumatic brakes provided in the
hammer can be applied. With this, the hammer "érabs on" to
the columns of the machine. In this position, the hoist can
be detached from the hammer. On releasing the pneﬁmatic
brakes, the hammer falls under gravity and strikes the beam,

thus generating high stress rate loading.

b. Triggering of the data acquisition system

The triggering of the data acquisition system, which
should occur just before the hammer hits the beam; was
accomplished by using a photocell assembly. A strip of metal
with holes punched in it ran pérallel to the columns of the
machine as shown in Figure 4.3. The hammer carried a
photocell assembly which slid along the metal strip as the
hammer fell upon release. As soon as the photocell assembly
reached a hole in the metal strip, the beam of light fell on
. the photocell through the hole (Figure 4.4), which triggered

the data acquisition system.

¢c. The tup

As the tup (Figure 4.5), strikes the beam, the strain
gauges in the tup record the contact load. The arrangement
of the strain gauges in the tup is shown in Figure 4.6(a),

and the <circuit diagram is shown in Figure 4.6(b). The
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Wheatstone bridge, shown in Figure 4.6(b) is balanced in the
"no load configuration". The 8 strain gauges are 1installed
in two 25 mm diameter circular holes, in order to obtain an
amplification in the signals by making use of the stress
concentrations at the boundaries of the holes. The tup was
calibrated statically using a hydraulically loaded universal

testing machine.

d.The support anvil
The support anvil (Figure 4.7) was capable of reading

the vertical support reaction as well as the horizontal

Figure 4.5-The striking end of the Hammer, or "Tup"
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Figure 4.6-The circuit of the Tup

support reaction (Figure 4.8). These two reactions were read
separately from the imbalance generated in two different
Wheatstone bridges (Figure 4.9). These two reactions could
be read by the data acquisiﬁion system through two
independent channels. The vertical reaction was read from
the strain gauges mounted'in the circular holes, while the
horizontal reaction was read from the strain gauges mounted
in between the two holes (Figure 4.9). The strain gauges
reading the vertical reacﬁion worked on the same principle
as did the ones 1in the tup. The bridge reading the

horizontal reaction, which was balanced in the no 1load
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Figure 4.7-The Support Anvil

configuration, was thrown out of balance with a finite
horizontal load. In the unbalanced state, the output across
A and B in Figure 4.9c was proportional to the magnitude of
the horizontal load. It can be seen from Figure 4.9b and
4.9c that these two channels acted independently of each
other. In other words, the presence of a finite horizontal
load did not affect the balance of the bridge reading the
vertical reaction, and vice versa. Calibration of the
support anvil was also carried out statically on a

hydraulically loaded universal testing machine.
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5 BEAM

Figure 4.8-The Support Reactions

e. Accelerometers

The  accelerometers (Figure 4.10) used were
piezoelectric sensors with a resonant frequency of about
45kHz.5% With a reSolutionvof 0.01g, the accelerometers could

read to +500g and had an overload protection of up to 5000g.

SManufactured by PCB Piezotronics, Inc., Buffalo, NewYork.
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Figure 4.10-The Accelerometers

f. Acquisition and storage of the data

Once the data acquisition system 1is triggered, it
begins to transfer the output from the 5 channels into the
computer memory, for a preselected length of time. This
length of time is chosen appropriately for the expected time
of the impact event (=15 ms for plain and fibre reinforced
concrete, and ~150ms for conventionally reinforced
concrete). The five channels were read simultaneously at
0.2ms intervals. At the end of the event, the data stored in

the computer memory are written on to a magnetic disc.
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Fihally, these data are transferred to an Amdahl computer

for further analysis.
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4,3,2.2 Calibration

a. Calibration of the tup

The output from the strain gauges in the tup was in the
form of voltage signals. To convert thése signals into
loads, calibrétion was needed. Although the tup was to be
stressed dynamically in an actual test, the properties of
steel under dynamic conditions were assumed to be the same
as under\static ones, and so a static calibration could be
used. The tup was loaded, in steps, up to about 70% of its
elastic capacity and the output was read. Figure 4.11 shows
the calibration curve. Note from Figure 4.11 that the

calibration was linear and the hysteretic 1loss was

nonexistant.

b. Calibration of the support anvil

Similar to the tup, the support channels were also
calibrated statically on a hydfauiically loaded universal
testing machine. The channel reading the vertical reaction
was calibrated by applying a vertical load as in the case of
the tup, and a moment was applied to «calibrate the
horizontal reaction channel (Figure 4.8). Figure 4.11 shows
the results from the «calibration. As for the tup, the
calibration for the support channels was also found to be

linear, with no hysteretic loss.
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Figure 4.11-The Calibration of the support and the striking

tup
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c. Calibration of the hammer acceleration

As mentioned earlier, the photocell assembly sent out a
voltage signal, in the fofm of a spike, whenever it
intercepted a hole in the metal strip. A typical output from
the photocell assembly is shown 1in Figure 4.12; the data
from the photocell indicated the time required by the hammer
to travel the distances between the successive holes.

If it can be assumed that the downward acceleration
(a,) of the hammer is constant, and if we know the time

required to travel two adjacent segments of lengths s, and

——3> Output in Volts

EEWxD_T-—_r~ZZ;;;>
i t
ermstys,| (D | ————%—-r}
L
S (o|
—t

Figure 4.12-The Calibration of the Hammer Acceleration
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s, (Figure 4.12), then from the 1laws of motion, the
acceleration of the hammer "ah" can be obtained as follows:

Between the first and the second hole,

s, = V,At, + 0.5ahAt% (4.3)

Between the second and the third hole,

52 = VZAt2+ O.SahAtg (4.4)

Also,

Vz = V1 + ahAt1 (4.5)

therefore, solving for a, vwe get

2(52At1_S1At2)
a; = (4.6)
At At , (At, + At,)

If the holes are equally spaced at s, as is the case in this
study,
2s (At ,-At,)

a = (4.7)
At At , (At ,+At ;)
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Note that all the terms on the right hand side of Eqn.
4.6 or Eqn. 4.7 can be obtained either from the output of
the photocell, or from physical measurements. Thus the
downward acceleration can be evaluated.

It is worth mentioning here that the acceleration of
the hammer was always found to be less than g (9.81 m/sec?).
The friction between the columns of the machine and the
hammer was thought to be the reason behind this discrepancy.
‘The friction was found to depend upon the cleanliness of the
pillaré. An acceleration test done right after cleaning the
pillars with acetone resulted in a value of hammer
acceleration bf 9.60 m/sec?. On the other hand, unclean
pillars, after repeated use, yielded accelerations as low as
8.64 m/sec?. Therefore, the pillars were cleaned just before
every test and a hammer acceleration equal to 9.60 m/sec?

was assumed in the analysis.
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4;3.2.3.Analysis of the test results

The usual output from the impact tests carried out on
the concrete beams consisted of the tup load, the support
load, and the accelerations at three locations along the
" length of  the beam. All these data were obtained as a
-anction of time. Figure 4.13 shows the five sets of data
obtained from the fivé instrumented channels from a tésf
done on a plain concrete beam. Since the daté were acquired»
at 200 microsecond intervals, and since an impact event took
‘ anYwhefé from 15ms to 150ms, .fhis‘ resulted in. Sevéral
thousand data points per test. For the efficient handling of
this data, a computer program was written. An aigorithm .of

thevprogram is given in Section-4.3.2.3g.

.a.The energy lost by1the hammer

If the hammer has fallen through a height "h" beforé it
hits the beam, then the velocity of ﬁhe hammer just prior to
‘impact.is given by Eqn..4.2a. I1f this instant corresponds to

“time t=0 (Fig. 4.13), then,

v, (£=0) = VZa b | ' ' (4.8)

After the contact between the hammer and the beam, an
impulse, given by the area under the tup load vs. time plot,
acts on the hammer. From the laws of Newtonian Mechanics,

this impulse must be equal to the change in the momentum of
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the hammer.

- - : (4.9)
fPt(t)dt =m v, (0) - mV (t)
Using Egn 4.8 and solving Egn 4.9 we get,
- 1 2 \2 . :
8E(t) = 2m [ VE(D) - VE(t)] : (4}.10)}

I1f AE(t) is the kinetic energy lost by the hammer, then

v (t) = [VZah - %h fpt(t)d»t] | C(4.11)

On substituting for Vv, (0) and V,(t) in Equation 4.11,

AE(t) = '}mh[Zahh - (V2a.h - %fpt(t)dt)z] (4.12)
h .

Thus, according to . EQn. 4,12, at ahy time t, if the aréa
under the tup load vs. time plot is known, the energy lost
by the hammer can be calculated. As will be seen later, all
of this energy lost by the hammer may not be transferred to

the specimen. Some of the energy, at 1least in the 1initial
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part of the impact, 1is lost to the testing machine itself

(Chapter 8).

b. The generalized bending load

The contact load between the specimen and the hammer is
not the true bending load on the beam, because of the
inertial reaction of the beam. A part of the tup load is
used to accelerate the beam from the position of rest. This
inertial load, called the d'Alambert force, is discussed 1in
detail in Chapter 5. The inertial 1load must be subtracted
from the observed tup load 1in order to obtain the actﬁal
bending load on the specimen. Various techniques have been
used by various investigatorsvto accomplish this (Chapter
5). In this study, the accelerometers data were used in
order to apply fhe inertial correction to the tup load.

In order to arrive at the true bending (or stressing
load), it 1is important to understand the nature of the
various loads in qﬁestién. The tup 1load is a point 1load
acting at the midspan of the beam, whereas the inertial
reaction of the beam is body force distributed throughout
the body of the beam. This distributed inertial load should
therefore be replaced by an equivalent (or generalized)
inertial load, Pi(t), which can then be subtracted from the
tup load to obtain the generalized (true, or eguivalent)
bending load Pb(t), aéting at the centre. As will be shown
later, this generalized bending load can then be assumed to

act on the beam at the midspan by itself, and will predict



73

the correct energies, midspan moments and stfesées..As shown
in Figure 4.14, the three accelerometers are placed at
distances D,, (D,+D,), and (0.51+h) from the centre of the
beam. If the accelerations between the accelerometers can be
obtained by linear. interpolation, if the accelerations at
midspan can be obtained by linear,exﬁrapolation, and if the
accceleration distribution can be assumed to be symmetric
about the midspan, then the acceleration at évery point
along the length of the beam is known. If a segment of the
beam, dk, has an acceleration U(x,t) at its centre, then the -

inertial force acting on it is given by

di(x,t) = pAdxu(x,t) | o , (4.13)

where p is the mass density and A is the area of cross
' section of the beam. |

In this position (Figure 4.14c), let .the beam be given
a virtual displacement compatible with its coﬁst:aints. Let
the virtual,displaqehent at any point be_proportional to tﬁev
acceleration at thaﬁ\ point. If §°(t),; G,(t), Jz(t), G;(t)
are the“accelerations at the centre,' and at the three
accelerometer locations, respectively, and if 6u,, 6u,, bu,;,

and du, are the corresponding virtual displacements, then

6uO 6u1 6u2 3 : (4.18)

Gle) o) e o)
0 1 2 3

6u
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If the distributed inertial load is to be replaced by a
generalized inertial load in the centre, then the wvirtual
work done by the distributed inertial reaction acting over
the distributed virtual displacement should be equal to the
virtual work done by the central load Pi(t) acting over the

virtual displacement at the centre,

P.(t)duo = FpAaU(x,t)8ul(x)dx + 2fpAU(y,t)su(y)dy (4.15)

On expanding,

uo(t)-u1(t) 6up=6u,
Pi(t)buo = 2| S pA[UO(t)- —-—51— x] [GUD- _T x] dx
. pr[u1(t)-—u%u—zﬁ)x] Lou,- 6U1;ZU2 < 54 16)
+ JeAlu,(t)- —Ez(t—;;w)x] [6u,~ —6—% x] dx
+ Jor(~1)[u4(t)- Lls(tt);us(t)&] (-1)[6us- Mz—;bui y]:l

where U_(t) and dug are the acceleration and the virtual
displacement at the support, respectively. If the
acceleration and the virtual displacement at the support can
be assumed to be zero, and if the beam 1is prismatic and

homogeneous, then Egn. 4.16 can be simplified to

Pi(t)buo = 2pA %01(t)6u001 + % UD(t)éuoD,‘ +

+ 1 U,(t)6u,D, + 1 U, (t)6u.D, + 1 192
z 2 vZ g B AN ON

+ 1 U,(t)6u
3 2

[ N

_Us(t)6u3h

203 + 1

(&3]
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Expressing §u,, du,, and du; in ‘terms of du, using Eqgn..
4.14, and on cancelling du, on both sides of the -equation,
we get |

Pi(t) 2pA[ -—-5-( Uz(t) + uz(t) + u (t)u (t))

+

%?D%t_) (U3(t) + W3(E) + u,l(t)uz(t)) 1.18)
%*(—r EION -"—(—y : ()]

Thus, knowing the accelerations at'the centre and at
the accelerometer locatidns, and'the_ beam properties, ' the
generalized inertial load can be obtained from th; 4.18,_

_ Once the generalized inertial loéd is 6btained, the .
beam can be modelled as a single degreé of freeedom system
and the generalized bending load can be obtained from the
equation of dynamic equilibrium:

P (E) = P (t) - P.(8) (4.19)
c. Acceleration distribution o | |

If the acceleration at any point along the length of.
the beam can be expressed as a function of the acceleration
at the centre, then the equation of virtual work can be
fdrthef simplified. 1In other words; ifb-the accelerations
ﬁ,(t), Gg(t), and G;(t) caﬁ be expresséduias a-fungtion of
Gg(t), then Egqn. 4.18 can be writtén in terms of the 1load
point acceleration (uy(t)) alone.

Several'tests‘conducted on plain, fibre reihforced, and
conventionally reinforced beams indicate that such a
simplification is possible. The observed acceleration

distribution in plain and fibre reinforced concrete is shown
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in Figure 4.15 and that for conventionally reinforced
concrete in Figqure 4.16. As seen from figure 4.15, the
acceleration distribution for the plain and fibré reinforced
concrete without conventional reinforcement 'can be
abpréximated as linear. On the other hand, the acééleration
distribution for conventionally reinforced concrete can be
approximated as sinusoidal. With these approximations the

generalized inertial loads can be recalculated as follows:

(i) Linear case
For the linear case (Figure 4.17a), the displéceménts

can be written as,

S 20 (%)
u(x,t) = ..._[i._ x (between the supports) : (4.20)
- —2u0(t)
ou(y,t) = T y (overhanging the supports)

Rewriting Equation 4.15 for this case we have,.

20 (t)k ééu X
0 0
— 1]

-20.(t)y -28u.y
+ 27 pA-[ ? 11 0 ] gy

i (4.21).

- Pi(t) bug =270 A [;

once again, if the beam 1is homogeneous and isotropic,

. Egn.4.21 can be simplified to

p.(t) = oAy (t) +

W

1
3

h3
17 (4.22)
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Figure 4.17-(a) Linear acceleration distribution and (b)
Sinusoidal acceleration distribution

Note that the above expression can also be obtained from the
general expression (Egn.4.18) by expressing 4,(t), u,(t),

and U;(t) in terms of Uy (t).

(ii) Sinusoidal case

In this case, the displacements between the éupports
are assumed to be sinusoidal, while the dlsplacements on the
overhanging portlon are assumed to be linear (Figure 4 17b) .

Accordingly,
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' X ' (4.23)
u(x,t) = uD(t)sin Kl (between the supports)
ulx,t) = -UO(t) 1 (overhanging the supports).
Rewriting Equation 4.18 for this case,
- . nox . ;X :
Pi(t)auo = Joh [ uD(t) sin T ] [.5uD sin=g ] dx (4.28)

v 25 ph [ -0g(t) B [-6ug A= 1 dy

For a prismatic'ahd homogeneous beam, the above equation can
be further simplified to |
| - | : | (4.25)
(£) = oAl (t) | 5 + 2o | |
Piit) = eAly 7 * T3l
In addition, Egn. 4.19 can be used in both the linear
and in the sinusoidal cases to determine the generalized

bending load.

d. Moments and stresses

For a beam undefgoing'impact, the moment at the centre
can be Qﬁtained by taking ‘the moment of all the forces
actihg'on the'beém ébout thé center (Figure 4.18a). The same
moment at the centre should also be predicted in “the
equiQalent static system with the tup load and'the'.inertial
reaétion replaced by the generalized bending load acting at
the centre. The case of a linear acceleration distribution
will be used to demonstrate this. If F;1 is the resultant of

the distributed inertial reaction of the beam on the left or
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Figure 4.18-(a) Dynamic loading on the beam and (b)

Equivalent static loading

the right half-span, and if Fiz is the .resultant'of the

distributed inertial reaction of the beam

(Figure 4.18a), then,

. 1 - o

1 -

From the vertical equilibrium of forces,

on the overhang

- (4.26)

(4.27)
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Ry(t) = 2P (t) - Fiq(t) + F(t) (4.28)

2(

or,

O e
3P, (t) - 3pAUL(E)1 + T pAUL(E)N?

= %pt(tj' - pAlg(t) [ % - %2- ]

R, (t
1 (®) (4.29)

If Mo(t) is the moment at the centre,

. 1 1 1 2h
No(t) = R'l(t)'z— + Fl'l(t)g - Flz(t) [ §.+ 7 ]

Substituting for R,(t) from Egn. 4.29, F;1(t) from Egn.

4.26, and Fiz(t) from Egn. 4.27, we get

, | 4.30
o(+) - P (F = oAty () [ 454 A1 430

The generalized bending load P (t) can be obtained from Eqn.
4.19, using the genralized inertial load Pi(t) obtained from -

Eqgn. 4.22,

P(e) = P (8) - pay(e) [ 2. B0 (4.31)
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If Meo(t) is the value of the moment at the centre in the

equivalent system, then,

rﬂeo(t;) = P (t) %

With Pb(t) obtained from Egn. 4.31,

, 1 . .
Moot = P(6) = otg(t) [ 43+ 20y (4.32)

On cdmparing'EQn. 4.30 and Egn. 4.32 it can be seen that the
moment predicted by the equivalent system (Egn. 4.32) is the
same as the moment predicted ' by the dynamic analysis (Egn.

4;30)-

Since the generalized bending load predicts the correct
moment at the centre in the equivalent system} it can be
used directly for calculating the stresses and the

streﬁgths. The stresses in the beam can be obtained from
I

o(c,t) = [ Pb(t‘)%] [ £ S (4.33)

whe;e ¢ is the distance of the fibre from the neutral axis
and I 1s the moment of 1inertia. If 9.4 is the modulus of

rupture under the dynamic conditions then,

o - 1 D ’
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Finally if €¢ is the extreme fibre strain at the peak

bending load Pb,max then,

6 U5, peak? | (4.34b)

Where, is the midspan displacement at the peak load,

_ uo,peak
and D is the depth of the beam.

e. Velocities and Deflections

. Once the acceleration history at any point along the
length of the beam is known, the velocity and displacement
histories can be obtained by integrations with respect .to
time. However,i it is the velocity and the displacement
history at the load point that are of prime concern to us
from the point of view of analysis. The acceleration at the
centre U,(t), obtained by the linear extrapolation of the
measured accelerations, is used for this purpose. If U,(t)
is the velocity at the centre, and u,(t) is the displacement

at the centre, then,

Uo(t) fOo(t)dt (4.35)
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f. Energy

As in the static case, the area under the curve of
generalized bending load (Eqgn. 4.19) vs. midspan
displacement (Eqn. 4.36) is a measufe of the energy expended
in bending the beam. At the end of the_impact_event, this
area represents the fracture energy. If Eb(t) ié the bending

energy then,

£, (t) =J'b5(t) dug | . (4.37)

g. The computer program |

A computer'prograﬁ was wriften to analyse the data from
the impact tests;:the flow chart is given in Figure 4.19,
The test data stored on thé magnetic disc are time based.
Thus, the analysis starts at the instant of first contact
betwéen the hammer and the beam (t=0), and ends at the point
of failure (t=tf), when‘the impact load has fallen back to
zero. The output from the-'progfam is in the form of the
~energy loss history "of the ﬁammer(AE(t)), the energy gain
history of the beam (Eb(t)), and so.on.-The results can also

be obtained in a graphical form.
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4.3.2.4 The support reaction

The vertical reaction
As mentioned earlier, one of the support anvils was

reaction at the

read the vertical

also instrumented to
support. This is a completely independent method of checking

the validity of Equation 4.29, and also'providés a check on
the operation of the accelerometers and the strain gauges in
fhe tup. Figure 4.20 shows such a compariéon. Figure 4.20

'indicated 'ton differences between ‘the reaction = R,(t)

8 k
EXPERIMENTAL
6 — SUPPCRT LOAD
- i » .
| EVALUATED SUPPORT
I REACTION
4= |
= I
‘X
I
— - |
[~d
o ]
-J
|
I
2 !
I
|
— |
A
! \\ .
\
o L | | T !
4 6 8 10 12

Time, ms

Figure 4.20-Comparison between the evaluated and the
observed support reaction :
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obtained by wusing Egn. 4.29, and the measured vertical
support reaction. First, the peak value of R,(t) is smaller
.by about 5-12% than thé‘measured value. Secondly, there is a
phase shift befween the two peaks of about 0.2ms, with the
measﬁred peak lagging behind the analytical peak. Although
fhé reasons behind'the. underestimation of R,(t) are not
clear, the shift between the two can be attributed to thé
finite time required for the stress waves to travel from the
centre to the 'sppport;:Fdf conéfete >(E=25xf09 N/mz,,and p
;2400 kg/m*), the velocity of thé l§ngitudinal stress waves,
c,(given by c=/E/p) is about 3300 m/sec. At this velocity, a
stress wave takes about O.lSms té»travel from the centre to
the support (a distance of 480 mm). .in addition, _the
sampling is done at intervals of 0.20ms. The travel time for
the stress waves, the'discreté sampling interval, and the
.possible uneven contaét of the beam at the suépofts can, to
some extent at least, explain this lag.

. The reaction R,(t) in the equivalent static system of
Figure 4.18b, can be evaluated by summing the forces in the

've;tical'direction..
=1
Ry(t) = 3P (t)

Using Pb(t) from Egn. 4.31 (linear approximation), we get,

Rz(t) - lpt(t) - pAnD(t) t 7%.+ _%%;_ ] (4.38)
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A comparison of R,(t) from Eqn. 4;29 and R,(t) from

Eqn. 4.38 shows that they are somewhat different. However,

for the commonly observed peak tup loads and accelerations

in this study, the difference between the peaks was less

than 6%. Thus, although not strictly wvalid, the measured

when doubled and compared to the

support reaction,
generalized bending load, can provide another check on the

technique for 1inertial correction used here. Figure 4.21

shows such a comparison. The shift between the two peaks can

can once again be explained as above.

16
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|
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z |+ |
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Figure 4.21-A rough check on the validity of the technique
' used here to account for inertia
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b. The horizontal reaction

As mentioned earlier, the instrumentation in the
support anvil was capable of recording the horizontal
reaétion as well, In the tests performed in this study, the
horizontal reaction was always found to be close to zero.
This confirmed the assumption that the beam was simply
supported. The horizontal support reaction obtained from an

impact test done on a plain concrete beam has been shown in

Figure 4.22.

2.0
HORIZONTAL SUPPORT
REACTION
1.5
p=d
X
Bl 1.077
. 0
.}
0_5__
0.0 | — T
0 2 4 6 8

FIGURE 4.22-The Horizontal Support Reaction



5. INERTIAL LOADING IN INSTRUMENTED IMPACT TESTS

5.1 INTRODUCTION

The testing of concrete at high strain rateé requires
both a testing system capable of producing high strain
rates, and a valid technique to analyse }the results.
Normally, impact tests on concrete in compression or tension
do not pose a serious problem concerning the specimen
inertia. However, impact tests on concrete beams loaded 1in
3-point or 4-point bending give rise to specimen inertia.
effects which must be considered 1in the analysis. When the
instrumented tup of the hammer strikes the beam, the beam
suddenly gains momentum and the unsupported part of the beam
accelerates in the direction of the hammer. This gives rise
to d'Alambert forces, acting in a direction opposite to the
direction in which the beam accelerates. The strain gauges
in the tup, sensing the contact loadnbetween hammer and the
beam, sense this inertial 1load as well. Thus the tup load
consists of the mechanical bending 1load (the stressing
load), and the load due to the inertial reaction of the
specimen. The mechanical bending load, which is the obvious
goal of testing, can thus be obtained from the tup load only

if the "inertial reaction” of the beam is known.

o8
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5.2 NATURE OF THE INERTIAL LOAD

The nature of the inertial load can best be wunderstood
by a single degree of freedom model as outlined in Chapter 7
(Appendix-7.1). The accelerations predicted by the model
(Eqn.A7.1-8) have been plotted 1in Figure 5.1 against time.
The acceierations were obtained for a plain concrete beam
struck by the hammer falling through 0.5m. The observed peak
tup load was taken equal to Py, and the frequency of the
external load w was determined by the time required by the

| | ] ! L1 ] 1 ]
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FIGURE 5.1-Period of Inertial Oscillations
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tup load to attain the peak in an actual test.

As shown in Figure 5.1, the accelerations seems to vary
sinusoidally with a period of about 3.2ms for the plain
concrete beams wused in this study. Similar plots can be
obtained for conventionally reinforced and fibre reinforcéd
concrete as well; the nature of Egn. A7.1-8 suggests that
the acceleration variation with respect to time in these
cases will also be sinusoidal, but with a different period
than that for the plain concrete. Inertial load, which is
the product of the generalized mass and the central
acceleration, therefore is proportional to the acceleration,
and hence has the same period as does the acceleration.

Server (14) - has prdposed. an empirical expression to
predict the period of inertial oscillations in terms of the
specimen width B, specimen thickness D, specimen compliance
Cs' and Young's Modulus E:

)0.5

T = 3.36(B/D)(Encs (5.1)

Server also suggested that reliable measurements could
be made only after 3 1inertial oscillations, i.e., at any
time t given by,

t2 37 ‘ (5.2)

Thus after three inertial oscillations, the tup load can be
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assumed to be represent the true mechanical load on the
specimen.

For ductile materials, like metals, the guidelines
suggested by Server may be met. However, for brittle
materials, like concrete, these guidelines cannot be met in
general. The basic difference between ductile and .brittle
systems is the time required by the specimens to fail. 1In
the case of ductile materials, the specimen usually
undergoes more than three inertial oscillations before
failing. However, in the case of brittle materials, it may
not be possible to avoid failure during the first
oscillation (Figure 5.1). Thus, the whole impact event may
not last as 1long as three oscillations; the ' entire
mechanical response of the specimen may take place while the
specimen is still being accelefated, and the inertial 1load
can completely overshadow the true mechanical bending 1load.
For brittle specimens, therefore, the approach has to be
different than for ductile ones.

Evaluation of the inertial 1load 1is possible in two
ways: (1) by analytical methods as described in Chapter 7;
and (2) by experimentally measuring the accelerations along
the length of the beam and then evaluating the generalized
inertial load as described in Chapter 4. The analytical
models, however, do create some problems in the realm of
material testing:

(a) The analysis applies only to elastic systems. This

implies that only the beam response up to the peak load can



102

be determined with the help of these models. This might not
be of great concern if concrete were an ideally brittle
~material, and the loads were to drop suddenly to zero once
the peak had been reached. Experimental evidence suggests
that this is not true, and the load vs. displacement plot in
dynamic conditions seems to have a large post-peak region as
well. Unfortunately, the elastic analysis cannot be applied

in this region.

(b) The dynamic analysis requires knowledge of the beam
stiffness. The estimation of the beam stiffnesé, in turn,
requires knowledge of concrete properties at the relevant
stress rates. Since concrete properties at the high stress
rates associated with impact are not very well known, the
exact estimation of the stiffness of the cdncrete beam is

not possible.

5.3 EXPERIMENTAL OBSERVATIONS

Inertial corrections <could have been ignored 1if the
"inertial reaction" part of the tup load was a small
percentage of the true mechanical bending load. However,
experimental evidence suggests that in the initial part of
the impact the inertial locad can amount to as much as 60% of
the observed tup 1load. Figure 5.2 shows the inertial 1load
vs. time plots for three different hammer drop heights,
obtained in the case of plain concrete beams. Figure 5.3

shows the inertial load plotted against time for



103

38
34}
30
— /0.5"\
DROP(0BS)
26 I
= 0.25m
" DROP (085.)
z 22 A
y 1 0.15
2 18| h *” BROP (085.)
= ;(0.5"\ 3
o 1 DROP(INT) P!
<14 :
| '\ 0.25m ]
- ' DROP(INT.}  fi
or|t E :
—~ 1 Y ‘ [\
6|} ! ‘
\ ] '.
| ! \ _0.i5m
\ ] 1Y DROP(INT)
2 \ H 1\
o LL s \ L N L
O 8 16 24 32 40 48 56
TIME , msec.

FIGURE 5.2-Observed Tup and Inertial Loads for Plain
Concrete

conventionally reinforced concrete for a hammer drop height

of 0.5m, For comparison purposes, the results obtained for a

plain concrete specimen tested wunder 0.5m hammer drop

(a
different specimen than the one shown in Fig. 5.2) are also
reproduced in Figure 5.3. The peak tup loads and the peak

inertial 1loads 1in Figure 5.2 for plain

concrete are
replotted in Figures 5.4a

and 5.4b, respectively,

as a
function of hammer drop height.

An increase in the drop height of the hammer

resulted
in an 1increase in

the inertial 1load. An almost linear

variation was observed (Figure 5.4b). This implies that the
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FIGURE 5.3-Observed Tup and Inertial Loads for (a) Plain and
(b)Conventionally Reinforced Concrete

correction for inertia becomes more and more important as
the strain rate at which the testing is done is increased.
Stiffer systems seem to undergo lower accelerations and
hence develop lower inertial loads than do specimens that
are not as stiff. High strength plain concrete beams, which
are_stiffer than ﬁormal strength plain concrete beams, were
found to have lower peak inertial loads than normal strength
plain concrete beams ‘tested under 1identical conditions

(Figure 5.4b).
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5.4 THE USE OF THE RUBBER PAD

One of the suggested experimental methods for
eliminating the inertial loading is the use of a rubber pad
between the hammer and beam (f6). It is argued that. tﬁe
rubber'pad delays the occurrence of the peak external load.
This gives sufficient time for the beam to reach the tup

velocity, and so at the occurrence of the peak external
load, the accelerations and hence the inertial 1load are
absent. Thus, the measured tup 1load at the peak can be

assumed to be the actual beam bending load.
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To examine the validity’of this technique, tests were
carried out on plain and conventionally reinforced concrete
beams with and without a rubber pad in the system. Hammer
drop heights ranging from 0.15m to 1.0m were wused. The
experimentally determined accelerations and 'the inertial
loads for tests done without the rubber pad weré compared to
those for the tests done with the rubber pad in the system.
Similar comparisons were made between the peak external
loads, peak bending loads, and the fracture energies. The
stiffness of the 40mm thick rubber pad used was 2.83 MN/m.

In general, it was found that although the occurrence
of the peak external load was delayed with the rubber pad in
the system, the occurrence of the peak beam acceleration wés
also delayed, and the two occurred at almost the same time.
Tables 5.1 and 5.2 and Figs. 5.5 and 5.6 show the results
obtained with and without the rubber pad for both plain and
conventionally reinforced concrete. The use of the rubber
pad resulted in a delay in the occurrence of the peak tup
load, a reduction 1in the peak wvalue of the tup load, and
also in a reduction in the peak accelerations attained in a
test. A reduction in the peak bending loads was also
observed.

It was concluded that with the pad in the system, the
accelerations, and hence the 1inertial loads, were reduced.
However, inertial loads were not completely eliminated.
Inertial loading, thus, appears to Dbe an inherent

characteristic of dynamic testing of this kind, and cannot



Table 5.1

Effect of Rubber Pad on Plain Concrete Beams Under lmpact 107
Height of Hammer Drop (m)

Peak Tup 19776 12358 25386 12956 . 37567 14267
Load (N)

Peak 1140 766 1340 828 1967 906
Acceleration .

(m/sec?)
Peak Inertial 11994 6731 13203 6845 ' 20635 6852
Load (N)

Bending
Load (N) ‘

Fracture 25.8 40.0 42.0 ' 41.5 90.1 69.6°
Energy (Nm)

Table 5.2

Effect of Rubber Pad on Conventiopally Reinforced Beams under Impact
Hexght of Hammer Drop (m)

0.5 m (6) 1.0m (6)

Without Pad With Pad Without Pad With Pad ’
Peak Tup Load 48071 43195 63216 51854
N) v
Time to Peak 1.80 106 1.20 78
(ms)-
Peak Acceleration 7020 681 1321 1054
(m/sec?)
Peak Inertial 10383 10134 22037 17330
Load (N)
Peak Bending 37688 . 33061 » 41179 34524
Load (N)
Fracture  Energy 603 : 637 666 610
(Nm) (to 18mm i ’
LPD?Y)
Fracture  Energy 934 882 . 1340 1190
(Nm) (to 36mm
LPD?)

'Number of specimens tested.
Load Point Deflection.
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easily be eliminated.

The delay in the occurrence of the peak tup 1load
reduces the strain rate achieved in a test. This wasvthought
to be the probable reason behind the reduced peak bending
loads observed in the tests done with the rubber pad in the
system. Reducing the stiffness of the contact zone decreases
the strain rate and hence, to some extent at least, defeats
the purpose of high strain rate testing.

In general, the fracture energy values obtained with
the rubber pad in the system were found to be lower than the
ones obtained without the pad, with certain exceptions. It
is not <clear if the fracture energies obtained from the
tests done with the rubber pad in the system can be assumed
to be the true beam fracture energies,vbecause of the energy

absorption capacity of the pad itself.

5.5 INSTRUMENTING THE SUPPORT ANVILS

Instrumentation of the support anvils has also been
suggested as a way of obtaining the true mechanical bending
load on the specimen (15) (Chapter 4). However as pointed
out in the previous chapter, the support reaction is  not
strictly equal to one half of the generalized bending lbad.
Also, the finite time required for the stress waves to
travel from the beam midspan to the support causes a lag
between the two loads. However, the difference between the
magnitudes of the two loads is not substantial (Chapter 4).

Instrumenting the anvil in this study, provided a rough
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check on the inertial correction applied to the tup 1load,
and also provided a check on the behaviour of the strain

gauges and the accelerometers.



6. PLAIN CONCRETE UNDER IMPACT

6.1 INTRODUCTION

Single cycle impact loading on any structural element
may occur either as a distributed time varying load due to a
wind gust or air blast, or as a concentrated time varying
point load as in the case of an object striking a structural
member. In both situations, a knowledge of the exact
variation of 1load with time, although desirable from theA
design point of wview, is difficult to acquire. 1In the
absence of a precise knowledge of the load vs. time history
of the 1impact, it 1is convenient to work with "energy"
values. Impact, in most «cases, involves an external agency
capable of imparting energy to the structural element. The
external agency could be the shaking ground underneath a
building, or a missile fired at a military installation. The
structure, with all of 1its elements, responds to this
externally available energy by deforming. Stresses and
strains are devéloped within the structure, and the
structure continues to absorb energy as strain energy. In
this situation, there are three possibilities:(1) All of the
externally available energy may be absorbed as strain energy
without causing any damage to the structure. Once the
external load 1is removed, such a strained structure will
dissipate its strain energy by the wvarious dissipation
mechanisms, (2) An intermediate case in which the structure
is damaged, but collapse is not precipitated, and (3) The

externally available energy may be more than the maximum

112
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‘strain ehergy the structure or its elements can absorb
without fracturing. Fracture will initiate at the locétions
where the critical stresses are exceeded, and collapse may
resdlt.

It is the third possibility that is of serious concern
in dynamic loading situations because of the catastrophic
nature of failure. The first possibility, in whicﬁ the
structure remains elastic during the whole loading history,
although structurally teasible, involves heavily
overdesigned sections, economically unacéeptable. The
problem can be overcome, at least in part, by giving the
structure added ductility by which the structure would
continue to defdrm under the load, absorbing the external
energy. A cataStrophic type of failure could, with this
added ductility -change to a "yield before fail"™ type of
failure.

Concrete, compared to metals, absorbs very 1little
energy before a catastrophic failure results. This mode of
failure, occurring without much warning, can be changed to
some extent by incorporating fibres, or steel reinforcing
bars, or both into the matrix. The behaviour of the
resulting composites under dynamic conditions depends, among
other things, upon the way in which the matrix behaves under
these conditions. A knowledge of the behaviour of plain
concrete under dynamic conditions 1is therefore essential,
particularly because of the strain rate sensitivity of

concrete. An account of the the dynamic properties of
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hardened cement paste, and blain concrete, will be presented
in this chapter. The succeeding chapters will examine the
effect of adding fibres, the effect of adding .conventional

steel reinforcement,and the effect of adding both.

6.2 COMPARISON OF THE IMPACT BEHAVIOUR OF PASTE AND CONCRETE

BEAMS

The properties of plain concrete depend to guite an
extent on the properties of the hardened paste. Hence an
understanding of the behaviour of concrete under high stress
rates 1is possible only with an understanding of the
behaviour of the paste under similar conditions. Therefore,
in this study, three beams made with pure paste (w/c ratio
of 0.35) were tested in the impact machine. A hammer drop

height of 0.5m was used.

Table 6.1 contains the results of the above tests. The
results obtained with normal strength concrete beams tested
under identical conditions . have also been t&bulated for
comparison,

Figure 6.1 presents the general nature of the load wvs.
displacement plots to failure for both paste and normal
strength concrete. Figure 6.2 presents the portions of load
vs. displacement plots prior to the peak bending loads.

It can be seen from Figures 6.1 and 6.2 that under

impact loading, paste appears to be marginally weaker than



Table 6.1

Comparison between the Dynamic Properties of Paste and Concrete

Paste (3)* Concrete  (6)!

Max Min. Mean s Max. Min. Mean s
Max, Observed 28793 28093 28428 286 31251 27388 29319 1931
Tup Load (N)
Max. Beam 1986 1928 1955 24 1858 1718 1788 70
Accel. (m/sec?)
Peak Bé'nding 8470 7462 7819 461 11658 9267 10462 1195
Load (N)
Deflection at 479 400 429 353 469 384 426 425
Peak Bending
Load
(x10~6)(m)
Beam Energy 2.8 2.2 2.5 0.25 47 2.6 37 1.0
at Peak
Bending Load
(Nm)
Failure Strain 3.11 2.60 2.79 0.23 3.05 249 277 0.28
x10~%)
Modulus of 9.8 8.6 9.0 0.53 ) 135 10.7 120 1.37
Rupture (MPa)
Fracture Energy 39.2 308 349 35 479 445 46.2 1.7

(Nm)

'Number of specimens tested.

SiL
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concrete. The moduius of rupture (MOR), as determined from
an elastic analysis (Egn.4.34a), seems to be about 30%
higher for concrete than for the paste. The values of
fracture energies in Table 6.1 indicate the more brittle
nature of the pasteAcompared to concrete. Interestingly, the
failure strains, calculated using the elastic analysis (Eqn.
4.34b), seem to have the same value for paste and concrete,
An inspection of the fracture surfaces of the broken halves
of the beams indicated that while the surface was very even
and smooth for the paste, it was fairly uneveﬁ for concrete.
The uneven fracture surface suggested that, in éoncrete, the
crack folldwed a tortuous path around the aggregates,
Concrete can be considered to be a dispersion of 1inert
aggregate particles in a paste matrix. The bond between the
paste and the aggregates 1is in part due to the mechanical
interlocking of the aggregates and the paste, and in part
due to adhesion. Under static loading, the paste and
concrete were found to be very siﬁilar in their flexural
strengths. The trend was preserved in the dynamic situation
as well (Figure 6.2). The occurrance of almost the same
value of failure strain in both paste and concrete suggests
that it may'not be a limiting stress but a limiting tensile
strain that determines the strength of concrete at a
particular strain rate. The incorporation of aggregates that
are stiffer than the paste results in an increasé in the
stiffness of the resulting concrete over that of the paste.

Thus, to achieve the same 1level of strain both in concrete
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and in paste, the effective stress in concrete has to be
higher than that 1in the paste. The higher initial elastic
modulus in the case of concrete (Fig 6.2) supports this
argument. Thus, at the same failure strain, concrete can
support a higher load than the paste.

Complete fracture of the concrete required a higher
energy than fracture of the paste. The fracture energy,
which is the area under the load vs. displacement plot to
failure, depends upon the magnitudes of the 1loads and
displacements. As can be seen from Figure 6.1, for the same
aisplacements, the concrete beam could support marginally
higher loads than the paste beam. If the crack is assumed to
nucleate at the peak load, the unstable growth of the crack
in concrete seems to require abhigher driving force,' i.e.,
the crack in the concrete seems to undergo a higher
resistance to its growth than that in the paste. The
tortuous path taken by the crack around the aggregate
particles in concrete, resulting in larger apparent fracture
surface area, and the straight path taken by the crack in
the paste, resulting in a smooth fracture surface, seem to

support this argument.
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6.3 EFFECT OF STRESS RATE ON PLAIN NORMAL STRENGTH (NS)

CONCRETE BEAMS

To study the effect of strain rate on normal sﬁrength
concrete, plain concrete beams were tested at variable
strain rates. Both static aﬁd dynamic tests were carried
out. The static tests were conducted in a universal testing
machine, with 1its cross-head moving at 4)(10'_7 m/sec. The
dynamic tests were conducted 1in the drop weight impact
machine. The dynamic tests were carried out wusing three
different hammer drop heights, of 0.15m, 0.25m, and 0.5m.

Table 6.2a shows the results from the static testing,
while table 6.2b contains the results from the drop weight
impact tests. It may be seen that the strain rates imposed
on the concrete varied from about 3x10 //sec in the static
case to about 0.5/sec in the dynamic case with a 0.5m drop.
The behaviour of concrete at these extreme rates of
straining is shown in the 1load vs. deflection plots of
Figure 6.3. It can be seen from Figure 6.3 that wupon
increasing the strain rate from 3x10_7/sec in the static
case to about 0.5/sec in the impact range (= 1.5x10°% times
increase), the properties of concrete seem to change
considerably. Even within the dynamic range, a variation in
the drop height of the hammer resulted 1in a considerable
variation in the properties of concrete (Figure 6.3). 1In
general, it may be seen that concrete is a very strain rate
sensitive material. The main differences between the static

and dynamic properties are the increased strength and the



Table 6.2(a)

Static Behaviour of Normal Strength Plain Concrete Beams

Static (3)*

Max Min. Mean s
Peak Bending Load (N) 6766 6000 6344 306
Deflection at Peak Bending 338 289 307 20
Load (x10~6)(m)
Beam Energy at Peak 1.1 0.88 1.0 0.08
Bending Load (Nm)
Failure Strain (x10™%) 27 24 25 0.17
Modulus of Rupture (MPa) 6.3 5.5 5.9 0.29
Fracture Energy (Nm) 6.5 2.9 5.5 15
Mean Strain Rate (/sec) 3x10~7
Mean Stress Rate 0.0079
(MPa/sec)

'Number of specimens tested.

0zt



Dynamic bebaviousr of Flain Normal Streneih Concrele

Table 6.2(b)

Height . of Hammer Drop (m)

0.15m (€)!

0.25m (6)*

0.50m (7)

Max

Min

Mean

Min

Mean

Min

Mean

Max, Tup 21309
Load (N)

18803

19776

963

29840

21666

25386

321

37567

3s81v

36196

677

Max, 12957
Inertial
Load (N)

10512

11306

632

15401

11987

13203

1314

20291

16868

19264

1278

Peak 9440
Bending
Load (N)

7182

8470

604

14668

9178

12183

2401

171727

16452

16932

428

Energy at 3.5
Peak load
(Nm)

| )

25

0.7

3.7

27

3.0

04

9.0

22

6.4

25

Fracture 309
Energy
(Nm)

19.1

43

59.6

26.5

100.5

318

6.5

Modulus of 8.7
Rupture
(MPa)

72

7.8

0.5

136

8.5

113

22

15.2

15.7

04

Failure 30
Strain
(x107%)

21

.7

04

3.6

30

3.5

0.3

40

29

35

04

Mean
Stress
Rale
(MPa/sec)

3920

8057

19587

Mean
Strain  rate
(/sec)

0.14

. 025

0.44

‘Number of specimes tested,

A
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higher fracture energies in the dynamic case compared to
those in the static case.

The differences between the static and the dynamic
behaviour of concrete can be explained on the basis of
fracture mechanics by a combination of the classical
Griffith theory, and the concept of subcritical crack growth
(static fatigue). According to the Griffith theory, the tip
of a crack or a flaw in a loaded continuum is a point of
stress concentration. Even when the nominal stress is far
below the theoretical strength of the material, the stress
at the leading edge of the crack may well approach the
theoretical strength and failure may result. The stresses in
the vicinity of a loaded crack are a function of the nominal
stress, and the crack geometry. The combined effect of these
two parameters can be expressed in terms of just one
parameter, called the stress intensity factor K;. For a
brittle material there exists a critical value of the stress
intensity factor (KIC)’ a material constant, at which
unstable crack growth begins, 1leading to a sudden failure.
Although, Linear Elastic Fracture Mechanics (LEFM) may not
be a suitable tool for analyzing the fracture behaviour of
concrete (34), 1its wuse 1in predicting the stress rate
sensitivity of concrete 1is often made. 1In a loaded member

the value of stress intensity factor is given by

K; = Yova (6.1)
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and at failure,

Kig = Yo /3, ' (6.2)

where Y is a constant which depends on the specimen
geometry, o is the‘nominal stress, and a is the flaw length;
the subscript'c‘denofes the values at failure. Thus, there
‘exists'a critical combination 6f the applied stress and thé
'.crack 1éngth that-can éause failure. | |
According to the concept of subcfitical crack growth, a
crack of. subcritical size can grow wunder a subcritical
stress by mechanisms such as stress corrossion; when' it
reaches the critical size (satisfying Equation 6.2) féilure'
will occur. The rate of subcritical crack growth.has been

found to follow the fcl]owing equation,

n

V‘=AKI

(6.3)
where V is the crack veitocity, Ky is the stress inténsity
-factot in the opening mode, and A, n are consténts. The
growth of a subcritical crack 5ccurs at an inéreasing rate
under a constant nominal stress as the crack extends (Fig.

: 6.4a);

If the loading is very slow, the subcritical flaws have
enough time to grow, to approach the critical value, and to

cause failure. On the other hand, very rapid loading allows
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Figure 6.4-The parameter "n", determined from (a) direct
observation of the crack velocity and (b) variable stress
rate tests

little or no time for the subcritical flaws to grow.
Therefore, the member can support, momentarily a higher
load, giving an apparently increased stfength. By how much
the strength obtained at one stress rate differs from that
obtained at some other stress rate depends the value of n.

The value of n can be obtained as foliows:

let,

o = stress rate = do
dt



V = crack velocity = da
dt

& _ o
da v
Now,
V = AKT
and, | | KI = Yova
: Therefore,
do __ 8

da - AYnonan/Z

or,

[¢]
do = —————— da
AY"g"a"/ 2
n
g = 2 - (a2 da]
AY

On integrating we get,

log op = C + =, logd

where C is a constant.
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(6.4)
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Thus plotting logof vs. logs would produce a straight 1line
plot as shown in Figure 6.4b, with a slope of 1/n+1

When the values experimentally observed in this study
for normal strength concrete are plotted, the resulting
logaf vs. logo plot looks like the one shown in Figure 6.5.
_As can be seen from this plot, the ideal straight 1line
nature of the theoretical plot of Figure 6.4b 1is not
observed experimentally. The observed plot suggests that
with an increase 1in the strain rate, the value of the
constant n decreases. Similar observations have been
reported by Suaris and Shah (34). Thé normally observed
values of n, obtained by varying the strain rate in a strain
rate controlled testing machine, are found to 1lie in the
range of 20 to 50. However, in the present study, in the
range of strain rates associated with impact, é value of n
as low as 1.50 was observed. Birkimer (53) has reported a .
value as low as n=2.00 under extremely high strain rates. A
reduction in the" value of n with an increase in the strain
rate suggests a lower slope for the logv—logKI plot shown in
Figure 6.4a at higher stress rates.

It has been tacitly assumed in the above analysis that
the critical stress intensity factor remains the same under
different strain rates. However, as will be seen later, the
critical stress intensity factor itself increases with the
stréin rate, further increasing the strain rate sensitivity

of concrete at high strain rates.
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Figure 6.5-Determination of parameter "n" for Normal
Strength Concrete
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6.4 EFFECT OF STRESS RATE ON PLAIN HIGH STRENGTH (HS)

CONCRETE BEAMS

In this study, the high strength concrete mix was
produced by adding EMSAC® as described in Chapter 4.

Microsilica (or silica .fume), is a by-product of the
electrometallurgical industry. It plays'a double role, first
as a filler, and then as a pozzalanic material which reacts
with Ca(OH),, a product of hydration. These ultra fine
particles of Ssilica (5 nm to 0.5um) are packed in the
interstitial spaces between the portland cement clinker
grains. The dispersion of the tiny vparticles in the space
around and between the cement grains is shown in Figure 6.6.
Efficient mixing of microsilica necessitates the use of a

superplasticizer.

¢ A microsilica produced by Elkem Chemicals, Inc.,
Pittsburgh, Pennsylvania.

Figure 6.6-Mix without (left) and with (right) Microsilica
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The 1increase in strength due to the addition of
microsilica may be attributed in part to the elimination of
the 1larger péres and in part to the more uniform
distribution of the hydration products, though the fact that
the production technique permits a somewhat lower w/c ratio
is probably the most important factor. Intimate dispersion
of microsilica improves the performance of the binder and
improves its bond with the aggregate particles and the
reinforcing bars. The dense microstructure also leads to

reduced permeability and increased durability.

To study the éffect of strain rate on the properties of
high strength concrete (HS), beams were tested 1in three
point bending in an identical manner as the normal strength
(NS) beams (Section 6.3). Table 6.3a gives the results of
the static tests and Table 6.3b gives the results of the
impact testing, carried out at three heights of hammer drop.

It can be noted from Tables 6.3a and 6.3b that, similar
to NS concrete, HS concrete 1is also a very strain rate
sensitive material.  The main effects of increasing the
strain rate are in. the increased strength and in the
increased fracture energy. Based on the derivation presented
in Section 6.3, a plot of logaf vs. logo for HS concrete 1is
shown in Figure 6.7. This plot suggests that over the range
of strain rates used in this study, there does not exist a

unique value of the parameter n. The value of n seems to



Table 6.3(a)
Static Properties of Plain High strength Concrete Beams

Static (4)*

Max Min. Mean ]
Peak Bending Load (N) 12806 _ 8184 9720 1809
Deflection at Peak Bending 560 4380 500 34
Load (x10™6)m)
Beam Energy at Peak 3.6 2.0 2.5 0.7
Bending Load (Nm) :
Failure Strain (x10™%) 45 39 41 0.3
Modulus of Rupture (MPa) 118 7.6 9.0 17
Fracture Energy (Nm) 34 2.0 2.8 0.6
Mean Strain Rate (/sec) - - 3x10~7 -
mean Stress Rate (MPa/sec) - : - 0.0075 -

*Number of specimens tested.

LeL



Table 6.3(b)
Dygamic - bebaviour of Plain HMigh Strength Concrete
Height of Hammer Drop (m)

0.15m (6)' ) 0.25m (6)! . 0.50m (7)

Max Min " Mean s Max Min Mean s Max Min Mean $

Max. Tup 24172 17011 19588 2115 28787 22384 24144 2497 39320 stio - 36652 1725
Load (N) X

Max, - 12456 8606 9681 1604 nm 9480 10773 925 19025 16760 17892 nn

Iaertial
Lozd (N)

Peak 11694 8388 9906 ©o1uss 18579 10573 13371 2991 19206 18314 18760 446

Beading
Load (N)

Energy at 29 18 24 05 3o 19 2.5 04 54 38 4.6 . 01
Peak Load :
(Nm)

Fracture 315 2038 25.1 5.0 . 437 31.0 35.0 4.7 100.7 514 4.9 18.6

Energy
(Nm)

Modulus of 10.8 18 9.2 11 172 98 124 28 17.8 169 174 04 -

Rupture
(MPa)

Failure 26 16 2.0 0.4 31 16 14 0s 39 31 35 04
Strain
(x10™%

Mean 4584 M 10316 ) 28905

Stress
Rate
(MPa/sec)

Mean 0.1 . 02 : 0.6
Strain rate : .
(/sec) ’ . - Py

'Number of specimens tested.

Zel
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Figure 6.7-Determination of parameter "n" for High Strength
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increase with an increase in the stress rate. Similar
observations were reported for NS concrete in Section 6.3.
The slope of the high strain rate portion of the plot was

found to correspond to a value of n=2.2.

6.5 COMPARISON BETWEEN NORMAL STRENGTH AND HIGH STRENGTH

CONCRETE

The addition of microsilica seems to improve the
properties of concrete wunder static 1loading. However, the
superior perforﬁance of microsilica concrete over normal
concrete in static situations may not necessariiy imply its
superiority in dynamic situations.

A comparison of the logo, vs. logs plots (Figures 6.5
and 6.7) shows that'high strength concrete behaves in almoét
‘the same way as does normal strength concrete. As mentioned
earlier, the deviation from the expected 1linear nature of
the logo; vs. logo plot (Figure 6.4b) is probably because of
the change in the fracture toughness (K;.) itself with a
change in the stress rate.

A comparison of the dynamic performance of HS concrete
with NS concrete is presented in Figures 6.8a, b and c.
Figure 6.8a shows the peak bending 1loads obtained for the
three drop heights and Figures 6.8b and c¢ show the
corresponding variations in the fracture energy and the
failure strain, respectively. The higher peak bending 1loads
obtained in the case of HS concrete over NS concrete for a

given drop height seem to suggest that a concrete which is
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stronger in static conditions: is‘ stronger under impact
loading as well. However, HS concrete was also found to be
more brittle than NS concrete for a given drop height
(Figure 6.8b), as indicated by its reduced fracture energy.
Finally, the strain at the peak load, referred to here as
the failure strain, which 1is proportional to the
displacement at the peak load, was found to be higher for NS
concrete than for HS concrete at a given height of hammer
drop. It should be noted here that the value of strain at
the peak load, obtained by using Egn. 4.34b, is a measure of
the average strain only, and does not indicate either the
magnitudes of the strains locally or the variation of strain
from one point to another.

Figure 6.9a shows a photograph of the fracture surface
obtained from a NS beam tested dynamically. Figure 6.9b
shows the corresponding fracture surface obtained with HS
concrete, Itvcan be seen that while the fracture surface
obtained with normal strength concrete was uneven and
without any aggregate failures, the fracture surface for HS
concrete was smooth and with many aggregate failures.

Failures in brittle materials occur due to the breaking
of the atomic bonds and the propagation of cracks. Since
there is resistance to crack growth, energy has to be
supplied for continued crack propagation. In the case of an
ideally brittle material, the energy consumed during a unit
crack extension, called the <crack growth resistance R,

consists only of the energy required for the breaking of the
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High Strength

Figure 6.9-Photographs showing the Fracture Surfaces
obtained for Normal Strength and High Strength Concrete
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bonds across the:  fracture surface, and as such‘ is a
constant. Thus, when the strain energy released upon unit
crack extension is equal to the crack resistance R, crack
propagation will begin. However, concrete is not an ideally
brittle matérial,'and the propagation of cracks seems to be
preceded by the formation of a process zone around the crack
tip. The formation of thié process zone , however, requires
enérgy and thus the crack resistance in._c0ncrete (R)
consiéts nbt»qnly of the surface energy component but ‘also
of the microcfacking éémponent  that:océﬁrsu in a zone of
'width'? as’shown‘ iﬁ Figure 6.10, where e is approximately
equal to the maximum aggregate size in thg case of static
loading. As was shown in Figure g_,3 and Table 6.2a, even for
a beam loaded statically, the strainlenergy accumulated up
to the peak load (=1.00 Nm) does not seem to be sufficient

to drive the crack a distance equal to the depth of . the

b

Figure 6.10-The Finite Width Zone of Microcracking That
~ Surrounds a Crack



139

beam. The finite area under thé static load vs.’displécemeﬁt
plot in the post-peak load region suggests that the beam
continues to absorb energy from the machine to accomplish
crack growth. This 1is true in spite of the fact that the
post-peak load energy may have been underestimated, since
the machine wused for static testing was not very stiff,.
Thus, ultimately the beam required about 5.5Nm before the
complete separation of the brokén halves.

In the case of dynamic loading, the same reasoning may
be used, the only difference being in the magnitudes of the
energies. Referring back to Figure 6.2 and Table 6.2b (0.5m
drop), while the energy to the peak bending load was only
about 6.4Nm, the total fracture energy was found to be as
high as 90Nm. Thus a crack under dynamic loading seems to
require more energy to grow than does a crack under static
loading. The high energy requirement in the post-peak load
region in dynamic loading probably is, in part, a
éonsequence of a wider process zone (53A) or larger e
(Figure 6.10). However, the exact determination of the width
of the cracked zone € under dynamic 1loading is not yet
possible. In addition, the fracture mechanisms may also be
different under dynamic loading.

It is known that High strength concrete exhibits better
paste-aggregate bond than normal strength concrete. It 1is
not surprising therefore that HS concrete appears to undergo
less microcracking than normal strength concrete. However,

as shown in Figure 6.11 and Table 6.3, dynamic loading on HS
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concrete 1is also associated with the formation of
microcracking zone which results in a finite area under

load vs. displacement plot in the post peak load region.
any case, due to its increased bond quality, HS concrete
this study was always found to be more britéle than
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6.6 EFFECT OF MOMENT OF INERTIA

To study the effect of the moment of 1inertia of the
beam on its dynamic behavior, beams 100mmx125mm in
cross-section were tested on a 960mm span first about their
strong axis (I=0.0000162m"), and later about their weak axis
(I1=0.0000104m*). The results of these tests are given in
Table 6.4a for NS concrete and 1in Table 6.4b for HS
concrete.

The average nominal stress rates, which were obtained
by dividing the MOR by the time required to reach the peak,
for the same drop height of 0.5m, were found to be higher
for the beams tested about the strong éxis than for the
beams tested about their weak axis. Having obtained the
results.at different stress rates, strictly speaking, they
can not be.compared. However, since the stress ratesAare not
widely different, a comparison has.been attempted here.

When the values of MOR are compared, it can be seen
that, for both NS and HS concretes, the MORs obtained for
the beams tested about the weak axis are 1lower than for
beams tested about the strong axis. Also, the fracture
energies for the weak axis beams are found to be lower than
for the strong axis beams.

One possible reason behind this may be the direction in
which the beams were cast. All of the beams were cast with
the 125mm side vertical. The electric immersion vibrator
used for compaction allows the water to bleed to the surface

during vibration, reducing the w/c ratio at the bottom of



Table 6.4a
Effect of Moment of Inenia on the Dvnamic Behaviour of Normal Stremsth Concrete
I = 1041077 me I = 162107 m*
) oy
Max Min Mean s Max. Min. ‘Mean S
Peak 12608 8589 10550 1483 17727 16452 16932 428
Bending .
Load (N)
Modulus 145 99 122 17. 16.4 15.2 15.7 0.4
of )
Rupture.
(MPa)
Fracture  62.0 49.0 560 5.2 100.5 87.8 90.1 6.5
Energy :
(Nm)
Stress - - 15212 - - - 19587 -
rate '
(MPa/sec)
Table 6.4b

Effect of Moment of Inertia on the Dynamic Behaviour of High Strength Concrete

I = 104x1077

'Number of specimens tested.

m' I = 164x10~7 m*
) (UR

Max  Min. Mean s Max. Min. Mean s
Peak 13660 9799 11250 1464 19206 18314 18760 446
Bending
Load (N) -
Modulus  15.7 11.3 13.0 1.7 17.8 170 174 0.4
of :
Rupture
(MPa)
Fracture 510 330 40.0 72 100.7 574 749 18.6
Energy
_(Nm)
Stress - - 21633 - - - 28950 -
ra(eA
(MPa/sec)

142
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the beam while increasing the w/c ratio at the top. Thus,
~one would expect that the beams tested along their strong
axis would show higher MOR values and higher fracture

energies.

6.7 CRACK DEVELOPMENT IN THE PASTE UNDER IMPACT

Brittle fracture occurs with the rapid propagation of a
crack in a 1loaded continuum. The rate at which the crack
propagates in a material seems to depend not only upon the
properties of the material, but also upon the rate of
loading. However, little work has been carried out so far to
measure the velocity at which the <crack propagates in
cementitious materials. Most 'of the work on crack
propagation has dealt with very low crack velocities, in the

8m/s to 10_2m/s, obtained 1in controlled crack

range of 10~
growth studies at very low rates of loading.

However, a few studies have been carried out at high
loading rates. Bhargava and Rehnstrom (54) loaded concrete
prisms by detonating a high explosive 1in contact with the
specimens. Using high speed photography, they found a crack
velocity in plain concrete of about 180 m/s. Tests carried
out by Alford (55), also using high speed photography,
showed crack velocity in hardened cement pastes ranging from
50-160 m/s. He also found the velocities in mortars in the
range of 30-80 m/s. Shah and John (56) monitored crack

velocities in mortar and concrete beams under impact and

reported crack velocities in the range of 100m/s. Takeda et
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al (57) used extremely high 1loading rates, and a special
test geometry. They found the crack velocity to be as high
as 1000m/s.

As a part of the ‘present study, impact tests were
carried out on beams made with paste using a 0.50m hammer
drop. To monitor the propagation of the cracks during the
‘impact tests, a high speed motion picture camera was used,
running at a speed of 10,000 frames per second. Thus,
successive frames represent an elapsed time of 100
microseconds. This time interval was small enough, compared
to the duration of the fracture event, to provide a
reésonable resolution of the cfack development. To determine
the rates of crack growth, the film was viewed frame by
frame on a small hand viewer; crack length was measured
directly on the viewing screen for successive frames,
permitting a direct calculation of the crack velocity (at
least for the surface traces of the cracks). Since the exact
position of the crack tip was hard to judge, the velocities
reported are only approximate. |

The crack development for the paste is shown in Figure
6.12. These figures are sketches showing the crack pattern
at various times after the initial contact between the tup
and the specimen. Thus the first frame corresponds to the
instant of first hammer and beam contact; a visible crack
appears ten frames (1 ms) later, and so on. The energy as
computed from the area under the load vs. displacement plot,

and the crack velocity have been plotted as a function of
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time in Fiqure 6.13. A visible crack appeafed at about the
time that the external load reached the peak. The crack was
arrested at times and the propagation resumed affer every
arrest (Figure 6.13b). The velocities plotted 1in Figure
6.13b are those of the crack marked A up to 9 ms (frame 90).
Beyond this time, crack A seemed to have been permanehtly
arrested. After 9 ms and up to failure, the velocities of
crack B have been plotted.}It is interesting to note that
although the load had dropped to zero at about 11 ms (frame
110), the nucleation and propagation of some of the cracks
still continued beyond this point. Comparing the 110th frame
tb the 1200th frame, it can be seen that new cracks C, D,
and E have appeared since the load dropped to zero in frame
110. The appearance of a horizontal crack C in frame 130
indicates that the stresses are far from being simple
flexural stresses. The growth of crack E 1in the backﬁard
direction (frame 720) also supports the notion of the
complex stress pattern within the body of the beam
undergoing an impact. The disappearance of crack D between
frames 300 and 630 seems to indicate the closing of already
existing cracks due to an wunloading or a reversal 1in
stresses. The permanent arrest of crack A and the appearance
of crack C, indicates a crack arrest phenomenon the basis of
which is not yet clear.

The propagation of the crack in the post peak load
region can be divided 1into the following three stages

(Figure 6.13).
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Stage-I: The Nucleation Stage
Stage-II: The Steady State

Stage-III: The Final Stage

As soon as the load reaches the peak,vnucleation occurs. The
velocity of the crack drops rapidly and linéarly to a value
from which a slow exponential decay in crack velocity begins
and the crack enters the second stage. Stage-II, which
continues for the longest period of time, precedes the final
stage in which the «crack velocity rises again causing a
separation.

Sfage-I, thaﬁ accounts for about 50-60% of the total
distance travelled by the crack also accounts for about
50-60% of the fracture energy requirement (Figure 6.13a). On
the other hand, Stage-III occurring at the end of the impact
event accounts for only about 5% of the fracture 'energy.
Stage-III may have its basis in the coalescences of the
microcracks already formed in stage-I and 1II into a macro
crack appearing in Stage-III.

The average velocity of a propagating crack in paste
was found to be 115 m/sec, and the maximaum velocity in the
range of 500-600 m/sec. The average velocity of the crack
observed here is only about 5% of the "theoretical" crack
velocity (given by 0.38/E/p) in brittle materials (58). This
suggests that even the hydrated cement paste 1is not

classically brittle.



7. MODEL ANALYSIS

7.1 INTRODUCTION

The basic aim of experimental work on concrete is to
arrive at a set of material properties capable of explaining
the experimentally observed facts. The environmental
conditions and specimen geometries wused in laboratory
investigations may or may not prevail in practice. However,
the behaviour of concrete under one set of conditions can,
to some extent at least, be used to predict its behaviour
under other sets of conditions. The inability to generate in
the laboratory all possible situations which may be
encountered in practice has normally been overcome by the
use of mathematical models. However, the development of a
successful model necessitates knowledge of the behaviour of
the material, and the effect of various parameters on its
behaviour. Attempts have generally been made to determine a
set of fundamental material properties from a limited number
of expe:imental observations. The material behaviour under
load, and the mechanisms responsible for 1its failure, are
two of the parameters needed to design a model.

Sometimes, a model may be required to derive wuseful
information from the experimental observations themselves.
Instrumented impact tests on brittle materials can be placed
in this category. The 1load vs. time pulse recorded by the
instrumented tup in such impact tests is not the actual.
bending load on the test beam. A major part of this contact

load between the tup and the beam is the inertial load on

149



150

the beam. Thus, before any useful information can be derived
from such tests, an inertial correction has to be provided
to the observed tup load to arrive at the actual bending
load. Although some investigators (15,34) have recommended
additional instrumentation to measure directly the inertial
load or the actual bending load, these techniques are not
free from problems: additional instrumentation is expensive;
some of these technigques may alter the test conditions; and,
some assumptions are still necessary to interpret these
additional data. For example, the use of a rubber pad
between the tup and the beam, as discussed in Chapter 5, can
significantly alter the strain rate. Likewise, the
assumption of a linear acceleration distribution may not be
true in all the cases.

Appendices 7.1 and 7.2 present the classical solutions
to the problem of a beam subjected to an impulse. 1In
Appendix 7.1, the beam has been modelled as a single degree
of freedom system (SDOF) and in Appendix 7.2, the
multi-degree of freedom (MDOF) solution to the same problem
is presented. The external load pulse has been idealized as
a sine wave in these treatments. It should be noted that the
classical solutions presented here are not ;capable of
handling an arbitrary external load pulse. They also do not
take 1into account microcracking 1in the concrete and,
finally, they are not capable of predicting the beam
behaviour after the peak external 1load 1is reached. The

assumption that the external load pulse can be idealized as
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a sine wave -may not be grossly in error. However, on the
energy side, neglecting the energy absorbed by the beam
after the peak load can cause a gross underestimation of the
fracture energy. It has been found in the present study that
a major part of the fracture energy absorbed by the beam
lies in the post-peak load region (Chapter 6), for which the
classical solutions of Appendix 7.1 or Appendix 7.2 are
inappropriaté.

In the pages which follow, two different models are
presented. These models apply only to plain  concrete
(concrete without fibres or reinforcing bars). The basic
input to both of these models is the external load pulse
acting on the beam, recorded by the strain gauges in the
striking end of the hammer.

Model A, which is capable of analyzing the beam only up
to the peak external 1load, is based on the energy balance
principle. It is assumed that the energy lost by the hammer
up to the peak load is transferred to the beam in the form
of kinetic energy and bending energy (strain energy). By
éssuming a certain beam deflection function, this energy
balance coﬁcept can be expressed, at every instant of time,
as a function of the central deflection of the beam, and its
derivatives with respect to time. A finite difference
technique has been used to solve the nonlinear differential
equation thus obtained in the time domain.

Model B is based wupon the dynamic equilibrium of

forces. The time step integration technique has been used to
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solve the equation of dynamic equilibrium upto the peak
load.

It should be noted here that the post-peak load
modelling of concrete necessitates a knowledge of the
precise manner in which the cracks propagate in that region.
In the absence of this knowledge, such a modelling is not
possible yet. On the basis of the limited results obtained
by the Author (Chapter 6,10 and 11) in the field of «crack
propagation using high speed photography, very little can be

said with any certainty.
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7.2 MODEL A - EVALUATION OF BEAM RESPONSE TO AN EXTERNAL

IMPACT PULSE: ENERGY BALANCE PRINCIPLE

This model is used to evaluate the beam response to an
external pulse. It 1is applicable only to an elastic beam
and, therefore, it can be used to analyze the beam responée
only ﬁp to'the_peak load. At any instant‘of_time up to the
peak load, all of the energy ‘lost by the hammer is éssumed
to have been transmitted to the beam. This hammer energy
available to the  beam appears in.  two difféfent forms{"
béhding énefgy aﬁd'kinetid energy. All‘QEher forms-qf;energy
‘in the beam are_ignbred.-of 'these'two forms of energy, thé
bending energy which is used up in stressing the beam is the
prime-goél of the analysis. In what folldws,.the separation

of the bending energy from the kinetic energy is attempted..

7.2.1 Assumptibns

1. The beam remains elastic up to the peak load.

2. The beam deflects in, and only in, its first mode.

3. From the instant of first contact, the enefgy lost by
the hammer is absorbed by the»_béam'as kihetic energy
and aé bending energy. |

4, Damping 1is ignored.

5. The energy- lost in_ the -elastic defprmatiohs of the
various parts 6f the testing machine is ignored.

6. The beam deflection can be assumed to be sinusoidal in
shape, and can be expressed as

u(x,t)=uo(t) sin(wx/1) ' (7.1)
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7.2.2 Notation

u(x,t): Deflection of the beam at location x at time t
(Fiéure 7.1(a)).

Up(t): Deflection at the centre of the beam at time t.
AE,(t): The total energy lost by the hammer up to time
t.

T(t): Kinetic energy in the beam at time t.

U(t): Bending energy in the beam at time t.

p: The mass density of concrete.

l: Distance between the beam supports.

B: The breadth of the beam.

Pét)l :

Pe )

Vix,t)
(b)

FIGURE 7.1-Assumed Beam Displacements



D: The depth of the beam.
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AE,(t), the total energy lost by the hammer at time t,

can be obtained by using the impulse vs.

momentum

relationships. Equation 4.12 is wused for this pﬁrpose.

AE,(t), is assumed to have been fully transferred to the

beam (Assumption 3). If the rest of the terms in the

balance eguation (Eqn. 3.2) can be ignored, then,

JAEG(t) = T(E) + U(t)
If the deflection at any point is given by Egn.

then the velocity is given by,

G(x,t) = Gg(t)sin =

The slope at any point will be,

u'(x,t) = Qo(t) [%] cos| ﬁx ]

and the curvature at any point will be,

u"(x,t) = -ub(t) [%stin[ EX ]

7.2.3 Evaluation of the Kinetic Energy(T(t))

As shown in Figure 7.1(b), if 4T is the kinetic

of the elemental mass then,

dT = %(mass)(velocity)

energy

(7.2)
(7.1),

(7.3)
(7.4)

(7.5)

energy
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= % (pBDdx) G2(x,t) (7.6)

T(t) = sdT | | (7.7)
= J3pBDG? (x,t)dx ' (7.8)

Substituting for u(x,t) from Egn. 7.3 in Egn. 7.8 and

'simplifying, we get,

T(e) = 2L gy (7.9)

7.2.4 Evaluation of the bending energy(U(t))

If dU is the strain -energy in the elemental mass Qf

Figure 7.1(b) then,

cU = 3EI(u'"(x,t))%dx (7.10)
u(t) = sau | : (7.11)
= & SEI(u''(x,t))2dx (7.12)

Substituting for u”“(x,t) from Egn. 7.5 in Egn. 7.12 and
simplifying we get,
el | |
: - 2 _ o
u(t) = 1 UD(t) (7.13)
7.2.5 The total Energy.

Finally, substituting Egns. (7.9) and (7.13) into Egn.

(7.2), we can obtain the total energy:

4
aeg(t) = 2B az(r) + SF- i) (7.1

It is more convenient to write this as
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» _ .2 2 '
aEg(t) = Adg(t) + Buj(t) (7.15)
where,
A __B%H; (7.16)
4
and 5 =na§I (7.17)

Equation (7.15) is the nonlinear differential equation
‘in ug(t)'and Uo(t) which must be solved. The technique of

finite differences is used here for this purpdse.

7.2.6 Finite difference technique

In this technique, an attempt is made to satisfy the
~ differential equation successively at every point along the

time axis. If_. (uo)n, (uo) _y+ and (uo)n+1 are the

deflections at time t, (t-At),  and (t+At) respectively,

(Fig. 7.2), then,

slope to left of the nth point ={(uo)n-(uo)n_1}/At (7.18)
. at A at .
t=0 n-2 n-1 ' n

B
Yoo Mot Wy Wplpyy

FIGURE 7.2-Finite Difference Technique
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slope to right of the nth point ={(u,) -(uo)n}/At (7.19)

n+1

Thus, the average slope at the nth point is

(u_) (u.)

. 0’n+1 ~ ‘"o’n-1
(Uo)n=%‘ [ AL ]

(7.20)
Substituting Egqn. 7.20 into Egn. 7.15 and solving for

(uo)n+1, we get,

(7.21)

(uo)n+1 =J'% [(AEo)n- B(uo);]Atz * (Uo)n-1

Thus, knowing the deflections at the two previous
points along the time axis, and the energy input just prior
to the point in question, the deflection at any point can be
obtained from Egn. 7.21 To start the process, the
deflections at the first two points (uy); and (uy), were
both assumed to be zero. Egn. 7.21 could then be used from
the 3rd point onwards.

Once the deflections at the various points along the
time axis up to the occurrence of the peak load are known,
Egns. 7.20,. 7.9, and 7.13 <can be used to compute the
velocity, the kinetic energy, and the bending energy of the

beam, respectively.

7.2.7 Results

This method of separating the total hammer energy into

the beam kinetic energy and the beam bending energy was
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applied to a plain concrete beam struck in the middle by the
hammer falling through a height of 0.5m. The properties of

the beam are given in Table 7.1,

TABLE-7.1

Beam properties for the attempted application of Model A

Property Unit Value

E N/m? 32.0x10° (assumed)
P Kg/m? 2400.0 (assumed)

B m | 0.100

D m 0.125

1

m 0.960

Figure 7.3 shows that the majority of the energy 1lost
by the hammer appears in the beam as kinetic energy, and
only about 10% of this externally available energy appears
as the bending energy. Figures 7.4(a), 7.4(b), and 7.4(c)
present the comparison between the values computed by wusing
the model and those measured experimentally (see Chapter 4
for the Experimental Procedures).

It is clear from Figure 7.4(a) that the model
overestimates the bending energy in the beam. Likewise, the
deflections (Fig. 7.4(b)), and the velocity (Figure 7.4(c))
have also been over-estimated. There are several reasons
responsible for this, but probably the most likely is that

Eqn. 7.2 is invalid. As pointed out in Chapter 3, and later
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FIGURE 7.3-Energy predictions using Model A

in Chapter 8, Eqn. 7.2 is an over-simplification of the
situation. It is 1likely that, initially, only a small
portion of the energy lost by the hammer is consumed by the
beam. A large portion of the energy 1lost by the hammer
appears in the form of machine strain energy and maéhine
vibrations. This is particularly true for a machine with a
tall slender frame and a heavy hammer. With the hammer
almost 8 times as heavy as the beam in our case, the energy
loss is particularly significant. Unfortunately, it is not
possible, at this stage, to account for these losses and to

add more terms to the right hand side of Egn. 7.2.
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7.3 MODEL B- EVALUATION OF BEAM RESPONSE TO AN EXTERNAL

IMPACT PULSE: SOLUTION TO THE EQUATION OF DYNAMIC

EQUILIBRIUM USING TIME STEPS

When an arbitrary external load pulse acts on a 'beam,
along with the quick build-up of stresses, inertial fdrces
are generated. Thus at any instant of time, after the
initial contact, the equation of dynamic equilibrium can be

written as

Pp(t) = Py(t) - Py - .22)

where Pt(t)¢ denotes the external load, Pi(t) denotes the
inertial 1load, and Pb(t) denotes the bending or the
stressing load.i '

If the material of the beam is 1ineérly elastic up to
failure, the linear models presented in Apbéndices 7.1 and -
7.2 could be used. However, concrete does not behavé
linearly up to failure under either compression, tension -or
fléxure,_ and as such, -thése models are of limited
usefulness. Mo;eoyef, use of the model in the case of high
stresé rate loadings requires a knowledge of the properties
of the material at those high stress rates. In the case of
concrete, the exact properties at high stress rates are not
known. The first natural step, therefore, is an éttempt
towards the formulation of the constitutive law for concrete

under high stress rates from the experimental findings.
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7.3.1 The constitutive law for concrete

One generallyaccepted constitutive law for concrete is (59)

e e 2 (7.23)
o = of[—%; -(g;) ]

“where

0 = The stress.

0g = TheﬁétreS$Aaf fgilure;

‘¢ = The strain. -

€¢ = The strain at failure. ,

Both O¢ and €¢ have been founa to be affected by a
variation in the stress rate ¢ (Chapter 6). On the basis of

the results obtained in Chapter 6, it can be shown that

o¢ C,bcz, where C, = 1/(1+n) (7.24)

and

e = c,6Ce (7.25)

Upon substituting for o¢ and €¢ from Egns. 7.24 and '7.25,

respectively, in Egn. 7.23 we get,

| . | (7.26)
o =€, (0) 2025, -(— )?]
Cgra cyo

On rearranging the terms we get,
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€2 (7.27)

Ky = C,/Cs
K2=C2_Cu
Ky = C,/C}

Ka = Cz - ZCQ

The results obtained for normal strength concrete
(Table 6.2b), and high strength concrete (Table 6.3b) were
used to evaluate the above constants. The values obtained

are shown in Table 7.2.

Table 7.2

The constants in the constitutive law obtained

experimentally
Normal Strength Concrete High Strength Concrete
C,=0.65 K,=9142 C,=0.30 K,=19480
C,=0.40 K,=0.24 C,=0.31 K,=0.01
Cs=7.11%10"°  K,=1.29%10°®  C,=1.54x10"°  Ks=1.26x10°
C,=0.16 " K,=0.08 C,=0.30 Ky=-0.290

If E(e) is the tangent modulus of elasticity at strain level
e, we get from Egn. 7.27,

Ky

E(e) = do/de = 2K,082 -2K, oK% (7.28)

Note that the secant modulus is a function of the strain.
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7.3.2 Time step anal ysis and results

A summary of the linear acceleration time step
integration technique is given in Appendix-7.3. The
stiffness K(e) at the beginning of each time step was

obtained using Egn. 7.28 and the expression

4 (7.29)
5 E(e)l
21

k (e) =

The external load pulses (the tup 1loads) up to the
peak, for three hammer drop heights for both normal strength
and>high strength concretes formed the input to the program
written to do the time step analysis.

The results are shown in the form of the load (Py) wvs.
deflection plots of Figures 7.5 and 7.6. Figure 7.5
corresponds to  normal strength concrete while Figqure 7.6
corresponds to high strength concrete. The experimentally
obtained results are also shown. The bending energy in the
beam aﬁ the peak load, which can be obtained by taking the
area under the bending load vs. deflection plots (Figures
7.5 and 7.6) has been shown in Figure 7.7 for both nérmal
and high strength concretes. It can be seen that the model
proposed here reasonably predicts the behaviour of a beam
subjected to impact. The model also predicts the brittleness’
shown by high strength concrete.

One major drawback with the model, that. should be
pointed out here, is the 1inability of the model to predict

the response of the beam beyond the peak 1load. with the
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FIGURE 7.7-Bending Energy at the Peak Load

crack starting to grow at the peak load, the response of the
beam, among other things, depends upon the velocity of the
propagating crack, crack branching if any, and also upon the
width of the microcracked zone around the propagating crack.
In the absence of a precise knowledge of crack propagation

under. impact loading, such modelling is not possible at the

present time.
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APPENDIX-7.1

EVALUATION OF BEAM RESPONSE: BEAM MODELLED AS A SINGLE

DEGREE OF FREEDOM SYSTEM

Assumptions

1. The beam remains elastic up to the peak tup load.
2. The external 1load pulse (the tup 1load) <can be
approximated as a sinusoidal pulse.

3. The beam deflects in, and only in, the first mode.

4, Damping can be ignored.

The Equation of dynamic equilibrium

Let,
my be the generalized mass of the beam,
k be the generalized stiffness,

P, (t) = Posinwt be the external load pulse,

lpt(t)

4 Thﬁﬂmﬂ

Force
2 T Spring
Forcs
7777777

FIGURE A7.1-1-Single Degree of Freedom Model to evaluate the
' beam response
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W, be the natural frequency of the beam,
Uo(t) be the displacement of the mass,
Uo(t) be the velocity of the mass,

Up(t) be the acceleration of the mass,
B = w/Qn be thé frequency ratio.

From the vertical equilibrium in Figure A7.1-1 we can write,

mUg(t) + kug(t) = Pysinwt (A7.1-1)

The_solution to Egn. A7.1-1 can be written in the form of

u‘D(t) = Acosy t + Bsingnt + [:sinu,n; (A7'.1'f2)
where, ' '
A and B are constants depending on the initial
conditions and
P

- 0 .
SR LA (T

From Egn. 7.1-2 we get,

‘ Go(t) = -wnAsihmnt + wnBCO_Su)nt + Cwcosowt (a7.1-3)
On substituting the 1initial conditions, i.e. uy(t=0) = 0,

and ug(t=0) = 0 into Egn A7.1-2 and Eqn; A7.1-3 we get,

A =0 | ' (A7.1-4)

and, 'poB'

B = o
mbw;‘_" (1-8%) (A7.1-5)

On substituting for A, B, and C into Eqn. A7.1-2 and EQn.
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A7.1-3 we get,

uo(t) = C(sinwt - Bsinmnt) (A7.1-6)

-and,

: L'JO(t) = C(wCoswt -Bwncoswnt) v v (A7.1-7)
Finally, from (A7.1-7) we get,

-DD_(t‘) = CBuw ;s;nwnt ~u?sinut) ~ (a7.1-8)

The generalized mass of the beam Let the displacements - in

the beam be given by,

Q(xﬁﬂ =Lh(t)siﬁﬁg_ - (supported span) - (A7.1-9)
N .(overhangs) (A7.1-10)
u(y,t) = -uD(t) "—lx _ J _

If the beam is given a virtual displacement §u, in the
cenﬁfe, then from the principle of virtual work we can
R

o =y

\ ,

\ - /

\N—t—1/
A1
\\ // ’

3u

FIGURE A7.1-2-Determination of the generalized mass
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write,

mSDoéuo = jph [ Uo(t) sin —JIE— 1L 8 sinnlx ] dx

+ 20 oA [ -0g(t) S [-ouy 2] ay

Using Egns. A7.1-9 and A7.1-10, and assuming that the beam

is prismatic and homogeneous we can write,

243 ’ oy
m = pgl +2u§l§h , (A7.1-11)

The generalized stiffness of the beam
I1f the displacements are given by Egn A7.1-8 and

A7.1-10, then the generalized stiffness is given by,

N y A7.1-12
k =S E1l8, (x)]zdx + fEI[szﬂ2 (y)_lzdy ( !

: “ . n '
Where ¢1(x) ='sin(ij , and d(y) = - 7% and,
where primes denote derivatives with respect to x.

Solving Egn. A7.1-12 for k we get,

Lo TE
= T (A7.1-13)



The natural frequency

The natural frquency of the beam is given by,

wheré’mb and k are 'given by Equations A7.1-11 and

respectively.

A7.1-
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APPENDIX 7.2

EVALUATION OF BEAM RESPONSE: BEAM MODELLED AS A MULTI-DEGREE

OF FREEDOM SYSTEM

Assumptions

1. Damping can be ignored.

2, Beam remains elastic up to the peak external load.

3. The beam is prismatic and homogeneous.

4. The external load can be approximated as a sinusoidal

pulse.

Notation
Pt(t) = Posinwt = The external load pulse.

u(x,t) = The vertical displacement.

¢, (x) The nth mode shape.

Yn(t)

The nth generalized coordinate.

Wy = The nth natural frequency.

Beam Properties,
lpt(t) v his

~—_ ,,4\5_ u (x,t) =Zg](x)\;1(t)

— et ama ——
1 ——o

FIGURE A7.2-1-Multi Degree of Freedom Model to evaluate the
beam response ‘
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p = The mass density of beam material.

1l = Distance between the beam supports.

E = Modulus of elasticity of the beam material.
I =.Moment of Inertia.

A = Area of}cross?section.

m = pA = Mass per unit length of the beam.

With the damping ignored, the'dynamic équation of.‘beam'

equilibrium can be written as

4 2 ’
6 6 . .
e Sulxt)  om_ Sulx,t) | P (t) (A7.2-1)
‘ 5x4 6t2 . ‘
= Posm wt

1f we choose the solution in the form

u(x,t) =t ¢n(x)Yn(t) (A7.2-2‘)‘

‘On substituting. the derivafivesbof'u(x,t) with respect to x
(denoted by:supe:scripts), and with respect to time (denoted

by dots) in Egn. A7.2-1 we get

E1N(Y, (£) + mpd ()Y, (£) = Psinat (a7.2-3)

Multiplying Egqn. A7.2-3 by ¢m(x), integrating over the
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length, and using the following orthogonality conditions

L}
o

dem(X)ﬁn(X)dx

JETEY (x)8, (x)dx

1}
o

fElén(x)éiV(X) dx = w: S md? (x)dx
we get,
Yo () LmdZ ()ax] + ¥ (£)[w? smd2(x)dx] =/Pgsingtsd_(x)dx
. Let ’ '
fméé(x)dx =M

and,

jPUsinmtﬁn(x)dx

Qo

=a0P031nwt

1 for n=1,5,9...

-1 for n=3,7,11...

0 for n=2,4,6...

(A7.2-4)

(A7,2~5)

With the above notation, Egn.A7.2-5 can be written as

. 2 o - .
f’lnYn(t) + mnmnYn(t) -QUP031nmt

(A7.2-6)
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The solution to Eqn. A7.2-6

The general solution (including the homogeneous and
particular parts) to Egn. A7.2-6, which 1is a simple

differential equation in t, can be written as

. ap
o 00 N

Yn(t) = Acosw t + Bsinw t + [miwn 1_%151nwt (A7.2-7)

where _ -

A and B are constants determined from the initial
conditions,

and,

B = w/wn = The frequency ratio.

n

With Yn(O)“= 0, and §n(0) = 0 as the initial conditions,

- PPn

2 4
"n “n (1°Bn)

o
1

With these constants, Egn. A7.2-7 may be written as

a p a pB )
Yn(t)= 00 sinwt - _0 00N sinw_ t (A7.2-8)

Mwe (1R2Y) 2( 2
mnwn (1-Bn) mnwn 1-Bn)
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The mode shapes of a simply supported beam are given by

X

ol - (A7.2-9)

ﬁn(x) = sin

With mode shapes given by Eqgn. A7.2?9, and the generalized

coordinates giVen by Egn. A7.2-9, Egn. A7.2-2 can be finally

written as

. [ aOPOsinmt uolj aninwnt ]
- u(x,t) =.Z sin T AT - 7
1 " Mwr (1-80) mw (1-87)

MO

(A7.2-10)
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APPENDIX-7.3

TIME STEP ANALYSIS

A detailed account of the dynamic time step analysis is
given in (60). Here only a short description will be

presented.
Notation:

Pb(t): The bending load on the beam.

P,(t): The inertial load on the beam.

Pt(t): The applied load on the beam.

APb(t): The change in the bending 1oad during an
interval.

APi(t): The change in the inertialv load during. an
interval,

APt(t):_The change in the applied 1load during an
interval.

At: The length of the time interval.

upo(t): The acceleration at the beginning of the
interval.

Uo(t): The velocity at the beginning of the interval.
Uuo(t): The displacement at the beginning of the
interval.

Auo(t): The change 1in the acceleration during an
interval.

Auy,(t): The change in the velocity dufing an interval.

Aup(t): The change 1in the displacement during an
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interval.
my: The generalized mass of the beam.

K(t): The tangent stiffness during an interval.

Assumptions

1. The beam can be modelled as a single degree of freedom
system.

2.  Damping can be ignored.

3. Accelerafion varies'linearly during a timé_interval.

4. ‘The stiffness does not change during an interval.

In this method, the response of the beam is evaluated
for a series of short time increments, generally taken of
equal lengths. The condition of dynamic equilibrium is
established at the beginning and the end of each interval
and the motion of the system during the time increment is
evaluated approximately on the basis of an assumed response

mechanism.

lpt(t)

i Tlnxtkﬂ

2t

12777777

FIGURE A7.3-1-Single Degree of Freedom Model to evaluate the .
beam response using Time Step Analysis
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From the condition of dYnamic equilibrium at any time t

we have

P (t) = P;(t) + P (t) (A7.3-1)
After a short interval At the condition of dynamic
equilibrium would still hold.

P, (t+At) = P (t+At) + P, (t+At) (A7.3-2)

Subtracting Egn.(A7.3-1) from Egn.(A7.3-2) we get the

incremental form of the equation of dynamic equilibrium.

APt(t) APb(t) + APi(t) (A7.3-3)

or,

AP, (t) = R(t)Aup(t) + mbAﬁo(t) (A7.3-4)

If the acceleration 1s assumed to vary linearly during an

interval then
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AU (t) = Uo(E)At + 0.5AU,(t)At (A7.3-5)

Aug(t) = Uo(t)At + 0.5Uq(t)At2 + Aug(t){(At2/6) (A7.3-6)

Choosing Au,(t) as the basic variable in the analysis we

get,

Ao (t) = (6/8t2)Auy(t) -(6/At)Ue(t) -3Uo(t) ~  (A7.3-7)
Ay (t) = (3/At)AU(E)- 3U,(t) - (At/2)ii(t) (A7.3-8)

Substituting for AuU,(t) from Egn. A7.3-7 into Eqn. A7.3-4

and rearranging we get,

{K(t) + (6/A%)m }Auo(t) = AP (t) + m [(6/At)0, + 3f,(t)]

(A7.3-9)

Equation A7.3-9 1is the basic eqguation for the linear
acceleration time step analysis for a system without
damping. At any step, knowing the stiffness, the velocity,
and the acceleration at the beginning of the interval, Eqn.
A7.3-9 can be used to evaluate the incremental displacement

Au,(t). Once Auy(t) is known, Eqgn. A7.3-8 can be used to
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find Au,(t). These increments Auy,(t) and Auy,(t) are then
added to the displacement and the velocity at the beginning
of the interval to obtain the displacement and the velocity
at the end of the interwval.

The acceleration at the beginning of the interval is
obtained from the equation of dynamic equilibrium at the

beginning of the interval.



8. ENERGY BALANCE IN INSTRUMENTED IMPACT TESTS

8.1 INTRODUCTION

Many studies have demonstrated the strain rate
sensitivity of concrete. However, our knowledge of concreté
behaviour at high stress rates still remains largely
empirical., Part of the reason for this has been the
inability to compare the results from different
investigations, in the absence of any standard testing
technique. The results of a particular investigation depend
largely on the testing arrangement wused in that particular
investigation, because of the different energy losses
associated with various testing machines, and different
methods of analysis. The concept of Energy Balance (17,18),
which has its basis in the principle of the conservation of
energy; compares the energy lost by the hammer, at any time
during the impact, and the energy gained by the specimen.
Theoretically, if losses can be ignored, the law of
conservation of energy would predict the two energies to be
the same. Practically, as will be seen shortly, the losses
in the system cannot be ignored, and the energy gained by
the specimen is, in general, less than the energy lost by
the hammer. In this chapter, the various forms in which the
hammer energy in a drop weight type impact machine is
dissipated are presented.

The hammer travelling downward, on striking the beam,
suffers a loss of momentum. This loss of momentum, according

to the impulse-momentum relationship (Chapter 4), is equal

184
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to the impulse acting on the hammer. Using this principle,

the loss in the kinetic energy of the hammer (AE(t)) can
evaluated (Egn. 4.12).
8E(t) = im (22 h - (JES;E - 1 7p (t)dt)?)
, where, ™
‘-ﬁh :‘The.mass-of the hammer,
CI The acceleration of the hammer,
h : The height of hammer drop,

fP (t)dt : The impulse.

- This energy lost by the hammer may be transferred

the beam in various forms. The transfer of energy can

studied by subdividing it into two regions (Figure 8.1):

(1) Energy balance at the peak load (at t=tp).

TUP LOAD P, (t)

TIME, t
FIGURE 8.1-Typical Tup Load vs. Time plot

(4.

be

12)

to

be
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(2) Energy balance just after complete failure (at

The following sections deal with these two regions

separately.

8.2 ENERGY BALANCE AT THE PEAK LOAD (t=tp)

At the peak load the equation of energy balance can be

written as

’ -

. AE(tp) = Em(tp) + Es(tp) (8.1)

where,

Em(tp) : the energy lost to the various machine parts
at time tp in the form of strain energy or machine
vibrations,

Es(tp) : the energy consumed by the specimen at time tp
The energy consumed by the beam can be further subdivided

into the following two parts,

Es(tp) = Eker(tp) + Eb(tp) (8.1a)

where,
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E, (t. ) : the rotational kinetic energy of the
specimen,

Eb(tp) : the bending energy in the specimen.

Therfore,

AE(tp) = Em(tp) + Eker(tp) + Eb(tp) (8.2)

In Equati;n 8.2, the translational kinetic energy, and
the vibrational energy in the specimen have been ignored
(18). The bending energy, given by the area under the load
vs. centre point displacement plot (Egn. 4.37), comprises

the elastic strain energy Ese(tp) and the work of fracture

Ewof(tp)

Eplty) = Bolt)) + Byoe(t)) (8.3)

From a 'load vs. centre point displacement plot, the
elastic strain energy Ese(tp) can be reasonably approximated
by taking the secant modulus at 60% of the peak load (Figure
8.2). The secant modulus was taken at this point, since at
this point, in géneral, the load vs. deflection curve became

significantly non-linear.

Ese(tp) = o.spb(tp)uoe (8.4)
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U_'U

0.6P,

BENDING LOAD, R,

Uge
DISPLACEMENTS ,u

FIGURE 8.2-Components of Bending Energy

where Uge is the elastic part of the midspan displacement.
The work of fracuture Ewof(tp) can then be obtained by
subtracting the strain energy Ese(t ) from the bending

P
energy Eb(tp) (Egn. 8.3).

Knowing the velocity at the centre, and assuming that
the velocity distribution is linear along the length of the
beam, the rotational kinetic energy of the specimen can be

obtained by integrating over its length.

.2 ’
E(t) BpAuo(t) 12 . h* ] (8.5)
ker - 17 24 3
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The energy lost to the machine Em(tp) can be obtained

(t.) from

by subtracting the beam energies Eb(tp) and E, . D

" the hammer energy AE(tp) (Equation 8.2).

The experimental results are presented in Figures 8.3
and 8.4, and in Tables 8.1 kNS concrete) and 8.2 (HS
concrete). The data are presented for three different
heights of hammer drop. Since Tables 8.1 and 8.2 show
substantial scatter in results, only the mean values were
used for drawing Figures 8.3 and 8.4.

Figure 8.3 shows the energy balance for NS and HS
concretes at the peak load (t=tp). At the peak load, the
energy lost by the hammer (AE) is 2 to 4 times the energy
gained by the beam (ES). The remainder of the energy is
assumed to be absorbed in the machine itself, in the form of
vibrations and(in stored elastic energy. The energy gained
by the beam by virtue of its deformed shape (Eb) is found to

be much smaller than its kinetic energy (E ). Also, the

ker
consistently lower values of energies (ES, Eker' and Eb) for
HS concrete compared to NS concrete should be noted.

Figure 8.4 presents the sub-division of the bending
energy (Eb) at the peak 1load into the work of fracture
(Ewof) and the elastic strain energy (E_ ). Most of the
energy consumed by the beam up to the peak bending 1load
appears as the work of fracture. Both the work of fracture
and the strain energy increase with an increase in the

hammer drop height; the work of fracture seems to increase

at a higher rate than does the strain energy. HS concrete
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Table 8.y4Enefgy Balance at the Peak Load (Normal Strength

Concrete)
0.15 m (gyx - ‘ 0.25 m (g)* ) g 0.50 m (7)»
1
TEM MAX. " MIN. MEAN STD. MAX. MIN. MEAN STD. _ MAX. MIN. MEAN STD.
DEVIATION " DEVIATION . DEVIATION
Ppity) (W) 9440 7782 8460 604 ‘14668 9178 12183 2401 17727 16452 16932 428
zxs(cp) {N-m) 25.78 19.75 2;.55 2.37 42.06  33.36 37.24 3.21 71.60 60.89 64.64 3.80
Eper(tp) (N-m)  7.515 4.60 . 6.20 1.27 10.00 6.12 7.98 1.37 " 16.96  10.96  13.23 2.00
Ey(ty)  (N-m)  3.50 1.53 2.53 0.708 3.73 2.74 3.005 0.429 9.07 2.21 6.416  2.51
Egelty) (Nzm)  0.645 ° 0.324  0.499  0.125 0.824 0.523 0.632 0.114 1.357 0.788 1.14 0.192
Ewéf(tp) (N-m)  2.855 1.206. 2.05 0.588 2.906 2.048  2.38 0.322. 7.90 1.422 5.27 2.41
Eglty)  (N-m)  10.12 6.13 8.72 1.53 . 13.47. 8.86  10.95 1.64 23.56 14.63  19.60 3.03
smttp) (N-m)  15.66 12,69 - 14.12 . 1.10  31.46 24.45 26.32 2.97 48.39  40.47  45.03 3.49
Em(t ) ,
P x 100% 69 .59 62 4.02 74 64 .69 3.77 71 67 70.00 4.18
As(té)

'NUMBER OF SPECIMENS TESTED

26l



Table 8.2- Energy Balance at the Peak Load (High Strength

Concrete)
, 0.15m (6)* - ' ©0.25m (5)* : 0.50 m (6)*
ITEM MAX. MIN. - MEAN  STD. MAX. MIN, MEAN  STD. MAX. - MIN, MEAN STD.
. DEVIATION , DEVIATION DEVIATION
Pty 11694 8388 9906 1183 18579 10573 13371 2991 19206 18314 18760 446
AE(t))  (y.m)  25.21 19.02. 20.28 3.54 38.45 - 33.40 32.20 3.98. 76.33 5882 66.13  7.43
Eror (tp) (y-m 6-40 2.68  3.94 1.4 9.61 - 4.47 .58  1.67 '16.00 4.35  10.13 4.75
Bt (n-m) 2.92  1.79  2.37  0.54 2.96 1.86 2.55 0.376 5.41 - 3.80  4.64 0.659
Ege(ty) (N-m) 0.518 0.339 0.432 0.072 0.639 0.546 0.600 0.052 1.34 1.00  1.14 0.065
Euoeltp) (N-m) 2.433 1.40 1.930 0.478 ' 2.40 1.287 1.954 0.375 4.23 2.86  3.52 0.560
Eglt))  (N-m) 9.32 4.47 6.31 1.83 11.47 7.19  9.14 . 1.39 19.80 1.08  14.78 4.40
Ep(t,)  (N-m) 25.21 19.02 20.28 3.54 38.45 33.40 32.20 3.98 76.33 58.82 66.13 7.43
E ()
cfETEiT X 1008 75 63 69 4.47 72 70 72.0  0.80 84 74 . 78 4.96

*Number of specimens tested.

g6l
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and NS concrete, appear to have comparable strain energies,
and thus, the vast difference between the beam energies (Eb)
for NS and HS concretes probably arises because of the

higher work of fracture energies (E for NS concrete.

wof)
This observation strengthens the argument presented in

Chapter 6 to explain.the brittleness of HS concrete.

8.3 ENERGY BALANCE JUST AFTER FAILURE (at t=tt)

At the end of the impact event, the external load P, (t)
is reduced to zero and the broken halves of the beam swing
clear of the striking tup. At this instant, the energy

balance can be written as
AE(tt) = Em(tt) + Es(tt)
As before, this can be written as

AE(tt) = Em(tt)+ Eb(tt) + Eker(tt

Once again the energy Eb(tt) obtained from the area

) (8.6)

under the load vs. displacement plot measures the work of
fracture plus the strain energy in the beam. Since the
strain energy can be assumed to be negligible in the broken
halves of the beam, all of the energy Eb(tt) represents the
work of fracture, or the fracture energy.

Equation 8.5 can once again be used at t=t to

t

determine the kinetic energy Eker(tt)' Once Eker(tt) and

Eb(tt) are known, Equation 8.6 can be used to determine
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Em(tt).
Figure 8.5 and Tables 8.3 and 8.4 present the energy
balance at the end of the impact event (t=tt). Here, most of

the energy lost by the hammer at t=t_ (AE) is gained by the

t
beam (Es). The energy gained by the beam consists of the
kinetic energy of the broken halves (Eker) and the bending
energy (Eb). Probably, the bending energy is the energy
required to create two new fracture surfaces. This can also
be termed the fracture energy, or the work of fracture.
Since, by the end of the impact event, the specimen appears

to have little or no strain energy, the bending energy Ey

represents only the fracture energy.

8.4 THE MACHINE LOSSES

If the difference beteween the energy 1lost by the
hammer (AE) and the energy absorbed by the beam (Es) can be
assumed to be the energy lost to the machine (Em), then the
"machine losses" can be calculated at the peak load (t=tp)
and at the end of the event (t=t ). Figure 8.6 presents this
machine energy calculated as a percentage of the total
energy lost by the hammer (Em/AE x100%). As can be seen from
Figure 8.6, at the peak load, 60 to 80 percent of the energy
lost by the hammer is stored in the machine. However, by the
end of the impact event (t=tt), 90 to 100 percent of the
energy lost by the hammer appears as specimen energy. It can

also be noted from Figure 8.6 that HS concrete, being a
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Table 8, 3-Energy Balance at the Peak Load (Normal Str

Concrete)

ength

0.25 M (6)*

0.15 1 (6)* 0.50 M (7)*
ITEMS MAX. MIN. MEAN STD. MAX. MIN. MEAN STD. MAX. MIN. MEAN STD.
DEVIATION DEVIATION DEVIATION

f[&E(tt) ~ (N-m) 76 64 72 4.7 131 94 116 15.3 249 231 240 5.8
Eper(ty) (N-m) 45 | 42 44 . 1.2 80 47 66 12.9 150 139 145 4.7
Eb(tti (N-m) 31 19 '25 4.3 60 27 43 12.4 100 87 90 6.4

E (t,) (N-m) 73 63 69 3.90 130 - 74 109 23.0 248 230 235 7.31
Ep(t,) (N-m) 3 1 2 1.0 20 1 7 7.7 12 0 5 4.0
sz X 100% 4 1.56 2.77 1.0 21 6.76 6.03 8.0 5.02 0 2.08 1.0

:“Number of specimens tested

L6L



Table 8.4-Energy Balance at the Peak Load (High Strength
Concrete) -

0.15 m- (6)* o 0.25 m (5)w : ~ 0.50 m (g)»
ITEM MAX. MIN. " MEAN STD. MAX. MIN. MEAN STD. MAX. MIN. MEAN STD.
DEVIATION DEVIATION DEVIATION
AE(t)) (N-m) 89 43 . 68 16.7 133 100 109 12.20 238 214 223 10.5
Epoplty) (N-m) 54 13 36 16.8 89 54 64 " 13.6 127 116 121 5.5
E (t,) (¥-m) 33 21 25 5.0 43 o 31 35 4.6 100 57 ’ 75 18.6
E_(t)) (Nm) 89 34 61 21.0 133 86 99 18.0 213 193 - 196 10.0
E (t,) (N-m) 14 0 7 5.9 15 0 10 6.3 30. 25 27 2.7
zf% X 100% 21,12 0 10.3 5.4 10.80 0 9.2 3.7 13.7 10,2 12.1 1.50

*
Number of specimens tested,

861
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stronger and a stiffer material than NS concrete, showed
higher machine losses.

High stress rate testing of cementitious materials
requires sophisticated testing equipment. Knowledge of the
various modes in which energy can be lost during a test is
essential to a proper analysis of the test results. In the
absence of this knowledge, the results can be grossly
‘misleading. The energy lost by the hammer cannot be assumed
to be the energy consumed by the beam. Even if the machine
losses can be assumed to be constant for a given drop height
for a given machine, the energy gained by the specimen still
has to be corrected for its kinetic energy.

The percentage energy lost to the machine seems to
depend on the strength and the stiffness of the material
tested. Energy losses in the machine were found to be higher
when HS concrete, which 1is stronger and stiffer than NS
concrete, was tested.

If it can be assumed that, after the beam fails, the
broken halves of the beam have little or no strain energy,
then in the post-peak load region, most or all oﬁ the strain
energy stored in the beam is used in propagating the crack.
Since the stored strain energy at the peak load is much less
than the overall fracture energy required, it seems possible
that the crack propagaies while the beam continues to absorb

energy from the hammer and the various other machine parts.



9. NOTCHED BEAMS UNDER IMPACT

9.1 INTRODUCTION

Numerous microcracks exist in concrete even prior to
load application. Under load, the stresses and strains in
the vicinity of a <c¢rack tip increase, and if the <critical
conditions are met, crack extension occurs. With an increase
in the size of the crack, the stresses and strains increase
further causing the crack to extend at an increasing rate
till failure occurs. In a linearly elastic material, the
stress field 1in the neighbourhood of a crack tip can be
described by a single parameter, the stress intensity
factor, K. Fracture occurs when K exceeds a critical wvalue

Kic 7 The critical stress intensity factor, K thus, is a

IC’
material property determining the «c¢ritical condition at
which unstable crack.propagation occurs.

Many attempts have been made 1in the past to determine
the critical stress intensity factor Kic for concrete.
However, there is no general agreement over its value, or
its interpretation. Kic has been found to depend, among
other things, upon the notch width, the notch depth, the
specimen geometry, and also upon the rate of 1loading
(61,62). The existence of a process zone in front of an
advancing crack tip 1is now recognized, and nonlinear
fracture mechanics has therefore been considered to be a

more appropriate tool for concrete. John and Shah (62) have

reported that crack extension occurs even priof to the peak

7 The subscript I refers to the crack-opening mode of crack
propagation.

201
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load, but that this prepeak crack extension decreases with
an increase in the rate of loaaing.

The attempt to determine Kic has also been extended to
fibre reinforced concrete. Harris et al (49) studied the
effect of randomly distributed glass fibres, high carbon
steel fibres, and mild steel fibres on KIC' and repo;téd a
substantial increase in KIC due to fibre inclusion. However,
Yam and Mindess (63), concluded that the fibres do not
restrain crack growth in any significant way once the crack
starts propagating. |

In the present study, the dependence of Kic on strain
rate for both plain and fibre reinforced concretes was
studied by subjecting notched beams to variable rates of
loading. The loading rates used varied from those achieved
in a static testing machine to those achieved wusing the
impact machine. Two concrete strengths, of 42 MPa and 82
MPa, were examined. The details on the composition of the
notched beams, their compressive  strengths, and their

designations have been presented in Table 4.1,

9.2 PLAIN AND FIBRE REINFORCED NOTCHED BEAMS UNDER VARIABLE

' STRESS RATES.

Notches were cut in beams made with normal strength
concrete, high strength concrete, and normal strength
polypropylene fibre reinforced concrete beams, using a
diamond cutting wheel. The notch depths ranged between 65mm

and 70mm; the notch width was about 3mm.
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- Companibn'beams were fi:éﬁ loaded stétically in 3¥point.
bending, with the cross-head moving at 4.2x10~7m/s. Thé
results were obtaihed inbthe form of bending'ldad vs. load
point deflection plots. Later, several beams in each of the
categories were tested using the drop hammer, with the
hammer dropping throﬁgh 0.15m,'0.25m,V0r 0.50m.
For the computation of the critical stress intensity

factor no uhiversally accepted formula exists. In - this

study, the formula given by Broek (58) has been used.

Pp(max)L 1/2

‘ /2
K Kepn ® e [2.9(2
1C* ™ID 5 D3/2 [ (D)

- 4.6(2)% % 21.8(2)%2 i
(D) (n) ‘ 9.1)

772, 38‘7(%)9/2_]

37.6(2)

where, -

_(Pb) = peak bending load.

max
l = test span of the beam.
B = breadth of the beam.

D = depth of the beam.

a ;‘the notch depth.
KicrKip = Static and dynamic érificél'stress intensity
factor, respectively, Note that it was assumed that the

same formula could be used in both the stati¢ and

dynamic cases.

The results for normal strength beams are given in

Table 9.1. Table 9.1a shows the impact results, while Table
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9.1b shows the results from the static tests. Similarly,
Table 9.2 presents the results for high strength concrete,
and Table 9.3 pertains to normal strength polypropylene
fibre reinforced concrete.

The peak bending 1loads obtained for the different
notched beams have been plotted as a function of the hammer
drop height in Figure 9.1. As may be seen, an increase in
the hammer drop height, or an increase in the stress rate,
resulted in an increase in the peak bending load the beam

could support. "It may also be noted that high strength
15

NOTCHED BEAMS

14

131 /

12+

119

101

Normal Str,
) + PP,
Fibres

_ PEAK BENDING LOAD, kN

§ 1 Ll T
0 0.1 0.2 0.3 0.4 Q.5

. HT. OF HAMMER ORCP, m
Figure 9.1-Effect of Hammer Drop Height on Peak Bending Load



TABLE -3.1

Behaviour of normal strength concrete under 1mpact and static loading

- HEIGHT OF HAMMER DROP, m

0.15(4)* 0.25(4) % T0.50(4)*
Max | Min |Mean |Std.Dev| Max Min [Mean |[Std.Dev] Max Min [Mean {Std.Dev
Peak Bending 7138| 3606 4981 1440 | 8713 4932 7094 1364 |16466 9590( 13028 3438
Load (N) , . . »
Displacement at 246 124 192 51 357 211 284 56 597 432 514 82
PeaE Bending ' ' .
Load (m) (x1076) ‘
Energ up to 1.3 0~4 007 0033 2.1 . 0-9 106 0-46 5:8 4.8 5'3“ 0-1.9'
Peak {oad (N-m) :
Total Fracture 23.8" | 9.8 |14.4 5.5 }26.8 |16.5 [22.6 3.7 70.2° |41.4 |55.8 | 14,4
Energy (N-m) ' . .
Kip (FNm™>/4) 4.40{ 2.27] 3.14} o0.86 | 5.38 | 3.00| 4.56| 0.93 [10.17 | 5.92{ 8.62] 1.92
STATIC BENDING TESTS*(2)*
Max { Min { Mean [Std.Dev
Peak Bending 647 591 619 - 28
Load (N) ,
Dlsﬁlacement at’ 261 203 232 29
Peak Bending :
Load (m) (x107°)
Energy at Peak 0.08 {0.07 | 0.07 | 0.002
Load (N-m) * No. of specimens tested
: ' Stazlc testg carried out at cross-head speed
Energy (N-m) 0.37 |0.40 | 0.38 | 0.02 17x10 m/s

S0¢



' ~ TABLE-9.2
Behaviour of high strength concrete under impact and statlc 1oad1ng

HEIGHT OF HAMMER DROP, m

0.15(4)* 0.25(4)* » - 0.50(4)*

Ma x Min [Mean |[Std.Dev| Max Min {Mean {Std.Dev| Max Min [Mean |Std.Dev
Peak Bending" 3750( 3524| 3637 113 6888 5099| 5988 632 15166 9612112462 2400
Load (N) : . . .
Displacement at. 295 217 256 39 443 331 378 443 649 346 480 117
PeaE Bending
Load (m) (xlO' ) ‘ -
Energ to 0.8 0.6 |0.7 0.1 2.1 0.9 { 1.5 0.4 8.6 3.7 5.2 1.9
Peak {oad (N-m) _ .
Total Fracture . 110.5 6-8 ' 10.6 308 2302 1705 2102 | 2-2 6205 10000 54'7 9-1
Energy (N-m) . , : ’
KIC (NNm-3/2) 2.35 |2.15 |2.25 0.10 4.26 3.47 3.86 0.29 10.27 |6.54 |{8.25 1.60

STATIC BENDING TESTSt(2)*
Ma x Min Mean [Std.Dev

Peak Bending 1249 1204 1227 | 22.50
Load (N)
Displacement at 370 274 322 48

Pea Bend1n§
Load (m) (x1078)

Fnergy at Peak 0.21 0.17 0.19 0.02 )
Load (N-m) : : No. of apecimens tested
: + Static testg carried out at cross—head speed
Total Fracture 0.60 | 0.40 0.50 | 0.10 of 4. l7x10 /8
Energy (N-m) '

0.80 0.77 0.79 0.01

K
Ic (HNm's/z)

302



Behaviour of

TABLE- 9.3

notmal strength concrete reinforced with polyprOpylene fibres
under impact and static loading

HEIGHT OF HAMMER DROP, m

Y OL 0.25(4)* 0.50(4)*

Max Min [Mean {Std.Dev| Max Min |Mean |[Std.Dev| Max - Min Mean {Std.Dev
Peak Bending 6196| 4370 5283 .913 7509 7100| 7236 192 13719 {13617{13667 51
Load (N) , ’ :
Dis lacement at 318 230 274 44 375 213 314 72 470 309 389 80
Peak Bending v
Load (m) (x1076)

1.1 0.5| 0.8 0.2 2.0 1.4 1.7 0.2 5.7 5.3 | 5.5 0.19
Peak {oad (N—m) . ) .
Total Fracture 22.5 | 9.5 |16.0 . 6.5 26.8 [20.2 |24.3.} 2.9 64.7 57.5 |(6l.1 3.5
Energy (N-m) . :
Kip -3/2 3.82] 2.69]3.26 0.57 5.30f 4.15]| 4.76f 0.47 9.65.{ 8.36{9.01 0.65

(MNm ) 7 _ _

STATIC BENDING TESTS¥(2)*

Max | Min Mean {Std.Dev

Peak Bending 1115 1049 | 1082 33
Load (N)- » ’ '
Displacement at 210 203 207 3.5
Peak Bending
Load (m) (x107%)
Energy at Peak 0.13 | 0.1 | 0.12 { 0.01
Load (N-m)
Total Fracture 0.48 0.45 0.47 0.01‘
Energy (N-m)
K - 0.79 0.68 0.73 0.06

IC (NNm 3/2) ' v

* No. of specimens tested )
ts carried out at cross-head speed

_Stazi

c_test

l7x10

ms

Loz
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concrete, which is, of course, stronger than normal strength
concrete in static 1loading situations, was found to be
weaker than normal strength concrete under impact loading
(Figure 9.1). Such an observation is in contradiction with
the results obtained for the unnotched beams (Chapter 6), in
which high strength concfete was found to be consistently
stronger than normal strength concrete both for static and
impact situations. This suggests the greater
notch-sensitivity of high strength concrete compared to
normal strength concrete.

The energy absorbed by the beams up to the point of
peak bending load. as a function of hammer drop height 1is
plotted in Figure 9.2. The fracture energy, calculated to
the point .at which the 1load drops back to zero, is also
shown in Figure 9.2.

Although the differences amongst the different concrete
types (Figure 9.2) are not substantial, high strength
concrete was found to absorb 1less energy than normal
strength concrete up to the peak 1load. The addition of
fibres to the normal strength mix was found to increase the
energy absorptioh capacity up to the peak load. If the
energy to the peak 1load may be assumed to represent the
energy required to begin unstable crack propagation, ‘then
for high s;rength concrete there was a decrease 1in this
energy, while the addition of fibres resulted 1in its

increase.
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70
— Normal strength
60} ——— High strength /L
—-—-  Norma! strength + PP fibres 4
SO}

Total frocture energy

40

30

FRACTURE ENERGY ,N.m

20

0 0.l 0.2 0.3 0.4 0.5
HEIGHT OF HAMMER DROP,m

Figure 9.2-Effect of Hammer Drop Height on Energies

The fracture energies required by the notched beams
under impact were significantly higher than those required
by the beams loaded statically (Fiqure 9.2). Also, an
increase in the drop height of the hammer resulted in a
considerable increase in the fracture energy requiremeht.
High strength concrete was found to be more brittle than
normal strength concrete, and fibre reinforcement was found
to improve the toughness marginally (Figure 9.2). Similar
observation have been reported for the wunnotched beams in

Chapters 6 and 10,
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The values of KIC and KID have been plotted for the
various types of concretes tested, as a function of hammer
drop height 1in Figure 9.3. High strength concrete (Table
9.2b), which under static loading gave a slightly higher Kic
than either plain (Table 9.1b) or fibre reinforced (Table
953b) nofmal strength concrete, showed particular notch
sensitivity under impact and registered 1lower Kip values.

This may serve as a caution against the presence of notches

and flaws in high strength concrete subjected to impact.

Normal strength 7
8 ———High strength S
—-—- Normal strength + PP fibres '/ 7

] ] ! |
o 0.1 0.2 0.3 0.4 0.5
HEIGHT OF HAMMER DROP, m

Figure 9.3-Effect of Hammer Drop Height on Fracture
. Toughness
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The use of the polypropylene fibres was found to
improve the c¢ritical stress intensify factor both in the
static and the dynamic cases. Fibres, thus, appear to act as
crack arresters, retarding growth of the subcritical flaws.
The energy 1input required to precipitate unstable crack
propagation in fibre reinforced specimen was found to be
higher than for the plain concrete specimens (Figure 9.2).
This may be related, indirectly, to the contribution of the
- fibres in keeping the matrix coherent, thereby increasing
the deformation capacity of the beams.

Increasing the strain rate resulted in an increased
critical stress intensity factor for all of the types of
concrete tested in this study. However, the values of the
critical intensity factor may have been underestimated
. .because of the prepeak crack growth; the crack length "a"
used in Equation 9.1 may be too low. As pointed out by John
and Shah (62), the prepeak crack growth seems to decrease
with an increase in the rate of loading, thus reducing the
error at higher loading rates. Indeed, even under static
loading, they reported an increase in KIC of only about 11%
when the pre-peak crack extension was considered. Therefore,
the fact that pre-peak crack growth ‘was not considered in
the present work should not introduce significant errors in

the analysis.



10. FIBRE REINFORCED CONCRETE UNDER IMPACT

10.1 INTRODUCTION

The brittle type of failure observed for cement—based.
matrices under tensile stress systems or impact loading is
an object of concern. The addition of fibres can be used to
alleviate this problem, at 1least in part. The effect of
fibres can be seen 1in the improved tensile strength and
flexural strength of the composites, and also in their
improved impact resistance or toughness. It is not so much
the improved strength, but rather the improved toughness,
which is the prime advantage of adding fibres to the matrix.
The presence of fibres, by controlling the cracking, imparts
to the composite some post-cracking ductility, which 1leads
to the improved toughess.

The fibres form primarily a mechanical .bond with the
surrounding matrix. As a result, the fibres and the matrix
act in a composite manner. When an unreinforced brittle
matrix reaches 1its failure load, the matrix cracks and
failure is precipitated without warning. However, in a fibre
composite, even when the matrix cracks, the fibres 'bridging
the crack can still transfer some load, and sudden failure
is thereby averted. A cracked composite carries load by
virtue of the tensile strength of the fibre and the bond
that has developed between the fibre and the matrix. Once
the composite has cracked, the matrix-fibre system is no
longer a continuous medium and therefore conventional

theories of mechanics may be inapplicable.

212
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In the case of a composite member undergoing uniaxial
tension, the matrix cracks at a certain failure strain in a
manner similar to that of an unreinforced member. If the
fibres were not present, this would cause separation and
sudden failure. However, with fibres present, they take over
once the matrix cracks. The fibres, depending upon their
geometry and quantity, may support a lower or a higher 1load
than the one at which the matrix cracked. For a given type
of fibre, thus, there exists a "critical volume fraction" of
fibres which will support just the load the member was
supporting at the time of matrix failure. The load will drop
if the fibre volume fraction 1is 1less than the «critical
volume. On the other hand additional load can be carried if
the critical volume fraction is exceeded.

For a fibre reinforced member under flexure,
conventional beam theory is applicable only until the matrix
cracks on the tension side; beyond this point, the
stress-strain curve on the tension side 1is very different
from the stress-strain curve on the compression side, and as
a result, conventional beam theory ceases to apply. When an
unreinforced beam cracks, the equilibrium of compressive and
tensile forces on its cross-section is disturbed suddenly,
the neutral axis moves up, the crack rapidly propagates
upward, separation occurs and the 1load drops to =zero.
However, in a fibre reinforced beam, as the tensile strains
approach the failure value, cracks are formed, but the

fibres carry the load on the tension side and equilibrium is
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maintained. With the cracks, the strains on the tensile side
increase, and the neutral axis moves up. In this fegard, a
fibre reinforced beam acts similar to an under-reinforced
beam with conventional reinforcement. With a reduction in
the depth of the nedtral axis, the area of the tensile
stress block may increase and the load may rise. Since the
increase in 1load 1is accompanied by a reduction 1in the
neutral axis depth, there exists a limit to strengthening,
as failure.may then initiate at the compression face. By
adding fibres, better use 1is made of the strength of
concrete in compression, since a reduction in the depth of
the neutral axis signifies an increase in the mean
compressive stress on the compression side of the neutral
axis.

.The performance of a composite under highvstress raﬁes
depends upon the performance of both the fibres and the
matrix. The performance of the matrix under impact was
studied in chapter 6. What remains to be seen is whether the
stress rate sensitivity of a fibre reinforced composite is
due mainly to the stress raté'sensitivity of the matrix or
because of fibre-matrix interactions as well.

Both 1low modulus (polypropylene) and high modulus
(steel) fibres were tested. The polypropylene fibres were
chopped, fibrillated, 38mm long fibres; the steel fibres
were 60mm long, O0.6mm in diameter, with both ends hooked.
Volume fractions of 0.5% for polypropylene fibres, and of

1.5% for steel fibres were used. Only 0.5% by volume of
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polypropylene fibres were added because higher volumes could
not be added to the concrete wusing conventional mixing.

techniques.

10.2 STEEL FIBRE REINFORCED NORMAL STRENGTH CONCRETE

(NSSFRC) UNDER VARIABLE STRESS RATE

Normal strength steel fibre reinforced concrete beams
were tested in 3-point bending, both on a static universal
testing machine with the cross head moving at 4.2x10 'm/s,
and on the drop weight 1impact machine with a hammer drop
height of 0.50m.

Figure 10.1 and Table 10.1 present the results obtained
from the static tests, along with the corresponding results
obtained from unréinforced normal strength concrete beams.
The load vs. deflection plots of Figure 10.1 indicate that
the addition of fibres to the matrix was helpful in two
ways. First, the observed peak 1loads were higher for
reinforced beams compared to the plain ones; second, the
sudden failure or drop in 1load, after the peak load in the
case of plain concrete was replaced by a gradual drop in
load 1in the case of fibre reinforced concrete. The
undesirable catastrophic failure 1in plain concrete could
thus be changed to a more desirable pseudo-ductile failure.
The load carrying capacity of the fibres in the post-peak
load region was reflected in the higher fracture energies

" required for fibre reinforced beams (Table 10.1).
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Table 10.1

Plain (3)! Plain + Steel

Fibres (3)!
Max  Min  Mem s Max M  Mem 5
Peak Bending Load (N) 6766 6000 634 X6 12436 10902 1100 610
Fracure Energy (Nm) 65 29 55 15 463 420 448 20
First Peak Load (N) - e I
Cross Head Speed (msse) - - 407 -~ - eao?

! Number of specimens tested.

Normal Strength Steel Fibre
Concrete

Normal Strength
Plain Concrete

0 1 2 3 4 5 6 7 8 9 10
Deflection, mm

Figure 10.1- Static Behaviour of Plain and Steel Fibre Reinforced Normal Strength Concrete
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Table 10.2
Dynamic Behaviour of Plain and Stee) Fibre Reinforced Normal Strength Concrete (0.5m drop)

Plain (6) Plain + Steel
Fibres (6)!

Max Min Mean s Max Min Mean s
Max. Observed Tup Load 37567 35810 36192 677 43281 37286 39999 2345
(N)
Max. observed Inertial Load 20291 16868 19244 1278 17094 13819 15993 1262
(N)
Peak Bending Load (N) 17727 16452 16932 428 26800 22786 24006 1629
Fracture Energy (Nm) 1005 878 90.1 6.5 2480 2290 2376 15

! Number of specimens tested.

24

20}

o

PLAIN + STEEL

LOAD, kN

|12 FIBRES
8
PLAIN
4
"\
| et |

0]
08 24 40 56
DEFLECTION , mm

Figure 10.2- Dynamic Behaviour of Plain and Steel Fibre Reinforced Normal Strength Concrete
(0.5m drop) .



218

The results of the dynamic tests are presented in
‘Figure 10.2 and Table 10.2. Similar to the static case, the
peak bending 1loads and the fracture energies for fibre
reinforced concrete were found to be higher than those for
unreinforced beams, even in the dynamic loading situations,
However, an improvement by about eight times in the fracture
energy observed in the static case (Table 10.1), was not
matched in the dynamic case, where the corresponding
improvement was only by about a factor of two (Table 10.2).

Fibre reinforced concrete, whose behaviour depends upon
the behaviour of the matrix as well as the fibres, was found
to be particularly stress-rate sensitive (Figure 10.3).
Since both the matrix (Chapter 6), and the matrix-fibre bond
(64) are very strain rate sensitive, it is not surprising
that the composite shows a sensitivity to strain rate as
well,

To study the effect of moment of inertia on the impact
performance of steel fibre reinforced concrete, some beams
were tested about their weak axes. Table 10.3 shows' the
results of this testing. It can be noted that a reduction in

Tm* to 104x10 'm* resulted

the moment of inertia from 162x10
not only in a reduction 1in the peak bending load, which is
to be expected, but also in a reduction in the fracture
energy. The direction in which the beams were cast, and the

bleeding due to the use of an electric immersion vibrator

(Chapter 6), are the probable causes of this observation.
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Figure 10.3-Static and Dynamic Behaviour of Steel Fibre Reinforced Normal Strength Concrete

o4 |- STEEL FIBRE REINFORCED

-1 L CONCRETE
E '8 Dynamic

o 1S

g |2

-4 9

S R W L
O 24 6 8 1012 1416 18 202224
DEFLECTION , mm

6
3 N
O

‘ Table 10.3
Effect of Moment of Inertia on Steel Fibre Reinforced Normal Strength Concrete (0.5m drop)

1 = 162x10~7 I = 104x10~7
(6) (6)!
Max Min Mean s Max Min Mean s

Max. Observed Tup Load 43281 37286 39999 2345 33091 32434 32768 268
(N)

Max. observed Inertial Load 17094 13819 15993 1262 16904 14009 15618 1203
N)

'Number of specimens tested.
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10.3 POLYPROPYLENE FIBRE REINFORCED NORMAL STRENGTH CONCRETE

(NSPFRC) UNDER VARIABLE STRESS RATE

The effect of fibrillated polypropylene fibres on the
performance of normal strength concrete was studied as for
the steel fibres. Figure 10.4 and Table 10.4 present the
results obtained from the static tests. The results for
plain concrete have also been reproauced for comparison.
Similar to the steel fibrés, the peak bending load and the
fracture energy were both found to 1increase with the
addition of polypropylene fibres. However, -the increases 1in
these quantities were small, and were not as significant as
those for steel fibres (Table 10.1). Similar conclusion can
~be drawn from the dynamic results (Figure 10.5 and  Table
10.5), where once again only marginal increases were
observed in the peak bending load and the fracture K energy
upon adding the fibres.

A comparison of the static performance of NSPFRC with
its dynamic pgrformahce (Figure 10.6) éuggests its strong
strain rate sensitivity. However, the strain rate
sensitivity demonstrated by the métrix itself (Chapter 6) is
probably primarily responsible for the strain rate
sensitivity showen by the composite.

As in the case of steel fibers, the effect of moment of
inertia on the impact performance of polypropylene

reinforced concrete was also studied by testing a few beams
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Table 10.4
Static Behaviour of Plain and Polypropylene Eibre Reinforced Normal Strength Concrete

Plain (3)! : Plain + PP
Fibres (3)!
Max Min Mem s Ma Min Mem s
Peak Bending Load (N) 6766 6000 634 306 7436 701 7302 99
Fracure Enengy (Nm) | 65 29 55 15 202 99 140 45
Cross Head Speed (mised) - - 4xl07 - - - 4107 -

'Number of specimens tested.

12-

10-

Normal Strength Plain Concrete

Normal Strength PP. Fibre Concrete

Load, kN

1 1 1 ] ] 1 1 i ]
0 1 2 3 4 5 6 7 8
. Deflection, mm

Figure 10.4-Static Behaviour of Plain and Polypropylene Fibre Reinforced Normal Strength
Concrete

10
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Table 10.5 '
{0.5m drop)
Plain (6)* Plain + PP.
Fibres (6)"
Max Min Mean s Max Min Mean s

Max. Observed Tup Load 37567 35810 36196 677 40431 36008 38318 1584
N)

Max. observed Inertial Load 20291 16868 19264 1278 23000 19804 21018 1267

. ——— > S S . . . . —— T e T S — S —— T — — - — — i i O G S - - S S S - S S S e S G S S - ——

|8

S

| 4

N

LOAD , kN
o

0] 8 i6 24 32 40
DEFLECTION, mm '

Figure 10.5-Dynamic Behaviour of Plain and Polypropylene Fibre Reinforced Normal Strength
Concrete (0.5m drop)
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Figure 10.6-Static and Dynamic Behaviour of Polypropylene Fibre Reinforced Normal Strength
Concrete

POLYPROPYLENE FIBRE
REINFORCED CONCRETE

14
=
.10 -
() Dynamic
< 8 g
S 6
4
2 | \
0 T I N TR R A SR RO R NN N A 1
Ol 2 3 4 5 6 7 8 91011 1213
DEFLECTION , mm
Table 10.6
EMMMMMWMMMW&WWMWM
. I = 162x10~7 I = 104x10~7
(6)! 6y
Max Min Mean s Max Min Mean s

—— . S . . ——— S S - — — > S - - S S e e S S . MR T S R ——— T - - —— - . - - - — - -

Max. Observed Tup Load 37567 35810 36196 677 32763 29737 31263 867
\N)

Max. observed Inertial Load 20291 16868 19264 1278 19688 17688 18463 876

N)
Peak Bending Load (N) 17727 16452 16932 428 15075 10049 12800 1850
Fracture Energy (Nm) 100.5 878 90.1 6.5 64.0 56.0 60.0 29

- — — — — —— — 00— G St G = G T~ . S — A e S Y T T . - — —— . - - — . Yo S o S -

'Number of specimens tested.
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about their strong axis (I=162x10_7) and also about their

weak axis (I=104x10-7).

Significant reductions in the
observed peak bending loads and the fracture energies were
observed (Table 10.6) for the tests about the weak axis,
probably for the same reasons as for the steel fibre

reinforced concrete (Section 10.2).

10.4 COMPARISON OF STEEL FIBRE REINFORCED NORMAL STRENGTH

CONCRETE AND POLYPROPYLENE FIBRE REINFORCED NORMAL STRENGTH

CONCRETE

Fibres, polypropylene as well as steel, seem to
increase the "ductility"” of concrete in both the static and
the dynamic cases. In addition,‘the fibres alsoA increased
the peak bending 1loads, or the strengths. However, the
extents to which these improvements were achieved were
different for the two fibre types. Such a comparison,
however, is not completely justified since a fibre volume
fraction of only 0.5% was used in the case of polypropylene
fibres as compared to a fibre volume fraction of 1.5% used
for the steel fibres. Thus the comparison 1is between the
maximum fibre volume fraction of polypropylene that could be
included with the conventional mixing techniques and the
commonly used fibre volume fraction of steel fibres.

In the static case, while the polypropylene fibers
achieved only marginal improvements in the peak bending

loads (Table 10.4) the peak loads were almost doubled in the
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case of steel fibres (Table 10.1). Steel fibres 1in the
static case were also found to increase the fracture
energies by almost a factor of 8, whereas the corresponding
increase in the case of polypropylene fibres was only by a
factor of 2.

In the dynamic case (Tables 10.2 and 10.5), the same
trend was observed. With polypropylene, only marginal
increases in the peak bending loads and energies were
. observed. However, éteel fibres increased both .the peak
bending loads and the energies dramaticélly. However, an
eight-fold increase in the fracture energy 1in the case of
static loading on NSSFRC was reduced to only a three-fold
increase in the case of dynamic ioading.

The performance of any type of fibre depends upon the
strength of the fibre, its geometry, and the quality of its
bond with the matrix. These fibre characteristics also
determinebthe mode in which a fibre will fail. 1In the
present study, the polypropylene fibres were always broken,
while the steel fibres.were 1in general pulled out. It 1is-
probably the pull-out process in the NSSFRC which results in
a larger area under the post-peak part of the 1load vs.
deflection plot. The sudden breaking of polypropylene
without much 1inelastic deformation in the fibre itself
results in a relatively sudden drop in the 1load vs.
deflection plot in the post-peak load region. Thus it may be
concluded that high modulus, short, and high tensile

strength fibres with some form of mechanical bonding (like
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the hooked ends of the steel fibres) behave better than low
modulus, low tensile strength fibres without any mechanical
bonding. In other words, the pull-out failure, which results
in increased post-elastic deformations compared to ‘failure
by breaking, is the desirable mode of failure.

One important distinction between the two types of
fibres is the number of peaks observed 1in the 1load vs.
deflection plots. NSSFRC was found to héve multiple peaks in
its load vs. deflection plot, as opposed to the single peaks
observed in the plain or polypropylene fibre reinforced
beams. When a fibre reinforced beam is loaded, at a certain
maximum tensile strain, the matrix cracks. After the matrix
failure, the fibres bear the 1load. The stress in any fibre
depends upon the general 1load 1level and 1its position
relative to the neutral axis. If the stress 1in the fibre
exceeds its tensile strength, the fibre breaks. This was the
case with polypropylene fibres. However, 1if neither the
fibre bond strength nor the tensile strength is reached, the
load can rise considerably beyond the point of matrix
failure. If the fibre has hooked ends, at a certain péint
crushing of concrete near the hook occurs, the hook
straightens under load and the fibre is pulled out. This was
apparently the case with NSSFRC.

The first peak in NSSFRC probably corresponds to the
matrix failure. The cracking of the matrix disturbs the
equilibrium momentarily, and while the stresses are being

redistributed, the load drops. Once the fibres take over
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completely, the load rises again until the fibre pull-out
begins. With the pull-out, the 1load drops in steps (Figure
10.3). Thus~the crushing of the matrix in the vicinity of
the hook, the straightening of the hook, and the beginning
of the pull-out process as thé separation proceeds, give
rise to more than one peak in the 1load vs. displacement

plot.

10.5. EFFECT OF VARYING THE STRESS RATE IN THE DYNAMIC RANGE

ON THE PERFORMANCE OF STEEL FIBRE REINFORCED NORMAL STRENGTH

CONCRETE

To study the effect of varying the stress rate in the
dynamic range on the performance of normal strength steel
fibre reinforced concrete, beams 150mmx150mm in cross
section and 1500mm long were tested on a span of 960mm under
four different hammer drop heights. The results are
presented in Table 10.7, and also in the form of load vs.
“displacement plots in Figure 10.7a.

As can be observed from the plots of Figure 10.7a,
before the ultimate load peak, a matri# failure peak exists
for all of the drop heights. As has been pointed out
previously, before the full strength of the steel fibre
reinforced beams is attained, the matrix cracking strain is
reached, and a sudden cracking of the matrix causes a
momentary unloading of the beam before the 1load can rise
again. The first peak load outlined in Table 10.7 thus

corresponds to the load at which the matrix cracks; it can



Table 10.7
Dynamic behaviour of Steel Fibre Reinforced Normal Strength Concrete (150x150x1500 Beams)

Height of Hammer Drop (m)
0.15m (3) 0.25m Q) 0.50m (3)! 0.75m (3)!

Max Min, Mean s Max. Min. Mean S Max. Min, Mean S Max, Min, Mean s

Peak 29855 19043 25384 4607 37096 29731 32275 3410 51003 46092 48547 2455 60638 55150 57268 2409
Bending

Load

N)

First 20220 18340 19506 174 30698 26992 28534 1575 38912 32178 35130 2811 46082 42786 44930 1517
Peak

Load

(N)

MOR 8.6 7.8 83 0.3 13.1 11.5 12.2 0.7 16.6 138 15.0 12 19.7 183 19.2 0.7
(First

Peak

Load)

(MPa)

Mean - - 4170 - - - 8714 - - - 18775 - - - 32016 -
Stress
Rate
MPa/sec

Fracture 823 66.3 73.7 6.6 149.4 94.8 127.6 237 2122 149.2 180.7 31s 299.6 2744 286.3 10.0

Energy
(Nm)

'Number of sepcimens tested.

822
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STEEL FIBRE REINFORCED NORMAL STRENGTH DONCRETE  (150x150x1500m Bears )
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" Figure 10.7(a) Load Deflection Plots for SFRC under different

Hammer Drop Heights.
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Figure 10.7(b)- Comparison between the matrix behaviour

in SFRC and that in Plain Concrete.
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Figure 10.7(c)- Strain Rate Sensitivity of the
Matrix in SFRC. Note that the value of "n" in
Impact range is the same as Plain Concrete (Fig.6.5)
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thus be used to calculate the MOR using elastic analysis.
The values of MOR thus obtained are also tabulatea in Table
10.7. | |

A cdmparison of the MOR wvalues obtained from the
unreinforced normal strengﬁh concrete beams (Table 6.2b)
with thoSe“ obtaiﬁed _from the first peak of the fibre
reinforced normai,strenéih beams indicates that for a given
drop height, the moduli of rupture are almost the same. Such
a comparison is‘,presented in Figure 10.7b. It is
interesting; ¢4 note that the presence Qf the fibres was.
fbund not to ha&e a significant effect 6n the pefformance of
the matrix itself. | |

With the static matrix failure values taken from Table
10.1, and the dynamic values taken from Table 10.7, a ploi
of logo, ?s. légé for steel fibre reinforced concrete may be
drawn..  Such a plot is presented in Figure 10.7c. It may be
seen from Figure 10.7c that the value of n decreases under
impactvloading, compared to its valueb.in the quasi-static
loading. Similar finding weré reported in.Chapter 6 for the
plain concrete (Figure 6.5). Similarly, the value’of n was
found to have a value of n=1;50 for plain normal strength
concrete (Figuré'G.S); this is almost thebsame as the value
of n =1.40 obtained for the NSSFRC (Figure 10.7¢c). This
again suggests that the behaviour of thevmatrix itself is
not modified significantly by the presence of the fibres..

Similar to the behaviour of plain concrete, an increase

in hammer drop height (or an increase in the stress rate),
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is found to increase the <capacity to sustain larger
deflections in NSSFRC as well (Figure 10.7a). This resulted
in increased fracture energy requirements at higher stress

rates (Table 10.7).

10.6 STEEL FIBRE REINFORCED HIGH STRENGTH CONCRETE (HSSFRC)

UNDER VARIABLE STRESS RATE

High strength concrete made with condensed silica fume
(microsilica) was also reinforced with polypropylene or
steel fibres, to study the effect of stress rate on these
high stength fibre reinforced concretes.

The static behaviour of steel fibre reinforced high
strength concrete (HSSFRC) is compared in Table 10.8 and in
Figure 10.8 with that of its unreinforéed counterpart. It
can be éeen that the fibres were ver§ effective in
increasing the "ductility" of the composite. The brittle
nature of the failure in plain high strength beams, which
was evident from the sudden drop in load after reaching the
peak load was, to a- considerable extent changed to a slow,
ductile type of failure by the addition éf the fibres.

The dynamic performance of HSSFRC with a hammer drop
height of 0.5m has been compared with that of plain high
strength beams in Figure 10.9 and Table 10.9. The trends
observed in the case of static 1loading are the same for
dynamic loading as well,

A comparison of the static performance of HSSFRC with

its dynamic performance has been made in Figure 10.10. As
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Table 10.8

Plain (4)! Plain + Steel
Fibres (4)!
Max M.  Mem s Max  Min  Mem 5
Peak Bending Load () 12806 814 9720 1805 18271 16001 17996 1316
Fractwre Energy (Nm) 34 20 28 05 670 60 614 Sl
Cross Head Speed (mise) - - 40"l - - - a0l -

' Number of specimens tested.

18~

15-

High Strength Steel Fibre
Concrete

High Strength Plain
Concrete

Load, kN
[0)}
— i

8] 1 2 3 - 4 5 6 7 8 9 10
deflection, mm

Figure 10.8-Static Behaviour of Plain and Steel Fibre Reinforced High Strength Concrete
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Dynamic Behaviour of Plain and Stee] Fibre Reinforced High Strength Concrete (0.5m drop)

Plain (7) Plain + Steel
Fibres (6)!
Max Min. Mean s Max Min. '\dean ]
Max. Observed Tup Load 39320 35110 36652 1725 47926 44008 46612 1588
(N)
Max. observed Imertial Load 19025 16760 17892 1132 20207 17007 19011 1241
N) '
Peak Bending Load (N) 19206 18314 18760 446 29632 25049 27601 1646
Fracture Energy (Nm) "100.7 574 74.9 18.6 27110 2340 2526 1458
'Number of specimens tested.
30
25+
204
High Strength Steel Fibre
'\\ Concrets
z |
=< 15‘, \
) \
s
(]
10 l \ Hi : 2
oh Strength Plain
| \/ Concrete
| \
, \
\
\
\
o AN
| I l I |
8] S 10 15 20
Displacement, mm
Figurc 10.5-Dyuamic Behaviour of Plain and Steel Fibre Reinforced High Strength Concrete

(0.5m drop)
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Figure 10.10- Dynamic and Static behaviour of Steel Fibre reinforced High

- Strength Concrete.
30 -

25 -

20 -

15 - DYNAMIC
= h N\
= AN
N N
g0 ) | wSTATIC
| \\
5 _II ~ \\
\.
] ™
\
0- T i i i i 7
0 2 4 6 8 10 12 14 16 18

Deflection, mm

Table 10.10

20

Effect of Moment of Inerita on Stee] Fibre Reinforced High Strength Concrete (0.5m drop)

I = 162x10~7 I = 104x10~7
(6) 6)!
Max Min. Mean s Max Min. Mean s |

Max. Observed Tup Load 47926 44008 46612 1588 40530 38690 39752 778
N)
Max. observed Inertial Load 20207 17009 19011 1241 21904 19906 20752 843
(N)
Peak Bending Load (N) 29632 25004 27601 1646 20624 16786 19000 1452
Fracture Energy (Nm) 271.0 2340 252.0 14.6 140.0 126.0 132.0 5.1

!Number of specimens tested.
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observed in the case of plain concrete, HSSFRC also exhibits
a marked strain rate sensiiivity; the peak 1loads and the
capacity to sustain deformations increase immensely with an
increase in the stress rate.

The effect of moment of 1inertia on the dynamic
performance of HSSFRC was investigated by impacting some
beams about their weaker axes., The results have been
tabulated in Table 10.10. As in the case of normal strength
concrete, a reduction 1in the moment of inertia of HSSFRC
beams also fesblted in a reduction in their strengths and

fracture energies.

10.7 POLYPROPYLENE FIBRE REINFORCED HIGH STRENGTH CONCRETE

(HSPFRC) UNDER VARIABLE STRESS RATE

The addition of 0.5% by volume of fibrillated
polypropylene fibres in high strength concrete was found not
to modify the properties significantly. Figure 10.11 and
Table 10.11 éompare the static performance of polypropylene
fibre reinforced high strength concrete (HSPFRC) with plain
high strength concrete. It can be seen that somé advantage
was derived by adding the fibres.

Figure 10.12 and Table 10.12 compare thé dynamic
performance of plain concrete and HSPFRC. No significant
improvement could be noticed in the dynamic case. The effect
of strain rate on HSPFRC is shown in Figure 10.13, where the
static performace of HSPFRC has been plotted along with its

dynamic performance. The general strain rate sensitivity as
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: Table 10.11 .

Plain (4)! Plain + PP,
Fibres (4)!
Max Min  Mem s Ma Min  Mem s
Peak Bending Load (N) 12806 8144 970 1809 14564 12588 13206 787
Fractre Energy (Nm) 34 20 28 06 10 s4 81 29
Cross Heal Speed (mise) - - 407 - - - a0 -

'Number of specimens tested.

14 _

12 -

\

\

\

l

|

|

I

I High Strength PP. Fibre Concrete
-

’L,/——‘High Strength Plain Caoncrete

| .

|

I

|

l

I

l

w

o)}
i

Load, (kN)

IS
!

\—_\

~

] ] i i T
1 2 3 4 S 6 -7 8 g 10

Deflection, mm

tigure 10.11-Static Behaviour of Plain and Polypropylene Fibre Reinforced High Strength
~ Concrete
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: Table 10.12
drop)
Plain (7) Plain + PP.
Fibres (6)' |
Max Min Mean s Max Min Mean s

Max. Observed Tup Load 39320 35110 36652 1725 38377 35796 37207 1109
(N)

Max. observed Inertial Load 19025 16760 17892 1132 20904 17692 19063 1189
™)

Peak Bending Load (N) 19206 18314 18760 446 19001 17473 18144 549

! Number of specimens tested.

30—

25|

20-

High Strength PP. Fibre Concrete

= ] i
3 4 5
Deflection, mm

oOh—
.
o=
O—
-
o

Figure 10.12-Dynamic Behaviour of Plain and Polypropylene Fibre Reinforced High Strength
Concrete (0.5m drop) ’



239

noticed for unreinforced beams (Chapter 6) was noticed for
the HSPFRC beams as well, but the polypropylene fibres were
not found to impart to the composite any additional strain
rate'sensitivity beyond that of the matrix itself.

The effect of changing the moment of inertia of HSPFRC
has been tabulated 1in Table 10.13. Once again, HSPFRC was
also found to have reduced strengths and reduced fracture
energies when tested about its weaker axis.

Thus, 1little was achieved by adding polypropylene
fibres to a high strength matrix. The only real advantage of
this addition was in the general coherence observed iﬁ these
beams under impact. While extensive spalling occured iﬁ
plain unreinforced beams, polypropylene fibre reinforced
beams tended to preserve their coherence and the integrity

of the composite.

10.8 COMPARISON BETWEEN FIBRE REINFORCED NORMAL STRENGTH AND

FIBRE REINFORCED HIGH STRENGTH CONCRETE

Under static conditions, the behaviour of both types of
concrete was modified to some extent by adding fibres
(Tables 10.1, 10.4, 10.8, and 10.11). Low modulus
polypropylene fibres did not result in any major improvement
in the mechanical properties of concrete. However, the
inclusion of high modulus steel fibres was found to produce
significant effects in both types of concrete. The more
brittle high strength concrete was found to benefit the most

from steel fibre addition. The immense improvement in the
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~ Figure 10.13-Static “and Dynamic Behaviour of Polypropylene Fibre Reinforced High Strength

Concrete

30—

20—
=
X
O -

[} -

Q
Ju |

Dynamic
10—
D t- ] ] [} t 1 1 ) ] ]
0 1 2 3 4 5 . 6 7 8 9 10
Deflection, mm
‘ Table 10.13
Effect of Moment of Inertia on Polypropylene Fibre Reinforced High Strength Concrete (0.5m
_ drop)
I = 162x10~7 I = 104x10~7
6)! (6)!
Max Min Mean s Max Min Mean s

Max. Observed Tup Load 38377 35796 37207 1109 31290 29262 30080 873
N)

Mayx. observed Inertial Load 20904 17692 19063 1189 20062 19048 19530 415
™)

'Number of specimens tested.
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ductility and toughness of steel fibre reinforced high
strength concrete suggests that the high strength of the
matrix, coupled with the improved ductility, makes it a very
suitable material under static and dynamic loading
conditions. Steel fibres were effective in providing
ductility to normal strength concrete as well, although to a
lesser degree than to high strength concrete.

Similar conclusions may also be drawn for the dynamic
loading case (Tables 10.2, 10.5, 10.9 and 10.12). However,
in both the static and dynamic cases, the 1low modulus
polypropylene fibres were found to increase the ductility
only marginally as compared to high modulus steel fibres
with hooked ends, which produced dramatic effects.

As mentioned earlier, - the efficiency of a particular
type of fibre in a matrix depends upon how effectively the
properties of the matrix have been utilized. High strength
concrete, known for its better crushing strength and bond,
did not show marked improvement with polypropylene fibres
because none of the advantageous matrix properties were
utilized. On the other hand, steel fibres with the hooks on
their ends wutilized the matrix crushing strength in the
vicinity of a hook, and made use of the bond strength while
béing pulled out. This explains, to some extent at least,
the better behaviour of steel fibre reinforced high strength
concrete over steel fibre reinforced normal strength

concrete.
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10.9 CRACK DEVELOPMENT 1IN STEEL FIBRE REINFORCED NORMAL

STRENGTH CONCRETE UNDER IMPACT

To study the development of cracks in NSSFRC, high
speed photography, using a high speed motion picture camera
was carried out on a NSSFRC beam undergoing impact, with a
hammer drop height of 0.5m. Figure 10.14 shows the results.
It should be compared to Fiqure 6.12, for hydrated cement
paste (hcp).

The presence of fibres seems to affect the process of
crack development 1in two ways. First, with £fibres, the
velocity of the «crack is reduced. The average velocity of
the crack was found to decrease from 115 m/s in hcp to about
74 m/s in NSSFRC. While only 10ms were 'required for the
crack to traverse the entire beam depth in hcp, almost 16ms
were required in NSSFRC. The second noticeable difference is
in the extent of damage; The appearance of several <cracks
running in various directions in hcp seems to have been
controlled in the fibre reinforced beam. Fibres thus act as
crack arresters and help preserve the coherence and

integrity of the composite.
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STEEL FIBRE REINFORCED CONCRETE
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Crack development as a function of time in a steel fibre reinforced

Fig.-10.14 concrete beam subjected to impact loading.

The number in each

frame represents the time (in units of 0.1 ms) from the first frame

shown.



11. CONVENTIONALLY REINFORCED CONCRETE UNDER IMPACT

11.1 INTRODUCTION

The behaviour of plain and fibre reinforced concrete
under impact 1loading has been described in the previous
chapters. Although the use of steel fibres has been found to
improve the performance of plain concrete dramatically, the
fibres can not be used to replace the conventional
reinforcing steel bars 1in concrete. Thus, it 1is also
necessary to assess the properties of conventionally
reinforced concrete under impact 1loading, in order to be
able to assess the behaviour of the overall structure.

Dynamic loading imposes a high ductility demand upon a
structure and conseguently wupon its elements. One such
element which will be discussed in this chapter is the beam
element. The effect of varying the stress rate on plain
concrete can shed some light wupon the the effect of stress
rate on reinforced concrete. However, the conclusions (drawn
for plain concrete beams undergoing .impact (Chapter 6)
cannot, in general, be extended to reinforced concrete,
where the mode of failure and the mechanism of crack
propagation are very different. Conventionally reinforced
concréte beams, with a percentage of steel of 1.136%, were
tested under static 1loading conditions 1in a universal
testing machine, and later under impact loading in the drop
weight machine, using a variable hammer drop height.

The performance of conventionally reinforced concrete

under variable stress rate seemed to be affected by the

244
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concrete strength, by the presence of lateral reinforcement,
and by whether deformed or smooth reinforcing bars were

used. All of these paramters will be discussed below.

11.2 CONVENTIONALLY REINFORCED NORMAL STRENGTH CONCRETE WITH

DEFORMED BARS (CRNSC) UNDER VARIABLE STRESS RATE

Conventionally reinforced normal strength concrete
.(CRNSC) - beams were tested in 3-point  bending: (1)
statically, with the cross—head moving at 4.2x10—7m/s; and
(2) in the impaét‘machine, under drop heights of 0.5m,
0.75m, 1.0m, and 1.5m. The concretes, with two different
water/cement ratios of 0.4 and 0.33, corresponding to the
compressive strengths of 49 and 656MPa, respectively, were
cast with two 9.52mm deformed bars (Table 4.1) with a yield
strength of 425 MPa, and an ultimate strength of 720 MPa.
Table 11.1a represents the static results and Tables 11.1b
and 11.1c represent the impact results for w/c ratios of 0.4
and 0.33, respectively.

The effect of varying the stress rate on the load vs.
displacement plots is shown in Figure 11.1 for a
water/cement ratio of 0.4. Plots for a water/cement ratio of
0.33 look schematically similar. The effects of hammer drop
height on the peak bending load and the fracture energy
(calculated to the point at which the load drops to 1/3 of
its peak value) are shown in Figure 11.2.

An alternative criterion for comparing the fracture

energies under different hammer drop heights may be to



Tabte 11.1(a)

Static Behaviour of Conventionally Reinforced Normal Strength Concrete

wie = 040 (3)% e = 033 gy

Max Min. Mean s Max, Min.’ Mean s
Peak Bending 25042 18289 - 22671 3102 24642 22908 - 23682 1450
Load (N)
Fracture Energy' 482 379 442 . 45 522 463 483 28
(Nm)
Fracture Energy’ 403 353 378 n 429 186 404 18
(Nm) . '
Fracture Energy’ 499 434 468 27- 493 473 ) 469 22

(Nm)

*

Number of specimens tested.

97e



Table 11.1(b)
Dynamic behaviour of Conventionally Reinforced Normal Strenpgth Concrete (w/c = 0.40) .

Ht of Hammer diop, m

,mawmm(s)* » o ' ﬁaﬁmm(G)*» ;Jnmm(s)f » ' memm(s)*

Max Min. Mean ] Max, Min, Mean s Max, Min. Mean s Max. Min. Mean 5

Peak 37553 35776 36664 888 38582 37210 38026 589 40374 37557 39309 1251 45517 36539 39800 3052
Bending : ' .

Load

(N)

Fracture 1285 564 880 300 2160 829 1378 567 3059 1723 2421 547 - 3854 2078 2750 628

Energy!
(Nm)

Fracture 614 544 580 28 625 607 - 619 8 - 675 612 644 25 713 634 €58 30

Energy?
(Nm)

Fracture 895 719 793 4 1281 873 1132 184 1348 1237 1303 48 1414 ‘ 1249 - 1304 58

Energy?
(Nm)

Fracture - - - 1876 985 © 1358 440 1945 1678 1811 133 2078 1800 1912 100

Energy* .
(Nm) "

Fracture - - - - - - ' 2485 2262 2315 113 2626 2249 2430 134

Energy?®
(Nm)

Max, 2.6 24 25 0.1 32 29 30 -0l 38 36 3.7 0.1 4.6 29 3.9 0.1
Beam ’

Yelocity

(m/s)

“Number of specimens tested.

A4



Ht. of Hammer drop, m

Table 11.1(c)
Dynamic_ behayiour _of Conventionally Reinforced Normal Strength Concrete (w/c = 033)

...0.50m...

*

(6)

*
.0.75m... (6)

.1.0m..

(6)"

v"JJOmm(ﬁ)*

Max

Min.

Mean

s

Max

Nﬁn.

Mean

Max

Min.

Mean

Min.

Mean

N

Peak
Bending
Load
(N)

41419

37553

T 39486

1933

43464

39337

41064

1750

46299

40023

430583

2566

46649 -

40016

43703

2850

Fracture
Energy!
(Nm)

1507

1091

1299

208

1892

1471

1618

193

2600

2496

2562

47

3765

2275

2780

693

Fracture

Engrgy'
(Nm)

671

606

638

32

682

631

€52

22

132

648

638

7}

716

665

691

21

Fracture’

Energy’
(Nm)

1333

956

1145

189

1396

1149

1246

108

1508

1309

1317

92

1381

1335

1361

19

Fracture
Energy*
(Nm)

1712

1272 .

1432

199

1892

1641

1764

103

1982

1556

1820

188

Fracture
Energy’
(Nm)

2501

2336

2413

" 68

2535

1943

2267

243

Max,
Beam
Yelocity
(m/s) )

26

25

1.5

*

Number of specimens tested.

0.02

28

2.5

2.6

S0l

31

26

1.9

0.2

4.5

34

4.0

0.4
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Figure-11.1-Effect of stress rate on the load vs. deflection
plots of conventionally reinforced concrete beams
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Figure-11.2-Effect of hammer drop height on (a) Peak bending
load, and (b) Fracture energy of CRNSC
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compute these fracture energies at different midspan
deflections. The values of 18mm, 36mm, 54mm, and 72mm were
chosen for this purpose. Tables 11.1b and c¢ show these
calculated values; they are plotted in Figure 11.3 for a
water/cement ratio of 0.4.

Clearly, stress rate has a significant effect on the
properties of conventionally reinforced concrete. In
general, a large increase in the peak bending 1load was
observed when the stress rate was increased from the static
to the dynamic—range. However, once in the dynamic range, a
change in the hammer drop height did not result in a
significant increase in the peak bending load (Figure 11.2a)

In the static case, for a rectangular seétion, the

balanced percentage of steel is given by (59)

]
__o.asrc 8, 0.003E (11.1)
Py = f 0.003E +f
y sy

where the notation is defined in Figure 11.4.

With

fé = 49 MPa»
f = 425 MPa

E_ = 200,000 MPa
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Figure-11.4-Beam Section

we get,

Py = 4.87%

Since the percent steel used in this study 1is only
1.136%, the section 1is wunderreinforced. With the steel
yieding first, the ultimate moment of resistance under
static conditions (ignoring any strain hardening) may be
calculated as follows (59): |

Referring again to Figqure 11.4,
A_f
S
0.85f'b

[w}

140x425
0.85x49x100

14.28mm.

(11.2)

If MR(TH) is the theoretical wultimate moment of resistance

of the section, then,
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(11.3)

MR(TH) Asfy(d-o.Sa)
140x425(100-0.5x14.28)

5.525x102 N-mm

This agrees closely with the observed value of wultimate
moment of resistance in the static case (MR(OBS)) (see Table

11.1a).

() 1
MR(0BS) = —2-12X
_22671x960 o | C(11.4)
=7 3

5.541x10° N-mm

Under impact cdnditions, although the mechénism of
failure may remain the same as undef static conditions, the
properties of both steel (65) énd concrete (Chapter 6), and
of the bond between them, seem to change. The éompressive
strength of concrete (21), and the yield and the ultimate
strength of steel (65) increase as the Stress. rate 1is
increased. Once in the dynamic range,_'the peak loads were
found not to be very different from one drop height to
another.'(Figure 11.1 and 11.2), suggesting that the
strengths of both the concrete and steél tend to approach
their limiting values at the high stress rates associated
with impact. This may also indicate. that, once in the
dynamic range, the stress rates may not be very different
from one drop height to another.

The absolutely 1limiting wvalue of the moment of
resistance in the static case MR(lim,static) may be obtained
by assuming that the steel reaches the wultimate value of

stress,'and by assuming that the position of the neutral
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axis is at the extreme compression fibre. Then,

MR(lim, static) = A f d . (11.5)
S us . .

where f the wultimate strength of steel 1in static

700 MPa

conditions

Therefore,

MR(lim, static) = 140x700x100 = 9.8x106 N-mm

Under dynamié conditions; it has been reported (66)
that for an 1increase in the stress rate of six orders of
magnitude, the ultimate tensile strength of steel is
approximately doubled. Since, 1in the present study, the
stress rate achieved in the impact tests was approximately
six orders of magnitude higher than in the static teéts, the
absolutely limiting value.of the moment of resistance in the

dynamic case (MR(lim,dyn)) can be estimated to be,

. . . (11.6)
MR(1lim, dyn) = Asrudq _ :

where f£,g = the ultimate tensile strength of steel in

dynamic conditions = 1400 MPa.

Then,
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MR(lim, dyn) = 140x1400x100 = 19.6x106 N-mm

A plot of the absolute limiting‘moment of resistance,
alqng.with the experimentally observed moment of resistance,
has been presented in Figure 11.5. The curves of observed
moment of resistance fall short of the limiting moment of
resistahée curve  bécaﬁse; in practice, 'concrete‘ crﬁshing
commences before the neutral axis reaches the compression
face. However, since the crushing strength;ana_fhe 'failufe

strain for concrete both increase with ‘an increase in the

24 —

///,Theoretical Limiting Strength

o
|

N
I

Observed Strength (w/c=0.33)
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@
|

Moment of Resistance, kNnm

&
|

[ | | !
& 0.5 1.0 1.5 2.0
Ht. of Hammer drop, m ‘

Figure-11.5-Theoretically limiting and the experimentally
observed Moment of Resistance
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stress rate (21), the neutral axis may move further upwards
towards the compression face with an increase in hammer drop
height. Moreover, increased failure strains in concrete
increase the failure strains 1in the steel, causing an
increase in strain hardening and consequently in the steel
stress. The complex nature of stresses and strains in an
impacted beams may also give rise to severe localized
strains aloﬁg the length of the steel bars. Indeed, in about
30% of the specimens tested at 1.5m drop, fracturing of the
reinforcing bars was noticed. (see Section 11.5 a detailed
discussion of the steel fracture).

A reduction in the water/cement ratio caused increased
peak bending loads and increased fracture energies (Figure
11.2 and Tables 11.1a and 11.1b). Concrete with a
water/cement ratio of 0.33, which had an equivalent cube
strength of 56 MPa, as compared to concrete with a w/c ratio
of 0.40 with an equivalent cube strenght of 49 MPa, also

fell far short of the limiting moment of resistance curve. -

For a given midspan deflection, the beams subjected to
higher stress rates absorbed higher fracture energies. This
is a consequence of the higher loads supported by the beams
at higher stress rates (Fiqure 11.3). Beams subjected to
higher stress rates could also undergo larger deformations
before the loads dropped to one-third of the peak values
(Figure 11.1). The higher fracture energies absorbed by the

beams subjected to higher stress rates are therefore a
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consequence of both higher 1load capacity and the higher

deformation capacity at higher stress rates.

11.3 THE USE OF SMOOTH REINFORCING BARS

In conventional concrete practice, only deformed
reinforcing bars are used, because they achieve a much
better bond with concrete than do smooth bars. However,
since the failure mechanism and the behaviour of
conventionally reinforced concrete under ‘impact loading was
found to be differént from the étatic case, if_was decided
to examine the behaviour of concrete reinforced with smooth:
rebars under impact. It should be noted here that in the
case of beams reinforced with deforméd reinforcing bars
under impact, fracture of the rebars was observed in about
30% of the cases (See below). It was therefore considered
worthwhile to see 1if reducing the bond by using smooth
rebars solved this problem. The same scheme as used for
deformed rebars was adopted. Two w/c ratios, of 0.4 and 0.5,
were chosen, corresponding to concrete strengths of 42 and
49 MPa, respectively.

Tables 11.2a and 11.2b,c present the static and the
dynamic properties, respectively, of normal strength
concrete with smooth reinforcing bars. As in the case of
deformed bars, both the peak bending loads and the fracture
energies were found to increase with an increase 1in the
hammer drop height (Tables 11.2a,b,c and Figure 11.6). The

fracture energies to 1/3 of the peak load and to different



“Table 11.2(a)

Static  Behaviour of Normal Stremgth Concrete Reinforced with Smooth Steel Bars

wie = 040 (3)" wie = 050(3)

Max Min. Mean s Max. Min. Mean s
Peak Bending 26028 21_356 23202 2029 23028 18348 20148 2057
Load (N)
Fracture Energy' 604 550 586 25 590 430 534 74
(Nm)
Fracture Energy’ 530 3 432 69 456 362 402 40
(Nm)
Fracture Energy’ 672 599 73 630 © 510 560 51

(Nm)

500

*

Number of specimens tested.

6G6¢



Table 11.2(b)

Dynamic behaviour of Normal Strength_Concrete  Reinforced with Smooth Steel Bars (w/c = 0.4)
Ht. of Hammer drop, m
* * .
.0.50m... (6) " ..1.50m... (6) 2.36m... (6)

Max Min. Mean s Max. Min. Mean s Max. Min, Mean s
Peak 37202 35456 36617 v 820 39727 35494 37314 1778 43441 18636 41038 2402
Bending ‘ ’ :
Load (N)
Fracture 1230 1056 1143 87 2699 1735 2353 438 3748 2959 - 3353 394
Energy! :
(Nm)
Fracture 606 601 603 2 653 604 624 21 685 674 679 6
Energy? : ’
(Nm)
Fracture 1213 1171 ' 1127 19 1299 1164 1235 55 1355 1355 1355 0
Energy’
(Nm)
Fracture - - - 1955 1649 1760 138 1976 1946 1961 15
Energy* :
(Nm)
Fracture  ~ - - 2626 1930 2218 296 1851 2375 2476 . i}
Energy’
(Nm)
Max. 39 24 2.9 0.7 42 28 3.4 0.6 45 18 42 04
Beam '
velocity
{(m/s)

*

Number of specimens tested.
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Table 11.2(c) :
Dmmm;kmmw;ﬂ‘mmmL&uum_Qmmn_thum_ﬂm Smooth Steel Bars (w/s = 0.9)

H. of HNammer drop, m

~.050m... (6)" 075m... ()" Lo ()" ~1.50m.. ()"

Min. Mean H

Max Min. Mean s Max, Min, Mean s Max. - Min. Mean s Max.

Peak 37553 35090 36321 123 31530 35784 36483 754 36493 36485 36474 18 36142 35448 35798 347

Bending
Load
(N)

1531 34 2703 1349 1929 - 569 2593 243 2368 225 i 2443 21780 17

Fracture 1565 1497
Energy!
(Nm)

Fracture 592 . 565 378 1 635 559 595 3 613 605 609 4 - 631 540 585 45

Energy!
(Nm)

Fracture 1164 119 1141 22 1233 1160 1194 29 1223 1192 1207 15 1230 1148 1189 4)

Energy’
(Nm)

Fracture - - - 1749 1746 1747 2 18332 1762 1797 35 1807 1608 1707 99

Energy*
(Nm)

Fracture -~ - - - 2347 2145 1246 101

Energy*
(Nm)

Max. 22 25 2.6 0.1 S 26 2.9 0.3 35 32 33 0.1 44 15 4.0 04

Beam .
Yelocity S
(m/s)

Number of specimens tested.

19Z
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Ht. of Hammer drop, m

Figure-11.,7-Energy at various midspan deflections for
reinforced concrete with smooth bars
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midspan displacements as a function of hammer drop height
are shown in Figure 11.7. Once again, as in the case of
deformed bars, the higher drop heights 1led to larger
deformation capacities before the loads dropped to 1/3 of
the peak loads. The peak loads in the dynamic range were not
very different; the increase 1in the fracture energy with
increasing hammer drop height was primarily a consequence of
the larger deformétion capacity the beam demonstrated at
higher drop heights.

A compari;on of the behaviour of concrete with smooth
rebars and of concrete with deformed rebars is presented in
Figure 11.8, where the peak bending 1loads and fracture
energies have been plotted as a function of hammer drop
height. It can be seen from Figure 11.8a that, although
their static performances (Tables 11.1a and 11.2a) are
almost identical, the wuse of deformed rebars resulted,. in
general, in higher peak bending loads in the dynamic cases.
This could, in part, be due to the slightly lowef measured
yield strengths of the smooth rebars as compared to the
deformed ones. The poorer bond achieved with smooth rebars
compared to deformed rebars may also be responsible for
their lower peak bending loads.

With the exception of the 0.5m drop, concrete with
deformed rebars was found to be more energy absorbing than
concrete with smooth rebars (Figure: 11.85). This may be
explained by the poorer bond developed by the smooth rebars.

At higher drop'heights, it 1is possible that more debonding
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occurred with smooth rebars, resulting in‘stress relaxation
in steel and hence in a diminished use of the steel
properties. On the other hand, the deformed bars were likely
stressed to a higher level, resulting 1in strain hardening
and higher wultimate steel strains. It 1s therefore not
surprising that the smooth rebars fractured only very
occasionally even at a 2.36m drop height, whereas deformed

rebars were often seen to rupture at 1.5m drop.

11.4 THE USE OF SHEAR REINFORCEMENT

The effect of shear reinforcement on the dynamic
behaviour of conventionally reinforced beams with deformed
rebars was also studied. The stirrups used were 5mm in
diameter, and spaced 100mm apart (Table 4.1). The results of
both static tests and impact tests are presented in Table
11.3. These results can be compared with the results
obtained in the case of concrete without the stirrups (Table
11.1a,b, and c). A graphical comparison is made in Figure
11.9.

The use of stirrups, as can be seen from Figure 11.,9%9a,
is not very effective in increasing the strength either in
the static case or in the dynamic case. However, confinement
of the concrete was found to increase the fracture energy
requirement, particularly in the dynamic range (Figure
11.9b).

The confinement of concrete has been found to affect

not so much the shape of the pre-peak stress-strain plot 1in
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STATIC... (3)

Min,

Mean

M

Table 11.3 -

':thAPA(?rm

Conventionally Reinforced Normal Sirength Concrele with Stirrups

¥
0.50m drop (5)

*

1.0m drop(6)

Max.

Min. Mean

Max,

Min.

Mean

H

Peak
Bending
Load (N)

23242

21022

22111

907

43042

34586 37770

3754

44692

35092

39788

3921

Fracture
Energy!
(Nm)

562

459

499 .

46

1892

1521 1665

162

3348

2834

3048

218

Fracture
Energy!?
(Nm)

432

294

342

66

641

591 621

22

31

632

689

42

Fracture
Energy’
(Nm)

580

384

453

90

1350

1128 1244

91

1440

1245

1325

83

Fracture
Energy*
(Nm)

2201

1640

1911

229

Fracture
Energy'
(Nm)

2842

2262

2531

238

*
Number of specimens tested.
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compression, but the shape of the post-peak stress-strain
plot (59). In general, the presence of stirrups increases
the ductility; this is manifested by a long, slowiy
descending post-peak bfanch of the stress-strain curve (59).
This behaviour, observed for static 1loading, seems to
prevail even under dynamic conditions. Under impact loading,
the concrete with stirrups was found to be considerably more

energy absorbing than the concrete without stirrups.

11.5 CONVENTIONALLY REINFORCED HIGH STRENGTH CONCRETE

(CRHSC) UNDER VARIABLE STRESS RATE, AND ITS COMPARISON WITH

CONVENTIONALLY REINFORCED NORMAL STRENGTH CONCRETE (CRNSC)

The properties of unreinforced high strength beams were
discussed in Chapter 6. It was stated that high strength
concrete beams, made with microsilica, were found to be
stronger, but more brittle than normal strength plain
concrete beams. In this section, the behaviour of high
strength concrete beams made with microsilica, with 9.52mm
deformed rebars is described. |

High strength conventionally reinforced beams were
tested both statically and under impact. The results are
given in Table 11.4, and are presented graphically in the
form of 1load vs. deflection plots 1in Figure 11.10. To
facilitate a comparison with conventionally reinforced
normal strength concrete under identical conditions, Figure
11.1 has been reproduced in Figure 11.11 for the relevent

drop heights. To describe the beam response during impact,
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Static and - Dynamic_ Behaviour _of Conventionally Reinforced High Strength Concrete

»*
.STATIC... (3)

Min. ~ Mean

Table 11.4

..JMPACT...

0.50m drop (6)"

1.0m drop (Ei)*

Max.

Min. Mean

Max.

Min.

Mean

Max. -
Observed

Tup Load
(N)

53304

39374 47622

5686

63747

61583

62946

824

Max, -
Observed
Inertial

Load (N)

9800

3721 7511

231

12902

8702

10263

1710

Peak 28990

Bending
Load (N)

20191 . 24031

3683

44433

35653 40111

3577

54292

50461

52683

1390

Fracture 732
Energy!
(Nm)

611 678

50

534

121 345

153

382

99

175

120

Max. -
Beam

Velocity
(m/s>

1.7

0.8 1.3

03

13

0.5

0.8

0.3

*

Number of specimens tested.
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Figure-11.10-Load vs., deflection plots for conventionally
reinforced high strength concrete under variable stress
rates :
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the velocity vs. time plots and the tup load vs. time plots‘
for high strength concrete have been plotted in Figure 11.12
(0.5m drop), and in Figure 11,13 (1.5m drop). Once again for
comparison, the corresponding plots for ndrmal strength
concrete are presented in Figure 11.14 (0.5m drop) and 11.15
(1.5m drop). A final comparison‘with the normal strength
concrete under different drop heights appears in Figure
11.16. |

As can be seen from Table 11.4 and Figure 11.10,
conventionally reinforced high strength concrete also
demonstrates substantial stress rate sensitivity. The peak
bending loads . were higher for higher stress rate
applications. Similar findings were reported for high
strength plain concrete beams (Chapter 6), and also for
normal strength beams with or - without conventional
reinforcement (Section 11.2). However, upon considering the
fracture energy, a reversal in the +trend is observed. The
energy required for the impact events in the case of CRHSC
was found to be smaller than the energy required statically
(Table 11.4), and an increase in the drop height resulted in
a reduction 1in the fracture energy requirement. In other
words, high strength concrete with conventional
reinforcement behaved in a more brittle fashion as the
stress rate or the hammer drop height was increased.

One observation worth making here 1is the increased
rigidity of the high strength beams under increased stress

rates. The peak velocities attained by the beam may serve as
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a measure of this apparent rigidity. For example, a
comparison of Fig 11,12 with 11.14, and of Figure 11,13 with
Figure 11.15 indicates that while the peak velocities in the
case of normal strength concrete increased with the hammer
drop height, they decreased for high strength concrete (see
also Table 11.4). This apparent rigidity of high strength
conventionally reinforced beams resulted in reduced ultimate
deflections with increasing hammer drop heights (Figure
11.10). The deformation <capacity and the ultimate
deflections, which increased with hammer drop height in the
case of normal strength concrete, decreased with increasing
hammer drop heights for high strength concrete; the reasons
for this are not entirely clear. The ductility reduction
with hammer drop height 1in the <case of high strength
concrete was so pronounced that the fracture energies almost
approached the energy required by the wunreinforced high
strength concrete (Chapter 6).

The embfittlement of high strength concrete with
conventional reinforcement may be a consequence of the great
improvement in the bond. between high strength concrete
containing microsilica and steel. The high quality bond
apparently resulted in very high local strains in steel,
resulting in premature steel failure. Steel failure was
observed in many more cases in high strength concrete than

in normal strength concrete (Figure 11.17).



Reinforced concrete beam of high
strength concrete after 0.5 m impact
showing cracking of the concrete.

(a : il (b)

Reinforced concrete beams of high strength concrete after 1.5 m impact showing (a) disintegration
of a beam and, (b) disintegration of the beam and fracture of the reinforcing bars.

Figure-11.17
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11.6 CRACK DEVELOPMENT IN CONVENTIONALLY REINFORCED HIGH

STRENGTH CONCRETE (CRHSC) UNDER IMPACT

A study of the crack development in conventionaliy
reinforced high strength concrete was carried out by using a
high speed motion picture camera running at 10,000>vfrahes
per second. The reéults were then Viewed frame by frame in a -
sméll hand viewer; énd the surface traces of the propagéting
cracks were sketched. Thé-results are shown iﬁ Figure 11.18.
| The average craék »veloéitY'(obtainea from tHe time
reqUiredvby.fhe craék to propagate from the bottom to the
top of the specimen) was found to be about 83 m/s, which is
faster than the veloéity_observed in steel fibre reinforced
concrete (74 m/s) (Section 10.9), but slower than the crack
‘velocity observed .in hydrated cement paste (115 m/s)
(Section 6.7). This éuggests tﬁat the . presence of vfhe
reinfbréing bars did not particulafly affect’ " crack
propagation. The closing of existing surface cracks  (Figure
11.18) during the process of impact, suggésts that a highly

complex stress pattern exists in a beam undergoing. impact.

NOTES: ‘Calculated to the polnt at which the load dropped back to 173rd of #s peak value.
"Calculated to 18mm midspan deflection. .
‘Calculated to 36mm midspan deflection.
*Calculated to 54mm midspan deflection.
SCalculated to 72mm midspan deflection.
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CONVENTIONALLY REINFORCED HIGH STRENGTH CONCRETE
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Crack developﬂen: as a function of time for a conventionally rein-

Fig.11.18-forced bigh strength concrete beam subjected to impact loading.
The number in each frame represents the time (in units of 0.1 ms)

from the first frame shown.



12, CONVENTIONALLY REINFORCED CONCRETE CONTAINING FIBRES

UNDER IMPACT

12.1 INTRODUCTION

It was observed iﬁ Chapter 10 that the addition of
fibres to a cementitious matrix results in a composite which
is far more ductile than the basic matrix. The fibres may,
at least in part, offer a solution to the problem of
concrete brittleness. However, this statement 1is only
gualitative; quantitatively, 1little 1is known about the
optimum fibre geometry, optimum fibre volume, and so on, for
impact loading.

In Chapter 11, it was shown that the impact resistance
of conventionally reinforced high strength concrete made
with microsilica was poor. Also, an increased intensity of
impact resulted in a reduced impact resistance, warning of
the dangers of wusing such a material under severe impact
loading conditions. Conventionally reinforced normal
strength concrete beams without microsilica, on the other
hand, were reasonably impact resistant, and under an
increased impact intensity, the impact resistance did not
particularly decrease.

One possible solution to the problem would be to avoid
entirely the wuse of high strength concrete in situations
where the possiblity of impact loading exists. However, this
would place too severe a restriction on the wuse of a very
promising material, which has excellent properties in static

loading conditions., Besides, most engineering structures are
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designed for static situations only, and impact or shock
loadings are nét explicitly considered. Therefore, it is
worth trying to see whether fibres can help to make
conventionally reinforced high strength concrete more energy
absorbing. As a comparison, the effect of fibfe
reinforcement on the impact performance of conventionally

reinforced normal strength concrete was also investigated.

12.2 CONVENTIONALLY REINFORCED NORMAL STRENGTH CONCRETE WITH

POLYPROPYLENE FIBRES (CRNSC-P) UNDER VARIABLE STRESS RATE

Normal strength concrete is known to be more ‘ductile
than hydrated cement paste. As has been described earlier,
the addition of fibres improved the ductility of normal
strengthlconcrete; the inclusion of conventional reinforcing
bars was even more effective in increasing the ductility of
normal strength concrete beams. To study the effect of both
fibres and conventional reinforcement, beéms with normal
strength concrete, reinforcing bars, and 0.5% by volume of
chopped fibrillated polypropylene fibres, were tested in
both static and impact loading with hammer drop heights of
0.5m and 1.5m. The results are given in Table 12.1. The
fracture energies were calculated to the point at which the
load dropped back to 1/3 of its peak value. The behaviour of
fibre reinforced beams is compared to that of beams without
fibres in the load vs. deflection plots of Figure 12.1. To

give an idea of the inertial loading on the beams, the
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Table 12.1
Static and Dynamic Bahaviour of Conventionally Reinforced
‘Normal Strength Concrete with Polypropylene Fibres

ess o STATIC.v0ees  seses IMPACT....
..0.5m drop.. ..1,5m drop..
Without With Without With Without With

Fibres Fibres Fibres Fibres Fibres Fibres
Peak 22671 24692 36664 38486 39800 40980
Bending (3102) (2633) (888) (1800) (3052) (2224)
Load
(N)

Fractured4?2 499 880 2342 2750 3361
Energy (45) (31) (300) (562) (628) (490)
(Nm)

Velocity4.2x10"7 4.2x10"7 3.13 3.13 5.19 5.19

of the

Cross—

Head

(m/s)

NOTES

1. Fracture Energies calculated to the point at which the
' ~ load dropped back to 1/3rd of its peak value.

2, The numbers in brackets are the standard deviations.

3. Three specimens tested under static, and six specimens

tested inder impact in each of the categories.

observed tup load, and the corrected bending load have both
been plotted as a function of displacement in Figure 12.1.
As may be seen from Figure 12,1 and from Table 12.1,
the effect of adding fibres led to a slight increase in the
peak bending 1load, and to an increase 1in the fracture
energy, particularly in the dynamic cases (Table 12.1).
Thus, the primary advantage of adding the fibres was not so
much in the increased strength, but in the increased

fracture energy. The beams with the fibres had an increased
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deformation capacity, and the fibres were effective in
maintaining the coherence of the beams with reduced

spalling.

12.3 CONVENTIONALLY REINFORCED HIGH STRENGTH CONCRETE WITH

POLYPROPYLENE FIBRES (CRHSC-P) UNDER VARIABLE STRESS RATE

High strength concrete made with microsilica is more
brittle than normal strength concrete without microsilica
(Chapters 6.and 11). Sinée the high concrete strength that
can be achieved with the wuse of microsilica is a very
attractive property, any means of overcoming 1its brittle
nature would be welcome. Since fibres in unreinforced high
strength concrete were found to be very effective (Chapter
10), their effect on CRHSC was also studied.

Static and impact tests were carried out on CRHSC beams
reinforced with 0.5% by volume of polypropylene fibres, and
the results are presented in Table 12,2 and Figure 12.2. As
in the case of normal strength concrete, improvements in
both the peak bending 1load and the fracture energy were
observed due to the addition of fibres. Once again, similar
to normal strength concrete, the advantage was not in the
increased strength, but in the greatly improved impact
resistance.

It was shown in Chapter 11 that an increase in the
impact intensity resulted in a considerable embrittlement of
CRHSC. However, CRHSC with fibres did not show any signs of

increased embrittlement with increased impact intensity. The
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FIGURE 12.2-Effect of adding polypropylene fibres to
conventionally reinforced high strength concrete
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Table 12.2
Static and Dynamic Bahaviour of Conventionally Reinforced
High Strength Concrete with Polypropvlene Fibres

ooooSTATIC..'. ....IMPACTI'.'

Without With Without With Without With
Fibres Fibres Fibres Fibres Fibres Fibres
Peak 24031 28242 40111 42642 52683 52583
Bending (3683) (2493) (3577) (2683) (1390) (1850)
Load
(N)
Fracture678 889 345 1276 175 1962
Energy (50) (72) (153) (229) (120) (284)
(Nm) ’
Velocity4.2x10"7 4.2x1077 3.13 3.13 5.19 5.19
of the
Cross—
Head
(m/s)

1. Fracture Energies calculated to the points at which the
load dropped back to 1/3rd of its peak value.

The numbers in brackets are the standard deviations.
Three specimens tested under static, and six specimens
tested under impact in each of the categories.

w N

beams were found to absorb more energy under higher drop

heights (or higher impact intensities).

12.4 COMPARISON BETWEEN CONVENTIONALLY REINFORCED NORMAL

STRENGTH CONCRETE WITH POLYPROPYLENE FIBRES AND HIGH

STRENGTH CONCRETE WITH POLYPROPYLENE FIBRES

As has been shown, both normal strength and high
strength concretes with conventional reinforcement were
found to benefit from the addition of fibres. The primary

advantage of adding the fibres was in the improved
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toughness. However, on a percentage basis, a larger gain in
toughness was observed for impact loading than for static
loading. A comparison betwen the two types of concretes is
presented in Figure 12.3. In Figure 12.3a, peak bending
loads have been plotted as a function of hammer drop height.
Fracture energy as a function of hammer drop height appears
in Figure 12.3b.

For both types of concrete, the addition of fibres
resulted in increased strengths, but the increases were only
marginal. Fibre reinforced systems were as strain rate
sensitive as were the systems without the fibres. The
presence of fibres perhaps resulted in a confining effect
which marginally increased the crushing strength of concrete
in the compression zone, causing the mean stress in the
compressive stress block to rise, and thus registering a
higher moment of resistance.

Under static as well as dynamic loading, the inclusion
of fibres resulted in increased energy absorption capacity.
However, the increase in energy absorption was far greater
in the case of high strength concrete than for normal
strength concrete, particularly at higher drop heights. An
increase in the impact intensity caused the fracture energy
to increase in normal strength concrete with or without
polypropylene fibres. However, the trend seemed to be more
complex for the high strength concrete (Figure 12.3b). While
an increase in the impact intensity, as observed in Chapter

11, resulted in an embrittlement of CRHSC without
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polypropylene fibres, a similar increase in impact intensity
made CRHSC with polypropylene fibres more ductile.

The embrittlement of high stfength concrete, thus, was
largely remedied by using fibres. While rebar fracture was
observed frequently in CRHSC without polypropylene fibres,
rebar fracture was uncommon in CRHSC reinforced with
polypropylene fibres. Thus, the undesirable and premature
rebar failure caused by high localized steel strains in
CRHSC without polypropylene fibres did not occur as
frequently in CRHSC with polypropylene fibres. The use of
fibres appeared to result in a more uniform distribution of
strains along the length of the reinforcing bars, avoiding
high localized strains, and thus using the reinforcement
more effectively. It is not <clear, however, how the
localized strains are caused and further investigation is

needed in this direction.

12.5 PREDAMAGED BEAMS

In practice, impact and shock locading generally occur
only very occassionally. Usually, a structural element,
before it is subjected to an impact 1loading, has already
been loaded statically. Since static loading design does
allow for cracks in concrete, the element may be predamaged
before it is subjected to the external impact loading pulse.
Thus the overall safety of the structure under impact
depends upon how these predamaged structural elements cope

with the external impact pulse.
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Table 12.3
Dynamic Bahaviour of Conventionally Reinforced Pre-Damaged
Concrete beams with Polypropylene Fibres

Normal Strength High Strength Concrete
Concrete
Without With Fibres Without With Fibres
Fibres Fibres
Peak 35482 36411 39806 38999
Bending (1894) (2698) (4609) (3809)

Load (N)

Fracture 586 (422) 2240 (701) 220 (140) 1223 (330)
Energy (Nm)

NOTES

1. Fracture Energies were calculated to the point at which
the load dropped back to 1,/3rd of its peak value.

2, Predamage was induced by statically loading the beams
to 3mm central deflection.

3. The numbers in brackets are the standard deviations.

4. Six specimens tested in each of the categories.

Predamage was induced by static loading of the beam
(centre point loading) to a deflection of 3mm, which was
approximately double the deflection at which the load first
reached the maximum load bearing capacity of the beam . At
this point, a tensile crack at the centre of the beam could
be seen. This treatment was givén to both normal strength
and high strength beams with conventional reinforcement, and
with or without polypropylene fibres. The beams were then:
tested in impact wusing a hammer drop héight of 0.5m. The
results are given in Table 12.3.

The results for the predamaged beams showed, as
expected, much more variability than those observed for the
undamaged beams. The general trend was that, for concrete

without fibres, predamage had only a very small effect on
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the load bearing capacity during 1impact, but caused a
-substantial reduction in the energy absorbed by the beams
(Table 12.3). The presence of fibres practically eliminated
this loss, and the energy absorption capacity of the
predamaged beams containing fibres was similar to that of
the undamaged beams (Tables 12.1 and 12.2).

The advantage of the presence of polypropylene fibres
in the predamaged beams could be clearly appreciated when
these beams were observed after the impact loading (Figures
12.4 and 12.5). In normal and high strength reinforced
éoncrete considerable spalling and disintegration could be
observed in the predamaged beams that were subjected to
impact (Figures 12.4a and 12.5a). However, with fibres, the
extent of damage was limited to <cracking only, and no
épalling and disintegration was seen (Figures 12.4b and
12.5b). This type of damage was very similar to that
observed when undamaged beams were subjected to the same

impact (Figures 12.4c and 12.5c).
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F19.12.4-Reinforced concrete beams of normal strength
concrete after 0.5m impact (a) predamaged
beam without polypropylene fibres; (b)
predamaged beam with polypropylene fibres;
(c) undamaged beam without polypropylene
fibres
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(a)

(b)

(c)

Fig.12.5-Reinforced concrete beams of high strength
concrete after 0.5m impact (a) predamaged
beam without polypropylene fibres; (b)
predamaged beam with polypropylene fibres;
(c) undamaged beam without polypropylene
fibres



CONCLUSIONS

The brittle nature of concrete poses some sérious
problems in situations where impact loading may occur; it is
manifested by a low failure strain in tension, and a sudden
drop in the 1load after reaching the peak in conventional
static tests. However, since concrete is a strain rate
sensitive material, its behaviour under high strain rates
can not be predicted by conventional static tests. Moreover,
the case of impact loading, because of the complex energy
transfer and dissipation mechanisms, and because of the
complex patternfof stress waveé, can not be regarded simply
as an extreme case of high stress rate loading. Thus, proper
impact tests have to be carried out on concrete and concrete
composites in order to evaluate their impact performance.
Such impact tests were carried out in this study, and the

fdllowing conclusions may be drawn.

1. A drop weight impact machine may be successfully used
to carry out impact tests on concrete beams. However,

the following should be noted.

(a) In the drop weight tests the contactlload between
the hammer and the beam is not the true bending 1load
because of specimen inertia effects. The actual
stressing load on the specimen may be as low as only

15% of the recorded tup load.
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(b) The recorded tup load can be corrected for inertia
if the acceleration distribution along the length of
the beam is known. Three accelerometers were used 1in
this study for this purpose. With a suitable assumption
regarding the acceleration distribution between any two
accelerometers, the proper inertial correction may be
applied. An independent check on the validity of this
technique was made by instrumenting one of the support

anvils.

(c) A considerable simplification is possible in the
mathematical formulation leading to the evaluation of
the inertial 1load 1if some assumption regarding the
acceleration distributution along the entire length of
the beam can be made. On the basis of the tests carried
out in this study, it was seen that the acceleration
distribution was linear in the caseiof plain and fibre
reinforced concrete, and that it was sinusoidal in the

case of conventionally reinforced concrete.

(d) Rubber pads have been used by some investigators as
a means of eliminating the inertial loading. However,
from tests done with a rubber pad in thelsystem, it was
concluded that although the rubber pad helped 1in
reducing the beam accelerations and hence the inertial
loading, it did not eliminate it entirely. Moreover,

the use of rubber pads reduced the strain rate, thereby
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defeating the purpose of impact testing. The rubber pad
also absorbs the energy during .a test which must be
considered. Inertial loads, thus, are an integral - part

of high strain rate testing and can not be eliminated.

(e) According to the law of conservation of energy, the
energy lost by the hammer must equal the energy gained
by the beam. This 1law was examined 1in the case of
impacts on plain concrete beams. It was found that up
to the peak external load, only a very small fraction
of the energy lost by the hammer was consumed by the
beam in various forms. The remainder of the energy was
considered to be stored in the various strained parts
of the machine. However, by the end of the impact
event, a reasonable agreement between the the energy
lost by the hammer and that gained by the beam was
observed. Thus the energy stored in the machine at the
peak load was transferred to the beam in the poét peak

load period. .

On the basis of the tests on plain concrete beams the

following conclusions may be drawn.

(a) Both normal strength as well as high strength
concretes (produced by using microsilica) are strain

rate sensitive. Under impact loading, the peak bending
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loads as well as the fracture energies were found to be
significantly higher than those obtained from
conventional static tests. In general, under impact,
the beams were found to have improved deformation
capacities, suggesting increased failure strains. The
improved toughness under impact loading was 'probably
due to the increased microcracking 1in concrete under

those conditions.

(b) An evaluation of the fracture mechanics parameter
'n' from the slope of the logo vs logo plot 1indicated
that thé value of n decreased as the strain rate was
increased. This was true for both normal and high
strength concretes. In the impact range, a value of
n=1.5 for normal strength, and a value of n=2.2 for
high strength concrete was obtained. These low values
of "n" indicate the highly stress rate sensitive
‘behaviour of concrete at the extreme rates of 1loading

associated with impact.

(c) High strength concrete made with microsilica was
found to be stronger than normal strength concrete
without microsilica in both the static and impact
conditions. However, high strength concrete was also
found to be more briftle than normal strength concrete.
The most probable reason behind this may be the

improved aggregate-paste bond in high strength concrete
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which leads to reduced microcracking or reduced energy
dissipation. By separating the energy absorbed up to
the peak load into the elastic part and the work of
fracture part, it could be seen that high strength
concrete had a consistently lower work of fracture. A

visual inspection of the fractured surfaces indicated
that in normal strength concrete the cracks took a
tortuous path around the aggregate particles. On the
other hand, in the case of high strength concrete, the
cracks went through the aggregate particles rather than

around them,

(d) Based on the impact tests carried out on notched
beams, it could be concluded that KIC (fracture
toughness or the critical stress intensity factor) 1is
not a material constant and an increase in the stress

rate results in an increase in the value of K Under

IC*
impact loading, high strength concrete was found to be

more notch-sensitive than normal strength concrete.

(e) Analytical predictions of beam response to impact
may be based on either the energy balance principle or
on the principle of dynamic equilibrium of forces. 1In
the case of the model based on the» energy balance
principle suggested in this study, the beam
deflections, velocities and so on were overestimated

because of the inability of the model to account for
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the machine losses. Because of the non-linear nature of
the experimentally observed load vs. deflection plot
under impact 1loading, classical single-degrée or
multi-degree of freedom solutions are inappropriate. To
account for this non-linearity, a time step integration
technique was devised which was found to. give
reasonable results. The non-linear nature of concrete
behaviour was modelled by choosing a non-linear
constitutive law involving stress rate (¢) as an

independent variable. By choosing two different sets of

~constants in the constitutive law, the differences in

the béhaviours of normal strength and high strength
concretes could be modelled. The model was also capable
of predicting the more brittle nature of high strength

concrete over normal strength concrete.

Based on the impact tests on fibre reinforced concrete,

the following conclusions may be drawn,

(a) Incorporation of either high modulus steel fibres
or low modulus polypropylene fibres was found to
increase the ductility of the composite both under
static and dynamic conditions. The hooked end steel
fibres, however, were found to be far better than the
chopped straight polypropylene fibres. While the

improvements in the peak loads and fracture energies
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over unreinforced concrete were only moderate in the
case of polypropylene fibres, the corresponding

improvements in the case of steel fibres were dramatic.

(b)The differences in their modes of failure may, to
some extent at least, explain the poorer performance of
polypropylene fibre over steel fibres. In static as
well as impact conditions, the polypropylene fibres
always failed by breaking, whereas steel fibres were
mostly pulled out. (An 1increasing number of steel
fibres were found to break as the hammer drop height

was increased).

(c) Fibres were effective in both the normal strength
and high strength mixes. However, steel fibres
performed somewhat better in the high strength mix with
microsilica than 1in the normal strength mix without
microsilica. This was thought to be because of the
improved fibre-concrete bond in the high strength

mixes,

(d) One major difference between the two fibres was in
the occurrence of a peak, or a discontinuity, in the
load vs. deflection plot prior to the absolute peak
load in the case of steel fibre reinforced concrete,
while no such discontinuity was observed in the

polypropylene fibre reinforced concrete. The
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discontinuity was thought to result from the matrix
failure, a slight reduction 1in the 1load, and a
subsequent rise in the load owing to fibres bridging
the crack. The idea that the pre-peak discontinuity
observed in the case of steel fibre reinforced concrete
corresponded to the point of matrixv failure was
strengthened by the observation that the 1load at the
discontinuity was nearly the same as the absolute peak

load observed in the case of plain unreinforced beams.

(e) Impact tests on polypropylene fibre reinforced
notched beams indicated that the presence of the fibres

marginally increased the fracture toughness (K,.) over

IC
that of the unreinforced beams. The fibres thus acted

as crack arresters.

(f) One major advantage of adding the fibres could was
noted in the reduced spalling and disintegration
observed in fibre reinforced beams 'under impact.
Fibres, both steel and polypropylene, helped preserve

the integrity of the beams.

Based on the impact tests done on conventionally
reinforced concrete beams, the following conclusions

may be drawn.
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(a) In the case of conventionally reinforced normal
strength concrete with deformed reinforcing bars, an
increase in the stress rate from the static to the
impact range resulted in a significant increase in the
fracture energy. In general, an increase in the stress
rate resulted in an increase in the ductility or the
deformation capacity of the beams. The .peék bending
loads obtained under 1impact loading were higher than
those obtained under static 1loading. However, once 1in
the impact range, an increase in the hammer drop height
did not produce a significant increase in the peak

bending loads.

(b) On comparing the performance of deformed bars in
normal strength concrete with that of smooth bars 1in
normal strength concrete, it may be concluded that in
general, the deformed bars behave somewhat better than
the smooth ones. The poor Eond developed in the case of
smooth rebars was thought to be the reason behind this.
However, rebar fracture was noticed very occassionally
in the case of smooth rebars even under a hammer drop
height of 2.3m, while deformed rebars were found to
fracture in as many as 30% of the cases under only a

1.5m drop.

(c) The use of shear reinforcement in conventionally

reinforce normal strength concrete was found to enhance
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the impact .resistance. Confining the concrete, thus,

seemed to increase its ductility.

(d) An increase in the stress rate 1in the case of
conventionally reinforced high strength concrete beams
was found to decrease their deformation capacity,
increase their rigidity, and therby reduce their
ductility. An increase in the hammer drop height was
found to reduce the ultimate deflections as well as the
fracture energy. This is contrary to the behaviour of
normal strength concrete where an increase in the
hammer drop height increased the fracture energy. Also,
reinforcing bars fractured more often in high strength

concrete than in normal strength concrete.

Based upon the impact tests on conventionally
reinforced concrete containing polypropylene fibres, it
can be concluded that the fibres increase the ductility
in impact. The relative effect of the polypropylene
fibres in improving toughness under impact loading was
greater in high 'strength reinforced concrete than in
normal strength reinforced concrete. Thus, the addition
of the fibres to the high strength concrete seemes to
be an efficient means of compensating for the more
brittle behaviour of this concrete under impact

loading.
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Based upon the high speed photography (at 10,000 frames
per second) on beams undergoing impact (0.5m drop), it
can be concluded that the crack velocities observed 1in
hydrated cement paste (hcp), fibre reinforced concrete,
and in conventionally reinforced concrete were in. the
range of 75 to 115 h/s, far lower than the theoretical
crack veloeities in these materials. Also, the presence
of reinforcement, either 1in the form of fibres or
continuous bare, tends to reduce the crack velocity

compared with that in hydrated cement paste.

- To conclude, it may be said that the thesis pfesents a
large amount of experimental data involving pracfically all
kinds of concrete systems used today. The de&elopment ofv a
valid testing technique is believed to be a significant
contribution since the available data from the other sources
is often questionable due to inconsistencies ‘in the
experimental results. Through experimentation, and
comeparative evaluation, it is believed that some practical
procedures for improving the 1impact resistance of concrete
have been established. Also, through experimentation, the
dangerously brittle behaviour of some concrete systems under

impact has been pointed out.
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SCOPE FOR FUTURE WORK

On the basis of the work carried out 1in this study,

future work may be recommended in the following areas.

One difficulty often encountered in the realm of impact
testing of cementitibus materials is the
incomparability of the results obtained by different
investigators using different» testing methods.
Different investigators use different specimen
geometries, and different ways of generating high
stress rate loadings. Different testing machines have
different energy 1losses associated with them, and
fihally, different techniques are used to analyse the
raw data. This all amounts to the test results being
very subjective. Therefore, an attempt towards
designing a standard test technique is very important,

and research in this direction is highly recommended.

In this study, oniy two basic concrete mixes (normal
strength and high strength) have been tested. However,
the properties and the type of cement, properties of
aggregates, mixing technique, additives, and so on, all
have a considerable effect on the impact behaviour of
concrete. The aggregate-paste interface, which forms
the weakest 1link 1in concrete, also determines its

impact resistance and needs further study.
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Analytical prediction of concrete behaviour subjected
to an external impact pulse needs further attention,
Analyticai studies are needed particularly in the
post-peak load region. Since this region 1involves a
propagating crack, a study of the crack propagation
under impact loading must be undertaken prior to such
modelling. A study of the process zone in front of a
propagating crack and the effect of crack velocity on
such a zone are also important. A study of the
post-peak load regioh is important since a substantial
portion of the total fracture energy 1is consumed in

this region.

Because of their high ductility and energy absorption
capacity, fibre reinforced composites are becoming very
popular. However, our present knowledge of their
behaviour under static as well as dynamic conditions is
mostiy empirical, and further fesearch is needed
towards formulating their constitutive laws as a
function of the stress rate, so that a more
deterministic approach may be adopted while designing
with these promising materials. Research is also
recommended to determine the optimum fibre geometry,
optimum fibre volume, and so on, for maximum efficiency

under variable stress rates.
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