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ABSTRACT 

The p r e d i c t i o n of P-Y curves f o r undrained c lay and sand based 

on the r e s u l t s of f i n i t e element analyses i s presented in t h i s t h e s i s . 

A h igher-ordered f i n i t e element program was used in the 

ana lyses . The a b i l i t y of the program to accurate ly model the undrained 

s o i l condi t ion was v e r i f i e d by comparing pred ic ted l o a d - d e f l e c t i o n 

responses with c losed form so lu t ions f o r the c y l i n d r i c a l cav i ty 

expansion problem. 

Pressuremeter curves were pred ic ted from plane s t r a i n 

axisymmetric f i n i t e element ana lyses . The e f f e c t of pressuremeter s i ze 

on the pred ic ted r e s u l t s was examined. 

P-Y curves were predic ted f o r plane s t r a i n and plane s t ress 

c o n d i t i o n s . Values fo r the i n i t i a l slope and P u n- of the curves were 

obta ined. The curves were normalized f o r comparison, and s i m p l i f i e d 

methods presented for determining P-Y curves . 

F i n i t e element p red ic t ions fo r the pressuremeter and l a t e r a l l y 

loaded p i l e problems were a lso compared. Factors were determined from 

these comparisons to generate P-Y curves from pressuremeter curves . 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

The problem of a pi le subjected to la tera l loads i s one which 

requires the analysis of the interaction between s o i l and structural 

member. The behaviour of the structural member (the pile) i s governed 

by i t s strength and stiffness properties and those of the surrounding 

s o i l . Of prime concern are the bending moments, shear stresses, and 

displacements of the la tera l ly loaded p i l e . The ultimate load i s 

generally determined by the maximum moment and shear stress that 

develop in the p i l e , while the working load i s commonly governed by 

latera l displacements. The accurate determination of these quantities 

i s therefore essential for pi le foundation design. 

The behaviour of a la teral ly loaded pi le i s a three-dimensional 

problem. A complete analysis of the problem requires an examination of 

the complex stress-strain behaviour of the s o i l surrounding the p i l e . 

Near the ground surface, displacements of the s o i l are three-

dimensional. So i l behind the pi le may separate from the pi le surface, 

leaving a gap. Stresses at these shallow depths are essentially 

two-dimensional. At depths greater than several pi le diameters, 

stresses are three-dimensional and strains two-dimensional, with a l l 

displacements occurring in the horizontal plane (Scott, 1981). At 

intermediate depths, both stresses and strains are three-dimensional. 

To fac i l i ta te the analysis of this complex problem, simplified 

s o i l models were considered. Depending on the s o i l model, methods for 

predicting the behaviour of la tera l ly loaded piles can be c lass i f ied 
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into three categories (Atukorala & Byrne, 1984): 

1. The Winkler Foundation Approach: the s o i l i s represented by 

a set of independent l i n e a r or non-linear springs 

d i s t r i b u t e d along the length of the p i l e . 

2. The E l a s t i c Continuum Approach: the s o i l i s i d e a l i z e d as a 

l i n e a r e l a s t i c , i s o t r o p i c and homogeneous continuum. 

3. The F i n i t e Element Approach: the surrounding s o i l i s 

d i s c r e t i z e d i n t o f i n i t e elements, each possessing the 

s t r e s s - s t r a i n properties of the s o i l . 

At present, the Winkler approach i s most commonly used for 

analysing the response of a l a t e r a l l y loaded p i l e . With t h i s method, 

the s o i l surrounding the p i l e i s replaced by di s c r e t e springs. S o i l 

resistance to p i l e d e f l e c t i o n i s represented by the lo a d - d e f l e c t i o n 

c h a r a c t e r i s t i c s of the springs and are s p e c i f i e d by "P-Y" curves, 

where P i s the s o i l resistance to l a t e r a l p i l e displacement per unit 

length of p i l e at a given depth, and Y i s the corresponding h o r i z o n t a l 

p i l e d e f l e c t i o n at that depth. A t y p i c a l P-Y curve i s shown i n Figure 

1.1. Since P-Y curves are defined by s o i l resistance, they can be 

expected to vary f o r d i f f e r e n t s o i l properties. The s i z e and shape of 

the p i l e section, and the roughness of the p i l e surface can also 

a f f e c t the P-Y r e l a t i o n s h i p . 

The key to the l a t e r a l l y loaded p i l e problem, then, l i e s i n the 

accuracy of the P-Y curves. Aside from instrumented p i l e loading f i e l d 

t e s t s , which are both c o s t l y and time-consuming, methods for 

determining P-Y curves based on the r e s u l t s of pressuremeter expansion 
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t e s t s , centrifuge t e s t s , and f i n i t e element analyses have been 

proposed. 

Analysis of the l a t e r a l l y loaded p i l e problem by the Winkler 

approach with the use of P-Y curves can be performed by the f i n i t e 

d i f f e r e n c e method. The method and i t s formulation are described by 

Focht & McClelland (1955). Computer programs employing t h i s technique 

were developed by Reese (1977) and Reese & S u l l i v a n (1980) to perform 

the analyses. The use of the programs are f a c i l i t a t e d by the recent 

introduction of i n t e r a c t i v e graphics. A modified version of Reese & 

Su l l i v a n ' s program (C0M624) with graphic input and output c a p a b i l i t i e s 

i s c urrently i n use at the University of B r i t i s h Columbia (Byrne & 

Grigg, 1982). 

1.2 SCOPE OF THESIS 

The purpose of the research i s to predict P-Y r e l a t i o n s h i p s for 

l a t e r a l l y loaded p i l e s using f i n i t e element analyses. P-Y curves 

predicted f or both cohesive and cohesionless s o i l s using non-linear 

e l a s t i c s o i l models are presented. 

A recently-developed higher-ordered two-dimensional f i n i t e 

element program was used i n the study. The program was not tested f or 

the type of analyses performed to predict P-Y curves. Consequently, to 

v e r i f y the accuracy of the P-Y r e s u l t s , l o a d - d e f l e c t i o n responses for 

u n i a x i a l compression of test elements and c a v i t y expansion i n i n f i n i t e 

e l a s t i c - p l a s t i c media were predicted and compared with closed form 

s o l u t i o n s . 

Load-deflection responses for pressuremeter expansion were also 

predicted using the plane s t r a i n axisymmetric f i n i t e element model 
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used i n the c a v i t y expansion analyses. The e f f e c t of pressuremeter 

s i z e was examined. 

P-Y curves were determined f o r both cohesive and cohesionless 

s o i l s . The s e n s i t i v i t y of the P-Y p r e d i c t i o n s to various parameters i n 

the f i n i t e element method were a l s o examined. The p r e d i c t e d curves 

were normalized w i t h respect to s o i l s t r e n g t h and p i l e s i z e , and 

s i m p l i f i e d methods devised to generate P-Y curves from fundamental 

s o i l p r o p e r t i e s . F i n a l l y , P-Y p r e d i c t i o n s were compared w i t h 

pressuremeter r e s u l t s to determine f a c t o r s f o r converting 

pressuremeter curves to P-Y curves. 

1.3 ORGANIZATION OF THE THESIS 

This t h e s i s c o n s i s t s of twelve chapters. A b r i e f review of 

previous research, h i g h l i g h t i n g the methods and the r e s u l t s , i s given 

i n Chapter 2. 

Chapter 3 contains a d i s c u s s i o n of the fo r m u l a t i o n of the 

f i n i t e element model f o r a n a l y s i n g the l a t e r a l l y loaded p i l e problem 

to p r e d i c t P-Y curves. The v a l i d i t y of the for m u l a t i o n i s considered 

i n l i g h t of previous research on the problem. 

The importance of i n t e r f a c e elements i s discussed i n Chapter 4. 

Re s u l t s of previous work i n v o l v i n g the use of these s p e c i a l elements 

to model the behaviour of the s o i l - p i l e i n t e r f a c e are presented. A 

s i m p l i f i e d f o r m u l a t i o n f o r the i n t e r f a c e elements used i n t h i s study 

i s given. 

The f i n i t e element program used i n the research i s discussed 

b r i e f l y i n Chapter 5. Re s u l t s of u n i a x i a l compression and c a v i t y 

expansion analyses performed to v e r i f y the c a p a b i l i t i e s of the program 
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are presented in Chapters 6 and 7. 

Chapter 8 deals with the pressuremeter problem. Analyses were 

performed by modelling pressuremeter expansion as an axisymmetric 

cylindrical cavity expansion problem. 

The P-Y curve problem is considered in Chapters 9 to 11. Plane 

strain and plane stress P-Y curves were predicted for both undrained 

clay and sand. The effects of pile diameter and mesh size on the 

predicted P-Y responses were examined. Normalized P-Y curves based on 

the results of Chapter 9 are shown in Chapter 10. Simplified methods 

for determining P-Y curves were derived from the normalized curves. In 

Chapter 11, predicted P-Y curves are compared with pressuremeter 

curves determined in Chapter 8. Factors for converting pressuremeter 

curves to P-Y curves were determined. 

A summary of the research and the conclusions is presented in 

Chapter 12. 
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CHAPTER 2 

REVIEW OF PREVIOUS WORKS 

2.1 INTRODUCTION 

The prediction of P-Y curves for the design of laterally loaded 

piles has been the subject of much research over the past 10 or 15 

years. With the advent of offshore structures for o i l exploration and 

recovery, and the increasing importance of seismic design for 

foundations, the laterally loaded pile problem was brought to the 

foreground of research. Indeed, the interest of o i l companies has led 

to their funding of much of the research. An annual conference, the 

Offshore Technology Conference, now in its eighteenth year, was 

established for the exchange of information related to offshore design 

and construction. Proceedings of the annual conferences f i l l many 

volumes, a sizeable portion of which deals with offshore piling 

problems. 

The successful design of pile foundations subjected to lateral 

forces, whether they be ice, wave, wind, or seismic, is contingent on 

the accuracy of P-Y relationships describing the resistances of 

foundation soils to lateral pile displacements. Methods for predicting 

the P-Y curves, based on empirical, mathematical, and analytical 

solutions, were proposed by various authors. A brief review of these 

methods and their results is given in Section 2.2. The finite element 

method of analysis is discussed in greater detail in Chapter 3. 
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2.2 REVIEW OF PREVIOUS WORK 

2.2.1 Empirical Method 

Of the various methods developed to predict P-Y curves, the 

empirical approach is the most widely used in industry. Empirical 

curves based on P-Y relationships derived from instrumented full-scale 

pile load tests were developed by Matlock (1970) for soft clays, Reese 

& Welch (1975) and Reese et al. (1975) for stiff clays, and Reese et 

al. (1974) for sands. Though simple to use, these methods require 

estimates of the ultimate lateral soil resistances, ? u^> and 

reference strain values,^^Q, corresponding to one-half of the 

maximum deviator stresses. Values forcan be obtained from 

laboratory stress-strain curves, or estimated from tables of 

representative values i f no stress-strain curves are available (Reese 

& Sullivan, 1980, and Reese et al., 1975). Values of P^ are 

calculated from equations derived by Matlock (1970) and Reese et al. 

(1974, 1975), assuming passive wedge-type failure near the ground 

surface and failure by lateral soil flow around the pile at greater 

depths. Matlock's equation for clay is 

= N cD P 2.1 

N P 3 + c T " + J H , __y_ 
c D 

3£ N ^ 9 P 

where 

c undrained strength 

D pile diameter 

overburden effective stress at depth H 
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J = coefficient ranging from 0.25 to 0.5, depending on the 

soil. A value of 0.5 is applicable for the soft offshore 

clay of the Gulf of Mexico, and 0.25 is valid for stiffer 

clays. 

For sand, the theoretical ultimate lateral resistance for wedge-type 

failure at shallow depths is given by 

P c t = JfH KQH taiytf' sin/3 + tan/? (D + H t a n ^ tanot) 
tan^-jzf') cos.* tan^-jzf') 

+ KQH tan/? (tan;*' s i n ^ - tan*) - K̂ D 2.2 

And for lateral flow at greater depths, 

P . = fHD [K (tanJS-l) + K tan/f' tan*] 
C O . 3. O 

2.3 

where 

/ = effective unit weight of the sand 

Kq = coefficient of lateral pressure at rest 

K = coefficient of active lateral pressure 
= tan2(45° - ^ 12) 

j6y = internal friction angle of the sand 

& = 45° + rff/2 

Agreement between the theoretical P values and the values obtained 6 c 
from the pile load tests was poor, and consequently, P £ was adjusted 

by a factor A according to 
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= A P 2.4 c 

Values for the adjustment factor, A, were determined by dividing the 

experimental ultimate resistances by the theoretical Pc values. The 

values for A are shown in Figure B.2 in Appendix B. 

2.2.2 Centrifuge Tests 

The laterally loaded pile problem was also studied under 

controlled laboratory conditions. Centrifuge tests on model pipe piles 

driven in saturated sand were conducted by Barton et al. (1983). 

Modelling a prototype pile with a diameter of 25 inches, bending 

moments (M) were measured at points along the length of the model pile 

subjected to lateral loads at the pile head. Cubic spline 

interpolatory functions were fitted to the data and double 

integrations and differentiations performed to obtain values for Y and 

P. The mathematical relationships for Y and P are 

EI = stiffness of the pile 

z = depth 

The accuracy of P values determined according to Equation 2.6 is 

questionable. Derivatives of the cubic spline function are very 

sensitive to the curve shape and the errors are greatly multiplied by 

the double differentiation. Consequently, considerable errors may 

2.5 

and P 2.6 

where 



n 

e x i s t i n the P-Y curves developed by t h i s method. 

The r e s u l t s of the centrifuge t e s t s suggest that P -j_ t values 

determined from Reese's equations (2.2 to 2.4) overestimate s o i l 

resistances at large depths and underestimate resistances near the 

ground surface. P was underestimated by f a c t o r s of approximately 

1.9, 1.6 and 1.1 at depths of 2, 4 and 6 feet , r e s p e c t i v e l y . Values of 

P u^ t were not obtained from the centrifuge t e s t s f or depths greater 

than 6 f t . 

The shape of the centrifuge P-Y curves also d i f f e r s markedly 

from the shape of Reese's empirical curves. The i n i t i a l slopes of the 

empirical curves are much steeper than those of the centrifuge curves, 

and the curves f l a t t e n out much quicker than the centrifuge 

predictions at shallow depths. O v e r a l l , there i s l i t t l e resemblance 

between the P-Y curves predicted by the two methods. 

2.2.3 F i n i t e Element Method 

The f i n i t e element method of analysis was used by a number of 

researchers to predict P-Y curves for sand and undrained c l a y . Plane 

stress f i n i t e element formulations were used to analyse the problem 

f o r shallow depths while plane s t r a i n formulations were used for 

greater depths. The models and formulations used by the researchers 

are s i m i l a r and are described i n Chapter 3. 

P-Y curves for undrained clay were predicted by Yegian & Wright 

(1973), Thompson (1977), and Atukorala & Byrne (1984). A wide range of 

values for P u 2 t were obtained by the researchers. 

Using i n t e r f a c e elements to model s o i l - p i l e i n t e r f a c e 

behaviour, and assuming a s o i l - p i l e adhesion f a c t o r , f , of 0.3 



( c
a = ̂ c

c
u ' s e e Section 4.2.2), a P u^ t value of approximately 12cD was 

obtained by Yegian for plane strain analysis. Similarly, a value of 

6.6cD was determined from plane stress analyses. 

Thompson, following the work of Yegian, performed P-Y analyses 

for a wide range of soil-pile interface conditions. P u^ t values 

ranging from about 6cD for complete soil-pile separation behind the 

pile to llcD for no separation were obtained for plane strain 

analysis. Likewise, values ranging from 3.1cD to 6.1cD were determined 

from plane stress analyses. Neither Thompson nor Yegian made any 

conclusions regarding the i n i t i a l slopes and shapes of the P-Y 

relationships. 

P-Y curves for sand were also predicted by Barton et al. (1983) 

using the finite element method. The predicted curves were compared 

with experimental curves from centrifuge tests (see Section 2.2.2). 

Good agreement exists between the computed curves and centrifuge 

curves at shallow depths. For depths exceeding 3 ft, however, the 

finite element predictions were considerably less stiff than the 

centrifuge curves. No values were determined for Pu^t> nor was any 

conclusion drawn regarding the i n i t i a l slopes of the P-Y curves. 

Plane strain P-Y analyses performed by Atukorala produced 

results similar to those of the other researchers. Matlock's empirical 

curves for soft clay were shown to underestimate P , w h i l e Reese's 
ult 

curves for sand drastically overestimate Pu^t« perhaps by as much as 

6 times. 

Results of research conducted by the various authors yielded 

one common observation: Matlock's and Reese's empirical curves for 

soft clay and saturated sand do not agree with finite element 



predictions. Large discrepancies exist in the i n i t i a l slope, shape, 

and ultimate soil resistance of the P-Y relationships predicted by the 

two methods. Since the empirical curves were developed from limited 

pile load tests, their applicability for soils other than those in 

which the tests were conducted is questionable. On the other hand, 

many factors that could affect the predicted results (ie: mesh size, 

boundary conditions, pile diameter, interface properties, soil 

disturbances) were not considered in the finite element analyses. 

Consequently, the validity of the numerical P-Y curves is also in 

doubt. 

The ultimate proof of the validity of the finite element 

predictions lies in their ability to predict field data. Bending 

moments, shear stresses, and deflections of piles determined by using 

finite element P-Y curves in conjunction with finite difference 

programs such as C0M624 (see Section 1.1) can be compared with results 

obtained from field pile load tests. Reasonable agreement between 

predicted and actual values serves to validate the finite element 

approach to P-Y prediction. Little work, however, has been done in 

this respect. Much additional research is warranted to fully study the 

laterally loaded pile problem. 



CHAPTER 3 

FINITE ELEMENT MODEL FOR 

LATERALLY LOADED PILE PROBLEM 

3.1 INTRODUCTION 

The prediction of P-Y curves for single laterally loaded piles 

from finite element analyses has received much attention in recent 

years. Previous studies of the problem were conducted by Yegian & 

Wright (1973), Thompson (1977), Barton & Finn (1983), and Atukorala & 

Byrne (1984). A review of their works is contained in Chapter 2. 

The methods of analysis and the finite element models used by 

the researchers are similar. An overview of the finite element 

formulation is given in the following sections. 

3.2 FINITE ELEMENT MESH 

The finite element method for predicting P-Y curves requires 

the analysis of the pile and the surrounding soil. A horizontal 

cross-section of unit thickness is taken of the pile and soil as shown 

in Figure 3.1. At a sufficiently large distance, R, away from the 

pile, the soil is generally assumed to be unaffected by the pile in 

terms of displacements. A displacement boundary can then be inserted 

at this location and the outlying soil eliminated from further 

consideration. The selection of the correct value of R, however, is of 

importance and is discussed in Section 3.2.2. The resulting finite 

element mesh is a circular disk with the pile located at the centre. 

The outer boundary of the disk is fixed, assuming zero displacements. 

Concentrated loads (P), representing lateral forces on the 



Limit of Pile Influence 

Sect ion 

FIGURE 3.1 : ZONE OF SOIL-PILE INTERACTION 

(After Yegian & Wright, 1973, p. 673.) 
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pile, are applied to the pile centre. Pile deflections (Y) resulting 

from the applied loads produce the desired P-Y curves. Strictly 

speaking, P is the soil resistance per unit length of a pile subjected 

to a lateral displacement of Y. For the purpose of the finite element 

model, however, i t is more convenient to consider P as the applied 

load. In any event, the two quantities are equivalent under an 

equilibrium load-deflection condition. 

In a l l of the analyses, piles were assumed to be rigid. 

Accordingly, elements representing the piles were made 500 times 

stiffer than the surrounding soil elements to prevent significant pile 

deformations. 

Since loads are applied to the pile along an axis of symmetry, 

only half of the mesh needs to be analysed, as illustrated in Figure 

3.2. Rollers were placed along the symmetry boundary to ensure zero 

displacements perpendicular to the direction of loading. 

In addition to the symmetry boundary, a line of anti-symmetry 

also exists, but only under the condition that stresses in the soil 

must not approach levels where tensile failure occurs and causes the 

soil to separate from the pile (Yegian & Wright, 1973). The use of 

this axis of anti-symmetry permits just one quadrant of the disk to be 

analysed for the problem. However, the required condition of no 

soil-pile separation may not be valid for large lateral loads or for 

analyses of pile sections at shallow depths (see also Sections 3.4 and 

4.2.3). Consequently, the boundary of anti-symmetry was not considered 

and a half-disk was used in the analyses (Figure 3.2). In analysing 

only half of the disk, the horizontal load for a corresponding lateral 

displacement, Y, must be doubled to account for soil resistance on the 



Y 

FIGURE 3.2: FINITE ELEMENT MESH FOR THE LATERALLY LOADED PILE PROBLEM 



omitted half of the pile section. 

3.2.1 Validity of the Disk Concept 

In using a disk with fixed outer boundary to represent the soil 

in two-dimensional finite element analysis, a finite zone of influence 

is assumed. In reality, the boundary of this zone is at infinity. In 

three-dimensional analysis where vertical load-spreading and soil 

displacements are possible, the boundary can be moved in from infinity 

to some finite radius without significant error. But, i f the soil is 

replaced by uncoupled disks, then pile displacements under lateral 

loads depend on the size of the disks. The problem then rests in the 

determination of the appropriate disk radius R to yield the correct 

pile displacements. In other words, errors introduced by using 

uncoupled disks can be compensated for by selecting an appropriate 

disk radius. 

3.2.2 Mesh Radius 

Based on comparisons of actual P-Y curves from field load tests 

and P-Y curves predicted using various values for R, a value of R = 8D 

(D = pile diameter) was determined by Yegian & Wright (1973). Thompson 

(1977), following the work of Yegian, concluded that zero lateral soil 

displacements beyond 20D, or about half the pile length, would be 

appropriate. Recent studies by Atukorala & Byrne (1984) attempted to 

model an outer boundary at infinity, using a disk radius of 20D with 

"infinity springs" as described by Byrne & Grigg (1980). The use of 

"infinity springs" for the laterally loaded pile problem is incorrect, 

however, since soil is displaced laterally rather than radially. 



In his research, Thompson noted that the use of different mesh 

radii did not affect the predicted value of Pu^t» but did affect the 

in i t i a l slope of the P-Y curve. Increases in mesh radius resulted in 

decreases in the slope, as illustrated in Figures 3.3 and 3.4. It is 

apparent from Thompson's results that as R tends to infinity, the 

slope of the P-Y curve approaches zero. 

The results of Thompson's research on the effects of varying 

the mesh radius are supported by theoretical analyses. Baguelin et al 

(1977) examined the lateral reaction of piles in an elastic-plastic 

medium, assuming plane strain condition and perfect soil-pile 

adhesion. In this two-dimensional study using a rigid circular pile 

section and a fixed outside boundary at radius R from the pile centre 

pile displacement (Y) is given by 

Y = P 1 + u 

8?rE 1 - u 

(3 - 4u) ln •JI 2 R - r 
J2 . 2 R + r 3 - 4ju 

where 

P 

r 

lateral force (per unit length) on pile 

Poisson's ratio 

radius of pile = D/2 

Clearly, displacement depends on R, and tends to infinity as R tends 

to infinity. 

The results given by Equation 3.1, though valid for a 

two-dimensional problem, are unrealistic for actual pile behaviour. A 

three-dimensional study was therefore conducted by Baguelin et al. to 

determine the value of R for the two-dimensional model that will give 
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FIGURE 3.3: EFFECT OF MESH RADIUS ON PLANE STRAIN P-Y CURVE 
PREDICTIONS 

(After Thompson, 1977, p. 172.) 
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FIGURE 3.4: EFFECT OF MESH RADIUS ON PLANE STRESS P-Y CURVE 
PREDICTIONS 

(After Thompson, 1977, p. 173) 
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displacements representative of actual pile behaviour. 

In this study, the soil surrounding the pile was divided into 

two zones. For soil within a radius r , plane strain condition was 
a v 

assumed. Beyond r , soil behaviour is three-dimensional. 

Deformations along the plane of loading for the two-dimensional model 

(outer radius R) and three-dimensional model were compared. The value 

of R was chosen to give equal two-dimensional and three-dimensional 

displacements at the boundary r , as illustrated in Figure 3.5. 

Values of R thus derived for piles with free heads subjected to 

horizontal loads at the top are: 

where 

For flexible piles (h/l > 7/3): R = 71 
o o 

For rigid piles (h/l < 7/3): R = 3h 3.2 

h = embedded length 

1 = soil-pile stiffness factor = 4E I /E o p p so 
E = pile modulus P 
I = moment of inertia for pile section P v 

= l/4jrr for circular pile 

E = i n i t i a l soil modulus so 

Equation 3.2 was used to determine the mesh radius for the P-Y 

curve finite element analyses. Although the equations were derived for 

an elastic-plastic medium and assumed perfect soil-pile adhesion, they 

are, nonetheless, valid for the i n i t i a l elastic behaviour of "real" 

soils prior to soil-pile separation. Consequently, the i n i t i a l portion 

of the P-Y responses can be predicted with accuracy. Moreover, as 



FIGURE 3.5: 2-D AND 3-D DEFORMATIONS ALONG THE LOADING AXIS 

(After Baguelin et a l . , 1977, p. 424) 
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shown by Thompson, the mesh radius does not affect the value of 

Pu]_l-» a n d n a s only a moderate influence on the shape of the P-Y 

curve (see Figures 3.3 and 3.4). Overall, in the absence of soil-pile 

separation, fairly accurate P-Y curves should be predicted by using 

values of R determined from Equation 3.2. Where soil-pile separation 

does occur, softer P-Y responses and lower values of P ̂  can be 

expected. 

3.3 PLANE STRESS AND PLANE STRAIN ANALYSES 

In using two-dimensional finite element models to predict P-Y 

curves, a plane strain formulation was used for analyses at large 

depths, and a plane stress formulation for analyses at shallow depths. 

At large depths, the plane strain assumption is justifiable on 

the basis that pressures from soil above and below are sufficiently 

large to prevent vertical displacements. Consequently, displacements 

are restricted to the horizontal plane with soil flowing around the 

pile as the pile is displaced laterally under loads. 

For analyses at shallow depths, the plane strain formulation is 

invalid. At the ground surface, vertical stress is zero and 

displacements are three-dimensional. Consequently, the two-dimensional 

plane stress formulation is appropriate. A transition zone, consisting 

of three-dimensional stresses and strains, exists between the plane 

stress condition at the surface and the plane strain condition at 

greater depths. 

Reese (1958) used a passive wedge failure condition to estimate 

P u^ t near the surface of a saturated clay. For P at large 

depths, a block flow model was used. These failure conditions are 



illustrated in Figure 3.6. A similar method was used to determine 

Pu2_£ for sand (Reese et al., 1974). 

Based on Reese's results, Thompson (1977) determined that the 

depth at which plane strain becomes applicable for saturated clay is 

between 1.5 and 3.0 pile diameters, depending on the pile roughness 

and soil-pile adhesion. Thompson further concluded that the transition 

from plane stress to plane strain is gradual and may be approximated 

by a linear combination of the responses produced by the two 

deformation conditions. 

3.4 SOIL-PILE ADHESION 

As mentioned in Section 3.2, soil-pile adhesion affects the 

displacement and failure characteristics of the laterally-loaded pile 

and soil system. The ultimate soil resistance, ^ ^ , I s also a 

function of the degree of soil-pile adhesion. 

Figures 3.7 and 3.8 shows the results obtained by Thompson 

(1977) for plane stress and plane strain conditions. Using various 

values of (T/c (ratio of i n i t i a l horizontal stress <T to undrained shear 

strength c) to represent different degrees of insitu soil confinement 

or soil depths, normalized P-Y curves were predicted for saturated 

clays. Using a constant value for c, results for adhesion conditions 

ranging from complete soil-pile separation at zero depth (O*=0) to no 

separation at large depths were obtained. Separation was assumed when 

stress changes (decreases) behind the pile exceeded the i n i t i a l 

confining stress <T. Increases in P u2 t with increasing adhesion are 

shown by the graphs. 

Randolph & Houlsby (1984), using plasticity theory, presented 
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FIGURE 3.8: EFFECT OF SOIL-PILE ADHESION ON PLANE STRESS P-Y 
CURVE PREDICTIONS 

(After Thompson, 1977, p. 81) 



solutions for P .. for various values of oc, the coefficient of ult 
adhesion (ie: c g = oic as discussed in Section 4.2.3). Upper and 

lower bound solutions determined were shown to be identical, thus 

indicating an exact solution. Their results for the plane strain 

deformation of an undrained cohesive soil are presented in Table 3.1. 

Again, a clear trend of increasing P ^ t with increasing adhesion 

(ie : o c ) is indicated. 

In the finite element analyses performed to predict P-Y curves 

in Chapters 9 to 11, interface elements were used to model the 

soil-pile adhesion characteristics of the problem. The interface 

elements and their properties are discussed in Chapter 4. 
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TABLE 3.1 
EFFECT OF SOIL-PILE ADHESION 

ON P u"|t FOR PLANE STRAIN ANALYSIS 
OF UNDRAINED CLAY 

a P u 1 t / c d 

0-0 9-142 
0-1 9-527 
0-2 9-886 
0-3 10-220 
0-4 10-531 
0-5 10-820 
0-6 11-088 
0-7 11-336 
0-8 11-563 
0-9 11-767 
1-0 11-940 

(After Randolph & Houlsby, 1984, p. 617) 
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CHAPTER 4 

INTERFACE ELEMENTS 

4.1 INTRODUCTION 

To properly model the lateral movement of a pile section 

through the soil, elements exhibiting the appropriate soil-pile 

interface behaviour are needed. Figure 4.1 illustrates 

diagrammatically the response of the soil to lateral pile 

displacement. In the absence of interface elements, the soil is bound 

to the pile surface (Figure 4.1b). Movement of the pile forces the 

surrounding soil to deform, inducing large shear stresses along the 

side of the pile and tension stresses behind the pile. The presence of 

large shear stresses, however, will likely cause slippages along the 

interface. Tensile stresses may result in the development of a cavity 

behind the pile, or gapping. If interface slippages and gapping are 

neglected in developing P-Y relationships, soil resistances and the 

stiffness of the load-deflection responses may be over-predicted. 

A better model of the soil-pile interaction allows for soil 

movements at the interface. As the pile is displaced laterally, high 

stresses develop in front of the pile while stress reductions occur at 

the back (Reese et al., 1974). This situation is illustrated in Figure 

4.2. At large depths where the in i t i a l confining pressure is high 

(Figure 4.2b), tension stresses will not develop during loading. The 

resulting stress distribution may be as shown in Figure 4.2c. Under 

these circumstances, soil adjacent to the pile flows around the pile 

from front to back with no separation taking place (Randolph & 

Houlsby, 1984, and Yegian & Wright, 1973). At shallower depths, 



a) F i n i t e Element Mesh 
P r i o r to Loading 

b) Mesh During Loading: 
So i l Bound to P i l e Surface -
Large So i l Deformation and 
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c) Mesh During Loading: 
S o i l Allowed to Separate 
and Shear Along Side of 
P i l e - Less S o i l Deformation 
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FIGURE 4.1: DEFORMATION OF FINITE ELEMENT MESH DURING LATERAL PILE LOADING 
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b) So i l Pressure D i s t r i b u t i o n 
P r i o r to Loading (Assuming 
Perfect P i l e Ins ta l l a t ion ) 

c) So i l Pressure D i s t r i b u t i o n During 
Lateral Loading - No Tension 
Stress Development 

d) S o i l Pressure D i s t r i b u t i o n 
During Latera l Loading -
With Development of Tension 
Stresses Behind P i l e 

FIGURE 4.2: SOIL PRESSURE DISTRIBUTIONS AROUND LATERALLY LOADED PILES 

(Adapted from Reese et a l . , 1974, p. 481) 



however, the development of tension stresses behind the pile is 

possible (Figure 4.2d). Subsequent failure of the soil in tension 

leads to the formation of a cavity as illustrated in Figure 4.1c. In 

this situation, soil flows around the front of the pile and separates 

from the pile at some point along the back (Pyke & Beikae, 1984). 

A proper representation of the interface behaviour requires the 

use of special elements. These elements must allow the soil to shear 

along the surface of the pile i f the pile skin friction is exceeded. 

There must also be soil-pile separation i f sufficiently large tension 

stresses develop during loading. 

Interface, or slip, elements were developed by Goodman et al. 

(1968) to model the behaviour of jointed rock masses. These elements 

were subsequently adapted for use in soil mechanics. Yegian & Wright 

(1973) employed curved interface elements in their finite element 

analysis of the laterally loaded pile problem. Interface properties 

were shown to have a noticeable effect on the predicted value of the 

ultimate soil resistance. More recently, the curved interface elements 

were used by Thompson (1977) in developing P-Y curves for saturated 

clays (see Figures 3.7 and 3.8). Results similar to those of Yegian 

were obtained. 

As a simple alternative to the interface elements developed by 

Yegian, normal elements with special modulus properties were used. The 

properties and their formulations are described in the following 

sections. 
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4.2 PROPERTIES OF INTERFACE ELEMENTS 

4.2.1 Geometry 

In the finite element mesh, the interface soil was represented 

by a thin ring of elements encompassing the pile. The elements were 

given a thickness of 0.005D (D = pile diameter) as indicated in Figure 

4.3. Instability problems were not encountered in using the thin 

interface elements despite their high aspect ratio of about 39. 

4.2.2 Shearing Behaviour 

A bi-linear model, shown in Figure 4.4, was used to describe 

the shear stress-shear strain relationship at the interface. The shear 

modulus of the soil, G, remains constant during shearing until C , 
s 

the maximum allowable shear stress, is reached. The value of G is 

determined from the i n i t i a l elastic and bulk modulii of the soil. The 

value of C g is a function of the properties of the soil and pile 

surface, reflecting the maximum skin friction that can develop during 

loading. The corresponding strain at C g is given by 2^. For 

strains beyond / , the soil deforms at constant stress. 

Consequently, G=0. A "zero" value, however, cannot be assigned to G in 

practice due to instability problems within the finite element program 

associated with the stress-strain matrix [D]. To maintain stability, 

the shear modulus at failure was defaulted to 0.001 of its i n i t i a l 

value. 

In general, the strength of a soil is characterized by c and 0", 

the cohesion and internal friction angle. Similarly, the strength of 

the soil-pile interface can be represented by the adhesion, c , and 
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FIGURE 4.4: STRESS-STRAIN RELATIONSHIP FOR SHEAR ALONG THE SOIL-PILE 
INTERFACE 



the friction angle, 8. Using these parameters, the maximum skin 

friction was determined based on the Mohr-Coulomb failure criterion: 

2 r = 2c cosS + 2 (T0 sinS 4.1 s 
1 - sinS 

where (T^ is the minor principal stress. 

Potyondy (1961) has shown that c and S can be expressed as 
3. 

fractions of c and respectively. In general, 

Experimental values of oi and /8 determined by Potyondy for various 

materials under different testing conditions are given in Table 4.1. 

Based on these recommended values, oi = /S = 0.50 was selected for use 

with rough steel pile surfaces in clay, and /S = 0.80 for piles in 

sand. 

4.2.3 Soil-Pile Separation 

The second consideration of interface behaviour is soil-pile 

separation. At shallow depths where the i n i t i a l confining stresses are 

low, negative stresses may develop behind the pile during loading, 

resulting in the formation of cavities. 

Although cohesive soils may be subjected to small tension 

stresses without failure, with the magnitudes of the stresses limited 

possibly by the soil cohesion (c) or the soil-pile adhesion (c ), 

c = etc 
a 

S =/8jf 

4.2 

and 4.3 



TABLE 4.1 

Proposod eoaffldanta of akin hlotluii bttwm •oils and construction materials 

[/<i->M. A - j . / c 0 " - ^ ^ ; without (actor of safety] 

Construction material Sand Cohesionless silt Cohesive 
g T a n u l a r soil 

Clay Construction material 

<H&<D< 
2-0 mm 

0-002<D<0-06 50% Clay + 
50% Sand 

£><0 08 mm 

Surface finish of construction material Dry Sat. Dry Sat. Consist. I. 
= 10-0 5 

Consist. Index: l-O-fl-73 Surface finish of construction material 
Dense Dense Loose Dense 

Consist. I. 
= 10-0 5 

Consist. Index: l-O-fl-73 Surface finish of construction material 

/* /* /* J* J* f* A /cmu 

Steel -ĵ  
Smooth Polished 0-54 0-64 0-79 0-40 0-68 0-40 — 0-50 0-25 0-50 

Steel -ĵ  Rough Rusted 0-76 0-80 0-95 0-48 0-75 0-65 0-35 0-50 0-50 0-80 

Wood | 
Parallel to grain 0-76 085 0-92 0-55 0-87 0-80 0-20 0-60 0-4 0-85 

Wood | 
At right angles to grain 0-88 0-89 098 063 0-95 0-90 0-40 070 0-50 0-85 

Concrete -
Smooth Made in iron form 0-76 0-80 0-92 0-50 0-87 0-84 0 42 0-68 0 40 1O0 

Concrete - Grained Made in wood form 0-88 0-88 0-98 0-62 0-96 0-90 0-58 080 0-50 1-00 Concrete -
Rough Made on adjusted ground 0-98 0-90 1-00 0-79 1-00 0-95 0-80 095 0-60 1-00 

Note: f c 5 oc 

(After Potyondy, 1961, p. 352) 



the stresses likely cannot be sustained for static loadings. 

Consequently, as a somewhat conservative measure, soil-pile separation 

was allowed whenever negative stresses developed in the interface 

elements. 

To model the possible formation of cavities behind the piles, 

both the shear and the bulk modulii were reduced by a factor of 1000 

upon tension failure. The low shear modulus prevents any further 

significant changes in shear stress while the low bulk modulus allows 

large volume changes to occur. 

4.2.4 Failure Criteria 

To achieve the desired behaviour of the interface elements, the 

above criteria were used to define soil failure. The interface 

elements were considered to have failed whenever the maximum shear 

stress, given by 0̂ /2, exceeded the skin friction, C g , or whenever 

the minor principal stress, (T^', became negative. Upon shear 

failure, the shear modulus was reduced to 0.001 of its i n i t i a l value. 

Upon tension failure, both the shear and the bulk modulii were reduced 

to 0.001 of their i n i t i a l values. The low modulii allow large shear 

deformations and volume changes to occur to model both the shearing of 

soil along the pile surface and the development of a tension cavity 

behind the pile. 



CHAPTER 5 

FINITE ELEMENT PROGRAM 

A new higher-ordered finite element program was used in the 

analyses of the cavity expansion, pressuremeter, and laterally loaded 

pile problems. The program, CONOIL, was developed by Hans Vaziri at 

the University of British Columbia. 

The program is divided into two parts: a geometry program and 

the main finite element program. The geometry program inputs mesh 

geometry data, rearranges the order of the nodes to minimize the 

bandwidth, processes the data, and creates a LINK f i l e to transfer the 

information to the main program. The advantages of this system is 

obvious. Program users can number the nodes the way they desire and 

the geometry program will do the work to minimize the bandwidth. 

Moreover, i f the same mesh geometry is used for more than one 

analysis, savings in computing time can be achieved by processing the 

geometry information only once. 

The main finite element program contains several useful 

features. The program analyses two types of higher-ordered elements: 

6-noded Linear Strain Triangles (LST), and 15-noded Cubic Strain 

Triangles (CST). Examples of the elements are shown in Figure 5.1. LST 

elements were found to produce accurate results when compared with 

theoretical stress-strain and cavity expansion theories (Chapters 6 

and 7). These elements were used for a l l subsequent analyses. 

Load-deflection responses were slightly stiffer than the theoretical 

predictions but is to be expected as a result of the incremental 

elastic method of analysis used in the program. Trial analyses 



a) Linear Strain Trianaular Element 
6 Nodes, 12 D.O.F. 

b) Cubic Stra in Tr ianqular Element 
15 Nodes, 30 D.O.F. 

FIGURE 5 .1 : HIGHER-ORDERED ELEMENTS 

(After V a z i r i , 1 9 8 5 ) 

r o 



performed with CST elements produced better results. The improvements, 

however, were small and did not warrant the high computing costs 

incurred by using the CST elements. 

Another advantage of CONOIL is its ability to handle high 

Poisson's ratios. Values as high as 0.499 were used without 

encountering instability problems. The high values were useful in 

simulating undrained conditions (no volume change) for cohesive soils.. 

Other special features of CONOIL are its ability to perform 

consolidation and load-shedding analyses. These options were not used 

in dealing with the present problems. A complete documentation of the 

finite element program is given by Vaziri in his doctoral dissertation 

(1985). 
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CHAPTER 6 

STRESS-STRAIN RELATIONSHIP 

6.1 INTRODUCTION 

The stress-strain relations of soil are complex, being 

non-linear, inelastic, and stress level dependent. In the finite 

element program CONOIL, a simple incremental linear elastic and 

isotropic stress-strain model is used. The model is described by 

Duncan et al. (1980). 

To verify the ability of the finite element program to 

correctly model the complex stress-strain behaviour of soil, a group 

of 4 linear strain triangular elements was tested. The test elements 

and the boundary constraints are shown in Figure 6.1. Uniformly 

distributed pressure loads, A(T^, were applied to the top of the 

elements and the corresponding axial (Y) deflections computed. The 

elements were tested under both plane strain and plane stress 

conditions. 

6.1.1 Stress-Strain Relationship 

The incremental stress-strain relationship used in CONOIL can 

be written as follows: 

{AC} = [ D ] {At } 6.1 

where 

{A(T} is the incremental stress vector 

{A&} is the incremental strain vector 

[ D ] is the stress-strain matrix 



FIGURE 6.1 : TEST ELEMENTS 
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[D] i s a function of the tangent Young's and bulk modulii, ET and 

V 
ET = E.(I - Rf(<rd/<rdf)2 

B t - k B t V W" 
where 

E. 
1 

= i n i t i a l Young's modulus = k„P (fl*o/P ) 
ij s J a 

kE = Young's modulus number 

n = Young's modulus exponent 

kBt = tangent bulk modulus number 

m = tangent bulk modulus exponent 

P 
a 

= atmospheric pressure 

*3 = minor principal stress 

R f failure ratio 

fd = deviator stress 

'df = deviator stress at failure 

6.2 PLANE STRAIN CONDITION 

6.2.1 Stress-Strain Relations 

The stress-strain relationship below was derived for the plane 

strain uniaxial loading condition: 

where 

£ = (9B - E )(3B + E ) <T 6.4 y _ s__ sj_ y 
36B2E 

s 

= axial strain corresponding to the applied stress 0~y 



secant Young's modulus 

bulk modulus = k RP ((JT-/P ) m 

o a 3 a 

bulk modulus number 

bulk modulus exponent 

E g for the hyperbolic s t r e s s - s t r a i n model i s given by Duncan 

& Chang (1970) as 

E s = E . [ l - R f ( ( r y / c r d f ) ] 

where 

(T J £ = deviator stress at f a i l u r e 

The d e r i v a t i o n of the s t r e s s - s t r a i n r e l a t i o n s h i p i s contained 

i n Appendix A. 

6.2.2 Comparison of F i n i t e Element Results with Closed Form  

Solution 

F i n i t e element t e s t s were performed f or both cohesive (0=0) and 

f r i c t i o n a l (c'=0) materials. S o i l parameters employed i n these 

analyses are tabulated i n Table 6.1. The properties l i s t e d f o r the 

cohesive material correspond to those of a normally consolidated 

undrained clay (based on Atukorala & Byrne, 1984) while the f r i c t i o n a l 

material properties are appropriate for a sand with a r e l a t i v e density 

of 75% (Byrne & Eldridge, 1982). 

The r e s u l t s of the analyses are shown i n Figure 6.2 for the 

undrained clay, and i n Figure 6.3 for the sand. Good agreements e x i s t 

E = s 
B = 

k B = 

m = 

6.5 

= 2c cosfi + 2(To s±ntf 

1 - sinaf 



TABLE 6.1 

SOIL PARAMETERS USED IN STRESS-STRAIN ANALYSES 

PARAMETER 

MATERIAL 

PARAMETER COHESIVE SOIL 
(Undrained Clay) 

FRICTIONAL SOIL 
(Sand) 

kE 72.1 750.0 

n 0.0 0.5 

kB 24.0 600.0 

m 0.0 0.5 

R f 0.9 0.9 

fi 0.0 0.29 

c (Psf) 305.0 0.0 

*1 (deg) 0.0 39.0 

(deg) 0.0 4.0 

(deg) 0.0 33.0 

^sat (Pcf) 123.4 122.4 

Depth (ft) 20.0 20.0 

(Psf) 1220.0 1200.0 

P . atm (Psf) 2116.2 2116.2 





FIGURE 6.3: PLANE STRAIN STRESS-STRAIN RELATIONSHIPS FOR SAND 



between the finite element predictions and the theoretical curves 

given by Equation 6.4. 

The finite element curves are truncated at stresses 

corresponding to the failure condition where 0~^f(T^ = 1. Upon 

failure, the shear modulus was reduced to 0.001 of its i n i t i a l value. 

This reduction of the shear modulus allows for large deformations on 

subsequent stress increases and yields the flat portions of the curves 

shown. 

The computed stress-strain curves are, in general, slightly 

stiffer than the theoretical curves predicted by Equation 6.4. This 

stiffness is expected, however, due to the inherent nature of the 

incremental elastic method employed in the finite element program. 

Better agreements could have been obtained by using smaller stress 

increments, but was deemed unnecessary. The computed results clearly 

demonstrate the finite element program's ability to model the 

non-linear stress-strain behaviour of soil under plane strain 

condition. 

6.3 PLANE STRESS CONDITION 

6.3.1 Stress-Strain Relations 

For the loading conditions illustrated in Figure 6.1, a 

stress-strain relationship was derived for the plane stress case. As 

shown in Appendix A, this relationship can be expressed as 

y _y u_y 
E E.[l - RJff s l f Y dfy J 

6.6 



where E^ and ( T ^ are as given in Equation 6.5. The remaining 

parameters are as defined in Section 6.2.1. 

6.3.2 Comparison of Finite Element Results with Closed Form  

Solution 

The theoretical and computed stress-strain curves for the 

undrained clay and sand (material properties given in Table 6.1) are 

plotted in Figures 6.4 and 6.5. Again, good agreements exist between 

the numerical results and the theoretical relationships. As in the 

plane strain case, the finite element predictions are slightly stiffer 

than the theoretical curves. The differences, however, are negligible. 

Once again, the results verify the ability of the program to model the 

stress-strain behaviour of soil under plane stress condition. 



FIGURE 6.4: PLANE STRESS STRESS-STRAIN RELATIONSHIPS FOR UNDRAINED CLAY 





CHAPTER 7 

CYLINDRICAL CAVITY EXPANSION 

7.1 INTRODUCTION 

The cylindrical cavity expansion problem bears some 

similarities to the laterally loaded pile situation. At depths away 

from the ground surface, soil displacements upon the expansion of a 

cavity are confined to the radial plane (Hughes et al., 1977, and 

Robertson, 1982). The problem can thus be treated as plane strain. 

Similarly, plane strain deformations are assumed for the laterally 

loaded pile problem at large depths. In both instances, the lateral 

passive resistance of the soil is mobilized. 

Although no mathematical solution exists for the lateral pile 

problem, closed form solutions for cavity expansion are readily 

available. Consequently, to validate the method of analysis for the 

laterally loaded pile problem, finite element analyses for the 

expansion of cylindrical cavities were performed. The results are 

compared with closed form solutions developed for the expansion of 

infinitely long cylindrical cavities in infinite media. 

Finite element analyses for the cavity expansion problem were 

performed using two different mesh geometries, the two-dimensional 

plane strain quadrant shown in Figure 7.1, and the plane strain 

axisymmetric domain in Figure 7.2. Taking into account small 

discrepancies in the results due to the different sizes and, to a 

lesser degree, the pattern or geometry of the elements, both mesh 

geometries yielded approximately the same pressure-deflection 

responses. Although the quadrant mesh is suited for validating the 



FIGURE 7.1 : FINITE ELEMENT MESH FOR PLANE STRAIN CAVITY EXPANSION ANALYSIS 



FIGURE 7.2: FINITE ELEMENT MESH FOR PLANE STRAIN AX 1 SYMMETRIC CAVITY EXPANSION ANALYSIS 
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pile results because of its similarity to the mesh used in the 

laterally loaded pile problem (see Figures 3.2 and 4.3), the 

axisymmetric mesh was chosen because of its simplicity, which 

permitted the use of smaller, and therefore, more elements in the 

domain without incurring excessive computing costs. Since soil failure 

progresses out radially from the centre of the mesh in the cavity 

expansion problem, greater accuracy in predicting deflection responses 

was achieved with the use of smaller elements. 

Finite element predictions were obtained for both 

elastic-plastic and non-linear elastic material properties. The 

results are compared with elastic-plastic closed form solutions. Both 

cohesionless (sand) and cohesive (clay) soil properties were used in 

the comparisons. 

7.2 COHESIVE SOIL 

Finite element analyses and the elastic-plastic closed form 

solution for an undrained clay were compared. The soil properties are 

tabulated in Table 7.1. These values are appropriate for a normally 

consolidated clay and are based on Atukorala & Byrne (1984). The 

value of 0.0006 given for the elastic-plastic case serves only as a 

flag to indicate the material type and is of no consequence in 

subsequent calculations. A Kq value of 1.0 was used for the 

isotropic consolidation condition assumed in the closed form solution. 

7.2.1 Elastic-Plastic Closed Form Solution 

The closed form solution for a purely cohesive material was 

derived by Hughes (1979) based on the assumptions of expansion in an 



TABLE 7.1 

MATERIAL PROPERTIES FOR UNDRAINED CLAY 

MATERIAL 

PARAMETER ELASTIC-PLASTIC NON-LINEAR ELASTIC 

k E 144.1 144.1 

n 0.0 0.0 

kB 24021.0 24021.0 

m 0.0 0.0 

R f 0.0006 0.9 

c (Psf) u 610.0 610.0 

^2 (deg) 0.0 0.0 

Af6 (deg) 0.0 0.0 

^ c v (deg) 0.0 0.0 

n 0.499 0.499 

''sat 123.4 123.4 

Depth (ft) 40.0 40.0 

c7* ' (Psf) vo 2440.0 2440.0 

K 
o 

1.0 1.0 

P ,. (Psf) atra v ' 2116.2 2116.2 



infinite medium and a Tresca failure criterion (ie: 1/2 (fX - (T ) = 
r 0 

c ). In addition, soil in the plastic zone was assumed to deform at 

constant volume. Although no volumetric strain constraint was placed 

on the deformation of soil in the elastic zone, Hughes showed that 

AIT = -AO" during cavity expansion. Moreover, in the case of an 
I* 0 

infinitely long cylindrical cavity, A(fz = 0. Consequently, the mean 

normal stress, ff^, is constant during expansion and no change in 

volumetric strain occurs. The overall effect is that of constant 

volume deformation, applicable to the case of an undrained clay. 

Hughes' solution for small strains is given below: 

or 

where 

P = 

P = 

P + c o u 

P + c o u 

1 + ln 

1 + ln 

AT 2G 

r c o W f 
Ax 1 6BE 

r c 9B - E o u 

7.1a 

7.1b 

P = r 
P = o 

AT = 

T = 

pressure on wall of cavity 

i n i t i a l pressure on wall of cavity 

deflection of cavity wall 

i n i t i a l radius of cavity 

B, G and E = i n i t i a l modulus values 

In the equations given above, P r tends to infinity as AT 

tends to infinity, and no limiting pressure can be determined. 

Clearly, this relationship breaks down for large deformations. Gibson 

& Anderson (1961) have derived an equation for large strains as 

follows: 



P = P + c r o u 1 + l n 'AT 2G 
< 

r c 

7.2 

where 

r = cu r r e n t r a d i u s of c a v i t y = r Q + Ar 

For t h i s equation, as r tends to i n f i n i t y , Ar/r approaches 1, and a 

l i m i t i n g pressure, based s o l e l y on m a t e r i a l p r o p e r t i e s , i s achieved: 
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P T = P + c [1 + ln(2G/c )] L o u L v u / J 7.3 

Assuming E = 500c u f o r an undrained c l a y (u=0.5), P^ = P q + 6.8c u-

The t h e o r e t i c a l e l a s t i c - p l a s t i c curve based on Equation 7.1a 

f o r the m a t e r i a l p r o p e r t i e s given i n Table 7.1 i s shown i n Figure 7.3. 

For AT < 0.001103 f t , or l n [ ( J r / r )(2G/c )] <C -1,4P = P - P i s 
o u r o 

negative. This apparent e r r o r i s caused by the ' l o g ' term i n the 

closed form s o l u t i o n and r e f l e c t s the l i n e a r e l a s t i c behaviour of the 

s o i l p r i o r to the s t a r t of p l a s t i c f a i l u r e . Consequently, the s m a l l 

s t r a i n or i n i t i a l e l a s t i c p o r t i o n of the curve i s given by the l i n e a r 

e l a s t i c c l o s e d form s o l u t i o n (Byrne & Grigg, 1980): 

P = P + 2G(4r/r ) r o v o y 7.4 

From Figure 7.3, p l a s t i c f a i l u r e can be seen to begin at A? = 605 Psf 

where the two curves meet. 



PRESSURE ON CAVITY WALL AP (psf) 

29 



63 

7.2.2 Finite Element Predictions and Comparison with Closed Form  

Solution 

The result of the finite element analyses are presented in 

Figure 7.4. Good agreement with the closed form solution was obtained 

for the elastic-plastic curves. 

The cavity expansion curve for non-linear elastic material 

properties is also shown in the graph. As expected, the i n i t i a l linear 

elastic behaviour of the elastic-plastic curves is absent and the 

overall pressure-deflection response is considerably softer. 

7.2.2.1 Boundary Conditions 

Although the inherent nature of incremental elastic analysis is 

to predict responses somewhat stiffer than the actual behaviours, the 

elastic-plastic finite element curve in Figure 7.4 shows an i n i t i a l 

response slightly softer than that of the close form solution. At 

larger deflections, the curve stiffens as expected and matches the 

theoretical curve for deflections greater than about 0.15 f t . 

The behaviour of the finite element curve can be explained by 

the boundary conditions. Since undrained clay deforms at constant 

volume, the expansion of a cavity in a finite medium is physically 

impossible. To illustrate, a separate analysis was performed using the 

mesh in Figure 7.2 but with the outer boundary pinned at nodes 65, 66 

and 879 to model a finite medium. The resulting pressure-deflection 

curve is shown in Figure 7.5. Although this curve deviates from an 

expected vertical line and indicates an increase in deflection with 

increasing pressure, the response is much stiffer than that predicted 

by Equation 7.1. The calculated deflections were found to be the 
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« I i i i i 1 1 i 1 1 1 1 r 
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FIGURE 7.4: CAVITY EXPANSION CURVES FOR UNDRAINED CLAY 
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r e s u l t s of small volumetric s t r a i n s (£ < 0.5%) i n the mesh 
v 

elements owing to the i n a b i l i t y to use B = oo, and the s i m i l a r i t y i n 

i n i t i a l slope between the predicted curve and the t h e o r e t i c a l 

r e l a t i o n s h i p i s c o i n c i d e n t a l . The use of a f i n i t e element mesh with a 

d i f f e r e n t radius would have produced a curve with a d i f f e r e n t i n i t i a l 

slope. To model expansion i n an i n f i n i t e medium, the outer boundary 

was permitted to d e f l e c t i n the r a d i a l d i r e c t i o n as shown i n Figure 

7.2, creating a stress boundary where 4<T. = 0. The expansion curve 

predicted by t h i s method i s presented i n Figure 7.4. 

In using the stress boundary method, the r e s i s t i n g force of the 

s o i l beyond the radius of 100 f t i s omitted. As shown i n Figure 7.6, 

the r a d i a l s t r e s s , (T r, decreases with r a d i a l distance from the 

ca v i t y according to the equation derived by Hughes (1979): 

(T = P r ( a 2 / r 2 ) 7.5 

where 

= pressure (or change i n pressure) on wall of c a v i t y 

a = radius of c a v i t y 

r = r a d i a l distance from centre of c a v i t y 

In the above analysis f o r an i n i t i a l c a vity radius of 1 f t , the 

r e s i s t i n g pressure omitted at the outer boundary (r = 100 f t ) 

increased from a value of 0.069 Psf at the s t a r t of p l a s t i c f a i l u r e 

at AP = 690 Psf (a = 1.0034 f t ) to 0.416 Psf at AF = 3060 Psf (a = 

1.166 f t ) . The omission of t h i s r e s i s t i n g pressure i s thought to be 

the cause of the s l i g h t l y s o f t response of the f i n i t e element curve at 

low s t r a i n s (Ar/r^ < 0.14) i n Figure 7.4. Although t h i s error could 

have been reduced by extending the radius of the f i n i t e element mesh, 
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FIGURE 7.6: VARIATION OF RADIAL STRESS WITH DISTANCE FROM CAVITY 
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i t was not considered necessary since the error introduced by using a 

mesh radius of 100 f t i s r e l a t i v e l y small and i n s i g n i f i c a n t . 

Volumetric s t r a i n s c a l c ulated f o r the stress boundary ( i n f i n i t e 

medium) analysis were approximately 150 times l e s s than those obtained 

i n the f i n i t e medium analysis (Figure 7.5). Consequently, d e f l e c t i o n 

errors r e s u l t i n g from volume changes can be discounted. 

7.3 COHESIONLESS SOIL 

In the case of a cohesionless s o i l , f i n i t e element analyses 

were performed using only non-linear e l a s t i c material properties f o r a 

dense sand. 

7.3.1 E l a s t i c - P l a s t i c Materials 

D i f f i c u l t i e s a r i s e i n the analysis of e l a s t i c - p l a s t i c materials 

due to the v a r i a t i o n of shear strength with the minor p r i n c i p a l 

s t r e s s , cT^', as follows: 

(T,f = 2 C = 2 CV sin0' 7.6 df max 3  
1 - sinjzf' 

and ZTj; = (T^' sinks' costf 7.7 

1 - s i n * 1 

Moreover, tf varies with (T^' as given by Duncan et a l . (1980): 

tf = fi^ -A0 log«T 3 7 P A ) 7.8 

As increasing loads are applied to a s o i l element, t7" ' 



v a r i e s , r e s u l t i n g i n changes i n the shear s t r e n g t h , s t r e s s l e v e l 

( (T^/ lT^), and modulus values. Problems a r i s e as the s o i l 

approaches f a i l u r e . The r e d u c t i o n of modulus values a t f a i l u r e to 0.01 

or 0.001 of t h e i r i n i t i a l values causes (T./^jr- to f l u c t u a t e above 
d di 

and below the f a i l u r e value of 1.0, l e a d i n g to e r r a t i c s o i l behaviour. 

An i l l u s t r a t i o n of the problem was presented by E l d r i d g e (1983) and i s 

shown i n Figure 7.7. Because of t h i s e r r a t i c behaviour, e l a s t i c -

p l a s t i c analyses were not performed. Instead, a comparison was made 

between the no n - l i n e a r e l a s t i c f i n i t e element p r e d i c t i o n and the 

e l a s t i c - p l a s t i c c l o s e d form s o l u t i o n . 

7.3.2 E l a s t i c - P l a s t i c Closed Form S o l u t i o n 

An e l a s t i c - p l a s t i c c l o s e d form s o l u t i o n f o r the expansion of a 

c y l i n d r i c a l c a v i t y i n an i n f i n i t e cohesionless medium was derived by 

Hughes et a l . (1977) assuming a Mohr-Coulomb f a i l u r e c r i t e r i o n . A 

complete d e r i v a t i o n of the s o l u t i o n , i n c l u d i n g d i l a t i o n e f f e c t s , was 

presented by E l d r i d g e (1983). The f o l l o w i n g r e l a t i o n s h i p was obtained: 

P R = P Q (1 + sinpf') E Ax 

1 + ju r nP sinyj' 

( l - N ) / ( l + n ) 7.9 

o 

and N = (1 - s i n 0 ' ) / ( l + sin0') 

n = (1 - s i n v O / ( l + s i n v ) 

where 

^' = f r i c t i o n angle of the cohesionless m a t e r i a l 

V = d i l a t i o n angle 
E = i n i t i a l Young's modulus = k„P ((ToVP ) n 

Ji a J a 



Modified Mohr Diagram 

FIGURE 7.7: STRESS PATH FOR FAILED SAND ELEMENT 

(Adapted from Eldr idge, 1983, p. 90) 



P r > P , r and Ar are as defined in Equations 7.1 and 7.2. 

Volumetric strain due to dilation effects is given by 

A£ = -AK sinv* 7.10 

For the condition of constant volume deformation, V = 0 and Equation 

7.9 reduces to 

P = P (1 + sin*') r o E Ar 

1 + ji r P q sin*' 

(l-N)/2 7.11 

As in the case of the solution for cohesive materials, as Ar 

tends to infinity, Ar/r approaches 1, and the limiting pressure is 

given by 

P L = PQ (1 + sin*') 2G 

P sin*' o 

(l-N)/2 7.12 

The above closed form solution does not take into account the 

variation of *' with given by Equation 7.8, nor does i t consider 

the effect of 0"̂ ' on the in i t i a l modulus values according to 

E i " kEPa«V/Pa>n 

G = k G W / P a > m 
7.13 

7.14 

Since 0^' may vary considerably during loading, omitting its 

influences may lead to significant errors. Consequently, the 



e las t ic -p las t ic solution given by Equations 7.9 to 7.12 i s , at best, 

only an approximation of the real problem. 

The closed form solution for a dense sand i s shown in Figure 

7.8. The assumption of V = 0 was made for constant volume expansion. 

Material properties for the sand are based on Byrne & Eldridge (1982) 

and are tabulated in Table 7.2. As in the case of the cohesive s o i l , 

the i n i t i a l l inear elast ic portion of the curve i s given by Equation 

7.4. Plast ic fa i lure i s shown to begin at A? = 1400 Psf. 

7.3.3 Fin i te Element Prediction 

The results of a plane strain axisymmetric f in i te element 

analysis and the corresponding e last ic -p last ic closed form solution 

(j/ = 0) are shown in Figure 7.9. An outer stress boundary was used in 

the analysis, as discussed in Sec. 7.2.2.1. Material properties are 

given in Table 7.2. An unusually high kg value of 1250.0 was used in 

order to l imit volume changes and to fac i l i ta te comparison with the 

constant volume closed form solution. K was taken as 1.0 to model 
o 

the isotropic consolidation condition assumed in the closed form 

solution. 

The i n i t i a l slope of the two curves i s 2G, as predicted by the 

e last ic closed form solution in Equation 7.4. The expansion curve for 

non-linear material properties, however, lacks the i n i t i a l l inear 

e last ic behaviour and exhibits a much softer response. Although a 

softer response was anticipated, such a large difference between the 

two solutions was unexpected. The inaccuracy of the closed form 

solution in fa i l ing to take into account the effects of (T^' as 

discussed in Section 7.3.2 may be the cause of the large discrepancy. 



TABLE 7.2 

MATERIAL PROPERTIES FOR SAND 

PARAMETER NON-LINEAR ELASTIC 
COHESIONLESS MATERIAL 

D r (%) 

k E 

75 

750.0 

n 0.5 

k B 1250.0 

m 0.5 

R f 0.9 

c (Psf) 0.0 

*l (deg) 39.0 

A0 (deg) 4.0 

^ c v ' (deg) 33.0 

V (deg) 0.0 

/ sa t < P c f> 

Depth (ft) 

0.4 

122.4 

20.0 

(T ' (Psf) vo v 

K 
o 

P (Psf) atm v 

1200.0 

1.0 

2116.2 
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CHAPTER 8 

PRESSUREMETER EXPANSION 

8.1 INTRODUCTION 

The pressuremeter is essentially an expandable tube which is 

either pushed into the soil or inserted into a pre-bored hole in the 

ground and inflated under controlled conditions (Robertson, 1982). 

Plots of Pressure vs. Volume Increase, referred to as pressure 

expansion curves, are obtained from the tests, from which values for 

soil parameters can be determined. 

The foregoing plane strain axisymmetric cavity expansion 

analysis is generally considered to be a good model for pressuremeter 

expansion tests. Recent research by Yan (1986), using three-

dimensional axisymmetric finite element analyses, has confirmed the 

validity of the plane strain cavity expansion model for pressuremeter 

analysis. For typical aspect ratios of pressuremeters ranging from 

about 6 to 8, pressure-deformation curves predicted from three-

dimensional axisymmetric analyses were nearly identical to those 

obtained using the plane strain formulation described in Section 8.2. 

For simplicity, the cavity expansion formulation can be used to model 

pressuremeter expansion without significant errors. 

The load-deflection relationship of pressuremeter expansion was 

analysed using the incremental elastic finite element method. 

Pressuremeter curves obtained from the analyses were compared with P-Y 

curves obtained in Chapters 9 and 10 to determine a rational method 

for deriving P-Y curves from pressuremeter curves. The results are 

presented in Chapter 11. 
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8.2 FINITE ELEMENT DOMAIN ANALYSED 

To investigate the pressure-deflection response of the 

pressuremeter problem, plane strain axisymmetric analyses were 

performed using the finite element mesh shown in Figure 7.2. The 

placement of rollers along the top and bottom boundaries of the mesh 

ensured deformations only in the horizontal plane. The outer boundary 

was left unconstrained to simulate a boundary of zero stress change. 

Errors arising from the omission of pressures exerted along this 

boundary by soil outside the finite element domain were shown in 

Section 7.2.2.1 to be negligible. Pressure loads were applied to the 

side of the mesh over a length of one foot as indicated. Soil 

disturbances and stress changes due to the placement of the 

pressuremeter probe were ignored. An isotropic consolidation insitu 

stress condition was assumed for the entire mesh. 

8.3 COHESIVE SOIL 

The results of the analyses for a normally-consolidated 

undrained clay are presented in Figure 8.1. Soil parameters used in 

the study are given in Table 8.1 and were derived as follows: 

Bulk unit weight of clay =120 Pcf 

Soil depth = H 

Effective overburden stress, <r ' = (120 - 62.4) H = 57.6 H 
wvo 

Undrained shear strength, c = 0.265 (T '= 15.25 H 
6 u vo 

Initial Young's modulus, E. = 200 c = 3050 H 
° 1 u 

For the undrained condition, n = 0 and E. = k̂ P ^ 
' I E atm 

therefore, k^ = 1.44 H 



MATERIAL 

TABLE 8.1 

PROPERTIES FOR UNDRAINED N.C. CLAY 

NON-LINEAR ELASTIC COHESIVE SOIL 

PARAMETER DEPTH =10 FT DEPTH = 20 FT 

k E 14.4 28.8 

n 0.0 0.0 

k B 1200.0 2400.0 

m 0.0 0.0 

R f 0.9 0.9 

*o 0.498 0.498 

c 
u 

(Psf) 152.5 305.0 

*1 (deg) 0.0 0.0 

(deg) 0.0 0.0 

cv (deg) 0.0 0.0 

* sat (Pcf) 120.0 120.0 

Depth (ft) 10.0 20.0 

<r » 
vo 

(Psf) 576.0 1152.0 

K 
o 

1.0 1.0 

P «. atm (Psf) 2116.2 2116.2 





Taking U q = 0.498 for the undrained condition, 

bulk modulus, B = E./3(l - 2u ) = 83.3 E. 

and B = k„P _ for m=0 B atm 
therefore, kp = 83.3 kv = 120 H 

Using H=10 ft and H=20 ft in the above equations yields the values 

shown in Table 8.1. 

The i n i t i a l slopes of the expansion curves are as expected. 

Values of approximately 0.99(2G) were obtained, compared to 2G 

predicted by the linear elastic closed form solution given by Equation 

7.4. The results also show the H=20 ft curve to be merely a scaled-up 

version of the H=10 ft curve. The scaling factor of 2.0 indicated by 

the predicted load-deflection values corresponds to the differences in 

the values of c y, kg and kg used in the two analyses. 

8.4 COHESIONLESS SOIL 

Finite element analyses were also performed for cohesionless 

soil using the mesh in Figure 7.2. The predicted pressuremeter curves 

for a dense sand are shown in Figure 8.2. Properties for the sand were 

determined from values given by Byrne & Eldridge (1982), and Byrne & 

Cheung (1984), and are summarized in Table 8.2. 

Values of about 0.98(2G) were determined for the i n i t i a l slopes 

of the pressuremeter curves, agreeing well with the theoretical value 

of 2G. The overall shape of the two curves are similar, the H=20 ft 

curve being a scaled-up version of the H=10 ft curve. A scaling factor 

of 1.66 was obtained for the range of strains shown. 

Small irregularities can be observed in the predicted results. 



TABLE 8.2 

MATERIAL PROPERTIES FOR DENSE SAND 

PARAMETER COHESIONLESS SOIL 
DEPTH=10 FT DEPTH=20 FT 

k E 1000.0 1000.0 

n 0.5 0.5 

k B 600.0 600.0 

m 0.5 0.5 

R f 0.8 0.8 

*l (deg) 39.0 39.0 

Atf (deg) 4.0 4.0 

ffCy (deg) 33.0 33.0 

D r (%) 75 75 

0.222 0.222 

u (Psf) 624.0 1248.0 

' s a t < P s f> 122.4 122.4 

C (Psf) 330.0* 675.0* 

K 
o 

1.0* 1.0* 

* Values assumed for f in i te element analyses 
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The load-deflection values plotted in Figure 8.2 do not describe 

smooth curves, but stray to either side of the best-fit relationships. 

These irregularities are the direct results of erratic soil behaviour 

at or near failure, where the strength of the soil varies with changes 

in 0^', resulting in fluctuations in the stress level above and 

below the failure condition. A discussion of this problem is given in 

Section 7.3.1. 

8.5 SIZE EFFECT 

To simplify the conversion of radial displacements, Av, into 

strain values, AV/VQ, in the foregoing finite element analyses, an 

i n i t i a l cavity radius of 1 ft was assumed. The actual radius of the 

pressuremeter cell, however, is in the neighbourhood of 1.5 inch. 

Analyses were performed to determine the existance of any size effect 

and to assess the validity of the pressuremeter results shown in 

Sections 8.3 and 8.4. 

To examine the pressure—deflection relationship, an analysis 

was performed for the undrained clay using a mesh with an i n i t i a l 

cavity diameter, D, of 3 inches. The mesh radius, R, was kept at 50D 

(150 in) as before. The width of the loaded area was also retained at 

1 f t . Other boundary and loading conditions were kept the same as 

before. Soil parameters given in Table 8.1 for H = 20 ft were used. 

Figure 8.3 shows the AV vs. Av results of this analysis along 

with the curve for D = 2 ft (r = 1 f t ) . As expected, smaller 

displacements were obtained for the D = 3 inches case. A comparison of 

the 4P vs. Av/v plots in Figure 8.4, however, shows that the 

results of the two analyses are identical. Consequently, size effects 
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can be e l i m i n a t e d through the use of the c i r c u m f e r e n t i a l s t r a i n , 

Ar/r^, i n s t e a d of d e f l e c t i o n , Ar. Moreover, AY-Ar r e l a t i o n s h i p s can 

be obtained f o r pressuremeters of any s i z e (aspect r a t i o > 6) simply 

by m u l t i p l y i n g the Ar/r^ values generated from any a n a l y s i s by the 

new r values, o 
Based on the r e s u l t s shown i n Figure 8.4, the i n i t i a l c a v i t y or 

c e l l diameter can be assumed to have no i n f l u e n c e on the AV-Ar/r 
o 

r e l a t i o n s h i p . T h i s assumption, however, i s v a l i d only f o r s e l f - b o r i n g 

pressuremeters i n s t a l l e d w i t h no s o i l d isturbances. In p r a c t i c e , s o i l 

disturbance i s unavoidable and i t s e f f e c t s on the p r e s s u r e - d e f l e c t i o n 

r e l a t i o n s h i p d i f f i c u l t to p r e d i c t . 



CHAPTER 9 

PREDICTION OF P-Y CURVES 

9.1 INTRODUCTION 

P-Y curves for the laterally loaded pile problem were predicted 

using the finite element formulations described in Chapter 3. Plane 

strain and plane stress analyses for both undrained clay and sand were 

performed. The results are presented in the following sections. 

Additional analyses were performed to determine the effects of varying 

the mesh radius and the pile diameter. The P-Y curves were compared 

with the pressuremeter curves obtained in Chapter 8 to determine a 

method for deriving P-Y curves from pressuremeter curves. The results 

are presented in Chapter 11. 

9.2 FINITE ELEMENT MESH 

The finite element mesh used in the analyses is shown in Figure 

9.1. As noted in Section 3.2, rollers were placed along the axis of 

symmetry to ensure zero displacement perpendicular to the loading 

direction. The outer mesh boundary was fixed at a radius of R 

determined from Equation 3.2. The value of R = 22D was calculated as 

follows: 

Assuming flexible piles (h > 7/3 1Q)> R = 7 1 q applies. 

To ensure that deformations of the pile elements are 

insignificant relative to soil deformations (ie: rigid pile 

section), take E /E = 500. 
p so 

Also, I = l/47Tr4 = 1/647TD4 
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And 1 = [4(E /E )I ] 1 / 4 = 3.148 D o p so pJ 

Finally, R = 7 1 = 22.03 D 

Check: Embedded length of pile > 7/3 1 = 7.34 D = 14.7 ft 

for D = 2 f t . 

Therefore, assumption of flexible pile is reasonable. 

The mesh shown in Figure 9.1 is composed of triangular linear 

strain elements. A brief description of this element is given in 

Chapter 5. The higher-ordered 15-noded cubic strain elements were not 

used in the analyses due to the high computing costs involved. A t r i a l 

analysis performed using the cubic strain elements produced results 

showing only a slight increase in sensitivity over the results 

obtained by using linear strain elements and the mesh in Figure 9.1. 

Computing costs, however, were increased by nearly 200%. 

9.3 P-Y CURVES FOR UNDRAINED CLAY 

Finite element analyses were performed for undrained 

normally-consolidated clay at various depths. The soil properties are 

given in Table 9.1, and are identical to those used in the 

pressuremeter expansion analyses in Chapter 8. The pile elements were 

treated as a linear elastic material. To limit deformations and to 

prevent failure of the pile elements, parameters 500 times greater 

than those of the soil were used. 



TABLE 9.1 

SOIL PARAMETERS FOR UNDRAINED N.C. CLAY 

PARAMETER VALUE 

kE 1.44 H 

n 0 

kB 120 H 

m 0 

n 0.498 

R f 0.9 

c (Psf) u v ' 15.25 H 

*sat <Pcf> 120.0 

<TV' (Psf) 57.6 H 

(Tm' (Psf) 57.6 H 

K 1.0 o 

Note: H = depth (in feet) 
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9.3.1 Results 

The predicted P-Y curves for various depths are shown in Figure 

9.2 for plane strain analyses, and in Figure 9.3 for the plane stress 

condition. A pile diameter of 2 feet was assumed for the analyses. 

The i n i t i a l slopes of the four plane strain curves are 

identical, a l l with a value of 1.57E^. For Uq=0.498, this is equal 

to 2.35(2G), considerably stiffer than the slope of 0.99(2G) obtained 

for the pressuremeter curves. Similarly, a l l three plane stress curves 

have the same in i t i a l slope of about 0.98E^, or 1.47(2G). These 

values were determined by computing theJP/JY ratio for very small 

load increments, roughly equal to 1% of Pu]_t« Slightly steeper 

slopes could probably have been obtained by using even smaller A? 

increments. Hence, for practical purposes, values of 1.6Ê  (2.4(2G)) 

and l.OE^ (1.5(2G)) are appropriate for the plane strain and plane 

stress conditions respectively. 

None of the P-Y curves exhibit a well-defined peak value in 

soil resistance corresponding to Pu^t« Instead, at large 

displacements (Y > 0.7 ft for plane strain, and Y > 0.4 ft for plane 

stress), the P-Y relationships are linear with P increasing slightly 

with Y. The load at which the P-Y curve becomes linear is taken as 

P u^ t < Using this method, identical values of P u^ t = 12.1cD (c = c^) 

were obtained for the plane strain analyses. Likewise, consistent 

values of P ]_t = 6.1cD were determined for the plane stress curves. 

The continuing small increases in P beyond Pu- t̂ is caused by 

the zero-displacement outer boundary. The use of the fixed boundary 

restricts soil displacement, which in turn limits the lateral movement 

of the pile. Consequently, the pile cannot displace infinitely at 
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P^j., and the P-Y curve does not flatten off as expected. 

The Pu]_£ value of 12.1cD obtained for the plane strain case 

is in reasonably good agreement with Randolph & Houlsby's (1984) 

results. As discused in Section 4.2.2, a soil-pile adhesion factor, oi, 

of 0.5 was used in the finite element analyses for clay. Randolph's 

theoretical value of ? u^ t corresponding to oi = 0.5 is 10.82cD (Table 

3.1), resulting in an error of about 12% for the finite element 

prediction. 

9.3.1.1 Comparison with Empirical P-Y Curves 

The finite element P-Y predictions are compared with empirical 

curves for soft clays. The empirical curves, shown as dashed lines in 

Figures 9.2 and 9.3, were determined using the method recommended by 

Matlock (1970). Calculations for determining the curves are contained 

in Appendix B. 

Pu^t for the empirical curves were determined by assuming a 

block flow failure mechanism at large depths (see Figure 3.5b). The 

value of 9cD obtained is considerably lower than the predicted value 

of 12.1cD for plane strain analyses. For three-dimensional 

deformations near the surface, a passive wedge failure mechanism was 

used (see Figure 3.5a), giving 

where 

P , = N cD 9.4 
ult p 
Np = 3 + (T7c + J H/D , 3 £ Np ^ 9 

(T ' = effective overburden stress v 
H = depth of soil 



J = coefficient ranging from 0.25 to 0.5 depending on soil 

type 

Assuming a conservative value of 0.25 for J, P u^ t based on Equation. 

9.4 increases with depth, ranging from 3 at the surface to the maximum 

value of 9 at a depth of 

H = 6D 9.5 c • 
(0-v'D/cH) + 0.25 

For the plane stress curves shown in Figure 9.3, "P ̂  values 

determined from Equation 9.4 exceed the predicted values. 

No i n i t i a l slope value is predicted by Matlock's empirical 

curves. For lack of better information, the curves are drawn such that 

their slopes approach infinity for small lateral pile displacements. 

The overall agreement between empirical and predicted curves is poor, 

differing in both the i n i t i a l slope and the Pu- t̂ values. 

9.3.2 Effect of Pile Diameter 

The results shown in Figures 9.2 and 9.3 were obtained for a 

pile diameter, D, of 2 ft. To determine the effect of D on the P-Y 

predictions, additional plane strain and plane stress analyses were 

performed using pile diameters of 1 and 4 f t . Soil parameters used in 

the plane strain analyses are for the clay at a depth of 20 f t . 

Parameters appropriate for a depth of 2 ft were used for the plane 

stress predictions. In keeping with the condition of Equation 3.2, a 

mesh radius of 22D was maintained for a l l the analyses. The same 
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number of elements were used for a l l the meshes, only the sizes of the 

elements were varied to accomodate the changing mesh size. 

The predicted P-Y curves are shown in Figures 9.4 and 9.5. The 

results suggest that an increase in the pile diameter by an arbitrary 

factor of Fp would have the effect of increasing both P and Y by the 

same factor. In other words, plots of P/D vs. Y/D would yield a single 

curve for each of the plane strain and plane stress conditions, 

regardless of the value of D used in the analysis. Further discussions 

on normalized P-Y curves are given in Chapter 10. 

9.3.3 Effect of Mesh Radius 

The effect of the mesh radius, R, on the P-Y responses of 

laterally loaded piles were examined. As discussed in Section 3.2.2, 

previous work by Thompson (1977) has shown that the stiffness, but not 

the ultimate strength, of the P-Y curves depends on R. P-Y curves were 

generated for R = 10D, 20D and 50D to verify Thompson's results and to 

determine the sensitivity of the predicted curves to the mesh radius. 

The results for plane strain analysis are shown in Figure 9.6. 

Plane stress P-Y curves for different values of R are presented in 

Figure 9.7. Soil parameters for the clay at depths of 20 ft and 2 ft 

were used in the plane strain and plane stress analyses, respectively. 

The results obtained from the analyses confirm Thompson's 

observations. The stiffness, and hence, the i n i t i a l slopes of the P-Y 

curves decrease with increasing R. Initial slopes of 2.16E^, 1.61Ê , 

1.57E., and 1.22E. were obtained for R = 10D, 20D, 22D, and 50D, 

respectively, for plane strain analyses. Slopes of 1.33Ê , 0.98E^, and 

0.77E. were obtained for mesh radii of 10D, 22D, and 50D, 
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respectively, for plane stress analyses. R=22D was perviously 

determined as the appropriate mesh size for the given condition. 

Neither P u^ t
 n o r the shape of the curves appear to be overly 

sensitive to the value of R. In fact, only small differences exist 

between the R = 10D and R = 22D curves, and the R = 22D and R = 50D 

curves. Since R = 10D and R = 50D can be considered as approximate 

lower and upper bounds for the zone of influence, the curves predicted 

for R = 22D can be considered as good representations of actual P-Y 

relationships. 

9.4 P-Y CURVES FOR SAND 

Plane strain and plane stress P-Y curves were determined for a 

dense sand. The soil properties are summarized in Table 9.2. The 

values are identical to those used in the pressuremeter expansion 

analyses in Chapter 8. 

As in the analyses for undrained clay, parameter values for the 

pile elements were 500 times greater than those of the soil elements. 

One exception was the internal friction angle, . A constant value of 

85° was used to ensure high strength. 

To determine the insitu stresses, the following equations were 

used: 

K = 1 — sin^' 9.6 

tf* = et. * -Jef'logCfT VP ) 9.7 
X HI 3 

<rm' = [(1 + 2KQ)/3] <rv' 9.8 

where 

KQ = coefficient of lateral soil pressure at rest 



TABLE 9.2 

SOIL PARAMETERS FOR DENSE SAND 

PARAMETER VALUE 

k E 1000 

n 0.5 

k B 600 

m 0.5 

R f 0.8 

0.222 

^ ' (deg) 39.0 

W (deg) 4.0 

0CV

} (deg) 33.0 

D r (%) 75 

122.4 

(Pcf) 60.0 

a ' (Psf) 
vo 

60.0 H 

K 
o 

1 - sine*' 

(deg) ^ ' - ^ ' l o g ( r m V P a ) 

<T ' (Psf) mo (1 + 2Ko)<r 7 3 

Note: H = depth ( in feet) 
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i n t e r n a l f r i c t i o n angle 

Atf 

f r i c t i o n angle at P = 1 atm = 2116.2 Psf a 

P a 

change i n tf f o r a 10-fold increase i n 0" ' 

atmospheric pressure = 2116.2 Psf 

mean normal e f f e c t i v e stress 

v e r t i c a l e f f e c t i v e stress 

(T 1 was used as the i n i t i a l o v e r a l l confining pressure. The 

determination of If ' from Equations 9.6 to 9.8 involved an i t e r a t i v e 

process. A reasonable value f o r (T * was f i r s t estimated. Using t h i s 

value i n Equation 9.7, tf was determined. K q was then c a l c u l a t e d 

from Equation 9.6 and a new value f o r <T 1 determined from Equation 

9.8. The new tf ' was substituted back in t o Equation 9.7 f o r a second m 

i t e r a t i o n . I t e r a t i o n s proceeded u n t i l the new (T ' was roughly equal 

to the old value. 

9.4.1 Results 

Figures 9.8 and 9.9 show the P-Y curves predicted f o r a p i l e 

diameter of 2 f t . The i n i t i a l slopes f o r the plane s t r a i n curves range 

from 1.065E. to 1.071E., determined from AP/AY r a t i o s f o r small i i 

load increments equal to about 0.5% of Py-^-* For t n e plane stress 

analyses, i n i t i a l slopes of l.OOlE^ to 1.043E^ were obtained, 

using load increments of about 0.8% of Pu-j_t« T n e slope values are 

tabulated i n Table 9.3. Based on these f i g u r e s , an i n i t i a l slope of 

1.08E^ can be reasonably assumed for both plane s t r a i n and plane 

str e s s P-Y curves predicted f o r any depths. For JI q=0.222, t h i s slope 

i s equal to 1.32(2G), somewhat s t i f f e r than the i n i t i a l slope of 

m 

m 







TABLE 9.3 

RESULTS OF P-Y CURVE ANALYSES FOR DENSE SAND 

PLANE STRAIN PLANE STRESS 

DEPTH 
(ft) 

INITIAL 
SLOPE 

LOAD 
INCREMENT 

Y 
(f£) 

INITIAL 
SLOPE 

LOAD 
INCREMENT (lb7ft) Y 

2 

5 

10 

20 

40 

1.071 E. 
I 

1.065 E. 

1.065 E. 

1.066 E. 

0.31% P. 

0.45% P 

0.48% P. 

0.48% P 

ult 

ult 

ult 

ult 

6400 

11000 

21000 

31500 

0.080 

0.170 

0.142 

0.118 

1.001 E. 

1.022 E. 

1.043 E. 

1.041 E. 
I 

1.05% P 

0.82% P. 

0.65% P. 

1.22% P 

ult 

ult 

ult 

ult 

950 

2450 

4600 

8150 

0.0080 

0.0225 

0.0289 

0.0365 
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0.98(2G) obtained f o r the pressuremeter curves i n Chapter 8. 

P u ^ t and the corresponding d e f l e c t i o n s , Y , f o r the P-Y 

p r e d i c t i o n s are a l s o given i n Table 9.3. As i n the analyses f o r c l a y , 

none of the P-Y curves e x h i b i t a peak value f o r P. Rather, slow l i n e a r 

i n c r e a s e s i n P w i t h Y beyond the p o i n t s of f a i l u r e are observed. 

A c c o r d i n g l y , ~P ̂  was taken as the load at which the l i n e a r 

l o a d - d e f l e c t i o n behaviour begins. 

9.4.1.1 Comparison w i t h E m p i r i c a l P-Y Curves 

E m p i r i c a l P-Y curves f o r sand are a l s o shown i n Fi g u r e s 9.8 and 

9.9. The curves were determined according to the method recommended by 

Reese et a l . (1974). C a l c u l a t i o n s are shown i n Appendix B. 

P u ^ t f o r the e m p i r i c a l curves were determined using a passive 

wedge f a i l u r e mechanism at shallow depths, and a f l o w block model at 

l a r g e depths (see Figure 3.5). The equations derived from these models 

are given below: 

Pas s i v e wedge: 

P u l t - A>' H K H t a n ^ ' s i n ^ + tan/5 (D + Htan/5 tan*) 
t a n ^ - 0 ' ) cosoC tanfo-0') 

+ K QH tan/J ( t a n ^ ' sin /5 - tan*) - IM)) 9.9 

where 

Flow block: 

P u l t = A D ^ H ( K
a ( t a n / * - 1) + K t a n * ' tan/*) 9.10 

if' = e f f e c t i v e u n i t weight of the sand 

H = depth 



tf = internal friction angle 

o< =tf/2 

/8 = 45° + oi 

K q = coefficient of lateral earth pressure at rest 

Ka = Rankine coefficient of active earth pressure 

= tan2(45° - oi) 

A = adjustment factor to correct for differences between field 

and predicted results 

Values of A determined by Reese et al. are shown in Figure B.2a. 

Using Equations 9.9 and 9.10, theoretical P ^ t values were 

calculated and compared with the finite element predictions. The 

results are shown in Table 9.4. Equating the theoretical and predicted 

P u^ t values for plane strain analyses, A ranging from 0.0645 to 

0.0697 were obtained. A constant value of A = 0.065 appears to be 

appropriate. For plane stress analyses, the calculated values of A 

decrease with depth. Such a trend is expected since the passive wedge 

failure mechanism is valid only for shallow depths, and P u^ t 

predicted for large depths would be overestimated. A correction factor 

of about 0.35 would be appropriate for P-Y curve predictions at or 

near the ground surface. 

9.4.2 Effects of Pile Diameter 

Additional P-Y analyses were performed for the dense sand using 

pile diameters of 1 and 4 f t . Plane strain and plane stress conditions 

for the sand at a depth of 20 ft were considered. The radius of the 

finite element mesh was maintained at R=22D according to Equation 3.2. 
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TABLE 9.4 

COMPARISON OF THEORETICAL 

AND PREDICTED P l 4_ VALUES u l t 

DEPTH tf <r 1 

mo 
K 
o 

K 
a 

P u l t from 
p 
^ult from 

A 
f see"] 

(ft) (deg) (Psf) THEORY FEM (notej 

Plan e Strain Analyses (Eq. 9.10) 

5 43.5 162.5 0.31 0.18 98105 A 6400 0.0652 

10 42.5 330.0 0.33 0.20 170467 A 11000 0.0645 

20 41.0 675.0 0.34 0.21 286834 A 21000 0.0732 

40 39.8 1370.0 0.36 0.22 484331 A 31500 0.0650 

Plan e Stress Analyses (Eq. 9.9) 

2 45.1 63.5 0.29 0.17 3033 A 950 0.313 

5 43.5 162.5 0.31 0.18 12217 A 2450 0.201 

10 42.2 330.0 0.33 0.20 38426 A 4600 0.120 

20 41.0 675.0 0.34 0.21 128448 A 8150 0.063 

Note: 2 T ' = 60.0 Pcf 

D = 2 ft 

P _ = 2116.2 Psf atm 

Values of A were determined by comparing P u ^ t obtained from 

the passive wedge and flow block models with P 

obtained from the f in i te element analyses. The values are 

not those given by Reese (ie: Figure B.2a). 
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The results of the analyses are shown in Figures 9.10 and 9.11. 

As in the case of the undrained clay, changing D by a factor F^ 

resulted in changes in both P and Y by the same factor F^. 

Consequently, plotting P/D vs. Y/D for any pile diameter would yield a 

unique curve for each of the plane strain and plane stress condition 

at a given depth. 

9.4.3 Effect of Mesh Radius 

To determine the sensitivity of the predicted P-Y responses to 

changes in the mesh radius, the problem was analysed using mesh radii 

of 10D, 20D, and 50D. The results for plane strain analyses are shown 

in Figure 9.12. Plane stress predictions are shown in Figure 9.13. 

For plane strain analyses, the shape of the P-Y curve for loads 

approaching P u^ t
 i s sensitive to the mesh radius used. The R=50D 

curve shows a much softer response than the R=10D curve. The i n i t i a l 

slope and the i n i t i a l portion of the curve, however, are relatively 

insensitive to R, and only minor differences in P u2 t were obtained 

for the various mesh radii used. 

For plane stress analyses, neither the in i t i a l slope nor the 

shape of the P-Y curve are sensitive to the mesh radius. The curves 

differ only slightly from each other despite the wide range of mesh 

radius used in the analyses. Identical values for ̂ u^ t were also 

obtained from the four analyses. 

Overall, the results show that the in i t i a l slope decreases with 

increasing mesh radius, but at a slow rate. The shape of the curves 

for loads less than about 1/2 P was also insensitive to the mesh 
ult 

radius. Consequently, the curves can be considered as good 
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d e s c r i p t i o n s of the P-Y r e l a t i o n s h i p f o r s m a l l loads. For l a r g e r loads 

near the f a i l u r e c o n d i t i o n , use of the plane s t r a i n P-Y curves may 

r e s u l t i n e r r o r s . However, si n c e plane s t r a i n curves are a p p l i c a b l e 

f o r l o a d - d e f l e c t i o n responses a t l a r g e depths where the l o a d i n g 

c o n d i t i o n s are g e n e r a l l y l e s s severe, the e r r o r s are minimized. 



CHAPTER 10 

SIMPLIFIED METHOD FOR PREDICTING P-Y CURVES 

10.1 INTRODUCTION 

The prediction of P-Y curves from finite element analyses is 

both costly and time consuming. For many problems concerning laterally 

loaded piles, P-Y curves derived from empirical correlations are 

sufficient. Methods were recommended by Matlock (1970), and Reese et 

a l . (1975, 1974) for determining P-Y curves for soft clay, stiff clay, 

and sand, respectively. These methods were subsequently adopted by the 

American Petroleum Institute for use in designing laterally loaded 

piles. Comparisons of these empirical curves with the finite element 

predictions are shown in Chapter 9. 

The procedures recommended by Matlock and Reese et a l . for 

determining P-Y curves are based on correlations with results of pile 

loading tests. However, load tests were performed at only one site for 

each of the three soil types. The resulting P-Y correlations may 

therefore be site specific, influenced by local soil characteristics 

or abnormalities not found in other soils. As an alternative to the 

empirical methods, simplified P-Y curves based on the finite element 

predictions were derived. The advantage of the finite element approach 

lies in its use of fundamental soil parameters and stress-strain 

relationship, and is therefore valid for general applications. 

10.2 SIMPLIFIED P-Y CURVES FOR UNDRAINED CLAY 

P-Y curves were predicted for an undrained normally-

consolidated clay in Section 9.3. The effects of various parameters on 



the P-Y predictions were examined and a method devised for normalizing 

the curves. 

10.2.1 Normalized P-Y Curves 

As discussed in Section 9.3.1, consistent values were obtained 

for the i n i t i a l slopes and P ]_t of the predicted P-Y curves. For 

plane strain analyses, P -j^ = 12.1cD with an i n i t i a l slope of 

1.6E.. Values of 6.1cD and 1.0E. were obtained for plane stress 
1 • l v 

analyses. Moreover, in examining the effects of pile diameter in 

Section 9.3.2, plots of P/D vs. Y/D were shown to be identical for a l l 

values of D. Based on these observations, non-dimensional plots of 

P/cD vs. Y/D were drawn. The results are as expected. A unique curve 

was obtained for each of the plane strain and plane stress condition 
/ 

as shown in Figures 10.1 and 10.2. The normalized curves are compared 

in Figure 10.3. 

The non-dimensional plots are useful for general design 

purposes. Using the curves shown in Figure 10.3, P-Y curves can be 

derived for circular piles of any diameter installed in a 

normally-consolidated clay with an undrained shear strength c. Care 

must be taken, however, to ensure that the curves are applied only to 

problems involving static loadings on single piles. Dynamic loadings 

and pile groups, or pile interaction effects, were not considered. 

10.2.2 Simplified Method for Determining P-Y Curves 

To further simplify P-Y curve predictions, the normalized 

curves in Figure 10.3 were divided into segments as illustrated in 

Figure 10.4. The steeply rising i n i t i a l portions of the curves reflect 
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FIGURE 10.3: NORMALIZED P-Y CURVES FOR UNDRAINED CLAY 



121 

the stiff linear elastic soil response for small deformations. The 

curved middle portions describe progressive soil failure and 

consequently, the softening of the P-Y response. The final horizontal 

lines correspond to Pu-j_t» at which soil failure is complete and the 

pile deflects at constant load. 

The curves or curve segments shown in Figure 10.4 can be 

represented by simple mathematical equations. For the plane strain 

curve, the i n i t i a l response and the curved centre portion can be 

described by a hyperbolic equation of the form 

_P = Y/D 10.1 
cD a + Rab(Y/D) 

a and b are constants related to the in i t i a l slope of the curve and 

the ultimate soil resistance: 

a = 1/initial slope 

b = l/(P u l t/cD) 

R is an adjustment factor applied to correct for cutting off the 
a >• 
curve at (Pu^t/cD)=12.1. In other words, the true ultimate 
resistance is at (P , /cD)/R , where R is less than 1. This 

ux t a a 
value is reached, however, only at Y/D= eo and cannot be used for 

design purposes. The final segment of the normalized plane strain 

curve corresponding to complete soil failure is represented by a 
j 

horizontal line. 
To determine the value of Rg, a transformed plot of the plane 





strain curve was made. Equation 10.1 can also be written as 

(Y/D)/(P/cD) = a + R b(Y/D) 10.1a 
3. 

The plot of (Y/D)/(P/cD) vs. (Y/D) in Figure 10.5 shows the expected 

straight line with slope = R b and vertical-axis intercept = a. 

Although the data for small values of Y/D corresponding to the in i t i a l 

segment of the normalized curve do not show a linear relationship, the 

assumption of a hyperbolic f i t is nonetheless sufficient. The value of 

RQb determined from the plot is 0.0731. For Pu^t/C^ = 12.1, 

R = 0.885. The in i t i a l slope of the curve is 1.6E./c. For a r l 
E^/c = 200 assumed for the P-Y analyses, the theoretical value of 

a is 0.003125. This value agrees well with a = 0.003 obtained from the 

transformed plot. 

The plane stress curve is somewhat more complex. Aside from the 

straight lines describing the i n i t i a l and failure responses, the 

curved portion is divided into two segments, a power function and a 

hyperbola. The hyperbola is given by a modified form of Equation 10.1: 

P = Y/D 10.2 

cD oca + Rab(Y/D) 

In Equation 10.1, a is defined as the inverse of the i n i t i a l slope of 

the P/cD-Y/D curve. This is valid, however, only i f the i n i t i a l 

portion of the curve is hyperbolic. For the plane stress case, the 

ini t i a l segment of the curve is a power function. A correction factor, 

oc, is therefore required for a. 
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The power function f or the i n i t i a l curve segment i s given by 

the equation 

P/cD = a'(Y/D) b' 10.3 

where 

a', b' = constants 

To determine the values of the constants for these equations, 

transformed pl o t s of the P/cD and Y/D data were made. The pl o t i n 

Figure 10.7 of (Y/D)/(P/cD) vs. (Y/D) for Equation 10.2 y i e l d s the 

expected s t r a i g h t l i n e f o r the hyperbolic curve segment with slope = 

R b and intercept =oCa. For R = 0.145 and P -,.,/cD = 6.1, 

R a = 0.885 as for the plane s t r a i n curve. For an i n i t i a l slope of 

E^/c = 200 and a = 0.0028, oi = 0.56. 

For the power function, Equation 10.3 can be expressed as 

log(P/CD) = log a' + b'log(Y/D) 10.3a 

The p l o t of log(P/cD) vs. log(Y/D) i n Figure 10.6 likewise y i e l d s a 

s t r a i g h t l i n e with slope = b' and intercept = l o g ( a ' ) . Values of 

b' = 0.693 and a' = 45.31 were obtained from the graph. 

Equations for the f i t t e d plane s t r a i n and plane s t r e s s curves 

are summarized i n Table 10.1. The equations do not describe the curves 

p e r f e c t l y and s l i g h t d i s c o n t i n u i t i e s may occur at the ends of the 

segments. For p r a c t i c a l purposes, smoothening out the curves by hand 

i s s u f f i c i e n t , and would not lead to s i g n i f i c a n t e r r o r s . 
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TABLE 10.1 

SIMPLIFIED METHOD FOR DETERMINING 

P-Y CURVES FOR N.C. CLAYS 

PLANE STRAIN PLANE STRESS 

FROM TO EQUATION FROM TO EQUATION 

(0, 0) (65 .5c/E., P = Y/D (0, 0) (1 . 5 9 c/E., P = E. Y 
112.1) cD c/1.6E + 0.073(Y/D) 1 1 . 5 9 ) cD c 1 D 

(65.5c/E., 
X12.1) 

(», 12.1) Horizontal Line 
(P/cD = 12.1) 

(1.59c/E., 
1 1 . 5 9 ) 

(0.035, 4 . 4 4 ) P = 4 5.3(Y/D) 0 , 6 9 3 

cD 

(0.035, 4 . A 4 ) (29 .6c/E., 6.1) P = Y/D (0.035, 4 . A 4 ) 
I cD 0 . 5 6 0 ^ + 0.145(Y/D) 

(29.6c/E , 6.1) (<*>, 6.1) Horizontal Line 
(P/cD = 6.1) 

Note: Co-ordinates given are for (Y/D, P/cD) 

oo 



10.3 SIMPLIFIED P-Y CURVES FOR DENSE SAND 

Plane strain and plane stress P-Y curves were predicted for a 

dense sand using finite element analyses. The results are shown and 

discussed in Section 9.4. To facilitate the prediction of such curves 

for other depths and for different soil properties and pile diameters, 

a simplified method for predicting P-Y curves was developed. 

10.3.1 Normalized P-Y Curves 

The P-Y curves predicted for dense sand were shown to have 

similar i n i t i a l slopes. A value of 1.08Ê  for the i n i t i a l slopes of 

both plane strain and plane stress curves at any depth is a good 

approximation. 

In examining the effects of the pile diameter on predicted P-Y 

curves, P/D vs. Y/D plots at a given depth were shown to be identical, 

regardless of the pile diameter used. 

The theoretical equations for P given by Equations 9.9 and 

9.10 are both functions of the pile diameter, D. In the plane strain 

equation (9.10), P u^ t is directly proportional to D. In the passive 

wedge equation for plane stress deformations (9.9), D is contained in 

only two of the six terms in the equation. 

For values of used in the finite element analyses, the terms 

containing D in Equation 9.9 are relatively insignificant. However, 

for soil near the surface, H is small, and the four terms not 

containing D decrease in magnitude. At a depth of 2 ft , the "D terms" 

account for about half of the soil resistance. At H = 1 ft, the "D 

terms" account for roughly 2/3 of Pu^t» and so on. Since the passive 

wedge equation is valid only for shallow depths, P - can be 



considered as roughly proportional to D. 

Based on the above conclusions, the P-Y curves can be 

normalized by plotting P/Pu^t
 v s« Y/D. And since P u^ t i s proportional 

to D, the effects of pile diameter are also eliminated. 

The normalized plots are shown in Figures 10.8 and 10.9. 

Although differences can be observed in the shapes of the curves for 

different depths, a single curve for each of the plane strain and 

plane stress condition can be estimated. These normalized curves are 

compared in Figure 10.10. 

The normalized P-Y curves in Figure 10.10 are useful for design 

purposes. Given the basic soil parameters (ie: /zf', E^, , etc.), 

P u^ t can be calculated using Equation 9.9 or 9.10 and the adjustment 

factor A. Values of A determined by comparing Pu^t predicted from 

the flow block and passive wedge models with Pu^t obtained from the 

finite element analyses in Chapter 9 are given in Table 9.4 and 

graphed in Figure 10.14. P-Y curves can then be derived for sand at 

any depth and for any pile diameter. A simplified method for 

determining these P-Y curves is presented in the following sections. 

10.3.2 Simplified Method for Determining P-Y Curves 

The normalized P-Y curves shown in Figure 10.10 can be divided 

into four sections as shown in Figure 10.11. Soil response prior to 

failure is represented by three curves to best f i t the results 

predicted by finite element analyses. The strain-softening behaviour 

of the sand is clearly illustrated. At Pu-j_t, or P/Pu]_t = 1» the sand 

is assumed to f a i l completely. The P-Y relationship is represented by 

a horizontal straight line, ignoring the small increases in soil 
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FIGURE 10 .11: SIMPLIFIED NORMALIZED P-Y CURVES FOR DENSE SAND 



resistance beyond Pu]_t» The modelling of soil behaviour after 

failure by the finite element method is questionable, and hence, the 

omission of the post-failure soil resistances predicted in the 

analyses. 

The curved portions of the normalized P-Y responses can be 

described by power functions of the form 

P/P _ = a'(Y/D)b' 10.4 

As in Section 10.2.2, plotting log(P/P u l t) vs. log(Y/D) yields a 

straight line with a slope = b' and a log(P/P u^ t)-axis intercept of 

log(a'). The log-log plots for the plane strain and plane stress 

curves are shown in Figures 10.12 and 10.13, respectively. The 

equations for the curves obtained from these plots, along with the 

method for determining the P-Y curves, are summarized in Table 10.2. 

10.4 APPLICATION OF THE P-Y CURVES 

Using the simplified methods recommended in Sections 10.2.2 and 

10.3.2, P-Y curves can be predicted for plane strain and plane stress 

conditions at any depth. For laterally loaded pile analyses, plane 

strain P-Y curves can be applied to the problem at large depths. Near 

the surface (ie: H < 2 ft ) , plane stress curves can be used. In the 

intermediate zone where both stresses and strains are three-

dimensional, combinations of the plane strain and plane stress curves 

are appropriate. Thompson (1977) concluded that a linear increase in 

the value of P u^ t with depth, from the plane stress value at the 

surface to the plane strain value at large depths, is an adequate 







TABLE 10.2 

SIMPLIFIED METHOD FOR DETERMINING 

P-Y CURVES FOR DENSE SAND 

PLANE STRAIN PLANE STRESS 

FROM TO EQUATION FROM TO EQUATION 

(0, 0) 

(0.0028, 0.29) 

(0.034, 0.87) 

(0.054, 1.0) 

(0.0028, 0.29) 

(0.034, 0.87) 

(0.054, 1.0) 

(*>, 1.0) 

P/P l t = 33.5(Y/D) 0 * 8 1 

P/P l t = 4 . 0 ( Y / D ) 0 , 4 5 

P/P l t = 2 . 3 1 ( Y / D ) 0 , 2 9 

Horizontal Line: P/P , =1 
ult 

(0, 0) 

(0.00136, 0.48) 

(0.00313, 0.76) 

(0.01, 1.0) 

(0.00136, 0.48) 

(0.00313, 0.76) 

(0.01, 1.0) 

(*>, 1.0) 

P/P l t = 1 9 0 ( Y / D ) 0 , 9 1 

P/P l t = 1 8 ( Y / D ) 0 , 5 5 

P/P l t = 2 . 8 6 ( Y / D ) 0 , 2 3 

Horizontal Line: P/P , =1 
ult 

Note: Co-ordinates given are for (Y/D, P/P u ^ t ) 
P , calculated from Equations 9.9 for plane stress and Equation 9.10 for plane s tra in . Values for the 

adjustment factor A in the equations are given in Table 9.4 or can be estimated from Figure 10.14. 
The i n i t i a l slopes of the curves derived from the above equations should be modified to the value of 

1 .08E . (D/P u l t ) . 

CO 
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approximation for r e a l s o i l behaviour. Extending t h i s method to a l l 

values of P, plane s t r a i n and plane st r e s s curves can then be added 

l i n e a r l y to produce P-Y approximations for intermediate s o i l depths. 

This method i s i l l u s t r a t e d i n Figure 10.15 f o r undrained clay at a 

hypothetical depth of 5 f t with H c = 7.5 f t . 

For undrained normally-consolidated cl a y s , the zone of 

three-dimensional stresses and s t r a i n s extends to a depth given by 

Equation 9.5: 

H = 6D c 
fl* 'D/cH + J 

For dense sand, the l i m i t of the t r a n s i t i o n zone can be estimated from 

Figure 10.14. The inverse of the adjustment f a c t o r , 1/A (see Table 

9.4), f o r plane stress analyses i s shown to increase with depth u n t i l 

the plane s t r a i n condition takes over. Accordingly, H c = 19 f t can 

be taken as the l i m i t of the t r a n s i t i o n zone. The value of H , 
c' 

however, i s not constant, but i s a function of s o i l properties and 

p i l e diameter. 
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FIGURE 10.14: PLANE STRESS - PLANE STRAIN TRANSITION ZONE FOR DENSE SAND 
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CHAPTER 11 

PREDICTION OF P-Y CURVES FROM 

PRESSUREMETER EXPANSION CURVES 

11.1 INTRODUCTION 

In recent years, with the refinement of testing techniques and 

the increased sophistication of both the instrument and the data 

acquisition system, the pressuremeter has seen increased use as a 

design tool. One obvious application of the pressuremeter test is the 

design of laterally loaded piles. Since loads are applied to the 

surrounding soil in much the same manner for both the pressuremeter 

and the lateral pile problem, similarities are expected in their 

load-deformation characteristics. Various researchers have attempted 

to predict or derive P-Y curves from pressuremeter expansion curves. 

In most instances, the authors have suggested increasing the load 

component of the pressuremeter curves by some factor to yield P-Y 

curves for piles (Robertson et al. (1983), Atukorala & Byrne (1984), 

and Robertson et al. (1985)). Factors ranging from 1.9 to 2.6 were 

suggested for clays, and 1.4 to 1.7 for sands. 

Having thus determined conversion factors for the load 

component of the curves, uncertainties s t i l l existed as to the i n i t i a l 

slopes of the two curves. Using cavity expansion theory, the slope of 

the pressuremeter curve was assumed to equal 2G. The in i t i a l slope of 

the P-Y curve, however, was essentially unknown. Values as low as 

0.48E± (Broms, 1964) and as high as 2.0Ej. (Pyke & Beikae, 1984) 

were suggested by various researchers. 

Another uncertainty lies in the difference in size, or 
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diameter, between the pressuremeter cell and the piles. The validity 

of applying pressuremeter curves obtained from 3-inch diameter probes 

to problems involving piles with diameters often in excess of 2 ft was 

questionable and warranted investigation. 

To ascertain the i n i t i a l slopes of the curves and to determine 

the effects of large pile diameters on the load conversion factors, 

pressuremeter and P-Y curves predicted from finite element analyses 

were compared. The methods of analysis are as discussed in Section 8.2 

for pressuremeter expansion, and in Sections 3.2 and 9.2 for laterally 

loaded piles. 

11.2 COHESIVE SOIL 

Pressuremeter and P-Y curves were predicted for a 

normally-consolidated undrained clay. Soil properties used in the 

analyses are given in Tables 8.1 and 9.1. Comparisons were made for 

curves obtained for the clay at depths of 10 and 20 f t . 

11.2.1 Pressuremeter Expansion Curves 

The predicted pressuremeter curves are shown in Figure 8.1. The 

in i t i a l slopes of the two curves are approximately 0.99(2G). As 

discussed in Section 8.3, the shape of the curves are similar, and the 

20-foot curve is, in fact, simply a scaled-up version of the 10-foot 

curve. The scaling factor of 2.0 suggests that a "family" of such 

curves for different soil depths can be normalized to produce a unique 

curve for the soil. Normalizing of the curves are discussed in Section 

11.2.3.1. 
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11.2.2 P-Y Curves 

The P-Y curves predicted in Chapter 9 were compared with the 

pressuremeter results. Both plane strain and plane stress P-Y curves 

were employed in the comparisons. The curves are shown in Figures 9.2 

and 9.3. As noted in Section 9.3.2, the in i t i a l slopes and ultimate 

resistances of the curves are 1.6E. and 12.1cD for the plane strain 
I * 

curves, and l.OE^ and 6.1cD for the plane stress curves. 

11.2.3 Comparison of Pressuremeter and P-Y Curves 

In order to compare directly the results of pressuremeter 

expansion and lateral pile loading, the pressuremeter curves must be 

converted to equivalent P-Y plots. Since "P" in the lateral pile 

problem represents soil resistance per unit length of pile, 

pressuremeter curves must be converted to plots of ̂ PD vs. Ar, where D 

is the diameter of the probe. To be correct, the current probe 

diameter, equal to D Q + 2Ar (D = in i t i a l probe diameter), should 

be used. However, for convenience in converting pressuremeter results 

to P-Y curves, D is taken as the in i t i a l diameter. The modified 

pressuremeter curves and P-Y curves are compared in Figures 11.1 and 

11.2. 

11.2.3.1 Normalized Curves 

The plots in Figures 11.1 and 11.2 are valid for comparison 

only i f the pile diameter is equal to the size of the pressuremeter 

cell (ie: about 3 inches). To account for the size difference, 

normalized plots must be compared. In Section 8.5, size effects for 

pressuremeters were eliminated by plotting strains, Ar/r , instead 
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of displacements, AT. Since T q = D/2, plotting Ar/T) will likewise 

eliminate size effects. Similarly, size effects for P-Y curves were 

eliminated in Section 9.3.3 through the use of P/D vs. Y/D plots (D is 

the pile diameter). 

To further simplify analysis, fully normalized plots of P/cD 

vs. Y/D for the lateral pile problem, andAV/c vs. AT/D for 

pressuremeter expansion were made. The curves are presented in Figure 

11.3. As shown in Section 10.2.1 and discussed in Section 11.2.1, the 

resulting curves are valid for the normally-consolidated clay at any 

depth and for any value of D. 

11.2.3.2 Conversion Factors 

Conversion factors were determined for the normalized curves 

shown in Figure 11.3. The use of normalized curves is ideal since 

entire "families" of P-Y curves for different depths can be generated 

from the results of a single pressuremeter test. 

In converting pressuremeter curves to P-Y curves, care must be 

taken to ensure that the correct i n i t i a l slopes are obtained. The 

slopes obtained from the finite element analyses are as follows: 

Plane strain P-Y curves: P/Y = 1.6E± 

Plane stress P-Y curves: P/Y = 1.0E± 

Pressuremeter curves from 3-D analysis: AP/iAr/r^) = 1.0(2G^) 

To convert these values to slopes for the normalized curves, the 

following relationships were used: 
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= 200c (previous assumption) 

G. = E./[2(l + u)] 

u = 0.498 

Initial slopes for the normalized curves were thus calculated, 

yielding the following values: 

Plane strain P-Y curves: P/cD = 1.6E. = 320 
Y/D " T 1 

Plane stress P-Y curves: P/cD = 1.0E. = 200 

Pressuremeter curves: A?/c = 2(1.0)(2G.) = 267 
A E T D C X ~ 

Conversion factors for the i n i t i a l slopes are therefore 1.20 for plane 

strain P-Y curves, and 0.75 for plane stress P-Y curves. 

Load factors were determined by simply taking the ratios of the 

normalized loads for various values of the normalized displacement. 

The factors are summarized in Table 11.1. For practical purposes, a 

plane strain P-Y curve load factor of 2.72 and a plane stress factor 

of 1.66 can be assumed for Y/D ^ 0.07 without significant errors. 

11.3 COHESIONLESS SOIL 

Pressuremeter and P-Y curves were predicted for a dense sand 

using the soil properties summarized in Tables 8.2 and 9.2. The method 

for determining K , tf , and 0" ' for the analyses are described in o ^ mo 3 

Section 9.4.1. Curves obtained for the soil at depths of 10 and 20 ft 

were compared to determine factors for converting pressuremeter curves 

to P-Y curves. 



TABLE 11.1 

CONVERSION FACTORS FOR 

NORMALLY-CONSOLIDATED CLAYS 

Y/D or PLANE STRAIN PLANE STRESS 
J r / D P-Y CURVES P-Y CURVES 

I n i t i a l Slope 1.20 0.75 

0.005 1.70 1.12 

0.01 1.96 1.31 

0.02 2.32 1.59 

0.'03 2.53 1.72 

0.04 2.60 1.74 

0.05 2.65 1.72 

0.06 2.69 1.69 
Assume Assume 

0.07 2.72 2. 72 1.68 1. 66 

0.08 2.73 1.66 

0.09 2.71 1.65 

0.10 2.72 1.65 
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11.3.1 Pressuremeter Expansion Curves 

The predicted pressuremeter curves are shown in Figure 8.2. The 

in i t i a l slopes of the curves are approximately 0.98(2G). As discussed 

in Section 8.4, the 20-ft curve is a scaled-up version of the 10-ft 

curve. A scaling factor of 1.66 was calculated. 

11.3.2 P-Y Curves 

Plane strain and plane stress P-Y curves were predicted in 

Chapter 9. The i n i t i a l slopes of the P-Y curves are approximately 

I. 08E^. For the value of p. = 0.222 calculated from the given soil 

parameters, this is equivalent to 1.32(2G), slightly higher than the 

value of 2G for the pressuremeter curves. The curves are compared in 

Figures 11.4 and 11.5. 

11.3.3 Comparison of Pressuremeter and P-Y Curves 

As discussed in Section 11.2.3, pressuremeter curves were 

converted to plots of A V . B vs. Ar to allow for proper comparisons with 

P-Y curves. These curves are shown in Figures 11.4 and 11.5. 

II. 3.3.1 Normalized Curves 

To facilitate the direct comparison of pressuremeter and P-Y 

curves, the influences of the pile and pressuremeter diameters must be 

eliminated. This can be accomplished by normalizing the P-Y plots to 

give P/Pu^t
 v s« Y/D as shown in Figures 10.8 and 10.9. For the 

pressuremeter situation, size effect can be eliminated by plotting 

AV vs. AT/TQ, as illustrated in Figure 8.4, or AV vs. Ar/D 

(D = 2r Q). To normalize the load component of the pressuremeter 
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curves, an arbitrary reference value, P-̂ QI corresponding to a strain 

o f 1 0 % , was selected. P ^ Q values of 3 6 2 5 Psf and 6 0 7 5 Psf were 

estimated from the 1 0 - f t and 2 0 - f t curves shown in Figure 8 . 2 . Fully 

normalized pressuremeter curves are thus given by plots of 

.dP/P̂ Q vs. /Ir/D. The normalized curves are shown in Figures 11.6 and 

1 1 . 7 . 

1 1 . 3 . 3 . 2 Conversion Factors 

Factors for converting pressuremeter curves to "P-Y" curves 

were determined using the normalized plots. The recommended values for 

the conversion factors are given in Table 1 1 . 2 . 

The i n i t i a l slopes of the normalized curves are as follows: 

P-Y curves: P/P = 1.38(2G)(D) = 2.76(2G) 

Pressuremeter curves: P/Pin = P/P1n = 2(2G) 
T 7 i u 772r u R 

o 

For the values of P U ]_ T and P^Q obtained from the analyses, the 

conversion factors, given by the ratio of the slopes above as 

^ I Q / P u l f are listed in Table 11.2. 
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TABLE 11.2 

CONVERSION FACTORS FOR DENSE SAND 

Y/D or 

J r / D 

PLANE STRAIN P-Y CURVES PLANE STRESS P-Y CURVES Y/D or 

J r / D H=10FT H=20FT RECOMMENDED H=10FT H=20FT RECOMMENDED 

I n i t i a l 0.455 0.419 0.44 1.088 1.029 1.06 
Slope 

Assume Assume 
0.002 1.057 0.909 0.98 1. 00 2.216 2.091 2.15 2. 15 

0.004 1.085 1.000 1.04 2.233 2.202 2.22 

0.006 1.100 1.002 1.05 2.145 2.116 2.13 

0.008 1.100 1.004 1.05 2.048 2.031 2.04 

0.010 1.102 1.004 1.05 1.940 1.946 1.94 

0.015 1.081 1.000 1.04 1.679 1.700 1.69 

0.020 1.046 0.989 1.02 1.479 1.500 1.49 

0.025 1.010 0.979 0.99 1.352 1.360 1.36 

0.030 0.967 0.974 0.97 1.256 1.256 1.26 

0.035 0.932 0.966 0.95 1.182 1.179 1.18 

0.040 0.903 0.950 0.93 1.123 1.109 1.11 

0.045 0.882 0.934 0.91 1.074 1.053 1.06 

0.050 0.867 0.917 0.89 1.032 1.010 1.02 



CHAPTER 12 

SUMMARY AND CONCLUSIONS 

The prediction of P-Y curves based on the results of finite 

element analyses was examined. Methods for determining the P-Y 

relationships for undrained clay and sand are presented. 

A new higher-ordered finite element program, CONOIL, was used 

in the analyses. The use of 6-noded linear strain triangular (LST) 

elements, coupled with the program's ability to handle Poisson's 

ratios as high as 0.499, permitted the accurate modelling of the 

undrained soil condition. Comparisons of the finite element 

predictions with closed form solutions for the cylindrical cavity 

expansion problem showed excellent agreements. 

The pressuremeter problem was analysed using the plane strain 

formulation for cavity expansion. Pressuremeter load-deflection curves 

were predicted for an undrained normally-consolidated clay and a dense 

sand. 

Having validated the finite element program's ability to model 

the cavity expansion problem, which bears some similarities to the 

laterally loaded pile situation, plane strain and plane stress P-Y 

curves were predicted for both undrained clay and sand. The i n i t i a l 

slopes of the plane strain and plane stress curves were confirmed to 

be approximately 1.6Ê  and l.OE^, respectively, for clay, and 
1.1E. for sand. P values of 12.1cD and 6.1cD were also obtained 

1 ult 
for plane strain and plane stress loading in undrained clay. The value 

of 12.1cD is in reasonably good agreement with the value of 10.82cD 

obtained from plasticity theory. P . for sand was shown to be 



fractions of the theoretical values determined from assumed failure 

mechanisms. Normalized plots of the P-Y relationships, P/cD vs. Y/D 

for clay, and P/Pu^t
 v s* /̂D for sand, were also shown to reduce 

families of curves for a l l pile diameters (D) and soil depths to 

unique curves for each of the plane strain and plane stress 

conditions. 

Finite element results for the pressuremeter and laterally 

loaded pile problems were also compared. Scaling factors were 

determined from the comparison of normalized curves to convert 

pressuremeter curves to P-Y curves. Factors ranging from 1.70 to 2.72 

were obtained for plane strain curves, and 1.12 to 1.66 for plane 

stress curves for undrained clay. For dense sand, conversion factors 

of 0.89 to 1.00 were determined for plane strain P-Y curves, and 1.02 

to 2.15 for plane stress curves. 
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APPENDIX A 

DERIVATION OF STRESS-STRAIN RELATIONSHIPS 

FOR UNIAXIAL LOADING 

A . l PLANE STRAIN CONDITION 

The general stress-strain relationship for s o i l i s given by the 

equations 

£ = 0" - ulT - u(T A . l a 
y v x r z 

E 
s 

^ z

 = ( r

z - - A ' l b 

E 

s 

where 

u = Poisson's ratio 

E = secant elast ic modulus 

For plane strain analyses, <5z = 0. Hence, 

<rz = }i«rx + (Ty) A.2 

Using ff" and £ to represent changes in stress and s train , ff"x = 0 for 

the uniaxial loading condition considered (see Figure 6.1). Therefore, 

(T = u(T A.3 
z y 

and £ = r - u(utr) = <T(1 - ;i 2) A.4 
y y________y_ y_ ^ ^ E E 
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For a homogeneous, isotropic non-linear elastic material, u 

varies with the elastic ( E ) and bulk (B) modulii according to 

ju = 3B - E A.5 

6B 

Substituting E G for E , 

1 - n 2 = (9B - E ) ( 3 B + E ) A.6 
s s 
3 6 B 2 

Finally, 

£ = (9B - E ) ( 3 B + E ) <T A.7 y _ s__ s_ y 
3 6 B 2 E 

s 

In the hyperbolic stress-strain model for soil given by Duncan 

& Chang ( 1 9 7 0 ) , the secant elastic modulus can be expressed as 

E S = E . [ I - Rf(<rd/<rdf)] A . 8 
where 

E . = in i t i a l elastic modulus l 
= failure ratio 

(T^ = deviator stress = (f^ for uniaxial loading in the 
Y-direction 

""df = deviator stress at failure 
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The i n i t i a l elastic modulus given by Janbu (1963) is 

E. = kEPa(<r3/Pa)n A.9 
where 

kg = elastic modulus number 

n = elastic modulus exponent 

P a = reference pressure = atmospheric pressure = 2116.2 Psf 

(Tg = minor principal stress 

And lastly, according to the Mohr-Coulomb failure criterion, 

fl^f = 2c cos* +2 0^ sine/ A. 10 
1 - sin* 

For undrained clay, 0=0 and n = 0. Equations A.9 and A.10 

reduce to 

E.=k EP a A.9a 

and <Tj£ = 2c A. 10a 

For sand, c' = 0 and 

°df = 20V sin|zf' A , 1 0 b 

1 - sin*' 

The complete stress-strain relationship for the plane strain 

uniaxial loading condition is therefore given by Equations A.7 to A.10 



A.2 PLANE STRESS CONDITION 

The derivation of the stress-strain relationship for plane 

stress loading is similar to that of the plane strain condition. Using 

the same general stress-strain equation as before, 

E 

For the plane stress condition, |Tz = 0, and for uniaxial loading, 
(T =0, and (T, = rj~ . Therefore, x ' d y 

y - y i y . 
E S E . [ i - R f ( i r y / « r d f ) ] 

E. and U~.f are as given by Equations A.9 and A. 10. 



APPENDIX B 

EMPIRICAL P-Y CURVES 

B.l MATLOCK'S EMPIRICAL CURVES FOR CLAY 

The empirical curves shown in Figures 9.2 and 9.3 were 

determined according to the method proposed by Matlock (1970) for 

static loading of single piles. The curves are defined by two 

parameters, ^ u ^ t a n d Y£, given by 

P,.=NcD, N = 3+ lT'/c + J H/D B.l ult P P v 

and Y = 2.5 fi-nD B.2 
c 50 

The value of N lies between 3 and 9. 
P 

Using recommended values of <£̂ Q = 0.010 and J = 0.35 for the 

soil properties used in the finite element analyses (Table 9.1), the 

following values were determined for a pile diameter of 2 feet: 

Depth H (ft) Np P u l t (lb/ft) Yc (ft) 

2 7.35 448 0.05 

5 7.88 1202 0.05 

10 8.75 2669 0.05 

20 9.00 5490 0.05 

40 9.00 10980 0.05 

The empirical curve, as defined by the above parameters, is shown in 

Figure B.l. The equation for the curved portion of the P-Y 



FIGURE B . l : MATLOCK'S EMPIRICAL P-Y CURVE FOR STATIC LOADING OF PILES IN UNDRAINED CLAY 

(After Matlock, 1970, p. 591) 
CTl 
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relationship is 

P/P l t = 0.5(Y/Y c) 0 , 3 3 3 B.3 

B.2 REESE'S EMPIRICAL CURVES FOR SATURATED SAND 

The empirical P-Y curves shown in Figures 9.8 and 9.9 were 

determined according to the method recommended by Reese at al. (1974) 

for static loading of single piles. 

The curves are defined by three points, k, m, and u, as shown 

in Figure B.3. Point u is given by 

P = P = A P B.4 
u ult c 

where P is the theoretical ultimate soil resistance determined c 
according to Equation 2.2 or 2.3. The smaller of the two values is 

used. Values for the adjustment factor, A, determined by comparing 

theoretical values with experimental results, are given in Figure 

B.2a. The corresponding deflection at point u is 3D/80. 

Point m is given by 

P = B P B.5 
m c 
Y = D/60 m 

Values for B were also determined experimentally and are given in 

Figure B.2b. 

Point k is defined by the intersection of the i n i t i a l linear 

segment and the parabolic portion of the P-Y relationship. The 



a) Non-Dimensional Coef f ic ient A for Ultimate 
Soi l Resistance 

b) Non-Dimensional Coef f ic ien t B for Soi l 
Resistance 

Note: x = depth 
b - p i l e diameter 

FIGURE B,2; NON-DIMENSIONAL COEFFICIENTS FOR SOIL RESISTANCE 

(After Reese et a l . , 1974, p. 482) 



B.3: EMPIRICAL P-Y CURVES FOR STATIC LATERAL LOADING OF PILES IN SATURATED SAND 

(After Reese et a l . , 1974, p. 482) 



equation of the parabola i s 

P = C Y 1 / n B.6 

n = P /mY m m 

C = P /Y 1 / n 

m m 

m = slope of l ine between points m and u 

= (P - P )/(Y - Y ) x u rrr v u nr 

The slope of the i n i t i a l portion of the curve i s k H. Values 

recommended for k are 20, 60, and 125 l b / i n for loose, medium, 
s 

and dense sand, respectively. 

Using the s o i l properties l i s ted in Table 9.2 for the dense 

sand, values for P were calculated: c 

Depth H 
(ft) 

P (Eq.2.2) 
C t ( l b / f t ) 

P (Eq.2.3) 
C d ( l b / f t ) 

A B 

2 3033 — 2.13 1.55 

5 12217 98105 1.25 0.87 

10 38426 170467 0.88 0.50 

20 128448 286834 0.88 0.50 

40 484331 0.88 0.50 

Values for A and B estimated from Figure B.2 for a pi le 

diameter of 2 feet are also tabulated above. The P-Y curves determined 

from the above equations are shown in Figures 9.8 and 9.9. 


