A RULE-BASED SYSTEM FOR PRELIMINARY ACCIDENT RECONSTRUCTION

by

KAROLY WILLIAM KRAJCZAR

B.A.Sc., The University of British Columbia, 1986

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

Department of Civil Engineering

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

July 1989

© Karoly William Krajczar, 1989

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Civil ENGINEERING

The University of British Columbia Vancouver, Canada

Date October 5/89

ABSTRACT

Expert systems are being used to solve a number of complex problems that conventional programming techniques have difficulty managing. Problems that are conceptual and cannot be reduced to numbers, can often be solved using expert system technology.

This paper describes the development of a prototype rule-based expert system that can be used during the initial stages of a motor vehicle accident investigation. The program is capable of calculating vehicle speeds using any combination of the following techniques: skid, roll, overturn, yaw, vault, momentum and energy. Although the program's analytical capabilities are very comprehensive, the system's most notable feature is it's interpretive abilities. The program is able to determine how to solve the accident, and verifies the evidence before it is used in the calculations. Additionally, an interactive explanation facility allows the user to examine the program's reasoning.

The existing knowledge base requires further development before it can achieve the level of performance expected from trained accident investigators. However, it demonstrates how expert system technology in conjunction with conventional techniques can be used to solve complex engineering problems.

TABLE OF CONTENTS

ABSTRACT	ü
LIST OF TABLES	V
LIST OF FIGURES	v i
ACKNOWLEDGEMENTS	vii
 INTRODUCTION	$\begin{array}{c} & & 1 \\ & & 2 \\ & & 2 \\ & & 2 \\ & & 3 \\ & & 5 \\ & & 5 \\ & & 5 \\ & & 5 \\ & & 7 \\ & & 9 \\ & & & 10 \\ & & & 11 \\ & & & 12 \\ & & & 11 \\ & & & 12 \\ & & & 13 \\ & & & 13 \\ & & & 14 \end{array}$
 2. LITERATURE REVIEW	
 SYSTEM METHODOLOGY	
 4. EXPLANATION OF THE SYSTEM	

.

4.3.3 The Pre-Impact Phase	57
 5. SAMPLE RUN. 5.1 Summary of the Accident. 5.2 Accident Data 5.3 Analysis 	
6. FURTHER RESEARCH REQUIREMENTS	
7. CONCLUSIONS	72
BIBLIOGRAPHY	
APPENDIX A. Derivation of Equations	79
APPENDIX B. Module 1 of the Program	83
APPENDIX C. Partial Listing of Module 2	95
APPENDIX D. Police Measurement Sheet	

LIST OF TABLES

1.	Coefficients of Friction of Various Roadway Surfaces	31
	Vehicle Stiffness Coefficients4	
3.	Sample Run Data Sheet6	54
4.	Summary of Speed Estimates for Different Stages	58

LIST OF FIGURES

1.	Anatomy of an Ideal Expert System	4
2.	Categorization of Evidence	
3.	Accident Stages	
4.	Flow Diagram for Determining Distance to Use in Skid Equation	
5.	Vault Parameters	
	NHTSA Trajectory Convention	
7.	Acceptable Departure Headings	39
8.	Force vs. Crush	40
9.	Principle Direction of Force	
	Velocity Vector Diagram	
11.	PDOF Check Routine	45
12.	Inserting Knowledge into VP-Expert	
13.	Rule Hierarchy	50
	Range of PDOF as a Function of the Approach Headings	
	Accident Diagram	
	Vehicle 1's Crush Profile	
17.	Vehicle 2's Crush Profile	63

ACKNOWLEDGEMENTS

I would like to thank Dr. Francis P.D. Navin for his supervision and guidance throughout the duration of this project, and Constable Rene Bohemier for his helpful insight in the field of accident investigation.

I would also like to thank Mike McNabb for his patience and suggestions, John Nepomuceno for his artistic talents, and Rob Thomson and Peggy Gibbs for their encouragement.

1. INTRODUCTION

Reconstructing a motor vehicle accident is a very complex task. The primary goals are to clearly understand those factors which contribute to the accident and determine the cause of any subsequent injuries. While engineering mechanics is an integral part of this process, a great deal of conceptualization and reasoning is involved before any calculations can be made. Today, given the correct information and with the aid of computers, trained engineers are able to reconstruct an accident with a fairly high degree of certainty. Unfortunately, complete and accurate information about the accident is often difficult to obtain. Engineers are usually called in weeks after the accident takes place and must rely on data collected by the police during the initial investigation.

The objective of this study is to develop a rule-based expert system for use during the initial stages of a motor vehicle accident reconstruction. A commercial expert system shell, VP-Expert, is used to develop a prototype system called KAR (Knowledge-base Accident Reconstruction). Although the program developed in this paper can calculate speed estimates, its primary intent is to provide guidance and insight for non-technical users involved in the initial investigation. By helping the police identify all pertinent evidence and supplying them with a speed estimate, a decision can be made immediately as to whether a more indepth reconstruction is required.

1.1 An Overview of Artificial Intelligence

Artificial Intelligence (AI) is a branch of computer science that is aimed at developing systems that can mimic the human decision-making process. Some of the major topics

investigated by AI researchers include: mathematical problem-solving and theorem proving, speech and voice recognition, visual image recognition, natural language understanding, robotics, and expert systems. Expert Systems is one area of AI that has produced a number of successful applications (i.e. PROSPECTOR [5], PUFF [7], DENDRAL [12], R1 [13], MYCIN [18]). Consequently, government and industry are beginning to look at other applications of this new technology.

1.2 Characteristics of Expert System Tasks

Before an expert system strategy is selected, it must be determined whether the problem is suited to this approach. Problems that exhibit the following characteristics are usually good candidates for an expert system: (i) there are many possible solutions; (ii) the problem-solving expertise is conceptual and cannot be reduced to numbers; (iii) the information needed is incomplete, uncertain, subjective, inconsistent and subject to change; (iv) the conclusions reached will often be uncertain; (v) experts may disagree on how to solve the problem; (vi) the task is always changing and evolving; and (vii) the cost of a poor or late decision is very high [20]. Medical Diagnosis, diverse data analysis, production scheduling and equipment layout are examples of duties that can be effectively handled by an expert system.

1.3 Expert System Software vs. Conventional Software

Expert systems differ from conventional programs in several ways. Conventional programs deal with largely numerical data and algorithmic processing. Van Horn [20] describes a conventional program as a structured "set of algorithms that contain precisely defined terms which are represented by numbers or numerical relationships. All the data

used for the program must be numerical, and if some of the data is not entered a result cannot be obtained. For each set of circumstances there will be one best answer." Problems that cannot be reduced to numbers present difficulties for conventional techniques.

Expert systems take a different approach to problem solving. These programs handle symbolic information as opposed to numerical information, and use heuristic processing in contrast to algorithmic processing. Heuristic knowledge is based on "trail and error". This knowledge has not been rigorously proven, but through practice has demonstrated its usefulness and reliability. Heuristic statements generally take the form of "if-then rules". It is the heuristic knowledge of a seasoned practitioner that an expert system tries to model. Hunt [9] defines an expert system as " an intelligent computer program that uses knowledge and inference procedures to solve problems that are difficult enough to require human expertise for their solution."

1.4 Anatomy of an Expert System

Some critics believe that an expert system must incorporate natural language understanding and automatic learning before it can be referred to as an expert system. Others refer to a program comprised of "if-then rules" as an expert system. Due to this inconsistency, more precise terms are used to identify systems that may not exhibit all of the essential expert system characteristics. Knowledge-based systems, rule-based systems, and knowledge-processing systems are often used to refer to "expert systems".

The ideal expert system should comprise six major components: a knowledge base, an inference engine, an explanation facility, a natural language interface, a knowledge

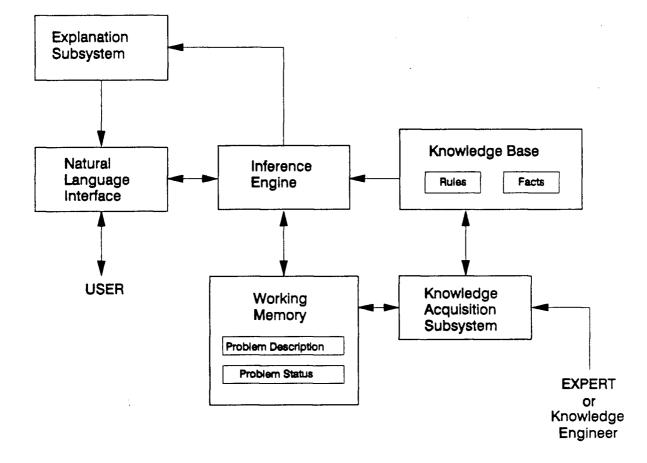


Figure 1: Anatomy of an Ideal Expert System

acquisition subsystem, and working memory (Figure 1). However, no existing expert system contains all of these components, but several of these components occur in every system. Each of these is discussed briefly in the following sections.

1.4.1 The Knowledge Base

Collecting specific knowledge from an expert or a group of experts is referred to as knowledge acquisition. This is the responsibility of a knowledge engineer who obtains this knowledge from a recognized expert and encodes it in the appropriate form for computation. Throughout the knowledge acquisition stage rules and relationships about a specific field are defined and reworked to best represent the expert's heuristic knowledge. This collection of rules and facts is referred to as the knowledge base.

There are currently three principle mechanisms for representing knowledge in an expert system: production rules, frames and predicate logic. An expert system uses one or more of these formalisms as a means of expressing knowledge in the knowledge base.

1.4.1.1 Production Rules

Production rules are conditional statements that take the form:

"If Fact1 and Fact2 then conclude Fact3".

This type of knowledge representation features a rule interpreter that decides how and when to apply certain rules, and a "working memory" that retains data, goals and intermediate results while the program is running.

The *IF* portion of a rule consists of one or more conditions. A condition compares a variable to a value using a relational operator (i.e., =, <, <>, >, >=, <=). The *THEN* portion of the rule can conclude one or more conditions, and is true only when the *IF* conditions are satisfied.

An example of a production rule that might be used to select a suitable cheese to accompany a meal is represented below:

IF Complement = bread AND Preference = Mild OR Preference = Flavorful AND Consistency = Firm THEN The Cheese = Gouda

In this example, each rule condition is tested by questioning the user. The first condition activates the question "What will you be serving with the cheese?". If the response is "bread" and the remaining rule conditions are true, Gouda cheese is recommended.

Representing knowledge in this form has certain disadvantages. The rule interpreter is computationally inefficient. In order to obtain an answer it must examine every rule in the knowledge-base. Also, the lack of an explicit framework for representing the knowledge make it very difficult to understand how the rules relate to one another. Additionally, when dealing with very complex domains the syntax becomes cumbersome. Despite these criticisms, rule-based systems are popular. The main

reasons being that experts find it relatively easy to express knowledge in this way, and many programmers find it relatively easy to encode in this form.

1.4.1.2 Frames

Marvin Minsky [14], who conceived the idea of frames, believed that the human brain encodes only those salient properties that characterize a specific object, and not by a series of strict, exhaustive definitions of properties.

Frames are complex data structures which represent stereotyped objects, events, or situations. A frame can be thought of as a complex node in a network that is made up of a series of slots. A special slot contains the name of the object, and the other slots contain common attributes and constraints.

For example, a general frame for an automobile could be represented as follows [4]:

Generic AUTOMOBILE Frame Specialization-Of: VEHICLE Generalization-Of: STATION-WAGON, COUPES, SEDANS, HATCHBACKS Manufacturer: Range: (FORD, MAZDA, BMW, SAAB, HONDA) Default: MAZDA Country-Of-Manufacturer: Range: (USA, JAPAN, GERMANY, SWEDEN) Default: JAPAN Model: Range: () Color: Range: (BLACK,WHITE,RED) If-Needed: (Examine-Title or Consult-Dealer or Look-at-Automobile) Reliability: Range: (HIGH, MEDIUM, LOW)

l/100 km: Range:(1-20) Year: Range: (1940-1987) If-Changed: (ERROR: Value cannot be modified) Owner: Range: Person-Name If-Added: (Apply-For-Title and Obtain-Tag and Pay-Sales Tax)

The slots in this frame identify the manufacturer, country of manufacture, color, model, reliability, 1/100 km, year and owner. A number of options can be associated with each slot. These options include a range of possible values, a default value, if-needed (a method for determining the actual value), if-added (the actions to take when a value is given to the slot) and if-changed (the actions to take if the value changes).

Specific automobiles are identified using this generic frame. For example a Honda Civic might be described as follows:

JOE-SMITH'S-AUTOMOBILE Frame Specialization-Of: HATCHBACK Manufacturer: HONDA Country-Of-Manufacture: JAPAN Model: Civic Color: Red Reliability: LOW I/100 km: 8 Year: 1976 Owner: JOE SMITH Doors: 2 Note that this frame is a Specialization-Of a HATCHBACK and that the HATCHBACK frame has added a slot called Doors to this structure.

Frame-based systems have gained increasing acceptance since they allow the packaging of declarative knowledge (the basic structure of the frame) with procedural knowledge (the if-needed, if-added and if-changed facets of the slots). The ability to deal with things like exceptions and defaults is something that is very difficult to handle in standard logic. However, many "real-world" situations will not adhere to a generic frame structure. This increases the complexity of the system because each situation has unique features that must be represented.

1.4.1.3 Predicate Logic

Prolog (PROgramming in LOGic) is an example of a high level language that is based on predicate logic. It offers a built-in mechanism for interpreting rules and inferring facts that are not explicitly stated. For example, given the rule "All men are mortal" and the fact "Socrates is a man" it can be deduce that "Socrates is mortal".

Predicate logic requires that relationships be presented as arguments. These arguments consist of a relation which affects one or more objects. Arguments can represent facts or can be combined to produce complex statements. In Prolog, the previous example would be written in the following way [19]:

mortal(X):- man(X)
man(Socrates)

The first statement is a rule and the second statement is a fact. Man and mortal are relations that describe the object (which in this case is a man called Socrates).

While more powerful than production rule interpreters, this representation scheme is costly in terms of memory and CPU time. It is also difficult to control the program flow and manage user interaction.

1.4.2 The Inference Engine

The inference engine is the expert systems reasoning mechanism. It is comprised of non-domain specific rules that interpret the rules in the knowledge base. Currently there are two principle mechanisms used in inference engines - forward chaining and backward chaining.

The forward chaining, or data driven, inference engine attempts to reason forward from a set of facts to an appropriate solution. This type of inference is suited for problems that can produce an infinite number of solutions. Machine configuration, data analysis and design are examples of problems that exhibit this characteristic.

Backward chaining, or goal driven inference starts with a hypothetical conclusion and works backward to seek supporting evidence. MYCIN, an expert system used to diagnose blood infections and prescribe the appropriate treatments, is an example of a backward chaining production system.

It is important to point out the difference between forward and backward chaining, and forward and backward reasoning. Chaining describes the way in which the rules are activated. Reasoning describes the way in which the program as a whole is organized. It is possible to implement a backward reasoning strategy using forward chaining. R1, a program that configures VAX machines, does just this. At a certain level of abstraction, the programs main goal is to configure a system, which can be decomposed into subgoals, such as configuring the Central Processing Unit, and so on. Reasoning back from a main goal via subgoals is referred to as a top-down or backward reasoning strategy. However, during run-time the program actually works through the production rules bottom-up, (i.e., starts with a set of components and tries to achieve a configuration that satisfies each subgoal).

While the inference engine is usually "hard-coded" into the interpreter (and very difficult to change), it is possible to control the reasoning strategy by implementing meta-rules at the program level. Meta-rules differ from ordinary rules in that they direct the reasoning rather than actually perform the reasoning. Meta-rules can either be domain-specific or domain-free.

1.4.3 The Explanation Facility

The ability of an expert system to show the user its "reasoning" is an important feature. The simplest form of an explanation is a trace of the rules and facts that were used to reach the conclusion. Most systems offer a textual interpretation of this information. More sophisticated systems provide "how" and "why" explanations.

When a system is asked "how" did it reach a conclusion, a trace of the logical inference chain followed to achieve the conclusion is provided. "Why" queries are helpful when the user wants clarification as to why a specific question is being asked. In this case, the rule may be revealed to the user for him to examine, or a paraphrasing of the rule's intent may be displayed. These mechanisms depend on the programming environment and the degree of program sophistication.

The ability to explain a line of reasoning may not be necessary in some expert systems. Rigorous scientific systems may reach conclusions that are self-explanatory to those using them. On the other hand, more subjective domains may demand an in-depth explanation of the system's reasoning. Detailed explanations become more critical as the penalty of a wrong decision and/or the frequency of unexpected results increases.

1.4.4 The Natural Language Interface

Communication between the user and the expert system is typically done by entering information in a structured format, or selecting the correct response from a computer menu. However, more sophisticated systems are being developed to utilize natural language understanding. An ideal natural language interface would be able to express itself in standard English, and be capable of comprehension at or above the level of human understanding. Today's best natural language programs are capable of understanding grammatically correct sentences. Ambiguities in context and ungrammatical sentence structure have presented many difficulties for researchers in this field.

1.4.5 The Knowledge Acquisition Subsystem

Throughout the development of an expert system, the knowledge base steadily grows. From inception, through prototype, to maturity, new rules and facts are introduced that improve the systems performance. The mechanism used to alter the knowledge base is referred to as the Knowledge Acquisition subsystem.

In most cases, this is merely an interactive editor that the programmer uses to change or add rules to the existing knowledge base. More sophisticated programs like Meta-DENDRAL [2] interact with an expert to devise and test new rules. At it's most complex, this facility is capable of discovering new concepts and relationships [11]. Programs with these capabilities rely heavily on the principles of "machine learning", another subfield of AI.

1.4.6 Working Memory

This is the area of memory that retains a description of the problem that is being examined. The information the user supplies, plus all that is inferred from the knowledge base is maintained in working memory for the duration of the consultation.

The interpreter uses the data stored in working memory to activate new rules which infer new facts that are subsequently added to the working memory. It is this iterative process that enables the system to produce an answer to the problem.

1.5 Accident Reconstruction

An accident investigation begins by collecting information at the scene of an accident. The success of an investigation depends largely on the thoroughness of this initial task.

Accident reconstruction is one of the final stages of an accident investigation. For most accidents, a formal reconstruction is not required; but for some, a full scale investigation is the only way to determine what caused the accident. The reason for reconstructing an accident can stem from a civil suit, research of injury mechanisms and safety devices, or a government inquiry into safety regulations. Depending upon the query, the reconstructionist may be required to estimate speeds, prove that traffic laws were violated or determine how injuries were sustained.

1.6 How Expert Systems Can Compliment Accident Reconstruction

Reconstructing a motor vehicle accident is an exercise that requires a wide range of expertise. If the purpose of the investigation is to determine injury mechanisms, then engineers and doctors with specialized training in the field of biomechanics are called upon. If a vehicle malfunction contributed to or was responsible for the accident, then mechanics trained in defect investigation are required. If the vehicle's behavior during the collision (speed, direction etc.) must be determined, then engineers with an understanding of collision dynamics are needed. Each of these experts possess extensive knowledge related to their specialization. To immediately bring together all of this expertise, while beneficial, is virtually impossible for all but the most serious of motor vehicle accidents.

The problem solving expertise of these professionals is largely conceptual, although certain aspects of accident reconstruction is quantitative. As mentioned earlier, expert systems lend themselves nicely to conceptual-type problems. However, the difficulty in applying an expert system approach to this problem is accentuated because the field of accident reconstruction is so complex. The problem has to broken down into sub-domains. Within these sub-domains, further stratification may be necessary to reduce the problem to a manageable level.

For this reason, the area investigated by this paper is limited to collision dynamics. Currently, there are standard procedures coupled with many commercial programs which the reconstructionist can use to help determine vehicle speeds, angle of impact, velocity changes etc. An expert system becomes useful at the initial stage of the investigation. The people responsible for this facet of the investigation (usually the police) seldom have any formal training in accident reconstruction. Inevitably, essential information may be overlooked. As a result, the reconstructionist, who is usually called in well after the accident, must rely on secondary information that is often incomplete or ambiguous.

The expert system developed in this paper is for the non-technical user, such as a police officer. By utilizing heuristic and conventional procedures the system is able to point out important factors, help clarify evidence, check the input, and provide the user with preliminary speed estimates.

2. LITERATURE REVIEW

Two topics were examined in the review of the literature: expert systems and accident reconstruction. Expert systems are relatively new, but publications describing the fundamentals of existing systems are abundant. The science of reconstructing a motor vehicle accident is a well established discipline. Literature on reconstruction varies from identification and measurement of scene evidence to complex computer simulations of collision dynamics.

2.1 Expert Systems

In the previous chapter the anatomy of an expert system was described. This section examines the function of many existing systems, and some of the tools and environments suitable for developing an expert system.

2.1.1 Functions of Expert Systems

Although it may be more appropriate to categorize expert systems according to their complexity and problem structure [9], there is a tendency to classify systems according to their function. Hayes-Roth et al. [8] suggest the following functional categories: interpretation, prediction, diagnosis, design, planning, monitoring, debugging, repair, instruction and control.

An interpretation system is basically a data interpreter. It attempts to assign symbolic meaning to observed data. DENDRAL [12], conceived at Stanford University in 1965,

is one of the first interpretation systems. DENDRAL is able to determine the molecular structure of an unknown organic compound by interpreting data obtained from a mass spectrometer. HEARSAY- II [6], a speech-understanding system, and PROSPECTOR [5], used by geologists to help identify mineral deposits, are other classic examples of interpretation systems.

Prediction systems generate possible outcomes for given situations. These systems typically employ a parametric model that helps form the basis of a prediction. Weather forecasting, demographic predictions, traffic prediction and military forecasting fit into this category.

Diagnostic systems determine the cause of a problem from a set of observable symptoms. MYCIN [18], another Stanford University product, was developed to help physicians diagnose and treat blood infections. Shortly thereafter PUFF [7], a system for detecting pulmonary disease, was implemented. ONCOCIN, a cancer diagnoser, is another medical aid. Electronics, mechanics and computer software are other disciplines that have given rise to diagnostic expert systems.

Design systems configure objects that must adhere to a set of constraints. Circuit layout, building design and budgeting are examples of this duty. R1 [13] is a classic design system. It was built for Digital Equipment Corporation to configure VAX computer systems, and is one of the most successful commercial expert systems to date.

Planning systems solve problems by assigning functions to objects within the system. Robotics, project planning, communications and military planning are examples of problems in this category. ABSTRIPS [16] and NOAH [17] were among the first

planning programs used in robotics. ISIS, developed at Carnegie-Mellon University, is used by Westinghouse to manage and schedule projects in their factories.

Monitoring systems track a system's behavior and identify points of weakness. Several computer-aided monitoring systems exist for nuclear power plants, air traffic control, and medical tasks. None of these expert systems have advanced beyond the laboratory.

Debugging and repair are two problems that expert systems are beginning to address. Computer-aided debugging systems exist for computer programming in the form of intelligent knowledge bases and text editors.

Instruction systems incorporate diagnosis and debugging subsystems which address the student's knowledge in a specific area. These systems begin by constructing a hypothetical description of the students knowledge. The student's weaknesses are then diagnosed and a specialized interactive tutorial is formulated to convey the remedial knowledge to the student. SOPHIE [1], an electronics laboratory instructor, was an early instructive expert system.

The final category is control systems. A control system supervises the overall behavior of a process. By continually monitoring the process, anticipated problems can be identified and remedial plans can be formulated to ensure successful operation. Problems addressed by control systems include air traffic control, business management and mission control.

2.1.2 Implementation Tools

Once a problem has been formalized, suitable development tools or language environments must be selected. In general, the tool/language spectrum can be divided into four categories:

- (i) expert system shells (VP-Expert, M.1, Rulemaster)
- (ii) special purpose languages (Prolog, OPS5)
- (iii) general purpose languages (LISP)
- (iv) mixed programming environments (CENTAUR)

Shells have many desirable features. These tools have built-in inference engines for interpreting rules, user interfaces, explanation facilities, knowledge base editors and debuggers, and built-in representation schemes for uncertainty. This eliminates much of the programming task, allowing the developer to concentrate exclusively on the knowledge base. However, shells can be restrictive in several ways. The inference engine's control structure may not match the experts way of solving the problem. The knowledge representation scheme (i.e., rule language) may not have sufficient expressive power. The explanation facilities may be inadequate. Nevertheless, given the number of commercially available shells and the different types of control structures and representation schemes they offer, it is likely that one will be suitable.

Special purpose languages like PROLOG or OPS5 were designed specifically for knowledge engineering. These languages decide how logic is structured and how the program will work. For example, PROLOG is based on a mathematical system known as predicate logic and utilizes a backward chaining mechanism for inferring rules and facts. While these languages provide more flexibility in terms of control structure and representation, the process of applying them is more difficult than with shells, because the user interface and explanation facility must be designed in addition to the knowledge base.

General purpose languages and mixed programming environments are used by experienced AI programmers to help them deal with complex domains. LISP is one of the oldest and most popular programming languages in AI. It is a symbolic manipulation language that is very flexible and can be adapted to a great number of problems. LISP programs are usually implemented on a mainframe or LISP machine which provide enormous amounts of memory and do not inhibit the development of large applications. Mixed programming environments incorporate software modules that allow the programmer to mix programming control structures. For example, CENTAUR mixes rule and frame-based formalisms.

Another consideration that may affect the selection of a tool or language is the hardware and resources available for the project. Many inexpensive shells and language compiler/interpreters are available for personal computers. With the increasing memory capacity of these machines, smaller applications or prototype systems can be designed with these tools. For large, sophisticated applications the advantages of a mainframe and a high-level language cannot be surpassed.

2.2 Accident Reconstruction

The reconstruction of a motor vehicle accident can require the services of people with varied backgrounds. Police officers, doctors, engineers, vehicle mechanics and eye-witnesses all assist in an accident investigation.

The role of the engineer is usually confined the analysis of vehicle behaviour prior to, during, and after a collision through the interpretation of on-scene evidence. Several textbooks and papers have been written that thoroughly discuss the identification and analysis of scene evidence. Additionally, computer modelling is currently at the stage where reliable speed estimates can be obtained for well documented accidents. The computer's ability to handle large amounts of data and perform calculations very quickly has allowed more complete and accurate analysis than hand calculations would permit. The following sections describe some of the accident investigation textbooks as well as the evolution of computer simulation in the field of accident reconstruction.

2.2.1 Accident Investigation Manuals

There are many textbooks available for accident reconstruction [23,26,34,49]. These manuals describe the basic physics that govern vehicle collisions and provide guidelines for the application of certain reconstruction techniques.

Papers by Emori [28,29] and McHenry et al. [39] look at more complex analytical approaches for reconstructing an accident. These techniques are widely used by experts in the field and have subsequently been incorporated into computer programs for accident reconstruction.

2.2.2 Computer Simulation

Computer models to simulate vehicle collisions were initially introduced by McHenry (SMAC - Simulation Model of Automobile Collisions) [39]. This program utilized a "forward calculation" approach to determine vehicle speeds. Initial pre-crash velocities were assumed and run through a 2- dimensional vehicle mathematical model. An iterative routine (START) was added at a later date to generate pre-crash conditions in such a way that the final vehicle positions, the vehicle damage, and the post-crash motion of the mathematical model coincided with those of the actual accident.

During the seventies, SMAC was subject to rigorous testing and underwent a number of revisions to improve it's precision [31,40,50]. The result was a computer program which produced velocity estimates within a claimed accuracy of plus or minus 5 percent. However, to produce these results the user had to provide a very detailed description of the accident.

Realizing the need for a system that could accurately reconstruct accidents that were illdefined, the Calspan Corporation launched a research project that led to the development of CRASH (Calspan Reconstruction of Accident Speeds on the Highway). The CRASH program was designed to accommodate a range of accident evidence, from CDC's (Collision Deformation Classifications) at one extreme, to complete definitions of damage dimensions and vehicle positions at the other. Unlike SMAC, CRASH worked backwards from specified post-impact conditions to solve for pre-impact conditions. Based on the evidence supplied, the program could do either a full scale trajectory analysis to determine pre-impact speeds, or a simple energy-based calculation to

determine the speed change (delta-V) the vehicle underwent during the impact phase. In reasonably well documented cases, CRASH was shown to produce results within plus or minus 12 percent accuracy [40]. In the ensuing years CRASH has been subject to many revisions and refinements [41,42,43,44,47].

The advent of mini and micro computers motivated researchers to develop similar models for use on smaller computers. In 1980, Hess [30] developed two programs written in BASIC for the micro-computer. The first, APPLETRAJ estimated a vehicles linear and angular velocity at the start of a skid based on the field data provided. The second, APPLECRASH was designed to accept vehicle crush data from a pair of damaged vehicles and produce an estimate of each vehicle's change in velocity as a result of the collision.

The increasing memory capacity of the micro computer inevitably led to the conversion of the CRASH program for use on the IBM PC and compatible machines. CRASH3PC [37] is one example of this work.

The trend toward computer simulation of vehicle collisions has led to other developments. VTS [22], IMPAC [51], EDCRASH [27], EES-ARM [52], CAAR_1 and 2 [36] are examples of these accident reconstruction programs. The mathematics and physics underlying each model are similar, and each program has its own advantages and disadvantages. All are equally susceptible to the "garbage in, garbage out" rule, and all require good user understanding of the algorithm to properly interpret the results.

3. SYSTEM METHODOLOGY

Existing computer programs for accident reconstruction contain an inherent weakness; the results they provide can only be as good as the information they process. Incomplete data is something the reconstructionist is often faced with. Usually he is not brought in until civil or criminal action is sought and must rely on evidence gathered by the police. Most attending police officers cannot interpret scene evidence because of their limited training in accident reconstruction. In many cases, information essential for the engineer is overlooked at the scene of the accident. An expert system that could help the police investigator check pertinent data and aid in a preliminary analysis of the accident would be useful.

The goal of the expert system developed in this paper, Knowledge-base Accident Reconstruction (KAR), is to provide a computer program that can guide the user through the reconstruction process. Its primary functions are to check the data collected by the police, suggest methods for solving speeds, and calculate the speeds if possible. By utilizing an expert system approach, heuristics governing the information requirements for each method can be tested and verified before proceeding with the calculations. Explanations and directions on information acquisition can also be incorporated into the system using this strategy.

Because the program is aimed at a non-technical user, the equations of motion programmed into the system are relatively basic and require easily obtainable information. Except for the energy calculations, the complexity of the equations do not exceed those

presented in standard reconstruction manuals for police; thereby making the underlying physics accessible to every user.

The following sections describe the methodology and mathematical techniques that KAR uses to determine vehicle speeds.

3.1 Reconstruction Methodology

Speed estimation is usually an important part of the overall reconstruction process. In many cases, this may be the only question under investigation. Skid analysis, yaw mark analysis, vault, conservation of momentum and crush energy are methods available to the engineer for the purpose of determining speed. The method or methods that are selected depend on the evidence that is available (i.e. skid marks, vehicle damage, debris, etc.). At the location of an accident, evidence must be gathered from three primary sources: the scene, the vehicles and witnesses. Each of these categories can be broken down further to represent the different stages of the accident: Pre-Impact, Impact and Post-Impact. Figure 2 is a graphical representation of this breakdown.

The Pre-Impact phase includes all of the events leading up to the collision. The Impact phase involves the collision where some point on both vehicles attain a common velocity. The Post-Impact phase usually involves sliding or rolling to a final rest position. The three stages are represented in Figure 3.

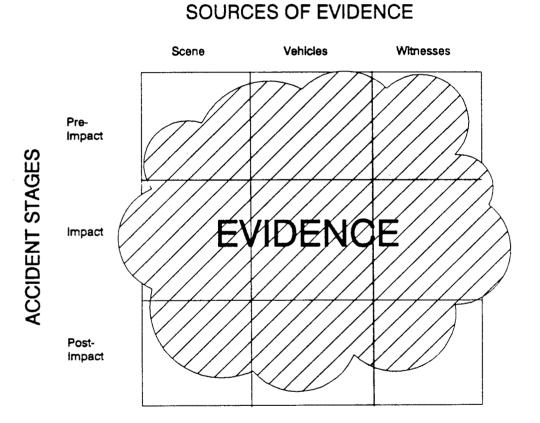


Figure 2: Categorization of Evidence

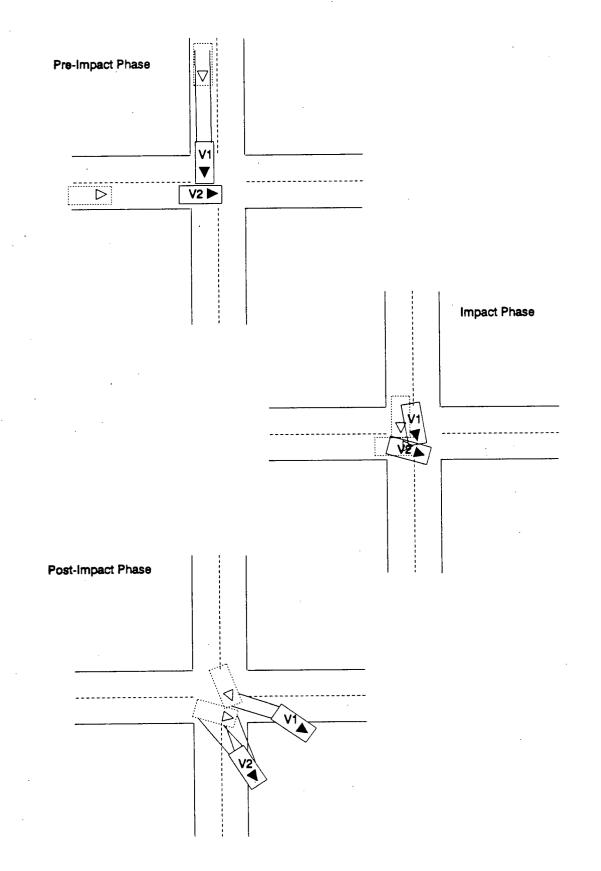


Figure 3: Accident Stages

Arranging evidence into the categories defined in Figure 2 helps the investigator establish the sequence of events and thus provides a clear picture of what took place. This is a mental process and is something the trained investigator can do quite quickly if the accident is straightforward. For more complex accidents where information is missing or ambiguous, grouping the evidence like this and going over possible scenarios is a common practice.

After the evidence has been gathered and the investigator has a good understanding of the accident, methods to determine individual vehicle speeds can be selected. If for example, Vehicle 1 left 5 meters of skid prior to impacting with Vehicle 2 and the drag factor (average coefficient of friction between the tires and the road surface) can be determined, a skid analysis would give the change in velocity over this distance. However, since Vehicle 1 did not skid to a stop (i.e. all of the vehicles energy was not dissipated in skid; some went into deforming vehicle parts, heat, etc.), using this method on its own would underestimate the vehicles initial speed. If the speed at impact, or end of skid, is not zero, some other method such as momentum or energy must be used to determine the impact speed. By combining the speed at impact with the change in speed as a result of skidding, Vehicle 1's initial speed (prior to braking) can be calculated. The situation described above becomes awkward because of the sequence in which the speed is calculated. For hand calculations, the normal reconstruction procedure is to work backwards in time from post-impact conditions to solve for the pre-impact conditions.

3.2 Reconstruction Techniques

The five speed determination techniques programmed into KAR are: skid analysis, yaw analysis, vault, conservation of linear momentum and crush energy. The following

sections describe the fundamental physics behind each method, and some of the strategies used to help the investigator identify and correctly interpret the physical evidence.

3.2.1 Skid Analysis

When brakes are applied, the mechanics of the braking system slow the rotation of the wheel. At this point the tire begins to slip relative to the road surface. If the brake is firmly applied, the wheel locks and the tire ceases to rotate leaving a skid mark in most cases.

During the skid, the vehicle's kinetic energy is dissipated through friction on the road surface. Applying the conservation of energy, the speed of the vehicle at the beginning of the skid can be determined by the following equation (see Appendix A for derivation of equation):

$$v_i = \sqrt{2fgd + v_f^2}$$

where

 v_i = minimum initial speed (m/s) v_f = estimated speed at end of skid mark (m/s) f = coefficient of friction or drag factor g = acceleration of gravity (m/s²) d = skid distance (m)

Reconstruction manuals refer to this equation as the minimum speed formula because it does not reflect the amount of speed lost before skidding commences (i.e. braking that did not produce skidmarks) and, in the event that the speed lost during the collision cannot be determined (using other methods), v_f can be set to zero or the speed after impact, to give a minimum bound for the initial speed of the vehicle. Variations of this

formula were used in the program to account for vehicle braking efficiency, and skid marks over different surfaces. These formulas are listed in Appendix (A).

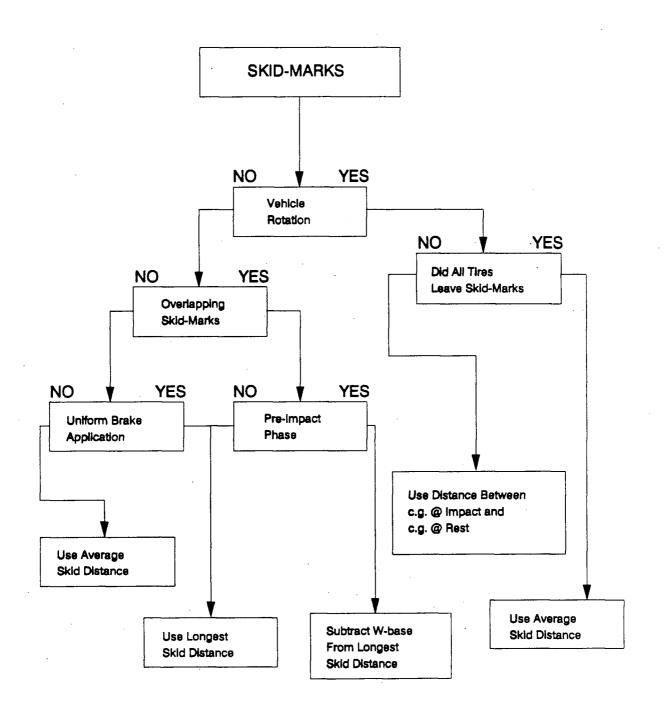
The value of the drag factor (f) can be determined by conducting skid tests, measuring the value with a drag sled, or using a table of friction coefficients. Test skids provide a good indicator if conditions at the time of the accident can be duplicated. In many instances, however, tests of this nature may be too dangerous or too difficult to conduct. A drag sled measurement is an alternative and is easy to perform. For preliminary analysis a table value is acceptable, but must be adjusted for slope (i.e., compensation for the vehicles weight component parallel to the grade). For convenience, Table 1 was converted to a series of rules and integrated into the system.

Because the program was not designed to handle uncertainty, the ranges presented in Table 1 were converted to average values for use in the rules. Each friction coefficient is represented in the following manner:

> IF Drag_Value = UNKNOWN AND Road_Mix = Asphalt_or_Tar AND Road_ConditionPC = New AND Weather = Dry AND Speed_Range = Greater_50kmh THEN Drag_Factor = 0.83

For a vehicle travelling in excess of 50 km/h on a dry, new, asphalt roadway, a drag factor of 0.83 would be assigned if the actual value was unknown. If necessary, a slope correction routine adjusts this factor.

			DRY		<u> </u>		WET	
Description of Road Surface	Less than 30 mph		More than 30 mph		Less than 30 mph		More than 30 mph	
<u></u>	From	То	From	То	From	To	From	То
PORTLAND CEMEN	T							
New, Sharp	0.80	1.20	0.70	1.00	0.50	0.80	0.40	0.75
Travelled	0.60	0.80	0.60	0.75	0.45	0.70	0.45	0.65
Polished	0.55	0.75	0.50	0.65	0.45	0.65	0.45	0.60
ASPHALT OR TAR								
New, Sharp	0.80	1.20	0.65	1.00	0.50	0.80	0.45	0.75
Travelled	0.60	0.80	0.55	0.70	0.45	0.70	0.40	0.65
Polished	0.55	0.75	0.45	0.65	0.45	0.65	0.40	0.60
Excess Tar	0.50	0.60	0.35	0.60	0.30	0.60	0.25	0.55
GRAVEL								
Packed, Oiled	0.55	0.85	0.50	0.80	0.40	0.80	0.40	0.60
Loose	0.40	0.70	0.40	0.70	0.45	0.75	0.45	0.75
CINDERS								
Packed	0.50	0.70	0.50	0.70	0.65	0.75	0.65	0.75
ROCK								
Crushed	0.55	0.75	0.55	0.75	0.55	0.75	0.55	0.75
ICE								
Smooth	0.10	0.25	0.07	0.20	0.05	0.10	0.05	0.10
SNOW								
Packed	0.30	0.55	0.35	0.55	0.30	0.60	0.30	0.60
Loose	0.10	0.25	0.10	0.20	0.30	0.60	0.30	0.60


Table 1: Coefficients of Friction of Various Roadway Surfaces
(Source: Baker [23])

When variable skid lengths are reported for each tire, confusion may arise as to which value should be used in the minimum speed formula. If the brakes are functioning properly on all wheels, the vehicle will track relatively straight. In this case, the longest skid mark will provide the best speed estimate. When it is apparent that braking was not applied uniformly (i.e. tracking to one side or vehicle rotation), an average value should be used. Figure 4 shows the line of reasoning the program follows in order to determine the "correct" distance to be used in the skid equation.

If there is less than 100 percent braking efficiency, the drag factor is multiplied by the braking efficiency ratio (i.e., 0.75 would indicate 3 out of 4 tires braking) to compensate for the rolling tire(s). Therefore, the braking efficiency does not effect the skid distance routine outlined in Figure 4.

Two other methods that utilize the same principles as skid are roll and overturn. If a vehicle rolls for a significant distance after impact the energy dissipated due to rolling resistance can affect the initial speed calculation. By substituting a drag factor of 0.1 and the roll distance into the skid formula, the vehicle's change in speed can be calculated over this distance.

When a vehicle overturns and slids to a stop, the drag factor between the metal and the road surface can be used in the skid formula to determine the vehicle's change in speed.

Figure 4: Flow Diagram for Determining Distance to Use in Skid Equation

3.2.2 Speed Calculations From Yaw Marks

When a vehicle negotiates a curve, a balance of centripetal forces and inertia holds the vehicle in the turn. Centripetal forces (frictional forces between the tires and the road) pull the vehicle towards the center of the curve, while the centrifugal force (inertia) works to pull the vehicle in a straight line, or tangent to the curve. For every curve there is a critical speed at which the centrifugal force overcomes the side tire friction, and the vehicle begins to yaw. At this point, the outer edge of the tire leaves a narrow dark mark that appears as a thin line about 5 cms in width and widens to the amount of tire tread in contact with the roadway as the vehicle yaws. Lateral striations in the mark caused by the side of the tire tread are often visible.

The critical curve speed can be calculated using the following equation (see Appendix A for derivation):

$$v_c = \sqrt{Rg \frac{(f+e)}{(1-fe)}}$$

where

v _c	=	critical curve speed (m/s)
R	=	radius of the yaw mark (m)
g f	=	acceleration of gravity (m/s ²)
f	=	coefficient of friction or drag factor
e	=	superelevation (%/100)

By using the radius of curvature of the yaw mark, the speed of the vehicle as it goes into yaw can be determined.

To ensure a precise speed estimate, the first one-third of the yaw mark should be used to calculate the radius of curvature (R). The drag factor can be determined using the procedures mentioned in the previous section.

3.2.3 Vault

If a vehicle becomes airborne during some phase of the accident, it is possible to calculate the vehicles speed at the point of takeoff using kinematics. Given the horizontal distance the vehicle vaulted, the vertical fall and the takeoff angle, the speed can be calculated as follows:

$$\mathbf{v} = \sqrt{\frac{g\,d^2}{2(h+de)}}$$

where

v	=	speed at takeoff (m/s)
d	=	horizontal distance (m)
h	=	vertical distance (m)
e	=	takeoff angle (%/100)

The point where the vehicle leaves the ground can usually be identified by the displacement of earth or other surface materials. The takeoff angle is measured at this exact location using a slope measurement devise or transit. Since the final resting position of the vehicle is rarely the point where it initially struck the ground, indentations in the earth or scars on hard surfaces can be used to identify the first landing point. When using this equation it is important that all measurements be taken as closely as possible from the center of mass of the vehicle at takeoff to the center of mass at the point where it first strikes the ground.

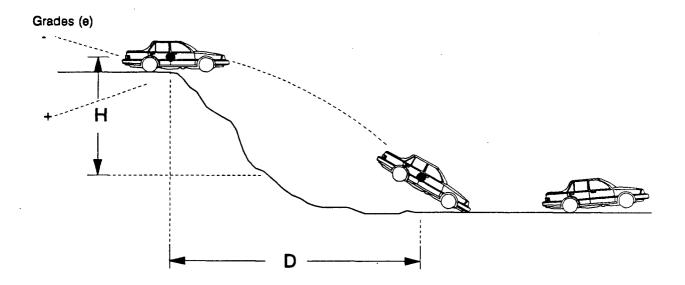


Figure 5: Vault Parameters

There are other situations where the vault formula can provide useful speed estimates. For example, if vehicle debris (windows, lights, hood ornaments etc.) are dislodged during impact, the approximate speed of the vehicle may be estimated given the initial height and distance travelled by the debris. Because the force required to break away the object is not accounted for, speed estimates can be considered conservative.

Like the yaw equation, the vault formula gives the vehicles speed at the beginning of the incident, not the change in speed over the duration of the event. Hence, when yaw or vault are used to calculate speed, any subsequent events (i.e., skid, impact, roll etc.) are ignored. Any events that occur prior to yaw or vault are analyzed and combined to provide an initial speed estimate.

3.2.4 Conservation of Linear Momentum

During the impact phase of an accident each vehicle experiences a change in velocity, however, momentum is conserved. Therefore, if the momentum after impact can be established, the momentum prior to impact can be estimated. Simply stated, the vector sum of the colliding vehicles is equal to the vector sum of the same vehicles after collision. Representing this in x-y coordinates the following equations are obtained:

 $m_1 v_{1xi} + m_2 v_{2xi} = m_1 v_{1xf} + m_2 v_{2xf}$ $m_1 v_{1yi} + m_2 v_{2yi} = m_1 v_{1yf} + m_2 v_{2yf}$

where

m_1	æ	mass of vehicle 1 (kg)
m ₂	=	mass of vehicle 2 (kg)
v _{nxi}	=	velocity of vehicle n in the x direction prior to impact
	_	(m/s)
v _{nyi}	=	velocity of vehicle n in the y direction after impact
		(m/s)

The logical segment of the program would not permit a momentum calculation if the vehicles approach and departure paths, weights and post-impact velocities were indeterminate. Post-impact velocities calculated by other methods are automatically passed to this routine. Vehicle weights and headings must be supplied by the user at this stage.

The NHTSA (National Highway Traffic Safety Administration) trajectory convention is adopted here for representing vehicle headings. This convention is shown in Figure 6.

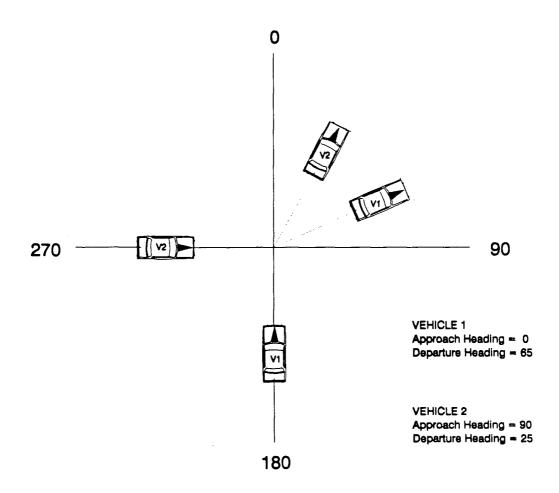
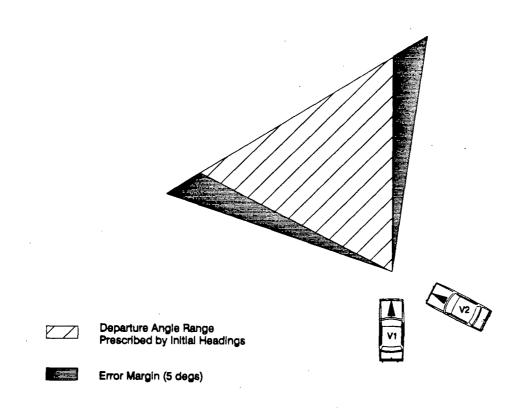



Figure 6: NHTSA Trajectory Convention

To avoid any confusion, vehicle 1's initial heading is set to 0 degrees. All other vehicle headings are input relative to this position. After the headings are input, a simple routine checks if they are plausible. If the departure headings lie outside a specified range prescribed by the approach headings, the user is asked to check the data and re-enter it. If these values fail the test a second time, a warning is issued, but the program proceeds with the calculations. Figure 7 shows the acceptable range of the departure paths as dictated by the approach paths.

Figure 7: Acceptable Departure Headings

In the event that the approach paths are collinear (i.e. head-on or rear- end accident configurations), an estimate of one of the vehicles pre-impact velocities is necessary in order to calculate the other vehicle's speed.

3.2.5 Crush Energy

An alternative method of solving for impact speeds is to estimate the energy lost during the collision. The energy absorbed by the vehicle during impact is defined by the work done to crush the vehicle to its deformed state. The CRASH program assumes that there is a linear relationship between the force applied during impact and the amount of crush (Figure 8).

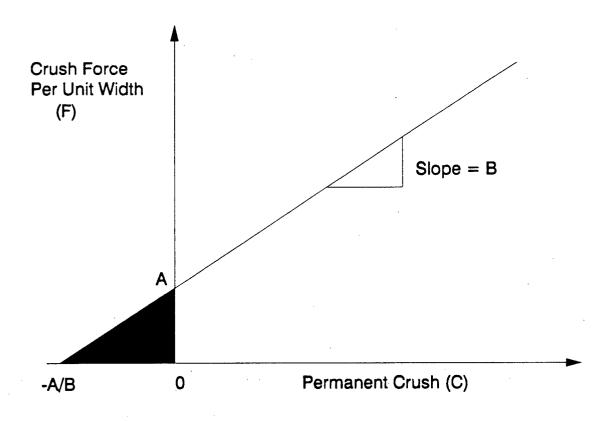


Figure 8: Force vs. Crush

For a force applied normal to the surface, the energy absorbed by the vehicle is the area under this curve or:

$$E = \int (A + Bx) dx dL$$

A numeric integration of this equation for two equally spaced crush dimensions produces the expanded formula:

$$E = L\left(\frac{A}{2}(c_1+c_2) + \frac{B}{6}(c_1^2+c_1c_2+c_2^2) + \frac{A^2}{2B}\right)$$

where

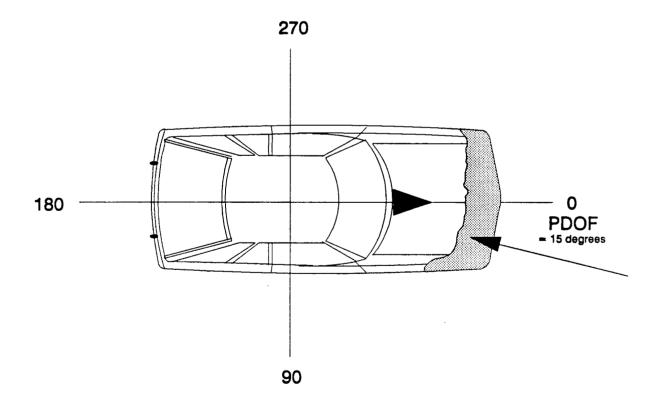
=	energy absorbed by crushed vehicle (N.m)
=	width of crush profile (cms)
=	empirical coefficients obtained from crash test
=	individual crush measurements (cms) (measured relative to the original surface)
	=

The crush coefficients A and B (Table 2), were converted to a set of rules. If the program is required to calculate the delta-V's, the coefficients are assigned according to the collision surface and the vehicle's size.

Stiffne Coeffi	ess cients	s Wheelbase (cms)							
		205-240	241-257	258-279	280-297	298-312	>311		
Front	A	530.6	455.1	557.0	625.5	571.0	571.0		
	B	32.5	29.8	38.8	23.5	25.6	25.6		
Rear	A	643.1	687.0	720.4	627.2	521.8	521.8		
	B	26.3	28.4	30.4	9.0	48.4	48.4		
Side	A	135.3	246.0	304.0	251.3	311.0	311.0		
(R,L)	B	25.6	46.4	39.4	34.6	32.5	32.5		

Table 2: Vehicle Stiffness Coefficients (Source: McCarthy et. al. [37]).

Given the value of E, the change in velocity experienced by each vehicle can be determined. By equating the total pre-impact kinetic energy with the total post-impact kinetic energy plus the crush energy absorbed by each vehicle, and then substituting momentum, the following equations can be stated (see Appendix A for derivation):


$$\Delta v_1 = \sqrt{\frac{2 (E_1 + E_2)}{m_1 (1 + m_1 / m_2)}} \qquad \Delta v_2 = \sqrt{\frac{2 (E_1 + E_2)}{m_2 (1 + m_2 / m_1)}}$$

where

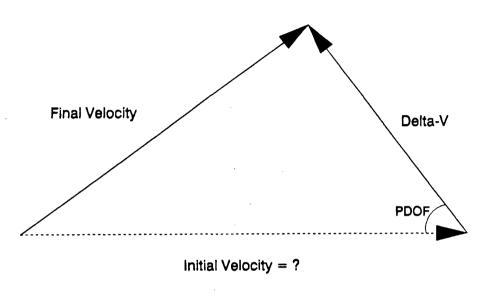
Δv_n	=	change in velocity for vehicle n during approach period
		(m/s)
En	=	energy absorbed by vehicle n (N.m)
m _n	=	mass of vehicle n (kg)

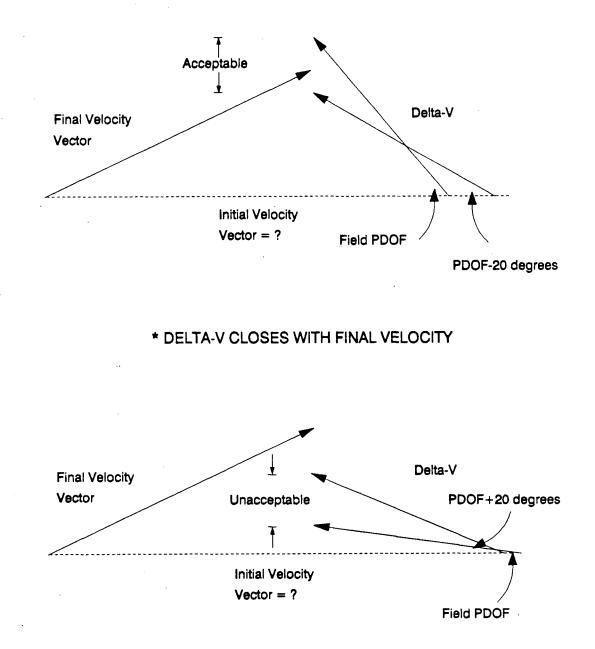
Hence, the velocity changes can be established directly from the vehicle damage. In order to calculate the initial velocities however, post-impact speeds and the principle direction of the impact force (PDOF) are necessary.

The PDOF can be obtained from the damaged vehicle in the field. Figure 9 illustrates how this angle is defined.

Figure 9: Principle Direction of Force

Since the PDOF is measured with respect to the vehicle's longitudinal axis (initial heading), the vehicle's initial speed can be calculated using a combination of the Cosine Law and the Quadratic Equation (Figure 10).




Figure 10: Velocity Vector Diagram

It is important that the PDOF be measured as accurately as possible. Smith and Noga [50] studied the sensitivity of the PDOF and crush measurements on the delta-V. They found that in two-vehicle accidents the estimate of the PDOF contributed almost entirely to the sensitivity of delta-V. Field observations of the PDOF were out by as much as 20 degrees (95% confidence limit). Because this value is subject to considerable error, an optional check procedure was programmed into the system. If the vehicle's approach and departure headings are well established, they can be used to ensure the PDOF is within an acceptable range of error.

First, the change in velocity (delta-V) is calculated from the crush measurements. This value is rotated \pm 20 degrees (the maximum range of error for the PDOF), relative to the field PDOF, to ensure that this vector will close with the final velocity vector (Figure 11).

If the vectors do not close, the initial velocity cannot be calculated because the delta-V is either too small or too large. This would most likely be a result of error in the crush measurements. The user is then warned that the measurements are overestimating or underestimating the value of delta-V.

For non-central and oblique impacts, the calculation of delta-V is dependent on the PDOF and its offset from the vehicle's center of gravity. (At this stage, the energy equations programmed into the system assume a central impact. If the equations were modified to encompass non-central collisions, an iterative calculation would have to be added to this check procedure because of delta-V's dependency on the PDOF.)

* DELTA-V DOES NOT CLOSE WITH FINAL VELOCITY

Figure 11: PDOF Check Routine

4. EXPLANATION OF THE SYSTEM

KAR was developed on an IBM PS/2 Model 80 computer using the expert system shell VP-Expert. It can be used on any IBM Compatible machine with a minimum of 640 kilobytes of RAM. The Knowledge base consists of approximately 120 kilobytes of source code and contains over 250 active rules (see Appendices B and C for program listing). The system is presently capable of solving vehicle speeds for accidents involving two automobiles. However, it is possible to access the programs analytical segment directly and analyze a single vehicle accident.

Because VP-Expert cannot access extended RAM, the size of a knowledge base is limited to 100 kilobytes. However, it is possible to link separate knowledge bases together so that programs too large to be contained in memory can be used sequentially. For this reason the program is divided into two logical modules. The first module contains the rules that determine the solution approach, and the second module contains the analytical procedures and decision rules that apply to each technique.

4.1 Development Tool

VP-Expert is a production rule expert system shell. It is equipped with an inference engine for interpreting rules, a user interface, and an explanation facility. KAR was developed by encoding knowledge relating to accident reconstruction into the knowledge base editor in a form the inference engine could interpret (Figure 12).

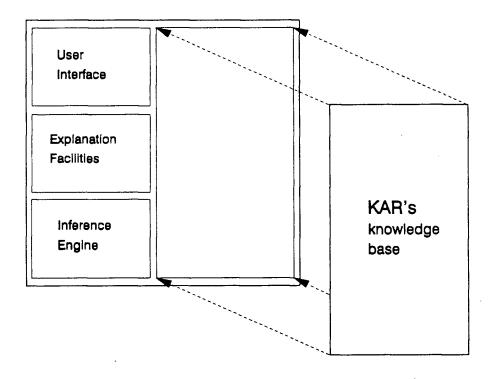
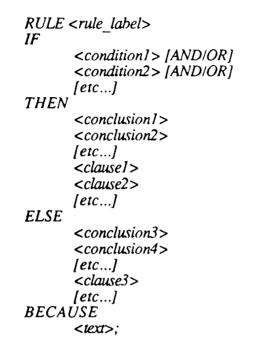



Figure 12: Inserting Knowledge into VP-Expert

The VP-Expert knowledge base consists of 3 basic elements: an ACTIONS block, Rules and Statements. The ACTIONS block directs the program during the consultation. Typically the ACTIONS block will contain at least one FIND clause. The FIND clause identifies the major goals of the consultation and directs the inference engines search of the rules. The primary method of inference employed by VP-Expert is backward chaining. However, it is possible to accomplish a form of forward chaining by using a sequence of FIND clauses within the ACTIONS block to influence the inference engines path through the knowledge base.

Rules are written as if-then structures and are represented in the following manner:

The rule premise can contain up to 10 conditions. Each condition contains a variable, a relational operator and a value (i.e., $Road_Mix = Ice$). Logical operators AND and OR are used to combine multiple expressions and form complex rule conditions.

The rule conclusion consists of one or more expressions each assigning a specific value to a variable. If the conditions in the rule premise are not satisfied, it is possible to assign alternate conclusions by including an *ELSE* statement at the end of the rule.

Within the rule conclusion it is also possible to include optional clauses. These clauses can be used to display text, open windows, ask questions, or find the value of a particular variable. The *BECAUSE* keyword is used to provide explanatory text in response to "why" or "how" commands given by the user. If the reason for a condition in the rule premise is unclear the user can issue the "why" command. If the rule contains the *BECAUSE* keyword, this text is displayed. If this keyword is not included in the rule, the rule itself is displayed.

There are two basic types of statements. One group of statements is used to alter the appearance of the screen during the programs runtime. The other set of statements is directly tied to the rules in the knowledge base. The latter, which include the ASK and CHOICE statements, appear at the end of the knowledge base and are activated when a value cannot be obtained from the knowledge base and must be supplied by the user.

4.2 Selecting the Appropriate Methods of Solution

The first module contains the rules that determine a suitable approach for solving vehicle speeds. This part of the program has been designed to manage any accident configuration involving two vehicles. No numerical data is requested at this stage, only a thorough description of the accident. Based on the qualitative responses of the user, this module assesses the accident and decides which mathematical methods are appropriate. The selected methods are then passed to the second module for analysis.

The ACTIONS block in this module contains only one goal, *FIND Solution*. This clause evaluates 2 rules that control the execution of this module. If the first rule succeeds, the lower level rules are tested to determine the solution approach. If the second rule succeeds, this module is bypassed and the user can select the solution methods directly. This is desirable for experienced users or for accidents that are relatively straight forward.

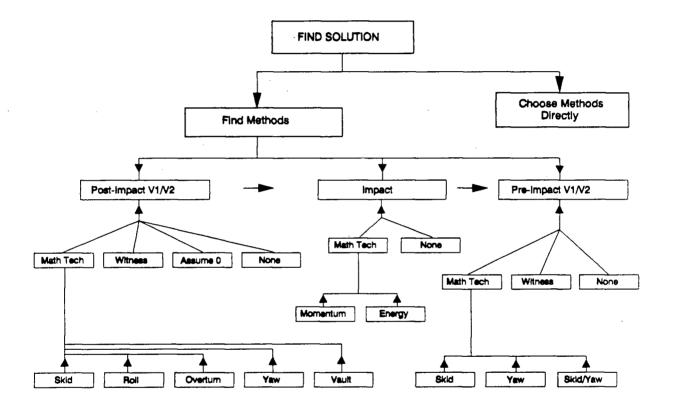


Figure 13: Rule Hierarchy

The first rule contains five major goals in its conclusion. These goals attempt to identify the method(s) of solution for each vehicle during each phase of the accident. Figure 13 demonstrates the rule hierarchy employed by this module. The arrows indicate the flow of the program. Initially, the inference engine is directed to the five major goals (in Figure 13 only 3 boxes are shown because Vehicle 1 and Vehicle 2 are grouped together for the post and pre-impact phases) by including FIND statements in the conclusion of the top-level rules (a form of forward chaining). Each goal is tested in order, starting with the post-impact phase of Vehicle 1, and working through to the pre-impact phase of Vehicle 2. Once a goal has been set, its solution is sought by means of a top-down search (backward chaining). For example, the goal for the post-impact phase of Vehicle 1, "FIND Method_Postv1", evaluates every rule in the knowledge base with "Method Postv1" in its conclusion.

An example of a rule that regulates the use of one of the mathematical techniques is given below. This rule decides whether a yaw analysis can be used to estimate Vehicle 1's post-impact speed.

> IF Post_Actv1 = Yaw AND Surf_Postv1 = Yes AND Flat_Postv1 = Yes THEN Method_Postv1 = Yaw;

Each condition in the rule premise activates a query (in many cases the conditional statements will activate lower level rules) unless it has already been assigned a value. In order for this particular rule to pass the following conditions have to be met: yaw during

the post impact phase must be present, all four tires have to be on the same surface for the first one-third of the mark, and the vehicle's weight must be constant for the duration of the mark (i.e., the vehicle could not have been travelling over the crest of a hill). The equation used to determine speed at the onset of yaw is dependent on a constant drag factor and a constant vehicle weight force. The last two conditions prevent the incorrect use of this equation.

Often more than one technique may be required to solve a vehicles speed during a specific phase of the accident. Therefore, each goal can have multiple values assigned to it (i.e. $Method_Postv1 = Skid,Vault$). An important factor that has to be considered when combining post or pre-impact speeds is that skid, roll, and overturn calculations give the vehicle's speed change, while yaw and vault give the vehicle's initial speed. Therefore, if a combination of events occur during the post or pre-impact phases, evaluating any event that follows yaw or vault is unnecessary. To avoid confusion the user is asked to select the appropriate events in the sequence that they occurred. Based on order of events the program determines which methods have to be analyzed.

For the impact phase, it may be possible to calculate speeds using both momentum and energy methods. In this case both methods are sent to the second module for analysis. Based on the accident configuration, the second module will decide which impact speed is the most reliable estimate.

If there is insufficient physical evidence to calculate the speed at a certain stage, other options are available. A witnesses estimate can be used, or if the vehicle travelled only a short distance after impact, the post-impact speed can be set to zero. If at any stage of the accident, no method of estimating speed is available, the goal is set to "None". The

second module handles this response by warning the user that this stage was left out of the analysis.

4.3 Organization of the Analytical Module

The second module is designed to accept the methods passed to it from the first module and begin a quantitative analysis of the accident. Logically, it approaches the problem in the same manner as the first module (post-impact through pre-impact). Initially, this module does not possess any detailed information about the accident, only which methods to attempt. First, it must obtain the data from the user and then perform the calculations and appropriate checks.

Like the first module, there are five top level goals corresponding to each stage of the accident for both vehicles. These goals activate the appropriate analytical techniques. The program has seven speed techniques programmed into lower level rules: skid, roll, overturn, yaw, vault, momentum and energy. The basic physics and information requirements for each method have been discussed in Chapter 3. The following sections describe how the program manages the calculations for each stage, and how it deals with the situation when calculations are not possible.

4.3.1 The Post-Impact Phase

The post-impact phase is one of the most variable stages of an accident. For low speed accidents vehicles may stop directly after impact, but accidents where moderate to high speeds are involved can produce a number of complex scenarios. In some cases the vehicles are redirected off the roadway which introduces new surfaces to the analysis,

and possibly abrupt drop-offs which result in vaulting or overturn. Although most accidents may involve only one or two events during this stage, the program has to be able to manage any conceivable scenario.

If more than one mathematical technique is analyzed during the post impact phase, the individual speed changes are combined as the square root of the sum of the squares. For example, the post-impact speed of a vehicle that skidded, rolled and then vaulted after impact would be calculated as follows:

$$v_t = \sqrt{v_s^2 + v_r^2 + v_v^2}$$

where

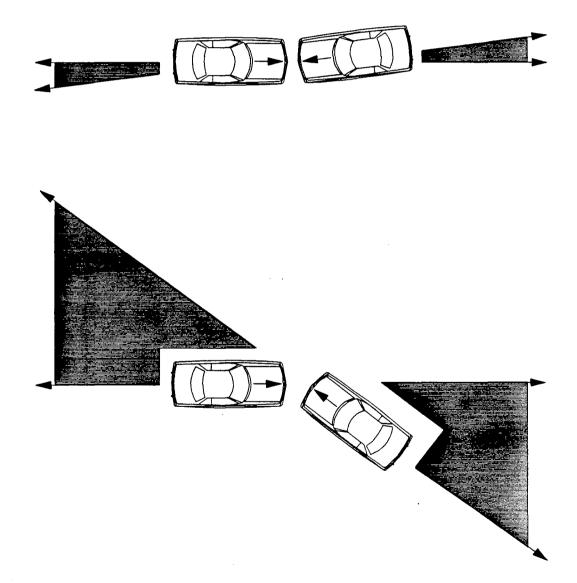
 $v_1 = v_s = v_r = v_r = v_r$

combined post-impact speed (m/s) speed change calculated from skid distance speed change calculated from roll distance speed at the point of takeoff

The order in which the individual speeds are calculated is irrelevant. The first module would have excluded from the analysis any events that might have followed the vault, because the vault equation calculates the vehicles speed prior to takeoff and not the speed change over the event.

If the post-impact speed cannot be calculated, a reliable eye-witnesses estimate of speed can be used for subsequent calculations. If both of these options fail, a post impact speed cannot be obtained for this vehicle. Since the post-impact speed must be known in order to calculate a vehicles impact speed, the speed loss associated with impact will also be ignored. If there is evidence prior to impact, a speed estimate will be calculated based on these measurements, however, this will likely be very conservative. When a stage of the

accident is excluded from the analysis a warning is issued that appears in the speed summary table at the end of the program. This advises the user that any speed estimate obtained from the analysis will be conservative.


4.3.2 The Impact Phase

For well documented accidents where the approach and departure headings are known and the vehicle crush profile has been recorded, it may be possible to use both momentum and energy to calculate the impact speeds. This provides a useful comparison and can help reinforce the first calculation.

An important difference between these two techniques is that energy can be used to calculate the impact speed of a vehicle without any information about the other vehicle. If no post-impact information is available for either vehicle, energy can still be used to calculate the change in velocity experienced by each vehicle. Momentum, on the other hand, requires the post-impact speeds of both vehicles. Therefore, in many instances energy may be the only feasible method for solving the impact speeds.

If both techniques are selected, the program will tell the user which impact speed to carry over to the pre-impact calculations based on the accident configuration and the approximate impact speed. Momentum is best suited for intersection type accidents where the vehicles are approaching one another at approximately 90 degrees. In this situation, marginal errors associated with the approach and departure headings do not have a noticeable effect on the speeds. However, when the vehicles approach paths are almost collinear, small deviations in the headings can have a major effect on the calculated speeds.

The accuracy of the speeds generated from an energy analysis is largely dependent on the PDOF. As the line of approach between the two vehicles starts to deviate from 180 degrees, the range over which the PDOF can act increases. Figure 14 illustrates the range over which the PDOF can act as a function of the vehicles approach headings. In most cases, energy would be best suited for the top configuration while momentum would give the best results for the bottom configuration.

Since PDOF is largely a subjective measure (it is usually determined by examining each vehicle's crush profile), the error associated with it increases as the range of the PDOF increases. In addition to this error, the accuracy of the experimentally derived coefficients used to calculate the crush energy is questionable. These coefficients are based on the crash performance of 200 vehicles in staged 20 to 40 mph collisions.

Hence, in the event that both techniques are used to calculate the impact speed, momentum is recommended for any accident where the headings are well defined and the approach paths are not collinear. For head-on and rear-end accidents in the 20 to 40 mph speed range, energy is advised over momentum. The final decision is left to the user.

4.3.3 The Pre-Impact Phase

Analysis of the pre-impact phase usually involves yaw or skid calculations. If a vehicle skids prior to impact the appropriate distance is input and the vehicles initial speed is calculated based on the speed change over this distance and the speed at impact. When a vehicle yaws prior to impact the initial speed can be calculated directly from the yaw mark. Therefore, it is unnecessary to perform calculations for the impact or post-impact phases. However, unless the user specifically requests that these stages be left out of the analysis, the program will go ahead with the appropriate post-impact and impact calculated from yaw is reasonable.

In certain situations, skid marks may appear prior to the onset of yaw. The program simply combines the change in velocity over the skid distance with the yaw speed as the square root of the sum of the squares (see Section 4.3.1).

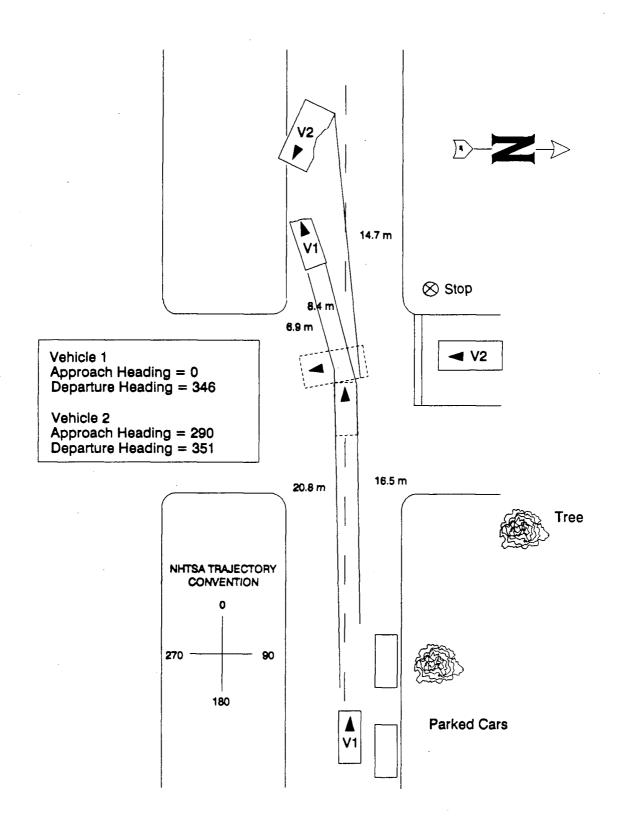
If there is no physical evidence prior to impact, this stage is ignored and the vehicle's speed at impact is considered to be the initial speed.

5. SAMPLE RUN

The following chapter provides an example of how KAR can be used to determine the speeds in a two vehicle accident. It is impossible to demonstrate all of the programs capabilities in a single accident, but some of KAR's significant features are illustrated in this example.

The accident used in this demonstration occurred in the city of Vancouver. The driver of the first vehicle suffered minor injuries, and the driver of the second vehicle was killed. Based on the Vancouver Police Departments preliminary findings, it was believed that the driver of the first vehicle was speeding. A local consulting firm was called in 8 weeks after the accident to conduct a formal reconstruction. All of the data used in their analysis was obtained by the police. Using the same police data, vehicle speeds are calculated using KAR and compared to the results obtained by the consultants. Permission to use this data was granted by the Vancouver City Police Department.

5.1 Summary of the Accident


The accident took place at the intersection of a 4 lane divided arterial roadway (East-West) and a residential side street (North-South). The intersection is controlled by stop signs at both side street approaches. At the time of the accident it was clear and dry and beginning to get dark. Vehicle 1, a Datsun 240-Z, was westbound in the curb lane. Vehicle 2, a Volvo GL, was southbound attempting to cross the arterial roadway. Vehicle 2 had stopped at the sign and was proceeding through the intersection. The

driver of Vehicle 2's eastbound line of sight may have been obscured by a large tree and parked cars.

The vehicles collided in the middle of the westbound lane. Vehicle 1 skidded for approximately 20 meters prior to impact, and an additional 8 meters after impact. Vehicle 2 was pushed sideways 15 meters from the point of impact leaving an extensive side scuff mark emanating from the right rear tire. The sudden deviation in Vehicle 1's skid marks made it easy to establish the point of impact. A diagram of the accident is presented in Figure 15.

5.2 Accident Data

Vehicle rest positions, skid marks, and lane locations are all measured with respect to a common reference point using an x-y coordinate system (see appendix D for measurement sheet). From these measurements, skid mark distances, vehicle headings and final resting positions are determined. In addition to this information, each vehicle was photographed and measured by the author to obtain a crush profile for the purpose of a crash analysis. The estimate of the PDOF is based on the damage pattern and knowledge of the vehicle trajectories at impact. Figures 16 and 17 show the crush profile and the PDOF acting on each vehicle. Scale weights plus an additional 90 kilograms (one passenger plus lost fluids) are used as an estimate of the vehicle weights at impact. A complete data sheet is presented in Table 3.

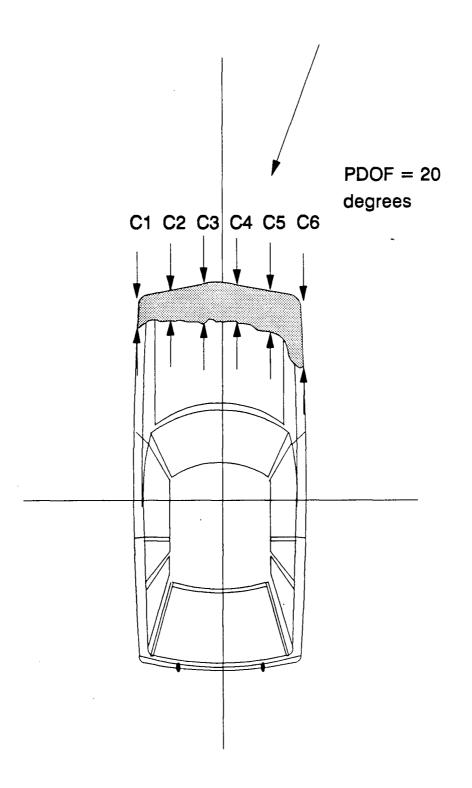


Figure 16: Vehicle 1's Crush Profile

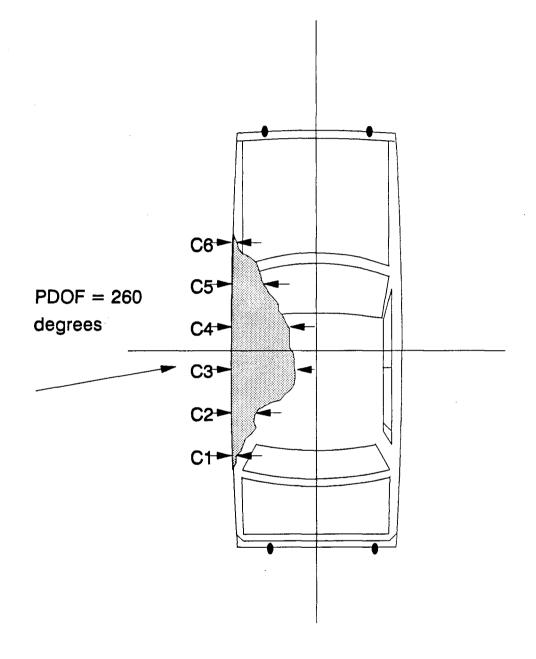


Figure 17: Vehicle 2's Crush Profile

	Vehicle 1	Vehicle 2
Skid Marks (m):		
Post-Impact	Left = 6.9 Right = 8.4 cg-cg = 11.0	Left Rear = 2.7 Right Rear = 14.7 cg-cg = 15.5
Comments:	overlap marks	rotation, no front marks
Pre-Impact	Left = 20.8 Right = 16.5	N/A
Comments:	overlap marks	
Headings:		
Approach Departure	0° 346°	290° 351°
Crush Data:		
PDOF Measurements (cms)	20°	260°
Width	152	185
c ₁	26	10
с ₂	26	25
c ₃	24	46
c ₄	24 29	56 20
с ₅	29 69	20 10
c ₆	07	10
Vehicle Specifications:		
Wheelbase (cms) Weight Brake Efficiency	230 1140 100%	265 1410 100%

5.3 Analysis

The accident analysis involves two stages corresponding to the separate program modules. The first stage determines which methods are to be used to solve the vehicles speeds. The second stage obtains the "correct data" and makes the appropriate calculations. The first stage involves a short interrogation where the line of questioning is governed by the responses given. Each question represents a condition in a rule. If the condition is not satisfied, the rule fails and another rule is tested. Hence, the line of questioning will vary considerably for each accident.

Below is an excerpt from this session (answers are selected from a screen menu):

Q.1. Can you identify or reasonably estimate the point of impact?

A.1. Yes

Q.2. Do you know the final resting position of Vehicle 1?

A.2. Yes

Q.3. How did Vehicle 1 get from point of impact to its final resting position?

A.3. Skid/Slid

Q.4. Is there a reliable eye-witness estimate of Vehicle 1's post-impact speed? A.4. No

Since both Vehicles slid to stop, Q.5-Q.7 (for Vehicle 2) same as Q.2-Q.4.

Q.8. Do you know the path of each vehicle as it approaches the point of impact? A.8. Yes

Q.9. Do you have the approximate vehicle weights?

A.9. Yes

Q.10. Was either vehicle involved in a secondary impact with some other object as they proceeded from the point of impact to the final resting position?

A.10. No

Q.11. Are the vehicles available for inspection or is there numerical documentation of the vehicle damage?

A.11. Yes

Q.12. Did Vehicle 1 leave tire marks prior to impact? A.12. Yes Q.13. Where they typical skid marks or yaw marks, or a combination of skidding followed by yaw? A.13. Skid Q.14. Did Vehicle 2 leave tire marks prior to impact? A.14. No

Unfortunately, because of the nature of this accident, the line of questioning at this stage is not very involved. Skid analysis is selected for the post-impact phase of both vehicles and the pre-impact phase of Vehicle 1. Momentum and energy are chosen to analyze the impact speeds. These methods are then sent to the second module for analysis. The information gathered during this session is strictly qualitative.

The line of questioning employed by the second module is considerably more indepth. Although the techniques have been identified, this module must determine which variation of the formula to use and insure there is no confusion about the data being entered. Steps taken to verify the input data are discussed below.

The post-impact speed is calculated for each vehicle using the skid equation. The most important parameter in this equation is the skid distance. When obtaining the skid distance from the user a series of questions are asked to determine which distance should be used in the formula (See section 3.2.1). Vehicle 1 left two overlapping skid marks after impact. In this case the longest mark (8.4 meters) is selected to estimate speed. Vehicle 2 slid sideways and rotated after impact leaving two visible marks emanating from the rear tires. Because of the considerable difference in the length of the marks and the absence of any front tire marks, the distance between the vehicles center of gravity at impact and the final resting position (15.5 meters) is used in the skid formula.

During the pre-impact phase Vehicle 1 left two overlapping skid marks leading up to the point of impact. Because the skid was relatively straight and mechanical braking efficiency was 100 percent, the program assumes that the tires locked at approximately the same time. In this situation the longest mark gives the best indication of speed, but because the marks were overlapping, the wheelbase is subtracted from the skid distance to obtain the true distance each tire slid (in an overlapping skid mark, the beginning of the mark is caused by the rear tire and the end of the mark is caused by the front tire). A skid distance of 18.5 meters is used in this calculation. The consultant made this calculation using two skid assumptions: (i) that the skid marks were from the front wheels of the vehicle (20.8 meters); (ii) that the measured skid marks were from both the front and rear wheels (18.5 meters).

Both momentum and energy are used to calculate the speeds at impact. Since the vehicle headings are well defined, the program calculates each vehicles PDOF for use in the energy equations (see section 3.2.5 for check routine). The values obtained in the field were out by approximately 10 degrees. Using the suggested values a more reasonable speed estimate is obtained. Due to the high speed of Vehicle 1 and the configuration of the accident, the program considers the impact speeds calculated by momentum to be more accurate than energy. These speeds are used in Vehicle 1's pre-impact skid analysis.

Although a drag sled was used to determine the drag factor (0.71), the system was asked to suggest a value based on Table 1, stored in the knowledge base. For this road surface a factor of 0.70 is recommended for speeds less than 50 km/h. For speeds in excess of 50 km/h the recommended factor drops to 0.63. The consulting engineer made the same assumption. For the post-impact skid calculations he used the sled value of 0.71, but to

67

calculate the pre-impact speed of the Datsun he reduced this factor to 0.65 to compensate for the vehicle's high speed.

In Table 4 the calculated speeds for each phase of the accident are outlined and compared to values obtained by the consulting engineer. These values seem to be in close agreement.

Accident Stage	KAR Vehicle 1	Vehicle 2	Consultant Vehicle 1	Vehicle 2
Post-Impact (km/h) Skid Analysis	39	53	39	48
Impact Momentum Energy	95 76	17 -	90 -	16
Pre-Impact Skid Analysis * using momentum impact speeds	110	17	105	16

 Table 4: Summary of Speed Estimates for Different Stages

The consultant assumed Vehicle 2's heading at impact to be greater than what I assumed. In addition, impact and pre-impact speeds were calculated with the assistance of EDCRASH - an enhanced and improved version of CRASH III - which provides a very sophisticated impact and spin-out analysis. This would explain the slightly lower values obtained by the consultant.

6. FURTHER RESEARCH REQUIREMENTS

A major part of accident reconstruction involves the visual interpretation of physical evidence. To accommodate this, rules have been established that produce a "mental picture" of the accident. These rules are necessary to ensure the correct methods of analysis and the proper data are used. For example, determining the types of surfaces each vehicle slides over and its orientation with respect to each surface, require a series of lengthy queries that must be qualified before the analysis can continue.

While these rules are the "heart" of an interpretive expert system like KAR, it is possible to hide them from the user. Currently, the system works by interpreting the users responses to the queries. With a graphics routine and a fully supportive database, the rules in the knowledge base could obtain the necessary information from the database instead of the user.

Police data is gathered according to an on-scene x-y coordinate system. Vehicle positions, skid marks, debris, point of impact, lane widths and curb locations are defined in terms of a common reference point. Before this data can be analyzed by KAR it must be converted to distances and headings. In some cases, different road surfaces and elevations must also be considered. This conversion process is not only cumbersome, but also a potential source of error.

However, with the appropriate tools, physical evidence and road surface information could be input directly from the police measurement sheet. A graphics routine could produce a scene diagram of the accident for visual verification, and the data could be

69

stored in coordinate form in a database. A separate program could be used to superimpose the physical evidence and the road surface information, and convert it into a form interpreted by the rules in the knowledge base. The user would simply enter the police generated coordinates of each piece of evidence into the system at the appropriate prompt. The program would then convert these coordinates to distances, directions, etc. and apply the appropriate judgement in order to calculate the vehicle speeds.

To date no existing computer program has been able to perform at this level of sophistication because of its inability to "reason". It relies on the user to apply his or her judgement before performing any calculations. When the user is an experienced investigator this expertise is invaluable. However, the judgement exercised by a non-technical user can produce disastrous results.

The knowledge encoded into KAR is the first step in designing a system that would be able to predict vehicle speeds based solely on the physical evidence. The existing knowledge base is only a prototype and would require considerable investment in development time before it could attain the level of performance demanded by an accident investigator. The rules used to interpret evidence would have to be refined and expanded to include many scenarios. Complex equations of motion used to analyze spin-out trajectories and vehicle interactions would also need to be added. A sophisticated explanation facility would be required to produce a summary of the all the assumptions made and the reasons behind these assumptions.

KAR also has potential as a teaching tool for police. At this stage, the first module of the program identifies how to solve the accident speeds based on a qualitative line of questioning. The reasoning involved in this segment of the program can be accessed

70

through the explanation facilities. This provides the user with an understanding of what the investigator is looking for and why. This segment would require more refinement before it could be considered representative of an experts knowledge.

The second module does not contain any rules that help the user identify scene evidence. Some statements have been included in the rules that tell the user what to look for, but more work must be done in this area before the system could be used as an effective training tool.

7. CONCLUSIONS

The system developed in this paper is a good example of an expert system operating in a complex domain. The problem was confined to vehicle speed calculation in accident reconstruction to simplify the development of a realistic prototype. Creating an expert system for this purpose is difficult because the judgement exercised by engineers in this field is ill-defined. A considerable amount of work is still required before the system could operate at the level of an expert. It is expected that a production system would take a minimum of 5 man years to implement.

At this point KAR utilizes a combination of heuristic and conventional procedures. It is capable of predicting speeds using any combination of the following seven mathematical techniques: skid, roll, overturn, yaw, vault, momentum and energy. Although the program's analytical capabilities are extremely comprehensive, the system's most notable feature is it's interpretive abilities. These abilities include being able to determine how the accident should be solved, and verifying the evidence before it is used in the calculations.

KAR is not an instructive expert system in the strict sense of the definition, however, it's ability to explain it's reasoning provide the non-technical user with considerable insight into accident reconstruction.

Each year, millions of research dollars are spent to improve the accuracy and validate conventional programs like SMAC and CRASH. While this research is fruitful and should not cease, attention must be directed to the major sources of error in "real-life" accidents. These error sources include interpretation and identification of scene evidence.

72

KAR demonstrates a portion of the knowledge used by an engineer to determine vehicle speeds based on physical evidence.

BIBLIOGRAPHY

Artificial Intelligence and Expert Systems

- 1. Brown, J.S. and Burton, R.R. (1975). "Multiple Representations of Knowledge for Tutorial Reasoning." Representation and Understanding: Studies in Cognitive Science, Academic Press, New York, pp. 311-349.
- 2. Buchanan, B.G. and Fergenbaum, F.A. (1978). "DENDRAL and Meta-DENDRAL: Their Applications Dimension." Artificial Intelligence 11, pp. 5-24.
- 3. Citrenbaum, R., Geissman, J.R. and Schultz, R. (1987). "Selecting a Shell." AI Expert, Vol. 2 No. 9.
- 4. Dankel, D.D. (1987). "Knowledge Representation for Expert Systems: A Survey and Evaluation of Techniques." Artificial Intelligence: Recent Developments, Society of Automotive Engineers, Inc., Warrendale, PA.
- 5. Duda, R.O., Gaschnig, J.G., and Hart, P.E. (1979). "Model Design in the PROSPECTOR Consultant System for Mineral Exploration." Expert Systems in the Micro-Electronic Age, Edinburgh Press, Edinburgh, pp. 153-167.
- 6. Erman, L.D., Hayes-Roth, F., Lesser, V., and Reddy, D. (1980). "The HEARSAY-II Speech-Understanding System: Integrated Knowledge to Solve Uncertainty." Computing Surveys 12, No. 2, pp. 213-253.
- 7. Feigenbaum, E.A. (1977). "The Art of Artificial Intelligence: Themes and Case Studies of Knowledge Engineering." Proceedings of the 5th International Joint Conference on Artificial Intelligence, pp. 1014-1029.
- 8. Hayes-Roth, F., Waterman, D.A. and Lenat D.B., eds. (1983). Building Expert Systems. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.
- 9. Hunt, V.D. (1986). Artificial Intelligence and Expert Systems Sourcebook. Chapman and Hall, New York.
- 10. Jackson, P. (1986). Introduction to Expert Systems. Addison-Wesley Publishing Company Inc., Reading, Massachusetts.
- Lenat, D.B., Sutherland, W.R. and Gibbons, J. (1982). "Heuristic Search for New Microcircuit Structures: An Application of Artificial Intelligence." AI Magazine 3, pp. 17-33.
- 12. Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A., and Lederberg, J. (1980). Applications of Artificial Intelligence for Organic Chemistry: The Dendral Project. McGraw-Hill, New York.

- 13. McDermott, J. (1981). "R1's Formative Years." AI Magazine, Vol. 2, No. 2, pp. 21-29.
- 14. Minsky, M. (1975). "A Framework for Representing Knowledge.", The Psychology of Computer Vision. McGraw-Hill, New York.
- 15. Prerau, D.S. (1987). "Knowledge Acquisition in the Development of a Large Expert System." AI Magazine, Vol. 8, No. 2, pp. 43-51.
- 16. Sacerdoti, E.D. (1974). "Planning in a Hierarchy of Abstraction Spaces." Artificial Intelligence 5, No. 2, pp. 115-135.
- 17. Sacerdoti, E.D. (1977). A Structure for Plans and Behavior. American Elsevier, New York.
- 18. Shortliffe, E.H. (1976). Computer-Based Medical Consultations: MYCIN. Elsevier, New York.
- 19. Sterling, L. and Shapiro, E. (1986). The Art of Prolog. MIT Press, Cambridge, Massachusetts.
- 20. Van Horn M. (1986). Understanding Expert Systems. Bantam Books, New York.
- 21. Expert Systems: Their Application in the Canadian Transportation Sector. (1986). Transport Canada, TP 7328E.

Accident Reconstruction

- 22. Anderson, D.O., Woolley, R.L., Tagg, M.D. and Warner, C.Y. (1985). "The VTS Single-Vehicle Trajectory Simulation." International Congress and Exposition, February 1985, SAE Paper No. 850252.
- 23. Baker, J.S. (1975). Traffic Accident Investigation Manual. The Traffic Institute, Northwestern University, Evanston, Illinois.
- 24. Benner, L. (1980). "Accident Investigations A Case for New Perceptions and Methodologies." SAE Paper No. 800387.
- 25. Byatt, R. and Watts, R. (1980). Manual of Road Accident Investigation, Volume 1. Pitman Publishing Limited, London.
- 26. Collins, J.C. (1979). Accident Reconstruction. Charles C Thomas Publisher, Springfield, Illinois.
- 27. Day, T.D. and Hargens, R.L. (1985). "Differences between EDCRASH and CRASH 3." International Congress and Exposition, February 1985, SAE Paper No. 850253.
- 28. Emori, R.I. (1968). "Analytical Approach to Automobile Collisions." SAE Paper No. 680016.
- 29. Emori, R.I. (1968). "Mechanics of Automobile Collisions." First International Conference on Vehicle Mechanics, Wayne State University.
- 30. Hess, R.L. (1980). "Microcomputer Programs Useful for Aspects of Accident Reconstruction." SAE Paper No. 800174.
- 31. James, M.E. and Ross, H.E. (1976). "Improvement of Accident Simulation Model." Texas A&M Research Foundation Report No. RF3258-1.
- 32. Jones, I.S. (1974). "Results of Selected Applications to Actual Highway Accidents of the SMAC Reconstruction Program." 18th Stapp Car Crash Conference.
- 33. Jones, I.S. and Segal, D.J. (1974). "The Application of the SMAC Accident Reconstruction Program to Actual Highway Accidents." Proceeding of the 18th Conference of the American Association for Automotive Medicine.
- 34. Limpert, R. (1978). Motor Vehicle Accident Reconstruction and Cause Analysis. The Michie Company, Charlottesville, Virginia.
- 35. Lofgren, M.J. (1977). Handbook for the Accident Reconstructionist. Princeton Publishing, Princeton, Minnesota.

- 36. Martinez, J.E. (1985). "Computer Aided Automobile Accident Reconstruction-Theory, Graphics, Animation." International Congress and Exposition, SAE Paper No. 850250.
- 37. McCarthy, J.R. and Dulion, E.S. (1985). CRASH3PC Operations Manual. J.R. McCarthy Company, Simi Valley, California.
- 38. McGrew, D.R. (1976). Traffic Accident Investigation and Physical Evidence. Charles C Thomas Publisher, Springfield, Illinois.
- 39. McHenry, R.R. (1973). "A Computer Program for Reconstruction of Highway Accidents." SAE Paper No. 730980.
- 40. McHenry, R.R. (1975). "A Comparison of Results Obtained With Different Analytical Techniques for Reconstruction of Highway Accidents." SAE Paper No. 750893.
- 41. McHenry, R.R. (1976). "Extensions and Refinements of the CRASH Computer Program Part 1 - Analytical Reconstruction of Highway Accidents." NTIS PB76-252114.
- 42. McHenry, R.R. and Lynch, J.P. (1976). "Mathematical Reconstruction of Highway Accidents - Further Extensions and Refinements of the CRASH Computer Program." DOT-HS-802-287, Calspan Report No. ZQ-5708-V-5.
- 43. McHenry, R.R. and Lynch, J.P. (1979). "Revision of the CRASH2 Computer Program." USDOT Publication No. DOT-HS-805-209.
- 44. McHenry, R.R. and McHenry, B.G. (1986). "A Revised Damage Analysis Procedure for the CRASH computer program." SAE Paper No. 861894.
- 45. McHenry, R.R., Segal, D.J., Lynch, J.P. and Henderson, P.M. (1973). "Mathematical Reconstruction of Highway Accidents." Calspan Report No. ZM-5096-V-1.
- 46. Morton, W.C. ed. (1985). Accident Reconstruction Manual and Workbook. National Police Institute, Central Missouri State University, Warrensburg, Missouri.
- 47. Noga, T. and Oppenheim, T. (1981). CRASH3 User's Guide and Technical Manual. USDOT.
- 48. Nowak, R., Nowak, E., Tryphonopoulos, J. and German, A. (1987). "A Fundamental Momentum Energy Model for Central Motor Vehicle Collisions and a Critical Review of the Damage Algorithm in CRASH." Proceedings of the Canadian Multidisciplinary Road Safety Conference V.
- 49. Rivers, R.W. (1980). Traffic Accident Investigators' Handbook Charles C Thomas Publisher, Springfield, Illinois.
- 50. Smith, R.A. and Noga, J.T. (1980). "Examples of Staged Collisions in Accident Reconstruction." American Society of Mechanical Engineers.

- 51. Woolley, R.L. (1985). "The IMPAC Computer Program for Accident Reconstruction." International Congress and Exposition, SAE Paper No. 850254.
- 52. Zeidler, F., Schreier, H. and Stadelmann, R. (1985). "Accident Research and Reconstruction ... by the EES-Accident Reconstruction Method." International Congress and Exposition, SAE Paper No. 850256.

APPENDIX A. Derivation of Equations

Skid Equation

$$\mathbf{E}_1 = \mathbf{E}_2 + \mathbf{F}\mathbf{d}$$

where

$$E_{1} = kinetic energy of vehicle prior to skid = \frac{1}{2} mv_{i}^{2}$$

$$E_{2} = kinetic energy of vehicle after skid = \frac{1}{2} mv_{f}^{2}$$

$$F = friction force (drag factor times vehicle wt.) = fmg$$

$$d = skid distance$$

$$\frac{1}{2}mv_i^2 = \frac{1}{2}mv_f^2 + fmgd$$

solving for v_i

$$v_i = \sqrt{2fgd + v_f^2}$$

Variations of the formula used in the program are of the form:_r

$$v_i = \sqrt{2g(f_1d_1 + f_2d_2 + ...f_nd_n) + v_f^2}$$

Yaw Equation

This equation is derived for a vehicle cornering on an inclined slope. The parameters used in this derivation are described below.

φ.	=	angle of the slope
Ν	=	normal force acting perpendicular to the slope
a _n	=	normal acceleration = $\frac{v^2}{R}$
R	=	radius of the yaw mark

summing the forces parallel to the slope

$$ma_n \cos\phi = fN + mgsin\phi$$

summing the forces normal to the slope

 $ma_n sin\phi = N - mgcos\phi$

solving for N and substituting into the first equation

 $ma_n \cos\phi = f(ma_n \sin\phi + mg\cos\phi) + mg\sin\phi$

replacing a_n with $\frac{v^2}{R}$ and rearranging

 $v^2 = Rg \frac{f\cos\phi + \sin\phi}{\cos\phi - f\sin\phi}$

substituting $tan\phi = e$ (percent elevation of the slope) and solving for v

$$\mathbf{v} = \sqrt{\mathrm{Rg} \, \frac{(\mathrm{f} + \mathrm{e})}{(\mathrm{1-fe})}}$$

The radius of the yaw mark R can be determined by measuring a chord distance C and the middle ordinate M (distance between the chord and the yaw mark at midpoint of the chord). R can then be stated as follows:

$$R = \frac{C^2}{8M} + \frac{M}{2}$$

Vault Equation

The vault equation can be derived using simple kinematic relationships. The vertical distance the vehicle travelled, h, is equal to:

$$h = -v\sin\phi T + \frac{1}{2}gT^2$$

the horizontal distance, d, is equal to:

$$d = v \cos \Phi T$$

solving for T and substituting into the first equation

$$h = -dtan\phi + \frac{gd^2}{2v^2 cos^2 \phi}$$

substituting $tan\phi = e$ and setting $cos\phi = 1$ (small angle approximation)

$$v = \sqrt{\frac{gd^2}{2(h+de)}}$$

Energy Equations

Energy is based on the principle that the total pre-impact kinetic energy is equal to the total post-impact kinetic energy plus the energy absorbed in crushing the vehicles to their deformed state.

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}(m_1 + m_2)v_c^2 + E_1 + E_2$$

For an inelastic central collision it is assumed that both vehicles attain a common velocity $v_{\rm c}\,$ such that

$$m_1v_1 + m_2v_2 = (m_1 + m_2)v_c$$

solving for Vehicle 1's pre-impact velocity and substituting into the energy equation results in the following quadratic equation

$$v_2^2 - 2v_cv_2 + v_c^2 - \frac{2(E_1 + E_2)}{m_2(1 + m_2/m_1)} = 0$$

solving for v_2

$$v_2 = v_c \pm \sqrt{\frac{2 (E_1 + E_2)}{m_2 (1 + m_2 / m_1)}}$$

the change in velocity experienced by Vehicle 2 ($\Delta v_2 = v_2 - v_c$) is thus equal to

$$\Delta v_2 = \sqrt{\frac{2 (E_1 + E_2)}{m_2 (1 + m_2 / m_1)}}$$

by substituting Vehicle 2's pre-impact speed into the energy equation a similar expression for Vehicle 1 can be written

$$\Delta v_1 = \sqrt{\frac{2 (E_1 + E_2)}{m_1 (1 + m_1 / m_2)}}$$

Module 1 of the Program

KAR1 Module 1----

EXECUTE; BKCOLOR = 3; RUNTIME; ENDOFF;

ACTIONS WOPEN 3,0,0,23,79,2 ACTIVE 3 LOCATE 5,8 DISPLAY "

WELCOME TO

KAR

(Knowledge-based Accident Reconstruction).

(Press any key to begin consultation)~" CLS WCLOSE 3 WOPEN 9,0,0,11,79,3 ACTIVE 9

FIND Solution

! Find out if user wants to select! method or have program determine an! appropriate approach

SAVEFACTS karvalue CHAIN kar2;

General Rules to Determine if User Wants to Select
Solution Methods or if The Machine Selects Solution Methods

RULE SOLN1 IF Soln_Choice = Find_Methods THEN CLS WOPEN 3,0,0,23,79,7 ACTIVE 3 DISPLAY " ! If the user wants the system to ! select the methods of solution ! this rule is executed.

YOUR RESPONSES TO THE FOLLOWING QUESTIONS HELP KAR DETERMINE THE

MOST APPROPRIATE METHOD(S) FOR SOLVING INITIAL VEHICLE SPEEDS.

(Press any key to continue)~" CLS WCLOSE 3 ACTIVE 9 FIND Method_Postv1 CLS FIND Method_Postv2 CLS FIND Method_Impact CLS FIND Method_Prev1 CLS FIND Method_Prev2 CLS Solution = Found;

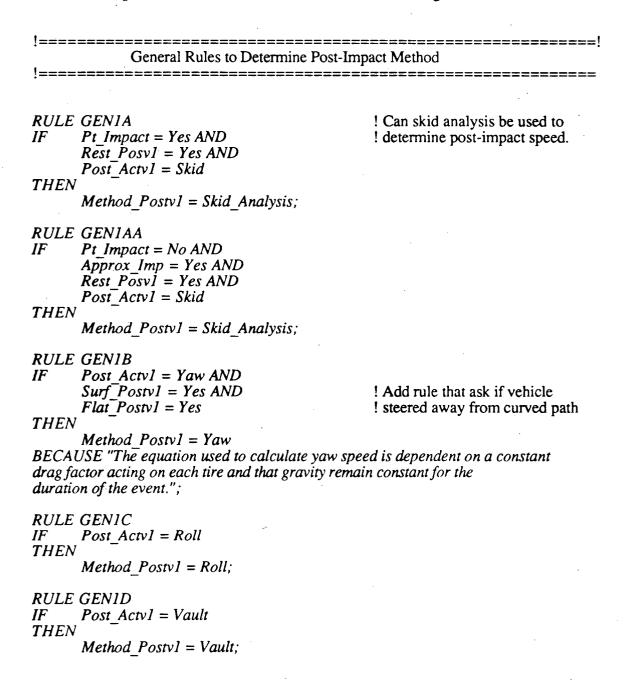
RULE SOLN2

IF Soln_Choice = Choose_Methods AND Select_Postv1 <> UNKNOWN AND Select_Postv2 <> UNKNOWN AND Select_Impact <> UNKNOWN AND Select_Prev1 <> UNKNOWN AND Select_Prev2 <> UNKNOWN

THEN

$$CLS$$

 $Y=0$


! If user wants to choose his ! own methods of solution, ! this rule is executed.

! This is necessary because
! VP-Expert will not pass the
! entire contents of a plural
! variable to another plural
! variable. It will only pass
! stack. With a POP enclosed
! in a WHILEKNOWN, each value
! is removed from the stack
! and assigned to the other
! plural variable.

END

RESET Y Solution = Found; RULE PLURAL

IF Y>3 THEN RESET Y Garbage = Found ELSE Garbage = Found; ! Since there is no way of
! determining the number of
! values in a plural variable
! (VP-Expert strikes again), I
! assume that only 3 calculative
! methods will be necessary for
! each stage of the accident.

RULE GENIE Post Actv1 = Overturn IF **THEN** Method Postv1 = Overturn; RULE GENIF Post Witvl = Yes AND IF Post Spv1 <> UNKNOWN THEN Method Postv1 = Witness; RULE GENIG IF Post_Witv1 = No AND Post_Actv1 = Dont Know AND Post Zerov1 = Yes THEN Post Speedv1 = 0Method_Postv1 = Assume; RULE GENIH IF Post WitvI = No ANDPost Actv1 = Dont Know AND $Post^{-}ZerovI = No$ **THEN** Method Postv1 = None; RULE GEN2A Pt Impact = Yes AND IF Rest Posv2 = Yes ANDPost Actv2 = Skid**THEN** Method_Postv2 = Skid Analysis; RULE GEN2AA Pt Impact = No AND IF $Approx_{Imp} = Yes AND$ Rest Posv2 = Yes AND $Post^{-}Actv2 = Skid$ **THEN** Method Postv1 = Skid Analysis; RULE GEN2B Post Actv2 = Yaw ANDIF $Surf_Postv2 = Yes AND$ Flat Postv2 = YesTHEN Method Postv2 = Yaw BECAUSE "The equation used to calculate yaw speed is dependent on a constant drag factor acting on each tire and that gravity remain constant for the duration of the event.";

! May affect results for plural ! analysis.

! Can skid analysis be used to ! determine post-impact speed.

RULE GEN2C IF Post Actv2 = Roll THEN Method Postv2 = Roll;RULE GEN2D Post_Actv2 = Vault IF **THEN** Method Postv2 = Vault; RULE GEN2E IF Post Actv2 = Overturn THEN Method Postv2 = Overturn; **RULE GEN2F** IF Post Witv2 = Yes AND Post Spv2 <> UNKNOWN THEN Method Postv2 = Witness; RULE GEN2G Post_Witv2 = No AND IF Post Actv2 = Dont Know AND Post Zerov2 = Yes **THEN** Post Speedv2 = 0Method Postv2 = Assume; RULE GEN2H Post Witv2 = No ANDIF **Post** Actv2 = Dont Know AND $Post^{-}Zerov2 = No$ THEN Method Postv2 = None;

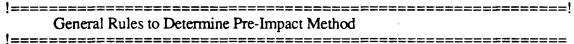
1===== General Rules to Determine Impact Method

!===== _____

RULE GEN3A Method Postv1 <> None AND IF Method Postv2 <> None AND Approach Paths = Yes AND Departure Paths = Yes AND Veh Wts = Yes AND Sec Impact = No

THEN

Method Impact = Momentum;


! May affect results for plural ! analysis.

! Checks if Momentum can be used.

! If post-impact speeds are unknown

! cannot use momentum

RULE GEN3B ! Checks if departure paths can Pt Impact = Yes AND ! be determined. IF Rest Posvl = Yes AND $Rest^{-}Posv2 = Yes$ **THEN** Departure Paths = Yes; RULE GEN3C ! Queries if there was a secondary Secondary = NoIF ! impact. **THEN** Sec Impact = No; **RULE GEN3D** ! Can secondary impact be Secondary = Yes AND IF ! compensated for. Sec Compensate = Yes **THEN** Sec Impact = No; RULE GEN3E ! Checks if energy can be used. IF Method Postv1 <> None AND ! If post-impact speeds are unknown Method Postv2 <> None AND ! cannot determine impact speed, Available = Yes AND! only change in speed. Veh Wts = YesTHEN Method Impact = Energy; RULE GEN3F Method Impact <> Momentum AND IF Method Impact <> Energy THEN Method Impact = None;

RULE GEN4A IF Pre_Skidv1 = Yes AND Type_Prev1 = Skid THEN Method_Prev1 = Skid_Analysis;

! Pre-impact skid analysis V1

RULE GEN4B IF Pre Skidvl = Yes AND $Typ\overline{e} Prev1 = Yaw AND$ Surf Prevl = Yes ANDFlat Prev1 = YesTHEN Method PrevI = YawBECAUSE "The equation used to calculate yaw speed is dependent on a constant drag factor acting on each tire and that gravity remain constant for the duration of the event.": RULE GEN4C IF Pre Skidv1 = Yes AND $Typ\overline{e} Prev1 = Skid Yaw AND$ Surf Prevl = Yes ANDFlat Prev1 = Yes THEN Method Prev1 = Skid Analysis Method Prev1 = Yaw BECAUSE "The equation used to calculate yaw speed is dependent on a constant drag factor acting on each tire and that gravity remain constant for the duration of the event."; **RULE GEN4D** Pre Witvl = Yes ANDIF Pre⁻Spv1 <> UNKNOWN THEN Method Prev1 = Witness; **RULE GEN4E** IF Pre Skidv1 = No AND $Pre^{Witvl} = No$ THEN Method Prev1 = None; RULE GEN5A ! Pre-impact skid analysis V2 IF **Pre** Skidv2 = Yes AND Type Prev2 = SkidTHEN Method Prev2 = Skid Analysis; RULE GEN5B IF Pre Skidv2 = Yes AND $Typ\overline{e}$ Prev2 = Yaw AND Surf Prev2 = Yes ANDFlat Prev2 = Yes**THEN** Method Prev2 = Yaw

BECAUSE "The equation used to calculate yaw speed is dependent on a constant drag factor acting on each tire and that gravity remain constant for the duration of the event.";

RULE GEN5C Pre Skidv2 = Yes AND IF $Typ\overline{e}$ Prev2 = Skid Yaw AND $Surf Prev2 = Yes \overline{AND}$ Flat Postvl = Yes THEN Method Prev2 = Skid Analysis Method Prev2 = YawBECAUSE "The equation used to calculate yaw speed is dependent on a constant drag factor acting on each tire and that gravity remain constant for the duration of the event."; **RULE GEN5D** Pre Witv2 = Yes AND IF Pre⁻Spv2 <> UNKNOWN **THEN** Method Prev2 = Witness; RULE GEN5E Pre Skidv2 = No ANDIF $Pre^{Witv2} = No$ **THEN** Method Prev2 = None;

!----- General Queries -----

ASK Soln_Choice: "Would you like KAR to determine the appropriate methods for determining speed, or would you like to choose the methods directly?"; CHOICES Soln Choice: Find Methods, Choose Methods;

!----- Find_Methods Queries ------

ASK Pt_Impact: "Can you identify the point of impact?"; CHOICES Pt_Impact: Yes,No;

ASK Approx_Imp: "Can you identify a set of boundaries within which the point of impact must have occurred?"; CHOICES Approx Imp: Yes, No;

ASK Rest_Posv1: "Do you know the final resting position of Vehicle 1?"; CHOICES Rest_Posv1: Yes,No; ASK Rest_Posv2: "Do you know the final resting position of Vehicle 2?"; CHOICES Rest_Posv2: Yes,No;

ASK Post_Actv1: "How did Vehicle 1 get from point of impact to its final resting position?

(You can select more than one action, press the END key to continue) NOTE: If the vehicle yawed and/or vaulted during this sequence, disregard any subsequent events. Yaw and vault give an estimate of speed at the beginning of the event whereas the other techniques give the change in speed over the duration of the event."; CHOICES Post Actv1: Skid,Yaw,Roll,Overturn,Vault,Dont Know:

ASK Post_Actv2: "How did Vehicle 2 get from point of impact to its final resting position?

(You can select more than one action, press the END key to continue) NOTE: If the vehicle yawed and/or vaulted during this sequence, disregard any subsequent events. Yaw and vault give an estimate of speed at the beginning of the event whereas the other techniques give the change in speed over the duration of the event."; CHOICES Post Activa: Skid Yaw Poll Overturn Vault Dont, Know;

CHOICES Post_Actv2: Skid,Yaw,Roll,Overturn,Vault,Dont_Know;

ASK Post_Witv1: "Is there a reliable eye-witness estimate of Vehicle 1's post-impact speed?"; CHOICES Post Witv1: Yes,No;

ASK Post_Witv2: "Is there a reliable eye-witness estimate of Vehicle 2's post-impact speed?"; CHOICES Post_Witv2: Yes, No;

ASK Post Spv1: "Please enter post-impact speed estimate of Vehicle 1 (km/h).";

ASK Post Spv2: "Please enter post-impact speed estimate of Vehicle 2 (km/h).";

ASK Pre_Witv1: "Is there a reliable eye-witness estimate of Vehicle 1's pre-impact speed?"; CHOICES Pre Witv1: Yes,No;

ASK Pre_Witv2: "Is there a reliable eye-witness estimate of Vehicle 2's pre-impact speed?"; CHOICES Pre Witv2: Yes,No;

ASK Pre Spv1: "Please enter pre-impact speed estimate of Vehicle 1 (km/h).";

ASK Pre Spv2: "Please enter pre-impact speed estimate of Vehicle 2 (km/h).";

ASK Approach_Paths: "Do you know the path of each vehicle as it approaches the point of impact?"; CHOICES Approach Paths: Yes, No, Not Sure; ASK Veh Wts: "Do you have the approximate vehicle weights?"; CHOICES Veh Wts: Yes, No;

ASK Separate: "Did the vehicles separate after impact?"; CHOICES Separate: Yes, No;

ASK Secondary: "Is either vehicle involved in a secondary impact with some other object as they proceed from point of impact to final resting position?"; CHOICES Secondary: Yes, No;

ASK Sec_Compensate: "Can you compensate for the speed loss associated with the secondary impact?"; CHOICES Sec_Compensate: Yes, No;

ASK Available: "Are the vehicles available for inspection or is there numerical documentation of the vehicle damage?"; CHOICES Available: Yes,No;

ASK Pre_Skidv1: "Did Vehicle 1 leave tire marks prior to impact?"; CHOICES Pre_Skidv1: Yes, No;

ASK Pre Skidv2: "Did Vehicle 2 leave tire marks prior to impact?"; CHOICES Pre Skidv2: Yes,No;

ASK Type Prev1: "Were they typical skid marks or yaw marks, OR a combination of skidding followed by yaw?

NOTE: Yaw marks are easy to differentiate from skid marks. At the onset of yaw, the outer edge of the tire leaves a narrow dark mark that appears as a thin curving line about 5 cms in width and widens to that amount of tire tread in contact with the roadway as the vehicle goes into yaw. Lateral striation marks caused by the side of the tire tread are often visible."; CHOICES Type Prev1: Skid,Yaw,Skid Yaw;

ASK Type_Prev2: "Were they typical skid marks or yaw marks, OR a combination of skidding followed by yaw?

NOTE: Yaw marks are easy to differentiate from skid marks. At the onset of yaw, the outer edge of the tire leaves a narrow dark mark that appears as a thin curving line about 5 cms in width and widens to that amount of tire tread in contact with the roadway as the vehicle goes into yaw. Lateral striation marks caused by the side of the tire tread are often visible."; CHOICES Type Prev2: Skid,Yaw,Skid Yaw;

ASK Surf_Postv1: "Are all 4 tires on the same surface for the first one-third of the yaw mark?"; CHOICES Surf_Postv1: Yes,No;

ASK Surf_Postv2: "Are all 4 tires on the same surface for the first one-third of the yaw mark?"; CHOICES Surf_Postv2: Yes,No; ASK Surf_Prev1: "Are all 4 tires on the same surface for the first one-third of the yaw mark?"; CHOICES Surf_Prev1: Yes,No;

ASK Surf_Prev2: "Are all 4 tires on the same surface for the first one-third of the yaw mark?"; CHOICES Surf_Prev2: Yes,No;

ASK Flat_Postv1: "Was gravity constant for the duration of the yaw mark? (i.e., if the vehicle travelled up and over the crest of a hill while in yaw the vehicles weight (gravity) would not be constant for the entire yaw mark)"; CHOICES Flat Postv1: Yes,No;

ASK Flat_Postv2: "Was gravity constant for the duration of the yaw mark? (i.e., if the vehicle travelled up and over the crest of a hill while in yaw the vehicles weight (gravity) would not be constant for the entire yaw mark)"; CHOICES Flat Postv2: Yes,No;

ASK Flat_Prev1: "Was gravity constant for the duration of the yaw mark? (i.e., if the vehicle travelled up and over the crest of a hill while in yaw the vehicles weight (gravity) would not be constant for the entire yaw mark)"; CHOICES Flat Prev1: Yes, No;

ASK Flat_Prev2: "Was gravity constant for the duration of the yaw mark? (i.e., if the vehicle travelled up and over the crest of a hill while in yaw the vehicles weight (gravity) would not be constant for the entire yaw mark)"; CHOICES Flat Prev2: Yes,No;

ASK Post_Zerov1: "Can you assume the post-impact speed of Vehicle 1 approximates 0 km/h?"; CHOICES Post Zerov1: Yes, No;

ASK Post_Zerov2: "Can you assume the post-impact speed of Vehicle 2 approximates 0 km/h?"; CHOICES Post Zerov2: Yes,No;

!----- Choose_Method Queries -----

ASK Select Postv1: "Which method(s) would you like to use to determine the POST-IMPACT speed of VEHICLE 1?

NOTE: If the vehicle yawed and/or vaulted during this sequence, disregard any subsequent events. Yaw and vault give an estimate of speed at the beginning of the event whereas the other techniques give the change in speed over the duration of the event.

(You can select more than one action, press the END key to continue)";

CHOICES Select Postv1: Skid Analysis, Yaw, Roll, Overturn, Vault, Witness, None;

ASK Select_Postv2: "Which method(s) would you like to use to determine the POST-IMPACT speed of VEHICLE 2?

NOTE: If the vehicle yawed and/or vaulted during this sequence, disregard any subsequent events. Yaw and vault give an estimate of speed at the beginning of the event whereas the other techniques give the change in speed over the duration of the event.

(You can select more than one action, press the END key to continue)";

CHOICES Select Postv2: Skid_Analysis,Yaw,Roll,Overturn,Vault,Witness,None;

ASK Select_Impact: "Which method would you like to use to determine the IMPACT speeds of both vehicles? (You can select more than one action, press the END key to continue)"; CHOICES Select Impact: Momentum, Energy, None;

ASK Select_Prev1: "Which method would you like to use to determine the PRE-IMPACT speed of VEHICLE 1? NOTE: If skidding preceeded yaw then select both of these options. (Press the END key to continue)

CHOICES Select Prev1: Skid Analysis, Yaw, Witness, None;

ASK Select_Prev2: "Which method would you like to use to determine the PRE-IMPACT speed of VEHICLE 2? NOTE: If skidding preceeded yaw then select both of these options. (Press the END key to continue) ";

CHOICES Select_Prev2: Skid_Analysis,Yaw,Witness,None;

!----- Plural Variables -----

PLURAL:

Method_Postv1,Method_Postv2,Method_Impact,Method_Prev1,Method_Prev2, Post_Actv1,Post_Actv2;

PLURAL: Select Postv1, Select_Postv2, Select_Impact, Select_Prev1, Select_Prev2;

APPENDIX C. Partial Listing of Module 2

1	***************************************
ļ	KAR2 Module
1	***************************************

EXECUTE; BKCOLOR = 3; RUNTIME; ENDOFF;

ACTIONS

LOADFACTS karvalue WOPEN 9,0,0,11,79,3 ACTIVE 9 FIND Post Analysis1 FIND Post Analysis2 FIND Imp_Analysis FIND Pre Analysis1 FIND Pre Analysis2 WOPEN 1,0,0,23,79,4 WOPEN 6,1,1,21,77,3 FIND Summaryl DISPLAY " Press any key to Continue.~" FIND Summary2 DISPLAY " Press any key to Continue.~" Warning = NoneFIND Warnings DISPLAY " Press any key to Quit.~" WCLOSE 1 WCLOSE 6 WCLOSE 2 WCLOSE 4 WCLOSE 9 CLS;

! Need this in case no warnings are ! registered during consultation.

RULE SUM1 IF Method_Postv1 <> None OR Method_Impact <> None OR Method_Prev1 <> None THEN ACTIVE 6

DISPLAY " **VEHICLE 1** ,, Summary 1 = Found;RULE SUM2 Postv1 <> UNKNOWN IF **THEN** ACTIVE 6 FORMAT Postv1.3.0 DISPLAY " CALCULATED: Post-Impact Speed = {Postv1} km/h" Summary 1 = Found;RULE SUM3 IF Method Postv1 = Witness THEN ACTIVE 6 DISPLAY " WITNESS: Post-Impact Speed = {Post Spv1} km/h" Summary 1 = Found;**RULE SUM4** IF Method Postv1 = Assume THEN ACTIVE 6 DISPLAY " **ASSUMED:** Post-Impact Speed = 0 km/h''Summary 1 = Found;RULE SUM5 IF Impv1 <> UNKNOWN THEN ACTIVE 6 FORMAT Impv1, 3.0 FORMAT MomD v1, 3.0 DISPLAY " MOMENTUM: Impact speed = $\{Impvl\}$ km/h DeltaV = $\{MomD vl\}$ km/h''Summary1 = Found; RULE SUM6 ImpEv1 <> UNKNOWN IF THEN ACTIVE 6 FORMAT ImpEv1, 3.0 FORMAT Delta v1, 3.0 DISPLAY ,, ENERGY: Impact speed $= \{ImpEvI\} km/h DeltaV = \{Delta vI\} km/h''$ Summary1 = Found;

RULE SUM7 IF Prev1 <> UNKNOWN THEN ACTIVE 6 FORMAT Prev1, 3.0 DISPLAY " CALCULATED: Initial speed = $\{Prev1\}$ km/h" Summary1 = Found;RULE SUM8 PreYawv1 <> UNKNOWN IF THEN ACTIVE 6 FORMAT PreYawv1, 3.0 DISPLAY " * Yaw is not dependant on impact or post-impact calculations * YAW: Initial speed = $\{PreYawvl\} km/h''$ Summary1 = Found;RULE SUM9 IF Method Prev1 = Witness THEN ACTIVE 6 **DISPLAY** " WITNESS: Initial speed = {Pre Spvl} km/h" Summary I = Found;RULE SUM10 Method Postv2 <> None OR IF Method Impact <> None OR Method Prev2 <> None THEN ACTIVE 6 DISPLAY " **VEHICLE 2** Summary2 = Found;RULE SUM11 IF Postv2 <> UNKNOWN THEN ACTIVE 6 FORMAT Postv2,3.0 DISPLAY " CALCULATED: Post-Impact Speed = {Postv2} km/h" Summary2 = Found;RULE SUM12 IF Method Postv2 = Witness THEN ACTIVE 6 DISPLAY " WITNESS: Post-Impact Speed = {Post Spv2} km/h" Summary2 = Found;

RULE SUM13 IF Method Postv2 = Assume **THEN** ACTIVE 6 DISPLAY " **ASSUMED:** Post-Impact Speed = 0 km/h''Summary2 = Found;RULE SUM14 IF Impv2 <> UNKNOWN THEN ACTIVE 6 FORMAT Impv2, 3.0 FORMAT MomD v2, 3.0 DISPLAY .. **MOMENTUM:** Impact speed = $\{Impv2\}$ km/h DeltaV = $\{MomD v2\}$ km/h''Summary2 = Found;RULE SUM15 ImpEv2 <> UNKNOWN IF THEN ACTIVE 6 FORMAT ImpEv2, 3.0 FORMAT Delta v2, 3.0 DISPLAY " Impact speed = $\{ImpEv2\}\ km/h$ DeltaV = $\{Delta\ v2\}\ km/h''$ ENERGY: Summary2 = Found; RULE SUM16 IF Prev2 <> UNKNOWN THEN ACTIVE 6 FORMAT Prev2, 3.0 **DISPLAY** " **CALCULATED**: Initial speed = $\{Prev2\}$ km/h" Summary2 = Found;RULE SUM17 IF PreYawv2 <> UNKNOWN **THEN** ACTIVE 6 FORMAT PreYawv2, 3.0 DISPLAY " * Yaw is not dependent on impact or post-impact calculations * YAW: Initial speed = $\{PreYawv2\} km/h^{"}$ Summary2 = Found;RULE SUM18 IF Method Prev2 = Witness THEN ACTIVE 6 DISPLAY " WITNESS: Initial speed = $\{Pre \ Spv2\}\ km/h''$ Summary2 = Found;

RULE SUM20 ! Displays Warning title. IF Warning = NoneTHEN ACTIVE 6 DISPLAY " WARNINGS:" Warnings = Found; RULE SUM21 Warning = No Impact IF THEN ACTIVE 6 DISPLAY " * The speed losses during impact were not calculated. Initial speeds * may be overly conservative." Warnings = Found; RULE SUM22 Warning = Momentum Angles IF **THEN** ACTIVE 6 DISPLAY " * Momentum Angles appear to be incorrect. Check your convention." Warnings = Found; **RULE SUM23** Warning = Crush Measv1 AND IF Tranl > (Transpl)**THEN** ACTIVE 6 DISPLAY " * Vehicle 1's Delta V calculated from the crush measurements does not * coincide with Vehicle 1's pre and post-impact headings. This is not * due to an error in the PDOF. Check crush measurements, these values are * OVERESTIMATING Delta V." Warnings = Found; RULE SUM24 IF Warning = Crush Measv1 AND Tranl < (Transpl)**THEN** ACTIVE 6 DISPLAY " * Vehicle 1's Delta V calculated from the crush measurements does not * coincide with Vehicle 1's pre and post-impact headings. This is not * due to an error in the PDOF. Check crush measurements, these values are * UNDERESTIMATING Delta V."

Warnings = Found;

RULE SUM25 IF Warning = Crush Measv2 AND Tran2 > (Transp2)THEN ACTIVE 6 DISPLAY " * Vehicle 2's Delta V calculated from the crush measurements does not * coincide with Vehicle 2's pre and post-impact headings. This is not * due to an error in the PDOF. Check crush measurements, these values are * OVERESTIMATING Delta V." Warnings = Found; **RULE SUM26** IF Warning = Crush Measv2 AND Tran2 < (Transp2)THEN ACTIVE 6 DISPLAY " * Vehicle 2's Delta V calculated from the crush measurements does not * coincide with Vehicle 2's pre and post-impact headings. This is not * due to an error in the PDOF. Check crush measurements, these values are * UNDERESTIMATING Delta V." Warnings = Found; Rules to Print Titles and Call Speed Routines RULE TITLEIA ! Checks if there are any Method Postv1 = Skid Analysis OR ! post-impact speeds to IF Method Postv1 = Roll OR! calculate and dislays Method Postv1 = Vault OR ! them if necessary Method Postv1 = Overturn ORMethod Postv1 = YawTHEN WOPEN 4,1,5,12,70,2 ACTIVE 9 FIND The Post Spds1 ACTIVE 2 CLS PtI = (Roll Spdv1*Roll Spdv1+O Spdv1*O Spdv1+Vlt Spdv1*Vlt Spdv1)Postv1=((@SQRT(Post Sk Spdv1*Post Sk Spdv1+Post Yawv1 *Post Yawv1+Pt1))*3.6) FORMAT Postv1, 3.0 DISPLAY" POST-IMPACT ANALYSIS " DISPLAY "The post-impact speed of Vehicle $I = \{Postvl\} km/h$. ..

DISPLAY "(Press any key to continue)~" CLS WCLOSE 2 WCLOSE 4 ! Reset skid variables FIND Skid Re FIND Yaw Re ! Reset yaw variables ! Reset roll variables FIND Roll Re FIND Vlt Re ! Reset vault variables FIND O_Re ! Reset overturn variables RESET Skid Assgnr RESET Yaw Assgnr RESET Roll Assgnr RESET Vlt Assgnr RESET O Assgnr RESET Skid Re RESET Yaw Re RESET Roll Re RESET Vlt Re RESET O Re RESET Ptl ACTIVE 9 Post Analysis1 = Found; RULE TITLE1B Method Postv1 = Witness AND IF Post Spv1 <> UNKNOWN THEN WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY" WITNESS STATEMENT DISPLAY "The post-impact speed of Vehicle 1 = {Post Spv1} km/h. DISPLAY "(Press any key to continue)~" CLS WCLOSE 2 ACTIVE 9 CLS Post Analysis1 = Found; **RULE TITLE2A** ! Checks if there are any Method Postv2 = Skid Analysis OR ! post-impact speeds to IF Method Postv2 = Roll OR! calculate and dislays Method Postv2 = Vault OR ! them if necessary Method Postv2 = Overturn OR Method Postv2 = Yaw THEN WOPEN 4,1,5,12,70,2 ACTIVE 9 FIND The Post Spds2

```
ACTIVE 2

CLS

Pt2 = (Roll_Spdv2*Roll_Spdv2+O_Spdv2*O_Spdv2+Vlt_Spdv2*Vlt_Spdv2)

Postv2=((@SQRT(Post_Sk_Spdv2*Post_Sk_Spdv2+Post_Yawv2

*Post_Yawv2 +Pt2))*3.6)

FORMAT Postv2, 3.0

DISPLAY"

POST-IMPACT_ANALYSIS
```

DISPLAY "The post-impact speed of Vehicle $2 = \{Postv2\} km/h$.

..

"

DISPLAY "(Press any key to continue)~" CLS WCLOSE 2 WCLOSE 4 FIND Skid Re ! Reset skid variables ! Reset yaw variables FIND Yaw Re FIND Roll Re ! Reset roll variables FIND Vlt Re ! Reset vault variables FIND O Re RESET Skid_Assgnr ! Reset overturn variables **RESET Yaw** Assgnr RESET Roll Assgnr RESET Vlt Assgnr RESET O Assgnr RESET Skid Ře RESET Yaw Re RESET Roll Re RESET Vlt Re **RESET** O $\overline{R}e$ RESET Pt2 ACTIVE 9 Post Analysis2 = Found;

RULE TITLE2B

IF Method_Postv2 = Witness AND Post Spv2 <> UNKNOWN

THEN

"

"

WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY" WITNESS STATEMENT

DISPLAY "The post-impact speed of Vehicle 2 = {Post_Spv2} km/h.

DISPLAY "(Press any key to continue)~" CLS WCLOSE 2 ACTIVE 9 CLS Post_Analysis2 = Found;

! If Momentum is selected this ! rule executes. RULE TITLE3A Method Impact = Momentum AND IF Method Postv1 <> None AND ! Fails if user selects Momentum !but doesn't calc. post-impact Method Postv2 <> None ! speeds. THEN WOPEN 4,1,5,12,70,2 ACTIVE 9 FIND Corr_Pst Speed1 FIND Corr_Pst_Speed2 FIND The Imp Spds1 ACTIVE 2 CLS Impvl = (Imp Speedvl*3.6) $Impv2 = (Imp_Speedv2*3.6)$ FORMAT Impv1, 3.0 FORMAT Impv2, 3.0 DISPLAY " MOMENTUM ANALYSIS .. DISPLAY "The impact speed of Vehicle $1 = \{Impv1\} km/h$ The impact speed of Vehicle $2 = \{Impv2\} km/h''$ DISPLAY "(Press any key to continue)~" CLS WCLOSE 2 WCLOSE 4 **RESET Mom Assgnr** ACTIVE 9 Imp Analysis = Found; ! If Energy is selected this rule **RULE TITLE3B** ! is executed. Method Impact = Energy AND IF Method Postv1 <> None AND ! Fails if user selects energy ! but doesn't calc post-impact Method Postv2 <> None THEN ! speeds. WOPEN 4,1,5,12,70,2 ACTIVE 9 FIND Corr_Pst_Speed1 FIND Corr Pst Speed2 FIND The Imp Spds2 ACTIVE 2 CLS $ImpEv1 = (Imp_E_Speedv1*3.6)$ $ImpEv2 = (Imp_E_Speedv2*3.6)$ FORMAT ImpEv1, 3.0 FORMAT ImpEv2, 3.0 DISPLAY "

DISPLAY "The impact speed of Vehicle $I = {ImpEvl} km/h$

ENERGY ANALYSIS

,,

```
The impact speed of Vehicle 2 = \{ImpEv2\} km/h''
      DISPLAY "(Press any key to continue ....)~"
      CLS
      WCLOSE 2
      WCLOSE 4
      RESET Ene Assgnr
      ACTIVE 9
      Imp Analysis = Found;
RULE TITLE4A
      Method Prev1 = Skid Analysis AND
IF
      Method Prev1 <> Yaw
THEN
      WOPEN 4,1,5,12,70,2
      ACTIVE 9
      FIND Corr_Pst_Speed1
                                               ! Check that these have been
      FIND Corr Pst Speed2
                                               ! initialized in case the impact
                                               ! routines were not called, hence
      FIND Corr Imp Speed
       CLS
      FIND The Pre Spds1
                                               ! a post speed could not be passed
      ACTIVE 2
                                               ! to this stage for an estimate
      CLS
       Prev1 = ((@SQRT(Pre_Speedv1*Pre_Speedv1+Imp_Speedv1*Imp_Speedv1))
       *3.6)
      FORMAT Prev1, 3.0
      DISPLAY "
             PRE-IMPACT ANALYSIS
"
      DISPLAY "The initial speed of Vehicle 1 = \{Prev1\} km/h.
...
      DISPLAY "(Press any key to continue ....)~"
       CLS
       WCLOSE 2
       WCLOSE 4
       FIND Skid Re
       RESET Skid Assgnr
       RESET Skid Re
       ACTIVE 9
      Pre Analysis1 = Found;
RULE TITLE4B
                                               ! Initial speed estimate
                                               ! from yaw directly.
IF
       Method Prev1 = Yaw AND
       Method Prev1 <> Skid Analysis
                                               ! In case veh skidded prior to
                                               ! yaw, sent to next rule to
THEN
                                               ! combine speeds
       WOPEN 4,1,5,12,70,2
       ACTIVE 9
       FIND The Pre Spds1
       ACTIVE 2
       CLS
       PreYawv1 = (Pre Yawv1*3.6)
```

FORMAT PreYawv1, 3.0 DISPLAY" **METHOD - YAW ANALYSIS** " DISPLAY "The initial speed of Vehicle $1 = \{PreYawvI\} km/h$. ,, DISPLAY "(Press any key to continue)~" CLS WCLOSE 2 WCLOSE 4 FIND Yaw Re RESET Yaw Assgnr RESET Yaw Re ACTIVE 9 Pre Analysis1 = Found; **RULE TITLE4C** ! If veh skidded and then ! went into yaw. Gives IF Method Prev1 = Yaw AND! initial speed directly Method Prev1 = Skid Analysis THEN WOPEN 4,1,5,12,70,2 ACTIVE 9 FIND The Pre Spds1 ACTIVE 2 CLS PreYawv1 = ((@SQRT(Pre Speedv1*Pre Speedv1+Pre Yawv1*Pre Yawv1)) *3.6) FORMAT PreYawv1, 3.0 DISPLAY" **METHOD - SKID/YAW ANALYSIS** " DISPLAY "The initial speed of Vehicle $1 = \{PreYawvI\} km/h$. " DISPLAY "(Press any key to continue)~" CLS WCLOSE 2 WCLOSE 4 FIND Yaw Re FIND Skid Re RESET Yaw Assgnr RESET Skid Assgnr RESET Yaw Re RESET Skid Re ACTIVE 9 Pre Analysis1 = Found;

```
! Displays witness estimate of
RULE TITLE4D
                                             ! V1's pre-impact speed.
      Method Prev1 = Witness AND
IF
      Pre Spv1 <> UNKNOWN
THEN
      WOPEN 2,14,10,6,60,4
      ACTIVE 2
      DISPLAY"
             METHOD - WITNESS STATEMENT
...
      DISPLAY "The initial speed of Vehicle 1 = \{Pre \ Spvl\} \ km/h.
..
      DISPLAY "(Press any key to continue ....)~"
      CLS
      WCLOSE 2
      ACTIVE 9
      CLS
      Pre Analysis1 = Found;
RULE TITLE5A
      Method Prev2 = Skid Analysis AND
IF
      Method Prev2 <> Yaw
THEN
      WOPEN 4,1,5,12,70,2
      ACTIVE 9
      FIND Corr_Pst_Speed1
      FIND Corr Pst Speed2
      FIND Corr Imp Speed
      CLS
      FIND The Pre Spds2
      ACTIVE 2
      CLS
      Prev2 = ((@SQRT(Pre Speedv2*Pre Speedv2+Imp_Speedv2*Imp_Speedv2))
       *3.6)
      FORMAT Prev2, 3.0
      DISPLAY "
             PRE-IMPACT ANALYSIS
"
      DISPLAY "The initial speed of Vehicle 2 = \{Prev2\} km/h.
"
      DISPLAY "(Press any key to continue ....)~"
      CLS
       WCLOSE 2
       WCLOSE 4
      FIND Skid_Re
      RESET Skid Assgnr
      RESET Skid Re
      ACTIVE 9
       Pre Analysis2 = Found;
```

RULE TITLE5B IF Method_Prev2 = Yaw AND Method_Prev2 <> Skid_Analysis THEN WOPEN 4,1,5,12,70,2 ACTIVE 9 FIND The_Pre_Spds2 ACTIVE 2 CLS PreYawv2 = (Pre_Yawv2*3.6) FORMAT PreYawv2, 3.0 DISPLAY" METHOD - YAW ANALYSIS

,,

DISPLAY "The initial speed of Vehicle $2 = \{PreYawv2\} km/h$.

DISPLAY "(Press any key to continue)~" CLS WCLOSE 2 WCLOSE 4 FIND Yaw Re RESET Yaw Assgnr RESET Yaw Re ACTIVE 9 Pre Analysis2 = Found;

RULE TITLE5C IF Method_Prev2 = Yaw AND Method_Prev2 = Skid_Analysis ! If veh skidded and then ! went into yaw. Gives ! initial speed directly

THEN

WOPEN 4,1,5,12,70,2 ACTIVE 9 FIND The_Pre_Spds2 ACTIVE 2 CLS PreYawv2 = ((@SQRT(Pre_Speedv2*Pre_Speedv2+Pre_Yawv2*Pre_Yawv2)) *3.6) FORMAT PreYawv2, 3.0 DISPLAY" METHOD - SKID/YAW ANALYSIS

DISPLAY "The initial speed of Vehicle $2 = \{PreYawv2\} km/h.$

DISPLAY "(Press any key to continue)~" CLS WCLOSE 2 WCLOSE 4 FIND Yaw Re FIND Skid_Re RESET Yaw_Assgnr RESET Skid_Assgnr

	RESET Yaw Re RESET Skid_Re ACTIVE 9 Pre_Analysis2 = Found; TITLE5D Method_Prev2 = Witness AND Pre_Spv2 <> UNKNOWN WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY" METHOD - WITNESS STATEMEN DISPLAY "The initial speed of Vehicle 2 = DISPLAY "The initial speed of Vehicle 2 = DISPLAY "(Press any key to continue) CLS WCLOSE 2 ACTIVE 9 CLS Pre Analysis2 = Found;	{Pre_Spv2} km/h.				
Image: Select the Post-Impact Speed That Will be Sent Impact Speed Routines						
RULE IF THEN	SELECT1 Method Postv1 = Skid Analysis OR Method Postv1 = Roll OR Method Postv1 = Vault OR Method Postv1 = Overturn OR Method Postv1 = Yaw Post_Speedv1 = (Postv1/3.6) Corr_Pst_Speed1 = Found;	! A calculated speed is ! preferred over a ! witness estimate, hence ! it is used for impact ! calculations if available				
RULE IF THEN	SELECT3 Method_Postv1 = Witness Post_Speedv1 = (Post_Spv1/3.6) Corr_Pst_Speed1 = Found;	! Witness estimate used only ! if post-impact speed calc's ! are impossible.				
RULE IF	SELECT4 Method_Postv2 = Skid_Analysis OR Method_Postv2 = Roll OR Method_Postv2 = Vault OR Method_Postv2 = Overturn OR Method_Postv2 = Yaw					

THEN Post Speedv2 = (Postv2/3.6)Corr Pst Speed2 = Found; **RULE SELECT6** Method Postv2 = Witness IF THEN Post Speedv2 = (Post Spv2/3.6) Corr Pst Speed2 = Found; Rules to Select the Impact Speed That Will be Sent To the Pre-Impact Speed Routines ______ **RULE SELECT7** Method Impact = Momentum AND IF Method Impact = Energy THEN DISPLAY "Both Momentum and Energy methods were used to calculate the impact speeds: MOMENTUM - Impact Speed V1 = {Impv1} km/h Impact Speed V2 = {Impv2} km/h **ENERGY** - Impact Speed V1 = {ImpEv1} km/h Impact Speed V2 = {ImpEv2} km/h" FIND Mom Ene Corr Imp $\overline{Speed} = Found;$ **RULE CHOOSE7** IF Choose ME = MomentumTHEN $Imp_Speedv1 = (Imp_M_Speedv1)$ $Imp_Speedv2 = (Imp_M_Speedv2)$ Mom Ene = Found**ELSE** Imp $Speedvl = (Imp_E_Speedvl)$ $Imp^{Speedv2} = (Imp^{E} Speedv2)$ Mom Ene = Found; **RULE SELECT8** IF Method Impact = Momentum THEN Imp Speedv1 = (Imp M Speedv1) $Imp^{Speedv2} = (Imp^{M}^{Speedv2})$ Corr Imp Speed = Found; **RULE SELECT9** IF Method Impact = Energy THEN Imp $SpeedvI = (Imp \ E \ SpeedvI)$ Imp Speedv2 = ($Imp \ E \ Speedv2$) Corr Imp Speed = Found;

RULE SELECTIO ! This rule will pass the ! post-impact speed to the IF Method Impact = None ! pre-impact routines if the **THEN** ! speed loss during impact ! cannot be determined Imp Speedv1 = (Post Speedv1) Imp Speedv2 = (Post Speedv2) ! Gives a conservative result Warning = No Impact ! and a warning is issued Corr Imp Speed = Found; _____ Rules That Direct Program to Find Speeds ! Finds V1 post-impact speed from a RULE 1A ! skid analysis IF Method Postv1 = Skid Analysis THEN WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the POST IMPACT phase of VEHICLE 1. (Press any key to continue)~" ACTIVE 9 FIND Post Sk Spdv1 CLS FIND Skid Assgnr The Post $\overline{Spdsl} = Found;$! Finds V1 post-impact speed from a RULE 1B Method_Postv1 = Yaw IF ! yaw analysis **THEN** WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the POST IMPACT phase of VEHICLE 1. (Press any key to continue)~" ACTIVE 9 FIND Post Yawvl CLS FIND Yaw Assgnr The Post $\overline{S}pdsI = Found$; RULE 1C Method Postv1 = Roll IF THEN WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the POST IMPACT phase of VEHICLE 1.

(Press any key to continue)~" ACTIVE 9 FIND Roll Spdv1 CLS FIND Roll Assgnr The Post $\overline{S}pds\overline{l} = Found;$ RULE 1D IF Method_Postv1 = Vault **THEN** WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the POST_IMPACT phase of VEHICLE 1. (Press any key to continue)~" ACTIVE 9 FIND Vlt Spdv1 CLS FIND Vlt Assgnr The Post Spds1 = Found; RULE 1E IF Method Postv1 = Overturn**THEN** WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the POST_IMPACT phase of VEHICLE 1. (Press any key to continue)~" ACTIVE 9 FIND O Spdvl CLS FIND O_Assgnr The Post Spds1 = Found; ! Finds V2 post-impact speed from a RULE 2A ! skid analysis IF Method Postv2 = Skid Analysis THEN WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the POST_IMPACT phase of VEHICLE 2. (Press any key to continue)~" ACTIVE 9 FIND Post Sk Spdv2 CLS FIND Skid Assgnr The Post $\overline{Spds2}$ = Found;

! Finds V2 post-impact speed from a RULE 2B ! yaw analysis IF Method Postv2 = Yaw **THEN** WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the POST IMPACT phase of VEHICLE 2. (Press any key to continue)~" ACTIVE 9 FIND Post Yawv2 CLS FIND Yaw Assgnr The Post $\overline{Sp}ds2 = Found;$ RULE 2C IF Method Postv2 = Roll THEN WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the POST IMPACT phase of VEHICLE 2. (Press any key to continue)~" ACTIVE 9 FIND Roll Spdv2 CLS FIND Roll Assgnr The Post $\overline{S}pds\overline{2} = Found;$ RULE 2D IF Method Postv2 = Vault THEN WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the POST_IMPACT phase of VEHICLE 2. (Press any key to continue)~" ACTIVE 9 FIND Vlt Spdv2 CLS FIND Vlt Assgnr The Post Spds2 = Found; RULE 2E Method Postv2 = Overturn IF THEN WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the POST IMPACT phase of VEHICLE 2. (Press any key to continue)~" ACTIVE 9

FIND O_Spdv2 CLS FIND O_Assgnr The Post Spds2 = Found;

RULE 3A

IF Method_Impact = Momentum THEN WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "MOMENTUM CALCULATIONS - The questions being asked are related to the impact between both vehicles. (Press any key to continue)~" ACTIVE 9

FIND Mom_Speed CLS FIND Mom_Assgnr The Imp Spds1 = Found;

RULE 3B

IF Method_Impact = Energy THEN WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "ENERGY CALCULATIONS - The questions being asked

are related to the impact between both vehicles. (Press any key to continue)~" ACTIVE 9 FIND Ene Speed

CLS FIND Ene Assgnr The Imp Spds2 = Found;

RULE 4A

IF Method_Prev1 = Skid_Analysis THEN WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the PRE-IMPACT phase of VEHICLE 1. (Press any key to continue)~" ACTIVE 9 FIND Pre_Speedv1 CLS FIND Skid_Assgnr The Pre Spds1 = Found;

RULE 4B IF Method_Prev1 = Yaw THEN WOPEN 2,14,10,6,60,4 ACTIVE 2

! Finds V1 pre-impact speed from a ! yaw analysis

DISPLAY "The questions being asked are related to the PRE IMPACT phase of VEHICLE 1. (Press any key to continue)~" ACTIVE 9 FIND Pre Yawv1 CLS FIND Yaw Assgnr The Pre Spds1 = Found;RULE 5A IF Method Prev2 = Skid Analysis **THEN** WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the PRE IMPACT phase of VEHICLE 2. (Press any key to continue)~" ACTIVE 9 FIND Pre Speedv2 CLS FIND Skid Assgnr The Pre Spds2 = Found;RULE 5B ! Finds V2 pre-impact speed from a ! yaw analysis and displays speed. IF Method Prev2 = Yaw **THEN** WOPEN 2,14,10,6,60,4 ACTIVE 2 DISPLAY "The questions being asked are related to the PRE IMPACT phase of VEHICLE 2. (Press any key to continue)~" ACTIVE 9 FIND Pre Yawv2 CLS FIND Yaw Assgnr The Pre Spds2 = Found;1__________ Rules to Display Parameters Used in Calculations -----RULE PARAM1 Mult_Surface = No IF THEN ACTIVE 4

DISPLAY" SKID PARAMETERS Braking Efficiency = {Brake_Eff} Skid Distance = {Skid_Dist} (meters) Drag Factor = {Total_Drag}" Skid Assgnr = Found; RULE PARAM2 IF Mult Surface = Yes AND Num Surfaces = Two AND Diff Surfaces2 = Continuous THEN ACTIVE 4 DISPLAY" SKID PARAMETERS **Braking** Efficiency = {Brake Eff} Skid Distance $1 = \{Skid Dist1\}$ (meters), Skid Distance $2 = \{Skid Dist2\}$ (meters) Drag Factor(1) = {Tot Drag1} Drag Factor(2) = {Tot Drag2}" Skid Assgnr = Found;RULE PARAM3 IF Mult Surface = Yes AND Num Surfaces = Two AND Diff Surfaces2 = Split Sides THEN ACTIVE 4 DISPLAY" SKID PARAMETERS **Braking Efficiency = {Brake Eff}** Skid Distance = {Skid Dist} (meters) $Drag Factor(1) = \{Tot Drag1\} Drag Factor(2) = \{Tot Drag2\}''$ Skid Assgnr = Found; **RULE PARAM4** Mult Surface = Yes AND IF Num Surfaces = Two AND Diff Surfaces2 = Combination THEN ACTIVE 4 DISPLAY" SKID PARAMETERS Braking Efficiency = {Brake Eff} Skid Distance $1 = \{Skid DistA\}$ (meters), Skid Distance $2 = \{Skid DistB\}$ (meters) $Drag Factor(1) = \{Tot Drag1\} Drag Factor(2) = \{Tot Drag2\}''$ Skid_Assgnr = Found; **RULE PARAM5** Mult Surface = Yes AND IF Num_Surfaces = Three AND Diff Surfaces3 = Continuous THEN ACTIVE 4 DISPLAY" SKID PARAMETERS Braking Efficiency = {Brake Eff} Skid Distance 1 = {Skid Dist1} (meters) Skid Distance 2 = {Skid Dist2} (meters), Skid Distance $3 = \{Skid Dist3\}$ (meters) $Drag Factor(1) = \{Tot Drag1\} Drag Factor(2) = \{Tot Drag2\}$ $Drag Factor(3) = {Tot Drag3}"$ Skid_Assgnr = Found;

RULE PARAM6 IF Mult Surface = Yes AND Num Surfaces = Three AND $Diff_{\overline{Surfaces3}} = Combination$ THEN ACTIVE 4 DISPLAY" SKID PARAMETERS Braking Efficiency = {Brake Eff} Skid Distance 1 = {Skid DistA} (meters), Skid Distance 2 = {Skid DistB} (meters) $Drag Factor(1) = \{Tot Drag1\} Drag Factor(2) = \{Tot Drag2\}$ $Drag Factor(3) = {Tot Drag3}"$ Skid Assgnr = Found; **RULE PARAM7** IF Radius = Value AND Super = NoTHEN ACTIVE 4 DISPLAY" YAW PARAMETERS $Radius = \{Rad\} (meters)$ Drag Factor = {Total Drag}" Yaw Assgnr = Found; **RULE PARAM8** Radius = Value AND IF Super = YesTHEN ACTIVE 4 DISPLAY" YAW PARAMETERS Radius = $\{Rad\}$ (meters) Superelevation = $\{Sup \ Elev\}$ (%) Drag Factor = {Total Drag}" Yaw Assgnr = Found; **RULE PARAM9** Radius = Calculate AND IF Super = NoTHEN ACTIVE 4 DISPLAY" YAW PARAMETERS Chord Length = {Chord} (meters) Middle Ordinate = {Middle Ord} (meters) Drag Factor = {Total Drag}" Yaw Assgnr = Found; RULE PARAMIO IF Radius = Calculate AND Super = YesTHEN ACTIVE 4 DISPLAY" YAW PARAMETERS Chord Length = {Chord} (meters) Middle Ordinate = {Middle Ord} (meters) Superelevation = {Sup_Elev} (%) Drag Factor = {Total_Drag}" Yaw_Assgnr = Found:

RULE PARAMII IF Roll Dist <> UNKNOWN THEN ACTIVE 4 DISPLAY" ROLL PARAMETERS Roll Distance = {Roll Dist} (meters)" Roll Assgnr = Found; RULE PARAM12 IF Take Off = NoTHEN ACTIVE 4 DISPLAY" VAULT PARAMETERS Horizontal Distance = {Horz Dist} (meters) Vertical Fall = {Vert Fall} (meters)" Vlt Assgnr = Found; **RULE PARAM13** IF Take Off = YesTHEN ACTIVE 4 DISPLAY" VAULT PARAMETERS Horizontal Distance = {Horz Dist} (meters) Vertical Fall = {Vert Fall} (meters) Take-off Slope = {Take Elev} (%)" Vlt Assgnr = Found; **RULE PARAM14** IF Over Dist <> UNKNOWN **THEN** ACTIVE 4 DISPLAY" **OVERTURN PARAMETERS** Overturn Distance = {Over_Dist} (meters) Drag Factor = {Over_Drag}" O Assgnr = Found; **RULE PARAM15** IF Mom Speed <> UNKNOWN **THEN** ACTIVE 4 DISPLAY" **MOMENTUM PARAMETERS** Vehicle 1 Vehicle 2 Approach Angle V1 = {Theta1} (degs) Approach Angle V2 = {Phi1} (degs) Departure Angle V1 = {Theta2} (degs) Departure Angle V2 = {Phi2} (degs) Mass $V1 = {M1} (kg)$ $Mass V2 = \{M2\} (kg)''$ Mom Assgnr = Found; **RULE PARAM16** IF Energy Meth = CRASH Values **THEN** WOPEN 4,4,5,8,70,2 ACTIVE 4 DISPLAY" ENERGY PARAMETERS Vehicle 1 Vehicle 2

Velocity Change V1 = {Delta v1} (km/h) Velocity Change V2 = {Delta v2} (km/h) $PDOFV1 = \{Gamma \ v1\} (degs)$ PDOF V2 = {Gamma v2} (degs) Approach Angle $V1 = \{Thetal\} (degs)$ Approach Angle $V2 = \{Phil\} (degs)$ Departure Angle $V1 = \{Theta2\} (degs)$ Departure Angle $V2 = \{Phi2\} (degs)''$ Ene Assgnr = Found: RULE PARAM17 IF Energy Meth = KAR Estimate AND Num $\overline{M}easvI = Six \overline{O}R$ Num Measv2 = Six **THEN** ACTIVE 4 FORMAT Gamma v1, 3.0 FORMAT Gamma v2, 3.0 ENERGY PARAMETERS DISPLAY" Vehicle 1 Vehicle 2 $PDOF VI = \{Gamma \ vI\} (degs)$ $PDOF V2 = \{Gamma \ v2\} (degs)$ Approach Angle $V1 = \{Thetal\} (degs) Approach Angle V2 = \{Phil\} (degs)$ Departure Angle VI = {Theta2} (degs) Departure Angle V2 = {Phi2} (degs) Mass $V2 = \{M2\} (kg)$ Mass $VI = {MI} (kg)$ Wheelbase $VI = \{Wbase vI\}$ (cms) Wheelbase $V2 = \{Wbase v2\} (cms)$ Collision Surface = {Coll Surfv1} Collision Surface = {Coll Surfv2} Crush Length $V1 = \{Len vl\}(cms)$ Crush Length $V2 = \{Len v2\}(cms)$ $C1 = \{C1V1\}, C2 = \{C2V1\}, C3 = \{C3V1\}$ $C1 = \{C1V2\}, C2 = \{C2V2\}, C3$ $= \{C3V2\}$ $C4 = \{C4V1\}, C5 = \{C5V1\}, C6 = \{C6V1\}$ $C4 = \{C4V2\}, C5 = \{C5V2\}, C6$ $= \{C6V2\}''$ Ene Assgnr = Found; RULE PARAM18 Energy Meth = KAR Estimate AND IF Num Measvl = Four ORNum Measv2 = FourTHEN ACTIVE 4 FORMAT Gamma v1, 3.0 FORMAT Gamma v2, 3.0 DISPLAY" ENERGY PARAMETERS Vehicle 1 Vehicle 2 $PDOF VI = \{Gamma \ vI\} (degs)$ $PDOF V2 = \{Gamma \ v2\} (degs)$ Approach Angle VI = {Thetal} (degs) Approach Angle $V\overline{2}$ = {Phil} (degs) Departure Angle VI = {Theta2} (degs) Departure Angle V2 = {Phi2} (degs) Mass $VI = {MI} (kg)$ $Mass V2 = \{M2\} (kg)$ Wheelbase $VI = \{Wbase vl\} (cms)$ Wheelbase $V2 = \{Wbase v2\}$ (cms) Collision Surface = $\{Coll Surfv1\}$ Collision Surface = $\{Coll Surfv2\}$ Crush Length $VI = \{Len \ vI\}$ (cms) Crush Length $V2 = \{Len \ v2\}$ (cms) $C1 = \{C1V1\}, C2 = \{C2V1\}$ $C1 = \{C1V2\}, C2 = \{C2V2\}$ $C3 = \{C3V1\}, C4 = \{C4V1\}^{\circ}$ $C3 = \{C3V2\}, C4 = \{C4V2\}^{"}$ Ene Assgnr = Found;

RULE PARAM19 IF Energy_Meth = KAR_Estimate A Num_Measv1 = Two OR Num_Measv2 = Two THEN ACTIVE 4 FORMAT Gamma_v1, 3.0 FORMAT Gamma_v2, 3.0 DISPLAY" ENER Vehicle 1 Vehic	GY PARAMETERS					
$PDOF V1 = \{Gamma_v1\} (degs) PDOF V2 = \{Gamma_v2\} (degs) \\ Approach Angle V1 = \{Theta1\} (degs) Approach Angle V2 = \{Phi1\} (degs) \\ Departure Angle V1 = \{Theta2\} (degs) Departure Angle V2 = \{Phi2\} (degs) \\ Mass V1 = \{M1\} (kg) Mass V2 = \{M2\} (kg) \\ Wheelbase V1 = \{Wbase_v1\} (cms) Wheelbase V2 = \{Wbase_v2\} (cms) \\ Collision Surface = \{Coll_Surfv1\} Collision Surface = \{Coll_Surfv2\} \\ Crush Length V1 = \{Len_v1\} (cms) Crush Length V2 = \{Len_v2\} (cms) \\ C1 = \{C1V1\}, C2 = \{C2V1\} C1 = \{C1V2\}, C2 = \{C2V2\}'' \\ Ene_Assgnr = Found; \end{cases}$						
Image: Skid and Yaw Calculations						
RULE SKIDRESET IF Solution <> UNKNOWN THEN RESET Mult_Surface RESET Num_Surfaces RESET Diff_Surfaces2 RESET Diff_Surfaces3 RESET Brake_Eff RESET Skid_Dist RESET Skid_Dist1 RESET Skid_Dist2 RESET Skid_Dist3 RESET Skid_Dist8 RESET Skid_Dist8 RESET Total_Drag RESET Tot_Drag1 RESET Tot_Drag3 Skid_Re = Found;	! Resets skid parameters ! Dummy statement (always true)					

. .

RULE YAWRESET IF Solution <> UNKNOWN THEN **RESET Radius RESET** Rad **RESET** Super **RESET** Total Drag RESET Sup Elev RESET Chord RESET Middle Ord Yaw Re = Found; RULE ROLLRESET IF Solution <> UNKNOWN THEN **RESET** Roll Dist Roll Re = Found;RULE VLTRESET Solution <> UNKNOWN IF **THEN RESET Horz Dist** RESET Vert Fall RESET Take_Off RESET Take_Elev Vlt Re = Found;RULE ORESET Solution <> UNKNOWN IF **THEN RESET** Over Dist RESET Over_Drag O Re = Found;

RULE POSTSKIDI

IF Brake Eff <> UNKNOWN AND Post Speed <> UNKNOWN

THEN

Post_Sk_Spdv1 = (Post_Speed) RESET Post_Speed; ! Rule calls general rule post-speed ! and assigns speed to V1

RULE POSTSKID2 ! Rule calls general rule post-speed IF Brake Eff <> UNKNOWN AND ! and assigns speed to V^2 Post Speed <> UNKNOWN THEN Post $Sk \ Spdv2 = (Post \ Speed)$ RESET Post Speed; RULE POSTSKID3A Mult Surface = No AND ! Check if surface is continuous. IF Skid Dist <> UNKNOWN AND Total Drag <> UNKNOWN THEN Post Speed = (@SQRT(19.6 * Total Drag * Skid Dist * Brake Eff)); RULE POSTSKID3B ! Two surfaces Mult Surface = Yes AND IF Num^{Surfaces} = Two AND Diff Surfaces2 = Continuous AND ! All four tires on each surface Skid Distl <> UNKNOWN AND ! at a time (except during transition Skid^Dist2 <> UNKNOWN ! between surfaces of course). THEN CLS DISPLAY "The following questions are related to the first surface the vehicle slid over during the post-impact skid. (Press any key to continue)~" CLS FIND Tot_Drag1 CLS DISPLAY "The following questions are related to the second surface the vehicle slid over during the post-impact skid. (Press any key to continue)~" CLS FIND Tot Drag2 Post Speed = (@SQRT(19.6*(Tot Drag1*Skid Dist1 + Tot Drag2* Skid Dist2)*Brake_Eff)); RULE POSTSKID3C ! Two surfaces IF Mult Surface = Yes AND Num^{Surfaces} = Two AND Diff Surfaces2 = Split Sides AND ! Each side on a different Skid Dist <> UNKNOWN ! surface. THEN CLS DISPLAY "The following questions are related to the surface on the vehicles left side during the post-impact skid. (Press any key to continue)~" CLS FIND Tot Drag1 CLS DISPLAY "The following questions are related to the surface on the vehicles right side during the post-impact skid.

121

(Press any key to continue)~" CLS FIND Tot Drag2 **Post** Speed = (@SQRT(9.8*(Tot Drag1 + Tot Drag2)*Skid Dist*Brake Eff)); RULE POSTSKID3D Mult Surface = Yes AND ! Combination of continuous surface IF Num⁻Surfaces = Two AND Diff Surfaces2 = Combination AND ! skid followed by a split surface Skid DistA <> UNKNOWN AND ! skid. Skid DistB <> UNKNOWN THEN CLS DISPLAY "The following questions are related to the homogeneous surface the vehicle slid over during the post-impact skid. (Press any key to continue)~" CLS FIND Tot Drag1 **CLS** DISPLAY "The following questions are related to the shoulder surface the vehicle slid over during the post-impact skid. (Press any key to continue)~" CLS FIND Tot Drag2 Post Speed = (@SQRT(19.6*(Tot Drag1*Skid DistA + (Tot Drag1 + Tot Drag2)*Skid DistB/2)*Brake Eff)); RULE POSTSKID3E ! Three surfaces Mult Surface = Yes AND IF Num Surfaces = Three AND Diff_Surfaces3 = Continuous AND ! Four tires each surface Skid Distl <> UNKNOWN AND Skid Dist2 <> UNKNOWN AND Skid^Dist3 <> UNKNOWN THEN CLS **DISPLAY** "The following questions are related to the FIRST surface the vehicle slid over during the post-impact skid. (Press any key to continue)~" CLS **FIND** Tot Drag1 CLS **DISPLAY** "The following questions are related to the SECOND surface the vehicle slid over during the post-impact skid. (Press any key to continue)~" CLS FIND Tot Drag2 CLS DISPLAY "The following questions are related to the THIRD surface the vehicle slid over during the post-impact skid. (Press any key to continue)~" CLS

FIND Tot Drag3 Post Speed = (@SQRT(19.6*(Tot Drag1*Skid Dist1+Tot Drag2*Skid Dist2 +Tot Drag3*Skid Dist3)*Brake Eff)); **RULE POSTSKID3F** IF Mult Surface = Yes AND ! Combination of continuous surface Num Surfaces = Three AND Diff Surfaces3 = Combination AND ! skid followed by a split surface Skid DistA <> UNKNOWN AND ! skid. Skid DistB <> UNKNOWN THEN CLS DISPLAY "The following questions are related to the homogenous surface the vehicle slid over during the post-impact skid. (Press any key to continue)~" CLS FIND Tot Drag1 CLS DISPLAY "The following questions are related to the road surface (for the pavement/shoulder portion of the skid) the vehicle slid over during the post-impact skid. (Press any key to continue)~" CLS FIND Tot Drag2 CLS DISPLAY "The following questions are related to the shoulder surface the vehicle slid over during the post-impact skid. (Press any key to continue)~" CLS FIND Tot Drag3 Post Speed = (@SQRT(19.6*(Tot_Drag1*Skid_DistA + (Tot Drag2 + Tot Drag3)*Skid DistB/2)*Brake Eff)); _________ 1_____ Rules to determine Post-Impact Speed ۱ From Roll Distances RULE ROLLI Roll_Spd <> UNKNOWN IF THEN Roll Spdv1 = (Roll Spd)RESET Roll Spd; **RULE ROLL2**

IF Roll_Spd <> UNKNOWN THEN Roll_Spdv2 = (Roll_Spd) RESET Roll_Spd; RULE ROLL3 IF Roll_Dist <> UNKNOWN THEN Roll Spd = (@SQRT(1.96*Roll Dist));

RULE VAULT1 IF Vlt Spd <> UNKNOWN THEN $Vlt \; Spdvl = (Vlt \; Spd)$ **RESET Vlt** Spd; **RULE VAULT2** IF Vlt Spd <> UNKNOWN **THEN** $Vlt \; Spdv2 = (Vlt \; Spd)$ **RESET** Vlt Spd; **RULE VAULT3** Horz Dist <> UNKNOWN AND IF Vert Fall <> UNKNOWN AND $Take^{-}Off = No$ **THEN** Vlt Spd = (2.21*Horz_Dist/(@SQRT(Vert_Fall))); **RULE VAULT4** Horz Dist <> UNKNOWN AND IF Vert Fall <> UNKNOWN AND $Take^{-}Off = Yes AND$ Take Elev <> UNKNOWN THEN Vlt Spd = (2.21*Horz Dist/(@SQRT(Vert_Fall+Horz_Dist *Take Elev/100)));

RULE OVER1 IF O_Spd <> UNKNOWN THEN O_Spdv1 = (O_Spd) RESET O_Spd;

RULE OVER2 IF O Spd <> UNKNOWN THEN O Spdv2 = (O Spd)**R**ESET O Spd; **RULE OVER3** Over Dist <> UNKNOWN AND IF Over Drag <> UNKNOWN THEN O Spd = (@SQRT(19.6*Over Dist*Over Drag)); 1_____ Rules to determine Impact Speed Using Conservation of Linear Momentum T RULE MOM1 ! Must estimate a speed if IF Good Angles = known AND! vehs approaching head-on or Theta $\overline{I} = (Phil - 180) OR$! rear-end Thetal = (Phil)THEN DISPLAY "Since the approach paths of Vehicle 1 and Vehicle 2 are along the same line it is necessary to estimate a pre-impact speed for one of the vehicles. FIND Est Speed $AbsAl = \overline{(@ABS(Theta2-Theta1))}$ AbsA2 = (@ABS(Phi2-Phi1))FIND A1 FIND A2 MM1 = (Post Speedv1*Post Speedv1+Imp Speedv1*Imp Speedv1) MomD $v1 = \overline{(3.6*)}(@SQRT(\overline{MM1}-2*Post Speedv1*Imp Speedv1)$ *(@COS(A1)))) $\dot{MM2} = (Post Speedv2*Post Speedv2+Imp Speedv2*Imp Speedv2)$ MomD $v2 = \overline{(3.6^{*})}(@SQRT(\overline{MM2}-2^{*}Post Speedv2^{*}Imp Speedv2)$ *(@COS(A2))))) Mom Speed = found;RULE MOM2 ! V2 approaching at any other IF Good_Angles = known AND ! angle prior to impact, use Theta $\overline{1} = 0$ AND ! these formula Phil <> 180 THEN Imp Speedv2 = ((M1*Post Speedv1*(@SIN(T2)))+ $M\overline{2}$ *Post_Speedv2*(@SI \overline{N} (P2)))/(M2*(@SIN(P1)))) $Imp_Speedv1 = ((M1*Post_Speedv1*(@COS(T2)))$ + $M\overline{2}$ *Post Speedv2*(@ $C\overline{OS}(P2)$)-M2*Imp Speedv2*(@COS(P1)))/M1) $AbsAl = (\overline{@}ABS(Theta2-Theta1))$

AbsA2 = (@ABS(Phi2-Phi1))FIND A1 FIND A2 MM1 = (Post Speedv1*Post Speedv1+Imp Speedv1*Imp Speedv1) $MomD v = \overline{(3.6^{*})} (@SQRT(\overline{MM}) - 2^{*}Post Speedv + 1^{*}Imp Speedv + 1^{*}Im$ *(@COS(A1)))) MM2 = (Post Speedv2*Post Speedv2+Imp Speedv2*Imp Speedv2)MomD $v2 = \overline{(3.6*)}(@SQRT(\overline{M}M2-2*Post Speedv2*Imp Speedv2)$ *(@COS(A2))))) Mom Speed = found;RULE EST1 IF Pre Spv1 <> UNKNOWN ! Need an estimate of V1's speed THEN ! prior to impact Imp Speedv1 = (Pre Spv1/3.6) Imp Speedv2 = ((MI*Post Speedv1*(@COS(T2))) + $M\overline{2}$ *Post Speedv2*(@ $C\overline{OS}(P2)$)-M1*Imp Speedv1*(@COS(T1)))/M2) Est Speed = found: RULE EST2 !Need an estimate of V2's speed IF Pre Spv2 <> UNKNOWN THEN ! prior to impact Imp Speedv2 = (Pre Spv2/3.6) Imp Speedv1 = ((M1*Post Speedv1*(@COS(T2))) + $M\overline{2}$ *Post Speedv2*(@ $C\overline{OS}(P2)$)-M2*Imp Speedv2*(@COS(P1)))/M1) Est Speed = found; Momentum: Angle Check ______ **RULE TOPCHECK** M1 <> UNKNOWN AND ! Query for vehicle masses IF $M2 \iff UNKNOWN$! Always passes if known. **THEN** Theta l = 0DISPLAY "KAR sets Vehicle 1's pre-impact direction (heading) at 0 degrees. Remaining directions of travel (headings) will be measured clockwise relative to Vehicle 1's heading of 0 degrees. *Example* If Vehicle 1 is Northbound (0 degrees) and Vehicle 2 is westbound. Vehicle 2's heading prior to impact would be 270 degrees. X=0Varl = KnownWHILEKNOWN Var1

X = (X+1)**RESET** Theta2 **RESET** Phil **RESET Phi2**

t

RESET Angles RESET Rng **RESET** Angle Range RESET Low Range RESET High Range RESET Check RESET Re enter FIND Angles FIND Angle Range FIND Check FIND Re enter **END** RESET X TI = (Thetal)P1 = (0.01745 * Phi1)T2 = (0.01745 * Theta2)P2 = (0.01745 * Phi2)Good Angles = Known; **RULE ANGLE** IF Theta2 <> UNKNOWN AND Phil <> UNKNOWN AND Phi2 <> UNKNOWN THEN Rng = (Phil-Thetal)Angles = Known;RULE RANGE IF Rng >= 0 ANDRng <= 180THEN Low Range = (Theta1) High Range = (Phil)Angle Range = Found **ELSE** Low Range = (Phil) High Range = (Thetal) Angle Range = Found; RULE CHECK1 IF Low Range <= 180 AND Theta2 $\geq =$ (Low Range) AND Phi2 >= (Low Range) AND Theta2 <= (High Range) AND Phi2 <= (High Range) THEN Check = Good;

! Queries user for angles

! Used in rule RANGE

RULE CHECK2

IF Low Range > 180 AND High Range > 180 AND High Range < 360 AND Theta2 >= (Low Range) AND Phi2 >= (Low Range) AND Theta2 <= (High Range) AND Phi2 <= (High Range)

THEN

Check = Good;

RULE CHECK3

IF Low Range > 180 AND High Range < 180 AND Theta2 >= (Low Range) OR Theta2 <= (High Range) AND Phi2 >= (Low Range) OR Phi2 <= (High Range)

THEN

ELSE

Check = Good

Check = Bad;

RULE ENTERI

IF Check = Good THEN RESET Var1

 $Re_enter = Known;$

RULE ENTER2

 $IF \qquad Check = Bad AND \\ X > 1$

```
THEN
```

DISPLAY "I am still not satisfied with the angles you have entered, but I will continue with the calculations."

RESET Var1 Warning = Momentum_Angles Re enter = Known

ELSE

DISPLAY "Your approach and departure angles are questionable.

 $Thetal = \{Thetal\} Phil = \{Phil\} \\ Theta2 = \{Theta2\} Phi2 = \{Phi2\} \\$

Please check them over and re-enter the values." Re enter = Known;

!----- Witness Queries -----

ASK Post_Spv1: "Please enter post-impact speed estimate of Vehicle 1 (km/h).";

ASK Post_Spv2: "Please enter post-impact speed estimate of Vehicle 2 (km/h).";

ASK Pre_Spv1: "Please enter pre-impact speed estimate of Vehicle 1 (km/h).";

ASK Pre Spv2: "Please enter pre-impact speed estimate of Vehicle 2 (km/h).";

!----- Skid Queries -----

ASK Brake_Eff: "What is the braking efficiency (the number of functional brakes)/(the number of tires)?"; CHOICES Brake_Eff: 1.0,0.75,0.5,0.25;

ASK Mult_Surface: "Is there more than one road surface (drag factor) involved in this skid?"; CHOICES Mult Surface: Yes, No;

ASK Num_Surfaces: "How many surfaces did the vehicle slid over during this phase of the accident?"; CHOICES Num Surfaces: Two, Three;

ASK Diff_Surfaces2: "Two Surfaces -(i) Was the skid CONTINUOUS from one surface to another, or (ii) Was one side of the vehicle skidding on a different surface than the other side (SPLIT_SIDES), or (iii) Did it involve a COMBINATION of the above?"; CHOICES Diff_Surfaces2: Continuous, Split_Sides, Combination;

ASK Diff_Surfaces3: "Three Surfaces -(i) Was the skid CONTINUOUS from one surface to the next, or (ii) Did it involve one road surface followed/preceded by shoulder-pavement skid where the two road surfaces were different?"; CHOICES Diff_Surfaces3: Continuous, Combination;

ASK Skid Dist: "What is the skid distance (in meters)?";

ASK Skid_Dist1: "What is the skid distance over the first surface (in meters)?";

ASK Skid_Dist2: "What is the skid distance over the second surface (in meters)?";

ASK Skid_Dist3: "What is the skid distance over the third surface (in meters)?";

ASK Skid_DistA: "What is the skid distance over the homogeneous surface (in meters)?";

ASK Skid_DistB: "What is the distance of the shoulder/pavement skid (in meters)?";

ASK Drag_Value: "If tests were conducted to determine the drag factor please enter this value, otherwise, enter a '?' and a drag factor will be selected based on your response to a series of questions.";

ASK Incline: "Is this section of roadway/terrain sloped?"; CHOICES Incline: Yes, No;

ASK Deg Incline: "What is the percent slope (+/-)?";

ASK Road_Mix: "What is the road surface type?"; CHOICES Road_Mix: Portland_Cement,Asphalt_or_Tar,Gravel,Ice;

ASK Road ConditionPC: "What is the condition of the road?"; CHOICES Road ConditionPC: New,Travelled,Polished;

ASK Road_ConditionAT: "What is the condition of the road?"; CHOICES Road_ConditionAT: New,Travelled,Polished,Excess_Tar;

ASK Road_ConditionGR: "What is the condition of the road?"; CHOICES Road ConditionGR: Packed Oiled,Loose;

ASK Weather: "Was the road surface wet or dry?"; CHOICES Weather: Wet,Dry;

ASK Speed_Range: "What was the approximate speed of the vehicle?"; CHOICES Speed_Range: Less_50kmh,Greater_50kmh;

!----- Momentum and Energy Queries ------

ASK Choose_ME: "Which speeds do you want to use for the pre-impact calculations?"; CHOICES Choose_ME: Momentum, Energy;

ASK Theta2: "What is Vehicle 1's heading after impact (in degrees)?";

ASK Phi1: "What is Vehicle 2's heading prior to impact (in degrees)?";

ASK Phi2: "What is Vehicle 2's heading after impact (in degrees)?";

ASK Energy_Meth: "(i) Do you have the velocity changes for both vehicles from a CRASH analysis, or (ii) Would you like KAR to estimate the velocity changes using energy calculations?"; CHOICES Energy Meth: CRASH Values,KAR Estimate;

ASK Veh_Headings: "Are both vehicles approach and departure headings well defined?"; CHOICES Veh Headings: Yes,No;

ASK Num_measv1: "How many crush dimensions were taken for Vehicle 1?"; CHOICES Num_Measv1: Two,Four,Six;

ASK Num_measv2: "How many crush dimensions were taken for Vehicle 2?"; CHOICES Num_Measv2: Two,Four,Six;

ASK Len v1: "What is the width of Vehicle 1's crush profile (cms)?";

ASK Len v2: "What is the width of Vehicle 2's crush profile (cms)?";

ASK Delta v1: "Please enter the change in velocity for Vehicle 1 (km/h).";

ASK Delta v2: "Please enter the change in velocity for Vehicle 2 (km/h).";

ASK Gamma v1: "Please enter the principle direction of the impact force acting on Vehicle 1 (degrees).";

ASK Gamma_v2: "Please enter the principle direction of the impact force acting on Vehicle 2 (degrees).";

ASK AGamma_v1: "Please enter an estimate of the principle direction of the impact force acting on Vehicle 1 (degrees)

* The exact PDOF will be calculated based on the vehicle headings and * will appear in the Parameter Table.";

ASK AGamma_v2: "Please enter an estimate of the principle direction of the impact force acting on Vehicle 2 (degrees) * The exact PDOF will be calculated based on the vehicle headings and

* will appear in the Parameter Table.";

ASK M1: "What is the weight of Vehicle 1 (in kilograms)?";

ASK M2: "What is the weight of Vehicle 2 (in kilograms)?";

ASK Wbase v1: "What is Vehicle 1's wheelbase (cms)?";

ASK Wbase v2: "What is Vehicle 2's wheelbase (cms)?";

ASK Coll Surfv1: "Where is the collision surface Vehicle 1?"; CHOICES Coll Surfv1: Front, Rear, Side; ASK Coll_Surfv2: "Where is the collision surface on Vehicle 2?"; CHOICES Coll_Surfv2: Front, Rear, Side;

ASK CIV1: "Please enter the Crush Measurements. (For Front and Rear damage C1 is the leftmost measurement, for Side damage C1 is the rearmost measurement).

Vehicle 1 - C1?";

ASK C2V1: "Vehicle 1 - C2?";

ASK C3V1: "Vehicle 1 - C3?";

ASK C4V1: "Vehicle 1 - C4?";

ASK C5V1: "Vehicle 1 - C5?";

ASK C6V1: "Vehicle 1 - C6?";

ASK CIV2: "Please enter the Crush Measurements. (For Front and Rear damage C1 is the leftmost measurement, for Side damage C1 is the rearmost measurement).

Vehicle 2 - *C*1?";

ASK C2V2: "Vehicle 2 - C2?";

ASK C3V2: "Vehicle 2 - C3?";

ASK C4V2: "Vehicle 2 - C4?";

ASK C5V2: "Vehicle 2 - C5?";

ASK C6V2: "Vehicle 2 - C6?";

!----- Yaw Oueries -----

ASK Radius: "Do you have a VALUE for the curve radius of the yaw mark, or would you like to CALCULATE it based on a chord length and middle ordinate?"; CHOICES Radius: Value, Calculate;

ASK Chord: "What is the chord length (meters)?";

ASK Middle Ord: "What is the length of the middle ordinate (meters)?";

ASK Rad: "What is the radius of curvature for the first one_third of the yaw mark (in meters)?";

ASK Super: "Is the roadway superelevated?"; CHOICES Super: Yes,No;

ASK Sup Elev: "What is the percent superelevation (+/-)?";

!----- Roll Queries -----

ASK Roll Dist: "What distance did the vehicle roll (in meters)?";

!----- Vault Oueries ------

ASK Horz_Dist: "What is the HORIZONTAL distance the vehicle travelled from the point of takeoff to the point where it first hit the ground (in meters)? Measurements should be taken from the vehicles center of mass.";

ASK Vert_Fall: "What is the VERTICAL distance the vehicle fell (in meters)? Measure from center of mass to center of mass.";

ASK Take Off: "Was the vehicle path leading to the point of takeoff sloped?"; CHOICES Take_Off: Yes, No;

ASK Take Elev: "What is the percent grade of this slope (+/-)?";

!----- Overturn Queries ------

ASK Over Dist: "What distance did the vehicle slid while overturned (in meters)?";

ASK Over_Drag: "What is the drag factor between the road surface and the overturned surface?";

!----- Plural Variables -----

PLURAL:

Method_Postv1,Method_Postv2,Method_Impact,Method_Prev1,Method_Prev2, Summary1,Summary2,Warnings;

PLURAL: The_Post_Spds1,The_Post_Spds2,The_Pre_Spds1,The_Pre_Spds2, Post_Actv1,Post_Actv2; PLURAL: Select_Postv1,Select_Postv2,Select_Impact,Select_Prev1,Select_Prev2;

PLURAL:

Post_Analysis1,Post_Analysis2,Imp_Analysis,Pre_Analysis1,Pre_Analysis2, Warning;

APPENDIX D. Police Measurement Sheet

. <u></u> K	X	X	Y	REHARKS
:				FILE HURANT N-E LOUMER OF RELEVAL TOINT
			2 33	NOET CLEB A JACENT TO RIL
_	2.0		S.0 ·	START OF RIGHT SKID MALL
-	5.10		E s	STALT OF LEF SKIG MALL
		10.0	5.10	LIGHT SKID 10 METERS VEST OF SMIT
	<u> </u>	10.0	6.4	LEAT SKID
<u> </u>		572	<u>ର</u> .୪	RIGHT SKO AT DOVIATE
		1653	େଟ୍	LEFT SKID AT DEVIATION
		1610	5.0	LEFT REAR Scuir (BEGINING
	<u> </u>	<u> </u>		
	<u> </u>	ļ		
!		23.2	3.60	LEFT REAL DATSW
		27.15	<u>h.zs</u>	RIGHT REAL DASUN
		zios	8 <u>51</u>	EIGHT FRUT DATSIN
	<u> </u>	30.0	8.53	LEIT FRONT VEWO
		34.12	6.70	LEFT GEOR VOUS
 	1	348	5.03	FIGHT REAR VOLVO
	1	ļ	6.0	View WIG - 2 LAVE
	 		1,76	WIDT WE I LAVE
		ļ	סרח	South MEDIAN (USS
	: 	<u> </u> \$.20	ļ	FAST CURE
		11.5	L	WEST CURS
			20.88	BROKEN LILE ELB
	<u> </u>	<u> </u>	27142	Sauth Curb
	<u> </u>	6.10		WEST POILS OF MEDRU EMP 04
	<u> </u>	19.6		
	<u> </u>			
				CRAG SLED = M.O.K.
1				
·	<u> </u>	<u> </u>		11, 11, 12, 13, 12
				12,13,13,13,