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Abstract 

A finite element model has been developed in this thesis for predicting strength and 

stiffness behavior of multilayered beam-columns. The analysis incorporates material 

and geometric nonlinearities in order to determine the ultimate load carrying capacity. 

The finite element model takes into account the continuous variability of material 

properties along the length of layers so that multilayered wood beam-columns can 

be analyzed. Transverse as well as lateral bending in combination with axial tension 

or compression can be considered along with different layer configurations, various 

support and loading conditions. 

A computer program has been developed based on this formulation. Cubic beam 

elements have been used. Numerical integration of the vir tual work equations has 

been carried out using Gauss quadrature. The resulting set of nonlinear equations is 

solved by using the Newton-Raphson scheme. 

Numerical investigations have been carried out to verify the results and test the 

capabilities of the program. 



Table of Contents 

Abstract ii 

Tables v 

Figures vii 

Acknowledgement viii 

1 Introduction and Literature Review 1 

1.1 General Remarks 1 

1.2 Objectives 5 

1.3 Thesis Organisation 6 

2 Formulation of Theory 7 

2.1 General Assumptions 7 

2.2 Kinemat ic Relationships 7 

2.3 Stress-Strain Relationships 10 

2.4 V i r t ua l Work Equation 18 

3 Finite Element Formulation 21 

3.1 Fini te Element Discretization 22 

3.2 Problem Formulation 23 

3.3 Interpolation Functions 25 

3.4 V i r t ua l Work Equations 27 

3.5 Method of Computation 30 

i i i 



3.6 Numerical Integration 32 

3.7 Convergence Criterion 33 

3.8 F E N M B C — t h e Computer Program 34 

4 Verification and Numerical Results 35 

4.1 F ixed Ended Beam Under Uniform Load • 35 

4.1.1 Fini te Element Results 37 

4.2 Other Test Cases 40 

4.2.1 Simply Supported Multilayered Beam under B iax i a l Loading 

for Data-set I 41 

4.2.2 Simply Supported Multi layered Beam under B iax ia l Loading 

for Data-set II 45 

4.2.3 Eccentric biaxial loading on Simply Supported Beam for Data-

set I 48 

4.2.4 Simply Supported Beam-Column with axial loading having ec

centricity in y-direction for Data-set I 50 

4.2.5 Simply Supported Beam-Column with axial loading having ec

centricity in y-direction for Data-set II 52 

4.2.6 Simply Supported Multi layered Beam with a Nonlinear Com

pression Zone 54 

5 Summary, Conclusions and Scope for Future Research 57 

5.1 Summary and Conclusions 57 

5.2 Scope for Future Research 58 

Bibliography 59 

iv 



Tables 

Comparison of Timoshenko and F E N M B C solution for large deflection 

of beams 

v 



Figures 

1.1 Biax ia l loading on beam-column 2 

2.1 Coordinate system for the beam-column 8 

2.2 A x i a l and lateral displacement relationship 9 

2.3 Large deformation relationships 10 

2.4 Bilinear elasto-plastic stress-strain relationship 11 

2.5 Various stress-strain relationships 12 

2.6 Bilinear stress-strain relationship proposed by Bazan (1980) 14 

2.7 Stress-strain relationship used in the present study 16 

2.8 Bil inear stress-strain relationships for various m as used by K o k a . . . 17 

2.9 Exponential compressive stress-strain relationship used for F E N M B C 20 

3.1 Fini te element discretization of the beam-column 23 

3.2 Loca l coordinate system for the element and the window 24 

3.3 Flowchart for iterative technique using Newton-Raphson Method . . . 31 

3.4 Convergence criterion 34 

4.1 Data for Timoshenko's fixed ended beam bending problem 36 

4.2 Comparison of Timoshenko's and F E N M B C ' s large beam-bending . . 39 

4.3 Data for the test cases 40 

4.4 Displacement results for biaxially loaded multilayered beams for data-

set I 43 

4.5 Stresses for biaxially loaded multilayered beams for data-set I . . . . 44 

vi 



4.6 Displacement results for biaxially loaded multilayered beams for data-

set II 46 

4.7 Stresses for biaxially loaded multilayered beams for data-set II . . . . 47 

4.8 Displacement results for simply supported multilayered beams under 

eccentric biaxial loading for data-set I 49 

4.9 Displacement results for simply supported multilayered beam-column 

with axial loading having eccentricity in y- direction for data-set I . . . 51 

4.10 Displacement results for simply supported multilayered beam-column 

with axial loading having eccentricity in y-direction for data-set II . . . 53 

4.11 Displacement results for simply supported multilayered beams with a 

nonlinear compression zone 55 

4.12 Stress-strain curve for simply supported multilayered beam with a non

linear compression zone 56 

vii 



Acknowledgement 

M y special thanks to my supervisor Dr . Ricardo 0 . Foschi, for his guidance and 

encouragement throughout the course of my research work and in the preparation 

of this thesis. I would also like to thank Felix Z. Yao, Bryan Folz, James D . Dolan 

and all my friends of the C i v i l Engineering Department, U B C , for their support and 

valuable suggestions. 

Financial support in the form of a Research Assistantship from the Natural Sciences 

and Engineering Research Council of Canada is gratefully acknowledged. 

Vlll 



To 

M y Parents 

K a m l a and Akhi lesh Chandra 



CHAPTER 1 

Introduction and Literature Review 

1.1 General Remarks 

The use of glued-laminated multilayered beams and beam-columns is quite common 

in timber buildings and could be used increasingly in larger commercial and industrial 

structures. Analysis and design methods for biaxial bending and axial loading are 

simplistic and do not represent the true behavior of the composite beam. W i t h the 

advent of computers, however, it is feasible to incorporate ultimate strength analysis 

and design. Also , reliability methods are being used in revising the timber codes 

in Canada and elsewhere. The present study attempts to provide a more rigorous 

analysis tool for beam-columns under biaxial bending and axial loading. 

It has been customary to treat a three-dimensional structure as a collection of 

two-dimensional, planar structures. Although this kind of idealization has resulted 

in satisfactory designs, it may not allow for an optimum design. The main reason for 

this simplification has been the complexities involved in three dimensional analysis 

and the difficulties involved in their hand calculations. However, with computers 

being widely used in structural engineering, such analyses have become easier and 

more accurate. 

Beam-columns are often subjected to biaxial bending coupled wi th tension or 

compression. This may result from the space action of the entire framing system or by 

an axial load eccentrically located with respect to the principal axes of a beam-column 

cross section, as shown in Figs. 1.1(a) and 1.1(b). Although the two loading conditions 

1 
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Figure 1.1: Biaxia l loading on beam-column 

shown above are statically equivalent and are considered identical, their nonlinear 

behavior may be quite different depending on the history of loading. However, in 

the present analysis, such differences in loading history have been ignored largely 

because of the unavailability of data on such stress reversals and failure modes. Recent 

studies by Buchanan [5] and others have tried to address this issue. In the present 

analysis monotonically increasing loads have been considered and load reversals have 

not been allowed. It is also of interest to note that the failure in the beam-column 

may be caused following one of the several paths shown in F ig . 1.1(c). For example 

the bending moment in y-direction My may be applied first up to a certain value 

following path /, then the bending moment in z-direction M2 may be applied upto a 

certain value following path k, and then finally the axial loading P may be increased 

following path i unt i l the beam-column fails. The failure may also be caused following 

paths ghi, bed or any other path as shown in F ig . 1.1(c). The two loading conditions 
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as shown in Figs. 1.1(a) and 1.1(b) are different and the response of the beam-column 

wi l l vary depending on the load history. However, if P, Mx, My increase proportionally 

as radial loading, 4he two loading conditions are equivalent. In the present study, this 

proportional increase in loading has been used. 

Wood being an organic building material, the modulus of elasticity, tensile and 

compressive strengths have large variability, both within and across members. This 

variability in material properties of wood makes an accurate design procedure diffi

cult and the performance of such wood structures more uncertain. In recent years, 

this uncertainty has been addressed by using reliability based design procedures in 

wood structures. Timber codes are being revised to incorporate this change in design 

philosophy. 

The present study was undertaken to develop a general analysis tool for mul

tilayered beams and beam-columns, with a specific application to glued-laminated 

beam-columns. K o k a [17] has developed such a model for solid wood beam-columns. 

However it has limitations of being a planar model, i . e. bending in only one direction, 

lacking the capability of torsional analysis and can only handle a solid (i . e. single 

layered) beam-column. The model F E N M B C (Finite Element Nonlinear analysis of 

Multi layered Beam-Columns) developed in the present study was to overcome these 

limitations. It is based on a 3-dimensional analysis including axial deformation, biax

ial bending and torsion for multilayered beam columns. Both geometric and material 

nonlinearities were incorporated in order to be able to predict ultimate load carrying 

capacities. 

Foschi and Barrett [9] developed a model for predicting the strength and stiffness 

of glued-laminated beams. In this model, each lamination of thickness t is divided 

into cells of depth t and width W, and 6 inches (152mm) in length. Each cell is 

randomly assigned a density and a knot diameter from knot frequency data for the 

specific lamination in consideration. A modulus of elasticity ( M O E ) and a tensile 
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strength value is assigned to each cell. The model uses a linear finite element method 

to obtain stresses in each cell, considering each one a five noded plate element. The 

model uses weakest link failure criterion to calculate the strength of the beam. 

The Foschi/Barrett model formed the basis for the development of the Karlsruhe 

model [7]. This finite element model takes into account the material nonlinearity 

of wood in compression, by using a linear elasto-plastic stress-strain relationship. It 

then considers the successive failure of cells in the tension zone. 

For the past few years research work has also been done in the area of simulation 

of material properties of lumber, particularly within board variations in modulus 

of elasticity and strength. ( Bender et al . [3], Foschi [10], Taylor and Bender [28] 

and Col l ing [7] ). The simulation of material properties of built-up beam-columns 

is not the objective of the present study. The analysis assumes that these material 

properties of all laminations are given, or can be simulated along their length. 

The stress-strain relationship used herein are discussed in detail in Section 2.3 

in Chapter 2, however, a brief survey of axial tension strength of timber has been 

presented here. It was not until the mid-seventies that the axial tensile strength of 

timber was given much attention. This was due to the lack of suitable connection 

details which prevented very high stresses from being developed in tension members. 

W i t h the availability of more effective connections, there was a renewed interest in 

tensile strength of timber. The phenomenon of size effect was observed by Kunesh 

and Johnson [18] (1974). They tested commercial sizes of clear Douglas-fir and Hem-

fir and noticed a significant decrease in tensile strength with increasing cross-sectional 

dimensions. 

Norris [23] (1955), Dawe [8] (1964), Nemeth [22] (1965) and others have con

tributed to the development of appropriate theory dealing wi th defects in timber. 

The effect of defects in timber was also ignored in the belief that modulus of rupture 

was a conservative estimate of tension strength. There was a renewed interest in 
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this area after in-grade testing showed failures occuring at stresses much lower than 

the modulus of rupture. Since then there has been considerable research work done 

in this area. A general finding from these studies was that the large knots reduced 

the strength more than smaller knots, and edge knots more than center knots, a 

result confirmed by Kunesh and Johnson [19] (1972) and Johnson and Kunesh [16] 

(1975). Attempts have been made to combine various characteristics such as knot 

size, flexural stiffness and slope of grain to predict tensile strength. 

1.2 Objectives 

This study aimed at the following objectives: 

1. Development of a finite element analysis model for predicting strength and 

stiffness behavior of multilayered beam-columns. This analysis would include 

nonlinear material and geometric behavior of the beam-column so that the 

ultimate load carrying capacity can be determined. The finite element model 

would take into account the continuous variability of material properties along 

the length. The loading would be axial , transverse and lateral as in a three 

dimensional beam-column. 

2. Implementation of this analysis into a computer program which would allow 

flexibility in placing the layers in different configurations, various support condi

tions and loadings. It would also be user friendly and would require a minimum 

of data input. 

3. Validation of this computer program by comparing its predictions with available 

analytical or experimental results. 
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1.3 Thesis Organisation 

Chapter 2 describes the formulation of the theory used in the development of the mul

tilayered beam-column model. The general assumptions, kinematic and constitutive 

relationships are given in detail. 

Chapter 3 provides the outline and detail of the finite element formulation of the 

problem and the computer implementation. The vir tual work equations have been 

set up and the Newton-Raphson iteration technique has been employed to solve the 

nonlinear equations. Gauss quadrature scheme has been employed for the numerical 

integration. The details of convergence criterion have been outlined. 

Chapter 4 compares the predictions of this program with available results wherever 

possible and presents cases including stability and strength analysis. 

Chapter 5 includes conclusion of the present study and recommendations for fur

ther research work in this area. 



CHAPTER 2 

Formulation of Theory 

2.1 General Assumptions 

The assumptions made in the analysis of multilayered beam-columns are as follows: 

1. Plane section remains plane (with certain qualifications as discussed later in 

section 2.2). 

2. Solid rectangular sections are assumed for each layer and thus for the entire 

cross-section. 

3. A l l layers in the beam are in constant contact with each other, thus no discon

tinuity exists between layers. 

4. Materia] properties may have continuous variation along the span of a layer, 

however, material properties are assumed to be constant within a small division 

of an element (called a window as explained later in Section 3.1). 

5. The stress-strain relationship has been assumed to be linear elastic with brittle 

failure in tension, and nonlinear having a falling branch with plastic failure in 

compression as shown in F ig . 2.7. 

2.2 Kinematic Relationships 

The orientation of the beam-column with respect to a Cartesian coordinate system 

is shown in F ig . 2.1. The x-axis coincides with the longitudinal axis of the beam, the 

7 
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y-axis is along the lateral direction of the beam and the z-axis is along transverse 

direction to the beam. Let u,v and w be the displacements of the geometric center 

0 along the x,y and z axes respectively. Let 6 be the rotation of the cross-section 

about a:-axis. Using the right-hand rule, the rotation 6 is positive as shown in the 

F i g . 2.1. 

Figure 2.1: Coordinate system for the beam-column 

The displacements of a generic point A on the cross-section, located at (x,y, z) 

are related to those of O and approximated as follows: 

dv dw d6 
1 dx 

v-zO 

uA - u-y-

WA = w -f y6 

dx ^ ^ dx 
(2.1) 

(2.2) 

(2.3) 

In F i g . 2.2, only the transverse deformation has been shown. It can be readily 

deduced from this figure that the axial deformation of point A w i l l be reduced by 
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Figure 2.2: A x i a l and lateral displacement relationship 

an amount z$j£ i f the cross-section rotation is assumed to be the slope (shear 

deformation neglected). A similar argument can be employed for the second term in 

Eq.( 2.1) by replacing w and z wi th v and y respectively. The last term in Eq.( 2.1) 

has been included to account for warping of the cross-section due to the rotation 9. 

The nonlinear strain-displacement relationship used in the present study is now 

presented. From the geometry of the F i g . 2.3, after deformation, the change in contour 

length ds can be expressed as 

j 2 ^ J 2u, . 9UA.2 (dvA 2 dwA 2 

ds Kdx [(1 + -^-) + ( ^ ) (2.4) 

Expanding it binomially and neglecting the higher order terms, ds can be written as 

(2.5) 
j , h , duA l,dvA2 1 dwA2  

d s = d x [ l + _ _ + _ ( _ _ ) + - ( — ) ] 

Thus the axial strain e can be expressed as 

e = 
ds — dx duA 1. dvA 1 ,dw As2 

dx ^ ^ *~>  ̂ 2

{ dx ' dx 2 dx 
(2.6) 
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Figure 2.3: Large deformation relationships 

Substituting uAlvA and wA from Eqs.( 2.1), (2.2) and (2.3), the strain displacement 

for a general point in the beam-column is given by 

du d 2v d 26 d 2w 

dx dx 2 dx 2 dx 2  

1 dv d6 x , 1 dw d6 ̂  , 

2.3 Stress-Strain Relationships 

While wood is assumed to behave elastically in tension as discussed earlier in Sec

tion 1.1, many uniaxial stress-strain relationships have been proposed by various re

searchers to model the nonlinear behaviour of wood in compression. These are mostly 

empirical in nature, attempting to theoretically represent the stress-strain relation

ships obtained from laboratory testing of different types of wood. In this section, the 

important stress-strain relationships in compression applicable to wood structures are 
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reviewed first and then the one used in the present analysis is discussed. 

A simple elastic-perfectly plastic bilinear approximation as shown in F i g . 2.4 has 

been used quite often to calculate the ultimate load carrying capacity of wood mem

bers. 

Compression 

Tension 

(a) stress-strain relationship (b) stress distribution 

Figure 2.4: Bilinear elasto-plastic stress-strain relationship 

Yl inen [29] (1956) proposed a simple bilinear relationship, which was used by 

Malhot ra and Mazur [20] (1971) in their research work. This relationship can be 

given as 

e=±[co--(l-c)fcln(\-jJ] (2.8) 

where e is the normal strain, o is the normal stress, fc is maximum compressive stress, 

E is the ini t ia l modulus of elasticity and c is a parameter depending on the shape of 

the curve. As can be readily found out, the curve described by Eq.( 2.8) and shown in 

F i g . 2.5a is tangent to the elastic modulus at the origin and tangent to the ultimate 

compressive stress for large strain. 
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Ylinen(1956) 

fc 
tan0 

E=tana 

O'HalloranCWS) Qlos(1978) 

(a) (b) (c) 

Figure 2.5: Various stress-strain relationships 

Malhot ra and Mazur [20] have used this relationship extensively to predict the 

buckling strength of solid timber columns and described the curve as a good approx

imation to the results of laboratory testing of 144 clear eastern spruce wood having 

different moisture contents. However they have not considered the shape of the curve 

beyond the ultimate load. 

Goodman and Bodig [15] (1971) carried out extensive tests on clear dry wood in 

compression parallel to the grain and reported the test results. O'Hal loran [24] (1973) 

has used these data to propose a mathematical equation for the stress-strain curve at 

various grain angles and grain orientations. This equation has been given in the form 

cr = Ee- Ae n  (2.9) 

where a is stress, t is strain, E modulus of elasticity, A and n are equation constants 

determined by fitting the equation to a given set of experimental data. If the strain at 

peak stress is found to a certain ratio, r, of equivalent strain under elastic conditions, 
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the parameter A and n can be found from 

n = — r—- (2.10) 
r — 1 

a = m 4 ^ < 2-»> 

where fc is the maximum stress. 

A typical plot of the fitted curve is shown in F i g . 2.5(b). The equation cannot be 

used beyond the maximum compressive stress / c , because it drops rapidly to negative 

stress values. O'Halloran claims that this is not a serious problem failing to recognize 

that the shape of the falling branch of the curve is needed to predict the ultimate 

bending strength. It is true that the stress-strain relationship beyond maximum load 

cannot be qualified easily in an axial compression test, because it is largely a function 

of the test machine characteristics and the rate of loading, but a description of stress-

strain behaviour beyond ultimate load is essential to the development of an ultimate 

bending strength theory. 

A simple bilinear proposal by Bazan [2] (1980) has been illustrated in F i g . 2.6. 

Bazan assumed without any supporting argument that the slope of the falling branch 

is a variable which can be arbitrarily taken as that value which produces maxi

mum bending moment for any neutral axis depth. A different assumption used by 

Buchanan [5] (1984) is that the slope of the falling branch is a material property which 

can be estimated as part of the calibration of the computer model to test results. 

A comprehensive study of the stress-strain relationship of timber with defects, in 

compression parallel to the grain, has been made by Glos [14] (1978). On the basis of 

extensive experimental testing, Glos proposed a curve of the shape shown in F ig . 2.5 

which is similar to that reported for clear wood by Bechtel and Norris [4] (1952), 

Moe [21] (1961) and others. The curve is characterized by four parameters as shown 

in F ig . 2.7. The equation of the curve is given by 

f= a (2.12) 
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stress 

/ tension 

strain 
compression / 

(a) stress-strain relationship (b) stress distribution 

Figure 2.6: Bilinear stress-strain relationship proposed by Bazan (1980) 

where 

G4 = 

Is 

6 / 5 ( 1 - £ ) 

G 2 = E 

Is 

where / is the stress, e is strain, E is modulus of elasticity, fc is maximum compressive 

stress, fs is the asymptotic compression stress for large strain and ex is the strain at 

maximum stress. 

Glos has estimated the four parameters to define the shape of the curve from four 

measurable wood properties: density, moisture content, knot ratio and percentage 
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compression wood. Mul t ip le curvilinear regression techniques have been used to ex

press expected values of each parameter in terms of the four properties, using length 

regression equations. 

K o k a [17] (1987) has used the bilinear stress-strain relationship as proposed by 

Bazan [2] and later modified by Buchanan [5] (1984), who pointed out that the slope 

of the falling branch of the stress-strain relationship is considered to be a material 

property. K o k a has used the following relationship 

o = E0e - [E0e + | / c | ( l + m) + m £ 0 e ] ( l - A ( e + |e c |)) (2.13) 

where a is stress, EQ is elasticity modulus, e is strain, fc is maximum compressive 

stress, m is the slope of the falling branch on compression side, ec is the maximum 

strain corresponding to the maximum compressive stress fc and A ( e + |e c |) is the step 

function defined as follows 

e > - | e c | =• A ( e + | e e | ) = 1 (2.14) 

e < -\ee\ A ( e + |e e |) = 0 (2.15) 

The bilinear relationship for different values of m has been shown in F i g . 2.8. 

A further extension of this relationship was made to obtain a more realistic ap

proximation of the stress-strain behaviour of wood in compression parallel to the 

grain by employing an exponential variation on the compression side. O n the tension 

side, the stress-strain varies linearly and elastically up to a maximum tensile stress 

Ft, upon which a brittle failure occurs. 

a = Ee - [Ee - F{e)]{l - A{e)) 

The function F(e) for e < 0 has the form 

F(e) = [-\Po\-m1Ee](l-eft\) 

(2.16) 

(2.17) 
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l«cl 

Plastic failure 

Brittle failure 

IPfJ 

Figure 2.7: Stress-strain relationship used in the present study 

In Eqs.( 2.16) and (2.17) above, o is the stress, E is the modulus of elasticity, e is 

the strain, |po| is the intercept on the stress axis resulting from the extrapolation of 

the tangent to the falling branch of the stress-strain relationship as shown in F i g . 2.7 

and mi is the slope of the falling branch. In Eq.( 2.16), A(e ) is a step function which 

can be defined as follows 

A(£) (2.18) 
1, i f £ > 0 

0, if £ < 0 

In Eq.( 2.16) only the three parameters E, fc and mj need be specified. The re

maining parameters of the equation can be calculated in the following manner. From 

Eq.( 2.16), for e = e c the following expression can be readily obtained 

[-\p0\-m1Eec)(l-e%\) = -\FJ (2.19) 

Differentiating Eq.( 2.16) with respect to e and substituting e — £ c , the following 
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c j 

stress 

/ tension 

t 
strain 

compression / 

/ 
m>0 ... / 
m-0 . -
m<0 , 

m=-1 

Figure 2.8: Bilinear stress-strain relationships for various m as used by K o k a 

equation can be obtained 

- mxE(\ - e - l ^ k c | ) + (|po| - mxE\ec\)^-e-^^ 
bo I 

= 0 (2.20) 

From Eq.( 2.19), 
Fc bo | - m\E\ec 

Fc (2.21) 

Defininig 

x = e (2.22) 

and taking the logarithm of both sides, 

Inx = 
E l l 

- b o T | £ c l 

(2.23) 

Substituting x into Eqs.( 2.20) and (2.21), and rearranging terms, 

—miE(\ — x) + 
Fc E 

— — — x - 0 
1 - x \p0\ 

(2.24) 

Since from Eq.( 2.24), |p 0 | c a n he written as 

bol = \FC 

X 
(2.25) bol = \FC mx(l — x) 2  
(2.25) 
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finally, from Eqs.( 2.20) and (2.25), 

x(l + m i ) + m-[xlnx — mj (2.26) 

For a given mi, x can be computed and from Eq.( 2.23) the maximum strain |e c | 

corresponding to the maximum stress Fc can be written as 

| £ c | = _ % i / n z (2.27) 
hi 

A simple iterative scheme employing Newton's method can be used to determine the 

unknown from Eq.( 2.26). Defining the function ip as 

V> = x(\ + mi) + mixlnx — mi (2.28) 

following the usual procedure in Newton's method, the following iterative equation 

can be obtained 

_ x , ( l + mi) + mixjnx, - mi 

1 + 2mi + milnxi 

A typical stress-strain plot used in F E N M B C has been shown in F i g . 2.9, correspond

ing to E = 1 4 , 0 0 0 M P a , m ! = 0.25, Fc = UQMPa. 

The stress-strain relationship used in this study is a better representation of exper

imental results, as it can have a continuous curvilinear and smooth peak as opposed 

to the abrupt change of curvature in the simple bilinear stress-strain relationship.The 

falling branch can have different slopes and the failure in compression can be easily 

programmed. Also, the drawback of falling rapidly to negative values of the expo

nential stress-strain relation, as given by O'Hal loran [24], has been taken care of by 

the variable slope m i . 

2.4 Virtual Work Equation 

The Principle of Vi r tua l Work has been used to determine the governing equilibrium 

equations of the beam-column. If we apply a vir tual displacement 6a to the system, 
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compatible with boundary conditions, the resulting internal work (6U) and external 

work (8W) done by the stresses and the external forces respectively are given as 

SU = jv8e TodV (2.30) 

8W = Js8a TFdS (2.31) 

where the internal work is integrated over the entire volume V and the external work 

is integrated over the surface area S. F is the external force acting per unit surface 

area. The principle of vir tual work states that internal and external work must be 

equal: 

J 8e TadV = Jv 8a TFdV (2.32) 
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Figure 2.9: Exponential compressive stress-strain relationship used for F E N M B C 



CHAPTER 3 

Finite Element Formulation 

The basic concept underlying the finite element method is that a structure can be 

modelled analytically by subdividing it into a finite number of elements. W i t h i n 

each finite element, a set of functions are assumed to approximate the stresses or 

displacements in that region. The set of approximating functions contain unknown 

parameters and are chosen to ensure continuity throughout the system. Appl icat ion 

of the principle of vir tual work results in a system of algebraic equations for the 

parameters in the approximating functions. 

Although finite element formulation can be based either on stress fields or displace

ment fields, most often a displacement based finite element formulation is applied. 

Such an approach is followed here. Correspondingly, the treatment for the complete 

structure is then accomplished by studying the stiffness matrices for the elements. 

The steps involved in a linear finite element analysis are 

1. Discretization of the body into finite elements. 

2. Evaluation of element stiffness matrices by deriving nodal force-displacement 

relationship. 

3. Assemblage of the stiffness and force matrices for the system of elements and 

nodes. 

4. Introduction of boundary conditions. 

5. Solution of resulting equations for nodal displacements. 

21 



Chapter 3: Finite Element Formulation 22 

6. Calculation of strains and stresses based on nodal displacements. 

In case of nonlinear finite element analysis, an incremental/iterative technique is re

quired. The stiffness matrix calculated above is either updated for each load increment 

or the same stiffness matrix is used until the solution displacement vector converges. 

These procedures wi l l be discussed in detail later in this chapter. 

3.1 Finite Element Discretization 

The beam-column arrangement and the finite element discretization is shown in 

F i g . 3.1. The span is subdivided into elements of length A . The layers for each 

element are further subdivided into windows of length Ato.The numbering of layers 

has been done from top to bottom. The elements are numbered from left to right 

and so are the windows inside every element. The nodes are also numbered from left 

to right. The material properties within each window are assumed to be constant 

and thus, a finer division would allow closer representation of a continuous variation 

of material properties along the span. The same could be achieved by employing a 

larger number of elements without windows, but then a larger stiffness matrix would 

be obtained. Thus while keeping the size of the stiffness matrix wi thin reasonable 

limits, the concept of windows permits consideration of the continuous variation of 

the material properties along the span. This results in increased efficiency of the 

program while solving for the displacements and stresses. Also, as this program is 

to be used for the ultimate load analysis involving material and geometry nonlineari-

ties, the smaller the stiffness matrix, the greater the savings of computer time in the 

overall solution. 
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Figure 3.1: Fini te element discretization of the beam-column 

3.2 Problem Formulation 

A beam element of length A with two end nodes, as shown in F ig . 3.2, is used in this 

formulation. A local coordinate <f (— 1 <<f < l ) i s used for each element along the 

x-axis. The x-coordinate of any point inside the element can be expressed as 

A , 
(3.1) 

where xc is the x-coordinate of the center of the element length. The element has 

been divided into a number of windows (NW) of equal length, hence 

A 
Aw -

NW 
(3.2) 

A second local coordinate 7;( — 1 < 77 < 1) is used within a window. A transforma

tion function relating n inside the window and £ is required (refer to F i g . 3.2), since 

numerical integration has to be performed inside every window and summed over the 

number of windows and the number of layers to obtain the element stiffness matrix. 
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4 -+i 

node 1 <> node 2 

4W 

r - 1 • + 1 

Figure 3.2: Local coordinate system for the element and the window 

Thus, for the i t h window, F ig . 3.2, 

A A 
xi = xc - — + (i - l ) A t u = z c + — 6 

%2 = %c ~ + *Aio = a:c + y f 2 

A Aw A, 
XQ = x c - — + IAW — = xc + —£o 

From the above we can calculate £i,Cj2 and £o as 

= | ( . t - l ) A « ; - l 

6 

Also 

—iAw — 1 
A 
2 A  A W 1 

— tAw 1 
A A 

fc - 6 Au> 
2 A 

Hence we can write £ in terms of 77 as 

2 A u ; A w 

A 

Atw 
- 1 ) + ^ 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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The displacement vector consists of nodal degrees of freedom u,v, w, 8 and their first 

derivatives u',v',w' and 9' respectively. Thus there are eight degrees of freedom 

(dof) per node giving a displacement vector of sixteen dof for a beam element. The 

displacement vector is arranged according to the following form: 

a T = {uuu[,vuv[,wuw[,91J[,u2,u2,v2,v2,w2,w'2,92,92} (3.7) 

where the subscripts 1 and 2 refer to node 1 and node 2 respectively. 

3.3 Interpolation Functions 

To satisfy the completeness criterion, the assumed displacement field must be at least 

a complete polynomial of order equal to the highest derivative occurring in the strain-

displacement relationship. Also the displacement function must be continuous within 

the element and the displacement must be compatible between adjacent elements. 

The compatibility condition is ensured if the displacement field is continuous on 

the inter-element boundary upto the derivative of one order less than the highest 

derivative appearing in the strain-displacement relation. 

For the beam-column element the strain-displacement relationship contains sec

ond derivative in lateral displacements and twist and the first derivative in axial 

displacement. Hence it is necessary to choose the displacement function such that 

u,u',v,v' ,w,w' ,9 and 9' are continuous at nodes. This can be achieved by adopting 

linear displacement field for u and cubic displacements for other degrees of freedom. 

However, complete cubic interpolations are used to approximate u,v,w and 9 

within each element. In an earlier work by K o k a [17], which employed this element, 

it was found that a cubic interpolation function for u gives a much improved approx

imation of the axial stresses. A complete cubic polynomial requires 4 parameters 

to define the function.The displacements and their first derivatives at the two nodes 

provide sufficient parameters to fully describe a cubic polynomial function. Thus we 
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can write u, u, w and 6 as 

du du 
u = N L U I + N2{—)i + N3UJ + NA{—)j (3.8) 

dv dv 
v = N^ + ^i—^ + NzVj + N^ — h (3.9) 

dx dx 

w = + N2(^){ + N3Wj + N*^), (3.10) 

9 = A ^ , . + + JV 3 0 j + J V 4 ( £ ) > (3.11) 

where subscripts i and j refer to the first and second nodes respectively of each 

element. Also 

N i  = ( 3 - 1 2 ) 

^3 = ( | + f f - ^ 3 ) (3-14) 

N4 = | ( - i - £ + ^ + f ) (3.15) 

Alternatively we can write these as 

u = P T ( 0 a « ' = P i T ( 0 a (3.16) 

t, = Q T ( £ ) a i ^ Q ^ a t>" = Q 2

T ( c > (3.17) 

u; = R r ( 0 a w' = R i T ( e ) a = R 2

T ( 0 a (3.18) 

6 = S r ( £ ) a 0' = S i T ( O a 0" = S 2

r ( O a (3.19) 

where single primes denote first derivatives with respect to x and double primes 

denote second derivatives with respect to x. P , Q , R , S, P i , Q i . . . etc. are vectors as 

given below 

P T = {NuN2l0,0,0,0,0,0,^3,^4,0,0,0,0,0,0} (3.20) 

P x r = {N[, ^ , 0 , 0 , 0 , 0 , 0 , 0 , ^ , ^ , 0 , 0 , 0 , 0 , 0 , 0 } (3.21) 

Q T = { 0 , 0 , ^ , ^ 2 , 0 , 0 , 0 , 0 , 0 , 0 , ^ , ^ 4 , 0 , 0 , 0 , 0 } (3.22) 
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Q i T = { 0 , 0 , ^ , ^ , 0 , 0 , 0 , 0 , 0 , 0 , ^ , ^ , 0 , 0 , 0 , 0 } (3.23) 

Q 2

T = {0,0, ^ " , ^ ' , 0 , 0 , 0 , 0 , 0 , 0 , ^ ' , ^ ' , 0 ,0,0,0} (3.24) 

... etc. 

where Nx, N2, N3, N4 are as given earlier and N{, N^, N!$, N'4 are the first derivatives 

and N", N?, N£, N% are the second derivatives with respect to x. 

3.4 Virtual Work Equations 

From Eq.( 2.7), the strain can now be written in the following form 

e = [ P i r -yQ2

T + y z S 2

T - z R 2

T ] a 

+ ^ a T [ ( Q i - * S i ) ( Q i r - 2 S X

T ) + ( R i + y S i ) ( R i T + y S i r ) ] a (3.25) 

= B o T a + i a T B i a (3.26) 

where 

B 0 = P i - 2/Q2 + yzS2 - 2R2 (3.27) 

B1 = ( Q i - 2 S 1 ) ( Q i T - z S 1

T ) - r ( R i + j / S 1 ) ( R 1

T - r j / S 1

T ) (3.28) 

B o corresponds to the linear part of e and B i to the nonlinear. 

App ly ing a virtual displacement 6a, as a —* a + A<5a, the following can be obtained 

e(A) = B 0

T ( a - f A<5a) + ^ ( a T + A<5a T )B 1 (a + A6a) 

= B 0

T a + A B 0

T 6 a + ^ a T B i a + ^ ( 5 a T B i a 
Zj Li 

+ ^ a r B i * a + y<5a r Bi<5a 

Thus the vir tual strain can be written as 

6e = (^)x-.0 = B o ^ a + ^ B i a + i a ^ a 

= B 0

r <5a + i a T B i T ( 5 a + ^a T Bi<$a 
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= ( B 0

r + ^ a r B x + ^ a r B 1

r ) 6 a 

= (B0

T

 + a T(^±^))8a (3.29) 

and since B i is symmetrical (refer E q . 3.28) i.e. B i = B i r , Eq.( 3.29) can be written 

as 

8e = ( B 0

T + a T B 1 )<5a (3.30) 

The stress a can be written as ( from E q . 2.16 ) 

a = £ ( B 0

T + ^ a T B i ) a + G(£) (3.31) 

where 

G(e) = -[Ee - {-\Po\ - m^e}^ - e W £ ] ( l - A(e)) (3.32) 

da can be written as 

da = E{B0

T + a T Bi)<5a + H{e)(B0

T + a TB1)8a (3.33) 

where 

dG{e) 
H(e) 

de 

= ( - £ - m , £ ( l -eMic~Co)) 

- ( - | p o | - mxE(e - e0))^e^ ( e- £ o ) (3.34) 
IPol 

Hence the vir tual work equation can be written as 

Jv 8e TadV - J 8a TFdS = 0 

or 

f 6a T{B0 + &xa)c-dV - [ 8a TFdS = 0 (3.35) 
Jv Js 

Since this must hold for any 6a, 

j ^ ( B 0 + B i a ) < 7 < n / - JsFdS = 0 (3.36) 
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Thus we can write a function 0(a) as 

0(a) - Jv{B0 + Bla)adV - JsFdS (3.37) 

The solution vector a must satisfy 0(a) = 0. To find this solution an iterative proce

dure is used. The Newton-Raphson method is a commonly used iterative technique to 

solve non-linear equations. It uses a truncated Taylor series expansion of the function 

0(a) 

0 ( a + A a ) = 0(a) + [ ^ ] A a (3.38) 
da 

or 

A a = 0(a + A a ) - 0 ( a ) [ ^ ^ ] - 1 (3.39) 
aa 

Setting 0(a + A a ) = 0, 

A a = a 1 + 1 - a, = (3.40) 

or 

a , + 1 = a, - [K r]-V(a,) (3.41) 

Since 

60(a) = J BxSaLardV + J (B0+ B1&)6adV 

= JvaB16a +Jv[(B0 + B1a)(E + H(e)}(B0

T+ a TB1)6a (3.42) 

Hence the tangent stiffness matrix can be written as 

[ K T ] = Jv[BiEBo Ta+^B1Ea TB1a + B0EBo T+ B0Ea TB1 

+ B i a £ B o T + B i a £ a r B i + B 0 H ( e ) B 0

T + B o # ( e ) a r B ! 

+ B 1 a / / ( e ) B 0

r + B 1 a J r Y ( e ) a T B 1 + BxG(e)}dV (3.43) 
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This tangent stiffness matrix is computed for each window and summed over the 

layers to find the element stiffness matrix. These are then assembled to obtain the 

global stiffness matrix. 

Each value in the incremental solution vector A a is compared against an accept

able tolerance specified by the user and it is determined whether further iteration is 

needed to obtain a sufficiently accurate solution vector a. 

3.5 Method of Computation 

The Cholesky decomposition method is used in this program to invert the global 

stiffness matrix [K<sr] and to determine the solution displacement vector a. The 

symmetrical and the banded character of the tangent stiffness matrix is utilised and 

only the band in the lower triange of the matrix is computed. After entering the 

boundary conditions, the [Kj] matrix is decomposed and the incremental solution 

displacement vector A a is obtained using the residual load vector 0(a,). A flowchart 

for the computation is given in F i g . 3.3. 
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Figure 3.3: Flowchart for iterative technique using Newton-Raphson Method 
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3.6 Numerical Integration 

Recourse must be made to numerical integration methods to obtain the matrix [ K j ] . 

Gauss quadrature allows the integral / to be computed as 

/= f f (£)% = £, Witt (3-44) 

where £, are fixed abscissae and Hi corresponding weights for the n chosen integration 

points. If a polynomial expression is to be integrated, it is easy to see that for 

n sampling points, there are 2n unknowns (Hi and £,) and hence a polynomial of 

degree (2n — 1) could be constructed and exactly integrated. The error thus is of the 

order of 0(A 2 n). In the present problem, since there are terms involving x,y and z, 

a Gaussian integration scheme is employed, which is of the form 

1  = LLLj^^OdZdndC 
nl n2 n3 

= E E E W * / ( f n 1 ; . ( 0 (3-45) 
fc=ij=ii=i 

where n l , n2, n3 are number of integration points in x, y and z directions respectively. 

In the present case the integral I is of the form 

1 = Jo J-zJo f( x>yi z) d x dy d z ( 3- 4 6) 

L / - i L i v ' (WWt (3-47) 

AwBT /•! 

2 2 2 
AwBT  n l  n 2  n 3  

, 9 9 E E E W J ( ( , ^ a ) (3-48) 
z z z k=\j=i i=i 

where Aw is the length, B the width and T the thickness of each window. 

As was pointed out earlier, n Gauss points integrate a polynomial of the order 

(2n — 1) exactly. In the stiffness expression in E q . 3.43, there is a polynomial of order 8 

in the x—direction, of order 4 each in y— and z—directions. Hence a 5-point Gaussian 

integration in x-direction and a 3-point Gaussian integration in y- and z-directions are 

needed respectively. However it is important to note that in the program F E N M B C 
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there is a flexibility of choosing the number of Gauss points from 1 to 5. This has 

been done because the program can handle multilayered beam columns and a number 

of windows within an element, to take care of the continuous variation of material 

properties along the span. 

For example, if there is a beam column with 8 layers and 5 windows per element, 

one Gauss point in both x- and z-directions would give fairly accurate results as shown 

later. Also depending on the orientation of the loading the number of Gauss points in 

y- and z-directions should be suitably selected. For example if there is a distributed 

load in the z-direction on a beam column with only one layer, three Gauss points in 

z-direction and one Gauss point in ^-direction would give accurate results. However 

if the applied load is acting in the y-direction then three Gauss points in y-direction 

and one Gauss point in z-direction would suffice. In case of biaxial loading, sufficient 

number of Gauss points should be chosen in both y- and z-directions. Thus one has 

to be careful in choosing the number of Gauss points in various directions. 

F ina l ly it should be mentioned that since numerical integration has been employed, 

stresses and strains can be determined only at the Gaussian points. If stresses and 

strains are needed at other points, a suitable interpolation may be employed. 

3.7 Convergence Criterion 

A n Euclidean norm criterion has been used to check the convergence at every load 

step. If ar is the solution vector at the end of r t h iteration and a r + 1 is the solution at 

the end of (r + l) t k iteration in F i g . 3.4, then A x = |a r+i — ar \ represents the difference 

between the two displacement vectors. | a r | and |a r +i | can be given as follows 
NDOF 

K l 2 = E «?(«') 
i=i 

NDOF 

:=1 
where ar(i) and aT+i(i) are components of ar and a r + i respectively. 
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a r+1"a r 

^ ^ ^ ^ a r + 1 

0 

Figure 3.4: Convergence criterion 

Then A a can be written as 

A a = E y/(ar+i{i)-ar(i)y 
i=l 

(3.49) 

The convergence criterion for this norm is given as 

A a 
— T T < specified tolerance 
\ar\ 

(3.50) 

3.8 FENMBC—the Computer Program 

A computer program called F E N M B C (Finite Element Nonlinear analysis of Multilayered 

Beam Column) based on the above finite element formulation was developed. It is 

a. versatile finite element program capable of analyzing a 3-dimensional multilayered 

beam-columns with numerous possibilities in terms of geometric, material properties 

and loading conditions. Extensive numerical testing was done and some of the results 

have been reported in the next chapter. 



CHAPTER 4 

Verification and Numerical Results 

Numerical results obtained from F E N M B C were compared with analytical, experi

mental or numerical results published in the literature, whenever possible. The cases 

presented below involve geometric nonlinearity, material nonlinearity, biaxial bend

ing, buckling, lateral stability and torsion. These cases have been tested for both 

single as well as multilayered beam-columns and the results are reported here. 

The program F E N M B C has been implemented and tested on a mainframe, A m 

dahl 5840, a Sun 4/260 workstation and an A S T 286 Premium ( I B M P C - A T compat

ible) at the University of Br i t i sh Columbia. Double Precision (Real*8) arithmetic is 

used throughout the program to reduce the effect of round-off. 

The program has the capability of handling 20 layers, 20 elements and 10 windows 

per element. Each window can have a maximum of 5 Gauss points in the three 

principal axes directions. The dimensions in the program can be easily modified to 

accomodate a greater number of layers, elements, windows and Gauss points. 

The large deflection results given by Timoshenko [25] for beam-bending were used 

to verify the program's numerical results. 

4.1 Fixed Ended Beam Under Uniform Load 

The numerical results for a fixed ended beam were obtained. The data for the beam 

have been given below. 

Timoshenko used the energy method to obtain an approximate solution for a plate 

35 
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MQht>0.125 

Figure 4.1: Data for Timoshenko's fixed ended beam bending problem 

with fixed edges. He obtained the total strain energy of the plate by adding the energy 

due to bending and the energy due to the strain of the middle surface and then used 

the principle of virtual work. He used the following displacement functions satisfying 

the boundary conditions imposed by the clamped edges for a rectangular plate with 

sides 2a and 2b. 

u = (a2 ~ x2){b2 - y2)x{b00 + b02y2 + b20x2 + b22x2y2) (4.1) 

v = (a2-x2)(b2 -y2)y{co0 +Co2y2 + c20x2 + c22x2y2) (4.2) 

w = (a2-x2)2(b2-y2)2{a00 + a02y2+ a20x2) (4.3) 

The values of all the parameters were estimated for various intensities of the load q and 

for different aspect ratios | , assuming v = 0.3. The results reported for an infinitely 

long plate (for | = 0) have been used to compare with the results of F E N M B C . 
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4.1.1 Finite Element Results 

The program F E N M B C was run using the data shown above with some additional 

data required for the program: number of layers nlayer = 1, number of windows 

nwindo — 3, number of Gauss points along span in x-direction ngauss = 5, number 

of Gauss points along the width in y-direction ngausy = 2, Number of Gauss points 

along the depth in z-direction ngausz — 5, slope of the compression curve m\ = 0.2, 

and high values for maximum allowable tensile and compressive stresses of Fc = 6.0 x 

l0 1 5N/m 2 and Ft = 6.0 x 1 0 1 5 i V / m 2 to ensure full elastic behavior. The distributed 

load in the z-direction was given as qz = 10.7315./V/m and the number of load steps 

was specified as 16 for a smooth load-displacement relationship. The results have 

been tabulated in Table 4.1 and subsequently shown graphically in F i g . 4.2. The 

program F E N M B C ' s results are in good agreement with Timoshenko's results. 

In the Table 4.1, the theoretical linear, Timoshenko's nonlinear and F E N M B C ' s 

nonlinear results have been presented, q is the uniformly distributed load, / is the 

span, D — EI, where E is modulus of elasticity and / is moment of inertia of the 

beam cross-section along y-axis, h is the depth of the beam and wmax is the maximum 

displacement in z- direction. From Table 4.1, It should be noted that the order of 

accuracy is quite good even with 6 elements as compared to 20 elements. 
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Table 4.1: Comparison of Timoshenko and F E N M B C solution for large deflection 
beams 

Linear Timoshenko FENMBC FENMBC FENMBC 
theoretical nonlinear nonlinear nonlinear nonlinear 

6 elements 10 elements 20 elements 

Dh ^ Wrnnr j 

0.0 0.0 0.0 0.0 0.0 0.0 
10.0 0.4166667 0.40 0.4081488 0.4082008 0.4082064 
20.0 0.8333333 0.62 0.6828256 0.6832096 0.6832456 
30.0 1.2500000 0.84 0.8791920 0.8798320 0.8799200 
40.0 1.6666667 0.98 1.0311120 1.0321920 1.0323440 
50.0 2.0833333 1.10 1.1571440 1.1586880 1.1589200 
60.0 2.5000000 1.21 1.2654880 1.2675280 1.2678400 
70.0 2.1966667 1.31 1.3610000 1.3635520 1.3639520 
80.0 3.3333333 1.39 1.4467600 1.4498240 1.4503200 
90.0 3.7500000 1.47 1.5248480 1.5284240 1.5290160 
100.0 4.1666667 1.54 1.5967040 1.6007920 1.6014800 
110.0 4.5833333 1.62 1.6634000 1.6680080 1.6688000 
120.0 5.0000000 1.67 1.7257520 1.7308720 1.7317680 
130.0 5.4166667 1.73 1.7861440 1.7917760 1.7927760 
140.0 5.8333333 1.79 1.8413200 1.8474560 1,8485600 
150.0 6.2500000 1.84 1.8937040 1.9003360 1.9015520 
160.0 6.6666667 1.90 1.9436160 1.9507440 1.9520720 
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Figure 4.2: Comparison of Timoshenko's and F E N M B C ' s large beam-bending 
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4.2 Other Test Cases 

Other cases were run and the results have been reported below. These have been 

compared with the linear beam bending and beam column theories for lack of available 

nonlinear results. The same two data sets were used throughout the investigation 

unless otherwise specified. The first data set contained 10 layers wi th their elasticity 

modul i placed symmetrically wi th respect to the y-axis on the beam cross-section 

as shown i n F i g . 4.3. The second data set contained 10 layers wi th their elasticity 

modul i placed asymmetrically with respect to the y-axis of the beam cross-section as 

shown in F i g . 4.3. 

M.O.E.(kN/m*) M.O.E.(kN/m») 
0.14e+08 0.066+08 
0.12e+08 0.066+08 

E 0.106+08 E 0.086+08 
E 
9 
© 

0.086+08 ^ 
0.066+08 

0.086+08 E 
9 
© 

0.086+08 ^ 
0.066+08 0.106+08 

in 
k_ 
Q> 

0.066+08 |2 0.106+08 
>. 

0.086+08 J2 
0.126+08 

o 0.106+08 0.126+08 

0.126+08 0.146+08 

0.146+08 , 0.146+08 

150 mm 150 mm 

(a) Data set i (b) Data set II 

Span L= =6.0 m (unless otherwise specified) 

Maximum allowable tensile stress f\ =0.4e+08 N/m2 

Maximum allowable comp. stress FQ =0.4e+08 N/m2 

Slope of the comp. curve m == .25 

Figure 4.3: Data for the test cases 
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4.2.1 Simply Supported Multilayered Beam under Biaxial 

Loading for Data-set I 

The case of a multilayered beam with data-set I as shown in F i g . 4.3 with concen

trated loads in y- and z-directions (refer F i g . 4.4) was run. The additional data re

quired for running F E N M B C were: nelem = 10, nwindo = 3,ngauss = 3,ngausy = 

b,ngausz = 5. The maximum tensile and compressive stress values was taken as 

4 . 0 x l 0 l o / V / m 2 for al l the layers.The concentrated loads were Py = l . O x 10 6 A^andP 2 = 

1.0 x 1 0 6 N . The displacement results have been reported in F i g . 4.4. The total tensile 

stresses comprising of biaxial bending stresses and axial stresses at the Gauss point 

located at nelem — 6,nlayer = 10,nwindo = l,ngauss = l,ngausy = 5,ngausz = 5 

has been shown in F i g . 4.5. 

The linear deflections v and w were calculated from the linear beam bending the

ory using the method of transformed cross-section for comparison with the nonlinear 

results obtained from F E N M B C . The nonlinear displacements v and w are the max

imum displacements (at node no. 6) and are the same for al l the layers. As both 

the ends are hinged, the displacements converge to a lower value from the linear dis

placement values due to stiffening of the beam resulting from the large deformation 

terms. 

The rotation 0, as obtained in the result shown in F ig . 4.4, needs some explana

tion. For symmetric loading in biaxial bending of beam finite element model, one 

would usually expect displacements only in transverse and lateral directions. In the 

present case of biaxial bending of a simply supported rectangular multilayered beam, 

the support condition may be thought of as a knife-edge support. The loadings in 

transverse and lateral directions are applied incrementally. The load in y-direction, 

APy, produces a displacement Av. As the first load increment APZ is applied, there 

exists a moment A M . = APZ x Av, which causes a rotation in the beam cross-section 

along x-axis. Also the force APZ produces the displacement Aw in z-direction. As 
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the loads are incremented gradually, the rotation also increses. In the mathematical 

formulation of the stiffness matrix given by the E q . 3.43, the rotation comes from the 

coupled terms involving S i and S2, these being the derivatives of the shape functions 

for 6. The odd terms in y and z after integration cancel out due to the symmetry of 

layers, however, the even terms add up and produce the desired rotational deforma

tion. The total tensile stresses are seen to be linear as indeed they should be, since 

they are in the tensile zone below the maximum tensile stress FT-
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Figure 4.4: Displacement results for biaxially loaded multilayered beams for data 
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Figure 4.5: Stresses for biaxially loaded multilayered beams for data-set I 
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4.2.2 Simply Supported Multilayered Beam under Biaxial 

Loading for Data-set II 

The other multilayered beam with data-set II as shown in F i g . 4.3 with concen

trated loads in y- and z-directions (refer F ig . 4.6) was run. The additional data re

quired for running F E N M B C were: nelem = 10, nwindo — 3,ngauss = 3,ngausy = 

5,ngausz — 5. The maximum tensile and compressive stress values was taken as 

4.0 x 1 0 l o / V / m 2 for all the layers.The concentrated loads were Py = 1.0 x 10 6./VandP* = 

1.0 x 1067V. The displacement results have been reported in F i g . 4.6. The total tensile 

stresses comprising of biaxial bending stresses and axial stresses at the Gauss point 

located at nelem = 6,nlayer = 10,nwindo — l,ngauss = l,ngausy = 5,ngausz = 5 

has been shown in F ig . 4.7. 

The linear deflections v and w were again calculated from the linear beam bending 

theory using equivalent cross-section. The transverse and lateral deflections resulting 

from the rotation 6 were ignored in this calculation due to their small magnitude. 

The nonlinear displacements v and w again converge to a. lower value from the linear 

displacement values as discussed earlier. The rotation 6 in this case results from the 

torsional rigidity as explained in Section 4.2.1 as well as due to asymmetric placement 

of the beam layers in data-set II. The total tensile stresses are seen to be linear again, 

as they are in the tensile zone below the maximum tensile stress Fj. 
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Figure 4.6: Displacement results for biaxially loaded multilayered beams for 
data-set II 
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Figure 4.7: Stresses for biaxially loaded multilayered beams for data-set II 
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4.2.3 Eccentric biaxial loading on Simply Supported Beam 

for Data-set I 

The multilayered beam with data-set I as shown in F i g . 4.3 wi th eccentrically located 

concentrated loads in y- and z-directions (refer F i g . 4.8) was run. The additional data 

required for running F E N M B C were the same as in Section 4.2.1 with eccentricities 

ey = 20mm and ez = 20mm. The displacement results have been reported in 

F i g . 4.8. 

The nonlinear displacements v and w again converge to a lower value from the 

linear displacement values as expected. A t the beginning the rotation 0 is zero as 

are the loads applied. However as the first load increment is applied, 0 takes on 

a negative value. As can be seen from the loading in the F i g . 4.8, the moments 

produced at the centroidal axis of the beam due to the two eccentric loadings are 

in opposite directions. Depending on the load magnitude, eccentricity and torsional 

rigidity, a negative rotation occurs on applying the first load increment. As the load is 

increased, the rotation also gets affected by the displacements v and w as explained in 

Section 4.2.1. The interaction of these moments produces the rotational deformations 

as shown in F i g . 4.8. The stress-strain diagram has not been included here as the 

tensile and compressive stresses are sti l l in the linear elastic range. A n example of 

nonlinear stress-strain behavior under biaxial loading has been discussed later in this 

chapter. 
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Figure 4.8: Displacement results for simply supported multilayered beams under 
eccentric biaxial loading for data-set I 
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4.2.4 Simply Supported Beam-Column with axial loading 

having eccentricity in y-direction for Data-set I 

The program F E N M B C was tested for buckling and the results were compared with 

Euler buckling loads for an equivalent cross-sectional area and a mean elasticity mod

ulus E. The Euler buckling load thus calculated was PE = 173.49&./V. A n axial load 

was applied with a very small eccentricity in the y-direction, and increased in steps 

of 8.6754kN. As the load increases, the deflections become larger and finally the 

beam-column fails due to instability as it approaches the Euler buckling load. This 

demonstrates the program's capability to analyse beam-columns for buckling failures. 

The results have been reported in F ig . 4.9. 
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Figure 4.9: Displacement results for simply supported multilayered beam-col 
with axial loading having eccentricity in y-direction for data-set I 
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4.2.5 Simply Supported Beam-Column with axial loading 

having eccentricity in y-direction for Data-set II 

The program F E N M B C was further tested with data-set II for buckling and the results 

were compared with Euler buckling loads for an equivalent cross-sectional area and 

a mean elasticity modulus E. It should be noted, however, that the centroidal axis 

and the shear center axis do not coincide and the theoretical buckling load can be 

calculated using the transformed cross-section method. However, ignoring this fact, 

the Euler buckling load was calculated just to have an idea of the magnitude and was 

found to be PE = l73A9kN and was applied with a very small eccentricity in the 

y-direction. The results have been reported in F i g . 4.10. 
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Figure 4.10: Displacement results for simply supported multilayered beam-column 
with axial loading having eccentricity in y-direction for data-set II 
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4.2.6 Simply Supported Multilayered Beam with a Nonlin

ear Compression Zone 

The data-set I was used to test the response of the multilayered beam in the nonlinear 

compression zone. In the data-set I, the maximum allowable compressive stress values 

were divided by 100 to force the compressive stresses to fall in the nonlinear range. 

The loading and boundary conditions have been shown in F i g . 4.11 along with the 

deflections v and w. Once again the nonlinear deflections converge to lower values 

compared to the linear deflections due to the stiffening of the beam. This case was run 

to test the response of the multilayered beam in the nonlinear range. The stress-strain 

plot has been shown in the F i g . 4.12. Defining failure criteria for the beam-column 

in tensile as well as compression zone, the program can be used to predict member 

strengths and stability. 
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Figure 4.11: Displacement results for simply supported multilayered beams with a 
nonlinear compression zone 
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Figure 4.12: Stress-strain curve for simply supported multilayered beam with a non
linear compression zone 



CHAPTER 5 

Summary, Conclusions and Scope for Future 

Research 

5.1 Summary and Conclusions 

A direct vir tual work formulation of multilayered beam-columns is developed incor

porating geometric as well as material nonlinearities. F in i te element total and incre

mental equilibrium equations are derived based on the assumed displacement model. 

This method has been used to examine the strength and stability of glued-laminated 

beam-columns. The computer program developed has been verified and tested for 

several beam-column problems. The generality of the model makes it a powerful and 

versatile tool for solving a large variety of problems. 

The most important question for the user of the finite element method is whether 

the method yields sufficiently accurate results for his purpose. As conforming ele

ments have been used for displacement functions satisfying completeness criteria, any 

desired degree of accuracy, with the limitations of finite element being an approximate 

method, could be obtained with suitably modifying the dimensions in the program. 

As in any other approximate numerical method, engineering judgement should be 

exercised in interpreting the results obtained by the finite element method since ac

curacy of the results depends on the assumptions employed in the formulation and 

the limitations of the material idealization. 

Since the finite element model developed in the present study is quite general 

57 
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in its application to glued-laminated beam-columns, it is now possible to carry out 

parametric studies for the codification of design procedures to include instability and 

effects of plastic members for realistic loading and material response. 

5.2 Scope for Future Research 

The present model does not include shear deformations in its formulation and hence it 

may not give very accurate results for short and stocky beam-columns. A n inclusion 

of shear effects would enhance its capabilities. 

A load path dependent plastic response of the material would make the model more 

realistic in terms of predicting long term behavior of the beam-column undergoing 

load reversals. A n inclusion of creep behavior of wooden members may be required. 
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