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Abstract 

The wide spread use of limit states design procedures in both the Canadian and Amer

ican steel design codes has created a need for a better understanding of how structures 

behave. Current design practice, however, allows and often encourages engineers to use 

an approximate linear analysis to determine the member forces in a structure. This is 

then followed by an even more approximate amplification of forces through the use of 

several design equations. It is believed that this practice is no longer acceptible as more 

accurate second-order computer programs have become a very practical alternative. 

With this as motivation, this thesis will provide a comparison between a second-order 

computer program available at the University of British Columbia called U L A (Ultimate 

Load Analysis) and the Canadian and American building code designs, CAN3-S16.1-M84 

and L R F D 1986 respectively. 

It was felt that U L A should be verified, even though the theory it is based on is 

well established. Thus, U L A was used to generate a load versus L/r curve for a pin 

ended column (with the parameters modified slightly to allow direct comparison with 

the curves available in the codes). U L A was then used to predict load-deflection curves 

for two existing test frames. The resulting curves compared well with the test data. 

To ensure simplicity, the building codes make several approximations in the derivation 

of their design equations. This results in the equations being applicable to a very narrow 

range of structures. Specifically, the equations apply to rigidly connected frames in which 

all of the columns reach their critical buckling load simmultaniously. Consequently, the 

results from U L A were compared to the codes for structures of this type. It was found 

that the codes were conservative for these structures in relation to the results from U L A , 

ii 



yet the amount of conservatism varied greatly between structures. That is, the codes are 

not consistant in how conservative they are. Results from ULA were then compared to 

the codes for structures that do not satisfy all of the code limitations. Alhough using the 

codes to design structures beyond the limit of applicability is not a recommended practice, 

engineers do use the codes to design all types of structures, with little appreciation for 

the applicability limits. Consequently, it was deemed appropriate to extend this study to 

such structures. Though only a few were investigated, it was found that the codes were 

unreliable, being highly conservative, very accurate, or in one case highly unconservative 

when compared to the results from ULA. 
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C h a p t e r 1 

Introduction 

1.1 Basic Design Philosophies 

Basic structural design philosophies have evolved over the years to more realistically 

predict possible field conditions. Allowable, or working stress design was used for many 

years, and is still widely used today. In allowable stress design, the combined stress due 

to dead and live loads is less than some allowable stress. This allowable stress is usually 

the yield stress of the material divided by a factor of safety, N. i.e.: 

0~DL ~\~ 0~LL — ^ ( L l ) 

where: 

°~DL = Stress due to applied Dead Loads 

O~LL = Stress due to applied Live Loads 

a-y = Material yield stress 

N = Factor of safety 

Equation 1.1 implies that both the dead and live loads have the same factor of safety. 

More recent statistical studies, however, have shown that the variation in the live load 

is much greater than that of the dead load. Therefore, the factor of safety for live loads 

should be greater than that for dead loads. These studies lead to what is termed a 

probability based, limit states design. The objective of this design method is to ensure 

that the probability of reaching a given limit state, such as the formation of a plastic 

1 



Chapter 1. Introduction 2 

hinge, is below an acceptable limit. The resulting design philosophy is as follows: 

N\DDL = Maximum probable demand due to applied dead loads 

N2DLL = Maximum probable demand due to applied live loads 

R = Resistance of a member, connection, or structure, to the applied loads 

<f> = Capacity reduction factor accounting for material variation, fabrication errors, 

etc. 

A slight change in nomenclature accompanies the new design method such that Ni 

and N2 are referred to as load factors, rather than safety factors as they are found on 

the left hand side of Eq. 1.2. 

This thesis is concerned with the current limit states design of steel structures, in 

particular, Class 1 and 2, laterally supported I-shaped steel beam-columns. Thus the 

design procedure for beam-columns employed by the 1984 Canadian [1] and 1986 Amer

ican [2] steel codes will be reviewed. The codes will then be compared to a more precise 

second-order computer program. 

1.2 Reserve C a p a c i t y 

Current design practices, both Canadian and American, employ the formation of the first 

plastic hinge as one of their limit states design criteria. That is, when the first hinge 

forms in the structure, the structure is considered to have failed. 

Very slender and statically determinant structures do in fact fail at or before the 

formation of the first hinge. However, stiffer indeterminant structures are capable of car

rying additional load above that required to form the first hinge. Clearly, the maximum 

iV\ D D L + N 2 D L L < ^ R 

where: 
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load a structure is capable of carrying is that required to cause collapse. The difference 

between the collapse load and the load required to form the first hinge is referred to as 

the structure's reserve capacity. Because of their choice of limit states, both codes ignore 

this reserve. 

1.3 The 1984 Canadian Steel Code 

1.3.1 Introduction 

The Canadian steel code, CAN3-S16.1-M84, allows an engineer to design Class 1 and 2, 

I-shaped beam-columns in one of two ways. These are: 

a) the use of a second-order analysis to determine the member forces, combined with 

the "side-sway prevented" nomograph for approximating the member's effective length, 

or 

b) the use of a linear analysis to determine the member forces, combined with the 

"side-sway permitted" nomograph for approximating the effective length. 

Once the designer has made a decision as to which of the above methods he will 

use, the code requires that he check three interaction equations. Namely, for uniaxial 

bending, fully supported laterally: 

(pZOy 

Cf 0.85M, ^ , n 

+ „ 1 < 1.0 (1.4) (f)Aoy <f>Zo~. 
Cf coMj 

y 

c + , 7 n 2L\ - H 0 ( L 5 ) 

where: 

Mj = Largest member end moment caused by the factored loads, or in the case of 

simply supported members, the maximum moment in the member 
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Cf = Axial load caused by factored loads 

cj) — Material reduction factor, <f> = 0.90 for structural steel 

Z = Plastic section modulus of the member 

A = Cross section area of the member 

oy = Material yield stress 

k = Effective length of column determined from nomograph, see Sec. 1.3.4 below 

E = Young's modulus 

Cr = Column resistance with zero moment = / (— J, see eq. 1.6 below 

r = Radius of gyration 

to = Equivalent moment factor, see Sec. 1.3.3 below 

Equations 1.3 and 1.4 are classified as strength checks, and have a theoretical base. 

Equation 1.5 is classified as a stability check, and is empirical in nature. 

The expression given in the code for Cr is a rather complex function and is as follows: 

Ce = Euler load = iv2EI 

<f>Cx y 0 < A < 0.15 

Cr <t>Cy (1.035 - 0.202A - 0.222A2 

) 0.15 < A < 1.0 

Cr <f>Cy (-0.111 + 0.636A-1 + 0.087A-2 

) 1.0 < A < 2.0 

4>Cy (0.009 + 0.877A-2 2.0 < A < 3.6 

<t>cy\-2 3.6 < A (1.6) 

where 

(1.7) 

and Cy = Maximum axial capacity = Ao, 
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d 

Stress Stress Due Stress Due 

Distribution = to Axial + to Bending 

Figure 1.1: Full Plastification of an I-Shaped Section 

1.3.2 Strength Equations 

Equations 1.3 and 1.4 attempt to ensure that the moment at the end of the beam-column 

is not greater than the member is capable of developing under the action of the axial 

load, Cj. These equations are a linear approximation of the moment capacity, based on 

full plastification of the I-shaped cross section as shown in Fig. 1.1. 

Using the nomenclature in Fig. 1.1, the value of Mpc, the reduced moment capacity, 

is given in non-dimensional form by the following: 

Mp ~ A w Z w " - Cy ~ A 

where: 

Mp = Zoy = Plastic moment of section 

These two equations have been plotted for various W-shaped sections in Fig. 1.2. 
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Figure 1.2: Values of Mpc for W-shapes 
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M 

Compression Tension 

C 

Figure 1.3: Canadian Moment-Axial Failure Surface 

It is obvious that a combination of Equations 1.3 and 1.4 with (j> = 1.0 gives a 

very good approximation to the theory. It must be noted, though, that Equations 1.3 

and 1.4 take no account of stability effects. Thus, if the designer calculates the second-

order moments in his analysis, i.e. the analysis procedure includes stability effects, then 

Equations 1.3 and 1.4 apply for members of all lengths. If, however, he calculates only 

linear moments, ie. no stability effects included, equations 1.3 and 1.4 only apply to 

members of zero length [3]. 

Extending plastification to tension as well as compression, a yield or failure surface 

can be developed for a given structural shape. The surface used by the Canadian code 

for I-shapes is illustrated in Fig. 1.3. 
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C V _ 7 7 ( 7 7 7 "rjSb C, 
f 777777 f 

Figure 1.4: Simple Beam-Column with Equal End Moments 

1.3.3 Stability Equation 

Equation 1.5 of Section 1.3.1 is termed the stability equation by the Canadian code and 

is empirical in nature. It has been modified since its inception, when it was simply (in 

limit states format) 

where: 

Mj = Member end moment 

Cf = Member axial load 

Mr = Soy = Collapse moment for simple bending 

Cr — Critical axial load for concentric buckling = / (^r) 

This equation was based on research done on pin-ended beam-columns with applied 

equal and opposite end moments [5] as shown in Fig. 1.4. 

Early researchers suggested the inclusion of the now familiar amplification factor, 

1/ ( l — to the Mj/Mr term of the equation to more accurately represent the maxi

mum moment within the length of the member. 

It is clear that Equation 1.10 satisfies the extreme conditions, Cj = Cr when Mf = 0 
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MS Meq 

M B > M A 

Max 

M B = M f M 
eq 

Max 

M = UJ M D eq B 

eq 

Figure 1.5: Schematic Representation of Mt eg 

and Mf = Mr when Cj = 0, and it was found to be conservative in between for members 

with equal and opposite end moments. However, when the formula was applied to beam-

columns with more general end moment conditions, it was found to be too conservative. 

This conservatism results from the location of the maximum moment, Mmax. Unlike 

the case with equal and opposite end moments, Mmax in general does not occur at 

midspan of the member. As a result, amplifying the larger end moment by 1/ ( l — 

no longer gives an accurate representation of Mmax. Therefore, a modification factor, cv, 

was introduced to the Mf/Mr (l — term of the equation in order to account for this 

over-conservatism. The factor u> has a theoretical base, and is explained in Chen and 

Lui [6], where toMf is referred to as an equivalent end moment, M e g , and is such that 

uMjI (l — ^ ) is approximately the maximum moment in the member. This concept is 

shown schematically in Fig. 1.5. 

The code gives an approximate expression for tv, derived by Austin [7], as 
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= 0.6 - 0.4 
MA £ 0.4 (1.11) 
MB 

where 

MB = Larger end moment 

MA = Smaller end moment 

Equation 1.11 is shown in Fig. 1.6 along with the theoretical results for the pin-ended 

beam-column in the inset of the figure. Clearly, Eq. 1.11 gives a reasonably accurate 

linear approximation to the theoretical results. It therefore follows from Eq. 1.11 and 

is a more general expression than Eq. 1.10. 

The Canadian code stipulates that the expression in Eq. 1.11 for u> is only to be 

used by the designer when he calculates second-order moments (Option a, Section 1.3.1). 

When he calculates linear moments (Option b), the code requires him to use u = 0.85 

for double curvature and = 1.0 for single curvature. These values were suggested by 

the 1963 American Institute of Steel Construction (AISC) code which was said to result 

in a conservative design [8]. It is clear, though, that these restrictions cannot possibly 

cover all cases to be encountered by the designer. Therefore, it is conceivable that a 

non-conservative design could result through their use. 

1.3.4 Column Effective Length 

The effective length of a column is known for ideal, simple end conditions (fixed, pinned, 

or free). However, for more practicle end conditions, the effective length has to be approx

imated. The Canadian code provides the engineer with two options for approximating 

Fig. 1.5 that Meq ~ uMB and M , *y&7 and thus 
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o.oo H 1 1 1 1 1 1 1 
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 
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Curvature Curvature 

M A 

End Moment Ratio, — 

Figure 1.6: Theoretical and Approximate Equivalent Moment Factor, 
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the effective length, "side-sway prevented" and "side-sway permitted", based on more 

complex ideal end conditions. 

Side-Sway Prevented 

The governing differential equation for the idealized sway-prevented column in Fig. 1.7b 

is: 

with the boundary conditions: 

2/(0) = 0 

y(L) = 0 

Af (0) = kte, 

M{L) = kju (1.14) 

where: 

0, - MPi 
U l ~ dx 

a _ ML) 
V u ~ dx 

ku, ki = Joint rotational spring constants 

The rotational resistance, ku and ki, is provided to the column by the girders framing 

into the upper and lower joints respectively. If one assumes that all of the columns in 

the structure buckle at the same time, and that the resistance to rotation of all members 

is proportional to their stiffness, I/L, the resisting moment, Mu, acting on the column 

in Fig. 1.7 will be: 
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Figure 1.7: Sway-Prevented Column 
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*  = ^™'Z[t,l=Gjt°- < L 1 5 ) 

where G„ = 

Clearly, the expression for Mi is the same as Eq. 1.15, with the u subscripts replaced by 

/ subscripts. 

Thus the solution to Eq. 1.13 can be expressed as: 

GuGi / T T \ 2 fGu + Gi\f j \ tan£ 

r ) + 2 ^ = 1.0 ( i . i 6 ) 4 Vfc/ V 2 y V 
where: 

k = Effective length factor of the column under consideration 

This equation has been conveniently put in the form of a nomograph (sway-prevented) 

which can be found in the Canadian code. 

Side-Sway Permitted 

The governing differential equation for the idealized sway-permitted column in Fig. 1.8 b 

is the same as Eq. 1.13. However, the boundary conditions differ from those of Eq. 1.14 

and are: 

y(o) = 0 

V(L) = 0 

M(0) = ki6i 

M(L) — ku6,t (1.17) 

and the resulting resisting moment, Mu, acting on the column will be: 
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Figure 1.8: Sway-Permitted Column 
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Mu = 
6EIC 0. (1.18) u 

and similarly for Mi. Furthermore, the solution to eq. 1.13 can be expressed as: 

The main distinction between the sway-prevented model and the sway-permitted 

model is that the deformed shape of the sway column gives rise to an additional CA 

moment. This is over and above the C5 moment of the nonsway column (see Fig. 1.8 for 

the definition of A and <!>). This C A moment must be resisted by the bending action of 

the girders and columns under consideration. Thus, if the C A moments are not included 

in the analysis procedure, i.e. linear moments, the side-sway permitted model is used 

for approximating the effective length. If, however, the C A moments are included in 

the analysis procedure, i.e. second order moments, the sway prevented model is used in 

order to account only for the C8 moments. 

1.3.5 Limit of Application 

The types of structures that the Canadian code is applicable to is limited to rigidly 

connected frames in which all of the columns reach their critical buckling load simmul-

taniously. The major cause of this strict limitation is found in the derivation of the 

column effective length factor, k, used in the design equations, Eqs. 1.3 to 1.5. When 

deriving the expressions for k, it was assumed that there was no support provided to one 

column by another. Clearly, this will rarely occur in practice. It is true that when the 

column being designed is supported by another column, the resulting design should be 

conservative. However, it is unconservative with respect to the supporting column as the 

6(GU + Gi) tanl 

This equation has also been put in the form of a nomograph (sway-permitted). 
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code equations do not take into account the additional forces that arise in it. 

Further, in the derivation of k, the code assumes that the girders framing into the 

column help the column resist the second-order (CA) moments. However, when designing 

the girders, forces caused by such assistance are ignored. That is, by separating the design 

of the beam columns and the girders, the code allows for a non-conservative design of 

the girders. This is an example of a member that carries no axial load, yet has a moment 

amplification factor. This problem is alliviated through the use of a second-order analysis. 

There are also problems with some of the approximations illustrated in the previous 

sections. One of the more serious problems arises when using the equivalent moment 

factor, u, as given by Eq. 1.11. It has been found that this expression can give erratic 

results for members with double curvature, while it gives adequate results for members 

bent in single curvature [4]. 

Also, when using a linear analysis, the limitations on ui of 1.0 for single curvature 

and 0.85 for double curvature as described in Sec. 1.3.3, combined with the fact that the 

moments used in the design equations are the linear rather than the true second-order 

moments, ensures that the second strength equation, Eq. 1.4, never governs the design. 

This is unfortunate, as it is one of the two design equations that has a theoretical base. 

1.4 The 1986 American Steel Code 

The 1986 American Load and Resistance Factored Design (LRFD) Steel code is very 

similar to the Canadian code described in Section 1.3. It is the first American steel code to 

use the probability based limit states design method, as previous editions have employed 

the working stress design method. The load factors, though, are slightly different from 

the Canadian load factors, in an effort to more accurately represent actual conditions in 

the U.S.. 
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This code has made an attempt to eliminate many of the limitations and shortcomings 

found in the Canadian code. Perhaps the most significant difference is that the maximum 

moment in the stability equation, Eq. 1.5, can not be less than the maximum end moment, 

which is currently permitted by the Canadian code. This limitation eliminates the need 

for the strength equations, Eq. 1.3 and Eq. 1.4, as they no longer govern. 

The stability equation has been altered slightly from eq. 1.5 in the Canadian code, 

and is as follows: 

Cf 8M} C< 
T7r + WTTT<1-0 TVT>0-2 (1-20) 
hCn 9<f>bMn 4>cCn

 y ' 
.?L_ + _ ^ _ < 1 . 0 -%-<0 .2 (1.21) 2(j)cCn (j>bMn <l>cCn 

where: 

Cf = Axial compression in the member due to factored loads 

Cn = Nominal compressive strength, = / see eq. 1.22 

Mf = Bending moment in the member due to factored loads (see below) 

Mn = Nominal flexural strength 

(f>c = resistance factor in compression = 0.85 

(f>b — resistance factor in flexure = 0.90 

Equations 1.20 and 1.21 represent a continuous function as shown in Fig. 1.9. It 

should be noted that Fig. 1.9 looks very similar to the yield surface of the Canadian 

code, Fig. 1.2. However, Fig. 1.9 has substantially different variables along the axes, 

Cf/Cn along the x-axis and Mj/Mn along the y-axis, while Fig. 1.2 has Cf/Cy and 

Mf/Mp respectively. Thus, the resulting "failure surface" is different. 

The expression for Cn is similar to that of Cr in the Canadian code, though Cn is less 

complex. 
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Figure 1.9: American Moment-Axial Failure Surface 
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Cn = (0.658A2) Cy A < 1.5 

C n

 = (°f?7^) Cy A > 1.5 (1.22) 

where the nomenclature is the same as in Eq. 1.6. 

The expression for Mn is more complex than that of Mr in the Canadian code, however 

for laterally supported members, both reduce to Mp, the plastic moment. 

As with the Canadian code, the designer has the option of using a second order or 

linear analysis to determine the member forces. The maximum moment in the beam-

column, Mj, used in Eqs. 1.20 and 1.21 can be found through the use of a second-order 

analysis, or the use of a linear analysis combined with the following equation: 

Mnt = Linear moment in member assuming there is no lateral translation of the frame 

Mn = Linear moment in member as a result of lateral translation of the frame only 

Mf = BxMnt + B2M,t (1.23) 

where: 

B^^cji 1.0 
1 L 

Ce = Cy/\2 where A is determined with k < 1.0 

co = 0.6 — 0.4-^- for members in braced frames 

= 0.85 for members with restrained ends in sway frames 

= 1.0 for members with unrestrained ends in sway frames 
l 

A 0/j = Linear translation deflection of storey under consideration 
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J2 Hf = Sum of storey horizontal forces causing 

L = Storey height 

J2Ce — Sum of storey columns Euler loads, each with fc > 1.0 

Note that there is no limit of 0.4 on u that there is in the Canadian formulation. 

Also, Ce in the expression for B\ uses fc > 1.0, while in the expression for B2, Ce uses 

fc < 1.0. In Equation 1.23, B\Mu is an approximation for the moment caused by gravity 

loads, while B2M\t is an approximation for the moment caused by sidesway loads. The 

sum of the two gives a conservative estimate for Mmax as they do not necessarily occur at 

the same location in the member. Also notice that, unlike the Canadian code, the value 

of Cn used in Eqs. 1.20 and 1.21 is the same regardless of whether the designer calculates 

linear or second-order moments. This, combined with the fact that the expression for B2 

takes into account the differing axial loads in adjacent columns of the same storey (ie. 

the columns helping one another is included) results in very similar linear and second-

order designs. The Canadian second-order design, on the other hand, generally allows 

for much more load carrying capacity than does the linear design. The result of this is 

that the Canadian designer is rewarded for carrying out the more refined second-order 

design, while the American designer receives no such incentive. 

It should be noted that the American calculation of Pn is based on the sway permitted 

effective length factor for both the linear and second order designs. This is contrary to 

the Canadian procedure. 



Chapter 2 

An Alternative Design Method 

2.1 General 

More powerful, less expensive computer hardware and more sophisticated computer soft

ware allow the design engineer to carry out both the design and analysis of a structure 

simultaneously. This is unlike present design methods, which require the analysis to be 

followed by a series of code checks. 

Current design codes have the engineer choose a preliminary structure and analyze 

it linear elastically with a computer program to obtain the member moments and axial 

forces. These forces are then used in the code equations to decide whether the members 

are satisfactory. If the members are satisfactory, the designer has a choice. He can 

reduce the size of some or all of the members and repeat the design, or he can accept 

the members, at which point the design is finished. If, however, the members are not 

satisfactory, he must increase the size of some or all the members, rerun the analysis, 

and decide whether the new members are satisfactory. This process continues until the 

designer is satisfied with the structure. Clearly, unless the designer is very skilled or very 

lucky, this process can take a great deal of time. 

A much faster, more efficient design method, however, is available to the engineer. 

Rather than using a linear elastic computer program to analyze the structure, the designer 

can use a second-order program that includes both nonlinear material properties (i.e. 

plastic hinges), nonlinear geometric properties (ie. equilibrium calculated on the deflected 
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shape), moment-axial interaction (yield surface), and stability effects. With a program 

of this type, the designer chooses a preliminary structure and analyzes it until yielding 

first occurs. If the applied loads at this point are greater than the factored loads the 

designer chooses to either reduce the size of some or all of the members, or leave them 

unaltered in which case the design is finished. If, however the loads are less than those 

required, the designer must increases the size of some of the members (usually near the 

location of the first hinge) and reruns the program until the loads are greater than those 

required. The obvious time saving advantage of this method is that it "bypasses" the 

code checks. 

There are many such computer programs commercially available. The program used 

in this work is ULA (Ultimate Load Analysis) [9] which runs on an IBM personal com

puter (PC, XT, AT, PS2), or compatible. ULA was chosen as it was readily available at 

the University of British Columbia. 

2.2 U L A Theory and Underlying Assumptions 

ULA is a plane frame stiffness program which combines second-order analysis with plas

tic hinge formation, stability effects and moment-axial interaction. It is an interactive 

program that uses GKS graphics. This allows the user to monitor the structure on the 

screen and to place plastic hinges when necessary as the load is increased to ultimate. 

As is commonly practiced with the limit states design method described in Section 1.1, 

ULA allows for load vectors as follows 

F = + a2F2 + a3F3 + ... (2.24) 

where F is a linear combination of load cases Fi, eg. dead load, live load, etc., factored 

by the appropriate load factor ai. ULA accomplishes this by separating the load vector 
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into two part, as follows: 

F = FD + XF (2.25) 

where Frj is a constant component of the load vector and F is a variable component 

factored by the load level A. In this way, a portion of the load, for example the dead 

load, can be placed on the structure and held constant while the remainder of the load, 

for example the live load, can be increased until collapse. 

2.2.1 Second-Order Elasto-Plastic Analysis with Moment-Axial Interaction 

ULA uses a simple combination of several well established structural theories. The user 

increases the load level A incrementally, and at each load level equilibrium is calculated 

on the deformed shape. This is achieved by using stability functions in the member 

matrix, the details of which will not be discussed here as they are standard and have 

been presented by many authors including Gere and Weaver [10]. It should, however, be 

noted that the stability functions depend on the member axial forces, and the axial forces 

depend on the deflected shape. Therefore, it is necessary to iterate towards a solution at 

each load level. This is handled by ULA with its interactive format as the user can view 

both the determinant of the structure stiffness matrix and the joint deflections converge. 

Generally, two cycles are enough for convergence for small, stiff structures. However, for 

larger, more flexible structures or stiff structures with several plastic hinges, the number 

of cycles to convergence is often greater than two. 

The load level is increased by the user until the moment capacity of a member is 

reached. ULA allows for the reduction of moment carrying capacity of a member due to 

axial load through a moment-axial interaction surface, or yield surface. As was illustrated 

in Section 1.3.2 for an I-shaped section, each structural section has its own yield surface. 
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For a given section, the yield surface can be approximated by a series of straight lines or 

facets. The yield surface is input to ULA by the intersection points of these facets. ULA 

allows only symmetric sections and therefore requires the input of only the top half of 

the yield surface. 

The yield surface used throughout this work is shown in Fig. 2.10 and is the same 

as that specified by CAN3-S16.1-M84 for I-shaped sections, Fig. 1.3, with <f> = 1.0. A 

plastic hinge forms when the combination of moment and axial force is sufficient to reach 

the yield surface. ULA defines a parameter <pi for each facet such that when </?,• = 1, the 

yield surface has been reached and a hinge should be placed. The parameter <pi is defined 

as follows: 

<Pi = T + - (2-26) 

where m = \M\/MP — \M\/oyZ, p = C/Cy = C/oyA and a; and bi are the intercepts of 

each facet with the p and m axis respectively. 

The convenience of the interactive format in ULA now becomes apparent. At each 

load level, once the second order convergence is achieved, a plot of the structure appears 

on the screen with a list of the five maximum ipi values and their locations on the 

structure. ULA offers the user an estimate of the load level at which the next hinge will 

form. This is accomplished by linearly extrapolating between two known points within 

the yield surface and the surface itself. The basic assumptions in this estimation are that 

line 1-2-H in Fig. 2.10 is straight and that p is linear with A. 

When a plastic hinge is placed at the end of a member, ULA adds another joint, 

known as a slave joint, at the hinge location which has the same translation as the 

master joint, but a different rotation. The load vector F is then increased in size by one, 

and a moment, equal to the moment capacity of the member, ± M p c , is added to the 
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Figure 2.10: Moment-Axial Failure Surface Used in ULA 
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Figure 2.11: Joint Before and After Hinge Placement 

slave and master rotational degrees of freedom as shown in Fig. 2.11. Thus the new load 

vector becomes F = FD + XF + FP where FP containes only ± M p c . It should also be 

noted that once the hinge has been placed, the values of M P C are updated at higher load 

levels to reflect the change in member axial forces. 

After the first hinge is placed, ULA also changes the structure stiffness matrix to 

include the extra rotational degree of freedom of the slave joint, and proceeds with the 

analysis until one of two things happens. Either the structure is now unstable, in which 

case ULA plots the mechanism on the screen, or the user increases the load level until 

the moment capacity of another member is reached. At this point, the user places the 

next hinge and the procedure is repeated until the structure reaches instability, signified 

by the determinant of the structure stiffness matrix going to zero. 

This entire sequence is shown for a single bay frame in Fig. 2.12 and the corresponding 

response versus load level is shown in Fig. 2.13. 

It is important to note that each of the structures in Fig. 2.12 is only valid for a 

specific range of A. Each structure has its own stiffness matrix and each will be analyzed 
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Figure 2.12: Hinge Formation Sequence 
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Figure 2.13: Second-Order Elasto-Plastic Response 
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Figure 2.14: Idealized Elasto-Plastic Behaviour 

under the loads shown. 

2.2.2 M o m e n t C u r v a t u r e 

A perfect elasto-plastic material is assumed by ULA as shown in Fig. 2.14. Also included 

in Fig. 2.14 is a relationship that includes the effect of stiffness loss due to yielding, and 

another that includes the effects of stiffness loss and residual stresses. These two effects 

are neglected in ULA and therefore are neglected in this work. 

The effect of this assumption varies with axial load. However, work has been done 

by Galambos and Ketter [11] and their findings, based on the assumed residual stress 

pattern shown in Fig. 2.16, are shown in Fig. 2.15. The expressions used for the residual 

tension stress, ORT, and the residual compressive stress, ORC, are shown in Fig. 2.16. 

The errors incurred by assuming a perfectly elasto-plastic behaviour are nonconser-

vative. However, with increased curvature the error between the assumed and the real 

behaviour decreases. As a result, the error is a local one and the error from most of the 
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Figure 2.15: Moment-Axial-Curvature Relationship 

bt+w(d-2t) 

Figure 2.16: Cooling Residual Stress Pattern 
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Figure 2.17: Effect of Elasto-Plastic Assumption 

hinges formed prior to collapse will not affect the ultimate load. Any non-conservatism 

should only occur due to the last hinge formed, as demonstrated in Fig. 2.17. It is there

fore proposed that the effect of idealizing the behaviour as perfectly elasto-plastic is not 

too significant, perhaps as much as 10%. 

The program ULA, with its interactive graphics format gives the user a complete and 

quickly understood appreciation of how a particular structure is behaving with increasing 

load level, and where it may need redesign or where material is not being used efficiently. 



Chapter 3 

Verification of ULA 

3.1 General 

It is the intention of this chapter to verify the accuracy of the computer program ULA. 

The program will be used to develop a modified load versus L/r curve for the pin ended 

column shown in Fig. 3.18. Note that the column is modelled as two straight members, 

with three joints, with the middle joint having an initial eccentricity chosen to be L/1000. 

This value was selected to represent the maximum fabrication eccentricity of a steel 

column. Also, ULA requires a "driving force" for hinge formation and without some 

eccentricity, the program would give a perfect plastic-Euler curve. The results obtained 

from ULA for this column are expected to be slightly nonconservative due to the perfect 

elasto-plastic assumption of Section 2.2.2. This column curve will then be compared to 

the Canadian code, the American code, and the curve given by the Column Research 

Council (CRC) [12]. Also, two full sized test frames will be analyzed with ULA, and the 

results will be compared to the experimental results. 

3.2 A Centrally Loaded, Initially Eccentric Column 

3.2.1 Governing Parameters 

The ultimate column capacity, Cu, of the column shown in Fig. 3.18 is a function of the 

following six independent parameters: 

33 
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L 

Figure 3.18: Pin Ended Column Used in the Computer Analysis 

Cu = f{L, EI, AE, Mp, Cy, e0} (3.27) 

where: 

L = column length 

EI = linear elastic bending stiffness 

AE = linear elastic axial stiffness 

Mp = Zay = maximum possible bending moment with no axial load present 

Cy = Aoy — maximum possible axial load with no moment present 

oy = yield stress 

eo = initial midspan eccentricity 

With several independent variables, it is convenient to use the Buckingham II The

orem to reduce the number of governing parameters. With seven variables in Eq. 3.27 

dependent on the two dimensions of force and length, only five dimensionless groups are 

required to describe the system as follows: 
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Cu 

Cv 

= / CyL2 
en Mp/Cy Cv (3.28) 

The seemingly awkward ratios of eq. 3.28 were carefully chosen in order to simplify to 

the more familiar ratios shown below: 

Cu (3.29) 

where: 

A = ^-\J^2E — the modified L/r Tl group used by the codes 

y = the distance from the centre of gravity of a symmetric section to the centre of 

gravity of either the upper or lower half 

r = 

ty 

= radius of gyration 

E — yield strain 

°"y Resultant 

2y 

y 

Stress 

Distribution 

Resultant 

3.2.2 Variation of Parameters 

For comparison purposes with the codes and the CRC curve, Cu/Cy was plotted against 

A for various y/r and ty values. It was decided that a value of 1/1000 to represent the 

maximum fabrication eccentricity was acceptible for e0/L, and thus it was not changed. 

The values of y/r were calculated for all W-shapes provided by the Canadian code. It 

was found that the parameter varied between 0.90 and 0.96. Thus values for y/r of 0.90 

and 0.96 were used with a value of 0.0015 for ey, and the results are shown in Fig. 3.19. 
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Figure 3.19: Variation of y/r for a Simple Column 
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Figure 3.20: Variation of ey for a Simple Column 

The value of ey for normal steel varies from approximately 0.001 to 0.002 (oy = 30 

to 60 ksi, 200 to 400 MPa). Values for ey of 0.001, 0.0015, and 0.002 were used with a 

value of 0.93 for y/r and the results are shown in Fig. 3.20. 

It is apparent from Fig. 3.19 that the parameter y/r has very little effect on the 

ultimate strength parameter Cu/Cy. Therefore, a value of y/r — 0.93 will be used in 

the remainder of this work. The variation of ey has a slightly larger effect; however, for 

comparison purposes, a value of ey = 0.0015 will be used in the remainder of this work. 

Both Fig. 3.19 and Fig. 3.20 include the Canadian code, the American code, and 

the CRC curves. The Canadian and American curves have been modified slightly from 

Equations 1.6 and 1.22 respectively, to compare more correctly with the analytical results 

of ULA. The factor 6 = 0.9 has been removed from the Canadian curve, and the factor 
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(j> = 0.85 has been removed from the American curve. Note that the two curves can not 

be correctly compared to each other in the form presented here as the respective codes 

use different <f> factors. The CRC curve is as follows: 

^ = 1.0-0.21A2 0<A<1 .2 
Cy 

A- 2 1.2 < A (3.30) 
Cy 

and has been developed using the tangent modulus theory combined with the assumed 

residual stress pattern of fig. 2.16. Because ULA neglects residual stresses completely, it 

is somewhat surprising to see that the CRC curve and the results from ULA compare 

so well in fig. 3.19 and fig. 3.20. As expected, ULA does give consistantly higher results 

than both the codes due to the built in conservatism of the latter. The results, however, 

are considered to be very acceptable. 

3.3 Yaramci Test Frame B 

In 1966 Erol Yaramci performed experimental tests on three steel frames at Leheigh 

University as part of his Ph.D. thesis [13]. The results of one of his tests, test frame B, 

are reproduced in Fig. 3.21. Also shown in the figure are Yaramcis analytical results and 

the analytical results from ULA, both of which neglected strain hardening. The frame 

itself is shown in the inset of Fig. 3.21. All of the analytical work used the measured EI 

and Mp values, rather than the handbook values, to more accurately compare with the 

experimental test. These values are shown in Table 3.1. 

Clearly all the results coincide in the elastic range, and then deviate from one another 

after the first hinge forms. Even with these differences, though, the ultimate load from 

ULA is only 10% higher than the experiment. In his thesis, Yaramci does explain why his 
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Member Section 
Measured 

EI 
kip — in.2 

Measured 
Mp 

kip — in. 

Handbook 
EI 

kip — in.2 

Handbook 
Mp 

kip — in. 

Columns 5 M 18.9 400 x 104 1100 400 x 104 1060 
Beams 10 WF 25 73 x 104 400 70 x 104 394 

Table 3.1: Measured Values For Yaramci Test Frame B 

analytical results are even higher, and thus this thesis will not be concerned with this. The 

results from ULA are high as expected, as the perfectly elasto-plastic assumption and the 

perfectly rigid connections at the base of the frame assumed by ULA are unconservative. 

However, 10% error is considered acceptable by the author. 

3.4 Baker Pin-Based Test Frame 

In 1952, Professor J. Baker published a paper in the U.K. [14] in which he described 

destructive tests of several welded portal frames constructed of 8-inch by 4-inch joist 

sections. The results from one of the pin-based frames are reproduced in Fig. 3.22 along 

with the analytical results from ULA. The test frame is a single bay rectangular frame 

and is shown in the inset of Fig. 3.22. Unlike Yaramci, Baker did not measure the 

EI and Mp values of the sections, nor did he measure the yield stress of the members 

directly. He did select two members from the same batch of material as those used in 

the construction of the frame, and tested these members as simply supported beams. 

From these two tests, a "minimum average yield stress" for the members was quoted as 

16.9 tons per square inch (33.8 ksi,230 MPa). This value of oy was used in ULA along 

with I and Z values obtained from the British Standards [15] for an 8-inch by 4-inch 

joist section. Furthermore, the exact dimensions of the frame were not specified in the 

paper. The span was given as 15' — l l | " (4855 mm), however, the height of the frame 
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First S t o r e y Def lect ion [ inches] 

Figure 3.21: Load-Deflection Curves for Yaramci Test Frame B 
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Figure 3.22: Load-Deflection Curves for Baker Test Frame 

had to be approximated. The as-cut length of the column was given as 7' - 8 f (2350 

mm), however, the distance from the base of the column to the center of the pin was not 

provided. From a photograph of the pin base, this dimension was approximated to be 

5" (125 mm), thus giving the total column height of 8' — l | " (2475 mm) used in ULA. 

Figure 3.22 shows that the results from ULA compare well in the elastic range, and thus 

it was felt that the above values were close to those existing in the test. 

As can be seen in Fig. 3.22, the ultimate load from ULA is substantially lower, 10%, 

than the collapse load that was observed. However, this difference was believed to be 

the result of two factors. The first, and likely most important factor, is that the value of 

33.8 ksi for cry is thought to be low. This is substantiated by the fact that Baker, using 

plastic collapse theory, predicted an ultimate load 3% lower than the measured value, 
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when it is well known that this theory provides an upper limit for the collapse load. The 

second factor is thought to be strain hardening, which was neglected by ULA. It was felt 

that the combination of these two factors caused the analytical collapse load to be lower 

than that of the test. However, the results from ULA are considered to be acceptable. 

The examples shown here indicate that analytical results from ULA compare favourably 

with the test data. ULA very accurately modeled a simple column and also performed 

well with the two test frames. The 10% error seen in the examples is believed to be 

within acceptable design limits. 



Chapter 4 

Structures Within The Code Limits 

4.1 Introduction 

Within the applicability limits of the Canadian and American codes, there are an infinite 

number of possible structures. From these, four groups of single bay portal frames were 

chosen to give a wide range of design situations. These groups consist of fix-based frames 

to examine double curvature sway permitted columns, pin-based frames to examine sin

gle curvature sway permitted columns, laterally supported fix-based frames to examine 

double curvature sway prevented columns, and laterally supported pin-based frames to 

examine single curvature sway prevented columns. Within each group, stiff, intermediate 

and flexible frames were looked at, each of which carried a "large" and "small" percent

age of the column axial capacity Cy, (= 0.9Aoy) in the columns. The objective behind 

these selections was to check the codes against ULA for a wide range of loading condi

tions within the limitations set forth in the codes. The value for the yield stress used 

in ULA was 0.9ay such that the load at which the first hinge formed would be directly 

comparable to the Canadian code design, which uses <$> = 0.9. 

4.2 Group One : Fix-Based Portal Frames 

4.2.1 General 

The fix-based portal frame shown in Fig. 4.23 was subjected to two constant vertical 

loads, each P, and a variable horizontal load, H. Three slenderness ratios were chosen for 
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Figure 4.23: Fix-Based Portal Frame 

the members of the frame, namely L/r = 20, 100, 150, to represent stiff, intermediate, 

and slender frames. At each slenderness ratio, two vertical load cases were analyzed: 

for L/r = 20, P/Cy = 0.8 and 0.2; for L/r = 100, P/Cy = 0.4 and 0.2; and for L/r = 

150, P/Cy = 0.2 and 0.1. For clarity purposes, the resulting six frames will be refered 

to as FIX20(0.8), FIX20(0.2), FIX100(0.4), FIX100(0.2), FIX150(0.2), and FIX150(0.1) 

respectively. The horizontal load in each frame was increased until the first hinge formed, 

which formed at D for all frames except FIX150(0.1) where it formed at A. The load was 

then increased until collapse, provided the frame did not fail after the first hinge, to show 

the amount of reserve capacity each frame had. 

4.2.2 Canadian Code Design, Fix-Based Frames 

Recall from Section 1.3 that the three design equations for beam columns are as follows: 
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j— < 1.0 (4.31) 
<j>Zcr, 

°' < L 0 ( 4 . 3 2 ) (f)A0~y (f>Zo~y 

£ t + Hp— < L O (4.33) 

The maximum horizontal load that the Canadian code allows each frame to carry was 

calculated using Eqs. 4.31 through 4.33. A value of 1.15 for k, obtained from the sway 

permitted nomograph, was used for the linear designs while a value of 0.63, obtained 

from the sway prevented nomograph, was used for the second order designs. The value of 

LO was 0.4 for the second order designs and 0.85 for the linear designs. It is interesting to 

note that for the linear designs, the stability equation, Eq. 4.33, governed the design of 

all six frames. However, for the second order design, the first strength equation, Eq. 4.31, 

governed the design of FIX150(0.1) and the second strength equation, Eq. 4.32, governed 

the design of the remaining five frames. 

The results from the code equations have been non-dimensionalized and are shown 

with the results from ULA in Table 4.2. Note: a dash indicates that the code resticts 

the value of P to less than that applied, and thus the frame under the loads shown is not 

allowed. 

4.2.3 American Code Design, Fix-Based Frames 

Recall from Section 1.4 that the design equations are as follows: 

C f 
(j>cC,_ 

2<t>cCn 

+ 

+ 

_8Mj_ 
9cf>bMn 

< 1.0 

< 1.0 

c 
fr>0.2 

cf 

c < 0.2 

(4.34) 

(4.35) 
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Frame 
ULA Canadian American 

Frame Hinge #1 #2 #3 #4 Second 
Order 

Linear Second 
Order 

Linear 

FIX20(0.8) 0.633 0.702 0.743 0.753 0.633 0.513 0.367 0.367 
FIX20(0.2) 2.644 2.907 3.122 3.206 2.644 2.611 2.477 2.477 

FIX100(0.4) 0.468 0.468 — — — 

FIX100(0.2) 1.859 1.875 1.859 0.910 0.990 1.005 
FIX150(0.2) 0.295 0.295 — — — 

FIX150(0.1) 1.835 1.844 1.835 0.956 0.870 0.783 

Table 4.2: Values For Fix-Based Fr ames 

The values of k used in Eqs. 4.34 and 4.35 were the same as those used in the Canadian 

designs. The maximum horizontal load that the American code allows each frame to carry 

has been non-dimensionalized in Table 4.2. As with the Canadian code results, a dash 

indicates that the frame under the applied loads is not allowed. 

Note from Table 4.2 that the American code is much more conservative than its Cana

dian counterpart for these frames. Also note that the difference between the linear and 

second-order designs is almost nonexistent for the American code, yet is quite substantial 

for the Canadian code. This is the result of the excellent approximation for Mmax used 

in the linear formulation of the American design (Eq. 1.23) and the fact that , unlike the 

Canadian code, the value of Cn is the same for both the linear and second-order designs. 

Due to the similarities in Eq. 4.33 of the Canadian code and Eqs. 4.34 and 4.35 of 

the American code, and the fact that the Canadian linear design is always governed by 

Eq. 4.33, the Canadian linear results are very similar to both the linear and second-order 

American results. 

Also, because the Canadian failure surface, Eqs. 4.31 and 4.32, and a yield stress of 

0.9*7,, were used in ULA, the load at which the first hinge formed and that given by the 

Canadian second-order design were identical. 
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4.3 Group Two : Pin-Based Portal Frames 

4.3.1 General 

The pin-based portal frame shown in Fig 4.24 was subjected to two constant vertical 

loads, each P, and a variable horizontal load, H. As was the case with the fix-based 

frame, three slenderness ratios were chosen for the members of the frame, namely L/r = 

20, 60, and 100. Two vertical load cases were analysed at L/r = 20 and 60, while only 

one was analyzed at L/r = 100. These were P/Cy = 0.8 and 0.2 for L/r = 20, P/Cy = 

0.3 and 0.2 for L/r = 60, and P/Cy = 0.1 for L/r = 100. Again, for clarity purposes, the 

five frames will be refered to as PIN20(0.8), PIN20(0.2), PIN60(0.3), PIN60(0.2), and 

PIN100(0.1) respectively. The horizontal load in each frame was increased until the first 

hinge formed, which formed at C in all frames except PIN100(0.1) where it formed at 

B. As with the fix-based frame, the load was then increased until collapse to show the 

amount of reserve capacity each frame had. 

4.3.2 Canadian Code Design, Pin-Based Frames 

The maximum horizontal load that the Canadian code allows each frame to carry was 

calculated using Eqs. 4.31 through 4.33. The value used for k was 2.29 (sway permitted 

nomograph) for the linear design and 0.88 (sway prevented nomograph) for the second-

order design. The value of OJ was 0.6 for the second-order design and 1.0 for the linear 

design. As with the fix-based frames, the stability equation, Eq. 4.33, governed the 

linear design of all five frames. The second-order design of PIN100(0.1) was governed by 

the first strength equation, Eq. 4.31, and the design of the remaining four frames was 

governed by the second strength equation, Eq. 4.32. 

The code results have been non-dimensionalized and are shown with the results from 

ULA in Table 4.3. Again, a dash indicates that the frame under the applied loads is not 
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Figure 4.24: Pin-Based Portal Frame 
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Frame 
ULA Canadian American 

Frame Hinge #1 #2 Second 
Order 

Linear Second 
Order 

Linear 

PIN20(0.8) 0.283 0.296 0.283 0.054 0.024 0.025 
PIN20(0.2) 1.421 1.530 1.421 1.139 1.269 1.278 
PIN60(0.3) 0.168 0.168 — — — 

PIN60(0.2) 0.701 0.701 0.191 0.178 0.202 
PINlOO(O.l) 0.336 0.336 0.028 — — 

Table 4.3: Values For Pin-Based Fr ames 

allowed. 

4.3.3 American Code Design, Pin-Based Frames 

The maximum horizontal load that the American code allows each frame to carry was 

calculated using Eqs. 4.34 and 4.35. The values of k used in these equations were the 

same as those used in the Canadian design. The results have been non-dimensionalized 

and are shown in Table 4.2. As with the Canadian code results, a dash indicates that 

the frame is not allowed. 

As with the previous example, notice that the Canadian linear and both American 

designs are very similar. Also, the Canadian second-order design and the first hinge given 

by ULA are the same. Both the Canadian linear design and the American designs are 

conservative with respect to ULA. 

4.4 Group Three : Laterally Supported Fix-Based Portal Frames 

4.4.1 General 

The laterally supported fix-based portal frame shown in Fig 4.25 was subjected to two 

constant vertical loads, each P, and a variable distributed load, w. The three slenderness 
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Figure 4.25: Laterally Supported Fix-Based Portal Frame 

ratios chosen for the members of the frame were L/r = 20, 60, and 100. At L/r = 20 and 

60 two vertical load cases were analyzed , while at L/r = 100 only one was analyzed . 

Namely, at L/r = 20, P/Cy = 0.8 and 0.2 , at L/r = 60, P/Cy = 0.8 and 0.4, and at L/r 

= 100, P/Cy = 0.4. These five frames will be refered to as LSFIX20(0.8), LSFIX20(0.2), 

LSFIX60(0.8), LSFIX60(0.4), and LSFIX100(0.4) respectively. The "light" axial load 

of P/Cy = 0.4 for the intermediate and slender frames is higher than that used in the 

laterally unsupported examples, so as to ensure that the first hinge formed in the column 

rather than the beam. 

The distributed load in each frame was increased until the first hinge formed, which 

in all cases formed at C. As with the unsupported frames, the load was then increased 

until collapse to show the amount of reserve capacity each frame had. 
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4.4.2 Canadian Code Design, Laterally Supported Fix-Based Frames 

The maximum distributed load as allowed by the Canadian code for each frame to carry 

was calculated using Eqs. 4.31 through 4.33. The value used for k was 0.63 for both 

the linear and second-order designs. Also, the value of w was 0.4 for the second-order 

design and 0.85 for the linear design. The linear design of all five frames was governed by 

the stability equation, Eq. 4.33. The second order design of LSFIX60(0.8) was governed 

by the stability equation, Eq. 4.33, while the design of the remaining five frames was 

governed by the second strength equation, Eq. 4.32. An extra joint was placed at L\ 

(0 < Li < L) to determine whether the first hinge formed at the member end, C, or 

whether it formed somewhere within the member, at E. In all five cases, it was determined 

that the first hinge would form at C, i.e. the maximum moment in the column, Mmax, 

occured at the member end. Therefore, since M/ used in the design equations was already 

Mmax (recall that Mf is the maximum end moment), it was believed that the strength 

equations would govern all five second-order designs. However, the stability equation 

governed the design of LSFIX60(0.8) as the value of CT used in the equation built in 

enough conservatism to have it govern. 

The results from the code equations are shown with the results from ULA in Table 4.4. 

4.4.3 American Code Design, Laterally Supported Fix-Based Frames 

The maximum distributed load that the American code allows each frame to carry was 

calculated using Eqs. 4.34 and 4.35. The values of k used in these equations were the 

same as those used in the Canadian design. The results have been non-dimensionalized 

and are shown in Table 4.4. 

The American designs and the Canadian linear design show a slight deviation in this 

case, yet they are still comparable. Again, the Canadian second-order results are the 
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Frame 
ULA Canadian American 

Frame Hinge #1 #2 #3 Second 
Order 

Linear Second 
Order 

Linear 

LSFIX20(0.8) 2.535 2.554 6.840 2.535 2.463 1.744 1.744 
LSFIX20(0.2) 10.13 10.21 11.40 10.13 10.09 9.508 9.474 
LSFIX60(0.8) 3.412 3.415 8.263 2.474* 1.237 0.928 0.928 
LSFIX60(0.4) 6.729 6.738 9.803 6.729 4.640 4.640 4.640 
LSFIX100(0.4) 11.31 11.32 11.63 11.31 6.075 7.811 6.943 
* design governed by eq. 4.33 

Table 4.4: JJ |§^- Values For Laterally Supported Fix-Based Frames 

same as the first hinge results from ULA with the exception of frame LSFIX60(0.8). The 

reason for this discrepancy is that the governing equation for the Canadian design was 

the stability equation, Eq. 4.33, rather than the strength equation, Eq. 4.32. Notice from 

Table 4.4 that the Canadian linear results are close to the results from ULA for the stiff 

frames, yet deviate from the ULA results for the more flexible frames. This is due to 

the fact that Cr is equal to the axial capacity, Cy, for stiff columns and much lower than 

Cy for flexible columns. Again the code results are conservative when compared to the 

results from ULA. 

4.5 Group Four : Laterally Supported Pin-Based Portal Frames 

4.5.1 General 

The laterally supported pin-based portal frame shown in Fig 4.26 was subjected to two 

constant vertical loads, each P, and a variable distributed load, w. The three slenderness 

ratios chosen for the members of the frame were L/r = 20, 60, and 100. The vertical 

load cases for each slenderness ratio were P/Cy — 0.8 and 0.2 for L/r = 20, P/Cy = 0.8 

and 0.4 for L/r = 60, and P/Cy = 0.4 for L/r = 100. These five frames will be referred 
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Figure 4.26: Laterally Supported Pin-Based Portal Frame 

to as LSPIN20(0.8), LSPIN20(0.2), LSPIN60(0.8), LSPIN60(0.6), and LSPIN100(0.4) 

respectively. 

The distributed load in each frame was increased until the first hinge formed, which 

in the case of LSPIN20(0.8) and LSPIN20(0.2) formed at C, and formed at E in the other 

three frames. As with the laterally supported fix-based frames, an extra joint was placed 

at E in order to locate where the first hinge formed. 

Again, as with the unsupported frames, the load, w, was then increased until collapse 

to show the amount of reserve capacity each frame had. 

4.5.2 Canadian Code Design, Laterally Supported Pin-Based Frames 

The maximum distributed load that the Canadian code allows each frame to carry was 

calculated using Eqs. 4.31 through 4.33. The value used for k was 0.88 (sway prevented 
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nomograph) for both the linear and second-order designs. Also, the value of LO was 

0.6 for the second-order design and 1.0 for the linear design. The linear design of all 

five frames was governed by the stability equation, Eq. 4.33. The second-order design of 

LSPIN20(0.8) and LSPIN20(0.2) was governed by the second strength equation, Eq. 4.32, 

while the design of the remaining three frames was governed by the stability equation, 

Eq. 4.33. The fact that the stability equation governed the design of these three frames is 

reassuring in this case, as the first hinge did not form at the member end. This indicates 

that the approximation for the maximum moment, uMf/ (l — is a good one. The 

results shown in Table 4.5 for these three designs are conservative when compared to 

ULA though, as the stability equation uses Cr rather than Cy as ULA does. 

The results from the code equations are shown with the results from ULA in Table 4.5. 

A dash indicates that the frame under the applied axial load is not allowed by the code. 

4.5.3 American Code Design, Laterally Supported Pin-Based Frames 

The maximum distributed load that the American code allows each frame to carry was 

calculated using Eqs. 4.34 and 4.35. The values of k used in these equations were the 

same as those used in the Canadian design. The results have been non-dimensionalized 

and are shown in Table 4.5. A dash indicates that the frame is not allowed. 

Note from Table 4.5 that unlike the previous examples, the American designs are 

quite different than the Canadian linear designs. Also, the Canadian second-order are 

only comparible to the results from ULA for the stiff frames. As was the case with the 

previous example, this was caused by the stability equation governing the design of the 

more flexible frames. As with the previous examples, the code results are conservative 

when compared to the results from ULA. 

The Canadian and American codes are conservativefor the four groups of frames 

illustrated here. However, the amount by which the codes are conservative varies greatly 
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Frame 
ULA Canadian American 

Frame Hinge #1 #2 #3 Second 
Order 

Linear Second 
Order 

Linear 

LSPIN20(0.8) 2.736 2.744 6.840 2.736 2.155 1.744 1.744 
LSPIN20(0.2) 10.91 10.94 11.41 10.91 9.542 10.16 10.12 
LSPIN60(0.8) 3.649+ 3.650 0.000* 0.000 — — 

LSPIN60(0.6) 7.598+ 7.601 4.640* 2.784 4.022 3.712 
LSPIN100(0.4) 9.196+ 4.339* 1.736 6.075 4.339 
+ hinge formed at E 
* design governed by eq. 4.33 

Table 4.5: 0 9 ^ Values For Laterally Supported Pin-Based Frames 

between frames. That is, the designer is unable to know whether the Canadian linear 

design, for instance, will result in a load that is ten or ninety percent of the load required 

to form the first hinge. Further, he is unable to know whether the American linear 

design will be more conservative than the American second order design or the Canadian 

linear design. It is the Authos opinion that this leaves the designer no room to use his 

judgement, and thus all he can do is follow the code and hope his design is adequate. 



Chapter 5 

Structures Beyond the Code Limits 

5.1 Introduction 

As was shown in the previous chapter, the code degsigns were adequate though conser

vative, for the chosen frames, Figs. 4.23 through 4.26. It is the purpose of this chapter 

to show where and why the codes may fail for more general structures. This will be 

accomplished through the use of several examples, each illustrating a different problem 

or reason for the codes failure. These structures will also be checked by the code equa

tions and the results compared with those given by ULA. Because these structures are 

not within the code application limits outlined in Sec. 1.3.5, "reasonable" engineering 

assumptions were employed such that the code equations could be used. Although using 

the codes to design structures beyond the application limits of the codes is not a recom

mended practice, it is one that is often used by practicing engineers, and thus will be 

explored here. 

5.2 Example Number One : P in-Ended A-Frame 

5.2.1 General 

Contrary to what the building codes imply through the use of the sway prevented and 

sway permitted nomographs, the effective length of a column in a given structure is 

dependent on both the loading conditions and the structure itself. According to the 

nomographs, a column's effective length depends only on its end conditions, or more 

56 
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specifically, only the structure itself. The codes omit the loading dependency as they 

assume that all columns in the structure reach their critical load at the same time. If the 

structure were required to carry only one load combination, for example constant vertical 

loads only, an efficient design would have all of the columns in the structure reach their 

critical load at the same time. However, for more than one load combination, for example 

wind from both the left and right, this is no longer the case. Most structures are designed 

for different load combinations, thus one column in the structure will be "helped" by its 

neighbour and in the process its effective length will decrease below that given by the 

nomograph. Also in this process, the effective length of the neighbour will be increased. 

Clearly, the amount of support offered to the column depends on the axial load in the 

neighbour. If the neighbour has reached its critical load, no additional support will be 

afforded to the column in question. If, however, the neighbour is in tension, a large 

amount of support may be offered. This type of support will be referred to as "tension 

stiffening" in this paper. A structure that illustrates tension stiffening is the A-frame 

shown in fig. 5.27. 

5.2.2 Effective Length Factor, k 

The effective length of member CE in Fig. 5.27 depends on the angle of loading, 0. When 

the applied load is vertical, 9 = 0°, both members AC and CE carry the same compression 

load. The result is that no support is given to member CE by member AC and the cross 

brace does nothing more than ensure that both members buckle in the same direction. 

That is, the effective length factor, k, of member CE under this loading is 1. When the 

load is horizontal, 9 = 90°, member AC is in tension while member CE is in compression. 

Thus, the cross brace effectively holds the center of member CE in line with its ends and 

the member buckles into the second mode shape and k = 0.5. 

The effective length factor, k, of member CE was calculated for various loading angles, 
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Figure 5.27: Pin-Ended A-Frame 
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Figure 5.28: Variation of k Against 6 for Member CE 

0° < 9 < 360°, and the results are shown in Fig. 5.28. From the figure it can be seen 

that k is highly dependent on the loading conditions. 

5.2.3 Code Design of Member CE 

Vertical Load, No Tension Stiffening 

The A-frame in Fig. 5.27 with 9 = 0° was modelled for ULA as shown in Fig. 5.29. 

The value Z/IOOO shown in the figure was chosen to represent the maximum fabrication 

eccentricity of a member. Also, the initial configuration of the member eccentricities 

was chosen to approximate the elastic buckled shape and thus result in the maximum 

moment occuring at D. 

For the Canadian code design of member CE, recall from Sec. 1.3.1 that the three 
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design equations are: 

Mf 

(j)Z(Ty 
< 1.0 (5.36) 

Cf 0.85M, 
+ ,ry < 1.0 (5.37) 

y 

£ t + i f i — < i.o (5.38) 

It is important to realize that Mf is the maximum end moment. In the case of the 

A-frame, however, the end moments are zero. The commentary to the code does suggest 

using the midspan moment for a pin-ended column with a lateral distributed load, along 

with UJ = 1, for the linear design. There is no suggestions made for the second-order 

design though. The code also suggests that k for truss members can be assumed to be 

one, unless it can be shown that a smaller value is applicable. Therefore, it is proposed 

that Mf be replaced by the midspan moment, C/L/1000, u> be one, and k also be one 

for the linear design. For the second-order design, it is proposed that the second-order 

moment at D be used in place of ujMfj (l — in Eq. 5.38. The reason for this is that 

ujMfl (l — is an approximation for the maximum moment in the member, and the 

second order midspan moment is the maximum moment. It is also proposed that the 

moment at D be used in place of Mf in Eqs. 5.36 and 5.37. Due to the Cf/Cr term in 

the stability equation and the assumptions above, Eq. 5.38 always governed the second 

order design. This does seem reasonable though, as the stability equation is in place to 

account for beam columns that have the hinge form within the member. 

For the American code design of mewber CE, recall from Sec. 1.4 that the two design 

equations are: 

_ ^ + J ^ < 1 . 0 -%->0.2 (5.39) 
, C n 9cf>bMn (f>cC, 
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Figure 5.29: A-Frame Computer Model : Vertical Load 

Cf Mf Cf 

-J- + -rrr ^ L 0 T~n~ < O-2 (5-40) 2(j>cCn <f>bMn 4>cCn 

where: 

Mf = BxMnt + B2MH (5.41) 

For the same reasons set out in the Canadian design, it is proposed that the midspan 

moment be used in place of Mnt of Eq. 5.41 for calculation of Mf used in Eqs. 5.39 and 

5.40. It is also proposed that k = 1 be used in calculating Bt of Eq. 5.41. For the 

second-order design, the code suggests that Mf be the maximum member moment and 

thus the midspan moment was used. 

The maximum axial load, C/, that the codes allow member CE to carry using the 

above assumptions is shown in Table 5.6. This load has been non-dimensionalized and 



Chapter 5. Structures Beyond the Code Limits 62 

Frame ULA 
Canadian American 

Frame ULA Second 
Order 

Linear Second 
Order 

Linear 

Fig. 5.29 k = l,u> = l 0.585 0.387 0.390 0.416 0.419 

Table 5.6: ^-A— Results For A-Frame : Vertical Load 

is shown as a portion of the member's factored axial capacity, 0.9Ao~y. The effect of this 

non-dimensionalizing procedure is that the results are independent of the 60° geometry 

angle shown in Fig. 5.27. The load given by ULA at which the first hinge formed has 

also been included in the table. It can be seen that the code equations give conservative 

results using the assumptions stated above when compared with the results of ULA, with 

the Canadian designs being more conservative than the American ones. 

Horizontal Load, Includes Tension Stiffening 

The A-frame in Fig. 5.27 with 9 = 90° was modelled for ULA as shown in Fig. 5.30. 

The value of 0.5X/1000 was chosen to represent the maximum fabrication eccentricity of 

the member, in the shape shown in Fig. 5.30. Notice again that the initial configuration 

approximates the elastic buckled shape of the structure. 

For the Canadian code design of member CE, the design equations are the same as 

those used for the vertical load case, Eqs. 5.36 through 5.38. The maximum moment 

for this case occurred at the quarter points, F and G. Thus for the same reasons as 

explained in the previous section, it is proposed that for the linear design, Mj be replaced 

by the linear moment at F, C/i/2000, and that u = 1. For the second-order design, 

as with the vertical load case, it is proposed that the second-order moment at F replace 

toMjl ( l - in Eq. 5.38 and replace Mf in Eqs. 5.36 and 5.37. 

Figure 5.28 shows that when 9 = 90°, k — 0.5 for member CE. Thus, it is proposed 



Figure 5.30: A-Frame Computer Model : Horizontal Load 
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Frame ULA 
Canadian American 

Frame ULA Second 
Order 

Linear Second 
Order 

Linear 

Fig. 5.29 k = l,cu = 1 0.992 0.424 0.426 0.461 0.461 
Fig. 5.30 k = 0.5, cu = 1 0.935 0.760 0.763 0.760 0.751 

Table 5.7: TT^-.— Results For A-Frame : Horizontal Load 

that this value be used in the code equations. The code results using these assumptions 

are shown in Table 5.7. It is, however, possible that the designer would not realize that 

k = 0.5 for this loading condition. Thus, he might assume that k = 1 and use the 

configuration shown in Fig. 5.29. The results using these assumptions have therefore also 

been included in Table 5.7. It is clear from the table that k = 0.5 is a more appropriate 

value to use as k = 1 results in a highly conservative design. 

For the American design of member CE, the code equations are the same as for the 

vertical load case, Eqs. 5.39 and 5.40. As with the Canadian design, it is proposed that 

the moment at F replace Mn in Eq. 5.41. It is also proposed that the configuration of 

Fig. 5.30 be used. As with the Canadian design, the engineer might use the configuration 

in Fig. 5.29, and thus the results using both cases have been included in Table 5.7. 

Also included in the table are the results from ULA assuming both the configuration 

in Fig. 5.29 and Fig. 5.30. It is clear that the results from ULA are less sensitive to the 

assumed deflected configuration than the code equations are, though the results using 

the configuration in Fig 5.29 are slightly unconservative. 

A definite advantage of a computer program such as ULA now becomes clear. The 

effective length of each member in a structure can be easily found by slowly increasing 

the load until the structure buckles elastically. This buckling load is independent of any 

initial eccentricities such as those used in Figs. 5.29 and 5.30. The buckled shape will 
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Figure 5.31: Single Fix-Based, Pin-Ended Frame 

then shed light on what shape of eccentricities should be assumed, as if the eccentricity 

pattern follows the Eigenvector for the structure, the analysis will produce the largest 

moments of any such pattern. 

5.3 Example Number Two : Single Fix-Based, Pin-Ended Frame 

5.3.1 General 

The frame shown in Fig. 5.31 is unusual in that the linear moment at A is amplified even 

though member AB carries no axial load. Since the frame is statically determinant, it is 

easy to show that the second-order moment at A is given by: 
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MA = 0.02PL 
1 

1 _ ELL 
1 3EI 

(5.42) 

Mr 

or MA = — V (5.43) 

where: 

MA = Second-order moment at A 

ML = Linear moment at A (= 0.02PL) 

C'e = Equivalent Euler load for AB (= 3EI/L2) 

Notice that the amplification factor in Eq. 5.43 is dependant on the entire structure 

rather than the member alone. 

5.3.2 Code Design 

Since the axial load, Cf, in member AB is zero, both the Canadian and American code 

equations reduce to the following: 

Mf 

— < 1-0 (5-44) 0.9Zoy 

The Canadian linear design takes no account of the moment amplification shown 

in Eq. 5.42 when calculating Mf in Eq. 5.44, and therefore it is unconservative. The 

American linear design, on the other hand, has taken this moment into account. Recall 

from Sec. 1.4 that Mf is as follows: 

M} = B1Mnt + B2MH (5.45) 

where in this case 

Bx = 0 (5.46) 
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ULA 
Canadian American 

ULA Second 
Order 

Linear Second 
Order 

Linear 

0.452 0.452 1.000 0.452 0.452 

Table 5.8: Values For Single Fix-Based, Pin-Ended Frame 

and 

B2 = r- (5.47) 

It can be shown that the amplified linear moment given by Eq. 5.45 is the same as 

the second-order moment shown in Eq. 5.42. 

Because a second order analysis automatically takes this type of amplification into 

account when calculating the moment, both the Canadian and American second-order 

designs agree with the results from ULA. These results are shown with the linear design 

results in Table 5.8. All of the results have been non-dimensionalized with respect to the 

factored plastic moment resistance, 0.9Zoy. The American code is gives results which 

correlate with the results from ULA and which seem to be more exact for this type of 

frame than the Canadian code results. 

The frame shown in Fig. 5.31 is simplistic yet it clearly shows that the classic am

plification factor, 1/ ( l — does not always apply. As was the case in the previous 

example, this example further illustrates how one column "helps" its neighbour. More 

importantly for design purposes, however, this case shows how member CD is making 

member AB work harder than the Canadian linear design implies. 
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Figure 5.32: Five Storey Frame: Tension on One Side 

5.4 Example Number Three : Five Storey Frame, Tension on One Side 

5.4.1 General 

The frame shown in Fig. 5.32 is intended to be a model of the first five storeys of a 

multi-storey frame subjected to a lateral wind load. Also, it could model a bent with 

some dead and out of plane torsional loadings. In either case the loading conditions 

are such that the columns in one side of the frame are in tension while the others are 

in compression. Note that the frame satisfies the code limitations, however the loading 

does not. That is, the loading is such that the columns in tension will help to stabilize 

the columns in compression. 
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ULA 
Canadian American 

ULA Second 
Order 

Linear Second 
Order 

Linear 

0.854 0.854 0.467 0.496 0.493 

Table 5.9: Q ̂ a Results For Five Storey Frame 

5.4.2 Code Design 

The code design results for member EF, the governing member, are shown in Table 5.9. 

The maximum load 3P that the codes allow the structure to carry has been non-dimensionalized 

with respect to the factored axial capacity, 0.9Aoy. Due to the symmetry of the struc

ture, the moment used in the code equations was the usual maximum end moment and 

the effective length was calculated in the standard way using the nomographs. That is, 

no judgement was required when deciding what values of k and Mf to use. 

When calculating the American linear results, the amplification factor B2 in Eq. 5.47 

includes the term J2Cf, the sum of the axial loads in a storey. In this case, £ C / = 3P-P 

and thus 2P was used in the formulation. The results shown in Table 5.9 show that this 

does infact take account of the tension stiffening provided to member EF by the columns 

be'ween A and B, as the linear and second-order American results are virtually identical. 

Notice that the Canadian linear results are slightly lower than those of the American 

designs, while the Canadian second-order results are the same as those from ULA. 

5.5 Example Number Four : Four Storey Frame, Mult iple Column Lengths 

5.5.1 General 

The frame shown in Fig. 5.33 was chosen to show what effect different column lengths 

within a structure would have on the design of the members. Due to the one short storey, 



Chapter 5. Structures Beyond the Code Limits 70 

P 

r r i P 

f 1 

P 

L 

L 

L 
t 

-— El 3EI 
L 

— 

L 
C D 

A B 
L 

- =33 
r 

=66 
r 

2L 2L 2L 

Figure 5.33: Four Storey Frame: Multiple Column Lengths 

it was expected that the governing member would be BD as virtually all of the shear in 

the frame is taken out at A and B. Thus, it was expected that Canadian linear design 

would be unconservative, the American designs conservative, and the Canadian second 

order design would agree with the results from ULA. 

The actual code results are shown in Table 5.10 in which the allowable load, P, has 

been non-dimensionalized with respect to the factored axial capacity, 0.9Aoy. As can be 

seen from the table, all of the code results agree remarkably well with the results from 

ULA. As with the previous example, no judgement was used when deciding what values 

of k and Mf to use as the nomographs were used for k and the maximum end moment 

for Mf. The sum of axial loads, J2Cf, used in the American amplification factor B2 was 

4P. 

It seemed the similarity between the code results and those from ULA was attributed 
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ULA 
Canadian American 

ULA Second 
Order 

Linear Second 
Order 

Linear 

0.453 0.453 0.431 0.417 0.398 

Table 5.10: Q £Aa Results For Four Storey Frame 

to the low L/r of member BD. However, after further investigation, it was discovered 

that there was a large discrepancy between the axial and moment contributions to the 

Canadian design equations. The linear design underestimated the moment contribution, 

Mf/Mr ( l — when compared to the second order design. However, this underesti

mation was countered by an overestimation in the axial contribution, CfCr. To verify 

that this discrepancy was not only a function of the column slenderness chosen, the sec

tion used was changed such that L/r was 50 rather than 33. The result was that the 

linear and second-order designs became even closer to the results from ULA. 

Two conclusions can be drawn from the previous results. First, the design equations 

were chosen to be conservative such that the design of structures of this type would be 

adequate. Second, the codes were fortunate in this case and a correct answer does not 

imply a correct solution. The Author favours the second of these conclusions. 

5.6 Example Number Five : Tied and Fixed Arch 

5.6.1 General 

A common misconception among designers is that if one adds supports to a structure, it 

becomes stiffer or stronger. To illustrate that this is not the case, both arches shown in 

Fig. 5.34 were analysed with ULA. In both cases, the distributed load was increased until 

elastic buckling occured, in order to find the effective length of a typical arch member 
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AB. As is illustrated by the buckled shapes shown in the figure, the effective length of 

AB is approximately 0.5L for Case 1, where both supports are fixed against translation, 

and approximately 0.09L for Case 2, where one support is released to translate freely. 

The reason for such a large difference in k is the tension stiffening provided to the arch 

by the tie when the support is released. When the support is restrained, Case 1, the tie 

carries only secondary forces and thus provides no support to the arch. 

Unfortunately, the arches shown in Fig. 5.34 are so far removed from the code lim

itations (for example what is a girder and what is a column?) that it was felt that to 

compare code results with the results from ULA would be of little benefit. Thus the code 

designs for this example have been omitted. However, the example does illustrate the 

effect that tension stiffening can have on the overall behaviour of a structure. 

5.7 Example Number Six : Overpass 

5.7.1 General 

As was shown in the previous example, it is often difficult for a designer to determine 

which members in a structure are acting as girders and which as columns when calculating 

the effective length factors for the code equations. Another common structure that 

illustrates this is the overpass shown in Fig. 5.35. It is a relatively simple task to design the 

legs, member BC and member DF, as they are simple compression members. However, 

the design of the girder is another matter. One design practice may be to assume the 

effective length of the center span , member CD, is 1.0L. Another may be to ignore the 

axial load in the member completely. Both of these practices would be incorrect and 

un-conservative. ULA gives an effective length for the center span of the overpass as 

1.36X. Further, the axial load reduces the moment capacity by approximately twenty 

percent. 



Figure 5.34: Fixed And Tied Arch 
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If the designer were to interpret the code in such a way that the parts of the deck 

carrying no axial load, member AC and member DE, were acting as girders and the center 

span, member CD, as a column, the side-sway permitted effective length factor would 

be 1.31. If one were to further assume that, because of the pin ended connection of the 

end spans, they provide three quarters of the rotational stiffness of fix ended members 

( 3EI/L rather than AEI/L), the effective length factor would be 1.43. These values 

appear to be reasonable when compared to the value given by ULA. However, with the 

previous examples in mind, one should be cautious when interpreting the code in this 

manner. Without the computer program to compare these values to, the designer could 

not be sure of the values given by his assumptions. 

Due to the above arguements, as was the case with the previous example, it was felt 

that little insight would be gained through the comparison of the codes and ULA. Thus, 

the code results have been omitted. 

The five examples illustrated here do not cover all possible design situations an engi

neer will face. However, they illustrate that for common structures, the building codes 

do not always work. The study presented here indicates that the codes are inconsistent, 

varying between being highly conservative and in one case highly unconservative. Thus 

the designer must be skeptical of the results given by the codes. Unfortunately, this is 

not always the case. Many designers feel that the codes are always conservative and thus 

a design by the code will work. 
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Figure 5.35: Overpass 



Chapter 6 

Conclusions And Recomendations 

6.1 Conclusions 

Because of their importance and wide spread use, the beam column design rules of 

both the Canadian and American building codes (CAN3-S16.3-M84 and LRFD 1986 

respectively) were reviewed. It was noted that both codes offer the engineer two design 

options, the use of a linear analysis or the use of a second-order analysis. 

An alternative design method was then proposed in the form of a second-order com

puter program, ULA. ULA was verified to within 10% by comparing other researchers 

test data to ULA's analytical results. In the case of a pin ended column, ULA gave 

results that compared well with the test results. ULA also compared well with two test 

frames, one by Yaramci and the other by Baker. 

Accepting now that ULA gives an accurate representation of what actually happens 

in a loaded structure, the Canadian and American building code designs were compared 

to the analytical results of ULA for a wide range of structures. First the comparison was 

made for structures that satisfied the limitation requirements of the codes. It was found 

that the codes were conservative by as much as 90% when compared to the results from 

ULA for these structures, with the Canadian second-order designs being very similar 

to the results from ULA. Also, the Canadian linear results were similar to both the 

American linear and second-order designs for these structures. 

Results from ULA were compared to the codes for structures beyond the code limits. 

76 
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It was found for some cases that the codes gave results that were as conservative as 55%, 

for one case hesults that were 120% unconservative, and for others the results were very 

accurate when compared to results from ULA. Further, it was discovered that one could 

not reasonably predict whether the codes would be conservative or not. In all cases, the 

Canadian second-order design was closest to the results from ULA, and for the examples 

chosen, conservative. 

With this in mind, the Author concludes that the use of a linear design procedure 

is not good enough anymore. The rapid advances made in computer technology in the 

recent past has made second-order design procedures both efficient and practical. 

6.2 Recommendations 

It is proposed that the code committees look into abolishing the use of linear design 

procedures in favour of more accurate second-order procedures. Further, the American 

code committee should reevaluate their decision to eliminate the strength equations such 

as those presented in CAN3-S16.3-M84. The adoption of these recomendations would 

need to be accompanied by changes in the load factors used in the codes. The current 

load factors, combined with the linear design procedures, presumably result in an ade

quate probability of failure among different structures. The more refined second-order 

procedures would require different load factors to achieve the same probability of failure. 

If one accepts the results from ULA as being accurate, the examples illustrated in this 

thesis indicate that this would result in a more uniform probability of failure among dif

ferent structures than currently exists. With the exception of cases where the stability 

equation governed the design, the Canadian second order design procedure gave results 

consistant with the results from ULA. This was unlike the linear design procedure and 

both American procedures, all of which gave erratic results when compared to the results 
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from ULA. It is believed that addoption of the recommendations presented here would 

be beneficial to both the design profession and society as a whole. 

6.3 Further Research 

A second-order design procedure such as that proposed here should to be used in con

junction with a probability based algorithm to decide what values are appropriate for 

the load factors. Also, model and full-scale tests should be performed to verify the pro

cedures accuracy. To reduce the cost of full-scale testing, buildings which are slated for 

demolition could become an inexpensive laboratory. 
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