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A B S T R A C T 

The research assesses the value of forecast information in operating a hydro-electric 

project with a storage reservoir. The benefits are the increased hydro power produc

tion, when forecasts are available. The value of short term forecasts is determined by 

comparing results obtained with the use of one month ahead perfect predictions to those 

obtained without forecasts but a knowledge of the statistics of the possible flows. The 

benefits with perfect forecasts provide an upper limit to the benefits which could be 

obtained with actual less than perfect forecasts. The effects of generating capacity and 

flow patterns are also discussed. 

The operation of a hypothetical but typical project is modelled using stochastic dy

namic programming. A simple model of streamflow is formulated based on the historical 

statistics ( means and deviations). 

The conclusions are: The inflow forecasts can improve the operational efficiency of the 

reservoir considerably because of the reduction in forecasting uncertainty. The maximum 

release constraints affect the additional expected values. The benefits from the forecasts 

increase as the discharge limits reduce. Flow predictions in the high flow season are most 

valuable when the runoff in that time period dominates the annual flow pattern. However 

flow predictions at other times of the year also have value. 
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Chapter 1 

I N T R O D U C T I O N 

1.1 S T A T E M E N T OF T H E P R O B L E M 

Achieving the most efficient operation of hydroelectric projects is a complex task. Firstly, 

there are uncontrollable and uncertain elements that affect the projects' operation, such 

as stream flow which is variable and difficult to forecast. The value of optimization 

techniques is dependent on the accuracy and the availability of information regarding the 

magnitude of future basin inflows. Secondly, there are multiple components ( reservoirs, 

canals, river diversions, power plants . . . etc.) which must operate jointly. Thirdly, 

conditions such as electricity demand and regulations are continuously changing due 

to the inherent dynamic nature of society and technology. Fourthly, there exist many 

conflicting, interests and constraints that influence the management of the system. 

Research efforts to improve the efficiency of hydro-electric power production have 

been mainly concentrated on mathematical models and solution techniques during the 

past few decades. Many different models and solution approches, such as Linear Program

ming (LP), Deterministic Dynamic Programming (DDP), Linear Programmig-Dynamic 

Programming (LP-DP), Stochastic Dynamic Programming (SDP), State Increament Dy

namic Programming (SIDP), and Markov Decision Process (MDP) have been studied by 

researchers. 

Hydrologists are interested in building and studying stream flow forecasting models. 

1 



Chapter 1. INTRODUCTION 2 

Their purpose is to provide more accurate predictions about inflows. Many models re

lating to this issue have been built. Less efforts have been made to study the role of 

stream flow forecasting models in the optimization of hydro-electric power plant oper

ation, specifically the extent to which more accurate inflow forecasts result in an im

provement in operating efficiency. But, now, more and more researchers have noted that 

to justfy accurate information about inflows, the benefits and costs from using accurate 

runoff forecasts compared with using relatively inaccurate inflow information should be 

considered. In another words, the use of a complicated forecasting model must be based 

not only on the technical possibilities but also on the expected additional benefits it may 

provide. The expected additional returns give a clue as to how much money can be spent 

on research to find better stream flow forecasting models. It is well known that forecast

ing systems can be very costly, and the question that frequently arises is whether or not 

the benefits outweigh the cost. If we know the value of inflow information, it will help to 

make decisions about research proposals which aim at finding accurate inflow forecast

ing models and how much money one can spend on the project. When the budget for 

research and data gathering is higher than the additional benefits from the information, 

the work is difficult to justfy. Otherwise, the research work is worth doing. 

Unfortunately, the process of reservoir operation is complex, and the value of improved 

forecasting is very difficult to estimate. This is mainly because perfect predictions of 

stream flow are never available, especially for long term forecasting. There are inherent 

inaccuracies and these are difficult to quantify in a meaningful way. Stream flow, a 

stochastic process, is determined by many random factors which can not be foreseen. 

Short term forecasting can be more accurate than long term prediction. In some 

cases, such as when winter flows result entirely from groundwater, short term forecasts of 

runoff can be almost completely accurate, so they may be termed as 'perfect forecasts'. 

Of course, 'short term', here, is a fuzzy word. It may refer to hourly, daily, weekly or 
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even monthly prediction. 

In this study a hypothetical hydro project with realistic characteristics is used. Cal

culations are done on a monthly basis as it usual in power studies. The study first finds a 

long term discounted expected value for the output from the project when it is operated 

in an optimal way with no forecasts. Then various forecasts are assumed and their values 

assessed, with most effort concentrated on the one month ahead perfect forecast. 

It is much simpler to determine the value of perfect information or a perfect forecast 

than of information with some inaccuracies. The value of perfect information gives a 

useful upper bound on the value of information or of a forecasting system. The aim of 

this thesis is to develop a methodology for operating a typical hydro electric plant with a 

storage reservoir in an optimal way and to assign a value to perfect short term forecasts. 

1.2 M E T H O D O L O G Y 

The approach adopted to achieve the stated objectives was to use a stochastic dynamic 

programming model to optimize the operation of a hypothetical hydro-electric power 

station and then to obtain the long term discounted expected benefit of its output. 

Next, the process was repeated assuming perfect forecasts one month ahead. For the 

purpose of calculating the additional benefits due to the use of one month ahead perfect 

inflow information, some modifications had to be made to the pure stochastic dynamic 

programming model. The benefit increment shown by the model reflected the reduction 

of uncertainty in the inflow prediction. Thus the difference between the energy production 

with the stochastic dynamic programming model and the modified one assuming perfect 

information measure the value of the perfect stream flow forecasts. 

The major steps in the research are listed below: 

• Build the dynamic programming model for stochastic and one month ahead perfect 
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stream flow prediction. 

• Run the stochastic dynamic programming to get the one year optimal operating 

policy for the reservoir. 

• Repeat the optimizing process using the value of various water levels obtained from 

the last run until the results stablized in order to obtain the expected long term 

value of the output from the project— and the long term optimization policy for 

the hydro-electric projcet. 

• Run the modified dynamic programming model and assume that perfect one month 

ahead forecasts were available. Again repeat until the results stablized to find the 

value of operating with the accurate forecasts. 

• Analyze the results and draw conclusions. 

Details of the procedures are explained in the following chapters. 

1.3 S O M E O T H E R P R O B L E M S 

Several aspects of the study are discussed here to define the problems encountered and 

the scope of the research. 

1.3.1 S E L E C T I O N OF O B J E C T I V E F U N C T I O N 

As mentioned above, water resource projects usually serve multiple purposes or multiple 

objectives. Single objective projects rarely exist in the real world. Fortunately, our 

purpose is to find the value of perfect stream flow information. Also the hydro-power 

plant which is studied is a hypothetical one, so there is no need to consider multiple 

objectives. This helps concentrate our interests on the main purpose. On the other 
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hand, multiple objective problems are more complicated than single objective. If two 

or more objectives are involved in the study, it is very difficult to judge the value of 

perfect information, since the trade-off among objectives affects the optimal solution. 

Although there are some techniques which deal with multiple objective optimization 

problems successfully, these techniques are usually very complicated and are difficult to 

use in large scale optimization problems. Therefore, using only one objective to study 

the value of perfect inflow forecasting simplifies the study. 

The objective considered in this study is the energy production from the hypothetical 

hydro-power project. In order to measure the value of the perfect inflow and to make 

comparisons more meaningful, the energy production is transformed into monetary terms. 

However, the value of perfect information in this research refers only to the value in terms 

of increased energy production due to the reduction of uncertainty in predictions and the 

resulting increased operational efficiency of the reservoir. 

1.3.2 T H E W O R K E N V I R O N M E N T OF T H E H Y D R O P O W E R P L A N T 

As described in Section 1.1, a hydro-electric project must work as a part of a whole 

system which contains multiple reservoirs, hydro power plants, canals . . . etc., and it 

should be optimized under a given energy demand curve. Furthermore, in the real time 

operation of a hydro power station, the energy price varies with time which can cause 

complications in optimizing the operation of the reservoir. Such optimization problems 

require large scale systems analysis models and decomposition techniques will usually be 

needed. 

However, as indicated above, this study is only for a hypothetical project. It is 

assumed that the project will operate independently to simplify the model and its calcu

lation. That is, the hydro-electric power plant can be optimized to generate maximum 

enery at all times without considering the shape of the energy demand curve and without 
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dealing with the combined optimization of multiple reservoirs operation. This is quite 

realistic for a research project. 

1.3.3 E F F E C T OF T H E M A X I M U M G E N E R A T O R D I S C H A R G E O N T H E 

O P E R A T I O N OF RESERVOIR 

The constraint of the maximum amount of water which can be released from a reservoir 

through the power plant can affect the operational efficiency of a hydro-electric plant. 

This is because the limitation of the maximum discharge influences the total amount of 

water spilled from the reservoir during the high flow period. The amount of spilled water 

from the reservoir is an indicator of energy loss. The smaller the amount of water spilled 

from a reservoir, the better the operational efficiency for the hydro power project is. If 

the upper bound of the release is too low, it causes a larger amount of water to be spilled 

than does the case which has a higer upper bound of release. This will, of course, reduce 

the operating benefits from the hydro electric plant. On the other extreme, if there is no 

upper bound to the release of water through the turbines, there will be no water being 

spilled over the spillway. It will produce maximum energy for a given reservoir size and 

no energy loss any time during the high flow period. It is the ideal case, from an energy 

production point of view. 

However the maximum discharge constraint is determined by the capacity of the 

turbines installed in the power station. This study examines the effects of changing 

the upper bound of discharges by setting several release limits and then comparing the 

results. 

1.3.4 O P E R A T I O N A L POLICIES W I T H VARIOUS F L O W P A T T E R N S 

Another interesting problem is the effect of different stream flow patterns on the operation 

policies of the hypothetical hydro power project. Here, a different flow pattern means that 
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for a given amount of annual inflow, the distribution of the mean monthly stream flows 

and their deviations are different. Finding out how the operation policies and the output 

changes with the flow patterns is of the research significance. In this study, two different 

flow distributions have been examined, one typical of the British Columbia interior and 

one typical of the B.C. Coast. The results will be shown in the related section. 

1.4 L I T E R A T U R E R E V I E W 

Stream flow forecasts and predictions play a fundamental role in the operation of hydro-

power projects. The degree to which forecasts aid the operator in improving the oper

ational efficiency is dependent on the quality of the forecasts. Many researchers have 

noted that it is worth deriving quantitative measures of the value of flow forecasts. 

Joanna Mary Barnard(1989)[l] investigated the value of inflow forecasting models in 

the operation of a hydro-electric reservoir. She considered how conceptual hydrologic 

forecasts could be used in combination with optimizing techniques to improve the op

erational efficiency of a hydro-electric project. Her thesis used a stochastic dynamic 

programming model and a simulation model to study the problem. Barnard compared 

the role of three different inflow forecasting models: a naive forecast, a conceptual fore

cast and a perfect forecast (actually recorded inflows), in the operation of a hydro-power 

station. Some interesting results were found. She concluded that the accuracy of the 

forecast is more important in influencing the value of the conceptual forecast than the 

magnitude of the flows. However, since there is no way of determining when a forecast 

will be accurate, a policy must be developed to decide when forecasting could be of use 

in long term power production planning. The approach used in this study is somewhat 

similar but with a different emphasis. 

Aris P. Georgakakos (1989) [2] evaluated the benefits of stream flow forecasting in 
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three specific systems: the Savannah River System in the state of Georgia, The High 

Aswan Dam, and the Equatorial Lake System. The approach taken was to simulate the 

performance of the systems under Extended Linear Quadratic Gaussian (ELQG) control 

with several stream flow models of varying forecasting power. The research concluded 

that probabilistic stream flow forecasting can considerably improve reservoir operation 

but the benefits are system specific. 

Nabeel R.Mishalani and Richard N.Palmer (1988) [3] studied the benefits of forecast

ing to a water supply system. Questions relating operational losses to forecast period 

and accuracy were addressed. Some simple available forecasting techniques were assessed 

for their accuracy and applicability. The issues were addressed through the use of a sim

ulation model, where the system was modelled as a single purpose reservoir supplying 

municipal and industrial water. Their conclusions were: (1) reservoir operation deterio

rates markedly with the loss of forecast accuracy; (2) the optimal length of forecasting 

period is five months; (3) reservoir operation efficiency may be improved by as much as 88 

percent if perfect predictive abilities are available; (4) the mean of the historic data is not 

recommended for predicting future flows because Markov methods are always superior; 

and (5) lag one autoregressive Markov schemes exhibit about a 9 percent improvement 

in operation over no forecasting. 

Roman Krzysztofowicz (1983) [4] considered several fundamental questions about 

forecasting: How to optimally use categorical and probabilistic forecasts? What oppor

tunity losses are expected to be incurred when forecast uncertainty is ignored? Why 

the classical contingency analysis is suboptimal? and what economic gains are to be 

expected from probabilistic forecasts. Analytic solutions were derived for the optimal 

and a nonoptimal (one that ignores forecast uncertainty) formulation of a single period 

quadratic decision problem with a categorical and probabilistic forecast of the state. He 
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concluded that: (1) Probabilistic forecasts can be at least as valuable as categorical fore

casts, and categorical forecasts always have a nonnegative value if the decision maker 

accounts for the forecast uncertainty and employs the optimal (Bayesian) decision pro

cedure. (2) No matter which forecasting method is used, an opportunity loss is always 

incurred by a decision maker who does not account for the forecast uncertainty. As 

a result, the actual value of a forecast may be negative. (3) A classical procedure of 

accounting for uncertainty of categorical forecasts by means of contingency analysis is 

suboptimal. It usually results in an opportunity loss and may also result in a negative ac

tual value of the forecast. (4) Probabilistic forecasts are likely to be more valuable than 

categorical forecasts, even if used in suboptimal decision procedures. (5) The relative 

gains from probabilistic forecasts (over categorical forecasts) are likely to be greater for 

decision makers who employ suboptimal decision procedures ( which ignores the categor

ical forecast uncertainty) than for these who already employ optimal decision procedures 

(which accounts for the categorical forecast uncertainty). 

William W-G.Yeh et.al. (1982) [5] discussed the worth of inflow forecasts for reservoir 

operation. They used a simulation model to examine the benefits over a range of forecast 

accuracies and forecast periods of one month and longer. The conclusions obtained 

were that using the historical monthly means for estimates of streamflow rather than 

attempting any prediction, and releasing water on the basis of those estimates to generate 

hydro-power and minimize spill, produced amazingly good results which were only slightly 

worse than with reasonably good predictions. Thus, hydro-power benefit gains of several 

percent can be made either with good predictions on a month-to- month basis, or by 

using the historical means for estimates of stream flow and taking the uncertainty into 

account. Thus they suggested that until high confidence predictions can be established, 

use of the historical means is preferable. 

Labadie, et.al. (1981) [6] investigated the worth of short term rainfall forecasting for 
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combined sewer overflow control. They addressed the question "what levels of forecast 

error can be tolerated before it is better to abandon adaptive ( anticipatory ) control 

policies utilizing forecast information in favor of simple reactive ( myopic ) control meth

ods ?" Their study demonstrated that the expected forecast model errors are generally 

lower than the error threshold above which reactive policies become more attractive. 

1.5 S U M M A R Y O F T H E T H E S I S 

The thesis begins with a short introduction to the problem at hand, including some 

related research issues, as well as describing some of the work which has been done by 

other researchers. In addition to this introductary chapter, the thesis consists of four 

other chapters as summarized below: 

Chapter 2 establishes the Stochastic Dynamic Programming model used in this study. 

Next, it presents the modification used for analyzing the effects of the one month ahead 

perfect inflow forecast on the optimal operation of reservoir. Then, the solution tech

niques developed to solve the problem are discussed. The way to obtain the state tran

sition probability matrices, both monthly and yearly, is also examined. 

Chapter 3 describes the inflow estimating method used in this research and some 

related problems. The results of forecasting inflow are also shown in the chapter. 

Chapter 4 presents the results of the optimization model and compares the results of 

the dynamic program for both stochastic and perfect inflow information. The analysis is 

then discussed. 

Chapter 5 presents the conclusions obtained from the research and some suggestions 

for further study. 



Chapter 2 

T H E S T O C H A S T I C D Y N A M I C P R O G R A M M I N G M O D E L 

The hydro-electric reservoir under consideration is modelled with stochastic dynamic 

programming (SDP) to optimize the operation of the reservoir along similar lines to 

Barnard (1989). 

The solution technique is presented in the following sections. Since there are differ

ences in reservoir operation between the pure stochastic stream flow situation and with 

the forecast inflows, the operation policies are decided in different ways. Therefore, they 

are modelled separately. 

2.1 S T O C H A S T I C D Y N A M I C P R O G R A M M I N G M O D E L 

Fig. 2.1 is a pictorial representation of the single resrvoir system having inflow Qt and 

making release decision Dt in each time period t, t=l,2, T. 

The model uses periods of time, t, as the stage variables. In this case months are 

used ( a time period of a month can be used without loss of generality ), so that t=l,2, 

..-,12. 

The stream flow input, Qt, to the reservoir is a stochastic variable. Its probability 

distribution can be any type which is suitable to the inflow historial records. Assume 

that, for a particular period of time t, a set of inflows {Q\} and their corresponding 

probabilities, {-P[Qf]} , i=l,2, It, are available. 

The problem is that in each month, t, with the stochastic stream flow input Qt, the 

amount of water released from the reservoir, Dt, has to be determined so as to maximize 

11 
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Figure 2.1: Sequential Reservoir Operation Process 

the energy generation. Therefore, the decision variable in the model is the quantity 

of water to release during stage t. There are usually upper and lower bounds on the 

quantity of water which can be released from the reservoir. An upper bound might be 

due to physical size limitations of the stream below the reservoir in question or, more 

likely, the maximum capacity of the turbines; while a lower bound might be required 

to maintain navigation or ecological water balance. In this case, the quantity of water 

that can be discharged through the turbines provides the upper bound and zero flow the 

lower bound. For calculation convenience, the decision variable is discretized with K-1 

intervals between - D m m and Dmax. 

Dk = {Df} , k=l,2, 

Where 

Di = D m i n 

DK — Dmax 

A release D?, which is one of the set of all possible releases, and which satisfies the 
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system govening equation ( which will be described below ) is called a feasible release. 

Let Vt be the state variable, which represents the volume of water in storage. The 

reservoir considered in this research has a predetermined maximum and minimum allow

able volume, and they are represented by Vmax and Vmin . For calculating convenience, 

the state variables are discretized with the same unit of discretization as the decision 

variable D^. There are N discrete units or states. That is 

n= 1,2, . . , N . 

where the minimum and maximum volumes are equivalent to Vi and VN respectively. 

That is 

v, = vmin 

VN = Vmax 

With above variables definition, the stochastic dynamic programming model may be 

formulated as follows. 

2.1.1 T H E S T A T E TRANSITION E Q U A T I O N 

As indicated in Fig.2.1, according to the principle of continuity (or mass balance), the 

governing equation of the reservoir state transition relationship is 

Vt+1 = Vt + Qt - Dt (2.1) 

subject to 

V • < Vt < V 

v771171 _ * t 'max 

Dmin < Dt < D m a x 

which states that the storage volume at the begining of month t+1 is equal to the 

sum of the initial storage volume and stream flow input of month t minus the release 

made at the end of month t. If the final storage Vt+i is greater than Vmax , in order to 
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keep it within the state constraints, the volume of spill, St, will be required. St is given 

by: 

St = { 
Vt+1 - Vmax when Vt+1 > Vmaa 

0 otherwise 

Thus the state transition equation is 

(2.2) 

Vt+1 = Vt + Q t - D t - S t (2.3) 

where: 

Vt = total volume of water in storage at time period t; 

Qt = total volume of inflow at time interval t; 

Dt = volume of water released through the turbines at stage t; 

St = volume of spill required to stay within constraints at stage t. 

The decision process is to decide upon the release Dt to be made after observing the 

state Vt and Vt+1 of the system, and maximize the objective function. The complexity of 

the stochastic process optimization is that each of the possible inflows must be analyzed 

for each state and discharge. Therefore several potential end states Vt+i exist correspond

ing to a initial state Vt and discharge D\. Once each possible inflow has been examined, 

expected values of discharges, spills, and hence energy generation are calculated. 

2.1.2 S T A G E R E T U R N E Q U A T I O N 

The stage return function represents the benefit or cost, R(d), of the decision being made. 

The objective function of this study is maximum energy generation. Therefore, maxi

mization of the objective function is needed during the decision process. The production 

of hydro-electric energy during any time period t is dependent on the installed plant ca

pacity; the flow through the turbines; the average productive storage head; the number 
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of hours in the period; the plant factor; and a constant for converting the product of 

flow, head, and plant efficiency to kilowatt-hours of electrical energy, KWH. In order to 

calculate the energy generation, the mean volume should be computed first. Then it will 

be used to determine the average head. That is 

Haveragett = f{(Vt + Vt+1)/2) (2.4) 

Then energy can be determined as a function of average head and discharge as fol

lowing 

Et = ^average* QtTl = PT1 (2.5) 

where 

P= power; 

Et = energy generated in time period t; 

n — efficiency factor; 

7 = density of water; 

HaveTage,t = average head of water above power house at t; 

Qt = flow of water through turbines during time period t; 

T l = Number of hours in time period t. 

The value of 77, the efficiency factor, takes into account turbine efficiency, generation 

efficiency and other losses. Efficiency will actually vary with head, but can be considered 

constant if the range of head is relatively small. The value used in this study is 87% and 

would apply to ±20% of the design head. 
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2.1.3 T H E R E C U R S I V E E Q U A T I O N 

In stochastic dynamic programming, the past is knomn but the future is uncertain. Thus 

the analysis has to proceed backwords in time. 

The stochastic dynamic programming recursive equation determines the maximum 

or minimum of the objective function which is dependent upon the value of the stage 

return function and the discounted value of the state at the previous stage. It starts with 

known or assumed values of the possible states at the end of the year. 

It is assumed that future returns are less valuable than present returns and hence, 

they are discounted by a discount factor 8 , 0 < 8 < 1 ; where 8 is the monthly discount 

factor. The discount factor is applied to the second part of the expression. 

Max *=£« 

Ft{Vk) = dk E ( W * + ̂ -i(V«)))] (2.6) 
i=i 

subject to: 

Vmin < Vk,Vki < Vmax 

dmin < dk < dmax 

where 

Pi= Probability of inflow qi in period t. 

Ft{Vk) = Expected value of state 14 with optimal operation of the 

reservoir with t remaining time periods; 

Rik = Return from generating power from discharge d with the 

reservoir in state k ( at time t ) and inflow 

Ft-i(Vki) = Expected value of being in state V/y ( the state 

reacted from state k with inflow g,- and discharge d ) 

with t-1 remaining time periods; 

dk — Discharge. Various values are tried to find the maximum value 
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oiFt(Vk). 

2.1.4 THE DYNAMIC PROGRAMMIMG MODEL FOR ONE MONTH 

AHEAD PERFECT INFLOW FORECAST 

Assume that for a given time interval t, one month ahead perfect stream flow forecasts 

are available, or in other words, we know the stream flow input to the reservoir that 

will actually occur one month in advance. Problems are what is the value of this perfect 

inflow prediction, how to operate the reservoir based on the perfect flow information 

to improve the operational efficiency, and what are the extra benefits provided by the 

perfect forecast. Assume that all of the variable definitions are the same as above, and 

the one month ahead perfect forecasts are given in the form of a set of inflows [Qi}t and 

a set of probabilities [Pi]t corresponding to the stream flow input, i=l,2, It . The 

recursive equation of this problem is: 

V=J' M a x 

FtiYk) = £[ dk (Rik+f3Ft-i(Vki)]Pi (2.7) 
i=l 

where definitions as before. 

The difference between eq. (2.6) and eq. (2.7) is, for a given reservoir state, equation 

(2.7) first finds the optimal release policy for every forecast flow and the correspanding 

expected value for state 14 given inflow qi] and then takes the expected value of the state 

with all the possible inflows. Equation (2.6) finds the expected value first, then takes the 

maximized expect value as the optimal state value. 

The expected values calculated from eq. (2.7) should be higher than the results 

computed from eq. (2.6) since there is less uncertainty with the forecasts. 
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2.1.5 M A T H E M A T I C A L S T A T E M E N T F O R L O N G T E R M ANALYSIS 

Long term reservoir operation is complicated unless the reservoir empties each year. This 

section formulates the problem when the reservoir does not empty each year. 

Assume that n years operation will be analyzed, n=l,2, • • •. and that it is possible to 

obtain the long term monthly state transition probability matrices in the form 

P£T+t(d) = Prob ( transition to state j in time t-fl 

from state i in month t of the n'th year of 

the process where the release was d ) 

and it is possible to obtain monthly transition rewards of the form 

r?T+t(d) = expected immediate return when making the monthly 

transition from state i in month t to month t+1, in 

the n'th year of the process, when the release is d. 

Assumption A: The expected immediate return is independent of the year of the 

process. That is 

Assumption B: The stream flow input to the reservoir is a stochastic process and is 

periodic in nature with a period of 12 months, T=12. 

When the releases D becomes stationary, that is the set of releases remain the same for 

all years of the process n=l,2, the steady long term operation condition is reached. 

D is the yearly release policy such that 

rf+t{d)=r\{d)in (2.8) 

Pf+t(d) = P% (2.9) 

D - (dt,dt+1, • • • ,di+r-i) (2.10) 
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where dt is the vector of discharges in month t ( one discharge each state). 

The monthly state transition probability matrices at time t will be 

P M ) 

PkW 

P^di) 

P M ) 

PM) 

PINM 

\ 

PNNVN) j 

(2.11) 

V PNIWN) PUdN) • 

where t=l, 2, • • - ,12, and Pij(d) is the probability of going from state i in time period 

t to state j in time period t-fl given discharge d^. 

It will be shown that the yearly transition returns and probabilities are functions of 

the monthly transition returns and probabilities. It is convenient to use matrix notation 

to show the functional relationship between the yearly and monthly transition returns 

and probabilities. 

The functional relationship between the yearly and monthly transition probabilities 

is 

IP\D) = P\d1)P2(d2)-.-P12(d12) (2.12) 

where IP1(D) is the yearly transition probability of year one. 

The proof is quite simple: a yearly transition is comprised of 12 individual monthly 

transitions, hence, the yearly transition probability matrix is the product of the twelve 

monthly transition probability matrices. Generally, for month t, the yearly transition 

probability matrix is 

IP\D) = Pl(dt)Pt+1(dt+1)--- P'+r-^dt+T-MT + 1 = 1 (2.13) 

and hence the long term transition probability is 
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IP(D) = 

P\d1)P2(d2)---PT(dt) 

IP\D) 

0 IP2(D) 

0 

PT(dT)P\dl)---PT-\dT_l) j 

0 

IPT{D) 

(2.14) 

where IP(D) represents long term state transition probability matrix. 

The functional relationship between the yearly and monthly transition return, IRl , 

of month t is 

IR^D) = Rt(dt) + 8Pt(dt)Rt+i(dt+1) + --- + 

f-'P'id^^d^)-.-

Pt+T-2{dt+T^)Rt+T-\dt+T-irit, T + 1 = 1 

and hence 

IR(D) = 

( R\d^)+ 6P\d1)R2(d2)-r--- + 

/3 r-1P1(d1)P2(d2) P r- 1(d r_ 1)i2 r(d r) 

V 

RT(dT)+ 6PT(dT)R1(d1) + --- + 

BT-'PT{dt)P\dl) •••PT-\dT_2)RT-\dT_l) ) 

(2.15) 

(2.16) 



Chapter 2. THE STOCHASTIC DYNAMIC PROGRAMMING MODEL 21 

where IR(D) is the yearly transition return vector given release policy D. 

The proof goes as follows: the yearly transition return is comprised of twelve monthly 

transition returns, each of which must be discounted and multiplied by the probability 

of obtaining these monthly returns. 

Thus, we have a stochastic decision process where the expected immediate return 

vector IR(D) is defined by equation (2.16) and the transition probability matrix IP(D) 

is defined by equation (2.14). 

The long-run expected discounted return vector F ( where 

F = ( Fi,F2,--- ,FT ), 

Ft = (Fl,~-,F!,~.,Ft

N), 

and 

Ff = long term expected discounted return when in state i at month t ) satisfies the 

following, for every feasible release policy D ( a feasible policy D is one which assigns a 

feasible release to each state). 

F = IR(D) + /3TIP(D)F (2.17) 

and furthermore that the optimal long-run expected discounted return vector satisfies 

the functional equation 

F" =MD [IR(D) + /3TIP{D)F~] (2.18) 

Equation (2.17) can be simplified as shown by the following derivations. Equation 

(2.11) 

F -rIR(D) + BTIP(D)F 

is equivalent to the following set of equations: 
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F1 = R\dl)^BP\d1)F2 (1) 

F2 = R2(d2) + BP2(d2)Fz (2) 

FT = RT(dT) + BPT{dT)F\{T + 1-1) (T) (2.19) 

Proof: for some t 

Fl = IRt(D) + BtIPt(D)Ft (2.20) 

remembering that 

IR\D) = JR t(d 4)+^ t(*)^ t + 1(^+i) + ---
/9 r- 1P'(*)P' + 1(d t + 1).--' 

+P f + r" 2( <i t + T_ 2)^ + : r- 1(d t + r_ 1)(2.15) 

and 

JP'(Z>) = P'(d t)Pf+1(*+i) • • • P'^-H^+r-i) (2-13) 

so that equation (2.20) becomes 

Fl = Rt(dt) + BPt(dt+lRt+l(dt+1) + --- + 

BT-'P\dt) • • • Pt+T-\dt+T_2)R^T-\dt+T^) 

+(3TPt(dt)-..Pt+T-1(dt+T_l)Ft (2.21) 

Now assuming that equation (2.19) is correct 
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F* = R'idt) + 8P\dt)Ft+1 (2.19-t) 

pt+i = Rt+ifa^) + 0pt+i(dt+1)Ft+2 (2.19-t+l) 

Ft+T-i = j R*+i'-i(d t + T_1) + i g p t + r - i ( d t + T i ) F t (2.19-t+T-l) 

substitute the last equation (2.19 t+T-1) in the prior equation (2.19 t+T-2) and 

continue repecting this process until the final substitution for Ft+1 in equation (2.13 t) 

has been made, in which case the following is obtained 

F* = Rt(dt) + 3Pt(dt)Rt+1(dt+l)-r--- + 

BT-'P\dt) • • • Pt+T-2(dt+T_2)Rt+T-i(dt+T_,) 

+3TP\dt) • • • P'+r-^dt+T^F* (2.22) 

Since equation (2.22) is identical to equation (2.21) the proof is complete. It is 

obvious that equations (2.19) are in a simplier form than those of equation (2.17), the 

most important simplification being that each equation in (2.19) is a function only of 

monthly release policy while each equation in (2.17) is a function of a yearly release 

policy. Thus, the results can be extended to the simpler case, that is 

F* = Rl{dt) + /3P'(rf t)F t+1 (2.23) 

Fr = dt [Rt(dt)-rf3P\dt)Ft+iyt (2.24) 
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2.2 O P T I M A L O P E R A T I O N O V E R O N E Y E A R PERIOD 

2.2.1 S O L U T I O N T E C H N I Q U E 

The operation of the reservoir over one year period was optimized on a monthly inflow 

in conventional fashion with dynamic programming to find the optimal release policies 

{Dt}, t=l,2,• • -,12, and to obtain the year end value of each state. 

Fig.2.2 is the flow chart of the SDP problem and fig.2.3 presents the flow chart of the 

SDP with the one month ahead perfect forecast. 

Solution of the dynamic programming model yields optimal one year operating policies 

in the form of release sequences, the monthly state transition probability matrices, the 

monthly reservoir state sequences, and the year end values of states. 

The one year operation analysis was carried out starting with initial state and end 

with another state. The terminal state values should be estimated before beginning. 

After one year's operation a new group of terminal values will be produced. Obviously, 

this analysis will not lead to the steady optimal operating policies. So that the long term 

analysis is needed. This will be discused in the next section. 

2.2.2 C A L C U L A T I O N O F S T A T E TRANSITION P R E O B A B I L I T Y M A 

TRICES 

An important problem in the dynamic programming is to obtain the state transition 

probability matrices for each stage of the calculation. This is because the long term 

operation analysis is based on information from the state transition probability matrices 

and the associated operating policies. 

The state transition probability P^ is defined as: the probability that state i, at the 

beginning of stage t, changes to state j , at the end of stage t, in the course of operating 

the reservoir. 
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Figure 2.2: The Flow Chart of the SDP Problem 
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Figure 2.3: The Flow Chart of the Perfect Forecast Dynamic Program 
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Pii 1 •• j • J 

1 Pn • • Pu 

i Pu • •• Pii • • Pu 

I Pn • •• Pn • • Pu 

According to the state transition equation 

Vt+l =Vt + Qt-Dt (2.1) 

it is known that, for a given initial state Vt, when release variable, Dt, has been 

decided, the probability of the state transitioning to Vt+i is equal to the probability of 

the input variable Pg4. When Vt+\ > Vmax, in order to keep the reservoir volume within 

the maximum allowable volume, the spill variable, St, is needed. 

St = Vt+l - Vmax (2.2) 

when 

Vt + 1 > 

therefore 

t+i Vt + Qt-Dt-St (2.3) 

In this case, a problem is arises from the spill water St . That is, there may be several 

Qt corresponding to Vmax. In this situation, the transition probability PtJ- from Vt to 

Vmax,t+i is defined as: 

Pu - XI PQT 
where Qt E high flow , when St > 0 

(2.25) 
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2.3 ANALYSIS OF L O N G T E R M RESERVIOR O P E R A T I O N 

Assume that information from one year's operation is available. The next step is to get 

the long term reservoir operation policies. W.F.Caselton and S.O.Russell developed an 

iteration techenique to solve this problem (1974). However, a simpler iteration process 

is to use the information obtained from the previous year's calculation as the new input 

data, and then perform another round of calculation with the stochastic dynamic program 

model. This process is repeated until the operation policies stabilize. This means that 

if the reservoir's operation starting from water level A, after one year's operation the 

terminal values assigned to each state at the beginning of operation should be equal to 

the year end value computed from the iteration. Thus the terminal values calculated for 

one year's operation became the initial values for the next year's iteration. After several 

iterations, the terminal values reach a steady state, suggesting that the initial estimated 

values are no longer influencing the optimal operation policy decision and the optimal 

release policy (i.e. action) will be stationary; that is, the set of releases D will remain 

the same for all years (iterations) n = 0,1,2, • • • of the process. 

Fig.(2.4) shows the iteration process to obtain the long term operating policies. 

After one year's operation, 12 state transition probability matrices, {PijY t=l,2,- - -, 

12 were obtained. Based on these matrices, the yearly state transition probability matrix 

may be calculated by multiplying: 

{^•}-{^}1{^}2---{^}1 2 (2-26) 

Multiplying of the yearly state transition probability matrices yields the long term 

state transition probability matrix when the results of multiplying remain stationary. 

{Pij}opt = {Pij}{Pij}'--{Pij} (2.27) 
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Figure 2.4: Schematic of Iterative Cycle Used in the Study 
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where {Pij}opt denotes the long term steady state transition probability matrix. Thus 

the long term optimal year end values of states will be: 

F" = {PiiUtF (2.28) 

where F" is the long term steady state terminal values while F is the one year's state 

terminal values. 

2.4 M E A S U R I N G A D D I T I O N A L V A L U E S OF O N E M O N T H A H E A D 

P E R F E C T F O R E C A S T 

Based on the information given from both the stochastic dynamic program and the 

optimization with the one month ahead perfect forecast, two different expected values 

for the reservoir states are obtained. Let Fe denotes the expected value obtained from 

the stochastic dynamic program and Fp represents the expected value of the one month 

ahead perfect forecast, then, the additional benefit due to using perfect information can 

be calculated by: 

V Value = Fp — F, (2.29) 

for each state. Alternatively, the additional benefit may by expressed by the form of 

percentage: 

V Value = F p F" x % 
Fs 

(2.30) 



Chapter 3 

I N F L O W F O R E C A S T 

3.1 P R O B L E M DESCRIPTION 

The streamfiow forecast is a very important component of the dynamic programming 

model. The modelling of catchment behavior is quantitative whether reconstructing past 

precipitation-to-runoff behaviour or forecasting future runoff behaviour. However, all 

forecasts have some degree of uncertainty due to factors, such as rainfall, snowmelt, tem-

perture, wind, solar radiation which are all random variables, which cannot be forecast 

exactly. Also catchment physical characteristics, such as size and shape, geology and soil 

type can not be accurately determined. 

There are two basic types of forecasting used to analyze or to model catchment 

behaviour: stochastic and deterministic. Deterministic models can be further divided 

into two main categories. One uses mathematical descriptions of the relevant catchment 

processes to estimate discharges, and is termed a 'conceptual' model. The other way 

considers the whole catchment as a system of subsystems from which output occurs as 

responses to input. The latter concept features a system 'box', that is characterized by 

a unique response function, h(t). The system approach concentrates on the operation 

performed by h(t) on an input, x(t), to produce an output, y(t), rather than considering 

the underlying physical reasoning. Many deterministic catchment models have been 

estiblished, such as the UBC watershed model, the MIT model etc. 

The statistical approach follows another line of thinking. It views streamfiow as 

31 
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a stochastic process. The purpose is to generate an inflow series which has the same 

statistical characteristics as the historical observations. Two basic techniques are used 

for streamfiow generation. If the streamfiow population can be described by a stationary 

stochastic process, whose parameters do not change over time, then a statistical model 

may be fitted to the streamfiow. However the assumption that the process is stationary 

is not always plausible due to changes of runoff characteristics. An alternative scheme is 

to assume that precipitation is a stationary process and to predict the runoff sequence 

through an appropriate rainfall-runoff model of the river basin. 

The model used in this research is a simple statistical one. Because a typical watershed 

is studied, it is impossible to generate inflow sequences by setting up a relationship 

between rainfall and runoff. The method provides probability distributions of monthly 

inflows using statistical data about the inflow pattern in the form of monthly means and 

standard deviations. 

The forecast inflows take the form of a probability distribution for the monthly stream-

flows Qt for each particular time interval t, (here a month). Qt is assumed as a normally 

distributed random variable with mean pQt and standard deviation o~Qt. In some cases 

the streamflows cannot be completely normally distributed because of the impossibility 

of negative flows. Thus an alternative treatment to avoid negative values is needed. Qt 

is a continuous variables, as shown in Fig.3.1. However in order to keep the calculations 

within manageable limits, the variables need to be 

discreted. In another words, the inflows are generated as a set of discrete values, each 

with an associated probability. The details of the approach are discussed in the next 

section. 
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3.2 T H E I N F L O W F O R E C A S T I N G M O D E L 

3.2.1 T H E I N F L O W I N T E R V A L 

For convenience of analysis, the forecast streamfiow interval, AQ, has the same unit as the 

discretized decision variable, AD, and the state variable, AV. This simplification makes 

the calculation of the state transition equation in the dynamic programming much easier 

and more accurate. In fact, the real world reservoir volume will change continuously all 

the time. However, if the interval value be chosen carefully, the operation optimization 

can be quite accurate. 

3.2.2 L O W E R A N D U P P E R V A L U E S 

According to the characteristics of the normal distribution, the probability of variables 

occuring within the range of (pq — 3<TQ,PQ + 3CTQ) is equal to 99.73%. Thus it includes 

almost all possible inflows which may occur during the time period and the lower value 

can be set as 

QL = PQ - 3CTQ (3.1) 

subject to: QL > 0 

and the upper value will be 

Qu = PQ + 3<r<5 (3.2) 

But the values of QL and Qu usually do not meet the needs of inflow discretization. 

Thus the real lower and upper value used in this study are obtained by the following 

modification. For the lower value, firstly let 
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PQ - SCTQ 

N l ~ AQ ( 3 - 3 ) 

then, if Nr, is not in integer, set Njj equal to the next lower integer. When NL < 0, 

then set NL = 0. 

For the upper value, let 

NV = ^ (3.4) 

if iVj/ is not an integer, set Nu equal to the next higher integer. Thus the real lower 

value will be 

QL = NLx AQ (3.5) 

the upper value will be 

Q'u = Nv x AQ (3.6) 

3.2.3 S T R E A M FLOWS A N D THEIR PROBABILITIES 

For each integer I, NL < I < NV, let 

E I = PQ — I x AQ 
AQ 

e ; = " « - / X A ° - ^ (3.8) 

Po - / x AQ + ^ 
e i = — (3.9) 
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Pi = (3.10) 

(3.11) 

P3 = e-'-t (3.12) 

Then the inflow,Qj is 

Qi = I x Ag (3.13) 

and its probability, P(Qi), is 

Pprob(Ql) 
2PX +P2 + P3 (3.14) 

4 

in order to ensure that the sum of the probabilities of all possible stream flows is 

equal to 1.0, the following modification for each probability is needed 

The calculation procedures are indicated by the flow chart. 

For each month t, repeating the same calculation gives the set of streamflows and 

their probabilities of occuring. 

The model described above is based on the assumption that the monthly inflows 

are seasonally independent. There is no serial correlation among streamflows. This is 

generally not the real situation in a particular watershed, since the flow in one period 

might give some hints of the likely flows in the following periods, especially in short 

term flow forecasting. In real world problems, any assumption regarding to time series 

Pprob{Ql) (3.15) 
Yl Pprob{Ql) 
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begin 

I 
Fori = N to N 

1 u 

epsilonl = (mu - l*deltaq )/sigma 

epsilon2 = (mu - l*deltaq - 0.5delta)/ sigma 

epsilob3 = (mu - l*deltaq -0.5deltaq)/ sigma 

P1 = e (epsilon? 12) 

I 
p2 = e 

-(epsilon? 12) 

I 
P3 = e 

- (epsilonl 12) 

Q(l) =l*deltaq 

P(l) = (2*P1 + P2 +p3)/4 

P'(I) = P(I)/^P(I) 

o 
c 

stop 

Figure 3.2: The Flow Chart of Inflow Forecasts 
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should be proved through statistical test. But in our test problem, the assumption was 

reasonable as the main interest lay in assessing the effects of stochastic forecasting on 

improving the operating efficiency of the reservoir, not on making accurate flow forecasts. 

3.3 T H E I N F L O W S T A T I S T I C S 

The research for this problem was carried out with a hypothetical hydroelectric project. 

For the purpose of convenience and comparison with other research, it was decided to use 

the data on reservoir size and inflows which had been used by Joanna Mary Barnard in 

her study (Barnard,1988). She described the watershed, the reservoir and its hydropower 

project and the inflow characteristics in detail. Here, the descripations are not repeated 

except for the main characteristics of the flow which have significant influence on the 

research. 

As already indicated in chapter I, two quite different flow patterns have been analyszed 

in this study. Table 3.1 presents the basic statistics describing the inflow sequence of flow 

pattern I. The mean annual runoff volume is 1245.5 M m 3 (million cubic meters). 

Figure 3.2 shows the mean annual hydrograph being used. 

The second flow pattern is presented below in table 3.2 and figure 3.3. Table 3.2 

shows the distribution of mean monthly flows and their standard deviations during a one 

year period. Figure 3.3 is the corresponding mean annual flow hydrograph. It is named 

flow pattern II for comparing with flow pattern I. 

Note that: % means both the mean monthly flows and the standard deviations are 

in % of the total annual flow in table 3.2. 

Comparing flow pattern II with pattern I, it may be seen that, although the total 

annual flow for the two flow patterns is the same, the distribution of mean flows and 

their standard deviations are quite different. Table 3.3 shows the comparison of the two 
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Table 3.1: Flow Statistics of Flow Pattern I 
Month Min inflow Max inflow Mean inflow Standard deviation 

Mm3 M m 3 M m 3 Mm3 

January 13.4 34.1 17.7 4.3 
February 12.4 20.8 16.2 2.6 
March 11.4 29.7 17.5 4.4 
Aprile 20.5 79.1 44.0 16.6 
May 99.3 262.1 182.0 45.0 
June 238.8 491.2 334.2 67.1 
July 182.5 373.0 273.0 57.6 
August 108.2 294.2 155.2 38.1 
September 55.2 178.1 91.0 31.5 
October 34.4 95.9 54.7 14.0 
November 21.1 64.9 37.1 11.9 
December 14.8 41.5 22.9 5.5 

Table 3.2: Inflow Statistics of Flow Pattern II 
mean Q standard deviation <r 

Month % M m 3 % Mm3 

January 6.16 76.72 4.31 53.68 
February 5.97 74.36 2.89 35.99 
March 5.91 73.61 2.59 32.26 
April 8.00 99.64 2.03 25.28 
May 12.68 157.93 2.89 35.99 
June 12.62 157.18 3.51 43.72 
July 8.62 107.36 3.51 43.72 
August 4.56 56.79 2.22 27.65 
September 5.54 69.00 3.20 39.86 
October 10.59 131.90 5.17 64.39 
November 9.85 122.68 4.62 57.54 
December 9.84 122.56 3.82 47.58 
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Figure 3.3: The Mean Annual Hydrograph 
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Figure 3.4: Mean Flow Hydrograph of Flow Pattern II 
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Table 3.3: Comparing Flow Characteristics 
Flow Pattern I Flow Pattern II 

month Q *IQ{%) Q 
January 17.7 4.3 24.3 76.72 53.68 70.0 
Feburary 16.2 2.6 16.0 74.36 35.99 48.4 
March 17.5 4.4 25.1 73.61 32.26 43.8 
April 44.0 16.6 37.7 99.64 25.28 25.37 
May 182.0 45.0 24.7 157.93 35.99 22.8 
June 334.2 67.1 20.1 157.18 43.72 27.8 
July 273.0 57.6 21.1 107.36 43.72 40.7 
August 155.2 38.1 24.5 55.79 27.68 48.7 
September 91.0 31.5 34.6 69.0 39.86 57.8 
October 54.7 14.0 25.6 131.9 64.4 48.8 
November 37.1 11.9 32.1 122.68 57.54 46.9 
December 22.9 5.5 24.0 122.56 47.58 38.8 

inflows. 

The peak flow of pattern I, which is equal to 334.2 Mm3 is much higher than the 

peak flow of flow pattern II, which is 157.93 Mm 3 . There is only one peak flow period 

that happens from May to September for flow pattern I and its peak flow period is quite 

obvious and different from the low flow. The total flow during that period is 83.1% of 

the total annual flow. The differences between Qmax (334.2Mm3) and Qmin (16.2Mm3) 

is 318 Mm3. But for flow pattern II, there are two peak flow periods. Its first peak flow 

period starts from May and ends with July. The second one is from October to December. 

The total peak flow is only 64% of the total annual flow, although the whole peak flow 

length is six months which is one month longer than the flow pattern I. The difference 

between Qmax (157.93 Mm3) and Qmin (56.79 Mm3) is only 101.14 Mm3. That means 

that its variance of mean monthly inflow is smaller than pattern I. 

On the other hand, the distribution of monthly deviations of flow pattern II shows 

that the monthly deviations in the low flow period are much greater compared with flow 
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pattern I. For example, in January, the deviation of flow pattern II is 70% of its monthly 

mean flow, while it is only 24.3% for pattern I at the same month. This means there is 

more dispersion of values in the set of low flows for pattern II. 

The next chapter will show that these flow patterns have a significant influence on 

the optimization results of the reservoir operation. 

3.4 T H E O U T C O M E OF I N F L O W F O R E C A S T 

Using the method described in section 3.2, the inflow set was derived based on the 

information given in the section 3.3. A computer program has been developed to calculate 

the stream flows and their probabilities. Table 3.4 represents the results for flow pattern 

I. It can be seen that there are only a few of possible flows which can occur during the 

low flow period due to the small values of the monthly mean and deviation. For example, 

there are four possible flows in December of the forecasting year, and they are (0,0.005), 

(15,0.471), (30,0.516), (45,0.008). Their mean value is 22.9 M m 3 which is exactly equal 

to the input mean value. On the other hand, the range of possible flows in the high flow 

period is larger than during the low flow period. In June of the forecasting sequence, 

for example, the flow ranges from 120 Mm3 to 540 Mm3, resulting in 29 discrete values. 

The mean value of the flows is equal to 334.0 Mm3, slightly less than the input mean 

flow which is equal to 334.2 Mm3. 

Table 3.5 shows the flows and probabilities for stream flow pattern II. The generated 

inflow set shows some differences between input mean monthly flows and mean values of 

the generated flows. Because of the larger values of deviations and the relatively high 

values of mean inflow in the low flow period, the range of possible flows is wider than 

flow pattern I. In December of the forecasting year, for example, the flow ranges from 0 

to 270 Mm3, which is much wider than the same month's possible flow with pattern I. 
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Table 3.4: Inflows and Probabilities ( Flow Pattern I) 
Q Jan. Feb. March Apr. May June 
0 0.021 0.002 0.026 0.014 
15 0.780 0.970 0.783 0.086 
30 0.199 0.028 0.191 0.249 
45 0.000 0.000 0.343 0.001 
60 0.226 0.004 
75 0.071 0.008 
90 0.011 0.017 

.105 0.001 0.031 
120 0.052 0.001 
135 0.077 0.001 
150 0.103 0.002 
165 0.123 0.004 
180 0.132 0.006 
195 0.127 0.010 
210 0.109 0.016 
225 0.084 0.024 
240 0.058 0.033 
255 0.036 0.045 
270 0.020 0.056 
285 0.010 0.068 
300 0.004 0.078 
315 0.002 0.085 
330 0.001 0.089 

Fig.3.5 shows the probability distribution of the generated flows for pattern I in July. 

Tables 3.6 and 3.7 show the means of the input data and the generated values. 
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Figure 3.5: Probability Distribution of Generated Flow 
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Q Jan. Feb. March Apr. May June 

345 0.088 

360 0.083 

375 0.074 

390 0.063 

405 0.051 

420 0.040 

435 0.029 

450 0.020 

465 0.013 

480 0.009 

495 0.005 

510 0.003 

525 0.002 

540 0.001 

Q July Aug. Sept. Oct. Nov. Dec. 

0 0.002 0.003 0.000 0.008 0.005 

15 0.005 0.011 0.012 0.110 0.471 

30 0.013 0.030 0.103 0.395 0.516 

45 0.029 0.067 0.324 0.382 0.008 

60 0.056 0.117 0.375 0.099 

75 0.090 0.165 0.160 0.006 

90 0.001 0.126 0.187 0.025 

105 0.002 0.150 0.170 0.001 

Table 3.4 Results of Inflow Forecast ( Flow Pattern I), continued 
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Q July Aug. Sept. Oct. Nov. Dec. 

120 0.003 0.154 0.124 

135 0.006 0.136 0.073 

150 0.011 0.103 0.034 

165 0.018 0.067 0.013 

180 0.028 0.038 0.004 

195 0.042 0.018 0.001 

210 0.057 0.007 

225 0.073 0.003 

240 0.088 0.001 

255 0.099 

270 0.103 

285 0.101 

300 0.093 

315 0.080 

330 0.064 

345 0.048 

360 0.033 

375 0.022 

390 0.013 

405 0.008 

420 0.004 

435 0.002 

450 0.001 

Table 3.4 Results of Inflow Forecast ( Flow Pattern I), continued 
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Table 3.5: Results of Inflow Forecast (Flow Pattern II) 
Q Jan. Feb. Mar. Apr. May June 
0 0.043 0.021 0.015 
15 0.061 0.044 0.037 0.001 0.001 
30 0.081 0.079 0.076 0.006 0.002 
45 0.099 0.120 0.126 0.025 0.001 0.005 
60 0.112 0.154 0.169 0.071 0.004 0.012 
75 0.118 0.166 0.184 0.147 0.012 0.024 
90 0.114 0.152 0.162 0.216 0.029 0.042 
105 0.103 0.117 0.116 0.227 0.057 0.067 
120 0.085 0.076 0.067 0.170 0.096 0.095 
135 0.066 0.042 0.032 0.091 0.135 0.120 
150 0.047 0.019 0.012 0.035 0.161 0.134 
165 0.031 0.007 0.004 0.009 0.162 0.134 
180 0.019 0.002 0.001 0.002 0.137 0.119 
195 0.011 0.001 0.098 0.094 
210 0.006 0.059 0.066 
225 0.003 0.030 0.042 
240 0.001 0.013 0.023 
255 0.005 0.012 
270 0.001 0.005 
285 0.002 
300 0.001 
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Q July Aug. Sept. Oct. Nov. Dec. 

0 0.007 0.028 0.035 0.012 0.011 0.006 

15 0.015 0.072 0.062 0.018 0.018 0.012 

30 0.029 0.137 0.096 0.027 0.029 0.023 

45 0.050 0.196 0.128 0.039 0.042 0.039 

60 0.077 0.213 0.149 0.051 0.058 0.060 

75 0.104 0.174 0.151 0.064 0.075 0.084 

90 0.126 0.107 0.134 0.076 0.089 0.106 

105 0.136 0.050 0.103 0.086 0.100 0.121 

120 0.131 0.017 0.069 0.093 0.105 0.125 

135 0.112 0.005 0.040 0.094 0.103 0.118 

150 0.086 0.001 0.020 0.090 0.094 0.101 

165 0.058 0.009 0.083 0.080 0.078 

180 0.035 0.003 0.071 0.064 0.054 

195 0.019 0.001 0.058 0.048 0.035 

210 0.009 0.045 0.033 0.020 

225 0.004 0.033 0.022 0.010 

240 0.001 0.023 0.013 0.005 

255 0.015 0.008 0.002 

270 0.010 0.004 0.001 

285 0.006 0.002 

300 0.003 0.001 

315 0.002 

320 0.001 

Table 3.5 Results of Inflow Forecast (Flow Pattern II), continued 
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Table 3.6: Comparison of Mean Monthly Flow ( Flow Pattern I ) 
Jan. Feb. Mar. Apr. May June 

I flQ 17.7 16.2 17.5 44.0 182.0 334.2 

0 flQ 17.7 16.2 17.5 44.2 181.9 334.0 
AQ{%) 0.0 0.0 0.0 0.5 -0.05 -0.06 

July Aug. Sept. Oct. Nov. Dec. 
I pQ 273.0 155.2 91.0 54.7 57.1 22.9 
0 po 272.9 155.1 91.0 54.7 57.1 22.9 
A<2(%) -0.04 -0.06 0.0 0.0 0.0 0.0 

Table 3.7: Comparison of Mean Monthly Flow ( Flow Pattern II ) 
Jan. Feb. Mar. Apr. May June 
76.7 74.4 73.6 99.6 157.9 157.2 

o pQ 80.5 75.4 74.2 99.7 158.0 157.3 
AQ(%) 4.9 1.4 0.8 0.06 0.04 0.08 

July Aug. Sept. Oct. Nov. Dec. 
I flQ 107.4 55.8 69.0 131.9 122.7 122.6 
O flQ 107.7 57.6 71.6 134.1 124.3 118.7 
AQ(%) 0.3 3.2 3.8 1.7 1.3 -3.1 
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RESULTS 

4.1 RESERVOIR DESCRIPTION 

The hypothetical reservoir and hydroelectric power plant used in this study is the same as 

that used by and described by Joanna Mary Barnard (1989). The project's characteristics 

and the data used in the study are presented in this section. 

4.1.1 T H E O B J E C T I V E F U N C T I O N 

As mentioned before, for the purpose of simplification, the only objective of the hydro 

power project considered in this study is energy production. Other goals, such as flood 

control or water supply are not considered directly. However, goals of water supply and 

environmental protection can be included in the minimum discharge requirement, (that 

is the discharge must be greater than or equal to a predetermined minimum release in any 

time period), while flood control may be incorporated into the constraints of maximum 

reservoir volume and maximum release. The values chosen for use in comparing policies 

was the total year end values of each state over the long term optimal operation. These 

values are appropriate only because of the assumption that the reservoir is operated 

independently and therefore the energy is of the equal value at all times of the operating 

year. Energy generation is given in Gigawatt Hours (Gwh) of energy generated over the 

whole year. The percentage of potential increase in energy production from using the 

one month ahead perfect stream flow forecast compared to the stochastic stream flow 

51 
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Table 4.1: Reservoir Constraints and Characteristics 
Item Value 
Reservoir Design Volume, Mm3 495 
Minimum Volume, Mm3 270 
Maximum Volume, Mm3 765 
Minimum discharge, Mm3 15 
Maximum discharge, Mm3 150, 180, 210 
State Incremental Value, Mm3 15 
Discharge Incremental Value, Mm3 15 

can be transformed into dollars. The value of energy is assumed at 20 mills or 2 cents 

per KWH which is equivalent to $20,000/Gwh. 

4.1.2 RESERVOIR V O L U M E A N D D I S C H A R G E 

The minimum reservoir volume used in this study is 270 Mm3 (Million cubic meters) 

while the maximum volume is 765 Mm3 and the reservoir's live storage volume is 495 

Mm3. 

The minimum discharge is assumed to be 15 Mm3 per month. In order to examine the 

effect of maximum discharge on the value of stream flow information, three alternative 

maximum discharges were used: 150 Mm3, 180 Mm3, and 210 Mm3. Table 4.1 is the 

summary of the reservoir constraints and its characteristics. 

Both the state and decision variables, that is the reservoir volume and the release, 

were discretized with the same incremental value of 15 Mm3. The number of the reservoir 

states is 33. The state incremental value was chosen to obtain reasonable accuracy yet 

keep the number of states manageable. The reservoir elevation-volume curve is as shown 

in figure 4.1. 

In the computer program for calculating energy production, it is convenient to have a 

mathematical equation to express the relationship between the elevation and the reservoir 
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volume. The best-fit mathematical expression is: 

Elev = C0 + Ci * V + C2 * V2 (4.1) 

where 

Co = 32.7308 

Cl = 0.078263 

C2 =-0.00001 

4.1.3 T H E A D D I T I O N A L E X P E C T E D V A L U E S OF O N E M O N T H A H E A D 

P E R F E C T F O R E C A S T 

To obtain the additional value of the one month ahead perfect stream flow forecast, the 

pure stochastic dynamic programming model was first used to optimize the reservoir's 

operation. The expected value of the power output with this type of operation provided 

the basis of comparison. The same optimization procedure was then used with the one 

month ahead perfect runoff forecasts and the expected value again computed. The results 

of the two sets of computations showed the differences between stochastic (i.e. with no 

forecasts) and operation with the forecast. Equation (2.29) and (2.30) given the definition 

of the additional benefit of the perfect stream flow forecast. 

The values of the different optimized situations are shown in the following sections. 

The following runs of the study models were performed 

1. Stochastic forecast: for each of the maximum releases of 150 Mm3, 180 Mm3, and 

210 Mm3 with the two inflow patterns, the stochastic dynamic programming model was 

AValue = Fp - Ft (2.29) 

or 

AValue = (2.30) 
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Figure 4.1: Reservoir Elevation-volume Curve 
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run to find the optimal reservoir operation policies and their values. Thus six operation 

policies were analyzed. 

2. Perfect forecast: each of the cases corresponding to the stochastic dynamic pro

gramming were analyzed with the one month ahead perfect forecast dynamic program

ming model to make the comparison. 

In real world problems, making accurate predictions for the peak flow period is of great 

interest because the total amount of flow in the high flow period has a significant influence 

on the reservoir operation. The dynamic programming model using a combination of 

stochastic and perfect short term forecasts was developed for the purpose of investigating 

the additional expected values of longer term perfect stream flow forecasts. That is, 

assuming that one ( or two, three, • • • ) months of one month ahead perfect forecasts were 

available, and using an appropriate combination of the stochastic and perfect forecast 

models to find the additional expected values. For flow pattern I, the analyses performed 

were: 

one month perfect inflow prediction for June; 

two months of perfect inflow predictions for June and July; 

three months of perfect inflow predictions for June, July, and August; 

four months of perfect inflow predictions for June, July, August and September. 

For stream flow pattern II, optimization was performed for: 

one month perfect inflow prediction for May; 

two months of perfect inflow predictions for May and June; 

three months of perfect inflow predictions for May, June and October; 

four months of perfect inflow predictions for May, June, October and November. 

For these cases the general maximum release constraint was Z)max=180 Mm3/month. 
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Table 4.2: Average Reservoir Operation Processes with Dmax=lS0 Mm3 

1 2 3 4 5 6 7 8 9 10 11 12 
Mm3 

Sto. 405 405 405 405 451 645 735 705 635 569 492 405 
I 405 405 405 405 451 645 765 705 635 569 492 405 
II 405 405 410 410 465 645 765 765 635 585 500 405 
III 420 420 420 420 480 645 765 765 635 585 500 420 
IV 420 420 435 435 480 645 765 765 635 600 500 420 
Perf. 435 435 435 435 495 645 765 765 765 699 607 435 

4.2 O P E R A T I O N RESULTS F O R F L O W P A T T E R N I 

4.2.1 G E N E R A L M A X I M U M D I S C H A R G E ( £ > m o x = 1 8 0 Mm3) 

The long-term optimal operation policy for stochastic dynamic programming shows that 

on average the reservoir starts with a water volume of 405 M m 3 at the beginning of 

January and ends at the same volume at the end of the operating year. The maximum 

volume, which occurs at July, reached 735 Mm3, that is two states less than full. Figure 

4.2 and Table 4.2 show the average operating regime of the reservoir. 

The table also contains the operating policies for the corresponding one month ahead 

perfect forecast and all the other runs. The average starting point for the one month 

ahead perfect forecast was 435 M m 3 , two states higher than with no forecasts. The 

water level reaches the allowable highest point, that is the volume of 765 M m 3 , in July 

and keeps level until September. At the end of the operating year, it returns to the 

starting water level. Fig.4.2 shows the average operation with all runs. The figure shows 

that the less uncertainty in stream flow prediction, the higher the average water level 

is and the more stages where the reservoir reaches the full state. These results suggest 

that accurate inflow predictions do improve the operating efficiency of the hydro-electric 

plant. Table 4.3 shows the year end expected values of the states. Table 4.4 shows the 
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Figure 4.2: The Reservoir Operation Processes with Dmax=180Mm3 
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Table 4.3: The Year End Values of States with Dmax=lS0 Mm3 

state Sto. I II III rv Perf. 
Mm3 Gwh 
270 195.6 199.0 203.9 206.7 210.0 212.9 
285 197.5 200.9 205.8 208.5 211.9 214.9 
300 200.0 203.4 208.3 211.1 214.4 217.4 
315 202.4 205.8 210.8 213.5 216.8 219.9 
330 204.9 208.3 213.3 216.1 219.3 222.4 
345 207.4 210.8 215.8 218.6 221.9 224.9 
360 209.9 213.4 218.3 220.1 224.4 227.4 
375 212.4 215.9 220.8 223.6 226.9 230.0 
390 215.0 218.5 223.4 226.3 229.5 232.6 
405 217.7 221.2 226.2 229.0 232.2 235.3 
420 220.3 223.8 228.8 231.6 234.8 237.9 
435 223.0 226.5 231.5 234.3 237.6 240.7 
450 225.7 229.2 234.2 237.1 240.3 243.5 
465 228.4 232.0 236.9 239.8 243.0 246.3 
480 231.0 234.6 239.6 242.4 245.6 249.0 
495 233.6 237.2 242.2 245.0 248.2 251.7 
510 235.6 239.3 244.2 247.0 250.2 253.7 
525 238.9 242.6 247.5 250.4 253.6 257.1 
540 241.5 245.2 250.1 253.0 256.2 259.7 
555 244.3 248.0 252.9 255.5 259.0 262.5 
570 247.0 250.7 255.7 258.5 261.8 265.3 
585 249.8 253.5 258.5 261.3 264.6 268.1 
600 252.6 256.3 261.3 264.2 267.4 271.0 
615 255.5 259.2 264.2 267.1 270.3 274.0 
630 258.4 262.1 267.1 270.0 273.3 277.0 
645 261.3 265.1 270.1 272.9 276.2 280.0 
660 264.2 268.0 273.0 275.9 279.1 283.0 
675 267.1 270.9 275.9 278.8 282.1 286.0 
690 270.1 273.9 278.9 281.8 285.1 289.1 
705 273.1 276.9 282.0 284.8 288.2 292.2 
720 276.2 280.0 285.1 288.0 291.3 295.4 
735 279.2 283.0 288.1 291.0 294.3 298.5 
750 282.3 286.1 291.2 294.1 297.4 301.7 
765 285.5 289.3 294.4 297.4 300.6 305.4 
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Figure 4.3: The Expected Values of States, Dmax = 180Mm3 
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4.4: The Add itional Values of States with Dmax =180 
Stoch. perfect 

state, Mm3 Sto., Gwh AV,Gwh values, $ % 
270 195.6 17.3 334,000 8.8 
285 197.5 17.4 348,000 8.8 
300 200.0 17.4 348,000 8.7 
315 202.4 17.5 350,000 8.6 
330 204.9 17.5 350,000 8.5 
345 207.4 17.5 350,000 8.4 
360 209.9 17.5 350,000 8.3 
375 212.4 17.6 352,000 8.3 
390 215.0 17.6 352,000 8.2 
405 217.7 17.6 352,000 8.1 
420 220.3 17.6 352,000 8.0 
435 223.0 17.7 354,000 7.9 
450 225.7 17.8 356,000 7.9 
465 228.4 17.9 358,000 7.8 
480 231.0 18.0 360,000 7.8 
495 233.6 18.1 362,000 7.8 
510 235.6 18.1 362,000 7.8 
525 238.9 . 18.2 364,000 7.7 
540 241.5 18.2 364,000 7.7 
555 244.3 18.2 364,000 7.6 
570 247.0 18.3 366,000 7.6 
585 249.8 18.3 366,000 7.5 
600 252.6 18.4 368,000 7.5 
615 255.5 18.5 370,000 7.4 
630 258.4 18.6 372,000 7.3 
645 261.3 18.7 374,000 7.3 
660 264.2 18.8 376,000 7.2 
675 267.1 18.9 378,000 7.2 
690 270.1 19.0 380,000 7.1 
705 273.1 19.1 382,000 7.1 
720 276.2 19.2 384,000 7.0 
735 279.2 19.3 386,000 7.0 
750 282.3 19.4 388,000 6.9 
765 285.5 19.5 390,000 6.8 

Mm3 
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expected values with the one month ahead perfect stream flow forecast compared to the 

stochastic forecast. The additional values lie between 16.8 Gwh for the minimum volume 

of 270 Mm3 to 19.6 Gwh for the maximum volume of 765 M m 3 ( see table 4.4 column 3 

for details ). And the higher the water level is, the greater the additional expected value 

gains. When arranged as percentages, the additional values decrease with increasing 

reservoir state, from 8.6 percent of volume 270 Mm3 to 6.9 percent of volume 765 Mm3. 

This is because the base value in calculating percentage incremental value of volume 270 

Mm3 is equal to 195.6 Gwh, which is much lower than the base value of volume 765 

Mm3, which is equal to 285.5 Gwh. 

Table 4.2 and 4.3 also show the results with one, two, three and four months of 

perfect forecasts by the dynamic program model. It can be concluded that along with 

the reduction in uncertainty, on average the reservoir water level will be higher and the 

values of the states will be greater, that is, the expected state values increase with the 

number of months which have perfect stream flow predictions in high flow season. Fig 

4.3 shows the state's year end value increment curve. All of the expected values for part 

time perfect flow forecasting operations He between the pure stochastic flow operation 

and the complete year with one month ahead flow forecasting optimization. 

The outcomes with the peak stream flow period (i.e. four months ) perfect forecast 

indicated that the additional values of the state are very near to the state values with 

the whole year of one month ahead perfect forecasts. This suggests that perfect forecasts 

for the high flow period are more valuable than perfect forecasts for the low flow season. 

That is a reasonable result. First, from table 3.1, it is known that the amount of water 

input into the reservoir during that period is very high. The water volume and water 

level vary most in that time, and the energy production is obviously higher than in the 

low flow season. Thus accurate prediction of inflow during the high flow period has a 

significant influence in the operational efficiency of the reservoir. Second, from table 3.1, 
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Table 4.5: Reservoir Operation Processes for Dm a j=210 Mm3 

1 2 3 4 5 6 7 8 9 10 11 12 
Mm3 

Sto. 480 480 480 495 510 660 735 690 670 660 622 480 
I 480 480 480 495 510 665 735 740 740 699 650 480 
II 480 480 480 495 510 665 765 745 740 699 650 480 
III 480 480 480 495 510 665 765 765 745 699 650 480 
IV 480 480 480 495 510 665 765 765 765 699 650 480 
Per. 495 495 495 495 510 743 765 765 765 765 650 495 

it is seen that the flow variations during the high flow period is much greater than in 

the low flow season, which indicates the wide range of flow variance. Therefore perfect 

flow forecasts, which reduce uncertainty about the flows, should cause more improvement 

with high flows. 

4.2.2 RESULTS W I T H M A X I M U M R E L E A S E Dmax=210 Mm3 

For the case where the maximum release equals 210 Mm3, the reservoir volume starts 

on average at 480 Mm3 and ends with the same state except that with the one month 

ahead perfect forecast, which on average starts from water volume of 495 Mm3 and 

returns to the same volume at the end of operating year. For the case of stochastic 

operation and the one month perfect forecast during the high flow period, the highest 

average water levels during the operation are both 735 Mm3. In the other months during 

the high flow period, the water levels with the one month perfect forecast are slightly 

higher than with the stochastic forecast. But in the other cases, the highest water level 

reaches the reservoir full state, that is Vmax = 765 Mm3. Table 4.5 shows the differences 

among the different forecasting cases. 

Comparing the corresponding water levels between having the maximum release lim

ited to 210 Mm3 and equal to 180 Mm3, it was found that the water level in the low 
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Table 4.6: Expected Values of States with Dmax =210 Mm3 

state Sto. I II III IV Per. 
Mm3 Gwh 
270 202.3 205.1 208.3 210.2 214.7 218.1 
285 205.6 208.4 211.6 213.5 218.6 221.4 
300 208.4 211.2 214.4 216.3 221.4 224.3 
315 212.5 215.4 218.5 220.4 225.5 228.5 
330 215.0 217.9 221.0 223.0 227.9 231.0 
345 217.9 220.8 224.0 225.9 229.6 234.0 
360 221.0 223.9 227.1 229.0 232.7 237.1 
375 223.1 226.0 229.2 231.1 235.2 239.3 
390 226.3 229.2 232.4 234.3 237.0 242.5 
405 228.9 231.9 235.0 236.9 240.5 245.2 
420 232.2 235.2 238.3 240.3 244.3 248.2 
435 233.6 236.6 239.8 241.7 248.0 250.1 
450 236.7 239.7 242.9 244.8 250.1 253.2 
465 239.8 242.8 246.0 247.9 253.3 256.4 
480 242.2 245.3 248.4 250.3 255.7 258.8 
495 244.6 247.7 250.8 252.7 257.3 261.3 
510 247.3 250.4 253.5 255.4 259.6 264.0 
525 250.4 253.5 256.6 258.7 262.6 267.2 
540 252.6 255.7 258.8 260.9 264.3 269.5 
555 255.8 259.0 262.0 263.9 268.8 272.7 
570 258.5 261.7 264.8 266.7 271.7 275.4 
585 261.1 264.3 267.4 269.3 275.4 278.1 
600 263.4 266.6 269.7 271.7 277.6 280.4 
615 266.2 269.4 272.5 274.3 280.5 283.2 
630 268.2 271.5 274.5 276.5 283.2 285.3 
645 270.5 273.8 276.7 278.9 285.6 287.7 
660 273.3 276.6 279.5 281.6 287.5 290.6 
675 276.4 279.7 282.7 284.8 289.3 293.8 
690 279.4 282.7 285.8 287.6 291.4 296.8 
705 282.4 285.8 288.8 290.6 293.4 299.8 
720 285.6 289.0 292.0 293.9 297.5 303.1 
735 287.7 290.1 294.2 296.0 300.1 305.3 
750 291.9 294.1 298.4 301.0 303.2 309.6 
765 295.1 298.5 301.6 303.6 307.3 312.9 



Chapter 4. RESULTS 64 

The expected values of state, Gwh 
320 

300 

280 

260 

240 

220 

200 

200 300 400 500 600 700 800 
Water volume,million cubic meters d=210 

sto. forecast one month perfect two months perfect 

three months perfectfour months perfect one month ahead per. 

Figure 4.4: The Expected Values of States, Dmax - 210Mm3 
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Table 4.7: Additional Values of States Dma,=210 Mm3 

state Sto. Perfect 
Mm3 Gwh AV Gwh Value $ % 
270 202.3 15.8 316,000 7.8 
285 205.6 15.8 316,000 7.7 
300 208.4 15.9 318,000 7.6 
315 212.5 16.0 320,000 7.5 
330 215.0 16.1 322,000 7.4 
345 217.9 16.1 322,000 7.4 
360 221.0 16.1 322,000 7.3 
375 223.1 16.2 324,000 7.3 
390 226.3 16.2 324,000 7.2 
405 228.9 16.3 326,000 7.1 
420 232.2 16.4 328,000 7.1 
435 233.6 16.5 330,000 7.1 
450 236.7 16.5 330,000 7.0 
465 239.8 16.6 332,000 6.9 
480 242.2 16.6 332,000 6.9 
495 244.6 16.7 332,000 6.8 
510 247.3 16.7 334,000 6.8 
525 250.4 16.8 336,000 6.7 
540 252.6 16.9 338,000 6.7 
555 253.8 16.9 338,000 6.6 
570 258.6 16.9 338,000 6.5 
585 261.1 17.0 340,000 6.5 
600 263.4 17.0 340,000 6.5 
615 266.2 17.0 340,000 6.4 
630 268.2 17.1 342,000 6.4 
645 270.5 17.2 344,000 6.4 
660 273.3 17.3 346,000 6.3 
675 276.4 17.4 348,000 6.3 
690 279.4 17.4 348,000 6.2 
705 282.4 17.4 348,000 6.1 
720 285.6 17.5 350,000 6.1 
735 287.7 17.6 352,000 6.1 
750 291.9 17.7 354,000 6.0 
765 295.1 17.8 356,000 6.0 
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Figure 4.5: The Reservoir Operation Processes, Dmax = 210MTO3 
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Table 4.8: Operation Processes of Flow Pattern I, Dmax " 150Mm3 

1 2 3 4 5 6 7 8 9 10 11 12 
M m 3 

Sto. 360 360 360 389 488 660 715 660 564 516 495 360 
I 360 360 360 389 488 665 720 665 564 516 495 360 
II 360 360 360 389 488 665 735 665 564 516 495 360 
III 360 360 360 389 488 665 750 665 580 535 495 360 
IV 375 375 375 389 488 665 765 670 580 535 510 375 
Pec. 390 390 390 420 541 665 765 670 645 550 540 390 

flow period for the former case was higher than with the latter operation. For example, 

the average starting point for the former is 480 M m 3 , but for the latter is 405 Mm3. 

The reason is that the ability to adjust high flows for the former is stronger than the 

latter. Because it allows the maximum release of 210 M m 3 , the reservoir water level can 

be kept high to provide more energy production without the risk of reservoir spill. 

However, when the maximum allowable release is equal to 180 M m 3 , 30 M m 3 lower 

than 210 M m 3 , its adjustable ability for flood flows is weaker. ' Because of the lower 

discharge capacity, the water level should keep lower before the high flow period. As a 

result, the energy production will be smaller than when the maximum allowable release 

is 210 M m 3 . In the next section, it can be seen that the average starting reservoir volume 

for release limit of 150 M m 3 case is even lower. Therefore, for the purpose of providing 

more energy production, a high release limit is recommanded if possible. 

Tables 4.6 and 4.7 show the state values. For the stochastic forecast operation (see 

column 2 of table 4.6), the state values range from 202.3 Gwh for the minimum reservoir 

volume of 270 M m 3 to 295.1 Gwh for the maximum water volume of 765 M m 3 . The state 

long term year end values with the one month ahead perfect forecast (see column 7,table 

4.6) vary from 218.1 Gwh to 312.9 Gwh corresponding to the minimum and maximum 
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Table 4.9: The Year End Values of States Dmax = 150Mm3 

state Sto. I II III IV Per. 
Mm3 Gwh 
270 194.2 197.0 203.3 207.1 210.5 214.8 
285 196.1 200.0 205.8 209.5 212.9 217.1 
300 198.5 202.5 208.4 211.2 215.4 219.5 
315 200.9 203.6 210.2 214.7 217.6 221.9 
330 203.3 205.9 213.7 216.4 219.5 224.3 
345 205.7 207.5 215.5 218.9 221.2 223.3 
360 208.0 211.8 217.8 220.1 223.3 229.1 
375 210.5 213.2 219.3 223.5 226.4 231.6 
390 213.3 216.4 221.5 227.3 228.6 234.4 
405 215.7 218.3 224.2 229.9 231.2 236.9 
420 218.2 220.6 226.6 232.7 234.3 239.4 
435 220.5 223.3 230.0 233.4 237.7 241.7 
450 223.1 226.0 233.5 235.9 240.0 244.4 
465 225.6 229.2 235.5 238.2 242.4 247.0 
480 228.3 232.1 237.7 241.5 244.8 248.7 
495 230.6 234.7 240.0 243.9 247.7 252.1 
510 233.5 237.4 243.1 247.0 249.8 255.0 
525 235.9 239.6 247.4 249.6 252.6 257.5 
540 238.5 242.1 250.1 252.4 256.8 260.2 
555 241.2 245.6 253.3 256.5 259.0 263.0 
570 243.9 248.8 255.4 259.2 262.1 265.8 
585 246.6 250.3 257.8 262.7 264.4 268.5 
600 249.4 252.6 259.3 264.4 266.2 271.4 
615 252.2 256.0 262.0 265.9 269.1 274.3 
630 255.0 259.2 265.3 267.8 271.5 277.1 
645 257.9 262.1 268.6 269.7 274.2 280.1 
660 260.8 264.4 271.1 273.2 276.8 283.1 
675 263.7 267.6 274.0 276.1 279.2 286.2 
690 266.7 269.9 276.8 279.3 282.7 289.3 
705 269.6 273.3 279.3 281.5 285.2 292.3 
720 272.6 275.9 281.6 284.1 287.9 295.4 
735 275.7 277.8 284.5 287.3 291.8 298.5 
750 278.8 280.0 286.3 289.8 294.7 301.7 
765 281.9 284.0 288.6 292.5 297.9 304.9 
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Table 4.10: The Additional Expected Values Dmax = 150Mm3 

state Sto. Perfect 
Mm3 Gwh A V Gwh Value $ % 
270 194.2 20.6 412,000 10.6 
285 196.1 21.0 420,000 10.7 
300 198.5 21.0 420,000 10.6 
315 200.9 21.0 420,000 10.5 
330 203.3 21.0 420,000 10.3 
345 205.7 21.0 420,000 10.2 
360 208.0 21.1 422,000 10.1 
375 210.8 21.1 422,000 10.0 
390 213.3 21.1 422,000 9.9 
405 215.7 21.2 424,000 9.8 
420 218.2 21.2 424,000 9.7 
435 220.5 21.2 424,000 9.6 
450 223.1 21.3 426,000 9.5 
465 225.6 21.4 428,000 9.5 
480 228.3 21.4 428,000 9.4 
495 230.6 21.5 430,000 9.3 
510 233.5 21.5 430,000 9.2 
525 235.9 21.6 432,000 9.2 
540 238.5 21.7 434,000 9.1 
555 241.2 21.8 436,000 9.0 
570 243.9 21.9 438,000 9.0 
585 246.6 21.9 438,000 8.9 
600 249.4 22.0 440,000 8.8 
615 252.2 22.1 442,000 8.8 
630 255.0 22.1 442,000 8.7 
645 257.9 22.2 444,000 8.6 
660 260.8 22.3 446,000 8.6 
675 263.7 22.5 450,000 8.5 
690 266.7 22.6 452,000 8.5 
705 269.6 22.7 454,000 8.4 
720 272.6 22.8 456,000 8.4 
735 275.7 22.8 456,000 8.3 
750 278.8 22.9 458,000 8.2 
765 281.9 23.0 460,000 8.2 
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reservoir volume. Comparing the two results it was found that the additional expected 

values with the perfect forecasts range from 7.8 % to 6.0 %. 

4.2.3 RESULTS W I T H F L O W P A T T E R N I, DMAX = 150Mm3 

Tables 4.8, 4.9 and 4.10 tabulate the results of the production runs for maximum release 

limited to 150 Mm3. In the case with the stochastic flow forecast, the reservoir volume 

starts at an average of 360 Mm3 at the begining of January and ends at the same point 

at the end of December. The maximum volume of the year's operation is 715 Mm3 

(not reaching the reservoir full state). But with the perfect inflow forecast, the average 

starting point for the reservoir operation is 390 Mm3 and the highest water level reaches 

the reservoir full state. The long term year end expected state values vary from 194.2 

Gwh for water volume 270 Mm3 to 281.9 Gwh for water level 765 Mm3 in the case of 

the stochastic inflow forecast, and from 214.8 Gwh to 304.9 Gwh in the case of perfect 

flow prediction. The additional expected values due to the perfect forecast go from 20.6 

Gwh to 23.0 Gwh, which are 10.6% to 8.2% improvements compared to the stochastic 

flow forecast. 

4.3 T H E O P E R A T I O N RESULTS W I T H F L O W P A T T E R N n 

This section describes the results with the second general flow pattern. This pattern is 

typical of the B.C. Coast. As shown in section 3.3, although the mean annual flow is the 

same as flow pattern I, its distribution of mean monthly flows and standard deviations 

are quite different. The operation results demonstrated that the mean stream flow Qi, 

i=l,2, 12 and their standard deviations DQ{ have significant influence on the energy 

production. 

Table 4.11 shows the operating pattern of the reservoir. With the stochastic dynamic 
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Figure 4.6: The Operation Processes, Dmax = 150Mm3 
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The expected values of state, Gwh 
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Figure 4.7: The Expected Values of States, DMax = 150M7713 
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Figure 4.8: The Reservoir Operation Processes, Flow Pattern II, Dmax — 180Mm3 



Chapter 4. RESULTS 

Flow Pattern II 
The expected values of state, Gwh 
340 I 

320 -

200 300 400 500 600 700 800 

Water volume, million cubic meters D=180 
sto. forecast one month perfect two months perfect 

three months perfectfour months perfect one month ahead per. 

Figure 4.9: The Expected Values of States, Flow Pattern II, Dmax = 180Mm3 
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Table 4.11: Average Operation Pattern with General Flow Pattern II and 
Dmax = 180Mm3 

1 2 3 4 5 6 7 8 9 10 11 12 
M m 3 

Sto. 750 650 585 510 594 650 705 632 600 675 750 750 
I 750 650 590 510 630 675 720 632 615 675 750 750 
II 750 660 605 510 630 675 735 632 615 690 750 750 
III 750 660 605 525 630 675 735 632 615 705 750 750 
IV 750 660 605 525 630 690 750 645 615 705 750 750 
Per. 750 660 645 570 660 705 765 645 615 705 750 750 

program, the average reservoir operation begins from volume 750 M m 3 , which is near 

the reservoir full state. This is because inflows are high and range from 131.7 Mm3 to 

122.56 Mm3 from October to December in the previous operating year. There are two 

peak flow periods during one year. The other peak flow starts from May and ends in 

July. Therefore there are two high water level periods in the reservoir operation process. 

In the first high flow period, that is from May to July, the highest water storage reaches 

705 Mm3 at July. And then it becomes lower until September, when the water volume 

reduces to 600 M m 3 . At the end of December it returns to 750 M m 3 again. 

In the case with the one month ahead perfect forecast, the average starting water 

volume at the begining of January is also 750 M m 3 , and it ends with the same volume 

at the end of the operating year. The highest water volume is 765 M m 3 , which is the 

reservoir full state, and that happens in July. It can be seen that the end states with 

the perfect forecast exceeded or were equal to the monthly end states of corresponding 

months in the stochastic forecast case due to reducing the uncertainty. Note that there 

are similar outcomes in the case of the operation with flow pattern I. This is a clear 

indication of the improvement in reservoir operational efficiency. In the other operation 

cases, that is with part time perfect stream flow forecasts, the month end states become 
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Tab: e 4.12: The Year End Values of States Dmax = 180Mm3 

state Sto. I II III IV Per. 
M m 3 Gwh Gwh Gwh Gwh Gwh Gwh 
270 197.2 198.6 201.3 203.5 206.1 214.4 
285 199.2 200.6 203.3 205.5 208.1 216.5 
300 203.0 204.4 207.1 209.3 211.9 220.7 
315 205.4 206.9 209.5 211.7 214.3 222.8 
330 208.4 209.9 212.5 214.7 217.3 225.9 
345 211.5 213.0 215.7 217.9 220.5 229.0 
360 214.6 216.1 218.8 221.0 223.6 232.1 
275 217.2 218.8 221.4 223.6 226.2 234.8 
390 220.6 222.2 224.9 227.1 229.6 238.3 
405 223.9 225.5 228.1 230.4 232.9 241.7 
420 227.0 228.6 231.3 233.5 236.0 244.9 
435 230.1 231.7 234.4 236.6 239.1 248.1 
460 233.3 234.9 237.6 239.8 242.4 251.4 
475 236.3 237.9 240.6 242.9 245.4 254.5 
480 239.4 241.1 243.7 246.0 248.5 257.7 
495 242.5 244.2 246.9 249.1 251.6 260.8 
510 245.7 247.4 250.1 252.3 254.9 264.1 
525 249.4 251.1 253.8 256.0 258.6 267.9 
540 253.0 254.7 257.4 258.6 262.2 271.6 
555 256.7 258.4 261.2 263.4 265.9 275.4 
570 259.5 261.2 264.0 266.2 268.8 278.2 
585 263.5 265.2 268.0 270.2 273.8 282.3 
600 266.1 267.9 270.6 272.8 275.4 285.0 
615 269.4 271.2 273.9 276.1 278.7 288.4 
630 272.3 274.3 276.9 279.1 281.6 291.4 
645 275.2 277.0 279.8 282.0 284.5 294.4 
660 278.4 280.2 283.0 285.2 287.7 297.7 
675 281.6 283.4 286.3 288.4 291.0 301.0 
690 284.2 286.0 288.9 291.0 293.6 303.6 
705 287.1 289.0 291.8 294.0 296.5 306.6 
720 290.2 292.1 294.9 297.1 299.6 309.8 
735 293.4 295.3 298.3 300.3 302.9 313.1 
750 295.7 297.6 300.5 302.6 305.2 315.5 
765 298.8 300.7 303.6 305.7 308.3 318.7 
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Table 4.13: The Additional Values of Forecasts with Flow Pattern II, Dmax = 180M-
state Sto. Perfect 
M m 3 Gwh AV (Gwh) Value ($) % 
270 197.2 17.2 344,000 8.7 
285 199.2 17.3 346,000 8.7 
300 202.3 17.4 348,000 8.6 
315 205.4 17.4 348,000 8.5 
330 208.4 17.5 350,000 8.4 
345 211.5 17.5 350,000 8.3 
360 214.6 17.5 350,000 8.2 
375 217.7 17.6 352,000 8.1 
390 220.6 17.7 354,000 8.0 
405 223.9 17.8 356,000 7.9 
420 227.0 17.9 358,000 7.9 
435 230.1 18.0 360,000 7.8 
450 233.3 18.1 362,000 7.8 
465 236.3 18.2 364,000 7.7 
480 239.4 18.3 366,000 7.6 
495 242.5 18.3 366,000 7.6 
510 245.7 18.4 368,000 7.5 
525 249.4 18.5 370,000 7.4 
540 253.0 18.6 372,000 7.4 
555 256.7 18.7 374,000 7.3 
570 259.5 18.7 374,000 7.2 
585 263.5 18.8 376,000 7.1 
600 266.1 18.9 378,000 7.1 
615 269.4 19.0 380,000 7.1 
630 272.3 19.1 382,000 7.0 
645 275.5 19.2 384,000 7.0 
660 278.9 19.3 386,000 6.9 
675 281.6 19.4 388,000 6.9 
690 284.2 19.4 388,000 6.8 
705 287.5 19.5 390,000 6.8 
720 296.2 19.6 392,000 6.7 
735 293.4 19.7 394,000 6.7 
750 295.7 19.8 396,000 6.6 
765 298.8 19.9 398,000 6.6 
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higher as the number of months which have perfect inflow predictions increase (see table 

4.11 for details). 

Table 4.12 represents the year end expected values of the states for all operating 

runs. Table 4.13 shows the additional expected values with one month ahead perfect 

inflow forecasts compared to the results with pure stochastic stream flow prediction. 

From the second column of table 4.12, it can be seen that the state year end expected 

values, for stochastic flow forecast, range from 197.2 Gwh for 270 Mm2 to 298.8 Gwh for 

765 Mm3. Column 7 shows the state's year end expected values with perfect stream flow 

forecasting. The minimum and maximum expected values are 216.4 Gwh and 315.9 Gwh, 

which correspond to the lower and upper bounds of water volume respectively. Fig (4.9) 

plots the year end expected values against the reservoir states. This shows that there is 

a similar relationship between states and their year end values as with flow pattern I. 



Chapter 5 

CONCLUSIONS 

This chapter presents the general conclusions obtained from the research. In Chapter I, 

several questions were posed: 

• What is the value of one month ahead perfect inflow forecasts to reservoir operation? 

The answer could be used as a guide to whether or not it is worth making stream 

flow predictions. 

• What benefits can be gained from varying term perfect stream flow forecasts in the 

high flow season? 

• What is the effect of the maximum power plant capacity on the opportunities for 

improving the reservoir operating efficiency? 

• How do different stream flow patterns affect the expected benefits which could be 

obtained by reducing the uncertainty about future flows with forecasting? 

The results presented in chapter IV have already partially answered these questions. 

They are summarized in this chapter and the results of some further analyses and con

clusions are presented. 

5.1 A D D I T I O N A L BENEFITS OF P E R F E C T I N F O R M A T I O M 

As stated in chapter I, the main purpose of this study is to find an upper limit to the 

value of flow forecasts by computing the expected value of perfect short term inflow 

79 
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Table 5.1: Summaty of Additional Benefits with Forecasts 
Flow Pattern I, $ Flow Pattern II, $ 

Dmax = 150 Mm3 Dmax = 180Mm3 Dmax = 210Mm3 Dmax = 180Mm3 

I 76,000 70,000 62,000 38,000 
II 196,000 170,000 124,000 96,000 
III 242,000 226,000 162,000 138,000 
IV 318,000 290,000 270,000 190,000 
Per. 422,000 354,000 334,000 396,000 

forecasts. The expected values of the perfect forecast is the value of the extra energy 

production possible with the perfect inflow predictions compared to the operation with 

pure stochastic flow estimates. The value of energy is assumed to be $20,000/Gwh, so 

that the benefits can be evaluated approximately in dollar terms. 

Table 5.1 summarizes the expected additional benefits with perfect inflow information, 

which correspond to the optimal long term operational policies of the hyphothetical 

hydroelectric power project for each production run. It may be seen from the table that 

the perfect flow forecasts, both for one month ahead perfect forecasting and for part 

time perfect flow forecasting in the high flow season, improve the operational efficiency 

considerably by reducing the forecasting uncertainty. For example, when the allowable 

maximum release Dmax — 180Mm3, in the case of flow pattern I, the perfect forecasting 

could generate $354,000 more than the stochastic forecast. The potential improvement 

due to perfect forecasting with flow pattern II could achieve $396,000. The potential 

additional expected value of perfect inflow information for flow pattern I is slightly lower 

than with flow pattern II. 

It is obvious that the effort of making pefect stream flow forecasting is worth doing 

when the cost of the research work is not greater than the extra expected benefits, that is 

$354,000 for flow pattern I and $396,000 for flow pattern II when the maximum allowable 
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discharge is equal to 180 Mm3. 

5.2 THE E F F E C T OF MAXIMUM RELEASE ON THE POTENTIAL BEN

EFIT 

This section discusses the role of the maximum allowable release (which depends on the 

generating capacity) in the improvement of reservoir operational efficiency. 

Table 5.2 compares the percentage and the net potential additional expected state 

values with different maximum release capacities for flow pattern I. It is interesting to 

note, from both Table 5.1 and 5.2, 

that the largest additional expected value among the three situations is when the 

maximum allowable release is limited to 150 Mm3. The additional expected state values 

vary from 10.6 % of reservoir volume 270 Mm3 to 8.2 % of volume 765 Mm3. When 

the maximum discharge is 180 Mm3, The extra values He between 8.6 % and 6.9 % . In 

the case of release limitation being 210 Mm3, the potential expected benefits go from 

7.8 % to 6.0 % respectively. That is, the additional expected values reduce when the 

discharge limitation increases. The results indicated that perfect inflow information is 

more valuable when the maximum allowable release is smaller for the same reservoir size. 

The explanation of this phenomenon is as follows: The 'adjusting ability' of the 

reservoir is limited by the maximum release capacity. When Dmax is small, the energy 

production is affected greatly by the release constraint and a lot of water may be spilled 

through spillway. Thus the perfect inflow prediction provides more improvement in reser

voir operational efficiency. If Dmax is large, the effect of improving operational efficiency 

by perfect inflow forecasting will be smaller relatively which suggests less additional ex

pected values may be obtained. It can be concluded, from the above results, that if a 

hydroelectric power project has a strict limitation on discharges, it is more worthwhile 
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Table 5.2: Additional Expected Values of Different D. 
state Dmax = 150Mm3 Dmax = 180Mm3 Dmax = 210Mm3 

M m 3 % $ % $ % $ 
270 10.6 412,000 8.8 334,000 7.8 316,000 
285 10.7 420,000 8.8 348,000 7.7 316,000 
300 10.6 420,000 8.7 348,000 7.6 318,000 
315 10.5 420,000 8.6 350,000 7.5 320,000 
330 10.3 420,000 8.5 350,000 7.4 322,000 
345 10.2 420,000 8.4 350,000 7.4 322,000 
360 10.1 422,000 8.3 350,000 7.3 322,000 
375 10.0 422,000 8.3 352,000 7.3 324,000 
390 9.9 422,000 8.2 352,000 7.2 324,000 
405 9.8 424,000 8.1 352,000 7.1 326,000 
420 9.7 424,000 8.0 352,000 7.1 328,000 
435 9.6 424,000 7.9 354,000 7.1 330,000 
450 9.5 426,000 7.9 356,000 7.0 330,000 
465 9.5 428,000 7.8 358,000 6.9 332,000 
480 9.4 428,000 7.8 360,000 6.9 332,000 
495 9.3 430,000 7.8 362,000 6.8 334,000 
510 9.2 430,000 7.8 362,000 6.8 334,000 
525 9.2 432,000 7.7 364,000 6.7 336,000 
540 9.1 434,000 7.7 364,000 6.7 338,000 
555 9.0 436,000 7.6 364,000 6.6 338,000 
570 9.0 438,000 7.6 366,000 6.5 338,000 
585 8.9 438,000 7.5 366,000 6.5 340,000 
600 8.8 440,000 7.5 378,000 6.5 340,000 
615 8.8 442,000 7.4 370,000 6.4 340,000 
630 8.7 442,000 7.3 372,000 6.4 342,000 
645 8.6 444,000 7.3 374,000 6.4 344,000 
660 8.6 446,000 7.2 376,000 6.3 346,000 
675 8.5 450,000 7.2 378,000 6.3 348,000 
690 8.5 452,000 7.1 380,000 6.2 348,000 
705 8.4 454,000 7.1 382,000 6.1 348,000 
720 8.4 456,000 7.0 384,000 6.1 350,000 
735 8.3 456,000 7.0 386,000 6.1 352,000 
750 8.2 458,000 6.9 388,000 6.0 354,000 
765 8.2 460,000 6.8 390,000 6.0 356,000 
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to make inflow forecasts. 

5.3 T H E R O L E OF T H E F L O W P A T T E R N IN T H E RESERVOIR OPER

A T I O N 

Comparing the results from the different flow patterns leads to an interesting conclusion. 

That is , the year end expected additional values with part time perfect inflow information 

depend on the pattern of mean flows and their deviations. Table 5.3 and 5.4 show the 

degree of improvement with part time perfect flow forecasts in the form of incremental 

percentages 

of the additional values over the one month ahead perfect forecast. A P represents the 

additional values with one month ahead perfect forecasting and thus may be viewed as 

the possible maximum improvement with perfect inflow information. Ai , i=l,2, 3 and 4, 

is the additional values with one, two, three and four months of perfect forecasting. Thus 

Ai/ A P is the operational improvement of part time perfect inflow forecasts in terms of 

percentage. A comparison of the two tables shows that the additional values are about 

20%, 47%, 63% and 80% of the possible maximum 

improvements respectively for part time perfect forecasting with flow pattern I, whereas, 

the corresponding improvement are only about 9%, 23%, 35%, and 50% for flow pattern 

II. The reasons for these results are as follows. On the one hand, the total amount of 

inflow in the high flow period dominates the stream flow of the forecasting year with flow 

pattern I. It may be seen from chapter three that the stream flow in that period is about 

83% of the total annual flow, so the energy production during that time is very high. 

Consequently, the improvement in reservoir operation efficiency due to the availability of 

part time perfect inflow prediction should also be great. But for the flow pattern II, the 

sum of the inflow in the two high flow periods is only about 64% of the total annual flow, 
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Table 5.3: The Additional Values with Flow Pattern I 
State (Al /AP) (A2/AP) (A3/AP) (A4/AP) AP 
Mm3 % % % % Gwh 
270 19.7 48.0 64.2 83.2 17.3 
285 19.5 47.7 63.8 82.8 17.4 
300 19.5 47.7 63.8 82.8 17.4 
315 19.4 48.0 63.4 82.3 17.5 
330 19.4 48.0 64.0 82.3 17.5 
345 19.4 48.0 64.0 82.9 17.5 
360 20.0 48.0 64.0 82.9 17.5 
375 19.9 47.7 63.6 82.4 17.6 
390 19.9 47.7 64.2 82.4 17.6 
405 19.9 48.3 64.2 82.4 17.6 
420 19.9 48.3 64.2 82.9 17.6 
435 19.8 48.0 63.8 82.5 17.7 
450 19.7 47.8 64.0 82.0 17.8 
465 20.1 47.5 63.7 81.6 17.9 
480 20.0 47.8 63.3 81.1 18.0 
495 19.9 47.5 63.0 80.6 18.1 
510 20.4 47.5 63.0 81.2 18.1 
525 20.3 47.3 63.2 80.8 18.2 
540 20.3 47.3 63.2 80.8 18.2 
555 20.3 47.3 63.2 81.3 18.2 
570 20.2 47.5 62.8 80.9 18.3 
585 20.2 47.5 62.8 80.9 18.3 
600 20.1 47.3 63.0 80.4 18.4 
615 20.0 47.0 62.7 80.5 18.5 
630 19.9 46.8 62.4 80.1 18.6 
645 20.3 47.1 62.0 79.7 18.7 
660 20.2 46.8 62.2 79.3 18.8 
675 20.1 46.6 61.9 79.4 18.9 
690 20.0 46.3 61.6 78.9 19.0 
705 19.9 46.6 61.3 79.1 19.1 
720 19.8 46.4 61.5 78.6 19.2 
735 19.7 46.1 61.1 78.2 19.3 
750 19.6 45.9 60.8 77.8 19.4 
765 19.5 45.6 61.0 77.4 19.5 
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Table 5.4: The Additional Values of F: 
State (Al /AP) (A2/AP) (A3/AP) (A4/AP) AP 
M m 3 % % % % Gwh 
270 8.1 23.8 36.6 51.7 17.2 
285 8.1 23.7 36.4 51.4 17.3 
300 8.0 23.6 36.2 51.1 17.4 
315 8.6 23.6 36.2 51.1 17.4 
330 8.6 23.4 36.0 50.9 17.5 
345 8.6 24.0 36.6 51.4 17.5 
360 8.6 24.0 36.6 51.4 17.5 
375 9.1 23.9 36.4 51.1 17.6 
390 9.0 24.3 36.7 50.8 17.7 
405 8.9 24.2 36.5 50.6 17.8 
420 8.9 24.0 36.3 50.3 17.9 
435 8.9 23.9 36.1 50.0 18.0 
450 8.8 23.8 35.9 50.3 18.1 
465 8.8 23.6 36.3 50.0 18.2 
480 9.3 23.5 36.1 49.7 18.3 
495 9.3 24.0 36.1 49.7 18.3 
510 9.2 23.9 35.9 50.0 18.4 
525 9.2 23.8 35.7 49.7 18.5 
540 9.1 23.7 35.5 49.5 18.6 
555 9.1 24.1 35.8 49.2 18.7 
570 9.1 24.1 35.8 49.7 18.7 
585 9.0 23.9 35.6 49.5 18.8 
600 9.5 23.8 35.4 49.2 18.9 
615 9.5 23.7 35.3 48.9 19.0 
630 9.4 24.1 35.6 48.7 19.1 
645 9.4 24.0 35.4 48.9 19.2 
660 9.3 23.8 35.2 48.2 19.3 
675 9.3 24.2 35.1 48.5 19.4 
690 9.3 24.2 35.1 48.5 19.4 
705 9.7 24.1 35.4 48.2 19.5 
720 9.7 24.0 35.2 48.0 19.6 
735 9.6 23.9 35.0 48.2 19.7 
750 9.6 24.2 34.8 48.0 19.8 
765 9.5 24.1 34.7 47.7 19.9 

ow Pattern II 
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and thus has a relatively smaller influence on the improvement of reservoir operation 

than the former. The monthly standard deviation of the flow in the low flow season with 

flow pattern II, on the other hand, is much greater than flow pattern I. Therefore, its 

possible flows vary more widely during low flow periods, which means more uncertainty 

about the flow occurence. For example, there are only 4 to 8 possible flow values with 

flow pattern I in the low flow season, whereas there are at least 12 possible flows in the 

low flow months with flow pattern II. As a result, there is only small additional value in 

reservoir operational efficiency improvement in the low flow periods with flow pattern II 

if perfect runoff information is available. 

It can be concluded, from the above results, that more additional value may be 

obtained when the greater amount of stream flow occurs in the wet season. In other 

words, it is more valuable to make perfect inflow forecasts in the high flow period if the 

stream flow in that time dominates the total flow of the year as it does with flow pattern 

I. Where there is not much difference in the amount of water between the dry season 

and the high flow period as in flow pattern II for instance, it is better to get forecasts 

throughout the whole year. 

Although there are some influences on the additional values of perfect forecasting 

owing to the different inflow patterns, that is flow pattern I and pattern II, the differences 

in the potential additional expected values between the two flow patterns is not very much 

as has been already pointed out in section 5.1. 

5.4 T H E C O N S E Q U E N C E S OF P A R T T I M E P E R F E C T F O R E C A S T I N G 

Making perfect stream flow forecasts for a whole year is a costly and difficult task usu

ally. An alternative is to predict the inflows as accurately as possible during the high flow 
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period. This section examines the effects of part time perfect forecasting to the improve

ment of reservoir operational efficiency. Table 5.1, 5.3 and 5.4 tabulate the results of all 

operation runs. From these tables, it is clear that the perfect forecasts in the wet season 

have significant influence on the improvement in potential additional expected values. 

The more months which have perfect flow information in high flow season, the more im

provement is possible. The potential for additional expected values with four months of 

perfect predictions may reach about 80% or 50% of the maximum possible improvement 

with flow pattern I and pattern II respectively, whereas the one, two or three month 

perfect forecasts have relatively smaller additional benefits, about 20%, 47% or 63% for 

flow pattern I and 9%, 23% or 35% for flow pattern II. Therefore, it is recommended to 

try to make as accurate flow predictions as possible for the whole wet season instead just 

part of the high flow period to get the best results. 

5.5 R E C O M M E N D A T I O N S F O R F U R T H E R R E S E A R C H 

From the experience gained in this study, the following further research is recommended. 

• Find the additional expected values with two month ahead perfect forecasting. This 

is a more difficult issue to formulate into the optimization model than the model in 

the present study but it would be an interesting task both in theory and in practice. 

• Examine the effects of different reservoir sizes on the improvement in expected 

values with one month ahead perfect flow forecasts. Reservoir size is usually one 

of the key elements in the control of its operation. Different reservoir sizes might 

cause different reactions to the perfect inflow forecasts. 

• Study the role of one month ahead perfect forecasts in the operation of a system of 

reservoirs. Generally speaking, a hydroelectric power project is operated in a large 
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scale electric network, rather than as an individual project. 

• Examine the effects of less than perfect forecasts in reservoir operation using a 

methodology similar to the perfect study. 
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