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A B S T R A C T 

Knowledge-based systems are increasingly popular in a variety of fields. These 

systems may provide an elegant and comprehensive framework for the solution of 

ill-structured, complex problems that traditional computer systems cannot handle. 

This paper describes the implementation process of a prototype knowledge-based 

system designed to help in the task of locating and evaluating highway corridors, 

taking into account environmental, social and economic factors. The applicability of 

the approach to other engineering problems is also analyzed as well as the relative 

merits of alternate implementation tools. 

The most significant aspects of the system presented are its transparent reasoning, 

provided by extensive explanation facilities, the original spatial data representation 

structures it uses and the implementation of fuzzy operators to deal with uncertain 

information. The system presented has a comparatively reduced knowledge base and 

therefore does not achieve the level of performance expected from experts in the 

field. However, it does demonstrate how relatively new Artificial Intelligence 

techniques can be used in conjunction with conventional techniques to model a 

typical Civil Engineering problem. 
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1. INTRODUCTION 

Recently developed techniques in the Artificial Intelligence field hold the promise of 

elegant and natural solutions to ill-structured, complex problems in many fields. 

While there is abundant literature describing the general principles involved and 

existing systems, their domain-specific nature currently prevents off-the-shelf solutions 

from being useful except for relatively simple applications. As a result, most practical 

systems have to be especially designed to accommodate the unique characteristics 

of each particular problem. 

The major objective of this study is to investigate the applicability of the 

knowledge-based system approach to highway corridor location. To achieve this, a 

prototypical rule-based system was implemented. The Highway Location Assistant 

system (HLA) incorporates many of the techniques that can be found in the 

literature and some that were developed especially for this particular application. The 

manner in which these procedures are combined into a complete system is also 

described, for this is a point of paramount importance on which literature is 

currently scarce. 

HLA consists of several modules, some of which are purely knowledge-based and 

others that implement conventional procedures. The system has, therefore, a hybrid 

nature. This demonstrates that, rather than replacing existing tools and procedures, 

1 



INTRODUCTION 12 

knowledge-based modules can complement them and enhance their usefulness. 

Two distinct topics are discussed in this paper: highway corridor location procedures 

and knowledge-based problem solving techniques. The major emphasis is placed on 

the latter. Highway corridor location is used as an example of a typical ill-structured 

civil engineering problem. The techniques currently employed to solve it are 

described to demonstrate the potential advantages of the new approach and to 

provide a necessary, insight on how HLA actually works. 

1.1. The Highway Corridor Location Problem 

The process of selecting a highway corridor involves varying degrees of expertise in 

many fields, as well as political factors. Each possible route has associated 

economic, environmental and social impacts. These impacts can be positive or 

negative, and to describe each one it is necessary to assess its extent and 

importance. 

There are standard procedures for the assessment of the extent of many types of 

impacts (e.g. construction and operating costs), but the relative importance of each 

of those values has to be determined by experts. Furthermore, some types of 

impacts (such as aesthetic quality) are subjective by nature and, therefore, difficult 

to assess and justify. As a result, only seasoned practitioners are able to use 
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existing routing systems. Most of these are useful engineering tools, but cannot 

provide a designer with advice or demonstrate how they obtained their results. 

1.2. Knowledge-Based Systems 

Computers have traditionally been used to solve problems that are formalized and 

analytical in structure. The requirement of explicit formalization of the problem into 

detailed, sequential statements has restricted the use of the computer to problems 

that have well understood, systematic solution procedures. The interest in expert 

system techniques was led by the desire to use the computer to aid in the 

solution of less structured, formalized problems. 

The term "knowledge-based systems" refers to systems which contain a substantial 

amount of knowledge and help solve unstructured classes of problems without 

necessarily achieving expert level performance. It is preferred over the term "expert 

systems" in this paper because it encompasses a wider class of applications. 

Additionally, the latter term seems to give some people the wrong connotation that 

these systems will also learn as well as human experts do. 

Domain independent problem solving strategies are commonly referred to as weak 

methods and may lead to combinatorial explosions while searching for solutions due 

to a potential lack of focus. Knowledge-based systems, on the other hand, can be 
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considered strong problem solvers, since they employ knowledge which is applicable 

to one specific field only (domain knowledge). 

Current knowledge-based systems normally combine two basic problem solving 

approaches: derivation and formation. Derivation involves selecting a solution that is 

most appropriate for the problem at hand from a list of predefined solutions. This 

is the more common approach, supported by many commercial "expert system 

shells". It is accomplished by traversing a tree, using rules to select the appropriate 

branches and reaching the final solution at the bottom of the tree. 

The formation approach involves forming a solution from eligible components stored 

in the system's knowledge base. It is more complex than the derivation approach, 

since it involves selecting solutions and combining them. The domain specific nature 

of this type of procedure makes most of the literature on the subject either very 

general or too specialized to be useful in other applications. 

1.3. Advantages and Limitations 

There are several reasons for the rapidly increasing popularity of knowledge-based 

systems: 

Knowledge-based systems help solve ill-structured problems for which systematic 
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solution procedures do not exist. 

They can make expertise and knowledge available on a twenty-four hour basis, 

whereas human experts are obviously less available. Furthermore, multiple replication 

can make this knowledge available over dispersed geographical areas. Rather than 

replacing experts, these systems usually allow them to allocate their time more 

efficiently. 

One of the greatest benefits brought by such systems is the organization of 

knowledge. It has been observed in the past that the rigours of extracting and 

adapting knowledge to a computer system has enforced a discipline on the 

organization and documentation of knowledge. 

By using these systems and the explanation facilities usually incorporated into them, 

technicians can gain new insights into the problem and, sometimes, emulate the 

performance of an expert. 

Furthermore, knowledge that is captured in a computer system can be retained 

indefinitely. Human knowledge is a perishable asset, whereby experts can be lured 

away by other companies or institutions, or subject to accident or illness. 

Of course these systems have many limitations that should be considered as well. 

A common misconception that people have about knowledge-based systems is that 
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they can somehow provide "magical" approaches to solving complex problems. 

Knowledge-based systems can be thought of as models of the expertise of the 

practitioners available in the field. In order to create such models, it is obvious 

that there must be genuine human experts capable of performing the tasks. 

Knowledge-based systems cannot be built quickly. Systems designed to solve 

moderately complex problems currently take five to ten person-years to develop. 

This time is being reduced, however, as more efficient techniques and development 

tools become available. 

The central postulate of knowledge engineering is that systems achieve expert 

performance from rich, diverse knowledge bases rather than from clever algorithms. 

Therefore, the knowledge and reasoning methods used by the human practitioners 

have to be accessible. This is the greatest difficulty associated with the 

implementation of knowledge-based systems, since, generally, the more skilled the 

experts become in their fields, the less able they are to explain how they perform 

and use their skill. Experts tend to rely on unstructured, qualitative knowledge that 

can be described as "intuition". Still, significant insights may be gained from 

interviews with practitioners and from the literature of normative and descriptive 

theories. 

Another difficulty associated with development of the knowledge base is the 

potential reluctance of skilled practitioners to divulge their "tricks of the trade", 

resulting from the perception that their preeminence in the field may be 
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jeopardized. 

The domains in which these systems perform have to be well defined. If they are 

too broad, the magnitude of the task will be too great and development will 

become very difficult. On the other hand, if the specified domain is too limited, 

the usefulness of the system will be compromised. 

1.4. Anatomy of a Typical Knowledge-Based System 

The typical architecture of knowledge-based and conventional computer systems are 

noticeably different, as depicted in Figure 1. While most conventional systems are 

composed of a set of programs and the data they use as input, knowledge-based 

systems can often be logically divided into three parts: the inference engine, the 

knowledge base and the database. These parts are described in the following 

sections. 

1.4.1. Inference Procedures 

The inference engine module is relatively domain-independent. It contains enough 

logic to interpret the information in the knowledge base. In addition, it will usually 

provide explanation facilities, apply uncertainty propagation mechanisms and manage 

the database. 
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Inference Engine Inference Engine 

i 

Knowledge Base Database 

Knowledge-based Systems 

Program Database 

Conventional Systems 

Figure 1. Different Architectures 

Inference procedures are usually described as forward or backward chaining 

inference. Backward chaining, or goal-driven inference, is appropriate when there is a 

reasonable number of possible final answers to the problem under study. Classical 

examples are identification systems, such as programs that identify diseases based on 

symptoms or the chemical structure of substances based on their properties. It has 

been suggested that experts follow a goal-driven path to the solution of a 

problem. Figure 2 depicts a backward chaining, or goal-driven inference process: 

based on initial data, hypotheses are formulated and tested until an acceptable 

answer is found. 
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Figure 2. A Backward-Chaining Inference Engine 
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Forward chaining, or data-driven inference, is practical when combinatorial explosion 

creates a seemingly infinite number of potentially correct answers, such as possible 

configurations of machines. Systems that use this mechanism are sometimes called 

production systems. The process involves drawing conclusions from the available 

data, adding these conclusions to the database, checking if the expanded database 

provides a solution to the problem and possibly repeating these steps several times. 

Figure 3 depicts a forward-chaining process. 

Many problems require a combination of these approaches (Mixed Initiative systems). 

Maher [25] demonstrated how a simple engineering problem can be solved using 

either method. Merrit [26] discussed how Prolog's native, backward chaining 

inference engine, can be used to effectively implement a data-driven inference 

system. 

1.4.2. Explanation Capabilities 

Knowledge-based systems are designed to solve complex and poorly structured 

problems that would otherwise have to be solved by a human practitioner rather 

than by conventional programs. Like human practitioners, these systems must pass 

through a relatively lengthy apprenticeship stage during which their knowledge bases 

are expanded and modified. Even after they have achieved expert levels of 

performance, they are capable, like all human experts, of making mistakes. 
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Figure 3. A Forward-Chaining Inference Engine 
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This is the basic reason why virtually all knowledge-based systems provide 

explanation facilities. By analyzing their reasoning, human experts and knowledge 

engineers can improve their performance. 

At first glance it would seem that conventional systems have a distinct advantage 

over expert systems in this regard. However, this advantage is illusory. Conventional 

programs for performing complex tasks, like those suitable for knowledge-based 

systems, would be subject to the same mistakes. In addition, their mistakes would 

be very difficult to remedy since the strategies, heuristics and basic assumptions 

upon which these programs are based will not be explicitly stated in the program 

code [37]. 

1.4.3. Knowledge Representation 

The knowledge base is usually the most time-consuming and critical module to 

develop. To be effective, it has to be able to represent a sufficient amount of 

problem-solving expertise pertinent to the domain of interest, in a consistent and 

relatively easy to expand manner. 

The knowledge base consists of knowledge representation structures and, unlike the 

conventional database, contains general domain information, i.e., it is not restricted 

to any particular problem. Development of knowledge representation structures is 

currently a popular field of Artificial Intelligence research. The effectiveness of a 
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given structure depends on how the information it contains will be used and on 

the nature of the knowledge it represents. Some types of commonly used structures 

are briefly described below. 

1.4.3.1. Predicate Calculus 

Predicate Calculus requires that facts and relationships be presented as IF-THEN 

structures. Rules of inference operate upon these to generate new true facts. This 

type of knowledge representation has a formal mathematical basis in Predicate 

Calculus Theory. 

The main feature of this type of knowledge representation is that built-in 

mechanisms associate rules as needed and can derive facts that are not explicitly 

stated in the database. For example, if rules state that construction costs associated 

with hilly terrain are moderate and that a certain area has hilly topography, the 

system can automatically infer that the construction costs for that area will be 

moderate. 

The high level language Prolog efficiently implements predicate logic. Since this is 

the type of knowledge representation structure used in HLA, a more detailed 

description will be provided in subsequent chapters. An example of a hypothetical 

Prolog rule for determining whether the use of noise attenuation barriers should be 

considered at a certain location (Point) is shown below: 
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consider_noise barriers(Point) :— 

technically feasible(noise barrier,Point), 

financially feasible(noise barrier.Point), 

high noise annoyance levels(Point). 

technically feasible(noise barrier,X) :— 

not accessibility problems(Point), 

visual disruption(noise barrier,X,VisDsrupt), 

noise attenuationfnoise barrier,X, Noise Attn), 

VisDsrupt < NoiseAttn. 

financially feasible(noise barrier,X) :— 

noise barrier_cost(X,BarrCost), 

totalproject_cost(ProjCost), 

BarrCost I ProjCost < xx%. 

high noise_annoyance levels(X) :— 

close to(hospital,X) 

; I* this means "or" */ 

population density (X, high), 

dBA_esti mates (X, high). 

1.4.3.2. Inference Networks or Semantic Nets 

The nets are graphs formed by nodes that represent concepts, events or objects 

and links that specify functional and relational properties of the nodes. This 

formalism has been shown to be flexible and powerful as well as intuitively 

attractive from a psychological point of view. 
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During consultation, hypotheses or data are inserted into some of the nodes. 

Control mechanisms can then be used to propagate the information along the links, 

deriving conclusions and possibly detecting data inconsistencies. 

Figure 4 represents a simple inference network that embodies the same knowledge 

described by the Prolog rule above. 

7.4.3.3. Frames 

Frames typically have a number of features that distinguish them from other 

representational systems: they are organized into hierarchies in which frames inherit 

information from their "ancestors", in an object-oriented type of environment. They 

have sub-units which can take on values or describe, in general terms, constraints 

on what these values can be. Frames are well supported by the high level 

language LISP. 

1.4.3.4. State-Space Representation 

This type of representation involves applying a set of operators to generate some 

or all the possible states following the current one. The resulting tree structure is 

then examined and an algorithm is applied to select the most desirable course of 

action. This scheme has been widely used by game-playing systems. 
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1.5. Application to the Highway Corridor Location Problem 

Corridor routing problems involve varying degrees of expertise in several different 

fields. The interdisciplinary approach currently used in major projects can be 

illustrated by the fact that the Kentucky Department of Transportation EAP 

(Environmental Action Planning) maintains an in-house staff with technical skills in 

about 40 disciplines [43]. 

There is no algorithm or formula which produces a highway corridor evaluation 

report automatically, based on the project data and characteristics of the region 

involved. There are, however, heuristic procedures that can aid the analyst in 

understanding the issues involved, and these can be supported by technical 

procedures. Pearse and Rosenbaum [66] describe a system under implementation that 

uses heuristics and default reasoning to evaluate the geological aspect of proposed 

road corridors. 

Knowledge-based systems applied to the highway corridor location problem could aid 

the tasks of assessing impacts of alternative routes and justifying the choices made 

in a consistent way. The ability to make decisions and to justify them by displaying 

the rules used is considered much better than the more common "black-box" 

procedures, for it adds credibility to the choices made and allows for critiques and 

feed-back. In fact, explanation facilities are usually one of the most important 
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features of knowledge-based systems. Since the problems being addressed are usually 

ill-structured by nature and involve non-systematic procedures, it becomes essential 

to provide the user with a justification for the results obtained ("how?" questions) 

and how any information that is requested can help solve the problem ("why?" 

questions). 

The spatial character of the corridor location problems constitutes one of the 

greatest difficulties related to this type of problem. Current knowledge-based 

techniques are time and storage intensive, and efficient processing of spatial data is 

one of the fields still in a research phase. For example, heuristic spatial search 

procedures have been developed. They save computational effort but provide no 

guarantee" the solution obtained is the best possible. Conventional shortest path 

algorithms, on the other hand, yield the best possible solutions but are extremely 

time consuming. 

The relative importance of different impact dimensions depend on the project's 

priorities and characteristics and on the concerns of the community. Trade-offs have 

to be established between pairs of possible dimension impacts, such as accessibility 

increases against noise and fumes pollution or construction costs against wildlife 

preservation. Utility theory describes procedures for evaluating these trade-offs [53]. 

HLA supports these coefficients but does not evaluate them. 

Sets of rules were also developed to assess impact magnitudes. Examples of this 

type of knowledge include determining the potential for erosion based on slopes 
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and land cover or changes in construction costs according to slopes, soil types and 

presence of water bodies. 

Finally, inexact reasoning mechanisms enable the user to use expected ranges of 

values or certainty coefficients as input data. The quality—in terms of precision—of 

the solutions obtained using the system reflects the precision of the information 

used in the analysis. This feature enables periodic solution refinements and is 

particularly important in engineering problems where the quantity of data tends to 

increase as time and money are spent during the execution of a project. 



2. L ITERATURE REVIEW 

Two quite distinct topics were investigated in the review of the literature: 

knowledge-based systems and highway corridor location. While extensive, the 

literature on knowledge-based systems tends to describe successful implementations 

or is limited to the very general principles involved in the approach. This situation 

is partly due to the fact that expert systems are domain-specific by nature and 

partly because the techniques involved are relatively new. Highway corridor location, 

on the other hand, is an old problem. Many different methodologies have been 

developed and the literature on the subject is relatively abundant. 

2.1. Knowledge-Based Systems 

According to Sterling [33,34], building knowledge-based systems is currently an 

engineering skill. Experience in the last decade has led to a collection of working 

programs and an accumulation of accepted wisdom. This is found, for example, in 

the existence of commercial "expert-system shells". However, there seems to be no 

accepted methodology, and the literature tends to describe what is rather than 

prescribe what should be. 

20 
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2.1.1. Categories of Knowledge-Based Systems 

Stefik et al. [32] divided expert tasks into several categories and pointed out the 

fundamental requirements and key problems associated with each one. 

One of the basic tasks described in that paper is planning, defined as "creating 

plans that can be carried out to achieve goals without consuming excessive 

resources or violating constraints". If goals conflict, the planner has to establish 

priorities. If planning requirements or decision data are not fully known or change 

with time, the planner must be flexible and opportunistic. The main difficulties 

associated with planning systems are related to the size and complexity normally 

associated with planning tasks. If the details are overwhelming, the planner must 

focus on the most important considerations. In complex problems, there often are 

interactions between plans for different sub-goals. Uncertainty is usually present in 

this type of analysis and preparation for contingencies is required. 

Another type of procedure described is design. This involves specifying objects that 

satisfy particular requirements. The requirements are similar to those of planning 

tasks. One of the most serious obstacles that have to be faced in this case is that 

there is usually no comprehensive theory that integrates constraints with design 

choices. In addition, the system must be able to cope with interactions between 

sub-problems, record justifications for design choices and be able to explain its 

decisions later. 
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Design tasks must also address the problem of representing spatial data. Waterman 

[37] stresses the previously mentioned fact that excessive amounts of memory may 

be necessary to track spatial relations between groups of objects. Clever 

representation techniques are required to overcome the deficiency in this area. 

2.1.2. Implementation Tools 

The current popularity of rule-based systems for the solution of many types of 

practical problems is reflected on the number of implementation tools available for 

a variety of hardware environments. Wigan [39] lists over a hundred commercial 

software packages available for small systems, mostly "expert system shells" and LISP 

or Prolog compilers/interpreters. The shells are high level tools and do not offer 

great flexibility. For ambitious projects the capabilities of a full-featured language are 

recommended. 

Many authors consider the Prolog language particularly well suited for expert system 

implementation [8,33,34]. The language contains its own backward-chaining inference 

mechanism and a powerful declarative language in which to express rule-based 

knowledge. It has the capability of dynamically asserting new rules generated by the 

system itself during a consultation. It is reasonably easy to write a Prolog 

meta-interpreter (that is, a Prolog interpreter written in Prolog itself) and then 

upgrade it to provide the features expected from the inference engine, such as 

explanation facilities and user query routines. Simple examples of such 
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meta-interpreters can be found in the literature [33,34). 

The development of the knowledge base, including the choice of the knowledge 

representation scheme, is clearly the most difficult and time-consuming part of the 

task of developing an expert system. The inference engine, or rule-interpreter, can 

be especially designed or an off-the-shelf tool can be used. Commercial shells, 

however, tend to limit the flexibility with which knowledge can be expressed. The 

conclusion is that the inference engine should be tailored to fit the knowledge 

base, and not the opposite. Building one's own interpreter is not a time-consuming 

process, especially in contrast with the knowledge acquisition phase. 

2.1.3. Inference and Explanation Capabilities 

The basic reason for providing explanation facilities is to make the reasoning of the 

program transparent. This is extremely useful because it allows for discussion and 

analysis of the solution process. By analyzing the explanations provided by the 

system, an expert can suggest improvements to the knowledge base and 

inexperienced technicians can follow the reasoning of a seasoned practitioner. 

Some types of explanations commonly mentioned in the literature are "how?", 

"why?" and "why not?", and the basic principle is always to keep a trace of the 

solution process and interpret it appropriately [33,34]. 
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While expert shells normally provide explanations automatically, a number of 

techniques can be used to accomplish this task from high level languages. 

Clark and McCabe [8] suggest adding an extra argument to each Prolog rule to 

keep the trace structure. Thus, adding an explanation facility to an existing system 

would mean changing every rule in the knowledge base. 

A better approach for providing explanations is based on the previously discussed 

meta-interpreter approach and described by Sterling and Shapiro [33,34]. A standard 

meta-interpreter is modified to "remember" how a solution was reached by keeping 

a trace of the program execution. Once the proof is available, it can be 

interpreted and displayed as needed. This mechanism is extremely elegant and 

preserves the modularity of the system. Furthermore, the authors describe how it 

can be adapted to provide hierarchical "why" explanations. 

2.1.4. Processing Uncertain Information 

Knowledge-based systems usually have to deal with uncertainty. This is partly due to 

the fact that they often employ heuristic rules, inexact by nature, in the problem 

solving process. Some of the most important sources of uncertainty are described 

by Bonissone and Tong [5]. Uncertainty may arise from a lack of understanding of 

the processes involved in an analysis or from their intrinsically uncertain physical 

behaviour. Examples of the former are ill-defined concepts and weak implications in 
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the knowledge base, which occur when the expert or model builder is unable to 

establish a strong correlation between premise and conclusion. Another potential 

source of uncertainty is related to inaccuracies during data input or output. 

Many researchers have worked in the field of uncertainty representation and 

propagation, and several approaches have been developed that allow systems to 

incorporate and handle uncertain information. The most familiar tools for dealing 

with uncertainty are the Bayesian operators (e.g. PROSPECTOR [17]), which use an 

effective likelihood ratio to quantify the strength of a given rule. This ratio 

measures the sufficiency of a given piece of evidence to prove a hypothesis. 

One of the criticisms advanced concerning this approach is that the single value 

used to quantify uncertainty tells the system nothing about its precision. As far as 

the Bayesian operators are concerned, to say that the probability associated with an 

event is 0.5 might mean either 0.500 plus or minus 0.001 or 0.5 plus or minus 

0.3, two very different pieces of information. 

Another criticism against the expression of uncertain subjectivity with the use of 

Bayesian probability is that it cannot be used to deal with uncertainty in an 

efficient manner. In other words, Bayesian theory cannot distinguish between the 

lack of belief and disbelief, because it requires that P(A occurring) + P(A not 

occurring) = 7. A single value would combine evidence for and against the 

proposition without indicating how much there is of each. 
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The Certainty Factor approach (used in MYCIN [17]) is based on the Confirmation 

theory. It employs two separate values that indicate the belief and disbelief in the 

proposition. This approach is still subject to the criticism regarding precision, since 

both numbers are point values. It does, nevertheless, overcome the second 

objection mentioned. The system, however, suffers from a new disability. Since the 

two values are independent, they cannot be interpreted as probabilities and 

therefore there is no foundation of theory underpinning and justifying the 

interpretation and weighing for separate belief and disbelief measures [29]. 

A serious drawback of the Bayesian and Certainty Factor approaches is that they 

would generally require the complete joint probability distribution of all propositions. 

According to Quinlan [29], "... asking the system designer to specify separate values 

for each possible combination of evidence relevant to a proposition would overtax 

his knowledge and presumably his patience...". Some systems sidestep this problem 

by making conditional independence assumptions. These provide additional constraints 

that simplify the uncertainty propagation mechanism. In practice, however, these 

assumptions might not always hold and can lead to wrong and even absurd results. 

Other types of logic have been proposed. Quinlan [29] described a system that 

does not assume variable independence, although it does account for it when 

specifically instructed. The conclusions obtained using this system, although generally 

less powerful than the ones given by the Bayesian operators, will always be correct 

(provided, of course, that the data and knowledge bases do not contain mistakes). 

An extra advantage of Quinlan's approach is that it allows for knowledge and data 
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consistency checks. 

Some authors claim that the ideal approach would be to combine different 

uncertainty representation mechanisms and logics to fit the knowledge available [39]. 

The mathematical approaches have also been extended to fuzzy statements. Although 

fuzzy reasoning is not a rigorous approach, it provides an approximate reasoning 

process which is compatible with human intuition. The main advantage of fuzzy 

reasoning as an inference process is that it can yield plausible answers even in 

problems in which the conditions required for the mathematical approaches are not 

satisfied. Application of fuzzy reasoning generally involves the definition of 

membership functions and aggregation rules based on joining or intersecting fuzzy 

subsets. Aggregation rules can be defined for credibility and possibility, and methods 

that assess linguistic truth values have also been developed [18]. 

Highway location tasks involve the use of estimates and forecasts. The information 

available is frequently expressed in terms of tolerance intervals and is usually 

unknown (especially in early stages of a project) rather than intrinsically uncertain. 

Fuzzy logic is currently the most satisfactory for dealing with this type of 

uncertainty and was, therefore, selected for HLA. 

Finally, it should be noted that, even though inference under uncertainty is currently 

one of the most popular topics among artificial intelligence researchers, consistent 

treatment of uncertainty has to date not been as important in practice as might 
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have been expected. The key problem in expert system applications is still the 

knowledge engineering rather than the finer details of the tool structure within 

which knowledge is articulated and delivered. 

2.2. Highway Location Procedures 

Many different approaches have been used to address the highway corridor location 

problem in the past. Most methods can be classified as pure judgement, economic 

analysis or rating schemes. 

The pure judgement approach relies exclusively on the experience and intuition of 

an expert. Some sort of decision framework is always adopted for support and 

documentation purposes, but the quality of the final decision will depend on the 

level of expertise of the decision makers. 

The economic analysis approach is widely used mainly because it provides a 

convenient, objective decision framework. However, it tends to underestimate the 

importance of attributes that cannot be measured in terms of currency. Cost-benefit 

studies represent the most typical example of this type of analysis. 

Rating schemes represent a generalized form of economic analysis. Instead of using 

unit costs, however, attributes are weighted in terms of relative importance, or 
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preference. Some professionals feel uncomfortable with this approach, because it 

attaches numbers to attributes that are impossible to be formally measured. Another 

complaint about the method is that it aggregates all attributes in one final index 

that accounts for all the factors involved in the analysis but hides many relevant 

aspects of the solution such as the relative importance of each factor. 

It has been advanced by researchers that short term memory can accommodate 

only seven pieces of information or concepts at once [59]. When more variables 

than this are present some are ignored by the decision makers or judgements 

become irrational. Decision support tools are necessary to overcome this human 

limitation. 

In practice, corridor routing problems are often dealt with in an incremental fashion. 

A few major attributes are considered at first and lead to a number of almost 

equally acceptable options. Secondary factors are then included in the analysis as 

tie-breakers. 

2.2.1. Collecting and Presenting the Data 

Several procedures for evaluating environmental impacts have been developed over 

the last fifteen years, reflecting the increasing concern of society with factors such 

as natural resources and aesthetic values. Leopold et al. [54] present one such 

approach, which consists of an impact matrix where the magnitude and relative 
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importance of different impact dimensions are recorded. The purpose of this 

procedure is to enable reviewers of the project to focus their efforts upon the 

most significant aspects of the problem. 

The procedure presented does not constitute a solution for the problem, but it can 

be used as a tool for assessing environmental impacts, which cover a significant 

number of impact dimensions. 

McHarg [55] presented a method that involved the use of transparent overlays for 

each parameter used in the analysis. Each overlay represents one dimension of 

impact and is marked in three different tones, the darkest corresponding to the 

most serious physical and/or engineering obstructions to highway location. By 

overlaying all the parameters on the base map, it is presumed that the lighter areas 

will represent the ideal sites for the corridor, which has to be "eyeballed". 

This method assumes all parameters have the same importance, which is not usually 

the case. In addition, the presented scale, from one to three, will in many cases 

be too restrictive. Nevertheless, it can be very useful for presentation purposes, as 

all the information available is condensed onto a single map. Clear conclusions, 

however, may or may not be easy to obtain and justify from this map. 

Furthermore, this method is rather time-consuming and expensive. 
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2.2.2. Multi-criteria Analyses 

Multiple criteria decision problems have been discussed, among many others, by 

Massam [57,58] and Nijkamp [61,62,63,64]. Their approach involves the use of 

scaling techniques to represent the several dimensions of impact associated with 

each plan on a two-dimensional plane. The methods presented are quite general, 

but the interpretation of the results is rather subjective and in many cases it can 

be necessary to include reference cases—best and worst possible ratings for all 

criteria—to make the final result meaningful. 

In these cases, these is no search for the best solution. The alternatives must be 

determined before applying the method and there is no guarantee that the best 

possible option is among the ones being considered. 

2.2.3. Automatic Route Selection Systems 

Several systems have been implemented that determine ideal locations for different 

types of corridors by dividing the study area into cells, assigning suitability indices 

to each cell and searching for the minimum negative (or maximum positive) impact 

path. 

A general computer aided corridor location system (POWER) has been developed by 
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Giles et al. [50]. The system was originally intended for power transmission line 

corridors and expanded later into a general corridor location system. 

One of the concepts discussed is the principle of equifinality: the greater the 

number of criteria that are taken into account, the more stable the final answer will 

be, since single errors become less significant and tend to cancel each other. 

POWER assigns suitability scores to each cell according to a rating scheme and 

uses dynamic programming techniques to search for the highest social benefit (or 

least social impact) corridor. 

Parameters can be added or removed from the analysis and, by changing 

coefficients in the objective function, one can estimate the stability of the solution 

given by the system. However, there is no way of directly assessing the precision 

of the solution. 

POWER requires many inputs from experts. In the case where a corridor infringes 

endangered species habitats, or when time effects are relevant for impact 

assessment, external expert input, usually based on some set of heuristic rules, is 

necessary. 

Dooley and Newkirk [45] also developed a corridor selection system that attempts 

to minimize environmental impacts. Their system incorporates a dedicated algorithm 

to assess composite impact values. Newkirk's cascade algorithm promotes multiple 
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lower level impact ratings to higher level impact ratings. It is argued that the 

algorithm yields better results than equal weight averages or threshold ratings; it is 

not intuitive, however, and does not provide much control over the process. Two 

parameters have to be arbitrarily set: the level below which ratings are not 

considered to be candidates for promotion, or "cascade level", and the number of 

identical ratings required for a single promotion to the next level, or "cascade 

base". The authors utilize a six-point integer scale for mapping purposes. 

Another system, similar to POWER but specifically dedicated to highway corridor 

location, was developed by Civco, Kennard and Lefor [42]. The system was 

successfully used in the United States and found routes that had less adverse 

environmental impacts than those proposed by the Connecticut State Department of 

Transportation. 

The system also uses a grid representation for the study area and includes a report 

module that summarizes numbers of cells impacted under different dimensions. Most 

of its characteristics are similar to those of POWER, including virtues and drawbacks. 

Being more domain-specific, however, it provides a slightly more comprehensive 

approach to the problem. It should be noted that the procedure described is not 

complete, as it accounts only for environmental impacts and disregards entirely social 

or economic factors. 

The search mechanism used by the models described above consider only 

orthogonal moves between cells. The routes generated tend to have a squared-off 
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look, leaving an undesirable first impression as unrealistic and infeasible. Furthermore, 

the orthogonal grid representation has associated geometric distortions which can 

result in the generation of poor routes [52]. 

The systems reviewed were designed to perform calculations. They are useful and 

effective as engineering tools and represent a volume of documented knowledge 

that should not be discarded. However, conventional programs cannot cope with 

uncertain information or justify the solutions they provide. Therefore, it can be 

concluded that, in some instances, it would be desirable to incorporate conventional 

procedures into knowledge-based systems. These, in turn, could address aspects in 

which existing systems are weak, such as handling uncertain and qualitative 

information, and providing explanation facilities. 



3. IMPLEMENTATION GOALS 

Several objectives served as guidelines during the implementation stage of the 

Highway Location Assistant system. In order to achieve many of these goals, it was 

necessary to trade off the desirable attributes of computational speed and. storage 

efficiency. In a prototype system, this does not represent a serious compromise. 

Major emphasis was naturally placed on those aspects of existing systems thought 

to be comparatively weak—flexibility and comprehensiveness. The following sections 

describe the basic goals of the project. 

3.1. Flexibility 

Flexibility is defined as the ease with which a system can be changed and 

expanded. It is a major requirement for expert systems, as the knowledge bases 

must be periodically analyzed, augmented and modified to improve performance and 

to incorporate, when available, new knowledge. Monolithic systems are fraught with 

interdependencies which can make them painfully difficult to modify. A modular 

design greatly enhances flexibility and makes the programs easier to document and 

maintain. Finally, since the interaction between different parts of the system is kept 

to a minimum, individual modules can be easily optimized or totally rewritten 

without interfering with each other. 

35 
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3.1.1. Support for Several Levels of Operation 

The system should have several levels of operation with respect to varying user 

knowledge and experience. A user familiar with the system and the principles of 

road corridor evaluation employed will need briefer explanations and less help on 

how to use the package. By contrast, a novice would have completely different 

requirements, perhaps trading off some power and efficiency for increased ease of 

use. Different levels of operation could avoid tedium or lack of comprehension, as 

the case may be. 

Another advantage would be the ability to use the system at various levels of road 

corridor assessment. During the initial planning stage, standard analyses should be 

enough to identify initial possible alignments. In later stages, these potential routes 

can be evaluated in detail, providing more accurate comparisons. 

3.1.2. Use of Uncertain Information 

In many engineering projects, as time and money are expended, the quantity and 

quality of the data available tend to increase. Furthermore, much of the information 

processed in planning tasks consists of forecasts and has high associated uncertainty. 

For these reasons, engineers often prefer to express their beliefs in terms of lower 

and upper bounds or possible ranges of values instead of using single point values. 
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The obvious conclusion is that it would be extremely useful to have systems 

capable of processing uncertain information. Many approaches exist for this purpose 

(e.g. Bayesian operators, certainty factors, fuzzy logic). A problem with many of 

these is that they assume the information is intrinsically uncertain but well 

documented. If that is indeed the case, relatively complete and detailed conclusions 

can be obtained from the data using formal statistical procedures. However, if the 

necessary information is unknown, the system should not depend on it as an input. 

In summary, an ideal system should be able to make the best possible use of the 

information available but not rely on data not easily obtained which may lead to 

detailed, but not necessarily correct, conclusions. 

3.1.3. Search and Evaluation Procedures 

The process of highway route location usually involves evaluating alignments 

proposed by different groups or agencies as well as independently searching for the 

best possible route. Consequently, it would be desirable to have both route 

evaluation and search capabilities as parts of the system. 

The search routines should be flexible enough to allow easy refinements of the 

solution and benefit from all the information the user can provide. For instance, it 

should be possible to define search areas, ruling out regions that are obviously 

unsuitable for a highway. The user should be able to begin the analysis with a 
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large search area and low search resolution and refine the solution incrementally. 

Non-orthogonal moves should be allowed to reduce geometric distortions associated 

with typical squared-off solutions. 

Finally, the objective function should be easy to modify in order to allow different 

criteria to be used in the search. 

3.1.4. Representation of Spatial Data 

The spatial character of the problem can present a serious burden in terms of 

storage requirements and computational speed. Conventional programs usually divide 

the study area into cells and use large matrices to store characteristics of each cell. 

This approach has several serious drawbacks. 

The data stored are highly redundant, since regional attributes (topography, geology 

and so on) tend to be repeated across many cells. 

As conventional matrices are rectangular, irregularly shaped study areas cause further 

inefficiencies in memory utilization. Although this problem could be alleviated 

through use of sparse matrix techniques, this would involve additional computational 

overhead. 

However, the most serious problem with this approach is its lack of flexibility. For 
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example, to refine preliminary solutions, it is necessary to re-tabulate all the data 

into a finer grid. 

Ideal data structures should combine time and storage efficiency, support areas of 

any shape and allow for easy data entry, corrections and refinements. 

3.2. Comprehensiveness 

In situations when the required data are not available, the system may have to use 

default values and make assumptions which will generally have higher associated 

uncertainty than user-provided information. In such instances, the user should be 

provided with explicit information about any assumptions. 

Selective explanation facilities are paramount. Exhaustive explanations which produce 

screenfuls of text are not very helpful if the user is actually interested in one 

specific aspect of the solution. Effective explanation facilities enable the user to 

control which parts of an explanation she wants displayed, browse through intuitive 

sections of the solution, concentrate on the less clear parts and skip others 

altogether. 
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3.3. Accessibility 

One of the factors which determine the usefulness of any system is its availability. 

This is especially true for expert systems, as one of their major advantages is the 

availability of their expertise and knowledge on a twenty-four hour basis, in 

dispersed geographical areas. This is one reason why it was decided that HLA 

should be implemented on a microcomputer. Commonly, most professionals have 

access to these machines and feel comfortable with the highly interactive 

environments they can provide. 

Still with the goal of keeping the system open, easy to understand and update, it 

was decided that the main implementation objectives should be code clarity and 

conciseness rather than computational efficiency. In practice, this implied using a 

relatively popular fifth generation language, interpreted Prolog, to write the whole 

system. However, it would be possible to significantly improve computational 

performance in future stages by recoding some of the key routines in a lower level 

language such as C or assembly. 



4. DESCRIPTION OF THE SYSTEM 

HLA was implemented on an IBM personal computer equipped with 640 kilobytes 

of RAM, two 10 megabyte hard disks and an 8087 math co-processor. The system, 

presently consisting of approximately 50 kilobytes (about 30 pages) of source code, 

will run on standard IBM PC or compatible microcomputers with a minimum 384 

kilobytes of RAM and a hard disk. 

The system is logically divided into modules. For illustration purposes, the modules 

and their current relative sizes are depicted in Figure 5. Note that most modules 

tend to be fairly static in terms of size, except for the knowledge base that would 

tend to grow significantly as the system becomes mature. It is estimated that the 

relative code size of the Knowledge Base module, presently 45%, will grow to 

about 95% as the system evolves into production stage. 

The Knowledge Base module contains all the evaluation predicates. These consist of 

facts and rules that describe how to assess impacts associated with a variety of 

entities such as subareas, road segments or complete highway alignments. It is the 

most domain-specific module. 

The predicates in the Inference Engine module control program execution and 

provide explanation facilities and most of the input and output. 

41 
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User Interlace 

Figure 5. The Highway Location Assistant Components and their Sizes 

The User Interface module acts as a program driver. It hides the lower-level 

predicates from the user and provides simple predicates that generate sequences of 

commands, making the system relatively user-friendly. It enables experienced users to 

define their own interfaces or bypass this module entirely, gaining access to the 

whole system. Input and output graphic capabilities can also be incorporated into 

the User Interface module. Figure 6 shows how the predicate segment displays the 

fuzzy impacts associated with a given route segment. 



DESCRIPTION OF THE SYSTEM 143 

i n Highway S e g m e n t Impac t A s s e s s m e n t • • • 

S e g m e n t : p (28 ,29) - p ( 2 9 , 3 0 ) 

Impact T y p e 0.1 0 .2 0.3 0.4 0.5 0 .6 0 .7 0 .8 0 .9 

p h y s i c a l 
a e s t h e t i c 
r e l o c a t i o n 
c o n s t r u c t i o n 
o p e r a t i o n a l 

« « « « « ) ) » » « » 
«c«««*»»»» 

c «#»» 
t c « a a a «««•»»»»»»»»» » 

_ J I I l — L . 

i i T o t a l [3 .85417314 ,0 .49288168 .0 .49288168) 

Figure 6. Sample Point Evaluation Graphical Output 

Finally, the Utilities module contains predicates related to geometry and fuzzy 

numbers as well as other general-use procedures. 

The modular design allows several levels of operation. Inexperienced users can use 

less flexible predicates through the user interface module, while users who are 

familiar with the system can call more primitive routines or even bypass the 

explanation facilities and inference engine module (and use Prolog's built-in inference 

mechanism). 

4.1. Implementation Tools 

HLA is a relatively complex system, having several highly specialized modules and 
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data structures. For this reason (in addition to the ones specified in previous 

sections) Prolog was selected to implement HLA rather than one of the less flexible 

expert system shells. 

The task of designing a Prolog program does not involve specifying an algorithm in 

the same way as in a conventional programming language. The Prolog approach is 

to describe known facts and relationships about a problem as opposed to 

prescribing the sequence of steps to be taken by the computer to solve the 

problem. To a large extent, the language itself then determines how the information 

available can be used to reach acceptable solutions. Thus, Prolog can be viewed as 

a descriptive language as well as a prescriptive one. 

Prolog is a practical and efficient implementation of many aspects of so-called 

"intelligent" program execution, such as non-determinism, parallelism and 

pattern-directed procedure call. A uniform data structure, called the term, is used to 

represent all data and program statements. The fact that program statements can be 

viewed as data is the cornerstone of HLA's inference engine, explanation and user 

query facilities. 

To understand HLA's operation and the code samples included in this chapter, it is 

necessary to be familiar with the basic Prolog syntax and with the mechanisms it 

employs to accomplish its tasks. The de facto standard Prolog features are described 

in detail by Clocksin and Mellish [9], and some of the key aspects are outlined 

below. 
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In Prolog, variable identifiers begin with uppercase characters or underscore ( ) and 

literal constants (atoms, in the Prolog jargon) with lowercase. Variables are free (or 

uninslantiated) when they have no value assigned, as opposed to instantiated ones 

which can be bound to constants, to other variables or to partially bound 

structures that contain other variables. Clauses can have a body (the IF portion) 

and a head (the THEN portion). The bodies can contain conjunctions (AND 

conditions), disjunctions (OR conditions) or nothing, in which case the clauses are 

called facts and assumed to be always true. In addition, since Prolog has a 

dual—prescriptive and descriptive—nature, some flow control structures are provided 

(e.g. cuts). 

Prolog performs tasks in response to questions posed by the user. A question 

provides a conjunction of goals to be satisfied. Facts can cause goals to be 

satisfied immediately, whereas rules have the effect of reducing the task to that of 

satisfying a conjunction of sub-goals. However, only clauses that match the goal 

under consideration can be used. The matching process (also called unification) 

corresponds to parameter passing in traditional languages. 

When a goal cannot be satisfied, a backtracking process takes place, whereby 

Prolog tries to re-satisfy previous goals by finding alternate ways of solving them. 

Additionally, the backtracking process can be explicitly requested to provide all the 

possible answers to a given question. 
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4.2. Capabilities 

HLA has predicates that support several types of analyses. All of them have 

common characteristics such as the ability to use fuzzy information, explanation 

facilities and default reasoning. The two evaluation predicates (evaluate point and 

evaluate segment) are strictly rule-based. They rely on clauses in the 

knowledge-base to emulate the steps an expert would take to assess the suitability 

of an area for a highway. The other predicates, while taking advantage of the fuzzy 

operators and of Prolog's dynamic data structures, implement essentially conventional 

procedures. Regardless of their nature, all predicates are totally integrated. 

The basic predicate evaluate point is the building block on which the more 

complex procedures rely. The call evaluate point(P,L,l) takes a point as input and 

returns a scaled list of impacts (with their types and magnitudes) and a global 

impact index that can be used to compare the suitability of different points. 

The next step involves evaluation of a segment of corridor, given a certain length 

and central point. It takes into account interactions with linear entities such as 

existing highways, cattle and wildlife crossings. 

Using the above predicates, a whole route can be analyzed given an open polygon 

and step size. Finally, optimal routes can be generated according to specified criteria 
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(minimum uncertainty, minimum expected impact, minimum possible impact etc.) 

given the starting and ending points, a search area and a step size. The hierarchical 

predicate structure is depicted in Figure 7. 

Experienced users can also call lower level predicates to estimate particular impacts 

such as construction costs or visual impacts associated with a particular route. 

4.3. Data Representation 

HLA's database is composed of two types of information: global and regional data. 

Data that apply to a whole project (e.g. expected traffic levels and traffic mix, 

number of lanes, project life etc.) are global. Regional data are used to describe 

portions of the study area. 

While global data can be easily represented by use of project constants, regional 

data has a spatial character and usually presents a serious burden in terms of 

storage requirements and computational speed. 

4.3.1. The Basic Data Structures 

An original data representation technique is employed by HLA to efficiently store 

and access regional data, taking advantage of one of Prolog's strengths—list 
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Figure 7. The Highway Location Assistant's Predicate Hierarchy 
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manipulation. The study area is divided in homogeneous zones, or subareas, which 

are defined as polygons. Each subarea is represented by a structure (of area type) 

that has two members. One is a list of vertices that define the polygon and the 

other (also a list) contains characteristics of the subarea such as topography, 

geology and land use. Several maps can be overlaid to describe all the significant 

aspects of a given study area. Linear spatial entities such as existing highways or 

cattle crossings are represented by similar structures where the first list contains an 

open polygon. An example of how the structures described above are used can be 

found in Chapter 5. Appendix 1 contains a sample data file that describes the 

regions depicted in Figures 16, 17 and 18. 

The method described is extremely economical in terms of memory requirements, 

making it possible to analyze extensive and highly detailed areas with a 

microcomputer. Furthermore, this approach makes data entry and editing much easier 

than with the conventional matrix-based method. 

4.3.2. Extracting Information from the Data Structures 

To analyze a certain point, information must be extracted from the data structures 

described above. This involves increased computational effort (in comparison with the 

traditional techniques) but enables most of the information to be kept in memory, 

minimizing relatively slow disk access. Overall, there is a significant gain in speed. 
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Primitive geometry-related predicates were defined to extract information from the 

structures described above. The simplest one (distance(P1,P2,Distance)) gives the 

distance between two points. It is used to analyze impacts relative to entities that 

can be represented by points, such as hospitals and schools. 

To determine interactions with linear entities such as existing highways or cattle 

crossings, another predicate was defined. The clause intercept(P1,P2,P3,P4) succeeds 

if the straight line segment from P1 to P2 intercepts the one from P3 to P4. 

One of the most interesting predicates in this group is the one used to retrieve 

information from the area structures: in area(Point,Area) succeeds if the polygon 

Area contains Point. 

A straightforward solution to this problem is presented by Sedgewick [69]. If a long 

line segment is drawn from Point in any direction (long enough so that its other 

endpoint is guaranteed to be outside the polygon) and the number of lines from 

the polygon it crosses is n, then the point must lie inside the area if n is odd, 

and outside otherwise. This can be easily seen by tracing what happens as the line 

segment is traversed from the outside point. After the first side of the polygon is 

hit, the segment is inside the polygon; after the second, it is outside and so on. 

The algorithm used by HLA is based on the same principle: 
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• Create a list of the relative position of the point with respect to 

each side of the polygon. All possible situations are illustrated in 

Figure 8. 
• The point lies inside the area if there is an odd number of sides 

to the left, right, above and below it (or, of course, if it lies on 

at least one of the segments). 

If the language being used supports lists, this algorithm is slightly more efficient 

than the one suggested by Sedgewick, because fewer operations are usually required 

to determine the relative positions of points with respect to line segments than to 

verify whether two line segments cross. For illustration purposes, Figure 9 depicts 

[] [above] U 

Figure 8. Position of a Point with Respect to a Line Segment 
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several points and their corresponding lists of relative positions with respect to the 

sides of a sample area. 

To demonstrate how this predicate is used in the system, the definition of the 

predicate region data is given below: 

region data(Point,Data) :— 

area(Area, Attributes), 

member(Data,Attributes), 

in area(Point,Area), !. 

Figure 9. Sample Use of the IN_AREA Predicate 
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When this predicate is called, Point should be instantiated, that is, it should contain 

a value. Data can also be instantiated, in which case the predicate will succeed if 

the data actually corresponds to the point given. Usually, however, Data will be 

partially instantiated and the predicate will succeed and return the desired value. 

For example, to satisfy the goal region data(p(2,2),topography(T)), where Data is 

partially instantiated to lopography(T) and T is variable, Prolog would: 

• Select the first area structure in the database. 

• If possible, unify topography(T) with a member of the attribute list 

of the area, automatically instantiating T. If this is not possible, the 

next area is selected. 

• Test whether the point p(2,2) lies inside the selected area. If it 

does not, try the next area structure. If there are none left, fail. 

This relatively simple predicate is declarative by nature. From a procedural viewpoint, 

however, it appears fairly complex. The definition relies on Prolog's unification 

mechanism and non-determinism. 

A subtle point should be made about the region data predicate. The test that is 

easier to perform, member... is applied before the more time-consuming in area. If 

the desired information is not in the attribute list, there is no need to check 

whether the point lies inside the area. This type of optimization, a practical 

application of the motto "look before you leap", is highly desirable since it 

improves efficiency without sacrificing code readability. 
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The definition of the region data predicate also enables the user to define 

superimposed areas. In this case, the first areas to be defined have the precedence 

and are subtracted from others subsequently declared. This feature is particularly 

useful to describe regions that have a fairly uniform background or areas which 

contain others. The technique is demonstrated in chapter 5, a sample run of the 

system. 

4.4. Evaluation Predicates 

The evaluation procedure employed by HLA is a form of a rating scheme. To 

address the concern that this type of method aggregates all attributes in one final 

index that hides many of the factors involved in the analysis, the evaluation 

routines also return a scaled list of the impacts being considered, their type and 

extent. This makes it possible to examine the significance of each type of impact 

in the aggregated index. 

The extent of each type of impact is evaluated independently through use of rules 

that can reflect conventional procedures, heuristic methods, or combinations of both. 

These values are then scaled to make them homogeneous and enable comparisons. 

The next section describes this process in detail. Since all values provided by the 

higher level predicates are scaled, they can be used for comparison purposes only. 

However, lower level predicates can be used to directly assess individual variables 



DESCRIPTION OF THE SYSTEM 155 

such as construction or operating costs. Several steps are involved in the evaluation 

of each corridor segment, as discussed in the following sections. Figure 7 illustrates 

HLA's conceptual framework for route evaluation and search. 

4.4.1. Evaluation of the Individual Impacts 

The system utilizes sets of rules for each type of impact assessment. The process 

can mimic the procedures employed by conventional systems and combine them 

with heuristic approaches to obtain impact estimates. Currently, HLA has a 

knowledge base which consists of about one hundred and fifty rules and facts for 

impact evaluation. This number is adequate for a prototype system. However, it is 

estimated that in order to achieve expert level of performance, the number of rules 

in the knowledge base would have to be expanded by a factor of ten to twenty 

times. 

The rules presently implemented allow for the assessment of several types of 

impacts under three major categories; environmental, social and economic impacts. 

Environmental impacts are logically divided into physical (noise, air and water quality 

impacts) and aesthetic attributes (visual impacts). All environmental impacts are 

assumed to be proportional to the population density of the subarea. 

Noise impact, in addition to the number of people affected, is assumed to be 
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proportional to the Leq (mean noise level over a twenty-four hour period, 

expressed in decibels) resulting from vehicle traffic. Air quality impacts are measured 

in terms of vehicle emission levels and characteristics of the land cover. Finally, 

distance to waterbodies, accident probability and the expected volume of trucks with 

hazardous loads are used to estimate possible water quality impacts. 

Social attributes are presently measured in terms of necessary relocation of 

residences only. This is assumed to be directly proportional to the population 

density in the area. 

Finally, the economic impacts considered comprise construction and operational costs. 

Land acquisition, earthwork and foundation costs are based upon region attributes 

such as topography, land use and geology, supplemented by the cost of special 

structures such as interchanges and cattle underpasses. Operational costs are 

composed of vehicle operation (which in turn depends on expected traffic mix and 

volume, grades and design speed), travel time monetary costs and accident costs. 

4.4.2. First Scaling Procedure 

To enable comparisons between the contributions of each particular type of impact 

to the total aggregated index, all the values obtained are scaled from 0.0 (best) to 

1.0 (worst). To accomplish the scaling, the system keeps track of the maximum and 

minimum possible values for each type of impact. For example, if the noise levels 
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range from 40 to 80 dB(A) and visual impacts are rated in a scale from 1 to 7, a 

value of 60 dB(A) and a visual impact index of 4 would both be rated as impacts 

with 0.5 magnitude. The underlying assumption is that impact scales are linear. This 

does not constitute a serious limitation, since it 'is relatively easy to transform 

non-linear scales (e.g., to "linearize" the noise level scale, decibels are defined in 

terms of the logarithm of the energy transmitted by the noise source). 

If the knowledge base is modified (as it is likely to be in any expert system) or a 

combination of factors that never happened before occurs, the limit values for each 

impact could occasionally have to be readjusted. To enhance modularity, reduce the 

potential for errors and ease the tasks of the knowledge engineer, HLA 

automatically fixes these limits whenever they are exceeded. It should be noted that 

when this mechanism is applied HLA effectively modifies itself to remember the new 

extreme values, so results obtained before and after the adjustments cannot be 

directly compared. Obviously, this might at times cause some inconvenience. These, 

however, are far outweighed by the aforementioned benefits that such a mechanism 

represents. 

4.4.3. Impact Aggregation 

•An aggregated impact estimate is also provided by HLA's evaluation predicates. This 

index summarizes the individual impacts, reflecting the fact that some types of 

impacts can be considered more important than others by the community. 
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To obtain this global index, simplified utility functions are used to evaluate the 

trade-offs among different attributes. Utility functions can have different forms, the 

simplest one being the Additivity Value function. This type of function can be 

shown to represent the underlying preference of a decision maker provided each 

pair of attributes is preferentially independent of their respective complements [53]. 

The form of the Additivity Value function is: 

v(xrx2,...,xn) = VJ.XJ + v2.x2 + ... + vn.xn 

where v is the utility associated with the vector {Xj,X2,...,xn}, 

Xj is the level of the attribute / and 
Vj are component value functions. 

The component value functions represent the decision maker's preferences: for each 

level of a certain attribute, they return a scaled utility value. 

To avoid the difficulties of assessing meaningful component value functions and to 

remain consistent with the current practice (when this type of approach is adopted), 

the general procedure was simplified by assuming all the component value functions 

to be constant values. These values can then be interpreted as relative weights of 

each attribute which should reflect the preferences of the communities involved. 

HLA has built-in defaults for the attribute weights which can be used in preliminary 

phases of a project. However, it should be noted that these values represent 

strictly individual values and preferences. To establish these values, a system would 
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have to have not only technical expertise but also the capability to make decisions 

in social and political fields. 

4.5. Inference and Explanation Facilities 

The typical decomposition of expert systems into knowledge base, inference engine 

and database can become blurred for systems written in Prolog, the reason being 

that the language itself provides much of an inference engine. However, Prolog 

does not directly provide features expected of expert systems that are usually 

embedded in the inference engine. Examples are generation of explanations and user 

query facilities. 

To provide these features, an enhanced Prolog meta-interpreter was added to HLA. 

A meta-interpreter, as explained in section 2.1.3 (Inference and Explanation 

Capabilities), interprets programs written in its own language. Simple examples of 

such programs are described by Sterling and Shapiro [33,34]. The sections below 

present a step-by-step description of HLA's meta-interpreter: 

4.5.1. A Trivial Meta-interpreter 

An extremely simple Prolog meta-interpreter can be written as: 
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solve(true). 

solve((Goall,Rest)) :— solve(Goal1),solve(Rest). 

solve(Goal) :— clause(Goal,Body),solve(Body). 

The first clause is trivial. What it actually says is "if the goal is true, then solve 

has succeeded". Facts from the database will satisfy this clause. 

The second clause simply breaks up a compound goal (a conjunction) into two 

parts: the first goal and the others. Note that this is accomplished directly, in the 

head of the clause. The next step is to solve each part, which is done via 

recursive calls to the solve predicate itself. This clause will only be used when the 

argument is a conjunction. 

Finally, if a non-compound goal is not a fact, it may be the head of a clause in 

the program. The standard predicate clause is used to retrieve the body of the 

clause (it could be a fact, a conjunction or the head of another clause) and solve 

is called once more. 

When any of the clauses succeeds, Prolog places a marker on that point of the 

execution. Subsequent failures will then cause it to backtrack and try a different 

solution from that point on, effectively covering the whole solution tree. This 

mechanism not only ensures that the final answer will be obtained (if there is one), 

but also generates all the possible alternate solutions to a given query. 
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This example serves only for illustration purposes, since it does not incorporate any 

enhancements to the original language (in fact, it does not even support the full 

standard Prolog syntax. HLA's corresponding code consists of eight clauses). It does, 

however, provide the basic means to monitor the built-in inference engine and to 

modify it. 

4.5.2. Adding User Query Capabilities 

User query capabilities can easily be added to the basic meta-interpreter by adding 

the extra clause: 

solve(Goal) :— 

askable(Goal), 

ask(Goal, Ans wer), 

respond(Goal, Answer). 

The first sub-goal assumes that a procedure askable is defined, which specifies 

when goals that the interpreter fails to prove by itself can be delegated to the 

user. For example, askable(adt(X)) indicates that the system can ask the user what 

the average daily traffic will be in case this value cannot be found in the database. 

The second sub-goal will actually query the user and read the response (into the 

variable Answer). 
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Finally, respond will assert the answer into the database to avoid asking redundant 

questions in case the value is needed again. 

4.5.3. Adding "WHY?" Explanations 

The next logical improvement allows the interaction to go the other way: when 

asked a question, the user can answer with another question. 

Answers to "why?" questions can be useful when the systems asks for values 

whose use is not obvious to the user. To provide this facility, an extra argument 

is added to the solve predicate described above. The extra predicate contains a list 

of the rule being used and its ancestors. They must be explicitly represented by an 

extra argument since there is no access to the global state of the computation in 

Prolog programs. The new solve predicate is listed below: 

solve(true,true). 

solve((Goall,Rest),Rules) :-

solve (Goall, Rules), solve (Rest, Rules). 

solve(Goal,Rules) :— 

clause(Goal,Body), 

solve(Body,[rule(Goal,Body)/Rules]). 

solve(Goal,Rules) :— 

askable (Goal), 

ask(Goal, Answer), 

respond( Goal,Answer, Rules). 
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With a list of the rules being used, "why?" questions can be immediately 

implemented by adding the following clauses to the respond predicate: 

respond(why,Coal,[Rulel/Rest]) :— 

display rule(Rule), 

ask(Goal, Ans wer), 

respond(Answer, Coal, Rest). 

respond(why,Goal,[]) :— 

print(" No further explanation possible "), 

ask(Goal, Answer), 

respond(Answer,Goal,[]). 

When a "why?" query is entered, the first clause displays the current rule and 

discards it by recursively calling respond with the Rest of the rules as the third 

argument. If another "why?" query is entered, the parent rule will be displayed, 

then the grandparent and so on until the list is empty. The second predicate then 

simply displays the message "No further explanation possible". 

Of course, extra respond clauses are necessary to accept actual values provided by 

the user. Additionally, HLA accepts unknown as an answer. The corresponding 

clause is 
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respond(unknown,Goal, ) :— 

default(Coal), 

assert(Coal), 

print(" In this case I'll assume ",Goal). 

This clause assumes there is a default value for Goal in the database (typically with 

high associated uncertainty). The default value is asserted into the database as a 

fact and the user is informed of the assumption. Examples of system-user interaction 

during an HLA run can be found in Chapter 5. 

4.5.4. Adding " H O W ? " Explanations 

The principle behind "how?" explanations is identical to that used to answer "why?" 

queries: a trace of the execution is kept and displayed upon request. However, 

while "why?" queries involved a single, local chain of reasoning, answers to "how?" 

queries require that the complete solution be kept and displayed. Figure 10 shows 

the difference graphically. Each Prolog rule can have any number of children rules, 

but one and only one parent. 

HLA implements a prove predicate that is similar to solve but stores a tree 

structure to represent the whole proof instead of a list of ancestor rules. The 

prove predicate is complemented by interpret, which displays the proof in readable 

form. 
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Figure 10. A Coal Tree with WHY and HOW traces 
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Appendix 3 shows part of a "how" explanation. The user can select portions of 

the explanation of interest. This avoids exhaustive explanations that can take 

considerable amounts of time and become rather confusing. This feature is 

implemented by the following clause: 

interpret(implies(Proof,Goal,Body)) : — 

print(Goal), 

want to go on, 

display rule(rule(goal,Body)), 

interpret(Proof). 

After the goal is displayed, want to go on asks if the user is interested in the 

proof for that sub-goal. If the answer is yes, the rule is displayed and interpret is 

called to go on with the explanation. Otherwise, the whole clause fails, the 

children branches of the proof tree are skipped and the next clause of the 

interpret predicate carries on with the explanation of the next sibling branch. 

4 .5.5. Improvements to the Basic Mechanism 

The explanations given by the procedures described mirror exactly the Prolog 

computation, which may not be what is desired in certain cases. Using 

meta-interpreters allows greater flexibility, for explanations can be given which differ 

from the logic of the program itself yet provide the justification for which the rule 
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was derived. 

This type of situation arises when explaining fuzzy operators, where rather than 

showing the sequence of operations (which are of little use to most users) a 

reference is displayed to the paper that describes the extension principle and 

derives the operators. Additionally, it may not be desirable to keep the whole 

proof tree when the geometry related predicates are used. Concepts such as points 

contained in areas or intersecting lines are obvious to users but involve the use of 

many rules, which could compromise the system's performance without bringing any 

real benefit. 

The clauses that implement explanations not directly based on a trace of the 

execution are: 

prove(Goal,implies(Proof, Goal,explain)) :— 

explain(Goal,_), 

call(Goal). 

interpret(implies(true,Goal,explain)) : — 

print( Goal), 

want to go on, 

explain(Goal,Explanation), 

print(Goal," = = > "Explanation). 

The first clause checks whether there is an explanation available in the knowledge 

base. If successful, it stores the token explain in the proof tree and uses the 



DESCRIPTION OF THE SYSTEM 168 

standard call predicate to solve the goal without keeping track of the partial 

solution. Note that it does not store the explanation in the proof tree. 

The second clause detects the token in the tree, retrieves Explanation from the 

knowledge base and displays it to the user. 

This feature not only enhances the clarity of the explanations but also improves 

efficiency in two ways. Space is saved by keeping only a token in the tree rather 

than the rest of the actual solution and speed gains are achieved when call passes 

control of the execution to Prolog's native inference engine. 

Another weakness of the simple meta-interpreter described above is the inability to 

handle the Prolog's standard procedure findall. This is a handy predicate that allows 

multiple solutions of a problem to be collected in a list. Unfortunately, its 

mechanism differs slightly from other standard predicates and the interpreters 

described so far cannot trace its execution (nor can Prolog's built-in trace facility). 

Since HLA uses findall to form lists of impacts, an extra clause had to be 

developed to make its execution transparent: 

interpret(implies(system,findall(_,Goal, )) :— 

prove(Goal, Proof), 

interpret(Proof), 

fail; I* Note that ";" means "OR" */ 

true. 



DESCRIPTION OF THE SYSTEM 169 

The head of the clause ensures that it is used only when the token findall is 

encountered in the proof tree. The first two sub-goals prove the goal once and 

interpret the proof. The fail predicate never succeeds and is used to force Prolog 

to backtrack and try to solve the goal as many times as possible. When all the 

solutions have been found, the first part of the disjunction will always fail and the 

second succeed. 

The clauses interpret and prove call each other and themselves. It is interesting to 

note that this example of mutual and self recursiveness is relatively easy to 

understand from a declarative viewpoint. If viewed procedurally, however, it is 

extremely difficult to follow the actual program flow involved except for the 

simplest examples. 

In addition to the features described in this section, HLA's inference engine 

incorporates several other enhancements to the meta-interpreters found in the 

literature. These include the ability to handle disjunctions and program flow control 

structures (cuts and snips) and a predicate that displays rules with compound 

bodies in a clear way, using indented blocks. 

4.6. Search Procedure 

HLA can be used not only to evaluate suggested routes but also to locate optimal 
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alignments according to an objective function specified by the user. The 

mathematical procedure employed is based on Dijkstra's shortest path algorithm 

[44,50]. Some of the common criticisms advanced against this type of procedure are 

also addressed, particularly the squared-off look of the routes generated and the 

geometric distortions associated with this type of approach. The enhancements to 

the basic procedure are described below, in section 4.6.2. 

4.6.1. Classical Aspects of the HLA Implementation 

To apply the modified Dijkstra algorithm, a virtual grid is superimposed onto the 

study area. The links are actually road segments, dynamically generated by the 

procedure. To locate the path that minimizes an objective function Z, the following 

sequence of steps is applied: 

• Create a dummy link with associated impact 0.0 that connects the 

destination point to itself. 

• Expand the graph by adding links that originate from nodes that 

are part of the graph and end in nodes that are not (but lie 

within the search area). These links are called "candidates". 

• Select the candidates with least cumulative Z value and add them 

to the graph. 

• If the origin is already part of the graph, stop, otherwise repeat 

from step 2 (expand the graph further). 

When this phase is completed, the graph will have a tree configuration with at 
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least one branch linking the origin and the destination. Figure 11 shows how the 

graph is generated. 

To determine the branch that represents the optimal path, the tree is traversed 

from the origin to the destination. The second phase of the procedure is much 

simpler than the first; it is accomplished by the following Prolog predicate: 

Figure 11. Graph Generated During a Route Search 
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go(P,P). 

go(P1,P2) :-

link(NextrP1,_), 

go(Next,P2). 

The first clause simply states that to go from a point P to itself, no steps have to 

be taken. When it is applied, the search is over. 

The second clause can be read as "to go from a point P1 to a point P2, find a 

link that goes from P1 to a third point and then go from that point to P2". 

This predicate shows how Prolog is well suited to solve graph related problems. 

Note that the links are used in reverse order, since the tree is created from the 

destination to the origin and traversed in the opposite direction. 

4.6.2. Enhancements to the Search Routine 

Even though the shortest path procedure constitutes an appealing approach, several 

weaknesses exist. For example, the fact that the study area is "discretized" by 

superimposing the grid creates geometric distortions that may cause sub-optimal 

routes to be selected. 

The first type of geometric distortion is orientation distortion, whereby the 
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appearance of the final route depends on how the grid is oriented (Figure 12). 

Another type is elongation distortion. If only orthogonal moves are allowed, then 

the shortest possible diagonal route takes two moves and is approximately 41% 

longer than the actual optimum, a straight line (Figure 12). It should be noted that 

using a smaller grid will not necessarily reduce this type of distortion. Finally, 

proximity distortion can cause a path that has highly unsuitable neighbouring cells 

to be selected over one that has marginally higher impact but is more desirable for 

being located in a generally low-impact area (Figure 13). 

Moreover, it is entirely possible that there exists one or more paths that are quite 

Figure 12. Orientation and Elongation Distortion 
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Figure 13. Proximity Distortion 

different spatially and yet very close to the optimum in terms of estimated impact 

values. One remedy to this problem lies in explicitly searching for near-optimal 

alternate corridors. HLA's search procedure incorporates some features that address 

these problems. 

One of the search parameters is the step size, or grid spacing. By selecting several 

routes with varying grids, it is possible to identify geometric distortions. Also, the 

predicate that creates new candidates is extremely flexible, allowing for 

non-orthogonal links that yield less distorted routes (unfortunately, this type of 

search involves a significant increase in computational effort). 
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Since the search procedure is modular, it is easy to utilize different objective 

functions. This not only enables the user to locate routes according to different 

criteria but can also indicate the stability of a particular solution. Since HLA 

measures fuzzy values, obvious candidates for minimization are the highest and 

lowest possible impacts, expected impact and the uncertainty associated with the 

answer. 

Finally, the routine that generates the links checks whether they lie within a 

specified search area. By specifying different pairs of search area/grid spacing 

parameters, it is possible to repeatedly refine the solutions with relative efficiency. 

This capability also allows the user to focus the analysis on troublesome areas, to 

specifically exclude regions that are known beforehand to be undesirable, or force 

the generation of alternate routes for comparison purposes. 

The Prolog source code for the predicates related to optimal path search is 

included in Appendix 1, Partial Program Listing. 

4.7. Processing Uncertain Information 

Fuzzy numbers are used in HLA to represent uncertain information. The approach 

differs completely from the probabilistic approach. Strictly speaking, fuzzy models do 

not take into account the number of ways in which an event can occur, only the 
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fact that the occurrence may happen. 

4.7.1. Definitions 

A fuzzy number n is defined in terms of its membership function M(X) , which 

expresses the truth value of the assertion "the value of n is x". A typical 

membership function is depicted in Figure 14. Membership functions have the 

following characteristics (using the notation from Figure 14): 

M-M u.1 | i2 

Figure 14. Typical Membership Functions 
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• A continuous mapping from R to the interval [0,1]. 

• ju(x) = 0 for any value of x from minus infinity to c. 

• Strictly increasing on [c,a]. 

• w(x) = 1 for any value of x in [a,b]. 

• Strictly decreasing on [b,d]. 

• /jt(x) = 0 for any value of x from d to plus infinity. 

Two fuzzy numbers are equal if and only if they have the same membership 

function. Furthermore, a measure of the uncertainty associated with a fuzzy number 

n is given by the area under the membership function. If the area is zero, then n 

is a real number. Generalizing, and still using the notation from Figure 14: 

• If a=b = c = d, then n becomes an ordinary real number. 

• If a=c and b = d, then n represents a tolerance interval [a,b] of 

the measurement of a quantity. 

• If a=b, then n is a representation of a fuzzy number, the value 

of which is "approximately a". 

4.7.2. Fuzzy Number Operators 

To use the concept, it is necessary to extend algebraic operations to fuzzy 

numbers. This can be achieved through application of Zadeh's extension principle 

(1973). Although the extension principle is well defined, actual implementation and 

processing of extended operations are not trivial except for relatively simple cases. 
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The computational aspect of fuzzy information processing has been addressed in the 

literature [2,11,27,40]. Dubois and Prade [11] introduced efficient and exact operators 

for the simple algebraic combination of fuzzy numbers with infinite supports. 

The four basic operators for strictly positive fuzzy numbers are (as implemented in 

HLA): 

[ + ] (n,7,6) = (m + n,a + <y,0 + 6) 

[-] (n,7,6) = (m-n,a+7,|3 + S) 

M (n,7,6) (m.n,m.7 + n.a,m.6 + n.a) 

[/] (n,7,S) ~ (m/n,(m.6 + n.a)/n2,(m.5 + n.0)/n2) 

Where fuzzy numbers are represented by three-tuples (m, a,0) as depicted in 

Figure 14 and the square brackets represent fuzzy operations. 

Many other operations can be immediately derived from these. The power function 

of a fuzzy number, for example, is given by: 

(m,a,0) [Power] p (mP,p.m.a,p.m.0). 

(m,a,0) 

(m,a,0) 

(m,a,0) 

(m,a,0) 

It should be noted that uncertainty levels increase very fast when many operations 

have to be performed on numbers with high associated uncertainty, especially when 

the [x] or [/] operators are used. For this reason, redundant use of these operators 

should be avoided, since it can cause losses of precision that would not occur if 
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the numbers involved were real. In practice, this means that multiplying and dividing 

a number by a non-zero constant will leave the result unchanged only if the 

constant is a real number. If the constant involved is a fuzzy number, the result 

will have higher associated uncertainty. The following example illustrates this: 

If X and Y are real numbers and Y * 0, 

then X . Y I Y = X 

However, if X and Y are fuzzy numbers 

X = (10,0.5,0.2) and Y = (3,0.2,0.4), 

then X . Y I Y - (10,2.5,3.17) * X 

4.7.3. Implementation Details 

The fuzzy operators listed above were implemented in HLA. Frequently used 

combinations of those were also defined to enhance efficiency and code clarity. 

These include fuzzy present worth of a series of payments and fuzzy number 

scaling. 

HLA accepts three type of numeric input: ordinary real numbers, tolerance intervals 

and fuzzy numbers of the (m,a,/3) type. Internally, all numbers are converted to the 

general three-element list format. This is accomplished by the fuzzify predicate, 

composed of three clauses. Figure 15 shows how the predicate works. 



DESCRIPTION OF THE SYSTEM 180 

m IF 

u 

z 

a h s 
(1 

a u s 
(1 
if 

m a B 

m 0 0 m 0 0 

a+b 
2 

b-a b-a a+b 
2 2 2 

m a B m a B 

Figure T5. 77ie FUZZIFY predicate 

To significantly improve execution speed, all the predicates that operate on fuzzy 

numbers were compiled. This has the side effect of making their clauses invisible to 

the rest of the system, and, consequently, unavailable to the explanation predicates. 

This is not a serious drawback, since explicit information (such as a summary of 

the article where the operators are derived) is much more helpful in this particular 

case than a display of the rules employed. 

The Prolog source code for all the predicates related to fuzzy number operators is 

listed in Appendix 1, Partial Program Listing. 



5. S A M P L E R U N 

The aim of this chapter is to provide an example of how HLA can aid in the 

solution of highway corridor location problems. All the capabilities of the system 

cannot be demonstrated in one example, but the most significant features are 

demonstrated in this chapter. The interaction between HLA's modules is also 

illustrated. 

The present example is based on an actual route location/evaluation report, the 

contents of which are proprietary. It involves the evaluation of three alternate routes 

between two towns located in a study area of approximately 1600 square 

kilometres. In the example, the proposed routes were analyzed and compared using 

HLA and a subset of the data in the original report. An optimal route was also 

generated and compared with the proposed alternatives. 

The original report involved six different teams of consultants. The evaluation 

approach adopted involved the use of subjective ratings in a three-point scale 

(good, moderate, poor) for a variety of impact dimensions (24, to be exact). The 

final conclusions were subjectively drawn from these disaggregated ratings. 

Figure 19 shows the original study area and the three proposed routes. The towns 

are indicated as points A and C, and an intermediate point B, through which all 

routes must pass, is also marked. 

81 
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5.1. Tabulating the Data 

The first step in the analysis consists of coding the data in HLA format. Maps of 

the study area are utilized to build a digital model of the region. Relatively 

homogeneous subareas are defined and grouped into sub-maps. Any number of 

sub-maps may be generated, each one conveying different types of information. In 

the present example three sub-maps were defined to represent regional geology, 

land use and population density, and topography and existing highways. These are 

depicted in Figures 16, 17 and 18, respectively. The corresponding Prolog clauses 

which define these areas are listed in Appendix 1. The population densities were 

specified as fuzzy values, either to account for expected fluctuations or to reflect 

uncertainty in the data. 

It should be noted that, although conceptually simple, coding of the regional data 

is a very error-prone process. A digitizing tablet would be ideal for entering this 

type of information and some type of graphical output is indispensable for checking 

the consistency of the data. 

5.2. Evaluating the Proposed Routes 

Evaluation of proposed routes is accomplished in a straightforward manner. Once all 
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Figure 16. Geology Model 
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Figure 17. Land Use and Population Density Model 
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Figure 18. Topography and Existing Highways Model 
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the project information has been entered, all that is required is one call to the 

predicate solve(analyze route(Step Size,Route)) The variable Route should contain an 

open polygon (defined as a list of points) representing the proposed alignment. 

Figure 19 shows the four routes (AB, BC1, BC2 and BC3) evaluated in this 

example. During the analysis, each line segment is broken into smaller ones with 

lengths of approximately Step_Size, and these segments are evaluated one by one. 

The output provided consists of a list of disaggregated impacts for each line 

segment and a global aggregated impact value for the whole route. The lists of 

disaggregated impacts can be used to build impact profiles for each route. 

Figures 20 and 21 represent the impact profiles for routes AB and BC1. This type 

of diagram clearly shows the relative significance of each type of impact and critical 

points (in terms of impact) along the route. 

The global impact values obtained for each alignment can be found in Figure 19. It 

is possible to conclude, based on these numbers, that the best route between 

points A and C is AB-BC3. Since the values provided are fuzzy, it is also possible 

to assess the uncertainty associated with the answers. Among the routes analyzed, 

the one with lowest associated uncertainty is AB-BC2. It is important to note that 

these results coincide with the ones in the original report, which also concluded 

AB-BC3 was the best suggested alignment. 

A call of the form analyze route(Step Size,Route) would yield the same results as 

solvefanalyze route(Step Size,Route)) with increased efficiency, but HLA's inference 
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AB 57.07 7.11 7.89 

BC1 96.35 11.84 13.39 

BC2 83.37 11.69 12.90 

BC3 82.66 11.88 12.98 

Figure 19. Proposed Routes 
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Figure 20. Impact Profiles for Proposed Route AB 
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Figure 21. Impact Profiles for Proposed Route BC1 
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engine would be bypassed. The advantage of using the solve predicate is that it 

can prompt the user for eventual missing values and provide "why?" explanations. A 

typical interaction between HLA and the user is depicted in Appendix 2. For clarity, 

the user responses are reproduced in bold-faced characters. 

The explanation facilities can be used to examine how impact coefficients were 

assessed. This capability makes the underlying assumptions and methods employed 

explicit, enabling experienced users to check their applicability and correctness. It 

can also be used to document the route selection process or as a training tool 

for novices. Figure 20 shows that point p(28.21,29.07) has high associated impact in 

comparison with neighbouring points. The how predicate can be used to investigate 

this situation, as shown in Appendix 3. 

5.3. Searching for an Optimal Route 

The Search module employs the evaluation predicates described above and a 

shortest path algorithm to locate optimal alignments. To determine a route with 

minimum aggregated impact, a call of the form search path(Step Size,Origin,Dest) 

is used. Two optimal routes were determined between points A and B, with step 

sizes of 3 and 4 kilometres. The route obtained with shorter step size is closer to 

the real optimum. The 3 km step size route has an associated impact almost 16% 

lower than the one obtained with a 4 km step size or the proposed alignment. An 
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optimal route was also obtained between points B and C, with a 4 km step size. 

Even with this relatively large step size, the impact for the route located by HLA is 

more than 7% lower than the one associated with the best proposed route 

between points B and C (BC3). The optimal routes with corresponding step sizes 

and impact estimates are depicted in Figure 22. 

5.4. Conclusions 

The results obtained using HLA should not be directly compared to the ones in 

the original report, since distinct evaluation approaches were employed and the data 

used by HLA represents only a subset of the information in the report. 

Nevertheless, it was extremely gratifying to notice how the results obtained using 

HLA were acceptable and comparable to the ones found in an actual route 

evaluation report, especially since the system is currently in a prototype stage. 

All the information available was coded into an HLA format Project Description File 

(PDF) with remarkable ease, including physical maps and uncertain data. The flexible, 

interactive environment provided by HLA then enabled large amounts of useful 

information to be extracted from the raw data file quickly and easily. This not only 

supplied answers to specific questions (such as "how do these routes compare" or 

"what is the minimal impact alignment") but also, in a relatively short time, 

provided the analyst with a good insight of the problem. 
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Figure 22. Optimal Routes for Various Step Sizes 



6. FURTHER RESEARCH REQUIREMENTS 

Due to the time constraints associated with this project, a balance had to be 

established between the number of features provided by HLA and the final size of 

its knowledge base. Even though the refinement of existing rules and addition of 

new ones could turn HLA into a full-fledged production system (and this is the 

most obvious expansion path for additional research), the framework it provides is 

far from exhaustive. Totally new capabilities could be incorporated into the system 

to enhance its usefulness. 

It would be desirable to add rules to suggest and evaluate the effectiveness of 

mitigation measures along proposed routes. Mitigation measures are employed to 

minimize certain types of impacts highways can cause. Examples include nd'se 

barriers and the construction of artificial lakes to hide visually unpleasant borrow 

pits. 

The fuzzy logic approach could be logically extended to the spatial data 

representation structures, allowing for areas with fuzzy borders to be specified. This 

feature would reflect the fact that, in reality, some sub-region boundaries are not 

well defined. The extent to which this capability would affect the answers provided 

by the system, however, is not evident at the moment. 

Several optimization techniques could be used to increase HLA's execution speed 
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without reducing its flexibility. The simplest one would be to use more efficient 

implementation tools, software and hardware, as they become available. To illustrate 

the potential of this approach, it should be mentioned that certain modules 

(particularly the geometry related predicates) of HLA were developed in a 

non-standard implementation of Prolog that sacrifices some of the language's features 

to achieve execution speeds in the order of twenty times faster than standard 

interpreters. Another option would be to implement some predicates, particularly the 

procedural ones, in more efficient, conventional languages. 

Because Prolog provides extensive flexibility and modularity, documentation assumes 

an even more important role than in traditional environments. Self-documenting 

capabilities would be of great assistance during the development of systems that 

take advantage of these characteristics. For example, a relatively simple system to list 

the knowledge base graphically, in the form of inference networks (such as the one 

depicted in Figure 4), would be extremely useful for documentation purposes. Such 

a system could also be used by the explanation facilities to provide the user with 

information in a more comprehensive fashion. 

The bottleneck in the development of expert systems has been the acquisition and 

representation of the knowledge. Efforts directed towards self-learning and automatic 

knowledge organization capabilities of systems can provide a proficient method of 

dealing with the large knowledge bases required. General mechanisms that enable 

systems to learn from their own experiences and to organize the knowledge they 

embody would represent a quantum leap not only in the development of 
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knowledge-based systems but in the whole field of Artificial Intelligence. 



7. CONCLUSIONS 

Knowledge-based systems can help solve problems that conventional computer 

programs could never solve, and also provide a new way of looking at traditional 

problem-solving methods. These systems are not necessarily better than the 

traditional ones, in practice they tend to be complementary. This fact is reflected 

by the current popularity of the knowledge-based approach and seems to guarantee 

that application of such systems will increase significantly in the near future. 

The system described in this paper shows that knowledge based systems do not 

have to be limited to the solution of comparatively simple selection problems. They 

can be effectively applied to most kinds of ill-structured problem. To fully realize 

this potential, the flexibility of a full-featured high level language is preferable over 

the easier to use expert system shells. These can be convenient in a few particular 

cases (e.g. for prototyping the knowledge-base), but will usually impose serious 

limitations upon the system designer. HLA, for example, relies heavily on Prolog's 

features to create and manipulate specialized, dynamic data structures. It also 

combines knowledge-based modules (evaluation predicates) with conventional ones 

(e.g. search procedure). Currently available shells would not support either of these 

characteristics. 

It is worthwhile to note that the type of knowledge HLA embodies represents 

limited expertise in a variety of fields. This apparently contradicts the paradigm that 
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such systems should contain extensive knowledge about relatively restricted domains. 

However, HLA is not a typical knowledge-based system. It can handle usual 

problems and identify potential difficulties that would require the presence of 

genuine experts. Furthermore, highway location practitioners are not experts in all of 

the aspects involved. Their primary task is to determine what information is relevant 

and to combine it in a useful and comprehensive way. 

The language used to develop HLA, Prolog, proved to be a good development 

tool. All the facilities usually expected from expert systems were easily implemented 

without sacrificing flexibility. The ease with which procedural tasks were accomplished 

in an essentially declarative language was also very important in this prototyping 

phase. 

A few warnings are in order. Prolog—and most other "fifth-generation" 

languages—can be rather inefficient in terms of speed when compared to traditional 

languages. While it can be used to implement entire prototypes, production systems 

should restrict its use to the tasks it can accomplish best. HLA could be optimized 

for speed by an order of magnitude by rewriting critical procedural routines in a 

traditional language (most Prolog implementations offer ways of linking routines 

written in C, Pascal or assembly language). Also, the almost unlimited flexibility 

provided places great responsibility upon the system designer. Since the language 

allows an almost unlimited variety of design solutions, the task of keeping the 

software maintainable and consistent is assigned almost solely to the designer. 

Conventional implementation tools, on the other hand, tend to impose rigid 
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guidelines that, at the cost of reducing flexibility, alleviate this burden substantially. 

Knowledge-based systems can be extremely powerful and flexible tools, applicable to 

a variety of problems. However, they are essentially models of the human expertise 

available and therefore cannot provide magical solutions. The level of performance of 

such systems tends to be proportional to the amount of time and effort spent in 

developing their knowledge base. Currently, production systems take around five to 

ten man-years to develop. 
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Appendix 1. Sample HLA Data File 

/* Geology Terrain Model */ 

area([ 
p(11.18,45.11), p(17.16,40.43), p(12.48,37.18), 
p( 9.23,39.91), p(11.18,45.11)], 
[geology(bedrock)]). 

area([ 
p(23.40,44.72), p(30.68,44.72), p(25.22,37.18), 
p(22.36,36.40), p(23.40,44.72)], 
[geology(bedrock)]). 

area([ 
p( 5.07,35.75), p( 6.24,29.38), p( 1.95,32.50), 
p( 5.07,35.75)], 
[geology(bedrock)]). 

area([ 
p(14.04,34.45), p(23.40,32.50), p(23.40,29.25), 
p(16.38,28.47), p(14.04,34.45)], 
[geoiogy(bedrock)]). 

area([ 
p(42.77,31.33), p(47.97,31.33), p(51.74,28.34), 
p(46.15,27.43), p(42.77,31.33)], 
[geology(bedrock)]). 

area([ 
p( 2.86,43.68), p(20.41,46.93), p(30.68,44.72), 
p(35.36,40.56), p(28.34,32.50), p(25.22,22.36), 
p( 6.63,23.27), p(-0.26,27.43), p( 2.86,43.68)], 
[geology(clay__till)]). 

area([ 
p(37.05,31.33), p(45.11,40.56), p(54.99,39.65), 
p(59.41,32.63), p(46.02,23.27), p(37.05,31.33)], 
[geology(clay_tiil)]). 

area([ 
p(30.81,30.29), p(34.84,28.08), p(38.61,21.06), 
p(30.81,17.16), p(30.81,30.29)], 
tgeology(clay_till)]). 

area([ 
p(40.04,14.04), p(42.90,20.15), p(55.38,26.13), 
p(57.20,20.15), p(50.18,15.34), p(40.04,14.04)], 
tgeology(clay till)]). 

area([ 
p( 0.00, 0.00), p( 0.00,47.32), p(61.36,45.24), 
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p(62.27,13.65)/ p( 0.00, 0.00)], 
[geology(sandy till)]). 

/* Land Use Terrain Model *,' 

area([ 
p(28.99,25.74), p(32.89,28.73), p(44.07,28.34), 
p(43.29,22.75), p(45.24,17.81), p(33.80,17.42), 
p(29.38,21.32), p(28.99,25.74)], 
[land_use(park),density([12,17])]). 

area([ 
p( 5.72,30.29), p( 7.93,30.16), p( 8.06,25.74), 
p(11.05,24.70), p(11.05,21.84), p( 5.98,24.83), 
p( 5.72,30.29)], 
[land use(urban),density([55,60])]). 

area([ 
p(26.65,28.99), p(28.34,30.16), p(30.29,28.08), 
p(28.34,26.91), p(27.04,26.91), p(26.65,28.99)], 
[land use(urban),density([60,66])]). 

area([ 
p(49.79,26.13), p(53.82,-27.95), p(55.90,26.00), 
p(53.82,23.79), p(49.79,24.83), p(49.79,26.13)], 
[land use(urban),density(55)]). 

area([ 
p(17.16,43.16), p(22.75,45.50), p(21.19,33.67), 
p(16.25,33.15), p(17.16,43.16)], 
[land use(farmland),density(15)]). 

area([ 
p(32.63,45.11), p(37.70,46.02), p(37.70,46.02), 
p(34.58,35.88), p(26.13,34.58), p(32.63,45.11)], 
[land use(farmland),density(18)]). 

area([ 
p(14.04,21.84), p(22.88,26.65), p(26.13,26.65), 
p(23.14,20.67), p(14.04,21.84)], 
[land use(farmland),density(22)]). 

area([ 
p(46.41,24.18), p(53.43,21.97), p(55.38,16.25), 
p(47.97,17.16), p(46.41,24.18)], 
[land_use(farmland),density([13,18])]). 

area([ 
p(51.61,30.42), p(56.68,32.89), p(55.64,37.83), 
p(58.63,38.74), p(60.84,30.68), p(56.81,27.04), 
p(5L61,30.42)], 
[land use(farmland),density(18)]). 



area([ 
p( 0.00, 0.00), p( 0.00,47.32), p(61.36,45.24), 
p(62.27,13.65), p( 0.00, 0.00)], 
[land use(wild),density(0)]). 

/* Topography Terrain Model */ 

area([ 
p( 1.43,41.99), p( 4.81,42.90), p( 5.72,42.25), 
p( 5.20,39.13), p( 1.95,39.13), p( 1.43,41.99)], 
[topography(rough)]). 

area([ 
p( 3.90,29.77), p( 5.98,28.99), p( 5.59,23.79), 
p( 3.64,22.88), p( 0.91,25.74), p( 3.90,29.77)], 
[topography(rough)]). 

area([ 
p( 8.97,39.13), p(15.08,34.84), p(13.52,32.24), 
p(10.66,30.81), p( 7.93,33.15), p( 8.97,39.13)], 
[topography(rough)]). 

area([ 
p(13.52,42.25), p(21.32,41.08), p(18.59,38.09), 
p(14.43,38.09), p(12.22,40.17), p(13.52,42.25)], 
[topography(rough)]). 

area([ 
p(23.40,39.13), p(26.39,40.04), p(27.43,37.31), 
p(24.31,34.06), p(25.61,32.11), p(22.23,31.07), 
p(19.24,33.02), p(23.40,39.13)], 
[topography(rough)]). 

area([ 
p(14.04,28.86), p(19.63,27.04), p(22.36,28.73), 
p(23.79,27.82), p(22.23,26.00), p(15.34,22.75), 
p(14.04,26.13), p(14.04,28.86)], 
ftopography(rough)]). 

area([ 
p( 1.04,46.41), p(29.25,45.50), p(32.11,39.39), 
p(23.79,29.25), p(34.06,20.67), p(30.55,12.61), 
p(14.43,19.89), p( 3.77,22.88), p(-0.39,26.39), 
p( 0.39,28.99), p( 3.38,33.67), p( 0.65,32.11), 
p( 1.04,46.41)], 
[topography( rolling)]). 

area([ 
p(39.52,41.34), p(48.75,43.16), p(57.98,37.18), 
p(56.68,28.99), p(53.43,26.91), p(49.40,21.84), 
p(38.61,22.88), p(35.49,33.15), p(40.43,35.23), 
p(39.52,41.34)], 
[topography(rolling)]). 



area([ 
p(-0.52,24.83), p( 3.38,21.84), p(15.86,17.81), 
p(12.22,17.81), p(14.04,15.73), p(18.20,14.82), 
p(18.98,15.47), p(22.23,15.73), p(27.30, 9.49), 
p(26.39, 8.58), p(24.18,11.57), p(13.00,14.56), 
p( 2.34,20.93), p(-0.39,21.84), p(-0.52,24.83)], 
[topography(waterbody)]). 

area([ 
p( 0.00, 0.00), p( 0.00,47.32), p(61.36,45.24), 
p(62.27,13.65), p( 0.00, 0.00)], 
[topography(hilly)]). 

/* Linear Entities */ 
highway([],[ 

p(37.31,46.15), p(34.32,33.15), p(27.04,31.07), 
p(25.09,27.17), p(21.97,28.34), p(12.61,24.83), 
p(11.70,19.63), p( 4.55, 9.49)]). 

highway([],[ 
p(34.32,33.15), p(35.36,28.08), p(34.19,28.08), 
p(38.48,19.89), p(38.22,15.73), p(34.97,10.40)]). 

highway([],[ 
p(35.36,28.08), p(38.61,21.97), p(42.38,21.97), 
p(46.93,16.90), p(42.64,11.83)]). 

/* These are routes to be analyzed in Chapter 5 

chap5 :-

analyze route(2, 
[p( 5,30),p( 9,27),p(12,27),p(14,30),p(25,28)] 

), 

analyze route(2, 
[p(25,28),p(40,33),p(49,29),p(54,23),p(58,22)] 

), 

analyze route(2, 
[p(25,28),p(33,27),p(42,21),p(50,19),p(54,23),p(58,22)] 

), 

analyze route(2, 
[p(25,28),p(37,19),p(44,17),p(50,19),p(54,23),p(58,22)] 

). 



search area( 
[p(24,15),p(24,30),p(58,30),p(58,15)/p(24,15)] 

). 



Appendix 2. Sample Interaction with "WHY?" Explanations 

?- solve(evaluate attribute(p(5,30),lmpact). 

>What is the adt (value,why,unknown) ? why. 
+ 

air_quality_impact(p(5,30)/_0241) 
Can be shown using the following rule: 

+ 
air_quality_impact(p(5,30),_0241) IS TRUE IF 

adt(_043D) AND 
design speed( 0451) AND 
emission_level(_043D,_0451,_046D) AND 
region_data(p(5,30),land_use(_048D)) AND 
sensibility_to_pollution(_048D,_04B1) AND 
region_data(p(5,30),density(_04D1)) AND 
fuzzy_add([_04D1,_04B1,_046D],_0241) 

+ 

>What is the adt (vaIue,why,unknown) ? why. 
+ 

evaluate_attribute(p(5,30),physical(_0221)) 
Can be shown using the following rule: 

+ 
evaluate_attribute(p(5,30),physical(_0221)) 
IS TRUE IF 

air_quality_impact(p(5,30),_0241) AND 
water_quality_impact(p(5,30)/_0241) AND 
noise_impact(p(5,30),_0271) AND 
fuzzy_add([_0241,_0259,_0271],__0221) 

+ 

>What is the adt (value,why,unknown) ? why. 
* * * Sorry, there is no further explanation. 

>What is the adt (value,why,unknown) ? unknown. 
* * * In this case, I'll assume adt([10000,12000])... 

>What is the design speed (value,why,unknown) ? 700. 

>What is the truck percentage (value,why,unknown) ? unknown. 
* * * In this case, I'll assume truck_percentage([0.12,0.01,0.01])... 

Impact = physical([7705.0,700.0,700.0]) ->; 
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Impact = aesthetic([135.386,12.063,12.063]) ->; 

Impact = relocation(O) ->/ 

Impact = construction([628.5,48.5,48.5]) ->; 

>What is the number of lanes (value,why,unknown) ? why. 
+ 

accident costs( 0169) 
Can be shown using the following rule: 

+ 
accident_costs(_0169) IS TRUE IF 

adt([10000,12000]) AND 
number of lanes( 626D) AND 
yearly_accident_cost(_626D,[10000,12000],_0169) 

+ 

>What is the number of lanes (value,why,unknown) ? 4. 

Impact = operational([7097.6190,1767.1182,1767.1182]) ->; 

no (this indicates there are no further solutions) 



Appendix 3. Sample Interaction with "HOW?" Explanations 

?- how(evaluate_point(p(28.21,29.07),J,K)). 

Please wait while I think about 
evaluate_point(p(28.21,29.07),_0085,_0095)... 

* * * Yes, I can show that 
evaluate_point(p(28.21,29.07),[physical([0.93,0.07,0.07]), 

aesthetic([0.92,0.08,0.08]), 
relocation([0.63,0.03,0.03]), 
construction([0.68,0.05,0.05]), 
operational([0.69,0.17,0.17])], 

[3.66,0.39,0.45]). 

> Should I explain this further? y. 
+ 

evaluate_point(p(28.21,29.07),[physical([0.93,0.07,0.07]), 
aesthetic([0.92,0.08,0.08]), 
relocation([0.63,0.03,0.03]), 
construction([0.68,0.05,0.05]), 
operational([0.69,0.17,0.17])], 

[3.66,0.39,0.45]) 
Can be shown using the following rule: 

+ 
evaluate_point(p(28.21,29.07),[physical([0.93,0.07,0.07]), 

aesthetic([0.92,0.08,0.08]), 
relocation([0.63,0.03,0.03]), 
construction([0.68,0.05,0.05]), 
operational([0.69,0.17,0.17])], 

[3.66,0.39,0.45]) 
IS TRUE IF 

findall(_0239,evaluate_attribute(p(28.21,29.07), 
[physical([12369.67,921.89,921.89]), 

aesthetic([135.57,11.34,11.34]), 
relocation([60,66]), 
construction [1514.5,116.5,116.5]), 
operational([7727.67,1909.37,1909.37])) AND 

scale_list([physical([12369.67,921.89,921.89]), 
aesthetic([135.57,11.34,11.34]), 
relocation([60,66]), 
construction([1514.5,116.5,116.5]), 
operational([7727.67,1909.37,1909.37])], 

[physical([0.93,0.07,0.07]), 
aesthetic([0.92,0.08,0.08]), 
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relocation([0.63,0.03,0.03]), 
construction([0.68,0.05,0.05]), 
operational([0.69,0.17,0.17])]) AND 

aggregate_impacts([physical([0.93,0.07,0.07]), 
aesthetic([0.92,0.08,0.08]), 
relocation([0.63,0.03,0.03]), 
construction([0.68,0.05,0.05]), 
operational([0.69,0.17,0.17])], 

[3.66,0.39,0.45]). 
+ 

evaluate_attribute(p(28.21,29.07),physical([12369.7,921.9,921.9])) 

> Should I explain this further? y. 
+ 

evaluate_attribute(p(28.21,29.07), 
physical([12369.7,921.9,921.9])) 

Can be shown using the following rule: 
+ 

evaluate_attribute(p(28.21,29.07), 
physical([12369.7,921.9,921.9])) 

IS TRUE IF 
air_quality_impact(p(28.21,29.07),[7773,703,703]) AND 
water_quality__impact(p(28.21,29.07),0) AND 
noise_impact(p(28.21,29.07),[4596.67,218.89,218.89]) AND 
fuzzy_add([[7773,703,703],0,[4596.67,218.89,218.89]], 

[12369.67,921.89,921.89]) 
+ 

air_quality_impact(p(28.21,29.07),[7773,703,703]) 

> Should I explain this further? y. 
+ 

air_quality_impact(p(28.21,29.07),[7773,703,703]) 
Can be shown using the following rule: 

+ -
air_quality_impact(p(28.21,29.07),[7773,703,703]) 
IS TRUE IF 

adt([10000,12000]) AND 
design_speed(100) AND 
emission_level([10000,12000],100,[7700,700,700]) AND 
region_data(p(28.21,29.07),land_use(urban)) AND 
sensibility to_pollution(urban,10) AND 
region_data(p(28.21,29i07),density([60,66]) AND 
fuzzy_add([[60,66],10,[7700,700,700]],[7773,703,703]) 

+ 



adt([10000,12000]) 

> Should 1 explain this further? y. 
+ 

adt([10000,12000]) 
Is a fact from the database 

+ 

design speed(100) 

> Should I explain this further? y. 
+ 

design speed(100) 
Is a fact from the database 

+ 

emission_level([10000,12000],100,[7700,700,700]) 

> Should I explain this further? y. 
+ 

emission_level([10000,12000],100,[7700,700,700]) 
Can be shown using the following rule: 

+ 
emission_level([10000,12000],100,[7700,700,700]) 
IS TRUE IF 

fuzzifyd00,[100,0,0]) AND 
100 < 80 AND 
[7700,700,700] is [10000,12000] OR 

fuzzy_multiply([10000,12000],0.7,[7700,700,70C]) 
+ 

fuzzify(100,[100,0,0]) 

> Should I explain this further? n. 

fuzzy_multiply([10000,12000],0.7,[7700,700,700]) 

> Should I explain this further? y. 
+ 

fuzzy_multiply([10000,12000],0.7,[7700,700,700]) 
See Prade & Dubois, "Operations on Fuzzy Numbers" 

+ 

region data(p(28.21,29.07),land use(urban)) 

> Should I explain this further? n. 



sensibility to pollution(urban,10) 

> Should I explain this further? n. 

region_data(p(28.21,29.07),density([60/66])) 

> Should I explain this further? n. 

fuzzy_add([[60,66],10,[7700,700,700]],[7773,703,703])) 

> Should I explain this further? n. 

water_quality_impact(p(28.21,29.07),0) 

>Shouid I explain this further? y. 
+ 

water_quality_impact(p(28.21,29.07X0) 
Can be shown using the following rule: 

+ 
water_quality_impact(p(28.21,29.07),0) 
IS TRUE IF 

not region data(p(28.21,29.07),topography(waterbody)) 

noise_impact(p(28.21,29.07),[4596.67,218.89,218.89]) 

> Should I explain this further? y. 
+ 

noise_impact(p(28.21,29.07),[4596.67,218.89,218.89]) 
Can be shown using the following rule: 

+ 
noise_impact(p(28.21,29.07),[4596.67,218.89,218.89]) 
IS TRUE IF 

adt([10000,12000]) AND 
fuzzy_divide([10000,12000],24,[458.33,41.67,41.67]) AND 
design_speed(100) AND 
fuzzify([100,[100,0,0]) AND 
truck_percentage([0.12,0.01,0.01]) AND 
fuzzify([0.12,0.01,0.01],[0.12,0.01,0.01]) AND 
145 is 100 + 40 + 500/100 AND 
1.006 is 1+5*0.12/100 AND 
72.96 is 10 * log(458.33) + 33*log(145) + 10*log(1.006)-25 AND 
region_data(p(28.21,29.07),density([60,66]) AND 

72.96 < 50 AND 
fuzzy_multiply(50,[60,66],[4596.67,218.89,218.89]) OR 
72.96 > 85 AND 
fuzzy_multiply(85,[60,66],[4596.67,218.89,218.89]) OR 



I fuzzy_multiply(72.96,[60,66],[4596.67,218.89,218.89]) 
+ 

adt([10000,12000]) 

> Should I explain this further? n. 

fuzzy_divide([10000,12000],24,[458.33,41.67,41.67]) 

> Should I explain this further? n. 

design speed(100) 

> Should l explain this further? n. 

fuzzify([100,[100,0,0]) 

> Should I explain this further? n. 

truck_percentage([0.12,0.01,0.01]) 

> Should I explain this further? n. 

fuzzify([0.12,0.01,0.01], [0.12,0.01,0.01]) 

> Should I explain this further? n. 

region_data(p(28.21,29.07),density([60,66]) 

> Should I explain this further? n. 

* * * * * * * * * * * * * * * * * * * * * * * * * * etc * * * * * * * * * * * * * 

?- how(evaluate_attribute(p(28.21,29.07),operational(O))). 

Please wait while I think about 
evaluate_attribute(p(28.21,29.07),operational(O)) 

* * * Yes, I can show that 
evaluate_attribute(p(28.21,29.07),operational(O)) 

> Should I explain this further? y. 
+ 

evaluate_attribute(p(28.21,29.07),operational(O)) 
Can be shown using the following rule: 

+ -



evaluate_attribute(p(28.21,29.07),operational(O)) 
IS TRUE IF 

average_speed(car,100,[95,5,5]) AND 
speed_factor(car,[95,5,5],[0.0883,0.0068,0.0068]) AND 
region_data(p(28.21,29.07),topography(hilly) AND 
grade_factor(car,hilly,[1.13,1.2]) AND 
fuzzy_multiply([0.088,0.007,0.007],[1.13,1.2],[0.1,0.01,0.01]) 

+ 

average speed(car,100,[95,5,5]) 

> Should I explain this further? y. 
+ 

average_speed(car,100,[95,5,5]) 
Can be shown using the following rule: 

+ 
average speed(car,100,[95,5,5]) 
IS TRUE IF 

fuzzy_multiply([100,0.9,1], [95,0.5,0.5]) 
+ 

fuzzy_multiply([100,0.9,1],[95,0.5,0.5]) 

> Should I explain this further? y. 
+ 

fuzzy_multiply([100,0.9,1 ],[95,0.5,0.5]) 
See Prade & Dubois, "Operations on Fuzzy Numbers" 

+ 

* * * * * * * * * * * * * * * * * * * * * * * * * * ****************** 

travel_time_monetary_costs([163.81,40.91,40.91]) 

> Should I explain this further? y. 
+ 

travel_time_monetary_costs([163.81,40.91,40.91]) 
Can be shown using the following rule: 
+ 

travel_time_monetary_costs([163.81,40.91,40.91]) 
IS TRUE IF 

design_speed(100) AND 
average_speed(truck,100,[50,5,5]) AND 
driver wage(12) AND 
adt([10000,12000]) AND 
truck_percentage([0.12,0.01,0.01]) AND 
commercial car travei(0.05) AND 
yearly_time_cost([0.12,0.01,0.01],0.05,[10000,12000], 
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| [50,5,5], 12,[163.81,40.91,40.91]) 
+ 

design speed(100) 

> Should I explain this further? n. 

average speed(truck,100,[50,5,5]) 

> Should I explain this further? n. 

driver wage(12) 

> Should l explain this further? y. 
+ 

driver wage(12) 
Is a fact from the database 

+ 

adt([10000,12000]) 

> Should I explain this further? n. 

truck_percentage([0.12,0.01,0.01]) 

> Should I explain this further? n. 

commercial car travel(0.05) 

> Should l explain this further? y. 
+ 

commercial car travel(0.05) 
Is a fact from the database 

+ 

> Should I explain this further? n. 

************************** * * * * * * * * * * * * * * * * * * * * * * * * * * 



Appendix 4. Partial Program Listing 

* * * NOTICE: * * * 
This partial listing of HLA's code is provided to illustrate the ideas 
and principles involved in this project. However, HLA and its code are 
proprietary and copyrighted by the author and by the University of 
British Columbia. Reproduction in whole or in part for non-educational 
purposes without the author's written permission is unlawful. 

UTILITY MODULE 

/* 

Module UTILITY 
Util.Ari 

You guessed it. This file is full of utilities, some written 
by me, others taken from C&M, Turbo & Arity manuals etc. 

Bernardo de Castilho, nov.86 
*l 

I* 
common list utilities 
V 

append([],L,L). 
append([H|T],L,[H|T1]) :-

append(T,L,T1). 

member(H,[H|_]). 
member(H,t/T]) :-

member(H,T). 

/* 
This predicate merges two lists adding term values and without 

replicating functors, 
for example: 
merge_list(le(4),p(2)Ur(2),t(7)M5),pm,lr(2),U7),e(9),p(m) 
•I 
merge_list(L1,[],L1) :- !. 
merge_list(L1,[Head|Tail],NL) :-

merge elem(L1,Head,L2), 
merge_list(L2,Tail,NL). 

1 2 2 
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merge elem([],Elem,[Elem]) :- !. 
merge elem([Head|Tail],Elem,L) :-

Head =.. [F,Hv], 
Elem =.. [F,Ev], 
fuzzy_add(Hv,Ev,V), 
Nelem =.. [F,V], 
L = [Nelem|Tail], !. 

merge elem([Head|TaiI],Elem,L) :-
merge elem(Tail,Elem,NL), 
L = [Head|NL], !. 

/* 
Some output utilities: 
*l 
print([]) :- !. 
print([tab(X)|T]) .-

i 
tab(X), 
print(T). 

print([nl|T]) :-
\r 

ni, 
print(T). 

print([H|T]) :-
i 

write(H), 
print(T). 

display rule(rule(Goai,Body)) :-
upper line, 
print([nl,$| $,Goal,nl, 

$| Can be shown using the following rule:$,nl]), 
middle line, 
printUSTs^oaU IS TRUE IF$,nl]), 
display body(3,Body), 
lower line, !. 

display_body(N,([!X!])) :- /* first get rid of snips */ 
display body(N,X), !. 

dispIay_body(N,(X,!)) :-
display body(N,X), !. /* and cuts *l 

display_body(N,(!,X)) :-
display body(N,X), !. 

display_body(N,(X)) :-
( 

X = (Head,(Tail)), 
not compound(Head), 
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S = $ AND$ 

X = (Head;(Tail)), 
not compound(Head), 
S = $ OR$ 

), 
i 
display body(N,Head), 
print([S,nl]), 
display body(N,Tail). 

display_body(N,(X)) :-
( 

X = (Head,(Tail)), 
S = $ AND$ 
X = (Head;(Tail)), 
S = $ OR$ 

), 
Nl is N + 3, 
display body(N1,Head), 
print([S,nl]), 
display body(N,Tail). 

display body(N,X) :-
print(t$|$,tab(N),X]), !. 

compound(( , )) :- !. 
compounds ; )) :- !. 

upper line :-
write($V$), 
wc(79,+D). 

middle line :-
write($C$), 
wc(79,tD), 
nl. 

lower line :-
nl, 
write($S$), 
wc(79,tD), 
nl. 

/* 
miscellaneous 
*/ 
for(X,X,X) :- !. 
for(Y,Y,X). 
for(Z,X,Y) :-



inc(X,X1), 
for(Z,X1,Y). 

odd(X,L) :-
count(X,L,C), 
1 is C mod 2. 

count(_,[],0) :- !. 
count(X,[X|R],C) :-

i 
count(X,R,C1), 
inc(C1,C). 

count(X,[/R],C) :-
i 
count(X,R,C). 

retractall(X) :-
retract(X), 
fail. 

retractall(_) :- !. 

/* 
Ceom.Ari 
This file contains some Prolog predicates related to geometry. 
The main entry points are 

1. intercept(P1,P2,P3,P4): 
This call would succeed if the straight line segment from PI to 

P2 and the one from P3 to P4 crossed each other. Useful for 
delecting interactions with other linear entities such as roadways, 
cattle crossings etc. 

2. in area(Point,Area): 
This predicate succeeds if 'Point' lies inside the area 

represented by a sequence of vertices. Areas can be ANY reasonable 
shape. Concave, convex, crossing lines, ok. 

3. distance(P1,P2,Distance): 
This is pretty obvious. Called by the other predicates and useful 

for detecting interactions with point entities such as hospitals, 
schools and the like. 

written in Nov.86 by Bernardo de Castilho 
{13.11 update: convex area membership supported) 
(17.11 update: ported from Turbo) 
(20.11 update: intercept predicates added) 



these are called by the route analyzer predicate 
*l 
get_incr(StepSize,p(X1,Y1),p(X2,Y2), 

Spacing,Npoints,Xincr,Yincr) :-
distance(p(X1,Y1),p(X2,Y2),Dist), 
Dist>0, 
get n points(Dist,StepSize,Npoints), 
Spacing is Dist/Npoints, 
Xincr is (X2-X1)/Npoints, 
Yincr is (Y2-Y1)/Npoints. 

get n points(Dist,StepSize,Npoints) :-
Npoints is integer(DistVStepSize), 
Npoints>0, 

get n points( , ,1) :- !. 

get_segment(p(XC,YC),Xincr,Yincr,p(X1/Y1)/p(X2,Y2)) :-
X1 is XC-Xincr/2, 
X2 is XC + Xincr/2, 
Y1 is YC-Yincr/2, 
Y2 is YC+Yincr/2, !. 

/* 
succeeds if the two straight line segments intercept 
*/ 
intercept(p(X1 ,Y1 ),p(X2,Y2),p(X3,Y3),p(X4,Y4)) :-

get_crossing_point(p(X1/Y1),p(X2,Y2),p(X3/Y3),p(X4,Y4)/p(X,Y))/ 

between(X,X1,X2), 
between(X,X3,X4), 
between(Y,Y1,Y2), 
between(Y,Y3,Y4), 
i 

get_crossing_point(p(X,_),p(X,_),p(X3,Y3),p(X4,Y4),p(X,Y)) :-
get_angle(p(X3,Y3),p(X4,Y4),Beta), 
Y is Beta * (X-X3) + Y3, !. 

get_crossing_point(p(X1 ,Y1 ),p(X2,Y2),p(X3/Y3),p(X4,Y4),p(X/Y)) :-
get_angle(p(X1,Y1),p(X2<Y2),A!pha), 
get_angle(p(X3,Y3),p(X4,Y4),Beta), 
Alpha /= Beta, 
X is (Y3-Y1 + X1*Alpha - X3*Beta) / (Alpha-Beta), 
Y is Alpha * (X-X1) + Y1, !. 

get_angle(p(X,_),p(X,__),9.9999E99) :- !. 
get_angle(p(X1 ,Y1 ),p(X2,Y2),Angle) :-



Angle is (Y2-Y1) / (X2-X1), !. 

/* 
succeeds if Point is inside the area defined by the polygon 
called Area. The point is inside if its relative position with 
respect to any sides of the polygon is: 

a) above, below, left AND right of any segment OR 
b) or ON any segment. 

*/ 
in area(Point,Area) :-

make rei pos(Point,Area,[],Rel Pos), 
( 

member(on,Rel Pos) 

odd(a,Rel_Pos), 
odd(b,Rel_Pos), 
odd(l,Rel_Pos), 
odd(r,Rel_Pos) 

), '•• 

/* 

create a list of positions of the point relative to each line 
segment: [a] is above, [b] is below, [a,b] is on the segment. 
*/ 
make rel pos( ,[ ],X,X) :- !. /* one point left, stop. */ 
make_rel_pos(Point,[P1,P2|Rest],Old,Rel_Pos) :-

rel_pos(Point,P1,P2,Pos), 
append(Old,Pos,New), 
make_rel_pos(Point,[P2|Rest],New,Rel_Pos). 

rel_pos(Point,Start,End,P) :-
get_v_stat(Point,Start,End,V), 
get_h_stat(Point,Start,End,H), 
append(V,H,P), !. 

get_v_stat(p(X,Y),p(X1,Y1),p(X2,Y2),V) :-
between(X/X1,X2), 
above_or_below(p(X/Y),p(X1,Y1),p(X2,Y2),V), !. 

get_v_stat(_,_,_,[]) :- !. 

get_h_stat(p(X,Y),p(X1(Y1),p(X2,Y2),H) :-
between(Y,Y1,Y2), 
left_or_right(p(X,Y),p(X1,Y1),p(X2,Y2),H), !. 

get_h_stat(_,_,_,[]) :- !. 

above_or_below(p(_,Y),p(_,Y1),p(_,Y2),[a]) :-
Y > Y1, 



Y > Y2, !. 
above_or__below(p(_,Y),p(_,Y1),p(_,Y2),[b]) 

Y < Y1, 
Y < Y2, !. 

above_or_below(_,p(X1,_),p(X2,_),[a,b]) :-
X1 = X2, !. 

above__or_below(p(X,Y),p(X1 ,Y1 ),p(X2,Y2),V) :-
DP is Y-Y1, 
DL is (X-X1) * (Y2-Y1) / (X2-X1), 
compare_v(DP,DL,V), !. 

compare v(DP,DL,[a]) :-
DP>DL, !. 

compare_v(DP,DL,[b]) :-
DP < DL, !. 

compare v( , ,[on]) :- !. 

left_or_right(p(X,_),p(X1,_),p(X2,_),[ri) :-
X > X1, 
X > X2, !. 

left_or_right(p(X,_),p(X1 /_),p(X2,_),[i]) :-
X < XI, 
X < X2, !. 

left_or_right(_,p(_,Y1),p(_,Y2),[l,r]) :-
Y1 = Y2, !. 

left_or_right(p(X,Y),p(X1,Y1),p(X2,Y2),H) :-
DP is X-X1, 
DL is (Y-Y1) * (X2-X1) / (Y2-Y1), 
compare_h(DP,DL /H), !. 

compare_h(DP,DL,[r]) :-
DP>DL, !. 

compare_h(DP,DL,[l]) :-
DP < DL, !. 

compare _h( , ,[on]) :- !. 

between(X,X1,X2) > 
XI > X, X >= X2; 
X2 >= X, X > XI, !. 

distance(p(X1,Y1),p(X2,Y2),Dist) :-
Dx is X2-X1, 
Dy is Y2-Y1, 
Dist is sqrt(Dx*Dx + Dy*Dy). 

/* 

Fuzzy.Ari 



This file contains fuzzy number operators and clauses that convert 
real numbers or ranges into fuzzy numbers. 
(see Prade, H. and Dubois, D. (1978). "Operations on 
fuzzy numbers". International Journal of Systems Science, Vol.9, 
No.6, pp.613-626.) 

written in nov.86 by Bernardo de Castilho 

*l 

I* 
This predicate convert reals or ranges into fuzzy numbers: 
*l 
fuzzify([M,A,B],[M,A,B]) :- !. /* already fuzzy *l 
fuzzify([L,H],[M,A,B]) :- /* range *l 

M is (L+H)/2, 
A is abs((H-L)/2), 
B is A, !. 

fuzzify(M,[M,0,0]) :- !. /* real *l 

I* 
These are some fuzzy number operators: 
*/ 
fuzzy_add(M1/N1,[Rm,Ra,Rb]) :-

fuzzify(M1,[M,A,B]), 
fuzzify(N1,[N,C,D]), 
Rm is M+N, 
Ra is A + C, 
Rb is B + D, !. 

fuzzy add([],0) :- !. /* this one adds up the terms of a list *l 
fuzzy_add([H|T],R) :-

fuzzy_add(T,R1), 
fuzzy_add(H,R1,R), !. 

fuzzy_subtract(M 1,N1,[Rm,Ra,Rb]) :-
fuzzify(M1,[M,A,B]), 
fuzzify(N1,[N,C,D]), 
Rm is M-N, 
Ra is A + C, 
Rb is B + D, !. 

fuzzy_multiply(M1,N1,[Rm,Ra,Rb]) :-
fuzzify(M1,[M,A,B]), 
fuzzify(N1,[N,C,D]), 
Rm is M*N, 
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Ra is M*C + N*A, 
Rb is M*D + N*A, !. 

fuzzy_divide(M 1,N1, [Rm,Ra, Rb]) :-
fuzzify(M1,[M,A,B]), 
fuzzify(N1,[N,C,D]), 
Rm is M/N, 
Ra is (M*D + N*A)/N/N, 
Rb is (M*D+N*B)/N/N, !. 

fuzzy power(M1,P1,Power) :-
fuzzify(M1,[M,A,B]), 
fuzzify(P1,[N,C,D]), 
Lb is (M-A) $ (N-C), 
Ub is (M + B) * (N + D), 
fuzzify([Lb,Ub],Power), !. 

series present worth(N,l,Yearly Cost,Cost) :-
fuzzy_add(l,1,lplus1), 
fuzzy power(iplus1,N,lplus1 to N), 
fuzzy subtract(lplus1 to N,1,Over), 
fuzzy multiply(lplus1 to N,I,Under), 
fuzzy divide(Over,Under,P A N), 
fuzzy_multiply(P_A__N,Yearly_Cost,Cost), 
not member(err,Cost), !. /* 'err' will appear if i=0 *l 

series present worth(N, ,Yearly Cost,Cost) :-
fuzzy multiply(Yearly Cost,N,Cost), !. 



INFERENCE ENGINE MODULE 
/* 
Module INFERENG 
lEhow.Ari 

Implements and extends the inference engine described in 
"Expert System = Knowledge + Meta-interpreter" 
by Leon Sterling. 

original Arity version written by Glen Cooper 
further upgraded by Bernardo de Castilho. 

20.11: can handle disjunctions 
22.11: selective explanations 
27.11: can handle snipped conjunctions 
27.11: findall is ok (findally...) 
28.11: display rule improved 

(now it can handle compound terms) 

*/ 

I* 
Determine if a query can be proved. 
Interpret its proof or state that no proof exists. 
*l 
how(Goal) :-

print([$Please wait while 1 think about$,nl,Goal,$...$]), 
( 

prove(Goal, Proof), 
print([nl,$*** Yes, I can show that$,nl,Goal,nl]), 
interpret(Proof) 

print([nl,nl,$*** No, this seems to be either false or undefined.$,nl]), 
fail 

), I. 

/* 

Prove a query, if possible, and save its proof along the way 
*l 
prove(true,true) :- !. /* this is trivial *l 
prove((Goal1;Goal2),Proof) :- /* this works with disjunctions */ 

prove(Goal1, Proof); 
prove(Goal2, Proof). 

prove((Goal1,Goal2),(Proof1,Proof2)) :-
!, /* this works with conjunctions 
prove(Goal1,Proof1), 
prove(Goal2,Proof2). 

prove([!(Goah,Goal2)!],(Proof1,Proof2)) :-



!, /* this works with conjunctions 
[! 

prove(Goal1, Proof 1), 
prove(Goal2,Proof2) 

!]. 
prove(Goal,implies(Proof,Goal,true)) :- /* fact in disguise... *l 

clause(Goal,!). 
prove(Goal,implies(Proof,Goal/obvious)) :- /* prove subgoals *l 

obvious(Goal, ), 
call(Goal). /* prove but don't keep the proof *l 

prove(Goal,implies(Proof,Goal,Body)) :- /* prove subgoals *l 
not obvious(Goal, ), 
clause(Goal,Body), 
prove(Body, Proof). 

prove(Goal,implies(system,Goal)) :- /* built in predicates *l 
functor(Goal,Name,Arity), 
system( N ame/Arity), 
call(Goal), !. 

/* 
Interpret a proof 
*/ 
interpret(true) :- !. /* this is trivial *l 
interpret([!(Proof)!]) :-

i 
interpret(Proof). 

interpret((Proof1,Proof2)) :-
! 

• / 

interpret(Proofl), 
interpret(Proof2). 

interpret(implies(true,Goal,true)) :- /* if the body is true */ 
!, /* then it's a fact 
print([nl,Goal]), 
( 

want to go on, 
upper line, 
print([nl,$| $,Goal,nl,$| Is a fact from the database.$]), 
lower line 

true 
)-

interpret(implies(true,Goal,obvious)) :-
i 
print([nl,Goal]), 
( 

want to go on, 
obvious(Goal, Explanation), 



upper line, 
print([nl,$| $,Coal,nl,$| $,Explanation]), 
lower line 

true 
). 

interpret(implies(Proof,Coal,Body)) :-
!, /* finally, goal with subgoals *l 
print([nl,Coal]), 
( 

want to go on, 
display rule(rule(Goal,Body)), 
interpret(Proof) 

true 
). 

interpret(implies(system,findall( ,Goal, ))) :-
i 
(' 

prove(Goal,Proof), /* to prove a 'findall' (or 'bagof' or 'setof') *l 
interpret Proof), /* it's necessary to satisfy the goal as many */ 
fail /* times as possible. 

*l 

true 
). 

interpret(implies(system,Goal)) :- !. /* No need to explain built-ins */ 

/* 

housekeeping: 
•/ 
want to go on :-

t 
gc(full), 
print([nl,$Should I explain this further? $]), 
getO(A), 
nl, 
( 

A = tY; 
A = ty 

). 
/* 
lEwhy.Ari 

Extension of the Meta-interpreter described in 
"The art of Prolog", 
by Leon Sterling and Ehud Shapiro, pp.375 



INTERACTIVE SHELL WITH USER QUERY AND 'WHY' EXPLANATIONS 

*l 

I* 
Solve a goal, prompt user for missing information and answer 
eventual why questions. 
*/ 
solve(Goal) :- solve(Goal,[]). 
solve(true,[]) :- !. 
solve(Goal,[]) :-

dause(Goal,!). 
solve((Goal1;Goal2),Rules) :-

solve(Goah, Rules); 
solve(Goal2,Rules). 

solve((Goal1,Goal2),Rules) :-
i 
solve(Goal1,Rules), 
solve(Goal2,Rules). 

solve([!(Goal1 ,Goal2)!],Rules) :-

[! 
solve(Goal1,Rules), 
solve(Goal2, Rules) 

!1. 
solve(Goal,Rules) :-

obvious(Goal,Explanation), 
\t 

call(Goal). 
solve(Goal,Rules) :-

clause(Goal,Body), 
solve(Body,[rule(Goal,Body)|Rules]). 

solve(findall(X,Goal,List),Rules) :-
( 

solve(Goal,Rules), 
fail 

) 
\t 

findall(X,Goal,List). 
solve(findall(_,Goal,[]),Rules) :- !. 
solve(Goal, ) :-

functor(Goal,Name,Arity), 
system(Name/Arity), 
i call(Goal). 
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solve(Coal,Rules) :- /* Everything else failed. Try user.*/ 
not clause(Goal, ), 
askable(Goal), 
ask(Goal,Answer), 
respond(Answer,Goal,Rules). 

/* 
Prompt user for an answer. Acceptable ones are: 

1. The actual value -> accept it, go on 
2. A 'why' question, answer and ask again (recursion) 
3. User doesn't know. Use default. 

*/ 
ask(Goal,Answer) :-

Goal =.. [Functorj ], 
print([nl,$> What is the $,Functor,$ (value,why,unknown) ? $]), 
read(Answer). 

respond(why,Goal,[Rule|Rules]) :- /* answer 'why' */ 
display rule(Rule), 
ask(Goal,Answer), 
respond(Answer,Goal,Rules). 

respond(why,Goal,[]) > 
i 
print([nl,$*** Sorry, there is no further explanation.$,nl]), 
ask(Goal,Answer), 
respond(Answer,Goal,Rules). 

respond(unknown,Goal,Rules) :- /* use default */ 
i 
default(Goal), 
assertz(Goal), 
print([$*** In this case, I'll assume $,Goal,$...$,nl]). 

respond(Answer,New Fact,Rules) :- /* remember answer */ 
i 
New Fact =.. [Functor,Answer], 
assert(New Fact). 

Something is askable if there is a default value for it. 
*l 
askable(X) :-

default(Y), 
X =.. [F__], 
Y =.. [F ], !. 
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KNOWLEDGE BASE MODULE 
/* 
Module KBASE 
Eval.Ari 

This file contains cell evaluation clauses. 
There are three main data domains: 

1. SYSTEM. These attributes are built-in. The user can temporarily 
override the system's values by including them in the project 
description file (*.PDF), which is reconsulted. Examples are 
components lives, corridor width, interest rates and construction 
costs. 

2. DEFAULT. These are built-in values that are used only when the 
user explicitly tells the system s/he is unable to provide a 
reasonable estimate. Examples are traffic levels, traffic mix (% trucks) and number 
of lanes. 

3. USER. These attributes should be supplied by the user, usually 
included in the PDF file. If they are not found, the inference engine 
will ask the user for a reasonable fuzzy estimate. The user then gets 
a chance to ask 'why'questions. If the user is unsure about the 
value, the system will then use a built-in default (domain 2) which 
will generally have high associated uncertainty. 

The way this works is really simple: the inference engine uses 
SYSTEM and USER attributes — they look exactly the same -- until 
some piece of data can't be found. It then asks the user and expands 
the database with the information supplied or with the DEFAULT 
clause that couldn't be found before because it was hidden inside a 
'default' clause. Simple, huh? 

written in Nov.86 by Bernardo de Castilho 

V 

/* 

Point analyzer predicate 
*/ 

evaluate point(Point,Scaied Impact List,Aggregated Impact) :-
findall(lmpact, evaluate attribute(Point,lmpact),Raw Impact List), 
gc(full), 
scale list(Raw Impact List,Scaled Impact List), 
aggregate impacts(Scaled Impact List, Aggregated Impact), 
gc(full), !. 

/* 
Route analyzer predicates 
*/ 
analyze route( ,[ ]) :- /* one point left, stop. */ 



findall(X,unit_impact(X)(UIList), 
( 

retract(unit impact( )), 
fail 

true 
), 
fuzzy_add(UIList,TCI), 
print([nl,$ 
+ 

* * * Route Completed. The cumulative impact is : 
: $,TCI,$ 

+ $, 
nl]), !. 

analyze route(StepSize,[P1,P2|Rest]) :-
print([nl,$ * * * Analyzing Alignment $,P1,$ - $,P2,nl]), 
analyze alignment(StepSize, P1, P2), 
print([nl,$ * * * This alignment is ready.$]), 
analyze route(StepSize,[P2|Rest]). 

analyze alignment(StepSize,P1,P2) :-
get incr(StepSize,P1,P2,Spacing,Npoints,Xincr,Yincr), 
for(N,1,Npoints), 

' compute point(P1,N,Xincr,Yincr,P), 
evaluate unit(P,Spacing,Xincr,Yincr), 
gc(full), 

fail. 
analyze alignment , , ) :- !. 

compute_point(p(X1,Y1),N,Xincr/Yincr,p(X,Y)) :-
X is X1 + (N-0.5) * Xincr, 
Y is Y1 + (N-0.5) * Yincr, !. 

evaluate unit(CentralPoint,Length,Xincr,Yincr) :-
print([nl,$* Central Point: $,CentralPoint,tab(5), 

$* Length: $,Length,nl]), 
/* find all point impacts */ 
findall(l,evaluate_attribute(CentralPoint,l),RPIL), 
gc(full), 
/* find all linear entity impacts */ 
get segment(CentralPoint,Xincr,Yincr,P1,P2), 
findall(Limp,evaluate_linear(P1,P2,Limp),RLlL), 
gc(full), 
/* put them all together */ 
merge_list(RPlL,RL!L,RIL), 
scale list(RIL,S!L), 
gc(full), 



/* aggregate */ 
aggregate impacts(SIL,LAC), 
fuzzy muitiply(Length,LAG,Total), 
gc(full), 
print([$ central point impacts: $,SIL,nl]), 
print([$ * * * Aggregated Impact: $,Total,nl]), 
assertz(unit impact(Total)), !. 

/* 
This predicate aggregates impacts corresponding to different 
attributes (Impact List) according to system (or user-defined) 
component value levels (weights). 
The absolute aggregated value can be used for comparison purposes 
-- the higher the number the worse. 
*l 
aggregate impacts([],0) :- !. 
aggregate impacts([Head|Tail],Aggregated Impact) :-

aggregate impacts(Tail,Tail Impact), 
Head =.. [Impact Type,lmpact Value], 
relative weight(lmpact__Type, Weight), 
fuzzy multiply(lmpact Value, Weight, Head Impact), 
fuzzy add(Head lmpact,Tail lmpact,Aggregated Impact). 

/* 
* This is the heart of the system. 
* These predicates evaluate points according to several different 

attributes. 
* They return a term of the form 'type(impact)' where impact is 

a fuzzy value ranging from 0 (best) to 1 (worst). 
*l 

I* -
I.Environmental Attributes 
*l 
evaluate attribute(Point,physical(Physical Impact)) :-

[! 
air quality impact(Point,Airlmp), 
water quality impact(Point,Waterlmp), 
noise impact(Point,Noiselmp), 
fuzzy add([Airlmp,Waterlmp,Noiseimp],Physical Impact) 

!]. 
evaluate attribute(Point,aesthetic(Visuallmp)) :-

[! 
adt(ADT), 
truck percentage(TP), 
visual context(Point,C), 
fuzzy_multiply(0.012,ADT,ADT12), 



fuzzy_multiply(1.3,TP,TP13), 
f uzzy_add( [3.5 8, ADT12,TP13], 11), 
fuzzy subtract(H,C,Visuallmp) 

!]. 

/* 
//. Social Attributes 
*l 
evaluate attribute(Point,relocation(lmp)) :-

region data(Point,density(lmp)). 

/* 
III.Economic Attributes 
*/ 
/* 1. Construction Cost */ 
evaluate attribute(Point,construction(Constr Cost)) :-

[! 
region data(Point,land use(Use)), /* land acquisition */ 
land__cost(Use,PW_Land), 
region data(Point,topography(Topo)), /* b.earthwork *l 
earthwork cost(Topo, PW Earthwork), 
region data(Point,geology(Ceo)), /* c.foundation *l 
foundation cost(Geo,PW Foundation), 
fuzzy_add([PW_Land,PW__EarthWork,PW_Foundation],Constr_Cost) 

'.). 

/* 2,Operational Cost *l 
evaluate attribute(Point,operational(Oper Cost)) :-

[! 
vehicle operation costs(Point,YVOC), 
travel time monetary costs(YTTC), 
accident costs(YAC), 
fuzzy_add(tYVOC,YTTC,YAC],Yearly_Oper_Cost), 
project life(Life), 
interest rate(l), 
series present worth(Life,l,Yearly Oper Cost,Oper Cost) 

!]• 

/* 
Linear Entity Impacts 
*/ 
evaluate linear(P1,P2,construction(E)) :-

[! 
( 

crosses(P1,P2,highway, ), 
interchange cost(lnt) 



Int is 0 
), 
( 

crosses(P1,P2,cattle crossing, ), 
underpass cost(Upc), 
extra cowboy cost( Ecc) 

Upc is 0, 
Ecc is 0 

), 
fuzzy_add([int,Upc,Ecc],TE), 
distance(P1,P2,D), 
fuzzy divide(TE,D,E) 

evaluate linear(P1,P2,biotic(E)) :-
[! 

( 
crosses(P1,P2,wildlife crossing,[Sp,VoI]), 
species importance(Sp,lmp), 
fuzzy multiply(Voi,lmp,TE) 

E is 0 
), 
distance(P1,P2,D), 
fuzzy divide(TE,D,E) 

/* 
Subpredicates used by evaluate whatever 
*l 
I* 
"crosses" is used by the linear entity evaluation predicates 
and calls get pair 
*/ 
crosses(P1,P2,What,Attribs) :-

A =.. [What,Attribs,Linear], 
i 
call(A), 
get pair(Linear,P3,P4), 
intercept(P1,P2,P3,P4), !. 

get_pair([P1,P2|_],P1,P2). 
get_pair([/T],P1,P2) :-

get_pair(T,P1,P2). 
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environmental impact assessment subpredicates: 
*/ 
air quality impact(Point,A Q 1) :-

adt(ADT), 
design_speed(Speed), 
emission level(ADT,Speed,EL), 
region data(Point,land use(Cover)), 
i 

sensibility to pollution(Cover,Reg Sens), 
region data(Point,density(NofPeople)), !, 
fuzzy_add([NofPeople,Reg_Sens,EL],A_Q_l), !. 

emission level(ADT,Speed,EL) :-
fuzzify(Speed,[S, , ]), 
( 

S < 80, 
EL is ADT 

fuzzy_multiply(ADT,0.7,EL) 
), !• 

water quality impact(Point,0) :-
not region data(Point,topography(waterbody)), !. 

water quality impact(Point,W Q I) :-
region data( Point, waterbody use(WB use)), 
i 
yearly trucks with hazardous loads(YTHL), 
number of Ianes(Lanes), 
accident rate(Lanes,Acc R), 
fuzzy multiply(YTHL,Acc R,Nacc), 
waterbody importance(WB use,WB importance), 
i 
fuzzy multiply(Nacc,WB importance,W Q I), !. 

noise impact(Point,lmp) :-
adt(ADT), 
fuzzy divide(ADT,24,Vph), /* vehicles per hour *l 
fuzzify(Vph,[Q,_,_]), 
design speed(Dspeed), 
f uzzify( Dspeed, [V,_,_]), 
truck percentage(TP), 
fuzzify(TP,[P,_,_]), 
Aux1 is V + 40 + 500A/, 
Aux2 is 1 + 5* PA/, 
Level is 10 * log(Q) + 33 * log(Auxl) + 10 * log(Aux2) - 25, 
region data(Point,density(Nof People)), 
( 



Level < 50, 
fuzzy multiply(50,NofPeople,lmp) 

Level > 85, 
fuzzy multiply(85,NofPeople,lmp) 

fuzzy multiply(Level,NofPeople,lmp) 
)• 

yearly trucks with hazardous loads(YTHL) :-
adt(ADT), 
truck percentage(TP), 
fuzzy_multiply(ADT,TP,NT), 
trucks with hazardous loads(THL), 
fuzzy multiply(NT,THL,DTHL), 
fuzzy_multiply(DTHL,365,YTHL), !. 

/* 
economic impact assessment subpredicates: 

V 

vehicle operation costs(Point,YVOC) :-
design speed(DSpeed), 
region data(Point,topography(Topo)), 
car operating cost(DSpeed,Topo,COC), 
truck operating cost(DSpeed,Topo,TOC), 
adt(ADT), 
truck percentage(TPerc), 
fuzzy subtract 1,TPerc,CPerc), 
yearly operating cost(ADT,CPerc,COC, Yearly COC), 
yearly operating cost(ADT,TPerc,TOC, Yearly TOC), 
fuzzy_add(Yearly_COC,Yearly_TOC,YVOC), !. 

travel time monetary costs(TTMC) :-
design speed(DSpeed), 
average speed(truck,DSpeed,Speed), 
driver wage(Wage), 
adt(ADT), 
truck percentage(TPerc), 
commercial car travel(CCT), 
yearly_time_cost(TPerc,CCT,ADT,Speed,Wage,TTMC), 

accident costs(YAC) :-
adt(ADT), 
number of lanes(Lanes), 
yearly accident cost(Lanes..ADT,YAC), !. 

yearly accident cost(Lanes,ADT,Yearly Accident Cost) :-



accident cost factor( Lanes, ACF), 
fuzzy_multiply(ADT,365,Yearly_Total), 
fuzzy_divide(Yearly_Total,ACF,YACD), /* yearly cost ($) */ 
fuzzy_divide(YACD,1000,Yearly_Accident_Cost), !. /* ($1,000) *l 

accident_rate(Lanes,[0.869,1.600]) :- Lanes =< 2, !. 
accident_rate(__,[0.781,2.806]) :- !. 

yearly operating cost(ADT,Perc,OC,Yearly OC) :-
fuzzy multiply(ADT,365,Yearly Total), /* yearly traffic *l 
fuzzy multiply(Yearly Total,Perc, Yearly Volume), 
fuzzy_multiply(Yearly_Volume,OC,YOCD), /* yearly cost ($) 
fuzzy_divide(YOCD,1000,Yearly_OC), !. /* ($1,000) *l 

car operating cost(Design Speed,Topo,COC) :-
average speed(car, Design Speed,Speed), 
speed factor(car,Speed,SE), /* speed effects */ 
grade factor(car,Topo,CE), /* grade effects *l 
fuzzy_multiply(SE,CE,COC). 

truck operating cost(Design Speed,Topo,COC) :-
average speed(truck,Design Speed,Speed), 
speed factor(truck,Speed,SE), /* speed effects */ 
grade factor(truck,Topo,CE), /* grade effects *l 
fuzzy_multiply(SE,CE,COC). 

yearly time cost(TPerc,CCT,ADT,Speed,Wage,Yearly Time Cost) :-
fuzzy add(TPerc,CCT,Comm Trav Perc), 
fuzzy_multiply(ADT,365,YearIy_Total), 
fuzzy multiply(Yearly Total,Comm Trav Perc, Yearly Comm Traffic), 
fuzzy multiply(Yearly Comm Traffic, Wage, Over), 
fuzzy divide(Over,Speed,YTCD), /* yearly cost ($) */ 
fuzzy_divide(YTCD,1000,Yearly_Time_Cost), !. /* ($1,000) *l 

I* 
these are used to help assess several types of impact 
*/ 
average speed(car,Design Speed,S) :-

i 
fuzzy multiply( Design Speed,[0.9,1 ],S). 

average speed(truck,Design Speed,S) :-
i 
fuzzy multiply(Design Speed,[0.45,0.55],S). 

speed factor(car,Speed,SF) :-
i 
fuzzy_divide(Speed,2857,SF1), 



fuzzy_add(SF1,[0.05,0.06],SF). 
speed factor(truck,[Speed,Sa,Sb],[0.49,0.53]) :-

I 
fuzzy divide(Speed,476,SF1), 
fuzzy_add(SF1,[0.045,0.05],SF). 

/* 
this determines the value of a given attribute based on 

information contained on the PDF file. 
V 
region data(Point,Data) :-

area(Area,Attributes), 
member(Data,Attributes), 
gc(full), 
in area(Point,Area), !. 

region data(Point,Data) :-
( 

default(Data); 
Data =.. [Functor,unknown] 

), !• 

/* 
this predicate will scale (from 0 to 1) all elements of a given 
impact list. 
*l 
scale_list([],[]) :- !. 
scale_list([Head|Tail],[Headl|Tail1]) :-

Head = .. [Type,ln], 
get limits(ln,Type,FJest, Worst), 
scale_0_to_1(Best,Worst,ln,Out), 
Headl =.. [Type,Out], 
scale list(Tail,Taih). 

get limits(ln,Type,Best,Max) :- /* new 'worst' limit */ 
limits(Type, Best, Worst), 
fuzzify(ln,[lm,la,lb]), 
Max is lm + lb, 
Max > Worst, !, 
retract(limits(Type,Best, Worst)), 
assertz(iimits(Type,Best,Max)), !. 

get limits(ln,Type,Min,Worst) :- / * new 'best' limit */ 
limitsfType, Best, Worst), 
fuzzify(ln,[lm,la,lb]), 
Min is Im-la, 
Min < Best, !, 
retract(limits(Type,Best, Worst)), 
assertz(limits(Type,Min,Worst)), !. 



get limits(ln,Type,Best,Worst) :-
limits(Type,Best,Worst), !. 

/* 
Facts.Ari 

* This file contains default values that can be used directly by the 
evaluation predicates. 

* The default values can be overriden if the user chooses to specify 
them in the PDF (Project Description File). 

* The PDF file should be reconsulted AFTER this one is read in. 
* Contains also the "obvious" clauses. If "obvious(Goal)." exists, 

then the "how" predicate will omit explanations about "Goal". 
- written in Nov.86 by Bernardo 

Castilho 
updated daily... 

*l 

I* 
These are defaults. Should be used only when the user can't 
supply accurate values: 
*l 
default(design speed(100)). 
default(number of lanes(4)). 
def ault(trucks_with_hazardous_loads( [0.05,0.08])). 
default(truck_percentage([0.12,0.01,0.01])). 
default(adt([10000,12000])). 
default(density([5,6])). 
default(interchange_cost([950,1000])). 
default(underpass_cost([198,205])). 
default(extra cowboy cost(100)). 

/* 
These are global values. Can be overriden by user if more 
accurate values -- fuzzy perhaps — are available: 
*l 
interest rate(0.1). 
project life(25). 
driver wage(12). 
commercial car travel(0.05). 

/* 
Relative weights: 
These are arbitrary values. They represent the relative importance 

of each attribute and are necessary to evaluate trade-offs between 
different type of impact. 
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The values do not have to add up to any specific value, in fact 
they can be fuzzily specified also. 

I* Environmental Attributes */ 
relative weight(physical,1). 
relative weight(biotic, 0.8). 
relative weight(aesthetic,0.8). 
/* Social Attributes */ 
relative weight(relocation,1). 
/*Economic Attributes */ 
relative weight(construction, [1,0,0.1]). 
relative weight(crossings,[1,0,0.1]). 
relative weight(operational,1). 
relative weight(growth,[0.5,0.6]). 
relative weight(land value,0.5). 

/* 
These are normally used estimates: ($1000/km) 

*/ 
land_cost(urban,[600,700]). 
land cost(cemetery,[480,560]), * * * etc *** 
land cost(unknown,[60,700]). 
/* ignorance is paid for with uncertainty */ 
/* */ 
earthwork cost(flat no bedrock,[0,60]). 
earthwork_cost(flat__bedrock,[120,140]). * * * etc *** 
earthwork cost(unknown,[0,840]). 
/* */ 
foundation cost(drumlin, [312,364]). 
foundation_cost(sandy_till,[318,371]). * * * etc *** 
foundation cost(unknown,[0,700]). 

/* 

these are used for vehicle operating costs 
*l 
grade factor(car,flat no bedrock, 1). 
grade factor(car,flat bedrock, 1). * * * etc *** 
grade factor(truck,unknown,[1,2]). 

/* 
used for accident cost estimates: 
(from the AASHO red book, these values represent km traveled per 
accident dollar spent.) 
*/ 
accident_cost_factor(Lanes,[880,1025]) :- Lanes =< 2, !. 
accident cost factor( ,[762,898]) :- !. 



/* 

used for environmental impact assessment: 

waterbody importance(water supply, 1). 
waterbody importance(wildlife support,0.7). * * * etc *** 
waterbody importance(unknown,[0,1]). 
/* * j 

sensibility to pollution(urban,10). 
sensibility to pol!ution(forest,5). *** etc *** 
sensibility to pollution(unknown,[2,5]). 
/* */ 
visual context(Point,C) :-

region data(Point,land use(U)), 
visual c(U,C). 

visual context( ,C) :-
visual c(unknown,C). 

visual c(urban,0.16). 
visual c(cemetery,[0.12,0.15]). *** etc *** 
visual c(unknown,[0.12,0.36]). 
I * * j 
species importance(deer,1). 
species importance(geese,0.8). * * * etc *** 
species importance(unknown, [0.4,1]). 

/* 
used by explanation facilities to spare the user some obvious 
conclusions and save time/stack/patience resources. 
*/ 
obvious(in area( , ), 

$ Well, the point IS in the area, isn't it?$). 
obvious(member( , ), 

$ Oh God, are you an engineer?$). 
obvious(append( , , ), 

$ Yes, I agree. This is really complex...$). 
obvious(fuzzify( , ), 

$ see Prade & Dubois, "Operations on fuzzy numbers".$). 
obvious(fuzzy add( , ), 

$ see Prade & Dubois, "Operations on fuzzy numbers".$). 
obvious(fuzzy add( , , ), 

$ see Prade & Dubois, "Operations on fuzzy numbers".$). 
obvious(fuzzy subtract( , , ), 

$ see Prade & Dubois, "Operations on fuzzy numbers".$). 
obvious(fuzzy multiply( , , ), 

$ see Prade & Dubois, "Operations on fuzzy numbers".$). 
obvious(fuzzy divide( , , ), 

$ see Prade & Dubois, "Operations on fuzzy numbers".!). 



obvious(fuzzy power( , , ), 
$ see Prade & Dubois, "Operations on fuzzy numbers".$). 

obvious(series present worth( , , , ), 
$ This is fuzzified engineering economics.$). 

obvious(scale 0 to 1 ( , , , ), 
$ This is fuzzified arithmetics.$). 

/* 
Limits: these values are used to scale the calculated attributes 
Will be adjusted by the system if the evaluation predicated are 
changed, but won't be automatically saved. 
The format is 'limits(impact type,Best, Worst possible value)'. 
*l 

I* Environmental Attributes */ 
limits(physical,0,8455). 
Iimits(biotic,0,3.3). * * * etc *** 
limits(land value,0,1). 



USER INTERFACE MODULE 
/* 
Hla.Ari 
(Highway Location Assistant) 

User Interface -• Saves lots of typing too. 
It reconsults all modules and handles the main computation blocks. 

written in Nov.86 by Bernardo de Castilho 

*l 

I* 
This predicate might handle all the menu-driven user interface. 
Alternatively, the user can exit to Prolog and query the system 
directly. 
*l 

init :-
ds, 
write($Consulting System Files... $), 
write($lnference, $), [-infereng], 
write($Utilities, $), [-utility], 
write($Knowledge $), [-kbase], 
nl, 
write($Consulting Data File... $), 
write($test.pdf$), [-'test.pdf], !. 

point(Point) :-
evaluate point(Point,lmpact List,Aggregated Impact), 
display point impacts(Point,lmpact List,Aggregated Impact), !. 

segment(P1,P2) :-
/* find all point impacts */ 
get central point(P1,P2,CentralPoint), 
findall(l,evaluate_attribute(CentralPoint,l),RPIL), 
gc(full), 
/* find all linear entity impacts */ 
findall(Limp,evaluate_linear(P1,P2,Limp),RLIL), 
gc(full), 
/* put them all together */ 
merge list( RPIL, RLl L, Rl L), 
scale_list(RIL,SIL), 
gc(full), 
/* aggregate */ 
aggregate impacts(SIL,LAG), 
distance(P1,P2,D), 
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fuzzy multiply(LAG,D,Total), 
gc(full), 
display seg impacts(P1,P2,SIL,Total), !. 

get_central_point(p(X1,Y1),p(X2,Y2),p(X,Y)) :-
X is abs((X2-X1)/2), 
Y is abs((Y2-Y1)/2), !. 

display point impacts(Point,lmpact List,Aggregated Impact) :-
els, 
write($ 

+ - + 
| * * * Point Impact Assessment * * * 

+ + 
| Point: 

+ + + 
I Impact Type |0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

+ + + + + + + + + + + + $ 
), 
tmove(4,12), write(Point), 
tmove(7,80), nl, 
display impact list(lmpact List), 
display total(Aggregated Impact), !. 

display seg impacts(P1,P2,Impact List,Aggregated Impact) :-
els, 
write($ 
+ + 
| * * * Highway Segment Impact Assessment * * * 

+ + 
| Segment: 

+ + - + 
I impact Type |0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

+ + + + - — + + - — + + — ~ + + - — + - — + $ 

), 
tmove(4, 14), print([P1,$ - $,P2]), 
tmove(7,80), nl, 
display impact list(lmpact List), 
display total(Aggregated Impact), !. 

display impact list([]) :- i 



display impact list([Head|Tail]) :-
Head =.. [Functor,Value], 
/* heading *l 
string term(S, Functor), 
string length(S,Len), 
Tab is 13-Len, 
print([$ | $,S,tab(Tab),$3$]), 
/* bars *l 
fuzzy_multiply(Value,58,[Vm,Va,Vb]), 
Lo is integer(Vm-Va), 
Hi is integer(Vm+Vb), 
Av is integer(Vm), 
!/ 

(' 
for(X,0,58), 

writeone(X, Lo, H i, Av), 

fail 

Hi>58, write($ + $) 

write($|$) 
), 
nl, 
display impact list(Tail). 

writeone(X,_,__,X) :- write($ $), !. 
writeone(X,Lo,Hi,Av) :-

( 

X < Lo 

X > Hi 
), 
write($z$), !. 

writeone(X, , ,Av) :-
X < Av, 
write($.$), !. 

writeone(X, , ,Av) :-
X > Av, 
write($/$), !. 

display_total(X) :-
print([$ $, 

$ + + + + + + + - — + + — -

| ** Total | 

+ + 
]), 
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tget(L,_), 
dec(L,L1), 
tmove(L1,20), 
write(X), 
tmove(L,80), !. 

SEARCH MODULE 
/* 
Module SEARCH 
Search.Ari 

This is a Prolog implementation of a modified version of Dijkstra's 
shortest path algorithm. 
The links are dynamically generated, the search area and step 
size are defined by the user. 

written in Nov.86 by Bernardo de Castilho 
(update 3.12: dynamic link generation) 
(update 4.12: ported from Turbo to Arity) 
(update 15.01: avoid redundant candidate evaluation) 

*l 

I* 
This predicate checks the validity of the endpoints, forms the 
search tree and displays the final route. 
*/ 
search path(Step,Origin,Destination) :-

search area(A), /* make sure endpoints 
*l 

in area(Origin,A), /* are in search area */ 
in area(Destination,A), 
retractall(link(_,_,_)), 
assertz(link(Destination,Destination,0)), /* dummy link *l 
retractall(step( )), 
assert(step(Step)), 
retractall(tree end( )), 
assert(tree end(Origin)), 
path(Destination/Origin), 
j 
nl, 
write($*** Path located$), nl, 
link( ,Origin,l), 
print([$*** Cumulative Impact is $,l,nl]), 
go(Origin,Destination), !. /* display route */ 

search path( ,0 , ) :-
search area(A), 
not in area(0,A), 



print([nl,$The specified origin ($,0,$) is not in the search area.$]), 
fail. 

search path( , ,D) :-
search area(A), 
not in area(D,A), 
print([nl,$The specified destination ($,D,$) is not in the search area.$]), 
fail. 

search path( , ) :- !. 

/* 
This predicate interprets the route. 
*/ 

go(P,P) :- print([nl,$*** That's it!$,nl]). 
go(P1,P2) :-

Iink(Next,P1,_), /* reverse! *l 
print([$Coing from $,P1,$ to $,Next,nl])( 

keyb(_,_), 
go(Next,P2). 

/* 
This one creates a tree of 'links(Origin,Dest,Cum Impact)'. 
*/ 
path(Origin,Destination) :-

repeat, 
[! 

print([nl,$Expanding path...$,nl]), 
expand path, /* expand tree 
gc(full), 
print([$Path Expanded...$,nl]) 

!], 
Iink( destination, ). /* repeat if not done *l 

path(_,_) :- !. 

expand path :- /* find candidates and impacts *l 
find link(From,To,lmpact), 

print([$Asserting $,From,$ -> $,To,$ ($,lmpact,$)$,nl]), 
assertz(candidate(From,To,lmpact)), 

fail. /* find all possible links *l 
expand path :- /* change their status */ 

find lowest impact(lmpact), 
print([$Lowest impact is : $,lmpact,nl]), 
candidate(From,To,lmpact), 
assertz(link(From,To,lmpact)), 
retract(candidate(From,To,lmpact)), 
print([$*** New Link: $,From,$ -> $,To,$ ($,lmpact,$)$,nl]), 
fail. /* repeat for all candidates *l 

expand path :- !. 
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find lowest impact(lmpact) :-
findall(l,candidate( , ,I),L), 
sort(L,[lmpact|Rest]). 

find link(From,To,lmpact) :-
link( ,From, ), 
find dest(From,To), 
not link( ,To, ), 
not candidate(From,To, ), 
link(_,From,PCI), 
evaluate(From,To,Linklmpact), 
Impact is Linklmpact + PCI. 

find_dest(p(X1/Y1),p(X2,Y2)) :-
step(Step), 
tree end(p(Xe,Ye)), 
distance(p(Xe,Ye),p(X1 ,Y1 ),D), 
( 

D =< Step, 
X2 is Xe, 
Y2 is Ye /* end within reach, try it *l 

X2 is X1+Step, 
Y2 is Y1 

X2 is X1-Step, 
Y2 is Y1 

Y2 is Y1+Step, 
X2 is XI 

Y2 is Y1-Step, 
X2 is X1 

X2 is X1+Step, 
Y2 is Y1+Step 

X2 is X1-Step, 
Y2 is Y1-Step 

Y2 is Y1+Step, 
X2 is X1-Step 

Y2 is Y1-Step, 
X2 is X1+Step 



search area(A), 
in_area(p(X2,Y2),A). 

evaluate(p(X1,Y1),p(X2,Y2),Z) 
XC is (X1+X2)/2, 
YC is (Y1+Y2V2, 
distance(p(X1,Y1),p(X2,Y2), Length), 
/* find all point impacts */ 
findall(l,evaluate_attribute(p(XC,YC),l),RPIL), 
/* find all linear entity impacts */ 
findall(Limp,evaluate_linear(p(X1,Y1),p(X2,Y2),Limp),RLIL), 
/* put them all together */ 
merge_list(RPI L, RLIL, Rl L), 
scale_list(RlL,SIL), 
gc(full), 
/* aggregate */ 
aggregate impacts(SIL,LAG), 
fuzzy multiply(Length,LAC,[Z, , ]), 
gc(full), 
print([$ * * * Z: $,Z,nI]), !. 


