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ABSTRACT

Knowledge-based systems are increasingly popular in a variety of fields. These
systems may provide an elegant and comprehensive framework for the solution of

ill-structured, complex problems that traditional computer systems cannot handle.

This paper describes the implementation process of a prototype knowledge-based
system designed to help in the task of locating and evaluating highway corridors,
taking into account environmental, social and economic factors. The applicability of
the approach to other engineering problems is also analyzed as well as the relative

merits of alternate implementation tools.

The most significant aspects of the system presented are its transparent reasoning,
provided by extensive explanation facilities, the original spatial data representation
structures it uses and the implementation of fuzzy operators to deal with uncertain
information. The system presented has a comparatively reduced knowledge base and
therefore does not achieve the level of performance expected from experts in the
field. However, it does demonstrate how relatively new Artificial Intelligence
techniques can be used in conjunction with conventional techniques to model a

typical Civil Engineering problem.
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1. INTRODUCTION

Recently developed techniques in the Artificial Intelligence field hold the promise of

elegant and natural solutions to ill-structured, complex problems in many fields.

While there is abundant literature describing the general principles involved and
existing systems, their domain-specific nature currently prevents off-the-shelf solutions
from being useful except for relatively simple applications. As a result, most practical
systems have to be especially designed to accommodate the unique characteristics

of each particular problem.

The major objective of this study is to investigate the applicability of the
knowledge-based éystem approach to highway corridor location. To achieve this, a
prototypical rule-based system was implemented. The Highway Location Assistant
system (HLA) incorporates many of the techniques that can be found in the
literature and some that were developed especially for this particular application. The
manner in which these procedures are combined into a complete system is also
described, for this is a point of paramount importance on which literature is

currently scarce.

HLA consists of several modules, some of which are purely knowledge-based and
others that implement conventional procedures. The system has, therefore, a hybrid

nature. This demonstrates that, rather than replacing existing tools and procedures,
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knowledge-based modules can complement them and enhance their usefulness.

Two distinct topics are discussed in this paper: highway corridor location procedures
and knowledge-based problem solving techniques. The major emphasis is placed on
the latter. Highway corridor location is used as an example of a typical ill-structured
civil engineering problem. The techniques currently employed to solve it are
described to demonstrate the potential advantages of the new approach and to

provide a necessary. insight on how HLA actually works.

1.1. The Highway Corridor Location Problem

The process of selecting a highway corridor involves varying degrees of expertise in
many fields, as well as political factors. Each possible route has associated
economic, environmental and social impacts. These impacts can be positive or
negative, and to describe each one it is necessary to assess its extent and

importance.

There are standard procedures for the assessment of the extent of many types of
impacts (e.g. construction and operating costs), but the relative importance of each
of those vaiues has to be determined by experts. Furthermore, some types of
impacts (such as aesthetic quality) are subjective by nature and, therefore, difficuit

to assess and justify. As a result, only seasoned practitioners are able to use
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existing routing systems. Most of these are useful engineering tools, but cannot

provide a designer with advice or demonstrate how they obtained their results.

1.2. Knowledge-Based Systems

Computers have traditionally been used to solve problems that are formalized and
analytical in structure. The requirement of explicit formalization of the problem into
detailed, sequential statements has restricted the use of the computer to problems
that have well understood, systematic solution procedures. The interest in expert
system techniques was led by the desire to use the computer to aid in the

solution of less structured, formalized problems.

The term “knowledge-based systems" refers to systems which contain a substantial
amount of knowledge and help solve unstructured classes of problems without
necessarily achieving expert level performance. It is preferred over the term "expert
systems"” in this paper because it encompasses a wider class of applications.
Additionally, the latter term seems to give some people the wrong connotation that

these systems will also learn as well as human experts do.

Domain independent problem solving strategies are commonly referred to as weak
methods and may lead to combinatorial explosions while searching for solutions due

to a potential lack of focus. Knowledge-based systems, on the other hand, can be
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considered strong problem solvers, since they employ knowledge which is applicable

to one specific field only (domain knowledge).

Current knowledge-based systems normally combine two basic problem solving
approaches: derivation and formation. Derivation involves selecting a solution that is
most appropriate for the problem at hand from a list of predefined solutions. This
is the more common approach, supported by many commercial "expert system
shells". 1t is accomplished by traversing a tree, using rules to select the appropriate

branches and reaching the final solution at the bottom of the tree.

The formation approach involves forming a solution from eligible components stored
in the system’s knowledge base. It is more complex than the derivation approach,
since it involves selecting solutions and combining them. The domain specific nature
of this type of procedure makes most of the literature on the subject either very

general or too specialized to be useful in other applications.

1.3. Advantages and Limitations

There are several reasons for the rapidly increasing popularity of knowledge-based

systems:

Knowledge-based systems help solve ill-structured problems for which systematic
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solution procedures do not exist.

They can make expertise and knowledge available on a twenty-four hour basis,
whereas human experts are obviously less available. Furthermore, multiple replication
can make this knowledge available over dispersed geographical areas. Rather than
replacing experts, these systems usually allow them to allocate their time more

efficiently.

One of the greatest benefits brought by such systems is the organization of
knowledge. 1t has been observed in the past that the rigours of extracting and
adapting knowledge to a computer system has enforced a discipline on the

organization and documentation of knowledge.

By using these systems and the explanation facilities usually incorporated into them,
technicians can gain new insights into the problem and, sometimes, emulate the
performance of an expert.

Furthermore, knowledge that is captured in a computer system can be retained
indefinitely. Human knowledge is a perishabie asset, whereby experts can be lured
away by other companies or institutions, or subject to accident or illness.

Of course these systems have many limitations that should be considered as well.

A common misconception that people have about knowledge-based systems is that
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they can somehow provide "magical" approaches to solving complex problems.
Knowledge-based systems can be thought of as models of the expertise of the
practitioners available in the field. In order to create such models, it is obvious

that there must be genuine human experts capable of performing the tasks.

Knowledge-based systems cannot be built quickly. Systems .designed to solve
moderately complex problems currently take five to ten person-years to develop.
This time is being reduced, however, as more efficient techniques and development

tools become available.

The central postulate of knowledge engineering is that systems achieve expert
performance from rich, diverse knowledge bases rather than from clever algorithms.
Therefore, the knowledge and reasoning methods used by the human practitioners
have to be accessible. This is the pgreatest difficulty associated with the
implementation of knowledge-based systems, since, generally, the more skilied the
experts become in their fields, the less able they are to explain how they perform
and use their skill. Experts tend to rely on unstructured, qualitative knowledge that
can be described as “intuition". Still, significant insights may be gained from
interviews with practitioners and from the literature of normative and descriptive

theories.

Another difficulty associated with development of the knowledge base is the
potential reluctance of skilled practitioners to divulge their "tricks of the trade",

resulting from the perception that their preeminence in the field may be
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jeopardized.

The domains in which these systems perform have to be well defined. if they are
too broad, the magnitude of the task will be too great and development will
become very difficult. On the other hand, if the specified domain is too limited,

the usefulness of the system will be compromised.

1.4. Anatomy of a Typical Knowledge-Based System

The typical architecture of knowledge-based and conventional computer systems are
noticeably different, as depicted in Figure 1. While most conQentional systems are
composed of a set of programs and the data they use as input, knowledge-based
systems can often be logically divided into three parts: the inference engine, the
knowledge base and the database. These parts are described in the following

sections.

1.4.1. Inference Procedures

The inference engine module is relatively domain-independent. It contains enough
logic to interpret the information in the knowledge base. In addition, it will usually
provide explanation facilities, apply uncertainty propagation mechanisms and manage

the database.
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Inference Engine

v

Knowledge Base Database

Knowledge-based Systems

Program —P Database

Conventional Systems

Figure 1. Different Architectures

Inference  procedures are wusually described as forward or backward chaining
inference. Backward chaining, or goal-driven inference, is appropriate when there is a
reasonable number of possible final answers to the problem under study. Classical
examples are identification systems, such as programs that identify diseases based on
symptoms or the chemical structure of substances based on their properties. it has
been suggested that experts follow a goal-driven path to the solution of a
problem. Figure 2 depicts a backward chaining, or goal-driven inference process:
based on initial data, hypotheses are formulated and tested untii an acceptable

answer is found.
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Figure 2. A Backward-Chaining Inference Engine
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Forward chaining, or data-driven inference, is practical when combinatorial explosion
creates a seemingly infinite number of potentially correct answers, such as possible
configurations of machines. Systems that use this mechanism are sometimes called
production systems. The process involves drawing conclusions from the available
data, adding these conclusions to the database, checking if the expanded database
provides a solution to the problem and possibly repeating these steps several times.

Figure 3 depicts a forward-chaining process.

Many problems require a combination of these approaches (Mixed Initiative systems).
Maher [25] demonstrated how a simpie engineering problem can be solved using
either method. Merit [26] discussed .how Prolog’s native, backward chaining
inference engine, can be used to effectively implement a data-driven inference

system.

1.4.2. Explanation Capabilities

Knowledge-based systems are designed to solve complex and poorly structured
problems that would otherwise have to be solved by a human practitioner rather
than by conventional programs. Like human practitioners, these systems must pass
through a relatively lengthy apprenticeship stage during which their knowledge bases
are expanded and modified. Even after they have achieved expert levels of

performance, they are capable, like all human experts, of making mistakes.
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Use rules to assert new facts
from the ones in the
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(y New facts were
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n Solution has been y
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SUCCEED FAIL

Figure 3. A Forward-Chaining Inference Engine
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This is the basic reason why virtually all knowledge-based systems provide
explanation facilities. By analyzing their reasoning, human experts and knowledge

engineers can improve their performance.

At first glance it would seem that conventional systems have a distinct advantage
over expert systems in this regard. However, this advantage is illusory. Conventional
programs for performing complex tasks, like those suitable f(')r knowledge-based
systems, would be subject to the same mistakes. In addition, their mistakes would
be very difficult to remedy since the strategies, heuristics and basic assumptions
upon which these programs are based will not be explicitly stated in the program

code [37].

1.4.3. Knowledge Representation

The knowledge base is usually the most time-consuming and critical module to
develop. To be effective, it has to be able to represent a sufficient amount of
problem-solving expertise pertinent to the domain of interest, in a consistent and

relatively easy to expand manner.

The knowledge base consists of knowledge representation structures and, unlike the
conventional database, contains general domain information, i.e., it is not restricted
to any particular problem. Development of knowledge representation structures is

currently a popular field of Artificial Intelligence research. The effectiveness of a
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given structure depends on how the information it contains will be used and on
the nature of the knowledge it represents. Some types of commonly used structures

are briefly described below.

1.4.3.1. Predicate Calculus

Predicate Calculus requires that facts and relationships be presented as [F-THEN
structures. Rules of inference operate upon these to generate new true facts. This
type of knowledge representation has a formal mathematical basis in Predicate

Calculus Theory.

The main feature of this type of knowledge representation s that built-in
mechanisms associate rules as needed and can derive facts that are not explicitly
stated in the database. For example, if rules state that construction costs associated
with hilly terrain are moderate and that a certain area has hilly topography, the
system can automatically infer that the éonstruction costs for that area will be

moderate.

The high level language Prolog efficiently implements predicate logic. Since this is
the type of knowledge representation structure used in HLA, a more detailed
description will be provided in subsequent chapters. An example of a hypothetical
Prolog rule for determining whether the use of noise attenuation barriers should be

considered at a certain location (Point) is shown below:
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‘consider__noise__barriers(Point) :—
technically_ feasible(noise__barrier,Point),
financially _feasible(noise__barrier,Point),

high__noise__annoyance _levels(Point).

technically _feasible(noise__barrier,X) :—
not accessibility _problems(Point),
visual_disruption(noise__barrier,X,VisDsrupt),
noise__attenuation(noise__barrier,X,NoiseAttn),

VisDsrupt < NoiseAttn.

financially _feasible(noise__barrier,X) :—
noise__barrier__cost(X,BarrCost),
totalproject _cost(ProjCost),
BarrCost / ProjCosi < xx%.

high__noise__annoyance__levels(X) :—
close__to(hospital, X)
; /* this means "or" */
population__density(X, high),
dBA__estimates(X, high).

1.4.3.2. Inference Networks or Semantic Nets

The nets are graphs formed by nodes that represent concepts, events or objects
and links that specify functional and relational properties of the nodes. This
formalism has been shown to be flexible and powerful as well as intuitively

attractive from a psychological point of view.
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During consultation, hypotheses or data are inserted into some of the nodes.
Control mechanisms can then be used to propagate the information along the links,

deriving conclusions and possibly detecting data inconsistencies.

Figure 4 represents a simple inference network that embodies the same knowledge

described by the Prolog rule above.

1.4.3.3. Frames

Frames typically have a number of features that distinguish them from other
representational systems: they are organized into hierarchies in which frames inherit
information from their "ancestors", in an object-oriented type of environment. They
have sub-units which can take on values or describe, in general terms, constraints
on what these values can be. Frames are well supported by the high level

language LISP.

1.4.3.4. State-Space Representation

This type of representation involves applying a set of operators to generate some
or all the possible states following the current one. The resulting tree structure is
then examined and an algorithm is applied to select the most desirable course of

action. This scheme has been widely used by game-playing systems.
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—1 High dB(A) estimates

Figure 4. An Inference Network
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1.5. Application to the Highway Corridor Location Problem

Corridor routing problems involve varying degrees of expertise in several different
‘fields. The interdisciplinary approach currently used in major projects can be
illustrated by the fact that the Kentucky Department of Transportation EAP
(Environmental Action Planning) maintains an in-house staff with technical skills in
about 40 disciplines [43].

There is no algorithm or formula which produces a highway corridor evaluation
report automatically, based on the project data and characteristics of the region
involved. There are, however, heuristic procedures that can aid the analyst in
understanding the issues involved, and these «can be supported by technical
procedures. Pearse and Rosenbaum [66] describe a system under implementation that
uses heuristics and default reasoning to evaluate the geological aspect of proposed

road corridors.

Knowledge-based systems applied to the highway corridor location problem could aid
the tasks of assessing impacts of alternative routes and justifying the choices made
in a consistent way. The ability to make decisions and to justify them by displaying
the rules used is considered much better than the more common "black-box"
procedures, for it adds credibility to the choices made and allows for critiques and

feed-back. In fact, explanation facilities are wusually one of the most important
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features of knowledge-based systems. Since the problems being addressed are usually
ill-structured by nature and involve non-systematic procedures, it becomes essential
to provide the user with a justification for the results obtained ("how?" questions)
and how any information that is requested can help solve the problem ("why?"

questions).

The spatial character of the corridor location problems constitutes one of the
greatest difficulties related to this type of problem. Current knoWledge-based
techniques are time and storage intensive, and efficient processing of spatial data is
one of the fields still in a research phase. For example, heuristic spatial search
procedureé have been developed. They save computational effort but provide no
guarantee’ the solution obtained is the best possible. .Conventional ghortest path
algorithms, on the other hand, yield the best possible solutions but are extremely

time consuming.

The relative importance of different impact dimensions depend on the project’s
priorities and characteristics and on the concerns of the community. Trade-offs have
to bé established between pairs of possible dimension impacts, such as accessibility
increases against noise and fumes pollution or construction costs against wildlife
preservation. Utility theory describes procedures for evaluating these trade-offs [53].

HLA supports these coefficients but does not evaluate them.

Sets of rules were also developed to assess impact magnitudes. Examples of this

type of knowledge include determining the potential for erosion based on slopes
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and land cover or changes in construction costs according to slopes, soil types and

presence of water bodies.

Finally, inexact reasoning mechanisms enable the user to use expected ranges of
values or certainty coefficients as input data. The quality—in terms of precision—of
the solutions obtained using the system reflects the precision of the information
us'ed in the analysis. This feature enables periodic solution refinements and is
particularly important in engineering problems where the quantity of data tends to

increase as time and money are spent during the execution of a project.



2. LITERATURE REVIEW

Two quite distinct topics were investigated in the review of the literature:
knowledge-based systems and highway corridor location. While extensive, the
literature on knowledge-based systems tends to describe successful implementations
or is limited to the very general principles involved in the approach. This situation
is partly due to the fact that expert systems are domain-specific by nature and
partly because the techniques involved are relatively new. Highway corridor location,
on the other hand, is an old problem. Many different methodologies have been

developed and the literature on the subject is relatively abundant.

2.1. Knowledge-Based Systems

According to Sterling [33,34], building knowledge-based systems s currently an
engineering skill. Experience in the last decade has led to a collection of working
programs and an accumulation of accepted wisdom. This is found, for example, in
the existence of commercial "expert-system shells". However, there seems to be no

accepted methodology, and the literature tends to describe what is rather than

prescribe what should be.

20
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2.1.1. Categories of Knowledge-Based Systems

Stefik et al. [32] divided expert tasks into several categories and pointed out the

fundamental requirements and key problems associated with each one.

One of the basic tasks described in that paper is planning, defined as “creating
plans that can be carried out to achieve goals without consuming excessive
resources or violating constraints". If goals conflict, the planner has to establish
priorities. If planning requirements or decision data are not fully known or change
with time, the planner must be flexible and opportunistic. The main difficulties
associated with planning systems are related to the size and complexity normally
associated with planning tasks. If the details are overwhelming, the planner must
focus on the most important considerations. In complex problems, there often are
interactions between plans for different sub-goals. Uncertainty is usually present in

this type of analysis and preparation for contingencies is required.

Another type of procedure described is design. This involves specifying objects that
satisfy particular requirements. The requirements are similar to those of planning
tasks. >One of the most serious obstacles that have to be faced in this case is that
there is usually no comprehensive theory that integrates constraints with design
choices. In addition, the system must be able to cope with interactions between
sub-problems, record justifications for design choices and be able to explain its

decisions later.



LITERATURE REVIEW /22

Design tasks must also address the problem of representing spatial data. Waterman
[37] stresses the previously mentioned fact that excessive amounts of memory may
be necessary to track spatial relations between groups of objects. Clever

representation techniques are required to overcome the deficiency in this area.

2.1.2. Implementation Tools

The current popularity of rule-based systems for the solution of many types of
practical problems is reflected on the number of implementation tools available for
a variety of hardware environments. Wigan [39] lists over a hundred commercial
software packages available for small systems, mostly "expert system shells" and LISP
or Prolog compilersf/interpreters. The shells are high level tools and do not offer
great flexibility. For ambitious projects the capabilities of a full-featured language are

recommended.

Many authors consider the Prolog language particularly well suited for expert system
implementation (8,33,34]. The language contains its own backward-chaining inference
mechanism and a powerful declarative language in which to express rule-based
knowledge. It has the capability of dynamically asserting new rules generated by the
system itself during a consultation. It is reasonably easy to write a Prolog
meta-interpreter (that is, a Prolog interpreter written in Prolog itself) and then
upgrade it to provide the features expected from the inference engine, such as

explanation  facilities and user query routines. Simple examples of such
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meta-interpreters can be found in the literature [33,34].

The development of the knowledge base, including the choice of the knowledge
representation scheme, is clearly the most difficult and time-consuming part of the
task of developing an expert system. The inference engine, or rule-interpreter, can
be especially designed or an off-the-shelf tool can be used. Commercial shells,
however, tend to limit the flexibility with which knowledge can be expressed. The
conclusion is that the inference engine should be tailored to fit the knowledge
base, and not the opposite. Building one’s own interpreter is not a time-consuming

process, especially in contrast with the knowledge acquisition phase.

2.1.3. Inference and Explanation Capabilities

The basic reason for providing explanation facilities is to make the reasoning of the
program transparent. This is extremely useful because it allows for discussion and
analysis of the solution process. By analyzing the explanations provided by the
system, an expert can suggest improvements to the knowledge base and

inexperienced technicians can follow the reasoning of a seasoned practitioner.

Some types of explanations commonly mentioned in the literature are "how?",
"why?" and "why not?", and the basic principle is always to keep a trace of the

solution process and interpret it appropriately [33,34].
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While expert shells normally provide explanations automatically, a number of

techniques can be used to accomplish this task from high level languages.

Clark and McCabe [8] suggest adding an extra argument to each Prolog rule to
keep the trace structure. Thus, adding an explanation facility to an existing system

would mean changing every rule in the knowledge base.

A better approach for providing explanations is based on the previously discussed
meta-interpreter approach and described by Sterling and Shapiro [33,34]. A standard
meta-interpreter is modified to “"remember" how a solution was reached by keeping
a trace of the program execution. Once the proof is available, it can be
interpreted and displayed as needed. This mechanism is extremely elegant and -
preserves the modularity of the system. Furthermore, the authors describe how it

can be adapted to provide hierarchical "why" explanations.

2.1.4. Processing Uncertain Information

Knowledge-based systems usually have to deal with uncertainty. This is partly due to
the fact thaf they often employ heuristic rules, inexact by nature, in the problem
solving process. Some of the most important sources of uncertainty are described
by Bonissone and Tong [5]. Uncertainty may arise from a lack of understanding of
the processes involved in an analysis or from their intrinsically uncertain physical

behaviour. Examples of the former are ill-defined concepts and weak implications in



LITERATURE REVIEW /25

the knowledge base, which occur when the expert or model builder is unable to
establish a strong correlation between premise and conclusion. Another potential

source of uncertainty is related to inaccuracies during data input or output.

Many researchers have worked in the field of uncertainty representation and
propagation, and several approaches have been developed that allow systems to
incorporate and handle uncertain information. The most familiar tools for dealing
with uncertainty are the Bayesian operators (e.g. PROSPECTOR [17]), which use an
effective likelihood ratio to quantify the strength of a given rule. This ratio

measures the sufficiency of a given piece of evidence to prove a_ hypothesis.

One of the criticisms advanced conceming this approach is that the single value
used to quantify uncertainty tells the system nothing about its precision. As far as
the Bayesian operators are concerned, to say that the probability associated with an
event is 0.5 might mean either 0.500 plus or minus 0.001 or 0.5 plus or minus

0.3, two very different pieces of information.

Another criticism against the expression of uncertain subjectivity with the use of
Bayesian probability is that it cannot be used to deal with uncertainty in an
efficient manner. In other words, Bayesian theory cannot distinguish between the
lack of belief and disbelief, because it requires that P(A occurring) + P(A not
occurring) = 1. A single value would combine evidence for and against the

proposition without indicating how much there is of each.
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The Certainty Factor approach (used in MYCIN [17]) is based on the Confirmation
theory. It employs two separate values that indicate the belief and disbelief in the
proposition. This approach is still subject to the criticism regarding precision, since
both numbers are point values. 1t does, nevertheless, overcome the second
objection mentioned. The system, however, suffers from a new disability. Since the
two values are independent, they cannot be interpreted as probabilities and
therefore there is no foundation of theory underpinning and justifying the

interpretation and weighing for separate belief and disbelief measures [29].

A serious drawback of the Bayesian and Certainty Factor approaches is that they
would generally require the complete joint prpbability distribution of all propositions.
According to Quinlan [29], "... asking the system designer to specify separate values
for each possible combination of evidence relevant to a proposition would overtax
his knowledge and presumably his patience...". Some systems sidestep this problem
by making conditional independence assumptions. These provide additional constraints
that simplify the uncertainty propagation mechanism. In practice, however, these

assumptions might not always hold and can lead to wrong and even absurd results.

Other types of logic have been proposed. Quinlan [29] described a system that
does not assume variable independence, although it does account for it when
specifically instructed. The conclusions obtained using this system, although generally
less powerful than the ones given by the Bayesian operators, will always be correct
(provided, of course, that the data and knowledge bases do not contain mistakes).

An extra advantage of Quinlan’s approach is that it allows for knowledge and data
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consistency checks.

Some authors claim that the ideal approach would be to combine different

uncertainty representation mechanisms and logics to fit the knowledge available [39].

The mathematical approaches have also been extended to fuzzy statements. Although
fuzzy reasoning is not a rigorous approach, it provides an approximate reasoning
process which is compatible with human intuition. The main advantage of fuzzy
reasoning as an inference process is that it can yield plausible answers even in
problems in which the conditions required for the mathematical approaches are not
satisfied.  Application of fuzzy reasoning generally involves the definition of
membership functions and aggregation ruleé based on joining or intersecting fuzzy
subsets. Aggregation rules can be defined for credibility and possibility, and methods

that assess linguistic truth values have also been developed [18].

Highway location tasks involve the use of estimates and forecasts. The information
available is frequently expressed in terms of tolerance intervals and is usually
unknown (especially in early stages of a project) rather than intrinsically uncertain.
Fuzzy logic is «currently the most satisfactory for dealing with this type of

uncertainty and was, therefore, selected for HLA.

Finally, it should be noted that, even though inference under uncertainty is currently
one of the most popular topics among artificial intelligence researchers, consistent

treatment of uncertainty has to date not