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ABSTRACT

The effects of wave directionality on the loads and
motions of long structures is investigated in this thesis.

A numerical method based on .Green's theorem is
developed to compute the exciting forces. and hydrodynamic
coefficients due to the. interaction of a regular oblique
wave train with an infinitely long, semi-immersed floating
cylinder of arbitrary shape. Comparisons are made with
previous results obtained using other solution techniqUes.
The results obtained from the solution of the oblique wave
diffraction problem are used to determine the transfer
functions and response amplitude operators for a structure
of finite length and hence the loads and amplitudes of
motion of the structure in short-crested seas.

The wave loads and body motions in short-crested seas
~are compared to corresponding results for long-crested seas.
This is expressed as a directionally averaged, frequency
dependent reduction factor for the wave loads and a response
ratio for the body motions. Numerical results are presented
for the force reduction factor and response ratio of a long
floating box subject to a directional wave spectrum with a
cosine power type energy spreading function. Applications of
the results of the present procedure include such 1long

structures as floating bridges and breakwaters.
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1. INTRODUCTION

1.1 GENERAL

.With the growth in the development of offshore
resources, thére has been a need for the safe and economic
design of various offshore structures. An important aspect
in the design of these structures involves the determination
of both the exciting forces due to wave interaction with a
fixed body and the résponse of the structure. The structure
should be designed not only to withstand the the loads from
the complex ocean environment, but in addition 1its motions
generally have to be within acceptable limits.

The traditional approach to the design of offshore
structures often assumes the incident wave field to be
unidiréctional or long-crested. Real seas are, however, both
random and multi-directional, i.e. the waves not only have
different amplitudes and frequencies but also may approach a
structure from different directions. Thisvproperty is also
sometimes referred to as wave short-crestedness.

The directionality of the waves can significantly
influence the 1loads and motions experienced by the
structure. The wuse of directional spectra in wave force
calculations often leads to a reduction in the computed
forces, compared to the case of long?crested waves. This
could lead to significant savings in construction costs. It
could also affect decisions as to whether designs are

accepted or rejected in feasibility studies. With the recent
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developments in methods of determining directional wave
spectra {Borgman (1969), Mitsuyasu et al (1975), Leblanc and
Middleton(1982)) and the building of laboratory wave basins
capable of generating airectional waves, the use of
directional spectra models is soon becoming an established
part of the offshore design process.

When a wave train.is incident upon'an infinitely long
semi-immersed structure, the structure responds in three
degrees of freedom : heave (vertical motion), sway (beamwise
motion), and roll (angular motion about the 1longitudinal
axis). There are not only exciting forces due to the
presence of the waves but also hydrodynamic forces
associated with the response of the structure. For slender
structures, the presence of the body does not significantly
affect the ‘iﬁcident wave kinematics and Morison's equation
(Morison et al ,1950) is often used to estimate the exciting
forces. If the structure 1is large enough to diffract the
incident wave field, flow separation effects are often
neglected and the problem 1is solved using potential‘flow
theory (Kellogg,1929).vThe complete problem is nonlinear and
is wusually linearized by assuming a small amplitude wave
train. |

A numerical method based on Green's theorem is used in
this thesis to solve for the exciting fofces and
hydrodynamic coefficients of an infinite semi-immersed
cylinder of arbitrary shape in oblique seas. The results are

first extended to structures of finite length and then to



directional seas wusing the transfer function approach. The
wave loads and motions of the structure in directional seas
pre compared with those .of long-crested waves.

The applications of the results of this thesis include
such long structures as floating breakwaters, floating
bridges and pipelines. It could also be used in the study of
ship motions where Korvin-Kroukovsky's (1955) strip theory

is often used to reduce the three-dimensional problem to a

two-dimensional one.

1.2 LITERATURE SURVEY

1.2.1 DIFFRACTION THEORY

- A number of authors (Ursell (1949), MacCamy (1964),
Kim (1965), Bai (1972), Ijima et al (1976)) have treated
the two-dimensional wave-structure interaction problem.
Much less work has however been reported for the case of
obliquely incident waves,

Previous studies of oblique wave-structure
interaction include those conducted by Black and Mei
(1970), Bai (1975), Leonard et al (1983) for finite

-water depth, and by Garrison (1969), Bolton and Uréell
(1973), and Garrison (1984) for infinite depth.

Garrison (1969) used a Green's function procedure
to compute the exciting forces, added mass and damping
coefficients, and reflection and ‘transmission

coefficients for a shallow draft cylinder floating at



the free surface. The method‘involves'expressing the
potential at. any point in the fluid region in terms of a
continuous - distribution of sources along the body
surface. The Green's function represents a point source
of unit strength. The boundary condition on the body
surface results in an integral equation which can be
solved numeridally to obtain the source strengths and
"hence the velocity potential. Garrison (1984) extended
this approach to cylinders of arbitrary shape.

Bolton and Ursell (1973) used a multlpole method to
solve the problem associated with a circular cylinder
oscillating in heave with the amplitude of _mqtion
varying sinusoidally along the length of the cylinder.
The Haskind relations were then used to relate this
radiation problem to the wave diffraction prbblem.

Black and Mei (1970) used a variational technique
based on Schwinger's variational principle to obtain the
far field solution of the problem. Bai (1975) also used
a variational technique to solve for the exciting forces
and reflection and transmission coefficients‘in water of
finite | depth. The method involves expressing £he
governing differential eqhation as the minimum of some
functional. The fluid domain is divided into subregions
and a set of interpolation functions with nodal
variables is used to define the velocity potential over
the domain. Minimising the functional with respect to

the nodal variables yields a set of linear egquations



which- can be  solved to give the potential field. The
variational approach leads to a system of equations much
larger than that of the integral egquation ﬁethod. The
matrix is however symmetric and banded and can be solved
using efficient techniques. Leonard et al/ (1983) used an
approach similar to that of Bai (1975) in studying the
case of multiple cylinders.

A bouhdary integral method involving Green's second
identity is used 1in thkis thesis to solve the wave
diffraction problem. The appfoach has previously been
used by Ijima et al (1976) and Finnigan and Yammamoto
(1979) for two-dimensional wave problems and by Isaacson
(1981) for nonlinear wave-structure interaction. The
present method avoids the complexity of deriving a
Green's function which has to satisfy the various
boundary conditions 1in Qater of finite depth. The
results of the present procedure are compared with those
of Bai (1975) for finite water depth, as well as Bolton
and Ursell (1973) and Garrison (1984) for infinite water

depth.

1.2.2 EFFECTS OF DIRECTIONAL WAVES

Previous studies of the 1loading and response of
structures in directional seas are few and widely
scattered in the literature.

There have been two general approaches used‘to

determine the response of structures 1in short-crested



seas. The more common approach is the frequency domain
approach where linear theories are used to determine
transfer functions which relate the incident wave
spectra to the response spectra.

Time domain simulations are often used when the
have-structure- interaction process is of a nonlinear
nature. Time . domain description of directional seas
involve either the digital filtering of white noise or
Fast Fourier Transform (FFT) techniques. The time domain.
analysis is however generally more expensive than the
frequency domain approach.

Huntington and Thompson (1976) computed the wave
loads on a large vertical cylinder in short-crested
seas. Linear diffraction theory was used to determine
the transfer functions. The theoretical = results were
found to be in good agreement with experimentai
measurements. '

Dean (1977) proposed a hybrid'method of computing
the wave loads on offshore structures which incorporates
both thelnonlinearity and directionality of the waves. A
linearized form of Morison's equation was used to
determine . the effect of directional waves. Force
reduction factors were presented for the cosine power
spreading function.

Battjes (1982) studied the effects of directional
waves on the 1loads on a 1long strﬁcture. Reduction

factors were presented for a vertical wall occupying the



entire water depth and a pipeline for the cosine power
type directional spreading function.

Dallinga et al/ (1984) investigated the. effects of
directional spreading on the 1loads and motions of a
barge used for the transport of a Jjackup platform.
Linear diffraction theory was used to obtain the
‘transfer functions. -

Bryden .and Greated (1984) and Lambrakos (1982) both
studied the response of long slender flexible horizontal
cylinders in directional seas. Lambrakos (1982) used a
finite number of wave frequencies and directions to
describe the sea surface. The wave loads were determined
from Morison's equation and thg response of the
structure was obtained by solving the differential
equation of motion using a finite diffefence scheme.

Hackley (1979) and Shinozuka et -al/ (1979) used a
time domain approach td simulate the 1loading and
response of structures in short-crested seas. The Fast
Fourier Transform technique was used to determine thé
water particle velocities and accelerations for use in
Morison's equation. Shinozuka et a/ (1979) found a
reduction in the inline response in short-crested seas
compared to long-crested seas. There was also a
significant transverse response.

Georgiadis (1984) used a Monte Carlo simulation to
determine the apbropriate nodal forces on structures in

short-crested seas. The response of the structure was



then evaluated using a deterministic analysis.

1.3 DESCRIPTION OF METHOD

The analysis of the dynamic response of long structures
in directional seas can be divided into two parts.

The first part involves solving the problem of the
diffraction of a regular obligque wave train by an infinite
semi-immersed cylinder. An integral equation method.based on
Green's second identity 1is wused to compute the exciting
forces and hydrodynamic coefficients.

The fluid motion. is described in terms of a velocity
potential which consists of components due to the incident
wave,r diffracted wave, and forced waves for each mode of
motion of the cylinder. Green's second identity is used to
relate the values of the unknown velocity'potentials and
their normal derivatives on a boundary to the Green's
function and its normal derivatives. The boundary consists
of the immersed body surface, free surface and radiation
surface. The Green's function only has to satisfy the
governing differential equation which is the two-dimensional
modified Helmholtz equation. The boundary is divided into a
finite number of segments. Application of the various
boundary conditions on the various surfaces yields a set of
algebraic equations which can be solved to obtain the
velocity potentials.

Bernoulli's equation 1is then used to compute the

pressures and hence the exciting forces and hydrodynamic



forces due to the motions of the cylinder. The hydrodynamic
forces can be expressed in terms of components in phase with
the body acceleration and . velocity. These are referred to as.
the added mass and damping coefficients respectively.

The reflection and transmission coefficients are
determined by evaluating the asymptotic wave amplitudes at
the radiation surface. Bernoulli's equation vis used to
relate the water surface elevation to the velocity potential
with the pressure set to zero at the free surface.

The added mass and damping coefficients are then
combined with the mass or moment of inertia of the body and
the hydrostatic stiffness coefficients to obtain three
coupled 1linear equations of motion for the body. The
equations of motion are then solved to obtain the amplitudes
of body motion per unit wave amplitudejoften referred to as
the response amplitude operator.

- For a rigid structure of finite length, the
two-dimensional forces are integrated along the body axis to
obtain the total wave loads on the structure.

The second part of the analysis involves extendihg the
results  for a regular obligque wave train to random
mﬁlti—directional seas using the linear trahsfer function
approach. The short-crested sea surface 1is described in
terms'of a directional wave spectrum. The directional wave
spectrum can be expressed as the product of the conventional
one-dimensional frequency spectrum and a directional

spreading function. A cosine power spreading function which
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is independent of frequency is used in this study.

The exciting force and body response spectra are
obtained by multiplying the incident wave spectrum with the
appropriate transfer function or response amplitude
operator. The effects of wave directionality is‘expresséd as
a directionally averagéd, frequency dependent reduction
factor to be applied to the one-dimensional force spectrum,
The mean square values of the response in short-crested seas
are also compared to corresponding results for long-crested

seas.



2. DIFFRACTION THEORY

2.1 INTRODUCTION

Before treating thé problem of the dynamic response of
long structures in multi-directional seas, we shall first
consider the ‘interaction of a regular oblique wave train
with an vinfihite sehi-immersed horizontal cylinder of
arbitrary shape.

The cylinder is cénsidefed large enough sd as  to
diffract the incident flow field. Flow separation effects
are assumed negligible and the effects of viscosity are
assumed _cdnfined to a thin boundary layer on the body
surface. The £fluid flow can thus be considered to be
irrotational and the problem solved using potential flow
theory. An indication of the importance of flow separation
effects is the Keulegan-Carpenter number, K. The
Keulegan-Carpenter number is defined as the ratio of tﬁe
amplitude of fluid motion to a typical dimension of the

body, that is
K = UmT/B - (2.1)

where U is the maximum particle velocity, T 1is the wave
peridd and B 1is a typical dimension of the body. For the
range of frequencies used in this study, K will wusually be
less than two and flow separatiod should not occur (see
Sarpkaya and Isaacson,1981),

| For rectangular section cylinders which are used in

this study, vortices are usually formed at the sharp

11
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corners. Various authors (Bearman et ‘al (1979), Mogridge and
Jamieson (1976)) have however found good agreement between
potential flow theory and experimental results for such
cylinders when fixed despite the formation of the wvortices.
For floating cylinders, the roll amplitude of motion is
significantly affected by viscous damping particularly near
the resonance frequency and an empirical viscous damping
coefficient should be included in the equations of motion.

It is usually convenient to separate the wave-structure
interaction problem for floating bodies into two parts: (1)
exciting forces due to wave diffraction by a‘fixed cylinder,
and (2) hydrodynamic forces associated with an infinite
cylinder oscillating in heave, sway and roll in an otherwise
still water expressed in terms of -added mass and damping
coefficients. The wave height and oscillatory motions of the
cylinder are assumed small so that the complete problem of
wave interaction with a floating cylinder can be represented
by a linear superposition of the diffraction and forced
motion problems.

The cylinder is assumed flexible with its amplitude of
oscillation periodic along the axis of the cylinder, so the
three-dimensional problem = can be reduced to a
two-dimensional one. Even though the numerical results are
obtained for an infinite cylinder, they are extended to
structures of finite length by integrating along the body
axis, ignoring end effects., For non-uniform bodies such as

ships, Korvin-Kroukovsky's (1955) strip theory can be used
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with the two-dimensional results. For head seas (wave crests
normal to the cylinder axis), the wavelength along the
length‘ of the cylinder becomes  of the same order of
magnitude as a typical cross sectional dimension .and the
procedure is no longer applicable. A three-dimensional model
which considers end effects would have to be used as the
incident wave directionv'moves substantially away from the

beam direction.

2.2 THEORETICAL FORMULATION

2.2.1 WAVE DIFFRACTION PROBLEM

A regular small amplitude wave train of height H
and angular frequency w is obliquély. incident upon an
infinitely 1long ‘fixed horizontal éylinder. The waves
propagate in water of depth d in a direction making an
angle f with the x axis (see Fig. 1). The coordinate
system is right handed with z measured upwards from the
still water 1level and the x-y plane horizontal. The.y
axis is parallel to the axis of the infinite cylinder.
The origin of the (x,y,z) coordinate system is at the
still water level vertically above or below the centre
of gravity. The fluid 1is assumed to be inviscid and
incompressible and the flow irrotational. The fluid
motion may therefore be described in terms of a velocity

potential ¢, defined by

u = v&(x,y,z,t) _ - (2.2)
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where ’g is the fluid velocity vector and & must satisfy

the Laplace equation
V2d(x,y,z,t) = 0 (2.3)

within the fluia regioﬁ. Tﬁe anve height is aésumed
sufficiently small so that linear wave theory is
applicable and consequently & is subject to the usual
linearized boundary conditions.

On the free surface, the dynamic pressure is given

by the Bernoulli equétion

S+ o+ p(V)? =R (2.4)

where g 1is the gravitational acceleration and R is the
Bernoulli constant set equal to zero for convenience.
The kinematic free surface boundary condition
requires that the normal velocity of the free surface"
elevation be -equal to the normal velocity of a fluid

particle at the free surface. This can be expressed as

28 . 21, 32 21 . 32 8 s
Eqns. (2.4) and (2.5) are linearized by neglecting the
fluid velocity square term in egn. (2.4) and thé wave
steepness terms in egn. (2.5), and by applying the
conditions at the still water level z=0 rather than at
the instantaneous water surface elevation z=7n. The two
equations can then be combined to give the linearized

free surface boundary condition
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2 -9s-0 at z=0 (2.6)

for simple harmonic motion.
The immersed body surface is ‘assumed impermeable
and hence the normal velocity of the fluid on the body

surface, SB must equal zero

%% =0 on S | (2.7)

where n is a direction normal to the body surface
directed into the body. The seabed is assumed horizontal

and impermeable giving

28 _ ,

3z = at z=-d (2.8)

In addition to the above boundary condtions, ¢ has to
satisfy a radiation condition at the far field to ensure
a unique solution.

It 1is convenient to assume the velocity potential

to be of the form
d = &, + P, _ (2.9)

where &, and ¢, are the velocity potentials for the
incident and diffracted waves respectively. The incident

wave potential is given by linear wave theory as

%o(x,y,2,t) = Re[53H cospliizig)]

x.exp{i(kicbsﬁ+kysinﬁ-wt)}] (2.10)

where k 1s the wave number which is related to the

angular frequency w by the dispersion relation
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2
k tanh(kd) = -‘g— (2.11)

The  radiation condition  which ensures that the
diffracted waves are travelling away from the cylinder
is given by

0d, :

55— + lkcosf &, = 0 at x = *= (2.12)
In a numerical approximation, the infinite boundary is

truncated at a finite distance, X, from the origin where

R
the evanescent modes due to the presence of the the body
are assumed to have decayed sufficiently. An approximate

analysis to find the optimum distance X, at which the

R
radiation condition is applied is given in appendix I.
The fluid motion is considered periodic in time as

well as along the axis of the cylinder. A nondimensional

potential, ¢ can thus be defined by .,
®(x,y,z,t) = Re[:%g§¢(x,z)exp{i(kysinﬁ - wt)}]l (2.13)

It is also convenient to nondimensionalize the variables

using the half beam of the cylinder, a.

x' = x/a, z' = z/a, y' = y/a, k' = ka
. | (2.14)
da' = d/a, u = mga' . v = kasing

For convenience, the primes haVe been dropped from the
variables and it is understood that the variables are
now nondiﬁenéional. Dimensional variables will

henceforth be barred where necessary for clarity.
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The boundary value problem for the diffracted

potential can now be stated in nondimensional form as

V3¢, - v2¢, = 0 in the fluid (2.15a)

00, .

. = udy at z=0 (2.15b)

0o, .

57— = O at z=-d (2.15¢)

¢y X

3~ = 1lkcosB¢, at x=tXp (2.154)

00, 0¢o

= = %R on Sy (2.15e)
where

bo = coshlk(z+d) ] (ik ) (2.16)

The three-dimensional Laplace equation (2.3) has now
been reduced to the two—dimehsional modified Helmholtz

equation (2.15a).

2.2.2 FORCED MOTION PROBLEM.

Consider an infinitely long cylinder oscillating in
heave, sway and roll as shown in Fig. 2. Each mode of
motion 1is periodic in time as well as along the axié of
the cylinder. The displacement or rotation in the kth

mode is given by

g (y,t) = {?}»Re[ikexp{i(vy—wt)}] {t

nn

;'2} (2.17)

where £k is the complex amplitude of oscillation of the
cylinder with k=1,2,3 corresponding to the sway, heave

and roll modes respectively. Throughout the following
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development, the upper terms in the curly brackets apply
with each other, and sepafately the 1lower terms ‘apply
with each other. §, and ¢, have been nondimensionalized
by a, while {, corresponds to the roll angle in radians.

The velocity of the body surface in the direction n

is given by

v =k§1%%nk = Re[k§1—iwa£knkéxp{i(Vy—wt)}] .(2.18)
where
n, =n,
n, = n, (2.19)

(z—e)nx - xn,

and nx,’nz are the direction cosines of the unit normal
vector n on the immersed body surface and (0,e) denotes
the point about which the roll motion is prescribed. The
normal velocity of the fluid on the immersed body

surface must equal the normal velocity of the body

yielding

9% _
35 =V, on SB (2.20)

This boundary condition is satisfied at the equilibrium
position of the body rather than at the instantaneous
position of the body.

From equations (2.18) and (2.20), the forced motion

potential for the kth mode of motion can be expressed as

¢, ='Re[—iwa3£k¢k exp{i(ry-wt)}] (2.21)
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The linearized boundary condition on the body surface

can thus be expressed as

20 ~
Eﬁh = n, k=1,2,3 (2.22)

The 'boundary value problem for the forced motion
potentials ¢k(k=1,2,3) is hence governed by egns.

(2.15a-d) and egn. (2.22).

2.3 GREEN'S FUNCTION SOLUTION

A boundary integral method involving Green's identity
is used as the basis for the numerical evaluation of the
potentials ¢k(k=1,2,3,4)f The second form of Green's theorem
may be applied over a closed surface S containing the fluid
region in order to relate the values of the potential ¢(x)
in the fluid region to the boundary values of the potential
¢(t) and 1its normal derivative 93¢(f)/dn. This can be

expressed as

8(x) ;2—},£[¢<g)g—§(yg) - ¥(p)e(x;p)las (2.23)

where G(x;£) is an appropriate Green's function, x denotes
the point (x,z) being considered and ¢ denotes the point
(t,t) over which the integration is performed. The closed
surface S comprises the immersed body surface Sy the mean
free surface SF’ the radiation surface SR' and the seabed SD
as shown in Fig; 3.

When the interior point x approaches the boundary from

within, egn. (2.23) reduces to the following 1integral
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equation

o(x) = 2 flo0)3(x;8) - B(p)6(x:£) s (2.24)
S

The Green's function which satisfies the modified Helmholtz
equation (2.15a) in an unbounded fluid and 1is singular at

the point x=f( is given by
G(x;¢) = -Kolvr) (2.25)

where K, is the modified Bessel function of order zero and r

is the distance between the points x and ¢
r= g -] = [(E02 * (32212 (2.26)

The function Kyo(x) = -1ln x as x — 0. The Green's function

which satisfies the two-dimensional Laplace equation
G(x;¢) = lnr (2.27)

is thus obtained as g — 0°.

Since the seabed 1is assumed horizontal, it is
computationally more efficient to exclude the seabed from S
and an alternative Green's‘function which takes into account

symmetry about the seabed can be defined

G(x;£) = -[Ko(wr) + Kol(wr')] (2.28)
where r' is the distance between the points x and {' =

(¢,-(%+2d)) which is the reflection of { about the seabed:
Vo v - —v)2 211/2
r' = |& x| = [(g-x)2% + (§+2d+z)?] o (2.29)

I1f the depth variations are significant, the seabed would
have to be included in S and the Green's function given by

eqn. (2.25) used instead.
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The integral equation (2.24) can now be evaluated
numerically to give the potential ¢ at any point in the
fluid and hence provide'the solution to the boundary value

problem.

2.4 EXCITING FORCES, ADDED MASSES AND DAMPING COEFFICIENTS

Once the velocity potential is obtained, the
hydrodynamic pressure can be computed from the 1linearized

Bernoulli equation
p = ‘P%% = lwpd (2.30)

The forces and moments per unit length are determined by
integrating the hydrodynamic pressure over the immersed body
surface SB.

The exciting force per unit length which is due to the
incident and scattered waves and is proportional to the wave

height is given by

- iwpd? 3
F. 1wp{a2}é @n as { !

1,2
; ] } (2.31)

where Fj(j=1,2) denotes the sway and heave force
respectively while F, denotes the roll moment. Substitution

of equations (2.9) and (2.13) into egn. (2.31) yields
Fily,t) = pg{2abRel (9o+os)n expli(ry-wt)las){II] 2} (2.32)
j a 5 ] j=

The dimensionless exciting force amplitude is given by
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Fj(y,t) ‘21 2
J 1 2 S J J= .
zpgHa B

The exciting force could alternatively be defined by

Fj(y,t)

. {2} - |C4] cosry-wt+a,) {g:;'z} (2.34)

%nga |
where the phase angle Aj is defined by

Im(C.) -
A. = tan~ | —— (2.35)

J Re(C.
el J)
There are also hydrodynamic forces associated with the
motions of the cylinder which are proportional to the
amplitude of cylinder motion. The ith component of the force
due to the jth component of motion can be expressed as
F.. = iwpd2,%s ®.n. as 1=1,2( 5_y,2,3 (2.36)
ij Pla? g 3 i i=3 =t 4, :
B .
Substitution of the equation for the forced motion

potentials (2.21) into eqgn. (2.36) yields

a?s .
F...= pwzgj{aa}Re[£B¢jniexp{1(vy-wt)}dS]

1]
i
i

This force can also be expressed in terms of two components;

non
W —

'ZS j=1,2,3 (2.37)

one component in phase with the acceleration and the other

in phase with the velocity

F.. = =-p..=. — A

"é' '=1,2, .
i3 1 455 1555 j 3 (2‘38)

where "ij and xi. are the added mass and damping
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coefficients respectively. Substitution of egn. (2.17) into

egqn. (2.38) gives

Fij = {?}Re[(wzui-g.'+ iwkijij)exp{i(vy-wt)}]

3%
]
]

Comparing egn. (2.37) with egn (2.39) gives the

;'25 i=1,2,3 (2.39)

nondimensional added mass and damping coefficients as

1
23 = RelJ ¢.n, as) , (2.40)
pa s_ J
B
—p = Im[f ¢;n; ds] (2.41)
pwa Sg ]

where the constant m is given as
2 for (i,j) = (1,1) and (2,2)
m=(3 for (i,j) = (1,3) and (3,1) - (2.42)

(3,3)

4 for (i,j)
The Haskind (1953) relations (also see Newman,1962) provide

an alternate way of calculating the exciting forces.

Applying Green's theorem to the diffraction potential gives
30, 3¢ . _
!.(d):)-a-n—- - ¢4-5-ﬁ~1)ds =0 ]=1»,2,3 (2.43)
B
Substituting the above expression into eqgn. (2.32) gives
09 9oy
Cj = _S/;¢oaﬁl + ¢J'an—)ds . (2.44)
B

Applying the boundary condition given by -egn. (2.15e)
eliminates the diffraction potential from the expression for

the exciting force
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"J[ 3¢. . 0d¢o
cj = s;¢osﬁl - ¢jgﬁ—)ds : (2.45)

There is also a direct relation between the damping
coefficient and the amplitude of the waves generated by an
oscillating cylinder symmetrical about x=0. An amplitude
ratio [§.| can be defined as the ratio of the wave amplitude
at |x|== to the amplitude of oscillation of the cylinder,

that is

15,1 = TE?%T (2.46)

where |7.| is the amplitude of the radiated waves at  |x|=e
for the ith mode of oscillation of the cylinder.

By equating the work done in oscillating the cylinder
to the energy flux radiated across a control surface at

infinity, it can be shown that (see Newman,1977)

L
3 _ [1 + 2kd cosf |

Wk (2.47)
pwa™ sinhckd” (ya)2tanhkd 1|

for the oblique case. The exciting force can also be relatea
to the amplitude ratio by evaluating the integral in eqn.
(2.45) at the negative radiation surface (x=—XR). The
integral does not vanish since the incident wave potential
does not satisfy the radiation condition. Since the forced
motion potential is proportional to the square root of the

energy flux, egn. (2.45) can be integrated over the depth at

x=-Xp to give the exciting force coefficient as

- = 2kd cosp
== [+ syR7val ke |84 (2.48)
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Equations (2.47) and (2.48) can be combined to provide a
direct relation between the exciting force coefficients and
the damping coefficients
LR
1] 2kd

=[_m(1+

- )tanhkd cosﬁ]”2 (2.49)
pwa sinh2kd

IC; |

Equations (2.47)-(2.49) provide a wuseful check on the

numerical results obtained.

2.5 EQUATIONS OF MOTION

The dynamic response of the cylinder due to the
exciting waves can now be obtained by solving‘the equations

of motion. The equations of motion are of the form

3
~w? - i = = . ‘ i =
jfl[ w (mij+uij) 1wxij + cij]“j F,(y,t) i=1,2,3 (2.50)
where m; and .cij are the mass and hydrostatic stiffness

matrix coefficients respectively. Additional forces due to
moorings or viscous damping may be included in eqgn. (2.50)
if presént. It should be noted that for the case of roll
motion, nonlinear viscous damping is important particularly
near the resonance frequency and would have to be 1included
in practical applications.

It was assumed in deriving the added mass and damping
coefficients that the cylinder was flexible with its
amplitude of motion varying sinusoidally along the length of
the cylinder as well as 1in time, The term sinB can be

thought of as the ratio of the incident wave length to the
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the wave léngth along the axis of the cylinder. A rigid
.cylinder has an 1infinite wavelength along the axis of the
cylinder and hence corresponds to a flexible cylinder with
p=0°. |

The components of the mass matrix are given as

[ m 0 _fmzé
mij = 0 m 0 (2.51)
-_sz 0 IoJ

where m is the mass per unit length of the body, zg is the z
coordinate of the centre of gravity and I, is the polar mass
moment of inertia about the y axis per unit length. I, may

be expressed as

I, = m(r2 + z (2.52)

y ¥ %
whére ry is the radius of gyration of the body about the y
axis. The hydrostatic stiffness matrix is determined by
calculating the forces required to restore the body to its
equilibrium position for small amplitude displacements. The

stiffness matrix components are given as

(Q . . -
ci5 = 0 co2 €23 ' (2.53)
_0 Cas Cai
where
c,, = pgB o (2.54a)
C23 = pgBXg " (2.54b)
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c33; = pgA[(S,,/A) + z_ - z (2.54c)

B G]
where B is the beam of the cylinder, Xg is the centroid of
the waterplane 1line and is equal to =zero for bodies

symmetrical about x=0, Zg is the z coordinate of the centre

of buoyancy, A is the displaced volume per unit length, and
S;; is the waterplane area moment of inertia about the x

axis per unit length, that is
S,; = [ x%dx = B3/12 (2.55)
B
Static stability in roll requires that the coefficient cj;,

be positive. From eqgqn. (2.54c), it 1is evident that the

metacentre (S,,/A) + z_ has to be located higher than the

B

_centre of gravity z, for the floating body to be stable.

G
The equations of motion (2.50) can now be solved to
- obtain the complex amplitudes of oscillation, Ej for any
given wave frequency and direction using a complex matrix
inversion technique. The amplitude of body motion 1is voften
described in terms of the response amplitude operator
defined as |

Ianl
(2.56)

Z. (o,
J(w B) >

The response amplitude operator represents the ampiitude of
body motion due to a unit amplitude wave of freguency w,

travelling in direction 8.
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2,6 REFLECTION AND TRANSMISSION COEFFICIENTS

Another two quantities of physical interest especially
for such structures as floating breakwaters are the
reflection and transmissidn coefficients. The coefficients
are obtained by evaluating the component wave amplitudes at
the radiation surfaces (x=iXR). There are contributions to
this asymptotic wave amplitude from: (1) the oscillations of
the cylinder in its three modes, and (2) the reflection and
transmission of the incident wave by a fixed body.

From - Bernoulli's equation, the wave amplitude is

related to the velocity potential by
- -1 9%
n= -5 3t (*x/¥,0,t) | (2.57)
Substituting the equation for the forced motion potentials

(2.21) into egn. (2.57) yields the asymptotic wave amplitude

for each mode of motion

ny = Rel £2a%f,4,(x,0) expli(vy-wt)}] (2.58)

The wave amplitude ratio previously defined by egn. (2.46)

is now given as

‘ K w?a
evaluated at x=tXR. At the radiation surface, the evanescent
modes are assumed to have decayed sufficiently (see appendix
I) and the velocity potentials are of the form

OCOSh[k(z+d)]cxp(iikXCOSI3) at x = ix (2,60)

(x,2) = A
¢ cosh(kd) R
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where Ay, is the complex amplitude of the potential at z=0.
Given that
0

fcosh?[k(z+d)ldz = £inh(2kd) * 2kd (2.61)
-a

the coefficient A, can be obtained by applying the
orthogonality condition of the hyperbolic .cosine function

and is given for the jth potential as

0
Aoj = 51§ﬁ%8§2§k§)2kd exp(iikxcosﬁ)_é¢jcosh[k(z+d)]dz
at x=¥xR (2.62)

The wave amplitude ratio can thus be evaluated as

_ w32a
[SjI =55 [Aoj[ (2.63)

for each mode of motion. The reflection and transmission
coefficients due to the presence of a fixed body are
obtained in a similar manner. The reflection coefficient can
be obtained by evaluating the asymptotic wave amplitude of
the scattered waves at the negative radiation surface
(x=-XR). Substitution of the form of the diffracted wave

potential given by egn. (2.13) into egn. (2.57) yields‘
np = Rel H6.(-%,0) expli(ry-wt)}] ~ (2.64)

The reflection coefficient is defined as the ratio of the
reflected wave amplitude to the incident wave amplitude and

is thus given by

Kp = —2- = |¢4(-Xp,0) ] (2.65)
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The transmission coefficient is due to the asymptotic wave
amplitude of the 1incident and scattered waves at the

positive radiation surface (x=XR) and is similarly given by
Kp = |¢0(XR,O) + ¢q(xR,0)| : (2.66)

The expressions on the right side of egns. (2.65) and (2.66)
are evaluated using egn. (2.62). |

Applying conservation of eﬁergy principles, remembering
that the energy in a wave is proportional to the square of
the wave amplitude, the‘ reflection and transmission.

coefficients are related by

Kﬁ + K% = 1 (2.67)

After obtaining the amplitudes of body motion by solving the
equations of motion, the reflection and transmission

coefficients for a freely floating body are determined

respectively as

3
KR = |¢A(—XRIO) +j§1szj(wrﬁ)| (2.683)
3
Kp = |60(Xp,0) + ¢,(Xq,0) +j§15jzj(“'ﬁ)| (2.68b)

2.7 NUMERICAL PROCEDURE

In order to evaluate the integral equation (2.24), the
boundary is divided into N segments with the valué of ¢ or
9¢/0n considéred constant over each segment and equal to the
value at the midpoint of the segment. Egn. (2.24) can be

replaced by the summation equation
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N ¢
_ 3G, . _ 99y .
oplx3) = 7. L Lo (x) ) grlx;ix,0d8 - 5% [ Glx,5x,)as]
j=1 ASj ASj
k=1,2,3,4 (2.69)

where the summation in egn. (2.69) is performed in a counter
clockwise manner around the boundary. Egn. (2.69) can be
rewritten as

N a¢(k)

(k) - -
{(aij+6ij)¢j v+ bijﬁﬁj } =0 k=1,2,3,4 (2.70)

3=1

where 6ij is the Kronecker delta function given by

{1 i=3
§.. = . (2.71)
13 0 i#7
The coefficients aij and bij are defined as
_ 1 0 | y
;5 = ?Aé. Hﬁ[Ko(urij) + Ko(vrij)]ds (2.72)
3
1 1
bij = —FAé[.Ko(Vrij) +Ko(vrij)]ds (2.73)
_ ]
.rij and rij are given as
= - 2 - 211/2
' — - 2 211/2
rij = [(xj xi) + (zj+2d+zi) ] (2.75)

x; and X, are evaluated at the midpoint of each segment. The

gradient 9G/9n may be expressed as

%%(5i75j) = %% cosy + %%. cosy' (2.76)

where v and ' are as shown in Fig. 4 and correspond to the
~angles between D and L She S and between 33 and L'=Xi-X.

respectively, that is
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n.-(x.-x.)
cosy = ———31—1 ' (2.77)
_rl'-'(x'-"x-)
cosy' = —L——=1 -1 (2.78)
where n. = n i + nk ‘
n' =n_i - n_k

and 53 is the point (xj,—(zj+2d)). The unit normal vector n

is given by

n=232;- g - | (2.80a)

The above expression can be approximated as

n=242;- &%y (2.80b) -

. The derivative of the Green's function is given by
2oKo(vr) = -pK,(»r) (2.81)

where K,; is the modified Bessel function of order one. When .
i#j, the integrals in egns. (2.72) and (2.73) are
approximated by evaluafing the Green's function and its
normal derivative at the midpoint of each segment. The

.coefficient a5 is thus given as

Ky,(vr,.) v
aij = -v——————l—[(x ~X )n + (zj—zi)nz]ASj
13 :
K,(vr!. . .
- v—————Ll—[(x Xy )n + (z.+2d+z.)n_JAS. i#j (2.82a)

Substituting the approx1mat10n for the direction cosines:

given in eqgn. (2 80b), a5 becomes
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K (vr..
a.. = -v—————il—[(x X YAz, - (z.-z.)Ax.]
1] Tr. 3 J 1 J
ij
K,(vr!.)
- v——————l—[(x ~X YAz . - (z.+2d+z.)Ax.] 1i#j (2.82b)
7r} J ] 1 J

n
N
f
N

where Azj

ij = xj+1 - xj

a5y = [(8z)2 + (ij)2]1/2

The coefficient bij is given as

bij = "[Ko(Vr ) + Ko(Vr )]ASj i#j (2.83)

When i=j, the integrals in egns. (2.72) and (2.73) become
singular. Evaluating the nonsingular components Ko(»r') and
dKo(vr')/on as before and using the asymptotic formula for

Ko(vr) (see Abramowitz and Stegun, 1964)

Ko(vr) = -{1n(vr/2) + v} _ as vr—>0 (2.84)

where v is Euler's constant, the diégonal coefficients are

given as
= ¥
aj;; = 7 K,[Zv(zi+d)]Axi (2.85)
AS vAS, '
bii = T [ln Z + v - 1 - Ko{ZV(zi+d)}] (2.86)

For B=0°, the problem reduces to the typical two dimensional
one. Using the Green's function given in egn. (2.27) with
symmetry about the seabed taken into account, the

coefficients for p=0° are given by
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1

aij = —ﬂr?.[(xj_xi)Azj = (zj-zi)ij] =
ij
! X.—X. , - .+2d+2. . i#5 7
wr!?[(xj xl)AzJ (zJ 2d zl)AxJ] i#3 .(2.8 )
ij :
_ 1 , e
| bij = —(1n rij + 1n rij)ASj i#7 (2.88)
For i=j~
Ax.

211 7 TH(z, T (2.89)

AS

. AS. ,
_ i i -
bii = —;—[ln-z— 1 + ln'2(zi+d)] (2.90)

With the coefficients a and b.. now known, egn. (2.70)

ij ij
provides N equations relating the values of ¢ and d¢/0n over
- Sg*SptSy. The various boundary conditions around SgtSp+Sy
provide the remaining N equations needed to solve for ¢ and
0¢/0n. Substitution of the various boundary conditions given
in egn. (2.15) into egn. (2.70) yields

N1

N2
2 (k) (k)
Z(a, .+6..+228b. . )¢ + I (a,.+6..)¢: +
j=1 1] lj g lj J j=N1+1lj lj J

23(a +§ +9:3b )¢€k) + g4fa..+5. +ikcosfb )¢€k) +
jeNz+1 3 139 TS 5eN3+qid 13 13773
N : N2
. (k) (k)
Z (a..+6..+ikcosBb..)¢. = - X% b..f.
j=Ng+1td I 1 j=N1+13 ]

for i=1,....,N; k=1,2,3,4 (2.91)

where fgk) is defined as
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nlk) k=1,2,3
(k) _) v
fo - (2.92)
N PO
-Bﬁ] v k=4

The expressions on the right-hand side of the above equation

are given as

(4) |
0¢: cosh{k(z.+d)] Az .
s5d . = ikcosp cosh(kg} exp(ikcosij)Z§l4
sinh[k(zi+d)] ) Ax . ]
TETY) exp(lkcosﬁxj)ZE% (2.93)
and
n;k) = —ij/ASj _ _ k=2 (2.94)
Az . AX . '
(z.-e)—L + x ,—3 : k=3
- Asj JAsj

Fig. 5 shows a typical discretized boundary with the
.constants N1, N2, N3 and N4 shown. Egn. (2.91) yields N
equations for N unknown ¢§k)(k=1;2,3,4) values which can be
solved using a matrix inversion technique to obtain the
unknown velocity potenfials on the boundary. The exciting
forces, added mass and damping coefficients, and reflection

and transmission coefficients can now be determined using

the expressions given in the preceding sections.

2.8 EFFECT OF FINITE STRUCTURE LENGTH

Let wus now consider the forces and response of a rigid
structure of finite length, 1. The length of the structure

is assumed to be much greater than the incident wavelength.
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The force per unit length is given by egn. (2.32) as

Fj(y,t) = pgg{zz}Re[Cj(w,B)eXp{i(vy—wt)}] %j:;'zg (2.95)
where 3j=1,2,3 corresponds to the sway, heave and roll
exciting forces (or moment). The total force on the
-structure 1is obtained by integrating two-dimensional force
along its length, ignoring end effects

1/2
F.(t) = ¢ F.(y,t)dy (2.96a)
J -1/2 3
"Substitution of egn. (2.95) into egn. (2.96a) yields
Zsin(i%sinﬁ)

F.(t) = pgH1{2,lc. exp(-iwt) {i=1'2} (2.96b)
3 PS> {az} 5 klsing p j=3

. for B#0°. The above expression can be thought of as the
product of the force per unit length, the length of the

structure, and a factor r(kl,B) defined as

2sin(¥lsing)
5121—?51n6 820°
r(k1,8) = sinf (2.97)
1 : B=0°

The factor r(kl,B) can be considered to be a reduction of
the load per unit léngth due to the finite length of the
structure for a given angle of approach, or due to the |
obligqueness of the waves for a given structufe length. Fig.
6 shows a plot of r? against kl for B=0°, 15°, 30° and 60°.
The separate influences of k1l and B on the load per unit
length can be seen. The factor r(kl,f) has an oscillatory
behavior at large values of kl with an infinite number of

zeros given by
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5%sinB =nr  n=1,2,... (2.98)

For an 1infinite span structure, the total load per unit
length tends to zero. The maximum total 1load occurs on a

span of length

1 = L/2sinf (2.99)
where L=27/k is the wavelength. This maximum force is

Fj(t) = pgg{:z}cj(m,ﬁ)ﬁ%—ﬂ éxp‘(—iwt) ' {g:;,z} (2.100)
The motions of a rigid cylinder of finite length in oblique
seas can be described in terms of six dégrees of freedom. In
addition 'to the sway, heave and roll modes present in beam
seas, thev'cylinder can also surge, . yaw and pitch'
corresponding to the translational motion along the y axis
and rotational motions about the z and x axes respectively.

Tﬁe added mass and damping coefficient derived in
section 2.4 corresponds to the oscillations of a flexible
cylinder with a Asinusoidal variation of the amplitude of
motion along the length of the cylinder. The added mass and
damping coefficients of a rigid cylinder correspond to the
case of beam seas ($=0°). The hydrodynamic coefficients for
the sway, heave and roll motions of a Afinite length
structure are . obtained bj multiplying the sectional
coefficients with the length of the structure. The exciting

forces and hydrodynamic coefficients for the pitch. and yaw

‘motions can be obtained from the sectional coefficients for -

the heave and sway motions using a strip theory approach
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described in Bhattacharyya (1978). The yaw and pitch
exciting exciting moment coefficients are given as
| 1/2
Fj+3(t) = f_l/zij(y,t)dy j=1,2 (2.101)
where j=4,5 corresponds to the yaw and pitch modes

respectively. Substitution of expression for the

two-dimensional forces (2.95) into egn. (2.101) yields
Fiu3(t) = pgzalici-q(kl,Blexp(-iwt) 3=1,2 (2.102)

where g(kl,8) is defined as

(kls?iﬁ)z[E%Sinﬁcos(K%Sinﬁ) - Si“(E%Sinﬁ)] B0°

q = (2.103)
0 . B=0°



3. EFFECTS OF DIRECTIONAL WAVES

3.1 REPRESENTATION OF DIRECTIONAL SEAS

Before proceeding to determine the response of
structures in directional seas, we shall first present a
mathématical representation of directional seas.

The preceding chapter dealt with the exciting forces
and response = of a structure subject to ' regular
unidirectional waves. Ocean waves however exhibit a wave
pattern which is highly complex and irregular. This complex
sea surface is often modelled by a linear superposition of
long-crested waves of all possible frequencies approaching a
- point from all directions. The sea surface elevation is
assumed to be a 'zero mean, stationary, ergodic random
Gaussian process. The assumption of a Gaussian process
implies symmetry about the still water level which is only
realistic for small amplitude waves.

A long-crested wave train travelling at angle §

relative to the positive x axis may be represented by
n(x,y,t) = Re[A exp{i(kxcosf+kysing-wt)}] (3.1)

where A is the complex wave amplitude with a random phase, k

is the wave number related to the frequency w by the linear
dispersion relation (eqn. 2.11).‘

A random sea surface can be considered to be a discrete

sum of linear waves of different frequencies and directions

N = Re[?? Aijexp{i(kixcosﬁj+kiysinﬁj-wit)}] (3.2)

39
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where ki denotes the wave number of the i-th wave component
travelling 1in direction Bj’ W, its frequency and Aij its
amplitude. If we let the total number of harmonics tend to
infinity while the difference between adjacenﬁ frequencies
and directions tends to zero, the summation in egn. (3.2)

can be replaced by an integral over a continuous range of

frequencies and directions

n(x,y,t) = Re[ffexp{i(kxcosp+kysing-wt)}dAa(w,pB)] (3.3)
where dA represents the differential wave amplitude in.  the
two-dimensional (w,B) space bounded by (w,w+dw) and
(ﬁ,B+dﬁ); The mean square value of the water surface
elevation is given by

—_ Teo

n? = %ffdA(w,B)dA*(w, ) =_£é S(w, §)dwdp (3.4)
where dA*(w,8) 1is the complex conjugate of dA(w,f) and
S(w,B) is a directional wave spectrum. Since the average
energy density in the waves is proportional to the square of
the wave amplitude, the product S(w,pf)dwdB can be considered
to be the contribution to the total mean energy density due
to waves with frequencies between w and w+dw, travelling in
directions between B and p+dB. A sketch of a typical
directional wave spectrum is shown in Fig. 7.

The one-dimensional spectrum, S(w) can be obtained by

integ;atingv the directional wave spectrum over all

directions
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. _
S(w) = [ S(w,B)das (3.5)
-

The one-dimensional wave spectruﬁ can be determined from
measurements of the free surface elevation at a single point
in space; for instance by recording the motions of a heaving
buoy. Iin order to obtain information about the
directionality of the waves, bne has to resort to more
complicated techniques. The most common methods for
evaluating directional wave spectra include

1. analysis of the water surface elevation and the
horizontal orbital velocities at an observation point
(e.g. Forristall et al (1978), Sand (1980)).

2. analysis of the measurements of the ﬁater surface
elevation, slope and curvature from the motions of a
floating buoy (e.g. Longuet-Higgins et al (1961),
Cartwright and Smith (1964), Mitsuyasu et al (1975)).

3. analysis of the measurements of the water surface

| elevation from an array of guages (e.g. Borgman (1969),
Panicker (1971), Davis and Regier (1977)).

4. by means of stereophotographs (e.g. Coté et al (1960),
Holthujsen (1981)).

It 1is often convenient to express the directional wave

spectrum in terms of an energy spreading function applied to

the one-dimensional spectrum
S(w,B) = S(w)G(w,B) | (3.6)

where G(w,B) is a directional spreading function.
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It follows from egn. (3.5) that G(w,pf) must satisfy
T
J Glw,B)ap = 1 (3.7)
-7

Various one-dimensional frequency spectra have been used
describe ocean waves. The most commonly used ones include
the Bretschneider, Pierson-Moskowitz and JONSWAP spectra.
These spectra are described in detail in Sarpkaya and
Isaacson (1981) and hence are not given here. There have
also been several formulations for G(w,B) proposed by
various authors. A few of the commonly used ones are
outlined below

1. Cosine-squared formulation

St. Denis and Pierson (1953) proposed a spreading function

which is independent of frequency

% cos?p for |B| < w/2
G(B) = (3.8)
0 otherwise

The spectrum is centred about B=0°.

2. Cosine-power formulation

Longuet-Higgins et al (1961) proposed the following

directional spreading function

G(6) = C(s) cos®5(6) | (3.9)

where 6 is measured from the principal direction of wave
propagation. C(s) is a normalizing coefficient that ensures

that egqn. (3.7) is satisfied and is given by



43

C(S) = 1 F(S+1)
2/1 T(s+g)

(3.10)

' is the gamma function. Fig. 8 shows the directional
spreading function for different values of s. It can be seen
that s describes the degree of spread about the principal
direction with s—= representing long—crestéd waves.

On the basis of their measurements for wind driven
ocean waves, Mitsuyasu.et al (1975) found the parameter s to

depend on the dimensionless frequency

s =

0.116(F) 2+° for T2f
(3.11)

-5 =-7.5
0.116(%) (fm) for T<fm

where T = dimensionless frequency = Uf/g

fm = dimensionless modal frequency = Ufm/g

U = wind speed at 19.5m above sea level
Hasselmann et al/ (1980) on the basis of the data obtained
from the Joint North Sea Wave Project (JONSWAP) found the
parameter s to depend mainly on f/fm rather than f and
proposed a different formula for s.

Borgman (1969) used an alternative cosine power

function given as

G(6) =

c'(s) cos?5(e) for |6|<n/2
(3.12)

0 otherwise

The normalizing coefficient C'(s) is given as

c'(s) = L Listl) (3.13)

m F(S'*'?)
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3. SWOP formulation

Coté et al (1960) proposed a directional spreading function
which is dependent on both frequency and direction based on

data obtained from the Stereo Wave Observation Project

(SwoP).
%[1 + acos26 + bcosdf) for|6|<n/2
G(w,8) = _ (3.14)
otherwise
where a = 0.50 + 0.82exp(-%5“)
b = O.32exp(—%5“)
w = nondimensional frequency = Uw/g

3.2 RESPONSE TO DIRECTIONAL WAVES

The exciting force on a rigid structure of finite
length due to a regular oblique wave train of frequency o

and direction B can be expressed as
Fj(t) = Hj(w,ﬁ)n(t) (3.15)

where Hj(w,B) is a complex-valued system response function

given by egn. (2.96b) as

Hto,8) = patfde o ortkt, ) {3202} e

Since the wave-structure interaction process 1is assumed
linear, we expéct the value of any force at a given wave
frequency to be due to wave components at that same
frequency but propagating from all possible directions. The
force spectrum SF.(w) is thus related to the incident wave

spectrum sn(w,e) by
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T
= . 2 .
SFj(w) ‘i |Hj(w,ﬁ)| Sn(w,e)dﬁ (3.17)

where IHj(w,ﬁ)l2 is the transfer function. For convenience,
the subscript j will henceforth be dropped and it should be
noted that all following expressions are valid for j=1,2,3.
Since the water surface elevation 1s assumed to be a
Gaussian  process, the forces will possess a Gaussian
probability distribution.

Using the form of the directional wave spectrum given

in egn. (3.6), egn. (3.17) reduces to
: 4
Splw) = [ [ [H(w,B)|?G(w,6)dp] Sn(w) (3.18)
-

The factor in the brackets represents a frequency dependent,
directionally averaged transfer function. 6 is measured from

the principal wave direction B, and is thus related to § by
8 =8 - Bo (3.19)

The mean square value of the force can .be obtained by
integrating the force spectrum over the frequency w. The
root mean square value (rms) of the force represents a
characteristic force from which extreme value predictions
are usually made. |

The effects of wave directionality on the wave loads
can be expressed as a force reduction factor defined as the
ratio of the frequency dependent, directionally averaged
transfer function in short-cresfed seas to the transfer

function for long-crested, normally incident waves
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T
J|H(w,8)]|2%6(w,6)dp .
RE = — (3.20)
F |H(w,0) |2

A body response ratio RM can also defined as the ratio of
the rms value of the response in short-crested seas to

corresponding results for long-crested seas, that is

2

T f12(w,8)]%6(w,8)S_(w)dpdw
O-m n

2 = (3.21)
. F12(w,0) |25 (w)dw
0 n

where Z(w,B) is the response amplitude operator defined
previously in eqgn. (2.56). |

The first example considered is the wave force on an
infinitesimal segment of a structure with the sinusoidal
variation along the length neglected. The horizontal force

at any angle f$ 1is proportional to cosf. The transfer

function can thus be expressed as
|H(w,B)|? = |H(w,0)|? cos?p (3.22)

The frequency independent cosine-power directional spreading
function given in egn. (3.12) is wused in this study.
Substitution of the expressions for the transfer function
(3.22) and spreading function (3.12) into egn. (3.20) yields
/2 2s _
Ré = C'(s) f cos?B cos“”(6)ds (3.23)
-n/2
For the case of oblique mean incidence, the directional

distribution will be cut off to ensure that the waves

approach the structure from one side only. If the principal
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direction of wave propagation is zero, eqgn. (3.23) can be
integrated to give

R2 = C'(s)

(3.24)
F C'(s+1) :

For any given structure of arbitrary shape and finite
length, the dependence on § is no longer explicit and eqn.
(3.20) will have to be integrated numerically to give the

force reduction factor. Substitution of the expression for

the transfer function (3.16) into egn. (3.20) yields
/2 28
f |Cj(w,ﬁ)|2r2(kl,ﬁ)cos (6)de
REL = ¢ ()22 ' (3.25)
i |Cj(w,0)|2

for the cosine-power type spreading function.



4. RESULTS AND DISCUSSION

4.1 EXCITING FORCES, ADDED MASS AND DAMPING COEFFICIENTS

A computer program based on the procedure described in
the preceding sections was used to determine the exciting
forces, hydrodynamic coefficients, and reflection and
transmission coefficients for severél test cases in order to
compare the accuracy and efficiency of the present method
with.other solution techniques.

The first case considered 1is a rectangular section
cylinder with a draft to half-beam (b/a) ratio of 1, in
water of finite depth (d/a=2). Figs. 9-12 show a comparison
of the computed exciting force and reflection <coefficients
with the results obtained by Bai (1975) using a finite
element - technique. The coefficients are plotted as a
function of the angle of incidence 8 for ka=0.1, 0.2 and
0.4. Bai's (1975) results are represented by the solid and
dashed curves while the present results are shown as points.

The discretized surface had 40 node points on the free
surface, 20 node points on the radiation sﬁrface and 16 node
points on the body surface yielding a matrix of dimension
N=76. It took approximately 3.0s on the Amdahl V8-II central
processor under the’Michigan Terminal System (MTS) to solve
for the exciting force coefficients for a given wavenumber
and angle of incidence. Bai (1975) used an 88 element, 325
node finite element mesh with a CPU time of 12s on an IBM

370 computer. The present procedure is thus relatively guite
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efficient.

The computed sway and heave exciting force coefficients
and the reflection coefficient agree quite closely with
Bai's (1975) results. The roll exciting moment coefficient
was consistently greater than that presented by Bai (1975)
with a maximum difference of about 7.5%; The use of a much
larger set of ﬁode points did not significantly change the
present results. The difference is expected to diminish with
the use of a finer mesh in Bai's computations.

From Figs. 9-11 it can be seen that the exciting force
coefficients decrease with increasing angle of incidence
vanishing at f=90°. The maximum force or moment occurs at
B=0°. "The heave exciting force coefficient was fairly
constant up to certain anglé before decreasing to zero at
B=90°, while the sway and roll exciting force (or moment)
coefficients at any angle § seemed to be proportional to
cosf for ka=0.1. The reflection coefficient decreases
slightly with increasing angle of incidence before
increasing to one at =90°.

The exciting force and hydrodynamic coefficients of a
rectangular cylinder with a draft of 0.265a in water of
infinite depth were also computed and compared with the
results of Garrison (1984) in Figs. 13-21. Garrison (1984)
bused a Green's function which satisfies the free surface and
radiation boundary conditions and thus- requires the
discretization of the cylinder surface only. The Green's

function wused in the present procedure is relatively simple
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while the Green's function used by Garrison (1984) is quite
complex and is only valid for water of 1infinite depth. A
water depth d=n/k+b, where k is the wavenumber is used in
the present procedure to simulate infinite water depth. The
discretized surface had 40 node points on the free surface,
40 node points on the radiation surface and 16 node points
on the body surface. The coefficients are plotted as a
function of the frequency parameter ka for angles of
incidence B=0°, 30° and 60°. The computed exciting force
coefficients agree quite well with Garrision's (1984)
results. The added mass and damping coefficients generally
show good agreement with Garrison's results. The sway ' added
mass coefficient at 60° deviated by as much as 15% while the
roll damping coefficients deviated substantially from
Garrison's results with differences of up to 25%. Garrison's
results however agreed much better with the Haskind
relations. The results were slightly sensitive to the
location of the radiation distance which was estimated
empirically. The usé of elements with higher order
variations of'the potential should improve the accuracy of
the present method.

The exciting force coefficients show the expected
tendencies, decreasing with increasing angle of incidence.
The maximum roll moment occurs at about ka=n/4. This result
agrees with intuifion since one would expect the maximum
moment to occur when the trough of a wave is at the origin

and the crest at the sides of the cylinder.
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The added mass coefficients tended to increase, while
the damping coefficient decreased with increasing angle of
incidence for most of the frequency range studied. The
damping coefficients should vanish at f=90° since the wave
crests are normal to the axis of the cylinder and hence no
energy is propagated away from the cylinder in the #x
directions.

The exciting force coefficients, hydrodynamic
coefficients and wave amplitude ratios of a semi-immersed
circular cylinder in water of infinite depth were computed
and are compared with the results of Bolton and Uréell
(1973), and Garrison (1984) in Tables 1-4. Garrison's
results were estimated from the figures presented in his
paper. The results are shown for ka=0.25, 0.75 and 1.25 with
angles of incidence p=0°, 35° and 55°. The boundary was
modelled with 40 node points on the free surface, 40 node
points on the radiation surface and 16 straight line
segments on the surface of the cylinder. Agreement between
the different methods is generally good with différences of
less than 15%. It is interesting to note that the wave
amplitude ratios increase with angle of incidence. This
indicates that as the wavelength along the cylinder
degreases, the waves generated by the motions of the

cylinder become more amplified.
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4.2 MOTIONS OF AN UNRESTRAINED BODY

The equations of motion were solved to give the
amplitudes of motion of a long floating box (a=7.5m, b=3m,
1=75m) in water of depth d=12m. The box is assumed to be
rigid and hence the added mass and damping coefficients for
beam seas (f=0°) are used. The mass of the box is pV where V
is the displaced volume. The centre of gravity is assumed to
be at the still water level and the roll radius of gyration
is‘given as 19.5m, |

Figs. 22-24 show the amplitudes of motion for the sway,
-heave and roll modes respectively. The amplitudes are
plotted as a function of ka for $=0°, 30° and 60°. At low
frequencies (ka<0.1), the sway and heave motions have the
same amplitudes as the horizontal and vertical motions of a
particle at the free surface. The sway amplitude is maximum
as ka->0 and decreases as ka increases. The heave amplitude
for beam seas increases with ka up to maximum before
decreasing, while the response amplitudes for B=30° and 60°
decrease with increasing ka. There are local =zeros of the
response for oblique waves corresponding to the zeros of the
factor r(kl,B). The roll amplitude at resonance is
excessively high. This is because viscous damping which is
present in practical situations was neglected 1in the
computations. In solving the equations of motion, it was
observed that the heave response is uncoupled from the sway
and roll responses while coupling between the sway and roll

modes was weak except close to the roll resonance frequency
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where there is a sudden drop in the sway amplitude.

4.3 EFFECTS OF DIRECTIONAL WAVES

There are two factors that contribute to the reduction
of wave loads experienced by long structures in
short-crested seas compa;ed to long-crested seas: (1) the
‘sinusoidal wvariation of the wave forces along the length of
the structure, and (2) the variation of the two-dimensional
forces with angle of incidence for a given cross-section.

The ihtegration of the two-dimensional force along the
length of the structure results in a reduction factor
r(kl,8). The square of the reduction factor r(kl,B) is
plotted as a function of k1l for B=0°, 15°, 30° and 60° in
Fig. 6. For a given structure of finite length, the factor
r(kl,B) results in the reduction of the wave loads per unit
length for oblique waves even if there is no variation of
the sectional force with angle of incidence. It also results
in the decrease of the wave loads per unit 1length as ka
increases if we ignore the variation of the sectional forces
with ka. The variation of the sectional forces with the
.frequency parameter ka and angle of incidence f has been
discussed previously in section 4.1. The combination of the
factor r(kl,B) with the sectional force variation with angle
of incidence results in the total force reduction factor Rp.

The frequency dependent force reducfion factor R has
been éomputed for the long floating box described in section

4.2, The computed RF values for the cosine power type energy
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spreading function is plotted as a function of ka in Figs.
25(a)-(c) for the sway, heave and roll forces (or - moment)
respectively. The results are shown for s=1,3,6 in order to
assess ‘the influence of the degree of  wave
short-crestedness. A principal direction ,=0° was used in
the computations. Simpson's rule was used to carry out the
numerical integration in eqn. (3.25) with an interval of
10°.

At low frequencies, the heave force reduction faétor
approaches a limiting value of one. This confirms the fact
that the heave exciting force is independent of direction
for low values of ka. As ka (or kl) increases, there 1is a
significant reduction of the heave force mostly due to the
factor r(kl,B). The sinusoidal variation along the length
thus makes it important to account for directional spreading
particularly for long structures. It can also be seen from
Figs. 25(a)-(c) that as s increases, the forces approach the
Aresults for long-crested seas. Battjes (1982) derived an
expression for the asymptotic form of R at high

F
frequencies. This is given as

RZ = 27C(s)cos258,/k1 as kl—sw (4.1)

At higher frequencies (ka>1), the sway, heave and roll force
(or moment) reduction factors all converge to a value which
is slightly less than the asymptotic value. The sway and
roll force (or moment) reduction factors approach a value of

0.866 as ka—>0. This result was expected since the sectional
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sway and roll exciting force (or moment) is proportional to
cosp at 1low frequencies (ka<0.1). The force reduction
factors for all three modes decrease with increasing ka up
to a value of 0.4 at ka=2.

The sway and heave force reduction factors were also
computed for one case of oblique mean incidence (f,=30°) and
the results are shown 1in Figs. 26(a)-(b). The reduction
factors for normal mean incidence are included for
comparison, Af low frequencies, the sway‘ force reduction
factor has a value of 0.79 for B,=30° compared to 0.866 for
normal mean incidence. The heave force reduction factor at
ka=0 was 0.985 for f$,=30° compared to 1.0 for B,=0°. The
slighf reduction of the heave force arises from the fact
that the spreading function was cut off to ensure that the
waves approach the structure from one side only. As Kka
increases, the difference between the heave force reduction
factor for oblique mean waves and normal mean waves
increases up to an asymptotic ratio of cosf,.

The response ratio for the body motions has been
computed for the case of the floating box subject to a
Bretschneider spectrum with cosine power energy spreading.
The incident unidirectional wave spectrum is given as

S(0) = 798, —L— expl-§(£)7%] (4.2)

(f/f )3 0
where Hs is the significant wave height and f, is the peak
frequency. The results are plotted as a function of s in

Figs. 27(a)-(c) for the sway, heave and roll responses
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respectively assuming normal mean incidence. A significant
wave height Hs=2m and a peak frequency £f,=0.2Hz were used in
the computations. In the numerical integration, five
frequencies between 0.14Hz and 0.26Hz and an angle interval
of 10° were used. The rms amplitudes in long-crested seas
are 0.22m, 0.32m and 0.60rad for the sway, heave and roll
responses respectively. Figs. 27(a)-(c) show reductions of
43%, 42.5% and 41.5% in the rms value of the sway, heave and
roll responses respectively in short-crested seas with s=1
compared to ldng-crested seas. As s increases, the response
ratios approach a limiting value of one indicating that the
amplitudes of motion of the structure in short-crested 'seas

approach the long-crested results as s—=,



5. CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The effects of wave directionality on the 1loads and
motions of long structures has been studied.

A numerical method based on Green's theorem has been
developed to compute. the exciting forces and hydrodynamic
coefficients associated with the interaction of a regular
oblique wave train with an infinitely 1long, floating
semi-immersed cylinder of arbitrary shape. The method is
quite general and can be applied to cases of variable water
depth.

Numerical results obtained from the present method have
been compared with those obtained by Bai (1975) wusing a
finite element method for a rectangular section cylinder in

water of finite depth. The present results have also been
compared to those obtained for infinite water depth by
Bolton and Ursell (1973) using a multipole method for a
semi-immersed circular cylinder as well as Garrison (1984)
using a -Green's function procedure for a rectangular
cylinder and a semi-immersed circular cylinder.

The present method is quite efficient.and gives results
which compare favorably with all the previous results over a
wide range of frequencies covering the usual range of design
conditions. The present procedure is not as efficient for
very high frequencies due to the large number of node points

required to give accurate results. The present procedure is
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however not valid for head seas since the wavelength along
the body axis becomes of the same order of magnitude as a
typical cross-sectional dimension.

The two-dimensional results have been integrated along
the body axis to obtain the wave loads on structures of
finite length. The wave 1loads and motions of a rigid
structure in short—cfested seas have been obtained using the
linear transfer function approach; The effects of wave
directionality 1is expressed as -a frequency dependent,
directionally averaged reduction factor for the wave loads
and a response ratio.for the body motions. The reduction
factors have been evaluated numerically for the cosine-power
type directional spreading function. Response ratios were
also computed for a Bretschneider incident wave spectrum
with cosine power spreading.

For the given structure, the sway and roll force
reduction factors varied from 0.87 at ka=0 to 0.41 at ka=2
for a cosine-squared. distribution with normal mean
incidence. The heavé reduction factor varied from 1.0 at
ka=0 to 0.40 at ka=2. The ratio of the amplitudes of motion
‘of the structure for the specified short-crested sea state
with a cosine-squared distribution were 57%, 57.5% and 58.5%
of the response in long-crested seas for the sway, heave and
roll modes respectively. A further reduction of the forces
and ahplitudes of motions is obtained for obligue mean waves
(Bo#0°). These reductions are quite significant particularly

for long relative structure lengths and need to Dbe
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considered in the design process.
As the parameter s which describes the degreé of
short-crestedness incréases, the loads and motions in

short-crested seas approach the results for long-crested

seas.

5.2 RECOMMENDATIONS FOR FURTHER STUDY

There are several areas in which further studies could
be made to improve the present method. The accuracy of the
numerical scheme used in the solution of the oblique wave
diffraction problem could be improved by using higher order
elements. This however réquires an increased computing
effort. |

The present study considered the effects of wave
directionality on the loads and motions of a rigid body even .
though hydrodynamic coefficients have been presented for
structures with sinusoidal mode Shapes. - A numerical
procedure could be developed to determine the dynamic
response of a flexible structure such as'a floating bridge
in short-crested seas using the exciting forces and
hydrodynamic coefficients given 'by the present method.
Additional forces due to moorings and viscous damping could
be included in the analysis.

The present method assumes a small amplitude wave '
train. For steep waves, nonlinear effects have to be
considered. Developing a theory that incorporates both the

nonlinearity and directionality of the waves is however
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quite difficult. The present linear diffraction theory for
oblique waves could be extended to nonlinear waves and a
hybrid method such as that proposed by Dean (1977) can be
used to include the effects of wave directionality.

Finally, experimental investigations could be carried
out to measure the loads and response of long structures in

short-crested seas to help verify the present theoretical

results.
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APPENDIX I

ANALYSIS TO DETERMINE OPTIMUM RADIATION DISTANCE

Consider the oblique waves generated by the oscillation
of an infinitely long cylinder in any one of its three modes
with each mode of motion periodic in time as well as along
the axis of the cylinder. The potential associated with the

forced motions can be expressed as
®(x,y,z,t) = Rel¢(x,z) exp{i(kysinf-wt)}] (11)

where k is the wavenumber which is related to the angular
frequency w by the dispersion relation (egn. 2.11). The
two-dimensional potential ¢(x,z) can be expressed 1in terms

of an eigenfunction expansion as

p(x,2) = Aocogggggig?)] exp(ikxcosp) +

cos[km(z+d)]
m cos(kmd)

LA exp(-k%x) x20 (12)
=1 .

m

where km and k; are wavenumbers defined by

-k_ tan(k d) = ‘é’—z (13)
and '
kX = [k2 + (ksing)2]'/2 | (14)

A, is the complex amplitude of the potential at the far
field and the coefficients A, are included to account for

the evanescent modes of wave motion near the cylinder.
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Since the léwest eigenvalue k? gives the slowest decay
amongst all the evanescent modes, a decay factor can be

defined as
d(x) = exp(-k¥x) (15)
where

g < k¥d <« (16)

In order to achieve a decay rate of exp(-2n) or 0.01 times

the value at x=0, the infinite boundary is truncated at a .

distante.xR given by

X = _ 2m 7 (17)
[(ksinp)? + (k%)?]

A maximum distance of four times the depth is obtained when
k¥d = n/2 and B=0°. The above approximation was found to
give good results in water of finite depth. In deep water,'
eqn. (I7) gives a distance which is too large. Bai (1975)
noted that an eigenfunction expansion cannot be used in
water of infinite depth for =0°. A pulsating source should
rather be wused to obtain wuseful information about the
optimum diséaﬁce for truncation of the 1infinite boundary.
The following empirical expression for the radiation

distance is used in this study for deep water conditions

Xp = LS (18)
[(ksing)? + (n/ma)2]'/2

where a is the half-beam of the cylinder and m is given as



ka<0.5
0.5<ka<1.5

ka21.5
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2 2
u,,/pa A, ,/pwa
present present

ka g° results GAR results GAR
0.25 5 1.97 2.10 0.57 0.60
35 2.04 2.16 0.46 0.53
55 2.08 2.21 0.30 0.38
0.75 5 1.00 0.93 1.31 1.39
35 1.14 1.19 1.40 1.51
55 1.84 1.74 1.44 1.56
1.25 5 0.45 0.43 0.93 0.99
35 0.61 0.59 1.01 1.14
55 1.09 0.93 1.34 1.40
Table 1. Comparison of the sway added mass and damping

coefficients of a semi-circular cylinder (d/a=«) obtained in
the present study with the results of GAR (Garrison,1984)
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2 2
uzz/pa kzz/pwa
present present

ka g° results B&U results B&U
0.25 5 1.38 1.38 1.99 1.96
35 1.61 1.60 ' 2.51 2.38
55 2.64 2.32 3.23 3.06
0.75 5 0.97 0.94 0.94 0.88
35 1.04 1.06 0.93 0.92
55 0 1.43 1.32 1.10 1.02
1.25 5 1.01 0.98 0.49 0.44
35 0.92 0.90 0.39 ©0.40
55 0.98 0.90 0.46 0.42

Table 2. Comparison of the heave added mass and damping
coefficients of a semi-circular cylinder (d/a==) obtained in

the present study with the results of B&U (Bolton and
Ursell, 1973) ‘
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I, | . 15,1
present present

ka B° results GAR results GAR

0.25 5 0.75 0.77 0.18 0.19
35 0.63 0.65 0.18 0.19
55 0.44 0.46 0.18 , 0.19

0.75 5 1.17 1.18 0.85 0.89
35 1.07 1.11 0.97 1.02
55 0.94 0.94 1.17 1.26

1.25 5 0.99 0.99 1.19 1.26
35 0.95 0.95 1.37 1.56
55 0.91 0.90 1.89 1.96

Table 3. Comparison of the sway exciting force coefficient
and wave amplitude ratio of a semi-circular cylinder (d/a==)
obtained in the present study with the results of GAR
(Garrison, 1984) :
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c, | 15, |
present ' present
ka B° results B&U results B&U
0.25 5 1.40 1.40 0.34 0.35
35 1.41 1.40 0.42 0.43
55 1.29 1.32 0.58 0.58
0.75 5 0.95 0.94 : 0.71 ' 0.70
35 0.87 0.87 0.78 0.80
55 0.77 0.76 1.02 1.00
1.25 5 0.68 0.67 - 0,85 0.84
35 0.54 0.57 0.85 0.87

55 0.49 0.49 1.10 1.07

Table 4. Comparison of the heave exciting force coefficient
and wave amplitude ratio of a semi-circular cylinder (d/a=«)
obtained in the present study with the results of B&U
(Bolton and Ursell,1973) -
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Fiqure 2. Definition sketch for floating cylinder showing
component motions
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Figure 3. Sketch of closed surface
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Figure 4. Sketch showing relationship between x, £, and £
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Figure 7. Sketch of a directional wave spectrum
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Figure 13. Sway exciting force coefficient for a
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Figure 17. Sway damping coefficient for a
cylinder (b/a=0.265,d/a=~)
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Figure 19. Heave damping coefficient for a rectangular
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0.4
A PRESENT RESULTS
GARRISON (1984)
0.3-
o
<
3
0.2-
0.1 1 T T
0 0.5 1 1.5 2
ka
Figure 20. Roll added mass coefficient for a rectangular
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Figure 22. Sway response amplitude operator for a long
floating box (a=7.5m,b=3m,1=75m,d=12m) ‘
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Figure 23. Heave response amplitude operator for a 1long
floating box (a=7.5m,b=3m,1=75m,d=12m)
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Figure 24. Roll response amplitude operator for a long
floating box (a=7.5m,b=3m,1=75m,d=12m)
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Fiqure 25. Force and moment reduction factors for a long

floating box (a=7.5m,b=3m,1=75m,d=12m)
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Figure 25.(cont.) Force and moment reduction factors for a
long floating box (a=7.5m,b=3m,1=75m,d=12m)
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Figure 26. Force reduction factors for a long floating box
(a=7.5m,b=3m,1=75m,d=12m) in normal and oblique mean seas
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Figure 27. Response ratios for a long floating box
(a=7.5m,b=3m,1=75m,d=12m) '
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Figure 27.(cont.) Respénse ratios for a long floating box
(a=7.5m,b=3m,1=75m,d=12m)



