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ABSTRACT

The behaviour _of concrete masonry under in-plane compression combined with out-of-
plane bending was examined both experimentally and analytically.

_ Ungrout;ed and grouted masonry, both fuily bedded or face-shell bedded, were included
in the study. It was found that the masonry under the above stated loading conditions may
suffer loss of capacity either due to splitting or shear type of material failure, or by instz{bility.
Different loading conditions yield different failure mechanisms, which in turn correqund to
different apparent strengths. Theoretical developments are presented leading to estimates of
capacity for each of these cases. An extensive experimental program involving 104 masonry
prism specimens, was conducted to assist and to verify these analyses.

Theoretical developments include those directed to explain splitting failure phenomena,
to investigate the mortar joint effect, the deformation compatibility of grouted masonry, and to
examine the slenderness of tall masonry wall. Experimental measurements and observations

made on the specimens include capacity, deformation and failure pattern.
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NOTATION

constants in various contexts;

gross area and net area of block unit, respectively;

constants used for dimensions;

pre-existing half crack length and half spacing, respectively, in (Chapter III);
half width of hollow core and block unit, respectively;

bedding joint crack depths of a wall cross-section, defined in Fig. 11.2;
constants;

modulus of elasticity;

modulus of elasticity of block unit, grout, mortar joint, respectively;
loading eccentricities;

virtual eccentricities corresponding to different bedding joint crack depths;
compressive force;

functions of bedding joint cracking defined in Appendix F;

friction between pre-existing crack surfaces;

compressive and tensile strength, respectively;

compressive strength of plain masonry and grouted masonry, respectively;

compressive strength of block unit, grout (prism strength), mortar (cube

strength), respectively;

§;
fier fie =
fur
Gy, G,
Gr. Gre
H

unconfined strength of mortar joint;

confined strengths of mortar joint;

tensile strength of block;

functions of bedding joint cracking defined in Appendix F;
energy release rate of crack extension and its critical value;

parametric function defined in Appendix B;
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h = height of wall or specimen;
he, hy = wall heights corresponding to different bedding joint crack depths;

ho = height of block unit;

I, I; = moment of inertia of wall corresponding to net cross—section and gross-section,
respectively;
K;, K, = stress intensity factor at crack tips and its critical value;
k = crack configuration factor (in Chapter III);
k, ky, k, = constants;

l, I, = extending crack (half) length and its initial value (in Chapter III);

!l = length of wall or specimen;
M = number of cracks.in specimen, (in Chapter III);
M = bending moment;
m = modulus of Weibull distribution;
my, my = modular ratio of Eu/Ey and Eu/E;, respectively;
n = modular ratio of reinforcing steel to block shell;

P, P, = tensile splitting force (in Chapter III);

P = applied compressive load;
P.r, P, = Euler load (corresponding to gross section), and buckling load of wall,
respectively;
p = contact pressure between grout and block shell;
Q;, @n, @y, T; = traction components on internal boundary and external boundary of an

elastic body containing cracks, respectively;
R = energy dissipated by friction;
S = shear force;
s = contour length;

T = effective crack induced shear sliding force;
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t = thickness of wall;
to = thickness of mortar joint;
U = strain energy;
u, v = dispacement variables;
u;, U;, Un, ¥y = displacement components on internal boundary and external boundary iof an

elastic body containing cracks, respectively;

¥ = volume;
V = work done by external load;
W = energy‘dissipated to form new crack

w = specimen width (in Chapter III);

w, wg = sum of the mortared web dimension and grout dimension along wall Iength,
respectively: .
z, y = variables under different context;
Z = cumulative function of a Weibull distribution;
a = inclining angle of pre-existing cracks (in Chapter III);
a = release angle of block inner core;
I';, 'y = external and internal boundaries;

A, § = displacements;
6, 6; = crack opening and its value at the starting ponit of transitional interval (in

Chapter III);

€ = compressive strain;
€, = extreme fiber strain on compression side of vﬁll;
€u, €g, €; = cofnpressive strain in block unit, grout and mortar joint, respectively;
€y Tij = strain and stress components;

7 = net area to gross area ratio of block unit An/Ay;
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9, 6., ©; = cracking phase and its values at the starting points of crack extension and

transitional interval;

0

p
0,04
Tijr Tij

09y 01, 0y

Weibull distribution parameter;

constant related to Poisson’s ratio, defined in Chapter IV;

parameter defining grout and bedding extent, given by Eq. 10.3;
coefficient of friction (in Chapter III);

e.ffective Poisson’s ratio: v/ (1-1‘/);

Poissoﬁ’s ratio;

Poisson’s ratio of block unit, grout and mortar, respectively;
average defect size-spacing ratio (a/b, in Chapter IIT);

ratio of moment of inertia I/ Iy;

sgeel ratio with respect to gross section owaall;

compressive and tensile stress, respectively;;

normal and shear stress components, respectively;

threshold stress for crack extension, stresses at the starting and finishing

points, of transitional interval (in Chapter III); respectively;

01, 02
o

(Tm, Ts

Qla Q2

outer fibre stresses of wall;

lateral confining stress in joint;

C(;mpressive stress in masonry (average) and in masonry shell, respectively;
cdmpressive stress in block unit, g'rout and mortar joint, respectively;

laj;eral tensile stress in block unit;

rotation (slope) of wall section; '

rof’tations of wall section corresponding to different bédding joint crack depths;

Airy stress function;

.density function of Weibull distribution;

functions of bedding joint crack depth defined by Eqs. 11.19 and 11.21.
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CHAPTER I

INTRODUCTION

1.1 General Remarlés

Masonry cdnstruction is basically an asserﬂbly of ‘blocks. The blocks can be natural
stone, clay bricks or pre;ast concrete units. They are jointed with cementitious maﬁerial called
mor.tar.b The history: of ’masonry building may be as old as human civilization, but the interest in
masonry is still in;crea'sing today becaﬁse of the economy of construction and the pleasing
appearence of masonry structures.

Serious stuéies_ of structural masonry haye been carried out for the last two decades.
While knowledge of the structural behaviour of masonry has been greatly improved, many
questions still remaip unanswered in this area, and the design rests largely on an empirical base.

This study §vill chus on the fgiluré and ;:a}pacity of the concrete masonry under in-plane |
combressioh combined v‘.lith‘ out-of-plane bending. The study extends from a backgrouhd
investigation of rﬁaterial failure to a rational an;é.lysis of masdnry stability.. The behaviour of
masonr); prisms with various beddiﬁg and grouting combinations under various loading
conditions is carefuliy'observed through experiments.

This thesis i:is organize('i. in tﬁe following manner. The experimental program is first
reported in Chapte; II; the resﬁlts will be quofted and studied in detail in the subsequent
chapfers. The background study on material failure under axial compression, which will be used
to expléin some ‘b;eha.viour of concret‘,’e‘f‘*masonr‘y in later chapters, follows in Chapter III.

Chapters IV to VII“ focus on the beha.viouv‘r of ‘pl“ain concrete masonry; Chapters VIII to X on
grouted masonry. ’i‘he study on the slenderness and the stability of concrete masonry is
presented in Chaptef XI. Finally, Chapter XII concludes this study.

It is hoped that the theoretical ﬁmiihgs and the experimént_al observations presented in

this study will enhance existing knowledge of the failure of concrete masonry, and assist in the



formulation of design rules for concrete masonry structures.

1.2 Obje:ct and Scope

The objec_t ;)f this thesis will be:

a) To revie\:v and develop the background for material failure theory.

b) To observe the behaviour including deformation, fracture pattern, failure mode and
ultimate capacity of concrete masonry prisms with different loading conditions, joint conditions
and grouting conditions. |

¢) To examine and develop the existing theories for failure of concrete masonrvy ur-mder
various conditions.

d) To investigate the slenderness and stability of concrete masonry.



CHAPTER II

EXPERIMENTAL PROGRAM

2.1 Purpose and Scope

Extensive experimental work on concrete masonry has been conducted previously. In
this program, however, efforts were made to observe more closely the deformation and fracture
pattern of masonry prisms. under concentric and eccentric compression. Prism specimens were
designed to cover various combinations of bedding and grouting conditions.

In order to re-examine the Hilsdorf model of mortar expansion, for plain prisms under
concentric Ioading,' particular emphasis will lie on observation of splitting failure, and the effect
of ;joints on deformation and capacity of masonry. For grouted prisms under concentric
compression, attention will be paid to the cracks induced by the different deformation properties
of the masonry unit and the grout, and the forces shared by these two materials before and after
cracking. For masonry prisms under eccentric loading, failure modes will be observed and the
joint bond on the unloaded side will be monitored through deformation gauges.

The experimental results concerning the properties of the masonry constituents are
concisely feported in this chapter. The ch§racteristic results for masonry specimen are
summarized. The detailed results will be reported and studied in the context of related analysis

in later chapters.

2.2 Materials
All materials used in making the test specimens are commercially available and typical

of those commonly used in local construction.

2.2.1 Masonry Units.

All the masonry prisms tested were built -by using 8 inch standard concrete block units
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with double end (11; accordance with CSA-A165-M85, C-20). The units were kindly donated bsr
Ocean Constructioﬁ Supplies Ltd, Vancouver, B. -C. The dimensions are shown sc'hematically.in
Fig. 2.1.

To determine the compressive strength of the units, 16 blocks were tested with a
Baldwin Tate-Emery testing machine. In accordance with ASTM C140, 8 blocks were capped
with hydrostone (a gymsum cement). In order to observe the effect of the capping condition,
another 8 blocks were tested with fibreboard capping. Table 2.1 gives the results of failure loads.
As can be seen, although there is a statistical difference, it is not sufficient to suggest a different
failure mechanism. This is consistent with the fact that the two test conditions exhibited similar
shear failure patterns, as typically shown in Fig. 2.2. 16 block units with two different capping
conditions all exhibited conical type failure, owing to the low height to width ratio. The average
failure load is 200.5 kips, which corresponds to an average strength of about 3250 psi based on
the net area of the unitl(the ratio of net area to gross area of the unit n is 0.51).

Attempts w:ere also made to obtain the deformation properties by measuring the relative
. displacement of the loading head. However, due to the compliance of the testing machine (the
dial gauge was not mounted directly against the loading platens) and the variation in the
cappings,' the results were not accurate compared with those measured by LVDTs directly
mounted on the blocks in prism tests. The latter,afe given by Fig. 2.3. The initial modulus of
the units is about 3.42x10° psi.

The concrete units were very brittle in the sense that they often failed totally in an
explosive manner as soon as the peak load was reached. It was nlot j)ossible to measure tile

deformation after the peak strain with the standard test procedure.
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FIG. 2.1 Masonry Unit
SPECIMEN | 1 2 3 4 5 6 7 8 AVG | cov
GROUP 1 169 | i88 | 194 | 196 | 207 | 186 | 213 | 189 | 193.0 6.5%
GROUP 2 219 186 | 232 | 205 | 208 187 | 220 | 203 | 208.0 7.2%

Table 2.1 Failure Loads of Block Unit (kips)

GROUP 1: Hydro-stone cap; GROUP 2: Fiber board cap




FIG. 2.2 Conical Failure of Masonry Unit




3.2
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FIG. 2.3 Stress-Strain Relation of Masonry Unit under Compressioh

2.2.2 Mortar

* Three types of mortar were used, i.g. type M, S, and N in accordance with CSA-179M-
1976. The mortars were mixed by an experienced mason, with a small ele(;,trically driven mixer,
-during the construction of the specimens. The rhix proportions are giveh in Table 2.2. Mortar
cubes were sam’pled for every batch. The 28-day cube strengths are given in Table 2.3. At the
same time,i the stress-strain rélationships»were measured for type N and some of the type S
mortar, as shown in Fig. 2.4. The results indica.te that the'mortars are much softer than normal
concrete, and that they have very large peak strains. The initial moduli are abéut 0.4x10%psi for
type N mortar; and 0.5x10%psi for type S mortar. Tl-xe peak s§rains are about 0.006 for the .

former and 0.009 for the latter. The high compliance of the mo:rtar was also indicated by
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deformation measurements across the Jjoints of prism specimens. As typically shown in Fig. 2.5,
. the ratio of the initial modulus of three types of mortar to that of the concrete units is about 1

to 6-8. The deformation properties measured directly from mortar cube tests and the unit tests

are very close to these results.

Mortar Proportion by Volume

Type Cement(Type III] Masonry Cement{f  Fine Sand Water
M ‘ 1 1 2.5 1
S 1/2 1 3 1
N - . 1 3 0.68

Table 2.2 Mix Proportions of Mortar

SPECIMEN | 1 2 3 4 5 6 AVG cov
M- TYPE | 4188 | 4835 | 4625 | 5100 4690 7.1%
S TYPE | 3985 | 4320 3875 | 4075 | 3750 4000 4.8%
N TYPE | 1450 | 1710 | 1560 | 1650 | 1325 | 1730 1570 9.2%

Table 2.3 28 Day Mortar Cube (2 in) Strength (psi)
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FIG. 2.5 Measured Vertical Compressive Strains along Block Units and across

- Mortar Joint of Plain Prisms under Uniaxail Compression.

2.é.3 Grout

Three types of grout with different strengths were designed for the specimens. They are
denoted by GS, GN and GW. The mix proportions are listed in Table ‘2.4. The water qontent
Vwa_s adjusted slightly to achieve 3-5 inch slump. For every mix batch, two or three standard
pfisms were cast and cured in accordance to CSA-179M-1976. The compressive strengths are

given in Table 2.5.

To examine the correlation between the strength obtained by the standard test and that

actually grouted in the masonry, 20 grout prisms taken from the cores of failed masonry
specimens were tested. The cores were cut by a diamond saw and capped with sulfur before

testing. The results are shown in Table 2.6. As is seen, the strength of the grout prisms taken



11
from failed masonry specimens is sﬁbstantially higher than that of the standard prisms. This
may be partly due to the different height to width ratios of the specimens .(1.4:1 for the former,
2:1 for the latter, approximately), partly to the difference in curing time (the former were tested
about a year later). This suggests that the strength obtained by the standard test is only
meaningful as a reference parameter.

" The deformation propertieé were measured on the cores taken from tested grouted
masonry prisms. The deformation curves are given by Fig. 2.6. The initial modulus is 2.8x10°

psi for type S grout, 2.6x10° psi for type N grout and 1.9x10° psi for type W grout.

Grout Proportion by Volume

Type Cement(Type IIT] Coarse Sand Pea Gravel Water
GS 1 2.5 2.5 0.6
GN 1 2 2 0.8
GW 1 5 1.0

Table 2.4 Mix Proportions of Grout

SPECIMEN 1 2 3 4 5 6 7 8 9 AVG| COV
S—TYPE | 4720 | 5445 | 4890 | 5320 | 4705 5015 | 6.1%
N—-TYPE:| 3685 | 3885 | 3720 | 4015 | 3390 | 3425 | 3745 | 3600 | 3815 | 3700 | 5.1%
W-~TYPE 31‘:65 3500 | 3305 | 3375 | 3285 ‘j 3325 | 3.2%

Table 2.5 Grout Strength, by Standard Prism Tests (psi)

SPECIME 1 2 3 4 5 6 7 8 9 AVG| COV
S—TYPE | 6305| 4170 | 5530 6690 | 5245 5590 {15.7%
N—TYPE | 6180 | 5625 | 5970 | 6350 | 5810 | 6310 | 5870 | 6660 | 6215 | 6110 | 4.9%
W--TYPE| 4530 | 4725 | 4330 | 4450 | 4050 | 4210 4385 | 5.0%

Table 2.6 Grout‘; Strength, by Tests on Cores Taken from Failed Prisms (psi)
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FIG. 2.6 Strsse Strain Relation of Grout:
a) Type N, b) Type W, ¢) Type S.
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2.3 Prism Specimens

104 3-high prisms were built with different bedding, and grouting conditions, designed
to be tesfed under‘ different eccentricities. Three high specimens were chosen bécause it is
believed that the end effect of the loading device can be eliminated in th;e middle course where
all the measurements were made. The specifications of the specimens are listed in Table 2.7.

All the plain prisms were built by an exi)erienced mason. All the mortar joints were cut
flush on the prism faces. The prisms were then grouted 4-5 days later (for grouted' prisms). The
specimens were stored in the structures laboratory at the University of British Columbia for
about a year until they were tested. A few speciméns were discarded because of the debonding of
the mortar joint (the debonding happened because specimens were moved once, due to other
experimental activities, during the storing period, and because of setup handling).

For the grouted prisms, hydrostone was used to finish the top ends prior to testing. All

‘the prisms were transported by using a small trolley to the testing device and then' capped (top

and bottom) with fibreboard before they were positioned between the loading platehs.



Specimen No. off Joint Grouting Load Additional
Prisms| Conditions Conditions |Eccent. Description
S1 4 S Mortar - 0 Joint thickness is 3/8
N2 4 N Mortar - 0 inch except otherwise
M3 4 M Mortar - 0 specified.
N4 4 NJ, t,=6/8" - 0 NJ=N Mortar.
P5 4 to=0 - 0 |Contactfaces weregrinded
G7 4 |4mm glass platq - 0 [jointed by cement paste.
S8 4 S Mortar N Grout 0
M9 4 M Mortar N Grout 0
N10 4 | NI, t,=6/8" | N Grout 0 NJ=N Mortar.
PIl | 4 to=0 N Grout 0
N12 4 N Mortar S Grout 0
N13 4 N Mortar N Grout 0
N14 4 N Mortar W Grout 0
N15 4 NJ, face-shell -- 0 NJ =N Mortar.
S16 4 SJ, face-shell -—- 0 SJ=N Mortar.
N17 4 NJ, face-shell N Grout 0 NJ=N Mortar.
N18 4 N Mortar - t/6
N19 4 N Mortar - t/3
M20 4 M Mortar - t/3
S21 4 S Mortar - t/3
N22 4 | NJ, face-shell --- t/3
N23 4 N Mortar N Grout 0 Half block
S25 4 S Mortar N Grout t/3
N26 4 N Mortar N Grout t/6
M26 4 M Mortar N Grout t/3
M27 4 MJ, face-shell - 0 MJ=M Mortar.

Table 2.7 Prism Specimens
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2.4 Testing Device

Since it was expected that for the grouted prisms the failuré loads would be higher than
the capacity of the existing testing facilities in the structures laboratory (up to 400 kips), a
loading device was built as shown in Fig. 2.7. It was formed basically with a girder serving as a
lever, with appropriate supporting members; it had a mechanical advantage of 2. The device was
connected to a hydraulic jack with 400 kips capacity, and so that it could apply a load up to
" 800 kips. It was' calibrated up to 600 kips, but, in the event, the failure loads of the specimens
never exceeded 400 kips.

The specimens were designed to be compressed with pin-ended conditior_ls. The top and
bottom loa&ing platens, V'therefore, were designed with cylindrical bearings, as shown in Figs. 2.7
and 2.8. The platens were designed for three loading eccentricities, i.e. e=0, e=t/6 and e=1/3.
The supporting devices were built with vhigh strength steel.

The hydraulic jack was controlled by an MTS control console (Model 483.02), with force
control mode (displacement control not available). The load was set to increase automatically so
that a specimen would fail in about 3 minutes, for plain specimens, and 5 minutes for grouted

ones. The load was read through an electronic load cell mounted in the jack.

2.5 Instrumentation

To measure the deformations of the prisms, about half of the specimens were
instrumented wirh six quarter-inch linear variable differential transformers (LVDT, Trans-Tek
‘Series 240). The arrangement and locgtions of the LVDTs were different for concentric and for
eccentric compression conditions, and are denoted by 1 to 6 in the figures showing the measured
curves (cf. Fig. 4.3, for example). The LVDT across the mortar joint had a gauge length of 1.8
inches (45 mm), while all rest were 5 inclh (125 mm). The LVDTs were clamped to alumiﬁum
supports which were then mounted on small disc screw nuts glued in advance by fast setting

epoxy, typically as shown in Fig. 2.9.



FIG. 2.7 Testing Device
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Fig. 2.8 Loading Platens

Fig. 2.9 Instrumentaion: LVDTs and Glued Wires

17
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Because of the destructive nature of the experiments, it was expected that the specimen
would fail in a sudden, explosive pattern, especially with the load controlled testing machine. To
reduce the impact of the failing specimen, the LVDTs were surrounded with plexiglass sleeves
and sponges as can. be seen in Fig. 2.94. To monitor the effect of the impact, they were checked
for normal functioning after every test and calibrated against gauge thickness for every two
tests, or whenever the central core of a transducer was bent (this happened several times during
the tests, straightening wa.s‘often necessary). Fortunately, the outer coils survived for the whole
testing program, alfhough the linking wires broke several times.

According t;,o the manufacturer, the LVDTs have an infinite resolution. However, when
the displacerﬁent measured is too small, the readings may be buried in the noise. It turned out
that when the displacement was larger than 0.0025 inch (corresponding to 0.5 milli-strain of the
given gauge lengthj, this was not a big broblerﬁ, and the readings were satisfactory for most
cases.

For plain prisms under axial compression, an electronic circuit was designed to study
the macroscopic splitting of plain prisms under uniaxial compression. Four very thin copper
wires (gauge 42, ¢ 6.08 mm) were glued with epoxy to different locations on the prisms. These
wires served as electrical conductors which give electrical pulses when they break. Since the wires
were fully surrounded by the hardened glue and adhering to the surface of the specimen, they
were supposed to break when the specimen split. By detecting the order of the wires breaking,
we obtain the running direction of a crack which runs across the wires. The crack propagation
speed in concrete is about 180m/sec (Bhargava and Rehnstorm 1975) so that a split would run
through the block height in about 0.001 secohd. The electronic circuit (see appendix) was
designed by an experienced electrician in the civil engineering department, which was capable of
detecting the break order for intervals less than 5x10~° second. Basically, it recorded the
electrical pulses given by open circuits due to breakages of the wires in an ordered way. The

circuit was built and then tested in the electrical engineering department at UBC. To gain more
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confidence with the method, it was first used in face-shell bedded prisms and gave consistent
results. It was then tried with fully bedded masonry with lines glued to the face-shells as well as
the webs, and again gave consistent results (webs split in contrast to face—shells). The wires were
then all glued to the webs, where splitting always occurred. The device is shown in Fig. 2.10
(also see Fig. 2.9 for glued wires), and it is seen that the breaking order is indicated by four rows
of light emission diodes (LED).

To give better insight into the failure processes, a VHS standard video camera was used
to record most of the tests. This was found very useful for later observation since, as the testing
machine was load controlled, many specimens were totally destroyed (often in an explosivé
manner) as soon as ultimate load was reached. The camera was installed to face one of the webs,
because fractures were more often observed to occur in Webs than‘ in face-shells (compare the
deformations measured at loéations 3, 4 with those at locations 1, 2. given in following chapters).

The camera was able to record visible cracks on the web faces, usually immediately
before final failure. However, LVDTs were more sensitive to smaller cracks occﬁrring at earlier
stages (as inferred by a sudden increase in measured displacement). For the majorit); of the
specim»ens, the overall failure pattern could be examined by slow playback of the recorder. For a
few specimens that failed in a highly explosive manner, however, the recbrding was not very
satisfactory. .Usually there was no warning, such as cracking or spalling, that failure was

approaching in these specimens.

2.6 Data Acquisition

The data, ife. six displacements and one load, were read by an Optilog system, an
electronic data acquistion unit, which is basically a microprocessor digitizing and recording the
analog signals. It was controlled by an IBM personal computer with Optilog software. The whole

setup is shown in Fig. 2.11.



FIG. 2.10 Electronic Device Detecting Wire Break Order
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The load cell and all the LVDTs were calibrated through the unit. The system was set
so that the load and the displacements were read every two seconds for plain prisms and four

seconds for grouted ones. The recorded data were often reviewed during the tests to prevent any

abnormal readings. They were then converted to standard format for later processing.

OPTILOG

DATA ACGUISITION

AND
CONTROL SYSTEM

FIG. 2.11 Data Acquisition Setup
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2.7 Summary of Characteristic Results

Since the prism specimens cover a wide range and each group .has its own empbhasis, it
may be inappropriate to give all the detailed results at this stage. Therefore, the results will be
reported and studied in the context of analysis in the related chapters.

In order to have an overall view of the test results, we give a short, descriptive summary
of some of the important experimental characteristics. They are outlined in terms of the failure
mode and capacity, which are of common interest but which are yet generally distinct betwéen
different specimens.

The specimens may be roughly characterized into 6 major groups according to their
bedding, grouting, loading conditions, as well as their failure characteristics. They are: plain
masonry with full bedding under concentric compression; plain masonry with face-shell bedding
under concentric compression; plain masonry (with both bedding conditions) under eccentric
compression; grouted masonry with full bedding under concentric compre§sion; grouted masonry
with face-shell bedding under concentric compression; grouted masonry (with both bedding
conditions) under eccentric compression.

The summary is organized in Table 2.8. Figs. 2.12 to 2.16 give some typical failure

modes.
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SPECIMEN

FAILURE MODE

CAPACITY CHARACTERISTICS

1) Plain masonry with
full bedding under

concentric compression.

Often one major split ran through
specimen within middle third of
webs, immediately t;efofe final
failﬁre. Splits did not consistently
initiate from the mortar joint.

Splits were continuous.

Joint conditions had a significant

influence on the capacity.

2) Plain masonry with

face-shell bedding

One or two splits in webs occured

at or immediately before final

Joint strength had a relatively

significant influence on the

under concentric failure. Splits consistently capacity.

compression. initiated from joints, at locations | Capping conditions had a
near two joint ends and wandered| substantial influence on the
afterwards. capacity.
Splits were discontinuousat joints.

3) Plain masonry under | Failure was characterized by Joint strength and bedding

eccentric compression.

shear, i.e. by spalling and crushing
on_the loaded side; and Was‘ often
localized in part of the specimen.
Joints on unloaded side did not

effectively transfer tension.

pattern had a relatively minor

effect on the capacity.

4) Grouted masonry
with full bedding under

concentric compression.

Splits both in webs and face-shells
were observed well before final
failure, some at as low as 40% of
failure loads. Block shells still
carried substantial load after
cracking. Final failure brought by
spalling of the shells, followed by
crushing of grout at the midheight.

Joint strength and grout strength
had a relatively minor effect on

the capacity.

5) Grouted prism with
face-shell bedding under

concentric compression.

Splits in webs occured well before
final faiure. Block shells carried

little load after cracking.

Capacity was not much higher

than that of grout alone.

6) Grouted masonry

under eccentric compr. |

As described in 3).

Both grout and joint have a

minor effect on the capacity.

Table 2.8 A Summary of Failure and Capacity Characteristics




FIG. 2.12 Splitting Failure of Plain Concrete Masonry with

Full Bedding under Uniaxial Compression
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FIG. 2.13 Failure of Plain Masonry with Face-Shell Bedding under Uniaxial Compression
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FIG. 2.14 Failure of Face-Shell Bedded, Fully Capped Masonry under Uniaxial Compression



FIG.2.15 Failure of Plain Masonry under Eccentric Compression
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FIG. 2.16 Failure of Grouted Masonry under Eccentric Compression
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CHAPTER III

-SOME BACKGROUND TO COMPRESSION FAILURE OF CONCRETE

3.1 Purpose

Concrete masonry is basically a concrete member with discontinuity in material
properties. In structural design, it is usually used to sustain compressive force.

In traditional analysis for concrete structures, a phenomenological approach has been
used: experimentélly observed stress-strain relationships, usually from uniaxial tests, havé been
applied. Failure has been defined as the stress or st‘.ra.in in the member which reaches some
critical value (strength or ultimate strain), which is obtained from uniaxial tests and assumed to
be constant in a general stress state.

However,‘ this approach is subject to certain limitations. The compressive strength of a
material such as concrete, whose failure is characterized by brittle cleavage fracture, is not a
very meaningful parameter. It vgries with the stress state due to the so-called strain gradient
effect, a phenomenon which is more obvious for concrete masonry. The approach also fails to
give an explanation for the splitting failure mechanism often observed in concrete masonry as
well as concrete under uniaxial compression. These p;roblems have been partially recognized but
never been fuily e;(plained.

Thé study presented in this chapter will attempt to raise the questioﬁ and to shed some
light on the problems by examining brittle materials under uniaxial compression. The intention
" is to present an explanation of the behaviour of these materials based on a failure mechanism a.f
the fundamental level.

The principles of this study will be used to explain some behaviour of concrete masonry
and to support an alternative apprbacil in later chapters. It is hoped that this study‘will also
help to develop a better understanding of the nature of the strain gradient effect and the

splitting failure phenomenon commonly exhibited in brittle material testing, and lead to more



30

general and consistent failure criteria for these materials.

3.2 Brittle Failure under Uniaxial Compression

| Although concrete may exhibit high nonlinearity at working compressive stress, it is
essentially a brittle material. This ié so mainly because the failure of concrete is characterized by
brittle cleavage fracture and the plastic deformation due to viscous behaviour of the hardened
cement is rather limited (Hsu et al 1963, Ziegeldorf 1983).

Extensive research work at both structural and phenomenological levels has indicated
that under compression, concrete -experiences three distinct stages before its final failure:
initiation of the éracks; slow stable crack growth accompanied by crack arrest; a critical
condit'ion characterized by unstable crack propagation and an extensive crack network for;nation
(for example, see Mindess 1983). The cracking process is reﬂectea in the global nonlinearity of
the material, Which appears in spite of the fact that both aggregate and hardened cement paste
are, individually, essentially linear up to the failure stress of the concrete. Another indication is ‘
the apparent volume increase of concrete under compression.

An important feature is that globally, the fractures in the material coincide with the
direction of the maximum principal compressive stress (Kotsovos 1979). For the case of uniaxial
compression, this corresponds to the well known splitting failure occurring overwhelmingly in
careful experiments. The conical failure mode frequently observed in concrete compression tests
is due to the lateral confining effect of the loading platen; it will change to a splitting mode if
the friction between the specimen and the loading platen is reduced.

Although shear stress does develop on inclined planes in uniaxial compression tests, the
classical theories based on shear fracture proposed by Coulomb, Navier, and Mohr are simply
not born out by experiment. Fracture mechanics based on Griffith’s theory provides a powerful
methodology in brittle failure analysis. Unfortunately, its success in application to concrete,

compared with metals, is rather moderate. This is largely because, as a cement-based composite,
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concrete is essentially a discontinuous, anisotropic, heterogeneous, multiphase system. There is
no clearly defined front for a major crack and the energy dissipating mechanism is not merely
confined to the surface energy. Direct application of the single crack model in Linear Elastic
Fracture Mechanics :dogzs not lead to satisfactory quantitative results,

However, recent developments in the application of fracture mechanics t(; concrete have
been more encouraging. This involves the use of a proper, nonlinear form of fracture mechanics
in which a finite nonlinear zone at the fracture front is taken into account, for example see
Bazant (1985). This finite zone can model strain-localization due to strain softening Qf _concrete
(in an average sense over a smeared crack band) at the crack front and provide an energy
criterion for crack extension. Concrete outside of this finite zone can be considered to behave
essentially elastically. It is found that the detailed distributions of stress and st;ain at the
fracture front have little effect globally, since fracture propagation depends essentially on the
flux of energy into the fracture process zéne, which is a global characteristic of the entire
structure. Although these findings were obtained in the study of concrete under tension, some of
the basic principles éhould also be applicable to the case of uniaxial compression.

In the case of uniéxial~compression, experiments on different brittle materials such as
ceramics, glass and especially on natural rocks, have again revealed the same splitting failure
mode and a similar stable-unstable failure process. For relatively homogeneous materials, often
only one or a few splits are observed, while for less homogeneous materialé, more visible vertical
cracks are found to.accompany the main splitting. (Seldenrath et al 1958, Fairhurst and Cook
1966, Brace and Byérlee 1966, Paterson 1978). This has led to relatively.extensive model studies,
at a fundamental le;/el, in these areas. The most frequently studied models are grounded in the
idea that frictional sliding of a pre-existing crack produces, at the crack tips, tension cracks that
grow in the direction of compression, as shown in Fig. 3.1.

It may be worth giving a brief description of the effect of the presence of a sliding crack.

Consider a block in which a crack appears as in Fig. 3.2(a). Before the crack appeared, the stress
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. .FIG. 3.2 Depiction of the Effect of a Crack
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T
21 FIG. 3.1 A Sliding Frictional Crack in a
Compressive Stress Field, Showing the Original
Defect and its Extension
1
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field was such that a pair of normal forces N ‘and' shear forces T were transferred across the space
now occupied by tﬁe ;rack. When the crack forms, N is still transferred, but T can no longer be
carried. "I_‘hus the effect of the crack on the origix;al stress field is the same as the application of
two opposite shear forces T on the crack zoné, as depicted in Fig. 3.2(b) and Fig. 3.1 (i.e. the
removal of" 7). Similar argument may also apply for material defects with other configurations.

| Although this model is a radical idealization of reality, it does capture some of the basic
features of the observations made at the microscopic level on rocks and concrete. Frictional
sliding dpés occur along the pre—existiﬁg interface cavities or cleavage cracks, and for concrete
this often takes place at the matrix-aggregate interface. The sliding-induced tension cracks tend
to grow in the direétion of the compression, in spit;e of local inhomogeniety, in an initially stable
manner.

Although material defects are aiso found ‘in the form of cavities without contact faces, it
has been observed that the induced tension cracking has a much lower tendency to grow than
does the gliding case (Ziegeldorf 1983). This can also be inferred from the analytical work of
Panasjuk (1976), Zaitsev(1983), or Sammis and Ashby (1986), which indicates that under
compressive stress ;, the energy release rate for a crack with extended length !/ is in the order ofv
o2/ 1if the defect is an inclined pre-existing crack, and o2/ P if the defect is a void (see Fig.
3.3). Thus defects m the approximate form of sliding cracks will dominate the crack extension
‘unless the distribution of defects in other forms is overwhelming.

Additionéll;', the idealization of material defects appears to be necessary if we are to
reach an analytically manageable approach. Probably for all these reasons, since it was first
proposed by McClintock and Walsh (1963), the model of a sliding crack with kinks has received
considerable attention. It has been studied both aﬁalytically and by model experiment; the latter
is often achieved by‘; carrying out tests on some synthetic britt.le material with man-made sliding
crack(s). The most notable work includes Brace and Bombolaksi (1963), Hoek and Bieniawski

(1965), Santiago and Hilsdorf (1973), Kachanov (1982), Nemat-Nasser and Horii (1982), Zaitsev



34

Fdy | EREREE

FIG. 3.3 Models of Material Defects. (The Missing Force Acts on Each Side in a Direction
Opposite to that Shown. The Efféct of the Defect is Therefor¢ to Apply Forces in the Direction
Shown.) »

(1983), Steiff (1984), Horii and Nemaf-Nasse: (1985), Ashby-and Cooksley (1986),. and Horii and
Nemat-Nasser (1986).

Because of the complexity of the problem, almost all the analytical studies have been
based on plain e]astici_ty. This is, of course, closer to the behz;viour of homogeneous brittle
materials ,éuch as éeramics and,glas's‘ thaﬁ to rocks.énd' concrete. Nevetherless, they appear to
give reasonable explanations of some of the characteristics of these inhomogeneous materials.

In this chapter, some aspects of previous model studies will be briefly reviewed, and a
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simplified model based on interaction of the sliding cracks will be presented. The focus will be
on the transition from stable to unstable cracking under uniaxial compression; and the latter
~will be shown to r;lanifest the well known splitting failure. The model will be shown to reveal
" the characteristics of .the compressive strength, and of the stress-strain relation of brittle
materials under uniaxial compression.

The model will be based on plane elasticity and an idealized crack pattern. When it is
applied to the behaviour of concrete and rock, it may be subject to the same limitations as the
previous analytical work, but, in view of the limited plastic deformation of these materials under
uniaxial compréssidn, and of the successful application of fracture mechanics to concrete under
tension, this approach should reveal some of the basic features of compression. HoweQer, as
indicated above, local nonlinear behaviour must be included to give correct quantitative
predictions for conqiete. Thus, although some quantitative conclusions drawn from the proposed
. model will be presented, the basic objective is to illustrate rather than quantify. It is hoped, that
this theoretical treafment, based on a hypothesis for the failure mechanism, will shed some light

on the actual failure process, and lead to a better understanding of the problem.

3.3 Models of Internal Brittle Failure

Brittle failure under uniaxial compression is distinct from that in tension in that there
exists a stable cracking process before final ‘unstable fracture. This has been observed
experimentally (for instance, as we reviewed for concrete in the introduction), and has been
identified from the fracture mechanics point of view (for example, see Kostovos and Newman
1981). With crack growth, the strain-energy concentration at a crack front tends to increase in
the éase of tension, but decrease in the case of compression. Thus in compression, the fracture
occurs initially in a discrete, stable manner with ‘increasing load; failure occurs when the stable
cracking reaches a ‘certain extent, but not at the initiation of these cracks. Overlooking the

subcritical crack growth will lead to erroneous results, such as Griffith’s prediction of 1:8 for the
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ratio of tensile to compressive strength - a substantial underestimate for many brittle materials
(Obert 1972). (In the case of concrete under tension, fracture may appear to be temporarily
stabilized; but this is due to arrest by the aggregate rather than the release of the straiin-energy
concentration.)

The model of a single crack with kinks certainly exhibits this stable feature. Referring to
Fig. 3.1, the sliding shear force, which represents the effect of an inclined crack with length 2a in
an otherwise compressive stress field, is the resultant of the driving shear stress along the crack

(for example, see Zaitsev 1983)
T = 2a o ( sine cosa— p sin’a ) 3:1

where p is the coeff}cient of friction of the material. When the extended crack length 21 is long
compared with 2a, the horizontal components of these shear forces may, as far as splitting is
concerned, be considered as a pair of tension forces of magnitude P= Tsina. As the crack
extends in the direction of the applied stress, these forces remain approximately constant, and
the well-known fracture mechanics solution (Broek 1978) for' this case shows that the stress
intensity at the crack tip attenuates with extension ( K; = P/ \wl ). It is for this reason that
the crack is initially stable. An exact formulation of the problem has been given by Horii and
Nemat-Nasser (1985), which gives results very close to this approximation. Since the stable
extension does not lead to immediate failure, the detailed turning path of the wing cracks
appears to be unimportant.

" Model experiments on brittle materials with a man-made sliding crack have indeed
indicated this stable, tensile crack extension, turning into the direction of the loading (Brace and
Bombolakis 1963, Hoek and Biéniawski 1965, Santiago and Hilsdorf 1973, Nemat-Nasser and
Horii 1982, Horii and Nemat-Nasser 1985). This direction is favored because this is the

orientation in which the least work is required to open the crack. Although Mode II stress
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intensity appears in the crack tips, shear fracture in the plane of the prepared sliding crack was
never observed unless the width 6f the specimen was close to the crack length.

However, since final failure is brought about by unstable fracture, there must be a
transition from stability to instability in the cracking. Recognizing this point, Ashby and
Cooksley (1985) developed a model based on the wing crack interaction. They hypothesize that
when stable cracks are relatively long, the branches between cracks tend to bend, which
intensifies the stress concentrations at the crack tips and leads té instability. However, this
bending interaction mechanism appears to be insufficient to explain an unstable sp]it in a
relatively short specimen. It may be worth mentioning that Kendall (1978) has also developed a
similar beam bending model to explain axial splitting; but this one requires an indented (i.e. a
load which does not; cover the outer edges of the loaded face) compressive load acting on-a
vertical crack, forcing the two struts separated by the crack to bend outwards. Obviously, this
model fails to give an explanation when the global compressive stress is uniform.

Based on their analytical work, Horii and Nemat-Nasser (1982, 1985) concluded that the
sliding-induced tensile crack is very sensitive to lateral stress.'The crack extension soon becomes
unstable if a small lateral tension exists. Their model experiments on a barrel-shaped specimen
gave an excellent illustration of this point. However, an explanation is still needed for the case of

uniaxial compression corresponding to zero lateral stress.

3.4 Proposed Model
It is clear that the model of a single crack with kinks only provides the source of the
splitting. Other effects must be included to explain the unstable transition. We now present a

relatively simple model to show that this transition can be a consequence of the extension of a

group of stable cracks. Some interesting results will follow immediately.

3.4.1 Crack Interactions and Critical State
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Since, as indicated above, crack extension in compression is initially stable, Athere -is a

high probability that, with increasing stress, cracks will extend from all defects with similar
configurations. As a result, compressive failure is usually not governed by any individual defect;
this contrasts with tension failure, which is governed by the defect with critical configuration,
and in wh'ic}; fracture is highly localized. Thus it appears r'1ecessary to consider all the defects
which govern the Behavioﬁr. By the same argument, it may also be reasonable, as will be
discussed later, to treat the cracking process in an average sense. By using the model of the
sliding crack with kinks and the described approxi}matiion, every defect in a material cérresponds

to a pair of splitting forces

P, =k a0 3.2
where

k; = 2 ( sina;cosa; — psin’e; ) sing; 3.3.

Note that P; depends on the initial, inclined, lgngth of the crack and not on the extended length.

k; a; takes account of the configuration of the crack. For concrete, a; may be in the
order of the aggregate particle size; the coefficient of friction g is about 0.36 (Troxell et al.
1968), so that k for the worst angle is about 0.45 (i.e. the angle corresponding to the biggest
force).

. Let‘ us examiné an idealized case where a series of defects lies in a line as shown in Fig.
3.4(a). By the stated approximations, the situation in Fig. 3.4(a) is equivalent to fig. 3.4(b): a
series of cracks with an average length of 2! and an average spacing 2b acted on by pairs of point
forces.

For an infinite medium, the problem has been studied by Irwin (1957). The stress
intensity factor at the crack tips for this case is available from the Westergaard stress function

given by him:
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_FIG. 3.4 A Series of Cracks in a Compressive Stress Field: Two Levels of Idealization

K= —2Pf : | A 3.4

= s sin(wi/b)

or, in terms of energy release rate for plane strain conditions:

\

_ p2 1—p2
Gl = ___g_y)__ 3.5
Eb sin (wlfb)
where £ = Young’s modulus; v = Poisson’s ratio.
Cracks extend when Eqs. 3.4 or 3.5 reach some critical value, which is a material

constant. The solution indicates that, when I/b < 1/2, dP/dl > 0, cracks propagate stably; the

propagation becomes unstable when I/b > 1/2, dP/dl < 0. Once I/b reaches 1/2, cracks will
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A propagate extensively, and one or more will run through the material immediately. This point
may therefore be defined as th;a critical state. This relatively sirﬁple model clearly reveals the
characteristics of the stable-unstable fracture process. It shows that critical inst@bility can be the
res‘ult of the stable crack grthh itself..

In reality, pre-existing defects may rarely exist exactly colinearly. However, model
experiments by Horii and Nemat-Nasser (1985), in which plates of Columbia resin CR39
containing a numbe}‘ of bre—exiéting sliding cracks were tested under uniaxial comprgssion, have
indicaﬁed that the \;ertically distributed cracks do indeed tend to join each other to form the
final fracture, even though they are not in a vertical line.

Fof a relati;/ely homogeneous specimen (without man-made cracks), surface cracks at
the top and bottom will be likely to govern the.behaviour, i.e. vertical cracks will initiate from
top and bottom instead of from inside of materiai (this can easily be verified by testing, say, a
ple#iglass strut). The model still applies if we consider the specimen height as 2b, referring to
Fig. 3.4(b), and recognize the fact that the solutilon is symmetric with respect to every line of
splitting forces. Physically, it means that the equivalent splitting forces are applied at the top
and the bottom of the specimen, and the fractui‘es become unstable when the vertical cracks
initiating from the top and the bottom both reach approximately one quarter of the specimep
height.

A similar grgument applies in the case where the height of a specimen is small
compared to the size of a pre-existing crack inside the material, so that the final fracture is
governed by a split from this defect. In this case, the specimen height can be still considered as
- 2b, but the pair of splitting forces is applied inside. The fré'icture bec;)mes unstable when the split
reaches approximately half of the specimen height. Thus it appears that the model is useful in

many cases.

3.4.2 Some Consequences of the Model: Peak Stress
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Putting Eq.. 3.2 into Eq. 3.4, with I/b = 1/2, and solving for o, we can estimate the

failure stress (or the so-called compressive strength) of concrete, or any other brittle material, as

S a
It
3

3.6

>~
Fayy
=

where K= critical stress inteﬂsity factor; k = average configuration factor; b = average half
spacing of defects; € = average value of a/b. These quantities are all considered to be
fundamental material constants. Note that f. is used here to denote the failure stress of a brittle
material, not necessarily concrete. Note that all the terms on the right hand side of Eq. 3.6
should be understood in an effective sense when they are not clearly defined by microscopic
observation. f‘or concrete and rocks, the term K;, or G, should be understood as the energy -
dissipated by all the mechanisms when a crack propagates, not merely the surface energy.

It can be easily shown that, based on this model, the stress intensity at the crack tips
will be drastically reduced even if a small lateral compressive stress is present. Thus such a stress
will lead to a different failure mode corresponding a higher failure stress. This may explain the
shear failure mode, which is accompanied by a significant increase in strength, that is exhibited
in a compression test on a confined specimen. In practice, the lateral stress is often introduced
by the loading platen in-‘uniaxial compression tests.

Equation 3.6 may need modification for specimens of finite size and for the interlock
and crack arrest mechanisms that are present in concrete and rocks; and for concrete, inclusion
of the nonlinear behaviour at the. crack front appears to be necessary for precise analysis.

Nevertheless, the equation should give a reasonable estimate of the compressive strength.

3.4.3 Relation to Tensile Strength

Brittle tension failure is relatively well understood. It is governed directly by the pre-

existing cracks, because extension is unstable under tensile loading. The tensile strength can be
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estimated, based on the pre-existing crack configuration and distribution (see Fig. 3.5) using the

solution (Broek 1978)
K, = [o,.N7a ] [(2b/7a) tan(wa/20)]"? 3.7

where the term in. the first bracket is the well-known solution for an isolated crack in a
background tensile stress field; the term in the second bracket is included to provide an estimate
of .the effect of adjacent cracks. Although cracks would rarely exist in the configuration of Fig.
3.5, tension failure is governed by a single crack with critical configuration, so that Eq. 3.7 need
only hold for a very small region.

Equation 3.7 may be rearranged to give the tensile strength as

K
fi= —=L¢ 3.8

J2b tan(7€/2)

so that, in view of Eq. 3.6

fi _ k€ 3.9

£ [y
This implies that the ratio of tensile to compressive strength of a brittle material is solely
dependent on the configuration and distribution of the pre-existing defects, and the inte;nal
friction of the material. This ratio for concrete is plotted against ¢ in Fig. 3.6. The ratio fo; the
'extreme case, 4 = 0 (e.g. for some ceramics) is shown as well.

Experiment shows that f,/ . ranges from 0.‘06 to 0.13 for concrete, suggesting a range of
& from 0.05 to 0.25. The model also suggests that the lower strength ratio is associated with a
smaller £, which tends to indicate a higher strength material. This agrees with the well-known

non-proportional relationship - between tensile strength and compressive strength of concrete
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" (Park and Pau]ey-1975),_ The model also p.redicts an upper bound of about 0.16 for this ratio.
To the author’s knowledge, this extreme ca.%e has never been éurpassed.‘

An explanation is provided for the wide range in strength ratio observed in other brittle
materials. Rocks, for exampie, exhibit values from 0.02 to 0.10 (Obert 1972), which are covered
by the model when the pre-existing cracks range from short to long relative to their average
spacing. |

The model also predicts that no brittle material can have a tensile strength- exceeding

28% of its compressive strength.

3.5 The Stress-Strain Curves for Brittle Materials under Uniaxial Compression

We first review existing knowledge of the force—def;)rmation relationship, which may be
divided into two barts: the pre- and post-peak branches.

Although the word brittle implies limited deformation before failure, it appears that,

even for very -brittle materials, there is

20 M M Y Y Y T T T T
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FIG. 3.7 Experimental Stress-Strain Relations of

Concrete, under Normal Test Conditions (Wang 1978) long _ tail (Wang 1978) in the stress-strain
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curve under normal testing conditions, as shown in Fig. 3.7.

However, Kotsovos (1983) indicates that this widely held view may be misleading. His
experiments show that end conditions significantly affect thg post-peak behaviour, especially for
high strength concrete. He placed various “‘anti-friction” media between the specimen and load
platen, and found very different behaviour (Fig. 3.8). He concludes that, if the frictional
restraint is eliminated, the material will suffer a complete andvimmediate loss of load-carrying
capacity. His results show an appqrent recovery of compressive strain after the peak load, but he
does not comment Lt any .length on this surprising phenomenon. It is seldom observed, even in
tests of more britﬁ]e materials, since recording in this range is very difficult without special ‘
arrangements.

‘ Wawersik aﬁd Fairhurst (1970), using very careful tgst procedures, were able to follow,
in part, the descending branch for some fine-grained rocks. Some strain was clearly recovered
as the load was reduced beyond the peak stress, and the stress-strain curve tufned towards the
origin (Fig. 3.9). |

The long tai.l, with decreasing stress accompanied by increasing strain (assuming that it
is not merely a result of imprecise test procedures), is known as class I response. The alternative
obse'rvation, when the strain is recovered, is known as class II response; it has the defining
charaéteristics that ‘‘the fracture process is unstable or self-sustaining; to control fracture, energy
mﬁst be extracted from the material” (Brady 1985). The classification has been based entirely
on experirﬁental observation, and it is hoped that the following analysis, based on the proposed

model, will shed some light on the observed phenomena.

3.5.1 The Pre-Peak Branch

The initial deformation, before the cracks begin to extend, can be calculated from
Young’s modulus. A second phase, which will now be studied, is entered when crack propagation

begins.
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FIG. 3.9 Experimental Stress-Strain Relations of some Natural Rocks (Waweréik and Fairhurst
1970)

Consider a rectangular region of height k and width w under uniaxial compression;

assume the cracking process is quasi-static. When the cracks extend di we have, for'energy

conservation,
dV — dU = dW + dR A 3.10

_ where dV = work done by external load; dU = increase of the strain energy; dW = energy

dissipated to form new crack extensions; dR = energy dissipated by the friction between the
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contact surfaces of pre-existing cracks.

Clearly
dV = FdA ' 3.11

where F = external load; A = associated displacement.

Since in a brittle material the plastic deformation is limited, the material will remain
essentially linearly elastic regardless of the cracking. It can be shown (see appendix) that as
long as overall fracture does not occur, so that the region is still connected, the strain energy can

be expressed in terms of the external load and the associated displacement, as
U=1/2 FA 3.12
If the friction between the pre-existing crack surfaces is included, this expression becomes

U=

b

where M is the number of pre-existing cracks in the region, [, may be called the effective initial
extending crack length, which is a function of the crack configuration, and A is a constant

expressed as

_ 8(1-v*)pkd’sina

A 2 3.14
7 Ew
Thus dU is readily available by differentiation of this expression:
_ 1 ' _ tan(wi/20)\ 27 i
v = 1 |:FA + FA — 2MAFF log (———tan(7r o7 b)) MAF*Zcosec! | al 3.15



49

The new crack surface energy can be expressed as
dW = 2M G, dl 3.16

Finally, the energy dissipated by the friction can be approximated as (see appendix)

8uGpsina 1 xl tan(wl/2b)
dR =~ M—k— 1 + —2— COS('b—) lOg ( m—) ) dl 3.17

These equations are valid when cracks are extending, i.e., when K or G, defined by
Eqgs. 3.4 or 3.5 have reached the critical values. They give the relationship between load F and
the displacement A in terms of the independent parameter /, the crack length. For a given load,

the equations can be solved for A by substituting Eqs. 3.11, 3.15, 3.16 and 3.17 into Eq. 3.10,

and using the initial condition
A = ooh/E when =1, 3.18

where 0, may be called the threshold stress for the crack extension; the relation to /, is obtained

in view of Egs. 3.4 and 3.6:
golft = |sin(rlo/b) 3.19
Now, the load F = ow is related to !/ by Egs. 3.2, and 3.4; and
A = eh 3.20

where ¢ = longitudinal strain.
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Thus we are able to extract an expression for strain in terms of stress. Assuming the

average spacing of the cracks is the same horizontally and vertically,

.M 1
.M , 21
. wh (2)2 3.2
we get
G 2si ] tan(©/2) | fi -
_ IC Mo Je a
€ = {wbﬂ l: 1+ % log t———an(eo/z) + E ﬂ 3.22

where ©, = arc sin(0./f1)%; © = arc sin(o/f)%.

Phase II of the pre-peak branch covers the range 0o, < 0 < f;, with ©, < © < w/2.

3.5.2 The Post-Peak Branch

The model discussed above is found to represent behaviour of class II materials into the
post-peak branch. When g = 0, Eq. 3.22 is valid for the full range ©, < © < 7. When friction
is included, however, the equation applies only until the cracks stop opening somewhere in the
descending branch. There is then a complicated situation as the cracks begin to close and the
friction to change direction; a more elaborate treatment is given in the appendix. After-an
interval, the crack widths decrease and the friction force is reactivated in the opposite direction;
Eq. 3.22 is again aPplicable, but with opposite sign on the ter.ms containing g in the bracket.
There is also a diffeli'ent constant of integration in this range.

This application to class II behaviour is predicated on the assumption that cracks
extend vertically in isolation from each other, so that the region is still connected. Further, it is
assumed that the cracks are regular, so that horizontal fracture does not occur, and that the
crack surfaces are relatively §mooth, so that they close during the descending branch without

interlocking. These assumptions, necessary for continued application of Eq. 3.22, are good for a
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relatively homogeneous brittle material.

For less hémogeneous materials such as concrete -and coarse grained rocks these
assumptions may bé expected to be approximately fulfilled during the loading stage, when the
cracks are less extensive, and still opening. On the descending branch, however, the cracks tend
to propagate through weak grain boundaries or aggregate-cement matrix bonds (Ziegeldorf 1983; »
Brady 1985), and thg zig-zag crack paths h#ve a tendency to interconnect parallel fractures. This
leads to type I response as will be discussed below.

But, even in this case, the experiments of Kotsovos (1983) suggest that the type I
response may merely be due to the end frictional constraints inhibiting vertical crack extenéion
and leading to this type of failure. With ‘‘anti-friction” capping, he observed that vertical
cracking of the higher strength specimens always extended.in both directioﬁs, while, for the
lower stréngth ones, it extended in one difection only, indicating that the restraining action of at
least one end zone was still present. |

Thus it appears that the validity of the assumptions of Eq. 3.22 depends upon the

material properties and the loading conditions.

3.5.3 The Predicted Stress-Strain Curve

Eq. 3.22 is pl:)tted for ao/]‘i = 0.3, with £ = 0 and g = 0.36, in Fig. 3.10. The shape
of the Type II curv; is characterized by 4 points as indicated on the figure. From O to A, below
the threshold stress, | = Il,, the cracks do not éxtend, and displacement is due solely to the
linear elastic response.

‘ In reality, qf course, the onset of stable crack gxtension is difﬁcuit to identify; it is a
gradual process rather than a sudden one, because of the variety o.f defect conﬁgurations. Thus
there is a transition rather than a well-defined poiht A.

From A to B, additional deformation occurs due to crack extension, and the.curve

becomes more non-linear as ff; is approached. Inclusion of friction increases both peak stress and
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strain. Greater non-linearity appears due to energy dissipation through friction.

After the pfeak, the cracks continue to propagate as the applied stress decreases, in an
unstable extension process. At point C the strain reaches its maximum value, and then begins to
reduce; the work required for the cracking process beyond C is provided by part of the strain
energy released fron} the material, but surplus energy must be extracted by the loading device.
The area enclosed by the complete curve is, of course, equal to the energy dissipated in creating
new crack surfaces.

A “less brittle” material may have a lower threshold stress for crack extension, and a
higher coefficient of friction. A “more brittle” ma‘terila.l, on the contrary, may have a very.high
threshold and low friction coefficient, so that it gives the appearance of a linear stress-strain
curve. But the model implies that, since failure is caused by cracking, there must always be
" some non-linearity before it occurs.

Note that failure is finally brought about by the unstable crack extension splitting the
specimen into pieces which are individually unstable, thus reducing the load capacity.

With conventional test arrangements, a load controlled testing machine will cause
material failure at point B; displacer;lent control ‘will lead to failure at C if the machine is stiff
enough. Failure will be explosive because of the sudden release of strain energy. Most reported
results for more brittle materials are incomplete in this sense, but Wawersik and Fairhurst
showed éomplete cdrves that agreed, qualitatively, with the model prediction, as did the post-
peak curves for high strength concrete obtained by Kotsovos. Note that, during unstable crack
extension, one or a few cracks will propagate preferentially, so that the model may lose some
validity.
| However, for less homogeneous materialé,‘ such as concrete and coarse-grained rocks, the
assumption of regular vertical crack extensién may not be valid in the post-peak range, as
discussed earlier. This would explain the frequently observed class I response. Wawersik and

Fairhurst (1970) found fhat, in class I behaviour of rocks, vertical fracture is, indeed,
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accompanied by gradual development of shear
fracture in the post-peak range; a similar
déscript_ion_ is given by Kotsovos for his lower
stfength specimens.

During this range, the ratchet-like
mechanism ~ of Fig. 3.11 forms, vertical
deformation involves the wedges being dri.ven
into each other, and the energy of the load is
converted to strain energy in the wedges, and

friction losses between them, as well as surface

. energy in new cracks. The first two are clearly

nonlinear, requiring that the vertical load
decrease  less  rapidly with’ increasing
deformation, and causing the load-deformation

curves to be concave upward. Hence the

inflection point observed by Wang et al. (1978) and the long tail thereafter.

‘From the above analysis one may conclude that the fracture pattern determines the

post-peak stress-strain relation. Vertical fracture through the material will lead to ““more brittle”

failure, while the development of shear faults will give the appearance of more ductile behaviour.

The fracture pattern, in turn, may often be ‘governed by the loading conditions; friction in the

loading platen, for example, may cause shear cracks and, more ductile behaviour.

3.6 Statistical Considerations

We now consider briefly the sensitivity of the model predictions to statistical variations

in the parameters, which have hitherto been treated in an average sense.

Assume that the defects are uniformly distributed spatially but that the configurations
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have a random character described by some probability distribution, with density function

& = P(ka) 3.23
and cumulative function

Z = Z(ka) ' 3.24
with ka in some range

(k@) < kq < (k@)maz 3.25

Equation 3.6 can be modified by these assumptions to give

o\ 1y4 '
1—Z(ka) ~
(=1m)

g1
8l

4 Kiglbe  _ { K,gﬁ} .

“ 7 ka[l—Z(ka))"? ka

where b, is the average half spacing of total defects under consideration, and the barred
quantities denote the mean values.
Assuming a normal distribution for defect configuration, and approximating by a

Weibull distribution, we write
Z(ka) = 1 — exp [ —(ka/0)™) 3.27

The Weibull modulus m = 3.6 best represents a normal distribution; 8 is taken corresponding to
a coefficient of variation of ka of about 0.32. the second term of Eq. 3.26, which accounts for

the statistical considerations, is plotted in Fig. 3.12, and shows the variation of f’c as predicted
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by the model, agaiqst the variation in crack configuration.

- If only a ft;w defects with larger configuration factor ka (i.e». with wider crack spacing)
have extended to govern specimen behaviour, the failure stress will be higher. This is because
these defects are sparsely distributed, the stress required to bring them to interact upon each
other to reach the c?iti;al state will be high, as indicated at the right end of the graph.

Although defects with smaller configuration are more densely distributed, the stress
needed to cause them to extend will still be higher, as shown at the left end of the graph.

The minimﬁm value is reached when ka‘is close fo the mean value, around which the
variation is small for a wide range of ka. Thus the average parameters do yield a reasonable
approximation. This conclusion should be valid as long as the distribution is not extremely

distorted.

FIG. 3.12 Sensitivi‘ty of Compressive. Strength to Crack Configuration Factor: the Normalized
Strength Predicted by the Model is Plotted against the Configuration Factor, Which Depends on

Crack Configuration and Internal Friction
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3.7 Summary and Corollary

The failure mechanism of brittle ma,t;'erials under uniaxial compression has been
examined at the fundamental level. A failure model based on the internal mechanism has been
proposed to reveal the characteristics of the compressive strength, and stress-strain relation of
these materials. The observed splitting failure has begn shown to be the result of the cumulative,
subcritical, stable ;rack gfowth. The underlying concepts of the model have been justified by
reported observations.

It may be further inferred from the study that the failure stress, or the so-called
compressive strength of a brittle material is closely dependent on the internal failure mechanism.
The internal mechanism, however, depends not only on the matlerial texture, but is also affected
by the testing or loading conditions. Splitting failure corresponds to the lowest failure stress.
Any conditions which prevent this failure mode from being realized will lead to an apparently
higher failure stress. These conditions may be lateral confinement such as that introduced by the
end friction, or a strain gradient which causes unequal compression in the material.

Although the compressive strength as a function of 'the§e conditions is difficult to
determine, one may expect the failure stresses to Be better correlated if the internal failure
mechanisms are similar. This. is. of practical significance. In the later chapters, separate
treatments for concrete masonry under ‘different loading conditions will be proposed and it will

be seen that this leads to better correlations in terms of the failure stresses.



58
CHAPTER IV

‘PLAIN MASONRY WITH FULL BEDDING

4.1 Two Basically Different Failure Modes

In concrete masonry compression tests, the specimens fail basically in two modes. One is
splitting in the direc“tion of the load; the other shows conical failure planes (see Chapter II). The
significance of these two different mechanisms arises from the fact that the different failure
modes yield different apparent strengths, as indicated in the preceding chapter.

It has been ‘}found repéatedly in previous experimental studies (for‘example, Fattal and
Cattaneo 1976; Turkstra and Thomas 1978) that when the eccentricity of the load on masonry
specimens is increased, there is a significant apparent increase in compressive strength. This
phenomenon is also- revealed in the tests conducted by the author, as depicted in Fig. 4.1 by
comparing a theoretical load-moment interaction curve for a masonry prism with experimental
results. Aithough this strength increase was attributed in some earlier studies (Turkstra and
Thomas 1978) to the stress gradient effect, it is now generally accepted that it is essentially due
to a difference in the failure mechanism.

When masonry is under uniaxial compression, splitting failure dominates, whether the
masonry is fully or face-shell bedded. The failufe mode changes to the shear type when the
masonry is under eccentric loading.

Two obvious questions arise: 1) what is the cause of these two different failure
mechanisms? 2) what is the implication of these failure mechanisms for the compressive
strength, the parameter of most practical concern.

In this study, the failure mechanism is carefully re-examined, and some of the existing
theory is revised, in the light of both experimental and analytical work. We start with the case

of fully bedded plain concrete masonry under uniaxial compression.
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FIG. 4.1 Apparent Strength Increase Phenomenon under Eccentric Compression

Splitting failure under uniaxial compression has been indicated by numerous previous
experiments, and the experiments conducted by the. author have also revealed this phenomenon
(see Fig. 2.12).

Under uniaxial compression, the only apparent disturbance in the uniéxial compression
field is the joint. We shall discuss the effect of the joint on the strength of ma;sonry, and

consider whether the presence of the joint is the cause of the splitting failure.

4.2 Joint Effect— A Révision of Hilsdérf’s Model'

The main function of mortar joints is to provide structural éontinuity, wind and water
tightness, as well as architectural effect. The joints can be in various patterns, such as running

bond or stack bond, and they can be raked or flush. However, for reasons of simplicity, ,th§
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study in this chapter is confined to stack bonded, fully bedded masonry with unraked joints. It
is believed that the bond pattern does not have a significant effect on masonry strength
(Maurenbrecher 1980; Shlrive i982), and that the analyéis to be presentéd is generally applicable.

To achieve éohesiveness and workability, mortar contains cerfain proportions of cement,
sand and lime. Mechanically, it is usually weaker and less stiff than the surrounding concrete
uni.ts (see Chapter II).

It is widely accepted that the mortar joints affect the masonry strength, stror}ger mortar
making stronger masonry. The most influential theory for the joint effect was proposed by
Hilsdorf (1969). His theory postulates that when masonry prisms are under uniéxial
compression, the less stiff mortar has a tendency to expand laterally; this lateral expansion of
the mor;;ar is confined by the masonry units, giving rise to lateral compressive stress in the
mortar and to lateral tensile stresses in the units, thereby causing tensile splitting failure of the
blocks. Using the Qoulomb-Navier failure criterion and some rather coarse assumptions about
equilibriu.m and‘compatibility, Hilsdorf derived an equation relating the compressive strength of
masonry to the strengths of unit and mortar. This, of course, is very practical, since the
strengths of the unit and the mortar are comparatively easy to measure.

However, there has been a lot of controversy about the correctness of Hilsdorf’s model in
the subsequent litergture. On the.one hand, Hatzinikolas et al (1978) made a numerical analysis
basedl on Hilsdorf’s model and concluded that the magnitude of the t;snsile stress in the block
units due to the lateral expansion of the mortar was sufficient to exceed the tensile strength of
concrete blocks and thus was responsible for_ﬁhe splitting failure of concrete masdnry. Priestley
et al (1983) extended Hilsdorf’s equation to grouted concrete masonry and claimed good
agreement (in terms of masonry strength) with the existing experimental data. Most recently,
Biolzi (1988) appliefi thf_: failure model in an approximate plastic analysis for brick masonry. On
the other hand, Sh_rive (1980, 1983) strongly opposed the notion that the 1ateral expansion of

.mortar was the main cause of splitting failure. He noted that 1) splitting failure of compression
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specimens is not unique to masonry. 2) the tensile stress caused by mortar expansion in the
block is too small to exceed the tensile strength of the block. The latter conclusion was based on
" the numerical analyses of Smith et al (1971), Turkstra et al (1978), Hamid (1978) and of Shrive
himself with Jessop (1980), which indicate ti)at the tensile stress is much less than that required
to break the tensile bonds in the block. Drysdale and Hamid (1979) suggested that the
mechanism of the lateral expansion of mortar needed reconsideration because in their
experiments the mortar joints had a relatively minor influence on the capacity of concrete
masonry.

The emergence of these controversies is not surprising, since some points were not
clarified in the previous studies. When postulating a tensile stfess which will initiate a crack, it
is important to indicate the location where it will occur. This provides a logical way to check the
correctness of the model by examining whether the location is correctly predicted in
experimental studies. This was somehow overlooked in the previous work. The arbitrariness
involved in the assumption of the material constants used in numerical analyses may also have
contributed to the qontroversial nature of some previous findings. And so far, there has been no
direct expérimental evidence which could lead to a conclusive assessment of the model. Because
of that, some experimental and analytical work is directed here to evaluation of this theory.

It should be indicated that all the previous workiimplicit]y takes one notion for granted:
that failure is a localized effect. Whether masoﬁry fails depends on whether tensile stress at some
point exceeds the tensile bonds of the méterial. In the light of the study in Chapter III, we know
that in the case of compression, local tensile cracking is only a necess‘,ary condition for global
failure; it may not be sufficient. In our approach, we will consider both the causes of tensile

cracking, and whetHer this is tantamount to failure.

4.2.1 Experimental Results

.The experimental results indicate:
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1) for all fully bedded plain concrete masonry prisms tested under uniaxial compression, vertical
splitting (parallel to the direction of loading) was the predominant failure mode. The splitting
occurs in the middle third of the web, continuously runs through the specimen, as typically
illustrated in Fig. 2.12. Similar observations were reported in previous experimental work (for
example, Hatzinikolas et a]‘1978).
2) There is a lateral expansion effect due to the mortar, as evidenced by the strain
measurements on the block units. Fig 4.2 shows some typical results recorded in experiments.
The average lateral strain at location #3, which is closer to the mortar joint, is appreciably
larger than that measured at loéation #4, which is at the m-id—height of the web.
3) However, there is some randomness in where the macrocrack is initiated. By detecﬁngl the
order of breaking of the wires crossing splits (A detailed description of this procedure was given
in Chapter II), cracks were found to initiate at a Ii)cation close to the mortar joint only in about
two thirds of the fully bedded specimens, as depicted in Fig. 4.3. This does not support
Hilsdorf’s model, since the model suggests that crack should initiate consistently from the joint.
If we assume that a crack which initiated from this location is a random event and relax
Hilsdorf’s hypothesis such that there is only a 90% chance of this event occurring, then this
hypothesis is rejected at a 0.1 level of significance. We also note the test result is in sharp
contrast to that ob“served in face-shell bedde(i plain concrete masonry, where cracks initiated
consistently at a location close to the joint. (cf. Fig. 5.2) This strengthens the assertion that the
test result does not support Hilsdorf’s postulation that the splitting is due to the lateral
expansion‘of the mortar joint.
4) The joint conditions have a big influence.on the capacity of a masonry prism (see Table 4.1).
It is noted that stronger mortar does not necessarily make a stronger prism, as indicated by
comparing the failure loads of the prisms with type S mortar with those with type M mortar.
The lower failure. loads of the prisms with type M mortar are believed to be due to the poorer

adhesion of that type of mortar, which appeared during the experiments. The effect of the
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SPECIMEN 1 2 3 4| AVG cov
| M3 (M—MORTAR)  187.0 147.0 123.0 140.0 149.0 | 15.7%
S1 (S—MORTAR) | 204.0 194.0 178.0 168.0 186.0 7.5%
N2 (N—MORTAR)| 125.0 140.5 143.0 164.0 143.0 9.7%
N4 (to = 3/4in) 120.0 105.0 133.0 119.0 9.6%
P5 (to = 0in) 103.0 123.0 112.0 103.0 110.0 7.5%

Table 4.1 Failure Loads of Plain Prisms with Full Bedding (kips)

adhesion on masonry strength will be discussed later.

5) Vertical strain measurements indicate that the mortar joints are much softer than the
concrete units. The ratio of the initial modulus of concrete to that of three mortar types is about
6-8 to 1. (See Figs. 2.3, 2.4 and 2.5 in Chapter II.)

To study joint effects, some of the prisms were built with zero joint ﬁhickness, and one
group with glass plate. The glass was chosen because of its high modulus of elasticity and
relatively low rupture strength (E=8x106psi, j{rup‘ = 5000 psi, obtained by experiment). It was
expected that the glass plate filled joints would minimize the Poisson’s effect and at the same
time provide little lateral confinement. However, these specimens without mortar bedded joints
failed at relatively low loads (see Tables 4.1, and 8.1 for grouted prismsj; the experiments were
not conclusive. The low failure loads are believed to have been caused by stress concentrations in
the vi.cinity of the joints without a mortar cushion. The indications are that vertical cracks
occurred during the loading stage of these prisms; and for the specimens with glass plates, the

cracking noise of the glass was also heard.

4.2.2 Theoretical Analysis

We proceed now to revise Hilsdorf’s model in the light of a stress analysis. Although
numerous stress analyses (mentioned above) including some based on 3 dimensional modeling

(Hamid and Chukwunenye, 1986) of this problem have been conducted, they were all based on
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numerical approaches. To gain some direct insight into the problem, we derive some analytical
solutions based on plane elasticity for the co.nﬁguration of a mortar joint being sandwiched
between concrete block units.

Consider the case shown in Fig. 4.4(a), which depicts a view of either web face or face-
shell face (joint length @ may be either equal to web width or face-shell width). The mortar
joint, being much softer than the concrete block, as indicated by experimental observation, may
be considered as squeezed by two rigid platens, and by the principle of superposition, the loading
situation may be decomposed as shown in Fig. 4.4(b) and (c). It is case (c) which will cause
interface shear between the mortar and the masonry unit and hence cause tensile stress in the
unit. By symmetry, we only need to consider half of the joint, as shown in Fig. 4.5

Since the joint is bounded by two rigid platens, the lateral strains due to the traction
must be localized at its ends. Thus the vertical displacements v in the middle region of the joint,
which are mainly caused by to Poisson’s effect, will be small (recall we are considering case c)
alone here). Further, since ¢ is much larger than {1,, the variation of the vertical displacements

with z must also be small. Therefore we assume

v 0 throughout the region

Assuming that the mortar joint in the plane of the cross-web or the face-shell is in a
state of plane stress, Lame’s equations (solving the problem in terms of displacements, Xu 1979)

reduce to

u  1—v 9w _ 0<z<a/2
2 Byz_o 0<y< i +

with boundary conditions
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FIG. 4.4 A Mortar Joint Sandwiched by Block Units: a) under Axial Compression;

b) under Biaxial Compression c) under Lateral Traction.
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FIG 4.5 A Mortar Joint under Lateral'Traction
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u(0,y) = 0 | 0 <y< &t (by symmetry) 4.2
u(z,0) = 0 0 <z< a2 4.3
ﬁ(z,to) =0 0 <z< af2 4.4
1_EV2 uy (a/2,9) = ¢ 0 <y< 4 4.5

where F is Young’s modulus and v is Poisson’s ratio.

A series solution for this boundary value problem can be found (see appendix)

4(1-v%)qto io: sinh[(2n-1)k7z/1,] sin[(2n-1)7y/ 0]

u(z,y) = 4.6
2 kE = (2n-1)cosh[(2n-1)kma/2,]
where k= J(1-v)/2
From which we deduce the shear stress along the joint
_ _E '
Tzy = ‘2(1+I/) uy(z,0)
4k B sinh[(2n-1)smz/1,]
- T nX—:l (2n-1)cosh[(2n-1)kma/21,] 4.7
with the resultant force
a/2 o
_ , _ A4ql 1 _ 1
§= J Tey dz = PX) nE—:l (2n-1)? l:l cosh[(2n—1)fc7ra/2to]:| _ 4.8
0 =

Since a > to, cosh[(2n-1)kwa/2t,] > 1, the second term in the bracket of Eq. 4.8, which
represents the vanishingly small force transferred by the middle of the joint, can be neglected.

Further, by noting that ¢ = vo and
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we obtain

§ = Yl 4.9

‘The point of action of this resultant is

a/2
[ z1oy dz
0

S

-— — 4.10

(IS
&
3

8 3 a_ t
— O - o >
2 nZ—..:l [ 2(2n-1)* km(2n-1)° :|

which lies near the end of the joint.

By inspecting Eqgs. 4.7 and 4.10, it is concluded that the interface shear must be highly
concentrated near two ends of the joint. It is also clear in view of Eq. 4.9, that this shear is
directly propprtional to the applied compressive stress, the thickness and the Poisson’s ratio of

the mortar joint. It is these shear forces acting like lateral point loads which introduce the.
tensile stresses in the web and face-shell.

Eq. 4.7 is compared with a numerical solgtion using the boundary elelﬁent method. The
computer program (TWOFS) is given by Crouch et al (1983), and 67 elements were used for
this problem. For 1):0.3 and‘to/a=3/64, the solutions are plotted in Fig. 4.6, together with a
depiction of how these shears act on a web. The analytical solution is in good agreement with
the numerical one, which supports the a,ssumptioﬂ that the vertical displacemenﬁ can be
neglected.

We proceed to perform stress analysis for a web or a face-shell under the action of these
shear forces. As shown in Fig. 4.7, this is a plane problem in a rectangular domain with stress

specified boundary conditions. The shear distributions on the boundaries are given by Eq. 4.7.
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The common approach for this kind of problem is to find a stress function (Airy stress function).

For this particular case we can write the stress function in a series form as

00 ' .
¢ = Z Am (mw(%—bﬂ) sinh mw(gz—b/?) - amtanhamcoshmw(%b/2)> sin 1

@ a
m=1

+ By (mw(:;—a/2) sinh mr(a;a/?) —ﬂmtanhﬂmcoshmw(zl)_a/m) sinm;)ry 4.11

where amz—";iab, ,Bm:m?’;,“, and Ay, By, are determined by having Eq. 4.11 satisfy the

boundary conditions depicted in Fig. 4.7 (for detailed derivation see appendix). By inspection,
the maximum tensile stress will occur at the top and bottom boundaries of the domain. So

finally, the tensile stress distribution we are interested in is

= 2 Z Am (7—'—}})2 cosham sin 1 4.12

For a square domain, as in the geometry of the web, the series solution is plotted in Fig.
4.8, together with a numéricalvsolution. A numerical solution for the more realistic case of
(v;/E;)/(vu/Eu)=9, where subscripts j and u denote mortar joint and block unit respectively,
is also included in the graph. The changes of this distribution due to variations in Poisson’s ratio
and the thickness of the joint, the aspect ratio of the rectangular domain (corresponding to a
web and a face-shell) are plotted in Fig. 4.9, Fig. 4.10 and Fig. 4.11 respectively.

The above stress analysis clearly indicates that the tensile stress reaches its maximum at
a location close to the two ends of the top or bottom edge of the domain and a minimum in the
middle of the edge; changing the parameters in the stress analysis does not alter the basic

features of this stress distribution. This is not surprising in view of the point load like shear
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FIG 4.12 Lateral Strains Measured along webs and Face-shells of

Plain Prisms under Uniaxial Compression

distribution specified by Eq. 4.7. And it is consistent with the experimental observation that the
strains parallel to the joint-were higher-at the ends than in the middle of the j-oint, as indiéated
by gauges in vt.h.es‘e locations. Fig. 4.12‘ gives the t.ypicai results of this measureﬁent. No
appreciable strain was measured at location #1 ;)r at location #2, which are in the middle of a
face-shell and does n;)t cover two ends of the joint. This is in contrast to those measuredb in
locations #3 and #4, which cross the whole length of the web. In other words; the tensile strain

is highly concentrated near two ends of the joint where tensile stress reaches maximum.
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4.2.3 Conclusion on Hilsdorf’s Model

Based on above study, the conclusion is obvious, that splitting in masonry can not be

simply attributed to the lateral expansion of the mortar. First, if lateral expansion of the mortar

were the main cause of the splitting, it would occur somewhere near two edges of a web or a
face-shell where the tensile stress reaches its maximum. (see Fig. 4.8 — Fig. 4.11) If the
thickness changes of the face-shell and the web in, the fillets near the corner of a unit are taken
into account, one may conclude that splitting would occur somewhere near the web — face-
shell joint, a conclusion which is not supported by experimental observation. Second, the
interface shear, which is responsible for the tensile stresses in the web and the face-shell, is a
monotonically increésing function of the mortar joint length a, as clearly indicated by Eq. 4.8.
Thus the shear forces along the face-shell are not less than those along the web. If mortar
expansion were the main cause for the splitting of a masonry prism, the splitting would be more
likely to occur or at least have an equal probability of occurring, in the face-shell, a conclusion °
which contradicts the experimental observations. Third, the experimental monitoring of crack
initiation, as we have shown earlier, indicates that the lateral expansion of the mortar being the
cause of the splitting mechanism is not acceptable. These points alone are sufficient to rule out
the correctness of Hilsdorf’s model, since even the necessary cbnditions for failure can not be
justified by his model.

Moreover, rigorously. speaking, the underlying concepts of Hilsdorf’s model may be
misleading. As indicated at the beginning, it is not sufficient to focus on a local tensile event in
the case of compression. Even if the vertical splitting were initiated by joint expansion, for this
“to lead to direct cat;astrophic failure of the masonry needs further justification. From a fracture
mechanics point of view, the energy required to open this crack would come froﬁ the strain
energy released in the mortar joint, as a result of partial relaxation of the lateral confining
stress. It can be shown that the amount of this energy is limited, so that the crack would

I

stabilize. Even if we assume this crack could run through a masonry block, the latter would still
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not lose vertical load transfer ability; it would have failed only in the sense of the serviceability
condition.

Certainly, the above stress analysis may be subject to some limitations because it is
based on two-dimensional elasticity, which does not take account of the material nonlinearity or
of the complete speéiﬁc geometry of the concrete Bl(;ck. Nevertheless, this does not detract from
the useful conclusioﬂs deduced from the above study. Nor would nonlinear behaviour in the joint

itself change the essential feature of the stress distribution; it would only cause limited shifting

in the locations where maximum tensile stress occurs.

4.3 Some Comments on Splitting Failure and Mode Tranéition Phenomena

It is clear that the splitting failure of masonry cannot be attributed to the lateral
expansion of the mortar joint alone; rather, it is‘ inherent in the fa.ilure’of the rﬁaterial as we
explained in Chapter III.

Although it is difficult at this stage to explain fully the splitfing failure for the specific
geometry vof masonry, or the transition to the shear mode with an increase of loading
eccentricity, certain hypotheses may be made in the light of the concepts illustrated in Chapter
I1I.

a) The main splitting probably develops in the web rather than the face-shell because this leads
to the weakest strucfure.

b) Under eccentric loading, vertical crack surfaces tend to be forced into contact by the transfer
of shear from the loaded to the unloaded side. This contacting may in turn increase the friction
across the crack, which may prevent splitting failure from occurring.

¢) Because two different failure mechani;ms are involved, the apparent strengths will be

different, and a one parameter failure criterion will not be satisfactory.
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4.4 Joint Effect on Axial Capacity

It has been demonstrated that a plain mQrtar joint is not the governing factor for the
failure pattern of concrete masonry. Hilsdorf’s model is not appropriate for assessing the effect of
the joints on masonry strength.

Available experilﬁental results on the joint effect, including the tests done by the
author, appear to be; scattered. A possible way to assess this _effect would be to compare tests on
prisms with mortar joints and with dry joints—— not a very practicél approach. The masonry
unit strength is not a good reference, since under standard testing conditions, it will exhibit a
conical failure mechanism as a result of the end friction, with a substantially higher apparent
strength. Because of these difficulties, in most experimental work, the joint effect has been
examined by varying the joint conditions.

Some> experimental observations may be worth reviewing.

a) Usually the compressive strength of unit is higher than that of prism, which is in turn higher
than that of mortar. However, although the mortar strength is lower than the prism strength
(calculated on the mortared area), joint failure has never been observed. It should Be noted that,
when talking about mortar strength, we implicitly assﬁme the unconfined compressive étrength.
The strength obtained by the standard cube test is actually partly confined since its height to
width ratio is small. Experiments by Hatzinikolas et al {1978) have shown that the unconfined
strength can be as low as 63% of the cube strength. The mortar in the joint could have even
lower strength due to poorer curing conditions.

This observat;ion is also revealed by the author’s tests. The average unit strength fu is
3250 psi. For most prisms N type mortar was used, which has an average cube strength of 1570
psi. The average failure load of masonry prisms with this mortar is 143 kips, corresponding to
an fi, of about 2320 psi. (cf. Table 4.1) Although the exact correlation between the strength of
the mortar cube and that of the mortar in the joint is unknown, and type M and S mortars

appear to have very high cube strengths, it seems reasonable, to accept that ﬂ, > fm > fj“‘,
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where f;, denotes th:e unconfined mortar strength. For all the prisms tested, no joint failure was
observed. This is aleo_ evidenced by the defermation measured across the joint (see Fig. 2.5 in
Chapter II).

b) Both mortar type and joint thickness have an influence on the masonry strength, although
there is still an uncertainty about the degree and nature of this influence. This is reflected in
that the tests done by Drysdaie and Hamid (1979) have shown the influence to be relatively
. minor, while in the author’s tests the influence is significant (see Table 4.1 and Fig. 4.16); and
although ﬁhe availabie test data tend to indicate that stronger mortar makes stronger masonry,
both experiments have indicated that this is not always true.

¢) This influence becomes relatively minor with increase of loading eccentricity. (see Table 6.1
in Chapter VI)

d) Reinforcement by metal plates enhances both the capacity and ductiliﬁy of masonry (Priestley
and Elder 1982), while reinforcement by steel bars in the joint reduces the strength .(Hatzinikolas
1978). |

It ‘can be conjectured that the mortar joint affects the strength of masonry basically in
that the joint introduces discontinuities in the material properties, such as strength and stiffness.
These discontinuities will complicate the stress distribution in the vicinity of the joint and thus
affect the vertical load transfer ability.

It may be reasonable to assume that as long as the joint conditions do not provide
lateral confinemeht to prevent splitting failure, as in the case of plate reinforcement (observation
d), the joint will generally have a negative effect on the masonry strength in the presence of
uniaxial compression. This is because the joint will generally alter the otherwise uniform
compressive stress in its vicinity, and thus the force is effectively transfeered by a smaller area.

This can be illustrated by following analysis.
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4.5 Stress in Joint Vicinity

As shown by the stress analysis in section 4.2.2, when masonry is under uniaxial
compression, the less stiff mortar joint is subject to vertical compressibve force as well as iateral
interface shear. Although the problem‘ was solved in a plane coinciding with webs or face-shells,
the principle can be extended to the perpendicular plane representing the cross-section of webs or
face-shells. Thus the mortar is actually confined -bilaterally; and because of-that, the apparent
strength (the confined strength) is increased. This explains why joint failure is not observed in
tests although fl, > fiue

An indication of th{s confinement is found in the vertical deformation curves of mortar
joints recorded in the tests, which reveal that the joints became stiffer with increase of load (cf.
Fig. 2.5). As a consequence of this confinement, the otherwise uniform compressive stress
distribution in the vicinity of the joint is changed.

Fig. 4.13 dépicis a cross-sectional view of a mortar joint and a free body diagram: of the
joint. It is obvious that lai;eral confining stress results from the interface<‘shear and that it
reaches a maximum in the middle of the joint.- As an estimation of the confining stress
distribution, we use the simplified approach as presented in section 4.2.2. The problem
approximates plane strain conditions, since the joint is almost fully confined in the direction
along its length. Recalling the form of solution for the lateral displacement u as given in Eq. 4.6,

we may write the confining stress as (referring to the cross-sectional plane shown in Fig. 4.13):

= - E  du p = v/lv, E=E/1-?
G1=9-92=1410~ 1-p% Oz ( . for plane strain conditions )
; . : )
_ 4 cosh[(2n-1)k7z/1,) sin[(2n-1)my/ o)
=9 ( 1 T Z (2n-1) cosh[(2n-1)kmao/21,) ) 413

=1

Taking the average of this stress over the joint thickness leads to
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FIG 4.14 Compressive Stress, Lateral Cohﬁning Stress and Confined Strength in Mortar Joint
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to

a(®) = 4| or(my) dy

Ot

8 cosh[(2n-1)k7rz/t,]

=1 (1— w2 nz—‘:l (2n-1)2cosh[(2n-1)kmas/2t,] ) 4.14

where ¢, and a, are the thickness and the width (the transverse dimension of the block face-shell -

or web) of a joint. To correspond to plane strain conditions, ¢ and x become

_ ov
1 = 1= 4.15
— 1—2v
Kk = 2_—_(1—1/) . 4.16
For t/a,=1/4, typical of the geometfy of conérete masonry conditions, and » = 0.3, this

confining stress distribution is plotted in Fig. 4.14. It is clear that the joint is not unifomﬁy
confined. Under this non-uniform conﬁnemeﬁt, the joint will develop a varying confined
strength. Since the joint is more confined in the direction along its length, the increase in mortar
“compressive strength will mainly depend on the confining stress in the joint width direction (the
z direction in F:ig. ;4.13). Thus, we may use the known empirical relation (Park and Pauley

1975)
fie = fiu+410 | ' 4.17

with o; = 0,(z) here. The confined compressive strength f;, of the joint, based on the confining
stress given by Eq. 4.14, is also plotted in Fig. 4.14. This may uﬁderestimate the strength
somewhat in view of the full confinement aloﬁg tHé length of the joint.

When the applied compressive stress is small compared to f;,, the unconfined

compressive stfe'ngth of mortar, a good approximation for the compressive stress distribution in
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the joint will be given by the elastic casel:

o . BE 9y
U] ~ o 1_“2 6;5
_ _ 8_;12 &, cosh[(2n-1)kmz/10]
=o(1-% 712::1 ) Peoshl@n Dnr a0 ) 18

which departs slightly from uniform distribution, as plotted in Fig.>4.14.

When '0 exceeds fiu» the end part of the joint will “yield”, because the confined strength
of the eﬁd part 1s l.ess than o. The stress distribution in the joint is then dramatically
complicated. The lateral conﬁﬂing stress given by Eq. 4.14 is no longer valid since the end parts
of the jéint have d‘eveloped substantial nonlineaiﬁty. A precise stress analysis for the joint is
difficult, ‘but we shall give an approximate approach to this problem.

Becaﬁse the inner part of the joint is more confined, it'develops higher étrength and
therefore transfers more stress. Thus we may divide the joint into two parts with the dividing
point z,, within which the material remains elastié in the sense that it does not fail or develop
substantial nonlinearity, as shown in Fig. 4.13. We assume, as is suggested by Fig. 4.14, that
the compressive stress is apbroximately uniformly distributed within this range.

Since the end part is subjected to compressive stress as well as highly concentrated shear
force and lateral céﬁﬁning force as indicated in the preceding stress analysis, it will fail under
the combination of these forces. The known empirical failure curve of concrete under shear and
compression, as shown in Fig. 4.15 (Park aﬁd pauley, 1975), may serve as a good approximation
only for the very ena (;f the joint, where the lateral confining stress is negli‘gible.'

In the pres;aﬁce of large lateral confining stresé, we may modify the féilure curve by

. assuming that it is’ characterized by the confined strength instead of the uniaxial compressive

1For equilibrium, the peak value would be slightly higher than the average stress o
given by Eq. 4.18.
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FIG. 4.15 Failure Curve of Concrete under Shear and Compression: Solid Line, after

Park and Pauley (1975); Dashed Line, Fitted by Eq. 4.19

strength. This basically enlarges the failure curve in aﬁ absolute étress space. The left and right
ends of this curve can be fitted by segments of two ellipses.

For ease of ané]ysis, we further simplify the sitﬁatioﬁ by consid‘ering only the average
failing compressive, and shear streéses in the joint. It may be useful to list herg the notatioﬁs

that will be used in' the following paragraphs: (see Fig. 4.13)

'a,, = width of the joint
T = hé.lf width of the middle part of the jo.int
Te = wi(ith of the end part of the joint
1o = thickness of the joint
i = unconfined strength of the morta;r joint
f;c = confined strength of the mortar joint in the centre par‘t

e = confined strength of the mortar joint in the end part:
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o = average compressive stress in entire joint

o; = lateral confining stress in joint
0 ;o = average compressive failing stress in'the end part
T ;e = average shear failing stress in the end part

Thus the failure criterion for the end part is

2

a]e/fje_0‘6 2 Tje _
(=%—) ( 0.22f,, ) =1 o D
for ¢;./f;e < 0.6. Andfor o,,/f;; > 0.6
Uje/f]8_0'6 2 Tje \2 _
(%) + ( 0927, ) =1 . A

fj. can be written

fu Jje(zo) ;"°(’°) 4.20

fe =

jes from which it

We assume a loading path by noting the relation given by Eq. 4.9 and S ~ z.7

follows that, at failure
r. o= Bl : ' 4.21

Vertical equilibrium requires

U;o — zijc(29)+zere 4.22
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where f;, is deﬁged by

fjc‘ = fiu +. 4.1 o, | ' | 4.23
lan}d o, can be found by lateral equilibrium of the end part

0 lo= 27 ;,Te . 4.24

Eq. .4.19 to Eq. 4.24 together with the relation that z,+ z.= a,/2 can be used to find
.lthe 7 unknowns; namely, z., o, fjc, 015 fjer 05, and T jer

As an ekaméle, we use this approach to examine the prisms with type N mortar. Recall
that the cuBe strength of this type mortar is 1570 psi; we set it equal to fju- This may
ﬁnderestimaté the distortion of the uniform stress, since the actual value for f;u 1s even lower.
At failure of the N type masonry, o= fl, = 2320 psi, then fiu/o = 0.677, leading to xo/(a0/2) .
= 0.84, fjc/o’ =1.1I‘5, Vaje/a = 0.27. i.e., about 16% of the joint (outer part) failed with an

average failing stress 27% of the average stress o. As a consequence, the outer part of the joint

sheds forces to the inner part, leading to an increase in s'tress_to 1.15 times o in that part.

4.6 Capacity Estimation

The above' study indicates that the mortar joints can alter the otherwise uniform

compressive stress - distribution considerably when masonry is under uniaxial compression.
[ ) .

According to the approximation, at failure of the masonry with N type mortar tested by the
author, about 97% of the compressive force is transferred through a strip with 84% of the width

of the web or face-shell. This means that the compressive force is only transferred by part of the |
joints and the masonry units are.actually not fully loaded, which will certainly have a negative

effect on the strength of the masonry.
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However, if one wishes to generalize the joint effect on masonry strengtil by cofrelating
the mortar cube strength and the unit strength with the prism strength, as is often desired in
practice, some uncertainties have to be recognized:
1) The correlation i)etween mortar cube strength and the strength of the mortar placed in the
joint.
2) The correlation between unit strength and the strength of “a prism with dry joints”, a desired
reference parameter.
3) Uncertainties in failure criteria of concrete.
4) Material properties such as those governing deformation and adhesion, whichi are often
assumed but not measured. They are by no means unimportant to masonry strength.

Based on above analysis and arguments, -we present here a semi-empirical approach.
Since no better failure criterion is available, we assume that the masonry unit will fail when the '
average compressive stress in the middle part of the mortar joint, which will be higher than the
average stress in the masonry, reaches some critical .value; and this critical value may be ‘linearly

correlated to the masonry unit strength. Thus we may write the failure condition
fio(zo) = hkfl 0< k<1 495

Further, we assume' that the unconfined strength of the mortar placed in joints is proportional

to the cube mortar strength
fiu = ka’]. 0< ky<1 4.26

where f; denotes the cube mortar strength, and k, and k, are some assumed correlation factors.
At failure, equations from 4.19 to 4.24 are assumed to be satisfied. Thus the masonry

strength, i.e. the average failure stress in masonry, is actually expressed in Eq. 4.22, from which



86

we can write

b
[~
Q

0 T]e

je kl_ k2(f{7 /ﬁ‘)
~ —21 4.27

B (1- e P )+

|

where o;, and 7;, can be explicitly expressed in terms of fg and f, in view of Egs. 4.19 —
4.21, 4.23 and 4.24. For k; = 0.95, k, = 0.75, t/a, = 0.25 and Poisson’s ratio v = 0.3, Eq. 4.27
is plotted in Fig. 4.16 and compared with the experimental data. The value of the correlation
factor k, is very close to the c.onversion factor between concrete cylinder strength and cube
strength recommended by L’Hermite (Neville 1965). For the cube strength ranging from 2000 psi

to 3000 psi, this factor is between 0.73 and 0.76. The model curve is essentially identical to a

linear regression curve of the data, i.e.

fi
fu

Jdl = 0.68 + 0.19

fu

4.28

The four points on the right have been excluded from this analysis; they were type M mortar,
and are believed to represent a different phenomenon — failure of the adhesion between block
mortar.

The model also gives a reasonable correlation with the limited data on masonry capacity
when the mortar joint is doubled (t=3/4 inch), as shown in Fig. 4.17.

The model may be used to estimate the masonryvstrength. However, as indicated before,
some uncertainties f;eed further investigation. On(; of them, is of course, the correlatioﬁ between
* the cube mortar strength and the strength of mortar placed in the joint, since the curing
conditions are so different. The other is the effect of the joint adhesion.

We may conclude from the above analysis thaf since the load transfer capability of
mortar joints depends largely on the existence of the lateral confining stress, introduced basically

by the interface shear between the joint and block unit, that the adhesion between joint and unit



1.2

1.1 4 v
1 -
0.9 "
z .
g oeq :
= ’ .
[ ]
o 074 ‘ | .
3 ) v
= 0.6 ’ - a
[ . )
s 0.5
%
= 0.4 4
g " AUTHOR
0.3
— MODEL ¢ DRYSDALEAHAMD
0.2 :
----- LINEAR REGRESSION v HATZINKOLAS
0.1 - ’
0 | Em— T T T T T T T T o T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4 -
~ MORTAR CUBE STRENGTH / UNIT STRENGTH
FIG. 4.16 Prism Strength versus Mortar Cube Strength
1
0.9
' {to = 3/4 in)
0.8
X
g 0.7
-
E 0.8
o 0.5
g .
0.4
E , —— MODEL
g 0.3 ' m  AUTHOR
0.2 - +  DRYSDALESHAMD
0.1 -
0 T T T T T T T T T T T T T
0 0.2 0.4 0.8 0.8 1 1.2 1.4

MORTAR CUBE STRENGTH / UNIT STRENGTH

FIG. 4.17 Prism Strength versus Mortar Cube Strength, with Joint Thickness Doubled



88
should be important for masonry strength.
- These uncertainties may have contributed to the experimental observation that stronger
mortar does not necessarily make stronger masonry.

In the expe;;riments conducted by the author, the stronger mortar, here type M, did not
make a stronger pri%sm, probably because it contains less lime than does type S mortar. This not
only causes poore1i adhesion to the blocks, (a phenomenon noticed by the author in his
experiments), but a“lso may lead to poorer water retaining ability. In other words, type M prisms
not only had poorer adhesion between joint and unit, but also may actually have a lower joint
strength due to poorer curing conditions.

Therefore, 1t is recommended that, in practice, attention should be paid to the overall

quality of the mortar. Proper mix design should be specified and the cohesive requirement

should be enforced.

4.7 Summary

In this chapter, the failure and capacity of plain concrete masonry under concentric
compression has been studied. Hilsdorf’s model of splitting failure has been reviewed in the light
of both experimental and analytical work. It is concluded that the splitting failure mode cannot
simply be attributed to the lower stiffness of the mortar joints; it is a manifestation of
compression failure as discussed in Chapter III.

The less stiff mortar joint tends to be confined laterally, developing higher compressive
strength iﬁ the inner part. On the one hand, it prevents joint failure. On the other hand, it tends
to alter the uniform compressive stress in the vicinity of the joint, i.e. more compressive force
tends to be transferred by the inner part of the joint. A failure criterion based on failure of
‘masonry unit undéi‘ this intensified compressive stress wasvproposed, which gives reasonable

capacity estimation.
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CHAPTER V

PLAIN MASONRY WITH FACE-SHELL BEDDING

5.1 Introduction

In North America concrete masonry is often mortared only on the face-shells. Even
when a mason attempts to apply mortar to the cro.ss-webs as well, he may not be able to ensure
vertical alignment so that the webs can transmit force effectively. The mechanical properties of
face-shell bedded masonry, therefore, have been studied extensively.

The splitting failure of face-shell bedded masonry is relatively well'_ understood. Shrive
(1982) concluded th‘at tensile stress is developed a't the centre of the webs, by a mechanism
somewhat analogous to deep beam bending, i.e. the top and bottom halves of the web are taken
as deep beams, bending up and down respectively (see Fig. 5.1), thus causing the splitting
failure in face-shell bedded masonry.

The author is in full agreement with the reasoning in Shrive’s paper. The present study
of face-shell bedded masonry was intended to confirm his model experimentally, to study the
transition to a failure mechanism‘for eccentrically loaded specimens, to explore the relationship

to fully bedded masonry, and to develop some related quantitative results.

5.2 Experimental Work

Sixteen face-shell bedded prisms were built and twelve of them were tested under
uniaxial compression including two with full capping. Table 5.1 summarizes the failure loads of
these specimens.

Under uniaxial compression, splitting of the webs was again revealed by the tests. By
observing the wire breaking order as p'reviously described, cracks were found to initiate
consistently from the top or bottom of the webs in middle course (see Fig. 5.2). This supports

Shrive’s model. Both the failure process recorded on video and the lateral deformation



face—shell”

I

90

tension

O

Hitrib

—

" icompression \

1 PR

deep beam
l mechanism

_

compression

tension

|
~

FIG. 5.1 Depiction of Deep Beam Mechanism

li
\Y

M27-2

N15-1

S16-1

v

o I
\Y —b\

- S16-2

N15-3

I
v

N15-4

'R
v

FIG. 5.2 Detected Orders of Macroscopic Splitting, in Terms of

4 Sections along Prisms. (Face-Shell Bedded Prisms)



91

SPECIMEN 1 2 3 4| AVG | cov
M27 (M—MORTAR)| 118.0 99.0 86.0 75.0 94.5 | 19.9%
S16 (S—MORTAR) | 119.0 | 127.0 | 140.0 | 109.0 | 123.8 9.2%
N15 (N—MORTAR)| 100.0 | 115.0 107.5 7.0%
N15 (N—MORTAR) 53.0¢ | 48.0x 50.5 5.0%

Table 5.1 Failure Loads of Plain Prisms with Face-Shell Bedding (kips)

* Tested with full capping

measurements indicated that splitting occurs at or immediately before final failure. Figs. 5.3,
5.4 give the deformation curves. A deep beam mechanism is suggested by the substantial
difference in the deformation measurement at locations #3 #4; splitting is clearly evidenced by
the jumps in these curves. The final failure is characterized by peeling off (fully or partly) of the
face-shells, as shown in Fig. 2.13 in Chapter II.

However, for most of the specimens with face-shell capping cracks were found to initiate
in the web somewhere near two ends of the mortar joints, and tended to wander afterwards, as
typically illustrated in Fig. 2.13. This appears somewhat different from what one would expect
by the deep beam bending model, which suggests that splitting would occur in the centre of the
web.

Splitting in the centre of webs was found in the specimens tested with full capping (see
Fig. 2.14), usually occurring in the top course. These specimens failed at very low loads (about
50% of that of the face-shell capping, see Table 5.1), immediately after web splitting; the two
halves of blocks collapsed by hinging about the inside toes of the mortar joints. The hinging
mechanism is implied by the vertical displacement measured across the outside of the joi-nt of
specimen N15-3, which contracted first because of compression then tended to open due to the

joint rotation.
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5.3 Stress Analysis
Shrive did a 3-dimensiona1 stress analysisiby modeling a 2-high face-shell bedded prism
using the finite element method. HoWever, the analysis was only for the case of uniaxial
compression and the results given in his paper are limited to certain locations. Therefore, some
additional numerical stress analysis is performed here.

We model a web as a plane elastic problem for simplicity. The author believes the
2—dimensional model has some value, although this is actually a 3 —dimensional problem
requiring the exact geometry of the prism. The stress field was solved by using the bougdary
element method (Crouch 1983). Thirty four elements per edge length were used, and the results
given on the boundaries in the following figures are the stresses evaluated at the centrc;, of each
element.

The stress distribufions determined for certain locations in the face-shell loaded web are
giveﬁ in Fig. 5.5. It is interesting td note that lateral tensile stress in the top of the web
remains approximately constant Qithin the middle range and reaches its maximum at about the
quarter points instead of in the centre. The high lateral tension at the quarter points can be
attributed to the local stress concentration arising from the compreésive forces in the face-shell,
while the centre part is étressed in tensi;)n because of the beam bending mechanism (cf. Fig.
5.1). This is implied by the tensile stress distributions along the depth at these two
corresponding locati‘ons; the former has a much sharper stress gradient, as shown in Fig. 5.5.
The elastic analysis gives the astonishingly high value of the maximum tensile stress, read as
49% of the vertical compressive stress-acting on the face-shell. This result is comparable to that
given by Shrive (1982)..However, we may argue that, since noniinea.r developments in the
concrete allow some degree of stress redistribution, the tensile stress may be expected not to
reach such a high value at the moment of failure.

The stress analysis suggests that the two sides of the web are not only carrying higher

local tensions than the centre part, but are also under a complex stress state, i.e, under tension,
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compression and ,shear.-Thbis clearly explains why splitting initiateé at "these locations, and
suggests, furthermore, that because of the beam bending mechanism, thg -crack Will run through
the web once it is initiated. Since the splitting occurs near the face-shell, after splitting, the force
.is transferred By the face-shell alone without effective ldateral support. Thus vertical stability is
unlikely to bg mainﬁained even if the face-shell is still not crushed. Therefore, in practice, We
rriay consider that splitting signifies failure.»

The f_i'eep beam bending meéhanism is more obvious when face-shell bedded masonry is
fully capped. The masonry block is loaded as depicted in Fig. 5.6. Unlike the face-sl_lc]l capped
prism, in this case the internal sheér between face-shell and web cannot be neglect,ed‘.} 1f we
asst;me'that the vcompressive stress on the capping side is unifor.mly distribﬁtcd and that tile
int_emal shear resultant introduced thereby acts on the midhcigﬁt of the web, then the lateral

tensile stress distribution is plotted in Fig.: 5.7. In this figure, the result is compared with that of
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the face-shell only capping conditions under the same total prism load.

Note that the entire web acts as a single deep beam in the top capped block. The maximum
tensile stress is found at the bottom centre of the web. This tensile stress is not 6nly higher than
that of the face-shell capped prisms, but also extends to a larger depth. This explains why
splitting is prone to occur at the centre of the web of fully capped prisms, and these prisms fail
at a lower loads than their face-shell capped counterparfs.

One practical implication is that plain concrete masonry should be either built totally
fully bedded or totally face-shell beddéd. Mixed bedding patterns should be avoided. If a wall is
going to be built by face-shell bedding, one must ensure that the whole wall is face-shell
mortared, and detail the top and bottoﬁ of the wall so that the vertical load will be effectively
transferred on the face-shell only. Otherwise one may inadvertantly sacrifice as much as half of

the wall’s capacity (see Table 5.1).

5.4 Some Comments on Joint Effect

The deep beam bending mechanism suggests that the mortar type should have a
relatively minor effect on the capacity of face-shell Bedded masonry, and thus it appears possible
tc; estimate the capacity of such a system using the modulus of rupture of the masonry units.
The known correlation between the compressive strength and the modulus of rupture of concrete

suggests that the capacity of masonry should be in a form such as

fn= kL ~ ( in Imperial units ) 5.1
or

fin

k.
fo h

5.2

where k is a constant. When k = 40, Eq. 5.2 is plotted in Fig. 5.8 with four groups of

experimental data, which gives a reasonable correlation considering the scatter of the data.
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However, -experiments conducted by both Shrive (1982) and by the author by varying
mortar strength have indicated that the effect of mortar type may not be totally neglected (cf.
Table 4.1; the variation in the masonry capacity with mortar strength is also reflected in the
scatter of the author’s data in Fig. 5.8, which includes prisms with three different types of
mortar). Again, it is noted that the stronger mortar does not necessarily make stronger masonry.
In the tests conducted by the author, the strongest mortar made the weakest mas‘onry prisms.
We may argue that although the deep beam .mechanism dominates the failure, partial
failure of the mortar joint may still occur at the failure stress. This is because the failure stress
based on mortared area is still high compared with that of the fully bedded masonry. The
outside edges of thé mortar tend to fail and spall out, leaving a narrow strip of mortar down the
centre of the face-shell. This partial joint failure will not only cause a local stress concentration
in the vicinity of the joint, as studied in detail in the preceding chapter, but may also change
the joint essentially from a flat-base to a hinge-like support, which provides little rotation
constraint. The deep beam bending mechanism may be intensified by this support change. The
above argument suggests that the adhesion of mortar joint to block unit is important to face-
shell masonry capacity as well.
Eq. 5.2 gives an estimate of masonry capacity based on the unit strength. Further

investigation is needed to include the joint effect quantitatively.

5.5 Summary

The behaviour of plain concrete masonry with face-shell bedding under concentric
compression has been studied. The deep beam bending model for splitting in webs proposed by
Shrive has been verified by experiments. The effect of capping conditions on capacity and failure

mode has been investigated. Joint effect has also been discussed.
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CHAPTER VI

PLAIN MASONRY UNDER ECCENTRIC COMPRESSION

6.1 Failure Mode Transition

When plain masonry (whether fully mortared oi‘ face-shell mortared) is under eccentric .
compression, it fails in a rather different mode and at a higher apparent stress than it does
under uniaxial compression. |

5 groups of plain prisms were tested under eccentric compression. Most of the specimens
exhibited shea? type failure, i.e. failure is roughly chardcterizcd by an inclined fracture plane (or
more precisely, a fracture zone in which material is highly cracked or crushed) separating the
material. Because of this mode, the failure appeared to be relatively suddeﬁ.

All specimens failed on the loaded compression side, and failure was often localized in
some part of the prism. Fig. 2.15 in Chapter II illustrates the typical failure pattern. Table 6.1
summarizes the failure loads. Figs. 6.1, 6.2 give the measured deformation curves. The apparent

increase in strength phenomenon is depicted by comparing a theoretical P—M interaction curve

SPECIMEN1 e/t 1 2 3 4 AVG Cov
N18 (N-MORTAR)| 1/6 | 150.5 107.0 | 120.0 121.0 124.6 12.8%
M20(M-MORTAR]) 1/3 77.5 79.0 86.5 95.0 84.5 - 8.2%
S21 (S-MORTAR) | 1/3 96.0 90.0 100.0 | 93.0 94.8 3.9%
N19 (N-MORTAR)| 1/3 83.0 81.0 85.0 69.0 - 79.5 7.8%
N22(N-MORTAR)H 1/3 64.0 78.0 69.0 73.0 71.0 7.3%

Table 6.1 Failure Loads of Plain Prisms under Eccentric Load (kips)

* Face-shell Bedded
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based on the uniaxial compressive. strength with the eccentric compression test data, as shown
by Fig. 4.1 in Chapter IV.

There are some differences in the detailed failure modes among the specimens. Vertical
splitting in the web before or at failure of the loaded side was observed in some of the prisms
with high eccentricity (e=1/3). A similar phenomenon was observed by Hatzinikolas et al in
their experiments (1978), and it worth giving a brief explanation.

For those prisms which were under large eccentricity, the joints on the tension side of
some’specimens debonded before the compression side failed. (This is shown by the deformation
measurement across the joint on the tension side, see Figs. 6.1, 6.2) Because of this debonding,
the prisms were actually only loaded on the compression side, as depicted in Fig. 6.3. The
resultant force acting on the compression side of the web is an axial force with a bending
moment. Therefore, it is not surprising that some transverse tensile stress can (ievelop in the
web. For an ideal elastic case in which the compressive str.ess is triangularly distributed, a
numerical study shows that the maximum magnitude of this transverse tensile stress can be as
high as 25% of the maximum compressive stress, as depicted in Fig. 6.3.

However, it can be visualized that the splitting caused by this tensile stress does not
directly lead to final failure of a prism, or of a low wall. This view is supported by the
experimental observation that splitting can occur before the loaded face-shell fails, and that
failure is essentially characterized by a shear mechanism. Nevertheless, it again implies the
importance of sound adhesion in the joints. Although plain masonry is not usually designed to
sustain load with high eccentricity, sound bond may ensure the wall’s integrity in the case of the
wall being accidentally loaded in the unfavorable condition (with tensile stress occurring on one
side of the wall).

For the case of face-shell bedded masonry, with increasing eccentricity, the deep beam
mechanism may no longer dominate the failure. A stress analysis, keeping the vertical

compression stress on the loaded side constant, indicates that the magnitude of the lateral
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tensile stress due to this mechanism is substantially reduced with increasing eccentricity, as
shown in Fig. 6.4.

However, to fully explain the preference of the shear failure mode when masonry is
under eccentric loading needs a thorough understanding of the failure of a concrete-like brittle
material under various conditions. In Chapter III we have proposed a failure model explaining
the splitting failure under uniaxial compression. However, it appears no easy extension can be
made when the model mechanism is under a compressive stress with gradient. It could be that
the uneven éompression due to the stress gradient intensifies the friction and interlock

mechanism between crack surfaces and thus prevents the splitting mode from occurring.

6.2 Effect of Joint Conditions

As shown in Table 6.1, under large eccentricity, change of mortar strength apparently
has a relatively minor effect on the capacity of the prism. This may be explained as follows.

When plain concrete masonry is under highly eccentric compression, the compressive
force is mainly transferred by the face-shell on the loaded side. Since there is a strain gradient
across the face-shell, the stress distribution across it, at a point remote from the joint, must be.
hump shaped because of the nonlinearity of the material. This is quite different from that u‘nder
uniaxial compression, where the stress would always be uniformly distributed in the absence of
the joint, regardless of the development of material nonlinearity.

The hump shaped stress distribution suggests that the force would be largely transferred
by the middle part of the face-shell. We know by the analysis of the preceding sections that the
mortar joint can develop relatively high strength in its middle part (cf. Fig. 4.14). The presence
of the joint, therefore, may not alter the normal stress distribution as much as the joint under
uniaxial compression will do.

Moreover, because of the eccentric loading, the outer fiber of the loaded face-shell will

deform more than the inner fibre will do. For loading with eccentricity equal to one third of th_e



FIG. 6.5 Strain Distribution in a Section of
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width of the prism, €; = 0.64¢,, as
depicted in Fig. 6.5. Here we neglect the
tensile strength of concrete and assume ¢; =
0 in the middle of the cross-section after the
tensile part of the. prism has debonded.
When this strain is imposed on the joint, the
joint is actually under a combination of

uniaxial compression and bending. A stress

analysis shows that the bending stresses will

lend additional lateral confinement to the

more compressed side of the joint and thus
enhance the joint strength in that part. i.e.,

under eccentric compression the more

" compressed part of the joint will develop

more strength. This ensures that the joint

does not fail during the loading to the final stress distribution discussed above.

Thus, in practice we may neglect the joint conditions in designing walls under eccentric

loading. This approach is further studied in the next chapter.

6..3 Summary

In this chapter, the behaviour of plain masonry under eccentric compression has been

investigated. The eccentric behaviour differs from the concentric one not only in failure

mechanism but also in the joint effect on the strength. In the following chapter, we will propose

a design approach based on these findings, and conclude the study on plain concrete masohry .
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CHAPTER VII

RECOMMENDED DESIGN APPROACH FOR PLAIN MASONRY

7.1 Recommendations on the Basis for Design

It has been demonstrated that under different load conditions plain masonry will fail by
different modes.

Under uniaxial compression, masonry will fail by vertical splitting, but not due to the
mechanism proposed by Hilsdorf. For face—shell bedded masonry, splitting can be attributed to
a mechanism similar to deep beam bending.

Under eccentric loading, masonry tends to fail in a mode approximating shear failure.
These two different failure modes will yield different apparent strengths. The joint conditions
will affect the capacity of the masonry to a different extent under each of these two basic load
. patterns.

In practice, one wishes to estimate the capacity of masonry from the block unit
compressive strength and the mortar cubic strength, since the latter are relatively easy to
measure experimentally. The correlation given by Eqs. 4.27 or 4.28 and Eq. 5.2 may serve this
purpose. However, when using these relations, one must keep in mind that some uncertainties
are involved as was indicated in the development of the equations.

In particular, we have uncertainties in the failure criteria of the material itself, in the
material properties other than strength, in the correlation between strengths, and last but not
least, in the workmanship. These uncertainties are reflected in the scattered data of numerous
experiments.

Therefore, it is recommended that in practice either we use the relations such as given
by Eqgs. 4.27 or 4.28 and Eq. 5.2 in a conservative manner or we retain the masonry prism test
to estimate f’m, the design base of plain concrete masonry under uniaxial compression. .

However, for the case of eccentrically loaded masonry, an approach which differs from
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the traditional one will be recommended.

In the traditional approach, the eccentric capacity estimétion is also based on the value
fm associated with concentric loading. The apparent increase in strength is taken into account by
a (strain gradient) factor. This factor as a function of eccentricity has been frequently studied
through experiments (for example, Turkstra and Thomas 1978; Drysdale and 'Hamid 1983). In
the current design c;)de (CAN3-5304-M84 1984) the factor is given as a fixed value (1.3,
reflected in the eccentricity coefficient C.).

The usefulness of this approach depen(is on an assumed close and fixed correlation
between the concentric capacity and the eccentric capacity. In the light of preceding studies, we
know that this correlation is questionable since different failure mechanisms are involved.

In view of the failure mechanisms, the eccentric capacity of con.cret,e masonry may be
better correlated with the unit compressive strength j{, instead of fln. As shown in F igs. 2.2 and
2.15 in Chapter II, the failure pattern of the unit block is very similar to .that of prisms under
eccentric compression.

Thus it is recommended here that the eccentric capacity estimation be directly based on
the unit compressive strength fi, while the concentric capacity is based on the prism strength
j{m. The joint effect is neglected since épparently it is relatively minor for the case of eccentric
loading. Although the apparent compressive strength of masonry may vary with the eccentricty,
the variation is ignored for practi'cal reasons. It is believed that this approach will yield better
correlations since it is based on recognibtion of the failure mechanisms. Further, of course, this
recommended approach considers the fact that it is not practical to test prisms under eccentric
loading to assess the capacity.

The transitional point where the failure mode changes from splitting to shear failure
ﬁeeds to be indentified. It is suggested by the gvailable experimental work that this occurres at a
small éccentricity (e < t/6). This implies that the cross-section capacity curve is discontinuous

somewhere between e = /6 and e = 0. The detailed behaviour of the cross-section capacity in



109
this range needs further investigation. At this point we recommend that this part of the curve be
interpolated between the capacities at zero eccentricity and at ¢/6 eccentricity, but not to exceed
the vertical load capacity of the zero eccentricity case. This is on the conservative side, as will be .
shown later, since the capacity at ¢/12 is also well correlated with the unit strength.

To examine this practical alternative of basing the eccentrically loaded capacity on the
unit strength, we compare available test data with the recommended capacit‘y curve. The
capacity curves are generated by a conventional method, i.e. linear elastic behaviour and plane
cross-section are assumed and the extreme fibre stress is set equal to the unit strength. The
general expressions based on this method (for both grouted and ungrouted masonry) are derived
in Chapter X. These expressions were checked against a computer program devel;)ped by Nathan
(1985), which performs a rational analysis for beam columns based on material properties and
cross-section geometry.

Since, under large eccent}'icity, masonry fails in a similar pattern regardless of the
bedding conditions, experimental data for both bedding conditions (full and face-shell) are
included. The comparison is illustrated in Figs. 7.1 to Fig. 7.11, which include the tests done by
the author, by Fattal and Cattaneo (1976), by Hatzinikolas et al (1978) and by Drysdale and
Hamid (1983). Tables 7.1 to 7.4 summarize the numerical results.

For the 58 cases compared, the average value of the ratio of failure load to predicted
load is 1.026 with a coefficient of variation of 11.36%, corresponding to an e)/(pected ratio of
1.026 with 95% confidence limits equal to 0.996 and 1.056. The agreement is extremely good
considering the scatter of the data and the erratic nature of the material.

Fig. 7.12 sﬁmmarizes the comparison of the failure loads predicted by the recommended
method with the experimental data. The coefficient of correlation is 0.956 and the majority of
data points lie within the 99 percent confidence limits, which is highly significant.

The recommendations for design are concisely depicted in Fig. 7.13 by a P— M capacity

curve. Curve O — B,;, the masonry capacity under eccentric load, should be determined
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N18 (e=1/6t) |N19 (e=1/3t) |M20 (e=1/3t) |S21 (e=1/3t) |N22 (e=1/3t)
P,=121.7kips |P,= 84.4kips |P,= 84.4kips |P,= 84.4kips |P,= 70.1kips
(predicted) (predicted) (predicted) (predicted) (predicted)

- P-kips |P/P, |P-kips [P/P, |P-kips [P/P, |P-kips |P/P, |P-kips [P/P,
150.5 124 | 830 098 775 | 0921 96.0 1.14 | 64.0 | 0.91
107.0 088 | 81.0 | 096 | 79.0 | 0.94 | 90.0 1.07 | 78.0 | 1.11
120.0 0.99 | 85.0 1.01 | 86.5 1.02 { 100.0 1.18 | 69.0 [ 0.98
121.0 099 | 69.0 | 0.82 | 95.0 1.13 | 93.0 1.10 | 73.0 | 1l.04

AVG} 124.6 1.02 | 79.5 | 0.94| 845 1.00 | 94.8 1.12 | 71.0| 1.01
COVv 12.8% 7.8% 8.2% 3.9% 7.3%

Table 7.1 Comparison with the Recommended Approach: Tests by Author
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e=1/12t e=1/6t e=1/4b e=1/3t

P,=116.3 kips P,=97.1 kips P,= 83.3 kips P,=72.9 kips
P(kips) | P/P, | P(kips)| P/P, | P(kips)|{ P/Po, | P(kips)| P/Po

120.0 1.03 115.1 1.19 82.5 0.99 62.2 0.85

87.8 0.75 108.9 1.12 84.4 1.01 77.0 1.06

160.0 | 1.38 117.1 1.21 82.3 0.99 68.0 | 0.93

AVG 122.6 1.05 113.7 1.17 83.1 1.00 69.1 0.95
COV| 24.1% 3.1% 1.1% 8.8%

Table 7.2 Comparison with the Recommended Approach: Tests by Fattal et al

e=1/6t e=1/3t
0=185.4 kips 02138.7 kips
P (kips) P/P, P (kips) P/P,
180.0 0.97 119.3 0.86
196.0 106 158.7 1.14
150.1 0.81
AVG 175.4 0.95 139.0 1.00
Ccov 10.8% ' 14.2%

Table 7.3 Comparison with the Recommended Approach: Tests by Hatzinikolas et al
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SPECIMEN e/t | P (kN) | P (kips) | Po(kips) | P/P,
normal block 1/6 247 55.5 54.4 1.02
(NB) 1/3 206 46.3 40.8 113"

' 5/12 158 35.5 36.1 0.98

weak block 1/6 171 38.4 37.1 1.04
- (WB) 1/3 133 29.9 28.0 1.07
5/12 99 22.2 22.5 0.99

strong block 1/6 301 67.7 60.5 1.12
(SB) 1/3 236 53.1 45.4 1.17

' 5/12 194 43.6 40.2 1.09
lightweight block | 1/6 228 51.3 43.8 1.17
(LB) 1/3 169 380 | 328 1.16
5/12 149 33.5 29.1 1.15

75% solid 1/6 258 58.0 62.8 0.92
(QB) 1/3 190 42.7 45.5 | 0.94

5/12 100 22.5 22.2 1.01

6 inch block 1/6 185 41.6 40.7 1.02
(6”B) 1/3 137 30.8 30.3 1.02
5/12 94 21.1 21.4 0.99

10 inch block 1/6 200 45.0 54.7 0.82
(10"B) 1/3 172 38.7 41.5 0.93
5/12 132 29.7 28.7 1.03

AVG 1.04
cov 8.7%

Table 7.4 Comparison with the Recommended Approach: Tests by Drysdale et al
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based on the masonry unit strength fi and the geomerty of the cross-section, where B, denotes
the kern eccentricity capacity (e = t/6). A; or A,, which stands for the concentric capacity,
should be determined either by the prism test or by the correlation with the masonry unit
strength ﬂ and the mortar strength f’] The whole capacity curve is represented either by
Al—Bi—O or by A,—B,—0 depending whether the concentric capacity is greater than the kern

eccentricity capacity.

7.2 Discussion of The Current Design Code

The current design code (CAN3-S304-M84, 1984) permits two ways of designing walls
for carrying in-plane axial compression and out of plane bending due to eccentricity of the
vertical load. They are the so-called “coefficient method” and the “load deflection method”. The
former gives an additional alternative to determine the eccentricity coefficient. Therefore, one
actually could develop three different P—M\ design curves for the same member. We denote
them by method 1, 2 and 3 for ease of discussion.

The basic information needed for design is fln, the ultimate compressive strength of
masonry. The code specifies two methods to determine f’m. Method A requires testing of at least
five prisms in uniaxial compression. f}, is then taken as the average strength minus 1.5 times the
standard deviation of the sample. (This value may be reduced by a factor depending on whether
the specified unit strength is consistent with the tested unit strength.) Method B allows one to
test unit and mortar separately (the latter is to ensure that the specified mortar type is
adequate) and fin is taken from the tabled value based on unit strength and mortar type.

The most obvious object of a design code is to ensure consistent reliability in structures.
For flexural design of masonry walls, consistent reliability for various load combinations is
required. The current code recognizes the apparent strength increase when walls are under
eccentric loading, and some modifications are included in the conventional beam-column

approach. This is reflected in method 1 by an increase in C., the eccentricity coefficient, of 30%
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(this is fairly .reasonable when compared with the author’s experiments) when loading
eccentricity is greater than ¢/20. For methodé 2 and 3, this is reflected in the different allowable
stresses that are used (compressive, flexural) in developing the P— M interaction curve. Although
the author has difficulty in understanding why the code allows quite different results by the
three different methods for walls loaded with equal eccentricities, we will consider Ihere the
implications of present research with respect to these provisions.

"First of all, it was concluded that the prism strength does not correlate well with fhe
strengths of mortar and unit. This suggests that there is considerable uncertainty in the use of
method B to avoid making axial prism tests. For the fully bedded prisms tested by the author,
method A would give fm equal to 1760, 2625 and 1930 psi for prisms with M, S, and N type
mortar respectively. Method B, which is based on the correlation between prism stréngth and
strengths of unit and mortar, would give fin equal to 1855 psi for prisms with M and S type‘
mortar and 1430 psi for prisms with type N mortar?. This is very inconsistent, especially in
terms of the probability of non-exceedence of the strength value. fi, determined by method A
corresponds to a non-exceedence probability of about 6.7% for all three type mortar prisms,
while f, determined by method B gives the non-exceedence probability of about 12% for M type
mortar prism, 0.001% for S type and 0.03% for N type mortar prisms. The conclusion is clear:
method B cannot be recommended, or it should be used very conservatively. The current code
may already be on the very conservative side in most cases, but it can not prevent unfavorable
results in some particular cases, such as the type M prism in the above example.

Second, the code requires that the design be based on fin. However, fm is the strength of
masonry under uniaxial compression. It was concluded tﬁat, because of the different failure

mechanisms, this strength does not correlate well with the flexural compressive strength, which

2Here we only have a sample size of 4 and we relax the 15% restriction on coefficient of

variation for M type mortar masonry prism.
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is much less dependent on the joint condition and bedding pattern. The code only takes account
of the apparent increase in strength by allowing an increase in the design stress for masonry
under eccentric loading of a fixed amount, i.e. 30% in method 1 and 20% in method 2 and 3 (
some intérpolation is involved in methods 2 and 3 ). This implies that a relationship is assumed
befween uniaxial strength and flexural strength of masonry which is independent of joint pattern
and mortar type. In other words, since uniaxial compression strength depends largely on the
joint condition and bedding pattern, the stfength under eccentric loading also depends largely on
these variables, according to the code. The study in the preceding sections indicates that this is
not the case. The strength of masonry under eccentric compression may be better correlated with
the unit compressive strength. Thus, inconsistency in the reliability of wall capacity as designed
by the current code may be expected.

For example, for the 58 experimental cases studied above, including eccentrically loaded
prisms of wall sections tested by the author and others, the flexural compressive stress at failure
was calculated (based on the assumption that stress is linearly distributed in the cross-section),
and listed in Table 7.5 to Table 7.8 and summarized in Fig. 7.14. The average ratio of the
flexural strength to uniaxial compressive strength was 1.21 with a coefficient of variation equal
to 13.3%.

Although the average 21 percent higher flexural compressive strength is close to the
eccentric coefficient specified by the code (method 2 and method 3), the coefficient of variation
is higher than that of the recommended method (11.4%). fig. 7.14 shows the comparison
between axial and flexural strengths for the reported tests, which has a coefficient of correlation
of only 0.875, comparing unfavorably with that of 0.956 for the recommended method. The
superiority of the recommended method over the code specified method is obvious in view of

Figs. 7.12 and 7.14.
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N18 (e=1/6t) [N19 (e=1/3t) |M20 (e=1/3t)‘ S21 (e=1/3t) |N22 (e=1/3t)
fn=2.32ksi | fln=2.32ksi | fln=2.42ksi | fln=3.02ksi | fn=2.52 ksi
(prism test) (prism test) (prism test) (prism test) (prism test)
fi(ksi) | fL/fh |fh(ksi) | fo/fh | fh(ksi)| f1/fh | fh(ksi)| fh/fh | fh(ksi)| fL/fh
- 4.01 1.73 | 3.38 | 1.37 | 297 | 123| 3.68| 122 296 | 1.17
2.85 | 1.23| 31| 1.34| 3.03| 1.25| 3.45| 1.15| 3.60 | 1.43
320 | 1.38| 326 1.41| 3.32| 1.37| 3.84| 127 3.19| 1.26
322 | 139 | 2.65| 1.14| 365 | 151 | 3.57 | 1187 3.37 | 1.34
AVG[3.32 | 143 3.05| 1.31| 3.24| 134 3.63| 1.21| 3.28| 1.30
coVl 128%| 7.8% 8.2% 3.9% 7.3%

Table 7.5 Flexural to Uniaxial Strength: Tests by Author
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e=1/3¢

e=1/12¢ e=1/6t e=1/4t
fl, = 1.89 ksi fl, = 1.80ksi | fl, = 1.89ksi | fhn = 1.89 ksi’
fl(ksi) | fL/fh | fh(ksi) | fo/fl | fh(ksi) | fL/fh | fh(ksi) | fL/fm
2.28 1.20 2.61 1.38 2.18 1.15 1.88 0.99
1.67 0.88 2.47 1.31 2.23 1.18 2.33 1.23
3.04 1.61 2.66 1.41 2.18 1.15 2.05 .| 1.09
AVGl 2.33 1.23 2.58 1.37 | 2.20 1.16 2.09 1.10
CoV| 24.1% 3.1% 1.1% 8.8%
Table 7.6 Flexural to Uniaxial Strength: Tests by Fattal et al
e=1/6t e=1/3t
fhy = 1.96 ksi fh = 1.96 ksi
£l (ksi) fl £l (ksi) £/,
2.28 1.17 2.20 1.03
2.49 1.28 2.68 1.37
1.90 0.97
AVG 2.22 1.14 2.35 1.20
COV 10.8% 14.2%

Table 7.7 Flexural to Uniaxial Strength: Tests by Hatzinikolas et al
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SPECIMEN | e/t | fi(mpa) | fi(ksi) | fi/f
normal block 1/6 | 28.0 4.06 1.12
(NB) 1/3 27.8 4.03 1.12
f1,=24.9 mpa [5/12 27.0 3.91 1.08
weak block 1/6 19.4 2.81 1.08
(WB) 1/3 19.9 2.88 1.11
f1,=18.0 mpa [5/12 | 16.8 2.43 0.93
strong block 1/6 34.0 4.93 1.14
(SB) 1/3 35.1 5.09 1.17
f1,=29.9 mpa [5/12 32.9 4.71 1.10
lightweight block 1/6 25.8 3.74 1.24
(LB) 1/3 25.1 3.64 1.21
fl,=20.8 mpa |5/12 | 25.3 3.67 1.22
~75% solid 1/6 | 19.1 2.77 1.17
(QB) 1/3 |- 17.6 2.55 1.08
f,=16.3 mpa |5/12 21.1 3.06 1.29
6 inch block 1/6 26.5 3.84 1.11
(6”B) 1/3 26.1 | . 3.78 1.10
fl,=23.8 mpa |5/12 23.6 3.42 0.99
10 inch block 1/6 20.8 3.01 0.96
(10”B) 1/3 23.4 3.39 1.08

. flh=21.6 mpa |5/12 22.5 3.26 1.04
AVG ' 1.11
cov 7.7%

Table 7.8 Flexural to Uniaxial Strength: Tests by Drysdale et al
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CHAPTER VIII
GROUTED MASONRY WITH FULL BEDDING
8.1 Introduction

In the west coast area of Canada, where earthquake resistance is a main concern in
structural design, masonry walls and columns are required to be grou‘ted and reinforced to
improve structural continuity and ductility.

The axial capacity of grouted and reinforced masonry is of interest not only because it
directly determines the design thickness of a wall providing axial and lateral load resistance in a
multi—story building, but also, because it is closely related to the design ductility (Priestley and
Hon 1983).

The methods for determining the compressive strength of grouted concrete masonry
specified in the current code (CAN3-S304-M84, 1984) are essentially the same as those for plain
concrete masonry, as reviewed in t};e preceding chapter. Method A, which requires a prism test,
is not very practical. Since the failure load of a standard 8 inch grouted prism will usually be
well above 300 kips, testing facilities with adequate capacity are extremely limited. Method B,
which estimates the compressive strength based on the unit strength and mortar type, tends to
be excessively conservative due to the uncertainties involved. The code does not correlate the
masonry compressive strength with grout strength, but merely requires that the grout strength
be at least equal to that of the block shell. On the one hand, this does not allow one to take
advantage of high sfrength grouting, and on fhe other hand, it is a difficult specification to meet
since the unit strength is often much higher than the specified value (cf. Tables 8.3—8.9). If the
failure mechanism js dependent on the relative strengths, it will be correspondingly uncertain.

The axial behaviour of grouted concrete masonry has been studied both experimentally
and analytically. Drysdale and Hamid (1979) first addressed the compatibility problem between
masonry unit and grout based on their experimental observations. Akio Baba and Osamu Senbu

(1986) proposed the concept of the grout efficiency, and found it varied considerably with
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different combinations of masonry unit and grout they tested. A few failure models have been
suggested to predict the ultimate strength considering the interaction between unit, grout and
mortar (Ahmad and Drysdale 1979, Priestley and Hon- 1983). However,' the internal forces of
these models bwere entirely based on a state that all the three materials reach some assumed
fracture criteria. This is not always a realistic description. Further, the fracture is not necessarily
equivalent to ultimate state.

It is clear that a better understanding of the mechanical behaviour is needed and a more
accurate estimate for masonry strength is desirable. In this study, the experimental behaviour of
grouted masonry prisms is carefully examined and a better correlation of the masonry strength

with the unit strength, grout strength and mortar strength is sought.

8.2 Experimental Observations

23 grouted prisms were tested under uniaxial compression, with various joint and
grouting conditions. The failure loads of the prisms are summarized in Tables 8.1 and 8.2. The
grout strengths, evaluated by testing in accordance with CSA Standard (A179—1976), are listed
in Table 2.5.

The experiments indicate:

1) Both mortar strength and grout strength affect the prism strength. Apparently stronger
mortar and grout make stronger ma,sonr.y (see Tables 8.1 and 8.2). However, the increase in
masonry capacity is minor, even with a‘substa.ntia.l increase in the constituent strengths, as
depicted in Fig. 8.1. This is especially true for grout, suggesting that the contribution of grout
and block shell (including mortar joint) to the capacity of masonry is a function of their
compatible deformations, and is not simply given by superposition of their individual capacities.
This observation confirms that by Drysdale and Ahmad (1979).

2) Deformation measurements and direct obsefvation (recorded by a video camera) indicate that

almost all the prisms were cracked before final failure. Cracks‘ were found in the webs as well as
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in the face-shell, occurring at loads as low as 40% of the failure value, as evidenced by the
recorded deformations in Figs. 8.2, 8.3 and 8.4. Similar observations have been reported by
Sturgeon and Longworth (1985). Using acoustic measurement, Akio Baba and Osamu Senbu
(1986) have also observed more detailed cracking process well before ultimate state for grouted
prisms with bond beam concrete unit. This premature cracking may have been caused by the
incompatibility between the grout and the block shell, as will.be further studied below. However,
closer inspection shows that the block shell still carried substantial load after cracking,
indicating that premature cracking is not necessarily equivalent to failure. We know this mainly
from two facts: a) The vertical deformation measurement of the block shell shows that the
compressive strain remained at a high level after cracking had occurred (cf. Figs. 8.2-8.4). b)
The capacity of the prism is usually substantially greater than that of grouting concrete alone.

3) Block shells are stiffer than concrete grout which in turrg are stiffer than mortar. The peak
strain is between 0.0015 to 0.002 for the block unit and 0.0025 to 0.003 for three types of grout
(see ‘Figs. 2.3, 2.4 and 2.6 in Chapter II). A similar phenomenon has been indicated by the
research on concrete masonry in New Zealand (Priestley and Elder 1985). The Young’s modulus
of various concrete units (used in Japan) are also appearently higher than that of grout
according to Akio Baba and Osamu Senbu (1986). The m;:)rtar even exhibited higher peak
strains, which exceeded 0.005 (measured during the cube strength te;ting). The difference in the
deformation properties is probably due to different material textures and curing conditions. This
observation supports the view that compatibility plays an important role in concrete masonry
capacity. The vertical deformation measurements, indeed, indicated that the block shells carried
a larger share of load relative to the grout before they cracked; after cracking, the shell
continued to carry a substantial portion of the load, although in some cases there was a slight

decrease.



SPECIMEN

1 2 3 4 AVG COv

M9 (NG, MJ)# 333.0 333.0 310.5 325.5 | - 3.3%

S8 (NG, SJ) 303.0 264.0 -321.0 296.0 8.0%

| NI13 (NG, NJ) 237.0 332.0 284.5 16.7%
N10 (NG, t,=6/8") 302.0 300.0- 273.5 291.8 4.5%
P11 (NG, t, = 0) 274.0 234.0 312.5 273.5 11.7%
N17(NG,Face-She]1) 252.0 240.0 258.0 250.0 3.0%

Table 8.1 Failure Loads of Grouted Prisms (kips), with Variation in Joint Condition

+ NG — Type N Grout; NJ — Type N Mortar Joint, etc.

SPECIMEN 1 2 3 4| AVG | cov
N12 (SG, NJ) 316.0 | 291.0 | 254.0 | 287.0 | 8.9%
N13 (NG, NJ) 237.0 | 3320 | 2845 | 16.7%
N14 (WG, NJ) 257.0 | 2410 | 289.0 | 2623 | 7.6%

Table 8.2 Failure Loads of Grouted Prisms (kips), with Variation in Grout
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FIG. 8.1 Grouted Prism Strength Versus Mortar Strength and Grout Strength

128



LOAD ( KIPS )

LOAb( KIPS )

340
320
300
280
260
240
220
200

‘180

160
140

" 120

100
80
80
40
20

320
300
280
260
240
220
200
180
160
140
120
100

80

60

40

20

340
320
300 -
280 -
260 <
240
. 220
200 -
180
160 -
140
120 -
100
80
60 -
40
20

_UZAD(KIPS)

0 T T T T T
-3 . -1 1

AVERAGE STRAIN ( 1/1000 IN/IN ) - AVERAGE STRAIN { 1/1000 IN/IN )

(2) o (b)

280

240 1
] |

220 .
200
a 180 |
57 160 3
140 - )
4
: 120 . .
100 6 5
) 80
: 60 ) :
40
20

™
o

LOAD ( KIPS )

-\ o

T

-1

1 2 ' -2 0 2
AVERAGE STRAIN ( 1/1000 IN/IN ) : AVERAGE STRAIN ( 1/1000 IN/IN )

(c) o (d)
FIG. 8.2 Measured Deformations at Certain Locations of Grouted Prisms under Concentric

Load: a) M9-1; b) M9-2; c) S8-1; d) S8-2

6¢1



wm( KIPS )

LOAD ( KIPS )

320
300
280
260
240
220

200

160
140
120
100
80
60
40
20

300
280
260
240
220
200
180
160
140
120

80
60
40
20

280 T——

260 o - . _ :
240 _ ’ 2 f
220 '
6 5 4
3 o

200 -
160 - . !
140 ~

LOAD { KIPS )

120
100 i
80 -

| ==
! — 2
60
40

20 1

-\

T 0 T T T T

T T T T T

-2 0 -

AVERAGE STRAIN ( 1/1000 IN/IN )

(a)

4 -3 -1 . i 3

" AVERAGE STRAIN ( 1/1000 IN/IN )
(b)

260

_ 1
| 7

240
220
200 -
180
180
140 -

120

LoAD ( KIPS )

100

[}
:/ 80

57 ' 60 -

20 .

T T —
-1 1

AVERAGE STRAIN ( 1/1000 IN/IN )

(c)

T 0 T T — T T
3 -3 -1 1 3

AVERAGE STRAIN ( 1/1000 IN/IN )

@

FIG. 8.3 Measured Deformations at Certain Locations of Grouted Prisms under Concentric

Load: a) N10-3; b) N10-4; ¢) N12:2; d) N12-4

0¢T1



LOAD (KPS )

LOAD ( KIPS )

260
240
220
200
180

160

100
80
60
40

20

R
4 6
< (0
—_—1 [}
R -—7 — 57
T T I S B T Y T
-2 -1 [+] 1 2
AVERAGE STRAN ( 171000 VNN )
(2)
i 6 {5
i ¢°
- .
i L
T - T T T
-3 -1 . 1 3

AVERAGE STRAIN ( 1/1000 IN/IN )

(¢)

LOAD ( KIPS )

LOAD (KPS )

320 +°

oB88288838E3E8REREE

300

280 -

260
240
220
200

180

160
140
120
100
80
60
40
20

FIG. 8.4 Measured Deformations at Certain Locations

Load: a) N13-3; b) N13-4; ¢) N14-3; d) N14-4

1 T 1 ¥ 1

AVERAGE STRAN ( 171000 N/N )

(b)

4 6

4 (°

- e T

! -2 s
- T —T t T 7 T

-3 -1 1 3

AVERAGE STRAIN ( 1/1000 IN/IN )

(d)

of Grouted Prisms under Concentric

1€l



132
8.3 Analysis

Althoﬁgh there is considerable scatter in the strength data obtained by the authc;r and
in numerous previous studies, one conclusion can be drawn with certainty: that the capacity of
the block unit and that of the grout are not simply additive. This obviously results from the
difference in deformation properties of the materials, as discussed in the preceding paragraph.
We consider two aspects of this deformation compatibility problem:

First, vertical compatibility. Since the grout and the block unit usually have different
peak strains, as shown by experiment, they are not able to reach their full capacities gt the same
strain. From this viewpoint it is obvious that simple capacity addition is not valid. The
efficiency of the grouting will depend on how closé the deformation properties of the two
materials are.

Second, horizontal (or cross-sectional) corﬁpatibility. This includes two parts. One is due
to the different Poisson’s effect of grout and block shell. The other is due to the geometry: for
manufacturing reasons, the hollow core of a concrete masonry block is actually tapered with a
release angle 1°—3°. This may introduce an additional cross-sectional compatibility problem
when grout and block shell undergo different vertical strains.

The premature cracking observed in experiments is certainly caused by these cross-
sectional incompgtibilities. A

Thus, a failure model of grouted masonry based on deformation compatibility will be
closer to realify than one based on strength superposition. This will serve as a guideline for the
following model development.

It may be useful to list all the notation applied in the model:

Ag, An = gross area and net area of block unit, respectively;

)

2a, 2b = width of block inner core and block unit, respectively;

Eu, E4, E; = modulus of elasticity of block unit, grout, mortar joint, respectively;
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f'mp, ]ng = compressive strength of plain masonry and grouted masonry, respectively;
fur f;,‘ f; = compressive strength of block unit, grout (prism strength), mortar (cube
strength), respectively;
fi: = tensile strength of block unit;

ho = height of block unit;

my, mg = modular ratio of Eu/E,; and E'u/E'j, respectively;
p = contact pressure between grout and block shell;
1o = thickness of mortar joint;
a = release angle of block inner core;
€u, €g, €; = compressive strain in block unit, grout and mortar joint, 'respect,ively;
n = net area to gross area ratio of block unit An/Ag;
Vu, Vg, ¥; = Poisson’s ratio of block unit, grout and mortar, respectively;
Om, 0s = compressive stress in masonry (average) and in masonry shell, respectively;
Ou, 0g, 0; = compressive stress in block unit, grout and mortar joint, réspectively;
o4 = lateral tensile stress in block unit;

In general, the capacity of grouted masonry depends on many factors, most importantly:
* the strength of the materials 1, j’,'m f;, f’J

* the deformation properties of the materials Eu, Eg, E;, vy, vy, v;
x geometric properties such as the shape of the block units, the thickness of the mortar

joint, bond pattern, etc.

* workmanship, test method

To make the model practically useful, we neglect those effects which are not easy to
quantify, such as workmanship or test method. We will also try to avoid explicitly including the

deformation properties in the model, since they are difficult to measure. Further, we use 7, the
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net to gross cross-sectional area ratio and ¢, the inner core release angle to characterize the
geometry of a block unit. We will assume that the grout core is approximately square, and thus
the model may be generally useful for grouted hollow concrete masonry with various dimensions.

It may be useful in the following derivation to first find some simple approximate
relations between 77 and the dimensions of a masonry unit. By the definition and the assumption

stated, we can write

n=1- (%)2 | 8.1
or

a —_ —

b T 1+ a/b
When /b is expanded as 1— #/2 in view of Eq. 8.2, the above expression becomes

b—a . 27
7 ol 8.3

which gives good approximations even when 7 is as large as 0.6. Based on Eq. 8.3, it is easy to

obtain

b—a 4 21 8.4

Although the determination of the stress state in grouted masonry is actually a three

dimensional problem, which is further complicaté_d by the inelastic behaviour of the materials,
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= gz

~—— 25— -t

FIG. 8.5 A Grouted Masonry Prism with Squé,re Cross-Section

for the sake of simpliéity and practicality, we adopt a quasi-elastic approach. That is, we use "
the theory of elasticity aﬁd implicitly assume that thg deformation properties involved are taken »
as secant or effective values. Further,- we assume that stress and strain}in the materials are
uniform, or, in other words we treat the stress and strain in an average sense in each material.
For the prism shown in Fig. 8.5, the following relations can be written.
A)In Vertical'D‘irection

Equilibrium:
om = nos + (1—n)oy _ 8.5

If the shear force between the block shell and grout is neglected, we have
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0y = 0u =0,
Compatibility:
cg=%(y°_zeu+(};)g | 8.6
Stress—Strain Relation:
For grout we have
_ 09 — 2vugp 8.7

f_q -_ Eg

For the block shell, an expression for the vertical strain due to the contact pressure p is needed.

This can be obtained by Betti’s law. Referring to Fig. 8.5, we have
4(2a)hop 6(0'3) = Anasho Cu(P)
where 6(o;) is the lateral displacement due to the vertical stress, expressed as

S(or) = 2igee

and €u(p) is the vertical strain in the unit due to the lateral pressure p. Upon substitution and

rearranging, one finds

' 2pvu(1—7m
eu(p) = —‘,7(Eu—)

Thus the vertical stress—strain relation of the block shell is
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o =-20F 2”2‘:‘(1"’)/” 8.8

The stress—strain relation for the mortar joint is
L — _Ts . 8.9

B) In Lateral Direction

Equilibrium:

2ap = 2(b—a) oy,

or

ap . (4=3n)p
ut — b—a ~ 277 810

in which the relation given by Eq. 8.4 has been used.

Compatibility:-
(o7s=p)a _ (vuitoava)a
F, - Ey

where we assume that the lateral deformation of the block unit is the sum of the Poisson’s effect
and the stretch due to the lateral tensile stress in the block unit. If the lateral deformation due
to the tapered core is included, which may be modeled as the grout acting as a wedge being

driven into the block core, the compatibility condition can be rewritten as

o (L) (eg—e) + (”""gg_f”) = {Tutgere) 8.1
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The above seven equations can be used to determine the stress and strain state in a grouted
masonry prism when a vertical stress or _straih is imposed.
C) Failure Conditions
There are several possible ways for a grouted concrete masonry assembly to fail. They
include chiefly: a) Premature splitting of the block shell due to the incompatible material
properties of the grout and the block, which give rise to tensions.in the shell. b) If the assembly
survives this condition, failure may occur when the sum of the shell and grout resistances
reaches a maximum, at a deformation between their respective peak strains. ¢) The assembly
may fail when the grout reaches its full capacity; at this point the substantial volume increase
due to the internal. cracking of the grout causes the block shell to fail. Whichever the case, the

lower bound of the masonry strength should be always satisfied:

fre2 (1=n)f | | 8.12

which corresponds to the failure load being carried by the grout alone.

For normal range of 7, failure condition c) requires that the peak strain of the grout be
reached first. However this is unlikely to be the case, in view not only of the experiments by the
author and of those done in New Zealand., which have indicated that the concrete block units
were stiffer than grout, but also of the experimental observations by several other researchers
that the grout core was inf;act even after masonry specimens had failed (Drysdale and Hamid
1979; Hatzinikolas et al 1978).

Failure condition a}, of course, is governed by the block shell. However, to determine the
failure load for condition b), a knowledge of the deformation properties of the materials over
entire strain range is needed. Since this information is difficult to establish, as a practical
alternative, we may inquire which material, block shell or grout, is closer to its full capacity at

the point of failure of the assemblage. In the light of the study in Chapter II, one may tend to



139
believe that the block shell, which is formed by fine aggregate concrete, would be “less ductile”
than the grouting concrete in the post—peak range; thus the failure strain of masonry would be
closer fo the peak strain of the block shell, if the latter is assumed to be the stiffer component.
Or in other words, masonry is likely to fail immediately after the full capacity of the block shell
is reached, because the stress in the block shell will decrease drastically once its peak strain is
exceeded. Although it is difficult to justify this assumption directly by experimental observation,
it may be verified statistically, i.e. by correlating the masonry capacity with tbhe block shell
strength and with the grout strength. A multiple linear regression on the experimental data from
7 different sources (including the experiments conducted by the author) indicates that the
masonry capacity is much more closely correlated to the block unit strength. Thus the
assumption is supported by the statistical implications. Of course, this also strengthens the
argument that failure condition c) is unlikely to occur.

Therefore, whether grouted masonry fails by condition a) or b), it is reasonable to
assume the block shell will govern the failure state. We may only consider the solution for
failure condition a), since condition b) may be included as a particular case. If the Coulomb-

Navier failure criterion is assumed, one writes

Tyt

fur

Os

Fr

+ =1 8.13

Eq. 8.5 to Eq. 8.11 with Eq. 8.13 can be used to find the 8 unknowns; namely €, €4,
€5, Os, Ogy Om,y P and o,,. The capacity of the grouted masonry, in terms of the masonry
strength j’mg, is equal to om, since once Eq. 8.13 is included, the group of equations is actually
solved at the critical condition.

Upon substituting and neglecting higher order terms, we get
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.\ 1
oGt} o

frg = ( h") ! 8.14

4—3q to, o] fmp
L ey L) + (ot |

It is interesting to examine the physical interpretation of this solution. The numerator
re'presents the capacity of grouted masonry determined by considering only the vertical
compatibility of the deformation properties. It means that without the difference in lateral
properties, which will lead to failure condition b), the failure load of grouted masonry would be
composed of two parts. One is the plain masonry strength times the net area of the block unit.
The other is the product of the stress in the grout, which, due to the difference in stiffness,
reaches 1/m, times the stress in the block shell, with the grouted area. The factor m,1,/k, takes
account of the “softer” mortar joint, indicating that the latter tends to increase the stress in the
grout.

The denominator accounts for the cross-sectional compatibility. It can be seen that the
masonry strength j!m‘q is an increasing function of 7, indicating that the cross-sectional
incompatibility becomes less important as the thickness of the block shell increases. The big
square bracket contains some very small quantities. The term (v4—wvy), which is implicitly .
assumed to be greater than or equal to zero in the derivation, represents the incompatibility due
to the difference in Poisson’s effect of the two materials. The term m,a(t,/a) accounts for the
incompatibility caused by the tapering of the core. The term mgv4(to/ho) implies the effect on
the incompatibility of the softer mortar joint, which needs more detailed explanation.

Since the mortar is usually much soffer than the block units, as indicated by
experiment, the grout is actually strained more than the block unit in the vertical direction, due
to the presence of the joint. Thus even if the block unit and grout have the same value of
Poisson’s rat.io, the grout will expand more, laterally, than the block shell, causing additional
cross-sectional incompatibility. It is clear that the masonry strength fm ¢ 1s a decreasing function .

of these 3 terms appearing in the square bracket of the denominator.
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Obviously, the denominator would reduce to unity if there were no lateral compatibility
effect. In other words, the numerator predicts the ultimate failure load of failure condition b)
when the prism survives failure condition a). : e
To make the model practically useful, some simplifications are necessary. Since the term
mylo/ ho is usually small compared with 1, e.g., for standard 8 inch block units, io/ho is smaller
than 0.05 and m,, the secant modular ratio is aroﬁnd 3 according to the author’s experiments
(see Fig. 2.5 in Chapter II), we may neglect its variation by assuming (1+myto/h,) in the
numerator to be a constant slightly bigger than unity. By a similar argument, the term
7(3—2m,) in the denomingtor can be neglected since it is small compared with the term 4. The
variation of the term a?,/a may also be ignored since it is small compared with vg(to/ho); and
for the geometry of a standard 8 inch block these two terms give approximated 0.015. Although
it appears that the cross-sectional incompatibility would be mainly caused by the lateral
expansion due to Poisson’s effect on the grout, as believed by some researchers (Drysdale and
Hamid 1979), we may neglect the variation of the term (vy—wr4) by replacing it with a constant
t, say, not exceeding 0.1. Due to the difference in the stiffness between grout and block shell, the
block shell tends to be more stressed at failure. This view is also supported by the statistical
argument stated above that masonry capacity is governed more by the block shell. Thus the
effective v, will not increase as much as vy around the critical state due to internal cracking.
The last term frnp/fl:, the ratio of the block shell strength to block unit tensile strength, may be
assumed to be a constant { in the order of 10. Thus for the geometry of a standard 8 inch block,
Eq. 8.14 can be simplified to
(n+ a=mk ) f

fng = — 8.15
L+ ¢ (¢4 0.015my) 2227

Eq. 8.15 is based on fracture of the block shell, which may or may not lead to collapse

of the masonry aséemblage, as discussed earlier. Thus Eq. 8.15 predicts the load for failure
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condition a): fracture of block shell leads to final failure. However if the assembly survives this
condition, the ultimate failure load is given by the numerator of Eq. 8.15 by neglecting cross-
sectional incompatibility. Eq. 8.15 then corresponds to merely the cracking load of the block
shell.

From the experiments conducted by the author and by numerous other researchers, it
appears that either failure condition can occur. This poses the problem in practice as to which
solution should be used in predicting masonry capacity. This question, again, may only be
answered in a statistical sense. We may éxamine the available experimental data to see whether
one of the two failure conditions has a probability of occurrence high enough to dominate the
failure mode.

To correlate the available experimental data, expressions for j’mp, my; and m, are
needed. In view of the study in Chapter III, for normal joint thickness, the expression for f’mp

may be taken in the form as given by Eq. 4.28. i.e.

fup = erf + oof} | 8.16

Further, the modular ratios may be related to the strength values as

my = k \|ﬂ‘//g 8.17

and

my = k, «,f{,/f; 8.18

where ¢, ¢y, k; and k, are constants. The square root relation between the strength and the
modulus of elasticity is adopted by many building codes.
We proceed to give an estimate for the constants involved in these relations. We will do

this based on the 77 available data points from 7 different sources (Presents tests; Hamid and
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Drysdale 1978; Boult 1979; Drysdale and Hamid 1979; Thurston 1981; Priestley and Elder 1982,
1985; Wong and Drysdale 1983). These actually include many more than 77 specimens because
several of these data points were reported as average values. The data are summarized in Tables
8.3—8.9. The New Zealand results include j{, values based on prisms. These have been converted
to equivalent cube strength using the PHermite equation (Neville 1965).

The k values in Eq. 8.17 and Eq. 8.18 should make the equations yield the average
values of m, and m, when the f;, £, and ﬂ take their mean values. According to the data, the
ratios of the average unit strength to grout strength and to mortar strength are 1.04 and 1.5
respectively. The average value of m,, according to the experimental results by the author and
b)" the New Zealand researchers, may be taken as 1.32. The mean valge of m, may be taken to
be 3 as mentioned earlier. This leads to ¥, = 1.29 and k, = 2.54. Further ¢; and ¢, may be
awarded the values given by Eq. 4.28.

For failure condition a) Eq. 8.15 is used while for failure condition b) only the
numerator of the equation is applied. The results are also summarized in Table 8.3 —8.9.

It appears that predicted failure loads based on failure condition a) substantially
underestimate those obtained by experiments. The results based on condition b), however,
correlate well with the experimental data, although it appears that they overestimate strength in
the lower range. The correlation coefficient for the former is 0.894, while for the latter is 0.918.
These results are plotted in Figs. 8.6 and 8.7 as predictions versus experiments. It is clear that
the difference between the two methods is significant.

Thus, it may be concluded, based on the above study and on the available experimental
data from various sources that, under normal construction conditions, the strength of grouted
masonry is mainly governed by the vertical compatibility of the grout and block shell. Further,
since the bl;)ck shell is stiffer in the pre-peak range of strain, and less ductile in the post-peak
range than grout, the masonry will tend to fail when the full capacity of the block shell is

reached; thus the capacity of masonry is more closely correlated with block unit strength than



with grout strength.
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It should be noted that the above conclusion does not eliminate the possibility that the

failure may occur in the form of condition c), and, especially condition a). It only means that

failure condition b) has a predominant probability of governing.

n ﬁt Jd, Jdg fmg a b ¢
0.51 3.25 1.57 3.70 1.97 1.57 2.30 2.22
0.51 3.25 1.57 3.70 2.76 1.57 2.30 2.22
0.51 3.25 4.00 3.70 - 2.52 1.97 2.72 2.52
0.51 3.25 4.00 3.70 2.20 1.97 2.72 2.52
0.51 3.25 4.00 3.70 2.67 1.97 2.72 2.52
0.51 3.25 4.69 3.70 2.77 2.07 2.84 2.61
0.51 3.25 4.69 3.70 2.77 2.07 2.84 2.61
0.51 3.25 4.69 3.70 2.58 2.07 2.84 2.61
0.51 3.25 1.57 5.02 2.63 1.68 2.46 2.48
0.51 3.25 1.57 5.02 2.42 1.68 2.46 2.48
0.51 3.25 1.57 5.02 2.11 1.68 2.46 2.48
0.51 3.25 1.57 3.33 2.14 1.53 2.24 2.14
0.51 3.25 1.57 3.33 2.00 1.53 2.24 2.14
0.51 3.25 1.57 3.33 2.40 1.53 2.24 2.14

Table 8.3 Grouted Prisms, Tests by the Author

fmg — Experimental value of prism strength

a — Theoretical prediction of prism strength by failure condition a)
b — Theoretical prediction of prism strength by failure condition b)
¢ — Theoretical predictibn of prism strength by failure condition c)

( All in ksi, same for the following tables) |



145

v | A | /| /| Fw | = | 5 ] <
0.62 2.85 2.06 1.80 1.51 1.45 1.99 1.61
0.62 2.85 2.06 1.80 1.55 1.45 1.99 1.61
0.62 2.85 2.06 1.80 2.01 1.45 1.99 1.61
0.62 2.85 2.06 1.80 1.45 1.45 1.99 1.61
0.62 2.85 2.06 1.80 1.67 1.45 1.99 1.61
0.62 2.85 2.63 2.07 1.77 1.57 2.12 1.75
0.62 2.85 2.63 2.07 1.78 1.57 2.12 1.75
0.62 2.85 2.63 2.07 1.67 1.57 2.12 1.75
0.62 2.85 2.63 2.07 1.78 1.57 2.12 1.75
0.62 2.85 0.82 2.07 1.49 1.25 1.82 1.48
0.62 2.85 0.82 2.07 1.59 1.25 1.82 1.48
0.62 2.85 0.82 2.07 1.43 1.25 1.82 1.48
0.62 2.85 0.82 2.07 1.51 1.25 1.82 1.48
0.62 2.85 2.29 2.52 1.83 1.56 2.13 1.79
0.62 2.85 2.29 2.52 1.86 1.56 2.13 1.79
0.62 2.85 2.29 2.52 2.06 1.56 2.13 1.79
0.62 2.85 2.29 2.52 1.75 1.56 2.13 1.79
0.62 2.85 2.29 2.52 1.78 1.56 2.13 1.79
0.62 2.85 1.95 3.65 2.12 1.60 2.20 1.94
0.62 2.85 1.95 3.65 1.96 1.60 2.20 1.94
0.62 2.85 1.95 3.65 1.78 1.60 2.20 1.94
0.62 2.85 1.95 3.65 1.90 1.60 2.20 1.94
0.62 2.85 1.95 2.05 1.77 1.46 2.01 1.65
0.62 2.85 1.95 2.05 1.78 1.46 2.01 1.65
0.62 2.85 1.95 2.05 1.67 1.46 2.01. 1.65
0.62 2.85 1.95 2.05 1.78 1.46 2.01 1.65
0.62 2.85 1.97 5.52 1.99 1.74 2.38 2.20
0.62 2.85 1.97 5.52 2.30 1.74 2.38 2.20
0.62 2.85 1.97 5.52 2.28 1.74 2.38 2.20
0.62 2.85 1.97 5.52 2.23 1.74 2.38 2.20

Table 8.4 Grouted Prisms, Tests by Hamid and Drysdale




0 fu f; £y fmg a b c
0.62 2.85 2.50 2.21 1.64 1.57 2.12 1.76
0.62 2.85 0.83 2.53 1.51 1.29 1.88 1.58
0.62 2.8 2.06 2.21 1.64 1.50 2.05 1.70
0.62 2.85 2.64 2.53 1.75 1.62 2.19 1.85
0.62 2.85 2.29 3.09 1.86 1.62 2.20 1.90
0.62 2.85 1.96 4.48 1.94 1.67 2.29 2.06
0.62 2.85 1.96 2.52 1.75 1.51 2.07 1.74
0.62 2.85 1.97 6.85 2.20 1.81 2.49 2.37
0.59 4.67 2.06 2.87 2.45 2.10 2.99 2.73
0.59 4.67 2.06 2.87 2.38 2.10 2.99 2.73
0.70 3.19 2.06 3.19 1.91 1.79 2.39 1.99
0.69 3.08 2.06 3.19 2.05 1.74 2.32 1.94
0.63 2.92 2.06 2.87 1.76 1.59 2.17 1.85
0.73 2.90 2.06 3.19 2.13 1.711 2.24 1.81
0.61 2.27 2.06 3.10 1.34 1.37 1.86 1.56
0.62 2.85 1.86 2.39 1.73 1.48 2.04 1.70
0.62 2.85 1.86 2.39 1.93 1.48 2.04 1.70

Table 8.5 Grouted Prisms, Tests by Dryédale Hamid

7. ﬁt f{, Jdg Jdmy , a b ¢
0.51 2.78 2.72 4.93 2.16 1.75 2.45 2.35
0.51 2.78 2.72 4.93 2.10 1.75 2.45 2.35

Table 8.6 Grouted Prisms, Tests by Wong and Drysciale
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0.55 5.54 2.24 4.03 3.91 2.43 3.55 3.47
0.55 5.54 2.24 4.03 377 2.43 3.55 3.47
0.55 5.54 2.24 4.03 3.93 2.43 3.55 3.47
0.61 ‘5.54 1.70 5.30 3.90 2.54 3.70 3.59
Table 8.7 Grouted Prisms, Tests by Priestley and Elder

n fa 5 fo Jmag a b c
0.55 5.80 2.20 2.25 2.61 2.28 3.34 3.07.
0.55 5.80 2.20 2.25 2.77 2.28 3.34 3.07
0.55 5.80 2.20 2.25 2.99 2.28 3.34 3.07
0.48 5.28 2.20 2.25 2.61 1.99 2.98 2.84
0.48 5.28 2.20 2.25 2.58 1.99 2.98 2.84
0.48 5.28 2.20 2.25 2.99 1.99 2.98 .2.84

Table 8.8 Grouted Prisms, Tests by Boult

7 JiA . ﬂ A Png a b c
0.52 2.41 2.79 3.75 2.12 1.54 2.13 1.93
0.52 2.41 2.79 3.75 2.16 1.54 2.13 1.93
0.61 2.83 2.79 3.75 1.68 1.74 -2.35 2.07
0.54 4.12 2.79 3.75 2.70 2.08 2.93 2.80

Table 8.9 Grouted Prisms, Tests by Thurston
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Therefore, it is not surprising to see that the prediction based on condition b) appears to
overestimate the masonry capacity in the lower strength range, since if masonry fails in
condition a), i.e. as the result of the premature failure of block shell, it will lead to é lower
failure load. -

It is clear that although we could use the numerator of Eq. 8.15 directly to estimate the
grouted masonry capacity based on unit strength, grout strength, mortar strength and area
ratio, some discrepancy should be expected since occasionally failure conditions other than
condition b) may occur. Moreover, it is not desirable in practice to overestimate the masonry
capacity. Therefore the equation may need empirical modification.

One modification may i)e to adjust the coefficient in the equation to best fit the

available experimental data. Substituting Eqs. 8.16-8.18 and neglecting small quantities, the

numerator of Eq. 8.15 may be expanded in the form of

fmg = Anfa + BA—n){fosfs + Cnf, + D (in ksi) 8.19

A multiple regression analysis of the data gives:

A =10.53
B=10.94
C=024
D =-0.45

Eq. 8.19 together with the lower bound given by Eq. 8.12 may be used to give an estimate for
the ultimate capacity of grouted masonry. This estimate is also listed in Table 8.3—8.9 and
plotted in Fig. 8.8 versus the data base. The relation has a correlation coefficient of 0.934, which

is significant. However, the data used to evaluate parameters certainly do not all refer to failure
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condition b), and the correlation is affected by additional uncertainties such as workmanship
and test method; and this is probably why a number of points fall outside the 99 percent
confidence limit (see Fig. 8.8).

The model equation clearly reflects the fact that masonry capacity is not Qery. sensitive
.to the grout strength, as observed by Drysdale and Hamid (1979) and by the author (see Tables
8.3, 8.5). The masonry strength is better correlated with the square root of the grout strength,
based on the deformation compatibility. Indeed, linear fegressjon on the basis of Eq. 8.19 in
which m is replaced by j’g, a form often seen in literature, indicates that it leads not only‘ to a
lower correlation coefficient of 0.907 but also to a much higher D value, which is not desirable.

The above analysis suggests that Eq. 8.15 may be used to estimate the cracking load of
concrete grouted masonry. Unfortunately, no experimental data are available in terms of
cracking loads except those recorded by the author. For these very limited data, the comparison
is listed in Table 8.10 and plotted in Fig. 8.9, in which Eq. 4.16 is scaled down by a factor of
0.92. The cracking loads for the specimens with varying joint thickness are also included. Except
for two data poin;;s (S8) the agreement is reasonable, considering the cracking load is a rather
random event. The correlation coefficient for this case is 0.618, while prediction of failure loads
it is 0.563, indicating that the load estimated by Eq. 8.15 is indeed more closely correlated with
the cracking load than with the ultimate load.

One practical implication of the above study is that one should consider the cracking
load estimated by Eq. 8.15 as the lower limit load in design, since block shell cracking is, in any
case, not a desired event under normal service conditions. This usually can be achieved, since, in
most small masonry buildings, the axial load levels are low and therefore the actual value of
allowable stress is not critical. (It is noted that the cracking load estimated by Eq. 8.15 is
around 70% of the ultimate load estimated by Eq. 8.19 or by the numerator of Eq. 8.15.)
However, the ultimate load estimated by the model can be used as the final limit load under

severe service conditions. For example, under earthquake loading, the axial capacity of masonry
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can become critical not only because of the ductility requirement but also because of the inertia
force itself. One may then take advantage of the higher ultimate strength by allowing a higher
allowable .stress based on Eq. 8.19. This is economical and certainly agrees with the risk
philosophy commonly adopted in the earthquake engineering design, that some damage, even
structural damage, is acceptable in the major event, but not collapse.

Finally, of course, the validity of Eq. 8.19 as a predictor of cracking loads needs further

investigation. Many more experimental data are required in this respect.

8.4 Summary
In this chapter, the axial behaviour of grouted concrete masonry with full bedding has
been investigated. Three possible failure conditions have been studied. A failure model based on

internal deformation compatibilities has been proposed.

SPECIMEN | ult. load(kips) | crk. load(kips) | fing (ksi) | f..(ksi) | Prediction (ksi)
58-1 303.0 120.0° 2.52 1.00 1.90
S58-2 264.0 130.0 2.20 1.08 1.90
N13-3 237.0 155.0 1.97 1.29 1.56
N13-4 332.0 160.0 2.76 1.33 1.56
M9-1 333.0 250.0 2.77 2.08 1.99
M9-2 333.0 200.0 2.77 1.66 1.99
N12-3 291.0 220.0 2.42 1.83 1.68
N12-4 254.0 180.0 2.11 1.50 1.68
N14-3 241.0 187.0 2.00 1.55 1.52
N14-4 289.0 190.0 2.40 1.58 1.52
N10-3 ©300.0 180.0 2.49 1.50 1.46
N10-4 273.0 200.0 2.27 1.66 1.46
P11-1 302.0 190.0 2.51 1.58 1.70
P11-2 300.0 208.0 2.49 1.73 1.70

Table 8.10 Model Prediction versus Cracking Loads, Tests by the Author
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CHAPTER IX

GROUTED MASONRY WITH FACE-SHELL BEDDING

It is clear by the analysis in Chapter V, that under uniéxial compression face-shell
bedded masonry will fail prematurely by a deep beam mechanism at a low load.

When face-shell bedded masonry is grouted, the deep beam bending mechanism will still
be activated as the vertical force will be shared by the block shell and grout. This was shown by
the experiments conducted by the author (see Fig. 9.1).. The webs of the face-shell bedded and
grouted prisms cracked vertically at a very low load owing to this mechanism. The vertical
strain in the block shell drops much faster than that of the fully bedded counterparts, implying
the hinging mechanism of the block shell studied in Chapter V.

Howevey, the author’s tests indicate that the cracking of the block shell due to the beam
bending mechanism will not lead to ultimate failure of the masonry if the residual capacity of

the grout is greater than the cracking load. Thus we may use

fog = (1 =n)f 9.1

as a lower bound or as a cc;nservative estimate of the grouted masonry compressive strength.
For the'author’s tests, Eq. 9.1 underestimates the prism capacity by about 10%, as
shown in Table 9.1, indicating a ver); low grouting efficiency. At failure, the load was only
effectively sustained by the grout, as implied by the deformation measurement (see Fig. 9.1).
Eq. 9.1 underestimates the failure loads of the prisms tested by Drysdale and Hamid
(1983) by a larger margin, indicating a higher grouting efficiency in their specimens. However, it
seems reasonable in practical design to neglect the capacity of the block shell since this may not

be a reliable quantity in view of the beam bending mechanism.



SPECIMEN n | fo(ksi) | P (kips) | fing (ksi) | (1-0)f}
N17 0.51 3.70 252 2.09 1.81

A)| N—=GROUT 0.51 3.70 240 2.00 1.81
N—-MORTAR 0.51 3.70 258 2.14 1.81
NB GN 0.56 3.06 123 2.09 1.36

NB GW 0.56 1.99 121 2.05 0.88

NB GS 0.56 5.94 131 2.22 2.64

B)| WB GN 0.56 3.06 93.5 1.59 1.36
SB GN 0.56 3.06 128 2.18 1.36
QB GN 0.75 3.06 124 2.10 0.76
6B GN. 0.51 3.06 86.6 1.99 1.50
10"B GN 0.54 3.06 123 1.65 1.41

Table 9.1 Grouted Masonry with Face-Shell Bedding

A) — Tests by the author

B) — Tests by Drysdale and Hamid (1983)

154

The problem that remains unanswered is whether the cracking load should be used to

govern the design. If so, more experimental work is needed and more attention should be

directed to this value, since there have so far been few experiments monitoring premature

cracking.

According to the author’s tests, face-shell bedded, grouted masonry has a very low

grouting efficiency, which may be even lower in terms of the cracking loads. This is because the

two constituents do not work together properly. It appears that in the early stages of loading,

the block unit takes a big share of the load as implied by the vertical strain measurements (cf.

Fig. 9.1 and Fig. 5.3, locations 5 and 6). However, after the block shell is crac_ked, almost the

whole load is passed to the grout. This is not desirable from a structural point of view.

It is clear that for grouted masonry full bedding is recommended, although, as indicated
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above, in practice that effective full bedding is sometimes difficult to achieve because of the web
alignment. It is also obvious that the deformation properties of the two materials play an
important role. Low grouting efficiency is inevitable unless there is a fundamental improvement

in material design such that the deformation properties of grout and unit are more compatible.
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CHAPTER X

GROUTED AND REINFORCED MASONRY UNDER ECCENTRIC LOADING

10.1 General Remarks

Probably the biggest advantage of concrete masonry over traditional brickwork is that
the concrete block units are hollow and can thus be vertically reinforced to improve the bending
capacity. Bending capacity is essential for walls designed to sustain eccentric load or vertical
force combined with laterally distributed pressure. This is obvious since theoretically the
capacity of plain brickwork will be drastically reduced if the load falls outside the kern, and the
wall can not support any load when the eccentricity reaches half the yvall depth. With
reinforcement, the improved bending capacity enables modern masonry structures to become
taller and thinner, while preserving the traditional beauty of these structures.

Therefore, eccentrically loaded reinforced concrete masonry, which must be grouted, is of
interest. In this chapter, experimental observations are first reviewed and the findings in thek

preceding chapters are placed in this context. Some useful relations will then be developed.

10.2 Experimental Observations

To study the basic behaviour of reinforced concrete masonry under compression and
bending, 12 grouted prisms (without reinforcement) were tested under eccentric loading. The
failure loads of these specimens are listed in Table 10.1 and the deformation measurements are
plotted in Figs. 10.1 and 10.2. The failure process was recorded by a video camera for better
observation.

The experiments indicate that under eccentric load, the joint condition and grouting
cpndition do not have a significant influence on the masonry capacity (compare also the failure
loads of plain ungrouted concrete masonry under eccentric load in Table 6.1). This is expected

since the force shared by the grout diminishes with increasing eccentricity. In other words, the
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SPECIMEN | e/t 1 2 3 4 AVG COoV
N26 (NJ,NG)| 1/6 178.0 196.0 164.0 200.0 184.5 7.8%
M26 (MJ,NG)| 1/3 106.0 92.0 82.0 128.5 102.1 17.1%
S25 (SJ,NG) | 1/3 108.0 93.0 101.0 127.0 107.3 11.7%

NG — Type N Grout; NJ — Type N Mortar Joint, etc.

Table 10.1 Failure Loads of Grouted Prisms under Eccentric Load (kips)

capacity of eccentrically loaded masonry is even more strongly governed by the capacity of the
-block shell.

Thel: failure modes again were characterized by shear, i.e by spalling mixed with crus'hing
of the block shell on the loaded side, as shown in Fig. 2.16. This phenomenon was more obvious
for the specimens under larger eccentricity (e = t/3).

The grout did not prevent the debonding of the mortar joints on the unloaded side, as
indicated by the substantial deformation measured across the joint (LVDT #6) for the case of
e=1/3, although it appears that the vertical continuity was improved by the grouting as the
opening of the joints was smaller compared with their ungrouted counterparts. The face-shell on
the unloaded side did not transfer load essentially for the whole loading range, as shown by the
strain measured at location 5, indicating that debonding took place as soon as the specimen was
loaded.

Before final failure, no premature vertical cracks were observed during the tests (see also
the deformation measurements at locations 3 and 4 as shown in Figs. 10.1 and 10.2), which is in
sharp contrast to what was observed for the prisms under uniaxial loading, suggesting that the
cross-sectional incompatibility is not a problem for grouted masonry under eccentric loading.

This is another supporting indication that the contribution of the grout to the capacity is
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relatively minor when the masonry is under eccentric loading.

These observations are essentially the same as those for plain concrete masonry. This
encourages us to approach the problem as we did for plain concrete masonry under eccentric
loading. That is, failure is assumed to be governed by the block shell and capacity estimation is
based on the unit strength rather than on the uniaxial prism strength. The force shared by the

grout at failure is estimated by considering the vertical deformation compatibility.

10.3 Theoretical Considerations

The capacity of reinforced concrete masonry under eccentric load will be expressed here
in terms of the traditional force-moment curve. Such a relationship depends not only on the
material properties of the masonry constituents, including block unit, grout, reinforcing steel and
mortar, but also on its geometry, which is further complicated by various bedding and grouting
combinations. |

To make the situation simpler, attempts will- be made to quantify the material
properties, the geometry, the bedding and grouting conditions by some parameters, expressed
mainly in terms of the modulus and dimensional ratios. The usefulness of such parameters will
be illustrated.

For example, if linear-elastic behaviour is assumed, the forces shared by the block shell,
grout, and the reinf(;rcing steel can be calculated based on deformation modulus ratios.

A linear stress-strain relationship may be a good approximation for concrete masonry as
indicated by various experiments, including those by the author, which show that nonlinearity
before failure appears to be rather limited. The analyses in the preceding chapters based on this
assumption do yield reasonable estimations for the masonry capacity.

Further, if linear strain along the cross-section (plane sections remaining plane) is
assumed, .the internal force P and moment M can be readily expressed in terms of the outer fibre

stresses ¢4, 0, or the crack depth ¢ (depending whether the cross-section is cracked or not), as
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shown in Fig. 10.3.

Note, in fhe following expressions, the contribution of the vertical reinforcement, which
plays an important role when the cross-section is cracked, is included. This has been neglected in
the analysis for grouted masonry under uniaxial compression, since the contribution is unreliable
unless the steel is tied against buckling. Moreover, for normal steel ratios, the contribution in
sustaining compressive force is small compared to the concrete materials, even it is included.
This is especially true for the case of eccentric loading. However, in the following expressions,
the force shared by the reinforcement will be included for continuity. The reinforcing steel is
assumed to be placed in the middle of the cross-section as is the common practice.

When the eccentricity e is small, the cross-section remains uncracked, so the force and

the moment can be expressed as (see Fig. 10.3)

P=01b1(1+g—f)(1—)\% +np) 10.1

M‘:‘”sz(1—‘;—f)(1—x(%)3> 10.2

where b is the half thickness (b=1/2) of the masonry, a is the half width of the inner core of
block unit; and [ is the length of the wall. o; and o,, as have been mentioned, denote the
maximum and minimum extreme fiber stresses (in compression) respectively. p represents the
steel ratio with respect to t.he gross cross-sectional area, and n stands for the modular ratio; i.e.
the elastic modulus of steel to that of the masonry block shell.

The parameter X is introduced here to characterize the grouting, bedding‘conditions and
cross-sectional geometry in the transverse direction:

w

- 1 w _ 1%
A= 1 Y — 10.3
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where w and w, are the sum of the mortared web dimension and grout dimension along the wall -
length, r&spéctivély (see Fig. 10.4). m, is the modular ratio: the elastic modulus of the block

shell to that of the grout, approximated as:

my

1 + my

Mg = 10.4

1o
ho

Recall that my aﬁd m, are the modular ratios of unit to grout, and unit to mortar joint,
respectively. ko is the height of the xﬁasonry unit and 1, is the thickness of the mortar joint,
Thus whether the m‘asdnry is fully bedded or not, and whether it is plain or fully or
partially groﬁted, can be expressed through the parameter A. For example, A = 0 corresponds to
the case of a solid se;:tion; wg =0, A= ('1 — w/l) stands for the case of ungrouted masonry;

similarly, w = 0, A = (1 — wy/myl) is for the face-shell bedded masonry; A = 1, when w = w,

7, » ukn
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= 0, of course, represents the case of the face-shell bedded, ungrouted masonry. By this means,
all the combinations can be included and the relations derived here are generally useful; they
havé, incidentally, been applied in Chapter VI for plain concrete masonry.

Eq.10.1 and Eq.10.2 are obtained based on the principle of superposition. Due to the
difference in deformation modulus of the Iﬁasonry block shell, grout, and reinforcing steel, the
stress distribution along the cross-section must be discontinuous at the boundaries of these
materials as depicted in Fig. 10.5(a). This stress distribution, in an average sense along the wall
length, can be decomposed into the stress distributions as shown in Fig. 10.5(b), (¢) and (d),
where distribution (b) corresponds to a solid section and distribution (c) represents the difference
in stress distributions between é solid section and a grouted section. The poiﬁt force depicted in
Fig. 10.5(d), of course, stands for the contribution of the reinforcing steel. Clearly, distribution
(c) is weighted by parameter A and distribution (d) by np. These paramefers are combined with
the cross-section factor a/b in Eq. 10.1 and Eq. 10.2. °

The same principle is used in the derivation of the following equations. If the tensile
resistance of the cross-section is neglected, the cross-section will crack (by observation, cracks
always occur atb the mortar joints, see Fig. 10.1 and Fig. 10.2) when o¢,/0,; < 0 (positive for

compression). It can be shown that for 0 < ¢ < b — a
1 —¢/b '
— - N o _ A ,
P—albl<(1 2b) 2(Ab np)2_c/b> 10.5
— "'lbzl 2 1 LZ 1 Ls 2 a\?
M’(z-c/b){<T_T(b)+T(b) 5 A(4) 10.6

where ¢ denotes the crack length (see Fig. 10.3).

Similarly, for § — e < c< b+ a

c (1 + a/b — ¢/b)? 1—c/b
P:albl((l—ﬂ)—/\ D +2np2__c/b> 10.7
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w=2r (3 -+ + 6
S (FHE -0tV -1))
Finally, for b + a < ¢ < 2b
P:albl((l—;—b)+2np;:—z:> 10.9

_ o, bl c ()
M= T (2+T (b) 10.10

Again, if the masonry unit strength is used to define the critical state, as for plain
concrete masonry under eccentric loading, we readily obtain the short wall capacity curve by
letting the extreme fibre stress o; be equal to fu, the unit compressive strength. That is, the
P—M curve can be developed by varying o,/¢; from unity to zero, when o, > 0; and by
stepping ¢ from 0 to 2b, when the cross-section has cracked.

Note tha; in the above expressions, the reinforcing steel is implicitly assumed not to
reach its yield strength. By experimental observations, we know that the compressive failure
strain for concrete masonry is usually small (less than 0.002), so that this assumption may be
good as long as the eccenmtricity e is not too small. For concentric loads, Eq. 10.1 may
overestimate the failure load, because the steel could yield. However, this part of the capacity
curve is not of interest here since the concentric capacity is treated separately, as in Chapter VII
and VIII. Moreover, as mentioned earlier, the contribution to the compressive capacity of the
reinforcing éteel is usually small compared to that of the surrounding cross-section.

However, if the crack extends beyond the half depth of the wall, the reinforcing steel

may yield in tension. This may happen when the crack depth at the balanced load
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g =|2—-— —— |b 10.11

is less than that corresponding to the pure moment capacity (the ¢ which makes Eq. 10.7 or Eq.
10.9 vanish); fy here is the yield strength of the steel. Although yielding of the steel is not
desirable and is not allowed in the current design code, for analysis, we may replace the term

2np(1—¢/b)/(2—¢/b) in Eq. 10.7 or Eq. 10.9 by 2pf,/a; to include this situation.

10.4 Comparison of Theory with Experiments

In summary, the capacity curve for concrete masonry is determined by the following
parameters: fy , fy, my, my, ﬁp, a, b, |, w, wg and ¢,/h,, which can all be measured. However,
for practical reasons, the modulus ratios m, and m, may be related to the corresponding
strength ratios. In the following comparison, the same square root correlation is used as in
Chapter VIL

The P— M curves generated for the author’s specimens and those tested by Drysdale and
Hamid (1983) are plotted in Fig. 10.6 to Fig 10.15 with the experimental data. The plot is
nondimensionalized by dividing vertical load by P,=/,1l, the nominal axial capacity; and
moments by M,=P,t/6, the moment capacity when P, is a;pplied at the kern eccentricity of a
solid section. |

For most cases, the agreement is reasonably good. For the experiments by Drysdale and
Hamid, the curves appear to underestimate the bending capacity of the specimens tested at the
biggest eccentricity consistently, although by a small amount. This is probably caused by the
assumption that the cross-section does not resist any tensile force, which is closer to reality for
plain masonry than for grouted masonry.

No efforts are made here to compare the results numerically, since a number of the data
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points are obtained at large eccentricity when the loading path M=eP is almost parallel to the
lower boundaries of the capacity curves. In this situation small experimental errors can lead to
large numerical variations in load or moment.

The model based on linear strain and stress appears to give reasonable predictions. The
comparison again supports the assumption that the capaéity of eccentrically loaded masonry is
more closely correlated with the unit strength than with the concentric capacity. Thus in
practical design, it may be again recommended that the concentric capacity and fhe eccentric
capacity be treated separately, as in the case of plain masonry. The expressions developed here
provide convenient ways to estimate the eccentric capacity of concrete ma.sénry with various

grouting and bedding conditions.
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CHAPTER XI

SLENDERNESS OF CONCRETE MASONRY

11.1 Introduction

Modern masonry structures are becoming taller, not only in terms of the elevation of the
building, but also in terms of storey heights. Besides advances in engineering knowledge, changes
in the masonry constituents .have contributed to this development. Structural behaviour is
greatly improved by high strength concrete units with steel reinforcement.

Tall, slender concrete masonry can be seen in many places, such as apartment highrises,
department stores, warehouses, supermarkets, gyrhnqsiums and auditoriums. . The benefits of
building taller and more slender masonry are obvious; besides space savings, material and
construction costs are reduced. As the wall becomes lighter, smaller footings'are required and
lower seismic forces are induced. These are important reasons why modern masonry structures
find a place in today’s competitive building market.

However, the development of tall, slender rnaéonry is still largely hampered by a limited
understanding of the mechanical behaviour, and probably by an historic prejudice that masonry
is not sound when it is tall. This is r(?ﬂected in the stringent slenderness requirements in the
current maéom‘y design code (CAN3-S304-M84, 1984).

In the las£ two decades, reinforced slender walls have been studied extensively. Some
experiments have shown excellent flexural performance; for example, the teéts conducted in the
early 80’s by ACI Southern California Chapter (Athey 1982), which lead té' some limited
relaxations of the slenderness requirements in building codes. However, since full scale wall tests
are very expensive and time consuming, it is very difficult to observé the Behaviour under
various load combinations. The analysis of slenderness effects have so far been lérgely limited to

the traditional approach, i.e. the moment magnifier method has been applied and thus an
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effective rigidity of the member has had to be assumed. In this chapter, a more rational analysis
will be présented in the context of these experimental observations, and of the findings ixl the
preceding chapters, which have been focused .on'. the. short wall or column capacity. This will

. follow a brief review of background information.

11.2 Background Information Review

The slenderness effects discussed here refer to masonry under eccentric load. Walls under
concentric loading are not of practical concern since a minimum eccentricity has always to be
assumed (0.1% or 25 mm, specified by the current design code (CAN3-S304-M84, 1984)) to take
account of member imperfections and alignment error.

When a slender member carries an e?centric load, it is inlportant; to bear in mind that it
may suffer loss of capacity either due tl) material failure or by instability. This particular point
has been clearly explained by Nathan (1977). Fig. 11.1 shows the inte‘raction curve for a column
subject to a compressive load with equal end eccentricities. The line O—A deﬁnes. the
relationship between load and end moment. However, due to the slenderness, the midheight
moment is magnified by the member deflection, and.the corresponding load-moment path is
defined by O—B. Material failure occurres at point B, when the end conditions are as indicated
at point C. Theoretically, if the moment —curvature ralationship of the begm column remains
linear, material failure always governs the behaviour, since the midéparl deflection will be
unbounded when the Euler load is approached; The moment magnifier method perfectly predicts
this failure mode. When the member develops some nonlinearity in its moment—curvature
relationship, the method is still a valid approximation provided an appropriate effective cross-
sectional rigidity is used. However, when the «cross-section has developed substantial
nonlinearity, usually at greater eccentricities, the midspan moment increases with deflection to a
point such'as D in Fig. 11.1, and the member becomes unstable in‘ the sense that equlibrium

cannot be maintained even though the material of the cross-section is still sound.
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The member will fail at this point, corresponding to end condition E, unless the load can be
shed by other means, to lead to material failure at point F. The moment magnifier procedure, in
which the design moment is compared with the short column moment, no longer applies
rigorously to this situation. The procedure adopted in the current code (CAN3-S304-M84, 1984)
is, at best, an artificial empiri(.:al device for the member governed by instability.

It is clear that for the moment magnifier method (albeit in an artificial way) to be
applied succesfully to the design problem, the key issue is how to estimate the nonlinear
development of the cross-section. As in a concrete column, the nonlinear development of a
masonry member is due to material nonlinearity as well as to the cracking of the cross-section.
To estimate these effects accurately is difficult since they are coupled with the magnitude as well
as the eccentricity of the load. Therefore it is not surprising that the current design process is
subject to many limitations, since these effects cannot be included in a single assumed “effective
cross-sectional rigidity”. Further, after the cross-section has cracked, the rigidity is a variable
along the member height rather than a single constant represented by the “effective rigidity”;
the physical picture of the simplification is not clear.

To include all the nonlinear effects, a rational analysis with some numerical procedures
is often necessary. For analysis of concrete beam columns, Nathan (1985) has developed a
computer program based on some well established principles. By numerical integration, it first
finds force-moment-curvature relationships for any cross-sectional geometry, and for materials
with any constitutive law. An iteration scheme is then used to give the column deflection curve
which matches to any boundary conditions. It is of course very gener»al and useful, and may be
applicable to concrete masonry with a few modifications. On the other hand, Suwalski and
Drysdale (1986) have used a finite element model to directly analyze the slenderness influence of
the capacity of concrete masonry.

These approaches are useful in the sense that they may include all the factors which

affect the behaviour. However, at the same time, they require more input parameters, which, in
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design practice, often must be assumed rather than measured. It appears that with these
approaches, the walls must be studied individually, and it is difficult to perform a parametric
study which may yield some simplified relations governed by some key factors.

In the following analysis, some assumptions will be made based on the observed
characteristics of concrete masonry. With these assumptions, some analytical relations will be
developed to explicitly reveal some key factors representing the masonry slenderness effect. This
will be shown to lead to a relatively simple but yet rational approach to the problem. This
approach will be shown to be easily adapted to design analysis. The usefulness and limitations of

this approach will then be discussed.

11.3 Masonry Characteristics and Some Assumptions

Compared with concrete columns, concrete masonry is more prone to crack when the
cross-section is subjected to tension because of the material discontinuity at the mortar joint.
This is clearly evident from the deformation measurements across the joints. (see Figs. 10.1,
10.2, al;o see Figs. 6.1 and 6.2 for plain masonry). Similar observations were also reported by
Fattal et al (1976) ana by Hatzinikolas et al (1978). Thus for all practical purposes this tensile
bond can be assumed to be zero. And since the bed joints are evenly spaced, it is reasonable to
treat the problem in an average sense, which is necessary to lead to a continuous formulation
along the member height.

Another sighificant observation, mentioned many times earlier, is that material
nonlinearity ié rather limited up to the failure stress, and the linear stress-strain material
relation is a valid approximation (also see Yokel and Dikkers 1971, Hatzinikolas et al 1978,
Warwaruk et al 1986). The linear material and the zero tensile bond assumptions are equivalent
to supposing that the nonlinearity in the moment—curvature relationship of a concrete masonry
member is mainly due to the cracking of the cross-section. Indeed, the cross-sectional rigidity,

which is proportional to the third power of the section depth, will decrease drastically as the
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depth is reduced by crack extension.

The third assumption is that of the plane section remaining plane, corresponding to a
linear strain distribution across the section. This is a commonly accepted assumption, however
rigorously speaking, it implies, in the context of the first assumption, an infinitesimal cracking
spacing when the side of a cross-section is subject to tension. Since the tension cracks occur only'
at the mortar joints, the materials between two cracked joints must transfer some tension force
and thus alter the plane sections. Therefore the linear strain distribution may be a good
approximation only when the crack depth is not big compared to the unit height.

With these main assumptions, it is possible to establish relatively compact relationships
governing the mechanical behaviour of a masonry member under lvarious loading conditions, and
thus it is easier to perform some parametric studiés on slenderness effects. The equations
governing the cross-sectional behaviour derived in the preceding chapter are still valid and will

be quoted without further comments.

11.4 Differential Equations Governing Concrete Masonry with Cracked Section

Equal end eccentricities will first be investigated, and the approach will then be
extended to more general loading conditions. Different differential equations are used to describe
the behaviour, depending on whether the cross-section has cracked and how deep the crack
extends.

Fig. 11.2 depicts the most general case: a concrete masonry member under eccentric load
with uncracked sections at the two ends and, due to deflection, a cracked section in the middle
range. Note, ¢ represents the crack length or cracked sectionél depth. M, F, and C denote the
cross-section at midspan, the cross-section at which the crack extends to the flange ( face-shell)
depth and the cross-section at which the crack begins to extend, respectively. The variables
subscripted with these letters (in lower case) stand for the corresponding values at these cross-

sections.
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By symmetry, we need only study the upper half of the masox;ry wall. For the end

portion of the wall, cracking does not také place. Referring to the selected coordinates in which

the z axis coincides with the thrust line and y lies through the symmetric section, we have, for
the curve defining the compression face

2
E[‘;T-'Z/ — P(b—7) =0 he/2 < z < h/2 11.1

with boundary conditions:
y(h/2) = b — e ' \ 112
at the end; and

y(he/2) = b — ec ' 4 - 11.3
with

Z_z(%) = v B 11.4

at the C—cross-section; where e is the virtual loading eccentricity and . is the rotation at this
cross-section. Note, for thisv loading condition, the éﬂd eccentricity e, is smaller than the
cracking eccentricity e..

When Eq. 11.1 is integrated and matched to the boundary conditions (see appendix), we

obtain

,IE%-L_—;-C—L}}I =sin e . — sin"l— (%o 11.5
er ,e%+%gp2 e + L£L 2
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where P., is the Euler load corresponding to the gross section:

7"2EIy _ x*put
B2 12R°

Pcr = 11.6

and £ is the ratio of the moment of interia of the net cross-section to that of the gross-section
I _q_ (e}
E¢=g-=1 A(b) 11.7

in which A and a/b are defined as in the preceding chapter. For a given cross-section, e. can be

written as

. )\(%)3 b 11.9
¢ 3 (1 — A% + np)

in which M. and P. are expressed through Eqgs. 10.1 and 10.2 with o, being set equal to zero by
neglecting the tensile resistance of the cross-section.

Eq. 11.5 gives the relation between load P and two unknowns, namely A. and ¢, which
will be found by the equations governing the cracked section as shown further below.

The differential equation for the cracked section can be derived by first considering the
geometric relation. As shown by the enlarged diagram in Fig. 11.2, the cross-section will rotate
due to the uneven compression which produces the outer fiber strain ¢; at the compression face
but zero at the boundary between cracked and uncracked zones. The change of the rotation of a

small section, therefore, can be approximated as

6ds gdr

dp = zpi=— ~ 11.10

By recognizing
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it follows that

dzy €1
- 2 — < 11.12

The assumed linear stress-strain relation allows us to write
& =% 11.13
Finally, o, can be expressed in terms of the load P and the cross-sectional parameters

by the equilibrium condition, either through Eq. 10.5 or Eq. 10.7, depending on whether the '

crack has extended beyond the flange. Thus for 0 < ¢ < b—a, we have

2 = : " ' 11.14

-5+ 5)-28)

y=b—e=b— b 11.15
2
c @ _ —_ £
(057~ (- 4))
by recognizing e= M/ P and relations given by Eqgs. 10.5 and 10.6.

Similarly, for b—e< ¢ < b+ a we obtain
dzg = i 11.16
dz _
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and

)> b 11.17

2L
y=>b—
( ~5) - A0t ) e (- 5)

in view of Egs. 10.7 and 10.8.

It ié not intended to include the case of b+a< ¢ < 2b, since it is of little practical
significance when the crack extends so deep; although it poses no further difficulties.

With the relations given by Egs. 11.15 and 11.17, Eq. 11.14 and Eq. 11.16 can be

integrated, by some manipulations presented in the appendix, in closed form to give the slope

d
<L= \JFPITI ( C,— Ql(c)) 11.18

for 0 < ¢ < b—a, in which C] is a constant of integration and 2, is a function of ¢ expressed as

oo = = 5) = ()04 - w)( - 5) o
((1-8) - (4-mli-4))
And similarly for b—a< ¢ < b+a
4 = [ (o 00)
PR o 3 e ¥ a3 e o ) D N
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The constants of integration €, and C, can be determined by matching to the known

conditions on the rotation. By symmetry, we have
—%—%—(cm) =0

which leads to
Cy = Qy(cm)

where ¢, denotes the midspan crack length. Thus the rotation at section F is

es =\ ( alem) = 2(c)))

which also leads, by continuity of the rotation, to an expression for C,
Ci = Qy(em) — Qy(cy) + Q(ey)

where ¢; = b—a, the crack length at section F.

11.22

11.23

11.24

11.25

Eqgs. 11.18 and 11.20 can then be rearranged and integrated along the wall height to

give

. Cc
P hc/h—h,/h7r= l—_i J dy
‘chr 2 2 -

for 0 < ¢ < b—a, where ¢ = 0, the crack length at section C; and

11.26
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c

h /h d
lP f — |3 J Y
Y P LA 9 - 11.27
P.r 2 2 b{Cy— Qy(c)

Cm

for b—a< ¢ < b+a. dy can be expressed in terms of d¢ by differentiation of Eq. 11.15 or Eq.
11.17 within their specified domains. Thus, for given a ¢;n the right hand sides of Eqgs. 11.26 and
11.27 can be integrated numerically.

Further, the rotation at section C, which is contained in Eq. 11.5, can be readily

obtained in view of Eq. 11.18

oo = {2 ( Rulem) = Dalep) +2(e) - () 12

Finally, by summing Egs. 11.26, 11.27 and 11.5, a definitive relation between the

applied load P and the midspan crack depth c¢n, is reached

/b
P4 ) 3 dy/de i <
Per = e { ’ c,,,J/b Toen) — 7@ 0 F)
ce/b
3 dy/dc c
+ 5 d 5
\E ch/_b J Qy(em) — Qo(cs) + Qley) — Qu(e) ( b )
-+ \E ( sin~l— ec/b

J(gb_c)2+ %E (9.2(6m) — Qy(cs) +91("’f) - Ql(CC))

— sin™! 2ol ) } | o

This equation implicitly defines the force —deflection relation of a concrete masonry wall
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through the parametric variable ¢, which can be used to study the slenderness effects and the
stability of the wall.

By examining Eq. 11.29, one finds that the three terms on the right hand side actua_lly
represent the capacity contributions of three sections of the masonry wall, namely, the cracked
section in which the crack has extended into the grout core, the cracked section in which the
crack extends within the face-shell, and the uncracked section. Therefore, by adding or
subtracting the contributions, the results can be extended to more general loading cases. |

For (equal) end eccentricities e, larger than cracking eccentricity e., the cracked zone

will extend over the entire height, and Eq. 11.29 reduces to

c;/b "
— Y/ ac c
P = ( cmj/b T 3 L)
co/b 2

dy/ de df < ) 11.30
' ch/b *J Qy(em) — Qo(cs) + Qi(cp) — (o) ( b ) '

where ¢, is the end cracking corresponding to e, found through Eqs. 10.5 and 10.6.

If e, is greater than the flange cracking eccentricity e ¢ Eq. 11.30 further reduces to

oft dy/d ’
P _ _6 y/ac c
ber = 7( . ,J/b J (em) = () d(T)) | o

where ¢, is determined through Egs: 10.7 and 10.8.

Similarly, when the midspan cracking ¢ is less than the flange cracking c » which may

happen when ¢, is less than e;, Eq. 11.29 and Eq. 11.30 become

ce/b

e = { ] reeg—ee 8

em/b
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+~E<Si.“—1 ; el — sin” —— colb )}2 11.32
(5 +3e(@uem-0ue) (%) +Ee(utem—21(c0)

and

cofb

_ dy/dc c ’
g (), s )

respectively. Thus, all the possible combinations for equal eccentricity loading are included.

By the same principle, the results can also be extended to the case of unequal
eccentricity loading. According to Nathan (1972), the configuration of a column loaded with
arbitrary eccentricities can be represented by a portion of a wave of an imaginary, infinitely long
column under the action of the axial load, as shown in Fig. 11.3. Without loss of generality, we
assume that the magnitude of the bottom eccentricity is not less than that of the top one. Thus
the maximum deflection from the thrust line always lies in the lower portion of the colu.mn.
This point, at which dy/dz=0, corresponds to the midspan of the case of equal eccentricity
loading studied above. The column loaded with arbitrary eccentricities then is actually
composed of a portion symmetrical about the maximum deflection point, with an extension at
the top end as far as “the appropriate value of eccentricity. From this viewpoint, the
corresponding capacity contributions can easily be evaluated and summed to give the
force—cracking relation.

It should be indicated that for thé case of double curvature loading (e;/e, negative),
there are apparently two possible equilibrium configurations depicted by sections AB and AC in
Fig. 11.3. However, as far as the lowest buckling load is concemed, the configuration AB will be
under consideration. This configuration should also be realized for the case of anti-symmetric

loading (e;/e,=—1). This has been shown by the experiments (Hatzinikolas et al, 1978; Fattal
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et al 1976), and a theoretical explanation will be presented in appendix.

Consider two most general cases. First 0 < e, < ¢, < ec; the corresponding relation is

c;/b )
Per r? { 2 cn:[/b \l Qy(em) — Qy() ( b )
ce/b y
3 dy/dc a <
' \‘: J/b { Qalem) — Qa(cy) + Qulcy) — (o) ( ' )
€
+ ‘J—E ( sin~! = L

‘J(%g) + %5 (Qz(cm) = 2(cp) +(ep) — Ql(c°))

— sin™? o/f )
J(%)2+ %5 (Qz(cm) = Q5(cp) +(ey) — QI(CC))

e/ b
%)2+ %‘5 (Qz(cm) = D(eq) +8h(ey) - Ql(c°))

" _%_JE ( sin_lJ(

— sin”! = t ) } | o
A(5)"+ e (2a(em) — ) +910ep) — (e

The second case is when e, > e; > 0, ¢, <0, but e, > |e;| > ¢, the relation becomes

cp/ b

_ dy/dc c
I‘% - % { —g— ( ch/b J QQ(C:I) - Qy(c) d(T)
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dy/dec ¢ dy/dc c
+%J4w$—mm%ﬂ+%14w$—%m%ﬂ

o/t c/b .
cc/b
dy/dc .
" dl -
ch/b ‘J Qy(em) — Qz(cf) + Ql(cf) — ,(0) ( B ))

. 2
+ {€ sin~! s ec/b } | 11.35

A(5) + 26 (ulem) — 2ulep) +2u(e) — A(er)

where ¢, and ¢, are the crack depths corresponding to e, and e;, respectively. In these two
loading conditions, the cracking cm is assumed to be greater than ¢y
These results are readily generalized to anﬁy other load combinations for unequal end
A eccentricity loading.
A computer program written in FORTRAN-G was developed based on the equations

derived above. A listing of the program is given in an appendix.

11.5 Results and Applications

The algorithm developed above will be used to study two main aspects of concrete
masonry wall behaviour, namely the stability, and the force—deflection relation; the latter also
affects the wall capacity. The focus will be on the case of equal eccentricity loading.

According to the model, the buckling load of concrete masonry can be found by stepping
¢m from zero to some critical depth, at which the load P reaches a maximum. This is illustrated
by the cm—P relationship for a plain, solid section (A=a/b=np=0) loaded at the kern
eccentricity  (e.=1/6), as shown in Fig. 11.4. On the horizontal axis, the value c¢m/t=0
represents an undeflected member. Thus this corresponds to no axial load or P/P.r=0.

Obviously, no load could be maintained if the whole cross-section were cracked, ¢n/t=1. Thus
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' this point also corresponds to the value P/P.r=0. When P is applied and increased, deflection
will increase together with the crack depth. Assuming therevis no compression failure during the
loading stage, the load P will reach a maximum corresponding to some crack depth (¢m/t20.4
and P/P.r~0.28 for this case). Any further increase of P beyond this point will cause the
member to collapse. It is ciea.r that the relation before this critical point, dP/dem > 0,
represents stable equilibrium. Beyénd tilis point, dP/dem < 0 represents unstable equilibrium.
At the point, dP/dem = 0; P=Pmaz of course, stands for the buckling load.

Obviously, the cross-sectional lcracking of a member will depend‘heavily on the loading
eccéntricity and so, therefore, will the buckling load. For a plain, solid séction, the buckling load
is plotted against the eccentricity in discrete form in Fig. 11.5. At the point where e,/1=0, when
the member is loaded concentrically, P/Pcril, and the buckling load coincides with the Euler
load. The buckling load decreases drastically with increase in eccentrcity. When eo/1=0.5,
P/P.r=0, i.e., no load can be sustained if the load is applied at the edge of a member with no.
tension resistance.

The classic problem of the buckling of a plain, solid member with no tension resistance
was first investigated by Royen (1937). The problem and its application to brickwork have been
subsquently studied by Chapman and Slatford (1957), Sahlin (1971), Yokel (1971), Hatzinikolas
(1978). In Fig. 11.5, the results obtained by the algorithm are compared with a closed form
solution for loading eccentricity larger than t/6 given by Yokel. For the range compared, the
results are essentially identical.

The following are some of the interesting predictions given by the algorithm. As shown
by Fig. il.ﬁ for the solid section (A=a/b=0, np varies), while the buckling loads corresponding
to small eccentricities are essentially unaffected, the stability of the v;'all is greatly improved
with increase of the reinforcement ratio at large eccentricities. The rather flat tails at large
eccentricities imply that the capacity of reinforced walls is largely governed by the bending

rigidity.
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In contrast, the variation of a/b oﬁly affects the stability at small eccentricities as
shown by Fig. 11.7 (A=0.5, corresponding to a partially grouted wall; np=0.05; a/b=0, 0.65,
0.75). The effect of changes in X is illustrated through an example comparing different_, Bedding
conditions. Fig. 11.8 shows the buck]i.ng loads for a typical 8 inch plain section (a/b=0.65;
np=0. A=1 for face-shell bedding and A= 0.75 for full bedding; A =0 represents a solid, or fully
grouted section, included here as a reference). Although the bpckling load of the solid section is
higher at very small eccentricities, 'it; drops rapidly as the eccentricity incr_eases and soon
b;zcomes lthe lowest. Face-shell Bedded masonry, on the contrary, has lower buckling loads at
small eccentricities but ;emains relatively higher at larger eccentri.cities. A fully bedded secf,ion
falls in between. Since buckling usually only governs failure at larger ec;entricities,‘ one may
conclude that in terms of stability, fa.»ce-shell bedded ma;sonry is better than its fully bedded

‘counterpart which is in turn better than a solid section. This is not surprising considering that
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face-shell bedded masonry is least prone to crack under eccentric loading. We may infer, in the
context of the strength studies presented in the preceding chapters, that face-shell bedded
masonry is more likely to be governed by strength thgn by stability.

The present approach is compared with some of the existing data obtained from full
scale concrete wall tests. These include eleven 137 inch and 105 inch high walls (8 x40x 128 inch
and 8x40x96 inch nominal) with different reinforcement tested under equal end eccentricities by
Hatzinikolas et al (1978):

As discussed at the begining of the chapter, tall masonry walls may lose strength either
by material failure or by instabilily. The examination of the 137 inch high wall with 3#3
reinforcing steel (np=0.027) provides an excellent illustration of this point.

In Fig. 11.9, the load —moment interaction curve is developed by the equations given in
Chapter X. The straight lines radiating from the origin define the end conditions for different
loading eccentricities. These experimental lines are terminated by the data points and paired
with the predicted curves representing the load —moment relationships at midheight. It is clear
that the moment is magnified due to the slenderness. When the cross-section remains uncracked,
usually under small eccentricities with low load magnitude, the magnifier is given by the linear

solution:

[um—y

6:sec(\1%—7§r—)z1_—1) 11.36

EPcr

Recall that P, represents the Euler load for the gross section which must be adjusted by £ for
particular conditions. When the cross-section is cracked, the magnifier § = em/e, is calculated,
by the algorithm, for every midspan crack depth cm. It is interesting to note that for the case of
the smallest eccentricity e, = t/6, as depicted by the lines with the steepest initial slope, the
point defining the end conditions is within the P—M capacity curve while the corresponding

point representing the midspan conditions (moment has been magnified) is outside but fairly
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close to the curve. This indicates material failure since the cross-sectional capacity is reached'at
midspan. However, for the cases of laréer eccentricities (e,=1/3, €,=3 in and e,=3.5 in), all
the end points are well within the capacity curve. The maximun force for equilibrium is reached
while the cross-sectional capacity is not exceeded as shown. by the curves defining the midspan
conditions. It is clear that these aré the cases of instability failure. (At instability, the midheight
load path should reach a horizontal tangent. It is seen that this is approximately true of the
predicted curves.)

The comparison in terms of the failure loads may be better illustrated by plotting P/ Pe.
against e,/? as shown in Fig. 11.10. The plot includes two curves, one of which represents
instability failure generated by the algorithm similar to the' curve in Fig. 11.5. The other defines
material failure, which is converted and shrunk (by the slenderness effect) from the P—M
capacity curve given in Fig. 11.9. It is clear that when loading eccentricity is small, the wall is
governed by material failure. When the eccentricity is gr.eat, the wall will fail by instability. The
' agreement with the experiments in terms of the failure loads is very good.

As expected, an increase of the reinforcement will overcome the brittleness of the wall
and ' prevent instability failure. Fig. 11.11 shows the P—e relationship for walls of the same
configuration as the ones studied.iabove but with heavier reinforcement (346, np=0.108).
Material failure governs for the whole eccentricity range as illustrated in the plot.

" When wélls' are lower, material failure will again govern the behaviour, as shown in Fig.
11.12 for the case of the 105 inch high plain concrete wall with smaller eccentricities. We see
again, by comparing Figs. 11.10, 11.11 and 11.12, that behaviour under large eccentricities is

significantly enhanced by an increase in the reinforcement.

11.6 Usefulness and Limitations

The analysis presented leads to a very attractive approach to the slenderness of concrete

masonry. For a given wall, i.e. when the dimensions and the parameters fi, E, A, a/b and np of
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the wall z;re known, the P—M cross-sectional capacity curve and the curve defining the
relationship between buckling load and eccentricity (such as the one in Fig. 11.5) can be
developed. The designer must first ensure that the design load at the design eccentricity does not
exceed the buckling value. He is then required to make sure that the design load and the design
moment at midspan (or the point of maximum deflection for unequal eccentriéities) lie inside
the P— M capacity curve so that material failure will not happen. The end moment is magnified
to give the midspan moment. The magnifier, which varies with P/P.,, is a byproduct of the
derivation of the buckling curve.

The attractiveness of the approach lies in the fact that the buckling curve as a function
of the loading eccentricity is uncoupled from the specific material properties and dimensions of a
wall. The curve is dependent only on the three cross-sectional parameters: namely, A, the extent
of the grout and the bedding; a/b, the hollowness of the block unit; and np, the reinforcement
parameters. Thus, for any combiﬁations of these parameters, the curve may be pre-prepared. A
designer is then only required to work with these prepared curves and the P—M cross-sectional
capacity bound, which can be developed for a specific wall by equgt;ions given in Chapter X or
by any other simplified means, to determine if the wall is adequate. Without performing a
special, costly analysis for an individual. wall, the designer is able to approach the problem with
assured accuracy. This approach, the author believes, is much more rational than the current
design analysis at the cost of very limited additional effort.

The independence of the buckling load from the specific material properties and
dimensions of a wall arises from the assumption of linear material relationships. Further, the
validity of the approach is also based on the assumptioﬁ that plane sections remain plane. The
approach is good as long as these assumptions are st;ill close to reality; otherwise it is subject to
limitations.

Substanitial nonlinearity may be caused by the yielding of the reinforcing steel in

tension. This may happen when the necessary condition specified in Chapter X (see the context
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of Eq. 10.11) is satisfied, which usually corresponds to a low steel ratio. Although the steel
yielding can be incorporated in the algorithm without much difficulty, by changing the np value
for appropriate sections at which the yield strain is exceeded, the advantage of simplicity is lost.
if this happens it appears that the wall must b:a studied individually.

However, further investigation indicates that when the steel ratio is low, the behaviour
~of the wall will be governed mainly by the surrounding concrete. Buckling usually takes place
before the yield strain is reached, as in the 3#3 reinforcgd walls studied above. Indeed, yielding
of the steel was never observed in the experiments (Hatzinikolas et al 1978), and the proposed
procedures do give very good predictions, as. shown above.

Further, for very low steel ratios, the changing of np in the algorithm makes very little
difference if the loading eccentricity is not too large. Anyhow, the steel yielding in tension
corresponding to large deflections is unfavorable and may be prevented through design
requirements. »

The presented procedure tends to overestima_te the deflections for walls with heavy
reinforcement, as is seen with the 349 (np=0.245) reinforced walls tested by Hatzinikolas et al
(1978). This is believed to be mainly caused by the violation of the plane section assumption.
With heavy reinforcement, a wall tends to allow development of deeper crackings in its midspan
region. Since the cracks occur usually only at the bed joints, the compressive strains between
two joints, i.e., within a block unit, will depart correspondingly from the linear distribution as
the crack depths increase. As indicated, the model assumes a linear strain distribution
corresponding to an infinitesimal cracking spacing, which, of course, underestimates the rigidity
of the cross-section. The underestimation may be substantial when crack depth is large
compared to crack spacing (unit height), leading to erroneous results.

. AN

The nonlinearity of concrete may also affect the accuracy of the approach. However, the

assumption of linear material tends to overestimate the rigidity of the cross-section.

For the cases compared, the approach gives good results for reinforcement up to
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np=0.108, which corresponds to a steel ratio up to about 1% with respect to the gross cross-
sectional area. This covers most of the normal design reinforcement range. Thus the approach

will be useful for many design cases without major modifications.

11.7 Some Simplifications

To examine material failure, the method uses the moment magnifier which is produced
by the algorithm dﬁring generation of the buckling load curve. For a given cross-section, the
magnifier is' a function of the loading eccentricity as well as the magnitude of the load. For a
plain solid section (A=a/b=np=0), the relationship is plotted in Fig. 11.13.

In the figure, the two curves running from the origin through the upper right part
represent the linear solutions for a member with an uncracked section; the lower one is exact and
the upper one is the commonly adopted approximation (see Eq. 11.36). The four lower curves
define the magnifier for four different eccentricities. For the smallest eccentricity (e,=1/91%), the
curve coincides with the linear solution when the load is small. It begins to depart therefrom at
about P/P.r=0.32, indicating that the cross-section has started to crack and that nonlinearity
in moment-curvature has started to develop at this point. Three other curves, which correspond
to loading eccentricities equal to or larger than the kern eccentricity (e, =1/6t), depart from the
linear solution at the origin. This indicates that the cross-section begins to crack as soon as the
member is loaded. As expected, the nonlinearity leads to a larger mégniﬁer, as clearly illustrated
in the plot. Due to the nonlinearity, the member, if it does not fail materially ‘ﬁrst, will
eventually buckle, and therefore these curves are terminated at the buckling load P,.

Fig. 11.14 shows a similar plot for a member with reinforcement (A=a/b=0, np=0.05).
It appears that the ductility of the member at the greater eccentricities, in the sense of the
deflection development before instability, is greatly improved by the reinforcement.

For design purposes, the procedure can be simplified. The magnifier curve for a given

eccentricity may be characterized by two parameters, the buckling load, P,, and the
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corresponding magnifier §,. If the curve can be constructed by some means to end with a
horizontal tangent at this point, it may be accurate enough for design. For this purpose we

introduce the form

5:[ —(1—.5%5) 1—?{ikj|5k 11.37

which passes through the origin and reaches the end point with zero slope. This gives
satisfactory fitting for the plain section case, as shown in Fig. 11.15. For a reinforced cross-
section at large eccentricity, the curve may be truncated at the beginning of the flat plateau to
yield a good fit (cf. Fig. 11.14). This will lead to limited errors since usually values well below
the buckling load are of interest.

Through this simpliﬁcatibn, we only need to know the buckling load P, and the
corresponding magnifier é, for a given cross-section at given eccentricity. These two parameters
can be pre-determined and exhibited in the form of tables, or graphs such as the one shown in
Fig. 11.16. The figure is for a plain section with different cross-sectional factors A. Note that two
scales are used for the ordinate so that P, and 6, can be plotted in the same graph.

For commercially available block units, the range of variation in a/b is .small. The
parameter A varies from about 0 up to 1; np also has an upper limit (of 0.1 for the time being).
Thus the combinations of these three parameters are limited and it is not impractical to prepare
tables or graphs of P, and &, for design purposes.

Finally, it may be worth repeating the approach which has been developed and Wilich is
strongly recommended for design purposes:

1) (Select the wall cross-section, and, using thg material properties and dimensions c.onstr‘uct: the
P— M cross-sectional capacity curve (or choose a pre-prepared one). This is a well developed
procedure except that it is recommended that the curve be based on the; unit streﬂgth. (The

equations in Chapter X may be used.)
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2) Calculate the Euler load for the gross section Pe..
3) Determine parameters A, a/b and np. (these may have been determined. in the first step)
According to these three parameters, choose an appropriaté pre-prepared buckling load graph
(such as the one shown in Fig. 11.16) or table. Examine the stability by checking whether the
design load (P/P.r) is below the buckling load (P,/Pcr) at the design eccentricity (e./t). If not,
repeat from step 1.
4) To check material failure, read P, and 6, a't the design eccentricity (interpolation often
necessary), and calculate the moment magnifier § by using Eq. 11.37.
5) Magnify the design end moment by é and ensure that material failure will not occur by
checking if this moment combined with the design load falls within the P— M cross-sectional
curve. If not, repeat from step 1.

The recommended design approach, the author believes, can be extended to the case of

unequal eccentricities (which is included in the algorithm) without much difficulty.
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CHAPTER XII

SUMMARY AND CONCLUSIONS

1) The mechanical properties of concrete masonry subject to axial compression and out plane
bending have been investigafed experimentally, by testing block prisms with various bedding
and grouting conditions under various eccentricities.

2) Splitting failure has been examined and Hilsdorf’s model has been revised in the light of both
experimental and analytical work. It is concluded that the splitting failure mode of concrete
masonry under axial compression cannot simply be attributed to the lower stiffness of the
mortar joints.

3) Brittle failure under uniaxial compression has been investigated at the fundamental level. A
qualitative model was proposed to explain the’ splitting failure, and to reveal some of the
characteristics of concrete and other brittle materials under axial compression.

4) The joint effect on masonry strength can be attributed to the distortion of the uniform
compressive stress in the vicinity of the joint.

§) The deep beam bending model proposed by Shrive for failure of face-shell bedded masonry
under axial compression has been reviewed and verified experimentally.

6) Based on the failure mechanism and joint effect study, it is concluded that concentric and
eccentric capacities sﬁould be treated differently. It is shown that eccentric capacity can be
satisfactorily predicted on the basis of masonry unit compressive strength.

7) The behaviour of grouted masonry is highly governed by the deformation properties of the
masonry constituents. Premature cracking is caused by the incompatibility between block shell
and grout. The ultimate capacity is more strongly governed by the strength of the block shell.

8) Based on the above observations, an analytical modél considering vertical as well as cross-
sectional deformation interaction has been presented which gives satisfactory predictions for

ultimate capacity and cracking loads.
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9) Based on the observations and studies on the masonry prism characteristics, a theoretical
model has been developed to study the slenderness and the stability of concrete masonry walls.
Compared with experiments, the model gives very good predictions for low and moderate
reinforcement ratios.
10) The geometry, grouting, and bedding conditions and the reinforcement are quantified by a
few parameters, and the model is presented in a relatively simple form. It is demonstrated that

this simple, rational approach can easily be adapted to the design and analysis of slender walls.
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APPENDICES

APPENDIX A. Expressions for dU and dR in Chapter III

The strain energy for a linear-elastic body with volume ¥ is
= 1 _ |
V

For a cracked body, as long as the cracks have not gone through the body, so that the
region is still connected, general energy relations should hold as for a solid body. Without loss of
generality, consider an elastic body containing a single crack, as shown in Fig. A.l. At the

. equilibrium state, we have

I

=2U (in view of Eq. A1) A2

"T,u; ds + J Qiv; ds = J o;i€; dY¥
. o dy

1 2

as a result of the application of the divergence
theorem,' equilibrium and compatibility
conditions; where T;, u; and Q;, v; denote the
tractions and associated Aisp]acements on the
external boundary T, and internal I, (crack
surfacé),”respectively. Note the integral path we
have chosen; the repeated path does not

contribute.

If the surface of the crack is free, then

FIG. A1 An Elastic Body Containing a

Single Crack Q;, =0. If the opposite surfaces of the crack
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slide against each other, as is the case in the model, then @Qn # 0 and v, # 0, but Q, = v,
= 0, so that Q;v; = 0; where subscripts n and ¢ denote normal and tangential components

respectively. Therefore, it is always true that

U=+ J T,u; ds . A3
I, .

regardless of how this crack extends within the material. Of course, for our model this is
V=4 Fa A4
If friction between the crack surfaces is included, the situation becomes more

complicated. Restricting attention to our model, we have @, = f, the friction force, which can
be related to the applied force when crack surfaces are sliding against each other:
2 F

f=opsin‘a = 5p sin?a Ab

(Recall that w is the specimen width and F is the applied force). », may be approximated by the

geometric relation between the crack opening and the sliding displacement, as shown in Fig. A2
v, = §/sinc ' A6

In view of Eq. A2, the expression for the strain energy becomes
U:%(FA—z.aMfé/sina) A7

The negative sign preceding the second term indicates that the friction force is in the opposite
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d/sin()(, | | _ly_ .. U

N

FIG. A2 Geometric Relation between Crack. = FIG. A3 A Crack Extended by a Pair of
Opening and Sliding Displacement Splitting Forces

direction to fhat of the sliding displacement.
An expression for the crack opening 6 1s still needed. Consider a crack with initial length
21, being extended to 2! under the action of a pair of forces P, as shown in Fig. A3. According
to the energy theorems concerning the formation and extension of cracks in the elastic solid‘
(Goodier 1968), we have
{

1 ps _ _ v
—2—P6_2J G, di | _ A8

lo

Rearranging the equation and noting Eq. 3.5, we obtain
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A9

b apa-w?) 4P(1—v?) tan(mi/2b)
b= Jlo Eb sin (xl/b) dl = TE lo (tan(7rlo/2b) )

Eq. 3.13 follows when Eq. A5 and Eq. A9 are subsituted into Eq. A7

It should be noted that in a later stage of the post-peak branch, when the crack opening
width is decreasing, the friction force will change direction, and the sign preceding u contained
in the expression should be ghanged.

When crack surfaces are sliding against each other, the energy dissipated by friction is
dR = 2a M fdv, = 2a M po sina d6 Al0

Eq..3.17 follows when Eq. A9 is differentiated and substituted into this expression.

APPENDIX B. Solution of equation 3.10

After making the appropriate substitutions and rearranging, some cancellation occurs

and Eq. 3.10 reduces to

FA'— FA = 4M G (1 + 22502 ) All

which is solved by the method of variation of parameters, as shown further below. Letting A =

H() F(!) and substituting, it follows that

2psina
H =4M Greo (‘1 + ,ukz ) # ~ (recall F'= ow)
_ 2using \ (ko \? 1
= MG (1+ 252 ) (5 ch) b sin(x1/0) Al2
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in which relations given by Eq. 3.2 and Eq. 3.4 are applied. Eq. A12 is then integrated and
matched to the initial.condition given by Eq. 3.18. The solution takes the form as given by Eq.
3.22 when the relations defined by Egs. 3.6, 3.19, 3.20 and 3.21 are used.

The solution is valid for the whole range except the friction transitional interval, in
which the friction force is changing magnitude as well as direction; the relation given by Eq. A5
does not then hold. Certainly, after the tranéitional interval, the sign preceding p should be
changed.

The starting point of this transitional interval may be found by setting dé equal to zero.

This condition follows by differentiating Eq. A9:

tan(0/2)

tan(0,/2) =0 Al3

14+ €59 1o

(recall © = arc sin(a/fl)%, ©, = arc sin(o,/f.)%, and recognize also arc sin(o/fi)?= nl/b ) We
define this starting point by ©; or o, (quantities at this point denoted with subspript 1). During

the transitional interval, the expression for the tensile splitting force becomes
P = 2a ( osina cosae — f) sina Al4

The crack extension condition is still governed by Eq. 3.4. Recognizing that during this

interval the crack opening remains constant, we have an extra condition

4P, (1—v?) log tan(©,/2) _
TFE tan(@o/Q)

6, = constant AlS

Two cases need to be discussed. First we assume [ increases during the interval. It is
obvious then that Eq. 3.4 and Eq. A15 can not be satisfied simultaneously. Further inspection

indicates that the force defined by Eq. Al5 is always higher than that defined by Eq. 3.4. This
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actually implies that the crack will extend immediately and the material will fail almost at the
instant the starting point is reached.

In the second case, if we assume that the applied load retreats so fast that ! or P
remains unchanged during the interval, then both Eq. 3.4 and Eq. Al5 are satisfied, and the
friction force f can be found by using the relation given by Eq. Al4. In view of Eq. A7, the

strain energy is then expressed as

U=-L| FA — 24 M| osinacosa — P.l .61 Al6
2 2a sina | sina
Further since P = P; remains constant, the finish point, defined as ¢,, can be found by

equating the expression for P at the beginning point to that at the finish point, as

__cosa — psinw

72 = Cosa + psina 71 Al7

Since dé = dl = 0, the differential equation of the energy relation reduces to
dV — dU = 0 0, <0< 0oy A18

After substituting Eq. 3.11 and Eq. Al16 , the solution of Eq. A18 turns out to be a linear

relation between stress and strain:

_ad; cosa -

Y + Co - A19

where C is an integral constant found by the conditions at the starting point. This relation is

used in plotting Fig. 3.9.
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APPENDIX C. Solution of equation 4.1

A series solution can be formed by the eigen functions of the problem:

u(z,y) = io:l Xn(z) sin(any) A20

which satisfies boundary conditions specified by Eqgs. 4.3 and 4.4; where Xn(z) is a function of z

and_ an=nn/t,. When A20 is substituted into Eq. 4.1, it follows that
T(2) — k202 Xa(z) = 0 n=1,2 -------- 00 A21

Recall that & = ,l(l—u)/2. A2l is integrated and substituted back into A20, which, when

boundary condition Eq. 4.2 is applied, reduces to

o0
u(z,y) = Z Ap sinh(kanz) sin(any) A22
n=1

where A, is a constant, which is then found by matching A23 to the boundary condition Eq.

4.5:
X 2
ZAnnan cosh(%) sin(any) = 1_“E_V_ q
n=1
1o

2 1—-1/2 .

An = J g sin(any) dy
tokOn cosh(%"a) 0 E
4(1—1/2)th

when n is odd

{ n’n’kE cosh(%)
A23

0 when 7 is even
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Eq. 4.6 follows when A23 is substuted into A22.

APPENDIX D. Coefficients Am, Bm in stress function ® specified by equation 4.11

Eq. 4.11 is actually a summation of. Levy’s type solutions for plate bending

(Timoshenko and Krieger, 1959), so it is clear that
Vie =0 A24

And it is also obvious that Eq. 4.11 is constructed acoording to the diametrically symmetric
properties of the problem, so that only boundary conditions at z=0 and y=0 need to be
considered.

Referring to Fig. 4.7, if we integrate the boundary data we have

P =cy+ c A25
with
Qz = 63 ’ A26

at the boundary z = 0; and

d = ¢y + cx ‘ A27
with

By(z) = J Toy(2,0) dz + ¢4

_ 4qi = cosh[(2n—l)mr(z—'a/2)/to]
o7 nZ::1 (2n-1)2cosh[(2n-1)kma/2t) A28
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at y = 0; where ¢; to ¢g are constants of integration. Note in A28, 7,y is specified by Eq. 4.7
but with the shifted origin. ¢; and ¢4 must vanish for symmetry of the problem. Thus ® is
constant along the boundaries, and Eq. 4.11 assumes ¢,=c;=0 by the fact that it is immaterial
to add a constant to ®. Further, the slopes defined by A26 and A28 must also vanish at the
origin (z=y=0) because of the constancy. This leads to c;=0 and

e = — ¢ A29

When Eq. 4.11 is differentiated and set equal to the boundary conditions, we obtain two

equations:
ioj I:A Un(3) + 2 Brbm sin( 2T )] — 0 A30
mym p Pmom b Y
m=1
and
00
Z l:—%—Amam sin(%z) + Bm%m(z)] = Py() A3l
m=1
where

%m(z) = % (mw(:;:a/m sinh m7r(2;—a/2) — ﬂmtanhﬂmcoshm___w(::a/z))

G — amtanhamcosh

Un(y) = B (M sinh ™T(-0/2) mvr(gl-b/m)

am = 1732-7! ((amtanham—l)sinham — amCOSham)
bm = T ((Bmianhfim—Dsinhfm — BmcoshBm)

[N

and ®,(z) is given by A28. By orthogonality, A30 and A31 become two linear system equations,



which can be written symbolically
mnAn + Bmn =0
Am + kmnBn = Cm
where

b .
a — 1 Yn(y) sin2r? dy
bm b
0

am

a
Kan = L J Fn(z) sinZEE g
0

a

a
J ®y(z) sinBIL 4g
0

Therefore, for finite size N, it is always possible to solve for Ay, and B, m=1, 2

(ay =[ 1] - W] (o)

{8} = —[¥] {4}
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A32

A33

A34

A3b

in view of A32 and A33; where [ 1] is an identity matrix of size N, and hence to obtain an

‘approximation for ®. In Chapter IV, N=8 was used.



APPENDIX E. Derivation of equation 11.5

The general solution for Eq. 11.1 is

226

y=A sin(.|% € —%)) + Bcos( £ (s ——g—)> + b A36
B=—¢, for the boundary condition at the top. When the boundary conditions at section C are
applied, we obtain following two relations
. __E_ h'—hc _Pi h—hc _
A sm( 7T ( 5 )) + e cos( 7T (—2 )) = e A37
h—h . —h
% I:A cos( % ( 5 c)) — € sm( —EIiI (h 3 °)):| = . A38
which lead to
A2+e§:ez+¢2EPI A39
Further, when A37 is multiplied by (A2 + e )_1/2, it can be rewritten as
. P 1_hc/h P | €o €
sin T+ sinT ——m———e| = ——— A40
or
A41

P (M),r —gin~'— €% _ gp 1l
veb (5 o o

Equation 11.5 follows when the relation given by A39 is used.
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APPENDIX F. Integration of equations 11.14 and 11.16

By letting

Fy(e) = -%—[( 1 —

and

5 (14 5) =4 a2

6= (1-%) = (4 - w)1- ) A3

Eqgs. 11.14 and 11.15 can be written as

dzy

P Ad4

dx?  2Eb%1 Gy(0)

and

410 Ad5

A45 defines the relationship between y and ¢, which must be used in integration of A44. By

recognizing

A =@
| A44 becomes
(&) =] a5 ) AdT

A45 is then substituted into A47, which becomes, after integration by parts
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d 2 ‘ f’l c Fi(c
((Tg) == 251;1[ GfEc; + J Gf((c)) dc} A48

where

o= = 4l(5) - ()] AS

in view of A42. Now the problem becomes to integrate

L = J F{Z(c) de A50
Gi(c)
It is seen that the integrand is a rational function of ¢. The denominator is formed by the square
of the G, function, which, in view of A43, is quadratic in c¢. The numerator can be broken into
two terms. Thus the integral can be carried out by any standard approach, for example, see
CRC Standard Mathematical Tables 27th Ed. p245 (Beyer 1986). After appropriate calculation,
the result turns out to be rather simple:
1—¢/b

- When Ab1 is substituted back into A48 with a constant of integration, we obtain
dy\?» _ P |
(&) = #n (G- 20) AS2

where ©,(c) is defined by Eq. 11.19. Eq. 11.18 takes the positive square root of A52 referring to
Fig. 11.2.
A similar approach is used to integrate Eq. 11.16. However, the equivalent F and G

functions become



and

2 2
= )Y - A R — <
G = (1-g5) — 2(1+ 4 —5) +n(1- %) Asd
The integrand of the equivalent integral

_ [ F2(9 |
I, = J &0 de A55

is also a rational function. However, F/(c) contains three terms by differentiation of A53:

Fy() = % I:(l—x)(-cb-)2 —~ 2(1—,\)(%) — A ( 1 — (%)2)] A56

After a lengthy but controllable calculation, it turns out again in similar form to A5l

1—c¢/b

"=

Ab7

Eq. 11.20 follows after appropfiate substitutions.

APPENDIX G. Configuration of a column loaded with double curvature bending

We try to shed some light on the problem by investigating an elastic column. Fig. A4
shows a column loaded with top eccentricity e, and bottom eccentricity e,, which will deflect

~ according to
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P

% 1

* %
P.
FIG. A4 A Column Loaded with
Double Curvature Bending

V <«

e/ ey=—(1—¢)
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e; — eycoskl

STof sinkz + eycoskz A58

y:

where k = ,I P/EI.

A58 must vanish at the inflection point

Zo, which leads to

_ sinkl : ‘ '
tankz, = it = e Te e A59
It is clear that when e;/e,=—1, ie. the
column is loaded anti-symmetricaliy, To=1/2.

However, we will show that this configuration

1s not stable when the FEuler load is

approached. For. this purpose we introduce a

small perturbation ¢ to the loading conditions

(e>0) _ A60

and examine the sensitivity of the deflected configuration. When A60 is substituted into A59, we

_obtain

F = (coskl +1—¢)tankz, — sinkl = 0 "~ A6l

- The sensitivity of the configuration to the perturbation is reflected in the derivative of z, with

respect to ¢
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Fe

dl’o .
0 on

dz, sin2kz, __ sinkl - A62
de

2k(1+coskl) —  2k(1+coskl)

€= e=

It is seén that when the load P is relatively low, the derivative will be small. However, when P
approaches the Euler load, k¥l = , it becomes unbounded (note A62 is in an indeterminate form,
L’Hospital’s rule has been applied once). The high sensitivity is obvious. That is, when the Euler
load is approached, the column will have a very high tendency to depart from its original anti-
symmetric configuration.

In reality, it is always reasonable to assume some imperfection reflected in the small

quantity €. Thus A61 can be rewritten as

1 -1 tan(kl/?) 2
{ L (1—6/(2c082(k1/2))) 1_6/(2&5 (kl/z)) ="
Zo _ A A63

tan(kl/2) ) 1—e /(2005 (k/2)) < 0

% mr tan_l( 1—6/(2c052(k‘l/2))

It is seen by the second equation of A63 that
=1 A64

That is, the column will assume its lowest buckling configuration, for any small imperfection e,
when the Euler load is approached.

For a nonliﬁear column, the situation becomes much more complicated. It appears that
a similar tendency would control the behaviour. For design purposes, it is reasonable to assume,

conservatively, that this would happen.
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APPENDIX J."Computer Program Calculating Buckling Load

and Moment Magnifier of Concrete Masonry

PROGRAM TO EVALUATE MAXIMUM BUCKLING LOAD OF REINFORCED MASONRY
EXTERNAL F1,F2,F3,F4

COMMON RO,RC,RS,EO,EC,EF,EE,D1,D2
DIMENSION TITLE(20)

RN R L RRNE R RN R RN R R AR RN R R AR R AN S AN E T TR TR AT TR RA NN AT ST AN T ERATARN R R AR

'NOTATION OF VARIABLES

RO = CROSS-SECTIONAL FACTOR

RC = A/B CORE RATIO

RS = STEEL RATIO ’

EO = (EQUAL) END ECCENTRICITY

EA = SMALLER END ECCENTRICITY

EB = LARGER END ECCENTRICITY (EB.GE.ABS(EA))
EC = CRACKING ( KERN ) ECCENTRICITY

EF = ECCENTRICITY CORRESPONDING TO FLANGE CRACKING
01,02 = INTERGAL CONSTANTS

NOTE: ALL ECCENTRICITIES ARE TAKEN AS RATIOS TO HALF DEPTH OF CROSS-SECTION

R N A R R R R R R R R R R R RN

DEFINE PARAMETERS

READ{5, 1) (TITLE(I), I=1,20)
WRITE(6,2)(TITLE(I), I=1,20)

FORMAT(20A4)

FORMAT(//,1H1,/,24X,20A4,/)
READ(5,3)RO,RC,RS,EA,EB

FORMAT(5F10.5) ’
IF(RC.LT.0.0.0R.RS.LT.0.0.0R.EB.LT.ABS(EA))STOP 1

PI=4_ *ATAN(1.)
DRT=SQRT(1.5)

RST=1.+RS"
 CF=1.-RC
CU=1.+RC

IF(RC.EQ.0.0.0R.RO.EQ.0.0)CU=2.
CV=(RST-0.25*RO*CU*CU)/(RST-0.5*R0O*CU)
IF(RO.NE.1.0)CV=2./(1.-RO)*(RST-0.5*RO*CU-SQRT(RST* (RS-
.RO*RC)+0.25*RO*CU"CU))

CMU=AMIN1({(CV-0.001),CU)

EC=E1(0.)

EF=E1(CF)

Eu=E2(CV-0.001)

IF(CV.GT.CU)EU=E2(CU)

WRITE(6,4)RO,RC,RS EC,EF EU . ) '
FORMAT(/,T25, 'CROSS-SECTIONAL PROPERTIES',//,'SEC. FACTOR = ',

. .F8.3,5X,'CORE RATIO = ' ,F8.3,5X, 'STEEL RATIO = ' ,F8.3,///,
."EC/B = ',F8.3,5X,'EF/B = ' ,F8.3,5X,'EU/B = ' ,FB.3)

WRITE(6,5)EA ,EB )
FORMAT(/,T25, 'LOADING CONDITIONS',//,'EA/B = ', F8.3,5X,'EB/B = '


file:///F8.3
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.,F8.3,///,7T25,'CM/B" , 11X, 'P/PCR’, 10X, 'EM/EQO"' , 10X, 'ERROR")
EO=EB

OO0

EVALUATE BUCKLING LOAD
PM=0.0
DM=0.0
IF(EQ.GT.ECIGO TO 200

* END ECCENTRICITY EB LESS THAN CRACKING ECCENTRICITY

e NeNe]

CD=CMU/30.

cM=0.0

DO 500 I=1,29
CM=CM+CD
IF(CM.GT.CF)GO T0O 110
D1=01(CM)
TH=D1-01(0.}
CML=CM-5.E-B

SUB-FUNCTION CADRE PERFORMS NUMERICAL INTEGRATION

OO0

S1=CADRE(F1,CML,0.0,0.0001,0.,ERROR)
SQ=Q(TH,EC,EO)
IF(EA.NE.EO)SQ=SQ+0.5*Q(TH,EOQ,EA)
P=4_ /(PI*PI)*(DRT*S1+SQ)**2
IF(P.LE.PM)GO TO 1000
PM=P .
IF(EO.NE.O.0)DM=E1(CM)/EO
- GO TO 505 -

110 IF((CM-CD).LE.CF)PM=0.0
D1=02(CM) -02(CF)+01(CF)
D2=02(CM)
TH=D1-01(0.) .
CML=CM-2 .E-6
S1=CADRE(F1,CF,0.0,0.0001,0.,ERROR) .
S2=CADRE(F2,CML ,CF,0.0001,0.,ERROR)
SQ=Q(TH,EC,EO)
IF(EA.NE.EQ)}SQ=SQ+0.5*Q(TH,EO,EA)
P=4./(PI*PI)*(DRT*(S1+452)+SQ)**2
IF(P.LE.PM)GO TO 1000
PM=P
IF(EO.NE.O0.0)DM=E2(CM) /EO

505 WRITE(6,470)CM,P,DM,ERROR

500. CONTINUE
WRITE(6,555)
GO TO 1000

200 IF(EO.GE.EF)GO TO 300

END ECCENTRICITY EB LARGER THAN CRACKING ECCENTRICITY
BUT LESS THAN FLANGE CRACKING ECCENTRICITY

[z¥zXzXs)

C0=0.0
C1=0.0
CL=CF
ER=0.0001
EE=EO
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C SUBROUTINE ROOT FINDS CO FOR GIVEN EO

CALL ROOT(CO,CL,F3,ER)
EE=ABS(EA)
IF(EA.NE.EO.AND.EE.GT.EC)CALL ROOT(C1,CL,F3,ER)
CD=(CMU-C0)/30.
CM=CO
DO 510 J=1,29
CM=CM+CD
IF(CM.GT.CF)GO TO 210
D1=01(CM)
IF(EA.LE.EC)TH=D1-01(0.)
CML=CM-2.E-B
S1=CADRE(F1,CML,C0,0.0001,0.,ERROR)
IF(EA.NE.EO.AND.EA.GT.EC)S1=S1+0.5*CADRE(F1,C0,C1,0.0001,0.,ERR).
IF(EA.LE.EC.AND.EA.GE.-EC)S1=S1+0.5"CADRE(F1,C0,0.,.0001,0.,ERR)
.+0.5/DRT*Q(TH,EC,EA)
IF(EA.LT.-EC)S1=S1+0.5*CADRE(F1,€0,0.,0.0001,0.,ERR)+0.5/DRT*
.Q(TH,EC,-EC)+0.5*CADRE(F1,C1,0. 0,0.0001,0.0,ERR)
P=6./(PI*PI)*S1*S1
IF(P.LE.PM)GO TO 1000
PM=P
DM=E 1(CM) /EO
GO TO 515

210 IF((CM-CD).LE.CF)PM=0.0
D1=02(CM)-02(CF)+01(CF)
D2=02(CM)
IF(EA.LE.EC)TH=D1-01(0.)
CML=CM-2 E-6
S1=CADRE(F1,CF,C0,0.0001,0.,ERROR)
S2=CADRE(F2,CML, CF,0. 0001 0. ,ERROR)
S§=S1+S52
IF(EA.NE.EO.AND.EA.GT.EC)SS=SS+0.5*CADRE(F1,C0,C1,0.0001,0.,ERR)
IF(EA.LE.EC.AND.EA.GE.-EC)SS=SS+0.5*CADRE(F1,C0,0.,.0001,0. ERR)
.+0.5/DRT*Q(TH,EC,EA)
IF(EA.LT.-EC)SS=SS+0.5*CADRE(F1,C0,0.,0.0001,0.,ERR)+0.5/DRT*
.Q(TH,EC, -EC)+0.5*CADRE(F1,C1,0.0,0.0001,0.0, ERR)
P=6./(PI*PI)*SS**2
IF(P.LE.PM)GO TO 1000
PM=P
DM=E 2 (CM) /EO

515 WRITE(6,470)CM,P,DM, ERROR

510  CONTINUE
WRITE(6,555)

: GO TO 1000

300 IF(EO.GE.EU)GO TO 900

C END ECCENTRICITY EB LARGER THAN FLANGE GRACKING ECCENTRICITY

CO=CF

C1=CF

C2=0.0

CL=CMU

CL2=CF

ER=0.0001"

EE=EQ

CALL ROOT(CO,CL,F4,ER)
EE=ABS(EA) ~
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IF(EA.NE.EO.AND.EE.GT.EF)CALL ROOT(C1,CL,F4,ER)
IF(EE.LE.EF .AND.EE.GT.EC)CALL ROOT(C2,CL2,F3,ER)
CD=(CMU-C0)/30.0
CM=CO '
DO 520 K=1,29
CM=CM+CD
IF(EA.LE .EF)D1=02(CM) - 02(CF)+01(CF)
D2=02(CM) .
- IF(EA.LE.EC)TH=D1-01(0.)
CML=CM-2 .E-6
S2=CADRE(F2,CML,C0,0.0001,0. ,ERROR)
" IF(EA.NE.EO.AND.EA.GE. EF)SE S2+0 5*CADRE(F2, CO €1,0.0001, 0 ,ERR) -
IF(EA.LT.EF .AND.EA.GE .EC)S2=S2+0.5"CADRE(F2,C0,CF,0.0001,0.,ERR)
.+0.5*CADRE(F1,CF,C2,0.0001,0.,ERR)
IF{EA.LT.EC. AND . EA GE. EC)SZ S2+.5* CADRE(F2,CO,CF,0. 0001 0. ,ERR)
.+0.5*CADRE(F1,CF,0.,0.0001,0.,ERR)+0.5/DRT"* Q(TH EC,EA)
IF(EA.LT.-EC.AND.EA.GE.-EF)SZ=SZ+.5'CADRE(F2,C0,CF,.0001,0.,ERR)
.+0.5*CADRE(F1,CF,0.,0.0001,0.,ERR)+0.5/DRT*Q(TH,EC, -EC)
.+0.5*CADRE(F1,C2,0.,0.0001,0.,ERR)
IF(EA.LT.-EF)S2=S2+0.5*CADRE(F2,C0,CF,0.0001,0. ,ERR)+CADRE(F1,CF
,0.0,0.0001,0.,ERR)+0.5/DRT*Q(TH,EC, -EC)+0.5"CADRE(F2,C1,CF,
.0.0001,0.,ERR)
P=6./(PI*PI)*S2*S2
IF(P.LE.PM)GO TO 1000
PM=P
DM=E2(CM) /EO
WRITE(6,470)CM,P,DM,ERROR
470 FORMAT(T20,3(F10.3,5X),G12.3)
520 CONTINUE
’ WRITE(6,555)
555 FORMAT(720, ' (MAXIMUM LOAD NOT REACHED FOR THE CRACKING RANGE)')
GO TO 1000
900 WRITE(6,920)
920 FORMAT(TZO 'THE ECCENTRICITY IS T00 BIG FOR THE CROSS SECTION')

1000 STOP
END
c _
C. "'....l.....l.'l...t.ﬂl.'.ltl!l..ﬁ'.l'..t.'..........".....'...!
C
[of FUNCTION DEFINING INTERGRAND 1
C

FUNCTION F1(C)
COMMON RO,RC,RS,EO,EC,EF, EE Di,D2

T1=1. -0 5*C
T2=1.
T3=RO* RC RS

T4=T1*T1-T2*T3
YP=(0.5"C*T1-(T1-73)" E1(C))/T4
DEN=D1-01(C)
IF(DEN.LE.O.)DEN=D1*1.E-6
F1=YP/SQRT(DEN)

RETURN

END
C FUNCTION DEFINING INTERGRAND 2
C

FUNCTION Fa2(C).
COMMON RO,RC,RS,EOQ,EC,EF,EE,D1,D2
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T1=1.-0.5*C
72=1.-C
T3=1.+RC-C

T4=T1*T1-0.25*RO*T3*T3+RS*'T2
YP=(0.5*(1.-RO)*T1*C+0.25*RO*(1.-RC*RC)
-{T1-0.5*RO*T3+RS)*E2(C)) /T4 .

"DEN=D2-02(C)
IF(DEN.LE.O.)DEN=D2"1.E-6

F2=YP/SQRT(DEN)
RETURN
END

FUNCTION DEFINING CRACKING ECCENTRICTY 1

FUNCTION F3(C)

COMMON RO,RC,RS,EO,EC,EF,EE,D1, 02
F3=EE-E1(C)

RETURN

END

FUNCTION DEFINING CRACKING ECCENTRICTY 2

FUNCTION F4(C)

COMMON RO,RC,RS,EO,EC,EF ,EE,D1, 02
FasEE-E2(C)

RETURN

END

FUNCTION DEFINING THE TERM IN INTERGRAND 1

FUNCTION 01(C)
COMMON RO,RC,RS,EO,EC,EF,EE,D1,D2

T1=1.-0.5*C
T2=1.-C
T3=RO*RC-RS

O1={(4.*T1*T1*T1- RO RC*RC*RC-3.*T3*T2*T2)

/6. /(T1*T1-T3*T2)**2

RETURN
END

FUNCTION DEFINING THE TERM IN INTERGRAND 2

FUNCTION O2(Cf
COMMON RO,RC.RS,EO,EC,EF ,EE.D1,D2

T1=1.-0.5"C
T2=1.-C
T3=1.-RC-C
T4=1.+RC-C

.~ T5=RO*RC-RS

02=(4.*T1*T1*T1-RO*RC*RC*RC-0. 5 RO*T3*T3* T3 3.*T5*72" T2)

./6./(T1*71-0.25"RO*T4"T4+RS" T2)"2

RETURN
END

INVERSING SIN FUNCTIONS

FUNCTION Q(TH,EV, EU)
COMMON RO,RC,RS,EO,EC,EF,EE,D1,D2
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T=1.-RO*RC*RC*RC
TD=SQRT(EC*EC+2./3.°T*TH)
Q=SQRT(T)*(ASIN(EV/TD)-ASIN(EU/TD))

RETURN
END
¢ _
c FUNCTION DEFINING CRACKING ECCENTRICITY 1
c _
FUNCTION E1(C)
COMMON RO,RC,RS,EO,EC,EF,EE,D1,D2
T1=(1.-0.5°C)*(1.-0.5°C) _
E1=(T1*(1.+C)-RO*RC*RC*RC)/3./(T1-(RO*RC-RS)*(1.-C))
RETURN
END -
¢ S :
c FUNCTION DEFINING CRACKING ECCENTRICITY 2
c
FUNCTION E2(C)
COMMON RO ,RC,RS,EO, EC, EF , EE, D1,02
T1=(1.-0.5°C)*(1.-0.5C)
T2=(1.-RC-C)*(1.-RC-C)
T3=(1.+RC-C)*(1.+RC-C)
- E2=(T1*(1.+C)-RO*(RC*RC*RC-0.25°T2*(1.+2.*RC-C)))
./3./(T1-0.25*RO*T3+RS*(1.-C))
RETURN
END
C
c SUBROUTINE FINDING ZERO OF FUNCTION F
C .
SUBROUTINE ROOT(A,B,F,TL)
Y1=F (A)
Y2=F (B)

: IF(Y1*Y2.GT.0.0R.Y1-Y2.EQ.0.OR.TL.LE.O.OR.A.GE.B)STOP 2
20 X=0.5*(A+B)
Y=F(X)
IF(Y*Y1.GT.0.)A=X
" IF(Y*Y1.LE.O.)B=X
"IF((B-A).GT.TL)GO TO 20
A=X
RETURN
END



