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Abstract

The dgravitational exchange of two fluids of different
density through a convergent-divergent contraction is
considered. Two-layer exchange flow theory is extended to
include frictional effects with an emphasis on the interfacial
friction. The magnitude of the interfacial friction is found to
be greater than previously suggested and may be vital to the
analysis of exchange flows.

Experiments modelling gravitational exchange flow through
a convergent-divergent contraction were conducted in the
hydraulics laboratory at the University of British Columbia to
test the hydraulic solutions that have been developed on two-
layer exchange flow. A comparison of the theoretical solutions
and experimental results is made. Experiments conducted provide
data for evaluating the theoretical findings and help in
locating the hydraulic controls of the experiment along with
quantifying the magnitude of interfacial friction coefficient.
A comparison is made between numerous values obtained for the
interfacial friction coefficients by previous investigators and
the experimental results of the present study. Flow
visualization is used to study the Kelvin-Helmholtz and Holmboe

instabilities that form at the interface of the two layers.
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1. INTRODUCTION

Density stratifications due to temperature and/or salinity
variations occur naturally around the world in bodies of water
and the atmosphere. The exchange of two fluids of different
density often occurs when two bodies of water are connected by
a strait or channel. 1In the past forty years, the interest in
exchange flows in many fields of study including oceanography,
the atmospheric sciences, hydraulics and environmental
engineering has grown considerably.

A prime example that has attracted perhaps the greatest
interest is the Strait of Gibraltar where the more saline
Mediterranean Sea exchanges water with the Atlantic Ocean via
the Strait. This is due to the high evaporation rate that
exceeds the precipitation in the Mediterranean. Other Straits
in which important exchange flow occur are discussed in Defant
(1961). They include the Strait of Bab el Mandeb which connects
the Indian Ocean with the highly saline Red Sea, and the Strait
of Hormuz which connects the Arabian Sea and the Persian Gulf.
Excess run-off flowing into the ocean through a connecting
Strait in more humid regions also cause exchange flows. For
example, the Black Sea is joined by the Bosporus to the Sea of
‘Marmara which in turn is connected by the Dardanelles with the
Mediterranean. As well, Cabot Strait lies between the Gulf of
St. Lawrence and the Atlantic Ocean.

Other waterways that experience flows that may be
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stratified due to density differences include fjords, lakes,
reservoirs, locks and estuaries. However in some of these
situations the flow may not necessarily be exchanging as in the
case of arrested salt wedges in fjords and estuaries where the
lower layer of fluid is stagnant for long periods of time. 1In
the Strait of Georgia and Knight Inlet along the coast of
British Columbia, stratified flows are found during times of
large river discharge (Thomson, 1981).

Interfacial mixing between the layers of stratified flows
has created concern in many areas where pollution or salinity
threaten the quality of water. For example, an exchange flow
occurs in the ship canal connecting Lake Ontario with the
heavily polluted Hamilton Harbour. An understanding of this
exchange flow is crucial to the evaluation of potential measures
to improve water quality in Hamilton Harbour, see Hamblin and
Lawrence (1990).

The environmental effects caused by the construction of a
bridge and tunnel system for the Great Belt Link in Denmark that
is proposed to span the Great Belt, a main artery for exchange
flow to the Baltic Sea, are to be minimized (Hansen and Moeller
1990). The government of Denmark has decreed that the exchange
flow shall remain the same after the construction of the 1link;
therefore, the added resistance of the tunnel and bridge piers
must be compensated such that exchange to the Baltic remains
unchanged.

The shear produced at the interface of stratified flows has
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also attracted the interest of numerous authors (e.g. Koop and
Browand 1979 and Thorpe 1987). The generation of turbulence and
mixing in stratified flows is a function of the stability of the
sheared density interface. Understanding the processes involved
in the shear and mixing is pertinent to the advance of the study
of exchange flows. The shear between the stratified layers
generates instabilities known as Kelvin-Helmholtz and Holmboe
instabilities. The magnitude of this shear and the size of the
Kelvin-Helmholtz billows can be predicted from internal
hydraulic theory; however, good agreement between observations
and predictions has not as yet been obtained.

An interfacial friction coefficient is used to quantify the
shear that is produced at the interface of two flows. Although
there seems to be no consensus on a method of quantifying this
coefficient, wvarious authors have examined this problem and

further research is included in the present study.

1.1 Objectives

There are three primary objectives of this study:

1. To test experimentally the existing hydraulic solutions
for exchange flow through a contraction.

2. To obtain good flow visualization of the exchange flow
in experimental conditions.

3. To extend the theory of exchange flows to include
frictional effects and locate the internal hydraulic

controls.
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A review of the history of exchange flows is presented in

§2 including two-layer flow, mixing and friction coefficients.
The internal hydraulic theory is reviewed in §3 covering
assumptions, equations of motion, Froude numbers and a
discussion of interfacial instabilities. The theoretical
development of exchange flow is covered in §4 with application
to exchange flow through a convergent-divergent contraction
presenting formulation with frictional considerations. Details
of the experimental work are provided in §5 followed by a
description of the solution technique and the evaluation of the
friction coefficients in §6. A discussion on the interfacial
friction follows in §7 with the results and conclusions given in
§8 and §9. Finally, further recommendations for additional

research are discussed in §10.



2. LITERATURE REVIEW

2.1 Hydraulics of Two-layer Flow

Among the first theoretical analyses of two-layer flow were
those of Schijf and Schonfeld (1953) and Stommel and Farmer
(1953). They examined numerous examples including salt wedges,
salt intrusion in estuaries and 1lock exchange flow. The
analysis of Schijf and Schonfeld (1953) includes frictional
effects in the formulation of two-layer flow equations, but
assumes negligible surface shear and side wall shear stresses.
They have also expanded the theory to lock exchange flow, salt
wedges and salt intrusion in an estuary, but focus primarily on
turbulence and other diffusion mechanisms.

Subsequently, Wood (1968, 1970) also examined lock exchange
flow and the identification of points of internal hydraulic
control. Wood (1968) identifies two points of control for
stratified flows through a contraction: one at the point of
minimum width and the other called the point of virtual control.
Both control points can be located again by satisfying the

condition of the composite Froude number, G%2=1. Wood (1970) also

looks at lock exchange flow but does not deal with friction.

Lawrence (1985) presents additional work on two-layer flow
with an emphasis on flow over an obstacle. A classification
scheme was developed to identify regimes of steady two-layer
flow and the location of internal hydraulic controls.

Denton (1987) looks at locating and identifying hydraulic
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controls and analyzes single layer flow including frictional
effects and two-layer flow assuming negligible friction by
internal energy methods. Recently, Denton (1990) extended the
work to unidirectional three-layer flow over a hump and through
a contraction and classifies different flow regimes, each with

a different set of locations for internal hydraulic control.

2.2 Exchange Flow

Exchange flow through a long strait was examined by Assaf
and Hecht (1974) whereby the flow is bounded by controls at
either end of the strait. Their analysis models an enclosed
basin by balancing friction, salt and mass through the strait.
Results of the model are compared with observations made of the
Strait of Gibraltar, the Bosphorus and the Bab el Mandeb Strait.

Papers by Armi (1986), Armi and Farmer (1986) and Farmer
and Armi (1986) have presented internal hydraulic theory on
exchange flows. In particular, gravitational exchange flow of
two fluids of slightly different density through a contraction
has been examined by Armi and Farmer (1986). Armi and Farmer
(1986) examine maximal two-layer exchange flow through a
contraction with barotropic flow, that is q;#*q,, where gq is the
volumetric flow rate, and also acknowledge the presence of the
two control points, the narrowest section (throat) and the
virtual control, separated by a region of subcritical flow. In
the absence of any barotropic component or any frictional

effects, these two control points coalesce.
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Farmer and Armi (1986) have presented detailed exchange

flow analysis for both flow over a sill and the combination of
a sill and a contraction with application of the hydraulics of
layered flows to field measurements of the Strait of Gibraltar.
A considerable amount of field work and application of exchange
flow theory was done by Armi and Farmer (1988) in the Strait of

Gibraltar and recently applied to a model of the Strait.

2.3 Stability and Mixing

At the interface of t@o statically stable fluids is a
horizontal shear which may generate instabilities that cause
mixing between the two layers. This process has been examined
by many authors including Taylor (1931), Goldstein (1931),
Turner (1973), Sherman, Imberger & Corcos (1978) and Thorpe
(1987). Koop and Browand (1979) studied some of the
characteristics of turbulence in stratified fluids with emphasis
on conditions which may approximate those found in oceans. They
also suggest an upper bound of turbulent mixing and conclude
that the Richardson number, Reynolds number and Schmidt number
all become important in the analysis of turbulence.

Lawrence (1985) presents work on two-layer flow with an
emphasis on flow over an obstacle. He examines internal
hydraulic controls in the flow as it approaches an obstacle and
also investigates the dynamics of mixing of the two layers. The
extent to which mixing occurs was examined by Lawrence (1989)

and he poses the question, "Can mixing in exchange flows be
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predicted using internal hydraulics?". Lawrence states that an
upper bound on the extent of mixing can be predicted from the
internal hydraulics.

A detailed examination of the stability Froude number, FAZ,

was done recently by Lawrence (1990a) and he notes that it is of
great significance in the prediction of mixing in two-layer
flows. Lawrence, Browand & Redekopp (1990) discuss the
stability of a sheared interface stating that it is fundamental
to the generation of mixing in stratified flows and is dependent
on the velocity and density differences of the flowing layers of
fluid. Their theoretical and experimental results are presented
covering a more general study of interfacial instabilities and
presented are stability diagrams used in the prediction of
wavelengths of both the Kelvin-Helmholtz and Holmboe modes of
instability. The shear at the interface leads to the formation
of Kelvin-Helmholtz and Holmboe instabilities which are also

discussed by Thorpe (1987).

2.4 Friction Coefficients

The dynamics of frictional exchange flows involves an
examination of the shear stresses on the walls and interface of
stratified flows which are mainly dependent on two coefficients

of friction namely the wall friction coefficient, £ and the

w/’
interfacial friction coefficient, f;. Although evaluation of the
wall friction coefficient has been well documented (Henderson

1966), there has proven to be great difficulties in evaluating
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the interfacial friction coefficient. Often an order of

-3

magnitude estimate of, 1077, is used to quantify the coefficient.

Although methods of defining the interfacial friction
coefficient were presented as early as 1953 by Schijf and
Schénfeld, there has been no conclusion as to which method is
most appropriate or if any of the presented methods are adequate
for calculating the coefficient. A detailed review and
discussion of various authors' methods of .determining the
interfacial friction coefficient are presented in §7 after some

of the pertinent theory has been discussed.
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3. REVIEW OF HYDRAULIC THEORY

3.1 Basic Assumptions

The focus of this analysis of layered flows is based on the
assumptions of steady two-dimensional, non-rotating, inviscid
flow. The assumption is also made that there is negligible free
surface deflection. There is assumed to be no external forcing,
for example, tidally driven flows, such that the exchange flow
is due to the density differences in the two 1layers. The
anélysis focuses primarily on two-layer flows; however,
extension to any number of layers has been formulated by others
including Benton (1954), Baines (1988), and Denton (1990). It
is useful here to begin by understanding the hydraulics of
single layer flow before expanding to two-layer flow. Armi
(1986) and Lawrence (1989) discuss the basic hydraulic theory
involved in two-layer flow; however, a review of some of the

pertinent theory follows in the next section.
3.2 Equations of Motion

Assuming steady flow, the motion of layered flows is

governed by

— ——Z -0 (3.1)
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and the continuity equation

where j is the number of layers (j=1 for single layer flow), Pj
is the density of layer j, b is the width of the flow, Q; is the

volumetric flow rate and E; is the mechanical energy per unit

volume defined as

, 3.3
E; = (p+p;9y4) + f%ij§ (5 =1,n) (-3

where p 1is the pressure, assumed hydrostatic, g is the

acceleration due to gravity, Y; and u; are the depth and the

velocity of layer j and n is the number of layers considered.
Although Equations 3.1 and 3.2 are one-dimensional, they can be
applied to flow through a contraction provided the contraction

is gentle.

3.3 Review of Froude Numbers

Hydraulic flow 1is traditionally classified by the
nondimensional Froude number that is best introduced as a ratio
of convective velocity to phase speed. In single layer flow, a
flow is classified as subcritical where the Froude number of the
flow 1is less than 1; supercritical where the Froude number is
greater than 1; and the control point of the flow is located

where the Froude number has a value of 1. The control point is
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a transition point and provides a starting point required to
study flows. Henderson (1966) gives a general definition of a
hydraulic control as a point at which there is a known
depth-discharge relationship. An example of a control can be
seen at a sluice gate at which upstream flow is subcritical and
downstream flow is supercritical; here, the sluice gate acts as
a control device (Henderson, 1966). The Froude number is

evaluated by

2
Frz = L (3-4)

This theory can easily be expanded to two—layér flow where the

densimetric Froude number for each layer simply becomes

2
u;

g/y]'

Fri = (3.5)

where g' is the modified acceleration due to gravity; that is,

g'= e¢g and ¢ is defined by ¢ = (py—p1)/pp. However, in two-layer

flow it is important to recognize a composite Froude number

denoted G? and defined by Equation 3.6.

G2 = Fr? + Fr? - eFrirr? (3.6)

In this case the singularity condition or control occurs where

the composite Froude number, G2=1 analogous to Fr2=1 in single

layer flow. Typically the Boussinesq approximation is made that



13

e<l (of order 10'3) such that G? is approximated by

G? = Fr? + Fr? (3.7)

The location of the control point in a cwnvergent-di?ergent
channel for inviscid flows is historically the narrowest point
or throat of the channel (Armi and Farmer, 1986). Variation of
the Froude numbers through a contraction is best diagrammed on
the Froude number plane as shown by Armi and Farmer (1986). The

flow is critical at the throat (G2=1) and on either side of the
control point or throat is supercritical flow (G2>1).

In conjunction with G2, three additional Froude numbers,
Flz, FE2, and FAZ; the internal, external and stability Froude

numbers respectively, become important in two-layer flow.
Recall that the Froude number is defined as the ratio of
convective velocity to the phase speed. This is also applicable
to the internal and external Froude numbers. The celerity or
characteristic velocity of long waves both on the surface
(external) and along the interface of two-layer flow (internal)
is a sum of a convective velocity and a phase speed. Note that
although the composite Froude number may determine the
criticality of two-layer flow, it cannot be defined as the
single layer Froude number as it is not a ratio of convective
velocity to phase speed for both internal and external waves
(Lawrence 1990a).

Perhaps the most useful of these three Froude numbers is
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the stability Froude number. It can be regarded as the inverse
of a bulk Richardson number and is used in quantifying the
mixing layer thickness, the stability of the flow and its
susceptibility to instabilities at the interface. A fundamental
relationship (Lawrence 1985, 1990a) exists between these four

Froude numbers given by:

(1-G%) = (1-F}) (1-F2) (1-F2) (3.8)

However, for exchange flow through a contraction, FE2 &% 0 from

the assumption of negligible free surface deflection. Therefore
the relationship between the Froude numbers, Equation 3.8 is

reduced to the following.

(1-62) = (1-F) (1-F}) (3.9)
Variation of these three Froude numbers along the contraction
for inviscid flows is better understood by the illustration
shown in Figure 1. Note that the location of the control is the

point at which G2=1. For Boussinesq two-layer flows the external

Froude number is the same as the single layer Froude number
(3.4). The internal Froude number (Lawrence 1985, 1990a) is

defined

Uy, + W5,

FI - -
VgV vy, (1-F3)

(3.10)

where y = yj+yy. The significance of the stability Froude number

is discussed further in the following section.



15

3.4 The Stability Froude Number
The interfacial long wave stability Froude number is a
representation of the strength of the velocity shear across the
interface of the two fluid layers. This stability Froude number

is defined as:

2
Fz Au

(3.11)

where Au =‘u1-u2 and y is the total depth of flow. If frictional
" effects are ignored, Lawrence (1990b) has shown that FA2=1
throughout the channel if the flow rate ratio, g,=1. However,
taking into account the frictional effects reduces F,?

proportionally as the flow rates in each layer are actually less
than the theoretical ideal values.
Lawrence (1990a) notes from Equation 3.10, Long's stability

criterion for long internal waves, FAZ < 1, must be satisfied in

order for the internal Froude number to have real values.
Long's stability criterion applies only to long internal waves,
since the assumption of a hydrostatic pressure distribution
precludes the existence of short waves. To quote Long (1956),
‘If we abandon the hydrostatic assumption momentarily, we find
that sufficiently short infinitesimal waves are unstable for any
shear.!' Thorpe (1987) notes that the interface is unstable to

instabilities even for FAZ

<1 including the Kelvin-Helmholtz and
Holmboe instabilities. Note that the higher FA2 the larger the

instabilities.
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3.5 Interfacial Instabilities
3.5.1 Kelvin-Helmholtz Instabilities
The Kelvin-Helmholtz instabilities at the interface of the
two fluids cause considerable mixing to occur. Turner (1973)
states, "When a sufficiently large shear is applied across a
density interface and 1is such that the gradient Richardson
number falls below a c¢ritical wvalue of about 0.25,
Kelvin~-Helmholtz waves will grow and overturn to produce patches
of turbulent mixing." Where the gradient Richardson number is

defined, Ri=N2/(8u/az)2, and the buoyancy frequency,
N2=(g/p)(dp/dz). This mechanism of mixing causes the production

of interfacial layers in stratified fluids. Wilkinson and Wood
(1983) describe the Kelvin-Helmholtz instability as one which
converts kinetic energy of large-scale shear flows to smaller
dissipative scales.

These three-dimensional disturbances effectively mix most
of the fluid that is entrained by the Kelvin-Helmholtz billows.

As a result, maximum interface thickness, § , can be predicted.

max
Lawrence (1990b) presents a diagram showing the relationship of

§ and FA2 for the case of F}2=O(l) which is the situation

max
considered here. Further consideration of this diagram is made
in §8.1.

Velocity and density profiles are modelled using the
piecewise linear approximations shown in Figure 2. Two layers
are shown of different densities with a density interface

thickness of h. The shear at the interface of the two flows
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leads to the formation of Kelvin-Helmholtz and Holmboe type

instabilities.

3.5.2 Holmboe Instabilities

The Holmboe instability was first studied by Holmboe (1962)
and more recently by Browand and Winant (1973), Koop and Browand
(1979), Smyth, Klaassen and Peltier (1988) and Lawrence, Browand
& Redekopp (1990). Although the occurrence of Kelvin-Helmholtz
instabilities have been well documented, there is 1little
documented evidence of Holmboe instabilities. The Holmboe mode
of instability is known to dominate only in the case where the
velocity and density interfaces are not displaced vertically
with respect to each other. Linear stability theory predicts
the formation of the Holmboe instability when the gradient
Richardson number exceeds a critical value of approximately 0.25
(For further discussion see Smyth et al, 1988 and 1989).

These instabilities are depicted by a series of sharply
cusped crests which protrude into each layer of fluid. Portions
of the top of the cusps are occasionally torn away and become
mixed with the layers of fluid flowing by. More fluid is drawn
up by these cusps as the Richardson number approaches zero

ultimately forming Kelvin-Helmholtz billows.
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4. THEORETICAL DEVELOPMENT

4.1 Energy and Shear Stress
Consider the Mechanical Energy per unit volume for each

layer separately.

E, = p,gy + %plulz (4.1)

E, = pgy + (py-p) gy, + ipzuzz (4.2)
2

Subtracting Equation 4.1 from 4.2 and dividing by the unit
weight of the lower layer, p,g', gives us an equation for the
internal energy head. For two-layer flow, the internal head is

cbtained from

1
2g’

(u2 - u?) (4.3)

EI = y, +

similar to that of the total energy or Bernoulli equation for
single layer flow given by Equation 4.4.

E = y+ U (4.4)
_y_é—-g .

Differentiating Equations 4.1 and 4.2, the result is two
simultaneous equations which when solved produce an equation for
the slope of the interface. Denton shows these equations

neglecting frictional effects. Schijf and Schoénfeld include the
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bottom and interfacial shear stresses and assume negligible side
wall and surface shear stresses. They also state that their
formulas are approximate, based on the assumption that e«l.

In this section the theory is expanded to evaluate
frictional effects caused by the surface, the side walls, the
interface and the bottom surface. Energy losses due to friction
are denoted by the shear stresses at the four surfaces

respectively and can be represented by the following equations.

Surface T, = -f.p,Uu |y (4.5)
walls T, = -f.pu;luyl (4.6)
Upper layer Interface t; = -f;p(Au)?
Lower layer Interface t;, = f.p(Au)?

Bottom T, = -f,p,u,|u,]

For Boussinesq flows, p is estimated as p; for the upper layer
and po for the lower layer. The convention has been adopted that

the positive direction of flow is that of the upper layer such

that |uj|= u; and |uy|= -u,. The shear stresses are defined

diagrammatically in Figure 3 by a sketch of an element of fluid
from each layer. Introduced in the shear stress equations are

the friction coefficients where f; is the surface friction

coefficient, f, is the wall friction coefficient and f; is the

w

interfacial friction coefficient. Note that throughout the
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analysis £ =f/8; so that conventionally £, the Darcy coefficient,
is equivalent to 8f,. Note that f; does not acquire the same
value as f, nor £, since the Darcy coefficient would be different

for the interface, the surface and the walls. Such formulations
for the interfacial shear and bottom shear are similar to those
presented by Schijf and Schoénfeld (1953). We assume that the
energy losses are due to these shear stresses on all the walls,

the surface and at the interface of the two flows such that

dE; _ 3 t;d8 (4.10)

dx A, dx

where S is the surface area and A; is the cross sectional area.

J
The left side of Equation 4.9 is evaluated by differentiating

(4.1) and (4.2) for each layer respectively. The right side of

(4.10) for each layer are evaluated by

doTds | 22 _ 2 1 _ 2 1 4.11
-l fpur % - £;0,4u e fop,U; e ( )
§ :TZdS _ 22 2 1 2 1 4.12
A,dx = L,puz 5 £;p,Au v, + £,p,U; v, ( )

with the shear stresses defined earlier in Equations 4.5 - 4.9.

4.2 Exchange Flow Through a Contraction
The use of the one-dimensional equations (3.1 and 3.2) to

multi-layer flows accounting for the shear stresses acting on
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the interfacial and boundary surfaces can be reduced to Equation

4.13.
ov of
C— = D—=— +8 4,13
ax ax (4-13)
For single layer flow
- h -f u? (3-+i)-f uzl
B el oefrg el o[l
u 0 0 b-t 0
and for two-layer flow
22 fAur Lt op 2 1]
u 0 g g u, ~g 0 fwulb fiAu v fou, A
0 u, g g U, -g 0 b, 2,2, 1 1
= = = = =| Fu(=+—)+f,Au?—
CY10U10 Vyl b 0 O b1 o M A ! Y2
0y, 0 u, Y3 0 2 0
0

Generally h (x) are the bottom variations in topography, but are

not considered in the present study. Note the frictional
components appear only in matrix 8 where f, ,f; and f, are the
wall, interfacial and surface friction coefficients.

Since Equation 4.13 1is quasi-linear, the dependent

variables v, can be expressed as functions of the independent

variables f,. Thus the following four equations are derived.
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2 ;
i dul _ 1—F2(1+Y2/y1)]—1- db _ Fz2 i dhs i ASf (4.14)
u, dx 1-G2 b dx 1-G2 |y, dx ¥i| 1-G2
A du 1‘F12(1+ry‘/n)]i db ,|1-Fi|1 dh, 1 _és_f] (4.15)
u, dx 1-G2 b dx 1-G?|y, dx Ya| 1-G2
2
1 dy, _ GZ—F2(1+y2/y1)]i db F? 1 dh, 1 As, (4.16)
y, dx 1-G2 b dx 1-G%|y, dx Y| 1-G?
1 dy, _ G2-Fy(1+72/, ) 1db _|1-Fi|1 dh, L1 Asf] (4.17)
y, dx 1-G? b dx 1-G%|y, dx Y2| 1-G?

Details of the derivation of Equation 4.17 as an example are

given in Appendix A. The friction slope, AS¢, which includes the

wall, interfacial, bottom, and surface friction, is given by

AS; = AS,, + ASg; + ASp, +AS,,

that is

As, = + £ F; + f_F? (4.18)

2f,r 2 2 2 Y2
F + F. + f.F
b [ 1_V1 zyz] It A Y1Yz

where ASy = Sgp - Sg) and Sgp and Sgy are the friction slopes for

the upper and lower layers respectively. Note that the density
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ratio, r=py/p, which is also equivalent to 1l-e. The Froude
number, Fr, is now denoted simply as F.

It is useful here to examine the problem by looking at the
internal energy head. The flow within the channel depends on
the internal resistance equation from Henderson (1966).

dET

'd—x—— = - ASf (4.19)

where Sf can be termed the energy slope or friction slope.

Substituting the internal energy head, Equation 4.3, into
Equation 4.19, results in an equation for the slope of the

interface.

&, _ S, - AS (4.20)
dx 1 - G?

where S, here is defined as a topographical slope attributable

in the present study to the variation of width in the channel
and any variation in depth which is considered negligible here.
Note that the form of the Equation 4.20 is similar to that
derived in Equation 4.17; therefore, expressions for both the
topographical slope and the friction slope are determined with
the friction slope given by Equation 4.18 and the topographical

slope by Equation 4.21.

(4.21)

2|8

S, = (Fzz Yy - TFf y1)

ol
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The singular points of Equation 4.20 occur again where the

composite Froude number, G2=1. Therefore the control points are

found from the numerator of Equation 4.20 where

5, = AS, (4.22)

Two points of control are then identified; one for y; and one for
Yo, which occur at equal distances on opposite sides of the

throat. For each experiment the control points were identified

using the above formulation.
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5. EXPERIMENTS

5.1 Experimental Apparatus

A two-layer gravitational exchange of salt and fresh water
through a convergent-divergent contraction is modelled in a
3.7 x 1.1 x 0.3 m tank. The simplest configuration that
incorporates both frictional effects and variable topography was
constructed as a first step towards modelling natural
configurations. Two reservoirs of approximately 500 litres are
joined via a contraction which may be altered in both width and
curvature. Both the elevation and plan view of the apparatus
are shown in Figure 4.

Each reservoir is independently filled with fluid from the
same source by installing a barrier in the throat of the
contraction. The density of the right reservoir is increased by
dissolving a known quantity of salt as well as fluorescein dye
to differentiate between the two flowing layers of fluid.

Initial measurements are taken of the total water depth as
well as the channel widths at the throat, channel end points and
midway points between the throat and channel ends. These
measurements are taken to ensure a width profile similar to the
assumed profile (discussed further in §6) since the channel is
variable in width along the entire channel length. The modified
acceleration due to gravity, g', is calculated knowing the salt
content by weight and reservoir volume. Temperature

measurements are also taken to attain a value for viscosity
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which is required to calculate Reynold's numbers.

The experiment 1is conducted in a darkened room with two
slide projectors mounted on the ceiling above the contraction of
the channel. Each projector contains a slide which has mounted
on it two razor blades aligned with about only a 1 mm gap to
allow for a thin sheet of light (approx. 3 or 4 mm at the water
surface) to illuminate a two dimensional view of the flow in the
channel. Dissolving fluorescein dye in the more dense layer
produces a lower fluorescing "green" layer flowing leftward and
a top clear layer or "black" layer flowing right as shown by
Figure 5. A photograph of the experimental apparatus in shown

in Figure 6.

5.2 Experimental Procedure

After preparation of the two reservoirs and allowing a
brief moment for the reservoirs to settle, the barrier at the
throat is removed. Due to the density gradient, the fluid in
the right reservoir is forced to flow under the less dense fluid
setting up an exchange flow. It may take up to a half of a
minute before the experiment becomes quasi-steady and the
duration 1is typically approximately 10 minutes enabling
sufficient time for measurements and photography to be done.

Polystyrene beads are used as neutrally buoyant particles
which are seen when they pass through the thin sheet of light
projected through the layers of fluid. Originally these beads

are slightly more dense than water (specific gravity of 1.04)
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and therefore sink when submersed. However a technique was
developed to heat and expand the polystyrene beads so as to make
them neutrally buoyant and hence suitable for experimental

purposes.

5.3 Velocity Measurements

In order to obtain velocity measurements, long exposures of
3 or 4 seconds are taken in which the polystyrene beads show up
clearly as streaks on the photographs. An example photograph,
Figure 7, shows the streaks from the beads in both the upper and
lower layers. Although this proves worthy for obtaining
individual velocities at certain depth 1locations, it is
inadequate for producing velocity profiles throughout the depth
of the flow because of insufficient beads passing through the
single frame in a particular instance.

To obtain full velocity profiles throughout the depth, a
video camera is use to record the experiment in progress. Using
an image processor, several images are captured in sequence from
the video tape over a known time span and velocities are
determined from the relative movement of individual beads
throughout the depth of flow. Three examples of the velocity
profiles obtained are shown in Figures 8,9, and 10. To validate
the assumption of steady flow, a long term analysis of the
velocities was done (Figure 11) which shows the startup, a
period of quasi-steady flow for approximately 10 minutes and the

uncontrolled later portions of the experiment.



28

6. NUMERICAL ANALYSIS

6.1 The Numerical Model

In order to evaluate the location of the control points and
the interfacial friction coefficient, a numerical spreadsheet
model was developed using the hydraulic theory discussed in §3
along with §4. The channel profile is assumed to take on the
shape represented by b'=exp(x')2 with b' and x' being
nondimensional channel width and length respectively defined by
b'=b/bo and x'=x/2L, L is the distance from the throat to the
channel ends and bo is the width at the narrowest point of the
channel called the throat. Therefore, the nondimensional channel
width can be determined as a function of nondimensional channel
length. Choosing an increment interval for the channel length,
b' is then determined at each of the increment points along the
channel. The height of the interface at each of these points is

then evaluated by

i(l—,‘l—i ) Xx<0

2 b/

vs = { , (6.1)
i[1+ 1——1—) x>0
| 2 b’

where y,' is the nondimensional interface height. This equation

is adapted from Lawrence (1990b) assuming that the flow ratio,

d,=1 where g, = q;/dy and g is the flow per unit width.
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The theoretical velocity at the throat, u, is calculated

from Equations 3.5 and 3.7, assuming that u;=-uy and y;=y, at the

throat so that the velocity at the throat, u, for critical flow

is evaluated from Equation 6.2.

u = —;—\/sﬂy (6.2)

However, this results in a theoretical velocity which ignores
frictional effects. To compensate, this velocity is reduced to
allow for friction by using velocities measured from photographs
and analysed from the video tapes of each of the experiments.
From the expérimental data, a reduction coefficient, k, is
determined to factor down the velocity to correspond to the
physical values measured such that the theoretical velocity is
equal to Kku. Profiles taken from numerous experiments at
different locations were plotted and a regression curve fit to
the data to evaluate the experimental velocities and determine
a value of the velocity reduction coefficient. A value of
k = 0.74%0.05, equivalent to 74% of the theoretical velocity was
determined to be appropriate. Both the velocities across the
channel as well as the variation throughout the depth of the
channel are considered 1in determination of the velocity
coefficient.

The flow rate is calculated using the velocity, depth, and
width at the throat. Subsequent velocities downstream of the

throat are then evaluated using the continuity equation. Froude
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numbers for both layers are computed from Equation 3.5. Now all
of the required data is available for calculating the composite
Froude number which determines the locations of the control
points.

To substantiate the assumption that the flow ratio of the

two-layers, q, = d;/d7, is indeed unity as prescribed for no
external forcing, q, is also evaluated. The stability Froude

number (Equation 3.11) evaluated at all locations in the channel

proved to be constant for each experiment.

6.2 Evaluation of Friction Coefficients

Due to discrepancies in the literature as to the relative
importance of different frictional terms, it is necessary to use
the experimental data to look at this problem. All of the
friction terms from Equation 4.18 are evaluated to examine the
relative magnitude of each. Since all terms are within one
order of magnitude, each of the terms are considered significant
enough to be included in the analysis.

Values for f, are calculated from the H. Blasius' solution for

a flat plate boundary layer theory (Schlichting 1979) given by

F . 2.656

6.3
Re, ( )
recalling that f, = f/8 and Re, 1is the Reynolds number,

Re, = ux/v, using a length parameter, x, of the length of the
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contracted channel. Note that this equation is wvalid for

Re, < 5x10° and since the Reynolds number, Rey, is used, then the

wall friction coefficient, f,, is a function of x. It is also

important to realize that the flow is not fully developed
thereby the boundary layers do not extend throughout each layer.
This is good for examining the interfacial stress since there
will be no interference from the wall stresses and the
interfacial stress can be determined more accurately.

A constant, B, is introduced to relate the surface friction

coefficient to f, such that £, = Bf,. Since a value of g is not

determined experimentally, the numerical analysis 1is done
allowing for complete variability of B, 0<B<1. Once £, is

determined from the Blasius equation, the only remaining

variable is the interfacial friction coefficient, f;.

6.3 Control Point Location

Experimental data which include g', b,, y,, and u are used
in conjunction with the numerical spreadsheet model to determine
the location of the control points on either side of the throat
which satisfy the singularity condition, G2=1. First G2 is
evaluated everywhere. Then each term of Equation 4.17 is
evaluated along the length of the channel to identify the
location at which Equation 4.17 is satisfied. In order to
evaluate both the friction and topographical slopes, all three

friction coefficients are needed. For each of the experiments
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conducted the interfacial friction coefficient can now

determined by adjusting its value until the location where S =S¢
corresponds to the location at which G2=1. an example of the

numerical spreadsheet is given in Appendix B.

6.4 Interface Profile
The interface profile assumed for the analysis (Equation
6.1) was derived from frictionless theory (Lawrence 1990b). An
analysis is done using the experimentai data to attempt to
reevaluate the profile and the interfacial friction coefficient.
Starting with Equation 4.20, a slope of the interface at
the throat is estimated from the experimental data. At the

throat, the topographical slope, §,=0 and height of the

interface, ys'= %. Using the value of f; determined from the

original model as a first estimate, the slope of the interface
can be reevaluated at the next increment of x and subsequently
along the length of the channel. The initial slope at the throat

and f; are adjusted until S =S; at the point where G%=1.
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7. DISCUSSION ON THE INTERFACIAL FRICTION COEFFICIENT

Although previous work suggests that the magnitude of the
interfacial friction coefficient is small relative to the wall
friction coefficient, this is not necessarily the case as shown
by the numerical work of which the results are discussed in
§8.3. In fact, from the numerical and experimental work the
interfacial friction is of the same order of magnitude as the
wall friction from the Blasius Equation. Bertelsen and Warren
(1977) also state that the interfacial shear stress has proved
to be of greater importance than expected in the movement of the
lower layer.

Dermisses and Partheniades (1984) summarized ©prior
prominent investigations of Keulegan (1949), Ippen and Harleman
(1951), Abraham and Eysink (1971), and Lofquist (1960) and found
that a wide discrepancy among graphical and analytical equations
for f; exist. After applying some of these equations to the same
problem, Dermisses and Partheniades found that f; may in fact
differ by orders of magnitude. There are also differing
opinions as to the appropriate dimensionless parameters-to use
in correlating fj. For example, Keulegan introduced as
criterion, the Keulegan Number which is a function of the
Reynolds and Densimetric Froude numbers. Other authors have
also taken this approach including Macagno and Rouse (1962) as
well as Shi~Igali (1965). However, Abraham and Eysink, Ippen and

Harleman, and Lofquist all came to the conclusion that f; is a
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function of the Reynolds Number only, with Lofquist's and Ippen

and Harleman's results being extremely similar with f; = 139/Re
(Lofquist) and f; = 140/Re (Ippen and Harleman). Grubert (1990)

follows the work of Keulegan and Lofquist. Using data from the
South Pass of the Mississippi River (arrested salt wedge

situation) he concludes that £f/8 = 0.012 R'1/4, since f here is
the Darcy coefficient then the interfacial friction coefficient
fr = 0.012 R°1/%

Dermisses and Partheniades conducted experiments in a

rectangular duct and came to the conclusion that f; can best be

correlated with the Reynolds number and a regular nondensimetric

Froude number together as RF? as well as with the relative

density difference, Ap/p. They present a family of curves based
on these parameters which are in close agreement with both their
laboratory data and field data from the Mississippi estuary.
Explicitly expressed is their conclusion that neither the
densimetric Froude number nor the Reynolds numbers can be used
as single correlation parameters.

Eidnes (1986) presents a method for determining the
interfacial friction coefficient based on a Richardson number
for pressure driven shear flow for a top stationary and a bottom

flowing layer of fluid and suggests that f; = 2.63*10'3/Ri
where Ri is a gradient Richardson number, Ri = g'y/Auz. Note

that this Richardson number is indeed the inverse of the

stability Froude number defined earlier (3.11) and that f; is
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2

proportional to F,° which is proportional to the height of the

instabilities which can be regarded as roughness. Eidnes states
that the corresponding values for a bottom current are stated to
be 1.6 times higher and stipulates that this equation is valid
only for Ri<10.

Bertelsen and Warren (1977) suggest a value of f; = 0.001
or approximately half of the bed stress coefficient, f_,. This

is a result of calibrating data taken from the Danish Belts,
applied to their computer simulation of two-layer flows.
Di Silvio (1975) used a constant value for the Darcy coefficient

of 0.05 which is equivalent to a f; value of 0.0062. Calibration

of this coefficient came from data of the Adige River in N.E.
Italy.

Macagno (1962) presents a more rigorous derivation for
rectangular pipe flow of what he terms the resistance
coefficient based on density and velocity profiles and the
geometry of the system. He derives an equation for this

situation based on the hydraulic radius, Rh, the width, b, and

the displacement thickness, §, and the wetted perimeter, P. An
attempt to correlate the resistance coefficient with the Froude
and Reynolds numbers was made; however, although a definite
correlation was apparent, no distinctive quantitative conclusion
was drawn.

Numerous Japanese authors have examined the friction

coefficient in great detail. Still many seem to agree with or
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approve of earlier works done by Kaneko in the early 1950's.
Kaneko correlates the interfacial friction coefficient with the
Froude and Reynolds numbers as many others have subsequently

done and introduces the parameter ¥, where ¥ = ReFr? and the
interfacial friction coefficient, f1=0.2T'*.
Georgiev (1990) states that f; should depend on the type of

flow (bottom density current, arrested salt wedge or exchange
flow), the Reynolds number and the stability characteristics
quantified by a densimetric Froude number he defines by Fr'.

Georgiev defines the Reynolds number, Re = usRh/v and the
densimetric Froude number, Fr' = u22/(g'Rh) where Rh is the

hydraulic radius with wetted perimeter that includes not only
the walls and surface but also the interface. He also attempted
to plot a relation of the interfacial friction coefficient with
Re and shows curves of constant Fr' that can be examined as

curves of constant roughness. Recall that f; is proportional to
FA2 which is proportional to the instability height which can be

regarded as a roughness. Values of the interfacial friction
coefficient from his data ranged from 0.0006 to 0.008. Using
the relation plotted by Georgiev would suggest a value of f; in
the present study of approximately 0.004.

Although many authors have used field data to arrive at a
value for the interfacial friction coefficient and some also
present formulas based on such data, it is still inconclusive as

to how to calculate such a coefficient. The present objective
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is not to try to identify which of the methods are suitable for
determining the interfacial coefficient, but rather to test
whether the results of the present study give values that are
comparable to other methods previously published and perhaps
present a numerical approach to calculating the interfacial
friction coefficient. Therefore a comprehensive review was done
using several of the above mentioned methods which are

summarized in Table I.

Table I: Summary of Interfacial Friction Coefficients

Author Formulation Conditions

Ippen f;1 = 140/Re Laminar underflows

Grubert f; = 0.012 Re ™% Stratified estuaries
and fjords

Eidnes f1 = 4.21(10'3)/Ri Bottom flowing layer
Ri < 10

Macagno f; = 4g'/u2 (Rh-bé/4P) Pipe flow
Experimental

Kaneko f; = 0.2 w'* Salt wedge
Experimental

A graph showing these various coefficients is plotted as a
function of Reynold's Number (Figure 12). Shown are values
calculated from the 5 equations given in Table I using data from
several of the experiments conducted, constant values suggested

by Di Silvio and Georgiev, along with the experimental values
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determined from the numerical model. It is interesting to note
in Table I that Grubert's equation is based on field data and
the others equations on experimental data. The results of using
his equation give the 1largest values for the interfacial
friction coefficient. Perhaps this is due to the use of field
data which would imply larger Reynolds numbers in the field as
opposed to the laboratory and this would be reflected in his

correlation.



39

8. RESULTS AND DISCUSSION

8.1 Hydraulic Solutions
The stability Froude number is vital to the analysis of
exchange flows and with the inclusion of frictional effects it

is found that FA2<1. Since this is the case, Long's stability

criterion is satisfied for long internal waves and confidence
can be placed in the internal hydraulic theory.

Using experimental data from Experiment #18 reveals the
relation of the three pertinent Froude numbers: the composite
Froude number, the internal Froude number and the stability
Froude number (see Figure 13). The Froude numbers are
calculated using Equations 3.7, 3.10, and 3.11 respectively and
plotted against the nondimensional 1length of the contracted
channel, x'. Notice that FA2 is constant throughout the channel
length and the control point is located where G2=1 which
coincides with F12=1. These values are calculated assuming a
velocity reduction or flow ratio of experimental values to
frictionless theory (Equation 6.2), of k = 0.74.

A comparison plot of Equation 6.1, the calculated
theoretical height of the interface, and the height of the
interface measured from various experiments is given in Figure
14. Although good agreement can be seen near the channel ends,
there is some deviation from the theoretical values just on
either side of the throat. Given the difficulty in determining

the position of the interface due to movement and the presence
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of instabilities, these values match the frictionless profile
remarkébly well.

Reevaluation of the interface profile using Equation 4.20
to include frictional effects reveals little difference in the
shape of the profile and does not appear to improve the match of
the experimental data either. A plot of both the frictionless
and reevaluated frictional profiles is shown in Figure 15a along

with the variation of So, Sf, and 1-¢2 in Figure 15b. With

frictional effects included in reevaluation of the profile, the
location of the control points were pushed farther along the
channel close to the channel ends. Entrance and exit effects
may explain some of the discrepancy between the model and the
experimental data. Refinement of the experimental profile
through more exact data collection may be needed before a
precise experimental profile can be assumed.

The long term variation of the interface height at the
throat taken from photographs and video recordings is shown in
Figure 16. Although theoretically the interface height at the

throat, y,', is assumed to be %, there appears to be an

oscillation about the mid-depth. It is not clear as to the
cause of these deviations; however, it is proposed that they may
be caused by the apparatus itself by a period of "rebound" or
circulation which is a function_ of the size of the end

reservoirs.
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8.2 Flow visualization

The use of slide projectors to attain a two-dimensional
image of the two-layer flow experiment was extremely successful.
Photographs of the experiment resulted in good visualization of
both the Kelvin-Helmholtz and Holmboe instabilities at the
interface. Several series of photographs are shown in Figures
17 through 21. Growth and development of Kelvin-Helmholtz
billows can be seen in Figures 17, 18, and 19. In Figure 17
(Experiment #19), the throat is located on the left edge of the
ruler visible near the center of the photographs. The series of
photographs in Figure 18 taken from Experiment #24 show a
transition from a fairly smooth interface to the development of
much turbulence at the interface. The photographs are taken of
the left channel with the throat located at the edge of the
ruler on the right side on the photographs. Again the growth of
Kelvin-Helmholtz billows is shown in Figure 19 (Experiment #25)
showing a series of photographs taken of the channel to the left
of the throat.

A series of both Kelvin-Helmholtz and Holmboe instabilities
can be seen in Figure 20 photographed centered at the throat of
the channel from Experiment #21. The development of Holmboe
instabilities are shown in Figure 21 beginning with a single
cusp and the 1last photograph showing 4 cusps. Distinct
wavelengths of the Holmboe mode are taken from these

photographs.
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A final interface thickness was obtained from the
photographs and video recordings of the experiments. Figure 22,
originally presented by Lawrence (1990b), is shown with several
data points from the present study added. As best as can be

determined, §&,,'=0.15%0.05, but varies for each experiment.

m

Variation of the dimensionless maximum interface thickness &' .,

with the stability Froude number are shown in Figure 22 with
lines indicating values of the bulk Richardson number,
J = g'6/Au2.

A photograph of the interface thickness is shown in
Figure 23 taken from Experiment #23 with the throat at the right
side of the photograph. The interface thickness can also
clearly be seen in the long exposure photograph (Figure 7).

Wavelengths of both the Holmboe and Kelvin-Helmholtz modes
of instability are measured from photographs of the experiments.
A photograph showing wavelengths oflKelvin-Helmholtz mode is
given in Figure 24. These wavelengths and calculated values of

the stability parameters are given in Table II.
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Table II. Calculated Stability Parameters

Exp # h J A a
(cm) (cm)

18 3.20 0.20 18.0 1.12
19 3.70 0.23 17.0 1.37
20 3.50%* 0.22 18.2 1.21
21 3.50% 0.22 16.4 1.34
22 3.53 0.22 21.1 1.05
23 3.53 0.22 29.3 0.76
24 3.80%* 0.23 29.4 0.81
25 3.80% 0.23 33.1 0.72

* Estimated from Video Recordings or Photographs

J=g'h/ (Au)?
a=2m/A
A=average wavelength for experiment

Koop and Browand (1979) determined a value of J=0.32 from their
experiments. Note that the value of J in the present study
varies from 0.20 to 0.23 with Reynold's numbers being larger
than (6 to 8 times) those of Koop and Browand's experiments.
However, Koop and Browand (1979) also state that the maximum
Richardson number decreases to as little as 0.15 with increasing
initial Richardson numbers.

Figure 25 1is a stability diagram plotted by Lawrence,
Browand & Redekopp (1990) where a here is the instability wave
number, a = kh, k = 27/A, and A is the wavelength. Additional
explanation of the stability diagram is given by Lawrence et al

(1990). Also shown on the diagram are the wavelengths measured
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from the experiments. Note that all of the data points 1lie
within the region predicting the instabilities. The possibility
of pairing of the billows might explain the higher values of A
and therefore lower values of a which is consistent with the
points plotted in Figure 25.

Although photographs were used to initially obtain velocity
profiles, using a video recording of the experiment proved to be
the more complete and accurate method of obtaining velocity
profiles. An example long exposure photograph showing the
streaks left by the beads used for velocities was shown in

Figure 7.

8.3 Interfacial Friction Coefficient

From the experimental and numerical work conducted it is
shown that for the situation of exchange flow, the interfacial
friction coefficient is of the same order of magnitude and
several times larger than the wall friction. On average, the

interfacial friction, £;=0.0088 for f=1.0 and as high as 0.0096
for B=0. The variation of a, where a=f;/f,, with the velocity

coefficient, k, determined numerically from the data of
Experiment #22 is shown in Figure 26 allowing for three surface
conditions of B: 0, 0.5 and 1. The significance of the surface
friction is small as can be seen by the relative difference of
the three curves. Values of both the interfacial friction and
wall friction coefficients along with additional experimental

data for all experiments are given in Table III.
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Table IIF: Experimental Data and Friction Coefficients
vel. u
Exp bo y g’ Eq.6.3 exp Rh Re Re £ fw fI
# cm cm cm/s2 com/s cm/s cn (Rh) (%) f/8
1 10.2 16.8 2.48 3.23 2.39 3.17 2316 18246 0.020 0.0025 0.0047
2 10.0 26.1 1.85 3.47 2.57 3.61 2834 19602 0.019 0.0024 0.0082
3 5.5 27.8 1.50 3.23 2.39 2.30 1676 18246 0.020 0.0025 0.0093
4 5.5 28.6 1.51 3.29 2.43 2.31 1715 18585 0.019 0.0024 0.0094
5 10.6 28.2 1.26 2.98 2.21 3.85 2594 16834 0.020 0.0026 0.0088
6 10.6 26.0 0.99 2.70 2.00 3.77 2297 15252 0.022 0.0027 0.0093
7 10.5 29.5 10.99 2.70 2.00 3.87 2362 15252 0.022 0.0027 0.0093
8 10.5 29.5 10.86 2.52 1.86 3.87 2205 14235 0.022 0.0028 0.0096
9 10.3 29.5 0.94 2.64 1.95 3.82 2277 14913 0.022 0.0027 0.0094
10 10.1 29.3 1.10 2.85 2.11 3.76 2418 16099 0.021 0.0026 0.0094
11 10.1 29.6 1.53 3.37 2.49 3.77 2867 1%037 0.019 0.0024 0.0096
13 10.4 29.5 0.94 2.64 1.95 3.84 2293 14913 0.022 0.0027 0.0095
14 10.3 29.7 0.94 2.64 1.95 3.82 2281 14913 0.022 0.0027 0.0095
15 10.3 29.7 0.94 2.64 1.95 3.82 2281 14913 0.022 0.0027 0.0095
16 10.5 29.6 1.05 2.78 2.06 3.88 2434 15704 0.021 0.0026 0.0097
18 10.4 29.6 1.02 2.74 2.03 3.85 2382 15478 0.021 0.0027 0.0097
Viscosity = 1.31 (10-2) cm/s2 (10 C)
19 10.7 29.6 1.46 3.29 2.43 3.93 2676 17025 0.020 0.0025 0.0101
20 10.6 29.5 1.29 3.09 2.29 3.90 2494 15990 0.021 0.0026 0.0100
21 10.6 29.5 0.98 2.69 1.99 3.90 2171 13920 0.023 0.0028 0.0098
Viscosity = 1.43 (10-2) cm/s2 (7 C)
22 10.4 28.8 1.77 3.57 2.64 3.82 4037 18474 0.020 0.0024 0.0099
23 10.4 29.4 1.77 3.57 2.64 3.84 4059 18474 0.020 0.0024 0.0102
24 10.5 29.6 1.72 3.57 2.64 3.88 4095 18474 0.020 0.0024 0.0103
25 10.5 29.6 1.72 3.57 2.64 3.88 4095 18474 0.020 0.0024 0.0103
Viscosity = 1.00 (10-2) cm/s2 (21 C)
Experimental velocities are 74% of theoretical

The full wetted perimeter has

f = 2.656/sgrt(Rex)

fw = £
beta =
Re(Rh)
Re(x)

/8
0

= 4Rh u/viscosity

= ulL/viscosity

been included

Wwall friction factor (Eq.

6.3)

Standardized wall friction factor

Reynolds number based on hydraulic radius

Reynolds number based on channel length
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Note that the value of f; for experiment #1 is lower than that

of the other experiments. This is due to the shallow depth of
this experiment which restricts growth of the billows and hence

lowers the effective roughness and results in a lower fj.

A theoretical relation between k and o was derived using
conditions at the throat. Although this is may not be
appropriate for the whole channei, it provides a good first
estimate of the value of the interfacial friction factor.
Figure 27 show the theoretical curves calculated. Note again
the small difference in the three curves for the entire range of
B indicating that the surface friction has little impact on the
determination of the interfacial friction coefficient. Details
of the theoretical derivation are given in Appendix C. A
comparison plot of the theoretical and experimental relation
between k and a is shown in Figure 28 for the case, B=0.

Although some previous authors have elected to ignore or
assume very small values for the interfacial friction in the
theory of layered flows, it is shown by the numerical and
experimental work that it is pertinent to the theory and should

be included in any analysis.

8.4 Control Point Location

With estimates of the interfacial, wall, and surface
friction coefficients, the hydraulic equations derived can be
used to help locate the control points of a two-layer exchange

flow. After determining the location of the controls for each
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experiment from the numerical model using a frictionless
interface profile as discussed in §6, it was found that the
controls were located between x'=+0.40 and x'=*x0.45. However,
after reevaluation of the interface to include friction the
controls were located within the vicinity of the ends of the
contraction (x'=%+0.55). Depending on the velocity reduction
coefficient, k, that was used, the location of the controls
varies within this region. After examining the velocity
profiles both across the width of the channel and throughout the
depth of the channel, a value of k=0.7410.05 was found to be
appropriate. For k=0.74, the controls were located at x'=+0.51
(£;=0.0104, Exp. #18) and for k=0.70, x'=+0.68 (£;=0.0130).

With the consideration of frictional effects, the control
points of an exchange flow do not occur at the narrowest section
as suggested by inviscid theory but lie on either side of the
throat and perhaps at the ends of the contraction. Still the

controls must satisfy the singularity condition G2=1 and are

separated by a region of subcritical flow. The relation of the
control points and the composite Froude number is diagrammed in
Figure 29 calculated from Experiment #5. Illustrated are the
two control points on either side of the throat separated by a
region of subcritical flow (G2<1). At the two controls, the
composite Froude number takes on a value of unity. Beyond the
control points, the flow becomes supercritical (Figure 29%a). A
theoretical interface profile along the channel is shown in

Figure 29b. The Froude number plane showing the location of the
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control points (b.) and the throat (b,) relative to the Froude

numbers for each layer is given in Figure 29c.
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9. CONCLUSION

The interfacial friction coefficient is of great importance
to the analysis of layered flows especially in the locating of
the hydraulic controls. The addition of frictional
considerations moves the theoretical location of the control
points away from the throat of the contraction. For the
experiments conducted the control points were calculated to be
located in the vicinity of the ends of the contraction. A value
of 0.74%0.05 for the velocity reduction coefficient was
determined from the data analyzed and resulted in an average
interfacial friction factor of 0.0096 (B8=0) and 0.0088 (B=1.0)
using a frictionless interface profile. These values increase
with the use of the frictional profile by approximately 7%.

The ability to obtain good flow visualization both through
photographs and video recordings has definitely proven worthy in
order to obtain more accurate data for testing the hydraulic
theory. Visualization of the interface provides data for better
understanding as well as additional observation of the
phenomenon of both the Kelvin-Helmholtz  and Holmboe
instabilities. The theoretical profile (Equation 6.1) is shown
to be adequate in estimating the height of the interface along
the channel.

Measurements of the maximum interface thickness are found
to agree with the variation of the thickness and the stability
Froude number presented by Lawrence (1989). As well, the

measurements made of the instability wavelengths found in the
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experiments lie within the predicted region of interfacial

instability occurrence given by Lawrence et al (1990).
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10. RECOMMENDATIONS

The use of a larger facility with a more flexible apparatus
may help to obtain additional data particularly for higher
Reynold's numbers to further examine the hydraulic theory. As
well, additional field data is needed to test the theory in
large scale situations.

A more extensive review of existing data on the interfacial
friction coefficient is still needed. To attain and assemble
together all existing data to try and achieve some sort of
correlation in the results may be necessary. An emphasis may
include field data and categorization of different types of flow
and the resulting interfacial friction coefficients.

It is difficult to obtain an accurate profile of the
interface along the entire channel due to its length. A more
precise method of obtaining this profile is needed to refine the
analysis if increased accuracy is required. It is suggested
that vertical profiles of the density be taken wusing
conductivity probes at multiple location along the channel.

Variation of f, along the channel, as a constant value was

assumed may also help to increase the accuracy of results.

The analysis may be approached by assuming the controls of
the experiment occur at the ends of the contraction and
calculate in toward the throat. This requires the slope of the
interface at the control points and hence the use of L'Hopital's
rule to differentiate Equation 4.20 which is beyond the scope of

the present study.
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Appendix A

Derivation of the Equation of the Slope of the Interface

From Equation 4.13:

ov of
A —_ .13
Ca Da + S (4.13)
rearranging
ov 14 0F
— = C*DZ= + C's
ox ox *

again where v(x), D, f(x), and S are given by

u, -g 0 u2
S N 2 1 g2l
. u, L g 0 [, i £, 5 fAu . fou A
¥ °© 9 b2 2 1

1
fwuzz(——+-)—,2—) +£Au?

y; 0 QZ b yZ

Since we are primarily interested 1in the height of the
interface, only the last component of matrix v will be shown
here. The first term on the right hand side is evaluated

Iry.
G2-FZ(1+21)
C"lDﬁ = F12—1 dh, + ' Y2 Y2 db
ox 1-G2| dx 1-G2 b dx
and the second term:

2f | Fiy, +F2y. 2

cilg = Zw| 221272\, p Ry £ IR+ £ R L
b l_GZ W[ 2] 5[ 1] A y1y2

Note that c¢'ls is defined as AS; given in Equation 4.18. Adding
together the preceeding two equations gives

1-F7
1-G?

G2-F{(1+1y,/y,)
1-G2

dy,
dx

dhs+ AS,
dx | 1-G%

Y2 db_
b dx

and moving y, to the left hand side results in Equation 4.17.



APPENDIX B

EXPERIMENTAL CALCULATIONS FOR EXPERIMENT # 18

Experimental Data

u = 2.03 cm/sec Uth = 2.74 cm/sec r = 0.9989

bo = 10.4 cm k = 0.74 epsi = 0.0010

y= 29.6 cm

g = 1.02 cm/s2 fw = 0.0027

go = 30.0 cm2/sec fi = 0.0097

alpha = 3.6

Q= 312 cm3/sec xinc = 0.01

X b’ yr’ y2’ yl y2 b ul u2 Flsq F2sq Gsq Fdsq So fw fi St So-Sf
terms  terms

0.00 1 050 050 1480 1480 104 203 203 027 027 0545 054 00000 0.0007 0.0211 00219 0.0219
001 1000 050 050 1495 1465 1040 201 205 026 028 0.545 054 0.0000 0.0007 0.0211 00219 0.0219
0.02 1000 051 049 1510 1450 1040 1.99 207 026 029 0546 0.54 00001 00008 0.0211 00220 0.0220
003 1000 051 049 1524 1436 1040 197 209 025 030 0.547 0.54 0.0001 0.0008 0.0211 0.0220 0.0219
004 1001 052 048 1539 1421 1041 195 211 024 031 0.548 0.54 0.0003 0.0009 0.0212 0.0221 0.0219
005 1002 052 048 1554 14.06 1042 193 213 023 032 0.550 0.54 0.0004 00009 0.0212 0.0222 0.0218
0.06 1003 053 047 1569 1391 1043 191 215 023 033 0553 054 0.0006 00010 0.0212 00223 0.0217
0.07 1004 053 047 1583 13.77 1045 1.89 217 022 034 0555 0.54 0.0008 0.0011 0.0212 0.0223 0.0216
0.08 1.006 054 046 1598 1362 1046 1.87 219 021 035 0559 0.54 0.0010 0.0011 0.0213 0.0224 0.0214
009 1008 054 046 1613 1347 1048 1.85 221 021 036 0.562 0.54 0.0013 00012 0.0213 0.0225 0.0213
010 1010 055 045 1628 1332 1050 1.83 223 020 037 0567 0.54 0.0016 0.0012 00213 00226 0.0211
011 1012 055 045 1642 1318 1052 1.81 225 019 038 0.571 0.54 0.0019 0.0013 0.0214 0.0227 0.0208
012 1014 056 044 1657 13.03 1055 1.79 227 019 039 0.576 054 0.0023 0.0013 0.0214 00228 0.0206
013 1017 056 044 1672 12.88 10.57 1.77 229 018 040 0582 0.54 0.0027 0.0014 0.0215 0.0229 0.0203
0.14 1019 057 043 1686 1274 10.60 1.75 231 018 041 0.588 0.54 0.0031 0.0015 0.0215 00231 0.0200

LS
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0.0272
0.0285
0.0298
0.0311
0.0324
0.0337

0.0015
0.0016
0.0016
0.0017
0.0018
0.0018
0.0019
0.0020
0.0020
0.0021
0.0021
0.0022
0.0023
0.0023
0.0024
0.0025
0.0025
0.0026
0.0027
0.0028
0.0028
0.0029
0.0030
0.0031
0.0031
0.0032
0.0033
0.0034
0.0034
0.0035
0.0036
0.0037
0.0038

0.0216
0.0217
0.0217
0.0218
0.0219
0.0220
0.0221
0.0222
0.0223
0.0224

0.0225 ==

0.0226
0.0227
0.0229
0.0230
0.0231
0.0233
0.0234
0.0236
0.0237
0.0239
0.0241
0.0242
0.0244
0.0246
0.0248
0.0250
0.0252
0.0254
0.0257
0.0259
0.0261
0.0264

0.0232
0.0233
0.0234
0.0236
0.0237
0.0239
0.0240
0.0242
0.0243
0.0245
0.0247
0.0249
0.0251
0.0252
0.0254
0.0257
0.0259
0.0261
0.0263
0.0265
0.0268
0.0270
0.0273
0.0275
0.0278
0.0281
0.0283
0.0286
0.0289
0.0292
0.0295
0.0299
0.0302

0.0196
0.0193
0.0189
0.0184
0.0180
0.0175
0.0170
0.0165
0.0160
0.0154
0.0148
0.0142
0.0136
0.0129
0.0122
0.0115
0.0108
0.0100
0.0093
0.0085
0.0077
0.0068
0.0060
0.0051
0.0042
0.0033
0.0024
0.0014
0.0005
-0.0005
-0.0015
-0.0025
-0.0035

2s



APPENDIX B continued: Refinement of Main Spreadsheet

Program to compute the value of the velocity coefficient, k, from

the Shear equations where G2=1 @ So=5f

Initial conditions for Experiment # 25

gprime = 1.72 cm/s2 bo = 10.5 ¢cm

Utheor = 3.57 cm/sec H = 29.6 cm

viscos = 0.01 cm/s2 L = 110 cm

Reynold = 4701

fw = 0.0024 alpha=fi/fw xprime=%/2L

alpha = 4.29 beta=fs/fw Sf=Sfw+5fb+Sfi

beta 0 y={1+sqrt[(1-k ~2)/(1+3k ~2)]}/2

fi = 0.0103

fs = 0.0023
k y b’ x2L  Flsq F2sq Gsq Stw Stb Sfi St So So-Sf k X

¥2)

0.730 0.71 122 045 0938 0.062 10 0.0012 0.0001 0.03 0.0286 0.0298  -0.0011884 0.730  0.445
0.732 0.71 122 044 0937 0062 10 0.0012 0.0002 0.03 00287 0.0296  -0.0009478 0.732 0.443
0.734 071 121 044 0936 0.063 1.0 0.0013 0.0002 0.03 00288 0.0295  -0.0007056 0.734  0.440
0.736 0.71 121 044 0935 0.064 10 0.0013 0.0002 0.03 00289 0.0293  -0.0004617 0736 0438
0.738 0.71 121 044 0934 0.065 1.0 0.0013 0.0002 0.03 0.0290 0.0292 -0.0002162 0.738  0.436
0.740 0.71 121 043 0.933 0.066 1.0 0.0013 0.0002 0.03 00291 0.0291 0.00003079 0.740  0.433
0742 071 120 043 0933 0.067 1.0 0.0013 0.0002 0.03 00292 0.0289 0.00027948 0742 0431
0.744 0.70 120 043 0932 0068 1.0 0.0013 0.0002 003 00293 0.0288 0.00052976 0744 0429
0.746 0.70 120 043 0931 0069 1.0 0.0013 0.0002 0.03 0.0294 0.0286 0.00078164 0.746  0.426

GS



Appendix C

Derivation of k and o relation

Starting with Equation 4.20
dy2 SO - ASf
dx 1 - G?

at the throat, S; = 0, therefore,
dy, As,

ax 1 - G2

60

(4.20)

From the interface profile we can appoximate dy,/dx by its slope
at the throat, y/4L, determined from the frictionless interface

profile (Equation 6.1) such that

4L 1-G?

At the throat, we know that

G2 _k2
k2
F2 =2 = £
1 2 >
= Y
yl y2 2
y: oy _

such that

(1—k2)4—y}_' = —ziw[ k*y  K° %’] s XK 4f k* = f X2

£ k2
2y Y - Twyp2 2
(1 k’)TIE —E;k'y'+ (£ ,+£f,) >t 4f k

Rearranging, we finally get a relation for f; and k.

—_1-r2
_ (1-k%)y _ fw(i
16 k2L 8

f
Yy - s
I *'4b) 8

Note the relationship plotted in Figure 27 is k and «¢,
a = fi/fw.

where
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Figure 1. Variation of the internal, composite and stability
Froude numbers throughout a contracted channel
for inviscid flows
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Figure 2. Definition sketch of assumed linear approximations
of both the velocity and density profiles



Figure 3. Definition sketch of the shear stresses acting on a
volume of fluid for both the upper and lower layers
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Figure 4. Experimental set-up (all dimensions in millimeters)



Figure 5. Photographs of the experiment in progress
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Figure 6. Photograph of the experimental apparatus

Figure 7. Long exposure photograph showing movement of velocity beads
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Figure 8. Velocity Profile at the throat for Experiment #18
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Figure 9. Velocity profile at the throat for Experiment #19
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Figure 11. Long term variation of the average velocity
at the throat for Experiment #18



Interfacial Friction Coefficient, fi
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Figure 12. Comparison of various interfacial friction
coefficients plotted as a function of
Reynolds number
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Figure 13. Variation of the internal, composite and stability

Froude numbers throughout the contracted channel
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Nondimensional Interface Height
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Figure 14. Comparison plot of the experimental and
theoretical interface height along the channel

0.5

13



Nondimensional Interface Height

Nondimensional values

k = 0.74
f, = 0.0104

frictional

LR

frictionless theory

location of controls

0.05

T T T T

-0.2

0

0.2

T T T

0.4

Nondimensional Channel Length
Figure 15a. Comparison of frictionless and friction interface profiles
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Figure 16. Long term variation of the interface height
at the throat for Experiment #18
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Figure 17. Sequence of photographs showing Kelvin-Helmholtz instabilities
from Experiment #19




Figure 18. Sequence of photographs from Experiment #24




from Experiment #25




Figure 20. Sequence of photographs with Kelvin-Helmholtz
and Holmboe instabilities from Experiment #21




Figure 21. Sequence of photographs showing Holmboe instabilities
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Figure 22. Variation of dimensionless maximum interface thickness
with the stability Froude number
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Figure 23. Photograph of the interface thickness

Figure 24. Photograph of wavelengths of the Kelvin-Helmholtz mode
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Figure 25. Stability Diagram (Lawrence et al. 1990)
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Velocity Coefficient, k
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Figure 26. Variation of calculated k and alpha

with beta = 0, 0.5, and 1.0
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Velocity Coefficient, k
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Figure 27. Theoretical variation of k and alpha with beta = 0, 0.5, 1.0

10



Velocity Coefficient, k
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Figure 28. Comparison of theoretical and calculated curves

of k and alpha for beta = 0
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Figure 29. Variation of: a)the composite Froude number through a
contraction, b)interface height along a section of a
contracted channel, c)the Froude numbers for each
layer shown on a Froude number plane
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