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1. INTRODUCTION 

Density s t r a t i f i c a t i o n s due to temperature and/or s a l i n i t y 

v a r i a t i o n s occur naturally around the world i n bodies of water 

and the atmosphere. The exchange of two f l u i d s of d i f f e r e n t 

density often occurs when two bodies of water are connected by 

a s t r a i t or channel. In the past fo r t y years, the i n t e r e s t i n 

exchange flows i n many f i e l d s of study including oceanography, 

the atmospheric sciences, hydraulics and environmental 

engineering has grown considerably. 

A prime example that has attracted perhaps the greatest 

i n t e r e s t i s the S t r a i t of Gi b r a l t a r where the more sa l i n e 

Mediterranean Sea exchanges water with the A t l a n t i c Ocean v i a 

the S t r a i t . This i s due to the high evaporation rate that 

exceeds the p r e c i p i t a t i o n i n the Mediterranean. Other S t r a i t s 

i n which important exchange flow occur are discussed i n Defant 

(1961). They include the S t r a i t of Bab e l Mandeb which connects 

the Indian Ocean with the highly s a l i n e Red Sea, and the S t r a i t 

of Hormuz which connects the Arabian Sea and the Persian Gulf. 

Excess run-off flowing into the ocean through a connecting 

S t r a i t i n more humid regions also cause exchange flows. For 

example, the Black Sea i s joined by the Bosporus to the Sea of 

Marmara which i n turn i s connected by the Dardanelles with the 

Mediterranean. As well, Cabot S t r a i t l i e s between the Gulf of 

St. Lawrence and the A t l a n t i c Ocean. 

Other waterways that experience flows that may be 
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s t r a t i f i e d due to density differences include fjords, lakes, 

reservoirs, locks and estuaries. However i n some of these 

situ a t i o n s the flow may not necessarily be exchanging as i n the 

case of arrested s a l t wedges i n fjords and estuaries where the 

lower layer of f l u i d i s stagnant for long periods of time. In 

the S t r a i t of Georgia and Knight Inlet along the coast of 

B r i t i s h Columbia, s t r a t i f i e d flows are found during times of 

large r i v e r discharge (Thomson, 1981) . 

I n t e r f a c i a l mixing between the layers of s t r a t i f i e d flows 

has created concern i n many areas where p o l l u t i o n or s a l i n i t y 

threaten the qua l i t y of water. For example, an exchange flow 

occurs i n the ship canal connecting Lake Ontario with the 

heavily polluted Hamilton Harbour. An understanding of t h i s 

exchange flow i s c r u c i a l to the evaluation of p o t e n t i a l measures 

to improve water qua l i t y i n Hamilton Harbour, see Hamblin and 

Lawrence (1990). 

The environmental e f f e c t s caused by the construction of a 

bridge and tunnel system for the Great Belt Link i n Denmark that 

i s proposed to span the Great Belt, a main artery for exchange 

flow to the B a l t i c Sea, are to be minimized (Hansen and Moeller 

199 0). The government of Denmark has decreed that the exchange 

flow s h a l l remain the same a f t e r the construction of the l i n k ; 

therefore, the added resistance of the tunnel and bridge piers 

must be compensated such that exchange to the B a l t i c remains 

unchanged. 

The shear produced at the interface of s t r a t i f i e d flows has 
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also attracted the in t e r e s t of numerous authors (e.g. Koop and 

Browand 1979 and Thorpe 1987). The generation of turbulence and 

mixing i n s t r a t i f i e d flows i s a function of the s t a b i l i t y of the 

sheared density interface. Understanding the processes involved 

i n the shear and mixing i s pertinent to the advance of the study 

of exchange flows. The shear between the s t r a t i f i e d layers 

generates i n s t a b i l i t i e s known as Kelvin-Helmholtz and Holmboe 

i n s t a b i l i t i e s . The magnitude of t h i s shear and the s i z e of the 

Kelvin-Helmholtz billows can be predicted from i n t e r n a l 

hydraulic theory; however, good agreement between observations 

and predictions has not as yet been obtained. 

An i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t i s used to quantify the 

shear that i s produced at the interface of two flows. Although 

there seems to be no consensus on a method of quantifying t h i s 

c o e f f i c i e n t , various authors have examined t h i s problem and 

further research i s included i n the present study. 

1.1 Objectives 

There are three primary objectives of t h i s study: 

1. To t e s t experimentally the e x i s t i n g hydraulic solutions 

for exchange flow through a contraction. 

2. To obtain good flow v i s u a l i z a t i o n of the exchange flow 

i n experimental conditions. 

3. To extend the theory of exchange flows to include 

f r i c t i o n a l e f f e c t s and locate the i n t e r n a l hydraulic 

controls. 
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A review of the hi s t o r y of exchange flows i s presented i n 

§2 including two-layer flow, mixing and f r i c t i o n c o e f f i c i e n t s . 

The i n t e r n a l hydraulic theory i s reviewed i n §3 covering 

assumptions, equations of motion, Froude numbers and a 

discussion of i n t e r f a c i a l i n s t a b i l i t i e s . The t h e o r e t i c a l 

development of exchange flow i s covered i n §4 with a p p l i c a t i o n 

to exchange flow through a convergent-divergent contraction 

presenting formulation with f r i c t i o n a l considerations. Details 

of the experimental work are provided i n §5 followed by a 

description of the solution technique and the evaluation of the 

f r i c t i o n c o e f f i c i e n t s i n § 6 . A discussion on the i n t e r f a c i a l 

f r i c t i o n follows i n §7 with the r e s u l t s and conclusions given i n 

§ 8 and § 9 . F i n a l l y , further recommendations f o r additional 

research are discussed i n § 1 0 . 
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2. LITERATURE REVIEW 

2.1 Hydraulics of Two-layer Flow 

Among the f i r s t t h e o r e t i c a l analyses of two-layer flow were 

those of S c h i j f and Schonfeld (1953) and Stommel and Farmer 

(1953). They examined numerous examples including s a l t wedges, 

s a l t i n t r u s i o n i n estuaries and lock exchange flow. The 

analysis of S c h i j f and Schonfeld (1953) includes f r i c t i o n a l 

e f f e c t s i n the formulation of two-layer flow equations, but 

assumes n e g l i g i b l e surface shear and side wall shear stresses. 

They have also expanded the theory to lock exchange flow, s a l t 

wedges and s a l t i n t rusion i n an estuary, but focus p r i m a r i l y on 

turbulence and other d i f f u s i o n mechanisms. 

Subsequently, Wood (1968, 1970) also examined lock exchange 

flow and the i d e n t i f i c a t i o n of points of in t e r n a l hydraulic 

control. Wood (1968) i d e n t i f i e s two points of control for 

s t r a t i f i e d flows through a contraction: one at the point of 

minimum width and the other c a l l e d the point of v i r t u a l c o n t r o l . 

Both control points can be located again by s a t i s f y i n g the 

condition of the composite Froude number, G 2=l. Wood (1970) also 

looks at lock exchange flow but does not deal with f r i c t i o n . 

Lawrence (1985) presents additional work on two-layer flow 

with an emphasis on flow over an obstacle. A c l a s s i f i c a t i o n 

scheme was developed to i d e n t i f y regimes of steady two-layer 

flow and the location of int e r n a l hydraulic controls. 

Denton (1987) looks at locating and i d e n t i f y i n g hydraulic 
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controls and analyzes single layer flow including f r i c t i o n a l 

e f f e c t s and two-layer flow assuming n e g l i g i b l e f r i c t i o n by 

int e r n a l energy methods. Recently, Denton (1990) extended the 

work to u n i d i r e c t i o n a l three-layer flow over a hump and through 

a contraction and c l a s s i f i e s d i f f e r e n t flow regimes, each with 

a d i f f e r e n t set of locations for i n t e r n a l hydraulic cont r o l . 

2.2 Exchange Flow 

Exchange flow through a long s t r a i t was examined by Assaf 

and Hecht (1974) whereby the flow i s bounded by controls at 

either end of the s t r a i t . Their analysis models an enclosed 

basin by balancing f r i c t i o n , s a l t and mass through the s t r a i t . 

Results of the model are compared with observations made of the 

S t r a i t of Gibr a l t a r , the Bosphorus and the Bab e l Mandeb S t r a i t . 

Papers by Armi (1986) , Armi and Farmer (1986) and Farmer 

and Armi (1986) have presented i n t e r n a l hydraulic theory on 

exchange flows. In p a r t i c u l a r , g r a v i t a t i o n a l exchange flow of 

two f l u i d s of s l i g h t l y d i f f e r e n t density through a contraction 

has been examined by Armi and Farmer (1986). Armi and Farmer 

(198 6) examine maximal two-layer exchange flow through a 

contraction with barotropic flow, that i s q ^ s ^ , where q i s the 

volumetric flow rate, and also acknowledge the presence of the 

two control points, the narrowest section (throat) and the 

v i r t u a l control, separated by a region of s u b c r i t i c a l flow. In 

the absence of any barotropic component or any f r i c t i o n a l 

e f f e c t s , these two control points coalesce. 
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Farmer and Armi (1986) have presented d e t a i l e d exchange 

flow analysis for both flow over a s i l l and the combination of 

a s i l l and a contraction with application of the hydraulics of 

layered flows to f i e l d measurements of the S t r a i t of G i b r a l t a r . 

A considerable amount of f i e l d work and a p p l i c a t i o n of exchange 

flow theory was done by Armi and Farmer (1988) i n the S t r a i t of 

G i b r a l t a r and recently applied to a model of the S t r a i t . 

2.3 S t a b i l i t y and Mixing 

At the interface of two s t a t i c a l l y stable f l u i d s i s a 

horizontal shear which may generate i n s t a b i l i t i e s that cause 

mixing between the two layers. This process has been examined 

by many authors including Taylor (1931), Goldstein (1931), 

Turner (1973), Sherman, Imberger & Corcos (1978) and Thorpe 

(1987) . Koop and Browand (1979) studied some of the 

c h a r a c t e r i s t i c s of turbulence i n s t r a t i f i e d f l u i d s with emphasis 

on conditions which may approximate those found i n oceans. They 

also suggest an upper bound of turbulent mixing and conclude 

that the Richardson number, Reynolds number and Schmidt number 

a l l become important i n the analysis of turbulence. 

Lawrence (1985) presents work on two-layer flow with an 

emphasis on flow over an obstacle. He examines in t e r n a l 

hydraulic controls i n the flow as i t approaches an obstacle and 

also investigates the dynamics of mixing of the two layers. The 

extent to which mixing occurs was examined by Lawrence (1989) 

and he poses the question, "Can mixing i n exchange flows be 
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predicted using i n t e r n a l hydraulics?". Lawrence states that an 

upper bound on the extent of mixing can be predicted from the 

i n t e r n a l hydraulics. 

A d e t a i l e d examination of the s t a b i l i t y Froude number, F A
2, 

was done recently by Lawrence (1990a) and he notes that i t i s of 

great s i g n i f i c a n c e i n the prediction of mixing i n two-layer 

flows. Lawrence, Browand & Redekopp (1990) discuss the 

s t a b i l i t y of a sheared interface s t a t i n g that i t i s fundamental 

to the generation of mixing i n s t r a t i f i e d flows and i s dependent 

on the v e l o c i t y and density differences of the flowing layers of 

f l u i d . Their t h e o r e t i c a l and experimental r e s u l t s are presented 

covering a more general study of i n t e r f a c i a l i n s t a b i l i t i e s and 

presented are s t a b i l i t y diagrams used i n the p r e d i c t i o n of 

wavelengths of both the Kelvin-Helmholtz and Holmboe modes of 

i n s t a b i l i t y . The shear at the interface leads to the formation 

of Kelvin-Helmholtz and Holmboe i n s t a b i l i t i e s which are also 

discussed by Thorpe (1987). 

2 .4 F r i c t i o n C o e f f i c i e n t s 

The dynamics of f r i c t i o n a l exchange flows involves an 

examination of the shear stresses on the walls and interface of 

s t r a t i f i e d flows which are mainly dependent on two c o e f f i c i e n t s 

of f r i c t i o n namely the wall f r i c t i o n c o e f f i c i e n t , f w , and the 

i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t , f j . Although evaluation of the 

wall f r i c t i o n c o e f f i c i e n t has been well documented (Henderson 

1966), there has proven to be great d i f f i c u l t i e s i n evaluating 
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the i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t . Often an order of 

magnitude estimate of, 10"3, i s used to quantify the c o e f f i c i e n t . 

Although methods of defining the i n t e r f a c i a l f r i c t i o n 

c o e f f i c i e n t were presented as early as 1953 by S c h i j f and 

Schdnfeld, there has been no conclusion as to which method i s 

most appropriate or i f any of the presented methods are adequate 

for c a l c u l a t i n g the c o e f f i c i e n t . A det a i l e d review and 

discussion of various authors' methods of determining the 

i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t are presented i n §7 a f t e r some 

of the pertinent theory has been discussed. 
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3. REVIEW OF HYDRAULIC THEORY 

3.1 Basic Assumptions 

The focus of t h i s analysis of layered flows i s based on the 

assumptions of steady two-dimensional, non-rotating, i n v i s c i d 

flow. The assumption i s also made that there i s n e g l i g i b l e free 

surface d e f l e c t i o n . There i s assumed to be no external forcing, 

f o r example, t i d a l l y driven flows, such that the exchange flow 

i s due to the density differences i n the two layers. The 

analysis focuses primarily on two-layer flows; however, 

extension to any number of layers has been formulated by others 

including Benton (1954), Baines (1988), and Denton (1990). I t 

i s useful here to begin by understanding the hydraulics of 

single layer flow before expanding to two-layer flow. Armi 

(1986) and Lawrence (1989) discuss the basic hydraulic theory 

involved i n two-layer flow; however, a review of some of the 

pertinent theory follows i n the next section. 

3.2 Equations of Motion 

Assuming steady flow, the motion of layered flows i s 

governed by 

(3.1) 
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and the continuity equation 

1 dQj =0 (3.2) 
b dx 

where j i s the number of layers (j=l for single layer flow), Pj 

i s the density of layer j , b i s the width of the flow, Qj i s the 

volumetric flow rate and Ej i s the mechanical energy per unit 

volume defined as 

where p i s the pressure, assumed hydrostatic, g i s the 

acceleration due to gravity, y j and Uj are the depth and the 

v e l o c i t y of layer j and n i s the number of layers considered. 

Although Equations 3.1 and 3.2 are one-dimensional, they can be 

applied to flow through a contraction provided the contraction 

i s gentle. 

3.3 Review of Froude Numbers 

Hydraulic flow i s t r a d i t i o n a l l y c l a s s i f i e d by the 

nondimensional Froude number that i s best introduced as a r a t i o 

of convective v e l o c i t y to phase speed. In single layer flow, a 

flow i s c l a s s i f i e d as s u b c r i t i c a l where the Froude number of the 

flow i s less than 1; s u p e r c r i t i c a l where the Froude number i s 

greater than 1; and the control point of the flow i s located 

where the Froude number has a value of 1. The control point i s 

( j = l.n) 
(3.3) 
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a t r a n s i t i o n point and provides a s t a r t i n g point required to 

study flows. Henderson (1966) gives a general d e f i n i t i o n of a 

hydraulic control as a point at which there i s a known 

depth-discharge re l a t i o n s h i p . An example of a control can be 

seen at a s l u i c e gate at which upstream flow i s s u b c r i t i c a l and 

downstream flow i s s u p e r c r i t i c a l ; here, the s l u i c e gate acts as 

a control device (Henderson, 1966). The Froude number i s 

evaluated by 

Fr2 = -Hi (3.4) 
gy 

This theory can e a s i l y be expanded to two-layer flow where the 

densimetric Froude number for each layer simply becomes 

Fl) = -4- (3.5) 
g'yj 

where g 1 i s the modified acceleration due to gravity; that i s , 

g'= eg and 8 i s defined by e = (p2~P]_)/P2' However, i n two-layer 

flow i t i s important to recognize a composite Froude number 

denoted G 2 and defined by Equation 3.6. 

G2 = Frl + Fr% - eFr?Fri (3.6) 

In t h i s case the s i n g u l a r i t y condition or control occurs where 

the composite Froude number, G 2=l analogous to Fr 2 = l i n single 

layer flow. T y p i c a l l y the Boussinesq approximation i s made that 
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e<l (of order 10°) such that Gl i s approximated by 

G2 = Frl + Frl (3.7) 

The l o c a t i o n of the control point i n a convergent-divergent 

channel for i n v i s c i d flows i s h i s t o r i c a l l y the narrowest point 

or throat of the channel (Armi and Farmer, 1986). V a r i a t i o n of 

the Froude numbers through a contraction i s best diagrammed on 

the Froude number plane as shown by Armi and Farmer (1986). The 

flow i s c r i t i c a l at the throat (G2=l) and on e i t h e r side of the 

control point or throat i s s u p e r c r i t i c a l flow (G2>1). 

In conjunction with G , three additional Froude numbers, 

F x
2, F E

2, and F A
2; the i n t e r n a l , external and s t a b i l i t y Froude 

numbers respectively, become important i n two-layer flow. 

Recall that the Froude number i s defined as the r a t i o of 

convective v e l o c i t y to the phase speed. This i s also applicable 

to the i n t e r n a l and external Froude numbers. The c e l e r i t y or 

c h a r a c t e r i s t i c v e l o c i t y of long waves both on the surface 

(external) and along the interface of two-layer flow (internal) 

i s a sum of a convective v e l o c i t y and a phase speed. Note that 

although the composite Froude number may determine the 

c r i t i c a l i t y of two-layer flow, i t cannot be defined as the 

single layer Froude number as i t i s not a r a t i o of convective 

v e l o c i t y to phase speed for both i n t e r n a l and external waves 

(Lawrence 1990a). 

Perhaps the most useful of these three Froude numbers i s 
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the s t a b i l i t y Froude number. I t can be regarded as the inverse 

of a bulk Richardson number and i s used i n quantifying the 

mixing layer thickness, the s t a b i l i t y of the flow and i t s 

s u s c e p t i b i l i t y to i n s t a b i l i t i e s at the interface. A fundamental 

re l a t i o n s h i p (Lawrence 1985, 1990a) exi s t s between these four 

Froude numbers given by: 

However, for exchange flow through a contraction, F E
Z ~ 0 from 

the assumption of n e g l i g i b l e free surface d e f l e c t i o n . Therefore 

the r e l a t i o n s h i p between the Froude numbers, Equation 3.8 i s 

reduced to the following. 

V a r i a t i o n of these three Froude numbers along the contraction 

for i n v i s c i d flows i s better understood by the i l l u s t r a t i o n 

shown i n Figure 1. Note that the location of the control i s the 

point at which G 2=l. For Boussinesq two-layer flows the external 

Froude number i s the same as the single layer Froude number 

(3.4) . The in t e r n a l Froude number (Lawrence 1985, 1990a) i s 

defined 

( 1 - G 2 ) = (1-Fl) (1-F2

E) ( 1 - F | ) (3.8) 

( 1 - G 2 ) = ( 1 - F | ) ( I - F J ) (3.9) 

uiV2

 + u

2Vi (3.10) 

where y = y i _ + y 2 • The sign i f i c a n c e of the s t a b i l i t y Froude number 

i s discussed further i n the following section. 
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3.4 The S t a b i l i t y Froude Number 

The i n t e r f a c i a l long wave s t a b i l i t y Froude number i s a 

representation of the strength of the v e l o c i t y shear across the 

interface of the two f l u i d layers. This s t a b i l i t y Froude number 

i s defined as: 

Fl = -AH! (3.11) 
g'y 

where A u = u^-u 2 and y i s the t o t a l depth of flow. I f f r i c t i o n a l 

e f f e c t s are ignored, Lawrence (1990b) has shown that F A
2=1 

throughout the channel i f the flow rate r a t i o , q r=l. However, 

taking into account the f r i c t i o n a l e f f e c t s reduces F A
2 

proportionally as the flow rates i n each layer are a c t u a l l y less 

than the t h e o r e t i c a l ideal values. 

Lawrence (1990a) notes from Equation 3.10, Long's s t a b i l i t y 

c r i t e r i o n for long int e r n a l waves, F A
2 < 1, must be s a t i s f i e d i n 

order for the int e r n a l Froude number to have r e a l values. 

Long's s t a b i l i t y c r i t e r i o n applies only to long i n t e r n a l waves, 

since the assumption of a hydrostatic pressure d i s t r i b u t i o n 

precludes the existence of short waves. To quote Long (1956), 

*If we abandon the hydrostatic assumption momentarily, we f i n d 

that s u f f i c i e n t l y short i n f i n i t e s i m a l waves are unstable for any 

shear. 1 Thorpe (1987) notes that the interface i s unstable to 

i n s t a b i l i t i e s even for F A
2<1 including the Kelvin-Helmholtz and 

Holmboe i n s t a b i l i t i e s . Note that the higher F A
2 the larger the 

i n s t a b i l i t i e s . 
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3 . 5 I n t e r f a c i a l I n s t a b i l i t i e s 

3 . 5 . 1 K e l v i n - H e l m h o l t z I n s t a b i l i t i e s 

T h e K e l v i n - H e l m h o l t z i n s t a b i l i t i e s a t t h e i n t e r f a c e o f t h e 

two f l u i d s c a u s e c o n s i d e r a b l e m i x i n g t o o c c u r . T u r n e r (1973) 

s t a t e s , "When a s u f f i c i e n t l y l a r g e s h e a r i s a p p l i e d a c r o s s a 

d e n s i t y i n t e r f a c e a n d i s s u c h t h a t t h e g r a d i e n t R i c h a r d s o n 

number f a l l s b e l o w a c r i t i c a l v a l u e o f a b o u t 0 . 2 5 , 

K e l v i n - H e l m h o l t z w a v e s w i l l g r o w a n d o v e r t u r n t o p r o d u c e p a t c h e s 

o f t u r b u l e n t m i x i n g . " Where t h e g r a d i e n t R i c h a r d s o n n u m b e r i s 

d e f i n e d , R i = N 2 / ( 3 u / d z ) 2 , a n d t h e b u o y a n c y f r e q u e n c y , 

N 2 = ( g / p ) ( d p / d z ) . T h i s m e c h a n i s m o f m i x i n g c a u s e s t h e p r o d u c t i o n 

o f i n t e r f a c i a l l a y e r s i n s t r a t i f i e d f l u i d s . W i l k i n s o n a n d Wood 

(1983) d e s c r i b e t h e K e l v i n - H e l m h o l t z i n s t a b i l i t y a s o n e w h i c h 

c o n v e r t s k i n e t i c e n e r g y o f l a r g e - s c a l e s h e a r f l o w s t o s m a l l e r 

d i s s i p a t i v e s c a l e s . 

T h e s e t h r e e - d i m e n s i o n a l d i s t u r b a n c e s e f f e c t i v e l y m i x m o s t 

o f t h e f l u i d t h a t i s e n t r a i n e d b y t h e K e l v i n - H e l m h o l t z b i l l o w s . 

A s a r e s u l t , maximum i n t e r f a c e t h i c k n e s s , <S m a x , c a n b e p r e d i c t e d . 

L a w r e n c e (1990b) p r e s e n t s a d i a g r a m s h o w i n g t h e r e l a t i o n s h i p o f 

<5m a x a n d F A

2 f o r t h e c a s e o f F A

2 = 0 ( 1 ) w h i c h i s t h e s i t u a t i o n 

c o n s i d e r e d h e r e . F u r t h e r c o n s i d e r a t i o n o f t h i s d i a g r a m i s made 

i n § 8 . 1 . 

V e l o c i t y a n d d e n s i t y p r o f i l e s a r e m o d e l l e d u s i n g t h e 

p i e c e w i s e l i n e a r a p p r o x i m a t i o n s shown i n F i g u r e 2 . Two l a y e r s 

a r e shown o f d i f f e r e n t d e n s i t i e s w i t h a d e n s i t y i n t e r f a c e 

t h i c k n e s s o f h . T h e s h e a r a t t h e i n t e r f a c e o f t h e two f l o w s 
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leads to the formation of Kelvin-Helmholtz and Holmboe type 

i n s t a b i l i t i e s . 

3 . 5 . 2 Holmboe I n s t a b i l i t i e s 

The Holmboe i n s t a b i l i t y was f i r s t studied by Holmboe (1962) 

and more recently by Browand and Winant (1973), Koop and Browand 

(1979), Smyth, Klaassen and P e l t i e r (1988) and Lawrence, Browand 

& Redekopp (1990). Although the occurrence of Kelvin-Helmholtz 

i n s t a b i l i t i e s have been well documented, there i s l i t t l e 

documented evidence of Holmboe i n s t a b i l i t i e s . The Holmboe mode 

of i n s t a b i l i t y i s known to dominate only i n the case where the 

v e l o c i t y and density interfaces are not displaced v e r t i c a l l y 

with respect to each other. Linear s t a b i l i t y theory predicts 

the formation of the Holmboe i n s t a b i l i t y when the gradient 

Richardson number exceeds a c r i t i c a l value of approximately 0.2 5 

(For further discussion see Smyth et a l , 1988 and 1989) . 

These i n s t a b i l i t i e s are depicted by a series of sharply 

cusped crests which protrude into each layer of f l u i d . Portions 

of the top of the cusps are occasionally torn away and become 

mixed with the layers of f l u i d flowing by. More f l u i d i s drawn 

up by these cusps as the Richardson number approaches zero 

ultimately forming Kelvin-Helmholtz billows. 
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4. THEORETICAL DEVELOPMENT 

4.1 Energy and Shear Stress 

Consider the Mechanical Energy per unit volume f o r each 

layer separately. 

E1 = PiffV + -jPiUi (4.1) 

E2 = pxgy + (p2-p1)gy2 + \ p 2 u % ( 4 - 2 ) 

Subtracting Equation 4.1 from 4.2 and d i v i d i n g by the unit 

weight of the lower layer, p2<?'/ gives us an equation f o r the 

int e r n a l energy head. For two-layer flow, the i n t e r n a l head i s 

obtained from 

EI = y2 + -—(u2 - ul) (4.3) 

si m i l a r to that of the t o t a l energy or Bernoulli equation for 

single layer flow given by Equation 4.4. 

E = y + -ii - ' (4.4) 

D i f f e r e n t i a t i n g Equations 4.1 and 4.2, the r e s u l t i s two 

simultaneous equations which when solved produce an equation for 

the slope of the interface. Denton shows these equations 

neglecting f r i c t i o n a l e f f e c t s . S c h i j f and Schonfeld include the 



19 

bottom and i n t e r f a c i a l shear stresses and assume n e g l i g i b l e side 

wall and surface shear stresses. They also state that t h e i r 

formulas are approximate, based on the assumption that e<l. 

In t h i s section the theory i s expanded to evaluate 

f r i c t i o n a l e f f e c t s caused by the surface, the side walls, the 

interface and the bottom surface. Energy losses due to f r i c t i o n 

are denoted by the shear stresses at the four surfaces 

respectively and can be represented by the following equations. 

Surface xs 

Walls xw 

Upper layer Interface xT1 

Lower layer Interface xXi 

Bottom xb 

For Boussinesq flows, p" i s estimated as p-̂  for the upper layer 

and p 2 for the lower layer. The convention has been adopted that 

the p o s i t i v e d i r e c t i o n of flow i s that of the upper layer such 

that | U ] _ | = U]_ and |u2|= -u 2. The shear stresses are defined 

diagrammatically i n Figure 3 by a sketch of an element of f l u i d 

from each layer. Introduced i n the shear stress equations are 

the f r i c t i o n c o e f f i c i e n t s where f s i s the surface f r i c t i o n 

c o e f f i c i e n t , f w i s the wall f r i c t i o n c o e f f i c i e n t and f1 i s the 

i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t . Note that throughout the 

- r - s P i u i K I 

-fwPjUi\Uj\ 

- f x " p ( A u ) 2 

f x p ( A u ) 2 

( 4 . 5 ) 

( 4 . 6 ) 

(4.8) 



analysis f w=f/8; so that conventionally f, the Darcy c o e f f i c i e n t , 

i s equivalent to 8 f w . Note that f1 does not acquire the same 

value as f w nor f s since the Darcy c o e f f i c i e n t would be d i f f e r e n t 

for the interface, the surface and the walls. Such formulations 

for the i n t e r f a c i a l shear and bottom shear are s i m i l a r to those 

presented by S c h i j f and Schonfeld (1953). We assume that the 

energy losses are due to these shear stresses on a l l the walls, 

the surface and at the interface of the two flows such that 

d E J = E t J ( 4 > 1 0 ) 

dx Aj dx 

where S i s the surface area and Aj i s the cross s e c t i o n a l area. 

The l e f t side of Equation 4.9 i s evaluated by d i f f e r e n t i a t i n g 

(4.1) and (4.2) for each layer respectively. The r i g h t side of 

(4.10) for each layer are evaluated by 

\XfS = - f w P i " i 4 - ^ i P i A u 2 - ^ - f . P ^ i 2 — (4.11) A1dx w 1 b 1 1 y1
 s 1 yx 

\XfS = fw?2ul\ * fiP2^2— + ^ P 2 " l — (4-12) A2dx w * b 1 z y2 y2 

with the shear stresses defined e a r l i e r i n Equations 4.5 - 4.9. 

4.2 Exchange Flow Through a Contraction 

The use of the one-dimensional equations (3.1 and 3.2) to 

multi-layer flows accounting for the shear stresses acting on 
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the i n t e r f a c i a l and boundary surfaces can be reduced to Equation 

4 .13 . 

C | X = D _|£ + S (4.13) 
ox ox 

For single layer flow 

u g u -g o V 
v = D = . o c f = 8 -

y u y. . o c 

and for two-layer flow 

0 sr 9 " l 0' 
0 U2 9 0 

Vi 0 " i 0 V = D = 0 Oi 
0 y 2 

0 U2. 0 °2. 

f = 
b-1 

2 1 

f „ u 2

2 ( - | + — ) + f j A u 2 -

0 
0 

Generally h s(x) are the bottom va r i a t i o n s i n topography, but are 

not considered i n the present study. Note the f r i c t i o n a l 

components appear only i n matrix S where f w , f j and f s are the 

wall, i n t e r f a c i a l and surface f r i c t i o n c o e f f i c i e n t s . 

Since Equation 4.13 i s quasi-linear, the dependent 

variables v x can be expressed as functions of the independent 

variables f x . Thus the following four equations are derived. 



2 2 

1 l - F | ( l ^ / y J 1 db 1 
ul dx 1-G2 b dx 1-G2. dx 

1 du2 \ i-^ 2K y v y 2 ) 1 db I-FI i dhg 

U2 dx l-G2 b dx . 1-G2 . 2̂ dx 

1 dyx _ G 2 - F | ( l + ^ / y i ) " l db ' Fl ' 1 dhs 

y i dx 1-G2 b dx 1-G2. 1̂ dx 

i dy2 G*-Fi(l+**/y2) 1 db 1 - F i 1 dhs 

y 2 dx 1-G2 b dx 1-G2 y 2 dx 

yi\ 

ASf 

1-G2 

1 
y 2 

A S f 

1-G 2 

1 A S , 

1-G2 

A S , 

1-G2 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Details of the derivation of Equation 4.17 as an example are 

given i n Appendix A. The f r i c t i o n slope, As f, which includes the 

wall, i n t e r f a c i a l , bottom, and surface f r i c t i o n , i s given by 

A S f = ASfw + ASfI + ASfb +ASfs 

that i s 

AS, 2f, 
-[Fly, * Fly2] + fxFl + f j r l + fsFl (4.18) 

where A s f = S f 2 ~ S f l and Sf! and S f 2 are the f r i c t i o n slopes for 

the upper and lower layers respectively. Note that the density 
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r a t i o , r=p^/p2 which i s also equivalent to 1-e. The Froude 

number, Fr, i s now denoted simply as F. 

I t i s useful here to examine the problem by looking at the 

i n t e r n a l energy head. The flow within the channel depends on 

the i n t e r n a l resistance equation from Henderson (1966). 

= - ASf (4.19) 
dx 

where S f can be termed the energy slope or f r i c t i o n slope. 

Substituting the i n t e r n a l energy head, Equation 4.3, into 

Equation 4.19, r e s u l t s i n an equation for the slope of the 

interface. 

dy^ S0 - A S , { A 2 Q ) 

dx l-G2 

where S Q here i s defined as a topographical slope a t t r i b u t a b l e 

in the present study to the v a r i a t i o n of width i n the channel 

and any v a r i a t i o n i n depth which i s considered n e g l i g i b l e here. 

Note that the form of the Equation 4.20 i s s i m i l a r to that 

derived i n Equation 4.17; therefore, expressions for both the 

topographical slope and the f r i c t i o n slope are determined with 

the f r i c t i o n slope given by Equation 4.18 and the topographical 

slope by Equation 4.21. 

SQ - (Fly2-rF?yi) A _g (4.21) 
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The singular points of Equation 4.20 occur again where the 

composite Froude number, G 2=l. Therefore the control points are 

found from the numerator of Equation 4.20 where 

Sa = A5 f (4.22) 

Two points of control are then i d e n t i f i e d ; one for and one for 

y 2 which occur at equal distances on opposite sides of the 

throat. For each experiment the control points were i d e n t i f i e d 

using the above formulation. 
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5. EXPERIMENTS 

5.1 Experimental Apparatus 

A two-layer g r a v i t a t i o n a l exchange of s a l t and fresh water 

through a convergent-divergent contraction i s modelled i n a 

3.7 x 1.1 x 0.3 m tank. The simplest configuration that 

incorporates both f r i c t i o n a l e f f e c t s and var i a b l e topography was 

constructed as a f i r s t step towards modelling natural 

configurations. Two reservoirs of approximately 500 l i t r e s are 

joined v i a a contraction which may be altered i n both width and 

curvature. Both the elevation and plan view of the apparatus 

are shown i n Figure 4. 

Each reservoir i s independently f i l l e d with f l u i d from the 

same source by i n s t a l l i n g a b a r r i e r i n the throat of the 

contraction. The density of the r i g h t r e s e r v o i r i s increased by 

di s s o l v i n g a known quantity of s a l t as well as fluorescein dye 

to d i f f e r e n t i a t e between the two flowing layers of f l u i d . 

I n i t i a l measurements are taken of the t o t a l water depth as 

well as the channel widths at the throat, channel end points and 

midway points between the throat and channel ends. These 

measurements are taken to ensure a width p r o f i l e s i m i l a r to the 

assumed p r o f i l e (discussed further i n §6) since the channel i s 

variable i n width along the entire channel length. The modified 

acceleration due to gravity, g', i s calculated knowing the s a l t 

content by weight and reservoir volume. Temperature 

measurements are also taken to a t t a i n a value f o r v i s c o s i t y 
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which i s required to calculate Reynold's numbers. 

The experiment i s conducted i n a darkened room with two 

s l i d e projectors mounted on the c e i l i n g above the contraction of 

the channel. Each projector contains a s l i d e which has mounted 

on i t two razor blades aligned with about only a 1 mm gap to 

allow for a t h i n sheet of l i g h t (approx. 3 or 4 mm at the water 

surface) to illuminate a two dimensional view of the flow i n the 

channel. Dissolving fluorescein dye i n the more dense layer 

produces a lower fluorescing "green" layer flowing leftward and 

a top c l e a r layer or "black" layer flowing r i g h t as shown by 

Figure 5. A photograph of the experimental apparatus i n shown 

in Figure 6. 

5.2 Experimental Procedure 

A f t e r preparation of the two reservoirs and allowing a 

b r i e f moment for the reservoirs to s e t t l e , the b a r r i e r at the 

throat i s removed. Due to the density gradient, the f l u i d i n 

the r i g h t r e s e r v o i r i s forced to flow under the l e s s dense f l u i d 

s e t t i n g up an exchange flow. I t may take up to a h a l f of a 

minute before the experiment becomes quasi-steady and the 

duration i s t y p i c a l l y approximately 10 minutes enabling 

s u f f i c i e n t time for measurements and photography to be done. 

Polystyrene beads are used as ne u t r a l l y buoyant p a r t i c l e s 

which are seen when they pass through the t h i n sheet of l i g h t 

projected through the layers of f l u i d . O r i g i n a l l y these beads 

are s l i g h t l y more dense than water ( s p e c i f i c gravity of 1.04) 
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and therefore sink when submersed. However a technique was 

developed to heat and expand the polystyrene beads so as to make 

them neu t r a l l y buoyant and hence suitable for experimental 

purposes. 

5.3 V e l o c i t y Measurements 

In order to obtain v e l o c i t y measurements, long exposures of 

3 or 4 seconds are taken i n which the polystyrene beads show up 

c l e a r l y as streaks on the photographs. An example photograph, 

Figure 7, shows the streaks from the beads i n both the upper and 

lower layers. Although t h i s proves worthy for obtaining 

i n d i v i d u a l v e l o c i t i e s at c e r t a i n depth locations, i t i s 

inadequate for producing v e l o c i t y p r o f i l e s throughout the depth 

of the flow because of i n s u f f i c i e n t beads passing through the 

single frame i n a p a r t i c u l a r instance. 

To obtain f u l l v e l o c i t y p r o f i l e s throughout the depth, a 

video camera i s use to record the experiment i n progress. Using 

an image processor, several images are captured i n sequence from 

the video tape over a known time span and v e l o c i t i e s are 

determined from the r e l a t i v e movement of i n d i v i d u a l beads 

throughout the depth of flow. Three examples of the v e l o c i t y 

p r o f i l e s obtained are shown i n Figures 8,9, and 10. To v a l i d a t e 

the assumption of steady flow, a long term analysis of the 

v e l o c i t i e s was done (Figure 11) which shows the startup, a 

period of quasi-steady flow for approximately 10 minutes and the 

uncontrolled l a t e r portions of the experiment. 
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6. NUMERICAL ANALYSIS 

6.1 The Numerical Model 

In order to evaluate the location of the control points and 

the i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t , a numerical spreadsheet 

model was developed using the hydraulic theory discussed i n §3 

along with §4. The channel p r o f i l e i s assumed to take on the 

shape represented by b'=exp(x') 2 with b 1 and x' being 

nondimensional channel width and length respectively defined by 

b'=b/bo and x'=x/2L, L i s the distance from the throat to the 

channel ends and bo i s the width at the narrowest point of the 

channel c a l l e d the throat. Therefore, the nondimensional channel 

width can be determined as a function of nondimensional channel 

length. Choosing an increment i n t e r v a l for the channel length, 

b 1 i s then determined at each of the increment points along the 

channel. The height of the interface at each of these points i s 

then evaluated by 

x<0 
(6.1) 

x>0 

where y 2' i s the nondimensional interface height. This equation 

i s adapted from Lawrence (1990b) assuming that the flow r a t i o , 

q r=l where q r = q^/q2 and q i s the flow per unit width. 



The t h e o r e t i c a l v e l o c i t y at the throat, u, i s calculated 

from Equations 3.5 and 3.7, assuming that u 1=-u 2 and y^=y2 at the 

throat so that the v e l o c i t y at the throat, u, for c r i t i c a l flow 

i s evaluated from Equation 6.2. 

However, t h i s r e s u l t s i n a t h e o r e t i c a l v e l o c i t y which ignores 

f r i c t i o n a l e f f e c t s . To compensate, t h i s v e l o c i t y i s reduced to 

allow for f r i c t i o n by using v e l o c i t i e s measured from photographs 

and analysed from the video tapes of each of the experiments. 

From the experimental data, a reduction c o e f f i c i e n t , k, i s 

determined to factor down the v e l o c i t y to correspond to the 

physical values measured such that the t h e o r e t i c a l v e l o c i t y i s 

equal to ku. P r o f i l e s taken from numerous experiments at 

d i f f e r e n t locations were plotted and a regression curve f i t to 

the data to evaluate the experimental v e l o c i t i e s and determine 

a value of the v e l o c i t y reduction c o e f f i c i e n t . A value of 

k = 0.74±0.05, equivalent to 74% of the t h e o r e t i c a l v e l o c i t y was 

determined to be appropriate. Both the v e l o c i t i e s across the 

channel as well as the v a r i a t i o n throughout the depth of the 

channel are considered i n determination of the v e l o c i t y 

c o e f f i c i e n t . 

The flow rate i s calculated using the v e l o c i t y , depth, and 

width at the throat. Subsequent v e l o c i t i e s downstream of the 

throat are then evaluated using the continuity equation. Froude 
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numbers for both layers are computed from Equation 3.5. Now a l l 

of the required data i s available for c a l c u l a t i n g the composite 

Froude number which determines the locations of the control 

points. 

To substantiate the assumption that the flow r a t i o of the 

two-layers, q r = q^/q2, i s indeed unity as prescribed f o r no 

external forcing, q r i s also evaluated. The s t a b i l i t y Froude 

number (Equation 3.11) evaluated at a l l locations i n the channel 

proved to be constant for each experiment. 

6.2 Evaluation of F r i c t i o n C o e f f i c i e n t s 

Due to discrepancies i n the l i t e r a t u r e as to the r e l a t i v e 

importance of d i f f e r e n t f r i c t i o n a l terms, i t i s necessary to use 

the experimental data to look at t h i s problem. A l l of the 

f r i c t i o n terms from Equation 4.18 are evaluated to examine the 

r e l a t i v e magnitude of each. Since a l l terms are within one 

order of magnitude, each of the terms are considered s i g n i f i c a n t 

enough to be included i n the analysis. 

Values for f w are calculated from the H. Blasius* s o l u t i o n for 

a f l a t plate boundary layer theory (Schlichting 1979) given by 

f 2.656 
f = (6.3) yfRex 

r e c a l l i n g that f w = f/8 and Re x i s the Reynolds number, 

Re = ux/v, using a length parameter, x, of the length of the 



contracted channel. Note that t h i s equation i s v a l i d for 

Re x < 5xl0 5 and since the Reynolds number, Re x, i s used, then the 

wall f r i c t i o n c o e f f i c i e n t , f w , i s a function of x. I t i s also 

important to r e a l i z e that the flow i s not f u l l y developed 

thereby the boundary layers do not extend throughout each layer. 

This i s good for examining the i n t e r f a c i a l stress since there 

w i l l be no interference from the wall stresses and the 

i n t e r f a c i a l stress can be determined more accurately. 

A constant, /3, i s introduced to r e l a t e the surface f r i c t i o n 

c o e f f i c i e n t to f w such that f s = /3fw. Since a value of /3 i s not 

determined experimentally, the numerical analysis i s done 

allowing for complete v a r i a b i l i t y of /3, 0</3<l. Once f w i s 

determined from the Blasius equation, the only remaining 

variable i s the i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t , fj_. 

6.3 Control Point Location 

Experimental data which include g', b 0, y Q, and u are used 

i n conjunction with the numerical spreadsheet model to determine 

the location of the control points on e i t h e r side of the throat 
• • • 9 • 9 • 

which s a t i s f y the s i n g u l a r i t y condition, G -1. F i r s t Ĝ  i s 
evaluated everywhere. Then each term of Equation 4.17 i s 

evaluated along the length of the channel to i d e n t i f y the 

l o c a t i o n at which Equation 4.17 i s s a t i s f i e d . In order to 

evaluate both the f r i c t i o n and topographical slopes, a l l three 

f r i c t i o n c o e f f i c i e n t s are needed. For each of the experiments 
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conducted the i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t can now 

determined by adjusting i t s value u n t i l the lo c a t i o n where S Q=S f 

corresponds to the location at which G 2=l. An example of the 

numerical spreadsheet i s given i n Appendix B. 

6.4 Interface P r o f i l e 

The interface p r o f i l e assumed for the analysis (Equation 

6.1) was derived from f r i c t i o n l e s s theory (Lawrence 1990b). An 

analysis i s done using the experimental data to attempt to 

reevaluate the p r o f i l e and the i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t . 

S t a r t i n g with Equation 4.20, a slope of the inter f a c e at 

the throat i s estimated from the experimental data. At the 

throat, the topographical slope, So=0 and height of the 

interface, y 2 l = %• Using the value of fj_ determined from the 

o r i g i n a l model as a f i r s t estimate, the slope of the interface 

can be reevaluated at the next increment of x and subsequently 

along the length of the channel. The i n i t i a l slope at the throat 

and fj are adjusted u n t i l S 0=S f at the point where G 2=l. 
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7. DISCUSSION ON THE INTERFACIAL FRICTION COEFFICIENT 

Although previous work suggests that the magnitude of the 

i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t i s small r e l a t i v e to the wall 

f r i c t i o n c o e f f i c i e n t , t h i s i s not necessarily the case as shown 

by the numerical work of which the r e s u l t s are discussed i n 

§8.3. In fact, from the numerical and experimental work the 

i n t e r f a c i a l f r i c t i o n i s of the same order of magnitude as the 

wall f r i c t i o n from the Blasius Equation. Bertelsen and Warren 

(1977) also state that the i n t e r f a c i a l shear stress has proved 

to be of greater importance than expected i n the movement of the 

lower layer. 

Dermisses and Partheniades (1984) summarized p r i o r 

prominent investigations of Keulegan (1949), Ippen and Harleman 

(1951), Abraham and Eysink (1971), and Lofquist (1960) and found 

that a wide discrepancy among graphical and a n a l y t i c a l equations 

for f j e x i s t . A f t e r applying some of these equations to the same 

problem, Dermisses and Partheniades found that f j may i n fact 

d i f f e r by orders of magnitude. There are also d i f f e r i n g 

opinions as to the appropriate dimensionless parameters to use 

i n c o r r e l a t i n g fj_. For example, Keulegan introduced as 

c r i t e r i o n , the Keulegan Number which i s a function of the 

Reynolds and Densimetric Froude numbers. Other authors have 

also taken t h i s approach including Macagno and Rouse (1962) as 

well as Shi-Igai (1965). However, Abraham and Eysink, Ippen and 

Harleman, and Lofquist a l l came to the conclusion that f j i s a 
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function of the Reynolds Number only, with Lofquist's and Ippen 

and Harleman's r e s u l t s being extremely s i m i l a r with f x = 139/Re 

(Lofquist) and f T = 140/Re (Ippen and Harleman). Grubert (1990) 

follows the work of Keulegan and Lofquist. Using data from the 

South Pass of the M i s s i s s i p p i River (arrested s a l t wedge 

situation) he concludes that f/8 = 0.012 R"1/4. Since f here i s 

the Darcy c o e f f i c i e n t then the i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t 

f x = 0.012 R"1/4 

Dermisses and Partheniades conducted experiments i n a 

rectangular duct and came to the conclusion that f j can best be 

correlated with the Reynolds number and a regular nondensimetric 

Froude number together as RF 2 as well as with the r e l a t i v e 

density difference, Ap/p. They present a family of curves based 

on these parameters which are i n close agreement with both t h e i r 

laboratory data and f i e l d data from the M i s s i s s i p p i estuary. 

E x p l i c i t l y expressed i s t h e i r conclusion that neither the 

densimetric Froude number nor the Reynolds numbers can be used 

as single c o r r e l a t i o n parameters. 

Eidnes (1986) presents a method for determining the 

i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t based on a Richardson number 

for pressure driven shear flow for a top stationary and a bottom 

flowing layer of f l u i d and suggests that f j = 2.63*10~ 3/ Ri 

where Ri i s a gradient Richardson number, Ri = g*y/Au 2. Note 

that t h i s Richardson number i s indeed the inverse of the 

s t a b i l i t y Froude number defined e a r l i e r (3.11) and that f x i s 



proportional to F A
Z which i s proportional to the height of the 

i n s t a b i l i t i e s which can be regarded as roughness. Eidnes states 

that the corresponding values for a bottom current are stated to 

be 1.6 times higher and s t i p u l a t e s that t h i s equation i s v a l i d 

only for Ri<10. 

Bertelsen and Warren (1977) suggest a value of f j = 0.001 

or approximately h a l f of the bed stress c o e f f i c i e n t , f w . This 

i s a r e s u l t of c a l i b r a t i n g data taken from the Danish Belts, 

applied to t h e i r computer simulation of two-layer flows. 

Di S i l v i o (1975) used a constant value for the Darcy c o e f f i c i e n t 

of 0.05 which i s equivalent to a f j value of 0.0062. C a l i b r a t i o n 

of t h i s c o e f f i c i e n t came from data of the Adige River i n N.E. 

I t a l y . 

Macagno (19 62) presents a more rigorous derivation for 

rectangular pipe flow of what he terms the resistance 

c o e f f i c i e n t based on density and v e l o c i t y p r o f i l e s and the 

geometry of the system. He derives an equation f o r t h i s 

s i t u a t i o n based on the hydraulic radius, Rh, the width, b, and 

the displacement thickness, 6", and the wetted perimeter, P. An 

attempt to correlate the resistance c o e f f i c i e n t with the Froude 

and Reynolds numbers was made; however, although a d e f i n i t e 

c o r r e l a t i o n was apparent, no d i s t i n c t i v e quantitative conclusion 

was drawn. 

Numerous Japanese authors have examined the f r i c t i o n 

c o e f f i c i e n t i n great d e t a i l . S t i l l many seem to agree with or 
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approve of e a r l i e r works done by Kaneko i n the early 1950's. 

Kaneko correlates the i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t with the 

Froude and Reynolds numbers as many others have subsequently 

done and introduces the parameter 7, where 7 = ReFr 2 and the 

i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t , fI=0.2Y"i!!. 

Georgiev (1990) states that f j should depend on the type of 

flow (bottom density current, arrested s a l t wedge or exchange 

flow), the Reynolds number and the s t a b i l i t y c h a r a c t e r i s t i c s 

quantified by a densimetric Froude number he defines by Fr'. 

Georgiev defines the Reynolds number, Re = u2Rh/v and the 

densimetric Froude number, Fr' = u 2
2/(g'Rh) where Rh i s the 

hydraulic radius with wetted perimeter that includes not only 

the walls and surface but also the interface. He also attempted 

to p l o t a r e l a t i o n of the i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t with 

Re and shows curves of constant Fr' that can be examined as 

curves of constant roughness. Recall that f j i s proportional to 

F A
2 which i s proportional to the i n s t a b i l i t y height which can be 

regarded as a roughness. Values of the i n t e r f a c i a l f r i c t i o n 

c o e f f i c i e n t from h i s data ranged from 0.0006 to 0.008. Using 

the r e l a t i o n plotted by Georgiev would suggest a value of f j i n 

the present study of approximately 0.004. 

Although many authors have used f i e l d data to a r r i v e at a 

value for the i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t and some also 

present formulas based on such data, i t i s s t i l l inconclusive as 

to how to cal c u l a t e such a c o e f f i c i e n t . The present objective 
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i s not to t r y to i d e n t i f y which of the methods are suitable for 

determining the i n t e r f a c i a l c o e f f i c i e n t , but rather to t e s t 

whether the r e s u l t s of the present study give values that are 

comparable to other methods previously published and perhaps 

present a numerical approach to c a l c u l a t i n g the i n t e r f a c i a l 

f r i c t i o n c o e f f i c i e n t . Therefore a comprehensive review was done 

using several of the above mentioned methods which are 

summarized i n Table I. 

Table I: Summary of I n t e r f a c i a l F r i c t i o n C o e f f i c i e n t s 

Author Formulation Conditions 

Ippen f l - 140/Re Laminar underflows 

Grubert f l = 0.012 Re"5* S t r a t i f i e d estuaries 
and fjords 

Eidnes f l = 4.21(10" 3)/Ri Bottom flowing layer 
Ri < 10 

Macagno f l = 4g'/u 2 (Rh-b<S/4P) Pipe flow 
Experimental 

Kaneko f l = 0.2 ill"*4 S a l t wedge 
Experimental 

A graph showing these various c o e f f i c i e n t s i s plotted as a 

function of Reynold's Number (Figure 12). Shown are values 

calculated from the 5 equations given i n Table I using data from 

several of the experiments conducted, constant values suggested 

by Di S i l v i o and Georgiev, along with the experimental values 
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determined from the numerical model. I t i s i n t e r e s t i n g to note 

i n Table I that Grubert's equation i s based on f i e l d data and 

the others equations on experimental data. The r e s u l t s of using 

h i s equation give the largest values for the i n t e r f a c i a l 

f r i c t i o n c o e f f i c i e n t . Perhaps t h i s i s due to the use of f i e l d 

data which would imply larger Reynolds numbers i n the f i e l d as 

opposed to the laboratory and t h i s would be r e f l e c t e d i n h i s 

c o r r e l a t i o n . 
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8. RESULTS AND DISCUSSION 

8.1 Hydraulic Solutions 

The s t a b i l i t y Froude number i s v i t a l to the analysis of 

exchange flows and with the in c l u s i o n of f r i c t i o n a l e f f e c t s i t 

i s found that F A
2<1. Since t h i s i s the case, Long's s t a b i l i t y 

c r i t e r i o n i s s a t i s f i e d f or long i n t e r n a l waves and confidence 

can be placed i n the in t e r n a l hydraulic theory. 

Using experimental data from Experiment #18 reveals the 

r e l a t i o n of the three pertinent Froude numbers: the composite 

Froude number, the in t e r n a l Froude number and the s t a b i l i t y 

Froude number (see Figure 13). The Froude numbers are 

calculated using Equations 3.7, 3.10, and 3.11 respectively and 

plotted against the nondimensional length of the contracted 

channel, x'. Notice that F A
2 i s constant throughout the channel 

length and the control point i s located where G 2=l which 

coincides with Fj_ 2=l. These values are calculated assuming a 

v e l o c i t y reduction or flow r a t i o of experimental values to 

f r i c t i o n l e s s theory (Equation 6.2), of k = 0.74. 

A comparison p l o t of Equation 6.1, the calculated 

t h e o r e t i c a l height of the interface, and the height of the 

interface measured from various experiments i s given i n Figure 

14. Although good agreement can be seen near the channel ends, 

there i s some deviation from the t h e o r e t i c a l values j u s t on 

either side of the throat. Given the d i f f i c u l t y i n determining 

the p o s i t i o n of the interface due to movement and the presence 



of i n s t a b i l i t i e s , these values match the f r i c t i o n l e s s p r o f i l e 

remarkably well. 

Reevaluation of the interface p r o f i l e using Equation 4.20 

to include f r i c t i o n a l e f f e c t s reveals l i t t l e d ifference i n the 

shape of the p r o f i l e and does not appear to improve the match of 

the experimental data either. A p l o t of both the f r i c t i o n l e s s 

and reevaluated f r i c t i o n a l p r o f i l e s i s shown i n Figure 15a along 

with the v a r i a t i o n of So, Sf, and 1-G2 i n Figure 15b. With 

f r i c t i o n a l e f f e c t s included i n reevaluation of the p r o f i l e , the 

lo c a t i o n of the control points were pushed farther along the 

channel close to the channel ends. Entrance and e x i t e f f e c t s 

may explain some of the discrepancy between the model and the 

experimental data. Refinement of the experimental p r o f i l e 

through more exact data c o l l e c t i o n may be needed before a 

precise experimental p r o f i l e can be assumed. 

The long term v a r i a t i o n of the interface height at the 

throat taken from photographs and video recordings i s shown i n 

Figure 16. Although t h e o r e t i c a l l y the interface height at the 

throat, y 2
1 , i s assumed to be %, there appears to be an 

o s c i l l a t i o n about the mid-depth. I t i s not c l e a r as to the 

cause of these deviations; however, i t i s proposed that they may 

be caused by the apparatus i t s e l f by a period of "rebound" or 

c i r c u l a t i o n which i s a function of the s i z e of the end 

reservoirs. 
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8.2 Flow v i s u a l i z a t i o n 

The use of s l i d e projectors to a t t a i n a two-dimensional 

image of the two-layer flow experiment was extremely successful. 

Photographs of the experiment resulted i n good v i s u a l i z a t i o n of 

both the Kelvin-Helmholtz and Holmboe i n s t a b i l i t i e s at the 

interface. Several series of photographs are shown i n Figures 

17 through 21. Growth and development of Kelvin-Helmholtz 

billows can be seen i n Figures 17, 18, and 19. In Figure 17 

(Experiment #19), the throat i s located on the l e f t edge of the 

r u l e r v i s i b l e near the center of the photographs. The series of 

photographs i n Figure 18 taken from Experiment #24 show a 

t r a n s i t i o n from a f a i r l y smooth interface to the development of 

much turbulence at the interface. The photographs are taken of 

the l e f t channel with the throat located at the edge of the 

r u l e r on the r i g h t side on the photographs. Again the growth of 

Kelvin-Helmholtz billows i s shown i n Figure 19 (Experiment #25) 

showing a series of photographs taken of the channel to the l e f t 

of the throat. 

A series of both Kelvin-Helmholtz and Holmboe i n s t a b i l i t i e s 

can be seen i n Figure 2 0 photographed centered at the throat of 

the channel from Experiment #21. The development of Holmboe 

i n s t a b i l i t i e s are shown i n Figure 21 beginning with a single 

cusp and the l a s t photograph showing 4 cusps. D i s t i n c t 

wavelengths of the Holmboe mode are taken from these 

photographs. 



A f i n a l interface thickness was obtained from the 

photographs and video recordings of the experiments. Figure 22, 

o r i g i n a l l y presented by Lawrence (1990b), i s shown with several 

data points from the present study added. As best as can be 

determined, S m a x'=0.15±0.05, but varies for each experiment. 

V a r i a t i o n of the dimensionless maximum interface thickness o*'max 

with the s t a b i l i t y Froude number are shown i n Figure 22 with 

l i n e s i n d i c a t i n g values of the bulk Richardson number, 

J = g'S/Au2. 

A photograph of the interface thickness i s shown i n 

Figure 2 3 taken from Experiment #23 with the throat at the r i g h t 

side of the photograph. The interface thickness can also 

c l e a r l y be seen i n the long exposure photograph (Figure 7). 

Wavelengths of both the Holmboe and Kelvin-Helmholtz modes 

of i n s t a b i l i t y are measured from photographs of the experiments. 

A photograph showing wavelengths of Kelvin-Helmholtz mode i s 

given i n Figure 24. These wavelengths and calculated values of 

the s t a b i l i t y parameters are given i n Table I I . 
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Table I I . Calculated S t a b i l i t y Parameters 

Exp # h J A. a 
(cm) (cm) 

18 3.20 0.20 18.0 1.12 
19 3.70 0.23 17.0 1.37 
20 3.50* 0.22 18.2 1.21 
21 3.50* 0.22 16.4 1.34 
22 3.53 0.22 21.1 1.05 
23 3.53 0.22 29.3 0.76 
24 3 .80* 0.23 29.4 0.81 
25 3.80* 0.23 33.1 0.72 

* Estimated from Video Recordings or Photographs 

J=g'h / ( A u ) 2 

a=2n/\ 
A=average wavelength for experiment 

Koop and Browand (1979) determined a value of J=0.32 from t h e i r 

experiments. Note that the value of J i n the present study 

varies from 0.20 to 0.23 with Reynold's numbers being larger 

than (6 to 8 times) those of Koop and Browand*s experiments. 

However, Koop and Browand (1979) also state that the maximum 

Richardson number decreases to as l i t t l e as 0.15 with increasing 

i n i t i a l Richardson numbers. 

Figure 25 i s a s t a b i l i t y diagram plotted by Lawrence, 

Browand & Redekopp (1990) where a here i s the i n s t a b i l i t y wave 

number, a = kh, k = 2TT/X, and A i s the wavelength. Additional 

explanation of the s t a b i l i t y diagram i s given by Lawrence et a l 

(1990). Also shown on the diagram are the wavelengths measured 
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from the experiments. Note that a l l of the data points l i e 

within the region predicting the i n s t a b i l i t i e s . The p o s s i b i l i t y 

of p a i r i n g of the billows might explain the higher values of X 

and therefore lower values of a which i s consistent with the 

points p l o t t e d i n Figure 25. 

Although photographs were used to i n i t i a l l y obtain v e l o c i t y 

p r o f i l e s , using a video recording of the experiment proved to be 

the more complete and accurate method of obtaining v e l o c i t y 

p r o f i l e s . An example long exposure photograph showing the 

streaks l e f t by the beads used for v e l o c i t i e s was shown i n 

Figure 7. 

8.3 I n t e r f a c i a l F r i c t i o n C o e f f i c i e n t 

From the experimental and numerical work conducted i t i s 

shown that f o r the s i t u a t i o n of exchange flow, the i n t e r f a c i a l 

f r i c t i o n c o e f f i c i e n t i s of the same order of magnitude and 

several times larger than the wall f r i c t i o n . On average, the 

i n t e r f a c i a l f r i c t i o n , fI=0.0088 for /J=1.0 and as high as 0.0096 

for /3=0. The v a r i a t i o n of a, where a=fj/f w, with the v e l o c i t y 

c o e f f i c i e n t , k, determined numerically from the data of 

Experiment #22 i s shown i n Figure 26 allowing for three surface 

conditions of (3: 0, 0.5 and 1. The s i g n i f i c a n c e of the surface 

f r i c t i o n i s small as can be seen by the r e l a t i v e difference of 

the three curves. Values of both the i n t e r f a c i a l f r i c t i o n and 

wall f r i c t i o n c o e f f i c i e n t s along with additional experimental 

data for a l l experiments are given i n Table I I I . 
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Table Hf: Experimental Data and F r i c t i o n C o e f f i c i e n t s 

v e l • u 
Exp 
# 

bo 
cm 

y 
cm 

g' 
cm/s 2 

Eg.6.3 
cm/s 

exp 
cm/s 

Rh 
cm 

Re 
(Rh) 

Re 
(x) 

f fw 
f/8 

f l 

1 10. 2 16. 8 2 .48 3. 23 2.39 3 .17 2316 18246 0. 020 0 .0025 0 .0047 
2 10. 0 26. 1 1.85 3. 47 2.57 3 .61 2834 19602 0. 019 0 .0024 0 .0082 
3 5. 5 27. 8 1.50 3. 23 2.39 2 .30 1676 18246 0. 020 0 .0025 0 .0093 
4 5. 5 28. 6 1.51 3. 29 2.43 2 .31 1715 18585 0. 019 0 . 0024 0 .0094 
5 10 . 6 28 . 2 1.26 2 . 98 2.21 3 .85 2594 16834 0. 020 0 .0026 0 .0088 
6 10. 6 26. 0 0.99 2 . 70 2.00 3 .77 2297 15252 0. 022 0 .0027 0 .0093 
7 10. 5 29 . 5 0 . 99 2. 70 2.00 3 .87 2362 15252 0. 022 0 .0027 0 .0093 
8 10. 5 29. 5 0.86 2 . 52 1.86 3 .87 2205 14235 0. 022 0 .0028 0 .0096 
9 10. 3 29. 5 0.94 2 . 64 1.95 3 .82 2277 14913 0. 022 0 .0027 0 .0094 

10 10. 1 29 . 3 1.10 2 . 85 2.11 3 .76 2418 16099 0. 021 0 .0026 0 .0094 
11 10. 1 29. 6 1.53 3. 37 2.49 3 .77 2867 19037 0. 019 0 .0024 0 .0096 
13 10. 4 29. 5 0.94 2. 64 1.95 3 .84 2293 14913 0. 022 0 .0027 0 .0095 
14 10. 3 29. 7 0.94 2. 64 1.95 3 .82 2281 14913 0. 022 0 .0027 0 .0095 
15 10. 3 29. 7 0.94 2. 64 1.95 3 .82 2281 14913 0. 022 0 .0027 0 .0095 
16 10. 5 29 . 6 1.05 2 . 78 2.06 3 .88 2434 15704 0. 021 0 .0026 0 .0097 
18 10. 4 29 . 6 1.02 2. 74 2.03 3 .85 2382 15478 0. 021 0 .0027 0 . 0097 

V i s c o s i t y = 1.31 (10- 2) cm/s 2 (10 C) 

19 10.7 29 . 6 1 .46 3 .29 2 .43 3 .93 2676 17025 0. 020 0 .0025 0 .0101 
20 10.6 29 .5 1 .29 3 .09 2.29 3 .90 2494 15990 0. 021 0 .0026 0 .0100 
21 10.6 29 .5 0 .98 2 .69 1.99 3 .90 2171 13920 0. 023 0 .0028 0 . 0098 

V i s c o s i t y = 1 .43 (10--2) cm/s2 (7 C) 

22 10.4 28 .8 1 .77 3 .57 2.64 3 .82 4037 18474 0. 020 0 .0024 0 .0099 
23 10.4 29 .4 1 .77 3 .57 2.64 3 .84 4059 18474 0. 020 0 .0024 0 .0102 
24 10 . 5 29 . 6 1 . 72 3 .57 2 . 64 3 .88 4095 18474 0 . 020 0 .0024 0 .0103 
25 10 . 5 29 . 6 1 .72 3 .57 2.64 3 .88 4095 18474 0. 020 0 .0024 0 . 0103 

V i s c o s i t y = 1 . 00 (10--2) cm/s2 (21 C) 

E x p e r i m e n t a l v e l o c i t i e s are 74% of t h e o r e t i c a l 

The f u l l w e tted p e r i m e t e r has been i n c l u d e d 

f = 2.656/sqrt(Rex) W a l l f r i c t i o n f a c t o r (Eq. 6.3) 
fw = f/8 S t a n d a r d i z e d w a l l f r i c t i o n f a c t o r 
b e t a = 0 
Re(Rh) = 4Rh u / v i s c o s i t y Reynolds number based on h y d r a u l i c r a d i u s 
Re(x) = u L / v i s c o s i t y Reynolds number based on c h a n n e l l e n g t h 



Note that the value of f j for experiment #1 i s lower than that 

of the other experiments. This i s due to the shallow depth of 

t h i s experiment which r e s t r i c t s growth of the billows and hence 

lowers the e f f e c t i v e roughness and r e s u l t s i n a lower f j . 

A t h e o r e t i c a l r e l a t i o n between k and a was derived using 

conditions at the throat. Although t h i s i s may not be 

appropriate f o r the whole channel, i t provides a good f i r s t 

estimate of the value of the i n t e r f a c i a l f r i c t i o n factor. 

Figure 27 show the t h e o r e t i c a l curves calculated. Note again 

the small difference i n the three curves for the e n t i r e range of 

f3 i n d i c a t i n g that the surface f r i c t i o n has l i t t l e impact on the 

determination of the i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t . Details 

of the t h e o r e t i c a l derivation are given i n Appendix C. A 

comparison p l o t of the t h e o r e t i c a l and experimental r e l a t i o n 

between k and a i s shown i n Figure 28 for the case, /3=0. 

Although some previous authors have elected to ignore or 

assume very small values for the i n t e r f a c i a l f r i c t i o n i n the 

theory of layered flows, i t i s shown by the numerical and 

experimental work that i t i s pertinent to the theory and should 

be included i n any analysis. 

8.4 Control Point Location 

With estimates of the i n t e r f a c i a l , wall, and surface 

f r i c t i o n c o e f f i c i e n t s , the hydraulic equations derived can be 

used to help locate the control points of a two-layer exchange 

flow. A f t e r determining the location of the controls f o r each 



experiment from the numerical model using a f r i c t i o n l e s s 

i nterface p r o f i l e as discussed i n §6, i t was found that the 

controls were located between x'=±0.40 and x'=±0.45. However, 

a f t e r reevaluation of the interface to include f r i c t i o n the 

controls were located within the v i c i n i t y of the ends of the 

contraction (x'=±0.55). Depending on the v e l o c i t y reduction 

c o e f f i c i e n t , k, that was used, the location of the controls 

varies within t h i s region. A f t e r examining the v e l o c i t y 

p r o f i l e s both across the width of the channel and throughout the 

depth of the channel, a value of k=0.74±0.05 was found to be 

appropriate. For k=0.74, the controls were located at x'=±0.51 

(f^O.0104, Exp. #18) and for k=0.70, x'=±0.68 (f I=0.0130). 

With the consideration of f r i c t i o n a l e f f e c t s , the control 

points of an exchange flow do not occur at the narrowest section 

as suggested by i n v i s c i d theory but l i e on e i t h e r side of the 

throat and perhaps at the ends of the contraction. S t i l l the 

controls must s a t i s f y the s i n g u l a r i t y condition G =1 and are 

separated by a region of s u b c r i t i c a l flow. The r e l a t i o n of the 

control points and the composite Froude number i s diagrammed i n 

Figure 29 calculated from Experiment #5. I l l u s t r a t e d are the 

two control points on either side of the throat separated by a 

region of s u b c r i t i c a l flow (G2<1) . At the two controls, the 

composite Froude number takes on a value of unity. Beyond the 

control points, the flow becomes s u p e r c r i t i c a l (Figure 29a). A 

t h e o r e t i c a l interface p r o f i l e along the channel i s shown i n 

Figure 29b. The Froude number plane showing the l o c a t i o n of the 
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control points (b c) and the throat (b Q) r e l a t i v e to the Froude 

numbers for each layer i s given i n Figure 29c. 
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9. CONCLUSION 

The i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t i s of great importance 

to the analysis of layered flows e s p e c i a l l y i n the lo c a t i n g of 

the hydraulic controls. The addition of f r i c t i o n a l 

considerations moves the t h e o r e t i c a l l o c a t i o n of the control 

points away from the throat of the contraction. For the 

experiments conducted the control points were calculated to be 

located i n the v i c i n i t y of the ends of the contraction. A value 

of 0.74±0.05 for the v e l o c i t y reduction c o e f f i c i e n t was 

determined from the data analyzed and resulted i n an average 

i n t e r f a c i a l f r i c t i o n factor of 0.0096 (j0=O) and 0.0088 ((3=1.0) 

using a f r i c t i o n l e s s interface p r o f i l e . These values increase 

with the use of the f r i c t i o n a l p r o f i l e by approximately 7%. 

The a b i l i t y to obtain good flow v i s u a l i z a t i o n both through 

photographs and video recordings has d e f i n i t e l y proven worthy i n 

order to obtain more accurate data for t e s t i n g the hydraulic 

theory. V i s u a l i z a t i o n of the interface provides data for better 

understanding as well as additional observation of the 

phenomenon of both the Kelvin-Helmholtz and Holmboe 

i n s t a b i l i t i e s . The t h e o r e t i c a l p r o f i l e (Equation 6.1) i s shown 

to be adequate i n estimating the height of the interface along 

the channel. 

Measurements of the maximum interface thickness are found 

to agree with the v a r i a t i o n of the thickness and the s t a b i l i t y 

Froude number presented by Lawrence (1989) . As well, the 

measurements made of the i n s t a b i l i t y wavelengths found i n the 



experiments l i e within the predicted region of i n t e r f a c i a l 

i n s t a b i l i t y occurrence given by Lawrence et a l (1990). 
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10. RECOMMENDATIONS 

The use of a larger f a c i l i t y with a more f l e x i b l e apparatus 

may help to obtain additional data p a r t i c u l a r l y f o r higher 

Reynold's numbers to further examine the hydraulic theory. As 

well, additional f i e l d data i s needed to t e s t the theory i n 

large scale s i t u a t i o n s . 

A more extensive review of ex i s t i n g data on the i n t e r f a c i a l 

f r i c t i o n c o e f f i c i e n t i s s t i l l needed. To a t t a i n and assemble 

together a l l e x i s t i n g data to t r y and achieve some sort of 

co r r e l a t i o n i n the re s u l t s may be necessary. An emphasis may 

include f i e l d data and categorization of d i f f e r e n t types of flow 

and the r e s u l t i n g i n t e r f a c i a l f r i c t i o n c o e f f i c i e n t s . 

I t i s d i f f i c u l t to obtain an accurate p r o f i l e of the 

interface along the entir e channel due to i t s length. A more 

precise method of obtaining t h i s p r o f i l e i s needed to r e f i n e the 

analysis i f increased accuracy i s required. I t i s suggested 

that v e r t i c a l p r o f i l e s of the density be taken using 

conductivity probes at multiple location along the channel. 

Va r i a t i o n of f w along the channel, as a constant value was 

assumed may also help to increase the accuracy of r e s u l t s . 

The analysis may be approached by assuming the controls of 

the experiment occur at the ends of the contraction and 

calcul a t e i n toward the throat. This requires the slope of the 

interface at the control points and hence the use of L'Hopital's 

ru l e to d i f f e r e n t i a t e Equation 4.20 which i s beyond the scope of 

the present study. 
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APPENDIX B 

EXPERIMENTAL CALCULATIONS FOR EXPERIMENT # 18 

Experimental Data 

= 2.03 cm/sec Uth = 2.74 cm/sec r = 0.9989 
1 - 10.4 cm k = 0.74 epsi = 0.0010 

29.6 cm 
1.02 cm/s2 fw = 0.0027 

) - 30.0 cm2/sec fi = 0.0097 
alpha = 3.6 

= 312 cm3/sec xinc = 0.01 

X' b' yl' y2' yi y2 b ul u2 Flsq F2sq Gsq Fdsq So fw fi Sf So-Sf 
terms terms 

0.00 1 0.50 0.50 14.80 14.80 10.4 2.03 2.03 0.27 0.27 0.545 0.54 0.0000 0.0007 0.0211 0.0219 0.0219 
0.01 1.000 0.50 0.50 14.95 14.65 10.40 2.01 2.05 0.26 0.28 0.545 0.54 0.0000 0.0007 0.0211 0.0219 0.0219 
0.02 1.000 0.51 0.49 15.10 14.50 10.40 1.99 2.07 0.26 0.29 0.546 0.54 0.0001 0.0008 0.0211 0.0220 0.0220 
0.03 1.000 0.51 0.49 15.24 14.36 10.40 1.97 2.09 0.25 0.30 0.547 0.54 0.0001 0.0008 0.0211 0.0220 0.0219 
0.04 1.001 0.52 0.48 15.39 14.21 10.41 1.95 2.11 0.24 0.31 0.548 0.54 0.0003 0.0009 0.0212 0.0221 0.0219 
0.05 1.002 0.52 0.48 15.54 14.06 10.42 1.93 2.13 0.23 0.32 0.550 0.54 0.0004 0.0009 0.0212 0.0222 0.0218 
0.06 1.003 0.53 0.47 15.69 13.91 10.43 1.91 2.15 0.23 0.33 0.553 0.54 0.0006 0.0010 0.0212 0.0223 0.0217 
0.07 1.004 0.53 0.47 15.83 13.77 10.45 1.89 2.17 0.22 0.34 0.555 0.54 0.0008 0.0011 0.0212 0.0223 0.0216 
0.08 1.006 0.54 0.46 15.98 13.62 10.46 1.87 2.19 0.21 0.35 0.559 0.54 0.0010 0.0011 0.0213 0.0224 0.0214 
0.09 1.008 0.54 0.46 16.13 13.47 10.48 1.85 2.21 0.21 0.36 0.562 0.54 0.0013 0.0012 0.0213 0.0225 0.0213 
0.10 1.010 0.55 0.45 16.28 13.32 10.50 1.83 2.23 0.20 0.37 0.567 0.54 0.0016 0.0012 0.0213 0.0226 0.0211 
0.11 1.012 0.55 0.45 16.42 13.18 10.52 1.81 2.25 0.19 0.38 0.571 0.54 0.0019 0.0013 0.0214 0.0227 0.0208 
0.12 1.014 0.56 0.44 16.57 13.03 10.55 1.79 2.27 0.19 0.39 0.576 0.54 0.0023 0.0013 0.0214 0.0228 0.0206 
0.13 1.017 0.56 0.44 16.72 12.88 10.57 1.77 2.29 0.18 0.40 0.582 0.54 0.0027 0.0014 0.0215 0.0229 0.0203 
0.14 1.019 0.57 0.43 16.86 12.74 10.60 1.75 2.31 0.18 0.41 0.588 0.54 0.0031 0.0015 0.0215 0.0231 0.0200 



0.15 1.022 0.57 0.43 17.01 12.59 10.63 
0.16 1.025 0.58 0.42 17.15 12.45 10.66 
0.17 1.029 0.58 0.42 17.30 12.30 10.70 
0.18 1.032 0.59 0.41 17.44 12.16 10.74 
0.19 1.036 0.59 0.41 17.59 12.01 10.78 
0.20 1.040 0.60 0.40 17.73 11.87 10.82 
0.21 1.045 0.60 0.40 17.87 11.73 10.86 
0.22 1.049 0.61 0.39 18.02 11.58 10.91 
0.23 1.054 0.61 0.39 18.16 11.44 10.96 
0.24 1.059 0.62 0.38 18.30 11.30 11.01 
0.25 1.064 0.62 0.38 18.44 11.16 11.07 
0.26 1.069 0.63 0.37 18.58 11.02 11.12 
0.27 1.075 0.63 0.37 18.72 10.88 11.18 
0.28 1.081 0.64 0.36 18.86 10.74 11.24 
0.29 1.087 0.64 0.36 19.00 10.60 11.31 
0.30 1.094 0.65 0.35 19.14 10.46 11.37 
0.31 1.100 0.65 0.35 19.28 10.32 11.44 
0.32 1.107 0.66 0.34 19.42 10.18 11.52 
0.33 1.115 0.66 0.34 19.55 10.05 11.59 
0.34 1.122 0.67 0.33 19.69 9.91 11.67 
0.35 1.130 0.67 0.33 19.83 9.77 11.75 
0.36 1.138 0.67 0.33 19.96 9.64 11.83 
0.37 1.146 0.68 0.32 20.09 9.51 11.92 
0.38 1.155 0.68 0.32 20.23 9.37 12.01 
0.39 1.164 0.69 0.31 20.36 9.24 12.10 
0.40 1.173 0.69 0.31 20.49 9.11 12.20 
0.41 1.183 0.70 0.30 20.62 8.98 12.30 
0.42 1.192 0.70 0.30 20.75 8.85 12.40 
0.43 1.203 0.71 0.29 20.88 8.72 12.51 
0.44 1.213 0.71 0.29 21.01 8.59 12.62 
0.45 1.224 0.71 0.29 21.14 8.46 12.73 
0.46 1.235 0.72 0.28 21.26 8.34 12.85 
0.47 1.247 0.72 0.28 21.39 8.21 12.97 

1.73 
1.71 
1.69 
1.67 
1.65 
1.63 
1.61 
1.59 
1.57 
1.55 
1.53 
1.51 
1.49 
1.47 
1.45 
1.43 
1.41 
1.40 
1.38 
1.36 
1.34 
1.32 
1.30 
1.28 
1.27 
1.25 
1.23 
1.21 
1.19 
1.18 
1.16 
1.14 
1.12 

2.33 
2.35 
2.37 
2.39 
2.41 
2.43 
2.45 
2.47 
2.49 
2.51 
2.53 
2.55 
2.57 
2.58 
2.60 
2.62 
2.64 
2.66 
2.68 
2.70 
2.72 
2.73 
2.75 
2.77 
2.79 
2.81 
2.83 
2.84 
2.86 
2.88 
2.90 
2.91 
2.93 

0.17 
0.17 
0.16 
0.16 
0.15 
0.15 
0.14 
0.14 
0.13 
0.13 
0.12 
0.12 
0.12 
0.11 
0.11 
0.11 
0.10 
0.10 
0.09 
0.09 
0.09 
0.09 
0.08 
0.08 
0.08 
0.07 
0.07 
0.07 
0.07 
0.06 
0.06 
0.06 
0.06 

0.42 0.594 
0.43 0.601 
0.45 0.609 
0.46 0.616 
0.47 0.625 
0.49 0.634 
0.50 0.643 
0.52 0.653 
0.53 0.663 
0.55 0.674 
0.56 0.685 
0.58 0.697 
0.59 0.709 
0.61 0.722 
0.63 0.736 
0.64 0.750 
0.66 0.764 
0.68 0.780 
0.70 0.795 
0.72 0.812 
0.74 0.829 
0.76 0.846 
0.78 0.864 
0.80 0.883 
0.83 0.903 
0.85 0.923 
0.87 0.943 
0.90 0.965 
0.92 0.987 
0.95 1.010 
0.97 1.034 
1.00 1.058 
1.03 1.083 

0.0036 
0.0041 
0.0046 
0.0052 
0.0058 
0.0064 
0.0070 

0.54 0.0077 
0.54 0.0084 

0.0092 
0.0099 
0.0107 
0.0115 
0.0124 
0.0133 

0.54 0.0142 
0.54 0.0151 

0.0161 
0.0171 
0.0181 

0.54 0.0192 
0.54 0.0202 
0.54 0.0213 
0.54 0.0225 
0.54 0.0236 

0.0248 
0.0260 
0.0272 
0.0285 

0.54 0.0298 
0.54 0.0311 
0.54 0.0324 
0.54 0.0337 

0.54 
0.54 
0.54 
0.54 
0.54 
0.54 
0.54 

0.54 
0.54 
0.54 
0.54 
0.54 
0.54 

0.54 
0.54 
0.54 

0.54 
0.54 
0.54 
0.54 

0.0015 
0.0016 
0.0016 
0.0017 
0.0018 
0.0018 
0.0019 
0.0020 
0.0020 
0.0021 
0.0021 
0.0022 
0.0023 
0.0023 
0.0024 
0.0025 
0.0025 
0.0026 
0.0027 
0.0028 
0.0028 
0.0029 
0.0030 
0.0031 
0.0031 
0.0032 
0.0033 
0.0034 
0.0034 
0.0035 
0.0036 
0.0037 
0.0038 

0.0216 
0.0217 
0.0217 
0.0218 
0.0219 
0.0220 
0.0221 
0.0222 
0.0223 
0.0224 
0.0225-;, 
0.0226 
0.0227 
0.0229 
0.0230 
0.0231 
0.0233 
0.0234 
0.0236 
0.0237 
0.0239 
0.0241 
0.0242 
0.0244 
0.0246 
0.0248 
0.0250 
0.0252 
0.0254 
0.0257 
0.0259 
0.0261 
0.0264 

0.0232 
0.0233 
0.0234 
0.0236 
0.0237 
0.0239 
0.0240 
0.0242 
0.0243 
0.0245 

, 0.0247 
0.0249 
0.0251 
0.0252 
0.0254 
0.0257 
0.0259 
0.0261 
0.0263 
0.0265 
0.0268 
0.0270 
0.0273 
0.0275 
0.0278 
0.0281 
0.0283 
0.0286 
0.0289 
0.0292 
0.0295 
0.0299 
0.0302 

0.0196 
0.0193 
0.0189 
0.0184 
0.0180 
0.0175 
0.0170 
0.0165 
0.0160 
0.0154 
0.0148 
0.0142 
0.0136 
0.0129 
0.0122 
0.0115 
0.0108 
0.0100 
0.0093 
0.0085 
0.0077 
0.0068 
0.0060 
0.0051 
0.0042 
0.0033 
0.0024 
0.0014 
0.0005 

-0.0005 
-0.0015 
-0.0025 
-0.0035 



APPENDIX B continued: Refinement of Main Spreadsheet 

Program to compute the value of the velocity coefficient, k, from 
the Shear equations where G2= 1 @ So=Sf 
Initial conditions for Experiment # 25 
gprime = 1.72 cm/s2 bo = 10.5 cm 
Utheor = 3.57 cm/sec H = 29.6 cm 
viscos = 0.01 cm/s2 L = 110 cm 
Reynold = 4701 
fw = 0.0024 alpha=fi/fw xprime=x/2L 
alpha = 4.29 beta=fs/fw Sf=Sfw+Sfb+Sfi 
beta = 0 y={l+sqrt[(l-k~2)/(l+3k~2)]}/2 

fi = 0.0103 
fs = 0.0023 

k y 
(y2) 

b' x/2L Flsq F2sq Gsq Sfw Sfb Sfi Sf So So-Sf k x' 

0.730 0.71 1.22 0.45 0.938 0.062 1.0 0.0012 0.0001 0.03 0.0286 0.0298 -0.0011884 0.730 0.445 
0.732 0.71 1.22 0.44 0.937 0.062 1.0 0.0012 0.0002 0.03 0.0287 0.0296 -0.0009478 0.732 0.443 
0.734 0.71 1.21 0.44 0.936 0.063 1.0 0.0013 0.0002 0.03 0.0288 0.0295 -0.0007056 0.734 0.440 
0.736 0.71 1.21 0.44 0.935 0.064 1.0 0.0013 0.0002 0.03 0.0289 0.0293 -0.0004617 0.736 0.438 
0.738 0.71 1.21 0.44 0.934 0.065 1.0 0.0013 0.0002 0.03 0.0290 0.0292 -0.0002162 0.738 0.436 
0.740 0.71 1.21 0.43 0.933 0.066 1.0 0.0013 0.0002 0.03 0.0291 0.0291 0.00003079 0.740 0.433 
0.742 0.71 1.20 0.43 0.933 0.067 1.0 0.0013 0.0002 0.03 0.0292 0.0289 0.00027948 0.742 0.431 
0.744 0.70 1.20 0.43 0.932 0.068 1.0 0.0013 0.0002 0.03 0.0293 0.0288 0.00052976 0.744 0.429 
0.746 0.70 1.20 0.43 0.931 0.069 1.0 0.0013 0.0002 0.03 0.0294 0.0286 0.00078164 0.746 0.426 
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Figure 1. Variation of the internal, composite and stability 
Froude numbers throughout a contracted channel 
for inviscid flows 



Figure 2. Definition sketch of assumed linear approximations 
of both the velocity and density profiles 



fc3 

Figure 3. Definition sketch of the shear stresses acting on a 
volume of fluid for both the upper and lower layers 
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Figure 4. Experimental set-up (all dimensions in millimeters) 



Figure 5. Pho tog raphs of the experiment in p rog ress 



Figure 6. Photograph of the experimental apparatus 

Figure 7 Long exposure photograph showing movement of velocity beads 
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at the throat for Experiment #18 
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Froude numbers throughout the contracted channel 
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Figure 14. Comparison plot of the experimental and 
theoretical interface height along the channel 
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Figure 16. Long term variation of the interface height 
at the throat for Experiment #18 
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Sequence of photographs showing Kelvin-Helmholtz instabilities 
from Experiment #19 



Figure 18. Sequence of photographs from Experiment #24 
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Figure 19. Sequence of photographs from Experiment #25 



Figure 20. Sequence of photographs with Kelvin-Helmhoftz 
and Holmboe instabilities from Experiment #21 



Figure 21. Sequence of photographs showing Holmboe instabilities 
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Figure 22. Variation of dimensionless maximum interface thickness 
with the stability Froude number 
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Figure 25. Stability Diagram (Lawrence et al. 1990) 
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Figure 26. Variation of calculated k and alpha 
with beta = 0, 0.5, and 1.0 
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Figure 27. Theoretical variation of k and alpha with beta = 0, 0.5, 1.0 
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Figure 28. Comparison of theoretical and calculated curves 
of k and alpha for beta = 0 
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Figure 29. Variation of: a)the composite Froude number through a 
contraction, b)interface height along a section of a 
contracted channel, c)the Froude numbers for each 
layer shown on a Froude number plane 


