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A B S T R A C T 

A solution procedure based on the finite strip method is presented herein, for the analysis of 

plate systems exhibiting geometric and material non-linearities. Special emphasis is given 

to the particular problem of rectangular plates with stiffeners running in a direction parallel 

to one side of the plate. The finite strip method is selected for the analysis as the geometry 

of the problem is well suited for the application of this method and also as the problem is 

too complicated to solve analytically. 

Large deflection effects are included in the present study, by taking first, order non-

linearities in strain-displacement relations into account. Material non-linearities are handled 

by following von-Mises yield criterion and associated flow rule. A bi-linear stress-strain 

relationship is assumed for the plate material, if tested under uniaxial conditions. Numerical 

integration of virtual work equations is performed by employing Gauss quadrature. The 

number of integration points required in a given direction is determined either by observing 

the individual terms to be integrated or by previous experience. The final set of non-linear 

equations is solved via a Newton-Raphson iterative scheme, starting with the linear solution. 

Numerical investigations are carried out by applying the finite strip computer pro

gramme to analyse uniformly loaded rectangular and I beams with both simply supported 

and clamped ends. Displacements, stresses and moments along the beam are compared 

with analytical solutions in linear analyses and with finite element solutions in non-linear 

analyses. Investigations are also extended to determine the response of laterally loaded 

square plates with simply supported and clamped boundaries. Finally, a uniformly loaded 

stiffened panel is analysed and the results are compared with finite element results. It was 

revealed that a single mode in the strip direction was sufficient to yield engineering accuracy 

for design purposes, with most problems. 
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CHAPTER I 

INTRODUCTION 

In the early stages of development, the existence of stiffened structural forms was probably 

learned from the great book of nature. Sea shells, leaves and trees can be considered as 

some examples of the vast group of naturally stiffened structures. It has long been realised, 

by a scientific study of living things that strength and rigidity of a structure depend not 

only on the material, but also upon its form. It is known that the Egyptians, at least 5000 

years ago, developed a craft made of planks fastened around a wooden framework using 

much the same principle as is employed today. 

The development of structurally stiffened elements was restricted, due to limited mate

rials and limited knowledge of materials, until the start of the nineteenth century. Invention 

of materials such as steel, concrete and aluminium has brought about a revolution in struc

tural design, and their full possibilities are still being explored. The wide use of stiffened 

structural elements began mainly with the application of steel plates for hulls of ships and 

with the development of steel bridges and aircraft structures. In addition to these applica

tions, stiffened plates are also widely used in other areas of structural engineering. Stiffened 

plates in the shape of ribbed and waffle type slabs are used for floor and roof construction in 

buildings. Composite concrete-steel beams have also found wide applications in floor con

struction. Retaining walls, storage tanks, railway cars, large transportation carrier panels 

1 



Chapter I: Introduction 2 

and steel lock gates are some other structural applications of stiffened panels. 

Bending is one of the most important engineering problems associated with the stiff

ened plates, stability and vibration being the others. When a plate, stiffened or unstiffened, 

is loaded laterally, the deflections are considered small, if they are less than about 20% 

of the plate thickness. However, by increasing the magnitude of the maximum deflection 

beyond a certain level, say 30% of the plate thickness, the deflections are accompanied by 

stretching of the middle surface, provided that the edges of the plate are restricted against 

in-plane motion. Large deflections can also stress the plate material over the elastic limit, 

thus causing significant plastic deformations in the structure. These plastic deformations 

are acceptable to the structural engineer as long as they do not violate serviceability re

quirements of the structure. Nevertheless, the design engineer is faced with the challenge of 

accurately predicting the deformation profile and the stress pattern throughout the struc

ture, in order to carry out a safe design. One of the objectives of the present study is to 

provide a numerical tool which accommodates both geometric and material non-linearities 

for designing such structures. 

Development of an analytical method for the present purpose is extremely difficult, if 

not impossible, due to the complexity of the problem. Looking at the arena of numerical 

procedures for solving structural engineering problems, the finite element method is noted 

above the other techniques, because of its versatility and flexibility. Several all purpose 

computer programmes based on the finite element method are presently in use, some with 

the capabilities of handling non-linear geometry and material problems. However, for the 

particular problem of large deflection elastic-plastic analysis of stiffened panels, the finite 

strip method is chosen in the present study because of the simple geometric pattern involved. 

The finite strip method has proven its cost efficiency and relative ease in data preparation 

over the finite element method in an extensive area of structural applications. In applying 
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the finite strip method, it is possible to obtain results within the engineering accuracy 

needed for design problems, even with a small number of modes. Although the use of the 

finite strip method has recently been extended to the domain of geometrically non-linear 

problems, it has yet to find applications in the important realm of materially non-linear 

problems. The second objective of this thesis is to study the applicability of the finite strip 

method in both geometric and material non-linear analyses. 

The third and final objective of the present analysis is to open up a new dimension 

of research which can assist in solving the problems in the more demanding area of blast 

loading of structures. 

Chapter 2 of this thesis presents a discussion of the general plate problem and the 

existing methods of solutions. Both analytical and numerical procedures are discussed with 

special reference to the finite strip method. Chapter 3 consists mainly of the mathematical 

derivations necessary for the computer implementation of the proposed numerical procedure. 

It also includes a description of the iterative scheme and the method of numerical integration 

included in the computer programme. The chapter concludes with a small discussion about 

the computer programme itself. In order to evaluate the ability of the present solution 

scheme to predict the response of beams, plates, and stiffened plates, numerical results have 

been generated for several example problems. Chapter 4 includes a detailed description of 

these examples and the comparisons of the results with either analytical, experimental, or 

other numerical procedures whenever possible. Chapter 5 contains a summary of the present 

work and a list of the conclusions drawn from the present study. It also includes some 

suggestions for extending the proposed numerical procedure into other areas of structural 

engineering. 



CHAPTER II 

METHODS OF ANALYSIS AND PREVIOUS WORK 

2.1 The General Plate Problem 

The theory of bending of plates can be started by dealing with the simplest possible problem, 

the bending of a long rectangular plate subjected to a transverse load that does not vary 

along the length of the plate. Boobnev[l] reduced this problem to the investigation of 

an elemental strip submitted to the action of a lateral load and also an axial force which 

depends on the deflection of the strip. The differential equation which relates this deflection 

to the applied load is similar to that for a bent beam, and thus can be easily integrated. 

Elastic analysis of plates has since been developed to handle plates of various shapes, 

various loading and boundary conditions, and plates with different forms of stiffening. An

alytical solution procedures have yielded differential equations, along with the pertinent 

boundary conditions, to be solved for deflections and/or stresses. Both isotropic and or-

thotropic material properties are considered in each of the solution schemes. The analytical 

solutions for the elastic analysis of plates are summarised in section 2.2 

Plastic analysis of plates, though not as developed as elastic analysis, has made con

siderable progress in this century. Because of these developments, plastic methods now 

4 



Chapter II: Methods of Analysis and Previous Work 5 

cover a vast area of practical interest. Rigid plastic assumptions provide solutions of plate 

problems via the upper bound theorem and the yield line analysis. Section 2.3 deals with 

these aspects of the general plate problem. 

The major difficulty in plate analysis lies in the integration of the resulting differential 

equations. These have led to the application of various numerical procedures in plate 

analysis. A description of these methods is included in section 2.4. Applications of the 

finite strip method are further discussed in section 2.5. 

2.2 Elastic Methods of Analysis 

2.2.1 Unstiffened plates 

Small deflection elastic analysis of a laterally loaded unstiffened isotropic plate yields 

the following differential equation for the lateral displacements. 

V4w=q/D (2.1) 

where, w = lateral deflection, 

V 4 = biharmonic operator, 

q — distributed load, 

D = Eh3/12(1 - i / 2 ) = flexural rigidity of the plate, 

h = thickness of the plate, and 

E, v = elastic constants of the plate material. 

In deriving this equation, it was assumed that the effects of transverse shear can be 

neglected. A t the boundary, the edges of the plate are assumed to be free to move in the 
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plane of the plate, thus restricting the end reactions to be normal to the plate surface. 

Solution of the equation 2.1 requires two boundary conditions at each side of the plate 

if the plate is rectangular, or two boundary conditions at the outer boundary and an ad

missibility condition at the center of the plate if the plate is circular. However, analytical 

solutions of this differential equation can be found only for special sets of boundary condi

tions and also for some special types of loading conditions. Timoshenko and Woinowsky-

Krieger[2] have provided solutions of this equation for some classical boundary conditions. 

However, the structural theory of the first order is valid only if the basic requirements 

of the theory are satisfied; namely, that the deflections are small compared to the plate 

thickness. When the magnitude of the maximum deflection reaches the order of the plate 

thickness, the membrane action in carrying the applied load becomes comparable to that of 

bending. In 1910, Th.von Karman[3] derived the following two partial differential equations 

for the large deflection of isotropic plates. 

V 4 F = E 
d2w\2 d2wd2w 
dxdy J dx2 dy2 (2.2) 

q d2Fd2w d2Fd2w d2F d2w 
h dy2 dx2 dx2 dy2 dxdy dxdy 

(2.3) 

where F is the airy stress function, which is related to the membrane stresses Nx, Ny and 

Nxy by, 
d2F d2F d2F , s 

N* = h W N y = h-d^ a n d N« = -hd*j (2"4) 

These equations are derived in reference to a two dimensional Cartesian coordinate 

system attached to the mid-surface of the plate. They are to be solved for the stress 



Chapter II: Methods of Analysis and Previous Work 7 

function F and the lateral displacement w. The geometric non-linearities are caused either 

by higher order terms of derivatives or by their products. These equations can be solved 

analytically for the particular case of bending of a plate to a cylindrical surface, or for very 

thin plates which may have deflections many times higher than their thicknesses. In the 

latter case, bending can be neglected and the membrane solutions are sought if the plate is 

restricted against in-plane motion. 

Apart from homogeneous and isotropic materials, modern construction also uses mate

rials with definitely expressed differences in elastic properties in different directions. Such 

materials are called anisotropic. In the case where a body possesses different elastic proper

ties in perpendicular or orthogonal directions, it is called orthotropic. There are two kinds 

of 'orthotropy' in structural elements. The first kind shows an orthotropy which is a result 

of the different physical properties in two mutually perpendicular directions of the mate

rial itself, and is therefore called "natural orthotropy". The second kind includes elements 

which are reinforced to ensure strength and stability, arranged in the proper geometrical 

configurations. This latter kind of orthotropy is called "structural orthotropy". A n elastic 

small deflection analysis of a rectangular orthotropic plate yields the following differential 

equation to be solved for the lateral diaplacement w. 

^ d4w d4w „ d4w 
5 ^ + 2 W + V = ? ( 2 - 5 ) 

where, Dx = flexural rigidity in the x direction = Exh3/[l2(l - vxvy)\, 

Dy = flexural rigidity in the y direction = Eyh3/[l2(l — vxvy)], 

Dxy = torsional rigidity = Gzyh3/12 

2H = effective torsional rigidity —Dxvy + Dyvx + 4Dxy 

Ex, Ey = elastic modulii in x and y directions respectively, 

vztvy ' — Poisson's ratios in x and y directions respectively, and 
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Gxy = shear modulus of the orthotropic material. 

This equation was first deduced by Huber[4] and is hence known as "Huber's equation". 

It is clear that this equation reduces to equation 2.1 for Dx = Dy, Ex — Ey and vx = vv. 

Large deflections of orthotropic plates have been analysed by following von-Karman's 

theory for isotropic plates. This has resulted in a modified version of the equations 2.2 and 

2.3, again in terms of the stress function F and the lateral displacement w[7]. 

1 d4F / l 2ux\ d*F 1 dAF _ ( d2w\2 d2wd2w 
Eydx*+\G Ex) dx2dy2 + Exdy4 ~ \dxdy) dx2 dy2 

d*w n T J d4w n d 4 w _ (d2Fd2w _ d2Fd2w d2Fd2w\ 
DxJx^ + 2Hdi?dy* + D y W ~ 9 + \dy2 dx> dUy~dxdy' + W ' [ ' 

Equations 2.7 and 2.8, together with the boundary conditions, determine the two func

tions F and w. Integration of these equations is accompanied by great difficulties as a result 

of the non-linear terms in the first equation. Therefore, the solution of these equations in 

thy general case is unknown. Some approximate solutions of the problem are known for 

some special combinations of the orthotropic material properties. 

2.2.2 Stiffened plates 

Boobnev[l,5] was the first to apply stress analysis to steel plates stiffened by a system of 

interconnected longitudinal and transverse beams. He was also the first to apply the theory 

of bending of plates in the structural design of ships. In the initial analysis, he treated 

the stiffened panel problem as it were a beam on an elastic foundation. By following this 

file:///dxdy
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analysis, Boobnev was able to prepare a set of design charts for stiffened panel structures. 

Stiffened plates can also be analysed by the use of the theory of orthotropic plates. As 

stated in the previous section, orthotropy due to physical structure of the material is called 

"natural orthotropy". On the other hand, orthotropy due to geometrical composition is 

called "structural" or "technical" orthotropy. Stiffened plates fall under the latter category, 

if the stiffeners run in mutually perpendicular directions. 

Huber's equation (Eq.2.5), was first derived for naturally orthotropic plates. However, 

in the elastic domain structurally orthotropic plates may also be treated on the basis of 

the same theory with some modifications. Orthogonally stiffened plates may be substituted 

by an equivalent orthotropic plate of constant thickness when the ribs are disposed sym

metrically with respect to the middle plane of the plate. It is also required that the ratios 

of stiffener spacing to plate boundary dimensions are small enough to ensure approximate 

homogenity of the problem. The expressions for Dz,Dy and H to be used in equation 2.5 for 

a plate reinforced by equidistant stiffeners in one direction are given by Timoshenko and 

Woinowsky-Krieger [2]. 

However, Huber's equation cannot be applied for most of the engineering plate struc

tures, as the ribs are located on only one side of the plate, i.e. they are disposed asymmet

rically with respect to the middle plane. In this case, the location of the neutral surfaces 

of the boundary stresses is unknown. Consequently, there is a drastic increase in the com

plexity of the determination of the orthotropic rigidity factors. The analysis of the problem 

should be extended to include the effect of strain in the middle plane of the plate, which 

produces additional shear stresses disregarded in Huber's method. 

Pfliiger recognized the above facts and formulated the force displacement relations for 

a typical plate element with ribs on one side of the plate. A system of three differential 

equations for such a plate element was developed in terms of the middle surface of the plate. 
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Forces and moments acting on the element were derived from the middle surface. Further, 

by expressing the displacements in an infinite series form, Pfliiger obtained a set of eighth 

order partial differential equations, each involving one displacement component [6]. 

After Pfliiger, several other investigators attacked the problem of stiffened panels, some 

considering special types of .stiffeners. According to Troitsky[7], Trenks[8], Giencke[9], 

Wilde[l0] and Ganowicz[ll] each came up with different methods for analysing stiffened 

plates. Clifton et al.[l2] presented a generalized exact theory in 1963, following Pfliiger's 

analysis. 

The theory of stiffened plates having large deflections presents a complex part of the 

general theory of stiffened plates. In 1961, Vogel[13] applied the large deflection theory of 

orthotropic plates to analyse two way stiffened plates. Steinhardt and Abdel-Sayed[l4] also 

discussed the large deformation elastic analysis of such panels. 

A l l the procedures described above are much too complicated computationally to be 

considered for practical applications in design. A major difficulty lies in the integration of 

the resulting partial differential equations. If the plate material possesses plastic and/or 

non-linear elastic stress-strain relationships, analysis will be still more complicated. Plastic 

analysis has been simplified to a great extent with the use of bound theorems and the yield 

line theory. These methods are described in the next section. 

2.3 Plastic Methods of Analysis 

Baker[l5] reported the importance and economy in using plastic design methods over con

ventional elastic design procedures for beams and portal frames. These factors are equally 

valid in the design of stiffened or unstiffened plate structures. Although a structural anal

ysis based on elastic theory yields good results for deformations and stresses produced by 
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working - service - loads, it fails to assess the real load carrying capacity of the structure. 

At failure, the fundamental assumptions of the theory of elasticity are no longer valid. In 

most cases, an elastic design is overly conservative. In some cases, such as aerospace appli

cations, an overly conservative theory might give unsafe results. It is necessary, therefore, 

to investigate the plastic behaviour of plates. 

The mathematical theory of plasticity of plates is much more complicated than its elastic 

counterpart. However, by introducing an idealized rigid plastic stress-strain relationship, 

the mathematics can be simplified by a great deal. 

Plastic collapse analysis of a structure can be carried out by following the well known 

bound theorems. The upper bound theorem, which is analogous to the potential energy 

theorem, states that the external load that produces work at the same rate as the internal 

forces for a kinematically admissible field will be greater than or equal to the true collapse 

load of the structure. Yield line analysis of plates is simply the application of the upper 

bound theorem to a plate collapse mechanism. The method is similar to the plastic hinge 

analysis of beams. The critical load is obtained either from virtual work or equilibrium 

considerations. Although the yield line analysis is generally used and tested for the cases 

of concrete slabs, experimental verification for metallic plates has not been a popular area 

of research [16]. 

Once an upper bound solution for the plate collapse load is obtained via the yield line 

theory, the exact collapse load can be bracketed if a lower bound solution is available. A 

lower bound can be estimated by following the lower bound theorem, which states that the 

external load that produces a statically admissible stress field that nowhere exceeds the 

yield criteria will be lower than or equal to the true collapse load. For example, any elastic 

solution is a lower bound for the plastic collapse load. 

Plastic analysis of unstiffened plates following yield line theory has limited applications. 
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Applicability of this theory depends on slenderness of the plate. Slenderness fi can be defined 

as, 

H = S/h, (2.9) 

where S is some span of the plate with thickness A[17]. 

For a plate of a given material to carry transverse loads primarily by bending stresses, 

p must be bounded both from above and below. Indeed if fx is unduly small, there no longer 

exists a thin plate but a body with comparable horizontal and vertical dimensions. On the 

other hand, i f / i is unduly large, the plate acts like a membrane that carries transverse loads 

by direct stresses after undergoing deflections that are comparable to its thickness. 

The limit load obtained from simple plastic theory based on the rigid perfectly plastic 

schemes will thus prove to have a real physical meaning only for a limited domain of values 

of fj.. Even in this domain of ft, the limit load will not correspond to large plastic deforma

tions under constant load, such as that usually occur in frame structures. In most cases, 

favorable geometry changes due to unrestricted plastic flow will cause membrane action 

that eventually enables the plate to carry a load in excess of the limit load. 

A complete plastic analysis is extremely difficult, if not impossible, to carry out in the 

case of stiffened plates. One has to resort to numerical procedures, especially when large 

deflections are involved. Methods of numerical analysis are discussed in the next section. 
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2.4 Numerical Methods 

2.4.1 Introduction 

The well known numerical methods for solving engineering problems are finite difference 

and finite element methods, the latter being more popular in recent years. Both methods 

have similar accuracy. Computer cost is often less when finite differences are used, although 

the cost comparisons depend on the type of problem and the program organization as well 

as on the method of analysis[18]. However, the finite difference method is not suited to a 

structure that must be modelled by a mixture of materials or by different structural forms, 

such as a structure that combines bar, beam, plate and shell components. Finite elements 

appeal to the structural engineer because they resemble components of the actual structure. 

Improvements in finite element methods have come from both physical and mathematical 

insight. These improvements have led to the establishment of the finite element method as 

the most powerful and versatile tool of solution in structural analysis. 

2.4.2 The finite element method 

In the finite element method, the structure is divided into a finite number of elements. 

Stress and/or displacement variation inside an element is predetermined depending on the 

accuracy sought, and is a function of the nodal variables. These elements are then assembled 

back to form the original structure, thereby obtaining a set of simultaneous equations to be 

solved for the nodal variables. 

Several plate elements are available at the present time and are in use for solving 

practical problems. Unlike the case of analytical solutions, extensions to stiffened plates 

can be made with very little additional effort, with finite elements. In small deflection 
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theory, in-plane and lateral deformations of the plate are uncoupled and hence can be 

treated separately. However, the coupling between these two deformations has to be taken 

into account if large deformation analysis is needed. 

The finite element method has also been extended to include material non-linearities. 

If the stress-strain relations are linear, or non-linear but elastic, it is possible to write 

an expression relating stress to strain which is unique. If there are plastic strains, the 

stress-strain relation is path dependent. A given state of stress can be produced by many 

different straining procedures. In plastic analysis, increments of stresses are related to 

the increments of strains via an elastic-plastic matrix. This matrix takes the place of the 

elasticity matrix used in incremental analysis for elastic problems. Zienkiewicz[l9] has 

discussed the development of the elastic-plastic matrix by following von-Mises yield criteria 

and an associated flow rule. 

It is clear from the preceeding discussion that the finite element method is capable of 

handling a large class of engineering problems. However, for many structures having regular 

geometric plans and simple boundary conditions, a full finite element analysis is often both 

extravagant and unnecessary, and at times even impossible [20]. The cost of solutions can 

be very high, and usually increases by an order of magnitude when a more refined, higher 

dimensional analysis is required. For eigenvalue problems and vibration analysis, machine 

limitations force the user to be satisfied with a less accurate solution by using lower order 

elements. To overcome these drawbacks in analysing a certain class of problems, the finite 

strip method was developed in the late 1960's by Y . K . Cheung[21]. 

2.5 The Finite Strip Method 

The finite strip method can be considered as a special form of the finite element procedure 
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using the displacement approach. In the finite strip method, the structure is divided into 

strips or prisms, in which one opposite pair of the sides or one or more opposite pairs 

of the faces respectively, are in coincidence with the boundaries of the structure. Unlike 

the standard finite element method which uses polynomial displacement functions in all 

directions, the finite strip method calls for use of simple polynomials in some directions 

and continuously differentiable smooth series in the other directions, with the stipulation 

that such series should satisfy a priori the boundary conditions at the ends of the strips or 

prisms. The general form of the displacement function is given as a product of polynomials 

and series. Thus for a strip, the lateral displacements are given by, 

r 

w=Y,Mx)YM (2-10) 
m=l 

In the above expression, the series has been truncated at the r f t term. fm(x) is a function 

which satisfies the end conditions in the x direction and also represents the deflected shapes 

in that direction and Ym(y) is a polynomial expression with undetermined constants for the 

m th term of the series. 

Cheung's first paper[2l] on the finite strip method dealt with the analysis of elastic 

plates with two opposite simply supported ends. Cheung analysed simply supported plates 

with variable thickness as well as with isotropic and orthotropic material properties. In 

all these cases, the finite strip results were in very good agreement with the theoretical 

predictions. Cheung[22] has also extended the analysis for finite strips to cases with both 

ends clamped, and one end clamped and the other end simply supported. These analyses 

also yielded very satisfactory results. 

The finite strip method has since been extended to analyse folded plate structures [23], 

vibration of thin and thick plates [24,25], sectoral plates [26], and also for post buckling 

analysis of plates [27]. 
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Mawenya and Davies [28] developed a finite strip computer programme to handle trans

verse shear deformation. They presented numerical examples which demonstrated the ap

plicability of the formulation to the analysis of thin, thick and sandwich plates. 

It appears that the first paper on application of the finite strip method in the more 

demanding realm of geometrically non-linear analysis of plate structures was published 

in 1981 by Hancock [29]. The displacement functions used by Hancock were slightly varied 

from those used by Graves Smith and Sridharan[27] in their post-buckling analyses. In 1984, 

Gierlinski and Graves Smith [30] have presented a geometrically non-linear analysis of pris

matic thin-walled structures. In both these papers, the theory was based on the moderately 

large displacement assumptions, giving non-linear strain-displacement relations, but linear 

curvature-displacement relations. The corresponding non-linear equilibrium equations were 

produced by the principle of stationary potential energy, using finite strip discretisation. 

The equilibrium equations were solved using incremental and incremental- iterative numer

ical methods. Langyel and Cusens[3l] have also developed a finite strip method which can 

carry out a geometrically non-linear analysis including the possibility of taking structural 

imperfections into account. Azizan and Dawe[32] presented a general finite strip method 

of analysis following Mindlin plate theory. Thus, this analysis includes geometric non-

linearities as well as the effects of transverse shear deformations. The non-linearity was 

introduced via the strain displacement equations. Correspondingly, the analysis pertains to 

problems involving moderate displacements but small rotations. The principle of stationary 

potential energy was used in the development of stiffness equations for the strip and the 

complete plate stiffness. These equations were solved using the Newton-Raphson iterative 

scheme. 

In order to overcome problems of the finite strip method associated with mixed bound

ary conditions, concentrated loads and continuous spans, the spline finite strip method was 
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developed by Cheung et al. in 1982 [33]. This method was originally introduced for the 

analysis of rectangular plates. In the spline finite strip method, each strip was divided into 

a number of subdomains. A set of spline functions was used to define the displacement vari

ation inside a given subdomain. L i et al.[34], extended this method to the elastic analysis 

of general plates with the help of a coordinate transformation. 

To analyse linear elastic flat plate systems that are continuous over deflecting supports, 

Puckett and Gutkowski[35] introduced what they termed as the "compound strip method". 

Their approach incorporates the effect of the support elements in a direct stiffness method

ology. The stiffness contribution of the support elements was derived and added directly 

to the plate stiffness matrix at the element (strip) level. This summation of plate and sup

port stiffness contribution constitutes a substructure which was termed a compound strip . 

Puckett and Lang [36], extended this method to cover continuous sector plates. Recently 

the compound strip method has also been used for free vibration analysis of continuous 

plates[37]. 

Application of the finite strip method for the analysis of plate systems with material 

non-linearity and/or plasticity is extremely limited. Mofflin[38] introduced the use of the 

finite strip method for the collapse analysis of compressed plates and plate assemblages. 

Mofflin et al.[39] presented a feasibility study of a finite strip analysis on beams and unstiff-

ened plates under dynamic lateral loads. The predictions from the method seem to agree 

closely with known theoretical and experimental results. In the present work, a large defor

mation elastic plastic static analysis of stiffened and unstiffened plates has been conducted. 

The mathematical formulation of the problem is presented in the next chapter. 



CHAPTER III 

MATHEMATICAL FORMULATION 

3.1 Introduction 

The stiffened panel, essentially a two dimensional structure, is also rectangular (Fig. 3.1). 

Other than being a thin strip perpendicular to the plate surface, the stiffeners can also take 

the shape of an inverted T beam, L beam or a box section. In all these cases, stiffeners 

run in one direction, parallel to each other, separating the plate into strips, which may or 

may not be of the same thickness. Thus the geometry of this problem warrants the use of 

the finite strip method for the analysis in hand. This chapter presents the mathematical 

formulation necessary for the computer implementation of the finite strip method to analyse 

large deflection elastic-plastic behaviour of stiffened panels. 

Section 3.2 introduces the finite strip discretisation and also the displacement compo

nents involved in the formulations that follow. Selection of the appropriate displacement 

functions according to the boundary conditions of the plate is discussed in section 3.3. Sec

tions 3.4 and 3.5 deal with the strain displacement and the constitutive relations employed 

in the present analysis, respectively. Derivation of the equilibrium equations via a stiffness 

formulation is presented in section 3.6. As the resulting system of equations is non-linear, 

18 
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Figure 3. 1 - Schematic diagram of a stiffened plate 
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the Newton-Raphson iterative scheme is chosen as the solution procedure. The necessary 

mathematical derivations for the implementation of this scheme are included in section 3.7. 

Section 3.8 describes the method of numerical integration adopted in the computer pro

gramme, and finally, section 3.9 highlights some of the important features of the computer 

programme itself. 

3.2 Finite Strip Discretisation 

Figure 3.2(a) shows a typical finite strip division of an unstiffened rectangular plate. The 

global rectangular co-ordinate system XY Z is attached to the mid surface of the plate. 

Boundary conditions at X — 0 and at X = a are known a priori and will be considered in 

the choice of displacement functions in the X direction. The arrows in the Figure 3.2(a) 

indicate the possible in-plane and lateral loading conditions. Any two finite strips are 

connected along a nodal line. In the assembly process, the nodal variables are matched 

along such lines for compatibility. It is not necessary that the plate have constant thickness 

in each strip and conceivably the width and thickness could vary along the length. However, 

constant thickness and width will be assumed in this formulation. 

In a displacement formulation, the nodal variables are the displacement components 

that will adequately represent the problem. As the analysis includes both bending and 

membrane effects, it is necessary to include both in plane and out-of plane displacements 

as nodal variables. Figure 3.2(b) shows an isolated strip with the local co-ordinate system 

xyz. Displacement nodes are placed at the middle of each side, marked 1 and 2 in Figure 

3.2(b), with the three displacements and one rotation taken as the degrees of freedom, u 

and v are the in-plane displacements, w is the out-of plane displacement and 6 = dw/dy is 

the rotation about the x axis. 
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3.3 Displacement Functions 

S.S.I General 

The displacement functions in the x direction, i.e. the longitudinal direction, are chosen 

so as to satisfy the boundary conditions at the ends of the strip. One set of functions that 

can be used are the mode shapes of a vibrating beam. These are given by, 

9n(0 = Ci sin + C2 cos £„f + C3 sinh + CA cosh (3.1) 

where C\, C2, C3, C\ and (5n are constants and £ = x/ a, where a is the length of the strip. 

The variation of the displacements in the y direction, i.e. across the strip, will be taken as 

linear for the u and v displacements and cubic for the w displacement. These cubic shape 

functions for the w degree of freedom are the well known Hermitian polynomials used in the 

finite element analysis of beam bending, thus ensuring slope and displacement compatibility 

between adjacent strips. 

The u, v and w displacement distributions of a single strip can be written in terms of 

the nodal displacements by combining the shape functions. These expressions for a strip of 

size a X b are given by, 

u = K 1 _ + l?«2m] 9m(0> 

v = [{l-v)vin + r)V2n}9v

n{0 and (3.2) 

w=[(l- 3r,2 + 2r,3) wlp + {r, - 2rj2 + r,3) b9lp + (37?2 - 2r)3) w2p + (t?3 - t , 2 ) b92p\ 

where, uim,U2m etc. are the nodal variables, rj = y/b and the summation convention is used 
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for repeated indices m, n and p. Along the length, the displacements vary according to 

the 9m{0>9ni0 9p{£) functions. For different boundary conditions, these functions are 

given in next sub sections. 

S.S.2 Plate strips 

(a) Simply supported ends 

1. constrained in the x direction 

0m(f) = s i n m 7 r f ; m = 2,4,6,..., 

sin rwrf ; n = 1,3,5, 
9 n ^ ^cosrwrf ; n = 2,4,6, 

0p (f) = s i n P 7 1 ^ 5P= M , 5 , . . . , 

2. not constrained in the x direction 

9mi0 = c o s m n € ; m = 1,3,5,..., 

and the other functions are as above. 

(b) Clamped ends 

<7jJ,(£) and are as above, and 

9p{0 = MO = [<*? ( s i n h PPZ - s i n M + (cosh - c o s M] / A P ; p = i / 3 / 5 / 

where, Ap = a p (sinh 0.5/?p - sin 0.50p) + (cosh 0.5/?p - cos0.5/? p), 

cos/?p — cosh flp 
sinh /?p - sin /3p 
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and, f3p are the solutions of the transcendental equation, cosh /3P = sec /3p. 

8.5.3 Stiffener strips 

Figure 3.3 shows a single stiffener strip attached at right angles to two plate strips. 

The displacements shown are the local ones for each strip respectively. It is clear that there 

are no changes in u displacement pattern necessary for the stiffener strip from the plate 

strip. Nevertheless, the v displacement for the stiffener should be compatible with the w 

displacement of the plate to which it is attached. To preserve this compatibility along the 

length of the strip, has to be restricted to be of the same shape as gp{£). If the 

bending boundary conditions of the stiffener and the plate are different, the compatibility 

will be very difficult to achieve. However, in these cases, the bending associated with the 

stiffener is much more important and thus some errors in the plate moments are unlikely 

to be of much importance. 

8.8.4 I beam analysis 

A rectangular beam can be analysed by considering it as a single finite strip. A n I beam 

can be considered as an assemblage of several finite strips (Fig 3.4). In the latter case, each 

flange is discretised into two plate strips and the web is modelled by one stiffener strip. For 

linear analysis, the u displacement in the beam should be of the same shape as the slope 

of the w displacement in the x direction. Considering this restriction and the necessary 

compatibility between the v and w displacements for the stiffener strip, the shape functions 

for an I beam are, 
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Figure 3.3 - Plate-stiffener assemblage 

Figure 3.4 - Modelling of an I beam 
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(a) Simply supported ends 

9mi0 = c o s m * Z ; m = 1,3,5,... 

) = s i n n 7 r £ ; n = 1,3,5,... 

5p (f) = s i n P 7 1 ^ ;p = 1,3,5,... 

In performing a linear elastic analysis with these shape functions, the top and the 

bottom flanges will show equal and opposite u displacements at any given section if the I 

beam is symmetric. This results in a strain free axis at the middle of the web. Therefore, 

in order to solve large deflection problems an additional u mode, which varies as sin4;r£ 

was used. This will be discussed in detail, in the next chapter. 

(b) Clamped ends 

&n(0 = — - ; m = 1,3,5... ox 

9Vn(0 = MZ) ; n = l , 3 , 5 . . . 

${Z) = Mt) ; p = 1,3,5... 

where the 4> functions are the same as in the clamped plate strip. Even for the clamped I 

beam, it was necessary to include an additional u mode to obtain accurate results. Selection 

of this mode will also be discussed in Chapter 4. 

3.4 Strain-Displacement Relations 

The well known large deflection strain-displacement relations for plate bending are, 
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€v 

where ez, ey and ezy are the components of strain in two dimensions. ^ z y is the engineering 

shear strain, u, v and w are the displacements of the mid-surface of the plate, in the x, y and 

z directions respectively. The mid surface coincides with the xy plane and z is measured 

perpendicular to this surface. 

The terms with a linear variation in z in these expressions represent the bending strain 

and the other terms represent the strain due to the stretching of the middle surface of the 

plate. It should be noted that the non-linear effect of u and t; displacements on the mid 

surface stretching is neglected as they are small compared to the w displacement. However, 

when finite strips are used as stiffeners (Figs 3.3 and 3.4), the v displacement of the stiffener 

must be of the same magnitude as the w displacement of the plate. For these strips, mid 

surface stretching should include quadratic terms due to the v displacement. Accordingly,. 

equations 3.3 will be modified for stiffener strips by adding | ( f i ) 2 » | ( t») ( f f f y ) 

to the three strains cz, ey and 7^, respectively. 

du 
Tx 
dv 

dhv 1 
'dx2 + 2 

dhv I 
dy ZJy> + 2 

du dv 

dw 
~dlz 
dw 
'dy' 

x y dy dx dxdy 

, and 

d2w dwdw 
dx dy' 

(3.3) 

3.5 Constitutive Relations 

The assumed stress-strain diagram for the plate material under uniaxial loading is given in 

Figure 3.5. oq and eo are the uniaxial yield stress and the uniaxial yield strain respectively. 

E and Et are the slopes of this bi-linear representation. 
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Figure 3.5 - Bi-linear stress-strain relationship 
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The first step in an elastic-plastic analysis is to decide upon a yield criterion. The yield 

criterion is used to find out which combination of multiaxial stresses will cause yielding. 

The general form of the yield function can be expressed as, 

F({a},K) = Q (3.4) 

where F is the yield function, {<x} is a vector of the components of the two dimensional 

stress tensor, and i f is a material parameter which represents the amount of work hardening. 

In the present analysis, the von-Mises yield criterion will be followed as it is the closest 

available representation of the actual behaviour of metals. 

The second step in a plastic analysis is to decide on how to describe the behaviour of 

the material after the yielding has taken place. This is governed by the so called flow rule. 

One has to decide upon the flow rule depending on the type of material under consideration. 

The flow rule is said to be associated if the incremental strain vector at a point on the yield 

surface is perpendicular to the yield surface at that point. If the strain vector takes any 

other direction, the flow rule will be non-associated. In the present analysis, an associated 

flow rule will be followed as it is generally accepted at the present time. 

The final step in a plastic analysis is the selection of the hardening rule. After initial 

yielding, the stress level at which further yielding occurs may be dependent upon the current 

degree of plastic straining. Such a phenomenon is termed 'work' or 'strain' hardening. Thus 

the yield surface will vary at each stage of the plastic deformation, with the subsequent yield 

surfaces being dependent on the plastic strain in some way. Behaviour of most engineering 

materials follows a path between the two well known hardening models, isotropic hardening 

and kinematic hardening[40](Fig 3.6). In isotropic hardening, the yield surface will expand 

with stress and strain history, but will retain the same initial shape. 
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(a) Perfectly plastic 

Initial yield Loading 

surface 

0 
/ / C ^ C u r r e n t yield 
^ surface 

(b) Isotropic strain hardening 

Loading 
Initial yield 

surface 

Current yield 
surface 

(c) Kinematic strain hardening 

Figure 3.6 - Hardening models 
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Although the assumption of isotropic hardening is the simplest one mathematically to use, 

it does not take into account the Bauschinger effect. The Bauschinger effect would tend 

to reduce the size of the yield locus on one side as that on the other side is increased. To 

account for the Bauschinger effect, kinematic hardening model is introduced. In kinematic 

hardening the yield surface maintains the original size, but translates in space with the 

stress and strain history. However, as this model maintains the total elastic range constant 

(Fig. 3.6), it probably overcorrects somewhat for the Bauschinger effect[40]. In the analysis 

that follow, the isotropic hardening is included for mathematical simplicity. 

The three steps discussed above can be combined to obtain plastic stress-strain rela

tionship. This can be presented in matrix form as[19], 

In equation 3.6, [D] is the elasticity matrix, { V} is a vector defined by { V} = dF/d{<r} 

and A is the slope of stress-plastic strain relationship in a uniaxial test. For the assumed 

bi-linear stress-strain relationship (Fig.3.5), it can be shown that (Fig.3.7), 

{<M = \DT]{de}, (3.5) 

where 

[DT] = [D] - [D]{V}{V}T[D}[A + {V}T[D]{V}} - l (3.6) 

A = (3.7) 

The elasto plastic matrix [Dj] takes the place of the elasticity matrix [D] in incremental 

analysis[l9]. 
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Figure 3.7 - Stress-plastic strain relationship 
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Equations 3.5 and 3.6 can now be used to get the stress increment for any given strain 

increment. The sum of the stress increment and stress from the previous iteration results in 

the stress vector {a} at the end of the present iteration. Once the stress vector is obtained, 

an equivalent effective stress o~e is calculated by 

Initial yield takes place when ae exceeds oq for the first time [40], where (To is the yield 

stress in uniaxial loading. Within this iteration, stresses are scaled down to coincide with the 

yield surface and the plastic constitutive relations (Eq. 3.6) are used from that point. For 

subsequent iterations, the material is loaded or unloaded depending on whether ae has been 

increased or decreased. If loading had taken place while in the plastic region, the iterative 

process is repeated with plastic constitutive relations. If unloading had taken place, the 

iterative process is repeated with elastic constitutive relations until yielding occurs again. 

3.6 Stifmess Formulation 

3.6.1 Shape functions 

Variation of the displacements u, v and w within a single finite strip was given by 

the equations 3.2. Considering only the first term in the x direction for simplicity, these 

equations can be written in index notation as follows. 

a] = a&y + CT2 + 3r 2 (3.8) 

'ti i = l , 2 

t= 1,2 and (3.9) 

i= 1,2,3,4. 
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where, 

Ni = 1*1(0 

N?=(l-Zr,2 + 2r,3)gT(0 (3.10) 

N? = {to,2 - 2V*) g?{£) 

N? = (r?3 - V2) (fl 

and un , «2i , Vu, V21, $11, u>2i and W21 in equation 3.2 are replaced by u\, u-i, v\, v^, u>\, wi, wz 

and W4 respectively. Equation 3.9 can also be written collectively as, 

jt> J = ( 3 1 1 ) 

where, {Se} is the nodal displacement vector given by, 

«i 

U>2 

«2 

W4 

(3.12) 

and [N] is the matrix of shape functions given by, 
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[N] 0 
0 

o 
o 

0 
0 

iV2

u 

0 
0 

N2* 
0 0 
0 0 (3.13) 

Substitution of the equation 3.11 into the strain displacement relations 3.3 results in the 

following relationship between the strains and the nodal line displacements. 

— z-
1Nw 

dz? 
d2N*> 

dy 
=>2 

— Z 

;Nw 

dxdy 

d2N%> 

dzL 

d2N% 

d2Nl? 
6 dxdy 

. dN*» 9NY> 

2 d'z dz W<Wi 

2 dy dy 1 0 
dNwdN™ dNwdN™^ 

•' J - + — 3 ~ dz dy dz dy WiWj 

dN% d2N? d2N™ 1 
dz 0 8 

Z dz2 dzi 

dN» d2N™ d2N? 
0 dy 3 

Z dy2 

dN* d2N*> d2N? 4 
ay dz dxdy * dxdy J 

t,j = 1,2,3,4. (3.14) 

The strain displacement relations will be different for the stiffener strips because of the 

non-linear terms in v. The corresponding matrix forms are given in Appendix A . 

3.6.2 Virtual work principle 

The equilibrium equations are obtained via a virtual work principle. It can be seen 

from the equation 3.14 that the virtual strains are related to the virtual displacements by, 

{e} = [[B) + [C}}{~8e} 

where, {?} is the virtual strain vector, {6e} is the virtual displacement vector, 

(3.15) 
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\B] = 

dNf 

and 

0 0 

0 0 

0 0 

0 0 

0 
d2N? 

dxz 

d2N™ 
0 

d2N? 

dxz dx2 
L 

dz 
d2Nf d2N? 

0 ~w dy2 Z dy2 
0 

z • ^ dxdy 
d2N%> 

dx z • ^ dxdy z dxdy 

0 -z 

d_Nl 

ay 

dx 

dx2 

d2N» 

d2N™ 
dxdy 

— Z-

d2N% 
z~d^~ 

d2N™ 
a ^ ~ 

d2Nf 
' dzdy 

dx ~b~x~wi 

dy dy 

L° 0 (st-Bt + stst-H ( ^ r - a f + ^-dx-H 

aNw BNf 

dx dz 3 
ajvj" sNf 
dy dy W3 

aNw dN. 

~d~r~birw3 
dNf ON? 
dy ay W3 

0 0 (-5t-5t + -at-ist>i 

aNw dN? 
—A 1—.... 

dz dz w3 
aNwdN» 

I i 1 
\ dz 

dy dy J3 

ajv^aA^ 
dy + dy dx )W3 

(3.16) 

(3.17) 

Note that the B matrix is independent of the nodal variables and the C matrix is linear 

in {Se}. The virtual work equation can now be written for a single finite strip as, 

/ {e}T{*} dvol={6e}Tj> (3.18) 
J v 

where, 

{<r} = | a\ j (3.19) 

and p is the consistent load vector, calculated from the shape functions [N]. 

Substitution of the equation 3.15 into the equation 3.18 results in the equilibrium 

equation for a single strip, 

/ \\B\ + \C\\T i°) dvol = p -> (3.20) 
J v 

. This equation can now be assembled strip by strip, with the introduction of a compatibility 

constraint setting nodal values in neighbouring strips equal to each other to get the structure 
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equilibrium equation, 

E / [[#] + [<?]] r { * } dvol= £ p = P (3.21) 
aUstripa ^ aUstripa 

where P is the structure load vector. 

To solve equations 3.21, the stresses {cr} have to be expressed in terms of displacements. 

Once this is done, the left hand side of the equations 3.21 will be non-linear in the nodal 

displacements, and thus has to be solved by an iterative procedure. This is explained in 

the next section. 

3.7 Newton-Raphson Iterative Procedure 

The equilibrium equation for a single strip can also be written as, 

(3.22) 

where, {(f>) — {<f> (<$)} is the left hand side of the equation 3.20. {(/>} can be expanded in a 

Taylor series, around a known solution {Sq}, as, 

d{4>} 
d{8} ( { * } - ( M ) + = p (3.23) 

{s}={s0} 

In equations 3.23, the differentiation gjgj is understood to be a vector operation, pro

ducing a matrix. This equation can be rearranged, after neglecting higher order terms, to 

get, 

(3.24) 
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where [K] is a tangent stiffness matrix given by, 

d{<p) 
d{8) 

and {AS} = {8} — {8q}, is the incremental nodal displacement vector 

(3.25) 
{6}={60} 

The iterative scheme proceeds as follows. A n initial guess solution {80} is substituted 

into equation 3.24 to obtain the displacement correction {8}—{80}. This correction, added to 

the initial guess solution results in the displacement solution vector after the first iteration, 

{8}. This iterative process is continued until the correction becomes sufficiently small. 

[K], the tangent stiffness matrix, is determined by differentiating the left hand side of 

equation 3.22 with respect to the vector of nodal displacements, and then, evaluating the 

result from the previous iteration. Differentiation of {^} with respect to {8} gives, 

= / v . ^ y ([[Bl + M ] ^ " } ) dvol, (3.26) 

assuming that the integrand is well behaved, so that the integration over the volume of the 

strip and the differentiation with respect to the nodal variables can be interchanged. The 

integrand of the above equation can be expanded as, 

m (+|c|] r{'}) =[|B]+1011 Tm+ (mm+{c]] T)w 

since [5] is not a function of {8}. 
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It is clear from the equations 3.5 and 3.15 that, 

d{a) 
d{e} 

and 

DT] (3.28) 

f | y = [[*] + [£]] , (3-29) 

respectively. The last term in the equation 3.27 can be expresed as 

{dj6}[c]T){a} = [ u ] ( 3 - 3 0 ) 

where, 

k=l v '3 

Derivation and the elements of C/,y are presented in Appendix B . Substitution of 3.28, 3.29 

and 3.30 in 3.27 and then in 3.26 results in, 

j^\ = Jv{ [{B} + [C]} T[DT\ [\B] + [C]] + [[/]} dvol (3.32) 

Now, [K], the tangent stiffness matrix is the evaluation of the above at {60}, which will be 

symmetric if [DT] is symmetric. 

3.8 Numerical Integration 

Evaluation of the volume integral in the equation 3.32 cannot be done analytically, as 

the stress-strain relationship is not known in an explicit form. Therefore, some form of 

numerical integration has to be employed. In the present analysis, Gauss quadrature is 

used. 

The function to be integrated will be evaluated at a discrete number of points. The 

number of points necessary in one direction will be determined depending on the complexity 
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of the expression to be integrated. In Gauss quadrature, these sampling points are located 

at positions to be determined so as to achieve best accuracy for a polynomial integrand. 

The limits of integration will be changed to -1 to +1 by transforming variables. Then, 

if the integrated result is I, 

/

+1 r+l r+l 

! 7_! /_! f(a>P>'l)dadP'h- (3-33) 
To evaluate the right hand side numerically, 3.33 will be replaced by, 

M M M 
1 = Z £ £ Hi^Hkfiai,ft, 7 t ) (3.34) 

k=i j=i i=i 

where, i/„ Hj and Hk denote the weight components and a,-,/?,- and 7* denote the sampling 

points respectively. In the above, the number of integrating points in each direction are 

assumed to be the same at M . This is not necessary, and on occasion it may be of advantage 

to use different numbers in each direction of integration. Considering only one direction 

of integration, M points can integrate a polynomial of order 2M-1 exactly. Therefore, if 

the integrand is a polynomial in all three directions, it is a trivial problem to find out the 

required number of Gauss evaluation points for an exact integration. When the integrand 

is not a polynomial, this evaluation has to be done by a trial raid error procedure or by 

experience. Selection of the number of Gauss evaluation points for the present study will 

be discussed in the next chapter. 

3.9 Computer Implementation 

The finite strip formulation described in the preceeding pages is implemented in a computer 

programme. This programme is written in F O R T R A N IV and has been" test run through 
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the use of an A M D H A L 5850 computer. 

The user has the option of selecting one or more displacement modes in each of the 

displacement variables u,v and w. The number of Gauss integration points necessary in any 

one direction is chosen by the computer programme depending on the complexity of the 

problem and the number of modes employed in the analysis. The final set of simultaneous 

equations are solved for the nodal variables by a Gauss elimination procedure. Convergence 

of the solution algorithm is determined by one of two criteria. In the maximum norm 

criterion, the solution is converged if, 

Si 
< TOLER (3.35) 

where denotes the displacement solution for the nodal variable i, A<5,- is the correction 

for that variable at the present iteration, and TOLER is the accepted tolerence which is 

specified by the user. On the other hand, in the Euclidian norm criterion, the solution is 

converged if, 

{tS£ < TOLER2 (3.36) 
2w=i (Si) 

where N is the total number of nodal variables. Selection of the convergence criterion for 

any particular problem was left to the user. 



CHAPTER IV 

NUMERICAL INVESTIGATIONS 

4.1 Introduction 

The finite strip formulation developed in the previous chapter was then used to investigate 

several example problems. Mode shapes used in the longitudinal direction of a strip are 

identified by the indices ra, n and p, introduced in equation 3.2. The notation employed in 

this chapter is illustrated by the following examples. 

(2,2,1) one mode analysis m = 2, n = 2, p = 1 

(2,2,l)+(4,4,3) two mode analysis; second mode with m = 4, re = 4, p = 3 

(2,2,l)+(4,-,-) two modes for the u displacement, m = 2 and m — 4 

one mode for the v displacement, n = 2 

one mode for the w displacement, p = 1 

Section 4.2 includes a discussion on the number of numerical integration points em

ployed in different types of analyses. These numbers depend on the complexity of the 

expression to be integrated, as well as the desired accuracy. 

It was decided to carry out a series of test runs on beam problems, before proceeding 

to plate problems, as there are very few, if any, analytical solutions available in the latter 

42 
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case. A rectangular beam with various end conditions was analysed for linear elastic, non

linear geometry, and non-linear material behaviour. The finite strip results are compared 

with analytical and other numerical solutions in section 4.3. 

I beams and T beams can be considered the least complicated stiffened panel structures 

presently in use. Moreover, there are numerous analytical and numerical procedures to solve 

for the deflections of these beams in both linear and non-linear realms. Several finite strips 

can be assembled to form an I beam as discussed in Chapter 3. The finite strip results 

for such a beam, are compared with analytical solutions in the case of linear analyses and 

against finite element results in the case of non-linear analyses in section 4.4. 

Section 4.5 includes the numerical investigations on laterally loaded square plates which 

are not reinforced by stiffeners. In addition to the comparisons of the finite strip results with 

the other analysis procedures, the investigation extends to the determination of the number 

of finite strips necessary to adequately represent a given plate structure. The effects of 

various boundary conditions and the convergence of the displacements and strain energies 

as the number of strips is increased are also discussed in this section. Furthermore, the 

spread of plastic zones as the load increases was also examined. 

Section 4.6 consists of the results of a detailed analysis on a stiffened panel. In the ex

ample problem, stiffeners, which are of the shape of an inverted T beam, run in one direction 

parallel to each other. The plate and the stiffeners are clamped all around. Deflections at 

the centre of the panel and at the top of the stiffeners and also the overall deflected shape 

of the panel, are compared with finite element results. Stresses at the top surface of the 

plate are also compared. 

As explained in Chapter 2, the finite strip method uses continuously differentiable 

smooth series in the longitudinal direction of a strip. Most of the analyses in sections 4.2 

through 4.6 are carried out by employing only one term of this series for each displacement 
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component u, v and w. However, the effect of adding more modes was also investigated in 

some example problems where it was considered necessary for more accuracy. 

4.2 Numerical Integration 

As discussed in section 3.8, it is often desirable to use different numbers of integration points 

in different directions of integration. If the number of Gauss evaluation points used in x, y 

and z directions (local) of a strip are r, s, and t respectively, the numerical integration will 

be denoted by (r x s x t) in this chapter. 

In Gauss quadrature, the sampling points are selected so as to integrate a polynomial 

expression exactly. Therefore, if the integrand is a polynomial, it is a trivial matter to 

determine the number of Gauss evaluation points necessary to obtain exact answers. How

ever, when the integrand is not a polynomial, or when the explicit form of it is not known, 

there is no sure way to find out the required order of integration. In an elastic analysis, 

the integrand of equation 3.32 consists of the strain-displacement matrices [B] and [C] and 

the elasticity matrix \D\. Therefore, in such an analysis, it is possible to get the exact form 

of the expression to be integrated by examining the strain displacement relations and the 

displacement shape functions. 

As described in chapter 3, the displacement variations in the strip direction consists 

of hyperbolic and circular functions. Therefore, it is clear that a typical higher order 

term one will encounter in equation 3.32 will look like sin 2 7 r f , cos 2 7 r £ , sinh 2 /?£ or 

sinh /?£ cosh /?£ in an elastic small deflection analysis, and s i n 4 7 r £ ; cos 4 7r£ , sinh 4 /3£ or 

sinh 2 /3£ cosh 2/3£ in an elastic large deflection analysis if only one mode is employed in each 

of the three displacements. Results of integration of some of these terms by using different 

numbers of Gauss evaluation points are presented in Table 4.1. It is clear from this table 
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that 5 Gauss points are sufficient to obtain results accurate to five significant numbers in a 

small deflection analysis. Even in a large deflection problem, 5 point integration is in error 

only by about 0.5%. A similar analysis revealed that 7 Gauss points are sufficient in the 

strip direction if two displacement modes are employed in finite strip analysis. 

T A B L E 4.1 N U M E R I C A L I N T E G R A T I O N OF C I R C U L A R A N D 

H Y P E R B O L I C F U N C T I O N S 

J ? w e 

/ sin 2 ?r£ sinh 2 7t"f cos4 7r£ 

2 Gauss points 0.3857986652 17.5318815892 0.3772432796 

5 Gauss points 0.5000154016 20.8061932632 0.3770682123 

10 Gauss points 0.4999999999 20.8064616871 0.3749999995 

Exact 0.5000000000 20.8064616871 0.3750000000 

Considering widthwise and depthwise directions of a strip, equation 3.32 consists of 

quadratic polynomial terms in an elastic small or large deflection analysis. Therefore, it 

was concluded that 2 Gauss evaluation points are sufficient across the width of the strip 

and also through the thickness for exact integration in an elastic analysis. 

When the plate material behaves in a non-linear manner, determination of r, s and t 

is more difficult. By observing the results of some example runs with varying number of 

integration points, it was decided to use the same r and s numbers as in the linear analysis 

even in non-linear material problems. However, as plastification of the material extends 

through the depth, a higher order of Gauss integration is required to capture the non-linear 

distribution of stresses. For thin beams of rectangular cross-section, Wu and Witmer[4l] 
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found that 4 depthwise Gaussian points were sufficient to give an accurate representation 

of this non-linear stress distribution. This same order of Gauss integration is employed in 

the present analysis. 

In summarising this section, the numerical integrations employed in the examples given 

in this chapter will be, 

(5x2x2) one mode analysis, linear material, 

(7x2x2) two mode analysis, linear material, 

(5x2x4) one mode analysis, non-linear material, 

(7x2x4) two mode analysis, non-linear material. 

When more than two modes were employed, r was increased to 10. 

Exceptions to the above will be seen in some example problems, where it was necessary 

to investigate the effect of using different orders of integration. The order of numerical 

integration used in these problems will be stated in the corresponding discussions. 

Positions and weighting coefficients for Gaussian integration are presented in Table 4.2 

for the different orders used in this thesis. 
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T A B L E 4.2 A B S C I S S A E A N D W E I G H T COEFFICIENTS OF T H E 

G A U S S I A N Q U A D R A T U R E F0RMULA[19] 

f'1f(x)dx=j:>l1Hjf(aj)! 

N ± 0 H 

2 0.57735 02691 89626 1.00000 00000 00000 

4 0.86113 63115 94053 
0.33998 10435 84856 

0.34785 48451 37454 
0.65214 51548 62546 

5 0.90167 98459 38664 
0.53846 93101 05683 
0.00000 00000 00000 

0.23692 68850 56189 
0.47862 86704 99366 
0.56888 88888 88888 

6 0.93246 95142 03152 
0.66120 93864 66265 
0.23861 91860 83197 

0.17132 44923 79170 
0.36076 15730 48139 
0.46791 39345 72691 

7 0.94910 79123 42759 
0.74153 11855 99394 
0.40584 51513 77397 
0.00000 00000 00000 

0.12948 49661 68870 
0.27970 53914 89277 
0.38183 00505 05119 
0.41795 9i836 73469 

!0 0.97390 65285 17172 
0.86506 33666 88985 
0.67940 95682 99024 
0.43339 53941 29247 
0.14887 43389 81631 

0.06667 13443 08688 
0.14945 13491 50581 
0.21908 63625 15982 
0.26926 67193 09996 
0.29552 42247 14753 

4.3 Analysis of a Rectangular Beam 

4-8.1 Simply supported ends 

The behaviour of a rectangular beam simply supported in bending, but restrained 

axially, subjected to a uniformly distributed load, was studied by the finite strip method 

using a single strip. Only one displacement mode was employed in the strip direction for 
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each of the three displacements u, v and w. i.e. in the notation described before, the 

analysis uses (2,1,1). 

A Rayleigh-Ritz analysis can be conducted out to obtain the modal solutions for this 

problem by an energy minimization. The total potential energy of the beam is given by, 

V 
2 JQ 

EI U! 

dx2 
2 qw dx (4.1) 

where, x is the distance measured along the beam, 

L is the length of the beam, 

EI is the flexural rigidity of the beam, 

q is the distributed load per unit length and 

w is the lateral deflection. 

Assuming a one mode solution of the form, 

7TX 

w = wc sin L ' 
(4.2) 

the potential energy can be minimized with respect to the central deflection wc to get, 

4L4q 

(4.3) 

w. 7T5EI 
5L*q 

382.525£7 

This result is slightly larger than the central deflection given by the exact solution, 

bLAq/ZBAEI. A comparison of the central deflection, strain energy, maximum bending 

moment and the maximum stress, obtained by the three methods is presented in Table 4.3, 

along with the geometric and material properties of the beam. 
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TABLE 4.3 L I N E A R E L A S T I C R E S P O N S E OF A S I M P L Y S U P P O R T E D B E A M 

beam length, L 

beam width, 6 

beam thickness, h 

elastic modulus, E 

Poisson's ratio, v 

uniformly distributed load, q 

= 500 mm 

= 10 mm 

= 10 mm 

= 220000 N / m m 2 

- 0.0 

= 0.1 N / m m 2 

Beam Theory One Mode 
Analytical 

One Mode 
Finite Strip 

Central Deflection (mm) 4.4389 4.4560 4.4560 

Strain Energy (Nmm) 71.023 70.920 70.920 

Maximum Moment (Nm) 3.1250 3.2251 3.2251 

Maximum Stress(N/mm 2) 187.50 193.51 193.51 

Error in deflection between the beam theory and the other two methods is 0.38% 

whereas that in energy is 0.15%. However, as one might expect in any approximate solution 

based on a displacement approach, bending moments and stresses show a higher error (3.2%) 

between the exact solution and the modal solutions. 

Deflected shape of the beam and bending moment distribution along the beam obtained 

by finite strip analysis are plotted with the beam theory solutions in Figures 4.1 and 4.2 

respectively. The non-dimensional length, £, is used in these plots as the abscissa. It 

is clear that in a linear analysis an accurate prediction of the displacement and moment 

distributions can be obtained by the present finite strip formulation using one mode, and 

that the finite strip integration scheme is correct for this linear problem. 



Figure 4.2 - Bending moment distribution of the 

simply supported rectangular beam 



Chapter IV: Numerical Investigations 51 

Timoshenko and Woinowsky-Krieger[2] present an exact solution for a uniformly loaded 

bar submitted to the action of an axial force. This solution takes the effect of the membrane 

forces into account. A large deflection finite strip analysis was carried out by employing 

only one mode (2,1,1). A comparison of these two methods in the form of a load deflection 

plot is included in the Figure 4.3. In this analysis, a Poisson's ratio of 0.3 was assumed. A 

very good agreement is seen between the one mode finite strip solution and the analytical 

solution. Finite strip results are slightly on the flexible side of the Timoshenko curve. A 

comparison of strain energies in these two methods is presented in Figure 4.4. It is clear 

from this plot that even in terms of energy, the finite strip model is more flexible than the 

Timoshenko theory. This result contradicts with the energy bound one might expect in a 

modal solution. This may be due to possible errors in numerical integration. 

Figure 4.3 also includes the results of an elastic perfectly plastic analysis of the same 

problem. A l l the geometric and material properties are the same and a yield stress of 

300 N / m m 2 is assumed. Soreide et al. [42] used a total Lagrangian finite element formula

tion including the effects of large deflections by incorporating von-Karman strain displace

ment relations. Plastic analysis was carried out by following the von-Mises yield criterion. 

Backlund[43] also attacked the problem in a similar manner, but used a different element. 

The present one mode finite strip result agrees very well with the solution by Soreide et al. 

and is similar to the Backlund solution. The loss of stiffness due to plastification is clearly 

demonstrated. Also shown in the Figure are the rigid plastic solution of Jones[44] and the 

rigid plastic horizontally free solution which depicts an uncontrolled deformation once the 

plastic collapse load is reached. 

In a rigid plastic analysis, the stress in the beam cannot exceed the yield stress of the 

beam material. Therefore, once every section of the beam becomes plastic, the beam turns 

to a plastic string with constant tension if it is restricted against axial motion. The 
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Figure 4.3 — Central deflections of the 

simply supported rectangular beam 
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Figure 4.5 - Deflection response of the simply supported 

rectangular beam with varying numerical integrations 
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uniform tension T is equal to the cross sectional area times the yield stress. The central 

deflection of such a string can be calculated by considering the equilibrium of a small portion 

of the string. This results in a central deflection of qL2/8ayh for a uniformly distributed 

load of intensity q, where ay is the yield stress and h is the beam thickness. This solution 

is also presented in Figure 4.3. Finite strip and Soreide et al. curves are asymptotic to 

the plastic string solution when the central deflection exceeds two beam thicknesses, as one 

might expect in a plastic analysis. The other important factor to be noted is the difference 

between Jones's rigid plastic model and the elastic-perfectly plastic analysis when the central 

deflection is less than a beam thickness. Exclusion of the elastic deformation causes the rigid 

plastic model to underestimate the deflection. For example, when the finite strip central 

deflection is equal to a beam thickness, the rigid plastic model predicts a central deflection 

of 0.7 times the beam thickness. 

For axially unrestrained beams, one of the simple and popular methods of plastic analy

sis utilises the concept of plastic hinges. A plastic hinge analysis on the example rectangular 

beam predicts a plastic collapse at a uniformly distributed load of 8 M p / L 2 per unit length, 

where Mp is the fully plastic moment of the section. The load displacement curve obtained 

by plastic hinge analysis consists of two straight line segments. Figure 4.5 illustrates the 

comparison of this curve with several finite strip solutions obtained by varying the number 

of numerical integration points in a small deflection elastic-perfectly plastic analysis. The 

number of integration points across the width was kept constant at 2 as it was shown that 

2 points are sufficient in that direction to integrate the expressions exactly. This analysis 

shows that the effect on displacements of increasing spanwise Gauss points from 5 to 7 is 

very minimal. However, it is seen that to capture the plastic stress distribution through the 

thickness at least 4 Gauss points should be employed in that direction. This is consistent 

with Wu and Witmer[4l]'s observations. The finite strip solution does not show a kink and 
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it reaches a plateau at a load 25% higher than the plastic collapse load. This difference 

can be attributed to the difference between actual and assumed deflection patterns of the 

beam. When the central deflection is larger than about 50% of beam thickness, these small 

deflection analyses are no-longer valid for a beam with constrained ends. Therefore, it is 

unreasonable to expect any kind of agreement at deflections larger than one beam thickness. 

4-8.2 Clamped ends 

The same beam was analysed again by clamping its ends against rotation in the xz 

plane. The finite strip solution uses the beam vibration modes of a fixed ended beam for 

the lateral deflection. The analytical one mode solution can again be determined by an 

energy minimization procedure. One mode solution now takes the form, 

w — wc \ot\ (sinh flix — sin /?ix) + (cosh P\x — cos/?iz)] /A\ (4-4) 

where, A\ = a.\ (sinh0.5/3iL — sin0.5/?iL) + (cosh 0.5/?iL — cos0.5/?i£), 

cos/?iL — cosh/?i.L 
Oi\ = — ; 

sinh ftiL — sin 0\L 

and, j3\L is the first solution of the transcendental equation, cosh/?Z/ = sec f3L. 

Substitution of 4.4 into 4.1 and the subsequent minimization gives, 

W< = 379MZEI' ( 4 - 5 ) 

which is slightly higher than the beam theory solution, L4 q/384EI. A comparison of the 

central deflection, strain energy, maximum bending moment and the maximum stress, ob

tained by the three methods is presented in Table 4.4, along with the geometric and material 

properties of the beam. 
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TABLE 4.4 L I N E A R E L A S T I C R E S P O N S E OF A C L A M P E D B E A M 

beam length, L 

beam width, b 

beam thickness, h 

elastic modulus, E 

uniformly distributed load, q 

Poisson's ratio, v 

500 mm 

10 mm 

10 mm 

220000 N / m m 2 

1.0 N / m m 2 

0.3 

Beam 
Theory 

One Mode 
Analytical 

One Mode 
Finite Strip 

Central Deflection (mm) 8.8778 8.9866 8.9866 

Strain Energy (Nmm) 1183.7 1175.4 1175.4 

Moment at Middle(Nm) 10.42 11.62 11.62 

Moment at Support (Nm) 20.84 19.12 19.12 

Maximum Stress at Middle (N/mm 2 ) 62.52 69.74 69.74 

Maximum Stress at Support (N/mm 2 ) 125.0 114.7 114.7 

The error in deflection between the beam theory and the other two methods is 1.23%, 

whereas that in energy is 0.70%. However, as one might expect in any approximate solution 

based on a displacement approach, bending moments and stresses show a higher error 

(11.52% at the centre and 8.25 % at the clamped end) between the exact solution and the 

modal solutions. The finite strip model predicts a larger bending moment at the middle of 

the beam and a smaller moment at the clamped ends than the exact solution. The ratio 

between these two moments is 1.645 whereas the exact ratio is 2.. These differences are 

due to the beam vibration mode assumed in the present analysis instead of the polynomial 
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shape obtained in plate theory for the deflected shape of the beam. 

The deflected shape and the bending moment distribution of the beam obtained by finite 

strip analysis is plotted with the beam theory solutions in Figures 4.6 and 4.7 respectively. 

It is clear that in a linear analysis an accurate prediction of the displacement and moment 

distributions can be obtained by the present finite strip formulation using one mode. 

The results of a large displacement analysis of the clamped beam are presented in Figure 

4.8 where comparisons are made to an exact solution to the problem given by Timoshenko 

and Woinowsky-Krieger[2]. Only one displacement mode is employed in each of the three 

displacements u, v and w; however, the finite strip solution for this problem is sensitive 

to the selection of the shape functions for u, the in plane longitudinal displacement. For 

= s m 2t£ and for <?"(£) = d<f>\/dx where 4>\ = 9W{€)>
 t n e l ° a ( l displacement curves 

are almost identical, but are on the stiff side of the Timoshenko solution by about 12.5% 

for a deflection of one beam depth to about 17% for a deflection of twice the beam depth. 

However, for = sin47r£, there is very good agreement with the analytical solution. 

This can be explained by considering axial equilibrium of the fixed ended beam, which 

requires that the axial force be constant along the beam. Since the beam is of uniform cross 

section, this is the same as requiring the axial strain to be constant. The expression for 

axial strain is given by, 

as cos4?r£. Therefore, the shape function for the axial displacement should take the form, 

(4.6) 

If the shape function for w, <f>, is approximated by (1 — cos27r£), then, will vary 

gu(£) = sin47r£ (4.7) 



Figure 4.7 - Bending moment distribution of the clamped rectangular beam 
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Figure 4.8 - Central deflections of the clamped rectangular beam 
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so that ex can be constant along the length. Note that this requirement can be used to 

select u variation corresponding to any given w shape function along the length of the strip. 

To verify the shape of the u displacement along the beam strip, it was decided to carry 

out a finite element analysis incorporating geometric non-linearities. For this purpose, the 

finite element computer programme FENTAB[45] was used, which was developed at The 

University of British Columbia in 1986. F E N T A B is capable of predicting the transient re

sponse of slender ductile beams exhibiting geometric and/or material non-linearities. Thus, 

F E N T A B can be used to predict static response of beams by means of a dynamic relaxation 

procedure. For the present analysis, F E N T A B was used with 10 elements per half span. 3 

spanwise and 4 depthwise Gauss integration points were employed in each element to per

form the numerical integrations. The F E N T A B solution for u displacement along the beam 

at a uniformly distributed load of 2.5 N / m m 2 is plotted in Figure 4.9, along with a curve 

that varies as sin47r£. Although they are not identical, sin47r£ is a very close approximation 

to the F E N T A B curve. 

Strain energy predictions by the finite strip method for the present problem are com

pared with the Timoshenko solution in Figure 4.10. As in the case of a simply supported 

beam, finite strip results are more flexible than the analytical solution. Lack of an energy 

bound may be due to errors in numerical integration. Agreement between the two curves 

is satisfactory. 

A comparison between the results of the finite strip programme and F E N T A B for an 

elastic-perfectly plastic analysis is also included in Figure 4.8. Figure 4.11 is a large scale plot 

of the same results with the addition of the plastic string solution at larger displacements. 

Note that the F E N T A B curve approaches the plastic string solution at a central deflection 

of about twice the beam depth. The finite strip solution is more stiff than the F E N T A B 

curve. The two curves agree very well until a central deflection of about one beam depth. 



Figure 4.9 - u displacement along the clamped beam for q = 2.5 N/mm' 

o 
«>• 

Elastic -
Analysis 

«•«* 

Large Deflection, 

£ 9 

r 

• * ^^^^ 
T i m o s h e n k o ^ ^ ^ ^ 

Finite Strip (4,1,1) 

Lo
od

-
4.

0 

• -— 

Lo
od

-
4.

0 

Rectangular Beam 

© Length 500 mm 
Thickness 10 mm 

o 
d_ • I I I I 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 
Strain Energy-Nm 

Figure 4.10 - Strain energy comparison in the clamped rectangular beam 



Chapter IV: Numerical Investigations 62 

Figure 4.11 — Central deflections of the clamped beam in a 

large deflection, elastic-perfectly plastic analysis 
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The difference between these two curves increases from 6.33% to 11.18% when the central 

deflection increases from one to two beam thicknesses. At very high deflections the beam 

behaves as a plastic string, which has a parabolic shape. However, the finite strip solution 

always maintains the <j>p(£) shape, with zero slopes at both ends. On the other hand, 

F E N T A B solution is capable of assuming a parabolic shape since a fine mesh has been 

used. This is the reason for the differences observed between F E N T A B and the finite strip 

model at higher values of deflections. 

The classsical three hinge collapse mechanism for a fixed ended beam predicts the 

occurence of the first two plastic hinges at a uniformly distributed load of 12M p/1? per unit 

length. Plastic collapse takes place at a uniformly distributed load of 16MP/L2. For the 

example beam, these values correspond to 0.36 and 0.48 N / m m 2 respectively. These results 

are compared with the results of the finite strip model in Figure 4.12. In this figure, four 

finite strip curves, obtained by using different numerical integrations, are presented. These 

curves confirm that even when using the clamped beam vibration mode, 5 integration points 

are sufficient along the length of the strip, and at least 4 points are required through the 

thickness for plastic analysis. As it was observed in the simply supported beam example, 

finite strip curves lie above the plastic hinge solution throughout the loading history. The 

general shape of the curves are quite similar. The kinks in finite strip curves come later 

than those of the other, at loads of 16.67M p/L 2 and 21.67M p/L 2 respectively. In plastic 

hinge analysis, the beam is assumed to behave as a mechanism once the plastic collapse 

load is reached. On the other hand, as mentioned before, the finite strip solution maintains 

a zero slope at the ends of the beam throughout the loading history, and therefore is not 

capable of approximating the mechanism mode. Furthermore, the comparisons of Figure 

4.11 are more practical than those of Figure 4.12 because of the inclusion of the effect of 

large deflections in the former, especially in regions where the differences occur. 
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4.4 Analysis of an I Beam 

As the final example of beam analysis, an axially constrained steel I beam subjected to a 

uniformly distributed line load was considered. Geometric and material properties of the 

beam are presented in Figure 4.13(a). It is seen that the assembly process in the finite strip 

method adds an extra area to the beam cross section at the T joints as shown in Figure 

4.13(b). This additional area increases the cross sectional area by 1.65% and the second 

moment of area by 1.87% in the example I beam. The flange width of the finite strip model 

was adjusted to give the correct second moment of area. In the analyses that follow, a 

flange width of 7.858 in. was used instead of the actual width of 8.022 in. 

4-4-1 Simply supported ends 

The example I beam was analysed with simply-supported boundary conditions first. 

In the initial linear elastic analysis, a five strip discretisation was employed (Fig. 4.13(c)) 

and the following shape functions were used for the three displacements u, v and w, in the 

longitudinal direction. 

9m{0 = cos nil, 

ffn(0 = s i n a n d 

9p ( 0 = sin n£, i.e. (m, n, p) = (1,1,1) 

These shape functions satisfy the necessary compatibility between v and w displace

ments and also between u and the slope of the w displacements (section 3.3.4). At the ends 

of the beam, the u displacement of the top flange is the negative of that of the bottom 

flange, thus ensuring an axial constraint at the middle of the web. Lines (a) and (c) of the 
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Table 4.5 summarise the results of the linear elastic analysis. One mode analytical solutions 

were calculated following a Rayleigh-Ritz procedure, as discussed in the previous sections. 

T A B L E 4.5 L I N E A R E L A S T I C R E S P O N S E OF A SIMPLY S U P P O R T E D I B E A M 

beam length, L = 400 in 

elastic modulus, E - 30000000 l b / i n 2 

uniformly distributed load, q = 495 lb/ in 

Beam Theory One Mode 
Analytical 

One Mode 
Finite Strip 

Central 

Deflection (in) 

(a) 22.488 22.575 22.820 Central 

Deflection (in) (b) 22.699 22.792 22.820 

Strain 

Energy x l 0 _ 6 ( l b i n ) 

(c) 1.4249 1.4228 1.4363 Strain 

Energy x l 0 _ 6 ( l b i n ) (d) 1.4380 1.4357 1.4363 

The finite strip solutions are more flexible than the other two solutions, in both central 

deflection and strain energy. A major difference between the finite strip analysis and the 

other two methods is the ability of the finite strip analysis to include shear displacements 

in the web strip. 

The shear displacement at any section of the beam is given by [46], 

where V is the vertical shear due to the actual loads, v is the vertical shear due to a unit 

load acting at the section where the deflection is desired, A is the area of the cross section, 

L is the length of the beam, x is the distance measured along the beam, G is the modulus 
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of elasticity of the beam material, and F is a factor depending on the form of the cross 

section. For an I section, F is given by, 

F = 
5{Dl-Dl)D1 (t2  

+ 2D\ U 
4£>2 

10r 2 ' 
(4.9) 

where, D\ — distance from the neutral axis to the nearest surface of the flange, 

D2 = distance from the neutral axis to the extreme fibre, 

ti = thickness of web, 

ti = width of flange, and 

r — radius of gyration of section with respect to the neutral axis. 

Equation 4.8 yields a shear displacement of 0.2106 in at the mid span of the example 

beam. Corrected values of the central displacements and the strain energies are given in 

lines (b) and (d) of the Table 4.5, where the beam theory and analytical solutions have been 

increased by the amount of shear displacement and shear energy. The finite strip solutions 

now compare very well with the one mode analytical solutions. 

In order to investigate the effect of large displacements, it was necessary to include 

another u mode which allows for finite stretching between the two pinned supports. As was 

explained in the clamped rectangular beam example, the requirement of a constant axial 

strain can be used in selecting this new mode, sin 2TT£ was chosen for this purpose as it 

satisfies the above requirement and is also antisymmetric about the mid span of the beam. 

The web is modelled by two equal width strips (Fig. 4.13(d)). In the middle of the web, 

i.e. on the new nodal line, the u displacement of the first mode was constrained to be zero. 

For the example beam, a F E N T A B analysis was also carried out, by incorporating 

geometric non-linearities. In this analysis, one half of the span was modelled by 10 equal 

length finite elements. Numerical integration through the depth is performed by employing 
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4 Gauss points through the web and a simple mid point in each of the flanges. Each element 

had three Gauss points along the axis. Results of the large deflection finite strip analysis 

are compared with the F E N T A B results in Figure 4.14. Agreement is very good. The slight 

increase in flexibility observed in the finite strip solution can be attributed to the shear 

deformation in the web. 

The comparison of predicted central deflections with F E N T A B for an elastic plastic 

material, including large deflections, is presented in Figure 4.15, where it is seen that the 

agreement is excellent. When the central deflection approaches twice the beam depth, the 

F E N T A B solution runs asymptotic to the plastic string limit. The finite strip solution, on 

the other hand, agrees with the solution obtained using a one mode Galerkin procedure 

on the governing differential equation for a plastic string. This is expected as the assumed 

displacement variation in the Galerkin analysis is the same as in the finite strip, namely 

sin TT£. 

Axially restraining an I beam at different locations along the depth makes a considerable 

difference to the load-deflection response. Results for central deflection of the same I beam 

in an elastic large deflection analysis are presented in Figure 4.16 for the different support 

points A , B , C, D and E. These results were obtained by modelling the web with four 

equal width finite strips. The support point was moved from A through E by changing the 

boundary conditions at the appropriate nodal line. In a linear elastic analysis, points A and 

E should yield the same displacement pattern as they are equidistant from the centroidal 

axis. Therefore, near the origin, both these curves have the same slope. This is also true for 

the points B and D. However, as the axial stretching starts to take place, point A produces 

the stiffest solution and point E produces the most flexible solution. This can be explained 

as follows. 
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Figure 4.14 - Central deflections of the simply supported I beam 
in an elastic analysis 
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0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 

w—in 

Figure 4.16 - Central deflections of the simply supported I beam with 

varying support points 
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When the beam is supported at the middle of the top flange (point A ) , the effect of 

the axial load at the support is equivalent to that of an axial load along, and a hogging 

bending moment about, the neutral axis (Fig. 4.17(a)). On the other hand, when the beam 

is supported at E , the axial load at the support can be replaced by an axial load along the 

neutral axis and a sagging bending moment about the neutral axis (Fig.4.17(b)). Therefore, 

in the former case, additional moment reduces the deflection due to lateral load, whereas 

in the latter case, it aids the deflection due to lateral load. 

4-4-2 Clamped ends 

The results of a one mode (1,1,1) linear elastic analysis of a clamped I beam are sum

marised in Table 4.6. The finite strip results were obtained by modelling the I beam with 

five strips as shown in Figure 4.13(c). To satisfy the linear requirement, the u displacement 

is assumed to be of the same shape as the slope of the w displacement in the longitudinal 

direction. The geometric and material properties are the same as for the simply supported 

case (Fig 4.13(a)). Once again, lines (a) and (c) of Table 4.6 present the central deflections 

and strain energies respectively before applying shear corrections. Corrected results are 

given in lines (b) and (d) respectively. The agreement between analytical and finite strip 

results is satisfactory. 
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(a) Support point at A 

M 

(b) Support point at E 

Figure 4.17 - Varying support points 
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T A B L E 4.6 L I N E A R E L A S T I C R E S P O N S E OF A C L A M P E D I B E A M 

beam length, % = 400 in 

elastic modulus, E = 30000000 l b / i n 2 

uniformly distributed load, q = 495 lb/ in 

Beam Theory One Mode 
Analytical 

One Mode 
Finite Strip 

Central 

Deflection(in) 

(a) 4.4976 4.5528 4.7254 Central 

Deflection(in) 0>) 4.7082 4.7252 4.7254 

Strain 

Energy x l 0 _ 5 ( l b i n ) 

(c) 2.3745 2.3579 2.4447 Strain 

Energy x l 0 _ 5 ( l b i n ) (d) 2.5054 2.4793 2.4447 

The shear displacement along the beam is parabolic according to equation 4.8. However, 

t; displacement of the web has the <̂ >(£) shape along the beam (Section 3.3.2). It was revealed 

by a Rayleigh-Ritz analysis that the <£(£) shape underestimates the shear deflection at the 

mid span by 18.1% compared to the parabolic shape. Moreover, it is seen from Table 4.6 

that for deflection the one mode analytical solution overestimates the beam theory by 1.21%. 

In the present example, shear constitutes 4.7% of the total deflection. Therefore, the total 

solution obtained by finite strip analysis should be [(1.21 x 0.955) - (18.1 x 0.047)] = 0.33% 

more flexible than the beam theory solution for the total deflection. This is in agreement 

with line (b) of Table 4.6. 

Load deflection curves for the large deflection elastic behaviour of the example I beam 

are presented in Figure 4.18. F E N T A B solutions were obtained by using the same number of 

elements and the same order of numerical integration as in the case of the simply supported 

I beam. One mode analysis ( 1 , 1, 1 ) with the displacement patterns used in the linear 
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Figure 4.18 - Central deflections of the clamped I beam 
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elastic case, produces displacements which are stiffer than the F E N T A B results. This is 

the same difference as was observed in the case of the clamped rectangular beam, where 

the u displacement varies as the slope of the w displacement in the axial direction (Fig.4.8). 

As explained before, this difference is due to the lack of ability of the present u mode to 

represent a constant axial strain. Accordingly, it was decided to add another mode for 

the u displacement which varies as sin47r£ in the longitudinal direction. A substantial 

improvement is seen after the addition of this mode, as shown in the Figure 4.18. The finite 

strip results now compare very well with the F E N T A B analysis. 

Results of an elastic-perfectly plastic analysis on the same beam are given in Figure 

4.19. The F E N T A B analysis represents the best estimate available for the exact results. The 

finite element discretisation and the order of numerical integration used in the F E N T A B 

analysis are the same as before. In a small deflection analysis, the F E N T A B curve follows 

the elastic-plastic hinge analysis very closely. However, the F E N T A B curve exhibits a 

plateau at a load of 205 lb/in, about 6.5% higher than the rigid-plastic collapse load. The 

finite strip curve, although similar in shape, shows a very high load carrying capacity. The 

curve becomes almost horizontal at a load of 325 lb/ in (at a load 58% higher than the 

F E N T A B prediction). A similar difference was observed between the finite strip solution 

and plastic collapse solution in the case of a clamped rectangular beam (Fig. 4.12). There 

is a very slight slope in the finite strip curve at the collapse load, owing to the fact that 

some of the integration points will not become fully plastic, because of their locations. 

Figure 4.19 also includes results of a large deflection elastic-plastic analysis. Compared 

to F E N T A B , the finite strip results are in considerable error in the intermediate range of 

deflections, up to 200% higher in some locations. At larger deflections, when the beam 

is acting as a plastic string, agreement with F E N T A B is much better, although the mode 

shape for w is quite different than the string mode shape. 



Figure 4.19 - Central deflections of the clamped I beam in an elastic—perfectly plastic analysis 
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To investigate the discrepancy at the intermediate range of deflections, it was decided 

to carry out a parametric study on the yield stress, while the elastic modulus was kept 

constant. Results of this analysis are presented in Figure 4.20 for tr 0 = 36, 72 and 108 

ksi. When the yield stress is doubled to 72000 l b / i n 2 , the maximum difference in central 

displacements reduces to 106% (at a load of 600 lb/in) and to 62% for the yield stress of 

108000 l b / i n 2 (at a load of 946 lb/in). On the other hand, the maximum difference in the 

applied load for a given displacement remain essentially constant at about 38%. 

Even though it was possible to increase the ratio of membrane to bending action by 
i 

increasing the yield stress, overall differences between the two analyses were not reduced. 

Therefore, it can be concluded that the reason for the observed differences between finite 

strip and finite element results are due to the inability of the beam vibration mode to 

simulate the deflected shape of the beam when plastic action takes place. 

Since the one mode representation of the example I beam did not produce satisfactory 

results, it was decided to study the effect of adding more displacement modes. Results of 

this analysis are presented in Figure 4.21. Addition of a second bending mode, i.e. two u 

modes and two w modes, reduces central displacements at a given load as compared to the 

previous solution (two u modes and one w mode). However, as stated before, it is necessary 

to have a u displacement shape which varies as the slope of the w variation, to satisfy 

linear requirements. Deflection response after the inclusion of this mode is represented 

by the dashed line in Figure 4.21. Note that the second w mode has a shape close to 

(COS4TT£ - cos27r£). Therefore, the requirement of a constant axial strain can be satisfied 

by including a fourth u mode, which varies as sin87r£ along the strip. The solid line in 

Figure 4.21 is the load-deflection curve after introducing this new mode. It is clear now 

that the solution cannot be improved much by adding just a few more modes, presumably 

because of the zero slope boundary conditions. 
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Figure 4.20 - Parametric study on the clamped I beam 
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Variation of strain energy in "two u one w" and "four u two w" finite strip models are 

presented in Figure 4.22, along with the F E N T A B results. Energy variations in the other 

two finite strip models discussed in the previous paragraph fall between the dashed line and 

the solid line. As in the case of central deflections, a large discrepancy is seen between finite 

strip and F E N T A B results. It is again realised that the improvement of solution by adding 

more modes of the type used in present analysis is very small. Therefore, it is believed that 

one has to resort to a different set of mode shapes in order to be able to represent plastic 

behaviour of a clamped beam. 

As the final analysis on a clamped I beam, it was decided to examine the pattern 

of plastification in the beam. This can be observed by keeping track of the stress-strain 

behaviour of every integration point. Numerical integration was increased to ( 7 x 4 x 4 ) from 

(7 x 2 x 4) to obtain a more accurate description of the plastic flow. The spread of plastic 

zones as the load is increased is presented in Figure 4.23 for the large deflection elastic-

perfectly plastic case with a yield stress of 36000 l b / i n 2 . These results were generated by 

employing a (1, —, 1) + (4, —, - ) mode combination. This figure also includes the locetions 

of the Gauss integration points in the beam. Vertical sections 1 through 7 are taken at the 

7 spanwise Gauss evaluation points. Plastic action starts at the ends of the beam (sections 

1 and 7) and at the integration points furthest from the centroidal axis. Once the two end 

sections are close to full plasticity, the mid-section (section 4) starts to show plastic action. 

Note that at a load of 250 lb/ in, both end and centre sections have nearly formed plastic 

hinges, yet the displacement is very small(Fig. 4.19). This is again due to the restricted 

deflected shape. These results also show that the spread of plastic zones is modelled well 

by the present analysis, but unfortunately at load levels higher than the correct ones. 
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4.5 Analysis of Unstiffened Plates 

4-5.1 Square plate with all four edges simply supported 

The differential equation for the lateral deflection of a rectangular isotropic plate is, 

where, w is the lateral deflection, 

q is the lateral load, 

D is the flexural rigidity, and 

x and y are the rectangular cartesian co-ordinates as shown in Figure 4.24. 

Equation 4.10 can be solved for simply supported edge conditions by following Navier's 

method [2]. Navier's solution for the lateral displacement of a rectangular plate of size 0 x 6 

d4w 
+ 2 

d2w d4w q 
(4.10) 

dx4 dxdy dy4 D 

is, 

00 00 

(4.11) 

Hence, the central deflection of a square plate (a =• 6) can be expressed as, 

(4.12) 

This series converges very fast and can be summed to get, 

_ 4.0623527g0a4 

'c~ VflD 
(4.13) 
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Figure 4.24 - Rectangular plate configuration 
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Once the expression for the deflection, equation 4.11, is known, it is possible to get an 

equation for the total strain energy stored in the plate. The total strain energy for a square 

plate of side a is, 

1 fa fa 

u = o / / i°w d x dy 
* Jo Jo 
8.5125526g 2 £ 6 

104£> [ } 

A square plate was analysed by the finite strip programme assuming small deflections 

and linear elastic behaviour. Only one displacement mode is employed in this analysis 

(2,1,1). The central deflection and the total strain energy in the plate for various number 

of strips are presented in Table 4.7. 

T A B L E 4.7 L I N E A R E L A S T I C R E S P O N S E OF A SIMPLY S U P P O R T E D P L A T E 

dimensions = 100 mm x 100mm x l m m 

elastic modulus, E = 205000 N / m m 2 

uniformly distributed load, q — 0.1 N / m m 2 

Poisson's ratio, v =0.3 

Number of Strips 2 4 6 8 Exact 

Central Deflection (mm) 2.2071 2.1898 2.1891 2.1890 2.1639 

error % 1.996 1.197 1.165 1.160 

Strain Energy (Nm) 0.4495 0.4511 0.4512 0.4512 0.4535 

error % 0.864 0.527 0.496 0.491 

It is evident that both the central deflection and the total strain energy approaches a 

solution away from the exact value as the mesh is refined. The difference is due to the finite 
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strip approximation of the deflected shape in the longitudinal direction, namely that of one 

mode. Note that the central deflection is on the flexible side, whereas the strain energy is 

on the stiff side, of the respective exact solutions. Table 4.7 also includes the percentage 

errors at every stage of the discretisation. A n inspection of this reveals that the % errors 

in energy are very small and are lower than those in central displacement, at any one level 

of finite strip discretisation. Therefore, it can be concluded that the present analysis with 

only a single mode is capable of predicting the response of a simply supported square plate 

very accurately. Furthermore, it is seen that there exists a bound on strain energy from 

below. 

Bending moment distributions of the simply supported square plate along two mutually 

perpendicular centre lines are presented in Figures 4.25 through 4.28. Bending moments 

obtained by the present analysis with the four strip discretization are compared to the plate 

theory solutions. Note that My moment agrees more closely with theoretical predictions than 

Mx moment, although the errors are very small in both cases. This is due to the fact that 

there are four strips in the y direction and also that a cubic displacement pattern is allowed 

in that direction within a strip, as opposed to the predetermined sinusoidal variation in the 

x direction. 

Timoshenko and Wo;,.nowsky-Krieger[2] present a method, recommended by F6ppl[47], 

to analyse large deflection behaviour of a simply supported plate. If the plate deflects solely 

as a non-linear membrane, an energy minimization procedure yields the following expression 

for the central deflection[2] of a square plate of side 2a. 

(4.15) 



Figure 4.26 - Bending moment distribution along CD, in the 
simply supported square plate Mx 
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Figure 4.27 - Bending moment distribution along AB, in the 

simply supported square plate — My 

t 
O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 4.28 - Bending moment distribution along CD, in the 
simply supported square plate - W 
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where, ft is the uniformly distributed load, 

E is the elastic modulus, and 

h is the plate thickness. 

Equation 4.15 was derived by assuming a Poisson's ratio of 0.25. If it is assumed that a 

uniformly disributed load q can be resolved into two parts qo and q\ in such a manner that 

part qo is balanced by the bending and shearing stresses calculated by the theory of small 

deflections, part q\ being balanced by the membrane stresses, one can write, 

q=qo + qi- (4.16) 

Substituting for go and q\ from 4.13 and 4.15 respectively, the above expression can be 

written in the form, 
wcEhz  

(l=—7— 
V? 

1.37 + 1.94-
hr 

(4.17) 

for a square plate of side 2a, assuming Poisson's ratio of 0.25 for the plate material[2]. 

A large deflection elastic analysis is now performed on the example plate by using the 

finite strip programme. Results of this analysis are compared with the analytical solution 

given by the equation 4.17. Load - deflection plots are given in the Figure 4.29. Central 

displacements obtained by the eight strip discretisation are nearly identical with those of the 

analytical calculations. Results of the four strip discretisation are also very good compared 

to the Timoshenko solution. These strips include only a single mode for each of u, v and w. 

The load deflection plot given in Figure 4.30 displays the effect of adding a second 

displacement mode in the four strip finite strip analysis. For a uniform load, the second 

mode tends to reduce the central deflection. However, this mode increases the deflections 

in the outer two thirds of the span (Figure 4.31). 
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Deflection-mm 

Figure 4.29 - Variation of central deflection response of the 

simply supported square plate with different discretizations 
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Figure 4.30 - Central deflection response of the 

simply supported square plate in one and two mode analyses 
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Figure 4.31 - Deflected shape of the simply supported square plate 
along a centre line in the direction of the strips at 0.2 N/mm2 
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Figure 4.32 - Strain energy variation of the simply supported square plate 
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Figure 4.32 is a plot of load vs. strain energy calculated by the finite strip programme. It 

is apparent that there is a monotonic convergence in the strain energy as the mesh is refined. 

Furthermore, the effect on energy of increasing the number of strips from four to eight is 

almost the same as that of adding a second mode to the same four strip discretization. 

Results of the present analysis are compared with those of a finite element computer 

programme, ADINA[48](Bathe and Bolourchi,1980), in Figure 4.33. In this diagram, loads 

and the central displacements are non-dimensionalized by introducing the load parameter 

K = qa4/Eh4 and the displacement parameter wc/h, respectively, where q is the uniformly 

distributed load, a is the side length of the plate, E is the elastic modulus of the plate 

material, h is the plate thickness and wc is the central deflection. The A D I N A analysis was 

performed by using four 16 node shell elements to represent one quater of the plate. Also 

presented in the figure is the Timoshenko analytical solution given by equation 4.17. The 

two mode finite strip results agree very well with the A D I N A results, especially at large 

deflections. Furthermore, the difference between the Timoshenko solution and the curves 

predicted by the numerical procedures is never more than about 5%. 

The comparison of the present results with those of another finite strip computer pro

gramme developed by Azizan and Dawe[32] is presented in Figure 4.34. In this plot, the 

non-dimensional load parameter Q = qa4/Dh and the non-dimensional displacement param

eter 100 x wc/a were used as the ordinate and the abscissa respectively. Azizan and Dawe 

employ Mindlin plate theory, which incorporates through-the-thickness shear deformation 

effects. They have also provided an improved classical plate theory (CPT) solution based 

on the Rayleigh-Ritz procedure, with more terms used in assumed series expression for u,v 

and w than the solution by Levy [49]. These points are identified as the C P T points in 

Figure 4.34. While the finite strip results are identical with each other for a given number 

of modes, the agreement with the Rayleigh-Ritz solution is also excellent. 
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A simply supported square plate of size 6m X 6m x 0.2m is now analysed by assuming an 

elastic-plastic material with strain hardening. This example is chosen to match a comparison 

example presented in the next section. The plate material was assumed to possess the 

following values. 

oo = 40 M N / m 2 , 

E = 30000 M N / m 2 , 

ET = 300 M N / m 2 , 

v = 0.3, 

where, &o, E and ET are the yield stress, elastic modulus and the slope of the plastic 

segment of the bi-linear stress-strain curve (Chapter 3) respectively, v is the Poisson's ratio. 

In this analysis, the geometric non-linearity is ignored. Load deflection plots obtained by 

using three finite strip discretizations are presented in Figure 4.35. In this plot, a non 

dimensional load parameter Q = a2q/10Mp and a non dimensional deflection parameter 

W = 100 Dwc/ a2 Mp are used as the ordinate and abscissa respectively, where Mp is the full 

plastic moment of a section and q is the uniformly distributed load. A l l three finite strip 

analyses provide nearly identical results. 

The spread of plastic zones as the load is increased is given in the Figure 4.36. Q is 

again the non-dimensional load parameter. It is clear from this figure that if there exists a 

yield line pattern, such lines will form along the diagonals'of the plate. The collapse load 

calculated by following a rigid plastic analysis with diagonal yield lines is 2 4 M P / a2, where a 

is the side length. This value corresponds to a Q of 2.4 for the present example. According 

to Figure 4.36, at Q = 2.4 there still is a middle layer to be yielded, even along the diagonals 

of the panel. A t Q — 3.0, most of the panel has yielded, except at some points near the 

corners and some points at the middle of the sides. However, as the yield line theory is 

based on a non-strain hardening material, no valid comparisons can be made. 
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Figure 4.35 — Central deflections of a simply supported square plate in an elastic plastic analysis 
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Figure 4.36 - Spread of plastic zones in a simply supported square plate 
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To compare with the yield line analysis, the last example was repeated with no strain 

hardening. A load-deflection plot is presented in Figure 4.37. Note that the finite strip 

model depicts a late yielding compared to the yield line solution, as observed in the simply 

supported beam example (Fig. 4.5). 

Results of a large deflection elastic-perfectly plastic analysis on the same example plate 

are shown in Figure 4.38. Also shown in the figure is a membrane solution obtained by 

solving Poisson's equation for a membrane, assuming the plate becomes fully plastic with 

a membrane stress equal to the yield stress of the material. The membrane solution is in 

error because a rectangular plate always possesses some amount of shear stresses, especially 

close to the boundaries. This is the reason for the substantial difference between the two 

solutions. 

Although the chosen functions for a simply supported strip are capable of reproducing 

zero moments at the ends of the strip in an elastic analysis, this condition is not strictly 

satisfied in a plastic analysis. However, the actual moments obtained at the ends of the 

strips are still negligible compared to the moments at the middle as indicated by the example 

calculation given in Appendix C. 

4-5.2 Square plate with all four edges clamped 

Clamped boundary conditions can be achieved by restricting the rotation at the edges 

of a simply supported plate. Thus, one can start with the solution of the problem for a 

simply supported plate and then can superpose on the deflection of such a plate by moments 

distributed along the edges. These moments are now adjusted in such a manner as to satisfy 

zero slopes at the boundary of the clamped plate. Timoshenko and Woinowsky-Krieger[2] 

followed this procedure and presented the following expression for the central deflection of 
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a clamped plate of side a under a uniformly distributed load qo. 

0.00126c70a4 

wc = D 
(4.18) 

The equation for the deflection at any point on the plate surface is not given by Timo-

senko and Woinowsky-Krieger. Therefore, an exact calculation of the strain energy stored in 

the plate is not possible. However, an accurate value for the strain energy can be obtained 

by utilizing one of the many finite element computer programmes available for the linear 

elastic analysis of plates. Cowper et al.[50] present the following relationship between the 

strain energy U and the uniformly distributed applied load go for a square plate of side a. 

2 „ 6 
U 

1.9455936gga' 
104£> 

(4.19) 

Finite strip results of a small deflection, linear elastic analysis, of a built-in plate by 

incorporating one mode (4,1,1), are summarised in Table 4.8. 

T A B L E 4.8 L I N E A R E L A S T I C R E S P O N S E OF A BUILT-IN P L A T E 

dimensions 

elastic modulus, E 

uniformly distributed load, q 

Poisson's ratio, v 

100 mm x 100mm x 1mm 

2 = 205000 N /mm 

= 0.1 N / m m 2 

= 0.3 

Number of Strips 2 4 6 8 Exact 

Central Deflection (mm) 0.7028 0.6916 0.6915 0.6915 0.6715 

error % 4.66 2.99 2.97 2.97 

Strain Energy (Nm) 0.0919 0.0998 0.1002 0.1003 0.1036* 

error % 11.32 3.70 3.24 3.22 

(finite element) 
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It is clear that both the central deflection and the total strain energy approaches a 

solution away from the exact value as the mesh is refined. The difference is due to the 

finite strip approximation of the deflected shape in one direction, namely that of one mode. 

Note that the central deflection is on the flexible side, whereas the strain energy is on the 

stiff side, of the respective exact solutions, as was observed in the simply supported plate 

example. The relative errors are higher in the case of the clamped plate than in that of 

the simply supported plate with the same mesh. Similar differences were observed between 

simply-supported and clamped ends in rectangular and I-beam examples. There is also an 

energy bound from below, even in the case of the built-in plate. 

Bending moment distributions of the built-in plate obtained by present analysis are 

compared with theoretical results and a finite difference solution[51] in Figures 4.39 through 

4.42. Finite strip results are obtained by employing four strips across the width and mo

ments are plotted along two mutually perpendicular directions. As seen in the simply 

supported plate example, a better comparison was observed in the direction perpendicular 

to the strips than in the direction of the strips. This is again due to the better approximation 

of the displacement pattern in the former direction. 

Timoshenko and Woinowsky-Krieger[2] use an energy method to determine the solution 

of a large deflection analysis of a uniformly loaded rectangular plate with clamped edges. 

In and out-of plane displacements are expressed in polynomial forms with a total of 11 

coefficients. A subsequent energy minimization results in a set of 11 non-linear equations 

to be solved for these coefficients. Table 4.9 is prepared by taking values off the non-

dimensional plot given by Timoshenko and Woinowsky-Krieger[2] of wc/h vs. qa4/Dh for a 

square plate of side a. 
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T A B L E 4.9 C E N T R A L D E F L E C T I O N S OF A BUILT-IN P L A T E 

L A R G E D E F L E C T I O N A N A L Y S I S 

(Taken from Timoshenko and Woinowsky-Krieger[2]) 

Poisson's ratio, v = 0.3 

qa4/Dh 50.0 100.0 150.0 200.0 250.0 

wc/h 0.75 1.15 1.40 1.60 1.77 

The results of Table 4.9 are plotted along with the finite strip solutions obtained via a 

(4,1,1) analysis in Figure 4.43. A n excellent agreement is noted when eight strips are used 

across the plate. The central deflection at any one load decreases when going from two 

strips to four strips, but increases again with the eight strip discretisation, i.e. the central 

deflection does not converge monotonically. 

A load-deflection plot of a four strip analysis with one and two displacement modes is 

presented in Figure 4.44. Variation of strain energy, calculated by using different finite strip 

models is plotted against the load in Figure 4.45. Unlike the case of the central deflection, 

a monotonic convergence of the strain energy is seen as the mesh is refined. Furthermore, 

the effect of adding a second mode is more pronounced in the case of strain energy than in 

displacement. 

As the last example on unstiffened plates, small deflection, elasto-plastic behaviour of 

a clamped square plate was considered. The example was chosen from a paper by Owen 

and Figuerias[52]. The geometric and material properties for this example are given below. 
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Deflection - mm 

Figure 4.43 - Central deflections of the 

clamped square plate by different descretiiations 
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Deflection — mm 

Figure 4.44 - Central deflection of the clamped plate by one and two modes 
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side length a = 6.0m, 

thickness h = 0.2m, 

cr0 = 40 M N / m 2 , 

E = 30000 M N / m 2 , 

ET = 300 M N / m 2 , 

v • = 0.3. 

Results of the present analysis by employing a (4,1,1) mode and 4 finite strips are com

pared with two finite element solutions in Figure 4.46. In this plot, a rion dimensional load 

parameter Q— a2q/\0Mp and a non dimensional deflection parameter W = l00Dwc/ a2 Mp 

are used as ordinate and abscissa respectively, where Mp is the full plastic moment of a 

section and q is the uniformly distributed load. The finite strip results appear slightly stiff 

at high load levels when compared to the finite element results, although the error is very 

small. 

Owen and Figuerias[52] have also presented a figure showing the spread of plastic zones 

of the example plate. Finite strip prediction of plastic flow is compared with these results 

in Figure 4.47. Plastic zones are shown with increasing load parameter Q. In the finite 

strip analysis, two widthwise and four depthwise Gauss integration points were employed 

per strip. Therefore, when looking at section X X (Fig 4.47), one can see 16 Gauss points. 

Plastic flow was monitored by following the stress strain behaviour of these points. The 

patterns of plastification obtained by the two methods are comparable. 

A small deflection, elastic-perfectly plastic analysis was also performed on the same 

example plate. Results of this analysis are presented in Figure 4.48. Plastic collapse load, 

calculated by following the yield line theory, is also shown in the figure. As observed in the 

clamped beam example, the finite strip model shows a higher load carrying capacity than 

that predicted by the yield line theory. 
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Figure 4.47 - Spread of plastic zones in a clamped square plate 
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Figure 4.49 - Comparison of central deflections of a clamped 
square plate with plastic membrane solution 



Chapter IV: Numerical Investigations 109 

The finite strip results obtained by a large deflection, elastic-perfectly plastic analysis 

are presented in Figure 4.49, along with the membrane solution calculated for the same 

square plate. Note the large difference between membrane solution and the finite strip 

solution. This difference is much higher than that of the simply supported plate. Again, 

this result is due to the slope restrictions imposed by the mode shapes at the ends of the 

strips. 

4.6 Analysis of a Stiffened Panel 

The Defence Research Establishment in Suffield, Alberta (DRES) has tested a stiffened 

panel under blast loading conditions. A finite element analysis of the test panel was carried 

out by M A R T E C Limited by employing the all purpose finite element computer programme 

ADINA[53]. On leading to the dynamic solution, a static analysis was performed and 

reported[54] on the test panel. On account of this, the DRES panel was chosen as the 

stiffened panel example to be analysed by the finite strip method. Properties of the panel 

material are given below. 

Young's Modulus = 30 x 10 6 l b / i n 2 

Hardening Modulus = 0.178 x 106 l b / i n 2 

Poisson's Ratio = 0.3 

Yield Stress = 45 x 10 3 l b / i n 2 

A top and a side view of the panel are presented in Figure 4.50, along with the geometric 

properties. The panel is clamped all around. A finite strip analysis was first carried out 

on half of the panel ( A B C D in Figure 4.50) by utilising symmetry conditions, i.e. clamped 

boundary conditions are applied along A D and in-plane displacement v and rotation 0 were 

forced to be zero along B C . In the following, this analysis is referred to as the DRES analysis. 



Chapter IV: Numerical Investigations 110 

180" 

36" 

i 

H Bl 

C 

Top View 

K 

* 
1 1 1 

~H H~ 2.93" T 
5.27" centre to centre 
5.645" outside 

Side View 

Plate Thickness = 0.25" 
Web Thickness = 0.28" 
Bottom Flange Thickness = 0.50" 

Figure 4.50 - Stiffened panel configuration 



Chapter IV: Numerical Investigations 111 

The A D I N A results have been obtained by considering one quarter of the middle bay of 

the panel ( E B F G in Figure 4.50). A three node triangular plate element based on discrete 

Kirchoff theory was used in the analysis. The finite element grid is presented in Figure 4.51. 

This grid consists of 964 elements, 336 for the plate and 528 for the stiffener. 8 elements 

were used through the depth of the web. A D I N A uses a full section yield criterion proposed 

by Ilyushin, in contrast to the von-Mises criterion employed in the present analysis. 

As the A D I N A analysis incorporated only one bay of the panel, two other finite strip 

models were selected for comparison with A D I N A , reflecting only the middle part of the 

panel (Figure 4.52). In the first model, the section H B C J in Figure 4.50 was analysed with 

four equal width finite strips between the two lines HJ and B C . In the second, eight equal 

width strips were employed between these two lines. These two models will be referred 

to as DRES1 and DRES2 respectively (Figure 4.52). DRES1 and DRES2 analyses were 

carried out by making the in-plane v displacement and the rotation 0 to be zero along the 

boundaries H J and B C . In both DRES1 and DRES2, the stiffener was modelled by three 

strips, one for the web and two for the bottom flange. Initial finite strip calculations were 

carried out by employing (l,l,l)+(4,-,-) mode combination in all strips. 

A linear elastic analysis was conducted initially, with a uniform load of 50 l b / i n 2 on the 

top surface of the panel. Lateral deflections at the centre of the central bay (point F in Figure 

4.50) and at the mid span of the stiffener (point G in Figure 4.50) are tabulated in Table 

4.10. Results obtained by three finite strip analyses are presented, along with results from 

A D I N A . In the finite strip analysis performed with (l,l,l)+(4,-,-) mode combination, nearly 

identical results were obtained by the three discretisations, DRES, DRES1 and DRES2. 

When additional modes were included, the analyses were performed only with the DRES2 

model. As shown in Table 4.10, deflections at the centre of panel are overpredicted by 16% 

using the finite strip model with one w mode, as compared to A D I N A . However, when 
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Figure 4.52 - Finite strip models 
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a second w mode was included, central deflection response was stiffer than the A D I N A result 

by 4.8%. A third w mode made the solution very close to the A D I N A result. Deflections 

at the mid span of the stiffener were overestimated by 11%, 9% and 10% with one,two and 

three w modes respectively. 

TABLE 4.10 D E F L E C T I O N S O F T H E S T I F F E N E D P A N E L 

IN A L I N E A R E L A S T I C A N A L Y S I S 

Deflection at F Deflection at G 

A D I N A 5.60 in 0.400 in 

Finite strip (1,1,1) + (4, - , - ) 6.51 in 0.444 in 

Finite strip (1,1 ; 1) + (4, - , 3) 5.33 in 0.436 in 

Finite strip (1,1,1) + (4, - , 3) + ( - , -5 ) 5.65 in 0.440 in 

In order to investigate the differences observed in the mid span deflections of the stiffener 

in a linear elastic analysis, analytical calculations were made by treating section H B C J (Fig. 

4.50) as a wide flange I beam. The effective width of the top flange of such an I beam is 

18.1% of the total span, as given by Timoshenko and Goodier[55]. With this value as the 

top flange width, linear elastic beam theory yields a central deflection of 0.38 in. at the 

mid span of the stiffener. Shear deflection at the mid span as calculated by equation 4.8 

is 0.12 in., giving a total mid span deflection of 0.50 in. Therefore, it is seen from Table 

4.10 that the finite strip solution for the stiffener top deflection compares more favourably 

than the A D I N A result, with the beam theory solution. However, the finite strip solution 

is still 11.4% stiffer than the theoretical calculation. This may be due to possible errors in 

the expression for shear lag, Poisson's ratio effects of the plate, and the additional area at 
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the T joints. 

The DRES analysis includes the effect of the fixed boundaries, A D and K L (Figure 

4.50) as half the panel is considered. In contrast, in the A D I N A , DRES1 and DRES2 

analyses, the example panel is assumed to behave as an infinitely long plate structure in 

the direction perpendicular to the stiffeners. In order to study the applicability of the 

latter, a geometrically non-linear analysis was performed by using the two models DRES 

and DRES1. Lateral deflections at the center of the central panel are plotted against the 

applied distributed load in Figure 4.53. As the solutions are almost identical, the use of a 

wide flange I section instead of half the panel is justified. 

Panel centre deflection responses in a large deflection analysis, with and without in

cluding material non-linearities, are shown in Figure 4.54. Deflection response predicted by 

DRES2 are slightly on the stiff side of those predicted by DRES1, as one might expect with 

a finer discretisation. The finite strip curves are on the stiff side of the A D I N A curve in a 

linear material analysis. In a non-linear material analysis, the finite strip results cross to the 

flexible side of A D I N A curve at high loads. As A D I N A employes a large number of elements 

and therefore a large number of degrees of freedom, the flexibility of A D I N A is expected. 

The flexiblity in finite strip solutions in a non-linear material analysis at high loads may be 

caused by the differences in yield criteria. A similar comparison for the deflection at the 

mid span of the stiffener top is presented in Figure 4.55. Figures 4.54 and 4.55 are drawn 

to the same scale. Therefore, it is easy to note the large difference between the deflections 

at the panel centre and at the mid span of the stiffener for a given load. 

In both the Figures 4.54 and 4.55, the non-linear material curve branches away from 

the linear material curve at a load of approximately 35 l b / i n 2 in all three analyses. The 

general shape of all the curves are quite similar. 
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Figure 4.55 - Deflectons at mid span of the stiffener 
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To compare the displacement shape of the entire panel, three load levels were chosen; 0.5 

psi, where the response is essentially linear, 20 psi, where there is a considerable stretching 

of the middle surface, and 33 psi, where membrane stresses are fully developed. The full 

A D I N A results were not available for non-linear material response. 

The deflected shapes of the panel are plotted in Figure 4.56 at the three load levels 

considered. Panel deflection along B F , E G and G F (Fig. 4.50) are presented in Figures 

4.56(a) ,4.56(b) and 4.56(c) respectively. 

It is seen in Figure 4.56(a) that finite strip results are stiffer than the A D I N A results, 

except at the centre of panel at a load level of 0.5 psi. When only one w mode is employed, 

there is a considerable descrepancy between finite strip and A D I N A results, especially 

between 10 and 25 in. away from the clamped boundary. This difference was substantially 

reduced by employing a second w mode in the analysis, though it reduced the central 

deflection. 

The finite strip response is considerably stiff, as compared to A D I N A , in the case of 

stiffener top deflections as shown in Figure 4.56(b). The addition of a second bending mode 

hardly changes the displacement pattern. The difference between A D I N A and finite strip 

solutions seems to increase with increasing load. As the non-linearity increases with the 

load, this may be due to A D I N A having more non-linear terms in its strain displacement 

relations than the finite strip analysis. 

Comparison between A D I N A and the finite strip results is quite good across the strip, 

as presented in Figure 4.56(c). This is expected as the lateral deflection is allowed to vary 

as a cubic polynomial within each strip, in this direction. 

M A R T E C report[54] also includes contour plots for the stresses on the top surface of 

the example panel. Normal stress components in two directions, one perpendicular and one 

parallel to the stiffeners, are considered. Stress contours are given at three load levels, 
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Finite Strip - (1,_,1)+(4,_,_) 

Finite Strip - (1.__.1)+(4._,3) 

ADINA 

Figure 4.56(a) — Displacement shapes of DRES test panel along BF 
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- • Finite Strip - (1,_,1)+(4,_,_) 

Finite Strip - (1._.1)+(4,_,3) 

- - ADINA 

Figure 4.56(b) - Displacement shapes of DRES test panel along EG 
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- • Finite Strip - (1,_,1)+(4,_,_) 

Finite Strip - (1._.1)+(4,__,3) 

- - ADINA 

Figure 4.56(c) - Displacement shapes of DRES test panel along GF 



Chapter IV: Numerical Investigations 123 

0.5, 20 and 50 l b / i n 2 . The finite strip model DRES2 was used with a (1,1,1) + (4,-,-) 

mode combination to obtain stresses on a grid drawn on the top surface of the panel. A 

3 x 17 grid was employed per strip on the top surface. On those grid points which are on a 

nodal line, stresses calculated from the two sides do not exactly match, except at the fixed 

boundary. For such points, the average values are taken. The stress contours obtained 

in a linear material, large deflection analysis are presented in Figures 4.57 and 4.58, in 

directions perpendicular and parallel to the stiffeners respectively, Parts (a), (b) and (c) of 

these Figures represent the three load levels, 0.5, 20 and 50 l b / i n 2 , respectively. Contours 

are given for a quarter of the middle bay, bounded by E B G F in the Figure 4.50. In all the 

contour plots, the bottom left hand corner denotes the center of the panel. The top line 

represents the centreline of the stiffener and the right line represents the clamped edge of 

the panel. 

It was observed in the load - deflection plots that at a load level of 0.5 l b / i n 2 , the 

behaviour of the panel is essentially linear. In Figure 4.57(a), the similarity between the 

three models at this small load should be noted. The stress free contour lines agree very 

well. The area with a compressive stress larger than 2000 l b / i n 2 is smaller in the finite strip 

plots than in the A D I N A diagram. The maximum tensile stress predicted by the finite strip 

analyses is around 5000 l b / i n 2 , and that by the A D I N A analysis is around 4000 l b / i n 2 . At a 

load of 20 l b / i n 2 , as shown in Figure 4.57(b), agreement among the stress contours obtained 

by the three methods is satisfactory. At this load, membrane stresses are comparable to 

those of bending. At a load level of 50 l b / i n 2 , the membrane stresses (perpendicular to 

the stiffeners) are fully developed and the A D I N A results show a panel surface in complete 

tension in Figure 4.57(c). The finite strip results, however, show some small compressive 

zones. At all three load levels, the tensile stresses (perpendicular to the stiffeners) near the 

stiffener are very well predicted by the finite strip analyses. 
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D R E S 2 

Figure 4.57(a) - Normal stress perpendicular to the stiffener at 0.5 psi 
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8 7 0 0 0 0 
9 8 0 0 0 0 

Figure 4.57(b) - Normal stress perpendicular to the stiffener at 20 psi 
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A D I N A 

C O D E S T R E S S 

D R E S 1 

1 
2 
3 
4 
5 
6 
7 
8 

0 
2 0 0 0 0 
4 0 0 0 0 
6 0 0 0 0 
8 0 0 0 0 

1 0 0 0 0 0 
1 2 0 0 0 0 
140000 

Figure 4.57(c) - Normal stress perpendicular to the stiffener at 50 psi 
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8 2 5 0 0 
9 3 0 0 0 

10 3 5 0 0 

D R E S 2 

Figure 4.58(a) - Normal stress parallel to the stiffener at 0.5 psi 
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8 4 0 0 0 0 
9 6 0 0 0 0 

10 8 0 0 0 0 

S / 
D R E S 2 

Figure 4.58(b) - Normal stress parallel to the stiffener at 20 psi 
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8 150000 
9 2 0 0 0 0 0 

D R E S 2 

Figure 4.58(c) - Normal stress parallel to the stiffener at 50 psi 
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Contour plots for the normal stress in the stiffener direction are given in Figure 4.58. 

At 0.5 l b / i n 2 , the zero stress contours are similar in all three diagrams. Stresses in the 

compressive zone and near the stiffener top are closely predicted by the finite strip models. 

However, agreement between finite strip and A D I N A programmes is not as good near 

the fixed boundary. For example, at a load level of 0.5 l b / i n 2 , the maximum stress on 

the clamped edge obtained from the finite strip is around 2000 l b / i n 2 , as compared to 

3500 l b / i n 2 from A D I N A . At loads of 20 l b / i n 2 and 50 l b / i n 2 , the stress contour plots from 

A D I N A are not complete and so comparison is more difficult. However, it is clear that 

agreement between A D I N A and the present analysis is not good. At the fixed end, A D I N A 

predicts high tensile stresses which are caused by sharp bending as the plate deforms more 

into a string mode than a bending mode. The finite strip analysis, with only one mode in the 

lateral direction, cannot model this sharp curvature and so predicts much smaller stresses. 

The stress near the mid span of the stiffener is difficult to compare with A D I N A but the 

trends appear correct. High tension perpendicular to the stiffeners would cause tensile 

stresses in the longitudinal direction (by Poisson's effect) and coupled with the overall 

tension caused by the string effect, would lead one to expect high longitudinal tensions in 

this region. High stresses near the stiffeners may allow a reduction in the longitudinal stress 

in the plate near the centre and explain why there appear to be regions of low tension or 

even compression in some of these areas. 

Stress contours were also drawn after including two bending modes in the analysis. The 

stress concentrations near the clamped boundary (bottom right hand corner of Fig. 4.58) 

were better predicted, but no significant changes were observed in other areas. 

Comparisons between finite strip and A D I N A stress patterns are very good for stresses 

perpendicular and in the vicinity of the stiffeners. On the other hand, for stresses parallel to 

the the stiffeners, a satisfactory agreement is seen only at a load level of 0.5 l b / i n 2 . In finite 
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strip analyses, displacement pattern in the strip direction is predetermined. However, in the 

direction perpendicular to the stiffeners, more flexibility is expected as a cubic displacement 

pattern is assumed. This is the reason for better comparisons in that direction. 

4.7 Convergence of Newton-Raphson Iterative Scheme 

In most of the examples discussed in the preceeding pages, 11 load increments were 

employed to apply the desired full load. Initially, two load increments, each equal to 5% of 

the full load, were used to avoid any starter problems that might occur. These were followed 

by nine increments with each increment representing 10% of the full load. In almost all the 

analyses, A T O L E R value (chapter 3) of 0.001 was used and convergence was achieved in less 

than 6 iterations. However, it was necessary to apply the load in very small increments in 

some example problems to achieve convergence, especially when material softening occured. 

The size of these increments was determined by a trial and error procedure. 



CHAPTER V 

SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

5.1 Summary 

Observations of structures created by nature indicate that in most cases strength and rigidity 

depend not only on the material, but upon form. Realisation of this fact has resulted in the 

design of structural elements having a high load capacity, mainly due to their form, such as 

I beams and stiffened panels. 

Analytical procedures of determining the response of these structures under non-linear 

conditions are not very practical because of their mathematical complexities. These difficul

ties have led to the development of several numerical methods for the analysis of stiffened 

structures. In the preceeding pages, a numerical procedure was presented following the 

finite strip method, to analyse large deflection, elastic plastic behaviour of beams, plates 

and stiffened panels. 

In the finite strip method, the plate is divided into strips in which the ends are in co

incidence with two opposite boundaries. Displacement variation along the strip is assumed 

depending on the boundary conditions at the ends of the strip. Equilibrium equations for 

a single finite strip were then written via a virtual work principle. Structure equilibrium 
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equations were subsequently obtained by summing up the individual strip equations. In the 

general case, the final set of equations are non linear in nodal variables and an iterative so

lution procedure is required. In the present formulation, this was done by incorporating the 

well known Newton-Raphson method. The numerical integration necessary for calculation 

of the tangent stiffness matrix was accomplished by adopting Gauss quadrature. 

Numerical investigations were carried out to test the finite strip formulation discussed 

above. Several beam and plate examples and a stiffened panel example were presented. 

Finite strip solutions agree very well with analytical and/or other numerical solutions in 

most cases, even with only a single displacement mode in each of the three displacements 

considered. For some cases, however, it was necessary to use more than one mode to get 

satisfactory results. In the case of a clamped I beam or a clamped stiffened panel, finite 

strip solutions do not agree well with finite element solutions when material non linearities 

are included in the analyses. This was because of the crude mode used to simulate bending 

behaviour of such structures. Overall deflected shape of the stiffened panel was not too far 

away from A D I N A predictions in a large deflection elastic analysis. Stress contours were 

drawn for the top surface of the stiffened panel example in two mutually perpendicular 

directions. The contours obtained by the finite strip method match very well with finite 

element results in the direction perpendicular to the stiffeners. In the stiffener direction, 

however, the agreement is not verySlgood. This can be attributed to the predetemined 

displacement patterns in the stiffener direction. 
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5.2 Conclusions 

5.2.1 Rectangular beam 

When a rectangular beam was analysed with small deflections assuming a linear elastic 

material, excellent results were obtained for deflections with both simply supported and 

clamped boundary conditions by employing only a single bending mode. In examining 

bending moments and stresses, it was noted that the simply supported beam provided 

better comparisons with analytical solutions than the clamped beam, although errors in 

both cases were very small. When large deflections were included, it was found that the 

in-plane axial displacement had to vary along the beam so as to satisfy a constant strain 

requirement in the longitudinal direction to obtain accurate results. Therefore, it was 

concluded that the shape function for u has to be selected depending on the shape of the 

bending mode employed in the analysis. Plastic collapse load was overestimated by the 

finite strip method with the mode shapes used in the present analysis. If it is required to 

use the finite strip method in such an analysis, it is necessary to include a bending mode 

similar in shape to the corresponding collapse mechanism. Large deflection elastic-plastic 

response of rectangular beams agreed very well with finite element solutions in both simply 

supported and clamped examples. 

5.2.2 I beam 

Small deflection elastic analysis of an I beam by employing five finite strips produced 

displacement results that agree very well with theoretical calcuations, even with a single 

bending mode, in both simply supported and clamped cases. Errors in moments were 

also small and were comparable to the errors in rectangular beam problems. When large 



Chapter V: Summary, Conclusions and Suggestions for Future Research 135 

deflections were included, it was necessary to incorporate an additional u mode to satisfy 

linear requirements. This additional u mode should vary as the slope of the bending(«;) 

mode in the longitudinal direction. A combination of two u modes and one w mode produced 

results that agree very well with finite element solutions. This combination is also sufficient 

to yield accurate results in a large deflection, elastic-plastic analysis of a simply supported 

I beam. However, when the ends of the beam are clamped, it seemed that the present 

combination is unable to predict the deflected shape of the beam. Inclusion of more bending 

modes did help somewhat toward improving the solution, but convergence toward the finite 

element solution did not seem likely. A different bending mode, with zero slopes at the ends 

and a sharp curvature immediately away from the ends, is believed to perform better than 

the <j> functions used in the present analysis. 

5.2.8 Square plate 

As in the beam examples, one mode linear elastic analysis of a square plate with small 

deflections produced very good results with both simply supported and clamped boundaries. 

It was revealed that 4 equal width finite strips were sufficient across the width to obtain 

accurate results. Even when large displacements are included, one u and one w mode 

analysis was sufficient to yield results comparable to finite element solutions. Plastic collapse 

loads were overestimated as in the case of rectangular beams. The pattern of plastification 

in a built-in plate can accurately be predicted by the finite strip analysis in a small deflection 

elastic plastic problem by employing only one u and one w mode. 



Chapter V: Summary, Conclusions and Suggestions for Future Research 136 

5.2.4 Stiffened panel 

Central deflection response in a small deflection elastic analysis of the DRES stiffened 

panel with clamped boundaries yielded a one mode solution which was 16% more flexible 

than the A D I N A result. Inclusion of a second bending mode made the finite strip solution 

stiffer by 4.8% with respect to A D I N A . The finite strip solution at the mid span of the 

stiffener was 11% more flexible than A D I N A and did not change much with more modes. 

However, the finite strip solution was closer to an analytical solution calculated by using 

a wide flange I section, than the A D I N A result. In large deflecton analysis, the one mode 

finite strip results were on the stiff side of A D I N A solutions in terms of central as well as 

stiffener top deflections. Two mode results were even stiffer but they produced an overall 

deflection pattern of the plate closer to that of the finite element programme. It can also 

be concluded that present finite strip analysis can predict stress contours on the top surface 

of the panel fairly accurately. 

5.2.5 Numerical integration 

In the axial direction of a strip, 5 and 7 Gauss integration points are sufficient to obtain 

accurate results when employing one and two bending modes respectively. If more modes are 

used, 10 evaluation points will be sufficient in that direction. Across the width of the strip, 

2 points are sufficient to integrate the expressions exactly if only a linear variation is allowed 

for the in-plane displacements in that direction. The number of Gauss points through the 

thickness of the plate has to be determined depending on the material behaviour. If an 

elastic material is assumed, 2 points will yield exact integration. However, at least 4 gauss 

points are required through the thickness for accurate results when material exhibits plastic 

behaviour. 
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5.3 Suggestions for Future Research 

First and foremost preference should be given to solving the clamped I beam problem 

when the material behaves plastically. A viable solution may be to construct a new mode 

which is similar in shape to the classical collapse mechanism of a clamped beam. 

Finite strip theory presented in this thesis has already been extended to carry out dy

namic analyses via a central difference time integration scheme [56]. It is also being extended 

to include through-the-thickness shear effects which are important in analysing sandwich 

beams. Plastic analysis can be included in other more popular finite strip applications 

including folded, skew and sectoral plates. 
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APPENDIX A 

Strain-Displacement Relations for Stiffener Strips 

Equation 3.42 will be modified for the stiffener strips with the addition of non-linear terms 

in v. Corresponding strain-displacement relations are given below in matrix form. 
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Z dy2 

d2N™ d2N» 
Z dxdy Z dxdy ^ 

, dNf dNf 
1 K I 

2 dx dx 
VkV, 

1 dN£ dNf 
2 dy dy 
1 dN£ dNf 
2 dy dy VkVi 

dNf SAT" dNf \ 

sr + sr-at J v'vk 

{Se} + 

where i,j = 1,2,3,4 and k, I = 1,2. 

142 



APPENDIX B 

Elements of the ' U' matrix 

In Chapter 3, U matrix was denned as 

{dJs}[c]T){<7} = [ u ] ( 3 - 5 8 ) 

Considering only one mode for simplicity, it is clear that [C] matrix is of size 3 x 8 and 

the array of nodal displacements, {6} consists of 8 elements. Therefore, d[C]T/d{6} results 

in a three dimensional array W of size 8 x 8 x 3 . The elements of W are given by, 

dCl 

with i,j = 1,2,8 and k = 1,2,3. Now, as the stress array {a} is of size 3 x 1 , the product 

matrix U can be given by, 

[U} = [W]{a} 

where, 

k=l v h 
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Appendix B 

The U matrix can also be written as, 

[V\ = 

"0 0 0 0 0 0 0 0 " 
0 0 0 0 0 0 0 0 
0 0 On Q12 0 0 Ota Qu 
0 0 Q21 Q22 0 0 Q.2S Q24 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 Qsi Q32 0 0 Q33 Q34 

.0 0 QAI Q42 0 0 Q43 Q44J 

where, 

Qu = +
 NX*v + (K*N™» + NX) T*v> {> i = 1,2,3,4, 

and 

= dN?/dx, 

= aJC/dy, 

Nw = dN?/dx, 

j,y = dN:

w/dy. 



APPENDIX C 

Bending moments at the ends of a simply supported plate 

Bending moment distribution in the strip direction along the centreline of the example 

square plate in a large deflection, elastic-plastic analysis is presented here, at a load Q = 5.0. 

Bending moments are obtained by calculating the stresses at Gauss evaluation points and 

then integrating these stresses through the thickness of the plate. A smooth curve is then 

drawn through those points as shown below. Note that, the end moment is only 3% of the 

moment in the middle. 
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